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Abstract

Rapid emergence of shared electric scooter (e-scooter) services has posed new challenges to road
safety issues over the last few years as a serious worldwide public concern. Previous studies have
investigated e-scooter accidents from multiple perspectives. However, research gaps still exist in
understanding the role of infrastructure-related factors in e-scooter accidents, especially in the
city of Zurich. The overarching aim of this thesis is to investigate and model the relationship
between the characteristics of traffic infrastructure and electric scooter accidents. To address
the lack of knowledge of electric scooter safety issues, a spatial-temporal analysis was first
conducted for an overview of the pattern of accident distribution. Curb extraction was achieved
by applying the Segment Anything Model to Google Street View images as a supplement to
existing infrastructure data. A comprehensive dataset including curb variables, infrastructure
entropy, and traffic transport was constructed. With random pseudo points being generated,
a correlation between e-scooter accidents and traffic infrastructure was eventually determined
by regression analysis. Results from this study indicate a strong correlation exists between the
presence of e-scooter accidents and traffic infrastructure features such as speed limit and the
presence of curbs. Significant variables related to the severity of electric scooter accidents were
determined, including distance to road and curb width type. Although there are limitations in
data size, coverage, quality, and approaches. Overall, this study offers insights into e-scooter
safety, introduces an analysis process to extract infrastructure from street view images, and
confirms the important influence of traffic infrastructure on e-scooter accidents.

Keywords: E-scooter accidents, Infrastructure, Road safety, Segment Anything Model, Google
Street View, Traffic network
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1. Introduction

1.1 Motivation and Background

Road safety issues cause massive casualties and considerable economic losses globally. According
to statistics from the World Health Organization (WHO), road traffic crashes lead to approxi-
mately 1.3 million deaths each year worldwide, which is the leading cause of death for children
and young adults aged 5-29 years. Moreover, in most countries, road traffic crashes cost 3%
of their gross domestic product (World Health Organization, 2023). As for Switzerland, road
accidents caused an average of 230 people died and 21258 people injured annually over the past
decade (Bundesamt für Statistik, 2023b; Federal Roads Office, 2023). In 2018, road crashes re-
sulted in an estimated economic cost of 16.5 billion CHF, which was 2.4% of GDP (International
Transport Forum, 2021).

Recognizing the increasing importance of road safety issues, governments from all over the
world are dedicated to solving this problem. According to the 2030 Agenda for Sustainable
Development, the United Nations (UN) General Assembly has set several targets concerning
road safety issues (United Nations, 2015). Target 3.6 indicates halving the number of global
deaths and injuries from road traffic accidents by 2020. Target 11.2 specifies providing access
to safe, affordable, accessible, and sustainable transport systems for all, improving road safety,
notably by expanding public transport, with special attention to the needs of those in vulnerable
situations, women, children, persons with disabilities, and older persons. The UN General
Assembly adopted Resolution 74/299 “Improving global road safety” (United Nations, 2020)
proclaiming the Decade of Action for Road Safety 2021-2030, with the ambitious target of
preventing at least 50% of road traffic deaths and injuries by 2030 in September 2020. A Global
Plan for the Decade of Action developed by WHO, the UN regional commissions, and other
partners in the UN Road Safety Collaboration was released in October 2021.

A wide range of factors affects road accidents, which are usually related to traffic and road
characteristics, behaviours of drivers and other road users, vehicles, and environmental condi-
tions (C. Wang et al., 2013). One of the most critical factors impacting road safety outcomes
is road infrastructure and environment (Elvik et al., 2009). In previous studies, road accidents
have been studied in the context of infrastructure characteristics, including roadway geometries
(Shankar et al., 1995), road elements (e.g., number of lanes and lane widths, shoulder width
(Noland & Oh, 2004), road curvature (Haynes et al., 2007), road infrastructure improvements
(e.g., road upgrading and pavements (Navin et al., 2000)), roundabout design (Hels & Orozova-
Bekkevold, 2007), intersections design (Tanishita et al., 2023), and signalisation (Abdel-Aty &
Wang, 2006). However, most studies on road safety use official statistics data from the govern-
ment, survey data, observational data collected through or/off-board devices or sensors, social
media, simulation models, as well as open-source data, which is generally labor-intensive and
time-consuming with a general requirement of high technical cost and specialized equipment

1



CHAPTER 1. INTRODUCTION

(Sohail et al., 2023). Furthermore, using the aforementioned traditional data collection meth-
ods, a detailed description of specific road infrastructure features (e.g., curbs) may be hard or
expensive to extract. Detection and extraction of curbs, which has attracted research attention
over the last two decades, is regarded as fundamental for autonomous vehicle navigation related
to road safety. The data acquisition methods can be classified into vision, LiDAR, ultrasonic,
or a combination of these sensors (Romero et al., 2021), which may have relatively low coverage
and complexity issues. Thereby, in order to understand the relationships between road infras-
tructure features and accidents comprehensively, novel methods with lower cost, less complexity,
and higher coverage to extract up-to-date data on detailed road infrastructure (e.g., curbs) are
required.

The growing presence of micro-mobility is identified as an emerging challenge to road safety
based on the WHO’s Global Plan for the Decade of Road Action 2021-2030 (World Health
Organization, 2021). There has been a rapid emergence of shared electric scooters (e-scooters)
in recent years. As a micro-mobility service, it provides an efficient and environmentally friendly
mode of first- and last-mile transportation (Ma et al., 2021), which also gives users the freedom
to make optimal use of road infrastructure and the ability to cut through traffic because of
its small size. However, as e-scooters grow in popularity, increasing road accidents that involve
them are reported, which have created additional crash risks and caused great concern regarding
the road safety of e-scooters by the authorities worldwide. Researchers have studied e-scooter
issues in more than 15 countries with a wide range of research topics (Kazemzadeh & Sprei,
2022), including road-safety related issues (safety concerns, accident patterns and issues, traffic
enforcement (Kazemzadeh et al., 2023), accident factors (Bjsmskau & Karlseo, 2022)), injury
patterns (Kleinertz et al., 2021; Niemann et al., 2023), users’ profile and usage pattern (Reck &
Axhausen, 2021), system characteristics (Pobudzei et al., 2023), and impacts (Şengül & Mostofi,
2021). In Switzerland, only user characteristics (Reck & Axhausen, 2021), usage, competition,
and mode choice (Reck et al., 2021) were studied. A study that considers and investigates more
perspectives on e-scooter accidents in the city of Zurich would be of interest.

Previous studies indicate that adverse environmental conditions, risky behaviour of riders (such
as alcohol consumption and drug use before riding, smartphone use, and wearing no helmet
while riding), hazardous surface features, reduced visibility during nighttime, and infrastructure-
related factors all contribute to e-scooter accidents (Azimian & Jiao, 2022; Karpinski et al., 2022;
Pobudzei et al., 2023; Stigson et al., 2021; White et al., 2023). Nonetheless, the understanding
of how specific road infrastructure features affect e-scooter accidents is insufficient. There is still
a lack of comprehensive and factual data-based analysis of e-scooter accidents and their causes,
especially considering the impact of traffic-infrastructure characteristics. Moreover, e-scooter
users experience more severe vibration impact compared to other road users like cyclists while
riding on the same infrastructure facilities (Ma et al., 2021). Small infrastructure features like
curbs are likely to cause a higher risk for road accidents of e-scooters. Further data collection
of curbs is required to better analyze the impacts of road infrastructure features on e-scooter
accidents.

Street view imagery (SVI) has become an important and prevalent data source for urban analysis

2



CHAPTER 1. INTRODUCTION

and geographic information science in recent years. It is used across a wide range of fields with
various applications, including spatial data infrastructure, greenery, health, urban morphology,
transportation and mobility, walkability and bikeability, real estate, urban perception, and so-
cioeconomic studies (Biljecki & Ito, 2021). SVI provides valuable large-scale data for urban
areas, allowing examination of the visual environment from a human perspective. Numerous
studies have attempted to detect, identify or extract objects on road infrastructure from SVI,
like traffic signs (Balali et al., 2015; Campbell et al., 2019), road lanes (Mamidala et al., 2019),
sidewalks (Ning et al., 2022), road safety barriers (Rahman et al., 2021), signalized intersections
(X. Li et al., 2022), pavement marking (Kong et al., 2022) and pavement damage (Ren et al.,
2023). Despite this, no studies have investigated curbs extraction from SVI, which is worthwhile
to complement current data collection methods.

Image segmentation, which can be defined as classifying pixels with semantic labels or partition-
ing individual objects or both, plays an important role in computer vision and image processing
(Minaee et al., 2022). Numerous image segmentation techniques and algorithms have been
applied in feature extraction, among which Segment Anything Model (SAM) stands out as a
promptable zero-shot image segmentation model trained with over 1 billion masks on 11 million
images (Kirillov et al., 2023). Studies have indicated that SAM has made significant progress
in segmentation (C. Zhang et al., 2023) and offered promising solutions for extensive objects
detection, which includes features in built environment (civil infrastructure defect (Ahmadi et
al., 2023), structural damage (Balaji et al., 2024), mobility infrastructure (Sultan et al., 2024;
Xia et al., 2023), safety-related architectural features (Di & Gong, 2024)), remote sensing (tree
species (Ferreira et al., 2024), land use and land cover (T. He et al., 2024), rooftop photovoltaics
(R. Yang et al., 2024), water extent (Zheng et al., 2023)), medical images (Y. Zhang et al., 2024),
other fields (tunnel water leakage (Chen et al., 2024), animal behaviour analysis (C. Yang et al.,
2023)). Considering the task of SVI segmentation to extract curbs, SAM has the potential to
address this challenge.

1.2 Research Goals

Road safety is increasingly recognised as a serious worldwide public concern, which faces an
emerging challenge of micro-mobility, in particular, e-scooters. In the countless studies on e-
scooters, much uncertainty still exists about the relationship between e-scooter accidents and
traffic infrastructure characteristics, which is likely to be different from that of other road users’
accidents. As infrastructure is proven to be one of the key factors impacting road crashes, the
lack of data collection methods with lower cost and less complexity for detailed infrastructure
features remains a problem. With rapid development of image processing and segmentation
techniques, applying advanced AI-based models on SVI to extract specific infrastructure features
has become a potential solution.

The major objective of this master’s thesis is to understand how traffic infrastructure character-
istics affect e-scooter accidents in the city of Zurich. To fill the lack of knowledge on e-scooter
accidents in Zurich, other than descriptive statistics, spatial-temporal analysis combined with
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geographical information system data is applied. Additionally, with a focus on specific infras-
tructure features, this study proposes to extract detailed information about curbs from street
view images of e-scooter accident locations by using SAM and to classify detected objects con-
sidering perspectives of spectral properties and geometric attributes. Curb-related variables
are therefore generated based on the results of extraction and classification as a supplement to
traffic-infrastructure variables obtained from government data. Regression analysis is then per-
formed aiming to investigate the relationship between traffic infrastructure characteristics and
e-scooter accidents. Moreover, with generation of pseudo-absence points, a prediction model for
the presence and severity of e-scooter accidents is built, which provides an insight into high risk
locations of e-scooter accidents in the city of Zurich.

4
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2.1 Literature Review

2.1.1 E-scooter Studies

The shared e-scooter has rapidly gained popularity as a novel type of micro-mobility worldwide
since its introduction in the USA in 2017 (Hosseinzadeh et al., 2021), of which recent research
outputs have covered multiple aspects. The main themes of e-scooter studies can be classified
into the following five categories: system characteristics, user profile and behavior, data and
technology, health and safety, impact, policy, and regulation.

- System characteristics: It has been demonstrated that shared e-mobility is predom-
inately used for short trips. While e-bike sharing is found to be mostly used for com-
muting trips, other sharing e-mobility systems are mainly for leisure trips. Moreover,
the service demand is significantly affected by attributes of shared e-mobility system,
socio-demographic characteristics, land use pattern, level of transport connectivity of the
locations, and also psychological variables and travel patterns of the individual (Liao &
Correia, 2022).

- User profile and behavior: Previous research has indicated that current users of shared
e-mobility are mostly male, middle-aged people with relatively high income and education
(Liao & Correia, 2022). In Zurich specifically, users tend to be young, university-educated,
full-time employed males who live in affluent households without children or cars (Reck &
Axhausen, 2021). The mode choice of micro-mobility is nested and determined by distance
and time of day, and the relationship between fleet density and usage is concluded as a
"plateau effect," which means the fleet densities increase as marginal utility decreases (Reck
et al., 2021).

- Data and technology: Different data collection methods have been applied, and the
data sources are: medical records from emergency/trauma center in hospitals (Frank et
al., 2023; Harbrecht et al., 2022; Linhart et al., 2024); local authorities, transport modeling
tools, statistics, census; public transport or micro-mobility providers; survey, observation,
interview, and experiment; open source databases (Kazemzadeh & Sprei, 2022; Ma et al.,
2021; Oeschger et al., 2020; O’Hern & Estgfaeller, 2020). Also, supporting technologies
for e-scooter have been investigated, such as on-board charger arrangement for installation
(Solero, 2001).

- Health and safety: E-scooter accidents led to extra burden on the emergency capacities
(Harbrecht et al., 2022). Numerous studies with a focus on injury patterns of e-scooter
accidents have found that head, face, and upper limbs are the most commonly affected
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parts. Compared to other road user accidents, e-scooter accidents occur more on weekends
with alcohol use (Kleinertz et al., 2021). Several studies have suggested helmet use, strict
alcohol controls, and locking periods could be an effective way to prevent serious injury
from e-scooter crashes (Frank et al., 2023; Linhart et al., 2024). The observed injury
pattern and severity should also take into account the differences in age, gender, and
driving behavior between e-mobility services (Niemann et al., 2023). A large and growing
body of literature has investigated e-scooter accidents. E-scooters are more vulnerable to
potholes and road obstacles because of their small wheel diameter, thickness, and wheel
type combined with speeds of 20-50 km/h (International Transport Forum, 2020). E-
scooter crashes mostly take place at intersections or driveways, on the transition between
sidewalk and roadway (Shah et al., 2021), arterial roads/streets (H. Yang et al., 2020),
while the riders are most frequently injured on sidewalks (Cicchino et al., 2021). Most
accidents are recorded as single crashes (Stigson et al., 2021), without the involvement of
other road users (International Transport Forum, 2024). The main causes and factors that
contribute to e-scooter accidents have been particularly analyzed, which is summarized in
the forthcoming paragraph.

- Impact: Attention has also focused on the impact of e-scooter from diverse perspec-
tives, which could be categorized into environment, society-users, economy, transport, and
safety (Mitropoulos et al., 2023). It has been suggested that shared e-mobility services
can potentially cause positive effects on transportation and environment, such as reducing
car use, car ownership, and greenhouse gas emissions (Liao & Correia, 2022). The envi-
ronmental burdens associated with charging e-scooters are found to be small relative to
materials and manufacturing burdens as well as the impacts of transporting scooters to
overnight charging stations. A net reduction in environmental impacts could be nearly
realized when e-scooter ride replaces average personal automobile travel (Hollingsworth
et al., 2019). Moreover, studies indicate a great potential for a modal shift from other
transport modes to e-micro-mobility vehicles in travel behaviors (Şengül & Mostofi, 2021)
and an alternative and asset to avoid public transport and to promote social distancing,
for example, during COVID-19 pandemic time (Dean & Zuniga-Garcia, 2023; Dias et al.,
2021). As for economic impact, using e-scooters together with public transport is highly
beneficial. The single use of e-scooters is reasonable compared to other means of transport,
except bike and walking. E-scooter combined with public transport offers considerable sav-
ings in comparison with car use, which reduces user cost by 69%. But the combination of
e-scooters with a train, subway, or bus increases the cost by 35% in contrast to exclusive
use of public transport (Edel et al., 2021). Another dominant field is the impact on safety,
in which a large number of studies have analyzed e-scooter incidents and examined them,
summarized in the previous point.

