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Abstract 

Without climate mitigation measures, summers are expected to become drier and temperature 

extremes as well as heavy precipitation events to become more frequent and intense in the future. 

This poses a challenge for farmers, as weather events such as high temperatures, heavy precipitation 

events and droughts can negatively impact crop development and potentially lead to yield reduction. 

To mitigate the impact of climate change on crop cultivation, information about what climate-related 

challenges for individual crop cultivars lie ahead of us is required. Such information can be provided 

by using so-called agricultural climate indicators (ACIs) which link the response of plants to climate. 

There are studies about the impact of climate change on different agricultural sectors based on ACIs. 

However, an estimation of climate change impact using ACIs specified for maize and based on the 

CH2018 grid-data is yet to be done. Moreover, the ACIs in said studies often represent single stress 

factors. However, it has been shown that concurrent stress factors can be more harmful to the plants 

than individual stresses. Furthermore, a stronger focus on climate variability is needed, as this is an 

important factor influencing the year-to-year variability of maize yield. This thesis has two main goals: 

(1) to analyse how well the chosen ACIs can explain maize yield variation in the present Swiss climate, 

and (2) to estimate the impact of climate change on maize cultivation in Switzerland based on average 

occurrence and variability of ACIs and based on CH2018 grid-data for mid-century (2045–2074). 

 

The used ACIs have been reported in literature and are specified for maize cultivation or are of 

importance for the agricultural sector in Switzerland. ACIs representing heat stress, low temperature 

stress, potential waterlogging and drought have been included. Moreover, these ACIs represent single 

stress factors as well as concurrent stress factors. The first goal of this thesis was achieved by 

comparing ACI occurrence with maize yield variation by using Spearman´s correlation coefficient and 

fitting multiple linear regression models. For the second goal, it first had to be assessed how well the 

ACI occurrence is represented by the CH2018 grid-data by comparing the simulated ACI occurrence 

with the observed ACI occurrence during the reference period 1981–2010. The ACIs that were well 

represented by the CH2018 grid-data were then included in the climate impact analysis for 2045–2074 

based on the RCP 2.6 and RCP 8.5 scenario. 

 

This thesis indicates that, for some sites in Switzerland, heat stress related ACIs show a moderate but 

significant negative correlation with maize yield variation. However, for several other ACIs and sites 

there is in many cases no significant relationship with maize yield visible. Regarding the climate change 

impact analysis, for most ACIs a change in the average and variability of the yearly occurrence is 

expected until mid-century, especially based on the RCP 8.5 scenario. While the number of heat stress 

related ACIs during the defined maize growing season is expected to increase, the number of low 

temperature stress related ACIs is expected to decrease in the future. The number of days with drought 

is expected to increase. For potential waterlogging on the other hand, the change is uncertain. 

 

By showing how ACI occurrence and variability is expected to change in the future, this thesis can 

provide a basis for adaptation measures for maize cultivation in Switzerland. With the new CH2025 

climate scenarios to be published by the end of 2025, an updated climate impact analysis will be 

necessary. As the adaptability of farmers is an important factor in determining climate impact on 

agriculture, it is worth including this aspect in the updated climate impact analysis. 
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List of used Agricultural Climate Indicators (ACIs) 

 

Category ACI Description 

Heat stress 

HS30 [Days] Days with maximum temperatures above 30 °C. 

HS35 [Days] Days with maximum temperatures above 35 °C. 

HS35sum [°C] Sum of maximum temperature exceedance of 35 °C 

over the whole growing season. 

Low 

temperature 

stress 

Frost Day [Days] Days with minimum temperatures below 0 °C. 

Frostsum [°C] Sum of absolute minimum temperatures below 0 °C 

over the whole growing season. 

LT6 [Days] Days with minimum temperatures below 6 °C. 

Potential 

waterlogging 

HPE [Days] Days with at least 50 mm precipitation. 

Drought 

SPIm [Days] Days with an SPI below −1. 

SPIe [# Events] Number of events with an SPI below −1.6 for at least 

seven consecutive days. 

Concurrent 

stress 

SPIm & HS30 [Days] Days with maximum temperatures above 30 °C and an 

SPI below −1. 

SPIe & HS35 [Days] Number of days with maximum temperatures above 

35 °C and an SPI that has been below −1.6 for at least 

seven consecutive days. 

HPE & HS30 [Days] Days with maximum temperatures above 30 °C and at 

least 50 mm precipitation. 

HPE & HS35 [Days] Days with maximum temperatures above 35 °C and at 

least 50 mm precipitation. 

SPIm & Frost Day [Days] Days with minimum temperatures below 0 °C and an 

SPI below −1. 

SPIe & Frost Day [Days] Number of days with minimum temperatures below 

0 °C and an SPI that has been below −1.6 for at least 

seven consecutive days. 

HPE & Frost Day Days with minimum temperatures below 0 °C and at 

least 50 mm precipitation. 
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1 Introduction 

 

1.1 Estimating the impact of climate on maize cultivation 

Climate is a fundamental determinant of maize quality and yield (Zscheischler et al., 1984; Waqas et 

al., 2021). Temperature extremes can negatively affect water use efficiency as well as photosynthetic 

activity and may cause metabolic alterations (Waqas et al., 2021). Drought is associated with 

restrained growth and, especially when occurring around flowering, yield loss (Anami et al., 2009; 

Dierauer and Gelencsér, 2019). Moreover, heavy precipitation events can lead to waterlogging, which 

in turn can cause a lack of oxygen in the root zone, reduced photosynthetic rate and finally to reduced 

yield (Kozlowski, 1997; Tian et al., 2019; Huang et al., 2022). 

 

There have been indications that climate change has, in some cases, already led to a negative response 

of maize yield within the past decades (Lobell and Field, 2007; Hawkins et al., 2013). With further global 

warming the frequency and intensity of weather extremes such as heat waves and in some regions 

agricultural droughts are expected to increase in the future (IPCC, 2021), potentially leading to reduced 

crop yield depending on the climate zone (Olesen and Bindi, 2002). To mitigate the impact of climate 

change on crop cultivation, farmers need to adapt their production practices (Reidsma et al., 2010). 

For this purpose, information about climate-related challenges in the future, specified for individual 

crop cultivars, are necessary to provide a basis for the adaptation process (NCCS, 2023, 2024). 

 

In order to estimate the impact of climate change on a specific sector, so-called climate impact models 

can be used, which combine climate change information with knowledge about the influence of 

climate on specific indicators relevant to the respective sector (NCCS, 2021). A widespread method to 

analyse climate impact on crop is the use of process based crop models, or, in short, crop models 

(Reidsma et al., 2010; Webber et al., 2022). These models allow to simulate the complex interactions 

between plants and several environmental factors, such as climate, soil and management (Eitzinger et 

al., 2012; Pasley et al., 2022). As Eitzinger et al. (2012) elaborate, crop models are useful to analyse 

the physiological response of crop to climate change. However, the same authors also state that the 

results of these models are usually associated with uncertainties and limitations. Examples of such are 

the simplified representation of reality, low quality of input data and the lack of long-term data for 

crop model validation and calibration (Eitzinger et al., 2012). The potential influence of farmer 

decisions on the impact of climate change is another uncertainty in crop modelling (Eitzinger et al., 

2012; Arnell and Freeman, 2021). 

 

Another possibility to analyse the impact of climate on crop is the use of agricultural climate indicators 

(Eitzinger et al., 2012). An agricultural climate indicator (ACI) is based on meteorological variables and 

represents the interactions between crop and climate (Nobakht et al., 2019, 2024). An example for an 

ACI is the number of consecutive dry days (days with less than 1 mm precipitation), which provides 

information about possible drought damage in agriculture (Nobakht et al., 2019). ACIs are in 

comparison to crop models simpler to calculate, making them a valuable tool for operational purposes 

such as drought or frost monitoring (Eitzinger et al., 2012). ACIs can also be used for yield forecasting 



 
2 

 

(Mathieu and Aires, 2018). Furthermore, ACIs are e useful method to estimate which aspects of climate 

change pose a risk to crop yield (Eitzinger et al., 2012). They are thus also used to evaluate the impact 

of climate change on crop cultivation and are a helpful tool for decision support in the adaptation 

process (Holzkämper and Fuhrer, 2015; Arnell and Freeman, 2021). 

 

Such climate impact analyses are also very important for Switzerland  (NCCS, 2021). In Switzerland, 

heavy precipitation events as well as heat waves have become more frequent and intense and the 

summers have become drier in the past decades (CH2018, 2018; Scherrer et al., 2022). Moreover, 

according to the CH2018 climate scenarios, without climate mitigation it is likely that these trends will 

continue (CH2018, 2018). Thus, climate change also poses a challenge to maize cultivation in 

Switzerland (Holzkämper and Fuhrer, 2015). Maize is an important crop for Switzerland. It is one of the 

most used crops for feeding livestock in Switzerland (Schweizer Bauernverband, 2021). In 2020, grain 

maize accounted for over 20% of cereal production (Bundesamt für Statistik, 2022). Information about 

future climate-related challenges specified for maize cultivation in Switzerland can provide a basis for 

the adaptation process to mitigate the impact of climate change (NCCS, 2023, 2024). 

 

 

1.2 Related work about climate change impact on the agricultural sector 

Holzkämper and Fuhrer (2015) estimated the future climatological suitability for maize cultivation in 

Switzerland based on ACIs. However, the climate data used in their study is older than the current 

CH2018 climate data. Since 2018, new climate scenarios for Switzerland are available, namely the 

CH2018 climate scenarios (CH2018 Project Team, 2018). The CH2018 scenarios are, at the time of this 

thesis, the most up-to-date climate information available for climate change impact estimations 

(CH2018, 2018). Tschurr et al. (2020) evaluated how well the CH2018 data can simulate the occurrence 

of ACIs. However, the used ACI in their study were chosen based on their relevance for several sectors 

in agriculture and were not specified for maize. Moreover, the study by Tschurr et al. (2020) was based 

on station data. An ACI-based climate impact analysis with the current CH2018 grid-data, covering the 

whole of Switzerland, is yet to be done. 

 

Another important aspect of climatological limitations for maize cultivation is the simulation of 

concurrent stress factors (Webber et al., 2022). There are several studies investigating the effect of 

single stress factors on maize (e.g. Waqas et al., 2021; Githui et al., 2022; Zhou et al., 2022). However, 

in the field plants often experience more than one abiotic stress factor at the same time, and the 

impact of concurrent stress can be more harmful for plants than an individual stress factor (Suzuki et 

al., 2014; Shabbir et al., 2022; Webber et al., 2022). Tschurr et al. (2020) did not include ACIs that 

specifically represent two or more simultaneous stress factors. The same counts for the study by 

Holzkämper and Fuhrer (2015). There are studies that investigate the impact of concurrent stress 

factors for maize (Suzuki et al., 2014; Hussain et al., 2020; Shabbir et al., 2022; Hu et al., 2023). 

However, no studies were found investigating climate change impact on maize cultivation in 

Switzerland with respect to concurrent stress factors. 

 

Finally, the focus in climate impact studies for the agricultural sectors often lies on the average 

climatological limitations (e.g. Holzkämper and Fuhrer, 2015; Holzkämper et al., 2015; Tschurr et al., 

2020). However, the year-to-year fluctuations in maize yield also depend on temporal climate 



 
3 

 

variability – i.e. the interannual variation of climatological parameters – and poses a challenge in maize 

cultivation (Southworth et al., 2000; Lobell and Field, 2007; Buzzi et al., 2021). Zscheischler et al. (1984) 

also suggest cultivating more than one maize variety with differing growing length to ensure that in 

spite of interannual climate variability at least one of the varieties can take full advantage of the 

growing season. For end-users it may thus be useful to also receive information about the temporal 

variability of stress factors. 

 

 

1.3 Research questions and hypotheses 

This thesis aims to address these research gaps and is embedded in the ecosystem services project by 

the NCCS-impacts programme, which focuses on the development of user-oriented climate services 

(NCCS, 2023). The impact of climate change on maize cultivation in Switzerland is analysed by 

evaluating the occurrence of ACIs and their temporal variability based on the CH2018 grid-data. The 

used ACIs are mostly specified for maize cultivation in Switzerland or Europe and represent single 

stress factors as well as simultaneous stress factors. Regarding variability, the focus lies on temporal 

variability, i.e. the year-to-year variability of ACI occurrence at a specific site, while the spatial 

variability of ACIs, i.e. the difference in ACI occurrence between different sites in Switzerland, is 

discussed marginally. In this thesis, the following research questions are investigated: 

 

1. How well do agricultural climate indicators explain maize yield variation in the present Swiss 

climate? 

Hypothesis 1: There is a significant negative relationship between maize yield and the 

occurrence of agricultural climate indicators in the present Swiss climate. 

 

2. Will the average occurrence of agricultural climate indicators in Switzerland change with 

climate change? 

Hypothesis 2: The average occurrence of agricultural climate indicators will be different in the 

future Swiss climate. 

 

3. Will the variability of agricultural climate indicators in Switzerland change with climate 

change? 

Hypothesis 3: The variability of the agricultural climate indicators will be different in the future 

Swiss climate. 

 

In order to answer the first research question, yearly maize yield data from 2003–2022 for several sites 

in Switzerland were compared to the yearly ACI occurrence. By using Spearman’s correlation 

coefficient and multiple linear regression model it was estimated whether there exists a relationship 

between maize yield variation and ACI occurrence. 

 

To answer the second and the third question, the CH2018 grid-data was used to estimate the ACI 

occurrence and its temporal variability in 2045–2075 (also referred to as mid-century (CH2018, 2018)) 

for the RCP 2.6 and RPC 8.5 scenario. The temporal variability of an ACI was calculated by estimating 
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the temporal standard deviation of the yearly number of the respective ACI. The results were then 

illustrated in change signal maps and boxplots in order to estimate whether there is a potential change 

in the average occurrence and temporal variability ACI until mid-century. 
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2 Elaboration of maize development 

 

In order to understand how climatological stress is related to maize growth, knowledge about maize 

development may be advantageous. Thus, in this segment, maize development and maize 

susceptibility to climatological stress is elaborated.  

 

In the present Swiss climate, maize is sown between April and May depending – among other factors 

– on meteorological conditions (Holzkämper, Calanca and Fuhrer, 2013; Dierauer and Gelencsér, 2019; 

Strickhof, 2023). After sowing, the seedling emerges and the development of leaves begins within the 

following weeks (Zscheischler et al., 1984). Note that in phenology, growth stages that are clearly 

identifiable, such as leaf unfolding and flowering, are also called phenological phases (MeteoSwiss, no 

date b). 

 

At early development stages, maize is very sensitive to low temperature stress as this limits 

germination as well as the seedling growth and can also damage plant tissue (Waqas et al., 2021; 

Webber et al., 2022; Zhou et al., 2022). Moreover, it has been shown that the impact of waterlogging 

on maize is higher in earlier growing stages (Ren et al., 2016; Huang et al., 2022). 

 

Around July, flowering starts (Holzkämper, Calanca and Fuhrer, 2013). During flowering, the formed 

anthers at the top of the maize plant (Figure 1, based on Zhang et al. (2014) and Kaur et al. (2023)) 

start to shed pollen (also called anthesis) (Elmore, 2012). Pollination occurs when the shed pollen are 

caught by the silks (Fonseca et al., 2003). Flowering belongs to one of the development stages that are 

the most susceptible to heat stress with regards to yield reduction due to the loss of kernel number 

and shortening grain filling duration (Waqas et al., 2021; Webber et al., 2022). Additionally, while 

drought impacts maize in all growing phases (Anami et al., 2009; Shabbir et al., 2022), it is the 

development stages right before, during and after flowering that are most sensible to drought, as 

about half of the total water required by this plant is taken up about three weeks before and after 

flowering (Anami et al., 2009; Dierauer and Gelencsér, 2019). 

