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Abstract

A key contributing factor in biodiversity loss is the lowering of intraspecific genetic varia-

tion within species. Lowering genetic diversity of a population causes increased suscepti-

bility for diseases, reduced evolutionary potential and lower fitness of the next generation.

In light of of changing environmental conditions, habitat degradation and more frequent

stochastic climatic events monitoring the genetic variation of populations is paramount.

Assessing the genetic variation of organisms is commonly based on measuring its allele

pool, which requires costly physical sampling with low spatial coverage. Alternatively,

remotely sensed imaging spectroscopy data may hold the potential to distinguish genetic

clusters, because higher allelic variation within the populations results in higher variation

of phenotypic response that is reflected in the spectral information. Based on that, we

investigate in this study the potential of remote sensing time series to reveal the intraspe-

cific genetic variation under natural conditions.

We establish a direct connection between spectral data and intraspecific genetic variation

of individual trees in a temperate forest system (Laegern, 47◦28’N, 8◦21’E), located in

the Swiss midlands. Our dataset includes genetic and spectral information. Genetic data

contain microsatellite analyses of 77 F. sylvatica individuals. Remote sensing data encom-

pass annual acquisitions of the APEX (Airborne Prism Experiment) imaging spectrometer

data with 2 m spatial resolution and 284 spectral bands from 2009 to 2016. We used Pa-

tial Least Squares Discriminant Analysis (PLS–DA) to classify genetic clusters based on

their spectral information. To select the most relevant input data for the PLS-DA models

for genetic cluster discrimination, we tested and compared various spectral bands sub-

sets. The selection was based on specific spectral regions, Analysis of Variance (ANOVA),

Principal Component Analysis (PCA), geometry of data acquisitions and moving window

approaches. All analyses were based on two types of data transformation comparing re-

flectance and derivative-based data.

The different model performances reveal that spectral subsets from the near infrared (NIR)

and shortwave infrared (SWIR) wavelength regions, rather than the full spectrum, show

better consistency reflectance patterns differing among genetic clusters of sampled trees

throughout the years. The spectral subsets selected based on ANOVA, PCA and the

variation in reflectance based on geometry of the acquisition does not have a significant

influence on the models performance. In addition, we reveal that the genetic cluster of

sampled F. sylvatica individuals differs in phenols composition related to the spectral re-

gion around 1.7 µm wavelength.

We conclude that identifying the specific wavelength regions of the electromagnetic spec-

trum that are related to genotypic variation and using these data as input for PLS-DA

models may enable intraspecific discrimination based on in-situ spectral information. Fur-

thermore, the distinction of trees from different genetic clusters based on remote sensing

time-series have a high potential to trace back genetic diversity loss in time and could

contribute to the conservation of the species and habitats.
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1. Introduction

Already in 80’s of the 20th century it was recognized that the lowering of the

genetic variation within species is a key factor in biodiversity loss (Wilson and Peter

1988). Both inter- and intraspecific genetic variety are crucial components influ-

encing ecosystem structure and functioning (Hughes et al. 2008). Minimizing the

genetic of a population increases its susceptibility of diseases (Schmid 1994), re-

duces the evolutional potential, and lowers fitness of the next generation (Ellstrand

and Antonovics 1985). Therefore, maintaining highly genetically variable popula-

tions and their wider range of adaptive responses could be crucial in the context

of changing environmental conditions (Szathmáry, Jordán, and Pál 2001; Gienapp

et al. 2008) and more frequent stochastic climatic events (Hartmann et al. 2013).

Considering the pace of global climate change and habitat degradation in compari-

son to evolutionary processes, the ability of organisms to adapt to changes is more

important than creating a new variations (Frankham 2010). The short-term evo-

lution and phenotypic plasticity potential is positively correlated with the allelic

variation of the population (Gratani 2014). Therefore, the number and frequency of

alleles changing in time and space is perceived as a suitable measurement of change

in genetic diversity (Hoban et al. 2014).

Measurement of the allele pool, together with DNA and RNA sequencing-based

techniques (Michael W Bruford et al. 2017; Yamasaki et al. 2017), are direct esti-

mation of genetic composition, which is defined as one of the six Essential Biodiver-

sity Variables (EBV) that aim to monitor world-wide biodiversity status (Henrique

Miguel Pereira et al. 2013; BON 2015). These techniques require physical sampling

(Davies et al. 2012), so are costly and time-consuming. Moreover, physical sampling

results in individual measurements, which lack the spatial and temporal context rel-

evant for biodiversity monitoring. Alternatively, continuous spatial data based on

remote sensing technologies can overcome these limitations and are therefore get-

ting more attention in the community (Rocchini et al. 2010; Turner 2014; O’Connor

et al. 2015).

