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Summary

In the realm of studying the intricacies of the natural world, few fields captivate the curiosity,
fascination, imagination, and intellect quite like the study of animal behaviour. From the earliest
observations of ancient philosophers to today's cutting-edge research, the exploration of how
animals think, feel, make decisions, and interact with their environment has remained a
cornerstone of scientific inquiry. Understanding animal behaviour offers insights into the adaptive
strategies of organisms for survival, competition, and reproduction, to thrive in a dynamic, ever-
but increasingly fast-changing world. Some social interactions are difficult to observe and study
as they can be rare and short, but very important events in group-living animals. They contribute
significantly to the social environment and are in interdependence with ecological dynamics and
evolutionary adaptations which have fitness consequences. From the intricate dance of courtship
rituals, which secure mating, to the complex dynamics of social hierarchies formed by antagonism
and competition of conspecifics, each behaviour provides a window into the evolutionary
pressures that have shaped life on Earth. For the longest time, behavioural ecology studies were
limited to laboriously gathered yet still incomplete observational data. The advancements of the
last three decades in sensor technology, particularly solar powered accelerometers, have enabled
remote collection of location and triaxial acceleration at high frequencies. The high-resolution data
collected by such small, lightweight accelerometer devices opened new avenues for studying
behaviour and its long-term patterns. However, analysing large amounts of complex and
unstructured data is challenging. Machine - and of rapidly increasing relevance - deep learning
have shown great promise for clustering, classifying, and modelling raw accelerometer datasets
by implementing in the automated identification and classification of state and event behaviours.
In this study, the recognition and classification of behaviour from accelerometer data using deep
learning algorithms was examined. The focus was laid on male social behaviour events, which
have often been neglected in ethograms and energy budgets. The data was collected in a wild, free-
ranging population of vulturine guineafowl (Acryllium vulturinum) inhabiting their natural
environment around Mpala Research Centre in Laikipia County, Kenya (0° N, 37° E). The
vulturine guineafowl stands as an intriguing avian species with complex social behaviours that
have been of interest to researchers studying multi-level societies. The accelerometers employed
in this study system collect data at 20 Hz from various individuals since 2021, of which 19 were
considered. To find the best possible automated approach in detecting social behaviour, different
deep learning algorithms and window sizes were compared. State-of-the-art algorithms were
trained on manually labelled datasets of accelerometer readings, and the best performing model
was ultimately used to classify unlabelled windows across other parts of the timeseries of
accelerometer data into 3 different classes, consisting of courtship, dominance, and other
behaviours. The obtained frequencies and temporal patterns in social behaviour were correlated to
NDVI, a proxy for vegetation status and resource availability, which are assumed to affect these
behaviours. This study tried to explore the potential of deep learning for automating the study of
vulturine guineafowl social behaviour in their natural habitat. This study provides a promising
framework for the long-term monitoring of wild social birds and their behavioural changes over
time and across changing environmental conditions in a minimally invasive and scalable way. By
bridging the gap between technology and ethology, this study potentially contributes to the
advancement of behavioural research methodologies and provides a foundation for further
investigations into the social dynamics of vulturine guineafowl. Moreover, this methodology could
be extended to the study of other social species, facilitating urgently needed cross-species
comparison of the impact of climate change on behaviour.
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Introduction

Animal Behaviour

Animal behaviour, or ethology (100, ethos = character), refers to the study of everything animals
do during their daily life, the corresponding underlying mental processes, and internally
coordinated responses to internal and external stimuli'. This includes social interactions, the
movement within the environment and the cognitive understanding of the surroundings?.
Monitoring behaviour not only indicates the individual’s health, welfare and productivity but can
also provide information about the social interactions, population dynamics and environment?.
Human observation, imagination and fascination with animal behaviour most probably reaches
back to the very beginnings of human evolution. Intimate knowledge of an animal’s habits greatly
determined the success of hunting or fishing prey, escaping, or scaring away predators as well as
domesticating selected species. But even outside of practical benefits, animal behaviour has all
along aroused and satisfied our deep-seated interest and curiosity for the lives and minds of our
pets and livestock, other real or imaginary creatures, as well as of ourselves and fellow humans*.
As we tried to unravel the mysteries of animal minds, we gained a deeper appreciation for the rich
tapestry of life that surrounds us, creating a sense of wonder and awe that transcends disciplinary
boundaries. Therefore, since the dawn of civilization, humans have attributed animals with
symbolic and spiritual significance, nourishing religion and philosophy alike. Delving into the
historical frameworks of animal behaviour, we journey back to various ancient philosopher and
thinkers, who ascribed instinct, motivation, reason, sense and feeling to animals and appealed to
animal ethics, rights and even veganism>~’. What followed was a long period shaped by religious
hierarchical worldviews positioning humans above animals and thus legitimating the dominion
over the natural world. Fast forward to the 19™ century, where Charles Darwin's ground-breaking
work on evolution provided a framework for understanding behaviour through the lens of natural
selection, sparking a revolution in scientific thought. Not only anatomical structures but also
behaviours were considered adaptations existing over evolutionary times'?. The emerging
appreciation of the complexity and purposefulness of the actions of animals demanded long-term
observations of animals in their natural settings, evolving into the fields of ecology and ethology.
In the 20™ century, the founders of modern ethology, Nikolaas Tinbergen and Lorenz Konrad
meticulously observed, studied, and experimented on various animals in their natural
surroundings, leading to deeper insights compared to impoverished laboratory environments®.
Tinbergen claimed that the study of behaviour must address all four levels of analysis: causation,
ontogeny, function and evolutionary history®®. Causation explains, what makes the behaviour
happen, including physiology, nervous system, hormones and cognition. The ontogeny focuses on
how the behaviour develops. In other words, what developmental mechanisms lead to the
occurrence of behaviour, as internal and external factors, genes, experience. The function level
tries to understand how the behaviour contributes to genetic success through survival, mating,
competition, or natural selection and thereby to reconstruct the evolutionary history. These four
levels can help to solve the puzzle how and why individuals behave as they do®. These
contributions still set the basics for today’s research, even though the field, its tools and
possibilities have changed a lot. Thanks to revolutionary technology, as GPS tracking, motion and
orientation sensors, night-vision scopes, and sophisticated neuroimaging and computation, the
methodologies for the study of animal behaviour have diversified. These modern applications can
and should have implications for conservation and management efforts!®!!. By deciphering the
behavioural patterns of endangered species, especially in the face of global change, researchers
can develop more effective strategies for their protection and preservation. Similarly, insights
gleaned from studies of animal cognition and communication have far-reaching effects on animal
ethics, e.g. livestock welfare, as public consciousness and perception of moral responsibilities
towards other sentient beings change®’. As a vibrant and interdisciplinary field, ethology continues



to evolve, expand, inspire and intrigue, reminding us of the boundless wonders that await those
who dare to ask.

Social Behaviour

Social behaviour refers to aggressive, mutualistic, cooperative, altruistic and parental interactions
between individuals of the same species!?. Individuals make decisions on who they interact with
and how often. When individuals interact repeatedly, a social relationship between strangers,
relatives or members of the same group, of same or different sex or age can develop. Sets of such
relationships combine to a complex and highly dynamic social system!*!4, depending on the ever-
changing connections between individuals, which can have profound effects on reproduction and
survival'®. The resulting social structure is the arrangement of relationship between individuals
and groups within a society determined by patterns of behaviours and norms guiding interactions
among those. The comprehension of social structure is crucial for the understanding of social
dynamics, but also of the interactions between individuals and their surroundings consisting of
resources, abiotic hazards, pathogens and predators, competitors, and co-operators'>!>. The
ecological and social environment determine social interactions and thus play a pivotal role in
shaping population dynamics, resource distribution, and reproductive success, ultimately
influencing species' survival and adaptation to their environments'?!3. Looking at the causation
and ontogeny of social behaviour, physiologically speaking they are a complex tapestry woven by
(epi-) genetic'®!°, neural?*2? and hormonal®*-2° threads, influenced by environmental factors and
individual experiences?®28, Orchestrated by a symphony of various brain regions,
neurotransmitters and hormones, social behaviours have profound effects on the social dynamics
and hierarchies of a population?**°, Social interactions between individuals are crucial components
of an animal’s life and a result of (a)biotic interactions®!. They can even be an indicator of the
occurrence of extreme events such as forest fires*? or other environmental catastrophes and
problems?®?, and poaching®. Social behaviours take many forms. Competitive or aggressive
interactions determine hierarchies through dominance displays®-%, settles territorial disputes?’,
secures resources®® and establishes social status®**?. Communication facilitates exchange of
information between individuals through vocalizations®, visual signals** and chemical cues®*
enabling coordination of activities, social bonding, threat displays, and danger or predator
detection (alert call, cooperative defence, confusion of predator). Cooperative behaviours refer to
mutually beneficial interactions such as cooperative hunting, grooming, childcare or breeding**-
30, Courtship and mating behaviours are performed to attract mates and secure reproduction
involving feeding’!, elaborate displays or ritualized movements®>>3, vocalizations and signalising
fitness. Parental care comes in the forms incubation, begging and feeding, guidance to offspring,
defence against predators and teaching essential skills>*. Social bonding strengthens the social ties
and promotes group cohesion trough grooming, allopreening, huddling and playing>®. Social
learning refers to the acquisition of knowledge or skills through observation, imitation or
interaction with conspecifics, as parents, peers or dominant individuals within the group, e.g.
foraging techniques®®>’, tools use or predator avoidance. Finally, migration or group movement
stands as coordinated movement of individuals®®, ranging from synchronised flight to mass
migration across landscapes, often driven by predator occurrence, seasonal changes or resource
availability.

In general, ecological and environmental conditions play a key role in determining social
preferences and behaviour. Under climate change, the influences of environmental factors on
social interactions can become more pronounced. Changes in temperature, precipitation patterns,
habitat and vegetation structure can affect the availability and distribution of resources critical to
survival and reproduction as well as alter the predation pressures. Such potentially big changes in
environmental conditions can trigger shifts in social behaviour (breeding phenology, competition,
territorial disputes), group dynamics, dispersal and migration timing as well as foraging
strategies® 2. Species may exhibit plasticity in their social behaviour, adjusting reproductive
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strategies as courtship displays and intrasexual competition or social structures in response to
changing environmental conditions®-¢’. Hence, it seems evident to link obvious changes in
ecological conditions to potential changes in this diverse array of (social) behaviours®468-70,
Currently only little is known about the social behaviour responses to changing environments, with
only few studies on the impact on e.g. male courtship display®* or aggressive interactions®. These
research gaps in linking broadscale issues, as climate change, with behavioural adaptations can be
filled with long-term monitoring, distributed across different populations and global contexts. Both
within- and between-species comparison of long-term studies could enable inferences regarding
the adaptations of animal under climate change’!. Such studies contribute to our understanding of
evolutionary and ecological processes, as well as future trends and could increase our ability to
link genes, individual traits, behaviour and fitness with environmental variables. Looking ahead,
long un-interrupted time series of social behaviour might allow the answering of questions that
were not planned at the start of data collection’!. But how is social behaviour observed and how
are potential changes over time and under climate change quantified?