 

After flowering, the process of grain filling begins (Holzkämper, Calanca and Fuhrer, 2013). The 

moment the plant has enough dry matter, maize is harvested, which is usually around September to 

November, depending on maize variety and climatological conditions (Dierauer and Gelencsér, 2019; 

Hiltbrunner et al., 2023; Strickhof, 2023). 
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Figure 1: Maize physiology and anatomical terms based on Zhang et al. (2014) and Kaur et al. (2023). Sources of the 
illustrations of a maize plant: Pixabay (2013, 2014). 

Tassel 

Male part of the maize 

plant. It produces 

hundreds of anthers 

and releases pollen 

(Zhang et al., 2014; 

Kaur et al., 2023). 

Silks 

Female part of maize. 

The caught pollen 

travel down a silk, with 

each pollinated silk 

producing one kernel 

(Zhang et al., 2014; 

Kaur et al., 2023). 

Kernel 
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3 Data 

 

3.1 Maize yield data 

The used yield data was provided by Agristat, the Swiss farmer association (unpublished data). The 

data included yearly maize yield separated by grain, silage, green maize and whole maize plant as well 

as by municipality from 2003–2022. However, only one municipality includes yield data for all 20 years. 

The other municipalities showed data gaps for sometimes several years. Thus, in order to include time 

series as long as possible, only maize yield data from municipalities that included data for at least 17 

out of 20 years have been included, which are 12 municipalities in total (Table 1). The number of 

reported maize yield varied per municipality from year to year, and the exact farm of a report is kept 

anonymous. In order to handle the differing number of maize yield reports, for each year the maize 

yield data was averaged over the respective number of reports for each included municipality.  

 
Table 1: List of the municipalities from which the used maize yield data originated and the 

respective number of years with available maize yield data. 

Canton Municipality Number of years 

Aargau Aristau 18 

Aargau Dietwil 20 

Aargau Islisberg  17 

Aargau Möhlin  19 

Aargau Zetzwil 19 

Lucerne Hohenrain 18 

Schaffhausen Ramsen 19 

Thurgau Schlatt (TG) 18 

Thurgau Thundorf 17 

Vaud Yvorne 19 

Zurich Schwerzenbach 17 

Zurich Thalheim an der Thur  17 

 

 

3.2 Climate data 

3.2.1 Observational climate data 
 

The used observational climate data is provided by MeteoSwiss. They provide spatial climate analyses 

for several parameters and time aggregations for the past decades as grid-data based on a spatial 

analysis of near-surface measurements (MeteoSwiss and Federal Department of Home Affairs, 2021c). 

The grid-data is available in the format NetCDF and on different grid structures. In this thesis, the 

‘ch02.lonlat’ grid structure with longitude and latitude increments and a spatial resolution of 

approximately 2 km has been used (MeteoSwiss and Federal Department of Home Affairs, 2021c). The 
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R packages used to work with NetCDF data are listed in Appendix C. In general, all programming for 

this thesis was conducted in R studio (R Core Team, 2023), using OpenAI's GPT-3.5 (OpenAI, no date) 

to help with the programming. 

 

The used grid-data include daily precipitation, daily maximum, minimum and average temperature for 

the period 1981–2010 for the whole of Switzerland. While the daily temperature grid-data covers 

Switzerland within its national borders, the daily precipitation data was only available for hydrological 

Switzerland, which also contains regions outside the Swiss borders. Thus, for reasons of consistency, 

the precipitation grid-points that were not part of the temperature grid were excluded. Moreover, 

local time series of the mentioned four parameters for the period 2003–2022 for the municipalities 

listed in Table 1 were used, which are based on the same grid-data products (MeteoSwiss and Federal 

Department of Home Affairs, 2015). 

 

Since about 1990, temperature data is mainly derived from the mean of 10-minute measurement 

intervals from midnight to midnight UTC. In the years beforehand, temperature data was derived from 

manual readings. Uncertainties regarding temperature data are associated with the limited capability 

to resolve several small-scale effects such as urban heat islands or cold air pools (MeteoSwiss and 

Federal Department of Home Affairs, 2021a).  

 

The daily precipitation data is derived from rain-gauge measurements and is based on accumulated 

precipitation and snow water equivalent from 6 UTC to 6 UTC of the following day in hydrological 

Switzerland. Uncertainties arise by measurement errors, especially during snowfall and at 

wind-exposed locations. Moreover, single grid-point values are expected to potentially show 

substantial interpolation errors – especially in summer – with a tendency to underestimate intense 

precipitation. In case of convective rainfalls, interpolation uncertainty is relatively higher due to its 

high spatial variation (MeteoSwiss and Federal Department of Home Affairs, 2021b).  

 

In general, uncertainties in the used grid-data are connected to the fact that the resolution of the data 

is higher than the spacing of the measurement station networks, leading to potential deviation of 

statistical properties from reality with a general underestimation of the frequency of extremes 

(MeteoSwiss and Federal Department of Home Affairs, 2021c). 

 

 

3.2.2 CH2018 data 
 

As mentioned in the introduction, the CH2018 scenarios provide information about how the climate in 

Switzerland can change in the future, including useful data e.g. for climate impact analysis (CH2018, 

2018). Three different Representative Concentration Pathways are used in the CH2018 report. The 

Representative Concentration Pathways (RCP) represent possible scenario of long-lived greenhouse 

gas concentrations and are used to explore how climate changes depending on greenhouse gas 

emissions. The RCP 2.6 scenario assumes strong climate mitigation with substantial reductions in 

global emissions. The RCP 4.5 scenario assumes a decline in emissions after 2050. The RCP 8.5 scenario 

assumes no climate mitigation and further growing greenhouse gas emissions (CH2018, 2018). In this 

thesis, the localized CH2018 datasets based on the RCP 2.6 scenario and the RCP 8.5 scenario were 

used.  
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The following information about the CH2018 data are derived from CH2018 (2018). In this thesis, the 

data product ‘DAILY-GRIDDED’ was used. It contains daily time series for precipitation sum, maximum, 

minimum and average temperature 2 meters above the surface on a grid with spatial resolution of 

approximately 2 km. The format of the data is NetCDF. Each time series is based on the output of a 

EURO-CORDEX model chain, which refers to a combination of a global climate model (GCM) and a 

regional climate model (RCM), and simulates the climate from 1981–2099. The CH2018 project team 

then applied quantile mapping on the output of each EURO-CORDEX simulation, a method involving 

statistical downscaling and bias correction based on observational grid-data as reference. More details 

about the technical background of the CH2018 dataset is available in CH2018 (2018). 

 

In this thesis, the localized dataset for 1981–2010 (referred to as reference period) and for 2045–2075 

(also referred to as mid-century) based on the RCP 8.5 scenario and for the latter time period also 

based on the RCP 2.6 scenario have been used. This dataset includes 31 different simulations for the 

RCP 8.5 scenario and 12 simulations for the RCP 2.6 scenario. As stated by Kotlarski and Rajczak (2018), 

the simulations are based on free running GCMs, meaning that the temporal evolution of weather 

patterns does neither coincide with other simulations nor with the observations, and thus for example 

do not necessarily represent a warm summer in 2003, as it was observed. 

 

The CH2018 dataset also involves other limitations and potential remaining biases. For example, 

temporal climate variability is not corrected by quantile mapping, which is a highly relevant limitation 

for this thesis, as the temporal variability of ACIs is investigated. Thus, a validation of the simulated 

standard deviation by the climate models is extremely important. The validation process is also 

especially necessary for multivariate ACI, as quantile mapping has been applied in a univariate manner, 

i.e. without correcting for potential biases in inter-variable relationships. Additionally, spatial 

variability at daily scale may not be represented properly as the raw climate model output has a lower 

spatial resolution than the high-resolution grid of the ‘DAILY-GRIDDED’ product. It is also noteworthy 

that uncertainties in the observational reference grid-data are replicated in the CH2018 data. 

Information about further limitations of the CH2018 data are available in CH2018 (2018). 

 

All computations involving the CH2018 data were done on the ScienceCloud of the University of Zurich. 
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4 Method 

 

4.1 Defining maize growing season 

In this thesis, the occurrence of ACIs during the maize growing season is calculated with the sowing 

date being defined as the 5th of May and the harvesting date as the 11th of October. Those dates are 

based on the median of the sowing and maturity dates estimated by Holzkämper, Calanca and Fuhrer 

(2013), who investigated the climatic limitations to grain maize yield in Switzerland. In the same study, 

the harvesting date is estimated with the sum of so-called growing degree days (GDD). This model 

allows to set the phenological development rate in relation to temperature with regards to the cardinal 

temperature of the respective plant (Yin et al., 1995; Buzzi et al., 2021; Hiltbrunner et al., 2023). 

Cardinal temperature describes the base, optimal and maximum temperature at which plant growth 

occurs (Yin et al., 1995). 

 

In this thesis, the base temperature is defined as 6 °C and the maximum temperature as 30 °C according 

to Buzzi et al. (2021), who developed temperature sum maps for maize cultivation in Switzerland. Thus, 

below 6 °C and above 30 °C, no plant growth is expected (Eder, Ziegltrum and Eiblmeier, no date; Buzzi 

et al., 2021). Buzzi et al. (2021) calculated in their study the temperature sum ST, which corresponds 

to the sum of growing degree days (GDD) (McMaster and Wilhelm, 1997). The calculation is done as 

followed: 

 

𝑇𝑒 =  {

1

2
(𝑇𝑚𝑖𝑛 + 𝑇𝑚𝑎𝑥)   𝑖𝑓 𝑇𝑚𝑎𝑥  <  30 °𝐶

1

2
(𝑇𝑚𝑖𝑛 +  30)       𝑖𝑓 𝑇𝑚𝑎𝑥  ≥  30 °𝐶

 

 

𝑆𝑇  = ∑ 𝑚𝑎𝑥 (𝑇𝑒 – 6, 0)

𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑖𝑛𝑔 𝑑𝑎𝑡𝑒

𝑆𝑜𝑤𝑖𝑛𝑔 𝑑𝑎𝑡𝑒

  

 

Equation 1: Calculation of temperature sum ST based on Buzzi et al. (2021), which corresponds to the sum of growing degree 

days (McMaster and Wilhelm, 1997). 

Tmin is the daily minimum air temperature and Tmax the daily maximum air temperature. Note that if 

the maximum air temperature exceeds the maximum cardinal temperature of 30 °C, the respective 

value is instead set to 30 °C. Te is the effective temperature. From each daily effective temperature, 

the base temperature of 6 °C is subtracted and afterwards accumulated over the whole growing 

season, leading to the temperature sum ST, which corresponds to the sum of growing degree days 

(McMaster and Wilhelm, 1997). Note that if the subtraction of the base temperature from the effective 

temperature leads to a negative value, the value 0 °C is used for the accumulation instead. 

 

In this thesis, the growing degree day model is used to illustrate in which regions of Switzerland the 

necessary growing degree days of 1600 °C for early grain maize to mature (Holzkämper, Calanca and 
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Fuhrer, 2013; Buzzi et al., 2021) can be reached. This allows to compare the maps showing ACI 

occurrence in Switzerland to a map showing which sites are potentially suitable for grain maize 

cultivation based on GDD threshold exceedance. 

 

 

4.2 Choosing agricultural climate indicators 

The used ACIs are based on literature research and are summarised in Table 2. If possible, literature 

about maize cultivation in Switzerland has been used. In some cases, literature about crop cultivation 

or about the general agricultural sector in Switzerland or Europe as well as some reviews about climate 

impact on maize that are not specified for Europe had to be included. The reason for this is limited 

availability of climatological parameters or of literature on maize cultivation in Switzerland and Europe. 

The categories heat stress, low temperature stress, potential waterlogging and drought are 

represented by different ACIs, as well as the combination drought & heat, potential waterlogging & 

heat, drought & low temperature as well as potential waterlogging & low temperature. In the 

following, the selection process is elaborated. 

 
Table 2: Overview of the used ACIs and their respective source sorted by the categories heat stress, low temperature stress, 

potential waterlogging, drought and concurrent stress. 

Category ACI Description Source 

 HS30 [Days] Days with maximum 

temperatures above 30 °C. 

Buzzi et al. (2021), Waqas 

et al. (2021) 

Heat stress HS35 [Days] Days with maximum 

temperatures above 35 °C. 

Adapted from 

Holzkämper, Calanca and 

Fuhrer (2013) 

 HS35sum [°C] Sum of maximum 

temperature exceedance 

of 35 °C over the whole 

growing season. 

Adapted from 

Holzkämper, Calanca and 

Fuhrer (2013)  

 Frost Day [Days] Days with minimum 

temperatures below 0 °C. 

Adapted from 

Holzkämper, Calanca and 

Fuhrer (2013) and Tschurr 

et al. (2020) 

Low 

temperature 

stress 

Frostsum [°C] Sum of absolute minimum 

temperatures below 0 °C 

over the whole growing 

season. 

Holzkämper, Calanca and 

Fuhrer (2013) 

 LT6 [Days] Days with minimum 

temperatures below 6 °C. 

Sánchez, Rasmussen and 

Porter (2014), Buzzi et al. 

(2021), Waqas et al. 

(2021) 
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Table 2 (continued) 

Category ACI Description Source 

Potential 

waterlogging 

HPE [Days] Days with at least 50 mm 

precipitation. 

Tschurr et al. (2020) 

 SPIm [Days] Days with an SPI below −1. Tschurr et al. (2020) 

Drought SPIe [# Events] Number of events with an 

SPI below −1.6 for at least 

seven consecutive days. 

 

 SPIm & HS30 [Days] Days with maximum 

temperatures above 30 °C 

and an SPI below −1. 

 

 SPIe & HS35 [Days] Number of days with 

maximum temperatures 

above 35 °C and an SPI that 

has been below −1.6 for at 

least seven consecutive 

days. 

 

 HPE & HS30 [Days] Days with maximum 

temperatures above 30 °C 

and at least 50 mm 

precipitation. Several multivariate ACIs 

are a combination of 

univariate ACIs of which 

the respective sources 

are listed above.  

Concurrent 

stress 

HPE & HS35 [Days] Days with maximum 

temperatures above 35 °C 

and at least 50 mm 

precipitation. 

 SPIm & Frost Day [Days] Days with minimum 

temperatures below 0 °C 

and an SPI below −1. 

 

 SPIe & Frost Day [Days] Number of days with 

minimum temperatures 

below 0 °C and an SPI that 

has been below −1.6 for at 

least seven consecutive 

days. 

 

 HPE & Frost Day [Days] Days with minimum 

temperatures below 0 °C 

and at least 50 mm 

precipitation. 
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4.2.1 Heat stress 
 

As elaborated in chapter 2, heat stress is a highly relevant stress factor for maize (Waqas et al., 2021). 

Note that in CH2018 (2018), ‘heat stress’ is defined as days with high temperature and humidity 

(CH2018, 2018). In this thesis, heat stress is defined as high maximum temperatures potentially 

harming maize. The ACIs representing heat stress are HS30 and HS35 which are defined as days with 

maximum temperatures above 30 °C and 35 °C respectively, as well as HS35sum defined as the sum of 

maximum temperature excess of 35 °C over the whole growing season. 

 

The value of 30 °C is based on the study from Buzzi et al. (2021), who use this threshold as maximum 

cardinal temperature. The use of this value is not only motivated by the fact, that in Switzerland no 

further growth is expected above that threshold (Eder, Ziegltrum and Eiblmeier, no date; Buzzi et al., 

2021), but also because in the project AgriAdapt (2019) the number of days with maximum 

temperatures above 28 °C has been used as a heat stress related ACI for maize in a pilot project in 

Germany, underlining the relevance of temperatures above 30 °C. In a review about the impact of 

temperature extremes on maize it is elaborated that optimal temperature for maize varies from 25 °C 

to 33 °C, and that the exposure of maize to temperatures above 30 °C for a prolonged period can lead 

to yield loss (Waqas et al., 2021). Note that the latter review does not focus on Switzerland or Europe 

and includes literature from several regions around the world. 

