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Abstract 

As climate change progresses, 195 countries have committed to reducing their CO2 emissions 

under the Paris Agreement. To ensure the credibility of these reductions, independent verifica-

tion using satellites is essential. Satellite observations facilitate the estimation of CO2 emissions 

from large point sources, such as power plants. Since measuring CO2 directly is challenging, 

nitrogen oxides (NO + NO2 = NOx), which are co-emitted during combustion, can be used as a 

proxy for determining CO2 emissions. However, satellites can only measure NO2, necessitating 

a conversion into NOx. Previous studies have used a constant conversion factor of 1.32 which 

greatly simplified the NOx chemistry. Therefore, the aim of this work is to develop a more 

realistic model for a conversion factor of NO2 to NOx and apply it to data from the TROPOMI 

instrument on the Sentinel-5P satellite for the years 2020 and 2021. 

More realistic conversion factors are derived using the cross-sectional flux method. To achieve 

this, the NO and NO2 fields in existing high-resolution chemistry transport simulations of three 

power plants and a metallurgical plant are analysed. From these, NO2-to-NOx conversion fac-

tors are derived which depend on the time since emission. In addition, two methods for calcu-

lating representative wind speeds for the cross-sectional flux method are implemented and the 

influence of TROPOMI air mass factors on tropospheric NO2 columns in plumes is evaluated.  

The results indicate that the NO2 columns in the analysed plumes require an air mass factor 

correction by a factor of 1.1 to 1.4. With this correction, the estimated annual NOx emissions 

with their uncertainties are within the range of the bottom-up reported emissions. The biases 

are reduced from between -50 and -60% to only between -12 and -23%. Single-overpass esti-

mates can be quantified with an uncertainty of 20-27%, while annual NOx emission estimates 

have uncertainties in the range of 3-16% and are highly dependent on the number of successful 

retrievals. 

The approach for converting NO2 into NOx discussed in this study is limited by the generalisa-

tion of the derived NO2-to-NOx conversion factors for different meteorological and trace gas 

background conditions. In addition, the study highlights the need for further research on the 

calculation of a representative wind speed and air mass factors. This study thus marks a decisive 

step towards a global, uniform, high-resolution, and near real-time estimation of CO2 emissions 

– especially with regard to upcoming NO2 monitoring satellites such as Sentinel-4 and -5. 

Keywords: CO2, NOx, emission quantification, cross-sectional flux method, ddeq, MicroHH, 

NOx:NO2 ratios, Sentinel-5P, TROPOMI, air mass factor  
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1 Introduction 

Under the Paris Agreement, 195 Parties have committed to limiting global warming to well 

below 2°C compared to pre-industrial temperatures (UNFCCC, 2015; United Nations, 2015). 

This requires drastic reductions of anthropogenic greenhouse gas emissions such as CO2. In 

order to monitor emission reductions, the Parties of the Paris Agreement must regularly report 

their emissions based on national inventories (referred to as a bottom-up approach). However, 

to date, no global observation system exists that allows for independent monitoring of anthro-

pogenic emissions and verification of bottom-up reported emissions (Pinty et al., 2017). Such 

a system is also needed because it can reduce uncertainties and fill gaps in national emission 

inventories. The plan is to assimilate the estimated emissions into the reanalysis dataset of the 

Integrated Forecasting System (IFS) by the European Centre for Medium-range Weather Fore-

casts (ECMWF) (Agustí-Panareda et al., 2023). Therefore, emission data should be available 

in near real time. A convenient method to obtain such high-resolution, uniform global emission 

estimates is to use satellite observations (Koene et al., 2021; Pinty et al., 2017). 

For this reason, the Copernicus CO2 Monitoring (CO2M) mission has been initiated by the 

European Commission, the European Space Agency (ESA), the European Organisation for the 

Exploration of Meteorological Satellites (EUMETSAT) and ECMWF (Pinty et al., 2020). The 

mission will consist of up to three satellites measuring, among others, column-averaged dry air 

mole fractions of CO2 and tropospheric NO2 columns and will be launched in 2025 (EoPortal, 

2021; ESA Earth and Mission Science Division, 2020). One aim is to quantify CO2 emissions 

from point sources such as industrial complexes, large cities, and power plants, because they 

account for the majority of anthropogenic CO2 emissions (Kuhlmann et al., 2021). For example, 

power generation alone was responsible for more than 40% of global fossil CO2 emissions in 

2021 (Crippa et al., 2022). 

Several case studies have investigated the potential and limitations of quantifying point source 

CO2 emissions from space (Bovensmann et al., 2010; Goldberg et al., 2019a; Kuhlmann et al., 

2021, 2018; Liu et al., 2020; Nassar et al., 2017; Reuter et al., 2019). In parallel, a range of 

methods has been developed to estimate CO2 emissions. One of them is the cross-sectional flux 

method which is implemented in a Python package called “data driven emission quantification” 

(ddeq) (Kuhlmann et al., 2021, 2020, 2019). With this method, emissions are determined by 

dividing a plume into several cross-sections. For each cross-section, the column densities are 

integrated, resulting in line densities, which are converted into fluxes using the wind speed. 
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Under the assumption of steady-state conditions, the emissions can be estimated from the fluxes 

of each polygon along the plume (Kuhlmann et al., 2021).  

However, there remain several challenges when trying to estimate CO2 emissions from satel-

lites. Among them are a high sensitivity to cloud cover, large natural sinks and sources, and a 

low signal-to-noise ratio (Koene et al., 2021). 

To circumvent these problems, several studies have proposed using nitrogen oxides (NOx = NO 

+ NO2), which are co-emitted with CO2 during high-temperature combustion processes, to 

quantify CO2 emissions (Goldberg et al., 2019a; Kuhlmann et al., 2021, 2018; Liu et al., 2020; 

Reuter et al., 2019). The NOx estimates can then be converted to CO2 emissions using bottom-

up reported CO2:NOx emission ratios (Goldberg et al., 2019a; Kuhlmann et al., 2021; Liu et al., 

2020). On top of that, there are a number of existing and upcoming satellites that provide NO2 

products with high accuracy, making the use of NOx to quantify CO2 emissions very appealing. 

One of these is the TROPOspheric Monitoring Instrument (TROPOMI) on the Sentinel-5 Pre-

cursor satellite which has a much better temporal and spatial coverage than the upcoming 

CO2M mission due to its larger swath (Veefkind et al., 2012). It provides daily observations of 

NO2 and other trace gases with a spatial resolution of 3.5 x 5.5 km2 (van Geffen et al., 2022; 

Veefkind et al., 2012). Several case studies have shown that TROPOMI data can be used to 

estimate NOx emissions from cities and power plants (Douros et al., 2023; Goldberg et al., 

2019b; Lorente et al., 2019). 

However, estimating CO2 emissions from NOx observations also comes with its drawbacks. 

One is the fact that satellites only measure NO2 but not NOx. NO2 must therefore be converted 

to NOx, taking into account the complex chemistry of NOx. Nonetheless, previous studies have 

only implemented a highly simplified representation of NOx chemistry, using a constant factor 

of 1.32 to convert NO2 to NOx (e.g., Beirle et al., 2011; Kuhlmann et al., 2021). 

Therefore, the aim of this study is to develop a more realistic model for a conversion factor of 

NO2 to NOx that accounts for the spatiotemporal variations of NOx chemistry in plumes. This 

is done using the examples of the power plants Bełchatów (PL), Jänschwalde (DE), Matimba 

and Medupi (ZA) (hereafter referred to as Matimba), as well as a metallurgical plant in Lipetsk 

(RU). The advances are implemented into the existing cross-sectional flux algorithms of the 

ddeq package. 

The analysis is conducted in the following seven steps: 
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1. Analysis of the CO2, NO, and NO2 fields in existing high-resolution chemistry transport 

simulations to identify how the NOx:NO2 concentration ratio and the NOx lifetime varies 

along the plume, over time and for the different cases. 

2. Evaluation of the spatiotemporal evolution of wind fields to convert the length of a 

plume into time since emission. 

3. Development of a model to describe the NO2-to-NOx conversion factor as a function of 

the time since emission that takes NOx chemistry within plumes into account.  

4. Validation of the new NO2-to-NOx conversion factor with high-resolution chemistry 

transport simulations where the true emissions are known. 

5. Application of the improved method to TROPOMI NO2 observations for the four point 

sources over a two year period. This requires the correction of biases in the air mass 

factors (AMFs) of the TROPOMI data (e.g., Douros et al., 2023). 

6. Assessment of the time series of TROPOMI estimates using bottom-up reported emis-

sions available from annual emission reports which are interpolated to higher temporal 

resolution using power generation data. 

7. Analysis of the temporal variability of NOx emissions in the TROPOMI time series and 

the resulting uncertainty of the annual emission estimates. 

The working hypothesis is that these implementations allow more accurate estimates of NOx 

and consequently CO2 emissions from NO2 observations, which are required for global moni-

toring of CO2 emissions in the context of the Paris Agreement. 
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2 Theoretical Background 

2.1 The Copernicus CO2 project 

The Copernicus CO2 project (CoCO2) is a project within the Horizon 2020 programme and 

includes 25 partners from European countries. It was launched in 2021 with the aim of building 

the prototype for a European Monitoring and Verification Support capacity of CO2 emissions 

(CO2MVS) in support of the Paris Agreement. Such a system consists of a numerical model 

assimilating CO2 emission data from observations, regional inversions, and emission invento-

ries (CoCO2, 2023). 

As part of the CoCO2 project, several numerical transport models were implemented and eval-

uated to determine the models' ability to realistically simulate the fundamental characteristics 

of plumes. The models were run for the three coal-fired power plants Bełchatów (PL), Jä-

nschwalde (DE), and Matimba (ZA), the metallurgical plant Novolipetsk in Lipetsk (RU), and 

the three megacities Berlin (DE), Paris (FR), and Randstad (NL). Among the models, some 

simulated tropospheric chemistry (LOTUS-EUROS, MicroHH, WRF CHEM) while others did 

not (COSMO-GHG, ICON-ART). This library of plumes was used to compare the model sim-

ulations run with different settings such as resolution and numerical schemes, with satellite 

observations of NO2 as well as in-situ aircraft measurements of CO2 (Koene and Brunner, 

2023). 

 

2.2 Measuring CO2 from space 

One of the inputs to the CO2MVS for the assimilation of CO2 emissions will be satellite obser-

vations. They offer the advantage of estimating CO2 emissions globally at a high spatiotemporal 

resolution and in near real time (Koene et al., 2021; Pinty et al., 2017). However, estimating 

CO2 emissions using satellites has several issues. First, the observations have a high sensitivity 

to clouds permitting only observations with a cloud cover of less than 1% to be used (Koene et 

al., 2021; Kuhlmann et al., 2021). It is therefore expected that a constellation of three CO2M 

satellites will be able to retrieve estimates of CO2 emissions on a maximum of 50 days per year 

(ESA Earth and Mission Science Division, 2020). However, anthropogenic CO2 emissions fluc-

tuate on daily, weekly, and seasonal time scales. As a result, the temporal resolution of CO2 

estimates has a strong influence on the uncertainties in quantification (Kuhlmann et al., 2021). 

Second, CO2 has high background concentrations and large natural sinks and sources such as 

photosynthesis and respiration. These produce CO2 signals of similar magnitude to the enhance-

ments due to anthropogenic sources. Plumes can thus be altered, leading to erroneous emission 
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estimates (Koene et al., 2021; Kuhlmann et al., 2021). Third, CO2 measurements have a low 

signal-to-noise ratio (SNR) due to the higher background concentrations which makes the de-

tection CO2 plumes less reliable (Koene et al., 2021; Kuhlmann et al., 2019; Reuter et al., 2019). 

Finally, there is currently no satellite capable of imaging CO2 concentrations of plumes, and 

CO2M will not be launched until 2025 (EoPortal, 2021; ESA Earth and Mission Science Divi-

sion, 2020). 

 

2.3 Measuring NOx from space 

One way to avoid these challenges is to estimate CO2 via the emissions of nitrogen oxides (NOx 

= NO + NO2), which are co-emitted with CO2 during high-temperature combustion processes 

(Seinfeld and Pandis, 2006). Satellites such as Sentinel-5 Precursor (Sentinel-5P) (see section 

2.5) and the Geostationary Environment Monitoring Spectrometer (GEMS) already offer NO2 

observations at high temporal resolution. They will be complemented by the launch of further 

satellites such as the geostationary Tropospheric Emissions: Monitoring of Pollution (TEMPO) 

and Sentinel-4 as well as the polar-orbiting Sentinel-5 (EoPortal, 2023, 2014, 2013). Using NOx 

to estimate CO2 emissions has the advantage that NOx has lower background concentrations, 

leading to a higher SNR and a higher contrast of anthropogenic plumes. Besides, the short life-

time of NOx leads to sharper plumes compared to CO2 (Goldberg et al., 2019a; Koene et al., 

2021). As a result, the detection of NOx plumes is more reliable (Kuhlmann et al., 2021; Reuter 

et al., 2019). Furthermore, there are negligible natural NOx sources which could influence an-

thropogenic plumes. On top of that, NOx is less sensitive to cloud cover whereby observations 

with 30% cloud fraction can still be used (Beirle et al., 2021; Goldberg et al., 2019a; Koene et 

al., 2021; Kuhlmann et al., 2021). Consequently, using observations of NOx to quantify CO2 

emissions doubles the number of successful retrievals per year (Kuhlmann et al., 2021). 

Despite these advantages, estimating CO2 emissions from NOx observations also comes with 

its challenges. The first source of uncertainty is the fact that estimated NOx emissions must be 

converted to CO2 emissions using the ratio of bottom-up reported emissions of CO2 and NOx 

(Berezin et al., 2013; Goldberg et al., 2019a; Kuhlmann et al., 2021). These must be source-

specific because the amount of NOx emissions depends on fuel type, combustion temperatures, 

the operating conditions of the furnace, and post-combustion removal of NOx (Pronobis, 2020). 

