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Summary 
 
In the realm of studying the intricacies of the natural world, few fields captivate the curiosity, 
fascination, imagination, and intellect quite like the study of animal behaviour. From the earliest 
observations of ancient philosophers to today's cutting-edge research, the exploration of how 
animals think, feel, make decisions, and interact with their environment has remained a 
cornerstone of scientific inquiry. Understanding animal behaviour offers insights into the adaptive 
strategies of organisms for survival, competition, and reproduction, to thrive in a dynamic, ever- 
but increasingly fast-changing world. Some social interactions are difficult to observe and study 
as they can be rare and short, but very important events in group-living animals. They contribute 
significantly to the social environment and are in interdependence with ecological dynamics and 
evolutionary adaptations which have fitness consequences. From the intricate dance of courtship 
rituals, which secure mating, to the complex dynamics of social hierarchies formed by antagonism 
and competition of conspecifics, each behaviour provides a window into the evolutionary 
pressures that have shaped life on Earth. For the longest time, behavioural ecology studies were 
limited to laboriously gathered yet still incomplete observational data. The advancements of the 
last three decades in sensor technology, particularly solar powered accelerometers, have enabled 
remote collection of location and triaxial acceleration at high frequencies. The high-resolution data 
collected by such small, lightweight accelerometer devices opened new avenues for studying 
behaviour and its long-term patterns. However, analysing large amounts of complex and 
unstructured data is challenging. Machine - and of rapidly increasing relevance - deep learning 
have shown great promise for clustering, classifying, and modelling raw accelerometer datasets 
by implementing in the automated identification and classification of state and event behaviours. 
In this study, the recognition and classification of behaviour from accelerometer data using deep 
learning algorithms was examined. The focus was laid on male social behaviour events, which 
have often been neglected in ethograms and energy budgets. The data was collected in a wild, free-
ranging population of vulturine guineafowl (Acryllium vulturinum) inhabiting their natural 
environment around Mpala Research Centre in Laikipia County, Kenya (0° N, 37° E). The 
vulturine guineafowl stands as an intriguing avian species with complex social behaviours that 
have been of interest to researchers studying multi-level societies. The accelerometers employed 
in this study system collect data at 20 Hz from various individuals since 2021, of which 19 were 
considered. To find the best possible automated approach in detecting social behaviour, different 
deep learning algorithms and window sizes were compared. State-of-the-art algorithms were 
trained on manually labelled datasets of accelerometer readings, and the best performing model 
was ultimately used to classify unlabelled windows across other parts of the timeseries of 
accelerometer data into 3 different classes, consisting of courtship, dominance, and other 
behaviours. The obtained frequencies and temporal patterns in social behaviour were correlated to 
NDVI, a proxy for vegetation status and resource availability, which are assumed to affect these 
behaviours. This study tried to explore the potential of deep learning for automating the study of 
vulturine guineafowl social behaviour in their natural habitat. This study provides a promising 
framework for the long-term monitoring of wild social birds and their behavioural changes over 
time and across changing environmental conditions in a minimally invasive and scalable way. By 
bridging the gap between technology and ethology, this study potentially contributes to the 
advancement of behavioural research methodologies and provides a foundation for further 
investigations into the social dynamics of vulturine guineafowl. Moreover, this methodology could 
be extended to the study of other social species, facilitating urgently needed cross-species 
comparison of the impact of climate change on behaviour.  
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Introduction 
 
Animal Behaviour 
Animal behaviour, or ethology (ἦθος, ethos = character), refers to the study of everything animals 
do during their daily life, the corresponding underlying mental processes, and internally 
coordinated responses to internal and external stimuli1. This includes social interactions, the 
movement within the environment and the cognitive understanding of the surroundings2. 
Monitoring behaviour not only indicates the individual’s health, welfare and productivity but can 
also provide information about the social interactions, population dynamics and environment3. 
Human observation, imagination and fascination with animal behaviour most probably reaches 
back to the very beginnings of human evolution. Intimate knowledge of an animal’s habits greatly 
determined the success of hunting or fishing prey, escaping, or scaring away predators as well as 
domesticating selected species. But even outside of practical benefits, animal behaviour has all 
along aroused and satisfied our deep-seated interest and curiosity for the lives and minds of our 
pets and livestock, other real or imaginary creatures, as well as of ourselves and fellow humans4. 
As we tried to unravel the mysteries of animal minds, we gained a deeper appreciation for the rich 
tapestry of life that surrounds us, creating a sense of wonder and awe that transcends disciplinary 
boundaries. Therefore, since the dawn of civilization, humans have attributed animals with 
symbolic and spiritual significance, nourishing religion and philosophy alike. Delving into the 
historical frameworks of animal behaviour, we journey back to various ancient philosopher and 
thinkers, who ascribed instinct, motivation, reason, sense and feeling to animals and appealed to 
animal ethics, rights and even veganism5–7. What followed was a long period shaped by religious 
hierarchical worldviews positioning humans above animals and thus legitimating the dominion 
over the natural world. Fast forward to the 19th century, where Charles Darwin's ground-breaking 
work on evolution provided a framework for understanding behaviour through the lens of natural 
selection, sparking a revolution in scientific thought. Not only anatomical structures but also 
behaviours were considered adaptations existing over evolutionary times1,2. The emerging 
appreciation of the complexity and purposefulness of the actions of animals demanded long-term 
observations of animals in their natural settings, evolving into the fields of ecology and ethology. 
In the 20th century, the founders of modern ethology, Nikolaas Tinbergen and Lorenz Konrad 
meticulously observed, studied, and experimented on various animals in their natural 
surroundings, leading to deeper insights compared to impoverished laboratory environments8. 
Tinbergen claimed that the study of behaviour must address all four levels of analysis: causation, 
ontogeny, function and evolutionary history8,9. Causation explains, what makes the behaviour 
happen, including physiology, nervous system, hormones and cognition. The ontogeny focuses on 
how the behaviour develops. In other words, what developmental mechanisms lead to the 
occurrence of behaviour, as internal and external factors, genes, experience. The function level 
tries to understand how the behaviour contributes to genetic success through survival, mating, 
competition, or natural selection and thereby to reconstruct the evolutionary history. These four 
levels can help to solve the puzzle how and why individuals behave as they do8. These 
contributions still set the basics for today’s research, even though the field, its tools and 
possibilities have changed a lot. Thanks to revolutionary technology, as GPS tracking, motion and 
orientation sensors, night-vision scopes, and sophisticated neuroimaging and computation, the 
methodologies for the study of animal behaviour have diversified. These modern applications can 
and should have implications for conservation and management efforts10,11. By deciphering the 
behavioural patterns of endangered species, especially in the face of global change, researchers 
can develop more effective strategies for their protection and preservation. Similarly, insights 
gleaned from studies of animal cognition and communication have far-reaching effects on animal 
ethics, e.g. livestock welfare, as public consciousness and perception of moral responsibilities 
towards other sentient beings change6,7. As a vibrant and interdisciplinary field, ethology continues 
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to evolve, expand, inspire and intrigue, reminding us of the boundless wonders that await those 
who dare to ask. 
 
Social Behaviour 
Social behaviour refers to aggressive, mutualistic, cooperative, altruistic and parental interactions 
between individuals of the same species12. Individuals make decisions on who they interact with 
and how often. When individuals interact repeatedly, a social relationship between strangers, 
relatives or members of the same group, of same or different sex or age can develop. Sets of such 
relationships combine to a complex and highly dynamic social system13,14, depending on the ever-
changing connections between individuals, which can have profound effects on reproduction and 
survival15. The resulting social structure is the arrangement of relationship between individuals 
and groups within a society determined by patterns of behaviours and norms guiding interactions 
among those. The comprehension of social structure is crucial for the understanding of social 
dynamics, but also of the interactions between individuals and their surroundings consisting of 
resources, abiotic hazards, pathogens and predators, competitors, and co-operators12,15. The 
ecological and social environment determine social interactions and thus play a pivotal role in 
shaping population dynamics, resource distribution, and reproductive success, ultimately 
influencing species' survival and adaptation to their environments12,13. Looking at the causation 
and ontogeny of social behaviour, physiologically speaking they are a complex tapestry woven by 
(epi-) genetic16–19, neural20–22 and hormonal23–25 threads, influenced by environmental factors and 
individual experiences26–28. Orchestrated by a symphony of various brain regions, 
neurotransmitters and hormones, social behaviours have profound effects on the social dynamics 
and hierarchies of a population29,30. Social interactions between individuals are crucial components 
of an animal’s life and a result of (a)biotic interactions31. They can even be an indicator of the 
occurrence of extreme events such as forest fires32 or other environmental catastrophes and 
problems33, and poaching34. Social behaviours take many forms. Competitive or aggressive 
interactions determine hierarchies through dominance displays35,36, settles territorial disputes37, 
secures resources38 and establishes social status39–42. Communication facilitates exchange of 
information between individuals through vocalizations43, visual signals44 and chemical cues45–47 
enabling coordination of activities, social bonding, threat displays, and danger or predator 
detection (alert call, cooperative defence, confusion of predator). Cooperative behaviours refer to 
mutually beneficial interactions such as cooperative hunting, grooming, childcare or breeding48–

50. Courtship and mating behaviours are performed to attract mates and secure reproduction 
involving feeding51, elaborate displays or ritualized movements52,53, vocalizations and signalising 
fitness. Parental care comes in the forms incubation, begging  and feeding,  guidance to offspring, 
defence against predators and teaching essential skills54. Social bonding strengthens the social ties 
and promotes group cohesion trough grooming, allopreening, huddling and playing55. Social 
learning refers to the acquisition of knowledge or skills through observation, imitation or 
interaction with conspecifics, as parents, peers or dominant individuals within the group, e.g. 
foraging techniques56,57, tools use or predator avoidance. Finally, migration or group movement 
stands as coordinated movement of individuals58, ranging from synchronised flight to mass 
migration across landscapes, often driven by predator occurrence, seasonal changes or resource 
availability.  
In general, ecological and environmental conditions play a key role in determining social 
preferences and behaviour. Under climate change, the influences of environmental factors on 
social interactions can become more pronounced. Changes in temperature, precipitation patterns, 
habitat and vegetation structure can affect the availability and distribution of resources critical to 
survival and reproduction as well as alter the predation pressures. Such potentially big changes in 
environmental conditions can trigger shifts in social behaviour (breeding phenology, competition, 
territorial disputes), group dynamics, dispersal and migration timing as well as foraging 
strategies59–62. Species may exhibit plasticity in their social behaviour, adjusting reproductive 



 7 

strategies as courtship displays and intrasexual competition or social structures in response to 
changing environmental conditions63–67. Hence, it seems evident to link obvious changes in 
ecological conditions to potential changes in this diverse array of (social) behaviours64,68–70. 
Currently only little is known about the social behaviour responses to changing environments, with 
only few studies on the impact on e.g. male courtship display64 or aggressive interactions69. These 
research gaps in linking broadscale issues, as climate change, with behavioural adaptations can be 
filled with long-term monitoring, distributed across different populations and global contexts. Both 
within- and between-species comparison of long-term studies could enable inferences regarding 
the adaptations of animal under climate change71. Such studies contribute to our understanding of 
evolutionary and ecological processes, as well as future trends and could increase our ability to 
link genes, individual traits, behaviour and fitness with environmental variables. Looking ahead, 
long un-interrupted time series of social behaviour might allow the answering of questions that 
were not planned at the start of data collection71. But how is social behaviour observed and how 
are potential changes over time and under climate change quantified? 
 