 

The ACI HS35sum, defined as the sum of maximum temperature excess of 35 °C over the whole 

growing season, is an adapted version of an ACI from the study by Holzkämper, Calanca and Fuhrer 

(2013), where the authors calculated the average daily maximum temperature exceedance of 35 °C. 

As HS35sum may not be as intuitive for end-users, another adapted version was included, which is the 

ACI HS35, defined as days with maximum temperatures above 35 °C. 

 

 

4.2.2 Low temperature stress 
 

Temperatures below the temperature optimum window may negatively affect crop through delayed 

development, reduced photosynthetic rate and water use efficiency, and can also lead to yield 

reduction (Foyer et al., 2002; Hussain et al., 2018, 2020; Shabbir et al., 2022; Zhou et al., 2022). The 

used ACIs for low temperature stress are LT6 defined as days with minimum temperatures below 6 °C, 

Frost Days defined as days with minimum temperatures below 0 °C as well as Frostsum defined as the 

sum of absolute minimum temperature below 0 °C over the whole growing season. 

 

The threshold of 6 °C for the ACI LT6 is based on Buzzi et al. (2021) who used this threshold as base 

temperature, indicating that in Switzerland no plant growth below this temperature is expected. The 

reviews of Sánchez, Rasmussen and Porter (2014) and Waqas et al. (2021) about the relation between 

temperature and maize development also includes information about potential damage on maize 

caused by temperatures below 6 °C.  

 

The ACI Frostsum, defined as the sum of absolute minimum temperatures below 0 °C over the whole 

growing season, is an adapted version of an ACI from the study by Holzkämper, Calanca and Fuhrer 
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(2013), where the authors calculated the average daily minimum temperature below 0 °C in absolute 

values.  

 

Moreover, an adapted version of Frostsum has been included defined as the number of days with 

minimum temperatures below 0 °C, which is according to CH2018 (2018) also a climate indicator 

named Frost Day. Thus, this ACI is named accordingly. Tschurr et al. (2020) used the threshold of 0 °C 

in their case study about ACIs for agricultural sectors in Switzerland as well, with the difference that 

their used ACI was defined as the number of Frost Days within the growing season but before the 1st 

of August. 

 

 

4.2.3 Potential waterlogging 
 

Waterlogging is an important abiotic stress factor for maize, as the saturated soil pores can lead to 

anoxia of crop roots, decrease maize growth and potentially lead to yield loss, depending on the 

phenological phase and duration of soil saturation (Yanar, Lipps and Deep, 1997; Ren et al., 2016; 

Githui et al., 2022; Huang et al., 2022). 

 

Heavy precipitation events can lead to waterlogging, this, however, depends on factors like soil 

structure and soil drainage (Ren et al., 2016; Huang et al., 2022). Possibly due to such dependencies, 

no clear precipitation threshold for potential waterlogging in arable lands in Switzerland was found. In 

general, waterlogging is compared to e.g. drought and heat stress a much less investigated stress factor 

for maize (Rötter et al., 2018). The case study of Tschurr et al. (2020) included an ACI representing 

heavy precipitation events defined as the yearly number of days with a total precipitation sum of at 

least 50 mm, a threshold that is also in accordance with the rain hazard category three for the north 

of the Alps and in the Alps by MeteoSwiss (MeteoSwiss, no date c). Because Tschurr et al. (2020) 

denote this as an indicator relevant for agricultural sectors in Switzerland, and because it is stated in 

literature that that excessive precipitation can lead to waterlogging (Ren et al., 2016; Githui et al., 

2022; Huang et al., 2022), it is included in this thesis and used as an approximation for potential 

waterlogging. 

 

 

4.2.4 Drought 
 

The chosen ACIs representing drought are based on the daily Standardised Precipitation Index (SPI), 

an index developed by McKee, Doesken and Kleist (1993). The SPI is useful to monitor and warn about 

droughts, is simpler to calculate compared to other drought indicators, and is also flexible in its 

application, as it can be applied to different timescales and thus different types of droughts (World 

Meteorological Organization, 2012). 

 

The World Meteorological Organization (2012) explains the calculation of the SPI as followed: The SPI 

is calculated by ideally using a monthly precipitation record of at least 30 years. Next, a probability 

distribution is fitted to this precipitation record. For many regions in Europe, the gamma distribution 

is suitable (Stagge et al., 2015; Copernicus European Drought Observatory (ED0), 2020). Another 
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possibility is to use the Generalised Extreme Value (GEV) distribution (see e.g. Zhang and Li, 2020). As 

further explained by the World Meteorological Organization (2012), this probability distribution is then 

transformed into a normal distribution, so that the mean SPI takes the value zero. Thus, the SPI value 

for a given moment shows the standardised precipitation anomaly based on precipitation sum over a 

defined time scale. When using e.g. a time scale for three months – as done in this thesis – the 

precipitation accumulation within three months is compared to the mean precipitation for the same 

time period within the precipitation record. For example: if a precipitation record from 1981–2010 is 

used for the probability distribution, and the SPI value for the end of March 2005 should be calculated, 

the precipitation sum from January to March 2005 is compared to the precipitation sum from January 

to March during 1981–2010. If, based on this comparison, a negative precipitation deviation is 

detected in 2005, the SPI value takes a negative value, indicating a drier situation than normal. If a 

positive precipitation deviation is detected, the SPI value is positive, indicating a wetter situation than 

normal. 

 

For this thesis, the SPI is used according to the study of Tschurr et al. (2020). As mentioned, a time 

scale of three months is used for a 30 year-long daily precipitation record from 1981–2010 and for the 

climate impact analysis for 2045–2074 respectively. A timescale of three months allows for the SPI to 

indicate more immediate impacts by reduced precipitation such as reduced soil moisture (World 

Meteorological Organization, 2012; Copernicus European Drought Observatory (ED0), 2020). 

 

For the comparison of the SPI and maize yield data, the precipitation record has been fitted to a GEV 

distribution with the help of the ‘evd’ package (Stephenson, 2002). The SPI was then calculated with 

the ‘SCI’ package (Stagge et al., 2015, 2016; Gudmundsson and Stagge, 2016). Unfortunately, the ‘SCI’ 

package only worked with the local time series. When calculating the SPI based on grid-data, the 

estimation of the maximum likelihood failed partially. Thus, for the SPI calculations based on grid-data, 

the gamma distribution was used with the help of the R package ‘SPEI’ (Beguería and Vicente-Serrano, 

2023). The resulting SPI values based on the ‘SCI’ package with the GEV distribution, and the ‘SPEI’ 

package with the gamma distribution, were compared for randomly chosen grid-points, namely 

Lucerne, Zurich Kloten, Locarno Magadino and Pizol. Based on Spearman’s correlation coefficient , 

the respective SPI values showed a very high similarity ( > 0.98). As the SPI values based on the 

different probability distributions were so similar, the SPI values for the comparison of ACI occurrence 

and maize yield data were not recalculated with a gamma distribution. It is nonetheless important to 

acknowledge this inconsistency, as it may still lead to small differences in the respective results. 

 

The ACI SPIm is defined as days with an SPI value below −1, the ACI SPIe indicates events with an SPI 

below −1.6 over at least seven consecutive days. These definitions are taken from the study of Tschurr 

et al. (2020). An SPI value below −1 indicates moderate dryness, SPI values of −1.5 to −1.99 indicate 

severe dryness (World Meteorological Organization, 2012). A small difference between the study of 

Tschurr et al. (2020) and this thesis is, that Tschurr et al. (2020) represent the number of days with an 

SPI below −1 as the percentage of days of the year or the vegetation period with an SPI value 

undergoing this threshold. In this thesis, the absolute number of days with an SPI value undergoing 

this threshold is illustrated instead. 

 



 
16 

 

4.2.5 Concurrent stress factors 
 

Maize is often exposed to simultaneous or sequential abiotic stress factors in the field (Mittler, 2006; 

Rossini, Maddonni and Otegui, 2016; Hussain et al., 2020; Shabbir et al., 2022; Webber et al., 2022). 

Concurrent stress can have a more drastic impact on the plant than the respective individual stress 

factors (Shabbir et al., 2022; Webber et al., 2022). 

 

In this thesis, univariate ACIs of different stress categories are combined, leading to ACIs representing 

the number of days with concurrent drought and heat stress (SPIm & HS30, SPIe & HS35), potential 

waterlogging and heat stress (HPE & HS30, HPE & HS35), drought and low temperature stress (SPIm & 

Frost Day, SPIe & Frost Day) as well as potential waterlogging and low temperature stress (HPE & Frost 

Day). High temperature stress and low temperature stress was not combined due to the rarity of days 

with simultaneous maximum temperatures above 30 °C (HS30) and minimum temperatures below 

freezing point (Frost Day), as confirmed by the observational grid-data from 1981–2010. 

 

 

4.3 Validating ACIs with maize yield data 

In order to investigate how well ACIs can explain maize yield variation, the yearly number of ACIs 

between the 5th of May and 11th of October from 2003–2022 was estimated for each of the 12 included 

municipalities with the use of local time series by MeteoSwiss (MeteoSwiss and Federal Department 

of Home Affairs, 2015). Note that due to technical reasons, if a municipality included a lake, the lake 

area was also included in the respective local time series. For each of the 12 included municipalities 

the maize yield data was averaged as elaborated in chapter 3.1. 

 

Next, Spearman's rank correlation coefficient between the yearly number of a single ACI and maize 

yield was calculated for each municipality. Some ACIs did not occur within the investigated time period, 

thus no correlation could be estimated for these ACIs. 

 

Afterwards, a multiple linear regression model was fitted to all univariate ACIs and maize yield data in 

order to analyse how well variation in the yield data can be explained by the combination of all 

univariate ACIs. The multivariate ACIs were excluded in the latter calculation, since the multivariate 

ACIs are defined as a combination of univariate ACIs. If e.g. the multivariate ACI SPIm & HS30 was 

included in the multiple linear regression model, the occurrence of days with maximum temperatures 

above 30 °C could be overrepresented in the regression model as this is already included in the 

univariate ACI HS30. The calculation of Spearman’s correlation coefficient and the fitting of the 

multiple linear regression model was both conducted with the help of packages that are part of R 

(R Core Team, 2023). 

 

Finally, the relative importance of each univariate ACI for the variation of yield data was estimated by 

using the R package ‘relaimpo’ (Grömping, 2006). This function could however only be applied if there 

was enough data, meaning that ACIs that occurred in only one of the 20 years or less had to be excluded 

from this step. For this new selection of ACIs, another multiple linear regression model was fitted. For 

reasons of simplicity, this alternate regression model shall be referred to as ‘relative importance 

model’. 
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4.4 Technical validation of ACI representation by the CH2018 grid-data 

Before calculating the change in the average yearly number of ACIs and temporal standard deviation 

of yearly ACIs until mid-century respectively, a technical validation of the representation of ACIs by the 

CH2018 grid-data was necessary. This means, in essence, that it had to be assessed whether the 

simulation of the average as well as the standard deviation of the yearly number of ACIs by the climate 

models is realistic. This step is important, as it allows to quantify the influence of the limitations of the 

CH2018 data on the climate impact analysis (Kotlarski and Rajczak, 2018) and to sort out the ACIs that 

are not well enough represented by the CH2018 data. As mentioned in chapter 3.2.2, this step is 

especially important for the standard deviation of the yearly number of ACIs as well as the multivariate 

ACIs. 

 

For this validation, the average yearly number of the ACIs as well as the standard deviation of their 

yearly occurrence during the fixed maize growing season during the reference period (1981–2010) was 

calculated. The same was done for the calculation of the growing degree days (GDD), which were 

elaborated in chapter 4.1. These calculations were first done based on the observational grid-data, and 

secondly based on each individual model chain of the CH2018 data based on the RCP 8.5 scenario. The 

RCP 8.5 scenario was chosen because it contains more model chains than the RCP 2.6 scenario. 

Moreover, as projections of an emission scenario start in 2005, the respective RCP 8.5 scenario and 

RCP 2.6 scenario of a given individual model chain coincide with each other for the time period 

between 1981–2004 (CH2018, 2018). Thus, the validation process was not repeated with the RCP 2.6 

based model chains. 

 

After these calculations, the average of the model chain simulations was calculated in order to get a 

mean estimate of ACI occurrence based on the CH2018 grid-data. Note that this is a small inconsistency 

to the CH2018 scenarios where the central estimate is based on the median of the model chains and 

also an upper and lower estimate is included (CH2018, 2018).  

 

For the quantification of deviations between the CH2018 data and the observational data, the 

standardised root-mean-square error (RMSE) was used as a primary skill score in accordance with 

Tschurr et al. (2020). As explained in their study, the standardisation of the RMSE allows to compare 

this skill score between different ACIs of different units. The calculation of the standardised RMSE was 

done as followed: 

 

𝑅𝑀𝑆𝐸 = √
∑((𝑚𝑜𝑑𝑒𝑙(𝐴𝐶𝐼)(𝑖) − 𝑜𝑏𝑠(𝐴𝐶𝐼)(𝑖) )

2)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙𝑠
 

 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑠𝑒𝑑 𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

𝑆𝐷𝑜𝑏𝑠
 

 
Equation 2: Calculation of the standardised root-mean-square-error. Adapted from Tschurr et al. (2020). 

Where model(ACI)(i) is the average or temporal standard deviation of the yearly number of a given ACI 

at a given grid-cell (i) based on CH2018 data and obs(ACI)(i) is the same but based on observational 

data. SDobs is the spatial standard deviation of the respective ACI occurrence over Switzerland based 
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on observational data from the reference period 1981–2010. In accordance with the study of Tschurr 

et al. (2020), an ACI is defined as well represented by the CH2018 data if the standardised RMSE lies 

below 0.5. If the standardised RMSE is 0.5 or higher, the representation by the CH2018 data is defined 

as biased. 

 

As a second skill score, Spearman’s correlation coefficient  was used to estimate the spatial 

correlation, i.e. the spatial similarity, between the observed and simulated average and standard 

deviation of the yearly number of ACIs. This coefficient is treated as a complementary skill score in 

order to evaluate whether ACIs with a standardised RMSE below 0.5 also show good results with a 

different skill score. If the correlation coefficient  has a value of at least 0.8, the relationship is defined 

as very strong (based on Akoglu, 2018). 

 

If the standardised RMSE lies below 0.5 and Spearman’s correlation coefficient above 0.8, the ACI and 

the respective statistical parameter (here the average or the standard deviation) was included in the 

calculation for the time period 2045–2074. 

 

 

4.5 Implementation of climate change impact analysis 

To estimate the change in the occurrence of an ACI until mid-century – in other words the change 

signal of an ACI (CH2018, 2018) – the average of the yearly number of this ACI was calculated for 

mid-century based on the CH2018 grid-data for the RCP 2.6 scenario and for the RCP 8.5 scenario. For 

some ACI, this step was repeated for the standard deviation of the yearly number of that ACI, 

depending on the results of the technical validation elaborated in chapter 4.4. This leads to grid maps 

showing the average and, for some ACIs, the standard deviation of the yearly number of an ACI in 

mid-century respectively. The CH2018 data-based grid maps showing the occurrence of the respective 

ACI during the reference period was then subtracted from the grid-map for mid-century. This resulting 

grid map then showed the difference – or the change signal – of the average or standard deviation of 

the yearly number of a specific ACI between the reference period and mid-century. The climate impact 

analysis in this thesis was based on these estimated change signals. The R packages used to create 

these maps are listed in Appendix C. 

 

In order to quantify the uncertainty of the climate impact analysis, a boxplot for each ACI was included 

showing the range of the climate model ensemble. Based on the change signal maps and the boxplots, 

it was estimated if and to what extent the occurrence of an ACI is expected to change until mid-century.  
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5 Results 

 

5.1 Results of ACI validation with yield data 

Office of Topography swisstopo (2024) 

 

In order to investigate to what extent ACIs can explain maize yield variation, the relationship between 

maize yield and the occurrence of ACIs was investigated based on Spearman’s correlation coefficient  

and multiple linear regression models. An overview of the results for each individual municipality is 

available in Appendix A. Table 3 shows a summary of the correlation coefficients. Note that no 

correlation coefficients are available for ACIs that did not occur during the investigated time period, 

thus, the respective ACIs are not listed in Table 3. For a more detailed overview of the results, two 

significance levels are included, namely 0.05 and 0.1. Correlation coefficients with a p-value below 0.1 

are defined as statistically significant. 