However, bottom-up emission inventories are not reported for all point sources and are often 

estimated based on proxies such as fuel consumption rather than the continuous monitoring of 

flue gas concentrations (IPCC, 2006). Despite, applying bottom-up reported CO2:NOx emission 
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ratios currently is the most appealing approach because the uncertainties of other methods such 

as CO2:NOx ratios estimated directly from satellite observations are much higher (Kuhlmann et 

al., 2021). A second source of uncertainty in estimating CO2 emissions from NOx observations 

is the fact that satellites can only measure NO2 but not NOx. This is due to the short lifetime, 

low concentrations, and the weak absorption signal of NO (Pietrzyk et al., 2010). Consequently, 

in order to determine NOx concentrations from measured NO2 concentrations, NO2 must be 

converted taking into account the NOx chemistry. As satellite images of NO2 are taken around 

noon, the daytime tropospheric chemistry is most relevant. 

 

2.4 Daytime tropospheric NOx chemistry 

Unlike CO2, NOx undergoes a series of chemical and photochemical reactions in the tropo-

sphere: While more than 90% of NOx from combustion processes is emitted as NO (Pronobis, 

2020), it is rapidly oxidised to NO2 in the presence of ozone (O3) with a lifetime of seconds to 

minutes (Kimbrough et al., 2017; Seinfeld and Pandis, 2006): 

 NO + O3  ⟶  NO2 + O2  (2.1) 

The rate of this reaction depends on several factors such as the concentration of O3 and volatile 

organic compounds (VOCs), as well as solar radiation and temperature (Kimbrough et al., 2017; 

Seinfeld and Pandis, 2006). Subsequently, NO2 is mainly removed by reacting with OH radicals 

with lifetimes ranging from hours to a few days in the lower troposphere (Jaffe, 2003; Seinfeld 

and Pandis, 2006): 

 NO2 + OH
+M
→  HNO3  

(2.2) 

Where M denotes a collision partner. Again, the exact NO2 lifetime is influenced by many 

factors such as temperature, the amount of NO2, OH radicals, which in turn depends on O3, 

humidity, VOC levels and solar radiation (Jaffe, 2003; Seinfeld and Pandis, 2006). 

As NO cannot be measured by satellites, it has to be included in the conversion of NO2 to NOx. 

However, previous studies which have quantified NOx from satellite observations have applied 

a highly simplified conversion. For example, they used a constant NOx:NO2 ratio of 1.32 to 

convert NO2 measurements to NOx (e.g., Beirle et al., 2011; Kuhlmann et al., 2021). This as-

sumption was derived from the photo-stationary state for typical urban conditions, assuming 

NOx and O3 concentrations of 100 ppb each (Seinfeld and Pandis, 2006): 
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[NOx]

[NO2]
=  1 +

jNO2
k1 ∙ [O3]

 (2.3) 

Where jNO2 denotes the photolysis rate of NO2 and k1 is the reaction coefficient of the oxidation 

of NO with O3 in Eq. (2.1). However, NOx concentrations in the plume of point sources are 

orders of magnitude higher than 100 ppb (Skalska et al., 2010). Thus, O3 is rapidly titrated 

within the plume, resulting in NOx:NO2 ratios which exceed 1.32. It can be produced again 

through the HOx/NOx cycle: a series of reactions initiated by the oxidation of VOCs originating 

from biogenic or anthropogenic hydrocarbon emissions. In chemical reactions, they are denoted 

by RH where R represents any alkyl group (Seinfeld and Pandis, 2006): 

 RH + OH
+O2
→   RO2 + H2O (2.4) 

However, this reaction is suppressed by the reaction in Eq. (2.2), which consumes the OH rad-

icals due to its higher rate coefficient for an average urban mix of VOCs. Only when the 

VOC:NO2 ratio exceeds 5.5:1 does O3 start to form again (Seinfeld and Pandis, 2006). This 

occurs at the edges of the plume where surrounding air masses containing VOCs are mixed in 

as well as further along the plume when the NO2 concentration decreases with increasing ageing 

of the plume through removal by the reaction in Eq. (2.2). Therefore, increasingly more NO is 

oxidised the older the plume is and the NOx:NO2 ratio approaches the value of 1.32. The 

HOx/NOx cycle includes photolysis reactions which occur at a higher rate when more energetic 

radiation is available (Seinfeld and Pandis, 2006). 

On the bottom line, the assumption of a constant NOx-to-NO2 conversion factor of 1.32 has led 

to significant underestimations of NOx and hence CO2 emissions (e.g., Beirle et al., 2021; 

Hakkarainen et al., 2023; Liu et al., 2020). In some studies, this underestimation went unnoticed 

because the bottom-up reported emissions did not include all sources, e.g., the Medupi power 

plant in Hakkarainen et al. (2021) and Potts et al. (2023). 

 

2.5 Sentinel-5P 

In October 2017, the Copernicus Sentinel-5P satellite was launched by ESA, the European 

Commission and the Netherlands Space Office. It was the first satellite of the Sentinel series 

devoted to observing the Earth’s atmosphere (ESA, 2022; Veefkind et al., 2012). Since then, 

the satellite has been orbiting the Earth in a near-polar sun-synchronous orbit with an overpass 

time at 13:30 local time. 
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The only payload on board of Sentinel-5P is the TROPOspheric Monitoring Instrument (TRO-

POMI) which is a spectrometer that allows it to monitor a wide range of atmospheric constitu-

ents important for air quality, such as carbon monoxide (CO), formaldehyde (CH2O), methane 

(CH4), nitrogen dioxide (NO2), ozone (O3) and sulphur dioxide (SO2), as well as aerosols and 

clouds (Veefkind et al., 2012). 

With its push-broom scanner, TROPOMI covers a 2’600 km wide swath, providing daily global 

coverage. This is an important feature because trace gas concentrations in the troposphere vary 

on small time scales. Compared to its predecessors, TROPOMI has an unprecedented high sig-

nal-to-noise ratio of 1’500 for NO2 (van Geffen et al., 2022) and a high spatial resolution of 

initially 3.5 km along and 7 km across-track (Veefkind et al., 2012) which has been improved 

to 3.5 × 5.5 km2 since August 2019 (van Geffen et al., 2019). 

For the retrieval of NO2 concentrations, the TROPOMI data is processed using a differential 

optical absorption spectroscopy (DOAS) which derives the total quantity of NO2 along the op-

tical path from the sun to the satellite (Platt and Stutz, 2008; van Geffen et al., 2019). These 

slant column densities (SCDs) contain both the stratospheric and tropospheric NO2. In a second 

step, the SCDs are assimilated into the 3D chemistry-transport model TM5-MP, which simu-

lates a range of atmospheric reactive trace gases with a spatial resolution of 1° × 1° and a 

temporal resolution of 30 minutes (Williams et al., 2017). The rationale behind this approach 

is to assimilate the retrieved SCDs into the model, aiming to achieve optimal concordance be-

tween the TM5-MP and TROPOMI SCDs in regions with negligible tropospheric NO2 content 

(e.g., over remote oceans). Consequently, the total SCDs in these areas are effectively equiva-

lent to the stratospheric SCDs. As these show little variation in space, the retrieved stratospheric 

SCDs can be subtracted from the total columns to obtain the tropospheric contribution (Wil-

liams et al., 2017). In a third step, the SCDs are converted to vertical column densities (VCDs) 

using an air mass factor (AMF) (van Geffen et al., 2019): 

 𝑉𝐶𝐷 =
𝑆𝐶𝐷

𝐴𝑀𝐹
 (2.5) 

The AMF depends on the vertical profile of NO2 from TM5-MP and is calculated as follows 

(van Geffen et al., 2019): 

 𝐴𝑀𝐹 =  
∑ 𝑚𝑙 ∙ 𝑐𝑙 ∙ 𝑥𝑙𝑙

∑ 𝑥𝑙𝑙
 (2.6) 

Here, 𝑚𝑙 denotes the AMF in layer 𝑙, 𝑐𝑙 a temperature correction term and 𝑥𝑙 the a-priori NO2 

concentration in layer 𝑙. The altitude dependent AMFs 𝑚𝑙 are calculated using a radiative 
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transfer model based on, among other parameters, the surface albedo, cloud properties, as well 

as the satellite viewing geometry (van Geffen et al., 2019). In the TROPOMI data product, they 

are given as a ratio to the total AMF and are referred to as averaging kernels. They are an 

indication of the measurement sensitivity of NO2 in each layer. An averaging kernel of 1 means 

that the satellite instrument has perfect sensitivity to the trace gas at that altitude. Dark surfaces 

decrease the averaging kernels, while bright surfaces and optically thick clouds increase the 

averaging kernels above the cloud top. Below the cloud top they are close to 0 (Eskes and 

Boersma, 2003). 

Due to its coarse resolution, the TM5-MP model cannot resolve plumes from power plants or 

cities. As a result, the modelled NO2 profiles 𝑥𝑙 are lower than the true concentrations within 

plumes in the lower atmosphere, where the averaging kernels are the smallest. This leads to an 

overestimation of the AMF according to Eq. (2.6) and therefore to an underestimation of the 

NO2 VCDs according to Eq. (2.5). Such a bias over polluted regions has also been shown in 

previous studies (Griffin et al., 2019; Verhoelst et al., 2021). Therefore, the estimated NOx 

emissions were underestimated by up to a factor of two (Beirle et al., 2021, 2019; Goldberg et 

al., 2019b). As a consequence, a correction for the bias in the AMFs must be implemented (see 

section 4.7). 

 

2.6 Estimating emissions with the cross-sectional flux method 

As satellites observe the atmosphere from above, they measure atmospheric constituents as 

vertically integrated columns. These must be converted into fluxes to determine the emissions 

from point sources. To this end, several methods have been developed and applied in recent 

years. The four most promising approaches were reviewed in a study by Varon et al. (2018) to 

quantify point sources of methane from satellite observations. Of these, they considered the 

cross-sectional flux method to be one of the most promising: It is least prone to errors due to 

turbulence, has a comparatively simple physical basis and can deal with missing values in the 

plume. 

In the cross-sectional flux method, emissions are determined by dividing a plume into several 

cross-sections perpendicular to the plume. For each cross section, the mass of the trace gas 

enhancement over the background ∆Ω is integrated over the width of the plume which yields 

line densities. These are multiplied by the wind speed 𝑈 to obtain the trace gas flux 𝑄 (Koene 

et al., 2021; Varon et al., 2018): 
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 𝑄 = ∫ 𝑈(𝑥, 𝑦) ∙ ∆Ω(𝑥, 𝑦)𝑑𝑦

+∞

−∞

 (2.7) 

Here, 𝑥 denotes the along plume direction while y denotes the across plume direction. 

The challenge lies in the requirement of the wind speed 𝑈 to be represented as a 2D field. 

However, plumes are transported by 3D winds which vary greatly with height. Therefore, the 

3D wind field must be vertically averaged to represent the effective wind speed within the 

plume (see section 4.2). For most applications, the representation of the 2D wind field has been 

simplified under the assumption of a constant wind speed 𝑈eff throughout the plume. Subse-

quently, Eq. (2.7) is simplified to 

 𝑄 = 𝑈eff ∙ ∫ ∆Ω(𝑥, 𝑦)𝑑𝑦

+∞

−∞

 (2.8) 

where the trace gas flux 𝑄 becomes equivalent to the emissions.  

The cross-sectional flux method does not work when the wind deviates from steady-state con-

ditions and when the wind speed is too low (< 2 m/s). In this case, the wind directions are more 

variable (Varon et al., 2018). Furthermore, it is not possible to resolve overlapping plumes when 

sources are clustered (Koene et al., 2021).  

 

2.7 Data-driven emission quantification 

The data-driven emission quantification (ddeq) package in Python is a collection of algorithms 

for estimating trace gas emissions from hot spots such as cities and power plants (Kuhlmann et 

al., 2021, 2020, 2019). It was originally developed around the cross-sectional flux method but 

now includes several other approaches such as the Gaussian plume inversion method, integrated 

mass enhancement and more (Kuhlmann et al., 2023). The details of the cross-sectional flux 

method as well as the propagation of uncertainty are described in Kuhlmann et al. (2021). It is 

implemented for the quantification of NOx emissions as follows and illustrated in Figure 2.1 

using a TROPOMI image as an example: 

The first step is to detect plumes that have significantly enhanced NO2 VCDs above the back-

ground. This is done by applying a z-test to the SNR of NO2. The detected pixels are grouped 

into coherent plumes and assigned to a source which is taken from a list of point sources (black 

crosses in Figure 2.1a). In a second step, the local background VCD is calculated by applying 

a low-pass filter to the pixels around the detected plume under the assumption of a spatially 
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smooth background. The estimated background is then subtracted from the VCDs of the de-

tected plume to isolate the point source emission signals of NO2. In a third step, a second order 

polynomial is fitted to the plume to represent the centre line (black line in Figure 2.1a). Based 

on this, all pixels are transformed into a plume coordinate system with the dimensions along 

and across the plume. The plume is then divided into several polygons with fixed spacing 

whereby the length of a polygon depends on the resolution of the satellite image (yellow poly-

gons in Figure 2.1a). Within each polygon, the line densities of NO2 are calculated by fitting a 

Gaussian curve to the VCDs of the pixels inside the polygon (Figure 2.1b). This approach em-

ploys the information of all plume pixels for the quantification and is more robust to missing 

values than taking line cross-sections. The NO2 line densities are converted to fluxes using the 

effective wind speed at which the plume was transported. Under the assumption of constant 

wind speeds (see section 2.6), a weighted vertical mean of the horizontal wind speed at the 

source is used. The NO2 fluxes are converted to NOx by multiplication with a constant factor 

of 1.32. In a final step, a negative exponential function is fitted to the fluxes along the plume to 

account for NOx chemistry (see section 2.4) (Figure 2.1c). The intercept of this function repre-

sents the estimated emissions while the inverse of the decay parameter corresponds to the esti-

mated NOx lifetime. 