Observation & Quantification of Social Behaviour 
Understanding animal behaviour, especially social behaviour sheds light on the adaptive strategies 
organisms employ to survive and thrive in a dynamic world. Each behaviour provides a window 
into the evolutionary pressures that have shaped life on Earth72,73. Studying the diversity and 
complexity of animal social behaviours provides insights into the evolutionary pressures shaping 
sociality74. Furthermore, social behaviour is an indicator of mental and physical states and thus of 
social animals’ health, welfare, and subjective states75. However, monitoring of animal behaviour 
relies on direct observations, that are time consuming, labour and logistics intensive, and involve 
the subjective judgments of individuals75,76. Field observations introduce a source of limitation or 
bias, the observer effects on animals and their behaviour77. The presence of field researchers during 
direct observation affects animal behaviour, as they potentially perceive humans as threat or are 
naturally secretive or elusive78. Habituation to individuals or other observation units as cars is 
possible but labour-intensive and hence only applicable to longer-term studies, but still not 
guaranteeing unaffected behavioural interactions with conspecifics or non-habituated predator or 
competitor species78. 
Furthermore, field observations are biased by the researcher’s physical limitations and proneness 
to give more attention to some events and individuals than others78. So, can we really believe what 
we observe? 
Many social behaviours are challenging to observe, as they are rare, fine-scale behaviours, 
sometimes even very brief movements, so-called microevents79. They might also be affected by 
observers, not interacting socially, as if they are not disturbed. Observing and quantifying social 
behaviour thus presents a formidable challenge, given its nuanced and context-dependent nature, 
influenced by factors such as social structure, environmental context, individual differences and 
behavioural plasticity80–82. Capturing these nuances requires careful research design and data 
interpretation83. Traditional observational methods in the field, while valuable, may struggle to 
capture or even miss subtle, rare social interactions. This applies especially for animals which 
travel fast, or live in unsuitable, extreme, variable climates, unfavourable weather conditions or in 
inaccessible, challenging habitats or operate at night78. Thus, social behaviours have largely been 
absent from ethograms, especially those of wild, terrestrial animals78. However, recent 
technological advancements offer promising avenues for studying social behaviour with greater 
precision and efficiency. 
 
Wearable Sensors 
Thorough ecological ethology is based on the need to locate and observe animals to record their 
habits despite their potentially fast travel, challenging weather conditions, inaccessible habitats or 
limited night vision78. In the last three decades, the study of animal behaviour has more and more 
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transformed from laborious field observation to remote observation and tracking thanks to 
technological advancements in and increased accessibility of wearable sensors, communication 
technologies and their accompanying frameworks. Thanks to their light weight, small size, low 
power consumption, exceptional stability, and easy integration such devices have gained in 
popularity76. This development enhanced the effectiveness of remotely tracking animal behaviours 
in various environments, at a larger scale than was previously achievable76,84 and formed two major 
streams of objectives in the field of animal behaviour. First, the correlation of the variation in 
motion waveforms with energy expenditure. Second, the establishment of ethograms by inferring 
activity/behaviour through movement and body posture derived from such data78. 
There are several types of wearable sensors equipped with sensors for measuring motion, location, 
and physiological parameters, providing detailed information on animal behaviour and energetics 
in real-time. Their use grew rapidly in the 1990s aligning with the fast development of 
microprocessors and notable increases in memory capacities85. The kinetic characteristics 
(acceleration, angular velocity, etc.), pressure, and geo-location information can be accurately 
measured at a certain sampling rate (e.g., 10 to 100 Hz) depending on the application and 
identification task76. The power usage, battery power and memory storage affect the possible 
maximum sampling frequency75. 
Global Positioning Systems (GPS) have enabled researchers to track and precisely monitor 
individual animals in the wild, providing insights into movement patterns and habitat use over 
large spatial scales, facilitating studies on migration, foraging behaviour, and territoriality. Tri-
axial accelerometers are the most common sensor used in animal behaviour monitoring. They are 
compact and low-power motion sensors that measure acceleration [m/s2] along three perpendicular 
spatial axes to capture motion dynamics3. Due to their rapid response times and high sensitivity to 
movement86, accelerometers can recognize fast changes in acceleration. They measure both a 
dynamic component of movement indicating the activity intensity and a static component 
regarding Earth's gravity indicating the posture. Doing so, accelerometers have enabled 
classification of many behaviours such as locomotion, resting and foraging31,87. This enables 
resolution of fine-scale animal behaviour, usually involving brief, abrupt, situation-specific 
manoeuvres or microevents79. The ability to identify those can have a big impact on the 
performance of the behaviour classification79,88. Accelerometers can be mounted to different parts 
of an animal, even simultaneously, which enables to expand the spectrum of well-predicted 
behaviours89, and enhances the recognition performance76,90,91. Tri-axial gyroscopes measure 
orientation and angular velocity [◦/s] along three orthogonal spatial axes. They are usually 
integrated in with accelerometers in the same device operating at the same sampling rate to 
complement the captured information and can thereby improve the prediction of behaviours, which 
are hard to detect 76,92. Tri-axial magnetometers detect changes in the magnetic field in particular 
location and measures rotation angle values (pitch, roll, yaw) [Tesla], also usually combined with 
accelerometer and gyroscope forming an inertial measurement unit (IMU). The simultaneous 
capture of linear acceleration, angular velocity, and rotation angle in IMUs has enabled a better 
performance in the prediction of animal behaviour93–98. It should be noted, that the employment of 
wearable sensor devices also has some impact on the animals and their behaviour99 and that remote 
tracking lacks the behavioural context and demands direct observation nevertheless78. The 
combination of remote observation, which reduces observer presence effects, and direct 
observation keeping a high level of detail, should be the aim78. 
While the above mentioned advancements present new possibilities in observing and studying 
social behaviour, they create new challenges and logistical hurdles with managing such large 
datasets, processing the complexity and volume of the recorded data and with performing high-
throughput behavioural data analysis85. 
Analysis of Sensor Data using Machine & Deep Learning 
To make inferences about daily life activities or energy expenditures from sensor data, an elaborate 
analysis technique is required76. The processing is usually done after data collection, but collecting 
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and storing raw sensor data for later processing is inefficient and unscalable3. Downloading the 
raw data via antenna is also not very advantageous3. To analyse such complex signals will require 
the development of efficient but still accurate methods79. Already existing methods are split into 
two categories, semi-automated and automated approaches. 
 
Semiautomated AAR involves the manual characterisation of the sensor signal patterns followed 
by a classification using a decision tree100. This approach is not limited by a fixed-size sliding 
window but requires appreciable investment in time and understanding79,100. 
Automated animal activity recognition (AAR) enables the monitoring of the variability in animal 
behaviours across time. With huge improvements in sensor technologies and computation, exellent 
successes in AAR have been achieved76. In automated AAR the sensor data is first segmented into 
windows of fixed size. Then, either the raw, segmented data is fed to a classifier or descriptive 
features are derived from that window31. These features are usually statistical summaries of the 
sensor data, such as mean, standard deviation, skewness, vector of dynamic body acceleration 
(VeDBA), overall dynamic body acceleration (ODBA)101. The extraction and selection of such 
features heavily relies on human expertise and a very precise and adapted pre-processing85. The 
defined window size for the feature computation depends on the identification task, especially on 
the frequency/duration of the focal behaviours79,88. The behaviours are then separated into clusters 
or classes using simple thresholds102,103 or machine learning algorithms87,104–106. If the collected  
time-series of sensor data is kept untouched and raw, usually the data is fed into diverse array of 
machine and deep learning models to classify the data into behavioural categories76.  
 
Machine learning, as a very promising data processing and analysis technique, has been widely 
applied to animal behavioural classification based on data collected by wearable sensors76. Such 
modelling methods include linear regressions, support-vector machines, decision trees, 
linear/quadratic discriminant analysis, and random forest approaches76. Generally, to accurately 
classify animal behaviours through these methods, manual feature extraction and selection are 
required. But these processes are time consuming and heavily rely on expert knowledge, which 
leads to feature extraction and selection challenges107. There are some approaches available which 
combine feature extraction with feature selection. Thus, the most discriminative features for the 
specific classification task is automatically captured, while also providing interpretability and 
insights by ranking the importance of different features for predicting the target76. 
 
Deep learning, as a more recent branch of machine learning, has been showing an excellent 
automated/integrated feature-extraction ability while usually requiring less pre-processing than 
traditional methods76,108,109. Deep learning models combined with wearable sensors have revealed 
promising performance in distinguishing daily animal activities75,76,90,98,110 using different 
classification algorithms. For example, Feed-forward Neural Networks have been used on large 
datasets, Convolutional Neural Networks on image and time series classification, Recurrent Neural 
Networks, especially Long Short-Term Memory on sequential data and time series, as well as 
hybrids models and Autoencoders. 
 
 
Usual challenges during the development of deep-learning models for AAR, include annotation 
scarcity, class imbalance, inter-activity similarity, energy efficiency, multimodal fusion, domain 
generalization, and open-set recognition. To solve these challenges, dedicated deep-learning 
models are required76. 
Even after laborious, time-consuming labelling annotation scarcity can still occur and often results 
in an overfitting model and poor generalization performance, limiting the applicability of models 
to real-world AAR scenarios. Data augmentation is a low-cost pre-processing technique to create 
new samples through the transformation of existing annotated data via various approaches to 
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expand data size and thus promote classification performance of deep learning models76,111–113. 
Another approach is semi-supervised learning where unlabelled data is used to assign pseudo-
labels114. 
 
Class imbalance occurs where the frequencies are inconsistent across different behaviours. 
Annotating rare or infrequent behaviours is difficult because they occur occasionally or for short 
durations76,109. Deep learning methods trained on imbalanced datasets are usually biased towards 
the majority classes. This causes a decreased model generalizability and higher misclassification 
rates for the under-represented categories76. To overcome this limitation there are different 
techniques, as resampling with either over-sampling the minority class or under-sampling the 
majority class to balance the class distribution115. In scenarios of extremely imbalanced datasets, 
the classification tasks can be reformulated as an anomaly detection problem, in which minority-
class instances that are dissimilar to the majority class are treated as outliers or anomalies116. In 
this case, one-class classification methods can be used to build a model that learns on the majority 
class characteristics and then distinguishes them from the minority class117. 
 
Inter-activity similarity occurs when different animal activities have similar characteristics or 
movement patterns95,109,118. This affects the ability of deep learning models to extract 
distinguishable features that uniquely represent behaviours, leading to high confusion in the 
classification/class prediction119. Active and inactive behaviour very easy to distinguish, but within 
those categories it can become tricky78. Employing a fine-grained activity recognition, seeking to 
recognize subtle differences between similar activities by using more such detailed features can 
provide remedy to this issue76. One option is the combination of sensors (GPS, IMUs, heart rate 
logger, …) to better distinguish behaviours based on other parameters. This can possibly lead to 
very new and changing insights into an animal’s life78. This combination of multiple wearable 
sensors, a so-called multimodal fusion, helps to receive richer information to better distinguish 
behaviours. Sometimes, sensors of different types are mounted to an animal to record diverse 
characteristics. Combining these sensors tends to result in improved performance in animal 
behaviour classification tasks compared with using only one modality3,90,94,107 but the models may 
struggle to generalize110, as conflicting correlations between multiple modalities can result in 
limited recognition performance107. For social interactions particularly, a precise spatial proximity 
tracker can support the recognition and classification78. Another approach is context-aware 
modelling, where e.g. the time of day, the location or environmental conditions are included to 
enable effective clarification of the purpose of the activity76,120.  
 
An additional issue that can occur is the open-set recognition problem. Most training datasets only 
cover a part of the full spectrum of the specific animal activities. Thus, some rare or infrequent 
activities, which are nonetheless important and occur in real-world monitoring scenarios, can be 
absent from training datasets. Consequently, these unseen behaviours are often misclassified into 
known behaviour categories in a training dataset. A holistic model does not only accurately classify 
known categories but also effectively deals with unknown behavioural categories121. 
 