 

Overall, the results include negative as well as positive relationships between maize yield and 

individual univariate ACIs. Negative correlations exist mainly between maize yield and the heat stress 

related ACIs HS30, HS35 and HS35sum, but also between the multivariate ACI SPIm & HS30 and maize 

yield. For Schlatt (Nr. 11 in Figure 2, 18 yrs. with yield data) and Thalheim an der Thur (Nr. 9, 17 yrs. 

Figure 2: Overview of the municipalities from which the used maize yield data originated. Source of Swiss map: Federal 
Office of Topography swisstopo (2024)  

1    Yvorne  4    Hohenrain  7    Islisberg   10    Thundorf 

2    Moehlin  5    Dietwil  8    Schwerzenbach  11    Schlatt (TG) 

3    Zetzwil  6    Aristau  9    Thalheim an der Thur  12    Ramsen 
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with yield data), all three univariate heat stress related ACIs show a significant negative correlation 

with  between −0.41 and −0.61 (see also Appendix A.1), indicating a moderate correlation. Aristau 

(Nr. 6) is the only municipality showing a significant correlation between maize yield and the 

multivariate ACI SPIm & HS30 with a correlation coefficient of −0.49 (p-value = 0.04, 18 yrs. with yield 

data). While Schlatt (Nr. 11) and Thalheim an der Thur (Nr. 9) do show in comparison to the other 

municipalities a higher occurrence of HS30, HS35 and HS35sum (not listed in this thesis), there are also 

other municipalities with a high occurrence of these three ACIs. Moehlin (Nr. 2, 19 yrs. with yield data) 

for example, shows an even higher number of heat stress related ACIs. For this site however, only weak 

negative correlations with no statistical significance are visible. 

 

For the drought-related ACIs SPIm and SPIe, no clear tendency towards positive or negative correlation 

is visible. The only statistically significant correlation is a positive correlation between SPIm and maize 

yield in Dietwil (Nr. 5) with a correlation coefficient of 0.57 (p-value = 0.01, 20 yrs. with yield data). 

 

The potential waterlogging related ACI HPE as well as the low temperature stress related ACIs 

Frost Day, Frostsum and LT6 show no clear tendency towards positive or negative correlation either. 

While Yvorne (Nr. 1, 19 yrs. with yield data) shows a moderate but significant positive correlation 

between maize yield and Frost Days ( = 0.43, p-value = 0.07) and Frostsum ( = 0.43, p-value = 0.06) 

respectively, Schwerzenbach (Nr. 8) indicates a moderate but significant negative correlation between 

LT6 and maize yield ( = −0.55, p-value = 0.02, 17 yrs. of yield data). For many municipalities, Frost Days 

were extremely rare and thus Frostsum very small between the 5th of May and the 11th of October. In 

some cases, these two ACIs did not occur at all within the investigated period. Moreover, the only 

multivariate ACIs that occurred in some of the municipalities during the defined growing season from 

2003–2022 were the ACIs SPIm & HS30 and SPIm & Frost Day. 

 

Table 3: Overview of Spearman's correlation coefficients . Listed are the number of positive linear 

relationships ( > 0) and the respective number of correlation coefficients with a p-value < 0.1 and < 0.05, 

and the number of negative linear relationships ( < 0) and the respective number of correlation 
coefficients with a p-value < 0.1 and < 0.05. 

ACI  > 0 p-value 

< 0.1     < 0.05 

 < 0 p-value 

< 0.1     < 0.05 

HS30 4 – – 8 2 1 

HS35 1 – – 9 3 2 

HS35sum 1 – – 9 2 2 

Frost Day 3 1 – 4 – – 

Frostsum 3 1 – 4 – – 

LT6 7 – – 5 1 1 

HPE 5 – – 7 1 – 

SPIm 7 1 1 5 – – 

SPIe 5 – – 6 – – 

SPIm & HS30 3 – – 9 1 1 

SPIm & Frost Day 3 – – 3 – – 
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Regarding the multiple linear regression models, for Moehlin (Nr. 2) the results indicate that the 

univariate ACIs can explain a significant amount of the variability in maize yield with an R2 of 0.62 and 

an adjusted R2 of 0.37 (p-value = 0.08, 19 yrs. with yield data). In the same municipality, the univariate 

ACIs that showed the highest relative importance for maize yield variation were the heat stress related 

ACIs (Figure 3). For Schlatt (Nr. 11), the multiple linear regression model shows an R2 of 0.68 and an 

adjusted R2 of 0.4 with a p-value of 0.104 (18 yrs. with yield data), which lies very slightly above the 

significance level of 0.1. The relative importance model on the other hand indicates an R2 of 0.66 and 

an adjusted R2 of 0.42 with a p-value of 0.07. In contrast to the multiple linear regression model, the 

relative importance model for Schlatt does not include the ACIs Frost Day and Frostsum, as the 

occurrence of these two ACIs was too low for them to be included in the relative importance model. 

For the remaining municipalities, neither the multiple linear regression models nor the relative 

importance models showed significant results (see Appendix A.2 and A.3). 

 

 

 

5.2 Results of technical validation of ACI representation by the CH2018 grid-data 

The technical validation of the representation of the ACIs by the CH2018 data revealed that overall, 

the simulation of the average occurrence of univariate ACIs such as HS30, Frost Day and HPE is mostly 

similar to the observation. For these ACIs, the standardised RMSE lies below 0.5 and the correlation 

coefficient  mostly above 0.9 (Table 4). The same counts for the GDD with a standardised RMSE of 

0.23 and a correlation coefficient of 0.97 (not listed in Table 4). However, for some ACIs, the simulation 

of the standard deviation (SD) of the yearly occurrence showed a standardised RMSE higher than 0.5 

and thus, this statistical parameter for the respective ACI had to be excluded from the climate change 

impact analysis. This was for example the case for the ACIs HS35 and LT6 (Table 5). Moreover, while 

the average occurrence of the ACI SPIm is simulated well by the climate models, the validation shows 

a poorer result for the average as well as the standard deviation of the ACI SPIe with a standardised 

RMSE of 0.6 and 0.67 respectively. 

Figure 3: Relative importance of univariate ACIs for maize yield variation in Moehlin from 2003–2022 
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Multivariate ACIs partially showed a standardised RMSE above 0.5 and thus were excluded from 

further calculations. This concerns multivariate ACIs that include SPIe (e.g. the ACI SPIe & HS35), as 

well ACIs that occur very rarely, like the ACI HPE & HS30. According to the observations, the ACI HPE 

& HS35 has not occurred during the reference period, thus no correlation coefficient and RMSE value 

are available for this indicator, leading to an exclusion from the climate change impact analysis. 

However, the climate models are capable of simulating the occurrence of the multivariate ACIs SPIm 

& Frost Day and SPIm & HS30 realistically enough as well as the average occurrence of the ACI HPE & 

Frost Day. 

 
Table 4: Results of the technical validation of the representation of ACIs by CH2018 data. This table includes all statistical 

parameters of an ACI with a standardised RMSE < 0.5 and Spearman’s correlation coefficient  > 0.8. These ACIs are rated as 
well represented by the CH2018 data with respect to the listed statistical parameter. 

ACI Statistical parameter Standardised RMSE  

HS30 Average 0.10 0.99 

SD 0.17 0.98 

HS35 Average 0.34 0.90 

HS35sum Average 0.43 0.90 

SD 0.44 0.89 

Frost Day Average 0.07 0.99 

SD 0.29 0.98 

Frostsum Average 0.07 0.98 

SD 0.25 0.98 

LT6 Average 0.05 0.997 

HPE Average 0.21 0.95 

SD 0.32 0.93 

SPIm Average 0.36 0.94 

SPIm & HS30 Average 0.39 0.93 

SD 0.48 0.92 

SPIm & Frost Day Average 0.37 0.97 

SD 0.37 0.97 

HPE & Frost Day Average 0.46 0.91 
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Table 5: Results of the technical validation of the representation of ACIs by CH2018 data. This table includes all statistical 

parameters of an ACI with a standardised RMSE ≥ 0.5 and their respective Spearman’s correlation coefficient . For these ACIs, 
the representation by the CH2018 data is defined as biased with respect to the listed statistical parameter. 

ACI Statistical parameter Standardised RMSE  

HS35 SD 0.51 0.90 

LT6 SD 0.53 0.93 

SPIm SD 0.53 0.89 

SPIe Average 0.60 0.84 

SD 0.67 0.83 

SPIe & HS35 Average 0.86 0.39 

SD 0.87 0.39 

HPE & HS30 Average 24.46 0.15 

SD 8.86 0.15 

HPE & HS35 Average - - 

SD - - 

SPIe & Frost Day Average 0.64 0.84 

SD 0.53 0.84 

HPE & Frost Day SD 0.52 0.91 

 

It is important to emphasize that the calculation of the standardised RMSE and Spearman’s correlation 

coefficient  is based on grid-data covering the entirety of Switzerland. If, however, one was to include 

only certain regions in the validation process, the results of the technical validation would differ, 

leading to a slightly different set of ACIs to be included in the climate change impact analysis. For 

example, the ACI SPIm & Frost Day mainly occurs in elevated regions and occurs very rarely in low-lying 

regions during the defined growing season. When comparing the observational data with the 

CH2018 data, there are thus many regions in lower altitudes that push the skill scores to a good 

validation result (Figure 4, left). During the validation process, those low-lying regions were included, 

leading to a standardised RMSE of 0.37 for the average yearly number of this multivariate ACI. 

However, if only regions were included where this ACI occurs more often – for example regions that 

are too cold to cultivate early silage maize based on observational data (indicated by GDD < 1430 °C 

(Buzzi et al., 2021)) (Figure 4, right) – the standardised RMSE would be 0.5, which would lead to an 

exclusion of this ACI. In this thesis, the validation is based on grid-data covering the entirety of 

Switzerland. In future research, it would be a possibility to include calculations for several regions in 

Switzerland and then consider the different results during the technical validation process. 
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5.3 Results of the climate impact analysis 

Overall, the results of the climate impact analysis indicate that until mid-century heat stress as well as 

drought stress are expected to increase for maize, while low temperature stress is expected to 

decrease during the defined maize growing season (Figure 5). Heat stress (HS30, HS35, HS35sum) is 

expected to increase strongest in low altitudes, whereas low temperature stress (Frost Days, Frostsum, 

LT6) is expected to decrease strongest in higher altitudes. The number of days with an SPI below −1 

(SPIm), a threshold indicating moderate drought (World Meteorological Organization, 2012), is 

expected to increase for most regions based on the RCP 2.6 scenario. The RCP 8.5 scenario suggests 

an increase for all regions with a maximum increase mainly in western and northwestern Switzerland 

as well as in the central parts of the Plateau. For heavy precipitation events and thus for potential 

waterlogging (HPE), there is partially a very slight increase possible. However, the change signal is 

associated with large uncertainties, making it unclear whether the occurrence of this ACI is expected 

to change during the defined growing season until mid-century. 

 

The change in the temporal standard deviation and thus in temporal variability often aligns with the 

change in the average occurrence of an ACI. This means if an ACI occurs on average more often in 

mid-century, the standard deviation often increases as well. The same counts vice versa for the cases 

where the occurrence of an ACI decreases until mid-century. However, there are some regional 

exceptions for the ACI Frost Day and the ACI SPIm & Frost Day. 

 

Regarding spatial variability, the change signal of temperature related ACIs is often more pronounced 

in the respective regions where the ACI already occurs most frequently during the reference period. 

Hence, the contrast of the spatial differences in the number of heat stress related ACIs is amplified to 

a certain extent. For the low temperature stress related ACIs Frost Day and Frostsum on the other hand 

the contrast is rather reduced.  

 

Figure 4: Left: Deviation in number of days of the simulated average yearly number of SPIm & Frost Days from the observed 
average yearly number of SPIm & Frost Days during the reference period. The standardised RMSE is 0.37. Right: Same deviation 
as on the left, but only for the regions with GDD < 1430 °C (GDD estimation based on observational data). Regions with 
GDD ≥ 1430°C are coloured dark grey. The standardised RMSE in this case is 0.5. 
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5.3.1 Change in growing degree days 
 

Before elaborating the results of the climate impact analysis based on the individual ACIs, it is first 

shown in which regions the necessary growing degree days (GDD) for maize cultivation is reached in 

the present and in the future Swiss climate. This allows to consider in which regions maize cultivation 

could potentially occur based on GDD threshold exceedance (Buzzi et al., 2021) when examining the 

maps showing the change signal of an ACI. 

 

In the present Swiss climate, maize is usually cultivated below 500 to 900 m MSL (Buzzi et al., 2021; 

Strickhof, 2023). Until mid-century, the RCP 2.6 as well as the RCP 8.5 scenario suggests, that the 

necessary GDD for maize cultivation – or more specifically for early grain maize (Buzzi et al., 2021) – 

will be reached in more and in comparatively higher elevated regions, especially based on the RCP 8.5 

scenario (Figure 6, bottom). The boxplots in Figure 6, representing the range of the climate model 

ensemble, underline the clear increase in the number of years with a GDD of at least 1600 °C until mid-

century. Note that besides temperature, factors such as soil quality and restrictions in land use also 

determines whether maize can be cultivated (Holzkämper, Calanca and Fuhrer, 2013; Bundesamt für 

Landwirtschaft BLW, 2024). Nevertheless, these maps can give a first impression, in which regions 

maize could potentially be cultivated in mid-century, based on the GDD threshold exceedance. 

 

 

Figure 5: Overview of the main findings using selected ACIs as examples. The range of the change signal for a listed ACI 
represents the interquartile range of the change signal for the whole of Switzerland in the climate model ensemble. Source of 
the illustration of a maize plant: Pixabay (2013) 

Increase in average yearly 

number of SPIm: 

RCP 2.6:   +1.8 to +4.9 days 

RCP 8.5:   +3.6 to +9.4 days 

More days with 

drought 

 

Increase in average yearly 

number of HS35: 

RCP 2.6:   +0.2 to +0.3 days 

RCP 8.5:   +0.6 to +1.8 days 

Increase in heat stress 

 

 

Decrease in average yearly 

number of LT6: 

RCP 2.6:   −15 to −10.3 days 

RCP 8.5:   −29.1 to −20.7 days 

Decrease in low 

temperature stress 

 

Change in average yearly 

number of HPE: 

RCP 2.6:   −0.05 to 0.1 days 

RCP 8.5:   0.01 to 0.3 days 

Unclear change signal 

due to uncertainties 
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In the following, the results for each individual ACI are discussed. Enlarged versions of the maps 

showing the occurrence of ACIs and the respective change signal is available in Appendix B.  

 

 

5.3.2 Change in heat stress 
 

Compared to the reference period 1981–2010, the average occurrence of all heat stress related ACIs 

show an increase until mid-century, especially based on the RCP 8.5 scenario (Figures 7 to 11). The 

RCP 2.6 scenario, however, shows only a slight increase for HS35 and HS35sum, with the boxplot 

indicating that the minimum of the range of the climate model ensemble exhibits almost the same 

value as the average of the observations. This indicates, that, based on the RCP 2.6 scenario, a slight 

increase in days with maximum temperatures above 35 °C is possible until mid-century compared to 

the reference period. However, the change signal may be trivial overall. As mentioned, the RCP 8.5 

scenario shows a much clearer increase of all three ACIs. Note however, that the range of the change 

signal in the climate model ensemble for RCP 8.5 is also drastically bigger compared to the RCP 2.6 

scenario, leading to higher uncertainty regarding the exact change signal. 