Observation & Quantification of Social Behaviour

Understanding animal behaviour, especially social behaviour sheds light on the adaptive strategies
organisms employ to survive and thrive in a dynamic world. Each behaviour provides a window
into the evolutionary pressures that have shaped life on Earth’>"3. Studying the diversity and
complexity of animal social behaviours provides insights into the evolutionary pressures shaping
sociality’*. Furthermore, social behaviour is an indicator of mental and physical states and thus of
social animals’ health, welfare, and subjective states’. However, monitoring of animal behaviour
relies on direct observations, that are time consuming, labour and logistics intensive, and involve
the subjective judgments of individuals’’®. Field observations introduce a source of limitation or
bias, the observer effects on animals and their behaviour’’. The presence of field researchers during
direct observation affects animal behaviour, as they potentially perceive humans as threat or are
naturally secretive or elusive’®. Habituation to individuals or other observation units as cars is
possible but labour-intensive and hence only applicable to longer-term studies, but still not
guaranteeing unaffected behavioural interactions with conspecifics or non-habituated predator or
competitor species’s.

Furthermore, field observations are biased by the researcher’s physical limitations and proneness
to give more attention to some events and individuals than others’®. So, can we really believe what
we observe?

Many social behaviours are challenging to observe, as they are rare, fine-scale behaviours,
sometimes even very brief movements, so-called microevents”. They might also be affected by
observers, not interacting socially, as if they are not disturbed. Observing and quantifying social
behaviour thus presents a formidable challenge, given its nuanced and context-dependent nature,
influenced by factors such as social structure, environmental context, individual differences and
behavioural plasticity®®®2. Capturing these nuances requires careful research design and data
interpretation®®. Traditional observational methods in the field, while valuable, may struggle to
capture or even miss subtle, rare social interactions. This applies especially for animals which
travel fast, or live in unsuitable, extreme, variable climates, unfavourable weather conditions or in
inaccessible, challenging habitats or operate at night’®. Thus, social behaviours have largely been
absent from ethograms, especially those of wild, terrestrial animals’®. However, recent
technological advancements offer promising avenues for studying social behaviour with greater
precision and efficiency.

Wearable Sensors

Thorough ecological ethology is based on the need to locate and observe animals to record their
habits despite their potentially fast travel, challenging weather conditions, inaccessible habitats or
limited night vision’®. In the last three decades, the study of animal behaviour has more and more
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transformed from laborious field observation to remote observation and tracking thanks to
technological advancements in and increased accessibility of wearable sensors, communication
technologies and their accompanying frameworks. Thanks to their light weight, small size, low
power consumption, exceptional stability, and easy integration such devices have gained in
popularity’®. This development enhanced the effectiveness of remotely tracking animal behaviours
in various environments, at a larger scale than was previously achievable’®** and formed two major
streams of objectives in the field of animal behaviour. First, the correlation of the variation in
motion waveforms with energy expenditure. Second, the establishment of ethograms by inferring
activity/behaviour through movement and body posture derived from such data’s.

There are several types of wearable sensors equipped with sensors for measuring motion, location,
and physiological parameters, providing detailed information on animal behaviour and energetics
in real-time. Their use grew rapidly in the 1990s aligning with the fast development of
microprocessors and notable increases in memory capacities®>. The kinetic characteristics
(acceleration, angular velocity, etc.), pressure, and geo-location information can be accurately
measured at a certain sampling rate (e.g., 10 to 100 Hz) depending on the application and
identification task’®. The power usage, battery power and memory storage affect the possible
maximum sampling frequency’.

Global Positioning Systems (GPS) have enabled researchers to track and precisely monitor
individual animals in the wild, providing insights into movement patterns and habitat use over
large spatial scales, facilitating studies on migration, foraging behaviour, and territoriality. Tri-
axial accelerometers are the most common sensor used in animal behaviour monitoring. They are
compact and low-power motion sensors that measure acceleration [m/s?] along three perpendicular
spatial axes to capture motion dynamics®. Due to their rapid response times and high sensitivity to
movement®, accelerometers can recognize fast changes in acceleration. They measure both a
dynamic component of movement indicating the activity intensity and a static component
regarding Earth's gravity indicating the posture. Doing so, accelerometers have enabled
classification of many behaviours such as locomotion, resting and foraging?!8’. This enables
resolution of fine-scale animal behaviour, usually involving brief, abrupt, situation-specific
manoeuvres or microevents”. The ability to identify those can have a big impact on the
performance of the behaviour classification”-®8, Accelerometers can be mounted to different parts
of an animal, even simultaneously, which enables to expand the spectrum of well-predicted
behaviours®®, and enhances the recognition performance’®*%°!, Tri-axial gyroscopes measure
orientation and angular velocity [°/s] along three orthogonal spatial axes. They are usually
integrated in with accelerometers in the same device operating at the same sampling rate to
complement the captured information and can thereby improve the prediction of behaviours, which
are hard to detect %2, Tri-axial magnetometers detect changes in the magnetic field in particular
location and measures rotation angle values (pitch, roll, yaw) [Tesla], also usually combined with
accelerometer and gyroscope forming an inertial measurement unit (IMU). The simultaneous
capture of linear acceleration, angular velocity, and rotation angle in IMUs has enabled a better
performance in the prediction of animal behaviour®>-%8, It should be noted, that the employment of
wearable sensor devices also has some impact on the animals and their behaviour® and that remote
tracking lacks the behavioural context and demands direct observation nevertheless’. The
combination of remote observation, which reduces observer presence effects, and direct
observation keeping a high level of detail, should be the aim’.

While the above mentioned advancements present new possibilities in observing and studying
social behaviour, they create new challenges and logistical hurdles with managing such large
datasets, processing the complexity and volume of the recorded data and with performing high-
throughput behavioural data analysis®.

Analysis of Sensor Data using Machine & Deep Learning
To make inferences about daily life activities or energy expenditures from sensor data, an elaborate
analysis technique is required’®. The processing is usually done after data collection, but collecting
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and storing raw sensor data for later processing is inefficient and unscalable®. Downloading the
raw data via antenna is also not very advantageous®. To analyse such complex signals will require
the development of efficient but still accurate methods™. Already existing methods are split into
two categories, semi-automated and automated approaches.

Semiautomated AAR involves the manual characterisation of the sensor signal patterns followed
by a classification using a decision tree!'®. This approach is not limited by a fixed-size sliding
window but requires appreciable investment in time and understanding’®-1%°,

Automated animal activity recognition (AAR) enables the monitoring of the variability in animal
behaviours across time. With huge improvements in sensor technologies and computation, exellent
successes in AAR have been achieved’s. In automated AAR the sensor data is first segmented into
windows of fixed size. Then, either the raw, segmented data is fed to a classifier or descriptive
features are derived from that window?!. These features are usually statistical summaries of the
sensor data, such as mean, standard deviation, skewness, vector of dynamic body acceleration
(VeDBA), overall dynamic body acceleration (ODBA)!!. The extraction and selection of such
features heavily relies on human expertise and a very precise and adapted pre-processing®®. The
defined window size for the feature computation depends on the identification task, especially on
the frequency/duration of the focal behaviours”®. The behaviours are then separated into clusters
or classes using simple thresholds!®%!% or machine learning algorithms®”-1%4-19_Tf the collected
time-series of sensor data is kept untouched and raw, usually the data is fed into diverse array of
machine and deep learning models to classify the data into behavioural categories’®.

Machine learning, as a very promising data processing and analysis technique, has been widely
applied to animal behavioural classification based on data collected by wearable sensors’®. Such
modelling methods include linear regressions, support-vector machines, decision trees,
linear/quadratic discriminant analysis, and random forest approaches’®. Generally, to accurately
classify animal behaviours through these methods, manual feature extraction and selection are
required. But these processes are time consuming and heavily rely on expert knowledge, which
leads to feature extraction and selection challenges!?’. There are some approaches available which
combine feature extraction with feature selection. Thus, the most discriminative features for the
specific classification task is automatically captured, while also providing interpretability and
insights by ranking the importance of different features for predicting the target’®.

Deep learning, as a more recent branch of machine learning, has been showing an excellent
automated/integrated feature-extraction ability while usually requiring less pre-processing than
traditional methods’®1%%19% Deep learning models combined with wearable sensors have revealed
promising performance in distinguishing daily animal activities”’%7%%%110 yging different
classification algorithms. For example, Feed-forward Neural Networks have been used on large
datasets, Convolutional Neural Networks on image and time series classification, Recurrent Neural
Networks, especially Long Short-Term Memory on sequential data and time series, as well as
hybrids models and Autoencoders.

Usual challenges during the development of deep-learning models for AAR, include annotation
scarcity, class imbalance, inter-activity similarity, energy efficiency, multimodal fusion, domain
generalization, and open-set recognition. To solve these challenges, dedicated deep-learning
models are required’s.

Even after laborious, time-consuming labelling annotation scarcity can still occur and often results
in an overfitting model and poor generalization performance, limiting the applicability of models
to real-world AAR scenarios. Data augmentation is a low-cost pre-processing technique to create
new samples through the transformation of existing annotated data via various approaches to



expand data size and thus promote classification performance of deep learning models®!1-113,

Another approach is semi-supervised learning where unlabelled data is used to assign pseudo-
labels!!4,

Class imbalance occurs where the frequencies are inconsistent across different behaviours.
Annotating rare or infrequent behaviours is difficult because they occur occasionally or for short
durations’®!%°, Deep learning methods trained on imbalanced datasets are usually biased towards
the majority classes. This causes a decreased model generalizability and higher misclassification
rates for the under-represented categories’®. To overcome this limitation there are different
techniques, as resampling with either over-sampling the minority class or under-sampling the
majority class to balance the class distribution'!®. In scenarios of extremely imbalanced datasets,
the classification tasks can be reformulated as an anomaly detection problem, in which minority-
class instances that are dissimilar to the majority class are treated as outliers or anomalies!!®. In
this case, one-class classification methods can be used to build a model that learns on the majority
class characteristics and then distinguishes them from the minority class!!’.

Inter-activity similarity occurs when different animal activities have similar characteristics or
movement patterns®19-!18 This affects the ability of deep learning models to extract
distinguishable features that uniquely represent behaviours, leading to high confusion in the
classification/class prediction!!®. Active and inactive behaviour very easy to distinguish, but within
those categories it can become tricky’8. Employing a fine-grained activity recognition, seeking to
recognize subtle differences between similar activities by using more such detailed features can
provide remedy to this issue’®. One option is the combination of sensors (GPS, IMUs, heart rate
logger, ...) to better distinguish behaviours based on other parameters. This can possibly lead to
very new and changing insights into an animal’s life’®. This combination of multiple wearable
sensors, a so-called multimodal fusion, helps to receive richer information to better distinguish
behaviours. Sometimes, sensors of different types are mounted to an animal to record diverse
characteristics. Combining these sensors tends to result in improved performance in animal
behaviour classification tasks compared with using only one modality*%*4197 but the models may
struggle to generalize!'?, as conflicting correlations between multiple modalities can result in
limited recognition performance!®’. For social interactions particularly, a precise spatial proximity
tracker can support the recognition and classification’®. Another approach is context-aware
modelling, where e.g. the time of day, the location or environmental conditions are included to
enable effective clarification of the purpose of the activity’¢12°,

An additional issue that can occur is the open-set recognition problem. Most training datasets only
cover a part of the full spectrum of the specific animal activities. Thus, some rare or infrequent
activities, which are nonetheless important and occur in real-world monitoring scenarios, can be
absent from training datasets. Consequently, these unseen behaviours are often misclassified into
known behaviour categories in a training dataset. A holistic model does not only accurately classify
known categories but also effectively deals with unknown behavioural categories!2!.