Both passive and active remote sensing technologies have been used to estimate
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Introduction

the functional and taxonomic diversity of different ecosystems. Based on vegetation

traits gained from imaging spectroscopy and Light Detection and Ranging (LiDAR)

data, Schneider et al. 2017 evaluated functional diversity in temperate forest. Tax-

onomic diversity assessment has been done by using both trait and spectra based

techniques (Asner and R. E. Martin 2009; M. Martin et al. 1998), however more

detailed evaluation of diversity than species richness has not yet been widely con-

sidered in remote sensing studies.

Similar to species, individuals with different genotype can express different mor-

phological and physiological traits which shape their reflectance responses. However,

these differences are less pronounced in lower taxonomic ranks than at species level

(Hulshof and Swenson 2010). This means, that the recognition of individuals with

different genotypes based only on spectral information gained in non-experimental

conditions is limited and therefore not fairly used. However, growing importance of

remote sensing in ecological assessments and high interdisciplinary of research groups

show the potential link between genetic and spectral variations. For example, the

studies of Madritch et al. (2014), which focus on above and below ground processes

of trees, are showing the link of foliar reflectance with the genotype. Cavender-Bares

et al. (2016) found a correlation between phylogenetic and spectral information. Fi-

nally, experts on genetics, where spectroscopic methods have been used for genotype

recognition in laboratory conditions (Matsuda et al. 2012), suggest that there is a

potential for remote sensing techniques to be used to examine genetic composition

in natural habitats (Yamasaki et al. 2017).

Given the need for novel approaches to detect intraspecific genetic variation and

the potential of using imaging spectroscopy data (Vihervaara et al. 2017; Geijzen-

dorffer et al. 2016; Navarro et al. 2017), we attempt to find a direct connection

between the spectral and genetic information of individual trees within temperate

forest. We aim to demonstrate that genetic specific phenotypic responses are re-

produced in reflectance information, and that use of spectral information could be

an efficient tool for finding the genetic composition in non-experimental conditions.

Furthermore, we aim to find evidence that the discrimination of the different genetic

clusters, can be based on spectral information without prior knowledge on physi-

ological and morphological characteristics. In our study, we define genetic cluster
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Introduction

(GC) as a group of individual trees with a similar genome, where the similarity was

derived based on microsatellite analyses.

We base our study on the hypothesis that foliar reflectance changes on an annual

and seasonal basis, which contrasts the expression of genotype specific phenotypic

responses of individual trees that is maintained over years. To test this hypothe-

sis, we used multi-annual airborne imaging spectroscopy data of a temperate forest

in Switzerland, along with genetic information derived from microsatellite analyses

of the individual trees. We combine both datasets using the Partial Least Square

(PLS) method to investigate the explanatory power of distinct regions of the electro-

magnetic spectrum. By merging the interdisciplinary approaches, we underline the

potential of imaging spectroscopy data in biodiversity assessments on a intra-specific

genetic level.
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2. Materials and methods

2.1 Study area

The study area covers 12.6 ha of semi-natural temperate mixed forest located

in the Laegern mountain area on the north boundary of Swiss Plateau (47◦28’N,

8◦21’E) (Fig. 2.1). The climate of the area is characterized by the mean annual

temperature of 7.4◦C and the mean annual precipitation of 1000 mm (Etzold et

al. 2011). The site has an altitudinal gradient of 620 and 810 m a.s.l and lies on

a south-facing slope, with a gradient up to 60◦ steep (Guillén-Escribà et al. in

press). According to the The United Nations Environment World Conservation

Monitoring Centre (UNEP-WCMC), vegetation cover of the site is a Temperate

Deciduous Broadleaf Forest, with 13 tree species consisting of 3 conifers and 10

angiosperms with common beach (Fagus sylvatica) being the dominant species. The

age of trees spans between 53 – 185 years with the mean height of 30.6 m and

the diameter up to 150 cm (Eugster et al. 2007), which creates a complex vertical

structure of the mainly closed canopy (Schneider et al. 2017). The study area is a

non-managed part of the forest and has been a forest ecosystem research site for the

last four decades (Kloeti, Keller, and Guecheva 1989).

Figure 2.1: Location of the Laegern mountain in Switzerland (red triangle) highlighting
the study site (red rectangle). Map projection indicates the Swiss National Grid CH1903
LV03.
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Materials and methods

2.2 Materials

2.2.1 Genetic data

The genetic data consists of a product of microsatellite analyses reflecting genome

for 77 F. sylvatica individuals from the stand. The material for the analyses were

leaf discs with diameter of 1.15 cm from each of tree sampled in September 2013

and georeferenced using a tachymeter in April 2013 (Leiterer et al. 2015). The DNA

from the sampled material was extracted with Cetyl Trimethylammonium Bromide

(CTAB) method following “Operationen- und Prozedurenschlüssel” (OPS) Diag-

nostic procedure. From the extracted DNA, five highly variable microsatellite loci

(FS1-03, FS1-15, FS3-04, FS4-46, FCM5) (Pastorelli et al. 2003) were amplified

using Polymerase Chain Reaction (PCR) technique. To assess the polymorphism

at each microsatellite loci, capillary electrophoresis was performed on ABI-3720 se-

quencer. For determining the length of the analyzed microsatellites for each sampled

tree, the GeneMapper software was used (Tab. A.1). We performed the microsatel-

lite analysis with Bayesian methodology in TESS2 software, to find out the genetic

clusters among sampled F. sylvatica individuals. Based on an average cross-entropy

of admixture model, we determined five genetic clusters, to which each tree was

assigned its membership probability (Fig. 2.2).