 

According to the average estimate of the RCP 8.5 simulations, in low altitudes a widespread increase 

of 15 to over 35 days with maximum temperatures above 30 °C (HS30) (Figure 7, bottom right) and an 

increase of 1 to over 10 days with maximum temperatures above 35 °C (HS35) (Figure 9, bottom right) 

Figure 6: Top left: Percentage of years with GDD ≥ 1600 °C based on observational data during the reference period (1981–
2010). Bottom: Same as top left but in mid-century for RCP 2.6 scenario (left) and RCP 8.5 scenario (bottom right). Top right: 
Average percentage of years with GDD ≥ 1600 °C for the whole of Switzerland during the reference period (black) and 
mid-century (blue & red). The boxplots show the range of the climate model ensemble. The box represents the interquartile 
range, the line the median and the point the average of the climate model ensemble. 
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is to be expected, depending on the region. Moreover, the sum of maximum temperature exceedance 

of 35 °C over the whole growing season (HS35sum) is expected to increase by about 5 to 24 °C in the 

lowest altitudes (Figure 10, bottom right). The change signal is usually strongest where the number of 

these three ACIs is already highest during the reference period, namely in low-lying regions in the 

Plateau, the Rhone Valley, Ticino and the Rhine Valley. It is interesting to note that while Ticino is one 

of the regions with the highest occurrence of HS30, the number of HS35 and HS35sum show a higher 

occurrence in the north of the Alps. 

 

Unfortunately, the representation of the standard deviation of the yearly number of HS35 by the 

CH2018 data is biased (see chapter 5.2). This statistical parameter of HS35 is thus not included in the 

calculations for mid-century. The standard deviation of the yearly HS35sum on the other hand is well 

represented. Not only does the standard deviation indicate that in northwestern Switzerland the 

exceedance of 35 °C varies by several degrees Celsius during the reference period (Figure 11, top left), 

the standard deviation also increases even further until mid-century (Figure 11, bottom). In general, a 

widespread increase in standard deviation of HS35sum between 5 to 10 °C, locally even up to over 

20 °C based on the RCP 8.5 scenario is expected in Switzerland (Figure 11, bottom right). Regarding 

the standard deviation of the yearly number of HS30, in the reference period, the values in the lower 

altitudes in the northern part of the Plateau often lie between 6 to 10 days (Figure 8, top left). In Ticino, 

standard deviations reach up to almost 14 days. Until mid-century, a widespread increase by about 2 

to 4 days based on the RCP 2.6 scenario and about 4 to 10 days based on the RCP 8.5 scenario is 

expected (Figure 8, bottom). Note that according to the boxplot for RCP 8.5 the calculated average of 

the climate model ensemble showing the standard deviation of the yearly number of HS30 in mid-

century is slightly higher than the calculated median (Figure 8, top right), and that the change signal 

maps are based on the average of the climate model ensemble. 
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Figure 7: Top left: Average yearly number of HS30 based on observational data during the reference period (1981-2010). Bottom: 
Average of the change signal in number of days between the reference period and mid-century (2045-2074) for RCP 2.6 (left) and 
RCP 8.5 (right). Top right: Average yearly number of HS30 for the whole of Switzerland during the reference period (black) and 
mid-century (blue & red). The boxplots show the range of the climate model ensemble. The box represents the interquartile  range, 
the line the median and the point the average of the climate model ensemble. 

Figure 8: Top left: Standard deviation of the yearly number of HS30 based on observational data during the reference period 
(1981-2010). Bottom: Average of the change signal in number of days between the reference period and mid-century (2045-2074) for 
RCP 2.6 (left) and RCP 8.5 (right). Top right: Standard deviation of the yearly number of HS30 for the whole of Switzerland during the 
reference period (black) and mid-century (blue & red). The boxplots show the range of the climate model ensemble. The box represents 
the interquartile range, the line the median and the point the average of the climate model ensemble. 
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Figure 9: Top left: Average yearly number of HS35 based on observational data during the reference period (1981-2010). Bottom: 
Average of the change signal in number of days between the reference period and mid-century (2045-2074) for RCP 2.6 (left) and 
RCP 8.5 (right). Top right: Average yearly number of HS35 for the whole of Switzerland during the reference period (black) and 
mid-century (blue & red). The boxplots show the range of the climate model ensemble. The box represents the interquartile range, 
the line the median and the point the average of the climate model ensemble. 

Figure 10: Top left: Average yearly HS35sum based on observational data during the reference period (1981-2010). Bottom: Average 
of the change signal in number of days between the reference period and mid-century (2045-2074) for RCP 2.6 (left) and RCP 8.5 
(right). Top right: Average yearly HS35sum for the whole of Switzerland during the reference period (black) and mid-century (blue & 
red). The boxplots show the range of the climate model ensemble. The box represents the interquartile range, the line the median 
and the point the average of the climate model ensemble. 
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5.3.3 Change in low temperature stress 
 

Compared to the reference period 1981–2010, the average number of all three low temperature stress 

related ACIs is expected to decrease until mid-century based on both scenarios – RCP 2.6 and RCP 8.5 

(Figures 12 to 16). The negative change signal is strongest in high altitudes and especially in case of the 

ACIs Frost Day and Frostsum only very small in low altitudes.  

 

The maximum range of the RCP 2.6 climate model ensemble for the standard deviation of the yearly 

number of Frost Days clearly exceeds the observation during the reference period (Figure 13, top 

right). This indicates uncertainties regarding the question if and to what extend the standard deviation 

of the yearly number of Frost Days for the whole of Switzerland decreases until mid-century based on 

the RCP 2.6 scenario. This is also the case for the simulated standard deviation of the yearly Frostsum 

based on the RCP 2.6 scenario (Figure 15, top right). 

 

While overall the change signal for all three low temperature stress related ACIs is usually strongest in 

high altitudes, the climate models simulate only a very weak decrease in the average yearly number of 

LT6 until mid-century for parts of the Jungfrau region, southern Valais and for local sites in the upper 

Engadin (Figure 16, bottom). This is especially visible in the RCP 2.6 scenario. Moreover, the same sites 

show an increase of the standard deviation of the yearly number of Frost Days until mid-century 

(Figure 13, bottom).  

Figure 11: Top left: Standard deviation of the yearly HS35sum based on observational data during the reference period (1981-2010). 
Bottom: Average of the change signal in number of days between the reference period and mid-century (2045-2074) for RCP 2.6 (left) 
and RCP 8.5 (right). Top right: Standard deviation of the yearly HS35sum for the whole of Switzerland during the reference period 
(black) and mid-century (blue & red). The boxplots show the range of the climate model ensemble. The box represents the interquartile 
range, the line the median and the point the average of the climate model ensemble. 
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Otherwise, with a decrease in average occurrence of the ACIs the standard deviation decreases as well, 

with the strongest decrease usually being where the standard deviation is highest during the reference 

period (Figures 13 and 15). For the regions of interest regarding potential maize cultivation (see 

chapter 5.3.1, Figure 6), the change signal for the ACIs Frost Days and Frostsum between the 5th of May 

and the 11th of October is mostly very small, as the number of days with minimum temperatures below 

0 °C are often rare during the defined maize growing season (Figure 12 to 15). The change signal for 

the ACI LT6 is more pronounced in low altitudes as this ACI also occurs more often during the defined 

growing season (Figure 16). Thus, low temperature stress is expected to affect maize in low altitudes 

less during the here defined growing season in mid-century compared to the reference period.  

 

 
 

Figure 12: Top left: Average yearly number of Frost Days based on observational data during the reference period (1981-2010). 
Bottom: Average of the change signal in number of days between the reference period and mid-century (2045-2074) for RCP 2.6 (left) 
and RCP 8.5 (right). Top right: Average yearly number of Frost Days for the whole of Switzerland during the reference period (black) 
and mid-century (blue & red). The boxplots show the range of the climate model ensemble. The box represents the interquartile range, 
the line the median and the point the average of the climate model ensemble. 
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Figure 13: Top left: Standard deviation of the yearly number of Frost Days based on observational data during the reference period 
(1981-2010). Bottom: Average of the change signal in number of days between the reference period and mid-century (2045-2074) for 
RCP 2.6 (left) and RCP 8.5 (right). Top right: Standard deviation of the yearly number of Frost Days for the whole of Switzerland during 
the reference period (black) and mid-century (blue & red). The boxplots show the range of the climate model ensemble. The box 
represents the interquartile range, the line the median and the point the average of the climate model ensemble. 

Figure 14: Top left: Average yearly Frostsum based on observational data during the reference period (1981-2010). Bottom: Average 
of the change signal in number of days between the reference period and mid-century (2045-2074) for RCP 2.6 (left) and RCP 8.5 
(right). Top right: Average yearly Frostsum for the whole of Switzerland during the reference period (black) and mid-century (blue & 
red). The boxplots show the range of the climate model ensemble. The box represents the interquartile range, the line the median 
and the point the average of the climate model ensemble. 
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Figure 15: Top left: Standard deviation of the yearly Frostsum based on observational data during the reference period (1981-2010). 
Bottom: Average of the change signal in number of days between the reference period and mid-century (2045-2074) for RCP 2.6 (left) 
and RCP 8.5 (right). Top right: Standard deviation of the yearly Frostsum for the whole of Switzerland during the reference period 
(black) and mid-century (blue & red). The boxplots show the range of the climate model ensemble. The box represents the interquartile 
range, the line the median and the point the average of the climate model ensemble. 

Figure 16: Top left: Average yearly number of LT6 based on observational data during the reference period (1981-2010). Bottom: 
Average of the change signal in number of days between the reference period and mid-century (2045-2074) for RCP 2.6 (left) and RCP 
8.5 (right). Top right: Average yearly number of LT6 for the whole of Switzerland during the reference period (black) and mid-century 
(blue & red). The boxplots show the range of the climate model ensemble. The box represents the interquartile range, the line the 
median and the point the average of the climate model ensemble. 
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5.3.4 Change in potential waterlogging 
 

During the reference period 1981–2010, the average number of HPE is quite low in most regions of the 

Plateau (Figure 17, top left). With an average around 0.25 to 0.75 days and sometimes even less, such 

an event occurs on average in a few years within a decade during the defined maize growing season. 

However, along the Alps this event occurs on average each year. This is especially the case for the 

central, southern and eastern Alps. The maximum average occurrence is in Ticino. 

 

The change signal for the average yearly number of HPE until mid-century is quite uncertain. The 

average of the climate models suggests for most regions a very small increase, mainly in the central, 

southern and eastern Alps (Figure 17, bottom). However, not only is the change signal small, but 

according to the range of the climate model ensembles (Figure 17, top right) it is also uncertain 

whether there actually is an increase in the average yearly number of HPE to expect. 

 

 
 

The standard deviation of the yearly number of HPE during the reference period is again highest in 

Ticino (Figure 18, top left). The change signal is once more associated with large uncertainties. The 

RCP 2.6 scenario suggests a very small increase mainly along the central, southern and eastern Alps, 

while indicating a very small decrease in parts of the Plateau and Prealps (Figure 18, bottom left). The 

RCP 8.5 scenario on the other hand shows the possibility of mainly increases in the Plateau and the 

eastern Alps (Figure 18, bottom right). However, the range of the standard deviation for a single grid 

cell in the climate model ensemble often exceeds 0.75 days (not illustrated), which is a rather high 

Figure 17: Top left: Average yearly number of HPE based on observational data during the reference period (1981-2010). Bottom: 
Average of the change signal in number of days between the reference period and mid-century (2045-2074) for RCP 2.6 (left) and RCP 
8.5 (right). Top right: Average yearly number of HPE for the whole of Switzerland during the reference period (black) and mid-century 
(blue & red). The boxplots show the range of the climate model ensemble. The box represents the interquartile range, the line the 
median and the point the average of the climate model ensemble. 
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range in relation to the small change signals, indicating relatively high uncertainties in the change 

signal. Moreover, the first quartiles of the climate model ensemble for RCP 2.6 and for RCP 8.5 lie 

below the observations during 1981–2010, while the third quartiles lie above the observations 

(Figure 18, top right). Hence, it is uncertain, whether and to what extent the standard deviation of the 

yearly number of HPE for the whole of Switzerland changes until mid-century. 

 

 
 

 

5.3.5 Change in drought 
 

During the reference period, the maximum of the number of days with an SPI below −1 (SPIm) is along 

the Jura, parts of the northern Plateau as well as in the Rhone Valley (Figure 19, top left). This means 

that in those sites a negative precipitation anomaly occurs more often. Along the Prealps for example, 

an SPI of smaller than −1 occurs less often. 

 

Until mid-century, based on both climate scenarios an increase in the average yearly number of SPIm 

is expected (Figure 19, bottom). The RCP 2.6 scenario shows a widespread increase by several days 

with a maximum positive change signal mainly along the Prealps, northeastern Switzerland and parts 

of the Engadin. Based on the RCP 8.5 scenario, for most parts of Switzerland an increase of about 3 to 

9 days is expected. In the canton Grisons the increase is less pronounced. However, the climate model 

ensemble based on the RCP 8.5 scenario once more show a rather big range (Figure 19, top right), 

Figure 18: Top left: Standard deviation of the yearly number of HPE based on observational data during the reference period 
(1981-2010). Bottom: Average of the change signal in number of days between the reference period and mid-century (2045-2074) for 
RCP 2.6 (left) and RCP 8.5 (right). Top right: Standard deviation of the yearly number of HPE for the whole of Switzerland during the 
reference period (black) and mid-century (blue & red). The boxplots show the range of the climate model ensemble. The box represents 
the interquartile range, the line the median and the point the average of the climate model ensemble. 
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indicating that the exact increase in the average yearly number of SPIm for the whole of Switzerland is 

comparatively uncertain. 

 

 
 

 

5.3.6 Change in concurrent stress 
 

5.3.6.1 Drought & heat stress 

 

Even though the individual average yearly number of the univariate ACI HS30 and the ACI SPIm show 

an occurrence of several days during the growing season during the reference period (see chapters 

5.3.2 and 5.3.5), the number of days for the multivariate ACI SPIm & HS30 is quite small in comparison 

(Figure 20, top left). The maximum occurrence during the reference period is found in the northern, 

central and western part of the Plateau, as well as in the Rhone Valley and Ticino. 

 

Until mid-century, an increase in the average yearly number of SPIm based on both climate scenarios 

is expected. The RCP 2.6 scenario shows the highest increase in the average yearly number of SPIm & 

HS30 in western Switzerland and in the Rhone Valley (Figure 20, bottom left). Ticino, however, 

showcases a lower occurrence of this ACI compared to the other regions with high occurrence of this 

ACI. The northern part of the Plateau does not show such a strong increase either. However, there a 

higher occurrence in absolute numbers (not illustrated) than in Ticino is still expected. Note that the 

increase is still only small and often lies between 0.5 and 1.5 days, depending on the region. Based on 

Figure 19: Top left: Average yearly number of SPIm based on observational data during the reference period (1981-2010). Bottom: 
Average of the change signal in number of days between the reference period and mid-century (2045-2074) for RCP 2.6 (left) and RCP 
8.5 (right). Top right: Average yearly number of SPIm for the whole of Switzerland during the reference period (black) and mid-century 
(blue & red). The boxplots show the range of the climate model ensemble. The box represents the interquartile range, the line the 
median and the point the average of the climate model ensemble. 
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the RCP 8.5 scenario, it is possible that until mid-century the average yearly number of SPIm & HS30 

increases by around 6 to locally over 12 days (Figure 20, bottom right). However, due to the large range 

of the climate model ensemble based on the RCP 8.5 scenario, those exact numbers need to be 

handled with care (Figure 20, top right). 

 

 

While the ACI SPIm & HS30 shows a low occurrence during the reference period on average, the 

standard deviation shows values up to several days indicating a noticeable year-to-year variability 

(Figure 21, top left). During the reference period, the regions with the highest average occurrence also 

show the highest standard deviation with values around 6 to over 13 days. With an increase in the 

average occurrence, the temporal variability is expected to increase until mid-century as well 

(Figure 21, bottom). However, the RCP 8.5 scenario-based climate model ensemble once more shows 

a large range (Figure 21, top right). 