 

Figure 2.1: Example of the NOx emission estimate using the cross-sectional flux method implemented in ddeq. 
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3 Data 

3.1 MicroHH simulations 

To gain a better understanding of the NOx:NO2 ratios in plumes, model simulations from the 

library of plumes can be analysed (see section 2.1). Koene and Brunner (2023) made a compar-

ison between the library of plumes and available observational data for these simulated plumes. 

They found that the highest resolution model MicroHH was able to simulate the plumes most 

realistically, although there was a slight tendency to underestimate the plume width in most 

simulations. MicroHH is an open-source numerical fluid dynamics model for simulating turbu-

lent flows in the atmosphere (van Heerwaarden et al., 2017) and can be coupled with chemistry 

schemes (Krol and Van Stratum, 2021). For the CoCO2 project, large-eddy simulations (LES) 

were run in combination with a simplified version of the chemistry scheme used in the IFS 

(Huijnen et al., 2016). The chemistry scheme included the reactive species O3, NO, NO2, NO3, 

N2O5, HNO3, CO, CH4 (fixed), H2 (fixed), HO2, OH, H2O2, CH2O, RO2, and ROOH, as well as 

C3H6 as a representative of VOCs. The chemistry was tuned to match the NOx and HOx chem-

istry of the IFS and to realistically represent the photo-stationary state between NOx and O3. 

The specific model settings and boundary conditions used for the MicroHH model runs are 

described in Krol and Van Stratum (2021) as well as Koene and Brunner (2023) and are briefly 

summarised below. 

The MicroHH model was run on a 128 x 128 x 4 km do-

main for Matimba and a 51.2 x 51.2 x 4 km domain for 

Bełchatów, Jänschwalde, and Lipetsk (Figure 3.1). The 

spatial resolution was set to 100 x 100 x 25 m for the 

Matimba case and 50 x 50 x 25 m for the others (Koene 

and Brunner, 2023). Each case was simulated for 48 

hours, starting at 00:00 UTC, and the output was saved 

hourly. The model was initialised and driven with hourly 

meteorological data from the ERA5 reanalysis dataset 

(see section 3.3). For the background concentrations of 

trace gases, reanalysis data from the Copernicus Atmos-

phere Monitoring Service (CAMS) were used (Koene and 

Brunner, 2023). To simulate the plumes, typical quantities 

of CO2 and NOx emissions from bottom-up reported values of previous years were released at 

the respective locations of the power plants and industrial facilities (Table 3.1) (Krol and Van 

Figure 3.1: Location of the four MicroHH 

simulations Bełchatów (PL), Jänschwalde 

(DE), Lipetsk (RU), and Matimba (ZA). 
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Stratum, 2021). However, for the Matimba simulation, the prescribed emissions did not include 

emissions from the Medupi power plant (Koene and Brunner, 2023). To realistically simulate 

NOx chemistry, the NOx emissions were split into 95% NO and 5% NO2 by mass (Koene and 

Brunner, 2023). Due to an error in the MicroHH simulation runs, the actual prescribed emis-

sions were higher than described in Krol and Van Stratum (2021). 

Table 3.1: Details of the four MicroHH simulations and the prescribed CO2 and NOx emissions from bottom-up 

reported emissions which have been corrected for the error in the simulations (Krol and Van Stratum, 2021). 

Source Coordinates Simulation Period 
CO2 emissions 

[kg/s] 

NOx emissions 

[kg/s] 

Bełchatów 

(PL) 

19.33°E 

51.27°N 
06-07 June 2018 1375.9 1.0777 

Jänschwalde 

(DE) 

14.46°E 

51.84°N 
22-23 May 2018 853.7 0.7017 

Lipetsk 

(RU) 

39.62°E 

52.56°N 
12-13 June 2019 1165.5 0.9543 

Matimba 

(ZA) 

27.61°E 

23.67°S 
24-25 July 2020 1014.0 2.6480 

As flue gases rise due to buoyancy, the simulations were run three times for each source with 

different emission height profiles: Surface release, middle release, and high release. Each case 

was intended to reflect different atmospheric conditions. The corresponding vertical emission 

profiles were calculated based on the stack height and plume rise calculations. These incorpo-

rated the flue gas temperatures as well as atmospheric stability and wind speeds (Koene and 

Brunner, 2023). For the current study, only the middle release scenario (*_M) was used as it 

corresponds to the expected conditions. 

The model output consists of 3D data of the reactive trace gases and CO2 as well as meteoro-

logical variables such as temperature, pressure, and wind speed. The output was post-processed 

into 2D datasets resembling synthetic satellite observations. The resolution was degraded to the 

expected resolution of the CO2M satellites of 2 × 2 km. For the wind speeds, a 2D weighted 

average of the 3D wind fields was calculated based on the vertical emission profile. The details 

of the post-processing are described in Koene and Brunner (2023). 

 

3.2 TROPOMI 

The method of converting NO2 to NOx developed in the current study is applied to TROPOMI 

NO2 observations as a case study. The data can be obtained in full orbits from the Sentinel-5P 

Pre-Operations Data Hub (https://s5phub.copernicus.eu/) or via Application Programming 
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Interface (API) (Copernicus Sentinel-5P, 2021). For this purpose, the Python package sentinel-

sat was used to acquire the latest processing version, v2.4.0, of the NO2 level 2 data product 

which has been operational since July 2022. Earlier data since the end of April 2018 have been 

reprocessed to version 2.4.0 and are available as S5P_RPRO (Eskes and Eichmann, 2023). As 

the spatial resolution of TROPOMI has improved since August 2019 (see section 2.5), only 

data for the years 2020 and 2021 were used in this study. In accordance with van Geffen et al. 

(2019), only data with quality assurance values higher than 0.75 were utilised. In addition, the 

auxiliary data comprising 3D NO2 fields from the TM5-MP model were downloaded to recom-

pute the AMFs (Eskes and van Geffen, 2021). 

 

3.3 ERA5 reanalysis 

The cross-sectional flux method requires wind data to convert trace gas line densities into 

fluxes. For this purpose, data from the ERA5 reanalysis dataset were used. ERA5 is the latest 

generation of ECMWF’s global reanalysis which assimilates a range of observations of atmos-

pheric, oceanic and land parameters into a numerical model. The model simulates the parame-

ters with seamless spatial coverage and produces hourly outputs with a spatial resolution of 

0.25° × 0.25° on 137 model levels up to 80 km. The data can then be obtained at single, pres-

sure, and model levels (Copernicus Climate Change Service and Climate Data Store, 2023; 

Hersbach et al., 2023). 

For this study, the zonal and meridional wind speed components 𝑢 and 𝑣 [m/s], temperature 

𝑡 [K] and specific humidity 𝑞 [kg/kg] were obtained on the model levels 100 to 137, the latter 

being the lowest model level. In addition, the natural logarithm of the surface pressure 𝑙𝑛𝑠𝑝 [-

] was queried as a single level variable. Similarly, the (planetary) boundary layer height 𝑏𝑙ℎ 

[m] was obtained. All variables were acquired using an API provided by ECMWF in the Python 

package cdsapi (Copernicus Climate Change Service and Climate Data Store, 2023). 

 

3.4 Bottom-up reported NOx emissions 

Bottom-up reported emissions are needed to assess the accuracy of emission estimates. Since 

the year 2000, member states of the European Union have been required to report their emis-

sions of air and water pollutants (European Parliament and Council of the European Union, 

2006). These data were made publicly available in 2006 through the European Pollutant Release 

and Transfer Register (E-PRTR). The database contains the annual emissions of pollutants from 
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nine major sectors such as energy production or metal processing and is available on the Euro-

pean Industrial Emissions Portal (https://industry.eea.europa.eu/). 

For this study, data on annual NOx emissions from the Jänschwalde power plant were down-

loaded for the years 2020 to 2021. For the Bełchatów power plant, the data are only available 

up to 2017. Therefore, the CO2 and NOx emissions for 2017 were used to extrapolate the ex-

pected emissions for the years 2020 to 2021 (see section 4.8). 

For the metallurgical plant in Lipetsk, pollutant emissions are included in the annual report of 

the operating company NLMK (https://nlmk.com/en/ir/results/annual-reports/). However, 

emissions for this site are only reported in kilograms per tonne of steel produced. As there is no 

indication of the total amount of steel produced at the Lipetsk site, the NOx data could not be 

converted into total emissions. As a result, the prescribed emissions of NOx, CO2 and CO in the 

MicroHH simulations did not represent the Lipetsk site in particular but rather the NLMK group 

as a whole. In addition, NLMK produces electricity in captive power plants at the Lipetsk site 

(NLMK Group, 2021). However, it is unclear whether these NOx emissions are included in the 

reported emissions. Therefore, this study does not use bottom-up reported emission data for 

Lipetsk. 

For the Matimba and Medupi power plants, daily emissions are provided in monthly reports by 

the operating company Eskom (https://www.eskom.co.za/dataportal/emissions/ael). The NOx 

emission data for the years 2020 and 2021 were collected and summed for both power plants. 

For 2022, not all data was available at the time of the analysis which is why the focus of this 

study lies on the years 2020 and 2021. 

 

3.5 Energy generation 

To interpolate the monthly or annual bottom-up reported CO2 and NOx emissions of power 

plants to a higher temporal resolution, their energy output can be used (Nassar et al., 2022). For 

European power plants, the amount of electricity generated is available at hourly resolution on 

the transparency platform of the European Network of Transmission System Operators for Elec-

tricity (ENTSO-E) (https://transparency.entsoe.eu/). 

For this study, data of the Bełchatów and Jänschwalde power plants for the years 2017, 2020 

and 2021 were retrieved via an API using the Python package entsoe-py. For the Matimba and 

Medupi power plants, the daily electricity production is provided in the monthly reports of the 

operating company Eskom.  
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4 Methods 

4.1 Analysis of NOx:NO2 ratios 

In order to implement a more realistic conversion of NO2 to NOx, the vertically integrated Mi-

croHH simulations were analysed for the sources Bełchatów, Jänschwalde, Lipetsk, and 

Matimba (see section 3.1). 

As a first step, the plume detection and centre line fit from ddeq were applied to all but the first 

time step at 00:00 UTC, as it was the initialisation of the model run. For some time steps this 

procedure failed because the plume was outside the model boundaries, or the analytical solution 

of the centre line fit had multiple solutions. Consequently, these time steps were omitted. When 

the centre line was successfully fitted, polygons with a length spacing of 5 km were computed 

along the centre line. For each polygon, the line densities of CO2, NO, and NO2 were calculated 

by summing the concentration of each pixel within the polygon. The sums were multiplied by 

the pixel size and divided by the length of the polygon to obtain the line densities. The concen-

trations were given as the sum of the background and power plant concentrations of the middle 

emission profile. Contrary to the procedure in ddeq, where a Gaussian curve is fitted to the 

VCDs of every pixel in each polygon to estimate the line densities, the concentrations were 

summed because no clouds were simulated in MicroHH. Therefore, the simulated trace gas 

fields had no missing values that could have biased the integration. 

The NOx columns were calculated by adding the summed NO and NO2 columns and the 

NOx:NO2 ratios were computed for each polygon along the plume. 

 

4.2 Calculation of representative wind speeds 

The conversion of trace gas line densities into fluxes using the cross-sectional flux method 

requires the wind speed at which the plume is transported (see section 2.6). While the plume is 

advected at different speeds at different altitudes, satellites measure a vertically integrated 2D 

representation of the plume. Accordingly, a 2D wind field must be calculated that is representa-

tive of the effective wind speed at which the plume was transported. In the current study, two 

methods were implemented. 

One method to calculate such a vertically integrated wind is to weight the ERA5 3D wind fields 

with a profile representing the expected vertical distribution of emissions in Figure 4.1 (Brunner 

et al., 2019). In this study, it is referred to as the GNFR-A profile as it represents the emission 
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profile of the public electricity and heat generation which 

belong to the category A of the Gridded Nomenclature 

For Reporting (GNFR) framework (UNECE, 2015). 

In order to weight the 3D wind fields with the profile, the 

first step was to calculate the geometric height of the 

ERA5 model layers which was done according to the 

ERA5 documentation (Copernicus Climate Change Ser-

vice and Climate Data Store, 2023). For this purpose, the 

pressure at each model half layer was calculated using the 

coefficients 𝑎𝑏 and 𝑏𝑏 defining the model layer bounda-

ries and the surface pressure 𝑝𝑠 = 𝑒
𝑙𝑛𝑠𝑝: 

 𝑝𝑏 = 𝑎𝑏 + 𝑏𝑏 ∙ 𝑝𝑠 (4.1) 

The pressure in the middle of the layers was calculated by averaging the pressure at the upper 

and lower boundaries of each layer: 

 𝑝𝑙 =
𝑝𝑏,𝑡𝑜𝑝 + 𝑝𝑏,𝑏𝑜𝑡𝑡𝑜𝑚

2
 (4.2) 

The virtual temperature of each layer 𝑇𝑣,𝑙 was calculated using the temperature 𝑇𝑙 and specific 

humidity 𝑞𝑙 of each layer (Lohmann et al., 2016): 

 𝑇𝑣,𝑙 = 𝑇𝑙 ∙ (1 + 0.608 ∙ 𝑞𝑙) (4.3) 

Finally, the height of each layer was calculated using the hypsometric equation (Wallace and 

Hobbs, 2006): 

 ℎ𝑙 = ln (
𝑝𝑠
𝑝𝑙
) ∙
𝑅 ∙ 𝑇𝑣,𝑙
𝑚 ∙ 𝑔

 (4.4) 

where 𝑅 is the universal gas constant and 𝑚 = 0.02896 kg/mol is the molar mass of dry air. 

The GNFR-A profile weights were interpolated to the geometric height of the ERA5 model 

layers and normalised by dividing the weight of each layer by the sum of all weights. The hor-

izontal components of the wind speed (𝑢, 𝑣) were then multiplied by the corresponding weight, 

summed over each layer, and divided by the vertical sum of the weights. 

