
Downscaling of future meteorology for land-surface
modelling in the glacierised Amu Darya headwaters

GEO 511 Master's Thesis

Author
Pascal Wyss
16-214-777

Supervised by
Stefan Fugger (PhD) (stefan.fugger@wsl.ch)
Prof. Dr. Francesca Pellicciotti (francesca.pellicciotti@wsl.ch)

Faculty representative
Prof. Dr. Andreas Vieli

31.01.2024
Department of Geography, University of Zurich



Abstract

The impact of climate change on hydrological regimes and the associated water availability in Central
Asia is currently understudied. Due to the Amu Darya’s important role in providing fresh water in the
region, particularly the future of its glacier-melt and snow-melt dominated headwaters under continued
climate change requires more detailed investigation.
This thesis therefore addresses this understudied impact of climate change on the Amu Darya’s headwa-
ters by providing a first state-of-the-art dataset for land surface modelling, comprising six spatially and
temporally downscaled CMIP6 model chains with a climate-length historical reference period and all
Tier1 future scenario projection reaching until the end of the 21th century. This is achieved by using the
previously published empirical–statistical TopoCLIM scheme. The ability of this dataset to reproduce
spatial snow pack dynamics with T&C is demonstrated with a scene-by-scene evaluation of simulated
snow cover against remote-sensing derived Landsat-7/Landsat-8 snow maps, which exhibited average
DSC of 0.74 in Kyzylsu and 0.73 in Sangvor.
Further, this thesis conducts a comparative evaluation of the two topography-based downscaling methods
HIMAL-method and TopoPyScale, aiming to generate a spatially downscaled reanalysis dataset with
highest possible quality. To do so, both methods are applied for the hydrological year 2022 and further
evaluated against in-situ observations of recently established monitoring networks in two valuable,
remote catchments in the northern Pamir mountains.
Moreover, the efficacy of an additional bias correction step with in-situ observations is assessed, high-
lighting its potential and its importance for accurate downscaling, especially for complex or bias-prone
meteorological variables such as wind speed and precipitation. By discussing limitations of such bias
correction, the relevance of a continued monitoring network that provides reliable ground measurements
in the region is empathised.
Finally, the importance of future land surface modelling that investigates the impact of climate change on
the region’s water regimes is empathised by providing a summary of the climate change signals present
in the downscaled future projections: they essentially predict a significant increase in air temperature
(e.g in Kyzylsu up to +4.45°C until the end of the century) and a seasonal shift in precipitation (with
more precipitation during winter months and early spring, and less at the end of the hydrological year).



Acknowledgements

First, I would like like to express my gratitude to Prof. Dr. Andreas Vieli1 and Prof. Dr. Francesca
Pellicciotti2,3 for making this Master’s Thesis with an external supervision possible.

Second, I extend my thanks to the Swiss Polar Institute Flagship Programme PAMIR, SPI-FLAG-2021-
001, for funding the Kyzylsu fieldwork campaign in September 2023.

Further, my appreciation goes to Evan Miles3, Thomas Shaw2,3 and Achille Jouberton2,3 for co-
supervising this thesis and providing valuable inputs and feedback. Their perspectives and insights have
greatly enhanced this work

Last but not least, I would like to especially thank Stefan Fugger2,3 for his close and thorough supervision.
His profound expertise and didactic competence have not only helped to shape this thesis but have also
significantly contributed to my academic growth.

1Department of Geography, University of Zurich, Switzerland
2Institute of Science and Technology Austria, ISTA, Klosterneuburg, Austria
3Swiss Federal Research Institute WSL, Birmensdorf, Switzerland



Contents

1 Introduction 2

2 Study sites and data 4
2.1 Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Geodata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Topography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Glacier maps and debris maps . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Land cover maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 Snow lines and snow maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.1 Kyzylsu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Sangvor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Reanalysis data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 ERA5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 ERA5-Land . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.3 NHM-SMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Climate scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Methods 15
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Spatial downscaling of reanalysis data . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 HIMAL-method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 TopoPyScale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Downscaling future meteorology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 The land surface model Thetys-Chloris (T&C) . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.1 Downscaling reanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5.2 Downscaled CMIP6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Results 28
4.1 Downscaled reanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.1 Evaluation of meteorological forcings . . . . . . . . . . . . . . . . . . . . . . 28
4.1.2 Evaluation of T&C model outputs at plot-scale . . . . . . . . . . . . . . . . . 31

4.2 Downscaled CMIP6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.1 Evaluation of meteorological forcings . . . . . . . . . . . . . . . . . . . . . . 32
4.2.2 Evaluation of spatial snow pack dynamics . . . . . . . . . . . . . . . . . . . . 32
4.2.3 Climate change signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Discussion 40
5.1 Downscaling process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1.1 Downscaling reanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



5.1.2 Downscaling future meteorology . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.1 Observational uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.2 Land surface modelling: uncertainties and limitations . . . . . . . . . . . . . . 42
5.2.3 Implications on evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Implications on land surface modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 Future recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Conclusions 47

References 49

A Appendix - Observations I

B Appendix - Methods II
B.1 HIMAL-method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II
B.2 T&C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III

C Appendix - Downscaled reanalysis IV
C.1 Evaluation of meteorological forcings . . . . . . . . . . . . . . . . . . . . . . . . . . IV

C.1.1 Ta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV
C.1.2 Rh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X
C.1.3 Pr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIII
C.1.4 Ps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIV
C.1.5 Sw↓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XV
C.1.6 Lw↓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXI
C.1.7 Ws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .XXIII

C.2 Evaluation of T&C model outputs at plot-scale . . . . . . . . . . . . . . . . . . . . .XXVI
C.2.1 Ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .XXVI
C.2.2 TsAug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .XXVIII
C.2.3 Sd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XLI
C.2.4 Tdeb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .XLIV

D Appendix - Downscaled CMIP6 XLV
D.1 Evaluation of meteorological forcings . . . . . . . . . . . . . . . . . . . . . . . . . . XLV
D.2 Evaluation of spatial snow pack dynamics . . . . . . . . . . . . . . . . . . . . . . . .XLVI

E Appendix - Climate change signal XLVIII
E.1 Kyzylsu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .XLVIII

E.1.1 Pr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .XLVIII
E.1.2 Ps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LI
E.1.3 Sw↓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LII
E.1.4 Lw↓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LIII
E.1.5 Ws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LIV



E.2 Sangvor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LV
E.2.1 Ta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LVI
E.2.2 Rh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LVII
E.2.3 Pr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .LVIII
E.2.4 Ps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .LXIII
E.2.5 Sw↓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .LXIV
E.2.6 Lw↓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LXV
E.2.7 Ws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .LXVI



Figures

1 Overview of the study sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 General climate conditions in the study region . . . . . . . . . . . . . . . . . . . . . . 6
3 On-glacier AWS KYZ_AWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 AWS SANG_AWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5 CMIP6 scenario matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6 Schematic overview of the main processes and experimental setup of this thesis. . . . . 16
7 T&C model framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8 Evaluation of the reanalysis downscaling methods - exemplary figure . . . . . . . . . . 27
9 Evaluation of CMIP6-downscaling in Kyzylsu - meteorology . . . . . . . . . . . . . . 33
10 Evaluation of simulated SLE against catchment-wide snowline elevation . . . . . . . . 34
11 Scene-by-scene evaluation of simulated snow cover against Landsat-7/Landsat-8 . . . 35
12 Climate Change signal of Ta in Kyzylsu . . . . . . . . . . . . . . . . . . . . . . . . . 38
13 Climate Change signal of Rh in Kyzylsu . . . . . . . . . . . . . . . . . . . . . . . . . 38
14 Climate Change signal of Pr in Kyzylsu . . . . . . . . . . . . . . . . . . . . . . . . . 39
15 Seasonal precipitation shifts under SSP5-8.5 in Kyzylsu . . . . . . . . . . . . . . . . . 39

B.1 Schematic overview of the HIMAL-method . . . . . . . . . . . . . . . . . . . . . . . II
B.2 Schematic overview of the HIMAL-method: additional steps for precipitation . . . . . II
B.3 Comparison of semi-distributed and fully-distributed T&C snow cover simulations . . III
B.4 T&C (semi-distributed) cluster map . . . . . . . . . . . . . . . . . . . . . . . . . . . III

C.1 Evaluation of downscaled Ta at KYZ_AWS . . . . . . . . . . . . . . . . . . . . . . . IV
C.2 Evaluation of downscaled Ta at KYZ_AWS_PLU . . . . . . . . . . . . . . . . . . . . V
C.3 Evaluation of downscaled Ta at KYZ_T_3200 . . . . . . . . . . . . . . . . . . . . . . VI
C.4 Evaluation of downscaled Ta at KYZ_T_3500 . . . . . . . . . . . . . . . . . . . . . . VII
C.5 Evaluation of downscaled Ta at KYZ_T_3900 . . . . . . . . . . . . . . . . . . . . . . VIII
C.6 Evaluation of downscaled Ta at SANG_AWS . . . . . . . . . . . . . . . . . . . . . . IX
C.7 Evaluation of downscaled Rh at KYZ_AWS . . . . . . . . . . . . . . . . . . . . . . . X
C.8 Evaluation of downscaled Rh at KYZ_AWS_PLU . . . . . . . . . . . . . . . . . . . . XI
C.9 Evaluation of downscaled Rh at SANG_AWS . . . . . . . . . . . . . . . . . . . . . . XII
C.10 Evaluation of downscaled Pr at KYZ_AWS_PLU . . . . . . . . . . . . . . . . . . . . XIII
C.11 Evaluation of downscaled Ps at KYZ_GAUG . . . . . . . . . . . . . . . . . . . . . . XIV
C.12 Evaluation of downscaled Sw↓ at KYZ_AWS . . . . . . . . . . . . . . . . . . . . . . XV
C.13 Evaluation of downscaled Sw↓ at SANG_AWS . . . . . . . . . . . . . . . . . . . . . XVI
C.14 Supporting figure for downscaled Sw↓ at KYZ_AWS - monthly scatter . . . . . . . . .XVII
C.15 Supporting figure for downscaled Sw↓ at SANG_AWS - monthly scatter . . . . . . . .XVIII
C.16 Supporting figure for downscaled Sw↓ at KYZ_AWS - monthly mean diurnal cycle . . XIX
C.17 Supporting figure for downscaled Sw↓ at SANG_AWS - monthly mean diurnal cycle . XX
C.18 Evaluation of downscaled Lw↓ at KYZ_AWS . . . . . . . . . . . . . . . . . . . . . . XXI
C.19 Evaluation of downscaled Lw↓ at SANG_AWS . . . . . . . . . . . . . . . . . . . . .XXII



C.20 Evaluation of downscaled Ws at KYZ_AWS . . . . . . . . . . . . . . . . . . . . . . .XXIII
C.21 Evaluation of downscaled Ws at KYZ_AWS_PLU . . . . . . . . . . . . . . . . . . . .XXIV
C.22 Evaluation of downscaled Ws at SANG_AWS . . . . . . . . . . . . . . . . . . . . . .XXV
C.23 Evaluation of simulated Ts at SANG_AWS . . . . . . . . . . . . . . . . . . . . . . .XXVI
C.24 Supporting figure for simulated Ts at SANG_AWS - monthly scatter of Ta . . . . . . .XXVII
C.25 Evaluation of simulated Ts in August at SANG_AWS . . . . . . . . . . . . . . . . . .XXVIII
C.26 Evaluation of simulated Ts in August at SANG_T_2 . . . . . . . . . . . . . . . . . .XXIX
C.27 Evaluation of simulated Ts in August at SANG_T_3 . . . . . . . . . . . . . . . . . .XXX
C.28 Evaluation of simulated Ts in August at SANG_T_4 . . . . . . . . . . . . . . . . . .XXXI
C.29 Evaluation of simulated Ts in August at SANG_T_5 . . . . . . . . . . . . . . . . . .XXXII
C.30 Evaluation of simulated Ts in August at SANG_T_7 . . . . . . . . . . . . . . . . . .XXXIII
C.31 Evaluation of simulated Ts in August at SANG_T_9 . . . . . . . . . . . . . . . . . .XXXIV
C.32 Evaluation of simulated Ts in August at SANG_T_10 . . . . . . . . . . . . . . . . . .XXXV
C.33 Evaluation of simulated Ts in August at SANG_T_11 . . . . . . . . . . . . . . . . . .XXXVI
C.34 Supporting figure for simulated Ts in August at SANG_AWS - downscaled Ta . . . . .XXXVII
C.35 Supporting figure for simulated Ts in August at SANG_AWS - downscaled Sw↓ . . . .XXXVIII
C.36 Simulated Ts in August at SANG_T_1 (excluded from evaluation) . . . . . . . . . . .XXXIX
C.37 Simulated Ts in August at SANG_T_8 (excluded from evaluation) . . . . . . . . . . . XL
C.38 Evaluation of simulated Sd at KYZ_AWS . . . . . . . . . . . . . . . . . . . . . . . . XLI
C.39 Evaluation of simulated Sd at KYZ_AWS_PLU . . . . . . . . . . . . . . . . . . . . . XLII
C.40 Evaluation of simulated of Sd at SANG_AWS . . . . . . . . . . . . . . . . . . . . . .XLIII
C.41 Evaluation of simulated Tdeb at KYZ_AWS . . . . . . . . . . . . . . . . . . . . . . .XLIV

D.1 Evaluation of CMIP6-downscaling in Sangvor - meteorology . . . . . . . . . . . . . . XLV
D.2 CMIP6 snow cover simulation - variability in Kyzylsu . . . . . . . . . . . . . . . . . .XLVI
D.3 CMIP6 snow cover simulation - variability in Sangvor . . . . . . . . . . . . . . . . . .XLVII

E.1 Seasonal precipitation shifts in Kyzylsu under SSP1-2.6 . . . . . . . . . . . . . . . . .XLVIII
E.2 Seasonal precipitation shifts in Kyzylsu under SSP2-4.5 . . . . . . . . . . . . . . . . .XLIX
E.3 Seasonal precipitation shifts in Kyzylsu under SSP3-7.0 . . . . . . . . . . . . . . . . . L
E.4 Climate Change signal of Ps in Kyzylsu . . . . . . . . . . . . . . . . . . . . . . . . . LI
E.5 Climate Change signal of Sw↓ in Kyzylsu . . . . . . . . . . . . . . . . . . . . . . . . LII
E.6 Climate Change signal of Lw↓ in Kyzylsu . . . . . . . . . . . . . . . . . . . . . . . . LIII
E.7 Climate Change signal of Ws in Kyzylsu . . . . . . . . . . . . . . . . . . . . . . . . . LIV
E.8 Climate Change signal of Ta in Sangvor . . . . . . . . . . . . . . . . . . . . . . . . . LVI
E.9 Climate Change signal of Rh in Sangvor . . . . . . . . . . . . . . . . . . . . . . . . . LVII
E.10 Climate Change signal of Pr in Sangvor . . . . . . . . . . . . . . . . . . . . . . . . .LVIII
E.11 Seasonal precipitation shifts in Sangvor under SSP1-2.6 . . . . . . . . . . . . . . . . . LIX
E.12 Seasonal precipitation shifts in Sangvor under SSP2-4.5 . . . . . . . . . . . . . . . . . LX
E.13 Seasonal precipitation shifts in Sangvor under SSP3-7.0 . . . . . . . . . . . . . . . . . LXI
E.14 Seasonal precipitation shifts under SSP5-8.5 in Sangvor . . . . . . . . . . . . . . . . . LXII
E.15 Climate Change signal of Ps in Sangvor . . . . . . . . . . . . . . . . . . . . . . . . .LXIII



E.16 Climate Change signal of Sw↓ in Sangvor . . . . . . . . . . . . . . . . . . . . . . . .LXIV
E.17 Climate Change signal of Lw↓ in Sangvor . . . . . . . . . . . . . . . . . . . . . . . . LXV
E.18 Climate Change signal of Ws in Sangvor . . . . . . . . . . . . . . . . . . . . . . . . .LXVI



Tables

1 Overview of hydro-meteorological variables . . . . . . . . . . . . . . . . . . . . . . . 6
2 Monitoring network in Kyzylsu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Monitoring network in Sangvor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Retrieved CMIP6 model chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5 Treatment of ERA5-Land variables within the HIMAL-method . . . . . . . . . . . . . 19
6 Overview of used CMIP6 variables and the applied temporal disaggreation method . . 21
7 Summary of downscaling (reanalysis) performance . . . . . . . . . . . . . . . . . . . 30
8 Summary of climate change signals in the Kyzylsu catchment . . . . . . . . . . . . . . 37

A.1 Overview of the available time periods of in-situ data . . . . . . . . . . . . . . . . . . I

E.1 Summary of climate change signals in the Sangvor catchment . . . . . . . . . . . . . . LV