- Policy and regulation: E-scooter safety regulations on minimum age, maximum speed,
maximum power, limit for drink-ride, requirement of helmet, mandatory insurance and
riding on sidewalk varies from countries (International Transport Forum, 2024), and many
places do not have policies for e-scooter usage. Researchers have attempted to discuss the
regulations on micro-mobility, such as sidewalk and curb management policies, equitable
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service standards and equity programs, enforcement and data standards (Shaheen & Co-
hen, 2019), economic regulation (Button et al., 2020), trending policy strategies like using
pilot programs and vendor limits or caps (Riggs et al., 2021).

Table 2.1: Summary of previous e-scooter related review studies

Main focus Research topics covered Main conclusion(s) or recommendation(s) Paper

Integration of
micro-mobility
and public trans-
port systems

Data sources, system char-
acteristics, users, impacts

The main gaps that could be identified are the im-
pacts of integrating micro-mobility and public trans-
port on different aspects of society, the environment,
and the economy.

Oeschger et
al., 2020

Current
research status

User behavior, vehicle tech-
nology, planning, policy,
health, and safety

A proliferation of research in the field of powered
micro-mobility is identified. Safety issue is impor-
tant,particularly when using shared micro-mobility
systems.

O’Hern
and Est-
gfaeller,
2020

Knowledge from
sustainability
aspects on
micro-mobility

Benefits, technology, policy,
behavioral mode-choice

The findings demonstrate the importance of micro-
mobility as a low-carbon mobility and sustainable
transport mode in urban areas.

Abduljabbar
et al., 2021

Current
knowledge

Uses and users, health and
environmental impacts, pol-
icy issues

E-scooter renters’ profiles highly match that of other
micro-mobility service users. E-scooters are fre-
quently related with a high perception of risk from
the public. Further investigation into environmen-
tal impact of shared e-scooters and policy changes
are required.

Bozzi and
Aguilera,
2021

Impacts of
e-micromobility

Travel behaviors, energy
consumption, environmen-
tal impacts, safety, and re-
lated regulations

An overview of impacts of e-micromobility on ur-
ban transport is provided. Surplus energy demands
and impacts of land use parameters, urban forms,
and population density on citizens’ e-micromobility
mode choice are advisable to investigate.

Şengül and
Mostofi,
2021

E-scooter
user experience

Data collection methods, e-
scooter (non) users, trip
characteristics, infrastruc-
ture characteristics

The findings suggest a lack of studies to evaluate e-
scooter level of service. Research gaps in e-scooters
remain in their travel demand, practice in existing
infrastructure, and traffic characteristics.

Kazemzadeh
and Sprei,
2022

E-scooter
user behavior

Usage pattern, demand es-
timation and potential im-
pacts (in transportation,
environment, health, social
and land use)

Shared mobility services are mainly used for short-
distance trips, with users of mostly male, mid-
dle age, well education and high income. The
service demand is significantly related to opera-
tional attributes of shared mobility system, socio-
demographic characteristics, land use patterns, and
level of transport connectivity of the locations.

Liao and
Correia,
2022

E-scooter
injuries

Demographic characteris-
tics, most common injuries,
management of patients

Upper limb fractures are the leading injuries from
e-scooters. And the major mechanism of injury is
falling.

P. Singh et
al., 2022

Psycho-social
characteristics of
e-scooter riders

Behavioral and risk-related
features

Improvement and enforcement of traffic laws, and
training processes for e-scooter users are in growing
need.

Useche
et al., 2022

Current
knowledge

Use patterns, consumer per-
ception, environmental im-
pact

Knowledge needs in deep comprehension of use pat-
terns; e-scooter functions in transport system; poli-
cies, designs, and operations.

Badia and
Jenelius,
2023

E-scooter
safety with focus
on transport and
medical research
domains

Safety concerns of e-
scooting, accident patterns,
and issues, traffic enforce-
ment

Analysing interactions of e-scooters with other road
users, and adopting surrogate safety measures for
e-scooters is in a dire need. In e-scooters involved
collisions, head and face injuries are found to be the
most common injury types.

Kazemzadeh
et al., 2023

Attributes and
impacts of
e-scooter
operations and
services

Attributes in service, infras-
tructure type, and opera-
tion of e-scooters. Impacts
on environment, society-
users, economy, transport
performance, and safety.

The study concludes that the selection of e-scooter
type and role within the transport system should
be guided by the community. The findings suggest
a need for the development of e-scooter impact es-
timation and investigation of the relationship be-
tween user characteristics, impacts, and e-scooter
attributes.

Mitropoulos
et al., 2023
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Previous literature review studies on e-scooters are summarized in Table 2.1, which overall indi-
cate a proliferation in this field. Collectively, these studies outline the main gaps in the following
areas: functions and impacts of integrating e-scooter and public transport, operation in existing
infrastructure related to safety issues, improvement and enforcement of traffic laws and regu-
lations, e-scooter usage patterns, traffic characteristics, travel demand, as well as investigation
into interactions between e-scooter and other road users.

There is a consensus among researchers that safety is one of the most crucial topics in micro-
mobility studies, particularly e-scooter studies. A large number of articles have analyzed the
characteristics of e-scooter accidents and attempted to model the causes and factors contributing
to them. Regarding the crash type, most accidents are recorded without the participation of
other road users (International Transport Forum, 2024). A study on e-scooter fatalities in the
United States from 2018 to 2020 using media and police reports found that 86% of e-scooter
crashes involved motor vehicles, and 28% of them were hit-and-runs. Two main crash types of
fatal crashes are found: an e-scooter was stuck by a motor vehicle from behind, and an e-scooter
rider lost control of the e-scooter (Karpinski et al., 2022). Another article collected crash-related
reports based on web content mining in German found that approximately half of the crashes
are due to solo rider failure (Brauner et al., 2022). Analyses in Sweden showed that most of
the injuries occurred in single crashes, while another road user was injured in 13% of the cases
because of interactions with e-scooters or due to a parked e-scooter (Stigson et al., 2021). As for
the spatial distribution, e-scooter accidents are identified to happen at intersections or driveways,
transition areas between sidewalk and roadway (Shah et al., 2021), while their collision with
vehicles mainly took place on arterial roads/streets and intersections (H. Yang et al., 2020).
E-scooter riders are mostly often injured on sidewalks (Cicchino et al., 2021). Compared to
bicycle collisions, e-scooter crashes occur predominantly in the city center, and concentrate next
to traffic signals on primary roads with adjacent intersections and a mix of land use (Pobudzei
et al., 2023). Considering the temporal factors, the majority of e-scooter accidents took place
at night (Brauner et al., 2022; Karpinski et al., 2022) or in the evenings. E-scooter accidents
happened more commonly on Fridays or during weekends (Pobudzei et al., 2023; Stigson et
al., 2021). In terms of user behavior, abundant studies have shown that behavior, experience
and other rider-related factors significantly correlate with micro-mobility safety. Young, male
riders are generally over-represented among all users of e-scooter accidents (Azimian & Jiao,
2022; Bjsmskau & Karlseo, 2022; International Transport Forum, 2020, 2024), as revealed in
studies that user attributes like age and gender are related to travel behavior (Gioldasis et al.,
2021). Driving under drug influence or alcohol consumption is an indispensable factor for e-
scooter accidents (Brauner et al., 2022; Gioldasis et al., 2021). Misuse of e-scooters is another
common cause, such as riding e-scooters in pairs, in the wrong directions or on forbidden terrain
(Brauner et al., 2022), not following traffic rules, and being distracted by smart mobile devices
(Bjsmskau & Karlseo, 2022). Additionally, environmental conditions have been proven to be
another factor for e-scooter crashes. Unfavorable environmental surroundings like precipitation
and fog (Karpinski et al., 2022), lighting and surface condition, direction of traffic flow and level
of demand (White et al., 2023), road with pothole or low friction (Stigson et al., 2021) were
revealed as risk factors. Finally yet importantly, infrastructure-related factors are indicated to

8



CHAPTER 2. RELATED WORK

contribute to e-scooter accidents. Several studies have revealed that e-scooter accidents mostly
occurred in dense urban settings (Azimian & Jiao, 2022). However, e-scooter riders experience
more severe vibration impact than other road users from the same facilities regardless of the
pavement types, which is caused by e-scooters’ quick changes in acceleration (Ma et al., 2021),
smaller wheel diameter and thickness (International Transport Forum, 2020). Infrastructure
factors, including surface transitions, riding surface type, and riding locations (White et al.,
2023) were therefore examined to be one of the most crucial precipitating factors. Studies also
indicated that street length and type, number of street nodes, and traffic signals were statistically
significant factors (Pobudzei et al., 2023), while collision between e-scooters and curbs is another
common cause (Stigson et al., 2021). In view of all the literature that has been mentioned so
far, factors of e-scooter accidents are summarised as risky behavior of users, reduced visibility
during nighttime, adverse environmental conditions, and infrastructure-related factors.

2.1.2 Effects of traffic-infrastructure characteristics on road accidents

Road safety generally involves a variety of different aspects, including road infrastructure, road
user behaviors, traffic characteristics, environmental circumstances (Sohail et al., 2023), and ve-
hicles (C. Wang et al., 2013). Concerning road user behaviors, several studies have revealed how
driver and pedestrian behaviors affect road accidents. Driving behaviors include mainly two cat-
egories, inattentive driving, and aggressive/reckless driving, which are often the primary causes
of traffic crashes (Chan et al., 2020; Iio et al., 2021; Jahangiri et al., 2016; Paleti et al., 2010).
Also, drivers were found to decrease their speed and increase headway as compensatory mea-
sures to reduce the workload imposed in general, during distracting activity or disadvantageous
weather conditions (H. Singh & Kathuria, 2021). Additionally, pedestrian risk behaviors such as
using electronic gadgets and mobile phones and non-using pedestrian crosswalks are reported to
be frequently involved in road accidents (Levulytė et al., 2017; Narváez et al., 2019). Regarding
environmental circumstances, it has been proven in several papers that lighting and weather
conditions have an impact on crash severity. For instance, one research focusing on accidents in
Saint Petersburg from 2015 to 2021 has found that missing road illumination had the highest
influence on crash severity, which increased fatality in the range of 10.3% to 13.9%. Besides,
precipitations are one of the most contributing factors that negatively affect crash severity, caus-
ing a rise in fatality and severe injuries (Rodionova et al., 2022). As for vehicle-related factors,
determined vehicle handling and stability characteristics that lead to loss of control or proneness
to overturning are identified (JONES, 1976). Besides, the association between accident severity
and vehicle type has been examined to be significant (George et al., 2017; Manap et al., 2021).

Another crucial factor for road accidents is traffic conditions, which mainly include speed, traffic
density, traffic flow as well as traffic congestion. First, speed is a vital factor exerting a decisive
influence on road accidents concerning both occurrence and severity (Elvik, 2004; Harms, 1993).
With controlling traffic exposure and road infrastructure characteristics, it has been demon-
strated that there is a positive relationship between mean speed and injury accidents (Gitelman
et al., 2017). Second, the impact of traffic density on accidents has been investigated by us-
ing variables such as Volume over Capacity (V/C) ratio index. An interstate study in Detroit
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found that the correlation between accident rates and V/C values suits a U-shaped pattern,
which indicates that accident rates in a very low hourly V/C range are the highest, decrease
with rise of V/C and increase again while V/C continues to increase (Zhou & Sisiopiku, 1997).
Another research focusing on single and multi-vehicle highways revealed a negative-exponential
relationship between single-vehicle accidents and density (Ivan et al., 2000). Accident risk and
number of crashes increase with higher traffic density and V/C, but prediction models that con-
sider traffic volume as the only explanatory covariate may not be adequate to describe accident
process on freeway segments (Lord et al., 2005). Third, traffic flow also has an influence on
accidents. Previous studies investigated the relationship between traffic flow and accidents and
found that incidence rates for both property damage-only crashes and injury crashes are the
highest when the traffic flow is the lightest (under 400 vehicles per hour). And incidence rates
are the lowest when the traffic flow is at a rate of 1000 to 1500 vehicles per hour (Martin, 2002).
Moreover, by providing tools to monitor real-time safety level of traffic flow on an urban free-
way, a strong relationship between traffic flow conditions and accidents has been demonstrated
(Golob et al., 2004). Fourth, traffic congestion is another problem which leads to risky situa-
tions. One study using a disaggregate spatial analysis in London has examined how congestion
affects traffic safety and found that congestion as a mitigation of accident severity may be less
inclined to occur in urban surroundings but may still be a contributing factor on higher speed
roads and motorways (Noland & Quddus, 2005). Also, a study on urban multi-lane freeways in
Colorado revealed that accident total rates together with injury and fatal crash rates increase
with an increase in congestion (Kononov et al., 2008). It has been suggested that increased traf-
fic congestion is associated with more fatal/killed and serious injury accidents, while congestion
only has little impact on slight injury accidents (Chao Wang & Ison, 2013). Moreover, it has
conclusively been shown that traffic congestion levels interact with road infrastructure effects
for road crashes(Noland & Quddus, 2005).

A great number of existing studies have emphasized the important influence of infrastructure
characteristics in road accidents. The road infrastructure and built environment-related factors
include roadway geometry, road surface, road complementary, roadside equipment as well as
intersection and roundabout design. First and foremost, findings from numerous studies support
that road geometry plays a vital role in road accidents. A study focusing on principal arterial
roads in Washington State revealed that an increase in section length and number of lanes
tend to increase accident frequency, while narrower lanes less than 3.5 meters decrease accident
frequency (Milton & Mannering, 1998). However, a study in low-volume non-urban roads found
that accident rates decrease with increasing lane width (less than 3 to 3.25 meters) and increase
with further extension of lane width (Gitelman et al., 2014). As for shoulder width, an initial
increase in shoulder width, up to 2 to 2.5 meters, is related to an increase in accidents, while
a further increase in shoulder width leads to a decrease in accidents (Gitelman et al., 2014).
In addition, an increase in the number of lanes has also been found to be associated with an
increase in both accidents and fatalities (Noland & Oh, 2004). In terms of curvature, horizontal
and vertical alignments have been investigated to affect the frequency of accident occurrence.
The number and average spacing of horizontal curves, as well as curvature radius designed
for road segments with different speed limits, have various impacts on accidents of different
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types (Shankar et al., 1995). Also, increasing the percentage of horizontal curve length per
kilometer is likely to increase the probability of possible injury relative to property damage only
(Shankar et al., 1996). The association between curvature measures and the number of fatal,
serious, and slight collisions was studied in the United Kingdom, and the result shows that
collision numbers negatively relate to road curvature. Cumulative angle is the most strongly
curvature measure that relates to fatal crashes. For instance, an increase of 1° in cumulative
angle per kilometer is linked with approximately a 0.5% decrease in crashes (Haynes et al.,
2007). Similarly, an increase in minimum horizontal radius is found to be related to injury
accident reduction (Gitelman et al., 2014). A non-linear relationship between curve radius
and crash risk has been reported, that the crash risks increase exponentially as curve radius
decrease (B. Wang et al., 2017). Regarding road surface, previous studies have proven that
crash risk increases due to road surface with inadequate friction, uneven pavement, ice, snow,
oil, and leaves (Papadimitriou et al., 2019). Furthermore, road complementary and roadside
installations such as median barriers, sidewalks, bus bay, and signalization are considered to be
another factor for road accidents (Abdel-Aty & Wang, 2006; Hanson et al., 2013; Vlahogianni
et al., 2012). Researchers have found that bus stops, parking spaces as well as object units are
positively correlated to pedestrian accidents (Pljakić et al., 2022). Several studies reported that
curb ramps and the presence of a roadside curb increase the likelihood of safety-critical events
for road accidents (Stigson et al., 2021; B. Wang et al., 2017). Infrastructure improvement has
also been suggested to reduce the frequency of rear-end collisions (Navin et al., 2000). Last but
importantly, the relationship between junction type, roundabout and intersection design, and
road accidents has also been demonstrated (Hels & Orozova-Bekkevold, 2007; Tanishita et al.,
2023; Vlahogianni et al., 2012).