Sensor-based data from animals, analysed with deep learning models, has already found many 
applications, especially in livestock or animals in captivity. There are many studies on mammals 
(mainly cattle and pinnipeds) with 45% of the studied species, birds with 34% (mainly penguins 
and seabirds), fish 11% (mainly sharks), a few reptiles and very few other taxa (cuttlefish, squid, 
toads)78. In smart farming, it is applied to estimate growth or monitor disease. There are only few 
reports on animal behaviour classification, but they have typically been limited to either traditional 
machine learning or specific animals and behaviours76,89,110. 
Most of the studied animals are livestock as part of smart farming, with a big focus on the detection 
of disease or lameness, oestrus or onset of calving. Studies in sheep, horses chicken and dogs have 
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exclusively focused on state behaviours based on economic losses75,76,90,93,109–111,122–124. Social 
interactions have only been identified in cattle and pigs. In cattle, as ruminants with economic 
value as well, there have been studies on state behaviours but also social behaviours, as social 
licking, headbutting, attacking or mating, with various subsequent ecological questions76,94,96,98. 
Pigs have been subject to studies to improve health monitoring and understand their nursing, 
breeding, parturition but also playing behaviour113,125,126. But research gaps remain in the 
identification of social behaviours from wild, free-ranging, terrestrial animals, with only very few 
studies(SOURCE)78. 
 
Problem Statement 
The rise of accelerometery has been helping to circumvent the age-old limits of direct observation. 
By using accelerometers, the movement behaviour of wild animals can be measured during 
important events and periods, while being basically unlimited by visibility, observer bias, or 
geographic scale78. The combination of such sensor data and deep learning analysis tools facilitates 
the development of systems capable of accurately detecting, classifying and monitoring various 
activities/behaviours, potentially revolutionizing research, animal management and promoting 
animal health and welfare76,110. As collecting and storing, then transferring wirelessly and finally 
processing the sensor data is very inefficient, unscalable and disadvantageous, there have lately 
been some efforts to establish a real-time in-situ behaviour classification on embedded systems of 
the sensor device, only needing to store the predicted behavioural class3.  
 
Analyses of sensor data to identify social behaviours are very few in number compared to state 
behaviours especially of wild terrestrial species, compared to wild aquatic, domestic or captive 
species. Social behaviours of wild terrestrial species have largely been absent from ethograms78, 
mainly because of their fine-scale nature of social behaviours as they often are short, impulsive 
movements. The identification of such microevents using existing models, still remains poorly 
studied but could help to exploit the full potential of acceleration data in animal behaviour 
classification. In general, substantial challenges remain in getting the most out of accelerometers, 
because of the management, validation, calibration and analysis of such big data78. Deep learning 
algorithms has been only poorly exploited in movement ecology85. 
 
Vulturine guineafowls (Acyrillium vulturinum) are a small-brained bird species that are native to 
East Africa, particularly living in savannas, scrublands and dry woodlands, foraging on seeds, 
fruits, insects and small invertebrates. They are highly social, cooperatively breeding bird forming 
groups with up to 65 individuals, with their home ranges overlapping in time and space127. Thereby 
they form multi-level societies which are highly hierarchical with much male dominance display, 
like chasing each other, occurring. Vulturine guineafowls start breeding during rainy season when 
vegetation cover and food availability is higher. A preceding period of male courtship display, 
especially bowing, and intra-sexual competition leads to the formation of mating pairs54,127. Even 
though vulturine guineafowls have a high habitat fidelity, it remains very difficult to observe them 
over a long period of time, as they disappear into the inaccessible parts of the savannah, like dense 
bushes, for the hotter parts of the day.  
 
So, the aim of this study was to investigate the ability of deep learning algorithms to identify 
vulturine guineafowl male courtship and dominance behaviours from labelled accelerometer data, 
which have not been included in previous ethograms. The performances of different algorithms 
were compared in a two identification tasks. Furthermore, the best performing model was used to 
predict unlabelled parts of the accelerometer timeseries. These obtained behavioural frequencies 
were then correlated with the normalized difference vegetation index (NDVI), to evaluate a 
potential predictor of these social behaviours. It was hypothesized that the deep learning models 
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will be able to recognize the courtship and dominance behaviours and the derived frequencies can 
be explained by the NDVI, as a proxy of vegetation and resource availability128. 
 
To do so, field-borne video recordings were used to annotate accelerometer readings, deployed on 
a free-ranging population of vulturine guineafowl around the Mpala Research Centre in Laikipia 
County, Kenya, with behavioural categories. The labelled behavioural data was then fed to various 
deep learning algorithms, learning to accurately identify and classify social behaviours. Later a 
well-performing, trained algorithm was used to predict other parts of the recorded accelerometer 
data without ground truth labels. The hereby quantified frequencies over time were used to monitor 
behavioural changes and answer ecological questions associated with reproduction and 
competition over the course of the years 2022 and 2023. This study tried to establish a protocol of 
best practices for data acquisition and analysis for future studies being able to include a longer 
time-series of data. Drought is the one of the most challenging aspects of climate change in East 
Africa, as precipitation and water storage decline especially during rainy seasons129. Future studies 
could include the monitoring of courtship and dominance behaviours in the face of climate change, 
as they are crucial for the survival of a not yet endangered species. 
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Methodology  
 
Study System 
This research was conducted under the Vulturine Guineafowl Project, which was established in 
2016 and is currently funded by an ERC Starting Grant until 2024. The project’s base is located at 
the Mpala Research Centre in Laikipia County, Kenya.  
 
Study Site 
The Mpala Research Centre is located within the Mpala Research Conservancy (0°17’31” N, 
36.53’54” E), just above the equator around 40 km North of Nanyuki, the capital of Laikipia 
county. The conservancy is part of the upper Ewaso River Basin, on an elevation of 1600 meters 
above sea level. 
 

 
Figure 1: Study site at Mpala Research Centre within Mpala Research Conservancy (light-green) and Laikipia County 

(orange) in Kenya (Credits: Google Earth Pro)  
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Climate, Soils and Vegetation 
The yearly mean temperature is approximately 17°C. The conservancy is located North-West 
of Mount Kenya and experiences around 400 mm of total precipitation a year130. As the field 
site is very close to the equator, the seasonal climate is characterised by two wet seasons with 
higher rainfall, around April-May (long) and October-November (short), and two dry seasons 
with low rainfall127,131,132. The shorter wet season is followed by a longer period of drier 
conditions, usually reaching from December to February, but in some years extending into April 
causing drought. The long rains occur starting from March, sometimes lasting until June. Each 
wet season is usually followed by an intermediate season, where vegetation remains lush with 
occasional rainfalls. If the total precipitations remains low for a longer period, conditions 
become extremely dry with trees losing their leaves and the short vegetation dying off. The 
intensity and duration of the rainfall periods determine the vegetation cover and the availability 
of insects, an important part of the diet of vulturine guineafowl besides grass roots, seeds, and 
other small invertebrates127. 
 

 
Figure 2: Map of total yearly precipitation for the reference period 1990-2023 (top left). Map of mean temperature for the 

reference period 1990-2023 (top right). The mean monthly total precipitation (bottom left) and mean monthly temperature 

(bottom right). All data derived from the ERA5-Land monthly averaged data133. 

 
The Mpala Research Conservancy is characterized by a semi-arid savanna habitat, with five main 
soil types which are mainly covered with Acacia bush- and scrubland, Acacia thicket, dwarf bush 
grassland and grassland130. The vulturine guineafowls have predominantly specialized on the red 
Luvisols which are dominated by Acacia mellifera and Acacia etbaica48.  
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Figure 3: Soil and vegetation types across Mpala Research Conservancy, derived from shape-files which were provided by 

John Gitonga, research assistant at Mpala Research Centre (Credits background map: Google Earth Pro) 

 
Study Species & Population 
This study was conducted on a free-ranging population of vulturine guineafowl (Acryllium 
vulturinum) living in proximity of the Mpala Research Centre. The population is habituated to cars 
allowing their observation in areas accessible for cars. The vulturine guineafowl is a mainly 
terrestrial, small-brained and group-living bird forming multi-level societies131. They live in large, 
multi-male, multi-female groups, reaching from 13 to 65 individuals, which remain stable over 
time. The groups’ home ranges overlap in space and time131. These social groups contain many 
adults, sub-adults and juveniles131.They are a social bird species, showing male dominance 
displays, a complex courtship behaviour and cooperative breeding48,127, which occurs during 
elongated periods of rain. Even though they have a small brain to body ratio, the vulturine 
guineafowl is able to maintain many different social relations across time and space, challenging 
the conception that multilevel societies are exclusive to large-brained mammals131. Vulturine 
guineafowls show significant differences in behaviour and collective movement patterns between 
wet and dry seasons and the corresponding variation in environmental conditions. Social 
behaviour, locomotion, home range overlap and roosting are dependent on dry and wet seasons131. 
These behavioural adaptation strategies are most likely crucial to dampen the impacts of climate 
change on the individual fitness127,134,135. Such strong seasonality leads to a dynamic 
reorganization of the social system, where species switch from being territorial to group-living 
also triggering a shift in the group structures, so-called fission-fusion dynamics136,137. Increasing 
drought under climate change could dramatically disturb these. But in environments with strong 
seasonality, natural plasticity in social organisation and movement decisions on foraging trips and 
dispersal could dampen the effects of environmental variations on physiology127.  
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Social Behaviours  
The vulturine guineafowl is a gregarious species with steep dominance hierarchies. The high-cost 
aggressive interactions towards males with ranks closely around their own are strategically 
performed. These dominance interactions are used for access to resources, but they are costly and 
hence should be strategically deployed, most efficiently targeted at the individuals closest in rank 
for most gain138. Directing chasing interactions towards close competitors can stabilize 
hierarchy138. Chases are the highest-cost interaction, as they deplete energy reserves, include risk 
of injury and predation, but these costs usually associated with dominance interactions may not be 
so relevant in vulturine guineafowl. These aggressive interactions are primarily directed towards 
males one to three ranks below themselves, according to the close competitor strategy, which is 
observed in many species. These aggressive interactions form the dominance hierarchies which 
have consequences on access to food, roosting positions and reproductive opportunities. Male 
vulturine guineafowl usually engage in dominance interactions most frequently, probably caused 
by the dominance of males over females in the group138. 
The dominance behaviour is characterised by erupting and chasing another male away, often 
preceded and followed by a distinctive posture. This posture is characterised by standing on tip 
toes, stretching, and bending the whole body, especially the neck into the air. This behaviour is 
referred to as CHA. 
 

 
Figure 4: Chasing is mostly initiated from foraging behaviour (1). It starts with a tiptoe posture (2), followed by chasing 

another individual away (3) and ends with another dominance posture (4). 

 
Vulturine guineafowls invest in reproduction during seasons with high resource availability,. 
During scarce periods they invest in survival127. Vulturine guineafowls live in large stable groups 
for biggest part of the year. but then at the beginning of the wet and hence breeding seasons, 
following a longer period of intense courtship displays, they start forming pairs127. The pairs move 
separately from the rest of the group with the male mate-guarding the female. As a ground nesting 
bird, the females then lay and independently incubate 7 to 12 eggs in a scrape on the ground with 
high predation risk139. Vulturine guineafowls possibly are both plural and cooperative breeders48. 
The babysitting and chick guarding is cooperatively distributed among group members, while the 
chicks maintain a close adult relation. The offered help is significantly male-biased. This 
cooperative breeding allows the female to recover from her natal investment. The chicks are very 
vulnerable to predation during first weeks of their lives. Therefore they benefit from protection by 
within-group helpers. The extremely sex-biased dispersal with all males staying in their natal 
groups140, causing a high relatedness among males within the group, could explain the indirect 
fitness benefits of cooperative breeding141. 
The courtship behaviour, called bowing, is a male display, in which, when protein-rich food is 
found during foraging, e.g. insects, worms or larvae, the male runs a few meters, drops the bit of 
food and then presents his findings with another distinctive posture bending the neck, awaiting a 
female to react and potentially allowing a mating relationship to build up. This behaviour will be 
referred to as BOW. 
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Figure 5: Bowing starts with finding a special bit of food (1). Then, the male runs a few meters (2), drops the food and presents 

it with a distinct stretching from tiptoe to neck posture (3). Best case scenario: female individual approaches fast and thankfully 

picks up the food (4). 