1 Introduction

As the largest river in the Aral Sea Basin, the Amu Darya constitutes a crucial freshwater source for
Central Asia, a region predominated by a semiarid to arid climate (Abdolvand et al., 2015; J. Huang et al.,
2022; Immerzeel et al., 2019; Wang et al., 2016). While receiving very little precipitation (<300mm/year;
Pohl et al., 2017) downstream of the Pamir and Hindu Kush mountains, the river’s major water source
originates from upstream high mountain headwaters (J. Huang et al., 2022; Pohl et al., 2017). Therefore,
the cryosphere of the Pamir mountains is representing a crucial water storage and -buffer in the Amu
Darya River basin, making snow and ice reserves a critical element for sustaining seasonal water
availability in Central Asia (Armstrong et al., 2019; Barandun et al., 2020; J. Huang et al., 2022;
Immerzeel et al., 2009; Pohl et al., 2017; Wang et al., 2016).
With Pamir glaciers exhibiting near neutral mass balance in the recent decades, the region has been
regarded as an extension of the Karakoram Anomaly (Farinotti et al., 2020; Hugonnet et al., 2021; Miles
et al., 2021). However, recent evidence suggests that the region might shift towards overall negative
mass balances (Hugonnet et al., 2021). Additionally, reduced mountain snowfall related to warming
temperatures has been observed in the region over recent decades (Sorg et al., 2012). With future climate
projections predicting a further increase in mean air temperatures and shifting precipitation regimes
in the region (Jiang Jie et al., 2020; Reyer et al., 2017; White et al., 2014), the region’s cryosphere is
expected to further change (Barandun et al., 2020; Chen et al., 2016), which in turn is likely to affect
the seasonality and magnitude of runoff (Adam et al., 2009; White et al., 2014) and affecting a large
population downstream (J. Huang et al., 2022; Immerzeel et al., 2019; Yao et al., 2020).
Therefore, given the region’s heavy reliance on water released from the Pamir mountain’s cryosphere for
both drinking and irrigation, it is essential to understand the impacts of climate change on runoff regimes
and seasonal water availability in a more detailed manner. Hence, it is crucial to investigate the response
of the snowmelt dominated and glacier-melt dominated headwaters to increasing air temperatures and
seasonal precipitation shifts under continued climate change. In the Pamir domain, this subject has seen
little investigation to date. Existing research on this topic consists of observation-based studies examining
the impact under recent climate change (e.g. Chen et al., 2016; Normatov and Normatov, 2020; White
et al., 2014), and studies investigating the impact under future climate projections with large-scale
conceptual models (e.g. Chen et al., 2016; White et al., 2014), large-scale process-based models (e.g.
Luo et al., 2018) or catchment-scale conceptual models (e.g. Hagg et al., 2013). However, these efforts
rely on temporal, spatial and process-related simplifications, which can obscure relevant mechanisms
and hinder the investigation of individual processes of water balance components (Mastrotheodoros et al.,
2019; van Tiel et al., 2020). Therefore, physical-based approaches, representing all relevant processes of
land-surface interaction by incorporating vegetational, cryospheric and hydrological processes in high
temporal and spatial detail, are required to adequately capture energy and mass budgets in mountainous
terrain with high topographical variability Fan et al., 2019. However, such physical-based modelling
that investigates the impact of future climate change projections on catchment-scale hydrology in
high-elevation catchments of the Pamir region remains undone.
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To fill this research gap in the complex, mountainous terrain of the Pamir mountains, climate projections
with a high spatial (∼100m) and temporal (hourly) resolution are required (Fan et al., 2019; Fiddes et al.,
2022). In most cases however, neither of these requirements are fulfilled by available regional (RCM)
or global (GCM) climate models and therefore careful downscaling of climate model outputs to high
resolution is required (Fiddes et al., 2022) to account for detailed topographic effects, spatial gradients
and feedback.
Therefore, this thesis aims to provide a downscaled meteorological forcing dataset of future climate
projections for physical-based land-surface-modelling. While various downscaling methods exist within
the field of dynamical and statistical downscaling, they are often constrained by accuracy, spatio-temporal
scalability and data availability (see e.g. Ekström et al., 2015; Fiddes et al., 2022; Hong and Kanamitsu,
2014; Michel et al., 2021; Tapiador et al., 2020). However, a recently developed empirical-statistical
downscaling scheme named TopoCLIM (Fiddes et al., 2022) specifically addresses these limitations and
enables topography-aware hillslope-scale downscaling for land-surface modelling over complex terrain.
Hence, CMIP6 climate projections are downscaled in this thesis by following the TopoCLIM scheme
(Fiddes et al., 2022). However, prior to applying, the scheme requires a spatially downscaled reanalysis
dataset, upon which the quality of the final product strongly depends, making its preparation a key factor
for providing a high quality forcing dataset. For this purpose, the scheme suggests to use TopoSCALE
(Fiddes & Gruber, 2014) coupled with TopoSUB (Fiddes & Gruber, 2012). While these tools have been
initially tested over Switzerland (Fiddes & Gruber, 2012, 2014) and been extensively applied in diverse
environments around the globe (e.g. Fiddes et al., 2015; Fiddes et al., 2019; Obu et al., 2019, 2020;
Schuler and Østby, 2020; Westermann et al., 2015), the efficacy for an application in high-elevation
catchments of the Pamir mountains has not been tested yet. Furthermore, an alternative method has been
recently applied for downscaling a reanalysis dataset in the Pamir region (Fugger et al., 2024).
Since, up to now, an evaluation and comparison of such possible methods to generate a downscaled
reanalysis dataset for the Pamir headwaters remains undone, the thesis further aims to assess the
efficacy of these simplified, statistical downscaling approaches in a critical, yet understudies mountain
region of Central Asia. Consequently, the thesis starts by comparing two possible methods, namely
TopoPySCALE and the HIMAL-method, in two high-elevation catchments with newly established
measurement networks in the Pamir mountains. This comparison intends to answer the following two
questions:

(i) Which method is the most suitable for downscaling meteorological reanalysis time series in order
to generate climate-length meteorological fields at the catchment scale in the Pamir mountains?

(ii) Does an additional bias-correcting step with short-term in-situ data improve the downscaled
meteorological fields?

After identifying the most suitable method, the method is applied to finally generate the required down-
scaled, climate-length reanalysis dataset, which is further used to spatially downscale and temporally
disaggregate the CMIP6 future climate projections. Eventually, the final product is evaluated in terms of
its ability to reproduce catchment-wide snowpack dynamics with the land-surface model T&C, and the
climate change signals at mid-century and end-century are presented.
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2 Study sites and data

2.1 Domain

Two glacierised catchments on the northernmost slopes of the Pamir mountains in Tajikistan are building
the study domain for this thesis: the Kyzylsu catchment and the Sangvor catchment Figure 1.Both sites
are located in the headwaters of the Amu Darya river basin, making its cryosphere a crucial water storage
and -buffer for the region (Pohl et al., 2017).
The Kyzylsu catchment (168.2 km2) has an elevation range of almost 3800 metres (2076-5853 m.a.s.l.)
and its glacierised area makes up slightly more than a fifth (20.8%) of the total catchment area with
more than a third of it debris-covered. About half (50.4%) of the basin is vegetated, consisting of only
grass. Further, 28.7% are rocky surfaces, particularly in higher elevations of the catchment or where
slopes are steep.
The Sangvor catchment (37.4 km2) is - concerning the basin area - four and a half times smaller than
the Kyzylsu catchment and has approx. 500 vertical metres less on both sides of the elevation range
(2518-5305 m.a.s.l.). Almost half of the catchment (49.1%) are bare, rocky surfaces. The other half
consists of grass (26.8%) in the lower altitudes and glaciers (24.1%) in the higher altitudes.
An overview of the two catchments is provided in Figure 1, including their horizontal (map) and
vertical (hypsometry) cover distribution. Further the general climate in the study region is presented in
Figure 2. A continental climate prevails at both sites with cold winters and warmer summers. Most of
the precipitation falls in winter and spring, with less precipitation towards the end of the hydrological
year. Hence, the portion of annual precipitation falling as snow is high (e.g. 74% in Kyzylsu; Fugger
et al., 2024). Overall, glacier mass balance in the region is dominated by a winter/spring accumulation
regime (L. Huang et al., 2022).

2.2 Geodata

2.2.1 Topography

Two digital elevation models (DEMs) are used in this thesis: one with a spatial resolution of 100 metre
(hillshade background in Figure 1) and one with 2 metre spatial resolution. The former is derived by
resampling the ALOS PRISM stereo images derived ALOS World 3D-30 digital elevation model from
a 30 metre resolution (Takaku et al., 2014) to the intended spatial resolution of 100 metres, using the
nearest neighbour method. The latter is derived by processing Pleiades optical stereo images, using the
NASA Ames Stereo Pipeline (ASP; Beyer et al., 2018). The Pleiades images were acquired in September
2022 (snow-free) for each study site, but existing data gaps were filled using images acquired similarly
in the early summer of the same year.
The 100m-DEMs are used to provide topographical features for downscaling (section 3.2.1, section 3.2.2
and section 3.3) and land surface modelling (section 3.4). The higher resolute 2m-DEM are used to
estimate slope and aspect for plot-scale land surface modelling (section 3.4)
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Figure 1: Map of Tajikistan showing the study sites (lower left), along with the vertical distribution (hypsometry)
of land cover within the catchment (lower right) and maps showing the spatial distribution of land cover and
glaciers within the catchments, including locations and names of the automatic weather stations and temperature
loggers used (top).
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Figure 2: General climate conditions in the region of the two study sites based on climate-length ERA5 reanalysis
data from 1991 to 2020. Mean 2m air temperature is indicated with a red line and mean monthly precipitation sum
with blue bars.

Table 1: Overview of hydro-meteorological variables, including their abbreviations, usual units and long names.
Variables used as input for land surface modelling with T&C are indicated in bold font and variables that are
simulated by T&C in italic font.

Short name Unit Long name

Ta °C Near-surface air temperature (usually 2m above surface)
Rh % Near-surface relative humidity (usually 2m above surface)
Pr mm Precipitation
Ps hPa Surface air pressure
Sw↓ W/m2 Downwelling shortwave radiation
Sw↑ W/m2 Upwelling shortwave radiation
Lw↓ W/m2 Downwelling longwave radiation
Lw↑ W/m2 Upwelling longwave radiation
Ws m/s Wind speed (at reference height)
Wdir ° Wind direction
Ts °C Surface temperature
Tdeb °C Debris temperature at given depth
Sd cm Snow depth / snow height
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2.2.2 Glacier maps and debris maps

Glacier outlines of RGI 6.0 (RGI Consortium, 2017; see Figure 1) are used to derive the glacierised
area within the catchments. Further, debris-covered glacier area (Figure 1) is extracted using outlines by
Scherler et al. (2018) and finally, debris thickness is empirically derived as a function of velocity, as
described in Buri et al. (2023).

2.2.3 Land cover maps

Land Cover maps with a spatial resolution of 100 metre are derived by aggregating the vegetated area
from the 2019 land cover product of PROBA-V satellite imagery (Buchhorn et al., 2020) to forest, shrubs
and grassland, whereas in both catchments the vegetated area consists of only grassland. However, it
should be noted that these are generalisations and in reality sub-grid heterogenities are likely.

2.2.4 Snow lines and snow maps

Snowlines are derived from the MODIS product MOD10A1.v6 (Hall & Riggs, 2021), using the RSLE
method (Krajčí et al., 2014). Further, snow cover maps are derived as following: Landsat-7 surface
reflectance from Landsat Collection 2 Level-2 (USGS EROS Archive, 2020) and Landsat-8 surface
reflectance from the Harmonized Landsat Sentinel-2 project (HLS; Masek et al., 2021) are used to
compute the Normalised Difference Snow Index (NDSI) and surface albedo, following Liang (2001).
Outside of clean-ice areas, a critical NDSI threshold is computed using the Otsu method (Otsu, 1979)
and further used to classify pixels as snow-free or snow-covered. On clean-ice areas, in order to avoid
misclassifying bare-ice as snow, a surface albedo threshold, computed using the Otsu method, is used to
distinguish bare-ice and snow. This albedo threshold is bounded by 0.25 and 0.55 following Naegeli
et al. (2019). Due to difficulties encountered when using albedo to distinguish snow and ice in shaded
areas, these areas were excluded from the analysis by computing the shadow-affected areas from the sun
azimuth angle, the sun zenith angle and the DEM.

2.3 Observations

2.3.1 Kyzylsu

The monitoring of the Kyzylsu catchment started in June 2021 and is geared towards glacio-hydrological
modelling (Fugger et al., 2024)). The network includes two automatic weather stations (AWS) and
three additional air temperature loggers. One AWS (KYZ_AWS; Figure 3) is located on the lower
part of the Kyzylsu Glacier ablation zone over a surface of mixed cobbles and sand. The other one
(KYZ_AWS_PLU) is on a small plateau approximately 1km to the north of the Kyzylsu Glacier snout,
intended to represent off-glacier meteorological conditions. The available measured or measurement-
derived hydro-meteorological variables include air temperature (Ta), relative humidity (Rh), precipitation
(Pr), surface air pressure (Ps), downwelling and upwelling shortwave and longwave radiation (Sw↓,
Sw↑, Lw↓, Lw↑), wind speed (Ws), wind direction (Wdir), snow height (Sd) and debris temperature
(Tdeb). A definition of the measured variables is given in Table 1, and an overview of the monitoring
network in Figure 1 (locations) and Table 2 (measurement details).
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At this point it should be mentioned that in September 2023 the author of this thesis was part of a field
work campaign, contributing in maintaining the monitoring network in this valuable, remote catchment.
In turn, the author gained a more profound understanding of the monitoring network, including its local
conditions and challenges.
The observations from October 2021 until September 2022 include a full hydrological cycle and are used
in this thesis as in-situ data for the observational period of the Kyzylsu catchment. The exact available
and used time span is indicated for each variable and location in Table A.1.

For each measured variable a thorough examination, selection, and whenever needed processing, is
carried out and described in this paragraph.
The pressure sensor of the AWS on Kyzylsu-glacier (KYZ_AWS) didn’t work correctly and is therefore
not used in this thesis. Furthermore, the automatic weather station KYZ_AWS_PLU is not equipped
with a pressure sensor itself and the pressure data from the nearby stream gauging station KZY_GAUG,
located 500 metres southeast at a similar altitude, is used as a representative for the station instead.
Debris temperature at the KYZ_AWS was measured by two installed temperature sensors. Since debris
temperature is strongly influenced by the debris thickness (Östrem, 1959), the measurements of the
debris-covered logger closest to the modelled debris thickness of 22.4cm is used, which is the thermistor
located directly at the UDG (Thermistor2).
Concerning near-surface air temperature (Ta), near-surface relative humidity (Rh) and wind speed (WS),
the sensor nearest to 2 metres above the surface is used at locations where multiple sensors at different
heights are present. Excluding wind speed, differences to 2 metres above surface level are considered
negligible. For wind speed, the corresponding value at 2 metres above the surface is calculated from the
measured wind speed at the sensor height, applying the logarithm law Equation 1. The relative roughness
is thereby estimated as 0.1 for both measurement locations.
Additionally, following the correction method proposed by Masuda et al. (2019), a catch ratio based on
the wind speed at gauge level is used to address and correct the wind-induced precipitation undercatch.
The wind speed at gauge level is calculated according to the logarithm law as well.
Finally, in order to obtain a dataset at an hourly resolution, the measurements are aggregated from the
logged 15 minute intervals by calculating the hourly mean value, except for precipitation where the
hourly sum is calculated, and show depth, where only daily values are available.

U =Uobs
ln(z1 − z0)

ln(z2 − z0)
, (1)

where

• z1 = height of interest [m] = 2m or height of rain gauge

• z2 = height of anemometer [m]

• z0 = relative roughness element [0-1]
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Table 2: Available measurement locations in the Kyzylsu catchment with their unique names and used hydro-
meteorological parameters. One additional pressure transducer at KYZ_AWS is not listed, since it didn’t work
properly. At KYZ_T_3200 data is only available from 21th June 2022 onwards. Measured variables that are not
used in the thesis are written in grey font.

Location name
Altitude

Type Sensor
Senosr height

Measured variable(s)
[m.a.s.l] [m.a.g.l]

KYZ_AWS 3579 AWS

Anemometer 2.78 Ws, Wdir
Radiometer 2 Sw↓, Sw↑, Lw↓, Lw↑
Aspirated T/RH 2 Ta, Rh
Ultrasonic distance sensor Sd
Thermistor 1 -0.15 Tdeb
Thermistor 2 -0.21 Tdeb

KYZ_AWS_PLU 3369 AWS

Wind monitor (propeller) 4.49 Ws, Wdir
T/RH 4.04 Ta, Rh
Sonic distance sensor 3.89 Sd
Rain gauge 2.31 Pr

KZY_GAUG 3366 Logger Pressure 0 Ps
KYZ_T_3200 3186 Logger Temperature 2 Ta
KYZ_T_3500 3529 Logger Temperature 2 Ta
KYZ_T_3900 3899 Logger Temperature 2 Ta

Figure 3: On-glacier AWS KYZ_AWS as an example for an automatic weather station in the Kyzylsu catchment.
Source: Pamir field report 2021
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2.3.2 Sangvor

The monitoring network for the Sangvor catchment was set up in September 2021 and consists of an
automatic weather station Figure 4 and twelve additional surface temperature loggers. The installed
AWS is situated in a moderately exposed location on a small rise above the proglacial plain. Except for
precipitation (Pr), surface pressure (Ps), and debris temperature(Tdeb), the monitoring of the catchment
provides measurements for the same hydro-meteorological variables as in the Kyzylsu catchment, but
with additional surface temperature (Ts) measurements. An overview of the monitoring network and its
sensors is given in Figure 1 (locations) and Table 3 (measurement details).
The earliest available time series starts on 19. September 2021 and includes almost one full year (except
for the last three days). Data available for the hydrological year 2022 is used in this thesis for the
observational period. The exact available time span used is indicated for each variable and location in
Table A.1. For bias correcting within the HIMAL-method, the whole dataset is used, maximising the
covered period.
Same as for the Kyzylsu catchment, the sensor nearest to 2 metre above surface is used for near-surface
air temperature (Ta), near-surface relative humidity (Rh) and wind speed (WS). Differences to the 2
metre above surface level are considered as negligible, except for wind speed where wind speed at sensor
height is transformed to wind speed 2 metres above the surface by applying the logarithm law Equation 1
with an estimated relative roughness of 0.1. Further, it is important to mention that the installed surface
temperature (Ts) loggers are located at the ground and could therefore be covered with snow. Finally, all
measurements are aggregated from the logged intervals to an hourly resolution.

Figure 4: AWS SANG_AWS in the Sangvor catchment. Source: Nissai fact-sheet 2021
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Table 3: Available measurement locations in the Sangvor catchment with their unique names and used hydro-
meteorological parameters. Two additionally installed surface temperature loggers (SANG_T_6 at 4616 m.a.s.l.
and SANG_T_12 at 2431 m.a.s.l.) are not listed for this thesis, since the former had no data available and the
latter is located outside of the catchment outline used for this thesis. Measured variables that are not used in the
thesis are written in grey font.