A second method of calculating a vertically integrated wind describing the advection of a plume 

is to calculate the mean wind speed within the planetary boundary layer (PBL). For this, the 

Figure 4.1: GNFR-A profile as a function 

of height. 
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geometric height of each ERA5 model layer was calculated analogously to the first method 

above and the unweighted mean wind speed within the PBL was calculated. If the PBL was 

lower than the mode of the GNFR-A emission profile, the wind speed was omitted. The thresh-

old was set at 400 m, but should ideally be dynamic and take into account parameters such as 

stack height, flue gas properties, and meteorological conditions (Brunner et al., 2019). 

However, computing accurate PBL-averaged wind speeds was beyond the scope of this study. 

Therefore, the GNFR-A weighted wind speeds were used for estimating NOx emissions from 

TROPOMI images. 

As in Kuhlmann et al. (2021), a fixed uncertainty was assumed for the wind speed. This value 

was set to 1 m/s even though Gualtieri (2022) estimated the total systematic uncertainty of the 

ERA5 wind data to be about -0.1 m/s compared to observations. The more conservative esti-

mate of 1 m/s is intended to incorporate the uncertainty due to vertical averaging of 3D wind 

fields. 

 

4.3 Backward integration of wind speed 

When computing the NOx:NO2 ratios following the method explained in section 4.1, the ratios 

are given as a function of distance along the plume, which is strongly dependent on the prevail-

ing wind speeds. However, as seen in section 2.4, the extent to which NOx chemistry has pro-

gressed depends on the time since emission. Thus, the NOx:NO2 ratio must be expressed as a 

function of time since emission by dividing the distance along the plume by the wind speed. 

As the wind speed varies over time, sections of the plume that are now downstream were pos-

sibly emitted at different wind speeds that the wind speed at the time of satellite overpass. Ac-

cordingly, to properly convert the distance along the plume into time since emission, the wind 

speed history has to be taken into account. To approximate it, the wind speed was iteratively 

integrated backwards in time along the plume. For MicroHH, the modelled winds were em-

ployed while for TROPOMI images, ERA5 wind data was utilised. In a first step, the wind 

speed at the source at time 𝑡 was multiplied by one hour to calculate the distance 𝑑𝑡 along the 

plume which an air parcel would have travelled in that time. In a second step, the wind speed 

at the source at time 𝑡 − 1 was used to calculate 𝑑𝑡−1. The resulting distance was added to 𝑑𝑡 

to estimate the total distance travelled by an air parcel that was emitted an hour prior. This 

process was repeated until the cumulative distance was greater than the detected plume. The 

result was the wind speeds of the past time steps representing the cumulative distance along the 
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plume. These wind speeds were then interpolated to the distance along the plume at the centre 

of each polygon. 

To test whether the backward integration of wind speeds is a good representation of the effec-

tive wind speed in the plume, the Pearson correlation coefficient between the CO2 line densities 

and the wind speed of each polygon was calculated for all time steps of the four MicroHH 

simulations. The CO2 line densities were used to avoid a confounding influence of chemistry 

on the correlation coefficient. The above procedure was performed once using only the wind 

speed at the source for each time step and once using the backward integrated wind. 

 

4.4 Conversion of NO2 to NOx  

To obtain a NO2-to-NOx conversion factor for each of the four sources, the median and standard 

deviation of the NOx:NO2 ratios calculated in section 4.1 were used. Only the time steps 8 to 

14 UTC during the day were used because the PBL starts to shrink in the afternoon. The plume 

is thus emitted into the free troposphere and experiences a different wind speed than the part of 

the plume that was previously emitted into the PBL. Additionally, air parcels which were pre-

viously within the PBL become part of the free troposphere where wind speeds are higher and 

often differ in direction compared to the PBL winds. The different directions of propagation 

result in two plumes which can lead to the failure of the centre line fit. The different wind speeds 

cause secondary NOx peaks which often lead to inaccurate emission estimates when fitting the 

trace gas flux along the plume. Furthermore, using only daytime simulations ensures that the 

NO2-to-NOx conversion factors are fitted under similar conditions as at the time of the TRO-

POMI overpass. 

A negative exponential function was fitted to the median NOx:NO2 ratio of each source, using 

the standard deviation as the weight for the fit: 

 𝑓(𝑡) = 𝑚 ∙ 𝑒−𝜏∙𝑡 + 𝑓0 (4.5) 

Ther fitting parameter 𝑚 represents the scaling factor, 𝜏 the decay constant and 𝑓0 the offset 

term to which the NOx:NO2 ratio will converge to. 

The resulting conversion factor 𝑓(𝑡) can be multiplied by the corresponding NO2 line densities 

to obtain NOx. The uncertainty 𝜎𝑓 of 𝑓 is calculated according to the propagation of uncertainty: 
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 𝜎𝑓 = √(
𝛿𝑓(𝑡)

𝛿𝑚
)
2

∙ 𝜎𝑚2 + (
𝛿𝑓(𝑡)

𝛿𝜏
)

2

∙ 𝜎𝜏2 + (
𝛿𝑓(𝑡)

𝛿𝑓0
)
2

∙ 𝜎𝑓0
2  

(4.6) 

The uncertainty 𝜎𝑓 is used to update the uncertainty 𝜎𝑙 of the NOx line densities 𝑙: 

 𝜎𝑙 = √𝑓2 ∙ 𝜎𝑙
2 + 𝜎𝑓

2 ∙ 𝑙2 (4.7) 

In an exploratory approach, a simple random forest (RF) regression was tested to obtain an 

estimate of the fit parameters 𝑚, 𝜏 and 𝑓0 that can account for different locations and conditions. 

Therefore, Eq. (2.5) was fitted to the NOx:NO2 ratios of each time step of the four simulated 

cases. The fitted parameters were used as response variables in the RF, while the solar zenith 

angle (SZA), temperature, prescribed emissions, and the background (BG) concentrations of 

the trace gases in the MicroHH simulations served as explanatory variables. The SZA was used 

as a proxy for the photolysis rate because they are linearly correlated but the SZA is easier to 

calculate. The RF consisted of 1000 trees, each using a random selection of only three explan-

atory variables. 

 

4.5 Validation of the NO2-to-NOx conversion 

To ensure that the algorithm described in the previous section yields NOx emission estimates 

that are consistent with the emitted quantities, the algorithm was tested using the same Mi-

croHH data that was employed to calculate the NO2-to-NOx conversion. For this purpose, the 

NOx emissions of the same daytime time steps as in section 4.4 were estimated three times with 

ddeq: once using the modelled NOx fields, once using the NO2 fields and applying the constant 

NO2-to-NOx conversion factor of 1.32 (referred to as the old algorithm), and once using the 

negative exponential functions fitted in section 4.4 as conversion factors (referred to as the new 

algorithm). 

To separate the effects of the newly implemented NO2-to-NOx conversion and the backward 

integrated winds, this validation was performed once using only the wind speed at the source 

for the whole plume and once using the backward integrated wind. 

The quantified NOx emissions were compared to the prescribed (i.e., true) emissions in the 

model runs. In addition, the NOx decay time was used to assess whether the new algorithm 

provides a more realistic representation of NOx chemistry. 
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4.6 Processing of TROPOMI datasets 

The downloaded NO2 and auxiliary TROPOMI data were combined into one dataset, cropped 

to the respective sources, and some variables were renamed to ensure compatibility with the 

existing algorithms in ddeq. 

The uncertainty of the tropospheric NO2 VCDs was set to 7.6 ⋅ 10−7 kg/m2, which corresponds 

to 1 ⋅ 1015 molecules/cm2. This is an average uncertainty over polluted regions and corresponds 

to approximately 20% of the measured NO2 VCDs (van Geffen et al., 2019). The constant un-

certainty was used over the tropospheric NO2 VCD precision in the TROPOMI data file, as the 

latter depends on the slant column density and thus on the VCD itself (see also Kuhlmann et al. 

(2022)). 

 

4.7 Calculation of the updated air mass factor 

As the TM5-MP model has a relatively coarse resolution of 1° × 1°, it cannot resolve individual 

plumes. Therefore, the NO2 profiles in these areas are underestimated which leads to biases in 

the AMFs and VCDs (see section 2.5). To evaluate the influence of the NO2 profile on the 

tropospheric AMFs and VCDs, both were recalculated exploratively for Matimba, using the 

higher resolution MicroHH profiles. In a first step, the pressure of each model level of the 

TROPOMI auxiliary data was calculated using Eq. (4.1), where the parameters 𝑎𝑚 and 𝑏𝑚 were 

given for the centre of each TM5-MP model layer. Consequently, the application of Eq. (4.2) 

was omitted. In a second step, the geometric height of each TM5-MP model layer was calcu-

lated by applying Eq. (4.4). However, instead of the virtual temperature, the air temperature 

was used because no measure of humidity is given in the auxiliary data. In a third step, the 

TM5-MP latitude and longitude were interpolated to the TROPOMI NO2 product and the two 

datasets were merged. Next, the MicroHH NO2 profiles of the Matimba model domain were 

interpolated to the heights of the TM5-MP model. Below a height of 4 km, where MicroHH 

data are available, the TM5-MP profile was replaced by these profiles. Finally, the new AMFs 

were calculated using the averaging kernels 𝐴𝑙 and the new NO2 concentrations in each layer 

𝑥𝑛𝑒𝑤,𝑙 (Eskes et al., 2022): 

 𝐴𝑀𝐹𝑛𝑒𝑤(𝑥𝑛𝑒𝑤) =  𝐴𝑀𝐹𝑜𝑙𝑑(𝑥𝑜𝑙𝑑) ⋅
∑ 𝐴𝑙 ⋅ 𝑥𝑛𝑒𝑤,𝑙𝑙

∑ 𝑥𝑛𝑒𝑤,𝑙𝑙
 (4.8) 

The updated AMFs were then used to update the VCDs: 
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 𝑉𝐶𝐷𝑛𝑒𝑤 =
𝑉𝐶𝐷𝑜𝑙𝑑 ⋅ 𝐴𝑀𝐹𝑜𝑙𝑑

𝐴𝑀𝐹𝑛𝑒𝑤
 (4.9) 

In the above approach, the NO2 profiles were replaced up to a height of 4 km. However, it is in 

fact only necessary to update the profile within the PBL, as NO2 is emitted into the PBL, leading 

to greater spatial heterogeneity there. 

To investigate the effects of higher NO2 concentrations in the PBL on the AMFs for the TRO-

POMI images of Bełchatów, Jänschwalde, Lipetsk, and Matimba, the ERA5 PBL height data 

were interpolated to the higher resolution TROPOMI pixels. The NO2 concentration within the 

PBL of the detected plumes was set to 5 ⋅ 10−9 mol/mol for all images of the years 2020 and 

2021. This is a representative NO2 concentration for the plumes based on the four MicroHH 

simulations. With these profiles, the new AMFs were calculated using Eq. (4.8) and compared 

with the existing ones. 

Ideally, the NO2 profiles of the background pixels should also be updated using concentrations 

from higher resolution models. However, the temporally and spatially varying background con-

ditions make it difficult to estimate representative background concentrations for annual data 

at different locations. Therefore, the NO2 profiles within and outside the detected plume were 

only exploratively updated. This was done for the TROPOMI image of Matimba on the 25th of 

July 2020 at 12:00 UTC as it corresponds to the date of the MicroHH simulation. The PBL NO2 

profiles within the detected plume were set to 5 ⋅ 10−9 mol/mol and outside of the plume to 2 ⋅

10−10 mol/mol. Both values are representative concentrations within the PBL in the MicroHH 

simulations. The AMFs and VCDs were recalculated using Eqs. (4.8) and (4.9) and used to 

estimate the NOx emissions. 

Updating the NO2 concentration within the PBL to a fixed value is problematic as the concen-

tration depends, among other things, on source strength and wind speed. Applying the same 

PBL concentration to different plumes is therefore not advisable. For this reason, the current 

study includes an exploratory approach to iteratively update the NO2 profiles within the PBL 

by using a first estimate of the NOx emissions. To do so, a relationship must be derived between 

the total NOx mass in a plume and the median wind speed within the plume. This was done by 

summing the NOx VCDs of the entire detected plume in each time step of each MicroHH sim-

ulation. The sum was then multiplied by the pixel size to obtain the total NOx mass of the plume. 

As the models had different prescribed emissions and the plumes had different lengths in each 

time step, the result was corrected by dividing the NOx mass by emission strength and plume 

length, yielding the corrected NOx mass. In addition, the median wind speed of the plume was 
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calculated. The function in Eq. (4.10) was fitted to the relationship between the median wind 

speed 𝑤 and the corrected NOx mass 𝑚. 

 𝑚(𝑤) = 𝑎 ∙ 𝑤𝑏 (4.10) 

From this relationship, the expected corrected NOx mass in a plume can be estimated for a given 

wind speed. Multiplying the NOx mass by the length of the plume as well as the first NOx 

emission estimate and distributing the resulting mass equally into each polygon along the plume 

gives an estimate of the average NOx mass in each polygon. By dividing this value by the num-

ber of plume pixels detected in each polygon and the area of each pixel, the average VCD of 

all pixels can be calculated. It can be converted to an average NOx profile within the PBL by 

dividing by the PBL height. To convert to NO2, the values are divided by 1.5, which is the 

average of the fitted values for 𝑓0 in section 4.4. Estimating the NO2 concentration within the 

PBL iteratively was performed exploratively for the Matimba simulation on the 25th of July 

2020 at 12:00 UTC. 

 

4.8 Interpolation of bottom-up reported NOx emissions 

According to Nassar et al. (2022), the monthly and annual bottom-up reported CO2 and NOx 

emissions of power plants can be interpolated to a higher temporal resolution using their energy 

output. In a first step, the generated power of each operating unit was summed. The hourly or 

daily output of each year was divided by the average output of that year. Finally, the resulting 

values were multiplied by the monthly or annual bottom-up reported emissions and converted 

to kilotons per year. 