Sensor-based data from animals, analysed with deep learning models, has already found many
applications, especially in livestock or animals in captivity. There are many studies on mammals
(mainly cattle and pinnipeds) with 45% of the studied species, birds with 34% (mainly penguins
and seabirds), fish 11% (mainly sharks), a few reptiles and very few other taxa (cuttlefish, squid,
toads)’8. In smart farming, it is applied to estimate growth or monitor disease. There are only few
reports on animal behaviour classification, but they have typically been limited to either traditional
machine learning or specific animals and behaviours’8%110,

Most of the studied animals are livestock as part of smart farming, with a big focus on the detection
of disease or lameness, oestrus or onset of calving. Studies in sheep, horses chicken and dogs have
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exclusively focused on state behaviours based on economic losses’>76:90:93,109-111,122-124 G ¢iq]

interactions have only been identified in cattle and pigs. In cattle, as ruminants with economic
value as well, there have been studies on state behaviours but also social behaviours, as social
licking, headbutting, attacking or mating, with various subsequent ecological questions’®+6-%8,
Pigs have been subject to studies to improve health monitoring and understand their nursing,
breeding, parturition but also playing behaviour!!*!25126 But research gaps remain in the
identification of social behaviours from wild, free-ranging, terrestrial animals, with only very few
studies(SOURCE)’®.

Problem Statement

The rise of accelerometery has been helping to circumvent the age-old limits of direct observation.
By using accelerometers, the movement behaviour of wild animals can be measured during
important events and periods, while being basically unlimited by visibility, observer bias, or
geographic scale’®. The combination of such sensor data and deep learning analysis tools facilitates
the development of systems capable of accurately detecting, classifying and monitoring various
activities/behaviours, potentially revolutionizing research, animal management and promoting
animal health and welfare’®!1%, As collecting and storing, then transferring wirelessly and finally
processing the sensor data is very inefficient, unscalable and disadvantageous, there have lately
been some efforts to establish a real-time in-situ behaviour classification on embedded systems of
the sensor device, only needing to store the predicted behavioural class’.

Analyses of sensor data to identify social behaviours are very few in number compared to state
behaviours especially of wild terrestrial species, compared to wild aquatic, domestic or captive
species. Social behaviours of wild terrestrial species have largely been absent from ethograms’s,
mainly because of their fine-scale nature of social behaviours as they often are short, impulsive
movements. The identification of such microevents using existing models, still remains poorly
studied but could help to exploit the full potential of acceleration data in animal behaviour
classification. In general, substantial challenges remain in getting the most out of accelerometers,
because of the management, validation, calibration and analysis of such big data’®. Deep learning
algorithms has been only poorly exploited in movement ecology®.

Vulturine guineafowls (Acyrillium vulturinum) are a small-brained bird species that are native to
East Africa, particularly living in savannas, scrublands and dry woodlands, foraging on seeds,
fruits, insects and small invertebrates. They are highly social, cooperatively breeding bird forming
groups with up to 65 individuals, with their home ranges overlapping in time and space!'?’. Thereby
they form multi-level societies which are highly hierarchical with much male dominance display,
like chasing each other, occurring. Vulturine guineafowls start breeding during rainy season when
vegetation cover and food availability is higher. A preceding period of male courtship display,
especially bowing, and intra-sexual competition leads to the formation of mating pairs>*!?’. Even
though vulturine guineafowls have a high habitat fidelity, it remains very difficult to observe them
over a long period of time, as they disappear into the inaccessible parts of the savannah, like dense
bushes, for the hotter parts of the day.

So, the aim of this study was to investigate the ability of deep learning algorithms to identify
vulturine guineafowl male courtship and dominance behaviours from labelled accelerometer data,
which have not been included in previous ethograms. The performances of different algorithms
were compared in a two identification tasks. Furthermore, the best performing model was used to
predict unlabelled parts of the accelerometer timeseries. These obtained behavioural frequencies
were then correlated with the normalized difference vegetation index (NDVI), to evaluate a
potential predictor of these social behaviours. It was hypothesized that the deep learning models
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will be able to recognize the courtship and dominance behaviours and the derived frequencies can
be explained by the NDVI, as a proxy of vegetation and resource availability!25.

To do so, field-borne video recordings were used to annotate accelerometer readings, deployed on
a free-ranging population of vulturine guineafowl around the Mpala Research Centre in Laikipia
County, Kenya, with behavioural categories. The labelled behavioural data was then fed to various
deep learning algorithms, learning to accurately identify and classify social behaviours. Later a
well-performing, trained algorithm was used to predict other parts of the recorded accelerometer
data without ground truth labels. The hereby quantified frequencies over time were used to monitor
behavioural changes and answer ecological questions associated with reproduction and
competition over the course of the years 2022 and 2023. This study tried to establish a protocol of
best practices for data acquisition and analysis for future studies being able to include a longer
time-series of data. Drought is the one of the most challenging aspects of climate change in East
Africa, as precipitation and water storage decline especially during rainy seasons!?. Future studies
could include the monitoring of courtship and dominance behaviours in the face of climate change,
as they are crucial for the survival of a not yet endangered species.
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Methodology

Study System

This research was conducted under the Vulturine Guineafowl Project, which was established in
2016 and is currently funded by an ERC Starting Grant until 2024. The project’s base is located at
the Mpala Research Centre in Laikipia County, Kenya.

Study Site

The Mpala Research Centre is located within the Mpala Research Conservancy (0°17°31” N,
36.53°54” E), just above the equator around 40 km North of Nanyuki, the capital of Laikipia
county. The conservancy is part of the upper Ewaso River Basin, on an elevation of 1600 meters
above sea level.

.1

_\'v ( . VA
h?vala Research Centre v 1 Mpala Research Centre

®Eidores

Mount KenyaiNational Park

Figure 1: Study site at Mpala Research Centre within Mpala Research Conservancy (light-green) and Laikipia County
(orange) in Kenya (Credits: Google Earth Pro)
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Climate, Soils and Vegetation

The yearly mean temperature is approximately 17°C. The conservancy is located North-West
of Mount Kenya and experiences around 400 mm of total precipitation a year'*°. As the field
site is very close to the equator, the seasonal climate is characterised by two wet seasons with
higher rainfall, around April-May (long) and October-November (short), and two dry seasons
with low rainfall!?”-131:132 The shorter wet season is followed by a longer period of drier
conditions, usually reaching from December to February, but in some years extending into April
causing drought. The long rains occur starting from March, sometimes lasting until June. Each
wet season is usually followed by an intermediate season, where vegetation remains lush with
occasional rainfalls. If the total precipitations remains low for a longer period, conditions
become extremely dry with trees losing their leaves and the short vegetation dying off. The
intensity and duration of the rainfall periods determine the vegetation cover and the availability
of insects, an important part of the diet of vulturine guineafowl besides grass roots, seeds, and
other small invertebrates'?’.
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Figure 2: Map of total yearly precipitation for the reference period 1990-2023 (top left). Map of mean temperature for the
reference period 1990-2023 (top right). The mean monthly total precipitation (bottom left) and mean monthly temperature
(bottom right). All data derived from the ERAS5-Land monthly averaged data'3.

The Mpala Research Conservancy is characterized by a semi-arid savanna habitat, with five main
soil types which are mainly covered with Acacia bush- and scrubland, Acacia thicket, dwarf bush
grassland and grassland!*’. The vulturine guineafowls have predominantly specialized on the red

Luvisols which are dominated by Acacia mellifera and Acacia etbaica®®.
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Figure 3: Soil and vegetation types across Mpala Research Conservancy, derived from shape-files which were provided by
John Gitonga, research assistant at Mpala Research Centre (Credits background map: Google Earth Pro)

Study Species & Population

This study was conducted on a free-ranging population of vulturine guineafowl (Acryllium
vulturinum) living in proximity of the Mpala Research Centre. The population is habituated to cars
allowing their observation in areas accessible for cars. The vulturine guineafowl is a mainly
terrestrial, small-brained and group-living bird forming multi-level societies'®!. They live in large,
multi-male, multi-female groups, reaching from 13 to 65 individuals, which remain stable over
time. The groups’ home ranges overlap in space and time'®!. These social groups contain many
adults, sub-adults and juveniles'3!.They are a social bird species, showing male dominance
displays, a complex courtship behaviour and cooperative breeding*®!?’, which occurs during
elongated periods of rain. Even though they have a small brain to body ratio, the vulturine
guineafowl is able to maintain many different social relations across time and space, challenging
the conception that multilevel societies are exclusive to large-brained mammals'3!. Vulturine
guineafowls show significant differences in behaviour and collective movement patterns between
wet and dry seasons and the corresponding variation in environmental conditions. Social
behaviour, locomotion, home range overlap and roosting are dependent on dry and wet seasons!?!.
These behavioural adaptation strategies are most likely crucial to dampen the impacts of climate
change on the individual fitness!?”>!3%13° Such strong seasonality leads to a dynamic
reorganization of the social system, where species switch from being territorial to group-living
also triggering a shift in the group structures, so-called fission-fusion dynamics!3®!37, Increasing
drought under climate change could dramatically disturb these. But in environments with strong
seasonality, natural plasticity in social organisation and movement decisions on foraging trips and
dispersal could dampen the effects of environmental variations on physiology!?’.
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Social Behaviours

The vulturine guineafowl is a gregarious species with steep dominance hierarchies. The high-cost
aggressive interactions towards males with ranks closely around their own are strategically
performed. These dominance interactions are used for access to resources, but they are costly and
hence should be strategically deployed, most efficiently targeted at the individuals closest in rank
for most gain'*. Directing chasing interactions towards close competitors can stabilize
hierarchy!3®. Chases are the highest-cost interaction, as they deplete energy reserves, include risk
of injury and predation, but these costs usually associated with dominance interactions may not be
so relevant in vulturine guineafowl. These aggressive interactions are primarily directed towards
males one to three ranks below themselves, according to the close competitor strategy, which is
observed in many species. These aggressive interactions form the dominance hierarchies which
have consequences on access to food, roosting positions and reproductive opportunities. Male
vulturine guineafowl usually engage in dominance interactions most frequently, probably caused
by the dominance of males over females in the group!3®,

The dominance behaviour is characterised by erupting and chasing another male away, often
preceded and followed by a distinctive posture. This posture is characterised by standing on tip
toes, stretching, and bending the whole body, especially the neck into the air. This behaviour is
referred to as CHA.

.4 49

Figure 4: Chasing is mostly initiated from foraging behaviour (1). It starts with a tiptoe posture (2), followed by chasing
another individual away (3) and ends with another dominance posture (4).

Vulturine guineafowls invest in reproduction during seasons with high resource availability,.
During scarce periods they invest in survival'?’. Vulturine guineafowls live in large stable groups
for biggest part of the year. but then at the beginning of the wet and hence breeding seasons,
following a longer period of intense courtship displays, they start forming pairs'?’. The pairs move
separately from the rest of the group with the male mate-guarding the female. As a ground nesting
bird, the females then lay and independently incubate 7 to 12 eggs in a scrape on the ground with
high predation risk!3®. Vulturine guineafowls possibly are both plural and cooperative breeders*®.
The babysitting and chick guarding is cooperatively distributed among group members, while the
chicks maintain a close adult relation. The offered help is significantly male-biased. This
cooperative breeding allows the female to recover from her natal investment. The chicks are very
vulnerable to predation during first weeks of their lives. Therefore they benefit from protection by
within-group helpers. The extremely sex-biased dispersal with all males staying in their natal
groups'#’, causing a high relatedness among males within the group, could explain the indirect
fitness benefits of cooperative breeding'*!.