Location name
Altitude

Type Sensor
Senosr height

Measured variable(s)
[m.a.s.l] [m.a.g.l]

SANG_AWS 3909 AWS

Anemometer 4.43 Ws, Wdir
T/RH 3.73 Ta, Rh
Wind monitor (propeller) 3.13 Ws, Wdir
Radiation sensor 2.73 Sw↓, Sw↑, Lw↓, Lw↑
Infrared sensor 2.73 Ts
Sonic distance sensor 2.73 Sd
T/RH 2.43 Ta, Rh

SANG_T_1 4389 Logger Temperature 0 Ts
SANG_T_2 4404 Logger Temperature 0 Ts
SANG_T_3 4412 Logger Temperature 0 Ts
SANG_T_4 3942 Logger Temperature 0 Ts
SANG_T_5 3938 Logger Temperature 0 Ts
SANG_T_7 4002 Logger Temperature 0 Ts
SANG_T_8 3951 Logger Temperature 0 Ts
SANG_T_9 3591 Logger Temperature 0 Ts
SANG_T_10 3236 Logger Temperature 0 Ts
SANG_T_11 2800 Logger Temperature 0 Ts
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2.4 Reanalysis data

2.4.1 ERA5

ECMWF Reanalysis v5 (ERA5) is the fifth generation of ECMWF atmospheric reanalysis for the
global climate and weather. ERA5 is based on the Integrated Forecasting System (IFS) Cy41r2 and
available at hourly temporal resolutions from 1940-present with a spatial resolution of 0.25◦x0.25◦ (∼31
km). Inddition to the meteorological variables at surface level it provides a vertical resolution of the
atmosphere at 137 different pressure levels from 1000hPa to 1hPa. As Successor of ERA-Interim it
therefore extends the temporal as well as the horizontal and vertical resolution. (Hersbach et al., 2023a,
2023b; Hersbach et al., 2020).
In this thesis, ERA5 reanalysis of the hydrological year 2022 is used for the observational period
(section 3.2.2 and Figure 6), and downscaled ERA5 reanalysis from 1985 to 2014 as a climate reference
period for downscaling the future climatology (section 3.3 and Figure 6).

2.4.2 ERA5-Land

ERA5-Land is driven by the downscaled meteorological forcing from ERA5 climate reanalysis and
therefore a sub-product of ERA5. An enhanced spatial resolution of 9 km (0.1◦x0.1◦) is one of the main
advantages of this product. The temporal resolution remains hourly with data available from 1950 to
present. The earth’s surface is represented in ERA5-Land with 4 surface levels. (Muñoz-Sabater, 2019;
Muñoz-Sabater et al., 2021)
The reanalysis product ERA5-Land of the hydrological year 2022 is used in this thesis for the observa-
tional period (section 3.2.1 and Figure 6).

2.4.3 NHM-SMAP

Niwano et al. (2018) introduced the high-resolution regional climate model NHM-SMAP (Non-
Hydrostatic atmospheric Model–Snow Metamorphism and Albedo Process) with a horizontal resolution
of 5km. The coupled model combines the Japan Meteorological Agency Non-Hydrostatic atmospheric
Model (NHM) and the Snow Metamorphism and Albedo Process model (SMAP) and is forced by the
Japanese 55-year reanalysis (JRA-55). Taking advantage of both short-term detailed weather forecast
models and long-term computationally stable climate models, it outputs hourly values of surface meteo-
rological properties including precipitation. (Niwano et al., 2018)
NHM-SMAP data from 2017 to February 2022 is used in this thesis to derive vertical temperature and
precipitation gradients within the HIMAl-method section 3.2.1

2.5 Climate scenarios

The basic future climate projections used in this thesis come from the Coupled Model Intercompari-
son Project Phase 6 (CMIP6), which is organised within the World Climate Research Programme’s
(WCRP) Working Group on Coupled Modelling (WGCM) (Eyring et al., 2016). CMIP6 integrates both
socioeconomic and radiative forcing scenarios, utilising the ScenarioMIP framework. This framework
structures CMIP6 scenarios in a matrix, with Shared Socioeconomic Pathways (SSPs) and the forcing
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levels of Representative Concentration Pathways (RCPs) forming its axes (Eyring et al., 2016; O’Neill
et al., 2016). Such a coupled approach is advantageous as it allows to represent various combinations of
socioeconomic challenges related to mitigation and adaptation by incorporating SSPs (O’Neill et al.,
2016, 2017), while maintaining compatibility with CMIP6’s predecessors and other RCP-based climate
models through the concurrent use of RCPs (Eyring et al., 2016).
With ScenarioMIP’s experimental design suggesting participating modelling groups to run at least all
four 21st century top priority scenarios, grouped in the so called Tier1 (O’Neill et al., 2016), the highest
number of model runs is to be expected within this group. Therefore, this thesis focuses on Tier 1,
consisting of the low end (SSP1-2.6), medium end (SSP2-4.5), medium to high end (SSP3-7.0) and high
end (SSP-5.85) range of future pathways (O’Neill et al., 2016), with future projections starting in 2015.
A more detailed description of these CMIP6 scenarios is further given in O’Neill et al. (2016).
The standardised outputs of CMIP6 are accessible through the Earth System Grid Federation, as noted
by Eyring et al. (2016). Model chains are selected based on the variant with the most extensive set of
model runs available, specifically the r1i1p1f1 variant. Further, they are only used if they provide gapless
datasets at a daily resolution for all meteorological variables over the historical reference period as well
as across all four Tier 1 future scenario projections. Thereby, the historical reference period is defined
to cover a standard climate-length (30 years; Arguez and Vose, 2011) from 1985 up to and including
2014, and future projections are retrieved from their onset in 2015 through to the end of 2099. The six
retrieved and complete model chains used in this thesis are presented in Table 4. A full description of all
used CMIP6 variables is given in Table 6, and CMIP6’s scenario matrix is shown in Figure 5, including
the scenario’s priority within ScenarioMIP.

Table 4: Retrieved CMIP6 model chains and their spatial resolution. For all model chains a historical reference
period and the Tier1 future projections are retrieved for the variant r1i1p1f1 at daily temporal resolution.

Scenario Timestep Variant Model Spatial resolution (lat x lon)

Historical
SSP1-2.6
SSP2-4.5
SSP3-7.0
SSP5-8.5

daily r1i1p1f1

GFDL-ESM4 1.00° x 1.25°
IPSL-CM6A-LR ∼1.27° x 2.50°
MIROC6 ∼1.401° x ∼1.406°
MPI-ESM1-2-HR ∼0.935° x ∼0.938°
MPI-ESM1-2-LR ∼1.865° x 1.875°
MRI-ESM2-0 ∼1.121° x 1.125°
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Figure 5: ScenarioMIP’s scenario matrix consisting of Shared Socioeconomic Pathways and year 2100 radiative
forcing combinations used in CMIP6, Including an overview of the scenario priority defined in O’Neill et al.
(2016). Source: based on Fig.2 of O’Neill et al. (2016), and retrieved from https://climate-scenarios.canada.ca/
?page=cmip6-overview-notes

14

https://climate-scenarios.canada.ca/?page=cmip6-overview-notes
https://climate-scenarios.canada.ca/?page=cmip6-overview-notes


3 Methods

3.1 Overview

Following the four step procedure presented in Figure 6, a suitable method for downscaling meteorologi-
cal reanalysis data in the study domain is identified in a first step (i) and subsequently (ii) applied to
downscale ERA5 reanalysis for the historical reference period of CMIP6. This downscaled reanalysis
product further serves (iii) as pseudo-observations for downscaling Tier 1 future climate scenarios of the
general circulation model CMIP6 to 100m spatial resolution and hourly temporal resolution, following
the TopoCLIM scheme of Fiddes et al. (2022) with minor adjustments. Eventually, (iv) the land surface
model Thetys-Chloris (T&C; Fatichi et al., 2012a, 2012b) is forced in a semi-distributed manner to
evaluate whether the spatial dynamics of observed snow cover are well reproduced with the downscaled
CMIP6 forcings of the historical period.

3.2 Spatial downscaling of reanalysis data

Bias-correcting-based downscaling of future climate scenarios (step3; Figure 6) requires a climate-scale
time series reference dataset (Fiddes et al., 2022). Due to insufficient in-situ data in the study domain,
this reference dataset is derived by downscaling global reanalysis for the historical reference period
(step2; Figure 6), upon which the quality of the final product strongly depends. Therefore, an appropriate
downscaling method, suited for the study domain, is required. To address this, two potential downscaling
methods are applied and compared for the observational period (step1; Figure 6): TopoPyScale, based
on the work of Fiddes and Gruber (2012, 2014) and implemented in the eponymous open-source Python
tool TopoPyScale (Filhol et al., 2023), and the HIMAL-method, described by Machguth et al. (2009)
and previously employed by this thesis’s supervising research group (e.g., Fugger et al., 2024). The
observational period is thereby defined as the hydrological year 2022. Thus, after spatially downscaling
ERA5 and ERA5-Land using TopoPyScale and the HIMAL-method, respectively, the downscaled
reanalysis forcings are evaluated against meteorological observations of the hydrological year 2022 in
both catchments. It is important to empathise that this comparison serves to identify the more suitable
downscaling method, and only one of the presented methods (TopoPyScale) is finally applied for the
historical reference period in order to generate a climate-length, downscaled reanalysis reference period
further used for quantile mapping CMIP6 scenarios. Additionally, the ability to reproduce surface
temperature, snowpack dynamics and debris temperature within T&C is assessed at plot-scale.
Furthermore, the added value of bias correction with short-term in-situ data is investigated by additionally
extending and evaluating the HIMAL-method with a bias correction step. However, it is important to
clarify that this thesis does not consider to apply an additional bias correction step in downscaling the
full historical reference period, since observations are only available over one year, which is seen as
insufficient to reflect average climatic conditions for bias correcting a standard climatic period of thirty
years. Therefore, the examination of the bias correction’s added value is confined to the observational
period, aiming to provide a basis for further research, for instance for short-term application or when
more ground data is available.
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Figure 6: Schematic overview of the main processes and experimental setup of this thesis.
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3.2.1 HIMAL-method

The HIMAL-method is geared towards catchment scale land-surface modelling and follows the general
method of Machguth et al. (2009) to generate statistically downscaled hourly ERA5-Land forcings from
coarse grid cells (approx. 9 km) to the 100 metre spatial resolution Fugger et al. (2024) of the input
DEM (section 2.2.1). Again, it is mentioned hereby that this method is only applied for the observational
period.
For most meteorological variables, such as air temperature (Ta), relative humidity (Rh), precipitation
(Pr) and incoming shortwave and longwave radiation (Sw↓, Lw↓), a vertical gradient (lapse rate) is
applied to the coarse grid in order to produce a new grid on a normalised 0 m.a.s.l. reference plane where
the horizontal gradients remain. Subsequently, the normalised grids are spatially interpolated for each
timestep to the desired 100m grid resolution by employing a thin-plate spline interpolation. Finally, the
interpolated grid cells on the 0 m.a.s.l. reference plane are mapped to the altitude of the provided fine
grid DEM using the same vertical gradients as before. A schematic overview of the described approach
is presented in Figure B.1.
Vertical temperature gradients are derived for each catchment based upon the availability of in-situ data.
In the case of the Kyzylsu catchment, air temperature records were available on different elevations
(Table 2) and therefore used to generate a mean hourly-monthly temperature gradient following Shaw
et al. (2022). However, it should be noted that these gradients may be over-fitted to lower elevations,
since the higher altitude ranges of the catchment remain ungauged. In the Sangvor catchment, not
enough air temperature measurements are available in order to derive a vertical gradient. Therefore,
mean hourly-monthly temperature gradients are derived for this catchment from the higher resolved
NHM-SMAP (Niwano et al., 2018), recently developed over High Mountain Asia (unpublished). Com-
pared to the raw ERA5-Land gridded data, the 5km grids of NHM-SMAP are deemed to represent a
greater sub-grid variability of temperature against elevation.
As relative humidity (Rh) depends on air temperature, dew point temperature from ERA5-Land grids
is first downscaled using the same lapse rates as described above for air temperature and subsequently
converted into relative humidity by following the calculation of saturated vapour pressure from Murphy
and Koop (2005) and using the already downscaled air temperature and air pressure.
For precipitation (Pr), a substantial gradient was witnessed from field visits and deemed to be appropri-
ately explained by an hourly-monthly mean vertical gradient (Fugger et al., 2024). It is assumed to be
similar for the Sangvor catchment, since both catchments are rather small, have a similar elevation range
and are spatially close to each other. Given the insufficient amount of precipitation gauges in the Kyzylsu
catchment, and the complete absence of such gauges in the Sangvor catchment, vertical precipitation
gradients are derived from NHM-SMAP as well. Further, interpolated values below 0.05 mm are set to
zero and finally, regions of the catchment with no precipitation in the coarser ERA5-Land grids are set
to zero as well, preserving the original discontinuities of ERA5-Land precipitation fields (Figure B.2).
Incoming short- and longwave radiation (Sw↓, Lw↓) are provided with small vertical gradients based
upon the work of Marty et al. (2002) who derived vertical radiation gradients from observations across
the Alps. For incoming shortwave radiation, the vertical gradient is +1.3 Wm2 / 100m and for incoming
longwave radiation -2.9 Wm2 / 100m. It should be noted that the interpolation does not account for
the potential relationship with topography due to e.g. cloud formation, for it can be accounted for
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within T&C. However, it is additionally accounted for when comparing to TopoPyScale, since the latter
inherently accounts for topography.
Finally, air pressure (Ps) and wind speed (Ws) are downscaled with different methods than the above
mentioned variables: surface air pressure is downscaled simply using its known relationship to elevation
and wind speed is calculated from the u- and v-components from the closest ERA5-Land grid cell using
the diagnostic WINDSmodel as described by Burlando et al. (2007) and Peleg et al. (2017). While the
latter method accounts for topographic sheltering of winds and for the exposed nature of valley ridges, it
does not account for wind regimes affected by density driven flows (e.g. glacier katabatic winds) or by
valley heating (slope winds).
The data source(es) used to derive the vertical distribution (as described above) is indicated for each
variable and catchment in Table 5.

To additionally evaluate the added value of an additional bias correcting step with short-term in-situ
station data, the above described procedure is extended with the commonly used empirical quantile
mapping function (EQM) (e.g. Fiddes et al., 2022; Rye et al., 2010; Themeßl et al., 2012. This method
is further referred to in this thesis as HIMAL-BC. Provided station coordinates are used to extract the
corresponding pixel of the downscaled variable for the total period over which observations are available
and subsequently derive monthly variable bias-correction coefficient series. To do so, the downscaled
hourly data is compared against the hourly observations and an additive or multiplicative (precipitation)
correction factor based upon the cumulative distribution function with n numbers of quantiles is defined.
Seasonal biases are accounted for by using monthly bias-correction coefficients. The number of quantiles
used was empirically derived through optimisation and set to 300, as increasing this value did not result
in additional improvement of performance (Fugger et al., 2024).
Dealing with precipitation, multiplicative EQM coefficients are derived based upon daily sums of
observations and downscaled grid points (Themeßl et al., 2011; Wilcke et al., 2013). Dry-day frequency
underestimation caused by high frequency light precipitation (’drizzling effect’; e.g Gutowski et al.,
2003) is known to be an issue in ERA5 products (e.g. Lavers et al., 2022) and therefore addressed by
setting daily precipitation values below 0.1 mm to zero. Subsequently, the above-described EQM scheme
is applied and the bias corrected daily values are temporally disaggregated back to hourly intervals.
To do the latter, the temporal distribution from the initial ERA5-Land dataset is applied, ensuring
consistency with other forcing variables (e.g., avoiding coincidences of high solar radiation values and
high precipitation rates).
Ground data used for bias correction is selected by a manual interpretation of the available data’s ade-
quacy. However, monitoring meteorological conditions in remote, high elevation regions is challenging:
station failures, dysfunctional sensors or data gaps affect the overall time series and thus possible choices
are sometimes limited. The selected measurement locations used for bias correcting are presented for
each variable and catchment in Table 5, whereby only locations covering at least a certain percentage of
the bias correcting period are used. While data availability in the Kyzylsu catchment allows setting this
threshold to 95%, the threshold in Sangvor was set to 89%, allowing the use of every measured variable.
Bias-correction coefficients derived based upon one single reference location are assumed to be repre-
sentative for the whole catchment and thus applied to bias-correct all grid cells. If multiple locations
with sufficient data are used, a spline interpolation is used to distribute the bias correction coefficients
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in three dimensional space. In order to avoid extrapolation issues towards areas with no stations (e.g.
in ungauged high elevation regions), mapping coefficients are kept equal to the nearest station when
moving beyond the geographical limits of the used stations.
However, it is important to mention, that only one year of station data (hydrological year 2022 for
Kyzylsu, and full dataset for Sangvor) is used to quantile map downscaled reanalysis data and thus
seasonal biases could occur (e.g. if the year included had an extraordinarily hot summer). Furthermore,
for variables where many (or all) available measurement locations are already included in bias correction,
additional in-situ measurements are missing in order to be able to perform an independent evaluation of
bias correction.

Table 5: Treatment of each ERA5-Land variable within the HIMAL-method and HIMAL-BC, including the data
source(s) for deriving vertical gradients, and stations used for bias correction in HIMAL-BC.