2.1.3 Usage of Street View Images in studies of road accidents

Street view imagery (SVI), as one of the most important and entrenched data sources, is been
applied in countless papers in the field of urban studies (Biljecki & Ito, 2021). The biggest
application domain is using SVI to create and maintain spatial data infrastructure, such as
mapping buildings (Ogawa & Aizawa, 2019; L. Zhang et al., 2020), extracting characteristics
of buildings and cities (Y. Li et al., 2018; Q. Yu et al., 2020), constructing 3D model (Bruno
& Roncella, 2019; Kim et al., 2020), predicting land use (Shivangi Srivastava & Tuia, 2020).
Another dominating area is urban greenery, like measurement of near road greenery and greenery
networks (B. Y. Cai et al., 2018). Further applications include health and well-being (Keralis
et al., 2020), urban morphology (Middel et al., 2019), walkability (Y. Li et al., 2022; Steinmetz-
Wood et al., 2020; Yencha, 2019), bikeability (Ito & Biljecki, 2021), real estate (Hanibuchi
et al., 2019), urban perception (Gong et al., 2019), visual quality (Ye et al., 2019), as well as
socioeconomic studies (Diou et al., 2018).

Another major application area is in transportation and mobility studies, where numerous pa-
pers focus on detecting and extracting specific objects on road infrastructure from SVI. Lane
detection algorithms combined SVI with a convolutional neural network model have been devel-
oped (Mamidala et al., 2019). Combined with aerial imagery, sidewalk extraction from SVI is
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also realized (Ning et al., 2022). Likewise, previous studies have detected, classified, and mapped
the traffic signs from SVI and combined them with their sizes and positions (Balali et al., 2015;
Campbell et al., 2019). As for specific road surface information, authors have attempted to
detect pavement marking defects and damage like cracks, potholes, manhole cover as well as
patch (Kong et al., 2022; Ren et al., 2023). Concerning road complementary, detecting signal-
ized intersections and road safety barriers such as concrete barriers, metal crash barriers, and
rumble strips from SVI become a reality (X. Li et al., 2022; Rahman et al., 2021). Furthermore,
researchers have proposed approaches to classify street context and segment roads (Alhasoun &
Gonzalez, 2019; Chacra & Zelek, 2016).

So far, SVI has also provided important insights into our current knowledge on road safety. Data
derived from SVI is used to obtain pedestrian and road infrastructure features for analysis on
the severity of pedestrian casualty (Hanson et al., 2013). House features annotated by using SVI
were found to be able to improve car accident risk prediction (Kita-Wojciechowska & Kidziński,
2019). Features of built environment derived from SVI were found to be strongly associated with
perceived crash risk among school-aged children (Kwon & Cho, 2020). An automatic approach to
extract and map road safety features from SVI was found to largely improve model performance
(Sainju & Jiang, 2020). One study using indices of drivers’ visual environment calculated from
SVI revealed that the proportion of trees and the proportion of road length with trees are related
to the frequency of speeding crashes (Q. Cai et al., 2022). Additionally, another research defined
several types of street spaces visible to drivers by using SVI and examined that an open road
type of street space (with more visible sky, roadway, and signage) is significantly associated
with the greatest increase in road crashes (Stiles et al., 2022). Moreover, hazard scenarios for
non-motorized transportation identified using SVI provide insights for new methods to improve
vehicle safety (Y. Wang et al., 2022). Streetscape elements extracted from SVI have been
used to investigate their relationship with vehicle accidents, and the findings suggest that they
could effectively describe built-environment information at road-segment level (Hu et al., 2023).
Besides, SVI was also used to address the identification of risk factors for cyclist safety, such as
tram and train rails (Rita et al., 2023). Furthermore, pedestrians’ perceived road safety detected
by SVI was proposed (Hamim & Ukkusuri, 2024). Possible misperception of road safety from
SVI has also been investigated (X. Yu et al., 2024).

2.1.4 Application of Segment Anything Model

With the rapid evolution of artificial intelligence (AI) in the past few years, an advanced AI model
developed by Meta AI in 2023, Segment Anything Model (SAM) has made great progress in
breaking the boundaries in image segmentation (C. Zhang et al., 2023). Trained with the largest
segmentation dataset to date (over one billion masks on eleven million images), consisting of three
components (an image encoder, a prompt encoder, and a mask decoder), SAM is able to produce
high-quality object masks from simple input prompts and to generate masks for all objects in
an image with outstanding zero-shot performance on various segmentation tasks (Kirillov et al.,
2023). Plenty of studies have applied SAM in a wide range of fields to improve object detection
from images. One of the dominating fields is segmenting medical images (Y. Zhang et al., 2024).
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In the field of civil infrastructure and built environment, studies presented that SAM provides
an effective solution with more accurate and comprehensive results for detecting features such
as cracks in concrete structures (Ahmadi et al., 2023), assessing the impact of earthquakes on
buildings and infrastructure (Balaji et al., 2024), and generating spatial inventory of architectural
features (Di & Gong, 2024). Besides, researchers have also proposed a SAM-based framework
combined with aerial or satellite imagery data to obtain road infrastructure (Sultan et al., 2024)
and pedestrian infrastructure (Xia et al., 2023), which further enhanced SAM’s effectiveness and
efficiency in segmentation tasks. Furthermore, another burgeoning application area is remote
sensing. Recent studies have employed SAM on satellite and aerial images to improve tree
species classification (Ferreira et al., 2024), map urban flooding (Y. He et al., 2024), extract
rooftop photovoltaics (R. Yang et al., 2024), as well as to detect scalable water extent (Zheng
et al., 2023). In an evaluation study focusing on land use and land cover segmentation in remote
sensing imagery, SAM was examined to detect objects of various sizes accurately, presenting rich
content and high consistency with reference polygons (T. He et al., 2024). In addition, SAM
has also been applied for inspection of tunnel water leakage (Chen et al., 2024), extraction of
landmarks from old drawings and photos (David et al., 2023), and tracking animal behaviors
(C. Yang et al., 2023).

Researchers have also shown an interest in quality assessment and performance evaluation of
SAM. It has been demonstrated that SAM has an excellent performance in the discernment of
well-circumscribed objects in certain imaging modalities (Y. Zhang et al., 2024). By investigating
SAM applications in different fields, it was observed that SAM performs excellently in common
scenes, but requires prior knowledge of manual prompts for complex scenes. The effectiveness
decreases in low-contrast applications, while small and irregular objects may still be challenging
for SAM (W. Ji et al., 2023). Also, SAM was found to segment occluded objects into several
separated masks (G.-P. Ji et al., 2023). In application of remote sensing imagery, SAM resulted
in reduction of manual annotation (Osco et al., 2023), and was found to excel in apprehending
contextually similar regions (Yilmaz & Kavzoglu, 2024). However, studies have shown that SAM
has limitations in complex scenarios with lower spatial resolution images (Osco et al., 2023), as
well as constraints in specific scenarios such as excessive segmentation in areas with rich texture
information or inadequate segmentation in areas with small differences (Yilmaz & Kavzoglu,
2024).

2.2 Research Gaps

In view of all the literature that has been mentioned so far, several research gaps are identified
as follows:

- With an increasing concern on the safety issue of e-scooters, previous research has investi-
gated e-scooter accidents from various perspectives in different countries. However, there
have been few studies about e-scooter accidents in the city of Zurich, Switzerland.

- Abundant evidence emphasized the important impact of traffic-infrastructure character-
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istics on road accidents. What is not yet clear is the influence of specific infrastructure
features such as curbs, of which the details are hard or expensive to obtain by using tradi-
tional data collection methods. Extraction curb information using SAM from SVI is worth
further investigation.

- Although numerous studies have indicated that one of the most contributing factors for
e-scooter accidents is infrastructure-related, much uncertainty still exists about the rela-
tionship between traffic-infrastructure characteristics and e-scooter accidents.

2.3 Research Questions

The aim of this master’s thesis is to analyze e-scooter accidents and to identify the influence
of traffic-infrastructure characteristics on them in the city of Zurich. Research questions are
formulated as follows, which serve as an initial foundation and provide guidance for further
analysis during this project.

RQ1 What are the spatio-temporal patterns of e-scooter accidents in Zurich? What are the
main causes of the accidents?

RQ2 How could infrastructure features be extracted from SVI by using SAM?

RQ3 How do traffic-infrastructure characteristics relate to e-scooter accidents?
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3. Study Area and Data Preprocessing

3.1 Study Area

This thesis focuses on the city of Zurich, which is located in the northeastern part of Switzerland.
As the largest city and one of the economic and cultural centers in Switzerland, it has over
447,000 inhabitants at the end of 2023 with a total area including water of 91.9 square kilometers
(Präsidialdepartement, 2024). In Switzerland, the average daily distance traveled per person is
around 30 kilometers. The overall transport modal split is: 69% by car, 16% by railway, 5%
for travel on foot, 3% by public road transport (bus, tram), 3% by bike (including e-bike),
and 1% with motorized two-wheeler. Compared to 2015, travel distances of almost all means
of transport decreased, while the travel distance of e-bikes is the only one to be recorded an
increase. In 2021, the share of vehicle-like devices including e-scooter is 0.1% in daily travel
distance and 0.7% in daily time spent on road (Bundesamt für Statistik, 2023a). Zurich has an
extensive, modern public network with high quality with a traffic area of 12.8 square kilometers
(Präsidialdepartement, 2022). Since 2019, several shared micro-mobility providers have started
operating dockless e-scooters in the city of Zurich, such as Lime, Bird, Tier, and Voi (Reck &
Axhausen, 2021).

Figure 3.1: Study area - City of Zurich
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3.2 Data Preprocessing

3.2.1 E-scooter accident data

The e-scooter accident dataset was provided by the transportation department (Dienstabteilung
Verkehr, DAV) of the security department (Sicherheitsdepartment) in the city of Zurich. Each
road accident involving e-scooters that occurred between 2019 and 2022 in the city of Zurich
was recorded and reported by the city police based on an accident recording protocol of Fed-
eral Roads Office (Bundesamt für Strassen ASTRA, 2018b). Each accident is identified by an
accident ID, and a total of 350 e-scooter accidents are recorded. This dataset contains several
main categories of information for each accident: general information, involving objects and
persons, infrastructure, and circumstances. Concerning general information, in addition to the
date, time, coordinates, and accident type together with the main cause, are also determined
according to the official instructions for accident assessment protocol (Bundesamt für Strassen
ASTRA, 2018a). In terms of involving objects and persons, vehicle type, person type and de-
tailed information of persons are included, such as age, blood/breath alcohol concentration. As
for infrastructure, this dataset focuses on the characteristics of the occurring location site and
road elements, consisting of location sites, in/out of town, right of way, road type, maximum
speed as well as street lighting. Also, circumstances like weather, light, road, and traffic are
included. Furthermore, accidents involving children and senior citizens are specifically recorded.
The overall distribution of all recorded e-scooter accidents is displayed in Figure 3.2.

Figure 3.2: E-scooter accidents distribution overview
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Table 3.1: Variables and their brief distributions - General information and involvement

Variable Category N %

General
information

Accident
type
group

Skidding or self-inflicted accident 198 56.6
Overtaking accident or lane change 10 2.9
Rear-end collision 10 2.9
Turning out accident 19 5.4
Turning in accident 19 5.4
Crossing the carriageway 48 13.7
Head-on collision 11 3.1
Parking accident 3 0.9
Pedestrian accident 32 9.1

Person
injury

Fatality 0 0.0
Seriously injured 59 16.9
Lightly injured 245 70.0
No injury (Property damage only) 46 13.1

Property
damage*

0-100 207 59.1
100-250 29 8.3
250-500 23 6.6
500-1000 16 4.6
1000-2000 19 5.4
2000-5000 43 12.3
5000-10000 12 3.4
> 10000 1 0.3

Drivers**

Age*

0-14 18 5.2
15-24 82 23.7
25-34 114 32.9
35-64 104 30.1
>65 2 0.6
Unknown 26 7.5

Alcohol
level*

0 59 17.0
0-0.49‰(blood) or 0-0.24 mg/l(exhaled) 10 2.9
0.50-0.79‰(blood) or 0.25-0.39 mg/l(exhaled) 13 3.8
>0.80‰(blood) or >0.40 mg/l(exhaled) 104 30.1
Unknown 160 46.2

Objects Vehicle
type

E-scooter only 193 55.1
E-scooter + Pedestrian 28 8.0
E-scooter + Bicycle 15 4.3
E-scooter + Passenger Car 76 21.7
E-scooter + Other vehicle*** 22 6.3
E-scooter + Vehicle-like devices 2 0.6
E-scooter + Vehicles of mixed types 6 1.7
Unknown and other 8 2.3

* Specific value was recorded for each accident (Property damage, participants’ age, and alcohol level).
The value category here in the table is just to provide an overview of their distributions.
** Involving persons are recorded for each accident, including pedestrians, drivers, and passengers.
Only drivers of involving e-scooters are included in the table.
*** Other types of vehicles include delivery van, truck, motorbike, slow e-bike, bus, and tram.
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Other than date, time and coordinates, general information and involvement parameters are
shown in Table 3.1 above. Further details on infrastructure and circumstances are shown in the
following Table 3.2.

Table 3.2: Variables and their brief distributions - Infrastructure and circumstances

Variable Category N %

Infrastructure

Location
site

Straight section 202 57.7
Curve section 14 4.0
Junction 113 32.3
Roundabout 1 0.3
Square 15 4.2
Parking place 3 0.9
Other 2 0.6

In/out
of town

In town 350 100.0
Out of town 0 0.0

Road
type

Main road 67 19.2
Secondary road 272 77.7
Other 11 3.1

Maximum
speed

60 2 0.6
50 255 72.8
30 87 24.8
20 3 0.3
8 3 0.3

Street
lighting

In operation 191 54.6
Out of operation 156 44.5
No lighting 3 0.9

Circumstances

Weather

Sunny 209 59.7
Cloudy 101 28.9
Rainy 35 10.0
Snowfall 1 0.3
Other 4 1.1

Light
Day 159 45.4
Night 177 50.6
Dawn or dusk 14 4.0

Road
surface

Dry 277 79.1
Damp 28 8.0
Wet 41 11.7
Icy 1 0.3
Snow-covered 1 0.3
Other 2 0.6

Traffic
volume

Normal 89 25.4
Weak 221 63.1
Strong 30 8.6
Stationary congestion 2 0.6
Halting congestion 1 0.3
Other 7 2.0
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3.2.2 Google Street View Images

Google Street View (GSV) is one of the most well-known services capturing, processing, and
serving global-scale SVI. Panoramic imagery is captured from a vehicle or device mounted with
multiple cameras and sensors accompanied by computers (Anguelov et al., 2010). And the
vast majority of them offer omnidirectional coverage taken on public roadways (Biljecki & Ito,
2021). The GSV service could be accessed though a web interface integrated with Google Maps,
phone apps, and application programming interface (API). Here in this thesis, SVI data was
requested in an HTTP (Hyper Text Transfer Protocol) URL (Uniform Resource Locator) form
using GSV static API provided by Google Maps Platform. Request for each GSV image was set
with customized parameters such as latitude and longitude of the locations, heading of cameras,
Field of view (FOV), pitch as well as output image size, as listed in Table 3.3. To have a
comprehensive knowledge of the surrounding environment for each accident, four directions are
identified by four headings of cameras (0°, 90°, 180°, 270°). Besides, it’s necessary to note that
the API only provides imagery at a lower resolution compared to the web service. Here the
output image size was set to be the maximum value for the API service, which is 640 x 640
pixels. An example of four-direction GSV images for each e-scooter accident point is given in
Figure 3.3.