 
Research Design 
During this study, a best practice approach for animal activity recognition according to Mao et al., 
2023 was applied. The first goal was to increase the number of video-recorded social behaviours 
from vulturine guineafowls tagged with an accelerometer in the field. These video-recordings were 
used to annotate and create labels serving as ground truth for the algorithm training. This process 
included equipping and video-recording as many individuals as possible to include as much 
variability as possible over as many periods as possible. The meticulous annotation phase was 
followed by a thorough data quality control, as data gaps and imprecisions in the annotation 
software occurred quite frequently, unfortunately leading to a loss of labelled social behaviours. 
Then, the labelled sequences were merged with the Movebank database of accelerometer 
recordings via exact timestamps. The data subsequently was segmented into different window 
sizes with a 50% overlap. This thorough pre-processing phase created the best possible datasets to 
train the different deep learning models. The subsequent trial-and-error based phase of classifier 
training was followed by the analysis of the model performances. The best performing model was 
ultimately used to predict unlabelled accelerometer readings to quantify the distribution and 
frequency of the focal behaviours over time and seasons and were correlated with a timeseries of 
Normalized Difference Vegetation Index (NDVI), as a proxy for vegetation status. 
 
Identification tasks 
The first identification task was to compare the performance of different algorithms in 
distinguishing the two social behaviour classes from other behaviours assembled in the NOT class. 
A second identification task was the comparison of different window sizes feeding the algorithms. 
A commonly applied random split was applied to split into training-validation and test sets. Then 
a 10-fold cross-validation procedure, stratified across the behavioural classes, was applied.  There 
are other approaches to better investigate the generalization ability, as individual-based splitting 
or time-stratified splitting. But these methods were neglected in this study due to the small number 
of annotated social behaviours, which were also highly imbalanced across birds and time. 
Furthermore, several studies reported significant decreases in performance with these stratified 
splitting methods142. The individual-based splitting method, or Leave-one/some-individual(s)-out 
(LOIO/LSIO), investigates the inter-individual variability and how well the trained model 
performs on unseen individuals potentially unravelling inter-individual differences in their 
behavioural patterns143. The time-based splitting method, or Leave-one/some-time-period(s)-out 
(LOTO/LSTO) analyses the variability across time and how well the trained model performs on 
unseen time periods, potentially illustrating changes in behaviour or tag orientation over time89,144. 
These methods were not applied here, but should be included in further studies, as soon as more 
labelled social behaviours are available. As these tasks were not applied, the final prediction of 
unlabelled data was only employed on known individuals, for which social behaviour labels 
existed, and on known time periods, for which social behaviour labels existed. This was assumed 
to maintain the error rate small. 



 18 

Data Collection & Sampling Methods 
The first birds were banded at the beginning of the project in 2016. Since then various individuals 
have been equipped with accelerometers from e-obs GmbH145 simultaneously and continuously 
tracking acceleration at 20 Hz and GPS at 1 Hz. The acceleration is the rate of change of velocity 
and is measured in m/s2 along three perpendicular axes called X, Y and Z. It is influenced by the 
device’s orientation and accelerated movement of the device145. Some of the tags not only include 
a GPS and an accelerometer, but also a gyroscope, allowing a detailed visualization of the absolute 
orientation in the three-dimensional space. The additional modules of the so-called Inertial 
Measurement Unit (IMU) could be brought in for future studies to better distinguish behaviours. 
The accelerometers tags contain an accumulator cell fed by solar panels on the top of the tag, 
potentially creating issues with cloudy weather conditions, dirt and dust, feathers or wings 
obscuring the panels or the tag moving into unfavourable positions. They can transmit the data 
remotely via antennas to the e-obs BaseStation, which must be inside the detectable range.  
To equip new birds with accelerometer tags, the birds must be trapped, but they must become 
habituated to a trapping set up. A trap is set up step by step over the course of a few days. During 
this process the birds are baited into the trap every morning, so that a maximal number of birds 
enters the trap after a few days, without getting suspicious. Then, on due day, the trap is connected 
to a remote control, capable of triggering the front of the net to fall down. After trapping the birds, 
they are put into dark cages into the shade, so that stress level is held low and they do not overheat 
during the ringing and tagging process. 
 

 
Figure 6: The trap is set up step by step (top left). On due day the net above the entry is triggered via  

remote control (top right). After trapping, they are weighed, measured, ringed and tagged if necessary (bottom) 
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Figure 7: A tagged vulturine guineafowl with the e-obs device. The acceleration is measured along the three illustrated axes 

The considered accelerometer recordings have been obtained from 19 different individuals 
belonging to 5 different social groups recording since different trapping events. Most of the 
accelerometers record only in the mornings from 6:30 AM to as late as 11:00 AM, as recording 
for longer periods would use up too much battery and storage on the integrated memory. The data 
must be downloaded regularly, best every night, so that the memory is not used to full capacity. 
The downloaded GPS and accelerometer data is then uploaded onto the long-term database on 
Movebank146, a global repository for animal movement data, which are publicly available on 
movebank.org. The acceleration data can be visualized for quality control in the open-source tool 
Movebank Acceleration Viewer147. 
 
Annotation & Quality Control  
Annotating animal behaviour is generally arduous and challenging, A total of over six hours (06h 
13min 22s) of video material were considered to create the behavioural labels. The video material 
was recorded during field seasons spread across the years 2021 to 2023. Around 50 percent was 
recorded in the years 2021 and 2022 by other members of the research group, the other 50 percent 
produced during this study’s field work season from April to June 2023. The birds were recorded 
out of the cars, which they are habituated to, using the video camera. The birds were often found 
one of the several accessible glades, especially during the first two to three hours of sunlight, as 
they disappear into the bushes with increasing solar radiation and temperature. First a GPS time 
clock was filmed on a smartphone to later synchronize the video material exactly. Then, the rolling 
camera was focused on tagged individuals, hoping to capture a social behaviour, as bowing or 
chasing. It is not unusual to overlook some events of such rare behaviours, even for domain experts 
as the long-term field team, as they happen occasionally and in very short durations and often 
outside the observer’s focal range of view. During the field season 2023, one could observe an 
increasing frequency of the two focal behaviours, especially bowing, as the rains started mid of 
April, which transformed the very dry savannah into a greener landscape. The video material was 
later sighted and annotated after the observed bird’s ID and datetime. In the sound and image 
annotation program ELAN (version 6.4)148, the videos were time synchronized and labelled 
creating an output txt-file with exact start and end timestamps for each behaviour. The output of 
ELAN was only considering a 10th of a second. To better capture these short social interactions, 
more precision was necessary, focusing down to milliseconds. Thus, the data was visualized in the 
Movebank Acceleration Viewer147 to check the quality and true synchronicity of the start and end 
timestamps with the acceleration measurements. The exact beginning and ending of each focal 
behaviour was adapted in the txt-file. The produced number of labels is illustrated in table 1. 
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Table 1: The individuals, their tag types and sex, as well as the recorded BOW and CHA 

 events and the duration of their behavioural expression. The marked individuals in grey  

were used to predict unlabelled data from. 

  
Pre-Processing 
The txt-files with the starting and end times were loaded into RStudio (version 2023.09.0+463) to 
merge the timestamps with the accelerometer data stored on Movebank using the “move” (version 
4.24)149 package. A data frame with X, Y and Z axes readings every 0.05 seconds for all the video-
recorded birds and periods was obtained. The acceleration readings were standard normalized, as 
it improves the classification performance and increases the training speed3,76. Previous feature 
extraction was not needed, as deep learning is doing that automatically76,108,109. The normalized 
accelerometer readings were either processed and fed to the algorithms as a raw dataset or as 
images of the acceleration graphs for two different window sizes (1 or 3 seconds) with a 50% 
overlap respectively. All created windows were also labelled with their distinctive position in a 
consecutive sequence of behaviours to feed them to the algorithms including an LSTM, as the 
CNN-LSTM and LSTM-CNN, as they require sequences of time series data. The raw datasets 
were fed to the MLP and TCDA-CNN classifiers, while the images were fed to the CNN, 
Autoencoder, ResNet, CNN-LSTM and LSTM-CNN. The images were created by plotting the 
accelerometer axes in red, green and blue on a white background using the ggplot150 package and 
then were saved as RGB images of shape (64,128,3). The window segments consisted of 20 or 60 
consecutive acceleration readings for the 1 or 3 seconds respectively, as it was recorded at 20 Hz. 
The window size impacts the performance of the models in that some behaviours, of different 
length, are better characterized than others151–153. To determine the optimal windows size, these 
two window sizes were compared after model training. The segmentation process generated 
windows that sometimes contain the expression of several behaviours. Such windows were 
labelled according to the majority rule of readings. This method created a small number of 
segments labelled with social behaviours and a much larger number for the NOT class (table 2). 
 

 
Table 2: Numbers of labelled segments for each window size and behavioural class. 

 
Establishing animal behaviour classification models that perform well on rare behaviour, 
especially on the unseen test set, is challenging. But the resulting class imbalance is not the main 
cause of the lower metrics scores for these rare behaviours. The scarcity of training data for these 

birdID tag_type sex # BOW samples # CHA samples x̄ Duration BOW [s] x̄ Duration CHA [s]
W1744 ACC M 0 0 NA NA
W1393 ACC M 0 4 NA 0.87
W1732 ACC M 0 6 NA 0.74
W1520 ACC M 1 0 1.91 NA
W1415 IMU M 0 1 NA 0.63

WT00500 IMU F 0 3 NA 1.61
WT00162 IMU M 3 3 1.86 0.89
W1413 IMU M 2 11 2.09 0.92
W1307 ACC M 4 4 2.06 1.62

WT00043 ACC M 4 9 1.50 0.83
WT000625 ACC M 1 1 2.61 0.74
W2625 ACC F 0 1 NA 2.45
W1309 ACC F 0 0 NA NA

WT00584 ACC M 0 3 NA 0.98
W1501 ACC M 1 0 1.99 NA
W1686 ACC M 1 0 1.71 NA

WT00044 ACC M 9 3 2.15 1.06
WT00580 ACC M 13 0 1.97 NA
W1430 ACC M 5 4 3.56 0.87

44 53 2.13 1.09
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behavioural categories is responsible for that3,154–156. There are various methods for balancing the 
datasets, such as under-sampling, over-sampling, weighting the datapoints by the inverse of the 
frequency of their corresponding class, and creating new datapoints. But these methods can not 
get rid of the issues related to annotation scarcity completely, hence finding well performing 
approaches for rare behaviours remains a subject of ongoing research3. In this case, the dataset 
was separated into training, validation and test set retaining a close to natural ratio of BOW : CHA 
: NOT (15:15:70) by under-sampling the NOT class to 5000 samples and simultaneously 
augmenting the under-represented classes by applying class weights during the classifier training. 
 
Cross-Validation 
After a test set (test set percentage = 0.15) was randomly held out for the final evaluation, a 10-
fold cross-validation stratified across behavioural classes was applied to not further decrease the 
number of samples which available for learning the model as compared to define a fixed validation 
set. Another argument was that the outcome of the model strongly depends on a particular random 
choice of splitting into training, validation and test sets157. Thus, the stratified 10-fold cross-
validation was applied across all model training to monitor the predictive performance over 
different subsets of training data. In this basic approach the training set is split into k smaller sets 
maintaining a stratification across the classes. The model is trained using k−1 subsets as training 
data and the resulting model is validated on the left-out part of the data. This method is 
computationally more expensive and creates longer processing times, but it does not waste much 
data. This method offers the major advantage in problems where the number of samples is very 
small157. 
 