Figure 2.2: Results of the microsatellite analysis showing the membership probability of
77 sampled F. sylvatica individuals to the five detected genetic clusters.
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2.2.2 Optical data

The spectral dataset contains seven acquisitions of the Airborne Prism Exper-

iment (APEX) Airborne Imaging Spectrometer (AIS) (Schaepman et al. 2015) ac-

quired between 2009 and 2016. To compare trees from similar development stages,

images from the range of 300 - 700 Growing Degree Days (GDD) (corresponding to

June - July) within each year were selected (Fig. 2.3, Tab. 2.1). The raw APEX

data pre-processing chain of calibration and correction for spectral shift with smile

effect were performed in the APEX Processing and Archiving Facility and ATCOR

smile module, respectively (Hueni, Biesemans, et al. 2009; Hueni, Sterckx, et al.

2012; Richter, Schlapfer, and Muller 2011). Calibrated and corrected radiance data

were atmospherically corrected to surface reflectances in ATCOR (Schläpfer and

Richter 2002; Hueni, Damm, et al. 2017) resulting in imaging spectroscopy datasets

of 284 spectral bands each in the range of 372-2540 nm with 2 m spatial resolution.

Each dataset was vicariously calibrated with repeated ASD ground measurements of

30 ground targets to ensure consistent data quality standards and intercompatibility

of these datasets.

Figure 2.3: Growing Degree Days (GDD) within the
years 2009-2016, with marked time of acquiring the
images used in the studies. Additionaly, the range of
300-700 GDD, being a time limitation for the studies,
is shown.

Table 2.1: Exact date, Day of the
Year (DOY), Growing Degree Day
(GDD) and solar zenith angle of the
acquisition of the seven used hyper-
spectral Airborne Prism Experiment
(APEX) Airborne Imaging Spectrom-
eter (AIS) images.

Date

Day

of the

year

Growing

Degree

Day

Solar

zenith

angle

17.06.2009 168 429 30.4

26.06.2010 177 368 48.1

16.06.2012 168 372 27.1

12.07.2013 193 461 48.1

18.07.2014 199 674 26.5

24.06.2015 175 438 33.7

07.07.2016 189 461 na

6



Materials and methods

Co-registration, Shadow exclusion, Pixel extraction

Multi-temporal images were geographically co-registered using Spectral Angle

Mapper (SAM) method, where the object, being a Flux tower, with a spectral sig-

nature different from the vegetation was used as a reference point. Due to shadows

creating high spatial heterogeneity, and therefore high noise, in a high spatial resolu-

tion data (Nagendra and Rocchini 2008; Stickler and Southworth 2008), pixels with

total reflectance below 30% of mean total reflectance for whole image pixels were

eliminated from the analysis. The high spatial resolution resulting in a high noise

was also a reason to adopt object-based rather than pixel-based analyses (Karl and

Maurer 2010). The object was defined as a tree crown for each sampled F. sylvat-

ica individual derived from Light Detection and Ranging (LiDAR) measurements

resulted in a CrownMap of the site (Guillén-Escribà et al. in press). The spectral

signature for the object was a mean of unshaded pixels’ reflectance from the crown

(Fig. 2.4). The number of pixels averaged in a crown had an average of 17 with the

standard deviation of 9 pixels.

Figure 2.4: Crowns of the 77 F. sylvatica individuals sampled in the test site and its
assignation to the five detected, based on the microsatellite analyses, genetic clusters. Map
projection indicates the Swiss National Grid CH1903 LV03.
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Signal transformation

Our analysis for this study is based on two datasets: (a) the averaged reflectance

data per tree crown and (b) the 1st derivative derived from z-score of ‘a’. The z-score

of a mean tree crown reflectance was calculated separately for each spectral band

with yearly reference with the formula xb−µb
σb

, where b stands for spectral band (Fig.

2.5). The reasoning to include the 1st derivative in the analysis is to reduce the im-

pact of multi-temporal variations in the reflectance magnitudes and simultaneously

emphasize the relative differences between reflectance and absorption/transmittance

influenced by structure, water content and organic compounds (Huesca et al. 2016).

The aforementioned co-registration, shadow elimination, spectrum per tree ex-

traction and signal transformations were performed in MatLab R2017b.