The courtship behaviour, called bowing, is a male display, in which, when protein-rich food is
found during foraging, e.g. insects, worms or larvae, the male runs a few meters, drops the bit of
food and then presents his findings with another distinctive posture bending the neck, awaiting a
female to react and potentially allowing a mating relationship to build up. This behaviour will be
referred to as BOW.
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Figure 5: Bowing starts with finding a special bit of food (1). Then, the male runs a few meters (2), drops the food and presents

it with a distinct stretching from tiptoe to neck posture (3). Best case scenario: female individual approaches fast and thankfully
picks up the food (4).

Research Design

During this study, a best practice approach for animal activity recognition according to Mao et al.,
2023 was applied. The first goal was to increase the number of video-recorded social behaviours
from vulturine guineafowls tagged with an accelerometer in the field. These video-recordings were
used to annotate and create labels serving as ground truth for the algorithm training. This process
included equipping and video-recording as many individuals as possible to include as much
variability as possible over as many periods as possible. The meticulous annotation phase was
followed by a thorough data quality control, as data gaps and imprecisions in the annotation
software occurred quite frequently, unfortunately leading to a loss of labelled social behaviours.
Then, the labelled sequences were merged with the Movebank database of accelerometer
recordings via exact timestamps. The data subsequently was segmented into different window
sizes with a 50% overlap. This thorough pre-processing phase created the best possible datasets to
train the different deep learning models. The subsequent trial-and-error based phase of classifier
training was followed by the analysis of the model performances. The best performing model was
ultimately used to predict unlabelled accelerometer readings to quantify the distribution and
frequency of the focal behaviours over time and seasons and were correlated with a timeseries of
Normalized Difference Vegetation Index (NDVI), as a proxy for vegetation status.

Identification tasks

The first identification task was to compare the performance of different algorithms in
distinguishing the two social behaviour classes from other behaviours assembled in the NOT class.
A second identification task was the comparison of different window sizes feeding the algorithms.
A commonly applied random split was applied to split into training-validation and test sets. Then
a 10-fold cross-validation procedure, stratified across the behavioural classes, was applied. There
are other approaches to better investigate the generalization ability, as individual-based splitting
or time-stratified splitting. But these methods were neglected in this study due to the small number
of annotated social behaviours, which were also highly imbalanced across birds and time.
Furthermore, several studies reported significant decreases in performance with these stratified
splitting methods!#?. The individual-based splitting method, or Leave-one/some-individual(s)-out
(LOIO/LSIO), investigates the inter-individual variability and how well the trained model
performs on unseen individuals potentially unravelling inter-individual differences in their
behavioural patterns!#’, The time-based splitting method, or Leave-one/some-time-period(s)-out
(LOTO/LSTO) analyses the variability across time and how well the trained model performs on
unseen time periods, potentially illustrating changes in behaviour or tag orientation over time3%144,
These methods were not applied here, but should be included in further studies, as soon as more
labelled social behaviours are available. As these tasks were not applied, the final prediction of
unlabelled data was only employed on known individuals, for which social behaviour labels
existed, and on known time periods, for which social behaviour labels existed. This was assumed
to maintain the error rate small.
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Data Collection & Sampling Methods

The first birds were banded at the beginning of the project in 2016. Since then various individuals
have been equipped with accelerometers from e-obs GmbH!*® simultaneously and continuously
tracking acceleration at 20 Hz and GPS at 1 Hz. The acceleration is the rate of change of velocity
and is measured in m/s? along three perpendicular axes called X, Y and Z. It is influenced by the
device’s orientation and accelerated movement of the device'®. Some of the tags not only include
a GPS and an accelerometer, but also a gyroscope, allowing a detailed visualization of the absolute
orientation in the three-dimensional space. The additional modules of the so-called Inertial
Measurement Unit (IMU) could be brought in for future studies to better distinguish behaviours.
The accelerometers tags contain an accumulator cell fed by solar panels on the top of the tag,
potentially creating issues with cloudy weather conditions, dirt and dust, feathers or wings
obscuring the panels or the tag moving into unfavourable positions. They can transmit the data
remotely via antennas to the e-obs BaseStation, which must be inside the detectable range.

To equip new birds with accelerometer tags, the birds must be trapped, but they must become
habituated to a trapping set up. A trap is set up step by step over the course of a few days. During
this process the birds are baited into the trap every morning, so that a maximal number of birds
enters the trap after a few days, without getting suspicious. Then, on due day, the trap is connected
to a remote control, capable of triggering the front of the net to fall down. After trapping the birds,
they are put into dark cages into the shade, so that stress level is held low and they do not overheat
during the ringing and tagging process.

Figure 6: The trap is set up step by step (top left). On due day the net above the entry is triggered via
remote control (top right). After trapping, they are weighed, measured, ringed and tagged if necessary (bottom)
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Figure 7: A tagged vulturine guineafowl with the e-obs device. The acceleration is measured along the three illustrated axes

The considered accelerometer recordings have been obtained from 19 different individuals
belonging to 5 different social groups recording since different trapping events. Most of the
accelerometers record only in the mornings from 6:30 AM to as late as 11:00 AM, as recording
for longer periods would use up too much battery and storage on the integrated memory. The data
must be downloaded regularly, best every night, so that the memory is not used to full capacity.
The downloaded GPS and accelerometer data is then uploaded onto the long-term database on
Movebank!#, a global repository for animal movement data, which are publicly available on
movebank.org. The acceleration data can be visualized for quality control in the open-source tool
Movebank Acceleration Viewer!'®'.

Annotation & Quality Control

Annotating animal behaviour is generally arduous and challenging, A total of over six hours (06h
13min 22s) of video material were considered to create the behavioural labels. The video material
was recorded during field seasons spread across the years 2021 to 2023. Around 50 percent was
recorded in the years 2021 and 2022 by other members of the research group, the other 50 percent
produced during this study’s field work season from April to June 2023. The birds were recorded
out of the cars, which they are habituated to, using the video camera. The birds were often found
one of the several accessible glades, especially during the first two to three hours of sunlight, as
they disappear into the bushes with increasing solar radiation and temperature. First a GPS time
clock was filmed on a smartphone to later synchronize the video material exactly. Then, the rolling
camera was focused on tagged individuals, hoping to capture a social behaviour, as bowing or
chasing. It is not unusual to overlook some events of such rare behaviours, even for domain experts
as the long-term field team, as they happen occasionally and in very short durations and often
outside the observer’s focal range of view. During the field season 2023, one could observe an
increasing frequency of the two focal behaviours, especially bowing, as the rains started mid of
April, which transformed the very dry savannah into a greener landscape. The video material was
later sighted and annotated after the observed bird’s ID and datetime. In the sound and image
annotation program ELAN (version 6.4)'%8, the videos were time synchronized and labelled
creating an output txt-file with exact start and end timestamps for each behaviour. The output of
ELAN was only considering a 10" of a second. To better capture these short social interactions,
more precision was necessary, focusing down to milliseconds. Thus, the data was visualized in the
Movebank Acceleration Viewer!'#” to check the quality and true synchronicity of the start and end
timestamps with the acceleration measurements. The exact beginning and ending of each focal
behaviour was adapted in the txt-file. The produced number of labels is illustrated in table 1.

19



birdID  tag_type sex |# BOW samples # CHA samples x Duration BOW [s] X Duration CHA [s]
W1744 ACC M 0 0 NA NA
W1393 ACC M 0 4 NA 0.87
W1732 ACC M 0 6 NA 0.74
W1520 ACC M 1 0 1.91 NA
W1415 IMU M 0 1 NA 0.63
WT00500 IMU F 0 3 NA 1.61
WT00162 IMU M 3 3 1.86 0.89
W1413 IMU M 2 11 2.09 0.92
W1307 ACC M 4 4 2.06 1.62
WT00043 ACC M 4 9 1.50 0.83
WT000625 ACC M 1 1 2.61 0.74
W2625 ACC F 0 1 NA 2.45
W1309 ACC F 0 0 NA NA
WT00584 ACC M 0 3 NA 0.98
W1501 ACC M 1 0 1.99 NA
W1686 ACC M 1 0 1.71 NA
WT00044 ACC M 9 3 2.15 1.06
WT00580 ACC M 13 0 1.97 NA
W1430 ACC M 5 4 3.56 0.87
44 53 2.13 1.09

Table 1: The individuals, their tag types and sex, as well as the recorded BOW and CHA
events and the duration of their behavioural expression. The marked individuals in grey
were used to predict unlabelled data from.

Pre-Processing

The txt-files with the starting and end times were loaded into RStudio (version 2023.09.0+463) to
merge the timestamps with the accelerometer data stored on Movebank using the “move” (version
4.24)'% package. A data frame with X, Y and Z axes readings every 0.05 seconds for all the video-
recorded birds and periods was obtained. The acceleration readings were standard normalized, as
it improves the classification performance and increases the training speed®’¢. Previous feature
extraction was not needed, as deep learning is doing that automatically’®!9%19° The normalized
accelerometer readings were either processed and fed to the algorithms as a raw dataset or as
images of the acceleration graphs for two different window sizes (1 or 3 seconds) with a 50%
overlap respectively. All created windows were also labelled with their distinctive position in a
consecutive sequence of behaviours to feed them to the algorithms including an LSTM, as the
CNN-LSTM and LSTM-CNN, as they require sequences of time series data. The raw datasets
were fed to the MLP and TCDA-CNN classifiers, while the images were fed to the CNN,
Autoencoder, ResNet, CNN-LSTM and LSTM-CNN. The images were created by plotting the
accelerometer axes in red, green and blue on a white background using the ggplot!*® package and
then were saved as RGB images of shape (64,128,3). The window segments consisted of 20 or 60
consecutive acceleration readings for the 1 or 3 seconds respectively, as it was recorded at 20 Hz.
The window size impacts the performance of the models in that some behaviours, of different
length, are better characterized than others!>!"!33, To determine the optimal windows size, these
two window sizes were compared after model training. The segmentation process generated
windows that sometimes contain the expression of several behaviours. Such windows were
labelled according to the majority rule of readings. This method created a small number of
segments labelled with social behaviours and a much larger number for the NOT class (table 2).

BOW CHA NOT
50% overlap 1second 296 240 19172
3seconds 137 128 12235

Table 2: Numbers of labelled segments for each window size and behavioural class.

Establishing animal behaviour classification models that perform well on rare behaviour,
especially on the unseen test set, is challenging. But the resulting class imbalance is not the main
cause of the lower metrics scores for these rare behaviours. The scarcity of training data for these
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behavioural categories is responsible for that®!34-156 There are various methods for balancing the
datasets, such as under-sampling, over-sampling, weighting the datapoints by the inverse of the
frequency of their corresponding class, and creating new datapoints. But these methods can not
get rid of the issues related to annotation scarcity completely, hence finding well performing
approaches for rare behaviours remains a subject of ongoing research®. In this case, the dataset
was separated into training, validation and test set retaining a close to natural ratio of BOW : CHA
: NOT (15:15:70) by under-sampling the NOT class to 5000 samples and simultaneously
augmenting the under-represented classes by applying class weights during the classifier training.