 
Figure 8: Visualization of the stratified 10-fold cross-validation 

 
Algorithms 
The analysed algorithms included many different types of neural networks. Neural networks are 
able to automatically detect by themselves very complex and highly discriminating features and 
patterns in the data85,158. A Convolutional Neural Network (CNN), a Triple Cross-Domain 
Attention CNN (TCDA-CNN), an Autoencoder, a Residual Neural Network (ResNet), a CNN 
combined with a Long Short-Term Memory (CNN-LSTM), a LSTM-CNN and finally a Multi-
layer Perceptron (MLP) classifier, serving as comparison benchmark, were used. The comparison 
with the baseline classifier investigates if the increased complexity in the other neural networks 
really leads to better performances, as the MLP is still supposed to generate better outcomes than 
random choice. The models’ hyperparameters were mainly tuned on a trial-and-error basis, but 
also applying a grid search for some parameters using the scikit-learn library (version 1.4.1)159. 
The models were implemented in Python’s “TensorFlow” (version 2.15.0)160 and “Keras” (version 
3.0)161.  
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Multi-Layer Perceptron (MLP) 
An MLP was used as a baseline classifier. The MLP is a Feed-Forward Neural Network, or 
perceptron, which have their roots in the human brain research, as it was intended to understand 
how visual data is processed and how objects are recognized by the brain108. This network type 
has found applications in AAR in several studies, as they can handle large datasets and perform 
very well despite their low complexity3,93,94,154,162,163. Their main components are neurons (or 
units), that take the input data or the output from the preceding neuron and produce a single output. 
This output is input to every neuron in the next layer. From the connections and weights of each 
layer’s outputs, the activation function computes the input into the next layer. In the last layer, the 
output is generated by applying the sigmoid (binary classification) or softmax (multi-class) 
activation function. Each network layer only takes information from preceding layer and only 
gives it to subsequent layer, hence feed-forward, allowing it to learn complex non-linear 
relationships between inputs and outputs108,164. The applied architecture for the MLP included an 
input layer, three hidden, fully-connected dense layers with 128, 256 and 128 neurons respectively 
and finally an output dense layer with three units equal to the number of classes. The activation 
functions were ReLu for the dense layers, and softmax for the output layer. The applied optimizer 
was the Adaptive Moment Estimation (Adam) with a learning rate schedule and the loss function 
Categorical Cross-Entropy. The model was trained over 100 epochs using a 10-fold cross-
validation, so 10 epochs per fold. 
 

 
Figure 9: Dot-Visualization of an MLP, where each dot represents a neuron and the arrows 

 illustrate the feed-forward connections. 

 
Convolutional Neural Network (CNN) 
CNNs are another type of neural networks commonly used in image classification tasks and time 
series analysis107. They are the most used type of deep learning model for behaviour recognition 
and classification, as they have been successfully applied to human activity recognition165–167 and 
AAR75,76,90,91,109–113,163 from accelerometer data. CNNs hierarchically apply filters of increasing 
complexity which helps to automatically capture patterns in the imagery or from raw input 
data76,108. The output of each convolutional layer is a feature map of the input image or of the 
previous layer’s output. Usually, the output of a convolutional layer is down-sampled through 
pooling layers, which compute summary statistics, and then are passed on to another 
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convolutional, flattening, or dense layer. Different numbers of filters, kernel sizes and strides can 
be applied to capture local temporal dependencies. The computational cost and processing times 
depends on the complexity, depth, and width of the architecture168. CNNs usually do not need 
preceding feature extraction, as they work directly on the raw data or images of the accelerometer 
time series, but there have been reports on superior performance of CNNs using statistical features 
as input compared to raw sensor data75,90,110. The best performing model architecture based on an 
input layer, followed by three blocks of Conv2D/MaxPooling, each with kernel size = 2. The 
Conv2D layers increased in width with depth of the model with 32, 64 and 128 and 256 filters 
respectively. The output of the last Conv2D was flattened and passed to a Dense layer with 200 
units, a Dropout layer (rate = 0.25), another Dense layer with 100 units and finally the output layer 
with 3 units. The activation functions were ReLu for the convolutional blocks and Dense layers, 
and softmax for the output dense layer. The applied optimizer was the Adaptive Moment 
Estimation (Adam) with a learning rate schedule and the loss function was the Categorical Cross-
Entropy. The model was trained over 50 epochs using a 10-fold cross-validation, so 5 epochs per 
fold. 

 
Figure 10: 3D representation of the CNN architecture 

 
Autoencoder 
Autoencoders169 are artificial neural networks usually used for unsupervised image reconstruction. 
They consist of an encoder and a decoder part. The encoder compresses the input data into a low-
dimensional representation containing the most important information in an encoded form. The 
decoder then reconstructs the original input data from just this encoded representation170,171. 
To create an autoencoder that best possibly extracts the information from the images, an image 
reconstruction approach was applied. During training, the autoencoder learns to encode the 
essential features of the input images into a lower-dimensional latent space representation and then 
decodes it back to reconstruct the original image. The encoder part of the autoencoder learns to 
capture the most important features of the input images, while the decoder part learns to generate 
images that closely resemble the original input. By minimizing the reconstruction error between 
the input and the reconstructed output, the autoencoder learns to extract meaningful features from 
the input data. For a classification problem, the encoder’s saved weights of the best performing 
autoencoder were combined with additional layers, as fully-connected dense layers, creating a 
classifier. The more robust representation of the original input images created by the encoder part 
supposedly is easier to classify171. The best performing encoder part consisted of 3 blocks of a 
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Convolutional layer with 32 filters and a MaxPooling layer respectively. The trained encoder was 
combined with a BatchNormalization, a Dropout (rate = 0.25), Flatten, Dense (128 neurons), 
Dropout (rate = 0.25), Dense (64 neurons), Dropout (rate = 0.25), a BatchNormalization and the 
final Output Dense layer with 3 neurons and a softmax activation function. The model was trained 
for 70 epochs, with 7 epochs per fold. 
 

 
Figure 11: (1) Autoencoder encodes and reconstructs input (2) The trained encoder part (3) Encoder combined with a 

classifier. 

Residual Neural Network (ResNet) 
ResNets172 are a type of deep neural network architectures with a residual learning mechanism 
allowing the very deep networks with hundreds to thousands of layers without a vanishing 
gradient. This depth enables capturing complex features and patterns. Their main innovations are 
the residual learning and shortcut connections. The residual learning is based on using residual 
blocks instead of traditional stacked layers. The input to the block is added to the output of the 
block, rather learning a residual mapping instead of directly learning the feature mapping. The 
shortcut connections skip one or more layers, allowing the gradients to flow directly through the 
network173. Even though ResNets have proven to be among the most accurate image and time-
series classification algorithms174, several applications in AAR reported that ResNets tend to 
overfit regardless of the choice of hyperparameter values154,174,175. Potentially caused because by 
the depth that allows memorization of uninformative and irrelevant patterns in the training data3. 
The applied optimizer was the Adaptive Moment Estimation (Adam) with a learning rate schedule 
and the loss function was the Categorical Cross-Entropy. The model was trained for 60 epochs, 
with 6 epochs per fold. 
 

 
Figure 12: 3D representation of the ResNet with arrows as shortcut skip connections between layers. 
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Triple Cross-Domain Attention CNN (TCDA-CNN) 
The TCDA-CNN is a sophisticated neural network architecture, which has shown great 
performance in recognizing human activity from accelerometer data. The TCDA-CNN integrates 
advanced attention mechanisms to capture diverse aspects of the input data176. The following 
methodology was applied according to Tang et al., 2022, where the algorithm was applied to 
human activity recognition.  
The raw sensor data input comes in the shape of (Amplitude, Timesteps, Sensor Axes). The 
network begins with the creation of three parallel branches, which allow focus on dimension 
interactions. This segmentation enhances the network's ability to focus on relevant information 
from multiple domains and selectively emphasizes or suppresses specific regions, features or 
sensor axes. The first branch takes a rotated version of the original input with shape (Timesteps, 
Amplitude, Sensor Axes), the second another rotated version with shape (Timesteps, Sensor Axes, 
Amplitude) and the last branch takes the version with shape (Sensor Axes, Amplitude, Timesteps). 
Then, for each branch a Z Pooling operation calculates the Max and Average across the last 
dimension creating a shape of (Amplitude, Timesteps, 2), (Timesteps, Amplitude, 2) and (Sensor 
Axes, Amplitude, 2) respectively. The following Conv2D layers with 1 filter extract the most 
relevant features from each domain. After applying this attention mechanism, the three outputs are 
fused to obtain a unified representation that incorporates information from all domains. This is 
done by back rotating all three lanes to the original shape (Amplitude, Timesteps, Sensor Axes) 
and combining them to a feature map by weighting each input by 1/3. This fused representation 
can then be used for further processing, such as classification. By incorporating the triple cross-
domain attention mechanism into a classifier, the network becomes more capable of capturing 
relevant information from multiple domains or sources. This can lead to improved performance, 
as the network becomes better at focusing on informative features and suppressing noise or 
irrelevant information. The best performing architecture was the TCDA mechanism followed by 
a Flatten layer, then a Dense layer with 128 neurons, a Dropout layer (rate = 0.25), another Dense 
layer with 64 neurons and finally an output layer with 3 neurons and a softmax activation function. 
The applied optimizer was the Adaptive Moment Estimation (Adam) with a learning rate schedule 
and the loss function was the Categorical Cross-Entropy. The model was trained over 70 epochs, 
with 7 epochs per fold. 

 
Figure 13: Input is rotated into 3 branches, then Z pooled [Max, Average], Convolution (1 filter), Fusion by weighting each 

Conv2D output by 1/3. 

 
Recurrent Neural Networks and Long Short-Term Memory (LSTM)  
RNNs are neural networks with loops that allow information to persist over time and hence are 
particularly effective for modelling sequential data, such as time series, natural language, and 
audio signals. They have found successful application in AAR95,96,98,162,177. They process 
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sequences of inputs by iterating through the sequence elements while maintaining a hidden state 
that captures information about previous inputs. But RNNs struggle to capture long-term 
dependencies due to the vanishing gradient problem, where gradients become extremely small 
during backpropagation, making it difficult to learn from distant past information178. The LSTM 
is a type of RNN architecture designed to overcome this vanishing gradient problem. To address 
this problem, a more sophisticated architecture with memory cells and gating mechanisms is 
introduced. The LSTM unit includes an internal cell state (memory) which is iteratively updated 
over time generating a linear pathway running through the entire sequence allowing information 
to flow. This allows the understanding of context and the capturing of long-term dependencies. 
LSTM units contain different gating mechanisms (input gate, forget gate, output gate) that regulate 
the flow of information through the network, allowing it to selectively retain or discard information 
based on its relevance. The forget gate decides which information to remove from the cell state. It 
takes input from the current input and the previous hidden state, producing a forget gate vector 
that scales the previous cell state. The input gate determines which information to store in the cell 
state. It consists of two components: an input gate that decides which values to update and a tanh 
layer that creates a vector of new candidate values. The output gate controls which parts of the cell 
state are exposed as the output. It combines the updated cell state with the current input and 
previous hidden state to produce the output. These gating mechanisms allow LSTM units to 
selectively learn and forget information over time, enabling them to capture longer-term 
dependencies compared to traditional RNNs179. 
 

 
Figure 14: 1. Recurrent Neural Network with memory or feedback (arrows) compared to Feed-Forward Neural Networks.  