Kyzylsu Sangvor

Variable Vertical gradient Station(s) for EQM Vertical gradient Station(s) for EQM

Ta
KYZ_AWS KYZ_AWS

NHM-SMAP SANG_AWSKYZ_T_3500 KYZ_T_3500
KYZ_T_3900 KYZ_T_3900

Rh Same as Ta KYZ_AWS NHM-SMAP SANG_AWS
Pr NHM-SMAP KYZ_AWS_PLU NHM-SMAP -
Ps Correlation with altitude KZY_GAUG Correlation with altitude -

Sw↓ Literature (fixed) KYZ_AWS Literature (fixed) SANG_AWS
Lw↓ Literature (fixed) KYZ_AWS Literature (fixed) SANG_AWS
Ws ERA5-Land KYZ_AWS ERA5-Land SANG_AWS
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3.2.2 TopoPyScale

TopoPyScale (Filhol et al., 2023) is an open-source python package for downscaling ERA5 reanal-
ysis and is based on an adapted version of the downscaling scheme TopoSCALE (Fiddes & Gruber,
2014), including an option to couple the sub-grid scheme TopoSUB (Fiddes & Gruber, 2012). Spatial
downscaling can therefore be run either at plot-scale for predefined points of interests by providing
their coordinates (e.g. locations of weather stations) or in a semi-distributed manner by coupling the
clustering routine TopoSUB to the downscaling routine TopoSCALE.
The Topographic SUBgrid tool (TopoSUB; Fiddes and Gruber, 2012) uses the K-means clustering
algorithm (Hartigan & Wong, 1979) to cluster fine resolution DEM grid cells based on their geographical
and topological features, such as location, elevation, slope, aspect and sky view factor. Subsequently,
cluster centroids (points) representing the mean geographical and topological features of the cluster
are generated. These centroids can be seen as ‘virtual points’, as they do not exist in reality (e.g. they
have a different elevation than the same coordinates of the initial provided DEM). Cluster centroids
can subsequently be used for computational-efficient semi-distributed downscaling, as they efficiently
describe sub-grid behaviour and allow a post-downscaling disaggregation of downscaled values back
to the initial grid. To do so, each grid cell of a cluster is assigned the same downscaled value from its
representing centroid.
TopoSCALE (Fiddes & Gruber, 2014) is an extensively tested (e.g. Fiddes et al., 2015; Fiddes et
al., 2019; Obu et al., 2019, 2020; Schuler and Østby, 2020; Westermann et al., 2015 quasi-physical
topography-based downscaling scheme used in TopoPyScale as routine for spatially downscaling ERA5
reanalysis from coarse grid cells (approx. 30 km) to points of interests (either provided coordinates or
TopoSUB cluster centroids) based on their topological features derived from the input DEM (in this
thesis a 100m DEM; section 2.2.1). Air temperature (Ta), relative humidity (Rh), surface air pressure
(Ps) and wind speed (Ws) are downscaled directly from ERA5 pressure levels by a three dimensional
interpolation, inherently accounting for time varying vertical gradients. As downscaled wind speed is at
10m above surface, 2m wind speed used for comparison against the HIMAL-method is calculated based
on Equation 1. Precipitation (Pr) is downscaled from the ERA5 surface grid using a non-linear lapse rate
based on Liston and Elder (2006) and radiative fluxes (Sw↓ and Lw↓) are topographically corrected,
including an elevation correction. A more detailed description of the involved downscaling processes is
presented by Fiddes and Gruber (2014). In contrast to the HIMAL-method, the routine does not rely on
additionally provided lapse rates, as all vertical gradients are already implemented.
In order to compare the implemented downscaling routine against the HIMAL-method for the observa-
tional period, TopoPyScale is applied at plot-scale. Further, the TopoSUB-coupled version is applied for
the historical reference period to derive a reference dataset for downscaling future CMIP6 scenarios, as
described in section 3.3
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Table 6: CMIP6 variables used in this study, together with the Climate and Forecast Conventions (CF) standard
names and the used disaggregation method. Tasmin and tasmax are only used to disaggregate near-surface air
temperature (tas). Near-surface wind speed (sfcWind) is derived from the eastward (uas) and northward (vas)
components of near-surface wind, and wind direction is not analysed in this thesis.

CMIP6
Unit Timestep CF long name Disaggregation method

variable name

tas K daily Near-surface air temperature Melodist: sine mean
tasmin K daily Daily maximum near-surface air temperature
tasmax K daily Daily minimum near-surface air temperature
pr kg/mˆ2s daily Precipitation Station derived (KYZ_AWS_PLU)
ps Pa daily Surface air pressure Linear interpolation
hurs % daily Near-surface relative humidity Melodist: equal
rsds W/m2 daily Surface downwelling shortwave radiation Melodist: pod rad
rlds W/m2 daily Surface downwelling longwave radiation Relationship to Ta
sfcWind m/s daily Near-surface wind speed (10m) Melodist: random

3.3 Downscaling future meteorology

While both TopoPyScale and the fully gridded HIMAL-method exhibit comparable performance for
many meteorological variables throughout the observation period (section 4.1.1), TopoPyScale demon-
strates a slight superiority in reproducing certain variables such as air temperature (Ta), surface air
pressure (Ps) and incoming shortwave radiation (Sw↓). Additionally, it offers extra benefits, making
it a more suitable choice for generating downscaled reanalysis forcings of the reference period. The
main advantage of the chosen method is the already built-in possibility for semi-distributed downscaling
(by coupling TopoSUB), drastically reducing both computational resources required as well as storage
demand. To leverage this advantage, ERA5 reanalysis is downscaled for the historical reference period
using the TopoSCALE routine coupled with prior TopoSUB clustering (step 2; Figure 6). For this
purpose, the clustering method implemented is enhanced by incorporating an algorithm that considers
land cover within the catchment during clustering. To do so, the clustering routine is executed separately
for each land cover type, ensuring all cluster members share the same land cover type. The number
of clusters per land cover is determined by the relative area covered within the catchment. Decimal
numbers are rounded up to the next integer, ensuring the total number of clusters does not decline (thus
in most cases the total number of clusters slightly increases). Following the demonstration (Fiddes &
Gruber, 2012) of stable performance at 128 clusters in all tested cases, the total number of clusters is set
to 128, resulting in 132 clusters for Kyzylsu and 129 clusters for Sangvor.
This approach eventually provides a climate length time series of ERA5 pseudo-observations while still
accounting for the main topographic effects on atmospheric forcing (Fiddes et al., 2022). The downscaled
reanalysis series further serves as reference data for statistical downscaling CMIP6 scenario outputs (step
3; Figure 6) using the quantile mapping bias correction method (Gudmundsson et al., 2012). Seasonal
varying biases are addressed through monthly quantile mapping. A detailed description of the applied
quantile mapping is provided by Fiddes et al. (2022) and therefore not repeated here. Furthermore, the
spatially downscaled CMIP6 climate scenarios remain at daily resolution and thus a temporal down-
scaling to sub-daily fields (hourly resolution) is required. To address this, the meteorological variables
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are disaggregated with the methods listed in Table 6. For most variables the open-source melodist
package (Förster et al., 2016) is used, further following the TopoCLIM scheme. Surface air pressure (Ps)
is disaggregated using linear interpolation and incoming longwave radiation by its relationship to air
temperature (Ta) for which Fiddes et al. (2022) provide a detailed description. For precipitation (Pr) a
different method is used: monthly diurnal disaggregation patterns are derived using in-situ observations
of the station KYZ_AWS_PLU. Specifically, days with recorded precipitation are used to identify the
monthly mean number of hours per day where precipitation occurs (n). If this monthly average is below
two hours per day, n is set to 2 instead. Subsequently, the mean precipitation for all hours is ranked by
magnitude and precipitation occurring in hours ranked lower than n (rank<n) is equally redistributed to
the n-highest ranks. Finally, the resulting monthly diurnal precipitation patterns are applied to the down-
scaled CMIP6 time series. The same diurnal patterns are applied for Sangvor, where no precipitation
gauge is available, assuming the patterns are representative due to the geographical closeness of the two
catchments. It should be mentioned that although these patterns deem to appropriately represent the the
variability of occurring precipitation in the study domain, it still is a simplified treatment of temporal
precipitation disaggregation, which remains a persistent challenge within the scientific community (e.g.
Acharya et al., 2022; Scher and Peßenteiner, 2021).

3.4 The land surface model Thetys-Chloris (T&C)

Surface temperature (Ts), debris temperature (Tdeb) and snowpack dynamics are simulated in this thesis
by applying the ecohydrological model Thetys-Chloris (T&C; Botter et al., 2021; Buri et al., 2023;
Fatichi et al., 2012a, 2012b; Manoli et al., 2018; Mastrotheodoros et al., 2019; Paschalis et al., 2022.
This state-of-the-art physical land surface model has been widely used in mountainous regions (e.g.
Botter et al., 2021; Buri et al., 2023; Fugger et al., 2022, 2024; Fyffe et al., 2021; Mastrotheodoros et al.,
2020; Shaw et al., 2022 and can simulate all essential components of the hydrological cycle by resolving,
the mass and energy balances at hourly scale (Fatichi et al., 2012a) for any type of land cover, including
bare ground, vegetated land, rock, snow, glaciers, supraglacial debris and surface water (Fugger et al.,
2024). The main fluxes included in resolving surface energy balance are net radiation, sensible and latent
heat, heat exchange with the subsurface, as well as the heat consumed by photosynthesis. Additionally,
the model resolves infiltration and exfiltration, deep percolation and soil moisture dynamics in the
unsaturated zone, including root water uptake. Further, depending on the local and dynamic conditions,
the surface and subsurface layers can comprise snow, ice and supraglacial debris and therefore the
melt and accumulation of ice and snow are explicitly simulated in the model (Fugger et al., 2022). A
schematic overview of the model framework is presented in Figure 7.
For the Kyzylsu catchment, the model setup of Fugger et al. (2024) is used and for Sangvor the model is
set up in the same manner. Topology (100m DEM), glaciers, debris cover and land cover are derived as
described in section 2.2, and model parameters requiring adjustment either estimated from literature
or derived through optimisation (Fugger et al., 2024). A single-layered ice pack is used to represent
glacier ice. The implemented ice and ice-under-debris mass balance models are described by Fyffe et al.
(2021) and Fugger et al. (2022). Snow however, is represented in the model by a multi-layer snowpack
model, within which a 3mm thick surface skin-layer exchanges energy with the overlying atmosphere
and transfers heat into the underlying snowpack (Fugger et al., 2024). Snowpack dynamics are hereby
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simulated by using an iterative numerical approach to solve the energy balance of the surface skin-layer
while concurrently solving the mass balance of the whole snowpack (Fatichi et al., 2012a; Fugger et al.,
2024). The implemented energy and mass balance models for snow, including a sensitivity analysis of
the individual energy and mass fluxes, are described in more detail by Fyffe et al. (2021) and Fugger
et al. (2022) and include heat flux due to precipitation, freezing of liquid water in the snowpack and the
accumulation (including interception), melting and sublimation of snow. Although model uncertainties of
this specific setup were not explicitly quantified, the ability to replicate the necessary physical processes
is tested and confirmed by Buri et al. (2023) and Fugger et al. (2022, 2024).
For the observational period the model is applied at plot-scale to simulate surface temperature and snow
height at the in-situ measurement locations. The general topography is represented in the model by
a 100m DEM (section 2.2.1). For enhanced accuracy, slope and aspect at the measurement locations
are determined either from field measurements (if available) or by employing a Pléiades 2m DEM
(section 2.2.1). Land-cover, glaciers and debris-cover however, are derived from a 100m grid as well,
and may therefore not correctly represent the local conditions as they aim to represent the average over
the whole grid-cell.
For the historical reference period, the model is forced in a semi-distributed manner, taking advantage of
the TopoSUB clustering method. To do so, each TopoSUB-derived cluster centroid is associated with
the cluster member grid cell that shares the same land cover and the most topological characteristics,
determined by minimising the squared distance of the predictors. Subsequently the model is forced at
plot-scale for each of these assigned grid cells, representing the cluster centroid and thus representing
multiple grid cells. A map of the cluster centroids used is presented in Figure B.4. After simulating
each centroid, the model output is spatialised by assigning each grid cell the same model output from
its representing cluster centroid. Although uncertainties resulting from this TopoSUB-based approach
are not quantified for this study domain, an analysis in another catchment (Figure B.3) suggests that
this approach is able to simulate spatial snow pack dynamics similarly well as a fully distributed model
approach. But with much more efficiency. Nevertheless, it should be mentioned that lateral mass fluxes
(lateral water flows on the surface and subsurface, wind drift, avalanches, etc.) are not simulated by this
approach.
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Figure 7: T&C model framework: hydrosphere, cryosphere and biosphere components together with energy
balance components. Lateral processes are only simulated within a distributed model run. Source: Fugger et al.
(2024)
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3.5 Evaluation

3.5.1 Downscaling reanalysis

To evaluate the performance of each downscaling approach (step 1; Figure 6), the downscaled meteo-
rological reanalysis forcings are compared against in-situ observations. The comparison consists of a
quantitative assessment by calculating performance measures and a visual interpretation of different
plots, such as temporal evolution, scatter, cumulative distribution function and diurnal cycle. For this
evaluation the following performance measures are chosen: Pearson correlation coefficient (R), root
mean squared error (RMSE), bias (BIAS) and for some variables additionally the percentage bias
(PBIAS). This allows to assess how well the downscaled data captures the variability and trends present
in the observed data (R), measure the accuracy of the downscaled data by understanding the typical
size of discrepancies between downscaled and observed values (RMSE) and finally to assess the overall
tendency of the downscaling method to overpredict or underpredict (BIAS/PBIAS). Figure 8 presents an
example of such evaluation for the case of 2m air temperature at the station KZY_AWS. Such a compar-
ative evaluation is carried out for all downscaled meteorological variables at each in-situ location where
ground measurements of the specific variable are available Table A.1. To further evaluate the ability
of T&C to reproduce surface temperature (Ts), local snowpack dynamics (Sd) and debris temperature
(Tdeb) at plot scale with the downscaled forcings, model outputs (Ts, Sd, Tdeb) are evaluated in the
same manner.
For Precipitation (Pr) and snow height (Sd) the comparison is done at daily scale by using daily sums
instead of hourly values, whereby biases in precipitation were calculated using the monthly sums.
Further, surface temperature (Ts) is treated differently, since in T&C surface temperature refers to the
temperature between the uppermost ground layer and the atmosphere and consequently, loggers that may
be covered with snow only correspond to it in snow-free conditions. Thus, the performance measure is
separately conducted for August (TsAug), a month with presumably snowfree conditions at all logger
locations. The only location where performance measures of surface temperature are designated for
the whole year is SANG_AWS, since the installed infrared sensor is above ground and measures the
surface layer interacting with the atmosphere over the whole year. Moreover, the locations SANG_T_1
and SANG_T_8 are excluded from evaluation due to a discrepancy between the model’s representation
and their actual topographic characteristics: T&C, using average characteristics of a 100 metre grid,
inaccurately represents these sites as glaciated instead of bare rock, making comparisons with observed
data unfeasible. While it is possible to adjust this within the model set up, such modifications were not
implemented for the scope of this thesis. This decision is justified by the close spatial proximity of one
of these loggers to other sites (Figure C.36) and the sufficient number of alternative locations available
for analysis (Table A.1). Notably, despite their exclusion from the primary evaluation, detailed figures
related to these locations are still included in appendix C.2.2.
All supplementary figures not included in the main body of the thesis are in appendix C, encompassing
evaluational details for all variables across all locations. Further, a comprehensive summary of the
performance measures across all locations is presented in Table 7, with further interpretation provided in
the results section. However, it is important to note that the observation time span of some variables
varies across different locations Table A.1. For instance, data at SANG_AWS Sangvor is only available
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from mid October 2021 up to the beginning of September 2022. Though discrepancies in observation
periods could potentially impact comparability between locations, they are not further discussed in this
thesis as they concern rather short periods compared to the whole observational period, and it is likely
that resulting uncertainties are exceeded by other uncertainty sources discussed in section 5.
Further, it is important to mention that due to a lack of long term in-situ observations not all observations
used for the comparison are independent from downscaling processes that include a bias correction
step or use certain stations to derive vertical gradients (Table 5). Nevertheless, for TopoPyScale and
the HIMAL-method (without bias correction) all observations are independent, except for the HIMAL-
method in Kyzylsu where air temperature is indirectly used to derive vertical temperature gradients.
Finally, it is worth mentioning that the in-situ observations used here are not assimilated by ERA5 nor
its subproduct ERA5-Land.