Cross-Validation

After a test set (test set percentage = 0.15) was randomly held out for the final evaluation, a 10-
fold cross-validation stratified across behavioural classes was applied to not further decrease the
number of samples which available for learning the model as compared to define a fixed validation
set. Another argument was that the outcome of the model strongly depends on a particular random
choice of splitting into training, validation and test sets!>’. Thus, the stratified 10-fold cross-
validation was applied across all model training to monitor the predictive performance over
different subsets of training data. In this basic approach the training set is split into k smaller sets
maintaining a stratification across the classes. The model is trained using k—1 subsets as training
data and the resulting model is validated on the left-out part of the data. This method is
computationally more expensive and creates longer processing times, but it does not waste much
data. This method offers the major advantage in problems where the number of samples is very
small'>’,
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Figure 8: Visualization of the stratified 10-fold cross-validation

Algorithms

The analysed algorithms included many different types of neural networks. Neural networks are
able to automatically detect by themselves very complex and highly discriminating features and
patterns in the data®>!°®, A Convolutional Neural Network (CNN), a Triple Cross-Domain
Attention CNN (TCDA-CNN), an Autoencoder, a Residual Neural Network (ResNet), a CNN
combined with a Long Short-Term Memory (CNN-LSTM), a LSTM-CNN and finally a Multi-
layer Perceptron (MLP) classifier, serving as comparison benchmark, were used. The comparison
with the baseline classifier investigates if the increased complexity in the other neural networks
really leads to better performances, as the MLP is still supposed to generate better outcomes than
random choice. The models’ hyperparameters were mainly tuned on a trial-and-error basis, but
also applying a grid search for some parameters using the scikit-learn library (version 1.4.1)!>°.
The models were implemented in Python’s “TensorFlow” (version 2.15.0)!6° and “Keras” (version
3.0)'eL,
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Multi-Layer Perceptron (MLP)

An MLP was used as a baseline classifier. The MLP is a Feed-Forward Neural Network, or
perceptron, which have their roots in the human brain research, as it was intended to understand
how visual data is processed and how objects are recognized by the brain'%. This network type
has found applications in AAR in several studies, as they can handle large datasets and perform
very well despite their low complexity?®2394154162.163 " Their main components are neurons (or
units), that take the input data or the output from the preceding neuron and produce a single output.
This output is input to every neuron in the next layer. From the connections and weights of each
layer’s outputs, the activation function computes the input into the next layer. In the last layer, the
output is generated by applying the sigmoid (binary classification) or softmax (multi-class)
activation function. Each network layer only takes information from preceding layer and only
gives it to subsequent layer, hence feed-forward, allowing it to learn complex non-linear
relationships between inputs and outputs!®®!64, The applied architecture for the MLP included an
input layer, three hidden, fully-connected dense layers with 128, 256 and 128 neurons respectively
and finally an output dense layer with three units equal to the number of classes. The activation
functions were ReLu for the dense layers, and softmax for the output layer. The applied optimizer
was the Adaptive Moment Estimation (Adam) with a learning rate schedule and the loss function
Categorical Cross-Entropy. The model was trained over 100 epochs using a 10-fold cross-
validation, so 10 epochs per fold.
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Figure 9: Dot-Visualization of an MLP, where each dot represents a neuron and the arrows
illustrate the feed-forward connections.

Convolutional Neural Network (CNN)

CNNs are another type of neural networks commonly used in image classification tasks and time
series analysis!®?. They are the most used type of deep learning model for behaviour recognition
and classification, as they have been successfully applied to human activity recognition!®>-167 and
AART376909LI09-3.163 from accelerometer data. CNNs hierarchically apply filters of increasing
complexity which helps to automatically capture patterns in the imagery or from raw input
data’®1% The output of each convolutional layer is a feature map of the input image or of the
previous layer’s output. Usually, the output of a convolutional layer is down-sampled through
pooling layers, which compute summary statistics, and then are passed on to another
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convolutional, flattening, or dense layer. Different numbers of filters, kernel sizes and strides can
be applied to capture local temporal dependencies. The computational cost and processing times
depends on the complexity, depth, and width of the architecture!'®®, CNNs usually do not need
preceding feature extraction, as they work directly on the raw data or images of the accelerometer
time series, but there have been reports on superior performance of CNNs using statistical features
as input compared to raw sensor data’>?%!1% The best performing model architecture based on an
input layer, followed by three blocks of Conv2D/MaxPooling, each with kernel size = 2. The
Conv2D layers increased in width with depth of the model with 32, 64 and 128 and 256 filters
respectively. The output of the last Conv2D was flattened and passed to a Dense layer with 200
units, a Dropout layer (rate = 0.25), another Dense layer with 100 units and finally the output layer
with 3 units. The activation functions were ReLu for the convolutional blocks and Dense layers,
and softmax for the output dense layer. The applied optimizer was the Adaptive Moment
Estimation (Adam) with a learning rate schedule and the loss function was the Categorical Cross-

Entropy. The model was trained over 50 epochs using a 10-fold cross-validation, so 5 epochs per
fold.
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Figure 10: 3D representation of the CNN architecture

Autoencoder

Autoencoders!'® are artificial neural networks usually used for unsupervised image reconstruction.
They consist of an encoder and a decoder part. The encoder compresses the input data into a low-
dimensional representation containing the most important information in an encoded form. The
decoder then reconstructs the original input data from just this encoded representation!’%!7!,

To create an autoencoder that best possibly extracts the information from the images, an image
reconstruction approach was applied. During training, the autoencoder learns to encode the
essential features of the input images into a lower-dimensional latent space representation and then
decodes it back to reconstruct the original image. The encoder part of the autoencoder learns to
capture the most important features of the input images, while the decoder part learns to generate
images that closely resemble the original input. By minimizing the reconstruction error between
the input and the reconstructed output, the autoencoder learns to extract meaningful features from
the input data. For a classification problem, the encoder’s saved weights of the best performing
autoencoder were combined with additional layers, as fully-connected dense layers, creating a
classifier. The more robust representation of the original input images created by the encoder part
supposedly is easier to classify!”!. The best performing encoder part consisted of 3 blocks of a
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Convolutional layer with 32 filters and a MaxPooling layer respectively. The trained encoder was
combined with a BatchNormalization, a Dropout (rate = 0.25), Flatten, Dense (128 neurons),
Dropout (rate = 0.25), Dense (64 neurons), Dropout (rate = 0.25), a BatchNormalization and the
final Output Dense layer with 3 neurons and a softmax activation function. The model was trained
for 70 epochs, with 7 epochs per fold.
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Figure 11: (1) Autoencoder encodes and reconstructs input (2) The trained encoder part (3) Encoder combined with a
classifier.

Residual Neural Network (ResNet)

ResNets!'’? are a type of deep neural network architectures with a residual learning mechanism
allowing the very deep networks with hundreds to thousands of layers without a vanishing
gradient. This depth enables capturing complex features and patterns. Their main innovations are
the residual learning and shortcut connections. The residual learning is based on using residual
blocks instead of traditional stacked layers. The input to the block is added to the output of the
block, rather learning a residual mapping instead of directly learning the feature mapping. The
shortcut connections skip one or more layers, allowing the gradients to flow directly through the
network!”. Even though ResNets have proven to be among the most accurate image and time-
series classification algorithms!’*, several applications in AAR reported that ResNets tend to
overfit regardless of the choice of hyperparameter values!>*!74175 Potentially caused because by
the depth that allows memorization of uninformative and irrelevant patterns in the training data’.
The applied optimizer was the Adaptive Moment Estimation (Adam) with a learning rate schedule
and the loss function was the Categorical Cross-Entropy. The model was trained for 60 epochs,
with 6 epochs per fold.

Input . Conv2D . BatchNormalization . Activation . BatchNormalization Block GlobalAveragePooling . Dense

Figure 12: 3D representation of the ResNet with arrows as shortcut skip connections between layers.
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Triple Cross-Domain Attention CNN (TCDA-CNN)

The TCDA-CNN is a sophisticated neural network architecture, which has shown great
performance in recognizing human activity from accelerometer data. The TCDA-CNN integrates
advanced attention mechanisms to capture diverse aspects of the input data!’®. The following
methodology was applied according to Tang et al., 2022, where the algorithm was applied to
human activity recognition.

The raw sensor data input comes in the shape of (Amplitude, Timesteps, Sensor Axes). The
network begins with the creation of three parallel branches, which allow focus on dimension
interactions. This segmentation enhances the network's ability to focus on relevant information
from multiple domains and selectively emphasizes or suppresses specific regions, features or
sensor axes. The first branch takes a rotated version of the original input with shape (Timesteps,
Amplitude, Sensor Axes), the second another rotated version with shape (Timesteps, Sensor Axes,
Amplitude) and the last branch takes the version with shape (Sensor Axes, Amplitude, Timesteps).
Then, for each branch a Z Pooling operation calculates the Max and Average across the last
dimension creating a shape of (Amplitude, Timesteps, 2), (Timesteps, Amplitude, 2) and (Sensor
Axes, Amplitude, 2) respectively. The following Conv2D layers with 1 filter extract the most
relevant features from each domain. After applying this attention mechanism, the three outputs are
fused to obtain a unified representation that incorporates information from all domains. This is
done by back rotating all three lanes to the original shape (Amplitude, Timesteps, Sensor Axes)
and combining them to a feature map by weighting each input by 1/3. This fused representation
can then be used for further processing, such as classification. By incorporating the triple cross-
domain attention mechanism into a classifier, the network becomes more capable of capturing
relevant information from multiple domains or sources. This can lead to improved performance,
as the network becomes better at focusing on informative features and suppressing noise or
irrelevant information. The best performing architecture was the TCDA mechanism followed by
a Flatten layer, then a Dense layer with 128 neurons, a Dropout layer (rate = 0.25), another Dense
layer with 64 neurons and finally an output layer with 3 neurons and a softmax activation function.
The applied optimizer was the Adaptive Moment Estimation (Adam) with a learning rate schedule
and the loss function was the Categorical Cross-Entropy. The model was trained over 70 epochs,
with 7 epochs per fold.
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Figure 13: Input is rotated into 3 branches, then Z pooled [Max, Average], Convolution (1 filter), Fusion by weighting each
Conv2D output by 1/3.

Recurrent Neural Networks and Long Short-Term Memory (LSTM)

RNNSs are neural networks with loops that allow information to persist over time and hence are
particularly effective for modelling sequential data, such as time series, natural language, and
audio signals. They have found successful application in AAR®>2698162177 " They process
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sequences of inputs by iterating through the sequence elements while maintaining a hidden state
that captures information about previous inputs. But RNNs struggle to capture long-term
dependencies due to the vanishing gradient problem, where gradients become extremely small
during backpropagation, making it difficult to learn from distant past information'’®. The LSTM
is a type of RNN architecture designed to overcome this vanishing gradient problem. To address
this problem, a more sophisticated architecture with memory cells and gating mechanisms is
introduced. The LSTM unit includes an internal cell state (memory) which is iteratively updated
over time generating a linear pathway running through the entire sequence allowing information
to flow. This allows the understanding of context and the capturing of long-term dependencies.
LSTM units contain different gating mechanisms (input gate, forget gate, output gate) that regulate
the flow of information through the network, allowing it to selectively retain or discard information
based on its relevance. The forget gate decides which information to remove from the cell state. It
takes input from the current input and the previous hidden state, producing a forget gate vector
that scales the previous cell state. The input gate determines which information to store in the cell
state. It consists of two components: an input gate that decides which values to update and a tanh
layer that creates a vector of new candidate values. The output gate controls which parts of the cell
state are exposed as the output. It combines the updated cell state with the current input and
previous hidden state to produce the output. These gating mechanisms allow LSTM units to
selectively learn and forget information over time, enabling them to capture longer-term
dependencies compared to traditional RNNs!”.
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Forget Gate
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Figure 14: 1. Recurrent Neural Network with memory or feedback (arrows) compared to Feed-Forward Neural Networks.
2. LSTM cell visualization with input from previous layer and output to subsequent layer.