2. LSTM cell visualization with input from previous layer and output to subsequent layer. 

 
CNN-LSTM 
Such LSTMs have been combined with CNNs to form LSTM-CNN or CNN-LSTM hybrid 
models. The latter hybrid method has been successfully applied to AAR on livestock and pets 
detecting a broad spectrum of behaviours3,118,155,156,180–182. A CNN-LSTM is a hybrid neural 
network architecture that combines the strengths of CNNs and LSTM networks to classify 
sequential data, such as time series or sequential sensor data. A CNN-LSTM combination for 
classification merges the spatial feature extraction capabilities of CNNs and the temporal 
modelling capabilities of LSTMs to classify sequential data accurately. The input data is pre-
processed into fixed-size, overlapping windows and aggregated to batches of consecutive 
windows. These batches as subsequences of the time series data are fed into the CNN. The CNN 
layers then extract spatial patterns and local features from the input data. Pooling layers help 
reduce the spatial dimensions of the features while retaining the most important information. The 
output of the CNN part is a set of high-level spatial features. The subsequent LSTM layer captures 
the temporal dependencies and long-range dependencies in the sequential batches. It takes the 
sequence of spatial features extracted by the CNN as input and processes them sequentially over 
time, storing and updating information over time. The output of the LSTM is a sequence of hidden 
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states representing the temporal evolution of the input data. The output sequence of hidden states 
from the LSTM then are fed into additional fully connected dense layers for classification183. 

 
Figure 15: CNN-LSTM architecture visualization with two convolutional, batch normalization and max pooling layers. 

 
LSTM-CNN 
A LSTM-CNN is another hybrid model architecture for classification is that integrates LSTM 
networks with CNNs to classify sequential data. They have performed very well in human activity 
recognition184. The following process is according to Xia et al., 2020. The input data is again pre-
processed into fixed-size, overlapping windows and aggregated to batches of consecutive 
windows. These batches as subsequences of the time series data are fed into the LSTM with n 
neurons. The LSTM generates a sequence of hidden states with output shape (samples, timesteps, 
n neurons), which is fed into the CNN. But CNNs can only take four dimensions, so the LSTM 
output is expanded to shape (samples, 1, timesteps, n neurons). The CNN processes each hidden 
state independently, extracting spatial features from the temporal representations generated by the 
LSTM. After processing through the LSTM and CNN layers, the output of the CNN is flattened 
or pooled to create a feature vector which is then passed through fully connected layers for 
classification. These fully connected layers aggregate information from the entire input sequence. 

 
Figure 16: LSTM-CNN architecture with two LSTM layers followed by two convolutional layers, a MaxPooling and a Global 

Average Pooling layer 

 
Statistical Evaluation 
After feeding the labelled raw data or images into different algorithms and training them using a 
10-fold cross-validation, adjusting the model architectures and tuning the hyperparameters, the 
performances were compared. Different combinations of architectures and hyperparameters, 
including number of layers, filters, optimizers, activation function learning rate, batch 
normalization, dropout regularization, and skip connections led to small improvements within the 
same algorithm, without being able to give a consistent pattern. Even though suggested by 
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Arablouei et al., 2023, using the tanh activation function instead of ReLU, did not lead to 
noteworthy improvements. Also, more filters and hidden layers did not necessarily lead to better 
performance, especially on the unseen test set. To circumvent the model learning too well on the 
training data and thus decreasing generalizability, batch normalization, dropout regularization, and 
skip connections were considered. To check for overfitting, the training and validation loss was 
monitored across epochs. Only the very complex (deep and wide) algorithms, started overfitting 
visually, especially for high numbers of epochs per fold, as they are deep and wide enough to 
memorize the irrelevant noise in the training data185. The advantages of such complexity come 
with a high nonlinearity and nonconvexity in the optimization functions, making it almost 
impossible to interpret and analyse the performance of deep learning models186. Therefore, really 
being able to interpret the deep learning models and to understand their performance remain areas 
of active research187. The best performing versions of each algorithm type were compared using 
visual and numerical metrics. The applied visual metrics were the Receiver Operating 
Characteristic (ROC) Curve188, both class-wise and macro-averaged (average of independently 
computed scores for each class), and confusion matrices189 for the test set across all cross-
validation folds and at the end of training. The used numerical metrics included Matthews 
correlation coefficient (MCC)190, the class-wise and macro-averaged Area Under Curve (AUC), 
recall and precision scores for the test set across all cross-validation folds and at the end of training. 
The MCC also uses the true and false positives and negatives (TP, FP, TN, FN) and shows values 
between −1 and +1, where +1 is perfect prediction, 0 no better than random prediction, and −1 
perfect inverse prediction. It is known to be a meaningful measure even when the dataset is highly 
imbalanced3. Furthermore, the McNemar’s test191 was used to test the agreement between two 
classifiers, in this case to compare the baseline MLP classifier with the other classifiers. It was 
computed using all combined test set predictions across all cross-validation folds and on the test 
set predictions after training. The metrics were computed using the “statsmodels” (version 
0.12.0)159 and “scikit” (version 0.24.2)192 libraries. The Welch’s t-test193 was applied to compare 
the effect of the different window sizes on the performance of the classifiers using the “SciPy” 
(version 1.73)194 library. 
 
Analysis of Timeseries & Environmental Variables 
The best performing trained and validated algorithm was used to predict unlabelled windows 
extracted for the years 2022 and 2023 and for individuals with labelled social behaviours. To save 
computation, time and storage, a selected array of accelerometer readings was downloaded from 
Movebank to be predicted. For both years, the five days from the 15th to 19th day for each month 
were selected. For each of these days, 5 minutes for the morning hours from 6:30 AM to 10 AM 
were downloaded. A shifting mechanism was applied so that for each of these five days for a given 
month, every new day the sampling period shifted by 10 minutes, so that as much of the hour as 
possible is covered. The accelerometer readings were named after their timestamps and birdID, 
which was later used to assign the behavioural predictions to time periods and individuals. Then, 
several statistics and visualizations were derived from those frequencies, as frequency across the 
morning hours, development over the years and months. Finally, a dataset of Normalized 
Difference Vegetation Index (NDVI) and drought timings, provided by Ogina et al., in prep, was 
included into the analysis, which operates as a proxy for vegetation status and thus food abundance. 
 
Ethics 
This study was done under research permits and authorisations from the Max Planck Society 
Ethikrat Committee, the National Commission for Science, Technology and Innovation of Kenya 
(NACOSTI) and Kenyan Wildlife Service (KWS), as well as in collaboration with the National 
Museums of Kenya. 
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Results 
Comparison of algorithm performances 
Baseline MLP classifier 
As expected, the baseline MLP classifier performed better than random choice. The average 
AUC score and MCC differed between the two window sizes (mean AUC1second=0.66, mean 
MCC1second =0.29; mean AUC3seconds=0.62, mean MCC3seconds =0.26). The average precision and 
recall were identical/different between the two window sizes (mean precision1second = 0.67, 
mean recall1second =0.44; mean precision3seconds = 0.48, mean recall3seconds =0.43). 
 

 
Table 3: Average metrics' scores for each classifier and window size, as suggested in Riaboff et al., 2020 and 202289,144 

 
CNN classifier 
The CNN performed much better than the baseline classifier, with high macro-averaged and 
balanced class-wise AUC scores especially for the 1 second window size. Looking at the 
confusion matrix (Appendix 3), it is apparent that the CHA class is classified much better than 
in the MLP (Appendix 1). The McNemar’s test only showed some significant disagreements 
between the baseline MLP and the CNN classifier especially for the 3 seconds window size 
(Appendix 15). 
 
 
 

Window Size 1 second 3 seconds
Classes BOW CHA NOT Classes BOW CHA NOT

Classifier Metric Macro ∅ Class-wise Class-wise Class-wise Macro ∅ Class-wise Class-wise Class-wise
MLP AUC 0.668 0.670 0.653 0.623 0.621 0.719 0.456 0.633

MCC 0.297 0.263
Precision 0.669 0.625 0.400 0.920 0.483 0.444 0.000 0.968
Recall 0.440 0.196 0.071 0.991 0.434 0.286 0.000 0.993

CNN AUC 0.829 0.834 0.835 0.859 0.819 0.878 0.649 0.797
MCC 0.396 0.287
Precision 0.612 0.655 0.276 0.941 0.460 0.286 0.000 0.972
Recall 0.515 0.373 0.286 0.963 0.518 0.429 0.000 0.976

TCDA-CNN AUC 0.785 0.807 0.779 0.815 0.842 0.830 0.718 0.856
MCC 0.334 0.265
Precision 0.537 0.438 0.313 0.932 0.492 0.412 0.083 0.977
Recall 0.488 0.275 0.179 0.971 0.497 0.500 0.118 0.959

Autoencoder AUC 0.852 0.835 0.845 0.865 0.862 0.768 0.724 0.772
MCC 0.450 0.257
Precision 0.660 0.600 0.333 0.949 0.466 0.219 0.071 0.977
Recall 0.505 0.412 0.214 0.963 0.465 0.500 0.118 0.883

ResNet AUC 0.826 0.817 0.825 0.828 0.851 0.961 0.768 0.872
MCC 0.357 0.275
Precision 0.575 0.395 0.321 0.939 0.445 0.381 0.214 0.979
Recall 0.523 0.333 0.321 0.949 0.523 0.571 0.176 0.972

CNN-LSTM AUC 0.857 0.861 0.860 0.846 0.873 0.883 0.743 0.892
MCC 0.430 0.313
Precision 0.614 0.500 0.333 0.954 0.458 0.244 0.162 0.989
Recall 0.569 0.529 0.357 0.947 0.605 0.714 0.353 0.920

LSTM-CNN AUC 0.828 0.809 0.803 0.819 0.841 0.932 0.732 0.814
MCC 0.280 0.276
Precision 0.421 0.393 0.500 0.941 0.423 0.318 0.152 0.987
Recall 0.372 0.431 0.071 0.939 0.485 0.500 0.412 0.880
∅ AUC 0.806 0.805 0.800 0.808 0.816 0.853 0.684 0.805
∅ MCC 0.363 0.276
∅ Precision 0.584 0.515 0.354 0.940 0.461 0.329 0.098 0.978
∅ Recall 0.487 0.364 0.214 0.960 0.504 0.500 0.168 0.941
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TCDA-CNN classifier 
The TCDA-CNN classifier performed similarly for both window sizes, according to the visual 
and numerical metrics’ scores (Appendix 5 and 6). The McNemar’s test results disclosed more 
significant differences for the 3 seconds window size (Figure 18). The TCDA-CNN showed 
more confusion between the two social behaviour classes than the CNN (Appendix 5 and 6). 
Particularly for the 3 seconds window size the CHA class gets misclassified a bit more than for 
the 1 second window size. 
 

 
 
Figure 17: McNemar's test results, where the predictions of each algorithm are compared to the baseline MLP classifier for 

both window sizes. If the p-Value is >0.05, then, the null hypothesis, that there is no difference in the misclassification 

patterns between the two models, can be rejected. 

 
Autoencoder classifier 
The Autoencoder achieved balanced AUC scores across classes results for both window sizes, 
being higher for the 1 second window size (Table 3). The visual metrics disclosed that the 3 
seconds window size creates more confusion between social behaviour classes than the 1 
second window size (Appendix 7 and 8). The McNemar’s test showed almost no significant 
differences in misclassification patterns compared to the baseline classifier for the 1 second 
window size, but many for the 3 seconds window size, even though most of the metrics were 
significantly better for the 1 second window size (Table 4). 
 