Table 3.3: Parameters setting for GSV API

Parameter Description Setting value

Location Latitude and longitude Coordinates value
Heading Heading of camera 0, 90, 180, 270
FOV Horizontal field of view for the image 120
Pitch Up and down angle of camera 0
Size Output image size in pixels 640 x 640

After downloading GSV imagery, images with invalid content of null, indoor, rooftop, and sky
are filtered manually, which are regarded as no help of providing infrastructure information in
this work. Out of 350 e-scooter accident locations, 295 with images of valid content are obtained
to build the GSV dataset for further investigation. The distribution of locations with valid GSV
images is shown in Figure 3.4 below.

Figure 3.3: Example of GSV images in one location
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Figure 3.4: Distribution of valid and invalid GSV images

3.2.3 Traffic network and transport-related data

Additionally, road infrastructure and transport network data are also collected for this the-
sis, from the published datasets from Open Data Zurich, traffic department (Dienstabteilung
Verkehr, DAV) along with Open Street Map (OSM). Main source datasets are listed in the
following table 3.4.

Considering the usage pattern and travel characteristics of e-scooters, as well as the concentrated
distribution of dockless e-scooters in urban areas, the e-scooter network was built by merging
the street network, footpaths, bicycle paths and filtering out the natural areas such as forest.
An overview of the e-scooter network is presented in Figure 3.5a.

Regarding the traffic datasets, values denoting traffic characteristics were recorded in different
counting stations and measuring points. Each vehicle traffic counting station contains sev-
eral measuring points, recording the traffic volume of motorized private transport vehicles. As
for bicycle and pedestrian counting stations, bicycle traffic was recorded using induction loops
embedded in the road surface, while pedestrian traffic was counted using passive infrared ra-
diation. Traffic count data for each e-scooter accident point was represented by records from
the nearest counting stations and closest time. The counting stations are displayed in Fig-
ure 3.5b. In addition to traffic count data, traffic density data was acquired from the traffic
model dataset (GVM-ZH 2018), which contains traffic forecast data such as average daily traf-
fic, traffic demand during morning and evening rush hours. Based on traffic supply and traffic
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Table 3.4: Datasets source for traffic and transport network

Dataset Description

Network

Strassennetz Road network
Kommunaler Richtplan Verkehr Traffic plan
Linien des öffentlichen Verkehrs Public transport lines
Haupt- und Nebenstrassen Main and secondary roads
Veloinfrastruktur Radwege und Radstreifen Bicycle network
Velonetzplanung Bicycle network plan
Fuss- und Velowegnetz Foot and cycle path network

Traffic

Gesamtverkehrsmodell-ZH Passenger traffic model for Canton of
Zurich

Daten der Verkehrszählung
zum motorisierten Individualverkehr

Traffic census data for individual motor-
ized transport

Daten der automatischen Fussgänger- und
Velozählung - Viertelstundenwerte

Automatic pedestrian and bicycle count-
ing data

Zone

Stadtkreise Urban districts
Statistische Zonen Statistical zones
Statistische Quartiere Statistical districts
Tarifzonen des öffentlichen Verkehrs Public transport traffic zones

Infrastructure

Haltestellen des öffentlichen Verkehrs Public transport stops
Fussgängerstreifen Pedestrian crossing
Randabschlüsse Konzeptplan Curb concept plan
Öffentliche Beleuchtung der Stadt Zürich Public lighting
Öffentlich zugängliche Parkhäuser Publicly accessible parking garages
Öffentlich zugängliche Strassenparkplätze Publicly accessible street parking spaces
Zweiradparkierung Two-wheeler parking spaces

Other Kantonaler Richtplan Structural plan for land use areas

(a) E-scooter network (b) Traffic counting stations

Figure 3.5: Traffic network data overview
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zones, source/destination matrices for public transport, motorized private transport as well as
non-motorized transport (consisting of pedestrian and bicycle traffic) are estimated for average
weekday traffic.
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4. Methodology

4.1 Spatial-temporal Analysis

4.1.1 Spatial analysis

To gain an overview of the spatial distribution of e-scooter accidents, two methods were em-
ployed, including visualizing a Kernel Density Estimation (KDE) heat map and a road network
map with aggregated number of e-scooter accidents per road segment.

Heat maps were created with the purpose of visualizing the underlying spatial patterns of e-
scooter accidents with KDE. Analogous to a histogram, KDE estimates and smooths the data by
using a continuous probability density curve. Results of KDE are self-explanatory, unlike many
other visualization methods (Lord et al., 2021). One of the most influential parameters in KDE
is bandwidth, which denotes the standard deviation of the smoothing kernel. An inappropriate
parameter specification of bandwidth could lead to an incorrect or distorted representation of the
data distribution. Here in this thesis, KDE was performed with function Kdeplot from Python
package seaborn (Waskom, 2021), of which the smoothing bandwidth values were selected by
Scott’s Rule (Scott, 2015) and smoothing algorithm used was Gaussian kernel.

Besides, a road network map with the aggregated number of accidents per road segment was
generated by three steps. Firstly, with the e-scooter road network, lines from each accident point
to the closest road segment were gained by using the ’shortest line between features’ algorithm
provided in QGIS. Secondly, with the intersection between the lines dataset and road network
data, the numbers of e-scooter accidents per segment were assigned to road segments. Thirdly,
the total number of accidents for each segment was visualized on a network represented by color
gradients.

4.1.2 Temporal analysis

To intuitively visualize the potential temporal pattern of e-scooter accidents, the number of acci-
dents on different time scales was plotted as a line graph, including year, month, day of week, and
hour. Furthermore, the Seasonal-Trend decomposition method provided in the Python package,
statsmodels, was applied to decompose the e-scooter accident time series into three components,
trend, season, and residual with Locally Estimated Scatterplot Smoothing (LOESS). While the
trend component illustrates a relative long-term increase or decrease, the season component
presents whether there is a certain cycle and a fixed frequency. Additionally, the residual com-
ponent helps to determine whether the time series is stationary or non-stationary. Moreover,
Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) were performed
in order to explore the number of autoregressive and moving average lags for Autoregressive
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Intergrated Moving Average (ARIMA) model, which could offer a comprehensive understanding
of the time series and forecast for the upcoming series.

4.2 Curb extraction using SAM on GSV

In general, three processes were designed to extract curbs from GSV images, which are obtaining
image segmentation with the application of SAM, calculating properties of output masks, and
building a classification model with a visual interpretation of masks.

4.2.1 Application of SAM

As introduced in Section 2.1.4, SAM has made great progress in image segmentation with
an overall excellent performance. Since SAM is suggested to install with CUDA support and
requirement on an advanced version of machine learning packages, Pytorch 2.0.1 and Torchvision
0.15.2 were utilized. An automatic mask generation was applied with SAM, which required
a SamAutomaticMaskGenerator class including SAM settings for checkpoint (model version),
model type, and device. Parameters setting for SAM are listed in Table 4.1 as follows.

Table 4.1: Parameters setting for SAM

Parameter Setting

Checkpoints sam_vit_h_4b8939.pth
Model type vit_h
Device CUDA

SAM was applied to images of four directions in each e-scooter accident location for automatic
mask generation. Figure 4.1 shows an example from the segmentation output of SAM. Mask
information was subsequently extracted from the output dictionary with a segmentation key
and stored in a standard binary file format for the Python package Numpy. Each segmentation
result from each image was represented by a binary mask of all pixels.

In addition, with the binary masks, the contours of each mask were then identified by the
function findContours provided in the Python OpenCV library. Each individual contour is a
Numpy array of (x,y) coordinates of boundary points of the input mask, which makes further
shape analysis and object recognition possible. Furthermore, after examining the performance
of SAM with test images, several problems were found. First, since the mask sometimes was
an object that had several separate parts, selecting the representative one or more contours or
merging them into an integrated one is crucial to analyze the properties of contours. Second,
some contours were fairly small with a limited number of pixels, which might hardly contribute
to object extraction and largely increase workload in subsequent analysis. Third, excessive
segmentation was found in areas with rich texture information, namely there were overlaps or
repeats of contours, which probably resulted in duplicated contours. Therefore, several filtering
functions were written to solve these problems. For each mask, contours with an area size of less
than 6 pixels were removed, and all other maintained contours were then considered as part of
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(a) Input original image

(b) Segmentation output masks

Figure 4.1: Output masks example of SAM

the contour collection for further analysis. Additionally, masks that were totally located inside
one of the others, as well as masks with a large portion of the intersection with the others, were
removed.

4.2.2 Visual interpretation

To prepare classes for the classification model, manual interpretation was conducted for SAM
output of 20 randomly selected locations. Seven label groups of objects in total are presented
in the following Table 4.2.

4.2.3 Calculating properties of masks

To distinguish masks of different objects and to prepare variables for classification, properties
of mask contours were calculated, including geometric attributes and spectral features.
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Table 4.2: Label list of manual interpretation

Label group Label name Label group Label name

Sky Sky

Infrastructure

Road
Vegetation Vegetation Bicycle lane
Curb Curb Manhole
Building Building Zebra crossing

Means of
transportation

Vehicle Blind way
Train Chimney
Tram Tile stone
Bus Electric pole
Bicycle Light pole
Motorbike Pavement

Other

Other Railway
Tag Road bridge
Human Road sign
Building part Road part
Mountain Stairs
River Street wire
Shadow Trash bin
Light Tower crane
Post mailbox Traffic light

Street light
Tram/bus station
Warning post
Road ground sign

4.2.3.1 Spectral features

Considering the characteristics of curb colors, which could be described as grey consistently.
Spectral features with a focus on color value were acquired with a total number of 17, as listed
in Table 4.3. Other than statistics of values in three channels (green, red, and blue), variables
related to color distance were also designed to quantify the difference between pixel colors and
standard grey. By plotting RGB values in 3D plots by regarding red channel, green channel,
and blue channel as the three axes (x, y, z) ranging from 0 to 255 separately, each color could be
represented with a point in these space. Besides, it was assumed in this thesis that a standard
grey point would be located at the body diagonal line of this cubic color space, from (0,0,0)
to (255,255,255). Therefore, the difference between color and grey could be expressed as the
distance between the color point and the grey line. Figure 4.2 illustrates the color distance of
mean values of RGB color channels to grey for all pixels in one curb mask.

Differences in spectral features between the curb and other masks were subsequently examined
for feature filtering and selection. For example, a histogram of median values in green color as
well as a histogram of mean value in red color were given as follows (in Figure 4.3).

26



CHAPTER 4. METHODOLOGY

Table 4.3: Variables of spectral features

Variable Description

gmedian median value of green color
rmedian median value of red color
bmedian median value of blue color
gmean mean value of green color
rmean mean value of red color
bmean mean value of blue color
gstd standard deviation of green color
rstd standard deviation of red color
bstd standard deviation of blue color
gq25 25th percentile of green color
gq75 75th percentile of green color
rq25 25th percentile of red color
rq75 75th percentile of red color
bq25 25th percentile of blue color
bq75 75th percentile of blue color
cdmean mean value of color distance to grey
cdstd standard deviation of color distance to grey

4.2.3.2 Geometric attributes

Another typical characteristic of curb is its relatively long narrow shape, small size as well as
low position in SVI. Additionally, calculating geometric attributes, including contour features
and properties, was completed by using functions provided in the Python OpenCV library. As
shown in Table4.4, 18 variables of geometric attributes were considered.

Table 4.4: Variables of geometric attributes

Variable Description

isconvex convex or not
area area size
aspect_ratio_wh ratio of width to height in rotated bounding rectangle
extent ratio of area to rotated bounding rectangle area
solidity ratio of area to its convex area
aspect_ratio_wh_s ratio of width to height in straight bounding rectangle
extent_s ratio of area to straight bounding rectangle
orien_rre angle of rotation of rotated bounding rectangle
orien_ell orientation of fitting ellipse
ed diameter of the circle with same area
ratio_ell ratio of minor axis length to major axis length
perimeter curve length or a closed contour perimeter
is_mce_inside center of mass inside or not
is_cen_inside centroid inside or not
leftm x of leftmost points
rightm x of rightmost points
topm y of topmost points
bottomm y of bottommost points
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Pixel colors (black points) and grey color (grey diagonal line)

Figure 4.2: Illustration of color distance using example of pixels of curb mask

(a) Median value of green color (b) Mean value of red color

Figure 4.3: Histogram example of spectral features between curb and others

Likewise, each spectral feature was then evaluated with histograms and checked if there were
differences between curbs and other masks. Figure 4.4 presents the histogram of the ratio of
area to straight bounding rectangle along with a histogram of perimeter or curve length as an
instance.

4.2.4 Classification model using Random Forest

By calculating both spectral features and geometric attributes of every mask identified and
extracted from SAM output in all e-scooter accident locations, input variables for RF were
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(a) Ratio of area to straight bounding rectangle (b) Perimeter or curve length

Figure 4.4: Histogram example of attributes between curb and others

generated. For the purpose of extracting curbs better, instead of including all masks in the
entire image, only masks located in the lower part of images were selected, considering the
typical pattern of the curb’s position in SVI. Besides, two label groups (other and means of
transportation) were merged for simplicity of classification.

Random Forest (RF) method is an ensemble-based machine learning technique that combines
predictions of several base estimators built with a provided learning algorithm for improving
predicting performances. Forests of this method denote a combination of tree predictors, and
each tree is dependent on values of an independently sampled random vector, which has the same
distribution as all trees in the forest (Breiman, 2001). Compared to other machine learning
algorithms, this approach was confirmed with high accuracy and advantages in dealing with
imbalanced datasets (More & Rana, 2017). RandomForestClassifier provided by Python library
scikit-learn was employed in this thesis for building RF classification model. Parameters such
as the number of trees were selected after checking prediction accuracy within a wide range of
setting values.

4.3 Variables generation

For subsequent regression and prediction, variables with a broad coverage of traffic infrastruc-
ture characteristics were generated for e-scooter accident locations, considering three aspects of
variables, including curb, entropy, and traffic infrastructure.

4.3.1 Curb variables

Following curb extraction achieved by RF classification model in Section 4.2, the presence or
absence of curbs, along with the number of curbs, were obtained for all four images in each
e-scooter accident location. Overall numeric curb variables per location point were summarized
into mean, maximum, and minimum of curb counts.
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4.3.2 Entropy variables

Entropy in information theory was introduced to measure information contained in a system, and
Shannon entropy was designed to represent an absolute mathematical limitation on how the data
from the system could be compressed onto a perfectly noiseless channel without loss (Shannon,
1948). In the field of image processing, entropy is regarded as one of the metrics for describing
the complexity of a given image (Hayashi et al., 2023). With the purpose of comprehensively
extracting information from GSV images, three entropy variables were calculated. In this thesis,
these entropy variables were considered to reflect the complexity of surrounding infrastructures
in drivers’ visual environments. In addition to fundamental image entropy regarding only pixel
values, the entropy of objects in visual view could be obtained with the application of SAM and
classification model. Two article entropy variables were built for considering the objects of the
entire image and considering only infrastructure objects located at the lower part of the image.