3.5.2 Downscaled CMIP6

The efficacy of the applied TopoCLIM scheme in removing biases is assessed (right part of step 4;
Figure 6) by comparing the downscaled CMIP6 forcings against the downscaled ERA reference dataset
of the historical period for the two most important meteorological forcing variables for hydrological
modelling, namely air temperature (Ta) and precipitation (Pr). Further the quality of the downscaled
ERA5 reference dataset itself is evaluated against observations for these same meteorological variables,
aiming to assess the capability of the used TopoSUB-coupled mode of TopoPyScale.
Eventually, the quality of the final product is analysed in terms of its implications for land surface
modelling with T&C, specifically focusing on the ability to reproduce spatial snowpack dynamics
(left part of step 4; Figure 6). Thus, the T&C model is forced in a semi-distributed manner for the
historical reference period of the final product, as previously described (section 3.4). The model
was run from October 1999 to the end of the historical reference period (December 2014), with
October 1999 to September 2000 as spin-up period. Subsequently, simulated catchment-wide snowline
elevation as well as simulated snow cover are compared against independent remote sensing data
(MODIS, Landsat-7 and Landsat-8; section 2.2.4). The ability to reproduce snowline elevation is thereby
quantified by the coefficient of determination (R2) and the accuracy of simulated snow cover with the
Sørensen–Dice similarity coefficient (DSC; Dice, 1945; Sorensen, 1948). whereby the higher- resolution
binary snowmaps (0=no snow; 1=snow) derived from remote sensing images were resampled to the
100m grid of the input DEM by linear interpolation. Since resampling leads to values in between 0 and
1, the maps are transformed back to binary values by setting cells with an average of 0.5 or higher to 1
and all other cells to 0.
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Figure 8: Evaluation of the downscaling methods - exemplary figure for the case of 2m air temperature at the
KYZ_AWS station. a) temporal evolution of the daily mean as solid lines and the hourly values as bright points,
together with b) a scatter plot showing the correlation between downscaled and observed hourly values, and c) a
cumulative distribution (CDF) of the hourly values. Additionally, the performance is evaluated in quantitative
terms by three performance measures: the Pearson correlation coefficient (R), root mean squared error (RMSE)
and bias (BIAS). These measures are presented in the table to the upper right of the figure. The temporal evolution
is always plotted for the whole hydrological year. The period over which the performance measures are calculated,
and over which the scatter plot and the CDF are plotted, is indicated to the top of the performance-table, whereby
only days with complete observations are used, ensuring consistency.
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4 Results

4.1 Downscaled reanalysis

4.1.1 Evaluation of meteorological forcings

A comprehensive summary of the downscaling performance across all locations for each downscaling
approach and meteorological forcing variable is presented in Table 7. The analysis reveals that the
HIMAL-method and TopoPyScale overall exhibit comparable levels of performance. However, in the
case of certain meteorological variables, TopoPyScale demonstrates a marginally superior performance.
Further, an additional application of bias correction for HIMAL-BC is observed to generally enhance
the accuracy of the downscaled variables. In this section, the performance of the different downscaling
methods is further discussed in more detail for each meteorological forcing variable.
Concerning air temperature (Ta), both TopoPyScale and the HIMAL-method exhibit a strong correlation
(R=0.95 in both methods) with in-situ observations. However, TopoPyScale shows enhanced accuracy
with a lower RMSE (2.5) and less bias (-0.33) compared to the HIMAL-method. The latter tends
to underestimate air temperature (BIAS=-2.12), particularly for low temperatures (e.g Figure C.1:
subfigures b-c or wintermonths in subfigure a). Bias correction within HIMAL-BC is able to correct this
and generally improves performance, reaching a correlation of 0.96, lower RMSE (2.31), and reduced
bias (-0.54). It should be noted though that the demonstrated performance of TopoPyScale is comparable
with the one of bias-corrected HIMAL-BC.
Concerning relative humidity (Rh), TopoPyScale exhibits a stronger tendency to underestimate (bias
of -11.5) and shows a slightly higher RMSE (18.41) compared to the HIMAL-method (RME=16.48;
BIAS=-3.88), while both methods demonstrate a similar correlation (HIMAL=0.75; TopoPyScale=
0.78) with in-situ observations. However, given the inherent dependency of relative humidity on air
temperature, performance measures must be interpreted carefully. For instance, the HIMAL-method’s
seemingly superior performance may be linked to its tendency to underestimate air temperature, as
lower temperatures results in higher relative humidity for constant specific humidity. The noteworthy
temporal correspondence between the period where the HIMAL-method predominantly exhibits lower
performance for air temperature (e.g. winter) and the period where it outperforms for relative humidity
(e.g. Figure C.1) suggests that this may indeed be the case - especially as, like for air temperature, the
correspondence during summer months are comparable for both methods. Concerning bias correction,
a slightly improved correlation (0.77) and reduced RMSE (15.22) and bias (-0.61) indicate beneficial
impact on downscaling relative humidity. This positive effect extends even to stations not included in
the bias correction process (Figure C.2).
Both TopoPyScale and the HIMAL-method overestimate monthly precipitation sums (Pr) on average by
about 25% (PBIAS of 23.8% in TopoPyScale and 28.6% the in HIMAL-method) with a similar RMSE
of almost 4 and low temporal correlation (TopoPyScale=0.5; HIMAL-method=0.53) (Figure C.10).
While this tendency is present in most months (Aug-Mar), a notable deviation is observed during late
spring to early summer (Apr-Jul), where both methods temporarily underestimate precipitation. Further,
dry-day frequency is underestimated by both methods (Figure C.10: subfigure b-c). The moderate
performance, likely associated with existing biases in ERA5 and ERA5-Land (section 5.1.1), can
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be successfully enhanced with additional bias correction as shown for the HIMAL-method where
bias could be reduced to 4%. However, although monthly and annual precipitation sums could be
adjusted and the underestimation of dry days reduced by specifically addressing the issue within bias
correction (section 3.2.1), the temporal correlation slightly deteriorates (0.49) and dry-day frequency
still is underestimated. Both indicate that the replication of temporal precipitation distribution remains
challenging.
An interesting observation about atmospheric surface pressure (Ps) is that it is differently reproduced
by the HIMAL-method and TopoPyScale (Figure C.11). While the former succeeds in capturing the
daily and sub-daily variability (R=0.94), TopoPyScale represents pressure fluctuations solely at specific
step sizes, resulting in a lower correlation of 0.86. However, TopoPyScale exhibits a lower RMSE (2.23)
and minimal bias (1.69). The higher RMSE (12.04) of the HIMAL-method is largely affected by the
systematic bias (-11.95). Both clearly can be reduced by applying bias correction within HIMAL-BC,
although an overcorrection of higher pressure values is evident. As, apart from small fluctuations,
TopoPyScale outperforms the HIMAL-method in reproducing atmospheric surface pressure and is
therefore considered as more suitable for this specific variable and application.
Further, all downscaling approaches effectively capture the main pattern of the average diurnal cycle
of incoming shortwave radiation (Sw↓) and thus achieve strong correlations with the observed data
(Figure C.12 and Figure C.13), resulting in an average R-value between 0.92 and 0.94 (Table 7). However,
both TopoPyScale and the HIMAL-method exhibit discrepancies to hourly observations, as reflected
in their average RMSE values of 123.98 (TopoPyScale) and 113.66 (HIMAL-method). It is further
interesting that both tend to overestimate average peak radiation, which is evident in the average diurnal
cycle. Although this may partially explain discrepancies and biases, additional underlying factors may
be present. This is indicated by HIMAL-BC: while the additional bias correction adjusts the cumulative
distribution and reduces bias to 0.07% on average, discrepancies and the tendency to overestimate peak
radiation still remain. The spread in the scatter plots, predominantly at lower radiation values, and the
shape of the cumulative distributions, suggest that there may be an additional temporal shift (e.g. in
the evening) contributing to the observed discrepancies. It should be mentioned at this point that no
persistent seasonal pattern in temporal shifts across sites is observed (Figure C.14 to Figure C.17) and
thus it is not further investigated in the scope of this thesis. Nevertheless, while it is advisable to keep
the noted discrepancies in mind, both methods are regarded as suited for downscaling Sw↓, since the
main patterns of the average diurnal cycle and the mean daily radiation are largely captured by the
downscaling methods. Further, due to its smaller bias, TopoPyScale is regarded as slightly more accurate
than the HIMAL-method.
Regarding incoming longwave radiation (Lw↓), the HIMAL-method and TopoPyScale both demonstrate
robust temporal correlation with observations, as indicated by average R-values of 0.86 (HIMAL-method)
and 0.83 (TopoPyScale) and by supporting figures (Figure C.18 and Figure C.19). Yet, both methods have
discrepancies (RMSE of 33.2 in HIMAL-method and 33.96 in TopoPyScale ) and tend to underestimate
incoming longwave radiation, as indicated by an average bias of -21.87 (HIMAL-method) and -17.88
(TopoPyScale). While the HIMAL-method tends to underestimate rather lower values, TopoPyscale
is more likely to underestimates high radiation. These tendencies are discernible in the scatter plots
and the cumulative distribution functions and particularly pronounced in temporal evolution during
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specific periods, such as winter or summer months. Bias correction in HIMAL-BC is able to enhance
performance by reducing the average RMSE to 25.21 and bias to −0.62.
Ultimately, the assessment of downscaled wind speed (Ws) reveals that both the HIMAL-method and
TopoPyScale are unable to accurately reproduce observed wind speed dynamics(Table 7 and supporting
figures Figure C.20 to Figure C.22). This is especially evident in low R-values and considerable negative
biases, with an average PBIAS of -85.24% for the HIMAL-method and -58.16% for TopoPyScale.
The pronounced underestimation of wind speeds is further revealed in the cumulative distribution
functions and scatter plots, which show a consistent shortfall in capturing the magnitude of higher wind
speeds. However, it is noteworthy that, despite the overall underperformance, TopoPyScale exhibits a
markedly smaller bias compared to the HIMAL-method. Concerning bias correction, the alignment of
CDFs to observed values is markedly improved for stations included in bias correction (Figure C.20
and Figure C.22) and hence biases are lowered. Yet, the correction is not equally effective for all
locations, as indicated at the station KYZ_AWS_PLU by an only partially reduced bias and persistent
underestimation of high wind speeds (Figure C.21). This indicates that biases observed at one station
are unlikely representative for the entire catchment and thus, catchment-wide bias correction with
only one station has limited effectiveness. Further, the overall temporal correlation remains modest
(0.25) and sub-daily divergence still exhibits an average RMSE of 2.24. This suggests that while bias
correction can adjust the overall tendency to underestimate wind speed, it cannot fully reconcile the
temporal misalignments. To summarise, downscaling wind speed has inherent challenges of spatial and
temporal variability. Despite this, bias correction within HIMAL-BC can clearly enhance performance
by increasing wind speed magnitudes and thus reducing the average bias to -11.97%.

Table 7: Mean performance (R, RMSE and BIAS) of the different downscaling methods for each variable over all
locations. The number of locations with observations is indicated inside the brackets next to the variable name.
Performance measures are at hourly scale, except for variables marked with a ’*’ where the daily sum was used.
Surface temperature is additionally summarised for the month of August (TsAug), ensuring snowfree conditions.
PBIAS is additionally provided for variables where a percentage bias is useful.

Downscaling (meteorological forcing variables) T&C at plot-scale (simulations)

Statistic Ta (6) Rh (3) *Pr (1) Ps (1) SW↓ (2) LW↓ (2) WS (3) Tdeb (1) Ts (1) TsAug (9) *Sd (3)

HIMAL

R 0.95 0.75 0.50 0.94 0.93 0.86 0.19 0.60 0.84 0.80 0.88
RMSE 3.69 16.48 3.98 12.04 113.69 33.20 3.25 7.83 13.15 13.27 29.55
BIAS −2.12 −3.90 0.41 −11.95 24.33 −21.87 −2.62 −6.05 0.10 11.13 16.35
PBIAS 23.77 12.38 −85.24 44.73

TopoPyScale

R 0.95 0.78 0.53 0.86 0.92 0.83 0.37 0.48 0.81 0.69 0.81
RMSE 2.50 18.43 3.87 2.45 124.00 33.96 2.62 8.20 8.71 10.58 35.57
BIAS −0.33 −11.51 0.50 −1.46 7.29 −17.88 −1.87 −6.28 −3.39 −3.75 20.51
PBIAS 28.63 3.73 −58.15 52.13

HIMAL-BC

R 0.96 0.77 0.49 0.94 0.94 0.86 0.25 0.79 0.84 0.81 0.75
RMSE 2.31 15.22 4.28 2.22 107.44 25.22 2.24 4.64 9.48 10.84 26.27
BIAS −0.54 −0.61 0.07 1.68 0.15 −0.63 −0.49 −1.08 0.20 4.44 −12.93
PBIAS 4.07 0.07 −11.97 −37.50
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4.1.2 Evaluation of T&C model outputs at plot-scale

Simulated surface temperature (Ts) at the automatic weather station in Sangvor (Figure C.23) notably
correlates to observed conditions, as depicted in the scatter plot and evidenced by an average R-
value of 0.83 across all three downscaled forcing datasets. Despite this correlation, there is a notable
overestimation of the temperature span, accompanied by an evident tendency to underestimate lower
temperatures and overestimate higher temperatures. Both are particularly pronounced in the HIMAL-
based simulation. Although this can be partly linked to the quality of downscaled forcings (e.g. Ta
of the HIMAL-method in January and December exhibits similar underestimation patterns as its Ts
simulations; Figure C.24), it may indicate model limitations (see section 5.3).A further interesting
observation is that the simulated snowmelt period is clearly discernible from April to June, or July for
TopoPyScale-based simulations, as evidenced by modelled surface temperature remaining around 0◦C.
In August too, simulated surface temperature indicates snowmelt for HIMAL-BC and particularly
TopoPyScale simulations (Figure C.25). Notably, the same can be observed at other locations, but with
varying degrees of prominence: it is less evident in lower altitudes (e.g. SANG_T10 or SANG_T11;
Figure C.32 and Figure C.33) and more pronounced at higher altitudes (e.g. SANG_T_2 or SANG_T_3;
Figure C.26 and Figure C.27). In such cases, strong but temporally limited deviations to observed values
are apparent. Apart from these, temporal trends in modelled surface temperature of August (TsAug)
largely align with observed temperature, though exhibiting bias (Figure C.25 to Figure C.33). Yet here
too, a consistent overestimation of the total range of surface temperatures is evident across sites. Further,
a general tendency to overestimate surface temperature at higher elevations and underestimate at lower
elevations is present.
In the context of simulating snowpack dynamics (Sd), the temporal pattern of snowpack accumulation is
generally well-captured (Figure C.38 to Figure C.40). Yet, simulations tend to slightly delay the onset of
the sustained melting phase, leading to a general overestimation of the maximum snowpack size, except
for HIMAL-BC-based simulations in the Kyzylsu catchment where snowpack size is underestimated
(Figure C.38 and Figure C.39). While melting rates are largely consistent with observations, these
prevalent delays in the onset of the sustained melting phase further lead to a prolonged snowmelt period.
Consequently, in the majority of the simulations, the complete melting of the snowpack occurs later than
observed. It is further interesting that while both TopoPyScale-based and HIMAL-based simulations
generally lead to similar snowpack dynamics, similarities at SANG_AWS end mid-April when the
TopoPyScale-based simulation exhibits stronger re-accumulation, followed by an extended snowmelt
period Figure C.40. This indicates the sensitivity of snowmelt dynamics to input forcings and the
magnitude of short-scale snow re-accumulations and its resulting changes in albedo, as furhter discussed
in section 5.2.
The evaluation of simulated debris temperature (Tdeb) at KYZ_AWS (Figure C.41) indicates varied
levels of accuracy across seasons: during winter and spring, the simulations tend to underestimate debris
temperature, while the accuracy of the simulations is evidently improved in summer, closely aligning
with observed temperatures. However, as glacier melting primarily occurs from late spring to the end of
the hydrological year, the accurate reproduction of debris temperature becomes particularly essential for
predicting glacial melt during this period. Therefore, the evaluation suggests a reliable simulation during
this important period.
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4.2 Downscaled CMIP6

4.2.1 Evaluation of meteorological forcings

The evaluation of the CMIP6 downscaling process for air temperature (Ta) and precipitation (Pr) in
the Kyzylsu catchment (Figure 9) shows that the TopoCLIM scheme effectively removes systematic
biases inherent in the CMIP6 forcing scenarios (subfigures a-d), while retaining the variability across
different model outputs (subfigures a-b). The efficacy of monthly applied bias correction within the
TopoCLIM scheme is thereby evident by no remaining biases for downscaled air temperature (BIAS
=0) and precipitation (PBIAS=0%) on annual as well as on daily (Ta) or monthly (Pr) scale. Therefore,
concerning the historical reference period, the average inter-annual temperature cycle and precipitation
distribution of the downscaled CMIP6 forcings align with the ones present in the downscaled ERA5
reference dataset. However, bias correction methods in general cannot correct every single value and
thus temporal deviations still remain, as shown by the provided RMSE values. Further, subfigures e) and
d) demonstrate that the TopoSUB coupled mode of TopoPyScale exhibits similar performance as the
previously evaluated (section 4.1.1) non-coupled mode. However, it should be mentioned that biases
present in the downscaled ERA5 dataset (e.g. precipitation as shown in subfigure d) are adopted by
CMIP6 during bias correction. Since the evaluation in the Sangvor catchment shows similar results, it is
not further discussed here. Though, its equivalent figure can be found in appendix D.1 (Figure D.1).

4.2.2 Evaluation of spatial snow pack dynamics

Modelled snowlines in the Kyzylsu catchment correspond well with remote sensing observations
(R2=0.65), and are often within the uncertainty range of the observed snowlines (Figure 10). Though,
simulated snowline elevation tends to be underestimated (BIAS=-281.5m). In the Sangvor catchment
however, differences between observed and simulated snowline elevations frequently exceed the uncer-
tainty range of MODIS observations and thus exhibit larger negative bias (-462.06m) and low model
performance (R2=0.19). This is especially evident in the mid-range of observed SLE (e.g. 3000m-
4000m), as visible in the scatter plot. The temporal evolution (left plot) suggests that the duration of
periods with high snow cover (low SLE) seem to be overestimated, while underestimating the duration
of periods with low snow cover (high SLE).
Nevertheless, the scene-by-scene evaluation of spatial snow cover distribution against Landsat-7/Landsat-
8 (Figure 11) reveals that in both catchments modelled snow cover agrees well with Landsat-7/Landsat-8
scenes, with average DSC of 0.74 (Kyzylsu) and 0.73 (Sangvor). Further, higher performance during
periods with more extensive snow cover and lower performance during periods with less snow cover are
apparent, with a noteworthy similarity in the seasonal patterns between the two catchments, indicating a
seasonal cycle in model performance. It is further interesting that during periods with low or modest
snow cover the variability between different model chains is apparently higher (e.g. Figure D.2 or
Figure D.3).
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Figure 9: Evaluation of the CMIP6-downscaling process for 2m air temperature (Ta) and precipitation (Pr) in
the Kyzylsu catchment. Ta at KYZ_AWS is presented in the left column and Pr at KYZ_AWS_PLU in the right
column. a) and b) show the temporal evolution over the historical reference period (1985-2014) of annual mean
temperature and annual precipitation sum, respectively. Thereby, the CMIP6 ensemble mean is indicated by a
blue line, while its individual model chains are shown in light blue. The average annual temperature cycle and
precipitation distribution (monthly sum) during the historical reference period are further presented in c) and d),
respectively. In the former, the mean is indicated by solid lines and the standard deviation by the shading. In the
latter subplot, the mean is indicated by bars and the standard errors by error-bars. e) (hourly temporal scale) and f)
present a comparison between observations and TopoPyScale-downscaled ERA5 for the hydrological year 2022.
Since the historical reference period of CMIP6 does not overlap with observations, it cannot be included here. For
each subplot RMSE and BIAS (PBIAS for precipitation) are indicated at the presented temporal scale.