CNN-LSTM

Such LSTMs have been combined with CNNs to form LSTM-CNN or CNN-LSTM hybrid
models. The latter hybrid method has been successfully applied to AAR on livestock and pets
detecting a broad spectrum of behaviours®!!$155156.180-182 “ A CNN-LSTM is a hybrid neural
network architecture that combines the strengths of CNNs and LSTM networks to classify
sequential data, such as time series or sequential sensor data. A CNN-LSTM combination for
classification merges the spatial feature extraction capabilities of CNNs and the temporal
modelling capabilities of LSTMs to classify sequential data accurately. The input data is pre-
processed into fixed-size, overlapping windows and aggregated to batches of consecutive
windows. These batches as subsequences of the time series data are fed into the CNN. The CNN
layers then extract spatial patterns and local features from the input data. Pooling layers help
reduce the spatial dimensions of the features while retaining the most important information. The
output of the CNN part is a set of high-level spatial features. The subsequent LSTM layer captures
the temporal dependencies and long-range dependencies in the sequential batches. It takes the
sequence of spatial features extracted by the CNN as input and processes them sequentially over
time, storing and updating information over time. The output of the LSTM is a sequence of hidden
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states representing the temporal evolution of the input data. The output sequence of hidden states
from the LSTM then are fed into additional fully connected dense layers for classification!®?
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Figure 15: CNN-LSTM architecture visualization with two convolutional, batch normalization and max pooling layers.

LSTM-CNN

A LSTM-CNN is another hybrid model architecture for classification is that integrates LSTM
networks with CNNss to classify sequential data. They have performed very well in human activity
recognition'®*, The following process is according to Xia et al., 2020. The input data is again pre-
processed into fixed-size, overlapping windows and aggregated to batches of consecutive
windows. These batches as subsequences of the time series data are fed into the LSTM with n
neurons. The LSTM generates a sequence of hidden states with output shape (samples, timesteps,
n neurons), which is fed into the CNN. But CNNs can only take four dimensions, so the LSTM
output is expanded to shape (samples, 1, timesteps, n neurons). The CNN processes each hidden
state independently, extracting spatial features from the temporal representations generated by the
LSTM. After processing through the LSTM and CNN layers, the output of the CNN is flattened
or pooled to create a feature vector which is then passed through fully connected layers for
classification. These fully connected layers aggregate information from the entire input sequence.

128@1x32
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Figure 16: LSTM-CNN architecture with two LSTM layers followed by two convolutional layers, a MaxPooling and a Global
Average Pooling layer

Statistical Evaluation

After feeding the labelled raw data or images into different algorithms and training them using a
10-fold cross-validation, adjusting the model architectures and tuning the hyperparameters, the
performances were compared. Different combinations of architectures and hyperparameters,
including number of layers, filters, optimizers, activation function learning rate, batch
normalization, dropout regularization, and skip connections led to small improvements within the
same algorithm, without being able to give a consistent pattern. Even though suggested by
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Arablouei et al., 2023, using the tanh activation function instead of ReLU, did not lead to
noteworthy improvements. Also, more filters and hidden layers did not necessarily lead to better
performance, especially on the unseen test set. To circumvent the model learning too well on the
training data and thus decreasing generalizability, batch normalization, dropout regularization, and
skip connections were considered. To check for overfitting, the training and validation loss was
monitored across epochs. Only the very complex (deep and wide) algorithms, started overfitting
visually, especially for high numbers of epochs per fold, as they are deep and wide enough to
memorize the irrelevant noise in the training data'®>. The advantages of such complexity come
with a high nonlinearity and nonconvexity in the optimization functions, making it almost
impossible to interpret and analyse the performance of deep learning models'®®. Therefore, really
being able to interpret the deep learning models and to understand their performance remain areas
of active research!'®’. The best performing versions of each algorithm type were compared using
visual and numerical metrics. The applied visual metrics were the Receiver Operating
Characteristic (ROC) Curve!®®, both class-wise and macro-averaged (average of independently
computed scores for each class), and confusion matrices!® for the test set across all cross-
validation folds and at the end of training. The used numerical metrics included Matthews
correlation coefficient (MCC)!°, the class-wise and macro-averaged Area Under Curve (AUC),
recall and precision scores for the test set across all cross-validation folds and at the end of training.
The MCC also uses the true and false positives and negatives (TP, FP, TN, FN) and shows values
between —1 and +1, where +1 is perfect prediction, 0 no better than random prediction, and —1
perfect inverse prediction. It is known to be a meaningful measure even when the dataset is highly
imbalanced®. Furthermore, the McNemar’s test'®! was used to test the agreement between two
classifiers, in this case to compare the baseline MLP classifier with the other classifiers. It was
computed using all combined test set predictions across all cross-validation folds and on the test
set predictions after training. The metrics were computed using the “statsmodels” (version
0.12.0)'% and “scikit” (version 0.24.2)!? libraries. The Welch’s t-test!®3 was applied to compare
the effect of the different window sizes on the performance of the classifiers using the “SciPy”
(version 1.73)" library.

Analysis of Timeseries & Environmental Variables

The best performing trained and validated algorithm was used to predict unlabelled windows
extracted for the years 2022 and 2023 and for individuals with labelled social behaviours. To save
computation, time and storage, a selected array of accelerometer readings was downloaded from
Movebank to be predicted. For both years, the five days from the 15" to 19% day for each month
were selected. For each of these days, 5 minutes for the morning hours from 6:30 AM to 10 AM
were downloaded. A shifting mechanism was applied so that for each of these five days for a given
month, every new day the sampling period shifted by 10 minutes, so that as much of the hour as
possible is covered. The accelerometer readings were named after their timestamps and birdID,
which was later used to assign the behavioural predictions to time periods and individuals. Then,
several statistics and visualizations were derived from those frequencies, as frequency across the
morning hours, development over the years and months. Finally, a dataset of Normalized
Difference Vegetation Index (NDVI) and drought timings, provided by Ogina et al., in prep, was
included into the analysis, which operates as a proxy for vegetation status and thus food abundance.

Ethics

This study was done under research permits and authorisations from the Max Planck Society
Ethikrat Committee, the National Commission for Science, Technology and Innovation of Kenya
(NACOSTI) and Kenyan Wildlife Service (KWS), as well as in collaboration with the National
Museums of Kenya.
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Results

Comparison of algorithm performances

Baseline MLP classifier
As expected, the baseline MLP classifier performed better than random choice. The average
AUC score and MCC differed between the two window sizes (mean AUC sccond=0.66, mean
MCCisecond =0.29; mean AUC3seconds=0.62, mean MCCsseconds =0.26). The average precision and
recall were identical/different between the two window sizes (mean precisionisecond = 0.67,
mean recallisecond =0.44; mean precisionsseconds = 0.48, mean recallzseconds =0.43).

Window Size |1 second 3 seconds
Classes BOW CHA NOT Classes BOW CHA NOT
Classifier Metric Macro @ Class-wise Class-wise Class-wise| Macro @ Class-wise Class-wise Class-wise
MLP AUC 0.668 0.670 0.653 0.623 0.621 0.719 0.456 0.633
MCC o207 NG o>;
Precision 0.669 0.625 0.400 0.920 0.483 0.444 0.000 0.968
Recall 0.440 0.196 0.071 0.991 0.434 0.286 0.000 0.993
CNN AUC 0.829 0.834 0.835 0.859 0.819 0.878 0.649 0.797
MCC o306 NG o7
Precision 0.612 0.655 0.276 0.941 0.460 0.286 0.000 0.972
Recall 0.515 0.373 0.286 0.963 0.518 0.429 0.000 0.976
TCDA-CNN AUC 0.785 0.807 0.779 0.815 0.842 0.830 0.718 0.856
MCC 033+ NG o>
Precision 0.537 0.438 0.313 0.932 0.492 0.412 0.083 0.977
Recall 0.488 0.275 0.179 0.971 0.497 0.500 0.118 0.959
Autoencoder AUC 0.852 0.835 0.845 0.865 0.862 0.768 0.724 0.772
MCC o450 [HNNENEGNGNEEEEEE ;7
Precision 0.660 0.600 0.333 0.949 0.466 0.219 0.071 0.977
Recall 0.505 0.412 0.214 0.963 0.465 0.500 0.118 0.883
ResNet AUC 0.826 0.817 0.825 0.828 0.851 0.961 0.768 0.872
MCC o357 [ HNNEGNEEEEEN >
Precision 0.575 0.395 0.321 0.939 0.445 0.381 0.214 0.979
Recall 0.523 0.333 0.321 0.949 0.523 0.571 0.176 0.972
CNN-LSTM AUC 0.857 0.861 0.860 0.846 0.873 0.883 0.743 0.892
MCC o430 [NNEGE o
Precision 0.614 0.500 0.333 0.954 0.458 0.244 0.162 0.989
Recall 0.569 0.529 0.357 0.947 0.605 0.714 0.353 0.920
LSTM-CNN AUC 0.828 0.809 0.803 0.819 0.841 0.932 0.732 0.814
MCC o2s0 (NG o
Precision 0.421 0.393 0.500 0.941 0.423 0.318 0.152 0.987
Recall 0.372 0.431 0.071 0.939 0.485 0.500 0.412 0.880
@ AUC 0.806 0.805 0.800 0.808 0.816 0.853 0.684 0.805
pMCC 0363 NG -
@ Precision 0.584 0.515 0.354 0.940 0.461 0.329 0.098 0.978
@ Recall 0.487 0.364 0.214 0.960 0.504 0.500 0.168 0.941

Table 3: Average metrics' scores for each classifier and window size, as suggested in Riaboff et al., 2020 and 2022%1%

CNN classifier

The CNN performed much better than the baseline classifier, with high macro-averaged and
balanced class-wise AUC scores especially for the 1 second window size. Looking at the
confusion matrix (Appendix 3), it is apparent that the CHA class is classified much better than
in the MLP (Appendix 1). The McNemar’s test only showed some significant disagreements
between the baseline MLP and the CNN classifier especially for the 3 seconds window size

(Appendix 15).
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TCDA-CNN classifier

The TCDA-CNN classifier performed similarly for both window sizes, according to the visual
and numerical metrics’ scores (Appendix 5 and 6). The McNemar’s test results disclosed more
significant differences for the 3 seconds window size (Figure 18). The TCDA-CNN showed
more confusion between the two social behaviour classes than the CNN (Appendix 5 and 6).
Particularly for the 3 seconds window size the CHA class gets misclassified a bit more than for
the 1 second window size.
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Figure 17: McNemar's test results, where the predictions of each algorithm are compared to the baseline MLP classifier for
both window sizes. If the p-Value is >0.05, then, the null hypothesis, that there is no difference in the misclassification
patterns between the two models, can be rejected.