Figure 2.5: Average reflectance, z-score of the reflectance and derivative of the z-score
for each detected genetic cluster. Reflectance data is averaged over all years (2009-2016)
and all tree crowns within a genetic cluster.
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2.3 Methods

2.3.1 Partial Least Square (PLS) analysis

The yearly consistency of the spectra and its location over the full spectrum

were investigated by the Partial Least Square (PLS) method. The method is a basic

tool in chemometrics (Wold, Sjöström, and Eriksson 2001) and is used in analyzing

datasets with numerous bands where the collinearity and noise are problems in an

analyses based on regression models (Wold, Ruhe, et al. 1984). Compared to the

multiple linear regression (MLR), PLS models not only the X-variables, but also

the Y-responses, based on the X-variable structure (Wold, Eriksson, et al. 2004).

In our studies X-variables and Y-responses correspond to the spectral and genetic

data, respectively. To investigate the influence of different wavelength regions of

the electromagnetic spectrum and its potential in genetic clusters discrimination,

we compared different spectral band subsets (see 2.3.2. Band subsets selection).

Finally, the classification of the trees to the genetic clusters was carried out using the

PLS models based Discriminant Analysis (PLS-DA). The classification was done for

the spectral subset, which performed best. The workflow of our analyses is presented

in the Figure 2.6.

To prepare the datasets for the PLS models, we first assigned the sampled trees

to the five genetic clusters based on their maximum genetic membership probability

derived from the microsatellite analyses (see 2.2.1. Genetic Data) (Fig. 2.4). To

enable a balanced comparison between the genetic clusters, the minimum number of

eight trees were selected from each genetic cluster to create the PLS models. This

selection results in a 5x40 binary Y-responses matrix, where the columns represent

genetic clusters and the rows represent individual trees with units standing for the

assignment to the genetic cluster.

Secondly, we created the PLS models for each genetic cluster on a training set of

39 tree-crown spectra from the one year (X-predictors) and its corresponding genetic

cluster 39 binary values (Y-responses). The excluded spectra from the spectral

training set were fitted to the five created PLS models individually. The fit was

done repeatedly for the tree spectrum of each year, and the mean of the predicted

responses over all years was taken. In summary, this process was repeated iteratively

9



Materials and methods

Figure 2.6: Workflow representing the individual steps to evaluate the discrimination
power of various spectral subsets. These processing steps have been applied to each spec-
tral subset separately. m - model, gc - genetic cluster.

10
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for each of the 40 trees and for each of the seven years. The overall mean of the

outcomes resulted in one predicted response for each genetic cluster to each of five

PLS models. According to our hypothesis, given tree fits best to PLS model created

for its particular genetic cluster, assuming a spectral consistency over the years

within each genetic cluster. The mean predicted response of non-relevant genetic

clusters to the genetic specific PLS models was extracted from the overall predicted

value of the genetic cluster to its PLS model. That was done due to overfitting

problem. The resulting values for each genetic clusters were min-max scaled. We

sum up the scaled values for each PLS model and we refer to these sums as scores

ranging from 1 to 5. The scaling is needed to compare the outcome of different

bands subsets. Additionally, we calculated the standard deviation of genetic clusters

values, derived from PLS models, for each spectral subset input. This was done for

getting the level of correspondence of bands subsets to a respective genetic cluster.

2.3.2 Band subsets selection

Peerbhay, Mutanga, and Ismail (2013) and Cavender-Bares et al. (2016) demon-

strated that spectral subsets result in better PLS-based model performances, than

the analyses based on the full spectrum. Therefore, next to the full spectrum (284

spectral bands), we tested spectral subsets as a PLS model input and compared

the model performances. The selection of different spectral bands for each subset

was based on (a) specific spectral regions, (b) quality criteria and on a (c) moving

window approach (Tab. 2.2). The selection was done separately for each of the

spectra transformation (see 2.2.2 Signal transformation).

Table 2.2: Overview of spectral subsets used as inputs (X-predictors) for the Partial
Least Square analyses. In addition, subset characteristics and number of bands within
each subset are provided. This spectral sub-setting was applied to both, reflectance and
derivative data. *In case of PCA based selection, the subsets consists of PCs.

specific spectral
regions

quality criteria moving window

VIS NIR SWIR PCA ANOVA geometry

Number of
neighboring

bands
moved
over the

full spectrum

Range [nm]

Principal
Components (PCs)

derived from
the analyzed
tree crowns

Selection
based on the

highest value of
(F -statistic/p-value)

ratio

Selection based
on the lowest

standard deviation
for each band

between
acquisitions
with various

viewing positions

400
-

700

700
-

1400

1400
-

2430

number of
bands*

59 94 130 5* and 50* 5 and 50 5 and 50 (280x)5 and (235x)50
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The three regions of the electromagnetic spectrum were defined as a Visible

(VIS: 400-700 nm), Near-infrared (NIR: 700-1400 nm) and Short-wavelength in-

frared (SWIR: 1400-2430 nm) frequency ranges. Based on this designation three

subsets of bands were created with 59, 94 and 130 bands for VIS region, NIR region

and SWIR region, respectively. The quality selected inputs consist of subsets of (i)

Principal Components (PCs) derived from Principal Component Analysis (PCA),

(ii) subsets of bands selected based on Analysis of Variance (ANOVA) and (iii)

subsets of bands based on acquire geometry criteria. To compare different model

performances, the number of spectral bands, dictated with variation explained by

the PCs, was kept constant for all the created subsets.