For Bełchatów, data for CO2 and NOx emissions are only available until 2017. To obtain esti-

mates for the years 2020 to 2021, the power output for each year was summed and divided by 

the sum of the year 2017. These values were then multiplied by the CO2 and NOx emissions of 

the year 2017 to get the estimated emissions for each year. Finally, the annual emissions were 

interpolated using the same procedure as above. To check the plausibility of the extrapolated 

values for Bełchatów, the expected CO2 emissions were compared with those in Table 1 of 

Nassar et al. (2022). 
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4.9 Application of the NO2-to-NOx conversion to TROPOMI 

From the downloaded and processed TROPOMI data, those with missing values around the 

source and those with non-visible plumes were discarded. For the remaining data, the cross-

sectional flux method was applied. Images where other plumes were erroneously detected, 

where the fitted curve did not accurately represent the plume, where the NOx fluxes along the 

plume had outliers, or where the wind direction deviated more than 90° from the plume were 

removed. To ensure that there were enough pixels to reliably fit a Gaussian curve of NO2 VCDs 

in each polygon, the polygon spacing was set to 15 km. For each image, ERA5 wind data were 

processed as described in sections 4.2 and 4.3. Emissions were estimated using the old and new 

algorithms and the AMF correction was applied to the latter. For each source, the respective 

fitting parameters in Table 5.1 were used to convert NO2 into NOx. 

When calculating the annual statistics of the estimated NOx emissions, the median and standard 

deviation were calculated as the median of the monthly statistics. This was done to avoid a 

potential bias due to an unbalanced number of data points for each month. For the uncertainty 

of the annual emission estimates, a seasonal cycle was fitted to the emission estimates using a 

cubic Hermite spline with periodic boundary conditions (Kuhlmann et al., 2021). The corre-

sponding uncertainty 𝜎𝑒 accounts for the uncertainties of the single-overpass estimates through 

error propagation. To further account for uncertainties in the diurnal (𝜎𝑑) and seasonal (𝜎𝑠) 

cycles, the total uncertainty 𝜎𝑡𝑜𝑡 was calculated as follows: 

 𝜎𝑡𝑜𝑡 = √𝜎𝑒2 +
𝜎𝑑
2

𝑛
+
𝜎𝑠2

𝑛
 

(4.11) 

Here, both 𝜎𝑑 and 𝜎𝑠 were set to 30% according to Hill and Nassar (2019). 

As the estimated NOx emissions with the new algorithm depend on the NO2-to-NOx conversion 

factor, a sensitivity analysis was performed by applying the NO2-to-NOx conversion factors of 

Jänschwalde and Matimba calculated in section 4.4 to all four sources. 
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5 Results 

5.1 Analysis of NOx:NO2 ratios 

The analysis of the NOx:NO2 ratios in the MicroHH model runs for Bełchatów, Jänschwalde, 

Lipetsk, and Matimba in Figure 5.1 confirms that the NOx:NO2 ratios strongly depend on the 

time of day as well as on the time since emission: They reach the highest values at night and 

close to the source while the lowest values are observed in the afternoon and far from the source. 

The 1st to 99th percentiles range from 1 to 14. It is important to note that the time steps of the 

model run on the y-axis are shown in UTC whereas the local time would be UTC+2 for all four 

cases. 

 

Figure 5.1: NOx:NO2 ratios for the 48 time steps of the MicroHH simulations of Bełchatów, Jänschwalde, Lipetsk, 

and Matimba as a function of time since emission. 

The NOx:NO2 ratios of the Matimba model run are comparatively higher both at the source and 

at the tail of the plume compared to the other three simulations. Furthermore, the plumes in the 

Matimba simulation were much longer than those in Bełchatów, Jänschwalde, and Lipetsk, due 

to the smaller model domains for the latter three. Consequently, the time since emission is 

shorter for these cases. 
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5.2 Calculation of representative wind speeds 

As described in section 4.2, the GNFR-A weighted and mean PBL winds were implemented in 

this study to calculate 2D horizontal wind speeds from the ERA5 3D wind fields. However, the 

analysis of the resulting wind speeds showed only minor differences in most cases. An example 

for the 29th of May 2020 at 11:00 UTC for the location of Matimba is depicted in Figure 5.2. It 

shows that the GNFR-A profile in (a) lies entirely within the PBL which explains the good 

agreement between the 2D wind speed in black. 

 

Figure 5.2: Calculation of a representative wind speed from an ERA5 wind profile for the location of Matimba on 

the 29th of May 2020 at 11:00 UTC. (a) Weighted wind using the GNFR-A profile. (b) Mean wind within the 

planetary boundary layer (PBL). 

The vertically averaged wind speeds deviate more when the PBL is shallower, which is the case 

in the morning and in winter. In some cases, the PBL may also be below the stack height of the 

sources. For this reason, the GNFR-A weighted wind speeds have been used in this study as 

described in section 4.2. 

 

5.3 Backward integration of wind speed 

The correlation between the CO2 line densities and the two representations of wind speed in 

each polygon is shown in Figure 5.3. At the source, the correlation is strongly negative but 

weakens for both representations of wind speed further away from the source. However, the 

correlation remains stronger for the backward integrated wind speeds compared to using only 

the wind at the source. This is especially the case for the long plumes of the Matimba simulation. 
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Figure 5.3: Pearson correlation coefficient between CO2 line density and wind speed in each polygon of the de-

tected plumes of the MicroHH simulations of Bełchatów, Jänschwalde, Lipetsk, and Matimba. 

 

5.4 Conversion of NO2 to NOx 

Figure 5.4 shows the NOx:NO2 ratios of the daytime time steps 8 to 14 for both simulated days 

of all four model simulations. Plot (a) depicts the median and standard deviation of the ratios, 

while (b) shows the corresponding fitted negative exponential functions. 

 

Figure 5.4: NOx:NO2 ratios of the MicroHH daytime time steps as a function of time since emission. (a) Median 

and standard deviation. (b) Fitted negative exponential function and corresponding standard deviation. 
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The corresponding fitting parameters are listed in Table 5.1. 

Table 5.1: Fitting parameters of the negative exponential function in (4.5) for the daytime values of the NOx:NO2 

ratios of the four MicroHH simulations. 

Source 𝒎 [−] 𝟏𝟎𝟑 ⋅ 𝝉 [𝟏 𝒔⁄ ] 𝟏 𝝉⁄  [𝐦𝐢𝐧] 𝒇𝟎 [−] 

Bełchatów 3.89 ± 1.07 1.56 ± 0.18 10.67 1.65 ± 0.00 

Jänschwalde 2.43 ± 0.33 0.98 ± 0.10 17.05 1.43 ± 0.02 

Lipetsk 3.90 ± 0.34 1.99 ± 0.10 8.38 1.39 ± 0.01 

Matimba 5.66 ± 0.80 1.11 ± 0.01 15.08 1.81 ± 0.01 

Similar to Figure 5.1, Figure 5.4 reveals that the NOx:NO2 ratio is much higher than the previ-

ously used conversion factor 𝑓0 = 1.32 in black (see section 2.4). However, the Jänschwalde 

and Lipetsk simulations approach this value after one hour. On the contrary, the NOx:NO2 ratios 

of Bełchatów and Matimba show a significant deviation from 1.32. In all four simulations, the 

ratios level off half an hour after the emission or 50 km along the plume. Furthermore, Figure 

5.4 illustrates that the standard deviation close to the source is largest for Bełchatów, which 

leads to a higher uncertainty in the fitted function. 

The results of the exploratory RF regression in Figure 5.5 show that photolysis rates (repre-

sented by SZA), air temperature, prescribed emissions and CO background concentrations were 

most important in predicting the fitting parameters.  

 

Figure 5.5: Importance of the explanatory variables predicting the fitting parameters m, τ and f0 using a random 

forest. 

Using this RF to predict the fitting parameters for estimating NOx emissions revealed that the 

median estimated emissions were comparable to those using the simulation specific conversion 
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factors in Table 5.1. However, the variability of the emission estimates was much higher using 

the RF. 

 

5.5 Validation of the NO2-to-NOx conversion 

The application of the new algorithm to MicroHH is illustrated in Figure 5.6 for the 24th of July 

2020 at 12:00 UTC for the simulation of Matimba. For this, the wind speeds at the source were 

used in the cross-sectional flux method. Subplot (a) depicts the simulated NO2 columns, the 

detected plume as well as the fitted curve and the polygons. Subplot (b) shows the Gaussian 

curve fits for the first four and last two polygons where both CO2 and NO2 were used for the 

curve fitting. Subplot (c) displays the estimated NO2 and NOx fluxes along the plume with their 

fitted exponential decays as dotted lines. For NO2, the flux increases after the emission and 

peaks between 25 and 30 km. Conversely, the NOx flux culminates in the first polygon between 

0 and 5 km and decreases afterwards. With the new algorithm, the estimated NOx emissions are 

62.0 ± 13.0 kt/yr which is close to the true emissions of 78.6 kt/yr shown as the black dashed 

line. Using the old algorithm, the estimated NOx emissions would only be 29.4 ± 6.2 kt/yr. In 

addition, the estimated NOx decay time using the new algorithm is more realistic at 6.5 ± 1.4 h 

compared to the estimated 25.2 ± 5.3 h using the old algorithm. 

 

Figure 5.6: Overview of the application of the new algorithm to estimate NOx emissions for the 24th of July 2020 

at 12:00 UTC using the Matimba MicroHH simulation. 
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Figure 5.7 depicts the comparison of NOx emission estimates for the MicroHH daytime time 

steps using the old and new algorithms and the wind speeds at the source. The results from the 

new algorithm are more in line with the estimates from the modelled NOx fields and are in 

better agreement with the prescribed emissions. The median and standard deviation of the esti-

mates are slightly higher for the new algorithm compared to that of the modelled NOx fields. 

 

Figure 5.7: (a) Comparison of estimated NOx emissions against the bottom-up reported and (b) estimated NOx 

decay times using the old and new algorithms as well as the modelled NOx fields. Only the daytime time steps of 

the MicroHH simulations were utilised and for the wind speed, the source wind was used. 

Similar to the estimated emissions, the estimated NOx decay times using the new algorithm are 

more consistent with those from the modelled NOx fields. The median decay times are between 

1.7 and 8.9 h whereas the estimates for all four cases using the old algorithm are more than 

twice as high. 

With regard to the mean bias error of the estimated NOx emissions of the daytime time steps, 

the new algorithm produces biases that are more consistent with those of the modelled NOx 

fields. Nevertheless, the bias is slightly higher with the new algorithm compared to the mod-

elled NOx fields for all cases. 

Using the backward integrated winds instead of the source wind for the same analysis as above 

slightly reduces the variability of NOx emission estimates but significantly increases the varia-

bility of the NOx lifetimes for the modelled NOx fields and the new algorithm (see Figure A.2). 

However, the median lifetimes are comparable to those in Figure 5.7 except for Matimba. 
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5.6 Calculation of the updated air mass factors 

As described in section 4.7, the AMF is calculated based on the vertical NO2 profiles of the 

TM5-MP model. Figure 5.8a shows such a TM5-MP profile for the TROPOMI pixel at the 

location of the Matimba power plant on the 25th of July 2020 at 12:00 UTC in dark blue. In 

addition, the individual MicroHH profiles for the extent of this pixel are plotted in grey as well 

as their mean in light blue. It can be seen that the NO2 concentrations are enhanced by two 

orders of magnitude compared to the background concentrations of 3 ⋅ 10−10 mol/mol within 

the PBL. This enhancement is not captured by the coarse resolution TM5-MP model profile. 

Figure 5.8b shows the distribution of AMFs when the NO2 profile of the Matimba source pixel 

is replaced by each of the MicroHH profiles. Profiles with high concentrations within the PBL 

result in lower AMFs and vice versa. For example, the range of AMFs between 0.5 and 1 is 

caused by NO2 concentrations higher than 5 ⋅ 10−9 mol/mol. On the other hand, NO2 concen-

trations between 5 ⋅ 10−9 mol/mol and the background concentration lead to AMFs between 1 

and 1.3. Thus, these AMFs show a spread of 0.3 around the default AMF, which corresponds 

to an uncertainty of the AMF of 25%. The large peak at 1.37 is caused by the MicroHH back-

ground concentration which is lower than the modelled NO2 concentration in TM5-MP. 

 

Figure 5.8: (a) TM5-MP and MicroHH NO2 profiles of the Sentinel-5P source pixel for Matimba on the 25th of 

July 2020 at 12:00 UTC. (b) Histogram of the default and recalculated AMFs of the TROPOMI pixel containing 

Matimba power plant based on MicroHH NO2 profiles. 

Setting the NO2 profiles within the PBL to a more realistic value of 5 ⋅ 10−9 mol/mol for all 

TROPOMI images of Bełchatów, Jänschwalde, Lipetsk, and Matimba leads to the changes in 
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the AMF shown in Figure 5.9. It reveals that recalculating the AMF leads to lower AMFs com-

pared to the default ones. For all sources, the standard deviations of the AMFs are around 0.12. 

 

Figure 5.9: Default and updated AMF of TROPOMI images of Bełchatów, Jänschwalde, Lipetsk, and Matimba 

for the years 2020 and 2021. For the updated AMFs, the NO2 concentration was set to 5 ∙ 10 –9 mol/mol within the 

PBL of the detected plumes. 

The relative differences between the old and new AMFs as well as the resulting increase in 

VCDs according to Eq. (4.9) are shown in Table 5.2. 

Table 5.2: Relative change in AMFs and VCDs for NO2 profiles set to 5 ∙ 10 –9 mol/mol within the PBL for all 

TROPOMI images of Bełchatów, Jänschwalde, Lipetsk, and Matimba for the years 2020 and 2021. 

Source Relative difference in AMF Resulting change in VCD 

Bełchatów -0.137 1.15 

Jänschwalde -0.102 1.11 

Lipetsk -0.159 1.35 

Matimba -0.214 1.27 

Instead of setting the NO2 profile of plume pixels to a predetermined value, it is also possible 

to iteratively approach the expected concentration. To this end, the relationship between the 

corrected NOx mass and the median wind speed within the plume is quantified in Figure 5.10a. 