Autoencoder classifier

The Autoencoder achieved balanced AUC scores across classes results for both window sizes,
being higher for the 1 second window size (Table 3). The visual metrics disclosed that the 3
seconds window size creates more confusion between social behaviour classes than the 1
second window size (Appendix 7 and 8). The McNemar’s test showed almost no significant
differences in misclassification patterns compared to the baseline classifier for the 1 second
window size, but many for the 3 seconds window size, even though most of the metrics were
significantly better for the 1 second window size (Table 4).

ResNet classifier

The ResNet scored balanced scores across classes for the 1 second window sizes. The AUC
score for the BOW class was very high (AUCsseconss= 0.961), but lower for the CHA class
(AUC3seconds= 0.768). The McNemar’s test again revealed more significant differences for the
3 seconds window size across folds, while the performances were not consistently better for
one window size (Table 4). The visual metrics showed some confusion between the social
behaviour classes (Appendix 9 and 10).
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Classifier Metric t p-Value
MLP AUC 3.0357 0.0071
MCC 1.3910 0.1832

Precision 5.4164  0.0002

Recall  0.5062 0.6190

CNN AUC 0.6570  0.5260
MCC  5.8755 0.0000

Precision  7.5651  0.0000

Recall -0.1255 0.9016

TCDA-CNN AUC -3.3209  0.0046
MCC 3.2244  0.0049

Precision  2.4723  0.0239

Recall -0.5738 0.5748

Autoencoder AUC -0.6065 0.5566
MCC 9.9067 0.0000

Precision  9.6441  0.0000

Recall 1.9650 0.0678

ResNet AUC -2.6706  0.0165
MCC 2.5229  0.0240

Precision 3.8067 0.0022

Recall -0.0041  0.9968

CNN-LSTM AUC -1.1427 0.2710
MCC 3.5053 0.0027

Precision 4.9363  0.0003

Recall -1.3795 0.1849

LSTM-CNN AUC -0.4499  0.6620
MCC 0.0951 0.9253

Precision -0.0394 0.9690

Recall -2.1572  0.0475

Table 4: Pairwise Welch's t-test comparing the performance of the classifier with two different window sizes (I to 3 seconds).

The further the t-statistic away from zero in both directions, the greater the difference between the means of the samples

(metrics across all CV folds). If t-statistic is positive, the mean of the 1 second sample is higher, if negative the mean of the 3
seconds sample. A small value (<0.05) indicates strong evidence that the null hypothesis, that there is no difference between
the means of the two samples.
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Figure 18: CNN-LSTM ROC curve at the end of training for the 1 second window size
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CNN-LSTM classifier

The CNN-LSTM performed very well for both window sizes with balanced metrics scores
across classes, being higher for the 1 second window size (Table 4). The McNemar’s test
disclosed a broad range of p-values for the 1 second window size, while the 3 second window
was again significantly different than the MLP classifier, but the two significant differences in
the Welch’s test promoted the 1 second window size. The visual metrics for the 3 seconds
window size manifested confusion even for the NOT class, which was not the case for the 1
second window size at all (Appendix 12 and 13 ).
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Tue label
Tue label
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NOT NOT NOT
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Figure 19: CNN-LSTM confusion matrix at the end of training using the 1 second window size, for the training, validation
and test set respectively (left to right). RUPBOW refers to the BOW class, CHAPOS to CHA.

$

LSTM-CNN classifier

The LSTM-CNN also showed some very good and balanced results for both window sizes
(Table 3). The McNemar’s test revealed once more significant differences for the 3 seconds
window size while the Welch’s t-test indicated better and more significant metrics for the 1

second window size (Table 4). The visual metrics showed quite some confusion for both
window sizes (Appendix 13 and 14).

Comparison of Performances for Different Window Sizes

There were a few significant differences in the Welch’s t-test for the different window sizes
within an algorithm class (Table 4). In some cases, one window size performed better on some
metrics and vice versa for other cases. There were no consistent patterns to be found, where
one window size significantly performed better across all metrics. Only the MLP showed
consistently better metrics for the 1 second window size, which were not significant all over.
For the other algorithms, there was no consistency found across all metrics. These findings
were supported by the McNemar’s test comparing the classifiers also for different window sizes
(Appendix 15), where the 3 seconds window size for most algorithms seemed to be consistently
and significantly different from the baseline MLP classifier. The generalised performance
(bottom Table 3) across all classifiers, the mean metrics’ scores were similar between the two
window sizes but slightly in favour of the 1 second window size.
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Ecological Results

The best performing model, the CNN-LSTM, was used to predict the unlabelled data across the
two selected years, during five days every month for the hours 6, 7, 8, 9 and 10 AM. There
were 48’724 windows available for 2022 and 168°283 for 2023, totalling 217°007 windows
across both years (Table 5). There was much less data available for the year 2022 compared to
2023, as well as for the hours 9 and 10 AM, which can be explained by the inconsistencies in
the employment of the tags across time. For January 2022 there was no data available at all for
the focal birds. In general, the number of samples is varying quite a bit across years but also
across months within the same year (Table 7). This inconsistency in the number of samples
could potentially introduce a sampling variability, where smaller sampling sizes are not as
representative for the respective period or individual. For the individual birds, there was also a
big variability in available windows to predict, especially across years, where the differences
were enormous at times (Table 8).

# of Samples
2022 48724
2023 168283
total 217007
Table 5: Number of samples across the two years
6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM
# of Samples 2022 13129 12680 20057 2028 830
# of Samples 2023 42762 41483 53477 24646 5915
total # of Samples 55891 54163 73534 26674 6745
Table 6: Number of windows derived from available data for each hour and year
# of Samples 2022 # of Samples 2023 | total # of Samples
January 0 11353 11353
February 1181 11571 12752
March 1184 7594 8778
April 883 13112 13995
May 5036 24804 29840
June 3818 19989 23807
July 3806 17987 21793
August 3851 9728 13579
September 3821 14799 18620
October 2392 14834 17226
November 11383 9710 21093
December 11369 12802 24171
Table 7: Number of windows derived from available data for each month
W1430 WT00043 WT00162 W1413 WT00044
# of Samples 2022 0 0 16764 0 31960
# of Samples 2023 33946 50983 61692 14846 6816
total # of Samples 33946 50983 78456 14846 38776

Table 8: Number of available windows for each bird and year

Keeping these limitations in mind, the analysis of the social behaviour frequencies was
conducted. The predicted social behaviour events (BOW and CHA) are indicated as the
proportion of the total predicted events for a given hour and day. They are henceforth called
frequency and are given in percentage of total predictions. It was not possible to simply indicate
the number of predicted events, as the number of available accelerometer readings varies across
time and individuals and thus would not have been of any meaning.

Looking at the social behaviour frequencies for the different individuals across the morning
hours and the different seasons, there were some inter-individual differences to be found
(Figure 25). The drought reached from June 2022 to March 2023, followed by a wet season
until end of May and an intermediate season until mid of October. It should be noted that for
the year 2022 there were only two birds available.
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Figure 20: Individual differences in the frequencies during the morning hours for the drought period (top row), the wet
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seasons (middle row) and the intermediate seasons (bottom row).

Hour of the Day

In Figure 26 the observed frequencies across the morning hours can be seen. They are plotted
together with the increasing mean temperature. The bowing frequencies seem to have a peak
around 8 AM, while chasing frequencies decline towards midday. But the scatterplots of
temperature with BOW and CHA frequencies resulted in correlation coefficients of 0.04 and -
0.16 with p-values of 0.6 and 0.02 respectively.
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Figure 21: Development in bowing (top left) and chasing (top right) frequencies during the morning hours plotted with the
increasing temperature. Scatterplot mean hourly temperature vs. BOW (bottom left) and CHA (bottom right) frequencies,
with Pearson correlation coefficients of 0.04 and -0.16 , and p-values of 0.6 and 0.02 respectively.

Plotting the aggregated monthly frequencies across both years, a clear decreasing trend in
chasing can be observed, while bowing seems to show no clear trend (Figure 27). The inverse
developments of the number of available datapoints and the chasing frequencies across time
was obvious (Figure 28). The correlation coefficients for the number of samples and the BOW
and CHA frequencies were -0.3 and -0.43 with p-values of 0.16 and 0.04 respectively and

indicated small correlations.
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Figure 22: Monthly frequencies for 2022 and 2023
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Figure 23: Number of available samples and the predicted social behaviour frequencies

Furthermore, the correlation between BOW and CHA frequencies was analyzed. The Pearson
correlation and the scatterplot showed a very weak but significant correlation with a very weak
correlation coefficient of 0.15 and a significant p-value of 0.04 (Figure 29).
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Scatter hourly CHA-Frequency vs. BOW-Frequency
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Figure 24: Scatterplot CHA vs. BOW frequencies

To analyze a potential environmental predictor for the occurrence of the social behaviours, the
NDVI was consulted. The continuous NDVI timeseries at daily temporal resolution was first
plotted together with the predicted frequencies across both years to get a first visualization, but
there were no evident correlations (Figure 30).
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Figure 25: Continuous NDVI timeseries and fragmented daily aggregations of social behaviours
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To verify these visual inspections, the daily frequencies of the social behaviours and the daily
NDVI underwent a Pearson correlation test across both years and for the three seasons
individually. The correlation coefficients between NDVI and BOW and CHA across both years
were very weak, with -0.16 and -0.12 and insignificant p-values of 0.1 and 0.22 respectively
(Figure 31 top row). The correlation coefficient for the drought period was -0.08 with a p-value
of 0.6 for NDVI and BOW. For NDVI and CHA a moderate correlation coefficient of 0.53
with a significant p-value of 0.0002 was found (Figure 31 second row). During the wet seasons,
the NDVI and BOW showed an insignificant (p-value = 0.38) 0.2-correlation (Figure 31 third
row) and an insignificant (p-value = 0.59) -0.12-correlation for NDVI and CHA. For the
intermediate season the NDVI-BOW correlation was again insignificantly (0.55) weakly
negative (-0.12), showing a similar pattern as the NDVI-CHA correlation with a coefficient of
-0.15 with a p-value of 0.46 (Figure 31 fourth row).
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Whole timeseries (February 2022 — December 2023)
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Discussion

CNN-LSTM as the Best Performing Classifier

This thesis disclosed the ability of deep learning algorithms to successfully recognize social
behaviours in vulturine guineafowl from 20 Hz triaxial accelerometer data. The best performing
classifier was the CNN-LSTM architecture using a sliding 1 second window size with 50%
overlap. This algorithm’s ability to memorize longer-term dependencies was very useful in this
sequential data problem. The classifier was chosen due to its low confusion of the social
behaviours which show a high inter-activity similarity especially considering the subsequent
task of classifying unlabelled data as precisely as possible. Many algorithms performed
similarly well, each with their own (dis)advantages and thus present an array of tools to choose
from.

Effect of Window Size, Model Complexity and Inter-Activity Similarity

The results suggested that the window sizes did have a minor and varying impact on the model
performances. The effect of window sizes depended on the classifier choice, as some performed
better with one window size and some with the other. Also, the choice of window size cannot
satisfy both class-wise performances equally because the two social behaviours show different
durations (Table 1).