Based on the variation explained by the PCs, 5 and 50 first PCs were chosen as a

subset for the PLS analysis (Fig. A.1). The bands selected by an ANOVA crite-

rion were derived based on the yearly reflectance mean of the GC. The bands with

the highest F -statistic/p-value ratio were chosen for the analysis. The F value and

p-value (Hogg and Ledolter 1987) were calculated with a MatLab function anova1

conducted on 7-years means of GCs (Fig. A.2). For the subsets of bands based

on acquire geometry criteria, we selected the bands with the smallest reflectance

variance between different acquisitions of different flight stripes from the same day

of gaining (Fig. A.3). A moving window with the width of 5 and 50 bands over the

whole spectrum with the interval of 1 band was performed and additional spectrum

regions input subsets were created. For comparison reasons, we additionally ran-

domly choose the 5 and 50 bands subsets from the whole spectrum. We have done

the selections separately for each transformation (see 2.2.2. Signal transformation)

2.3.3 Partial Least Square Discrimination Analysis (PLS-

DA)

In a last step, PLS - Discrimination Analysis (PLS-DA) based on the five gen-

erated PLS models was carried out. In this step, each of the 77 sampled trees were

classified based on their maximum predicted response to one of the genetic clusters

within the seven years. The PLS-DA was conducted for the best PLS model per-

formance based on (a) specific spectral regions (b) quality criteria and (c) for all

moving windows.

12



3. Results

3.1 Detection of GC in different spectral regions

There are noticeable differences in relative genetic cluster recognition in different

regions of the spectra (Fig. 3.1). In general, analyses made on pure reflectance data

provide higher scores as the 1st derivative of the reflectance data yields lower scores

and thus has a lower explanatory power on average. In analyses made for reflectance

and derivative, the use of the full spectrum (284 bands) did not perform the best.

Based on reflectance data, the SWIR wavelength region performs the best and is

outperforming the NIR region. This relation contrasts the results from the derivative

data analysis, where the NIR outperforms the SWIR region. In both analysis, the

VIS wavelength region has the smallest explanatory power to define the genetic

clusters.

There is a pronounced variation of recognition power for different genetic cluster

in different regions of the spectra and in different domains. The variations are

stronger in the reflectance domain, where GC1 has the biggest yearly consistency in

NIR region, GC2 in VIS and NIR regions, GC3 in VIS region, GC4 in NIR region

and SWIR region and GC5 in SWIR region. There is also a distinct small yearly

consistency of GC3 in NIR region in the reflectance domain. In the derivatives

domain, the yearly consistency of the spectral signal for genetic clusters is similar

in all spectral regions with the highest for GC4 and GC5 in NIR region.

The classification based on PLS-DA for the highest overall performance of SWIR

region in the reflectance domain results in 25 correctly classified trees (accuracy:

32%, F1: 0.2984, kappa: 0.0680) (Fig. 3.2a). In comparison, the classification based

on the full spectrum in a reflectance domain results in 13 trees correctly assigned to

their genetic clusters (accuracy: 17%, F1: 0.1486, kappa: -0.0467) (Fig. 3.2b).
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Figure 3.1: The sum of the genetic cluster (GC) scores derived from the PLS analyses
conducted on the whole spectrum and specific spectral regions. Results indicate the aver-
age value for the time period 2009 to 2016 for the reflectance and derivatives of z-score of
the reflectance (derivative)

(a) SWIR region
accuracy: 32%

(b) full spectrum
accuracy: 17%

Figure 3.2: Results of the PLS-DA classification of each genetic clusters based on re-
flectance for the SWIR spectral region (a) and on the full spectrum (b).
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Results

3.2 Detection of GC in chosen quality spectral subsets

The recognition of the GC based on spectral subsets selected based on specific

quality criteria perform differently (Fig. 3.3). For both, reflectance and derivative

data, use of Principal Components has the highest positive influence on the ability

of GC recognition. Overall, the recognition is better achieved with the use of only 5

rather than 50 representative bands based on the same criterion. However, only in

the derivative domain, randomly selected bands perform worse than all the quality

selection-based subsets. In reflectance domain, subset based on ANOVA criterion

performs the worst and geometry-based subsets perform similarly to the randomly

selected subset.

In the reflectance domain, there are pronounced differences in a GC yearly con-

sistency of the spectral subsets. Accordingly, GC2 reflectance varies the most in

ANOVA and geometry criterion-based subsets of 50 and 5 bands, respectively, and

GC3 has the biggest inter-annual variations in spectral subsets of 5 bands based on

ANOVA criterion.