Figure 10: a) Snow cover evaluation against catchment-wide snowline elevation derived from MODIS Terra snow
cover product (MOD10A1) in Kyzylsu and Sangvor (ensemble members are additionally plotted in light grey),
together with scatter plots and catchment hypsometry. MODIS-SLE derived with the NDSI threshold 0.4 is used
as the observed reference, while blue uncertainty bars indicate the range of different NDSI thresholds (0.2, 0.4,
0.45). Further, b) an uncertainty estimation of the MODIS product is presented by showing the SLE-range of SLE
derived witht hese NDSI thresholds (0.2, 0.4, 0.45) at 250m elevation band.
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Figure 11: a) Sørensen–Dice coefficients of scene-by-scene evaluation against Landsat-7/Landsat-8 for each
CMIP6 model chain, together with example scenes in true colour and as binary snow cover information (derived
from NDSI and albedo) at each site (b=Kyzylsu; c=Sangvor), whereby scenes with average DSC performance are
chosen.
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4.2.3 Climate change signal

To assess whether meteorological variables of CMIP6 projections exhibit a significant trend to increase
or decrease under future climate, the Mann-Kendall test (Kendall, 1975; Mann, 1945) is applied until
mid-century (end of 2049) and end-century (end of 2099) for every future projection scenario. Thereby, a
trend is considered as significant if its confidence interval is at least 95%. Further, since the Mann-Kendall
test does not assess the magnitude of change, the average change of the ensemble mean and the change
of the lowest and most upper ensemble member is quantified for the two periods of interest in order to
provide insights into potential magnitude and range of the detected trends. Thereby, the average climatic
conditions during the preceding climatic period (mid-century=2020-2049; end-century=2070-2099) are
compared against the historical reference (1985-2014). The trend and change analysis are conducted for
both catchments at the automatic weather stations KYZ_AWS and SANG_AWS, respectively. Since
the analysis reveals similar future trends in both catchments, the results for the Kyzylsu catchment are
further presented as representative for both catchments, while including the summary table and plots of
the Sangvor catchment in appendix E.
A summary of the future climatic trends at mid-century and end-century at the station KYZ_AWS in
the Kyzylsu catchment is presented in Table 8. The analysis reveals that in all CMIP6 projections the
ensemble mean of air temperature (Ta) significantly increases, ranging between +0.98 (+1.24) ◦C until
the mid (end) century under SSP1-2.6 and +1.27 (+4.45) ◦C under SSP5-8.5. In incoming longwave
radiation (Lw↓) an increase is evident as well, ranging between + 4.05 (+4.28) W/m2 until the mid
(end) century under SSP1-2.6 and + 5.46 (+17.37) W/m2 under SSP5-8.5. Further, relative humidity
(Rh) significantly decreases towards the end of the century, ranging between -1.7% under SSP1-2.6 and
-4.18% under SSP5-8.5. Moreover, slightly more precipitation (Pr) occurs at the end of the century under
SSP3-7.0 (+65.14 mm/year) and SSP5-8.5 (+80.6 mm/year), with high inter-annual variability between
different model chains (Figure 14).
Trends in other forcing variables are either not significant (Sw↓ and Ws) or do not have a magnitude
relevant for land surface modelling within T&C (Ps). The temporal evolution of the relevant trends
apparent in air temperature, relative humidity and precipitation are presented in Figure 12 to Figure 14.
Similar plots for other variables are included in appendix E.1, including incoming longwave radiation
(Figure E.6), since its trends are consistent with elevated radiative forcing of the CMIP6-scenarios.
Moreover, the additional analysis of average annual precipitation distribution under the different future
scenarios further reveals that there is an additional shift in temporal precipitation occurrences toward
the end of the century under SSP2-4.5, SSP3-7.0 and SSP5-8.0 scenarios: compared to the historical
reference period, there is significant more precipitation during winter months and early spring (November
to April), and less at the end of the hydrological year (July, August and September). This shift is
exemplary illustrated for the scenario where it is most evident, namely in the SSP5-8.0 scenario
(Figure 15). Plots for all other scenarios are in appendix E.1.1. However, given the fact that there is no
significant change in overall precipitation under the SSP2-4.5 scenario, it is especially interesting that
the temporal shift in precipitation is nevertheless evident within this scenario.
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Table 8: Overview of the Mann-Kendall trend analysis for all downscaled meteorological CMIP6 variables in
the Kyzylsu catchment. The trend analysis is carried out for all Tier 1 Scenarios at mid century and end century.
Significant trends are indicated in the column trend of the corresponding period, whereby a ’−’ indicates a
negative trend and ’+’ a positive trend. A trend is considered as significant at the confidence interval of 95%
and higher. The significance level of the observed trend is further indicated by stars with the following confident
intervals: *>=95% / **>=99% / ***>=99.9%. Further, the average change of the ensemble mean is indicated, as
well as the lowest and highest trend of its members (model chains). All units refer to the yearly mean (sum for
precipitation) and are relative to the historical reference period.

Mid-century (2020-2049) End-century (2070-2099)

Variable Unit Station Scenario
Trend Avg. change

Lower Upper
Trend Avg. change

Lower Upper
bound bound bound bound

Ta °C KYZ_AWS

SSP1-2.6 +∗∗ +0.98 +0.79 +1.30 +∗∗∗ +1.24 +0.93 +1.85
SSP2-4.5 +∗∗∗ +1.11 +0.86 +1.58 +∗∗∗ +2.36 +1.97 +2.96
SSP3-7.0 +∗∗∗ +1.11 +0.94 +1.24 +∗∗∗ +3.50 +3.17 +3.93
SSP5-8.5 +∗∗∗ +1.27 +0.88 +1.60 +∗∗∗ +4.45 +3.80 +5.36

Rh % KYZ_AWS

SSP1-2.6 -0.89 -1.62 +0.17 −∗∗ -1.70 -6.13 +0.34
SSP2-4.5 -0.98 -4.41 +0.62 −∗∗∗ -2.62 -7.56 +0.03
SSP3-7.0 -0.93 -2.83 +0.27 −∗∗∗ -3.07 -6.85 -0.94
SSP5-8.5 −∗ -1.13 -3.61 +0.86 −∗∗∗ -4.18 -11.41 -0.66

Pr mm KYZ_AWS

SSP1-2.6 +33.60 -20.09 +94.98 +18.28 -50.64 +110.87
SSP2-4.5 +33.39 -12.29 +83.70 +32.92 -46.88 +174.32
SSP3-7.0 +19.30 -20.06 +68.19 +∗ +65.14 -86.40 +178.39
SSP5-8.5 +35.30 -11.24 +140.91 +∗ +80.60 -67.15 +254.65

Ps hPa KYZ_AWS

SSP1-2.6 +∗∗∗ +0.87 +0.63 +1.22 +∗∗∗ +1.04 +0.77 +1.29
SSP2-4.5 +∗∗∗ +0.94 +0.65 +1.16 +∗∗∗ +2.01 +1.67 +2.50
SSP3-7.0 +∗∗∗ +0.96 +0.69 +1.17 +∗∗∗ +2.87 +2.30 +3.70
SSP5-8.5 +∗∗∗ +1.07 +0.76 +1.37 +∗∗∗ +3.51 +2.92 +4.77

Sw↓ W/m2 KYZ_AWS

SSP1-2.6 -0.84 -2.11 +1.33 +0.39 -1.39 +2.54
SSP2-4.5 -1.99 -3.03 -1.09 -2.30 -4.98 -1.07
SSP3-7.0 -2.82 -3.32 -2.38 −∗ -5.75 -6.95 -5.03
SSP5-8.5 -2.32 -3.90 -0.90 -4.66 -7.81 -1.17

Lw↓ W/m2 KYZ_AWS

SSP1-2.6 +∗∗∗ +4.05 +3.48 +4.96 +∗∗∗ +4.28 +3.44 +5.42
SSP2-4.5 +∗∗∗ +4.81 +4.20 +5.69 +∗∗∗ +9.10 +8.02 +10.17
SSP3-7.0 +∗∗∗ +4.98 +4.36 +5.67 +∗∗∗ +14.32 +12.13 +16.12
SSP5-8.5 +∗∗∗ +5.46 +4.65 +7.11 +∗∗∗ +17.37 +14.16 +21.49

Ws m/s KYZ_AWS

SSP1-2.6 -0.03 -0.05 -0.01 -0.02 -0.06 +0.01
SSP2-4.5 -0.02 -0.05 +0.00 -0.01 -0.06 +0.01
SSP3-7.0 -0.03 -0.07 +0.00 -0.03 -0.08 +0.05
SSP5-8.5 -0.02 -0.04 +0.01 -0.03 -0.09 +0.05
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Figure 12: Anomaly in 2m air temperature in CMIP6-projections to historical average at KYZ_AWS. The average
of the historical reference period (1985-2014) is thereby indicated as a grey, dashed line, representing zero-change.
The CMIP6 ensemble means are plotted in the colours presented in the legend, with its individual members (model
chains) indicated by thinner lines in the same colour.

Figure 13: Anomaly in relative humidity in CMIP6-projections to historical average at KYZ_AWS. The average
of the historical reference period (1985-2014) is thereby indicated as a grey, dashed line, representing zero-change.
The CMIP6 ensemble means are plotted in the colours presented in the legend, with its individual members (model
chains) indicated by thinner lines in the same colour.
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Figure 14: Anomaly in precipitation in CMIP6-projections to historical average at KYZ_AWS. The average of the
historical reference period (1985-2014) is thereby indicated as a grey, dashed line, representing zero-change. The
CMIP6 ensemble means are plotted in the colours presented in the legend, with its individual members (model
chains) indicated by thinner lines in the same colour.

Figure 15: Average annual precipitation distribution during the historical reference period (1985-2014), mid-
century (2020-2049) and end-century (2070-2099) of SSP5-8.5 CMIP6-projections at KYZ_AWS. The significance
of change in a certain month is calculated with a T-test and indicated by stars, whereby a change is regarded as
significant if it has a confidence interval of at least 95%. The following labels are used for significant changes:
*>=95% / **>=99% / ***>=99.9%.
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5 Discussion

5.1 Downscaling process

5.1.1 Downscaling reanalysis

The evaluation of the two downscaling methods TopoPyScale and the HIMAL-method (non-bias-
corrected) reveals similar performance of both methods in downscaling meteorological fields. Never-
theless, TopoPyscale is chosen as the more suitable method for downscaling the reanalysis reference
dataset in this thesis, due to its slightly better performance in downscaling air temperature (Ta), surface
air pressure (Ps) and incoming shortwave radiation (Sw↓), its computational efficacy, and its built-in
clustering method (TopoSUB), which reduces storage demand and further facilitates to force T&C
in a semi-distributed manner. While an additional bias correction step within HIMAL-BC enhances
downscaling performance for the observational period, bias correction was not tested in combination
with TopoPyScale. This could potentially be done in future research, as bias correction could further
improve downscaling performance, especially for variables like wind speed where the downscaling does
not perform well (e.g. Table 7, or precipitation where clear biases exist (e.g Figure C.10). However,
bias correction in remote, data-sparse catchments has limitations directly linked to the spatio-temporal
availability of observations: bias coefficients of a certain period at one or few locations are not necessarily
valid in periods outside the observed time range or at other locations. Of course, this clearly limits the
field of possible applications.
Another aspect related to the scarcity of in-situ data is the limited temporal and spatial scale of the
evaluation in this thesis. Only one year of station data (at one or few locations per catchment) was
available and thus the current evaluation does not capture the inter-annual variability of local conditions
nor their extremes. Therefore, a more comprehensive dataset including continuous monitoring over many
years is required to appropriately represent the expected distribution of near-surface meteorology. To
capture vertical variability within the catchment, such an extended dataset should include high elevation
observations. Once such a dataset is available, future applicants would benefit from a repeated evaluation
with extended spatial and temporal scale, offering a more robust and generalising understanding of the
downscaling performance. Further, concerning the evaluation of bias correction, not all data used for the
evaluation are independent from the bias correction process (HIMAL-BC), due to its use as reference
data for bias correction (Table 5). Therefore, not using bias correction for generating the full reanalysis
reference product brings the advantage of being able to independently evaluate the downscaling approach
used.

The evaluation of the downscaling approaches further reveals that, without bias correction, downscaled
ERA5 and ERA5-Land both have notable precipitation biases (section 4.1.1). While the presented
statistical downscaling methods are certainly subject to simplifications, such biases are consistent with
the known presence of precipitation biases in ERA5 products (Hersbach et al., 2020; Lavers et al., 2022;
Muñoz-Sabater et al., 2021; Wang et al., 2021): although data assimilation in ERA5 strongly improved
compared to its predecessor ERA-Interim), ERA5 products continue to exhibit substantial precipitation
biases (Hersbach et al., 2020; Lavers et al., 2022; Muñoz-Sabater et al., 2021), evident as a wet bias
primarily linked to an underestimation of dry-day frequency (Lavers et al., 2022).
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This thesis specifically addresses these known precipitation biases by applying and evaluating bias-
correction within HIMAL-BC. It is demonstrated that monthly precipitation sums are effectively
corrected and annual bias significantly reduced. Further, while the underestimation of dry-day frequency
partially remains, the notable reduction in wet days marks a clear improvement over the non-bias
corrected product. Therefore, the importance and potential benefits of bias correction is highlighted.
Yet, despite it being promising, the practical application remains constrained by the availability of
observational data, as previously discussed. However, the recently published bias-adjusted ERA5 dataset
(WFDE5; Cucchi et al., 2020; Cucchi M. et al., 2022), which also addresses the noted biases and
demonstrates the added value of bias correction in hydrological modelling, could serve as an alternative
to in-situ-based bias correction limited by available observations. Unfortunately, this dataset does
not (yet) overlap with observational data for the study domain of this thesis and thus its use as a
reference dataset was not feasible due to the inability to perform a corresponding evaluation. Though,
this potentially can change and thus future applications could consider to evaluate and potentially use
this bias-corrected dataset too. This could further be advantageous for other forcing variables too, since
biases inherent in ERA5 are corrected for other meteorological variables relevant for hydrological
modelling with T&C as well.

5.1.2 Downscaling future meteorology

The future climate scenario projections from CMIP6 are spatially and temporally downscaled from
a daily resolution at coarse grid scale to the desired 100m spatial resolution and hourly temporal
resolution, using a reference dataset of the historical reference period. While an ideal reference dataset
for this purpose would comprise in-situ observations, the lack of comprehensive ground data precludes
this option and thus the downscaled ERA5 forcings are used instead. Although reanalyses are not
observations in the strict sense (Parker, 2016), they are considered to offer the most dense information
about the recent climate in data-sparse regions while being physically consistent (Dee et al., 2014). As
further pointed out by Fiddes et al. (2022), this physical consistency is expected to enable the TopoCLIM
scheme to yield a physically coherent downscaled product, despite the scheme’s univariate nature.
However, it should be noted that biases inherent in the reanalysis dataset, such as those observed in
precipitation, are likely to be reflected in the final downscaled product as well, due to their adoption
during bias correction within the TopoCLIM scheme.
Furthermore, the ability of ERA5 to reproduce short-timescale local weather patterns introduces a
layer of uncertainty into the temporal disaggregation of the spatially downscaled CMIP6 forcings to
sub-daily fields (Fiddes et al., 2022). Therefore, the precipitation disaggregation routine, based on
observed precipitation magnitudes in the Kyzylsu catchment and newly implemented for this thesis
(section 3.3), is regarded as a clear improvement for disaggregating precipitation. Compared to the
alternative equal-distribution-method, this routine avoids continuous drizzling and constitutes realistic
sub-daily precipitation magnitudes, which is important to accurately represent water and energy fluxes
in hydrological modelling (Fatichi et al., 2012a, 2012b; Y. Huang et al., 2019).
Eventually, it should be noted that by applying bias correction within the TopoCLIM scheme, climate
change signals (CSS) of future projections can be modified (Gobiet et al., 2015; Ivanov et al., 2018;
Themeßl et al., 2012). However, an analytical analysis by Gobiet et al. (2015) reveals that non-bias
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corrected CSS are affected by intensity-dependent model errors and thus quantile mapping can even
potentially lead to an improved CCS by removing these errors.

5.2 Evaluation

5.2.1 Observational uncertainties

Although difficult to quantify, it is important to acknowledge sources of uncertainties linked to obser-
vations. In both the Kyzylsu and the Sangvor catchment, available observations are temporally and
spatially limited, reflecting the challenging nature of monitoring remote high mountain catchments.
This can lead to evaluational uncertainties, if for instance the observation period is meteorological
atypical or if the measurement locations do not adequately represent its surrounding area. The latter is
particularly important for snow depth measurements, which are more prone to uncertainty due to the
high spatial variability of snow depth and snow cover, even over short distances (Armstrong & Brun,
2008; Buchmann et al., 2021; Clark et al., 2011; Grünewald et al., 2010). Additionally, local factors can
introduce further uncertainties. For instance, the accuracy of surface temperature loggers can be affected
by micro-topographical features, their specific placement, or exposure to environmental elements like
air flows between rocks.
Moreover, it should be noted that remote sensing derived snow maps are not true observations and
their quality depends on the correct processing, whereby cloud cover constitutes the main challenge.
Uncertainties of MODIS-derived snow line elevations are estimated by using different NDSI thresholds,
and uncertainties in Landsat-7/Landsat-8 derived snow maps reduced by using scene-based NDSI
thresholds (Otsu, 1979) and excluding shaded areas. Further, it is mentioned that despite the inherent
uncertainties in remote sensing derived snow maps they are regarded as suited for catchment-wide snow
evaluation, since they are able to represent the spatial and temporal variability of snow cover (Crawford
et al., 2013; Donmez et al., 2021; Immerzeel et al., 2009).