4.3.2.1 Image entropy

The first entropy variable generated was image entropy, which represents the randomness of
colors. An image with higher entropy denotes its complexity in pixel color values. To acquire
image entropy, a function was written and executed, including converting the image to gray scale,
computing the histogram of pixel value, as well as calculating the entropy of the distribution
from the histogram. For each accident location, there were four image entropy values from GSV
images of four directions. Mean, maximum, and minimum values of image entropy were then
attained.

4.3.2.2 Whole scene entropy

Regarding entropy of objects in the whole image, similar to Section 4.2, another RF classifi-
cation model was trained with properties dataset of masks as well as labels defined by visual
interpretation. For each image, mask labels classified by the RF model corresponded to object
groups, which overall constituted the distribution of objects in the whole scene of input GSV
image. All label groups identified during visual interpretation were included as target values for
classifying the entire image, as shown in Table4.5.

Table 4.5: Label groups for whole scene entropy

Class Label group

0 Building
1 Curb
2 Infrastructure
3 Means of transportation
4 Other
5 Sky
6 Vegetation
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4.3.2.3 Ground scene entropy

With a central focus on the curb and other infrastructure features located at ground level, an
additional classification model was trained with processes akin to methods introduced before.
Different from the previous two RF classification models, only objects identified as infrastructure
based on the classification result of Section 4.3.2.2 with positions at the lower part of images
were used as input for this RF model. Among the infrastructure identified at ground level, seven
label groups were used, as seen in Table 4.6.

Table 4.6: Label groups for ground scene entropy

Class Label group

0 Bike lane
1 Curb
2 Ground sign
3 Manhole
4 Other
5 Pavement
6 Road

4.3.3 Traffic-transport variables

Infrastructure features that are assumed or mentioned in previous literature on road safety are
obtained from the published official datasets, including public transport stops, public traffic
lines (bus, tram, train), pedestrian crossings, curbs, public lighting, and parking places (park-
ing garages, street parking spaces, two-wheeler parking spaces). For every single infrastructure
feature dataset, distances from each e-scooter accident point to the nearest feature are obtained
by calculating the shortest line between features in QGIS. Moreover, attributes of the nearest
infrastructure feature are also assigned to each accident point, as illustrated in Figure 4.5. Ad-
ditionally, properties of statistical zones and traffic zones are allocated by intersecting e-scooter
accidents and the areas. Furthermore, the traffic count of each e-scooter accident was derived
from traffic count datasets (motorized vehicle, bicycle, pedestrian) based on its occurring time
and closest counting stations. Traffic count data for both bicycles and vehicles were summarised
to a weekly average value. Besides, traffic density and demand were extracted from the passen-
ger traffic model dataset. Missing values for traffic count, density, and demand were replaced
by an average number of other records that were measured in the same time period or nearby
areas.
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Figure 4.5: Example of infrastructure features allocation

4.4 Regression Analysis

4.4.1 Generation of Pseudo-Absence Points

To investigate the relationship between traffic infrastructure characteristics and e-scooter acci-
dents, random pseudo points were generated along the network at least 10 meters away from
location points recorded with accidents. The procedure used was similar to Biland (2023).
Specifically, 16,922 random points on the e-scooter network were produced, and out of them,
1015 points were then extracted randomly. Subsequently, by filtering points that were located
within a 10-meter distance to accident points and to boundary lines of the city of Zurich. Fol-
lowing this, 995 random pseudo points were created, of which the amount setting was suggested
by a previous study (Barbet-Massin et al., 2012). This dataset could be assumed as points with
the absence of accidents on the one hand and regarded as points randomly distributed on the
e-scooter road network. The distribution of pseudo points with at least a 10-meter distance to
accident points is illustrated in Figure 4.6.

4.4.2 Variables generation for random pseudo points

Likewise, the preparation of variable dataset for random pseudo points was conducted with the
same processes introduced in Section 4.3.1, Section 4.3.2.1 as well as Section 4.3.3, including
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Figure 4.6: Illustration of random pseudo points

curb variables, entropy variables, and traffic transport variables.

4.4.3 Preparation for regression analysis

To determine the influence of traffic infrastructure characteristics on e-scooter accidents, two
aspects of accidents were considered: presence and severity. In this thesis, while the presence of
an accident denotes the possibility of happening or not, the severity of the accident represents
how serious an accident would be when it takes place (namely, the vulnerability). It is important
to note that regression analysis on the presence of accidents was conducted on a combination of
variables dataset from accident points and random pseudo points, while regression analysis on
the severity of accidents was only applied within the variable dataset from accident points.

4.4.3.1 Independent variables preparation

With the combination of variables generated for accident points and random pseudo points, the
preparation of independent variables covering a wide range of traffic infrastructure characteristics
was completed. Subsequently, two different processes of variable transformation were carried
out for numeric variables and categorical variables, respectively. With regard to transforming
numeric variables, normalization was achieved by applying a Yeo-Johnson power transformation
function (Yeo & Johnson, 2000). The following standardization was completed by computing the
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z score of each variable (Huck et al., 1986). Concerning categorical variables, one hot encoding
was conducted, which converted each category of one variable into new binary variables.

4.4.3.2 Dependent variables in regression for accident presence

Concerning the presence of accidents, points in the accident dataset were locations with the
presence of accidents, and random pseudo points were assumed as locations with the absence
of accidents. Furthermore, as a binary dependent variable, the presence of an accident was
assigned as 1 to accident points, while it was set as 0 for random pseudo-absence points.

4.4.3.3 Dependent variables in regression for accident severity

Dependent variables were generated according to the recorded impact of e-scooter accidents,
which included a number of lightly and severely injured persons, as well as the value of property
damage. Here in this thesis, the presence of person injury was therefore assigned as 0 to the
accidents with neither lightly injured person nor severely injured person, while it was assigned
as 1 for all the other accidents. Likewise, the presence of property damage was assigned as 1
to accidents with a value of property damage more than 0. Additionally, the number of injured
persons with different types of injury (light, severe) along with the value of property damage
were also included as numeric dependent variables.

4.4.4 Regression method

Two regression methods were applied to determine the correlation between independent and
dependent variables generated in the previous sections, Ordinary Least Squares (OLS) and
Generalized Additive Model (GAM) linear model. As one of the most prevalent regression
methods, OLS regression estimates coefficients of linear regression equations with an aim to
minimize the sum of square errors. GAM was also applied as a supplement and comparison
to the results of OLS. GAM is a generalized linear model in which the linear response variable
is dependent linearly on unknown smoothing functions of several predictor variables (Hastie,
1990). And a linear GAM is a GAM with a normal error distribution. Regression analysis was
applied by using OLS function provided by the Python package statsmodels, and LinearGAM
from the Python library pyGAM.

4.5 Prediction Modelling

Prediction modelling was performed for the severity of accidents, considering that the pseudo
points were locations randomly distributed on a road network exposed to the same risk and possi-
bility of accidents. Regression between traffic infrastructure characteristics and both categorical
dependent variables, such as the presence of person injury, light person injury, severe person
injury along with the presence of property damage, and numeric dependent variables including
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a number of lightly injured persons, severely injured persons, as well as the value of property
damage, were performed separately. By using regression models built with a variables dataset
of accident points, prediction for the aforementioned dependent variables was then achieved by
fitting the model to pseudo points. To improve the visualization of spatial patterns of prediction
results, points with different values of prediction results were aggregated to square grids.
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5. Results

5.1 Spatial-temporal distribution of e-scooter accidents

5.1.1 Spatial distribution

The spatial distribution of e-scooter accidents with kernel density estimation is presented in
Figure 5.1a. An optimized smoothing bandwidth of about 732 meters determined by Scott’s
Rule and a Gaussian kernel smoother were used for the estimation. As it shows, the area
with the densest distribution of e-scooter accidents is predominately located in the city center,
specifically the western area of District 1, together with the junction area of Districts 1 and 4.
It is to the southwest of Zurich’s main train station, including the most area of the old town.
Besides, e-scooter accident locations are also concentrated at three public transport stations,
Hardbrücke, Alstetten, and Oerlikon.

Additionally, to have a better overview of the spatial distribution of e-scooter accidents in the
road network, Figure 5.1b shows aggregated accidents per road segment. The road segments with
the most e-scooter accidents are Limmatquai(from station Central to bridge Münsterbrücke),
Bahnhofstrasse (from intersection Bahnhofstrasse-Sihlstrasse to station Rennweg). Other road
segments with relatively high frequency of e-scooter accidents are General-Guisan-Quai (from
the intersection with Beethovenstrasse to the intersection with Claridenstrasse), Badenerstrasse
(from the intersection with Langstrasse to the intersection with Ankerstrasse, from station Al-
bisriederplatz to station Letzigrund), Bäckerstrasse, and Hardstrasse(from station Hardbrücke
to intersection with Geroldstrasse).

(a) Kernel density estimation (b) Aggregated accidents per road segment

Figure 5.1: Spatial distribution overview
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Besides, the spatial distribution of e-scooter accidents for each year is shown in the following
figures. Regarding the kernel density estimation result, the smoothing kernel bandwidth values
for 2019, 2020, 2021, and 2022 are, respectively, about 1019 meters, 948 meters, 916 meters,
and 856 meters. As can be seen in Figure 5.2, there has been a slight decrease in the area with
a high density of e-scooter accidents from 2019 to 2020 and a constant increase from 2020 to
2022. The highest density area has been maintained to be situated at the city center, while
it has extended further to the northwestern direction till station Hardbrücke. Moreover, while
there were no main concentrations other than the city center and station Albisriderplatz in
2020, station Oerlikon and station Altstetten have developed to become new centers of highly
dense e-scooter accidents since 2021. Furthermore, based on the results of aggregated e-scooter
accidents per road segments for each year in Figure 5.3. While no e-scooter accidents took place
on the same road segments in 2019, the number of road segments with more e-scooter accidents
has been increasing since then. Also, the distribution of road segments with accidents has spread
from the city center to suburban areas.

(a) 2019 (b) 2020

(c) 2021 (d) 2022

Figure 5.2: Kernel density estimation of accidents in each year
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(a) 2019 (b) 2020

(c) 2021 (d) 2022

Figure 5.3: Accidents count per road segment in each year

5.1.2 Temporal distribution

A brief exploratory temporal analysis on different time scales is shown as line charts in Figure
5.4a below. Firstly, the graph reveals that there has been a steady rise in the number of e-
scooter accidents in the city of Zurich since 2019 annually. The number of e-scooter accidents
in 2021 is nearly a three fold increase compared with it in 2019. Secondly, concerning the
month, over half of the e-scooter accidents occurred in the four months spanning from summer
to early autumn, which are July, August, September, and October. Thirdly, the vast majority
of accidents concentrated during the weekend, especially on Saturday. Fourthly and just as
importantly, e-scooter accidents took place more commonly from early afternoon and late night
(from 14:00 to 3:00). In addition, the temporal patterns of e-scooter accidents are different
between weekdays and weekends, as shown in Figure 5.4b. While the accidents on weekdays
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mostly happened from late afternoon and evening (from 16:00 to 23:00), accidents on weekends
were primarily concentrated from midnight to the early hours of the morning (0:00 to 3:00).

(a) Time series plot - year (b) Time series plot - month

(c) Time series plot - day of week (d) Time series plot - hour

(e) Count for hour series of weekday and weekend

Figure 5.4: Brief time series exploration

Furthermore, to determine the underlying pattern of time series, the seasonal-trend decomposi-
tion, ACF and PACF results are shown in the following Figure 5.5. Considering the combination
of ACF and PACF plot, a second-order moving average model could be observed. Other than
the autocorrelation analysis, as presented in Figure 5.5a, smoothed estimates of three compo-
nents of the time series (season, trend, and residual) were extracted. It illustrates an increasing
trend and the seasonality of an annual cycle.

39



CHAPTER 5. RESULTS

(a) Time series decomposition (b) ACF and PACF result

Figure 5.5: Time series analysis

5.2 Descriptive statistics of accident causes

The main causes of e-scooter accidents were recorded in the dataset, among which the top five
most common causes are presented in Table 5.1. Additionally, 56.6% e-scooter accidents were
determined as skidding or self-inflicted accidents. Table 5.2 shows that the influence of alcohol,
as well as other influences related to inattention and distraction, account for the majority of
skidding or self-inflicted accidents.

Table 5.1: Top four main causes of e-scooter accidents

Cause Count %

Influence of alcohol 120 34.3
Other influence related to inattention and distraction 73 20.9
Unauthorized use of pavement or footpath 29 8.3
Disregarding a red light 14 4.0

Table 5.2: Top four main causes for skidding or self-inflicted accident

Cause Count %

Influence of alcohol 103 52.0
Other influence related to inattention and distraction 68 34.3
Crossing the track at an acute angle for two-wheeled vehicles 8 4.0
Unauthorized use of pavement or footpath 8 4.0

5.3 Curb extraction

With the application of SAM to GSV images in e-scooter accident locations, 103373 segmentation
masks were produced from 1180 images in total. Subsequently, by identification of contours and
filtering out overlaps or repetitions, 57035 mask contours were generated. To prepare training
datasets for further mask classification, mask output files of 80 GSV images in 20 e-scooter
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accident locations were randomly selected for manual visual interpretation. In total, there were
3934 masks defined and labeled from SAM segmentation result after filtering.

As the result of Section, after calculating properties of mask contours filtering masks in upper
part of images, several label groups were then merged as for the purpose of better extracting
curbs. Label groups for classification and their counts in the training dataset are presented in
Table 5.3.

Table 5.3: Label group statistics for curb extraction

Class Label group Count %

0 Curb 49 2.3
1 Infrastructure 535 24.8
2 Other 1355 62.7
3 Vegetation 221 10.2

The summary of classification results is provided in the confusion matrix in Figure 5.6a. More-
over, the performance of the RF classification model was evaluated and quantified with metrics
of different assessment methods, as presented in Table 5.4. Overall, the classification model has
an accuracy score of 0.838, MCC score of 0.693, and Kappa score of 0.688. Label group curb
has a precision score of 0.778, a recall score of 0.636, and an F1 score of 0.700. According to
the importance ranking of variables illustrated in Figure 5.6b, the top three influential spec-
tral features for curb extraction are the 25th percentile, mean value, and median value in the
green color channel (’gq25’, ’gmedian’, and ’gmean’), while the top three important geometric
attributes are contour perimeter, equivalent diameter and bottom position (’perimeter’, ’ed’,
and ’bottomm’).

Table 5.4: Evaluation metrics of RF classification - Curb extraction

Metrics 0 1 2 3 Overall

Accuracy 0.838
Precision 0.778 0.846 0.838 0.826 0.838
Recall 0.636 0.752 0.927 0.585 0.838
F1 0.700 0.796 0.880 0.685 0.833
MCC 0.693
Kappa 0.688

Subsequently, by applying the classification model to the whole dataset of mask contour prop-
erties, curb extraction from GSVimages in e-scooter accident locations was achieved. Figure 5.7
below illustrates an example of curb extraction result at one location.