Overall, the subset of first 50 PCs derived from reflectance of sampled trees

performs the best in the analysis. The PLS-DA based on this subset results in 20

out of 77 trees identified as a correct GC (accuracy: 26%, F1: 0.3603, kappa: 0.0932)

(Fig. 3.4a), whereas GC classification with the use of 50 randomly selected bands

from full spectra results in 13 trees correctly classified (accuracy: 17%, F1: 0.1744,

kappa: -0.0366,)(Fig. 3.4b).
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Figure 3.3: Scores of the PLS analysis for four spectral subset criteria (i.e. PCA,
ANOVA, geometry, random). Results indicate different subset sizes (i.e. 5 and 50 bands)
and different data type (reflectance and derivatives) for the time period 2009 to 2016.

(a) 50th first Principal Components
accuracy: 26%

(b) 50 randomly chosen bands
accuracy: 17%

Figure 3.4: Results of PLS-DA classification of the genetic clusters based on first 50th
Principal Components, derived from reflectance of all sampled F.sylvatica individuals (a),
and for 50 randomly chosen bands subset(b).
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3.3 GC detection accuracy for different windows width over
the full spectrum

The analyses made on the full spectrum for different window sizes unravel the

regions of the spectrum where identification of a GC has higher accuracy (Fig. 3.5).

Overall, using reflectance performs better than using derivatives, especially with

use of windows size of 50 bands. Similarly, performance in derivative domain was

better for window size of 50 bands. Overall standard deviations of GC scores are

higher for wider windows and higher in reflectance domain compared to derivative

domain. The highest accuracyof 35% (27 correctly classified trees), was observed in

reflectance domain for 50 bands window centered at:

• 0.8324 µm (F1: 0.3057, kappa: 0.1156, stdv: 0.0048),

• 0.8439 µm (F1: 0.3043, kappa: 0.1047, stdv: 0.0046),

• 2.1373 µm (F1: 0.4004, kappa: 0.1151, stdv: 0.0116).

In derivative domain the maximum observed accuracy of 30% (23 correctly classified

trees), was for 50 bands window width centered at:

• 0.8938 µm (F1: 0.3011, kappa: 0.1263, stdv: 0.0043).

The best performance of 5 bands window width in reflectance domain and out of

the interpolated region of spectra, was equal to 25 correctly classified trees (accuracy:

32%) and was derived from the windows centered at:

• 0.6745 µm (F1: 0.3347, kappa: 0.0403, stdv: 0.0033),

• 1.6840 µm (F1: 0.3516, kappa: 0.0827, stdv: 0.0043),

• 1.7622 µm (F1: 0.3246, kappa: 0.0507, stdv: 0.0024),

• 2.2630 µm (F1: 0.3438, kappa: 0.0444, stdv: 0.0030).

In derivative domain the highest accuracy of 25% (19 correctly classified trees), with

use of 5 bands window width being out of the interpolated region of the spectra,

was achieved with the window centered at:

• 1.6398 µm (F1: 0.2011, kappa: 0.0327, stdv: 0.0017).
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Results

Figure 3.5: Assessment of PLS-DA genetic cluster classification of sampled F. sylvatica
individuals, based on each moving window over the full spectrum. The presentation of
results for 5 (a, b) and 50 (c, d) bands window widths, and for reflectance (a, c) and
derivatives of z-score of the reflectance (derivative)(b, d) mean values from 2009-2016.
Additionally, the kappa value of the classification and the standard deviation of different
GC recognition is shown. The red circles show the highest accuracy results the cases. The
light grey colour bars the interpolated wavelengths.
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4. Discussion

4.1 Detection of GC in different spectral regions

This study shows the ability of detecting intraspecific genetic variation of F. syl-

vatica based on a multi-annual spectral information. Full spectrum analyses results

in a 17% accuracy for defined genetic cluster classification. The relatively poor clas-

sification confirms that the spectrum of each sampled tree is strongly affected by

phenological and environmental variations. Therefore, the different regions of the

spectrum have been used in the analyses and the spectral regions reflecting genetic

specific phenotype responses were identified.

In reflectance domain, analyses based on a band subset covering SWIR region

results in 50% improvement of genetic cluster identification. Since this region of the

spectrum is influenced mostly by the water content of leaves (Tucker 1980; H. W.

Gausman and Weidner 1985), this result suggests that there is intraspecific variation

in this property for F. sylvatica. The outcome is consistent with physiological and

genetic studies, where evidence of the origin of the F. sylvatica influencing its water

management (Peuke et al. 2002) and genetic structure (Demesure, Comps, and Petit

1996) was found. The reflectance in the SWIR region is also related to the internal

structure of the leaf and its dry matter concentration (Ceccato et al. 2001). How-

ever, these two leaf properties are most pronounced in the NIR region (H. Gausman

et al. 1970), which according to our study is relatively the best region of a deriva-

tive transformed spectrum for identifying different genetic clusters. This suggests

that the internal structure of the leaf together with the dry matter concentration

could be specific and yearly consistent for genetic clusters of F. sylvatica. This

dry matter concentration and internal structure have an impact on mesophyll con-

ductance (Muir et al. 2014) which affects the photosynthetic performance (Flexas,