The corrected NOx mass within the plume has a strong correlation with the median wind speed 

except for wind speeds below 4 m/s. Fitting Eq. (4.10) yields 𝑎 = 424 and 𝑏 = -0.68 with a 

standard deviation 𝜎𝑎 = 28.9 and 𝜎𝑏 = 0.038. Applying this function to the median wind speed 

of each plume gives the estimated total NOx mass in Figure 5.10b with a good correlation to 

the measured NOx mass (R2 = 0.61). The high spread of the NOx mass at low wind speeds also 

leads to estimates which differ more from the measured values. Figure 5.10c shows the TM5-
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MP NO2 profile of the TROPOMI pixel containing the Matimba power plant (dark blue) and 

the updated NOx profile (light blue) with a concentration of 5.1 ⋅ 10−9 mol/mol NO2 in the 

PBL. In addition, all MicroHH profiles of the plume for the same time step are plotted (grey). 

It can be seen that the updated NO2 profile represents the concentrations within the PBL much 

better than the TM5-MP profile. Using this profile to recalculate the AMFs leads to an increase 

of 30.6% which in turn results in VCDs that are 1.44 times higher than the default values. 

 

Figure 5.10: (a) Relationship between median wind speed and total NOx mass within the plume. (b) Measured and 

estimated NOx mass within the plume. (c) Updated NO2 profile for the 25th of July 2020 at 12:00 UTC based on 

the estimated total NOx mass within the plume. 

Ideally, the NO2 profiles should be updated not only for the detected plume pixels but also for 

the background pixels. The exploratory approach, where the NO2 concentration of the back-

ground pixels was set to 2 ⋅ 10−10 mol/mol for the TROPOMI images of the 24th and 25th of 

July 2020 at 12:00 UTC resulted in an enhancement of the estimated NOx emission (see Figure 

A.3 and Figure A.4). For the 24th, they increased from 92.0 ± 15.7 kt NOx per year to 156.7 ± 

26.8 kt, which is equivalent to an increase of 70.3%. For the 25th, only 57.1 ± 15.6 kt NOx per 

year were estimated for the default image, while the updated NO2 profiles resulted in 81.1 ± 

22.1 kt, which corresponds to an increase of 42.0%. These enhancements are much larger than 

the correction factor for Matimba calculated in Table 5.2. 
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5.7 Interpolation of bottom-up reported NOx emissions 

The comparison of the extrapolated expected CO2 emissions for Bełchatów with those in Nassar 

et al. (2022) revealed that even if the annual CO2 emissions and the hourly power generation 

were identical, the estimated hourly CO2 emissions in the current study were 15% higher. Fur-

thermore, if the emissions were correctly interpolated in both studies, there should be a linear 

relationship between power generation and NOx emissions. However, this was not the case for 

some of the values in Nassar et al. (2022). For this reason, it is assumed that the emissions in 

the current study have been extrapolated correctly. 

 

5.8 Application of the NO2-to-NOx conversion to TROPOMI 

Table 5.3 lists the annual number of total TROPOMI images, the cloud-free images, those 

where the plume detection and centre line fit work, and the images that could be used to estimate 

emissions for the years 2020 and 2021. 

Table 5.3: Annual number of TROPOMI images of Bełchatów, Jänschwalde, Lipetsk, and Matimba for the years 

2020 and 2021 for different stages of the processing chain for NOx emission estimation. 

 Number of TROPOMI images per year 

Source Total Cloud-free Pl. det & c. fit Est. emissions 

Bełchatów 737 64 36 32 

Jänschwalde 807 42 17 9 

Lipetsk 862 58 33 28 

Matimba 454 206 171 153 

At least two images per day were available for Bełchatów, Jänschwalde, and Lipetsk due to 

their high latitude. However, this had little positive effect on the number of usable images, 

because if one image was not usable due to high cloud cover, the following image from the 

same day could often not be used either. For these three sources, only about 7% of the total 

images were cloud-free, with plume detection working for half of them. For Matimba, almost 

half of the total available images were cloud-free, with plume detection working on more than 

80% of these images. 

Using ddeq to estimate the NOx emissions from the TROPOMI data for the years 2020 and 

2021 results in the estimated emissions shown in Table 5.4 and Figure 5.11. While the estimated 

emissions of the old algorithm reach between 40 and 60% of the bottom-up reported emissions, 

those derived with the new algorithm are more in line and reach about 65 to 90%. The AMF-

corrected estimates are between 85 and 100% of the bottom-up emissions. For all four sources, 

these estimates are within one standard deviation of the bottom-up reported emissions. This is 
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also likely to be the case for Lipetsk where reported emissions from the steel and power plant 

are expected to be somewhere below 27 kt/yr (Guevara et al., 2023; NLMK Group, 2021). 

Table 5.4: Median and standard deviation of estimated NOx emissions in kt/yr for the years 2020 and 2021 for 

Bełchatów, Jänschwalde, Lipetsk, and Matimba derived from TROPOMI images. 

 Median NOx emissions [kt/yr] 

Source 𝟏. 𝟑𝟐 ⋅ 𝐍𝐎𝟐 𝐟(𝐭) ⋅ 𝐍𝐎𝟐 𝐟(𝐭) ⋅ 𝐍𝐎𝟐 ⋅ 𝐂𝐀𝐌𝐅 Bottom-up 

Bełchatów 12.3 ± 2.9 19.4 ± 5.5 22.3 ± 6.4 25.1 

Jänschwalde 7.1 ± 1.6 10.4 ± 2.0 11.5 ± 2.3 11.6 

Lipetsk 12.8 ± 3.2 15.4 ± 4.7 20.8 ± 6.4 – 

Matimba 40.8 ± 11.9 69.1 ± 29.8 87.8 ± 37.8 103.4 

Similar to Figure 5.7, the range of estimated emissions in Figure 5.11a is largest for Matimba. 

This source also has the largest number of outliers. The relative mean bias error in Figure 5.11b 

is comparable for all four sources for a given method of estimating the NOx emissions. While 

the bias is more than -50% relative to the bottom-up reported emissions with the old algorithm, 

it is reduced to -20 to -30% with the new algorithm and to only -12 to -20% with the AMF 

correction. 

 

Figure 5.11: (a) Estimated NOx emissions and (b) their relative median bias errors for Bełchatów, Jänschwalde, 

Lipetsk, and Matimba for TROPOMI data of the years 2020 and 2021. 

The uncertainties of the single-overpass and annual estimates are listed in Table 5.5. The first 

column shows the median of all single-overpass estimate uncertainties. The second column 

represents the standard deviation of the difference between estimated and bottom-up reported 

emissions. These values are larger than those in the first column for two of the three cases. The 
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third column shows the uncertainties in annual emissions according to error propagation (see 

Figure A.6), while the fourth column includes uncertainties in diurnal and seasonal cycles. 

Table 5.5: Uncertainties of NOx emission estimates for single-overpass and annual estimates for Bełchatów, 

Jänschwalde, Lipetsk, and Matimba. 

 Single-overpass estimates [%] Annual estimates [%] 

Source 
Median 

uncertainty 

SD of bottom-

up - est. NOx 

Spline 

uncertainty 

Total 

uncertainty 

Bełchatów 22.4 21.1 6.2 9.7 

Jänschwalde 24.3 25.4 12.2 19.0 

Lipetsk 19.8 – 6.8 10.5 

Matimba 27.4 41.2 1.5 3.7 

The sensitivity analysis of the NO2-to-NOx conversion factor shows that applying the factor for 

Jänschwalde to all four sources leads to emission estimates that are 15.7% lower for Bełchatów, 

18.8% higher for Lipetsk and 22.9% lower for Matimba. Using the conversion factor of 

Matimba for all four sources results in 12.8% higher emissions for Bełchatów, 41.6% higher 

for Jänschwalde and 51.4% higher for Lipetsk. 
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6 Discussion 

6.1 NOx chemistry in plumes 

The main objective of this study was to develop a more realistic model for a conversion factor 

of NO2 to NOx that accounts for NOx chemistry in plumes. Therefore, the results of the current 

study depend heavily on the correct simulation of the NOx chemistry in MicroHH. This in turn 

depends on several factors such as the chemistry scheme, model resolution and boundary con-

ditions. Although MicroHH uses an existing chemistry scheme and established boundary con-

ditions, it is difficult to estimate the accuracy of its chemistry due to the influence of model 

resolution. This is because the resolution determines small-scale structures in the dispersion of 

the trace gases, called eddies, which are caused by turbulence. The higher the resolution, the 

more eddies can be observed which create a larger surface area between the plume and the 

ambient air, where most of the reactions take place (see section 2.4) (Koene and Brunner, 2023). 

The MicroHH simulations are currently the highest-resolution chemistry transport simulations 

applied at these scales. Consequently, no study has compared the modelled trace gases concen-

trations with observations yet. Such analyses exist only for the IFS chemistry scheme, on which 

the one implemented in MicroHH is based. For example, Flemming et al. (2015) showed that 

the IFS chemistry scheme can capture the dynamics of NO2 concentrations measured by satel-

lites and surface observations. The deviations found were attributed to the underestimation of 

prescribed NO emissions, NO2 lifetimes, and the simplified simulation of NOx reservoir species 

(Flemming et al., 2015). A more recent study by Huijnen et al. (2022) using the same chemistry 

scheme also found good agreement between simulated and satellite derived NO2 fields. How-

ever, especially over areas of high emissions, such a comparison suffers from the same biases 

due to the AMFs as seen in section 5.6. 

As an in-depth analysis of the accuracy of the NOx chemistry in MicroHH is beyond the scope 

of this analysis, it is assumed to be realistic enough for the purpose of this study. The assump-

tion is supported by the fact that the MicroHH simulations have an unprecedented resolution 

and that their chemistry scheme is tuned to the well-established NOx chemistry of the IFS. 

The understanding of the NOx chemistry in plumes has mainly been achieved by analysing the 

NOx:NO2 ratios in plumes. As seen in section 5.1, the ratios are much higher near the source 

because most of the NOx is emitted as NO which is then oxidised to NO2. The ratio is also 

higher at night because O3 is titrated and none is produced due to the absence of photolysis. As 

a result, a higher proportion of NO remains, leading to a higher NOx:NO2 ratio (see section 2.4). 
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A higher NOx:NO2 ratio can also be seen in Figure 5.4 for the Matimba case compared to the 

other three simulations. The main reason for this that the Matimba simulation was run on the 

24th and 25th of July, which is during the southern hemisphere winter. Accordingly, the SZA is 

larger than for the other three cases, resulting in lower irradiances and photolysis rates. Another 

reason in the higher NOx:NO2 ratios could be the lower background concentrations of O3 and 

VOCs for Matimba (see Figure A.1), which is due to the lower proportion of land mass in the 

southern hemisphere with smaller anthropogenic sources of NOx and VOCs. As a result, the 

HOx/NOx cycle is slower and less O3 is produced (see section 2.4) (Seinfeld and Pandis, 2006). 

In addition, the lower temperatures in winter lead to slower reaction rates (Seinfeld and Pandis, 

2006). It is also likely that the NOx:NO2 ratio is influenced by the amount of NOx emitted: the 

more that is emitted, the longer it takes for the plume to mix sufficiently to reach the photo-

stationary state. This may be one of the reasons why the NOx:NO2 ratio for Bełchatów levels 

off at a higher value for 𝑓0 compared to Jänschwalde and Lipetsk, even though they are at 

similar latitudes and have similar background concentrations of NOx, O3, and VOCs (see Figure 

A.1). 

The explanations for higher NOx:NO2 ratios outlined above can also be found in the importance 

of the explanatory variables in the RF implemented exploratively in this study. As seen in sec-

tion 5.4, the most important factor determining the intercept 𝑚 is the photolysis rate, as it gov-

erns the amount of O3 available for the oxidation of NO to NO2. On the other hand, the temper-

ature controls the variable 𝜏 the most, as it determines the rate of the O3 producing reactions. 

Finally, photolysis rates and prescribed emissions appear to have the greatest influence on the 

offset value 𝑓0, as the former determines how much of the NO is oxidised to NO2, while the 

latter determines the quantity of NO available for oxidation. For all three parameters, the back-

ground concentration of CO is also important as its reaction with OH radicals can initiate a 

chain of reactions leading to the oxidation of NO by HO2 (Seinfeld and Pandis, 2006). 

To summarise, the different NOx:NO2 ratios in the four MicroHH simulations are the result of 

different photolysis rates, temperatures, trace gas background concentrations and emitted quan-

tities. A RF regression could realistically determine these factors. 

 

6.2 Conversion of NO2 to NOx in plumes 

Ideally, the factors controlling NOx chemistry would be considered to determine the conversion 

of NO2 to NOx. This could be achieved using machine learning as the effects of photolysis rates, 
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temperatures, and trace gas background concentrations on NOx chemistry are expected to be 

non-linear. However, using the RF tested in this study to convert NO2 to NOx resulted in higher 

variances in the NOx emission estimates compared to the negative exponential functions in sec-

tion 5.4. One reason for this could be that the RF was trained using all 48 time steps of the 

MicroHH simulations while the negative exponential functions were fitted using only the day-

time values. Consequently, these functions could be overfitted when estimating NOx emissions 

of the same time steps. 

Overall, the implemented RF shows the potential of machine learning to convert NO2 to NOx. 

For this purpose, a more sophisticated model, such as a convolutional neural network, could be 

applied. Once trained, it could predict the NO2-to-NOx conversion factors without the need to 

run a high-resolution chemistry transport model for each plume. However, a number of such 

models covering a wide range of conditions would need to be run for proper training and vali-

dation of a machine learning model. Alternatively, Kuhlmann et al. (2021) suggested a look-up 

table of NO2-to-NOx conversion factors that could be obtained from chemistry transport simu-

lations. As both approaches were beyond the scope of this study, the four fitted negative expo-

nential functions in Table 5.1 were used to convert NO2 line densities to NOx. 