Both the presence and number of curbs were obtained based on the classification result. Curbs
were recognized and extracted from GSV images in over half of the e-scooter accident locations.
The number of curbs in locations where curbs were identified is mostly one or two. Distributions
of presence and numbers of recognized curbs are shown in the following Figure 5.8.
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(a) Confusion matrix

(b) Importance value of variables

Figure 5.6: Classification result for curb extraction

5.4 Variables generation of accident points

5.4.1 Curb variables

With the extraction result illustrated in the previous section, the presence and total numbers
for each accident location were regarded as two basic variables for the curb. In addition, to
thoroughly describe the detailed curb environment, the average, minimum as well as maximum
number of curbs detected from all four directions in each e-scooter location were calculated as
a complement. The curb variables are listed in Table 5.5.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.7: Example of curb extraction

(a) Presence of curbs (b) Numbers of curbs

Figure 5.8: Distribution of curb extraction results for accident locations

Table 5.5: Generated curb variables

Type Variable Description

Numeric
cmean Average number of curb
cmin Minimum number of curb
cmax Maximum number of curb

Categorical cp Presence of curb

43



CHAPTER 5. RESULTS

5.4.2 Entropy variables

5.4.2.1 Image entropy

For each accident location, there were four image entropy values from GSV images of four
directions as the result of Section. Mean, maximum, and minimum values of image entropy
were then attained. The distribution map of the mean image entropy value from four directions
in each e-scooter accident is shown in Figure 5.11a.

5.4.2.2 Whole scene entropy

Along with the image entropy obtained from the perspective of pixel color values, the entropy
of mask objects for the whole scene was also computed in view of semantic segmentation. With
the application of SAM and manual interpretation result mentioned in the previous section,
classifying objects into different label groups from GSV images could provide insights to describe
the complexity of items observed in specific locations. Similar to curb extraction methods, label
groups were firstly identified as listed in Table 5.6 below. Another RF classification model was
then performed to acquire the distribution histogram of object groups for the whole scene.

Table 5.6: Label group statistics for whole scene entropy

Class Label group Count %

0 Building 401 10.2
1 Curb 49 1.2
2 Infrastructure 717 18.2
3 Means of transportation 189 4.8
4 Other 1822 46.3
5 Sky 112 2.9
6 Vegetation 644 16.4

Likewise, the RF classification result summary was shown as the confusion matrix in the following
Figure 5.9a. As illustrated in Table 5.7, the model is of good performance with an overall
precision score of 0.794 and a recall score of 0.783. By applying the RF classification model,
the entropy of objects identified for the whole scene was gained. It can be seen from the Figure
5.9b that the three most important variables are vertical positions (’topm’, ’bottomm’) and 25
percentile of values in green color channel (’gq25’). And the spatial distribution of the average
value of whole scene entropy is presented in Figure 5.11b.

5.4.2.3 Ground scene entropy

Apart from the specific focus on curb, other infrastructure features that are located at ground
level were considered to constitute a complete ground scene for e-scooter users. By using the
infrastructure segmentation group identified previously, one more classification model was built
to detect infrastructure features on the ground. As shown in Table 5.8, seven primary label
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(a) Confusion matrix

(b) Importance value of variables

Figure 5.9: Classification result for whole scene entropy

Table 5.7: Evaluation metrics of RF classification - Entropy of whole scene

Metrics 0 1 2 3 4 5 6 Overall

Accuracy 0.783
Precision 0.724 0.667 0.828 0.852 0.742 1.000 0.882 0.794
Recall 0.689 0.857 0.736 0.383 0.887 0.811 0.713 0.783
F1 0.706 0.750 0.779 0.529 0.808 0.896 0.788 0.779
MCC 0.686
Kappa 0.680

groups were set for the classification. Assessment and result of the built model were presented
in the following confusion matrix (5.10a) and evaluation metrics 5.8. Besides, the Figure 5.10b
shows that features of highest importance are predominantly geometric attributes, including
vertical positions (’topm’, ’bottomm’) and equivalent diameter(’ed’). The entropy of ground
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scene results for each accident location were mapped as seen in Figure 5.11c.

Summary of all three entropy variables generated is provided in Table 5.10.

Table 5.8: Label group statistics for ground scene entropy

Class Label group Count %

0 Bike lane 7 1.0
1 Curb 49 6.4
2 Ground sign 217 28.3
3 Manhole 40 5.2
4 Other 226 29.5
5 Pavement 92 12.0
6 Road 135 17.6

(a) Confusion matrix

(b) Importance value of variables

Figure 5.10: Classification result for ground scene entropy
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Table 5.9: Evaluation metrics of RF classification - Entropy of ground scene

Metrics 0 1 2 3 4 5 6 Overall

Accuracy 0.820
Precision 1.000 0.667 0.832 0.731 0.953 0.531 0.900 0.833
Recall 0.500 0.526 0.899 0.950 0.953 0.667 0.610 0.820
F1 0.667 0.588 0.864 0.826 0.953 0.591 0.727 0.819
MCC 0.770
Kappa 0.767

(a) Image entropy (b) Whole scene entropy (c) Ground scene entropy

Figure 5.11: Entropy variables generation results for accident locations

Table 5.10: Generated entropy variables

Type Variable Description

Image
entropy

ie Average value of image entropy
iemin Minimum value of image entropy
iemax Maximum number of image entropy

Whole scene
entropy

mew Average entropy value for whole scene
mewmin Minimum entropy value for whole scene
mewmax Maximum entropy value for whole scene

Ground
scene
entropy

meg Average entropy value for whole scene
megmin Minimum entropy value for ground scene
megmax Maximum entropy value for ground scene

5.4.3 Traffic-transport variables

Traffic-transport variables of three main types were generated, including distance from accident
locations to infrastructure features as well as numeric and categorical variables of traffic network
characteristics. Table 5.11 below illustrates the list of generated variables. Categorical variables
were encoded into one-hot numeric values.
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Table 5.11: Generated traffic-transport variables

Type Variable Description

Distance to
infrastructure
features

dbusl Distance to bus line
dtraml Distance to tram rail
dtrainl Distance to train rail
dplight Distance to public light
dstation Distance to public transport station
dparkcar Distance to car parking space
dparktw Distance to two-wheeler parking space
dpedcro Distance to pedestrian crossing
dstopsign Distance to stop sign
dcurb Distance to curb
dtrafficarea Distance to traffic area
droad Distance to road
dvfpath Distance to bicycle and pedestrian route

Numeric traffic
characteristics

speedlimit_value Speed limit value
gvm_dwv Average daily traffic
gvm_msp Traffic demand in morning peak hours
gvm_asp Traffic demand in evening peak hours
r_width_value Road width

Categorical traffic
characteristics

curbtype Curb width type
z_qnr Statistical city district
z_knr Urban district
trafficarea Traffic zone
r_width Road width group
r_surface Road surface type
speedlimit Speed limit group

5.5 Variables generation of random pseudo-absence points

5.5.1 Random pseudo-absence points

Figure 5.12 below presents the distribution of generated random pseudo-absence points. Similar
to the process for e-scooter accident location points, GSV images of pseudo points were also
retrieved and filtered by their content. In total, 995 pseudo points were generated, of which 792
locations had valid GSV images.

5.5.2 Variables generation

The variable generation process for pseudo points is the same as that for accident locations,
including creating curb variables, entropy variables as well as traffic-transport variables. Addi-
tionally, number, name, and data format of variables generated for pseudo points are consistent
with the previous variable dataset for accident points.
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(a) Distribution overview (b) Distribution of valid and invalid GSV images

Figure 5.12: Distribution of random pseudo-absence points and valid GSV images

5.5.2.1 Curb variables

By applying SAM on GSV images of pseudo points, calculating properties of output segmen-
tation masks, and building RF classification model, curb variables including presence, num-
ber(average, maximum, minimum) were attained. Figure 5.13 illustrates the spatial distribution
of two curb variables (presence and average number) for pseudo points.

(a) Presence of curbs (b) Numbers of curbs

Figure 5.13: Distribution of curb extraction results for random pseudo-absence points
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5.5.2.2 Entropy variables

Image entropy, whole scene entropy, and ground scene entropy were produced, of which the
average values calculated from four images for each pseudo point location were mapped as
shown in the following Figure 5.14.

(a) Image entropy (b) Whole scene entropy (c) Ground scene entropy

Figure 5.14: Entropy variables generation results for random pseudo-absence points

5.5.2.3 Traffic-transport variables

Likewise, three types of traffic-transport variables for pseudo points were acquired by merging
with transport and traffic network infrastructure datasets, including distance to infrastructure
features and numeric and categorical traffic network characteristics. It is important to note that
several traffic-transport variables generated for pseudo points have more categories than those
for accident points, since the pseudo points spread in a larger distribution. These variables were
therefore not considered thoroughly in the prediction model. Specifically, they are variables of
speed limit and statistical district.

5.6 Regression analysis

5.6.1 Regression for accident presence

The regression result for presence of accident is presented as follows in Table 5.12 and 5.13.
Out of the 98 independent variables, 53 variables were determined to be statistically significant.
As for numeric variables, speed limit, curb presence, and road width were identified to have a
negative correlation with accident presence at the highest significance. Distance to traffic area,
train railway, stop sign, and tram rail, as well as maximum number of curbs was positively related
to presence of accident. While daily traffic density was found to be negatively correlated with
it. Regarding categorical variables, as shown in the table, presence of accidents was associated
with speed limit type, urban district, statistical district, road width type.
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Table 5.12: OLS regression model for accident presence - Model metrics

Metrics Value

R-squared 0.672
Adjusted R-squared 0.642
F-statistic 21.91
Prob(F-statistic) 0.000
Log-likelihood -55.119
AIC 298.200
BIC 767.4

Table 5.13: OLS regression model for accident presence - Significant variables

Variables P-value Coefficient Significance

speedlimit_value 0.000 -0.2709 ***
r_width_value 0.000 -0.1306 ***
r_width_5,3,6 0.000 ***
trafficarea_3,1 0.000 ***
z_knr_5,6,12,9,1,3,10 0.000 ***
r_surface_1 0.000 0.3428 ***
speedlimit_1,2,3 0.000 ***
curbtype_1 0.000 0.3251 ***
cp 0.000 -0.2680 ***
z_qnr_7,8,14,1,11,12,5,15 0.000 ***
z_qnr_4,16,31,9,32 0.007-0.001 **
speedlimit_5 0.003 -0.4362 **
dtrafficarea 0.004 0.0399 **
r_width_4 0.005 0.0942 **
dtrainl 0.006 0.0300 **
z_knr_8 0.009 -0.1709 **
z_qnr_3,8,2,6,13,21 0.038-0.010 *
dstopsign 0.011 0.0300 *
r_width_7 0.014 -0.1447 *
dtraml 0.016 0.0290 *
gvm_dwv 0.024 -0.1395 *
curbtype_2 0.030 0.1317 *
z_knr_2, 11 0.048-0.032 *
cmax 0.040 0.0812 *
Significance codes: 0 *** 0.001 ** 0.01 * 0.05

5.6.2 Regression for accident severity

Additionally, to investigate whether there is a correlation between all variables with accident
severity, regression analysis was also performed by combining the previously created variable
dataset for accident points and severity records from the accident dataset. In total, six dependent
variables for severity were set, including person injury and property damage. It is worth noting
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that there are three types of personal injury recorded for e-scooter accidents: fatal, light, and
severe. However, no e-scooter accidents from 2019 to 2022 in the city of Zurich were involved
with person fatality. Therefore, only light and severe personal injury were considered in this
thesis. Records related to the impact of e-scooter accidents were selected, containing the number
of injured persons (lightly and severely) and property damage value. Dependent variables for
the regression model were generated based on both the presence of injury and the number of
injured persons. Specifically, binary values of 0 and 1 were added based on the number of injured
persons and property damage to represent whether e-scooter accidents involved person injury
or property damage. Since the maximum number of severely injured persons recorded in the
dataset is 1, the presence variable with a form of binary values is exactly identical to the number
of persons for severe injury. As can be seen from the following Table 5.14, the number of severely
injured persons is not included.

Table 5.14: Dependent variables for accident impact

Variable Description

Person injury

inp 1 for injury and 0 for no injury
svp 1 for severe injury and 0 for no severe injury
lvp 1 for injury and 0 for no injury
lv Number of lightly injured persons

Property damage pdp 1 for damage presence and 0 for no damage
pd Numeric value of property damage

For all the six dependent variables, regression analysis was performed respectively with OLS
linear regression model and GAM linear regression model. Metrics of built models were listed
in the following tables to provide a basic outline of regression performance. Moreover, variables
identified to be statistically significant were summarised with p-values.

5.6.2.1 Regression for person injury

Presence of injury Table 5.15 and Tale 5.16 illustrate the results of OLS linear regression
and GAM linear regression separately. R-squared value of OLS model is 0.291 while pseudo R-
squared value of GAM model is 0.547. Variables determined to be correlated with the presence
of injury are road surface, curb width type, traffic area, statistical district, and distance to the
road in the OLS regression model. Results from GAM regression show that more variables are
statistically significant, including presence of curb, minimum and maximum number of curbs,
curb width type, road width value and type, speed limit, statistical district, urban district, traffic
area, maximum whole scene entropy, bicycle traffic count, distance to pedestrian crossings,
distance to road, distance to curb, along with average, minimum, maximum value of image
entropy.

Presence of severe injury From Table 5.17 and Table5.18, OLS regression model on the
presence of severe injury has an R-squared value of 0.27 while the pseudo R-squared value of
GAM is 0.530. Concerning the defined significant variables, OLS regression result shows six
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Table 5.15: OLS regression model for the presence of person injury

(a) Model metrics

Metrics Value

R-squared 0.291
Adjusted R-squared 0.048
F-statistic 1.199
Prob(F-statistic) 0.159
Log-likelihood -51.645
AIC 255.300
BIC 535.500

(b) Significant variables

Variables P-value Coefficient Significance

r_surface_1 0.000000 0.3981 ***
curbtype_2 0.000011 0.2528 ***
trafficarea_2 0.000064 0.2876 ***
curbtype_1 0.007041 0.1453 **
z_qnr_21 0.023315 -0.2046 *
z_qnr_20 0.024801 -0.1995 *
droad 0.049077 0.0840 *
Significance codes: 0 *** 0.001 ** 0.01 * 0.05

Table 5.16: GAM regression model for presence of person injury

(a) Model metrics

Metrics Value

Pseudo R-squared 0.547
Log-likelihood -486.125
AIC 1225.083
AICc 1417.316
GCV 0.324

(b) Significant variables

Variables P-value Significance

cp 0.000000 ***
cmin 0.000000 ***
cmax 0.000000 ***
r_width_value 0.000000 ***
speedlimit_value 0.000000 ***
curbtypeˆ 0.000000 ***
z_qnrˆ 0.000000 ***
z_krnˆ 0.000000 ***
trafficareaˆ 0.000000 ***
r_widthˆ 0.000000 ***
r_surfaceˆ 0.000000 ***
speedlimtˆ 0.000000 ***
mewmax 0.000002 ***
bicyclecount 0.000623 ***
dpedcro 0.003813 **
droad 0.008227 **
dcurb 0.009403 **
ie 0.016757 *
iemin 0.018670 *
iemax 0.030583 *

ˆ All categories of the variable.
Significance codes: 0 *** 0.001 ** 0.01 * 0.05

variables, including urban district, statistical district, road width type, distance to nearby road,
and curb width type. And GAM regression finds fourteen variables significant, such as presence
of curb, minimum and maximum number of curbs, curb width type, road width value and type,
speed limit, statistical district, urban district, traffic area, distance to public light as well as
average ground scene entropy.
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Table 5.17: OLS regression model for presence of severe person injury

(a) Model metrics

Metrics Value

R-squared 0.270
Adjusted R-squared 0.021
F-statistic 1.083
Prob(F-statistic) 0.325
Log-likelihood -80.491
AIC 313.000
BIC 593.200