5.2.2 Land surface modelling: uncertainties and limitations

Of course, in hydrological modelling, model-inherent uncertainties and limitations exist (Beven, 2012).
Some sources of uncertainty, as well as some limitations, are discussed in this section. However, it
should be mentioned that although some discussions refer to the applied model, the uncertainties and
limitations discussed should not be seen as a model-specific critique, but rather as a general discussion
of challenges in land surface modelling, intending to enable a critical assessment of their impacts on the
evaluations presented in this thesis.

One potential limitation and source of uncertainty worth mentioning is the representation of the land
cover and its thermal properties, which plays a crucial role in solving the surface energy balance (Fatichi
et al., 2012a, 2012b; Marty et al., 2002). While in the model setup one certain type of land-cover was
defined for an entire grid-cell, local conditions may be very heterogene. For instance at the station
SANG_AWS, the surface layer is composed of a mix of rock and sand, while the model’s representation
consists of bare rock. Since the former is expected to absorb and retain less heat, the model is likely
to overestimate surface-temperature in snowfree conditions, as it is indeed observed (section 4.1.2; e.g
Figure C.25). Of course, every topological property defined on grid-level is a simplification, as it always
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represents averages. However, accounting for sub-grid heterogeneity is often not feasible as it depends
on accurate measurement techniques over large scales (Beven, 2012).
Moreover, although soils can freeze up within model simulations, the used model setup does not currently
represent any layer of initial permafrost. Since the presence of permafrost can have a strong impact on
energy fluxes and local hydrology (Ahmed et al., 2022; W. Li et al., 2023; Melton et al., 2019; Yao
et al., 2020; Yokohata et al., 2020), the absence of such a layer is seen as a model limitation. However, it
should be noted that, although research in this field is progressing, a reliable detection of permafrost
remains challenging (Buckel et al., 2021; Haeberli et al., 2010; Jiang et al., 2020; X. Li et al., 2023;
Zhang et al., 2022). Therefore, such an implementation would be challenging, and it is not known at
which locations and to what extent this limitation impacts the quality of the model outputs in this thesis.

Concerning snowpack simulations, accurately reproducing snowmelt dynamics remains generally
challenging in land surface modelling (DeBeer & Pomeroy, 2017; Essery et al., 2013). This difficulty
largely arises due to the sensitivity of snowmelt to various factors, such as snow density, storage and
refreezing of liquid water within the snow, turbulent fluxes, and snow albedo (DeBeer & Pomeroy,
2017). Particularly the latter plays a crucial role in surface energy budgets and snowmelt dynamics,
since it strongly influences the shortwave radiation budget and thus snowmelt reacts highly sensitive to
changes in albedo, as pointed out in several studies (e.g. Armstrong and Brun, 2008; Brock et al., 2000;
Doherty et al., 2010; Dumont et al., 2012; Gabbi et al., 2015; Johnson and Rupper, 2020; Naegeli and
Huss, 2017. Within T&C too, snowmelt is sensitive to albedo-changes (Fugger et al., 2022; Fyffe et al.,
2021), which consequently means that small changes in input forcings that lead to short-scale snow
re-accumulation can have a big impact on modelled melt dynamics. However, while albedo dynamics
are very complex in reality, the T&C model has an albedo parameterisation developed from observation
(Fugger et al., 2024), and therefore its accuracy is limited like any albedo-scheme (Gardner & Sharp,
2010). The accurate simulation of snowmelt dynamics is further complicated by the complexity of
real-world processes that cannot be depicted by models. This includes factors like the deposition of
aerosols, the exact metamorphosis of the snowpack, and external influences that alter albedo. The latter
for instance includes the occurrence of the dust storms common in Tajikistan (Abdullaev & Sokolik,
2019), which deposit dust on the snowpack and thus strongly influences melting dynamics by reducing
the snowpack’s albedo. Additionally, wind drift and avalanches are not accounted for by the applied
model setups. Yet, the redistribution of snow by both wind and avalanches can strongly affect the spatial
variability of snow cover, thereby impacting the timing and magnitude of snowmelt (Freudiger et al.,
2017; Mott et al., 2011). While an analysis against fully distributed model outputs (where avalanches
are specifically modelled) in another catchment (Figure B.3) indicates that omitting avalanches does
not notably impair the model’s ability to simulate catchment-wide snow cover, the impact of a missing
module for simulating wind drifts remains unquantified. Given the low accuracy of downscaled wind
speed magnitudes (section 4.1.1) however, it is questionable if such an implementation would enhance
accuracy rather than induce additional uncertainty.
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5.2.3 Implications on evaluation

The evaluation of downscaled meteorological forcings against in-situ observations is only affected by
uncertainties related to the observational spatio-temporal scale and inherent inaccuracies in the mea-
surement process. Despite a limited temporal scale and the consequent inability to capture inter-annual
variability, it is important to note that the observational period encompasses a complete hydrological
cycle, ensuring that the full range of variability within the observed year is represented. Additionally,
uncertainties associated with the spatial scale are mitigated by including two distinct catchments and,
where possible, multiple measurement locations into the evaluation process. Furthermore, given the
overall data-scarcity in the region, it is empathised that the available in-situ data is highly valuable,
enabling an evaluation in the first place. Therefore, while feature research could re-evaluate against a
more comprehensive dataset, the comparative evaluation of different downscaling methods (section 4.1.1)
presents an important first overview of the feasible quality of downscaled meteorological fields in the
region.

Concerning the evaluation of land surface modelling outputs, multifactorial uncertainty sources and
model limitations, as discussed in the preceding sections, introduce a layer of complexity, making
it challenging to distinguish between observational uncertainties, forcing data quality, and model
limitations (Evin et al., 2024; Fatichi, Vivoni, et al., 2016; Reichert et al., 2021; Renard et al., 2010;
van Tiel et al., 2020).
However, it is important to distinguish between the two applied spatial scales: the plot-scale and the
catchment-scale. Although for modelling at both scales the applied land surface model solves the
energy and mass budgets at a certain location (station or representing centroid), different objectives
are pursued. While plot-scale modelling focuses on detailed outputs evaluated at specific locations,
semi-distributed modelling aims to represent the entire catchment and thus its model output is re-gridded
before evaluation. Therefore, the discussed sources of uncertainty are likely to have greater impact on
plot-scale evaluation, where model-outputs are compared to local observations, than on catchment-scale
evaluation, where model-outputs are compared to grid-cell averages and thus uncertainties may be
diminished.
Hence, although plot-scale evaluation does expose certain inaccuracies in simulations, such as in solving
the surface mass budgets and reproducing snowmelt dynamics during snowmelt periods, their origin can
be manyfold. And while the model could be fine-tuned until it almost perfectly represents observed local
conditions, catchment-scale reliability is often considered as more important for cryosphere focused
hydrological modelling (van Tiel et al., 2020) and therefore more expressive to effectively estimate the
quality of the input forcings in interplay with the hydrological model. This also applies for the aim of
this thesis, as the final product intends to serve as an input dataset for catchment-scale modelling, and
therefore catchment-wide evaluation is more suited.
Considering this, the plot-scale evaluation in this thesis can be seen as a brief sanity check on local
scale, acknowledging the associated uncertainties and limitations. Therefore, it is empathised that (i)
overall simulated surface temperature correlates well to observed conditions, (ii) the temporal pattern
of snowpack accumulation is generally well-captured, and (ii) debris temperature is reliably simulated
during the primarily essential glacier-melt season.
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Eventually, the catchment-wide evaluation of the final product (section 4.2.1) revealed that in general
spatial snow cover is well reproduced in both catchments. In the Kyzylsu catchment, average performance
as well as its seasonal variability are comparable with the ones demonstrated by Fugger et al. (2024).
This is especially remarkable, as no bias correction was involved in generating the final reanalysis
reference product.

5.3 Implications on land surface modelling

The evaluation of the downscaled CMIP6 product for the historical reference period revealed a notable
variability in performance between the different model chains used, especially evident during periods
with low or modest observed snow cover. This indicates the potential benefits of ensemble modelling in
mitigating forcing uncertainties and reducing model uncertainty. While in this thesis only six complete
model chains are downscaled, additional 12 model chains, with only surface pressure missing, are
available and could be downscaled for future applications. However, a total amount of 18 models
is still not a lot for ensemble modelling, especially given the high stochastic uncertainties related to
precipitation (Fatichi, Ivanov, et al., 2016). Therefore, it would be very helpful for future research
if more modelling groups would deliver all variables needed for energy-balance based land surface
modelling - ideally for all four 21st century top priority scenarios (Tier 1), as already proposed by the
ScenarioMIP’s experimental design of CMIP6 (O’Neill et al., 2016).

5.4 Future recommendations

Currently, the spatial and temporal availability of in-situ data in the Kyzylsu and Sangvor catchment is
growing. At the time of writing, for instance, there is already a second year of station data available in
both catchments, and even one year of measurements at an additional automatic weather station (at 3900
m.a.s.l) in the Kyzylsu catchment. The reanalysis downscaling approaches could thus be reapplied and
evaluated with extended observations, enabling a more robust evaluation of the downscaling performance
and providing valuable insights into the performance of bias-correction outside the temporal and spatial
scale of used observations. This highlights the importance of continuous observations in the region.
Hence, after recent efforts have improved data availability in the region after there was an observational
gap after the collapse of the soviet union, it would be very important for future studies in the region that
the Sangvor and Kyzylsu monitoring are being continued for many years to come, since it’s otherwise
a data-sparse area. As Barandun and Pohl (2023) recently pointed out, such monitoring networks are
essential to understand the changing cryosphere at regional scale and to assess future water availability
in the region.

Moreover, as no bias correction is applied for the final ERA5 downscaling with TopoPyScale, the
TopoPyScale downscaling routine should also be extended with an additional bias correction step and
evaluated against observations. However, where bias correction with in-situ data is too limited or not
possible, downscaling the already bias-corrected WFDE5 dataset can be considered in future applications,
as it provides all near-surface meteorological variables necessary for hydrological modelling with T&C.
Yet, to enable an evaluation, this requires the WFDE5 dataset to be extended to overlap with observations.
In the meantime, TopoPyScale is a suited tool for downscaling reanalysis reference datasets in the Pamir
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domain, as it (i) performs already well without bias correction, (ii) it can be easily used in bigger
catchments as well due to its scalability and (iii) together with TopoCLIM it builds a semi-automatic
pipeline. Finally, (iv) it is an easy-to-use open source package with a steadily growing community
and can thus be expected to be constantly improved by the research community. Nevertheless, this
thesis demonstrated some specific limitations of the downscaling scheme that could be improved.
For instance, wind speed dynamics could not be accurately reproduced (section 4.1.1) and therefore
implementing a topography based, wind-specific downscaling technique (e.g. (Dujardin & Lehning,
2022; Reynolds et al., 2023; Winstral et al., 2017) would be an important implementation for capturing
fine-scale heterogeneities. This would further enhance the accuracy of potential future wind-drift aware
applications.

Given the high importance of high-elevation regions in Central Asia in providing fresh water for
downstream regions (Armstrong et al., 2019; Barandun et al., 2020; J. Huang et al., 2022; Immerzeel
et al., 2019; Pohl et al., 2017; Wang et al., 2016), and given the climate change signals present in the
downscaled CMIP6 forcings (section 4.2.3), the final product of this thesis should be definitely used
to force land surface models in order to investigate how hydrological regimes change under different
future climate projections. The importance of such research is especially pronounced through increased
air temperature (all scenarios) and a seasonal shift in precipitation occurrences (SSP2-4.5, SSP-7.0 and
SSP5-8.0), which both can affect runoff regimes and seasonal water availability.

Further, extending the discussion about potential benefits of ensemble modelling, it is advisable for future
research to downscale and include as many model chains in hydrological modelling as availability and
computational resources allow. This approach would attenuate uncertainties in model outputs related to
forcing uncertainties. The method of clustering grid cells with TopoSUB is hereby further advantageous
as storage demand does not (or only partially) limit the number of model chains that can be included.
Further, the semi-distributed modelling with T&C allows to perform multiple model runs in a short
time, facilitating ensemble modelling. Eventually, when fully distributed model runs are necessary,
for instance to include lateral mass fluxes, the semi-distributed model could be used pre-modelling to
identify model chains that reproduce observed conditions the best.

However, as ensemble-modelling is strongly dependent on the availability of regional or global climate
models, it is very important that future research tries to maximise the available model chains. Therefore,
climate modelling groups are reminded of the importance of providing all Tier 1 scenario outputs
(O’Neill et al., 2016) for all important variables of land surface modelling. Further, given the importance
of the high-elevation regions in Central Asia, higher-resolute regional climate models at daily scale
are required to further enhance future research investigating the impacts of climate change on water
availability.
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6 Conclusions

The final product of this thesis comprises six spatially and temporally downscaled CMIP6 model chains
with a climate-length historical reference period and all Tier1 future scenario projections reaching
until the end of the century. Its mean properties of the historical reference period align well with
those in the downscaled ERA5 dataset (BIAS=0 in Ta; PPBIAS=0% in Pr), which in turn corresponds
well to observational data. Further, the catchment-wide evaluation of this product demonstrates a good
performance in reproducing spatial snow cover distribution (avg. DSC: 0.74 in Kyzylsu; 0.73 in Sangvor),
with seasonal fluctuations in performance. Variability between model chains indicates the potential
of ensemble modelling and suggests that future research would benefit from additional model chains.
Considering the high spatial heterogeneity of meteorological variables in mountainous regions and
the constraints imposed by available observations, high-resolution climate models and methodological
approaches, the final product of this study is regarded as high-quality and state-of-the-art contribution,
upon which future research can build.
For instance, an important next step is to use the future projections of the final product in land surface
modelling to investigate the impact of climate change on hydrological regimes and the associated water
availability in the region. The relevance of such a research is particularly highlighted by the climate
change signals present in the final product, which essentially predict higher temperatures (e.g. in the
Kyzylsu catchment between +1.24°C under SSP1-2.6 and +4.45°C under SSP5-8.5 until the end of the
century), and a seasonal shift in the precipitation regime.

This thesis further presents a comparative analysis of TopoPyScale and the HIMAL-method, two methods
for generating spatially downscaled reanalysis forcings. Both were compared for the hydrological year
2022 in two high-elevation catchments of the northern Pamir mountains. The HIMAL-method and
TopoPyScale have demonstrated comparable downscaling performance across various meteorological
variables. However, TopoPyScale is identified as more suitable as it demonstrates a higher accuracy for
certain variables (Ta, Ps, Sw↓) and offers additional advantages in terms of computational efficiency.
Its clustering and spatialising functions are particularly beneficial and showcase a potential for further
application in larger catchments as well.
The incorporation of an additional bias correction step in HIMAL-BC has been further shown to
effectively mitigate systematic biases in downscaling meteorological reanalysis. This highlights the
potential of bias correction with in-situ data, especially for bias-prone variables such as precipitation.
However, the spatio-temporal availability of reliable ground measurements is a limiting factor in remote,
data sparse catchments. Therefore alternatives are required, especially for long-term application.
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Code and data availability

The folowing GitHub repositories of used code are available:

• HIMAL-method (on request): https://github.com/ElTombre/HIMAL_Downscaling

• TopoPyScale: https://github.com/ArcticSnow/TopoPyScale

• Thetys-Chloris (T&C): https://github.com/simonefatichi/TeC_Source_Code

Additional code used in the thesis, as well as the downscaled CMIP6 forcing dataset is available on
request.

https://github.com/ElTombre/HIMAL_Downscaling
https://github.com/ArcticSnow/TopoPyScale
https://github.com/simonefatichi/TeC_Source_Code
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Appendix A: Observations

Table A.1: Overview of the available data during the hydrological year 2022 for each measured variable and
location.

Location Variable Start date End date

KYZ_AWS

Ta

01.10.2021
21.09.2022

Rh
Sw↓
Lw↓
Ws

Tdeb 21.06.2022
Sd 13.06.2022

KYZ_AWS_PLU

Ta

01.10.2021
17.09.2022Rh

Ws

Pr 23.09.2022
Sd 22.06.2022

KYZ_GAUG Ps 01.10.2021 21.09.2022

KYZ_T_3200 Ta 22.06.2022 22.09.2022

KYZ_T_3500 Ta 01.10.2021 23.09.2022

KYZ_T_3900 Ta 01.10.2021 19.09.2022

SANG_AWS

Ta

19.10.2021 06.09.2022

Rh
Sw↓
Lw↓
Ws
Ts
Sd

SANG_T_1 Ts 01.10.2021 06.09.2022

SANG_T_2 Ts 01.10.2021 17.09.2022

SANG_T_3 Ts 01.10.2021 06.09.2022

SANG_T_4 Ts 01.10.2021 07.09.2022

SANG_T_5 Ts 01.10.2021 07.09.2022

SANG_T_7 Ts 01.10.2021 07.09.2022

SANG_T_8 Ts 01.10.2021 07.09.2022

SANG_T_9 Ts 01.10.2021 06.09.2022

SANG_T_10 Ts 01.10.2021 05.09.2022

SANG_T_11 Ts 01.10.2021 04.09.2022



Appendix B: Methods

B.1 HIMAL-method

Figure B.1: A schematic figure of the process used to downscale forcing grids following Machguth et al. (2009).
The example is taken for the Kyzylsu catchment in Tajikistan using air temperature for the first hour (00:00) of
April 2021. Steps 1-4 are described above. Note: colour scales vary between plots. Source: Fugger et al. (2024)

Figure B.2: As Figure B.1, but for the first and final step of precipitation downscaling, where the limits of the
precipitation occurrence after-downscaling with a vertical gradient are preserved. Source: Fugger et al. (2024)
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B.2 T&C

Figure B.3: Comparison of model performances in reproducing snow cover of the fully distributed (red line)
and TopoSUB-clustered (green line) model runs in a different catchment, conducted by co-supervisor Achille
Jouberton.