Applying these conversion factors to the MicroHH data as a validation shows that they can well 

account for the NOx chemistry: While the amount of NO2 in Figure 5.6 increases after emission 

due to the oxidation of NO to NO2, the NOx line densities are highest at the source as expected. 

Consequently, section 5.5 shows that the NOx emission estimates with the new algorithm are 

in good agreement with the NOx estimates from the modelled NOx fields. The same applies to 

the NOx lifetimes, which are more than halved with the new algorithm. This is because the NO2 

fluxes are converted to NOx by multiplication with a negative exponential function. As a result, 

the exponential decay fitted to the NOx fluxes to determine their lifetimes is steeper, leading to 

shorter lifetimes (see section 2.7). Therefore, the lifetimes are closer to the four hours derived 

in previous studies (e.g., Beirle et al., 2011), which was calculated for Riyadh. As photolysis 

rates are higher in Riyadh compared to e.g., Matimba in winter, the lifetimes are higher for the 

latter. The largest discrepancies between the estimated NOx emissions from the modelled NOx 

fields and the new algorithm for Bełchatów and Jänschwalde are probably due to the higher 

uncertainties of the fitted negative exponential functions. Nevertheless, the estimated emissions 

and lifetimes are a significant improvement over the previous approach of converting NO2 to 

NOx using a constant factor of 1.32. 
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The aim of the new algorithm is to achieve good agreement between the NOx emission estimates 

using the modelled NOx fields and those using the new algorithm. This implies that the new 

algorithm fully captures the NOx chemistry – assuming a realistic representation of the NOx 

chemistry in MicroHH. The remaining discrepancy between estimated and prescribed emis-

sions is therefore due to biases in the cross-sectional flux method. One such source of biases is 

the wind speed used to convert line densities to fluxes, which will be discussed in section 6.4. 

The biases of the new algorithm are more in line with those of the modelled NOx fields but are 

slightly larger because the implemented conversion of NO2 to NOx does not take into account 

the specific meteorological and background conditions of each time step, but the median con-

ditions. Thus, the bias is likely to increase when the NO2-to-NOx conversion factors derived in 

this study are applied to annual data, as the conditions under which these conversion factors 

were derived do not match those in the annual data. 

Nevertheless, these four fitted NO2-to-NOx conversion factors can be applied to annual TRO-

POMI images for two reasons. First, most of the images that can be used for plume detection 

were acquired between April and October (see Figure A.5). Images taken during the rest of the 

year often cannot be used for NOx estimation due to high cloud cover. Consequently, the pre-

vailing conditions for most of the emission estimates are comparable to those in the MicroHH 

model runs, which simulated days in May to July (see Table 3.1). Second, the four NO2-to-NOx 

conversion factors cover both winter and summer cases as well as different background condi-

tions such as maritime for Matimba and continental for the other three. Conducting a sensitivity 

analysis by using the NO2-to-NOx conversion factors of Jänschwalde (summer case) and 

Matimba (winter case) to estimate NOx emissions of all four sources therefore provides a pos-

sible range of NOx emission estimates. 

In conclusion, the newly implemented conversion factors for NO2 to NOx have shown a signif-

icant improvement in the estimation of NOx emissions from MicroHH simulations and are 

therefore considered suitable for the application to TROPOMI images. 

 

6.3 Quantification of NOx emissions from TROPOMI 

The application of the new NO2-to-NOx conversion to the TROPOMI data in section 5.8 has 

shown that the NOx emission estimates obtained with the new algorithm are much closer to the 

bottom-up reported emissions than the estimates from the old algorithm with a constant NO2-

to-NOx conversion factor of 1.32. Correspondingly, the relative median bias has decreased from 
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more than -60% to -12%, especially after applying the AMF correction factor. However, as 

mentioned in section 5.6, the emission estimates increase even further if the AMFs are updated 

not only for the detected plume, but also outside the plume (see also section 6.5). This leads to 

an even better agreement between bottom-up reported and estimated emissions or possibly an 

overestimation which would be in line with the overestimation of NOx emissions when using 

the new algorithm in Figure 5.7. The reason for such an overestimation could be that the NO2-

to-NOx conversion factors were fitted using all simulated daytime time steps from MicroHH 

and not only the ones at TROPOMI overpass. Furthermore, the implemented NO2-to-NOx con-

version cannot not take into account the specific meteorological and background conditions of 

individual TROPOMI images. Thus, the fitted parameters in Table 5.1 might be too high. 

It is worth noting that the range of NOx emission estimates for Matimba is the widest for both 

MicroHH and TROPOMI data. The most likely explanation is that the plumes are the longest 

for Matimba. Therefore, parts of the plume are several hours old and have been subject to dif-

ferent chemistry and wind speeds. This results in outliers in the NOx fluxes along the plume, 

leading to mismatched emission fits. The fact that the variance of the estimated emissions for 

MicroHH decreased slightly when using the backward integrated winds in section 5.5 indicates 

that this procedure can partially account for the temporal changes in wind speeds. However, the 

simplicity of backward integration limits its impact, which will be discussed in section 6.4. In 

addition, it cannot account for temporal changes in chemistry. 

As the number of successful emission estimates per year has a large influence on the uncertain-

ties of the annual emission estimates, maximising the number of suitable satellite images is 

crucial. Nevertheless, only a fraction of the TROPOMI images could be used for Bełchatów, 

Jänschwalde, and Lipetsk due to cloud cover (see Table 5.3). Especially between October and 

February, emissions could only be estimated for a few days (see Figure A.5). The strong sea-

sonal bias in the number of successful estimates may lead to an underestimation of annual emis-

sions as most emissions are expected to occur in winter due to the higher electricity demand. 

This gap cannot be filled by the upcoming Sentinel-5 satellite either but could be alleviated by 

existing and upcoming geostationary satellites such as GEMS, TEMPO, and Sentinel-4: The 

hourly temporal resolution increases the probability of obtaining a usable image on a cloudy 

day (EoPortal, 2023, 2014). It would also allow to resolve the diurnal cycle of NOx emissions, 

which currently cannot be captured with only one or two overpasses around noon. However, 

GEMS, Sentinel-4, and -5 have a coarser resolution than Sentinel-5P (EoPortal, 2014, 2013). 



42 

 

The problems caused by a coarse spatial resolution can be seen in the example of Jänschwalde 

in Table 5.3: As there are two coal-fired power plants in the vicinity of Jänschwalde, the plumes 

often mix, which is why the emissions cannot be estimated using the cross-sectional flux 

method (see section 2.6). This also applies to Bełchatów, but to a lesser extent. In contrast, 

fewer sources are located around Lipetsk and Matimba which could lead to overlapping plumes. 

As shown in Kuhlmann et al. (2021), a satellite with higher spatial resolution, such as CO2M, 

can help to better differentiate between plumes, mitigating the challenge of overlapping plumes.  

The comparison of the uncertainties of the NOx emission estimates in this study with those in 

Kuhlmann et al. (2021) highlights the importance of the number of successful emission esti-

mates. The uncertainties of the annual emissions between 3.7 and 19% in this study are signif-

icantly lower than the uncertainties of 16 to 73% and 13 to 52% for two and three of the CO2M 

satellites in Kuhlmann et al. (2021). The reasons are the higher temporal resolution of TRO-

POMI compared to CO2M and the high source strength of the power plants considered in the 

current study. A comparison of the uncertainties of the single-overpass estimates due to random 

error between the two studies reveals that those in the current study are marginally lower than 

the 29% derived in Kuhlmann et al. (2021). This difference may be attributed to the considera-

tion of additional uncertainties in their study by including a source strength dependent factor 

and an offset. The uncertainties of single-overpass estimates in Table 5.5 would agree with 

those in the second column if the bottom-up reported emissions corresponded to the true emis-

sions and all uncertainties were included in the emission estimation. However, the larger mag-

nitude of the values in the second column indicates the presence of other uncertainties which 

were not considered in the emission estimation. These include the simplified representation of 

instrument noise, wind speed, and AMFs. On top of these random errors, there are uncertainties 

due to systematic errors such as the representation of wind speeds, the estimation of background 

concentrations, the application of the NO2-to-NOx conversion factors to annual data, and meth-

odological uncertainties, which are not represented in the estimated uncertainties. 

The systematic biases due to the application of the NO2-to-NOx conversion factors to annual 

TROPOMI data were investigated in the form of a sensitivity analysis in section 5.8: Applying 

the NO2-to-NOx conversion factors of Jänschwalde and Matimba to all four sources resulted in 

emission estimates ranging from 10% lower to 50% higher, which illustrates that the parametri-

sation of the NO2-to-NOx conversion adds a significant but unknown uncertainty to the emis-

sion estimates. This is because it is not possible to determine how well the conditions under 

which these parametrisations were derived match those of a given TROPOMI image. Still, the 
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deviations of the sensitivity analysis from the estimated NOx emissions with the source specific 

parameters give a maximum range of uncertainties. Since most of the suitable satellite images 

are from the season for which the MicroHH simulations were run, the calculated NO2-to-NOx 

conversion factors are likely to be in good agreement with the conditions of the TROPOMI 

images. However, in order to get a better understanding of the uncertainties, it would be neces-

sary to run more high-resolution chemistry transport simulations covering a wider range of 

conditions. The sensitivity analysis thus shows a limitation of the current approach to convert 

NO2 to NOx. 

Another limitation is the choice of the negative exponential function in Eq. (4.5). While this 

function may be appropriate for point sources such as power plants, it may not be suited for 

cities where emissions occur over several kilometres in the direction of the plume (Lorente et 

al., 2019). Instead of a negative exponential function, a log-normal or gamma distribution 

should be fitted which accounts for the build-up of NOx over the city. 

Overall, the application of the newly developed NO2-to-NOx conversion factors resulted in 

more accurate emission estimates compared to the previous constant conversion factor of 1.32. 

These results therefore support the working hypothesis that NOx and consequently CO2 emis-

sions can be estimated more accurately from NO2 observations. Nevertheless, extrapolating the 

conversion factors for different meteorological and background conditions remains a challenge. 

 

6.4 Effective wind speeds in plumes 

Apart from the NOx chemistry, a realistic representation of the effective wind speed at which 

the plume is transported is a key issue. This includes the vertical averaging of 3D wind fields 

and the consideration of time-varying wind fields. To address the first challenge, the 3D wind 

speeds were weighted with the GNFR-A profile (e.g., Figure 5.2a). An advantage of this method 

is that the derived winds are representative even in cases where the PBL is below the height of 

the stacks. However, this is usually not the case at the Sentinel-5P overpass time at 13:30 local 

time when the boundary layer is well developed. Nevertheless, it becomes relevant for the back-

ward integration of the wind. Using the GNFR-A profile-weighted winds has the added ad-

vantage of corresponding better to the plume when it is not well mixed within the PBL. This is 

the case for stable atmospheric conditions and close to the source. On the other hand, with 

increasing distance from the source, the trace gases become progressively well mixed within 

the PBL. Depending on meteorological conditions, a homogenous mixing can occur within the 
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first few kilometres of the plume (Honnert et al., 2021; Koene and Brunner, 2023). Conse-

quently, the approach of using the mean wind speed within the PBL is more appropriate in these 

situations. However, this approach should only be used up to a certain minimum PBL height, 

below which the flue gases are emitted into the free troposphere. For some power plants, this 

may occur if the PBL height is below the stack height or if the flue gases overcome the PBL 

due to buoyancy. Such a situation could arise in winter and, in combination with the backward 

integrated winds, in the morning when the PBL is shallow. For the PBL-weighted wind speeds, 

the threshold was set to mode of the GNFR-A profile at 400 m. Conversely, Brunner et al. 

(2019) have shown for Jänschwalde that the plumes rise on average only to about 250 m height 

in winter, but up to 360 m in summer. They are strongly influenced by the dynamics of the 

PBL, which has a distinct diurnal cycle, especially in summer. These results suggest that a fixed 

cut-off at 400 m, as it is implemented for the current averaging of the PBL winds, is too con-

servative. As mentioned in section 4.2, this threshold should be dynamic and account for pa-

rameters such as stack height, flue gas properties, and meteorological conditions (Brunner et 

al., 2019). On the bottom line, the two approaches for vertically averaging the 3D wind fields 

excel in different situations. Nevertheless, further studies are needed to assess the suitability for 

different conditions or to examine a combination of both methods. 

To meet the challenge of temporally changing wind fields, a backward integration of wind 

speeds is required: The analysis of ERA5 wind speed data with its spatial resolution of 0.25° × 

0.25° has shown that the wind fields exhibit little variation in space because the effects of tur-

bulence are averaged out. However, the wind speeds show large variations in time. This is par-

ticularly the case for the lower troposphere, where the evolution of the PBL has a crucial influ-

ence on the wind, as wind speeds in the free troposphere are typically higher than those within 

the PBL. As parts of the plume were emitted hours prior to the overpass of the satellite, the 

trace gases were transported at different wind speeds than the prevailing wind at the time the 

image was taken, which violates the steady-state assumption of the cross-sectional flux method 

(see section 2.6). Thus, integrating wind speeds backwards in time should make it more realis-

tic. According to the conservation of mass, a higher wind speed at a constant emission rate 

would lead to a lower trace gas line density and vice versa. Therefore, a negative correlation 

between wind speed and line density is expected. Consequently, if the backward integration of 

the wind works as intended, the correlation should be stronger than if the wind speed at the 

source is used. This is also the case in Figure 5.3, indicating a slight improvement over using 

only the wind speed at the source at the time of the satellite overpass. Nevertheless, the analysis 

of the backward integrated wind has shown that the wind direction does not always correspond 
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to the direction of plume propagation. This was observed for both the GNFR-A weighted wind 

and the mean PBL wind, showing that the backward integration approach used in this study is 

too simple. 