Figure 20: Top left: Average yearly number of SPIm & HS30 based on observational data during the reference period (1981-2010). 
Bottom: Average of the change signal in number of days between the reference period and mid-century (2045-2074) for RCP 2.6 (left) 
and RCP 8.5 (right). Top right: Average yearly number of SPIm & HS30 for the whole of Switzerland during the reference period (black) 
and mid-century (blue & red). The boxplots show the range of the climate model ensemble. The box represents the interquartile range, 
the line the median and the point the average of the climate model ensemble. 
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5.3.6.2 Drought & low temperature stress 

 

During the reference period, the regions where the necessary GDD for grain maize is mostly reached 

(see chapter 5.3.1, Figure 6) experience on average very rarely days with simultaneous moderate 

drought and minimum temperatures below 0 °C (SPIm & Frost Days) between the 5th of May and 11th 

of October (Figure 22, top left). Therefore, the change signal based on both climate scenarios is very 

weak in these regions (Figure 22, bottom). The RCP 8.5 scenario shows a clear change in the number 

of SPIm & Frost Day until mid-century in the Alps with a widespread decrease of −1 to −4 days, even 

more locally. Only some local sites in the southern Valais show a slight increase. The RCP 2.6 also shows 

in comparison to the RCP 8.5 scenario a smaller decrease until mid-century. However, for some regions 

in Grisons, in the Jungfrau region and southern Valais, a slight increase in the number of SPIm & Frost 

Days is indicated. The extent to which this ACI decreases based on this scenario is rather uncertain, as 

the third quartile of the climate model ensemble for the average for the whole of Switzerland is slightly 

higher even than the observed average during the reference period (Figure 22, top right). 

 

Figure 21: Top left: Standard deviation of the yearly number of SPIm & HS30 based on observational data during the reference period 
(1981-2010). Bottom: Average of the change signal in number of days between the reference period and mid-century (2045-2074) for 
RCP 2.6 (left) and RCP 8.5 (right). Top right: Standard deviation of the yearly number of SPIm & HS30 for the whole of Switzerland 
during the reference period (black) and mid-century (blue & red). The boxplots show the range of the climate model ensemble. The 
box represents the interquartile range, the line the median and the point the average of the climate model ensemble. 
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With the decrease in the average yearly number of SPIm & Frost Day, the standard deviation decreases 

as well (Figure 23, bottom and top right). Based on the RCP 2.6 scenario, the sites in southern Valais 

that show an increase in the average ACI occurrence also showcase an increase in the standard 

deviation. Other than that, based on both climate scenarios most regions show a decrease in the 

standard deviation of the yearly number of SPIm & Frost Day despite the potential increase in average 

occurrence, as is the case e.g. in Grisons (Figure 22, bottom). The RCP 8.5 scenario is clearer on a 

widespread decrease in temporal variability. 

 

Figure 22: Top left: Average yearly number of SPIm & Frost Days based on observational data during the reference period 
(1981-2010). Bottom: Average of the change signal in number of days between the reference period and mid-century (2045-2074) 
for RCP 2.6 (left) and RCP 8.5 (right). Top right: Average yearly number of SPIm & Frost Days for the whole of Switzerland during the 
reference period (black) and mid-century (blue & red). The boxplots show the range of the climate model ensemble. The box 
represents the interquartile range, the line the median and the point the average of the climate model ensemble. 
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5.3.6.3 Potential waterlogging & low temperature stress 

 

During the reference period, the ACI HPE & Frost Day mainly occurs in the Alps (Figure 24, top left) and 

in regions that are based on the small growing degree days sum not suitable for grain maize (Figure 6). 

In those sites, on average about 0.5 to locally almost 7 days per growing season with the ACI HPE & 

Frost Day occurred.  

 

Since this ACI mainly occurs along the Alps, these are also the only regions that partially show a clear 

decrease until mid-century, with the change signal being a bit stronger and more widespread in the 

RCP 8.5 scenario compared to the RCP 2.6 scenario (Figure 24, bottom). Because there are many other 

regions in Switzerland where this ACI occurs rarely and thus can only show a small change signal until 

mid-century, the average occurrence for the whole of Switzerland during the reference period as well 

as in mid-century is very small, as illustrated by the boxplots in Figure 24. 

Figure 23: Top left: Standard deviation of the yearly number of SPIm & Frost Days based on observational data during the reference 
period (1981-2010). Bottom: Average of the change signal in number of days between the reference period and mid-century 
(2045-2074) for RCP 2.6 (left) and RCP 8.5 (right). Top right: Standard deviation of the yearly number of SPIm & Frost Days for the 
whole of Switzerland during the reference period (black) and mid-century (blue & red). The boxplots show the range of the climate 
model ensemble. The box represents the interquartile range, the line the median and the point the average of the climate model 
ensemble. 
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Figure 24: Top left: Average yearly number of HPE & Frost Days based on observational data during the reference period (1981-2010). 
Bottom: Average of the change signal in number of days between the reference period and mid-century (2045-2074) for RCP 2.6 (left) 
and RCP 8.5 (right). Top right: Average yearly number of HPE & Frost Days for the whole of Switzerland during the reference period 
(black) and mid-century (blue & red). The boxplots show the range of the climate model ensemble. The box represents the interquartile 
range, the line the median and the point the average of the climate model ensemble. 
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6 Discussion 

 

6.1 Relationship between maize yield and ACI occurrence 

This thesis shows that despite the small used maize yield data set there is often a negative relationship 

between heat stress related ACIs and maize yield visible. This indicates that the chosen heat stress 

related ACIs can, in some cases also to a significant extent, explain a part of maize yield variation. 

However, for some individual univariate ACIs, Spearman’s correlation coefficient showed for some 

municipalities a positive relationship between them and maize yield, while showing a negative 

relationship for other municipalities. Moreover, only a few of these relationships were statistically 

significant. 

 

A possible explanation for these partially quite different correlation coefficients is that within a 

municipality, sometimes different farms have reported their maize yield data for a different number of 

years, often leading to a relatively big variance in maize yield per municipality. Another potential reason 

is that some ACIs only occurred very rarely in the chosen municipalities, such as the ACI Frost Day and 

the multivariate ACI SPIm & Frost Day. Additionally, the calculated ACI occurrence is based on local time 

series, which are associated with uncertainties in the representation of small-scale climate effects like 

cold air pools (see chapter 3.2.1) (MeteoSwiss and Federal Department of Home Affairs, 2021a, 2021c). 

It is also important to acknowledge that the number of ACIs was estimated within a fixed growing 

season, whereas the effective growing season length may differ due to climatological conditions 

(Holzkämper, Calanca and Fuhrer, 2013). This means that in some cases, the estimated number of ACIs 

may differ to some extent from the number of ACIs that the maize plants actually experienced in those 

respective years. This is especially possible for low temperature stress related ACIs that occur more 

often in spring and autumn than in summer (MeteoSwiss, 2024a). However, the assumption of a fixed 

sowing and harvesting date made it possible to directly compare the number of ACI during the 

reference period to the number of ACI in mid-century without having to consider the influence of 

differences in the sowing date and length of the growing season. For reasons of continuity, the fixed 

growing season was also used for the validation process with maize yield data. Finally, a possible reason 

for the differences in the resulting correlation coefficients, and that only a few multiple linear 

regression models can explain maize yield variation to a significant extent, are mitigation measures by 

farmers. If, for example, there was a moderate drought indicated by the ACI SPIm, farmers can irrigate 

their fields in order to prevent yield loss (Meuli, 2020). Another possibility is that some farmers could 

have been cultivating more heat tolerant maize genotypes in comparison to others. This may explain 

the weak and statistically insignificant Spearman’s correlation coefficient between heat stress related 

ACIs and maize yield from the municipality Moehlin (see Appendix A.1). 

 

There are several different possible ways to compare the occurrence of indicators with maize yield 

data, with some methods being more refined, but also demanding much more capacity and 

investment. Mathieu and Aires (2018) for example aimed to evaluate which weather inputs are most 

suitable for their crop yield forecast model by evaluating the covariance between corn yield and two 

weather inputs with a 2-input linear model and repeating this step until they had enough suitable 

inputs for their yield forecast model. After collecting the suitable weather inputs, a cross validation 
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process based on several criteria, like correlation with yield anomalies and the Akaike Information 

Criterion, was applied to define what number of inputs is most suitable for the model. Another 

example is illustrated in the study by Holzkämper, Calanca and Fuhrer (2013), in which Willmott’s index 

of agreement was used to validate how well their estimated climate indicators-based suitability score 

for maize corresponded with maize yield variability. 

 

This thesis indicates that even with simpler methods, a moderate but significant relationship is visible 

between heat stress related ACIs and maize yield. It is thus possible, that the impact of heat stress on 

maize yield may be more difficult to mitigate in comparison to e.g. drought. In fact, Lobell and Field 

(2007) estimated the change in global crop production and concluded that that there is a clear negative 

response of global maize yield to increasing temperature. 

 

 

6.2 Impact of climate change on maize cultivation 

Overall, the average occurrence of most ACIs is expected to change until mid-century, especially based 

on the RCP 8.5 scenario. Without climate mitigation, particularly heat stress is projected to increase 

strongly until mid-century. Without adaptation measures, like using more heat resistant maize 

genotypes, maize development is likely to be negatively affected by high maximum temperatures, 

which may lead to reduced maize yield. With the change in the average occurrence of ACIs, the 

temporal variability represented by standard deviation is expected to change as well. In most cases, 

an increase in average occurrence comes with an increase in standard deviation and vice versa. The 

contrast in the spatial differences of ACI occurrence is in the case of heat stress related ACIs to some 

extent amplified, and in the case of the ACIs Frost Day and Frostsum rather reduced. 

 

It is important to note that the ideal threshold for an ACI representing stress for maize depends on the 

respective maize genotype (Sánchez, Rasmussen and Porter, 2014; Holzkämper and Fuhrer, 2015; 

Waqas et al., 2021). In Switzerland alone, several different maize varieties are recommended for 

cultivation; in 2023, Agroscope recommended a total of over 60 maize varieties for Switzerland 

(Hiltbrunner et al., 2023). Thus, this should be kept in mind when using those results to evaluate 

climatological challenges in maize cultivating in Switzerland. In fact, Parent et al. (2018) state that 

maize yield may even increase in Europe until 2050 if farmers keep adapting their maize cultivation by 

using different maize genotypes and adapting the sowing date. Smit and Skinner (2002) also emphasize 

that the vulnerability of farms to climate change related risks can be reduced by adaptation measures. 

The same authors elaborate that there are several adaptation options, including adaptation in 

production practices as well as adaptations on financial and technological levels, like buying more crop 

insurance or developing new maize varieties that are more resistant to climatological stress. 

 

Furthermore, for this thesis the climatological variables temperature and precipitation have been 

used. However, factors such as solar radiation, CO2 concentrations, wind, air moisture, soil moisture 

and nutrients influence maize development as well (Suzuki et al., 2014; Shabbir et al., 2022; Webber 

et al., 2022). Moreover, concurrent stress factors are very relevant for maize cultivation, but the 

interaction between the multiple stress factors can be complicated and the impact of such are not 

necessarily additive (Webber et al., 2022). While this thesis suggests an increase of concurrent heat 

and drought stress, estimating to what extent such an event would decrease the climate suitability for 
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maize as e.g. Holzkämper, Calanca and Fuhrer (2013) did in their study, would be a research topic for 

a different study. In the following, the results of each stress category are discussed in more detail. 

 

 

6.2.1 Estimated change in heat stress 
 

In general, especially in the regions where the GDD threshold of 1600 °C is most often reached, heat 

stress will occur on average more often between the 5th of May and the 11th of October. Especially in 

the lowest altitudes of the Plateau, as well as in the Rhone Valley, Ticino, and the Rhine Valley, heat 

stress is likely to be an increasingly limiting factor for maize cultivation without adaptation measures. 

This also corresponds to the results in the study by Holzkämper and Fuhrer (2015), who discuss that 

an increase in heat stress leads to a reduction in climate suitability for maize in low altitudes – partially 

also because due to the higher temperatures, maize development is accelerated and thus leads to 

reduced maize yield. However, the same authors also mention that in elevated regions on the other 

hand, climate suitability for maize increases until mid-century. 

 

The change in standard deviation suggests an increase in temporal variability in heat stress until 

mid-century, again especially in the lowest altitudes. Even though the climate model ensemble for the 

RCP 8.5 scenario shows a high range for the calculated standard deviation of heat stress related ACIs, 

the median and average of the climate model ensemble still show a clear increase. For maize 

cultivation in low altitudes, a change to a more heat tolerant maize genotype may be helpful in 

mitigating the impact of climate change (Holzkämper and Fuhrer, 2015; Waqas et al., 2021). Moreover, 

sowing earlier in the year may allow maize to grow under more favourable conditions (Torriani et al., 

2007; Waqas et al., 2021). 

 

 

6.2.2 Estimated change in low temperature stress 
 

Low temperature stress is expected to decrease in most regions, whereby the decrease is strongest in 

high altitudes. Exceptions to this are parts of the Jungfrau region, southern Valais and for local sites in 

the upper Engadin, who show a smaller decrease in the average occurrence of LT6 in comparison to 

other mountainous regions (see chapter 5.3.3, Figure 16, bottom). These mountainous sites are likely 

regions with an altitude around 4000 m MSL. Therefore, a possible explanation is that these regions 

may still be high enough to not be affected as much by the rising temperatures. Similarly, the altitude 

may also explain the expected increase in standard deviation of the yearly number of Frost Days in 

these sites (see chapter 5.3.3, Figure 13, bottom). Due to rising temperatures (CH2018, 2018), these 

sites may on one hand experience warm summers with few Frost Days, but on the other hand also 

below-average warm summers where these locations are still high enough to experience several Frost 

Days. 

 

Despite the rare occurrence of the ACI Frost Days and small values of the ACI Frostsum in low altitudes, 

low temperature stress is still relevant for maize cultivation in mid-century. Especially days with 

minimum temperatures below 6 °C are still expected to widely occur during the growing season as 

shown by the ACI LT6. The ACI Frost Day is expected to occur rather rarely, especially in the Plateau, 
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along the Prealps and in the Rhone Valley and Rhine Valley. Based on the GDD simulation driven by 

the RCP 8.5 scenario, in regions like the lower Engadin or the upper Rhone Valley the necessary GDD 

for grain maize cultivation is expected to be reached relatively often in mid-century, but those regions 

also show a higher occurrence of Frost Days in comparison to the Plateau. However, another factor to 

take into account is that the representation of small-scale effects such as cold air pools in the 

observational grid-data is limited (MeteoSwiss and Federal Department of Home Affairs, 2021a), and 

that such uncertainties are passed on to the CH2018 data (Kotlarski and Rajczak, 2018). Moreover, if 

maize was to be sown earlier in the year in order to adapt to climate change as suggested by several 

studies (Torriani et al., 2007; Holzkämper and Fuhrer, 2015; Holzkämper, 2020; Waqas et al., 2021), 

the risk of late frost may still be present or could even increase until 2050 depending on the site, which 

is illustrated in the study of Meier, Fuhrer and Holzkämper (2018), where the changing risk of spring 

frost damage in grapevines in the Rhone Valley is investigated. 

 

 

6.2.3 Estimated change in potential waterlogging 
 

Waterlogging is an important aspect for maize, as this may damage maize plants and lead to yield 

reduction, depending on the development stage of maize, the maize genotype and the duration of 

waterlogging (Ren et al., 2016; Githui et al., 2022; Huang et al., 2022). However, modelling a future 

scenario for the frequency of waterlogging is rather difficult, as it is a complicated process (Githui et 

al., 2022). Moreover, there are several possible reasons for waterlogging, such as excessive 

precipitation or irrigation, or poor soil drainage (Ren et al., 2016; Githui et al., 2022). Githui et al. (2022) 

for example used crop models in order to simulate crop growth and phenology under waterlogging. 

