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Abstract

Mobile map applications serve as versatile tools for modern navigation and location-
based searches, aiding activities ranging from exploring unfamiliar areas, planning
routes from home, to purchasing public transport tickets while traveling. Despite
their widespread use across various contexts, there remains a significant gap in
our understanding of how these diverse situations influence user interactions with
smartphones. This work aimed to discern the behavioral patterns of mobile map
app usage, with a particular focus on how these patterns vary based on user mo-
bility (stationary vs. non-stationary) and various contextual factors such as home
and work locations, points of interest (POIs) and transportation modes. Employing
tappigraphy, an ecological momentary assessment that captures taps with high tem-
poral resolution and ecological validity (Reichenbacher and Bartling,, 2023; Zingaro
et al.| [2023; Zingaro and Reichenbacher;, 2022)), this thesis examined touchscreen in-
teractions in conjunction with GPS data to investigate the use of mobile map apps
in real-world environments. A geospatial analysis was performed on the data from
39 participants with use of the Trackintel library (Martin et al., 2023). The findings
suggest that map app usage is influenced by the user’s mobility state, with distinct
apps being preferred depending on the use context. The study concludes that en-
riching tap data with location-based context improves understanding of mobile app
behavior, thereby providing valuable insights for app developers to improve usability

and user experience.

Keywords: Map App Usage, Tappigraphy, Mobile Applications, Smartphone, Use
Context, Mobility
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Zusammenfassung

Mobile Kartenanwendungen stellen vielseitige Werkzeuge fiir die moderne Naviga-
tion und standortbezogene Suche dar. Thr Einsatzbereich erstreckt sich von der Er-
kundung neuer Regionen und der Planung von Routen von einem bestimmten Aus-
gangspunkt bis hin zum Erwerb von Fahrkarten fiir 6ffentliche Verkehrsmittel wenn
Unterwegs. Obgleich ihre Nutzung in diversen Kontexten weitverbreitet ist, besteht
nach wie vor eine signifikante Forschungsliicke in Bezug auf das Verstédndnis dariiber,
wie die unterschiedlichen Situationen die Interaktionen der Nutzer mit Smartphones
beeinflussen. Ziel dieser Arbeit war es, die Verhaltensmuster bei der Nutzung mobiler
Karten-Apps zu untersuchen, mit besonderem Augenmerk darauf, wie diese Muster
je nach Mobilitét des Nutzers (stationér vs. nicht-stationér) und verschiedenen Kon-
textfaktoren wie Wohn- und Arbeitsort, Points of Interest (POIs) und Verkehrsmittel
variieren. In der vorliegenden Arbeit wurden Touchscreen-Interaktionen in Verbin-
dung mit GPS-Daten untersucht, um die Nutzung von mobilen Karten-Apps in rea-
len Umgebungen zu analysieren. Dabei wurden die Methode der Tappigraphie (ein
“Ecological Momentary Assesment”, EMA) eingesetzt, welche Touchscreen-Aktionen
mit hoher zeitlicher Auflésung und 6kologischer Validitét erfasst (Reichenbacher and
Bartling, 2023; |Zingaro et al [2023; Zingaro and Reichenbacher, 2022). Unter Ver-
wendung der Trackintel-Bibliothek (Martin et al., [2023) wurde eine Geodatenanalyse
anhand von 39 Teilnehmern durchgefiihrt. Die Ergebnisse deuten darauf hin, dass die
Verwendung von Karten-Apps durch den Mobilitatszustand des Nutzers beeinflusst
wird, wobei in Abhéngigkeit vom Nutzungskontext unterschiedliche Apps bevorzugt
werden. Die Studie kommt zu dem Schluss, dass die Ergdnzung von Tap-Daten mit
standortbasiertem Kontext das Verstdndnis fiir das Verhalten mobiler Apps verbes-
sert und damit wertvolle Erkenntnisse fiir App-Entwickler generiert, die zu einer

Optimierung der Usability und des User-Experience beitragen.
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1 Introduction

1.1 Motivation

Today’s world is characterized by the ubiquitous use of smartphones —anytime,
anywhere. The number of smartphone subscriptions has steadily increased since
2016 and is expected to continue to grow (Statistal, [2024]). People increasingly rely
on mobile map applications and location-based services (LBS) as tools for modern
navigation and search for places, which generate large amounts of geospatial and
behavior data. As a result, the valuation of the digital map market has also increased
rapidly since 2018 and is projected to grow to USD 73.1 billion in 2033 (Saha;, 2023]).
For example, according to a recent report, Google Maps alone has an average of 1.8
billion monthly users worldwide (Wylie, [2024)), reflecting the growing demand for

accurate real-time geospatial services.

The considerable expansion in demand and market growth of smartphones and map
applications can be attributed to the versatility of smartphones, which enable users
to access a wide array of services, at any time and anywhere. This also means
that mobile (map) apps are used in different contexts for numerous purposes. For
instance, mobile map apps can be used in wayfinding, helping us navigate when
planning a route or searching for desired destinations (Briigger et al., 2019; Montello
and Freundschuh| [2005). Moreover, map apps can also serve to improve spatial
knowledge of the environment. Recently, |[Schade et al.|(2023)) designed and evaluated
a mobile map app to enhance the exploration of the user’s surroundings through

gamification, creating an interactive way to improve spatial cognition.