A further limitation of the backward integration of the wind was revealed in section 5.5, where 

the use of backward integrated wind speeds significantly increased the variance in NOx life-

times. This occurs because the GNFR-A profile includes winds up to 1000 m. When the PBL 

is below this threshold, e.g., in the morning, the vertically averaged wind speeds also include 

the higher wind speeds of the free troposphere, resulting in higher vertical averages. As the tail 

of a plume is sometimes several hours old, its line densities are multiplied by higher wind speeds 

than close to the source, leading to higher fluxes. As a consequence, the fitted NOx decay is less 

steep, yielding longer lifetimes. 

To address the inaccuracies of the backward integrated wind, 3D transport models would have 

to be run, contradicting the aim of a computationally light method such as the cross-sectional 

flux method. Another approach could be to assign uncertainties to the wind speeds which are 

inversely proportional to the distance from the source, thereby accounting for the additional 

uncertainties and allowing for a more stable fit of the exponential NOx decay along the plume. 

Another possibility would be to omit the information from polygons beyond a certain distance 

from the source. The motivation for this cut-off is threefold: First, the uncertainty of the back-

ward integrated wind increases for longer plumes. Second, it is almost impossible to determine 

the effective wind speed at which the plume was transported at a time when the flue gases are 

partly emitted into the PBL and partly into the free troposphere. Third, the tail of long plumes 

was subject to different atmospheric conditions and chemistry, as it was emitted several hours 

before the satellite image was taken, violating the assumption of steady-state conditions. Such 

a cut-off was implemented exploratively for the PBL averaged winds (see section 4.2). The 

analysis of a few time steps showed that the median of the estimated NOx emissions was similar 

to the estimates obtained when using the full plume information, while outliers were reduced. 

Thus, considering only plume information up to a certain plume length or time since emission 

appears to be reasonable. 

Besides the challenges of the vertical averaging of 3D wind fields and the consideration of time-

varying wind fields, further investigation is needed to revise the simplified assumption of a 

constant wind speed uncertainty of 1 m/s. This value is significantly higher than the calculated 

systematic uncertainty of ERA5 wind speeds in Gualtieri (2022), because it should also take 

into account uncertainties of the vertical averaging of the 3D wind fields. However, the 
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accuracy of this assumption is unknown. Therefore, numerical transport simulations would 

have to be run to determine the deviations between the vertically averaged wind speed and the 

effective wind speed of the plume. These uncertainties could then be combined with the ensem-

ble spread of ERA5 and the deviations of ERA5 from observations to obtain an overall wind 

speed uncertainty. 

 

6.5 Impact of air mass factors 

The TM5-MP model used to calculate the TROPOMI AMFs cannot resolve individual plumes 

due to its coarse resolution of 1° × 1°. Thus, the NO2 fields in TM5-MP do not have spatially 

confined plumes with elevated concentrations, but concentration gradients. As a result, the 

modelled pixels have neither the correct concentration profile of the plume nor the background 

concentration, but a mixture of both. This leads to an overestimation of AMFs and a consequent 

underestimation of VCDs within the observed plumes and vice versa outside of the plumes. The 

impact of this effect was explored in section 5.6 of the current study by replacing the NO2 

profiles of pixels within the plume with higher concentrations, while replacing the profiles of 

pixels outside the plume with a representative background concentration. This approach re-

sulted in the expected enhancement of plume VCDs, while the background VCDs were reduced. 

As the NO2 background concentrations are subtracted from the plume enhancements, updating 

the AMF within and outside the plume increases the estimated emissions more than if solely 

the profiles within the plume were updated. Accordingly, the estimated emissions for the two 

TROPOMI images of Matimba increased by 70% and 42% compared to the default NO2 pro-

files. Such an enhancement is significantly higher than the 27% increase shown in Table 5.2. 

These results illustrate that the a-priori NO2 profiles of the TM5-MP model should ideally be 

replaced by profiles from higher resolution models such as GEM-MACH (Goldberg et al., 

2019b) or CAMS-regional (Douros et al., 2023). However, updating the AMFs for all pixels 

was beyond the scope of this study. 

Instead, the estimated NOx emissions were multiplied by correction factors derived from up-

dating the NO2 profiles within the plume for all TROPOMI images (see Table 5.2). Such an 

approach is sufficiently accurate because the analysis of the MicroHH plumes showed that the 

average NO2 concentration within the PBL in the four modelled plumes was consistent at 5 ⋅

10−9 mol/mol. Setting the NO2 to this concentration resulted in correction factors between 1.15 

and 1.35 while other studies have calculated significantly higher corrections. For example, 

Beirle et al. (2019) found that VCDs need to be corrected by a factor of 1.35 for South Africa 
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and 1.98 for Germany. The higher values are due to the assumption of Beirle et al. (2019) that 

the entire plume is confined between 60 and 200 m above ground where the averaging kernel 

are typically smaller than at higher altitudes (see section 2.5). In contrast, the correction factors 

in this study were calculated assuming a homogeneous distribution in the PBL, which is more 

realistic except for stable atmospheric conditions. Douros et al. (2023) analysed the impact of 

replacing the TROPOMI a-priori NO2 profiles over Europe with data from the higher resolution 

CAMS-regional model at a resolution of 0.1 × 0.1°. They found that the NO2 VCD increased 

by a factor of 1.05 for less polluted sites and up to 1.3 for more polluted sites. These values are 

in perfect agreement with those in Table 5.2, which illustrates that the AMF correction factors 

derived in this study are realistic. 

Replacing the NO2 profiles within the PBL by a constant concentration is too simplistic as it 

depends on, among other things, the emission strength of the source. For this reason, a simple 

iterative approach to determine a representative NO2 concentration within the PBL was pre-

sented in section 4.7. The results in Figure 5.10c showed that the derived profile is very similar 

to the plume profiles in the MicroHH simulations, illustrating the potential of this approach. 

However, one limitation of this method is that, while the total NOx mass can be reliably esti-

mated, its uniform distribution across the polygons of the plume leads to poorer agreement 

between the measured and estimated NOx mass. This issue arises because such a uniform dis-

tribution neglects the effects of NOx chemistry. Therefore, the proposed method could be im-

proved by assigning the NOx mass along the plume according to a negative exponential func-

tion, as in Eq. (4.5). 

Besides the underestimated NO2 profiles in plumes discussed above, there is an additional un-

certainty in the AMFs because the exact NO2 profile is not known. In this study, these uncer-

tainties were not systematically investigated, but in an exploratory approach. In doing so, the 

25% uncertainty derived for an example of Matimba in section 5.6 is consistent with the 30% 

uncertainty reported in Beirle et al. (2019). However, a thorough assessment of the uncertainties 

introduced by the AMF is required. 

Overall, the results have shown that the systematic bias in the AMFs could be realistically cor-

rected for in the current study. Furthermore, the iterative approach to update the NO2 profiles 

in the plumes yielded promising results but needs further refinement. 
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6.6 Bottom-up reported emissions 

Knowledge of bottom-up reported NOx and CO2 emissions is important in this study for two 

reasons. First, they are used to assess the accuracy of the estimated NOx emissions from satel-

lites. Second, they can be used to convert the estimated NOx emissions into CO2 (see section 

2.3). For both applications it is crucial to have information on the reliability and accuracy of 

the bottom-up reported emissions. However, many of the bottom-up reported CO2 emissions 

are estimated from fuel consumption, making assumptions about combustion efficiency, fuel 

purity and other factors (IPCC, 2006). The use of proxies to estimate emissions not only intro-

duces many uncertainties, but also leads to gaps between reported emissions and inventories 

(Guan et al., 2012). Similarly, the uncertainties are not measured directly, but estimated from 

the intercomparison of different data bases (e.g., Guan et al., 2012; Gurney et al., 2016), from 

statistical methods (e.g., Zhao et al., 2011), or from proxies such as fuel consumption and elec-

tricity generation (e.g., Guevara et al., 2023b [preprint]). For example, Nassar et al. (2022) 

assumed a 5% uncertainty in reported CO2 emissions for Bełchatów, arguing that, due to its 

large size, it is at the lower end of the estimated uncertainties from a paper by Gurney et al. 

(2016). For NOx, Zhao et al. (2011) estimated the uncertainties in reported emissions from coal-

fired power plants in China to be around 17%, illustrating the inaccuracies in reported emis-

sions. However, it is not known whether the assumptions used to estimate or interpolate emis-

sions from proxies are valid as there are currently no studies at the power plant level. For ex-

ample, power plants may operate in different modes, resulting in different emissions for com-

parable power output. 

In summary, the knowledge on the accuracy of bottom-up reported emissions and their uncer-

tainties is limited, which requires further investigation. This is also the reason why no statistical 

test was performed to assess whether the estimated emissions from the new algorithm are more 

consistent with the bottom-up reported emissions than the estimates from the old algorithm. 

Having little knowledge of the uncertainties in the bottom-up reported CO2 and NOx emissions 

also translates into uncertainties in the CO2:NOx ratios. As these are used to convert estimated 

NOx emissions into CO2, the uncertainty of the estimated emissions is increased. The issue is 

further complicated by the fact that the CO2:NOx ratio of one power plant cannot be easily 

applied to multiple power plants or extrapolated to different years because they have different 

NOx abatement technologies which change over time due to stricter air quality regulations 

(Goldberg et al., 2019a; Liu et al., 2020; Reuter et al., 2014). Furthermore, obtaining accurate 
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CO2:NOx ratios is particularly challenging for mixed sources, such as in the case of Lipetsk, 

where emissions originate from industrial activities and a power plant. 

To overcome the problem of inaccurate bottom-up reported CO2:NOx ratios, several case stud-

ies have explored the possibility of estimating them using satellites (e.g., Hakkarainen et al., 

2021; Kuhlmann et al., 2021; Reuter et al., 2019). However, Kuhlmann et al. (2021) have 

demonstrated that with the upcoming CO2M satellites, which measure CO2 and NO2 simulta-

neously, the uncertainty of the estimated CO2 emissions is smaller when using bottom-up re-

ported CO2:NOx ratios if these are well known. This was due to large uncertainties in the esti-

mated NOx emissions resulting from a simplified representation of NOx chemistry. As this as-

pect has been improved with the current study, the use of satellite-derived CO2:NOx ratios has 

become a viable method to convert NOx into CO2 emission estimates. Until the launch of 

CO2M, co-located observations from spaceborne CO2 measuring instruments such as the Or-

biting Carbon Observatory (OCO) 2 and 3 can be used in conjunction with NO2 imaging satel-

lites to determine CO2:NOx ratios and convert the estimated NOx emissions to CO2 

(Hakkarainen et al., 2021; Reuter et al., 2019). In this way, it is possible to take advantage of 

the numerous NO2 imaging satellites with their high temporal resolution to quantify CO2 emis-

sions globally.  
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7 Conclusion 

The current study aimed to derive a more realistic conversion of NO2 to NOx in the plumes of 

large CO2 and NOx sources. In addition, methods for estimating the effective wind speed of the 

plumes were investigated and a correction to account for coarsely resolved AMFs was imple-

mented. This study built on and expanded the cross-sectional flux method in the Python package 

ddeq and is the first study to systematically apply it to real satellite data. 

The results show that with the new findings, annual NOx emissions can be reliably estimated 

with TROPOMI: the biases were reduced from between -50 and -60% to only -12 to -23% with 

of uncertainties of 4 to 19%. These more accurate NOx emission estimates can be converted to 

CO2 emissions using CO2:NOx ratios, allowing the use of NO2 imaging satellites such as 

GEMS, TEMPO, Sentinel-4, and -5 to estimate CO2 emission with high temporal resolution 

until the launch of CO2M in 2025. Furthermore, the geostationary satellites will allow to resolve 

the diurnal cycle of emissions and could help to reduce the seasonal bias in the number of 

successful emission estimates due to cloud cover. 

Despite the promising results of this study, several knowledge gaps were identified. For exam-

ple, comprehensive and systematic studies are needed on how to derive the NO2-to-NOx con-

version factor based on prevailing conditions such as solar radiation, temperature, and back-

ground concentrations of reactive trace gases. Thorough research needs to be conducted to de-

termine how wind speeds should be vertically averaged and how well such averaging reflects 

the effective wind speed of the plume. Further work is also needed on the spatial resolution of 

a priori NO2 profiles for the calculation of AMFs to prevent systematic underestimation of NO2 

columns in plumes. 

Besides these knowledge gaps, the limitations of estimating CO2 emissions from satellite-de-

rived NOx measurements are the uncertainties in converting NOx to CO2, as bottom-up reported 

CO2:NOx ratios are uncertain and source specific. On top of that, there are methodological lim-

itations, such as cloud cover, which can severely limit the accuracy of annual emission esti-

mates. In addition, the cross-sectional flux method does not work in the case of overlapping 

plumes, stagnant wind, and deviations from steady-state conditions. 

On the bottom line, this study is a pivotal step towards global, uniform, high-resolution, and 

near real time estimation of NOx and CO2 emissions with the use of satellites. Such independent 

monitoring and verification can ensure that all countries comply with the Paris Agreement and 

reduce their CO2 emissions to tackle anthropogenic climate change.  
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A. Appendix 

 

Figure A.1: Vertically integrated background concentrations of reactive trace gases of the MicroHH simulations 

for Bełchatów, Jänschwalde, Lipetsk, and Matimba. 

 

 

Figure A.2: (a) Comparison of estimated NOx emissions against the bottom-up reported and (b) estimated NOx 

decay times using the old and new algorithms as well as the modelled NOx fields. For the wind speed, the backward 

integrated wind was used. 
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Figure A.3: Estimated NOx emissions for the TROPOMI image on the 25th of July 2020 using default NO2 profiles. 

 

 

Figure A.4: Estimated NOx emissions for the TROPOMI image on the 25th of July 2020 using updated NO2 profiles 

within (5 ∙ 10 –9 mol/mol) and outside (2 ∙ 10 –10 mol/mol) of the plume. 
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Figure A.5: Number of successful NOx emission estimates per month using TROPOMI for 2020 and 2021. 
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Figure A.6: Time series of NOx emission estimates using TROPOMI and bottom-up reported emissions for the 

years 2020 and 2021. To each time series, a cubic Hermite spline with periodic boundary conditions was fitted. 
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