Ribas-Carbo, et al. 2008; Flexas, Barbour, et al. 2012). This performance is related

to the physiological adaptation of the organism, therefore is highly susceptible for a

natural selection (Arntz and Delph 2001). That could support the variation of the

inner leaf architecture between detected genetic clusters.
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Difference between spectral performance in reflectance and derivative domain

could be argued with atmospherically affection of electromagnetic waves. The use

of derivative transformed spectrum reduces the illumination intensity variations and

background of the signal (Tsai and Philpot 1998; Otto 2016). Since shorter wave-

lengths are more affected by the atmosphere than longer wavelengths, the consis-

tency of features through time from NIR spectral region are more pronounced in

derivative transformed than in a pure reflectance domain.

4.2 Detection of GC in chosen quality spectral subsets

The 26% accuracy of genetic clusters recognition by using analyses based on

PCs derived from a full spectrum shows that the PCA reduction of hyperspectral

collinearity is improving the genetic cluster recognition. However, the PCA method

is reducing the collinearity of spectra based only on the maximal variances (Maitra

and Yan 2008). The spectrum features that reflect the phenotypic response of a

genome are expected to be maintained for one generation of F. sylvatica, therefore

stable in their reflectance at the same development stages. Those regions are not

necessarily the most variable ones, and they could be therefore omitted through the

PC transformations in favor of more variable features which are not reflecting the

intraspecific genetic variation of F. sylvatica. Even though the PC transformation

of hyperspectral images was commonly used for tree species classification (Lee et

al. 2016; Carleer and Wolff 2004), our study shows that the transformation is not

correctly preserving the information needed for genetic cluster identification. More-

over, PCs are scene dependent(Ashbindu Singh and Harrison 1985), therefore they

are not appropriate in multi- temporal data analyses that were used in our studies.

Poor performance of analyses based on subsets derived from ANOVA suggest that

this statistical tool applied on an overall yearly reflectance mean of genetic clusters

is not sensitive enough for finding the specific spectral features. Nevertheless, it

should be noticed that the recognition of the spectral features based on this criterion,

was better achieved with the use of derivatives, what could be related to the more

pronouncing absorption features (Huesca et al. 2016) in this domain.

The lack of difference of performance between geometrically and randomly se-

lected subsets in reflectance-based analyses suggests that the differences between
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the view angles of used acquisitions are not an important factor in identifying the

genetic clusters. However, the use of bands varying the less in between acquisitions

caused relative improvement in the derivative domain (especially pronounced in sub-

sets of 50 bands). The derivative-based analyses are utilized in analytical chemistry

in cases where elimination of background of the signal is needed (Otto 2016). There

is also evidence that the derivative-based indices are estimating the amount of a

chemical compound in a plant more accurately, when the background reflectance

play a big role (Kochubey and Kazantsev 2012). Therefore, it could be stated that

identifying the variabilities in reflectance caused by different view angles is more

accurate in derivative domain. The neglection of the wavelengths that are highly

related with viewing angle allow us to compare spectral features that vary due to

genetic specific phenotypic reaction and that are not influenced by geometry of the

acquisition.

4.3 GC detection accuracy for different windows width over

the full spectrum

The overall better genetic cluster recognition by reflectance suggests that use

of untransformed spectrum is an appropriate approach for detecting intraspecific

genetic variation of F. sylvatica. However, relatively high standard deviation of

accuracy for each genetic cluster can be observed. This accuracy could be affected

by the group size of each defined genetic cluster, meaning that the recognition

in this domain might be more cluster-specific. On the other side, derivativ-based

recognition of genetic clusters is in general more universal – the recognition power of

the spectral regions is similar for each genetic cluster. Since intraspecific phenotypic

responses variation could be very minor, precise change detection is needed for

genetic cluster identification. Therefore, the shape of the spectrum directly linked

with the absorption features rather than its absolute amplitude, has greater potential

for distinguishing detected genetic clusters of F. sylvatica.

The method developed in this study could be also utilized for recognizing which

region of the spectra is related to genetic cluster specific phenotypic responses main-

tained during the years. Even though there are noticeable high informative regions
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of spectra with a width of around 5 nm the relatively small kappa value shows

that the information from wider spectrum range is recommended for genetic clus-

ter recognition. However, the accuracy values for window size of 50 nm could be

highly influenced by interpolated regions of the spectra. The process of interpola-

tion leads to the reduction of intra-annual variation in the spectra, therefore the

consistency of the spectral regions connected with genome specific response could

be overestimated. Based on that, rather narrow than wide spectral regions should

be investigated. The high accuracy together with the relative small standard devi-

ation was derived from analyses based on wavelengths ranging 1.630 - 1.667 µm in

derivative domain. That suggest that this region could be the most conspicuous in

identification of detected genetic clusters of F. sylvatica. The spectral feature lo-

cated at this wavelengths is caused by C-H bond absorption of phenolic compounds

(Kokaly and Skidmore 2015). These compounds are related with many physiological

reaction of plants including: protection against UV radiation (Close and McArthur

2002), microbial (Scalbert 1991), fungal (Telles, Kupski, and Furlong 2017) and

herbivorous (War et al. 2012) defense as well as pollution (Pasqualini et al. 2003)

and climatic responses (Stark, 2015). The variation of phenols between species is

already used for trees taxa identification (Asner, R. E. Martin, and Suhaili 2012).