Figure B.4: Map of the TopoSUB clusters used for semi-distributed T&C-modelling in a) Kyzylsu and b) Sangvor.
Note: colour scales vary between plots
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Appendix C: Downscaled reanalysis

C.1 Evaluation of meteorological forcings

C.1.1 2m air temperature

Figure C.1: Evaluation of downscaled 2m air temperature at KYZ_AWS.
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Figure C.2: Evaluation of downscaled 2m air temperature at KYZ_AWS_PLU.
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Figure C.3: Evaluation of downscaled 2m air temperature at KYZ_T_3200.
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Figure C.4: Evaluation of downscaled 2m air temperature at KYZ_T_3500.
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Figure C.5: Evaluation of downscaled 2m air temperature at KYZ_T_3900.

VIII



Figure C.6: Evaluation of downscaled 2m air temperature at SANG_AWS.
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C.1.2 Near-surface relative humidity

Figure C.7: Evaluation of downscaled near-surface relative humidity at KYZ_AWS.
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Figure C.8: Evaluation of downscaled near-surface relative humidity at KYZ_AWS_PLU.
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Figure C.9: Evaluation of downscaled near-surface relative humidity at SANG_AWS.
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C.1.3 Precipitation

Figure C.10: Evaluation of downscaled precipitation at KYZ_AWS_PLU. With d) additionally showing the
monthly precipitation sums.
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C.1.4 Surface air pressure

Figure C.11: Evaluation of downscaled surface air pressure at KYZ_GAUG.

XIV



C.1.5 Incoming shortwave radiation

Figure C.12: Evaluation of downscaled incoming shortwave radiation at KYZ_AWS. With d) additionally
indicating the average diurnal cycle (standard deviation as shading) and e) showing the weekly mean radiation.
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Figure C.13: Evaluation of downscaled incoming shortwave radiation at SANG_AWS. With d) additionally
indicating the average diurnal cycle (standard deviation as shading) and e) showing the weekly mean radiation.
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Figure C.14: Supporting figure for evaluating downscaled incoming shortwave radiation: scatter of downscaled
values to observations grouped by month at KYZ_AWS.
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Figure C.15: Supporting figure for evaluating downscaled incoming shortwave radiation: scatter of downscaled
values to observations grouped by month at SANG_AWS
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Figure C.16: Supporting figure for evaluating downscaled incoming shortwave radiation: monthly mean diurnal
cycle of downscaled values and observations at KYZ_AWS.
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Figure C.17: Supporting figure for evaluating downscaled incoming shortwave radiation: monthly mean diurnal
cycle of downscaled values and observations at SANG_AWS
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C.1.6 Incoming longwave radiation

Figure C.18: Evaluation of downscaled incoming longwave radiation at KYZ_AWS.
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Figure C.19: Evaluation of downscaled incoming longwave radiation at SANG_AWS.
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C.1.7 Wind speed

Figure C.20: Evaluation of downscaled wind speed at KYZ_AWS.
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Figure C.21: Evaluation of downscaled wind speed at KYZ_AWS_PLU.
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Figure C.22: Evaluation of downscaled wind speed at SANG_AWS.
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C.2 Evaluation of T&C model outputs at plot-scale

C.2.1 Ts

Figure C.23: Evaluation of simulated surface temperature at SANG_AWS.
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Figure C.24: Supporting figure for evaluating simulated surface temperature: scatter of downscaled to observed
2m air temperature grouped by month at SANG_AWS.
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C.2.2 TsAug

Figure C.25: Evaluation of simulated surface temperature in August at SANG_AWS.
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Figure C.26: Evaluation of simulated surface temperature in August at SANG_T_2.
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Figure C.27: Evaluation of simulated surface temperature in August at SANG_T_3.
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Figure C.28: Evaluation of simulated surface temperature in August at SANG_T_4.
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Figure C.29: Evaluation of simulated surface temperature in August at SANG_T_5.
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Figure C.30: Evaluation of simulated surface temperature in August at SANG_T_7.
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Figure C.31: Evaluation of simulated surface temperature in August at SANG_T_9.
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Figure C.32: Evaluation of simulated surface temperature in August at SANG_T_10.
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Figure C.33: Evaluation of simulated surface temperature in August at SANG_T_11.
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Figure C.34: Supporting figure for evaluating simulated surface temperature in August: performance of down-
scaled 2m air temperature in August at SANG_AWS.
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Figure C.35: Supporting figure for evaluating simulated surface temperature in August: performance of down-
scaled Sw↓ in August at SANG_AWS. With d) additionally indicating the average diurnal cycle (standard deviation
as shading).
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Figure C.36: Overview of simulated surface temperature in August at SANG_T_1. This location is excluded from
the evaluation, since the model represents this site as glaciated instead of bare rock. The site is located close to
SANGT 2andSANGT 3(approximatelytobothlocations).
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Figure C.37: Overview of simulated surface temperature in August at SANG_T_8. This location is excluded from
the evaluation, since the model represents this site as glaciated instead of bare rock.
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C.2.3 Sd

Figure C.38: Evaluation of simulated snow depth at KYZ_AWS.
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Figure C.39: Evaluation of simulated snow depth at KYZ_AWS_PLU.
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Figure C.40: Evaluation of simulated snow depth at SANG_AWS.

XLIII



C.2.4 Tdeb

Figure C.41: Evaluation of simulated debris temperature at KYZ_AWS.
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Appendix D: Downscaled CMIP6

D.1 Evaluation of meteorological forcings

Figure D.1: Evaluation of the CMIP6-downscaling process for 2m air temperature (Ta) and precipitation (Pr) in
the Sangvor catchment. Ta at SANG_AWS is presented in the left column and Pr at SANG_AWS in the right
column. a) to e) are pendent to Figure 9.
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D.2 Evaluation of spatial snow pack dynamics

Figure D.2: Different performance in simulating snow cover of three downscaled CMIP6 model chains in the
Kyzylsu catchment on the same day (18.10.2014).
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Figure D.3: Scene-by-scene evaluation of simulated snow cover against Landsat-7/Landsat-8 in the Sangvor
catchment on a day with low performance (16.09.2014), for two different model chains.
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Appendix E: Climate change signal

E.1 Kyzylsu

E.1.1 Precipitation

Figure E.1: Average annual precipitation distribution during the historical reference period (1985-2014), mid-
century (2020-2049) and end-century (2070-2099) of SSP1-2.6 CMIP6-projections at KYZ_AWS. The significance
of change in a certain month is calculated with a T-test and indicated by stars, whereby a change is regarded as
significant if it has a confidence interval of at least 95%. The following labels are used for significant changes:
*>=95% / **>=99% / ***>=99.9%.
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Figure E.2: Average annual precipitation distribution during the historical reference period (1985-2014), mid-
century (2020-2049) and end-century (2070-2099) of SSP2-4.5 CMIP6-projections at KYZ_AWS. The significance
of change in a certain month is calculated with a T-test and indicated by stars, whereby a change is regarded as
significant if it has a confidence interval of at least 95%. The following labels are used for significant changes:
*>=95% / **>=99% / ***>=99.9%.
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Figure E.3: Average annual precipitation distribution during the historical reference period (1985-2014), mid-
century (2020-2049) and end-century (2070-2099) of SSP3-7.0 CMIP6-projections at KYZ_AWS. The significance
of change in a certain month is calculated with a T-test and indicated by stars, whereby a change is regarded as
significant if it has a confidence interval of at least 95%. The following labels are used for significant changes:
*>=95% / **>=99% / ***>=99.9%.
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E.1.2 Surface air pressure

Figure E.4: Anomaly in surface air pressure in CMIP6-projections to historical average at KYZ_AWS. The
average of the historical reference period (1985-2014) is thereby indicated as a grey, dashed line, representing
zero-change. The CMIP6 ensemble means are plotted in the colours presented in the legend, with its individual
members (model chains) indicated by thinner lines in the same colour.
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E.1.3 Incoming shortwave radiation

Figure E.5: Anomaly in incoming shortwave radiation in CMIP6-projections to historical average at KYZ_AWS.
The average of the historical reference period (1985-2014) is thereby indicated as a grey, dashed line, representing
zero-change. The CMIP6 ensemble means are plotted in the colours presented in the legend, with its individual
members (model chains) indicated by thinner lines in the same colour.
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E.1.4 Incoming longwave radiation

Figure E.6: Anomaly in incoming longwave radiation in CMIP6-projections to historical average at KYZ_AWS.
The average of the historical reference period (1985-2014) is thereby indicated as a grey, dashed line, representing
zero-change. The CMIP6 ensemble means are plotted in the colours presented in the legend, with its individual
members (model chains) indicated by thinner lines in the same colour.
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E.1.5 Wind speed

Figure E.7: Anomaly in wind speed in CMIP6-projections to historical average at KYZ_AWS. The average of the
historical reference period (1985-2014) is thereby indicated as a grey, dashed line, representing zero-change. The
CMIP6 ensemble means are plotted in the colours presented in the legend, with its individual members (model
chains) indicated by thinner lines in the same colour.
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E.2 Sangvor

Table E.1: Overview of the Mann-Kendall trend analysis for all downscaled meteorological CMIP6 variables in
the Sangvor catchment. The trend analysis is carried out for all Tier 1 Scenarios at mid century and end century.
Significant trends are indicated in the column trend of the corresponding period, whereby a ’−’ indicates a
negative trend and ’+’ a positive trend. A trend is considered as significant at the confidence interval of 95%
and higher. The significance level of the observed trend is further indicated by stars with the following confident
intervals:*>=95% / **>=99% / ***>=99.9%. Further, the average change of the ensemble mean is indicated, as
well as the lowest and highest trend of its members (model chains). All units refer to the yearly mean (sum for
precipitation) and are relative to the historical reference period.

Mid-century (2020-2049) End-century (2070-2099)

Variable Unit Station Scenario
Trend Avg. change

Lower Upper
Trend Avg. change

Lower Upper
bound bound bound bound

Ta °C SANG_AWS

SSP1-2.6 +∗∗ +1.00 +0.80 +1.45 +∗∗∗ +1.28 +0.94 +1.88
SSP2-4.5 +∗∗∗ +1.15 +0.87 +1.60 +∗∗∗ +2.42 +1.99 +3.01
SSP3-7.0 +∗∗∗ +1.14 +0.95 +1.37 +∗∗∗ +3.59 +3.20 +3.99
SSP5-8.5 +∗∗∗ +1.30 +0.89 +1.74 +∗∗∗ +4.58 +3.96 +5.45

Rh % SANG_AWS

SSP1-2.6 -1.09 -1.74 -0.56 −∗∗∗ -2.01 -6.47 -0.29
SSP2-4.5 −∗ -1.34 -4.65 -0.58 −∗∗∗ -3.08 -7.97 -0.74
SSP3-7.0 -1.18 -3.02 -0.37 −∗∗∗ -3.58 -7.26 -1.04
SSP5-8.5 −∗∗ -1.42 -3.81 -0.25 −∗∗∗ -4.85 -12.05 -0.78

Pr mm SANG_AWS

SSP1-2.6 +29.34 -25.21 +83.53 +12.37 -61.49 +95.52
SSP2-4.5 +30.89 -16.70 +69.02 +30.83 -50.16 +154.04
SSP3-7.0 +12.94 -23.53 +73.88 +∗ +66.59 -99.72 +206.98
SSP5-8.5 +29.06 -16.15 +117.82 +74.68 -77.85 +298.21

Ps hPa SANG_AWS

SSP1-2.6 +∗∗∗ +0.89 +0.65 +1.13 +∗∗∗ +1.07 +0.80 +1.33
SSP2-4.5 +∗∗∗ +0.97 +0.67 +1.16 +∗∗∗ +2.09 +1.72 +2.56
SSP3-7.0 +∗∗∗ +0.98 +0.71 +1.11 +∗∗∗ +2.99 +2.36 +3.79
SSP5-8.5 +∗∗∗ +1.10 +0.78 +1.32 +∗∗∗ +3.64 +3.00 +4.89

Sw↓ W/m2 SANG_AWS

SSP1-2.6 -0.98 -2.37 +1.22 +0.31 -1.83 +2.82
SSP2-4.5 -2.34 -3.27 -1.76 -2.69 -5.44 -0.76
SSP3-7.0 -3.17 -4.18 -2.43 −∗ -7.02 -9.74 -5.58
SSP5-8.5 -2.53 -4.40 -0.83 -5.59 -11.00 -1.16

Lw↓ W/m2 SANG_AWS

SSP1-2.6 +∗∗∗ +3.73 +2.14 +5.55 +∗∗∗ +3.93 +2.67 +5.11
SSP2-4.5 +∗∗∗ +4.47 +3.09 +6.23 +∗∗∗ +8.33 +5.21 +9.63
SSP3-7.0 +∗∗∗ +4.60 +2.88 +6.09 +∗∗∗ +13.17 +10.45 +15.23
SSP5-8.5 +∗∗∗ +5.01 +2.99 +7.81 +∗∗∗ +16.03 +10.01 +20.27

Ws m/s SANG_AWS

SSP1-2.6 -0.02 -0.05 -0.00 -0.02 -0.06 +0.00
SSP2-4.5 -0.02 -0.03 +0.01 -0.01 -0.05 +0.01
SSP3-7.0 -0.02 -0.06 +0.00 -0.03 -0.07 +0.04
SSP5-8.5 -0.01 -0.03 +0.01 -0.03 -0.08 +0.02
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E.2.1 2m air temperature

Figure E.8: Anomaly in 2m air temperature in CMIP6-projections to historical average at SANG_AWS. The
average of the historical reference period (1985-2014) is thereby indicated as a grey, dashed line, representing
zero-change. The CMIP6 ensemble means are plotted in the colours presented in the legend, with its individual
members (model chains) indicated by thinner lines in the same colour.
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E.2.2 Near-surface relative humidity

Figure E.9: Anomaly in relative humidity in CMIP6-projections to historical average at SANG_AWS. The
average of the historical reference period (1985-2014) is thereby indicated as a grey, dashed line, representing
zero-change. The CMIP6 ensemble means are plotted in the colours presented in the legend, with its individual
members (model chains) indicated by thinner lines in the same colour.
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E.2.3 Precipitation

Figure E.10: ]

Anomaly in precipitation in CMIP6-projections to historical average at SANG_AWS. The average of
the historical reference period (1985-2014) is thereby indicated as a grey, dashed line, representing

zero-change. The CMIP6 ensemble means are plotted in the colours presented in the legend, with its
individual members (model chains) indicated by thinner lines in the same colour.
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Figure E.11: Average annual precipitation distribution during the historical reference period (1985-2014),
mid-century (2020-2049) and end-century (2070-2099) of SSP1-2.6 CMIP6-projections at SANG_AWS. The
significance of change in a certain month is calculated with a T-test and indicated by stars, whereby a change is
regarded as significant if it has a confidence interval of at least 95%. The following labels are used for significant
changes: *>=95% / **>=99% / ***>=99.9%.
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Figure E.12: Average annual precipitation distribution during the historical reference period (1985-2014),
mid-century (2020-2049) and end-century (2070-2099) of SSP2-4.5 CMIP6-projections at SANG_AWS. The
significance of change in a certain month is calculated with a T-test and indicated by stars, whereby a change is
regarded as significant if it has a confidence interval of at least 95%. The following labels are used for significant
changes: *>=95% / **>=99% / ***>=99.9%.
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Figure E.13: Average annual precipitation distribution during the historical reference period (1985-2014),
mid-century (2020-2049) and end-century (2070-2099) of SSP3-7.0 CMIP6-projections at SANG_AWS. The
significance of change in a certain month is calculated with a T-test and indicated by stars, whereby a change is
regarded as significant if it has a confidence interval of at least 95%. The following labels are used for significant
changes: *>=95% / **>=99% / ***>=99.9%.

LXI



Figure E.14: Average annual precipitation distribution during the historical reference period (1985-2014),
mid-century (2020-2049) and end-century (2070-2099) of SSP5-8.5 CMIP6-projections at SANG_AWS. The
significance of change in a certain month is calculated with a T-test and indicated by stars, whereby a change is
regarded as significant if it has a confidence interval of at least 95%. The following labels are used for significant
changes: *>=95% / **>=99% / ***>=99.9%.
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E.2.4 Surface air pressure

Figure E.15: Anomaly in surface air pressure in CMIP6-projections to historical average at SANG_AWS. The
average of the historical reference period (1985-2014) is thereby indicated as a grey, dashed line, representing
zero-change. The CMIP6 ensemble means are plotted in the colours presented in the legend, with its individual
members (model chains) indicated by thinner lines in the same colour.
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E.2.5 Incoming shortwave radiation

Figure E.16: Anomaly in incoming shortwave radiation in CMIP6-projections to historical average at SANG_AWS.
The average of the historical reference period (1985-2014) is thereby indicated as a grey, dashed line, representing
zero-change. The CMIP6 ensemble means are plotted in the colours presented in the legend, with its individual
members (model chains) indicated by thinner lines in the same colour.
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E.2.6 Incoming longwave radiation

Figure E.17: Anomaly in incoming longwave radiation in CMIP6-projections to historical average at SANG_AWS.
The average of the historical reference period (1985-2014) is thereby indicated as a grey, dashed line, representing
zero-change. The CMIP6 ensemble means are plotted in the colours presented in the legend, with its individual
members (model chains) indicated by thinner lines in the same colour.
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E.2.7 Wind speed

Figure E.18: Anomaly in wind speed in CMIP6-projections to historical average at SANG_AWS. The average of
the historical reference period (1985-2014) is thereby indicated as a grey, dashed line, representing zero-change.
The CMIP6 ensemble means are plotted in the colours presented in the legend, with its individual members (model
chains) indicated by thinner lines in the same colour.
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