ResNet classifier 
The ResNet scored balanced scores across classes for the 1 second window sizes. The AUC 
score for the BOW class was very high (AUC3seconds= 0.961), but lower for the CHA class 
(AUC3seconds= 0.768). The McNemar’s test again revealed more significant differences for the 
3 seconds window size across folds, while the performances were not consistently better for 
one window size (Table 4). The visual metrics showed some confusion between the social 
behaviour classes (Appendix 9 and 10). 
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Table 4: Pairwise Welch's t-test comparing the performance of the classifier with two different window sizes (1 to 3 seconds). 

The further the t-statistic away from zero in both directions, the greater the difference between the means of the samples 

(metrics across all CV folds). If t-statistic is positive, the mean of the 1 second sample is higher, if negative the mean of the 3 

seconds sample. A small value (<0.05) indicates strong evidence that the null hypothesis, that there is no difference between 

the means of the two samples. 

 

 
Figure 18: CNN-LSTM ROC curve at the end of training for the 1 second window size 

Classifier Metric t p-Value
MLP AUC 3.0357 0.0071

MCC 1.3910 0.1832
Precision 5.4164 0.0002
Recall 0.5062 0.6190

CNN AUC 0.6570 0.5260
MCC 5.8755 0.0000
Precision 7.5651 0.0000
Recall -0.1255 0.9016

TCDA-CNN AUC -3.3209 0.0046
MCC 3.2244 0.0049
Precision 2.4723 0.0239
Recall -0.5738 0.5748

Autoencoder AUC -0.6065 0.5566
MCC 9.9067 0.0000
Precision 9.6441 0.0000
Recall 1.9650 0.0678

ResNet AUC -2.6706 0.0165
MCC 2.5229 0.0240
Precision 3.8067 0.0022
Recall -0.0041 0.9968

CNN-LSTM AUC -1.1427 0.2710
MCC 3.5053 0.0027
Precision 4.9363 0.0003
Recall -1.3795 0.1849

LSTM-CNN AUC -0.4499 0.6620
MCC 0.0951 0.9253
Precision -0.0394 0.9690
Recall -2.1572 0.0475
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CNN-LSTM classifier 
The CNN-LSTM performed very well for both window sizes with balanced metrics scores 
across classes, being higher for the 1 second window size (Table 4). The McNemar’s test 
disclosed a broad range of p-values for the 1 second window size, while the 3 second window 
was again significantly different than the MLP classifier, but the two significant differences in 
the Welch’s test promoted the 1 second window size. The visual metrics for the 3 seconds 
window size manifested confusion even for the NOT class, which was not the case for the 1 
second window size at all (Appendix 12 and 13 ). 
 

 
Figure 19: CNN-LSTM confusion matrix at the end of training using the 1 second window size, for the training, validation 

and test set respectively (left to right). RUPBOW refers to the BOW class, CHAPOS to CHA. 

 
LSTM-CNN classifier 
The LSTM-CNN also showed some very good and balanced results for both window sizes 
(Table 3). The McNemar’s test revealed once more significant differences for the 3 seconds 
window size while the Welch’s t-test indicated better and more significant metrics for the 1 
second window size (Table 4). The visual metrics showed quite some confusion for both 
window sizes (Appendix 13 and 14). 
 
Comparison of Performances for Different Window Sizes 
There were a few significant differences in the Welch’s t-test for the different window sizes 
within an algorithm class (Table 4). In some cases, one window size performed better on some 
metrics and vice versa for other cases. There were no consistent patterns to be found, where 
one window size significantly performed better across all metrics. Only the MLP showed 
consistently better metrics for the 1 second window size, which were not significant all over. 
For the other algorithms, there was no consistency found across all metrics. These findings 
were supported by the McNemar’s test comparing the classifiers also for different window sizes 
(Appendix 15), where the 3 seconds window size for most algorithms seemed to be consistently 
and significantly different from the baseline MLP classifier. The generalised performance 
(bottom Table 3) across all classifiers, the mean metrics’ scores were similar between the two 
window sizes but slightly in favour of the 1 second window size. 
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Ecological Results 
The best performing model, the CNN-LSTM, was used to predict the unlabelled data across the 
two selected years, during five days every month for the hours 6, 7, 8, 9 and 10 AM. There 
were 48’724 windows available for 2022 and 168’283 for 2023, totalling 217’007 windows 
across both years (Table 5). There was much less data available for the year 2022 compared to 
2023, as well as for the hours 9 and 10 AM, which can be explained by the inconsistencies in 
the employment of the tags across time. For January 2022 there was no data available at all for 
the focal birds. In general, the number of samples is varying quite a bit across years but also 
across months within the same year (Table 7). This inconsistency in the number of samples 
could potentially introduce a sampling variability, where smaller sampling sizes are not as 
representative for the respective period or individual. For the individual birds, there was also a 
big variability in available windows to predict, especially across years, where the differences 
were enormous at times (Table 8). 
 

 
Table 5: Number of samples across the two years 

 
Table 6: Number of windows derived from available data for each hour and year 

 
Table 7: Number of windows derived from available data for each month 

 
Table 8: Number of available windows for each bird and year 

Keeping these limitations in mind, the analysis of the social behaviour frequencies was 
conducted. The predicted social behaviour events (BOW and CHA) are indicated as the 
proportion of the total predicted events for a given hour and day. They are henceforth called 
frequency and are given in percentage of total predictions. It was not possible to simply indicate 
the number of predicted events, as the number of available accelerometer readings varies across 
time and individuals and thus would not have been of any meaning. 
Looking at the social behaviour frequencies for the different individuals across the morning 
hours and the different seasons, there were some inter-individual differences to be found 
(Figure 25). The drought reached from June 2022 to March 2023, followed by a wet season 
until end of May and an intermediate season until mid of October. It should be noted that for 
the year 2022 there were only two birds available.  
  

# of Samples
2022 48724
2023 168283
total 217007

6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM
# of Samples 2022 13129 12680 20057 2028 830
# of Samples 2023 42762 41483 53477 24646 5915
total # of Samples 55891 54163 73534 26674 6745

# of Samples 2022 # of Samples 2023 total # of Samples
January 0 11353 11353
February 1181 11571 12752

March 1184 7594 8778
April 883 13112 13995
May 5036 24804 29840
June 3818 19989 23807
July 3806 17987 21793

August 3851 9728 13579
September 3821 14799 18620

October 2392 14834 17226
November 11383 9710 21093
December 11369 12802 24171

W1430 WT00043 WT00162 W1413 WT00044
# of Samples 2022 0 0 16764 0 31960
# of Samples 2023 33946 50983 61692 14846 6816
total # of Samples 33946 50983 78456 14846 38776
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Figure 20: Individual differences in the frequencies during the morning hours for the drought period (top row), the wet 

seasons (middle row) and the intermediate seasons (bottom row). 

In Figure 26 the observed frequencies across the morning hours can be seen. They are plotted 
together with the increasing mean temperature. The bowing frequencies seem to have a peak 
around 8 AM, while chasing frequencies decline towards midday. But the scatterplots of 
temperature with BOW and CHA frequencies resulted in correlation coefficients of 0.04 and -
0.16 with p-values of 0.6 and 0.02 respectively. 
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Figure 21: Development in bowing (top left) and chasing (top right) frequencies during the morning hours plotted with the 

increasing temperature. Scatterplot mean hourly temperature vs. BOW (bottom left) and CHA (bottom right) frequencies, 

with Pearson correlation coefficients of 0.04 and -0.16 , and p-values of 0.6 and 0.02 respectively. 

 
Plotting the aggregated monthly frequencies across both years, a clear decreasing trend in 
chasing can be observed, while bowing seems to show no clear trend (Figure 27). The inverse 
developments of the number of available datapoints and the chasing frequencies across time 
was obvious (Figure 28). The correlation coefficients for the number of samples and the BOW 
and CHA frequencies were -0.3 and -0.43 with p-values of 0.16 and 0.04 respectively and 
indicated small correlations.  
 

 
Figure 22: Monthly frequencies for 2022 and 2023 
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Figure 23: Number of available samples and the predicted social behaviour frequencies 

Furthermore, the correlation between BOW and CHA frequencies was analyzed. The Pearson 
correlation and the scatterplot showed a very weak but significant correlation with a very weak 
correlation coefficient of 0.15 and a significant p-value of 0.04 (Figure 29). 
 

 
Figure 24: Scatterplot CHA vs. BOW frequencies 

To analyze a potential environmental predictor for the occurrence of the social behaviours, the 
NDVI was consulted. The continuous NDVI timeseries at daily temporal resolution was first 
plotted together with the predicted frequencies across both years to get a first visualization, but 
there were no evident correlations (Figure 30). 
 

 
Figure 25: Continuous NDVI timeseries and fragmented daily aggregations of social behaviours 
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To verify these visual inspections, the daily frequencies of the social behaviours and the daily 
NDVI underwent a Pearson correlation test across both years and for the three seasons 
individually. The correlation coefficients between NDVI and BOW and CHA across both years 
were very weak, with -0.16 and -0.12 and insignificant p-values of 0.1 and 0.22 respectively 
(Figure 31 top row). The correlation coefficient for the drought period was -0.08 with a p-value 
of 0.6 for NDVI and BOW.  For NDVI and CHA a moderate correlation coefficient of 0.53 
with a significant p-value of 0.0002 was found (Figure 31 second row). During the wet seasons, 
the NDVI and BOW showed an insignificant (p-value = 0.38) 0.2-correlation (Figure 31 third 
row) and an insignificant (p-value = 0.59) -0.12-correlation for NDVI and CHA. For the 
intermediate season the NDVI-BOW correlation was again insignificantly (0.55) weakly 
negative (-0.12), showing a similar pattern as the NDVI-CHA correlation with a coefficient of 
-0.15 with a p-value of 0.46 (Figure 31 fourth row). 
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Whole timeseries (February 2022 – December 2023) 

  
Drought period (June 2022 – March 2023) 

 
Wet season (March 2023 – May 2023) 

 
Intermediate season (May 2023-October 2023) 

 
Figure 26: NVDI vs. BOW and CHA across whole timeseries (top row), drought period (June 2022 to March 2023) (2nd row), 

wet season (March 2023 to end of May 2023) (3rd row) and intermediate season (May 2023 to October 2023) (last row) 
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Discussion 
CNN-LSTM as the Best Performing Classifier 
This thesis disclosed the ability of deep learning algorithms to successfully recognize social 
behaviours in vulturine guineafowl from 20 Hz triaxial accelerometer data. The best performing 
classifier was the CNN-LSTM architecture using a sliding 1 second window size with 50% 
overlap. This algorithm’s ability to memorize longer-term dependencies was very useful in this 
sequential data problem. The classifier was chosen due to its low confusion of the social 
behaviours which show a high inter-activity similarity especially considering the subsequent 
task of classifying unlabelled data as precisely as possible. Many algorithms performed 
similarly well, each with their own (dis)advantages and thus present an array of tools to choose 
from. 
 