Holzkämper et al. (2015) used water availability, defined as the difference between precipitation and 

the calculated reference evapotranspiration, as an indicator for water shortage as well as for water 

excess. Their results showed a similar spatial distribution of excess water as the results of this thesis 

for the occurrence of heavy precipitation events. 

 

In this thesis, potential waterlogging was indicated by the ACI HPE, defined as days with at least 50 mm 

of precipitation, a threshold taken from the study of Tschurr et al. (2020). It is however highly 

important to acknowledge that those numbers should not be directly translated into the number of 

waterlogging events but should instead rather be understood as an approximation to an indicator for 

potential waterlogging. Also, as mentioned in chapter 3.2.1, intense precipitation is rather 

underestimated in the observational grid-data and thus as well in the CH2018 data (Kotlarski and 

Rajczak, 2018; MeteoSwiss and Federal Department of Home Affairs, 2021b). 

 

The results of this thesis suggest a very small increase in the average number of HPE for some parts of 

Switzerland – especially along the southern Alps and in parts of the southeastern Alps (see chapter 

5.3.4, Figure 17, bottom). Despite that, the results for the whole of Switzerland, as shown in the 

boxplots in Figure 17, do not show a clear change and are associated with large uncertainties. 

Additionally, based on the boxplots in Figure 18, it is also uncertain whether the standard deviation in 

the yearly number of HPE changes until mid-century. The study of Tschurr et al. (2020) on the other 

hand shows a small but relatively widespread increase in the number of heavy precipitation events 

based on the RCP 8.5 scenario. However, the authors investigated the number of heavy precipitation 

events throughout the whole year, while in this thesis the number of HPE was analysed between the 



 
46 

 

5th of May and the 11th of October. Based on the CH2018 scenarios, frequency and intensity of heavy 

rainfall events is expected to increase particularly in winter (CH2018, 2018). Thus, this difference in the 

investigated time period may explain a part of the differences between the results in this thesis and 

the case study of Tschurr et al. (2020). 

 

 

6.2.4 Estimated change in drought 
 

While the climate impact model based on the RCP 2.6 scenario mainly suggests an increase in the 

average yearly number of SPIm along the Prealps, northeastern Switzerland and parts of the Engadin, 

the RCP 8.5 scenario shows a clear widespread increase with a maximum change signal in western and 

northwestern Switzerland (see chapter 5.3.5, Figure 19, bottom). Those findings are similar to those of 

Tschurr et al. (2020). Holzkämper and Fuhrer (2015) show that water shortage increases for the 

maturation phase of maize, but due to accelerated maize development caused by higher temperatures 

it is possible that the phenological phase that is most sensitive to drought occurs earlier in the year 

and thus at a time when water stress is not as severe. However, as Anami et al. (2009) state, drought 

is relevant for the whole growth cycle of maize. Thus, based on the results of this thesis as well as on 

the mentioned studies, more irrigation may be necessary in some cases in order to mitigate the impact 

of drought, depending on the maize variety and the respective site (Holzkämper and Fuhrer, 2015; 

Holzkämper, 2020; Eisenring, Holzkämper and Calanca, 2021). 

 

It must be acknowledged that the World Meteorological Organization (2012) states, that the SPI is not 

suitable for climate change analyses due to the fact that temperatures are not involved in this drought 

indicator. Temperature is an important factor when determining dryness as rising temperatures lead 

to increased evaporation (Seneviratne et al., 2010; World Meteorological Organization, 2012; CH2018, 

2018). However, the SPI is a useful tool in drought monitoring, simple to calculate and – when 

calculated for a shorter accumulation period as done in this thesis – can be used to indicate impacts 

such as reduced soil moisture (World Meteorological Organization, 2012; Copernicus European 

Drought Observatory (ED0), 2020). Thus, the SPI was used in this thesis. 

 

 

6.2.5 Estimated change in concurrent stress 
 

As in the CH2018 scenarios quantile mapping has been applied in a univariate manner (CH2018, 2018), 

it was very important that the representation of ACIs containing more than one climatological 

parameter by the CH2018 data was validated first. This thesis showed, that the CH2018 data are able 

to represent some multivariate ACIs realistically, like the ACI SPIm & HS30. Thus, while the findings in 

this thesis and other studies (e.g. Holzkämper and Fuhrer, 2015; Tschurr et al., 2020) suggest that heat 

stress and drought stress individually is expected to increases with climate change, this thesis also 

establishes that – without adaptation measures in maize cultivation – it is not just the individual stress 

factors that can potentially increasingly affect maize cultivation, but also their simultaneous 

occurrence. 
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On the other hand, as low temperature stress decreases until mid-century, the average yearly number 

of the ACI SPIm & Frost Day and the ACI HPE & Frost Day mostly show a decrease in average occurrence 

as well, as does the standard deviation of the yearly number of SPIm & Frost Day. The climate impact 

analysis based on the RCP 2.6 scenario shows an increase in the average occurrence and the standard 

deviation of the yearly number of SPIm & Frost Day for some sites in Grisons, Valais and Jungfrau region 

as well as some other few local sites (see chapter 5.3.6.2, Figure 22 bottom left and Figure 23, bottom 

left), which may be connected to the increase in the univariate ACI SPIm. Despite the results suggesting 

a decrease in the occurrence of the ACI SPIm & Frost Day and the ACI HPE & Frost Day, it is important 

to consider that since low temperature stress may still be relevant in mid-century, as elaborated in 

chapter 6.2.2, concurrent stress events involving such may also still be of importance in the future. 

 

There are other methods to estimate the impact of concurrent stress on maize. Zhao et al. (2023) for 

example evaluated the vulnerability of maize in Songliao Plain to concurrent low temperature stress 

and drought by creating a model using the so-called vine copula method, which considers the intensity 

of the respective stress factors. In the study of Guo et al. (2023), a hazard assessment model for maize 

was created, which considers severity, duration and probability of the occurrence of drought and heat 

compound extreme events. This thesis shows that ACIs can also be a useful and, in comparison, simpler 

tool to estimate the impact of climate change with regard to simultaneous stress factors on maize. 
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7 Conclusion 

 

7.1 Main Findings 

In this thesis, the impact of climate change on maize cultivation in Switzerland was investigated by 

using agricultural climate indicators, which indicate (potential) climatological stress for maize. The 

research questions and respective hypotheses are: 

 

1. How well do agricultural climate indicators explain maize yield variation in the present Swiss 

climate? 

Hypothesis 1: There is a significant negative relationship between maize yield and the 

occurrence of agricultural climate indicators in the present Swiss climate. 

 

2. Will the average occurrence of agricultural climate indicators in Switzerland change with 

climate change? 

Hypothesis 2: The average occurrence of agricultural climate indicators will be different in the 

future Swiss climate. 

 

3. Will the variability of agricultural climate indicators in Switzerland change with climate 

change? 

Hypothesis 3: The variability of the agricultural climate indicators will be different in the future 

Swiss climate. 

 

The used ACIs are based on literature (Holzkämper, Calanca and Fuhrer, 2013; Sánchez, Rasmussen and 

Porter, 2014; Tschurr et al., 2020; Buzzi et al., 2021; Waqas et al., 2021) and have been compared to 

maize yield data from 2003–2022. The results show, depending on the site, a significant moderate 

negative relationship between heat stress related ACIs and maize yield, indicating that the respective 

ACIs (namely HS30, HS35 and HS35sum) can in some cases explain maize yield variation. For other ACIs, 

the results are more ambiguous. Depending on the municipality and the ACI, positive as well as 

negative correlations are visible, of which only very few are of statistical significance, with the 

significant relationships again being of moderate strength. These findings underline the complexity of 

the relationship between maize yield and ACIs, as the response of plants to stressors not only depends 

on whether they occur individually or simultaneously (Mittler, 2006; Suzuki et al., 2014; Hussain et al., 

2018; Webber et al., 2022; Hu et al., 2023), but also on the farm characteristics and the capability of 

farmers to mitigate climatological stress (Torriani et al., 2007; Reidsma et al., 2010; Suzuki et al., 2014). 

Overall, the first hypothesis can be accepted for some municipalities for heat stress related ACIs. For 

the other ACIs, due to the differing direction of the relationship between maize yield and the respective 

ACIs and the lack of significant results, the first hypothesis is rejected. 

 

The analysis of the climate change impact on maize cultivation was done by using the high-resolution 

CH2018 grid-data (CH2018 Project Team, 2018), allowing an overview of the expected climatological 
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limitations over the whole of Switzerland based on the chosen ACIs. In order to estimate for which ACIs 

the second and third hypotheses can be accepted, the range of the climate model ensemble as 

illustrated in the boxplots (Figures 7 to 24, top right) have been considered in the climate impact 

analysis to take into account uncertainties in the change signal. 

 

The results show that especially based on the RCP 8.5 scenario, the average occurrence of most ACIs is 

expected to change until mid-century with an increase in heat stress and drought related univariate 

ACIs and a decrease in low temperature stress related univariate ACIs. The average occurrence of the 

multivariate ACI SPIm & HS30 is expected to increase, while multivariate ACIs including low 

temperature stress is likely to decrease until mid-century. For the ACI HPE, which represents potential 

waterlogging, the range of the climate model ensemble shows that it is uncertain whether the average 

number of HPE is expected to change. Thus, the second hypothesis can be accepted for all ACIs except 

for the ACI HPE, for which the second hypothesis is rejected due to the uncertainties. 

 

Regarding the variability of ACIs, the focus lied on the temporal variability. The temporal climate 

variability was investigated by analysing the temporal standard deviation of the yearly number of an 

ACI. In most cases, an increase in the average occurrence of an ACI was associated with an increase in 

standard deviation and a decrease in the average occurrence with a decrease in standard deviation. 

However, regarding the ACI HPE, change signals for the standard deviation are again very small and 

associated with large uncertainties as illustrated by the range of the climate model ensemble. 

 

To some extent, changes in spatial variability are visible. The change signal for an ACI is often strongest 

where the respective ACI occurs most frequently during the reference period. For example, the 

occurrence of heat stress related ACIs increase strongest in low altitudes, while the occurrence of low 

temperature stress related ACIs mostly decreases the most in high altitudes. This increases the spatial 

contrast in heat stress related ACI occurrence and reduces to some extent the spatial contrast in the 

occurrence of the ACIs Frost Day and Frostsum between different regions in Switzerland. With these 

results, the third hypothesis is accepted for all ACIs except for the ACI HPE. For the ACI HPE, the third 

hypothesis is rejected due to uncertainties in the results. 

 

This thesis gives a broad overview of the potential climate-related challenges in maize cultivation in 

mid-century. By including ACIs of different stress categories, it is possible to analyse the impact of 

different aspects of climate change. With the ACI change signal maps being based on a high-resolution 

grid of, at the time of this thesis, the most up-to-date climate scenarios for Switzerland (CH2018, 2018), 

they can provide a basis for recommendations in the adaptation process to mitigate the risks of climate 

change. 

 

 

7.2 Future Research 

This thesis underlines the expected increase of heat and drought stress and the combination of such 

for maize cultivation in Switzerland until mid-century. It includes the change of climatological 

parameters, not however the adaptability of farmers. By using more heat and drought stress resistant 

maize genotypes, it is possible to mitigate the negative consequences of climate change on maize 

(Holzkämper and Fuhrer, 2015; Waqas et al., 2021). At the end of 2025, the new climate scenarios 
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CH2025 for Switzerland will be published (MeteoSwiss, 2024b, no date a). With the new CH2025 data, 

the evaluation of this thesis should be repeated in order to provide up-to-date climate information for 

end-users. 

Moreover, with the new climate data, it may be useful to investigate the impact of climate change on 

maize varieties that are more compatible with the expected climate in mid-century, in order to provide 

farmers with information about the advantages and availability of more appropriate maize genotypes 

within the next decades. In this way, the adaptability of farmers could be included in climate change 

impact analysis. This could however also mean, that ACIs with new thresholds are needed, as the used 

thresholds in this thesis may not be suited for the in mid-century potentially new recommended maize 

genotypes. Specifically waterlogging is an important, but in comparison to e.g. heat and drought stress 

a rather poorly investigated stress factor for maize (Rötter et al., 2018). Thus, the expected 

waterlogging risk for maize cultivation in Switzerland needs to be addressed in more detail in future 

research. 

 

Furthermore, this thesis provides an overview of how climate change leads to a change in ACI 

occurrence within a fixed growing season. In a next step, the length of the growing season and the 

individual phenological phases should be estimated dynamically, based on climatological parameters. 

A possible way to do so is shown in Holzkämper and Fuhrer (2015). By doing so, the evaluation of the 

change in ACI occurrence within the respective phenological phase, in which maize is the most 

susceptible to the respective climatological stress, may be possible. Moreover, with rising 

temperatures, the phenological development rate of crop is expected to accelerate (Torriani et al., 

2007). By focusing on dynamically estimated phenological phase durations, this effect may be taken 

into account (Holzkämper and Fuhrer, 2015). 
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Appendices 

 

A Supplemental results of ACI validation with yield data 

A.1 Correlation between maize yield and individual ACIs 
 
Table 6: Spearman's rank correlation  between ACI occurrence and maize yield and the corresponding p-value for the 
municipalities Aristau, Dietwil and Islisberg. For each municipality, the number of years with available maize yield data is 
listed. 

 
Aristau (18 yrs.) Dietwil (20 yrs.) Islisberg (17 yrs.) 

ACI  p-value  p-value  p-value 

HS30 0.15 0.56 0.19 0.41 0.01 0.96 

HS35 −0.11 0.68 0.14 0.56 −0.30 0.24 

HS35sum −0.11 0.68 0.14 0.56 −0.32 0.22 

Frost Day 0.00 1.00 – – −0.13 0.63 

Frostsum 0.00 1.00 – – −0.13 0.63 

LT6 0.04 0.88 −0.28 0.24 −0.22 0.40 

HPE 0.32 0.19 −0.41 0.07 −0.08 0.75 

SPIm −0.22 0.37 0.57 0.01 0.31 0.23 

SPIe 0.14 0.58 0.00 1.00 0.38 0.13 

SPIm & HS30 −0.49 0.04 0.33 0.15 0.15 0.56 

SPIe & HS35 – – – – – – 

HPE & HS30 – – – – – – 

HPE & HS35 – – – – – – 

SPIm & Frost Day 0.00 1.00 – – −0.13 0.63 

SPIe & Frost Day – – – – – – 

HPE & Frost Day – – – – – – 
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Table 7: Spearman's rank correlation  between ACI occurrence and maize yield and the corresponding p-value for the 
municipalities Moehlin, Zetzwil and Hohenrain. For each municipality, the nr. of years with available maize yield data is listed. 

Spearman's rank correlation coefficient  
 

Moehlin (19 yrs.) Zetzwil (19 yrs.) Hohenrain (18 yrs.) 

ACI  p-value  p-value  p-value 

HS30 −0.23 0.34 −0.18 0.45 0.04 0.87 

HS35 −0.11 0.65 −0.32 0.19 −0.40 0.10 

HS35sum −0.11 0.65 −0.32 0.19 −0.40 0.10 

Frost Day – – 0.02 0.93 0.30 0.22 

Frostsum – – 0.02 0.93 0.30 0.22 

LT6 0.14 0.56 0.20 0.42 0.18 0.47 

HPE −0.19 0.44 −0.24 0.32 −0.09 0.73 

SPIm 0.15 0.53 0.25 0.30 −0.27 0.28 

SPIe −0.03 0.90 0.15 0.55 −0.16 0.52 

SPIm & HS30 −0.24 0.33 0.00 0.99 −0.21 0.41 

SPIe & HS35 – – – – – – 

HPE & HS30 – – – – – – 

HPE & HS35 – – – – – – 

SPIm & Frost Day – – 0.02 0.93 0.30 0.22 

SPIe & Frost Day – – – – – – 

HPE & Frost Day – – – – – – 

 

Table 8: Spearman's rank correlation  between ACI occurrence and maize yield and the corresponding p-value for the 
municipalities Ramsen, Schlatt and Thundorf. For each municipality, the nr. of years with available maize yield data is listed. 