Looking at the McNemar’s test results, an increase in the complexity of the algorithms did not
always bring improvements in performance, especially for the less complex input window size
of 1 second, for which basically all algorithms showed only few significant differences to the
simple MLP. Another obvious finding is, that the models do not generalize very well on the
unseen test set. Many models performed extremely well on the training and validation set, but
then tended to misclassify the unseen test set at higher rates. This suggests overfitting models
which memorize noise in the data, even though overfitting was not visible in the loss function
monitoring over the training process!>. Looking at the confusion matrices it is apparent that
confusion occurs mainly for the test set, so the task at hand is to find models that generalize
better. Usually, simpler models tend to generalize better, as they do not learn too much on the
training set. The NOT class was never misclassified into the social behaviour classes for the
test set, except for the LSTM-CNN classifier (Appendix 13 and 14). This is important to not
overestimate the occurrence of social behaviours in the prediction of unlabelled accelerometer
data. It makes sense that the two social behaviours do get confused at some rate, as their motion
patterns show a high inter-activity similarity’s. The misclassification of the social behaviour
classes into the NOT class might be caused by the inter-activity similarity. This issue is
intensified if the dataset does not only include characteristic windows for a given social
behaviour class but also vague sequences. Some windows are visually very hard to distinguish
from NOT but have been included because the dataset suffers annotation scarcity. Currently,
the variation in duration and inter-individual expression is very large for such a small dataset.
Thus, splitting into different window sizes thus can strongly diminish the sample size of the
characteristic labels. The meticulous work to prepare a valid dataset by cleaning the raw data,
handling data gaps and precisely checking the resulting timestamps of the annotation program
were crucial steps during pre-processing but further decreased the number of training samples.

Annotation Scarcity and Class Imbalance

This scarcity for the social behaviour classes made the training dataset highly imbalanced.
Balancing the datasets with different data augmentation methods, as class-weighting by the
inverse frequency and under-sampling the over-represented class were applied here.
Nevertheless, the class imbalance is not the main causer of the lower performance of classifying
such behaviours, but the scarcity of training data for these behaviour classes itself. A reliable
classification of social behaviour is very challenging due to this limited amount of valid training
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data available>!> and establishing accurate classification models with strongly

underrepresented behaviours will remain a subject of our ongoing research despite the
augmentation techniques™!>>,

Predicting an Imbalanced Sample Size of Unlabelled Accelerometer Data Across
Time and Individuals

The model performance and analysis of confusion lead to the decision to apply the best
performing and trained algorithm to predict unlabelled accelerometer readings. This real-life
scenario enabled a first trial to remotely monitor this population’s social behaviours outside of
direct field observations. Nonetheless, the derived frequencies and trends over time should be
enjoyed with caution because the classification and recognition framework still need more
sophisticated and thorough verification through identification tasks. The number of windows
available to the prediction part was limited by computational resources and thereby did not
allow a consistent prediction of social behaviour across individuals and time. The lower number
of samples for some individuals and time periods introduces more sampling variability
compared to periods and individuals with a larger sample size'*®. This increases the uncertainty
in the explanatory power and decreases the representativeness of the predictions. Hence the
temporal and individual patterns of the social behaviour frequencies must be consumed with
caution.

Ecological Deductions

The social behaviour frequencies show a decrease from the time they leave their roosting sites
in the trees towards midday. At the field site close to the equator, it gets hotter very rapidly after
sunrise. Derived from direct observations, it is assumed that the vulturine guineafowl, after
spending some time on the open glades, they disperse into the bushes to spend the hottest time
of the day there. But according to the weak and insignificant correlations of the temperature
and social behaviour frequencies, there must be another explanation. Maybe it is rather the
location which influences the occurrence of these displays. In the inaccessible and closed
surroundings of the bushes, such display potentially is not as effective anymore, as there is not
enough space compared to the glades. Another explanation could be that other individuals
cannot see the displays in these dense bushes. Also, during such social interactions,
concentration might be lacking and thus increase the predation risk 7.

The predicted frequencies of the courtship behaviour across seasons did not align well with the
hypothesis and directly observed behaviour in the field season from April to June 2023. It was
expected that with growing vegetation and thus food abundance and nesting possibilities>*!2
the courtship behaviour increases in frequency. This was also observed as the rains arrived and
the vegetations started to grow, creating the conditions in which vulturine guineafowls
opportunistically breed>*. But in the model predictions there is no evident increase in the
frequencies of bowing. Also, the weak positive correlation of the bowing frequencies with the
NDVI during the wet season compared to the weak negative correlations during drought and
intermediated season did not suffice to fully confirm the hypothesis and observations. Even
when with a focus on the periods of strongly increasing NDVI, no correlating changes in the
courtship frequencies were found. This could be caused by the poorly generalizing and
frequently confusing CNN-LSTM classifier, unable to distinguish bowing from chasing or
other behaviours including running. Another possible explanation could be that the NDVI is
not always a reliable real-time proxy for the actual vegetation status especially under drought
conditions, as the plant adaptations to different drought of different timescales are not yet fully
understood!?819%-200 Before March 2023, there has not been a pronounced wet season since
2020. These dry or even drought periods might have had a longer-term effect on the vegetation
and thereby decoupled the NDVI patterns from actual vegetation status found by the vulturine
guineafowl. Of course, these limitations concerning the NDVI also apply for the dominance
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interactions. For these, it was hypothesized that the increase in resources allows more male
competition as energy does not have to be saved as parsimoniously as during drier and more
scare seasons®’. But, the NDVI, as a proxy of plant primary productivity directly correlated to
resource availability!?%2°!, does only weakly correlate with the predicted frequencies. This
attenuates again the confirmation of the hypothesis that with more accessible resources such
aggressive behaviours increase in frequency. The expected significant changes in frequencies
in the male courtship and dominance behaviours®+68-6%-202.203 with the beginning of the rainy
seasons could not be confirmed.

Outlook

A primary goal should be to improve the classifier performance by fine-tuning optimal
hyperparameters and finding the best architecture, adapted to the problem at hand. Another
approach to increase the model performance could be the use of statistical features as inputs
compared to raw sensor data, even for deep learning. This is especially the case when using
hybrid classifiers as CNN-LSTMs or LSTM-CNNs”>%!10 The inclusion and combination of
more dimensions of information, as environmental or spatial context as well as other sensor
modalities as gyroscope or magnetometers, could be tested to better distinguish behaviours by
extracting more distinctive features’®!*4. This is not too far-fetched, as some individuals even
are equipped with IMUs. But even the best classifier having access to a multi-dimensional data
cannot work without a proper training set. For this task with imbalanced classes, the training
set should only include unmistakable, characteristic examples of social behaviour labels. The
training data should be relieved of confusable labels to not increase the quality of the social
behaviour labels. Likewise, the quantity must be increased. Creating new datapoints from the
raw data and over-sampling could be options for future studies’®. An idea for data
augmentation, that came up during this study, was to combine social behaviour windows from
different overlap percentages, for the same window size of course. In this way, the class
imbalance could be decreased while simultaneously increasing the model’s robustness, as it
learns to identify the social behaviours from different angles.

Another vital approach to enhance the training set is to equip and video-record as many
individuals as possible to include more variability®-14*, This can be achieved by including
video-recording into the standard procedure for the morning surveys conducted by the field
team. At least every now and then, more video-material should be collected so that more
variability over time and individuals can be included. This requires a meticulous planning of
the employment times of the accelerometer tags across individuals and time, to efficiently
increase the probability of capturing social behaviours on camera. The increase and extension
of annotated data would, at a later stage, allow an individual-based and time-stratified splitting
into training, validation, and test set. These splitting methods should be considered, to better
investigate the generalization ability across time and individuals, the inter-individual variability
of the motion patterns and the shifts in sensor orientation’®*-144, Furthermore, other overlap
percentages as 0%, 25% or 75% in contrast to the applied 50 % could be tested and compared
to find the optimal classification approach. The same applies for window sizes, where the range
between 1 second and 4 seconds should be tested more precisely (Table 1). Also, considering
splitting the whole behaviour sequences into its basic units e.g. pecking, running up, actual
bowing and pecking again (Figure 4 and 5). Testing the impacts of increased or decreased
sampling rates on the classification performance, would be very interesting®. At some point, the
effect of including more behavioural classes into the classification problem should be analysed,
as for now the NOT class includes many different (state) behaviours outside of these two social
behaviour classes. There is yet another identification task to investigate the model’s capability
of correctly predicting these social behaviours which are exclusive to males. Predicting
unlabelled windows for female birds, could check the classifier’s plausibility as for these
behaviours there should be no predictions. If the females received some positive predictions,
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this would verify the claim that there are some significant inter-activity similarities. The within-
male variability in the male social behaviour frequencies should be compared to the obtained
frequency predictions in females. All these potential identification tasks could help to improve
and more accurately apply the trained models to real-life scenarios. This includes predicting
behaviours for individuals wearing an accelerometer, but not (yet) video-recorded, or predicting
behaviours for time periods, not (yet) analysed'#*.

But establishing a thorough remote monitoring of the vulturine guineafowl’s social behaviour,
not only requires a well-performing classifier. The prediction of unlabelled data needs an up-
scaled sample size of unlabelled data balanced across time and individuals. In this study the
inclusion of more data was limited by the computational and storage possibilities. This would
allow a more robust and representative analysis of these behaviours across time and individuals.
These first findings call for more investigation e.g. looking into the predictors that influence
these behaviours or the patterns underlying the individual expressions of when and how they
perform these social behaviours. The causes of the temporal trends in these individually
expressed social behaviours could be investigated by including other potential environmental
explaining variables such as precipitation and temperature into the model.
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Conclusion

To conclude, these findings demonstrated the ability of various deep learning models to classify
short and rare social behaviours in a wild, free-ranging population of vulturine guineafowl.
Although the algorithms seem to recognize the focal courtship and dominance behaviours quite
well, the predicted frequencies from unlabelled data and the deducted ecological analyses
should be considered carefully. This methodology still needs some more clarifications to
reliably make real-life predictions. However, this methodology with its demonstrated pitfalls
could lay the foundation for a long-term remote monitoring of vulturine guineafowl social
behaviour. This could be very useful to capture and study the impacts of climate change on
behavioural adaptations. But more direct observational data must be collected to establish a
high-quality training dataset, that includes more inter-individual and temporal variation.
Furthermore, more experimentation with different architectures and hyperparameters
distinguishing more behavioural classes to predict should be aimed for.
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Appendix II: MLP visual metrics for 3 seconds window size for all cross-validation folds
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Appendix III: CNN visual metrics for 1 second window size for all cross-validation folds
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Appendix IV: CNN visual metrics for 3 seconds window size for all cross-validation folds
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Appendix V: TCDA-CNN visual metrics for 1 second window size for all cross- validation
folds
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Appendix VI: TCDA-CNN visual metrics for 3 seconds window size for all cross- validation

folds
ROC curve
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Appendix VII: Autoencoder visual metrics for 1 second window size for all cross- validation

folds
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Appendix VIII: Autoencoder visual metrics for 3 seconds window size for all cross-
validation folds
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Appendix IX: ResNet Visual Metrics for 1 second window size for all cross- validation folds
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Appendix X: ResNet Visual Metrics for 3 seconds window size for all cross- validation folds
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Appendix XI: CNN-LSTM Visual Metrics for 1 second window size for all cross- validation

folds
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Appendix XII: CNN-LSTM Visual Metrics for 3 seconds window size for all cross-

validation folds
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Appendix XIII: LSTM-CNN Visual Metrics for 1 second window size for all cross-

validation folds
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Appendix XI: LSTM-CNN Visual Metrics for 3 seconds window size for all cross-
validation folds
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McNemar’s test results for each algorithm and window size
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