(b) Significant variables

Variables P-value Coefficient Significance

z_knr_2 0.000065 0.3779 ***
z_qnr_2 0.001087 0.5526 **
r_surface_1 0.009891 0.1681 **
droad 0.017777 0.1117 *
r_width_4 0.026391 0.0418 *
curbtype_1 0.048491 0.1169 *
Significance codes: 0 *** 0.001 ** 0.01 * 0.05

Table 5.18: GAM regression model for presence of severe person injury

(a) Model metrics

Metrics Value

Pseudo R-squared 0.530
Log-likelihood -377.075
AIC 1006.982
AICc 1199.215
GCV 0.397

(b) Significant variables

Variables P-value Significance

cp 0.000000 ***
cmin 0.000000 ***
cmax 0.000000 ***
r_width_value 0.000000 ***
speedlimit_value 0.000000 ***
curbtypeˆ 0.000000 ***
z_qnrˆ 0.000000 ***
z_krnˆ 0.000000 ***
trafficareaˆ 0.000000 ***
r_widthˆ 0.000000 ***
r_surfaceˆ 0.000000 ***
speedlimitˆ 0.000000 ***
dplight 0.029018 *
meg 0.036984 *

ˆ All categories of the variable.
Significance codes: 0 *** 0.001 ** 0.01 * 0.05

Presence of light injury Regarding the presence of light injury, OLS regression model with
R-squared value of 0.252 and GAM regression model with pseudo R-squared value of 0.507 were
shown in the following Table 5.19 and Table5.20. In the OLS resgression model, variables of
statistical district, urban district, traffic area, speed limit, road surface, road width, curb width
type, minimum image entropy are found to have a correlation with the presence of light injury.
While the GAM regression model provides results that significant variables include presence of
curb, minimum and maximum number of curbs, curb width type, road width value and type,
speed limit, statistical district, urban district, traffic area, distance to road, and maximum whole
scene entropy.
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Table 5.19: OLS regression model for presence of light person injury

(a) Model metrics

Metrics Value

R-squared 0.252
Adjusted R-squared -0.004
F-statistic 0.983
Prob(F-statistic) 0.524
Log-likelihood -140.020
AIC 432.000
BIC 712.200

(b) Significant variables

Variables P-value Coefficient Significance

z_knr_2 0.000417 -0.4070 ***
r_surface_1 0.001389 0.2560 **
trafficarea_2 0.002254 0.2942 **
curbtype_2 0.003191 0.2256 **
r_width_5 0.023017 0.1568 *
iemin 0.034471 0.3574 *
z_knr_4 0.035271 0.1470 *
z_qnr_2 0.036908 -0.4287 *
z_knr_9 0.042756 0.2074 *
speedlimit_3 0.048674 0.8941 *
Significance codes: 0 *** 0.001 ** 0.01 * 0.05

Table 5.20: GAM regression model for presence of light person injury

(a) Model metrics

Metrics Value

Pseudo R-squared 0.507
Log-likelihood -243.209
AIC 739.250
AICc 931.483
GCV 0.608

(b) Significant variables

Variables P-value Significance

cp 0.000000 ***
cmin 0.000000 ***
cmax 0.000000 ***
r_width_value 0.000000 ***
speedlimit_value 0.000000 ***
curbtypeˆ 0.000000 ***
z_qnrˆ 0.000000 ***
z_krnˆ 0.000000 ***
trafficareaˆ 0.000000 ***
r_widthˆ 0.000000 ***
r_surfaceˆ 0.000000 ***
speedlimitˆ 0.000000 ***
mewmax 0.004551 **
droad 0.011040 *

ˆ All categories of the variable.
Significance codes: 0 *** 0.001 ** 0.01 * 0.05

Number of injured persons With respect to the number of injured persons, Table 5.21
presents OLS regression model results, of which the R-squared value is 0.237 and significant
variables are urban district, road surface, road width, curb width type, minimum image entropy,
and traffic area. Besides, as shown in Table 5.22, GAM regression model has pseudo R-squared
value of 0.510, while variables of curb presence, curb numbers, curb width type, road width
value and type, speed limit, statistical district, urban district, traffic area, distance to road,
maximum value of whole scene entropy, distance to pedestrian crossing, minimum and average
values of image entropy, along wih distance to stop sign are determined to have a correlation
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with the number of injured persons.

Table 5.21: OLS regression model for number of lightly injured person

(a) Model metrics

Metrics Value

R-squared 0.237
Adjusted R-squared -0.024
F-statistic 0.907
Prob(F-statistic) 0.685
Log-likelihood -195.570
AIC 543.100
BIC 823.300

(b) Significant variables

Variables P-value Coefficient Significance

z_knr_2 0.001014 -0.4567 **
r_surface_1 0.001245 0.3122 **
curbtype_2 0.014419 0.2253 *
r_width_5 0.019706 0.1943 *
iemin 0.025343 0.4566 *
z_knr_11 0.033367 0.3933 *
trafficarea_2 0.041182 0.2360 *
Significance codes: 0 *** 0.001 ** 0.01 * 0.05

Table 5.22: GAM regression model for number of lightly injured person

(a) Model metrics

Metrics Value

Pseudo R-squared 0.510
Log-likelihood -202.022
AIC 656.876
AICc 849.109
GCV 0.864

(b) Significant variables

Variables P-value Significance

cp 0.000000 ***
cmin 0.000000 ***
cmax 0.000000 ***
r_width_value 0.000000 ***
speedlimit_value 0.000000 ***
curbtypeˆ 0.000000 ***
z_qnrˆ 0.000000 ***
z_krnˆ 0.000000 ***
trafficareaˆ 0.000000 ***
r_widthˆ 0.000000 ***
r_surfaceˆ 0.000000 ***
speedlimtˆ 0.000000 ***
droad 0.006802 **
mewmax 0.013017 *
dpedcro 0.016521 *
ie 0.017112 *
dstopsign 0.020637 *
iemin 0.047245 *

ˆ All categories of the variable.
Significance codes: 0 *** 0.001 ** 0.01 * 0.05

5.6.2.2 Regression for property damage

Presence of property damage According to the Table 5.23, OLS regression model for the
presence of property damage has a R-squared value of 0.290. Variables of road surface, statistical
district as well as distance to pubic light are revealed to be correlated with the presence of
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property damage. The result from GAM regression is illustrated in Table5.24, with pseudo
R-squared value of 0.579. Correlations between variables of curb presence, curb numbers, road
width, speed limit, urban district, statistical district, traffic area, ground scene entropy, whole
scene entropy, distance to curb, distance to car parking space, together with traffic demand in
morning peak hours and presence of property damage are shown.

Table 5.23: OLS regression model for presence of property damage

(a) Model metrics

Metrics Value

R-squared 0.290
Adjusted R-squared 0.047
F-statistic 1.194
Prob(F-statistic) 0.164
Log-likelihood -163.55
AIC 479.100
BIC 759.300

(b) Significant variables

Variables P-value Coefficient Significance

r_surface_1 0.031243 0.1856 *
z_qnr_11 0.036414 0.2150 *
dplight 0.046491 0.0719 *
Significance codes: 0 *** 0.001 ** 0.01 * 0.05

Table 5.24: GAM regression model for presence of property damage

(a) Model metrics

Metrics Value

Pseudo R-squared 0.579
Log-likelihood -233.170
AIC 719.173
AICc 911.406
GCV 0.643

(b) Significant variables

Variables P-value Significance

cp 0.000000 ***
cmin 0.000000 ***
cmax 0.000000 ***
r_width_value 0.000000 ***
speedlimit_value 0.000000 ***
curbtypeˆ 0.000000 ***
z_qnrˆ 0.000000 ***
z_krnˆ 0.000000 ***
trafficareaˆ 0.000000 ***
r_widthˆ 0.000000 ***
r_surfaceˆ 0.000000 ***
speedlimtˆ 0.000000 ***
megmax 0.002262 **
meg 0.003816 **
mew 0.006699 **
dcurb 0.013723 *
mewmax 0.015716 *
gvm_msp 0.017958 *
dparkcar 0.035821 *

ˆ All categories of the variable.
Significance codes: 0 *** 0.001 ** 0.01 * 0.05
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Value of property damage With regard to property damage values, results from OLS linear
regression and GAM linear regression are presented in Table5.25 and Table5.26 below. OLS
regression model for property damage with R-squared value of 0.245 reveals that variables,
including statistical district, traffic area, maximum and average values of image entropy, urban
district, and traffic area, have significant correlation with property damage value. While the
result from GAM regression with pseudo R-squared value of 0.521 shows that presence, width
as well as minimum and maximum number of curbs, road width type and value, speed limit
type and value, urban district, statistical district, traffic demand in morning peek hours, and
distance to curb are significant variables.

Table 5.25: OLS regression model for value of property damage

(a) Model metrics

Metrics Value

R-squared 0.245
Adjusted R-squared -0.014
F-statistic 0.947
Prob(F-statistic) 0.601
Log-likelihood -2778.300
AIC 5709.000
BIC 5989.000

(b) Significant variables

Variables P-value Coefficient Significance

z_qnr_21 0.004441 2660.5790 **
trafficarea_2 0.006080 2019.0510 **
iemax 0.009536 2743.7248 **
z_knr_9 0.013566 1939.1458 *
trafficarea_3 0.016059 -2135.4976 *
ie 0.034882 -4420.0586 *
Significance codes: 0 *** 0.001 ** 0.01 * 0.05

Table 5.26: GAM regression model for value of property damage

(a) Model metrics

Metrics Value

Pseudo R-squared 0.521
Log-likelihood -5019.550
AIC 10291.932
AICc 10484.165
GCV 34331076.476

(b) Significant variables

Variables P-value Significance

cp 0.000000 ***
cmin 0.000000 ***
cmax 0.000000 ***
r_width_value 0.000000 ***
speedlimit_value 0.000000 ***
curbtypeˆ 0.000000 ***
z_qnrˆ 0.000000 ***
z_krnˆ 0.000000 ***
trafficareaˆ 0.000000 ***
r_widthˆ 0.000000 ***
r_surfaceˆ 0.000000 ***
speedlimtˆ 0.000000 ***
gvm_msp 0.011692 *
dcurb 0.037897 *

ˆ All categories of the variable.
Significance codes: 0 *** 0.001 ** 0.01 * 0.05
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5.7 Prediction Model

A regression model built within the accident variable dataset for different severity was applied
to pseudo points, which was designed to examine how severity distributes under the same pos-
sibilities of accidents.

5.7.1 Person injury

Predicted presence of person injury The presence of person injury predicted by previously
built OLS regression model and GAM regression model was illustrated in Figure 5.15, which
shows that most locations of pseudo points were predicted to be prone to person injury. OLS
and GAM regression models both predict 97% of the pseudo points are with the presence of
person injury.

(a) OLS linear regression (b) GAM linear regression

Figure 5.15: Prediction result for presence of person injury

Predicted presence of severe injury Regarding the presence of severe injury, the prediction
result is shown below in Figure 5.16, indicating a much smaller distribution compared to the
presence of personal injury. Besides, some areas are shown to have a highly dense distribution
of points that predict the existence of severe injury. For example, points located close to the
eastern shore of Zurich Lake were predicted to likely involve severe injury.

Predicted presence of light injury Different from the prediction result of severe injury,
there is a larger distribution of predicted presence of light injury in the result from both regression
models, as presented in Figure 5.17.
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(a) OLS linear regression (b) GAM linear regression

Figure 5.16: Prediction result for presence of severe person injury

(a) OLS linear regression (b) GAM linear regression

Figure 5.17: Prediction result for presence of light person injury

Predicted number of lightly injured person As can be seen from Figure 5.18, while most
of locations are predicted to involve one injured person from GAM regression model, most points
are expected to be with a probability of over one injured person from OLS regression model.

5.7.2 Property damage

Predicted presence of property damage From Figure5.19 below, it can be seen that the
difference between numbers of points with and without property damage is smaller compared
to the prediction result on the presence of person injury. The percentage of points predicted to
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(a) OLS linear regression (b) GAM linear regression

Figure 5.18: Prediction result for number of lightly injured person

be exposed with likely property damage are 61% from OLS model result and 69% from GAM
model result.

(a) OLS linear regression (b) GAM linear regression

Figure 5.19: Prediction result for presence of property damage

Predicted value of property damage Concerning the value of property damage, ranges of
property damage of both OLS and GAM regression models are similar. As displayed in Figure
5.20, values are predicted relatively higher from GAM model than those from OLS model.
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(a) OLS linear regression (b) GAM linear regression

Figure 5.20: Prediction result for value of property damage

5.7.3 Grid-based aggregation of prediction result

To gain insights into the distribution pattern of predicted results and to identify possible areas
with high risk in the involvement of personal injury and property damage, predictions for pseudo
points were aggregated in square grids. Cell size was set to be about 200 meters (197.12 meters).
Aggregation was applied to prediction results from GAM linear regression model, of which the
maps are provided in Figure 5.21 as follows.
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(a) Presence of person injury (b) Presence of property damage

(c) Presence of severe person injury (d) Presence of light person injury

(e) Number of lightly injured person (f) Value of property damage

Figure 5.21: Aggregated prediction results
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6. Discussion

This chapter aims to discuss the research from four aspects: results interpretation of each
research question in Section 6.1, Section 6.2, Section 6.3, comparison with previous research in
Section 6.4, assessment of methods in Section 6.5, and limitations in Section 6.6.

6.1 Overview of E-scooter accidents of Zurich

RQ1: What are the spatio-temporal patterns of e-scooter accidents in Zurich? What
are the main causes of the accidents?

Overall, 350 e-scooter accidents were recorded by the city police from Year 2019 to 2022, offering
an opportunity to gain initial insight into e-scooter safety issues in the city of Zurich. Char-
acteristics and patterns of e-scooter accidents were analyzed from three perspectives: general
attributes, spatial distribution, and temporal distribution.

Firstly, as shown in Table 3.1, the majority of the accidents are skidding or self-inflicted accidents,
crossing the carriageway, or pedestrian accidents. Most e-scooter accidents have consequences of
personal injury and property damage. Among them, although no fatality was recorded, only 46
accidents were recorded as damage-only accidents. Over 70% of the accidents cause light person
injury and property damage of less than 500 CHF. Regarding involving persons and objects, most
accidents only involve e-scooters or happen between e-scooters and passenger cars. In addition,
the predominant age range of e-scooter drivers is from 25 to 64. Concerning infrastructure, all
accidents recorded happen in town, while most accidents took place at a straight section on
a secondary road, with a maximum of 50 km/h. Moreover, the most common circumstances
for e-scooter accidents recorded are good weather, dry road surface, and weak or normal traffic
volumes. Among all the e-scooter accidents, 56.6% were skidding or self-inflicted accidents, and
55.2% were mainly caused by the influence of alcohol or other influences related to inattention
and distraction.

Secondly, e-scooter accidents were found to be concentrated in the city center in general. Ac-
cording to the result of KDE heat map, areas with a high density of e-scooter accidents in the
city of Zurich were found to extend from Sechseläutenplatz north-westwards to Hardbrücke.
Relatively less dense areas were located around stations Alstetten and Oerlikon. Besides, an
overall increasing tendency of the high-density area was shown by comparing KDE heat map of
each year from 2019 to 2022. Additionally, the aggregation of e-scooter accidents on road seg-
ments provided a similar spatial pattern, that the streets with the highest number of e-scooter
accidents were situated in the city center, such as Bahnhofstrasse and Limmatquai. However,
focusing on one single year, the concentration of aggregated accident counts per road segment
was not shown obviously, which was probably because of the small size of the accident data
amount.
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Thirdly, from the exploratory time series analysis, an intuitive pattern was revealed in the time
of e-scooter accidents. The number of e-scooter accidents has been increasing steadily from 2019
to 2022. Besides, it was found that obvious differences existed in the number of accidents over
smaller time frames, including month, day of week, and hour. E-scooter accidents took place
mostly from July to October, and predominantly on weekends. Considering the comparison
between weekdays and weekends, the vast majority of e-scooter accidents on weekends happened
between 23:00 and 3:00, while accidents on weekdays mostly occurred between 16:00 and 23:00.