Spearman's rank correlation coefficient  
 

Ramsen (19 yrs.) Schlatt (18 yrs.) Thundorf (17 yrs.) 

ACI  p-value  p-value  p-value 

HS30 −0.23 0.33 −0.41 0.09 −0.11 0.68 

HS35 −0.42 0.07 −0.57 0.01 – – 

HS35sum −0.37 0.12 −0.57 0.01 – – 

Frost Day – – −0.21 0.40 −0.05 0.85 

Frostsum – – −0.21 0.40 −0.05 0.85 

LT6 0.26 0.28 −0.09 0.72 0.26 0.31 

HPE 0.09 0.73 0.07 0.79 0.21 0.42 

SPIm −0.14 0.57 0.17 0.49 0.03 0.91 

SPIe −0.16 0.51 0.28 0.27 −0.10 0.70 

SPIm & HS30 −0.16 0.52 −0.01 0.96 −0.41 0.10 

SPIe & HS35 – – – – – – 

HPE & HS30 – – – – – – 

HPE & HS35 – – – – – – 

SPIm & Frost Day – – – – -0.05 0.85 

SPIe & Frost Day – – – – – – 

HPE & Frost Day – – – – – – 
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Table 9: Spearman's rank correlation  between ACI occurrence and maize yield and the corresponding p-value for the 
municipalities Yvorne, Schwerzenbach and Thalheim an der Thur. For each municipality, the nr. of years with available maize 
yield data is listed. 

Spearman's rank correlation coefficient (rS)  
 

Yvorne (19 yrs.) Schwerzenbach (17 
yrs.) 

Thalheim an der Thur 
(17 yrs.) 

ACI  p-value  p-value  p-value 

HS30 −0.01 0.96 −0.14 0.60 −0.61 0.01 

HS35 – – −0.11 0.68 −0.52 0.03 

HS35sum – – −0.10 0.69 −0.52 0.03 

Frost Day 0.43 0.07 – – −0.20 0.43 

Frostsum 0.43 0.06 – – −0.20 0.43 

LT6 0.38 0.11 −0.55 0.02 −0.25 0.34 

HPE −0.19 0.44 −0.12 0.65 0.39 0.12 

SPIm −0.14 0.57 0.25 0.32 −0.28 0.27 

SPIe −0.29 0.22 0.09 0.72 −0.16 0.55 

SPIm & HS30 −0.36 0.14 0.02 0.94 −0.15 0.56 

SPIe & HS35 – – – – – – 

HPE & HS30 – – – – – – 

HPE & HS35 – – – – – – 

SPIm & Frost Day 0.36 0.13 – – −0.20 0.43 

SPIe & Frost Day – – – – – – 

HPE & Frost Day – – – – – – 

 

  



 
61 

 

A.2 Multiple linear regression models 
 
Table 10: Output of the multiple linear regression model for maize yield and all univariate ACIs and the corresponding p-value 
for individual municipalities. For each municipality, the number of years with available maize yield data is listed. 

ACI R2 Adjusted R2 p-value Nr. of yrs. with yield data 

Aristau 0.37 −0.19 0.71 18 
Dietwil 0.34 0.04 0.4 20 
Islisberg 0.4 −0.2 0.7 17 
Moehlin 0.62 0.37 0.08 19 
Zetzwil 0.46 0.03 0.45 19 
Hohenrain 0.35 −0.1 0.62 18 
Ramsen 0.25 −0.24 0.8 19 
Schlatt 0.68 0.4 0.1 18 
Thundorf 0.26 −0.19 0.74 17 
Yvorne 0.53 0.23 0.19 19 
Schwerzenbach  0.61 0.31 0.16 17 
Thalheim an der Thur 0.5 −0.01 0.51 17 

 

  



 
62 

 

A.3 Relative importance models 
 
Table 11: Relative importance of each individual ACI listed below for maize yield variation in Aristau (nr. of years with maize 
yield data = 18 years). The metrics are normalised sum to 100%. The occurrence of the ACIs not included in this list was too 
low for the ACI to be included in this estimation. The output of the relative importance model shows the portion of maize yield 
variation explained by the listed univariate ACIs. 

Aristau    

ACI Relative importance [% of R2] 

LT6 0.05   
SPIm 0.41   
HPE 0.04   
HS30 0.32   
HS35 0.10   
HS35sum 0.09   
    

 R2 Adjusted R2 p-value 

Relative importance model 0.34 −0.02 0.5 

 

 
Table 12: Relative importance of each individual ACI listed below for maize yield variation in Dietwil (nr. of years with maize 
yield data = 20 years). The metrics are normalised sum to 100%. The occurrence of the ACIs not included in this list was too 
low for the ACI to be included in this estimation. The output of the relative importance model shows the portion of maize yield 
variation explained by the listed univariate ACIs. 

Dietwil    

ACI Relative importance [% of R2] 

LT6 0.11   
SPIm 0.25   
HPE 0.60   
HS30 0.05   
    

 R2 Adjusted R2 p-value 

Relative importance model 0.24 0.04 0.35 
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Table 13: Relative importance of each individual ACI listed below for maize yield variation in Islisberg (nr. of years with maize 
yield data = 17 years). The metrics are normalised sum to 100%. The occurrence of the ACIs not included in this list was too 
low for the ACI to be included in this estimation. The output of the relative importance model shows the portion of maize yield 
variation explained by the listed univariate ACIs. 

Islisberg    

ACI Relative importance [% of R2] 

LT6 0.03   
SPIm 0.26   
SPIe 0.30   
HPE 0.09   
HS30 0.03   
HS35 0.08   
HS35sum 0.21   
    

 R2 Adjusted R2 p-value 

Relative importance model 0.32 −0.2 0.73 

 

 
Table 14: Relative importance of each individual ACI listed below for maize yield variation in Moehlin (nr. of years with maize 
yield data = 19 years). The metrics are normalised sum to 100%. The occurrence of the ACIs not included in this list was too 
low for the ACI to be included in this estimation. The output of the relative importance model shows the portion of maize yield 
variation explained by the listed univariate ACIs. 

Moehlin    

ACI Relative importance [% of R2] 

LT6 0.04   
SPIm 0.14   
SPIe 0.10   
HPE 0.08   
HS30 0.17   
HS35 0.20   
HS35sum 0.27   
    

 R2 Adjusted R2 p-value 

Relative importance model 0.62 0.37 0.08 
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Table 15: Relative importance of each individual ACI listed below for maize yield variation in Zetzwil (nr. of years with maize 
yield data = 19 years). The metrics are normalised sum to 100%. The occurrence of the ACIs not included in this list was too 
low for the ACI to be included in this estimation. The output of the relative importance model shows the portion of maize yield 
variation explained by the listed univariate ACIs. 

Zetzwil    

ACI Relative importance [% of R2] 

LT6 0.33   
SPIm 0.13   
SPIe 0.05   
HPE 0.09   
HS30 0.22   
HS35 0.09   
HS35sum 0.09   
    

 R2 Adjusted R2 p-value 

Relative importance model 0.46 0.12 0.32 

 

 
Table 16: Relative importance of each individual ACI listed below for maize yield variation in Hohenrain (nr. of years with maize 
yield data = 18 years). The metrics are normalised sum to 100%. The occurrence of the ACIs not included in this list was too 
low for the ACI to be included in this estimation. The output of the relative importance model shows the portion of maize yield 
variation explained by the listed univariate ACIs. 

Hohenrain    

ACI Relative importance [% of R2] 

LT6 0.11   
SPIm 0.44   
HPE 0.25   
HS30 0.19   
    

 R2 Adjusted R2 p-value 

Relative importance model 0.1 −0.18 0.84 

 

 
Table 17: Relative importance of each individual ACI listed below for maize yield variation in Ramsen (nr. of years with maize 
yield data = 19 years). The metrics are normalised sum to 100%. The occurrence of the ACIs not included in this list was too 
low for the ACI to be included in this estimation. The output of the relative importance model shows the portion of maize yield 
variation explained by the listed univariate ACIs. 

Ramsen    

ACI Relative importance [% of R2] 

LT6 0.11   
SPIm 0.29   
SPIe 0.11   
HS30 0.06   
HS35 0.34   
HS35sum 0.09   
    

 R2 Adjusted R2 p-value 

Relative importance model 0.24 −0.14 0.7 
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Table 18: Relative importance of each individual ACI listed below for maize yield variation in Schlatt (nr. of years with maize 
yield data = 18 years). The metrics are normalised sum to 100%. The occurrence of the ACIs not included in this list was too 
low for the ACI to be included in this estimation. The output of the relative importance model shows the portion of maize yield 
variation explained by the listed univariate ACIs. 

Schlatt    

ACI Relative importance [% of R2] 

LT6 0.17   
SPIm 0.28   
SPIe 0.32   
HPE 0.02   
HS30 0.06   
HS35 0.09   
HS35sum 0.05   
    

 R2 Adjusted R2 p-value 

Relative importance model 0.66 0.43 0.07 

 

 
Table 19: Relative importance of each individual ACI listed below for maize yield variation in Thundorf (nr. of years with maize 
yield data = 17 years). The metrics are normalised sum to 100%. The occurrence of the ACIs not included in this list was too 
low for the ACI to be included in this estimation. The output of the relative importance model shows the portion of maize yield 
variation explained by the listed univariate ACIs. 

Thundorf    

ACI Relative importance [% of R2] 

LT 0.17   
SPIm 0.11   
SPIe 0.04   
HPE 0.33   
HS30 0.35   
    

 R2 Adjusted R2 p-value 

Relative importance model 0.26 −0.08 0.6 
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Table 20: Relative importance of each individual ACI listed below for maize yield variation in Yvorne (nr. of years with maize 
yield data = 17 years). The metrics are normalised sum to 100%. The occurrence of the ACIs not included in this list was too 
low for the ACI to be included in this estimation. The output of the relative importance model shows the portion of maize yield 
variation explained by the listed univariate ACIs. 

Yvorne    

ACI Relative importance [% of R2] 

Frost Day 0.13   
Frostsum 0.22   
LT6 0.14   
SPIm 0.06   
SPIe 0.17   
HPE 0.04   
HS30 0.24   
    

 R2 Adjusted R2 p-value 

Relative importance model 0.53 0.23 0.19 

 

 
Table 21: Relative importance of each individual ACI listed below for maize yield variation in Schwerzenbach (nr. of years with 
maize yield data = 17 years). The metrics are normalised sum to 100%. The occurrence of the ACIs not included in this list was 
too low for the ACI to be included in this estimation. The output of the relative importance model shows the portion of maize 
yield variation explained by the listed univariate ACIs. 

Schwerzenbach    

ACI Relative importance [% of R2] 

LT6 0.54   
SPIm 0.19   
SPIe 0.02   
HPE 0.07   
HS30 0.11   
HS35 0.03   
HS35sum 0.04   
    

 R2 Adjusted R2 p-value 

Relative importance model 0.61 0.31 0.16 
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Table 22: Relative importance of each individual ACI listed below for maize yield variation in Thalheim an der Thur (nr. of years 
with maize yield data = 17 years). The metrics are normalised sum to 100%. The occurrence of the ACIs not included in this list 
was too low for the ACI to be included in this estimation. The output of the relative importance model shows the portion of 
maize yield variation explained by the listed univariate ACIs. 

Thalheim an der Thur    

ACI Relative importance [% of R2] 

LT6 0.10   
SPIm 0.05   
SPIe 0.08   
HPE 0.12   
HS30 0.48   
HS35 0.10   
HS35sum 0.07   
    

 R2 Adjusted R2 p-value 

Relative importance model 0.48 0.07 0.4 
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B Enlarged maps showing ACI occurrence and change signals 

 

B.1 Heat stress 
 

 
  

Figure 25: Left column: Average yearly number of HS30 based on observational data during the reference period (top) and 
based on the RCP 2.6 scenario (middle) and the RCP 8.5 scenario (bottom) during mid-century. Right column: Same as on the 
left but for the standard deviation of the yearly number of HS30. 
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Figure 26: Average yearly number of HS35 based on observational data during the reference period (top) and based on the 
RCP 2.6 scenario (middle) and the RCP 8.5 scenario (bottom) during mid-century. 
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Figure 27: Left column: Average yearly HS35sum based on observational data during the reference period (top) and based 
on the RCP 2.6 scenario (middle) and the RCP 8.5 scenario (bottom) during mid-century. Right column: Same as on the left 
but for the standard deviation of the yearly HS35sum. 
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B.2 Low temperature stress 
 

 
  

Figure 28: Left column: Average yearly number of Frost Days based on observational data during the reference period (top) 
and based on the RCP 2.6 scenario (middle) and the RCP 8.5 scenario (bottom) during mid-century. Right column: Same as on 
the left but for the standard deviation of the yearly number of Frost Days. 
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Figure 29: Left column: Average yearly Frostsum based on observational data during the reference period (top) and based on 
the RCP 2.6 scenario (middle) and the RCP 8.5 scenario (bottom) during mid-century. Right column: Same as on the left but 
for the standard deviation of the yearly Frostsum. 
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Figure 30: Average yearly number of LT6 based on observational data during the reference period (top) and based on the RCP 
2.6 scenario (middle) and the RCP 8.5 scenario (bottom) during mid-century. 
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B.3 Potential waterlogging 
 

 
  

Figure 31: Left column: Average yearly number of HPE based on observational data during the reference period (top) and 
based on the RCP 2.6 scenario (middle) and the RCP 8.5 scenario (bottom) during mid-century. Right column: Same as on the 
left but for the standard deviation of the yearly number of HPE. 

 



 
75 

 

B.4 Drought 
 

 
  

Figure 32: Average yearly number of SPIm based on observational data during the reference period (top) and based on the 
RCP 2.6 scenario (middle) and the RCP 8.5 scenario (bottom) during mid-century. 
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B.5 Concurrent stress 
 

 
  

Figure 33: Left column: Average yearly number of SPIm & HS30 based on observational data during the reference period 
(top) and based on the RCP 2.6 scenario (middle) and the RCP 8.5 scenario (bottom) during mid-century. Right column: Same 
as on the left but for the standard deviation of the yearly number of SPIm & HS30. 
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Figure 34: Left column: Average yearly number of SPIm & Frost Days based on observational data during the reference 
period (top) and based on the RCP 2.6 scenario (middle) and the RCP 8.5 scenario (bottom) during mid-century. Right 
column: Same as on the left but for the standard deviation of the yearly number of SPIm & Frost Days. 
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Figure 35: Average yearly number of HPE & Frost Days based on observational data during the reference period (top) and 
based on the RCP 2.6 scenario (middle) and the RCP 8.5 scenario (bottom) during mid-century. 
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C Used R packages 

All programming for this thesis was conducted in R studio (R Core Team, 2023), using OpenAI's GPT-3.5 

(OpenAI, no date) to help with the programming. In the following, the R packages are listed that have 

been used besides the packages included in R Studio. 

 

 

C.1 Packages to work with NetCDF data or excel files 
 

‘chron’ (James and Hornik, 2023) 

‘ncdf4’ (Pierce, 2023) 

‘readxl’ (Wickham and Bryan, 2023) 

 

 

C.2 Packages used for data analysis and manipulation 
 

‘ggplot2’ (Wickham, 2016) 

‘abind’ (Plate and Heiberger, 2016) 

‘relaimpo’ (Grömping, 2006) 

 

 

C.3 Packages used for the calculation of the SPI 
 

‘SCI’ (Stagge et al., 2015, 2016; Gudmundsson and Stagge, 2016) 

‘SPEI’ (Beguería and Vicente-Serrano, 2023) 

‘evd’ (Stephenson, 2002) 

 

 

C.4 Packages for plotting 
 

‘fields’ (Nychka et al., 2021) 

‘colorspace’ (Zeileis et al., 2020) 

Source hack of the ‘legend’ function in R studio: 

http://www.math.mcmaster.ca/bolker/R/misc/legendx.R (Bolker, 13:55, 30 November 2012) 
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