Moreover, it was also shown that the amount of phenols varies on the intraspecific

genetic basis (J. A. Pereira et al. 2007), which could support the outcomes of this

study suggesting that the spectral feature reflecting the phenols composition could

be specific for each detected genetic cluster of F. sylvatica.

4.4 Outlook and limitations

Despite the relatively poor classification accuracy that we achieved (30-35%),

there is evidence that the electromagnetic spectrum of the canopy surface contains

information on intraspecific genetic diversity. This conclusion is supported by the

analyses of different wavelength regions with varying performances in the genetic

clusters classification. The improved performance of the spectral subset-based ap-

proach was consistent with Cavender-Bares et al. (2016), where the the bands with

highest Variable Importance in Projection (VIP) scores were selected for the anal-

yses. This study also demonstrated the use of spectrum-based approach and time
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series analyses can unravel the regions of spectra reflecting genotype-specific pheno-

typic reactions that are maintained over a seven year period. Based on this finding,

we find that the relative genetic classification of temperate trees could be achieved

without prior knowledge about intraspecific variations.

It should be emphasized, that the approach we used takes advantage of high

spectral, spatial and temporal resolution datasets available. Based on other datasets

lacking the spectral or spatial detail information on genetic cluster-specific responses

of individual trees could be lost. Lower spectral resolution could be not sufficient to

recognise genotype specific phenotypic responses, whereas RS-based studies of ge-

netic composition where spatial resolution is not high enough to recognize individual

tree, could be done only in case where the genetic of the area is highly homogenous,

like in the studies of Madritch et al. (2014). It should also be noted, that our

results are limited to species and location specific information about the genetic in-

traspecific variation. However, our methodology, in particular the derivative-based

approach and PLS analysis, can be applied to similar studies.
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5. Conclusions

This study highlights the potential for multi-temporal imaging spectroscopy data

to detect intra-specific genetic variations of trees from a temperate forest. We inves-

tigated the use of derivative based analyses and PLS based methods to overcome the

discrimination challenges caused by multi-factorial influence on the spectral canopy

signature acquired under natural conditions. Moreover, our methodology success-

fully detected the spectral regions most indicative for the genotype recognition.

Therefore, we propose that the discrimination of intra-specific genetic variations

could be possible without prior knowledge about the genotype specific phenotypic

responses.

In this study we create a baseline for further studies focusing on genetic diversity

with use of remote sensing techniques. We demonstrated that accessing the intra-

specific genetic diversity should be conducted from spectral subsets, rather than full

spectrum. Moreover, we revealed that limitations related to multi-temporal data

analyses could be overcome with a data derivative transformation approach.

Based on our results we could assume that the analyses where the genetic resolution

is low enough for remote sensing ability and high enough for practical purposes, are

promising tool for tracing the landscape history of genetic variation (Rocchini et al.

2010) in a direct, efficient and globally consistent way.
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A. Appendix

Table A.1: The statistics of microsatellites lengths of sampled F.sylvatica individuals
derived from capillary electrophoresis with use of GeneMapper software.

length
statistics

FS1-03 FS1-15 FS3-04 FS4-46 FCM5

standard deviation 4.63 8.07 1.73 22.74 12.51
mean 91.55 111.99 200.95 251.75 299.87

variance 21.39 65.09 2.99 517.23 156.45
maximum 108 137 206 328 322
minimum 83 93 194 221 280

Figure A.1: The cumulative variation explained by Principal Components (PCs) and
spectral bands loading to the 1st PC for reflectance and derivatives of z-score of the re-
flectance (derivative). Both derived from Principal Component Analisis (PCA) conducted
on all the pixels included in the crowns of sampled F.sylvatica individuals for the consid-
ered years separately.
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Figure A.2: The ANOVA value, calculated as: (p-value)/F-statistic ratio for each spec-
tral band for reflectance and derivatives of z-score of the reflectance (derivative). Addi-
tionally, the thresholds for the selections, dictated by 5 and 50 bands with the highest
ANOVA value are shown.

Figure A.3: The standard deviation for each spectral band from the reflectance and
derivatives of z-score of the reflectance (derivative) values between the acquisitions taken
at the same date, but with different points of viewing*. Additionally, the thresholds for
the selections, dictated by 5 and 50 bands with the lowest standard deviation are shown.
*Additional images, not considered in the analyses of genetic cluster discrimination, were
used.
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