6.2 Curb extraction with SAM

RQ2: How could infrastructure features be extracted from SVI by using SAM ?

Extraction of curb was achieved by applying SAM to GSV, generating variables based on prop-
erties of image segmentation, and training RF classification model with labels from manual
vision interpretation. 7 groups of objects merged from 42 segmentation mask labels were gener-
ated. For each segmentation mask, 15 spectral features and 14 geometric attributes of identified
contours were calculated, which were prepared to train RF classification model. Moreover, con-
sidering the exclusive purpose of detecting curbs, RF was trained and tested with a focus on
the lower part of images. Evaluation results showed that the trained RF model had an overall
accuracy of 0.838. Additionally, the result of ranking variable importance showed that influen-
tial variables for curb extraction were green color channel and red color channel, average color
distance between mask color and grey, area, perimeter, equivalent diameter, and position of
bottom bounding point. The important contribution of these variables could be explained by
the unique characteristics of curbs, including their gray color, long, narrow shape, small size as
well, and closeness to the bottom edge of GSV. With the curb extraction model, 278 curbs were
identified from GSV images at 295 accident location points. The feasibility of this innovative
method for curb extraction was explored and confirmed in this thesis.

6.3 Importance of infrastructure-related variables

RQ3 How do traffic-infrastructure characteristics relate to e-scooter accidents?

Two perspectives of the e-scooter accident were considered to answer this question, which were
presence and severity. Presence indicates whether an e-scooter accident occurs or not, while
severity means how serious the impact of an e-scooter accident is when it occurs. For each
perspective, the relationship between it and traffic-infrastructure characteristics was determined
by three steps. First of all, the generation of random pseudo points provided a point dataset
that was randomly distributed in the road network without overlapping with accident points.
These points could be assumed as random locations with no e-scooter accidents on the one
hand and locations that are just situated randomly over the whole road network on the other
hand. Subsequently, variables related to traffic-infrastructure characteristics were produced with
three focuses, including curb, entropy, and characteristics of both traffic network and transport
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infrastructure. Finally, the regression model was applied to the presence of accidents, as well as
the severity of accidents, respectively.

Results from regression analysis on accident presence illustrated an acceptable goodness-of-fit
with an R-squared value of 0.672. Nine numeric variables were determined to have a statistically
significant correlation with the presence of accidents, among which variables of speed limit, curb
presence, road width as well as average daily traffic (traffic density/exposure) were negatively
related to accident presence. It indicates that accidents might take place more likely at locations
with lower speed limit, narrower road, and less traffic density. Besides, distance to traffic area,
train railway, stop sign, as well as maximum number of curbs were found to have a positive
relationship with e-scooter accidents, which shows the possibility of accidents is higher in areas
far from traffic area, railway, tram rails and stop signs. With a focus on curb, curb presence,
and maximum number were found to be significant. While the presence of curb reduces the
probability of accident presence, a larger maximum number of curbs increases it. It suggested
that e-scooter accidents tend to take place at locations without curb compared to locations with
curb. However, among locations with curb presence, a higher number of curbs leads to a higher
possibility of e-scooter accidents. Furthermore, regarding categorical variables, six of them were
found to be significant, such as urban district, statistical district, traffic area, curb width type.
It was shown in the result that both types of curb nearby were determined to be positively
correlated with accident presence, which could therefore be assumed that the existence of curbs
is likely to be related to e-scooter accidents. Curb width type of 25 cm was found to be more
significant with a bigger coefficient value compared to curb width type of 15 cm.

Concerning the severity of accidents, the goodness-of-fit of the overall regression models was
shown to be lower than regression on accident presence. Nonetheless, significant variables cor-
related with different content of accident severity were determined from perspectives of both
personal injury and property damage. Firstly, for the presence of person injury, OLS regres-
sion results illustrated that variables in the presence of both width type of curbs, traffic area,
statistical district, as well as distance to road were significant for presence of person injury.
Secondly, for the presence of property damage, distance to public light together with statistical
district were found to be significant from OLS regression. Furthermore, the specific severity of
person injury, including light and severe injury, as well as the value of property damage, were
also considered as dependent variables for regression separately. GAM regression model was
additionally conducted to be a supplement of OLS regression result.

Comprehensively, results from regression analysis on both the presence and severity of accidents
illustrated that the traffic-infrastructure features have an influential impact on understanding
e-scooter accidents.

6.4 Comparison with previous studies

The findings in the overview of e-scooter accidents, including main causes and spatial-temporal
distribution, are generally consistent with attributes and patterns concluded in previous studies.
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Over half of e-scooter accidents were identified to be skidding or self-inflicted accidents in the
city of Zurich, which is in agreement with results of e-scooter causes analysis with web content
mining in Germany (Brauner et al., 2022). The influence of alcohol was found to be the main
cause in this study, which supported the conclusion that driving under alcohol consumption is
an indispensable factor in user behavior for e-scooter accidents (Gioldasis et al., 2021). Besides,
as for spatial distribution, the concentration of e-scooters in the city center as well as several
other important traffic stations revealed in this thesis is associated with findings that e-scooter
crashes predominantly happened in city center (Pobudzei et al., 2023) and dense urban settings
(Azimian & Jiao, 2022). Furthermore, concerning temporal trend, findings that the majority
of e-scooter accidents happened during the weekends support previous research (Stigson et al.,
2021). However, the pattern that e-scooter accidents mostly took place from early afternoon
to late night was not exactly consistent with previous findings that the majority of e-scooter
accidents happened at night or in the evenings (Brauner et al., 2022; Karpinski et al., 2022).

Additionally, the findings of the relationship between traffic infrastructure characteristics and
e-scooter accidents confirm that road surface type, riding locations (White et al., 2023) and
street type (Pobudzei et al., 2023) are among the most crucial infrastructure factors for e-
scooter accidents. Regression results of accident presence that a higher number of curbs leads
to a higher possibility of e-scooter accidents, supporting suggested ideas that collision between
e-scooters and curbs is one of the common causes of e-scooter accidents.

6.5 Assessment of SAM performance

The performance of image segmentation with the application of SAM is worth discussing since
its outstanding performance is confirmed by previous studies as a newly published advanced AI
model. In this thesis, both strengths and weaknesses of SAM were observed in its application.
Generally, it provided a good performance in image segmentation with an output of about 88
masks in general per image. Performance for segmenting masks was found to be more excellent
for several specific object types compared to other types, including vehicles, bicycles, vegetation
and humans. Details in components of these objects could also be recognized, such as the wheels
of vehicles and the clothes of humans. Besides, an object with a large distance from the photo
position could also be detected and segmented, such as a part of a distant mountain. Also, it
offered a surprising ability to detect tiny objects and even objects partially obscured by others,
such as cobbles on the pavement in Zurich’s old town and a faraway building behind trees.

However, limitations and weaknesses of SAM were also found. Firstly, it has a high requirement
on computing ability with a consumption of a large amount of time for segmentation. For
one single image, the time consumed of SAM was not found to be related to pixel numbers,
file sizes of images as well as output number of masks, which ranges from 83 seconds to 282
seconds per image and depends on the computing power of GPU devices. Also, SAM sometimes
over segmented areas with rich texture in complex images, which supports the evaluations of
SAM (Yilmaz & Kavzoglu, 2024) that limitation of an excessive segmentation exists in complex
scenarios with low spatial resolution images. For example, windows on a high glass building and
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brick patterns in the old town were found to be easily over segmented.

6.6 Limitations

Several limitations of this study are acknowledged from two perspectives as follows: data avail-
ability, coverage, and quality in Section 6.6.1, as well as methodological approach 6.6.2.

6.6.1 Data availability, coverage and quality

Availability, coverage, and quality of the three main data sources used in the thesis are of
the greatest importance for the analysis. Fundamentally, the e-scooter accident dataset has a
limited data size and potential bias. There were 350 accidents recorded by the city police from
2019 to 2022, on which the entire analysis process was based. The relatively small amount of
data might lead to an inadequate understanding of e-scooter accidents. Besides, the e-scooter
accidents were only recorded when the police noticed or were informed by the persons involved
in an e-scooter accident. It is possible that more e-scooter accidents took place without being
registered in this dataset, which could cause the analysis to be not accurate enough. Also, the
riding direction of e-scooters was not included in the accident report, which makes it impossible
to identify the exact visual environment of drivers. Using the average information from the
surrounding four directions of GSV images, it is possible to be mismatched with a true driving
view of e-scooter users. Furthermore, the SVI accessed through GSV static API has problems
of incomplete coverage, invalid content, and relatively insufficient quality. Since GSV covers
the road segments in the city of Zurich partially, streets without GSV were therefore not fully
analyzed. Also, GSV includes content such as indoor space, rooftops, and aerial view, which
are invalid for this work. And locations with invalid content in GSV were filtered and not
included in the analysis for curb extraction and regression on e-scooter accidents. Moreover,
it is noteworthy that distortion of objects, the sunlight of overexposure, and shadows exist in
some images, which is likely to result in a misunderstanding of the colors and shapes of objects.
Last, yet importantly, traffic and transport network datasets obtained from official government
datasets also have limitations. Traffic count datasets have an uneven spatial distribution due
to the concentration of traffic counting stations on main roads, including traffic census data for
individual motorized transport as well as automatic pedestrian and bicycle count data, which
causes a bias in traffic count variables in locations other than main roads.

6.6.2 Methodological approach

For RQ1, the spatial distribution pattern of e-scooter accidents was firstly visualized by apply-
ing kernel density estimation (KDE), of which the selected values of bandwidth and smoother
are influential to the result. The optimized bandwidth value was set by Scott’s rules, while the
default setting for smoother was applied, and therefore, these parameters set with deficient tests
might lead to incorrect results. Moreover, the number of e-scooter accidents was aggregated to
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the nearby road segments for spatial distribution from the perspectives of the street network.
However, the lengths of road segments among the same type of roads are not consistent. There-
fore, generating a collection of road segments by cutting the currently used network with the
same value of length may be important to have a more accurate understanding of the distribu-
tion pattern. Additionally, temporal analysis in this thesis is relatively simple and exploratory,
and it would be interesting to analyze the temporal pattern of e-scooter accidents with more
methods.

For RQ2, limitations of application of SAM are discussed in section 6.5. In addition to that,
the filtering functions applied to remove overlapping masks and small-size contours could reduce
the number of repetitive and less important masks on the one hand, but also possibly filter out
masks for existing curbs. This might cause inadequate extraction of curbs and a smaller number
of curbs in comparison to the true number of curbs in the real world.

For RQ3, there are three aspects of existing limitations, including variable generation, predic-
tion model design, and regression analysis. To begin with, generated curb variables are limited
to their presence and numbers. Other features, such as the portion of curbs in ground infrastruc-
ture, would be useful. Additionally, with the lack of riding direction of e-scooters, consecutive
points on one e-scooter’s driving route are impossible to produce, and therefore, calculating
properties of extracted curbs becomes hard to achieve. Secondly, information extracted from
GSV of each location is limited by summarising variables of images from all four directions.
Information from each of the four GSV images per point is not fully used, which could be an
improvement in variable generation to include differences among them or a combination pat-
tern. Regarding transport traffic variables, incorrect results might exist due to the inclusion
of unevenly distributed traffic infrastructure data. More transport data such as right of way
might also contributes to e-scooter accidents, which should be considered. Concerning the pre-
diction model, only prediction on accident severity was built to define how severity differentiates
spatially with the same possibility of accident presence. The prediction of accident presence is
not reached with the lack of more points located along the whole road network. It would be
interesting to predict accident severity after predicting accident absence first. Additionally, the
current aggregation of prediction results on points is based on grids with a size of about 200
meters, which might cause a modifiable areal unit problem without testing grids of more sizes.
Moreover, regression analysis in this thesis might be improved by performing models of other
regression methods and optimizing the selection of variables.
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7. Conclusions

This thesis aims to investigate the influence of traffic infrastructure characteristics on e-scooter
accidents in the city of Zurich. With the accident dataset recorded from police reports, this study
first performs a spatial-temporal analysis to gain overall knowledge of the distribution pattern
of e-scooter accidents. In order to comprehensively understand the impact of infrastructure,
especially curb, extraction of curb is carried out by applying SAM to GSV at accident locations.
After generating random pseudo points and integrating variables from perspectives in traffic
transport, infrastructure, and entropy, the correlation between traffic transport characteristics
and e-scooter accidents is determined by regression analysis.

7.1 Main findings

The main findings of this study are concluded into the following points:

- Predominant type of e-scooter accidents is skidding or self-inflicted, with a major cause of
alcohol influence as well as inattention and distraction.

- E-scooter accidents concentrate mostly in the city center. Secondary centers of accidents
are transport stations with dense urban settings, including Oerlikon and Altstetten.

- An obvious, steadily increasing annual trend has been found in e-scooter accidents. E-
scooter accidents take place mostly on weekends. While the majority of accidents occur
late at night on weekends, accidents on weekdays happen more from late afternoon to
evening.

- Feasibility of extracting curb infrastructure feature from GSV with application of SAM is
confirmed.

- There is a strong correlation between traffic infrastructure characteristics and the presence
of e-scooter accidents.

- Significant variables of traffic infrastructure are determined to be related to the severity of
e-scooter accidents. While curb width types, traffic area, and distance to the road affect
the presence of personal injury, distance to public light has an influence on the presence
of property damage.

7.2 Contributions and insights

Firstly, this study provides an overview of the main causes, spatial distribution, and temporal
pattern of e-scooter accidents, filling the research gap for understanding e-scooter safety issues in
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the city of Zurich. Secondly, by applying SAM, feature extraction by calculating segmentation
properties and performing a classification model is achieved. The process introduced in this
paper could be applied to acquire other interesting features from images, which not only offer
a low-cost data collection method but also reduce the difficulty of extracting information from
specific objects in traditional methods. Last yet most importantly, correlations are determined
between traffic infrastructure and both the presence and severity of e-scooter accidents, which
suggests the important influence of traffic infrastructure on e-scooter safety issues. Correlation
coefficients of significant variables could be taken into account as a reference for further analysis
in e-scooter accidents. Besides, the prediction result of different severity for e-scooter accidents
in the city of Zurich presents a primary understanding of the underlying vulnerability of locations
to e-scooter accidents.

7.3 Outlook and future research

Due to existing limitations discussed in Section 6.6, modeling the influence with a larger data
size of accident data as well as a better SVI with a higher coverage is important to gain a more
adequate and unbiased understanding on this problem. It is suggested that pedestrian traffic
variables be included since the concentration of accidents is located in the city center, where a
dense population exists. Besides, the bias existing in data registered from police reports should
be considered and avoided in future research.

Additionally, as found and discussed in this paper, despite the breakthrough made by SAM
as one of the most advanced AI models in image segmentation, weaknesses and shortcomings
exist. Hence, there is abundant room for further progress in image segmentation. Furthermore,
in future investigations, it might be possible and helpful to include more detailed information
extracted from features such as measurements by overcoming the limitations of current methods.

Moreover, several questions remain unanswered at present, including how e-scooter accidents are
distributed or will occur in rural areas with a predictable growing popularity of micro-mobility
and how to thoroughly exclude driver’s factor in e-scooter safety issues under the predominant
influence of alcohol and distraction recorded so far.
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