Effect of Window Size, Model Complexity and Inter-Activity Similarity 
The results suggested that the window sizes did have a minor and varying impact on the model 
performances. The effect of window sizes depended on the classifier choice, as some performed 
better with one window size and some with the other. Also, the choice of window size cannot 
satisfy both class-wise performances equally because the two social behaviours show different 
durations (Table 1).  
Looking at the McNemar’s test results, an increase in the complexity of the algorithms did not 
always bring improvements in performance, especially for the less complex input window size 
of 1 second, for which basically all algorithms showed only few significant differences to the 
simple MLP. Another obvious finding is, that the models do not generalize very well on the 
unseen test set. Many models performed extremely well on the training and validation set, but 
then tended to misclassify the unseen test set at higher rates. This suggests overfitting models 
which memorize noise in the data, even though overfitting was not visible in the loss function 
monitoring over the training process195. Looking at the confusion matrices it is apparent that 
confusion occurs mainly for the test set, so the task at hand is to find models that generalize 
better. Usually, simpler models tend to generalize better, as they do not learn too much on the 
training set. The NOT class was never misclassified into the social behaviour classes for the 
test set, except for the LSTM-CNN classifier (Appendix 13 and 14). This is important to not 
overestimate the occurrence of social behaviours in the prediction of unlabelled accelerometer 
data. It makes sense that the two social behaviours do get confused at some rate, as their motion 
patterns show a high inter-activity similarity76. The misclassification of the social behaviour 
classes into the NOT class might be caused by the inter-activity similarity. This issue is 
intensified if the dataset does not only include characteristic windows for a given social 
behaviour class but also vague sequences. Some windows are visually very hard to distinguish 
from NOT but have been included because the dataset suffers annotation scarcity. Currently, 
the variation in duration and inter-individual expression is very large for such a small dataset. 
Thus, splitting into different window sizes thus can strongly diminish the sample size of the 
characteristic labels. The meticulous work to prepare a valid dataset by cleaning the raw data, 
handling data gaps and precisely checking the resulting timestamps of the annotation program 
were crucial steps during pre-processing but further decreased the number of training samples.  
 
Annotation Scarcity and Class Imbalance 
This scarcity for the social behaviour classes made the training dataset highly imbalanced. 
Balancing the datasets with different data augmentation methods, as class-weighting by the 
inverse frequency and under-sampling the over-represented class were applied here. 
Nevertheless, the class imbalance is not the main causer of the lower performance of classifying 
such behaviours, but the scarcity of training data for these behaviour classes itself. A reliable 
classification of social behaviour is very challenging due to this limited amount of valid training 
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data available3,155 and establishing accurate classification models with strongly 
underrepresented behaviours will remain a subject of our ongoing research despite the 
augmentation techniques3,155.  
 
Predicting an Imbalanced Sample Size of Unlabelled Accelerometer Data Across 
Time and Individuals 
The model performance and analysis of confusion lead to the decision to apply the best 
performing and trained algorithm to predict unlabelled accelerometer readings. This real-life 
scenario enabled a first trial to remotely monitor this population’s social behaviours outside of 
direct field observations. Nonetheless, the derived frequencies and trends over time should be 
enjoyed with caution because the classification and recognition framework still need more 
sophisticated and thorough verification through identification tasks. The number of windows 
available to the prediction part was limited by computational resources and thereby did not 
allow a consistent prediction of social behaviour across individuals and time. The lower number 
of samples for some individuals and time periods introduces more sampling variability 
compared to periods and individuals with a larger sample size196.  This increases the uncertainty 
in the explanatory power and decreases the representativeness of the predictions. Hence the 
temporal and individual patterns of the social behaviour frequencies must be consumed with 
caution.  
 
Ecological Deductions 
The social behaviour frequencies show a decrease from the time they leave their roosting sites 
in the trees towards midday. At the field site close to the equator, it gets hotter very rapidly after 
sunrise. Derived from direct observations, it is assumed that the vulturine guineafowl, after 
spending some time on the open glades, they disperse into the bushes to spend the hottest time 
of the day there. But according to the weak and insignificant correlations of the temperature 
and social behaviour frequencies, there must be another explanation. Maybe it is rather the 
location which influences the occurrence of these displays. In the inaccessible and closed 
surroundings of the bushes, such display potentially is not as effective anymore, as there is not 
enough space compared to the glades. Another explanation could be that other individuals 
cannot see the displays in these dense bushes. Also, during such social interactions, 
concentration might be lacking and thus increase the predation risk 197. 
The predicted frequencies of the courtship behaviour across seasons did not align well with the 
hypothesis and directly observed behaviour in the field season from April to June 2023. It was 
expected that with growing vegetation and thus food abundance and nesting possibilities54,127 
the courtship behaviour increases in frequency. This was also observed as the rains arrived and 
the vegetations started to grow, creating the conditions in which vulturine guineafowls 
opportunistically breed54. But in the model predictions there is no evident increase in the 
frequencies of bowing. Also, the weak positive correlation of the bowing frequencies with the 
NDVI during the wet season compared to the weak negative correlations during drought and 
intermediated season did not suffice to fully confirm the hypothesis and observations. Even 
when with a focus on the periods of strongly increasing NDVI, no correlating changes in the 
courtship frequencies were found. This could be caused by the poorly generalizing and 
frequently confusing CNN-LSTM classifier, unable to distinguish bowing from chasing or 
other behaviours including running. Another possible explanation could be that the NDVI is 
not always a reliable real-time proxy for the actual vegetation status especially under drought 
conditions, as the plant adaptations to different drought of different timescales are not yet fully 
understood198199,200. Before March 2023, there has not been a pronounced wet season since 
2020. These dry or even drought periods might have had a longer-term effect on the vegetation 
and thereby decoupled the NDVI patterns from actual vegetation status found by the vulturine 
guineafowl. Of course, these limitations concerning the NDVI also apply for the dominance 
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interactions. For these, it was hypothesized that the increase in resources allows more male 
competition as energy does not have to be saved as parsimoniously as during drier and more 
scare seasons69. But, the NDVI, as a proxy of plant primary productivity directly correlated to 
resource availability128,201, does only weakly correlate with the predicted frequencies. This 
attenuates again the confirmation of the hypothesis that with more accessible resources such 
aggressive behaviours increase in frequency. The expected significant changes in frequencies 
in the male courtship and dominance behaviours64,68,69,202,203 with the beginning of the rainy 
seasons could not be confirmed.  
 
Outlook 
A primary goal should be to improve the classifier performance by fine-tuning optimal 
hyperparameters and finding the best architecture, adapted to the problem at hand. Another 
approach to increase the model performance could be the use of statistical features as inputs 
compared to raw sensor data, even for deep learning. This is especially the case when using 
hybrid classifiers as CNN-LSTMs or LSTM-CNNs75,90,110. The inclusion and combination of  
more dimensions of information, as environmental or spatial context as well as other sensor 
modalities as gyroscope or magnetometers, could be tested to better distinguish behaviours by 
extracting more distinctive features76,144. This is not too far-fetched, as some individuals even 
are equipped with IMUs. But even the best classifier having access to a multi-dimensional data 
cannot work without a proper training set. For this task with imbalanced classes, the training 
set should only include unmistakable, characteristic examples of social behaviour labels. The 
training data should be relieved of confusable labels to not increase the quality of the social 
behaviour labels. Likewise, the quantity must be increased. Creating new datapoints from the 
raw data and over-sampling could be options for future studies76. An idea for data 
augmentation, that came up during this study, was to combine social behaviour windows from 
different overlap percentages, for the same window size of course. In this way, the class 
imbalance could be decreased while simultaneously increasing the model’s robustness, as it 
learns to identify the social behaviours from different angles. 
Another vital approach to enhance the training set is to equip and video-record as many 
individuals as possible to include more variability89,144. This can be achieved by including 
video-recording into the standard procedure for the morning surveys conducted by the field 
team. At least every now and then, more video-material should be collected so that more 
variability over time and individuals can be included. This requires a meticulous planning of 
the employment times of the accelerometer tags across individuals and time, to efficiently 
increase the probability of capturing social behaviours on camera. The increase and extension 
of annotated data would, at a later stage, allow an individual-based and time-stratified splitting 
into training, validation, and test set. These splitting methods should be considered, to better 
investigate the generalization ability across time and individuals, the inter-individual variability 
of the motion patterns and the shifts in sensor orientation76,89,144. Furthermore, other overlap 
percentages as 0%, 25% or 75% in contrast to the applied 50 % could be tested and compared 
to find the optimal classification approach. The same applies for window sizes, where the range 
between 1 second and 4 seconds should be tested more precisely (Table 1). Also, considering 
splitting the whole behaviour sequences into its basic units e.g. pecking, running up, actual 
bowing and pecking again (Figure 4 and 5). Testing the impacts of increased or decreased 
sampling rates on the classification performance, would be very interesting3. At some point, the 
effect of including more behavioural classes into the classification problem should be analysed, 
as for now the NOT class includes many different (state) behaviours outside of these two social 
behaviour classes. There is yet another identification task to investigate the model’s capability 
of correctly predicting these social behaviours which are exclusive to males. Predicting 
unlabelled windows for female birds, could check the classifier’s plausibility as for these 
behaviours there should be no predictions. If the females received some positive predictions, 
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this would verify the claim that there are some significant inter-activity similarities. The within-
male variability in the male social behaviour frequencies should be compared to the obtained 
frequency predictions in females. All these potential identification tasks could help to improve 
and more accurately apply the trained models to real-life scenarios. This includes predicting 
behaviours for individuals wearing an accelerometer, but not (yet) video-recorded, or predicting 
behaviours for time periods, not (yet) analysed144.  
But establishing a thorough remote monitoring of the vulturine guineafowl’s social behaviour, 
not only requires a well-performing classifier. The prediction of unlabelled data needs an up-
scaled sample size of unlabelled data balanced across time and individuals. In this study the 
inclusion of more data was limited by the computational and storage possibilities. This would 
allow a more robust and representative analysis of these behaviours across time and individuals. 
These first findings call for more investigation e.g. looking into the predictors that influence 
these behaviours or the patterns underlying the individual expressions of when and how they 
perform these social behaviours. The causes of the temporal trends in these individually 
expressed social behaviours could be investigated by including other potential environmental 
explaining variables such as precipitation and temperature into the model. 
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Conclusion 
To conclude, these findings demonstrated the ability of various deep learning models to classify 
short and rare social behaviours in a wild, free-ranging population of vulturine guineafowl. 
Although the algorithms seem to recognize the focal courtship and dominance behaviours quite 
well, the predicted frequencies from unlabelled data and the deducted ecological analyses 
should be considered carefully. This methodology still needs some more clarifications to 
reliably make real-life predictions. However, this methodology with its demonstrated pitfalls 
could lay the foundation for a long-term remote monitoring of vulturine guineafowl social 
behaviour. This could be very useful to capture and study the impacts of climate change on 
behavioural adaptations. But more direct observational data must be collected to establish a 
high-quality training dataset, that includes more inter-individual and temporal variation. 
Furthermore, more experimentation with different architectures and hyperparameters 
distinguishing more behavioural classes to predict should be aimed for. 
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Appendices 
Appendix I: MLP visual metrics for 1 second window size across all cross-validation folds  
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Appendix II: MLP visual metrics for 3 seconds window size for all cross-validation folds 
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Appendix III: CNN visual metrics for 1 second window size for all cross-validation folds 
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Appendix IV: CNN visual metrics for 3 seconds window size for all cross-validation folds 
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Appendix V: TCDA-CNN visual metrics for 1 second window size for all cross- validation 
folds 
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Appendix VI: TCDA-CNN visual metrics for 3 seconds window size for all cross- validation 
folds 
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Appendix VII: Autoencoder visual metrics for 1 second window size for all cross- validation 
folds 
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Appendix VIII: Autoencoder visual metrics for 3 seconds window size for all cross- 
validation folds 
 
ROC curve 

 
 
Confusion matrices for train, validation, and test set 
 

 
 
  



 62 

Appendix IX: ResNet Visual Metrics for 1 second window size for all cross- validation folds 
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Appendix X: ResNet Visual Metrics for 3 seconds window size for all cross- validation folds 
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Appendix XI: CNN-LSTM Visual Metrics for 1 second window size for all cross- validation 
folds 
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Appendix XII: CNN-LSTM Visual Metrics for 3 seconds window size for all cross- 
validation folds 
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Appendix XIII: LSTM-CNN Visual Metrics for 1 second window size for all cross- 
validation folds 
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Appendix XI: LSTM-CNN Visual Metrics for 3 seconds window size for all cross- 
validation folds 
 
ROC curve 
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Appendix XV: McNemar’s test results for each algorithm and window size 
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