Map use contexts are highly diverse, ranging from pedestrian navigation in unfa-
miliar urban environments, route planning at home, to in-vehicle route planning
for long-distance travel, where each context imposes unique constraints and require-
ments on the design and functionality of maps (Bartling et al.| 2022, 2023). Further-
more, the small screen sizes and touch-based interactions characteristic of mobile
devices may present usability challenges. Ultimately, a nuanced understanding of

mobile map usage patterns and the circumstances under which people engage with
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these map apps is crucial to effectively design or enhance mobile map apps that not
only meet functional requirements but also provide a seamless and satisfying user
experience ((Griffin et al.;[2017). This may involve adapting map content, symbology,
and interaction methods to enhance readability, reduce cognitive load, and improve

overall usability on mobile platforms.

Despite the widespread adoption of mobile map app services, a significant gap re-
mains in understanding their everyday usage patterns. Research utilizing highly
ecologically valid or publicly available data to study phone usage with consideration
of use context is scarce (Khan et al., 2020 Kim et al., [2019). Specifically, there is
a notable lack of theoretical understanding of the relationship between use context
and user behavior Kim et al.| (2019), as well as the link between app usage and
mobility choices |Khan et al.| (2020)). This research deficit may be attributed to con-
cerns about potential data misuse, particularly Global Positioning System (GPS)
information, and the delicate balance between privacy and accuracy in long-term
phone use data collection (Power et all [2021). It is therefore imperative to study
phone use in conjunction with contextual factors, such as location preferences, app
interests, and habits, in order to bridge the research deficit and gain insight into
users’ needs. This understanding can subsequently inform improvements in mobile

app design (Bartling et al., [2022)).

To address privacy concerns while maintaining high ecological validity, a novel ap-
proach is required. This thesis proposes the use of tappigraphy, a method recently
introduced to the field of Geographic Information Science (GIScience) (Reichen-
bacher et al., 2022; Zingaro et al.,|2023; Zingaro and Reichenbacher, [2022), to collect
data on the usage of everyday mobile maps and improve the analysis by extracting
context from GPS data. Tappigraphy involves collecting and analyzing touchscreen
events on smartphones (Balerna and Ghosh| [2018) (see [ection 2.1). The aim is
to leverage the high temporal scale of taps and GPS data to investigate low-level

human-app interactions in map apps.

This approach offers several advantages over existing methodologies. It provides
more granular information compared to studies that rely solely on the volume of traf-
fic from the mobile network, allowing deeper insights into user behavior (De Nadai
et al., [2019; [Shafiq et all 2012; [Trestian et al.; 2009; [Yang et al., [2016). Moreover,
it expands upon previous tappigraphy map use research by incorporating location
information (Reichenbacher et al., 2022), and extends existing methodologies that
consider the retrieval of home location and the computation of distance away from
home by integrating location-based context with GPS data (Zingaro et al., [2023;
Zingaro and Reichenbacher, 2022)).
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1.2 Research Questions

The primary objective of this research is to use data from the MapOnTap (MoT)
study to gain a deeper understanding of the behavioral patterns associated with

using of mobile map apps in the context of human mobility.

To this end, we characterize human mobility as either stationary or non-stationary.
The term stationary describes the act of remaining in a geographical space for a
designated period of time (Martin et al.| [2023; Teixeira et al., 2021)). Conversely, we
define non-stationary as the logical complement of stationary behavior; describing
individuals who are in motion or transit (Smolak et al., |2022). To enhance the
understanding of mobility with contextual information, differentiation can be made
between modes of transport for non-stationary movement (i.e., fast or slow mobility),
and a purpose (home vs. work) or Point of Interest (POI) classification for stationary
locations. In accordance with the terms of the trackintel (TI) library for human

mobility data (Martin et al., 2023)), the spatial entities for stationary data are called

staypoints, and for non-stationary data triplegs (see [subsection 3.2.3)).

Following the objective, the research questions of this master thesis are:

1. What tapping and usage patterns can be identified in mobile map apps at
a macro-level depending on their state of mobility, i.e., stationary or non-

stationary?

2. Can different map usage behavior be derived based on context enrichment of
stationary locations (purpose and POI) and mode of transport (fast vs. slow
mobility)?

3. How do tapping and usage patterns in map apps differ at a micro-level de-

pending on their state of mobility and context-enriched state of mobility?



2 Related Work

This chapter examines the existing literature relevant to this thesis. The review
begins with definitions of the key terminology essential to the methodological ap-
proach in the context of empirical research using smartphones. Subsequently, the
focus shifts to related work, examining studies on mobile phone usage that con-
sider contextual factors. This is followed by an exploration of research linking app
usage with mobility patterns. The chapter concludes with a specific focus on stud-
ies investigating map app usage, which forms a critical component of this thesis.
By synthesizing the key concepts and findings from previous research, we establish
the foundation for investigating the interaction between mobile map app usage and

context.

2.1 Terminology

Understanding the key terms that frame this study is essential for interpreting the
results and methodologies used in mobile app usage research. In behavioral science,
ecological validity describes the ability to derive research findings in real-world, nat-
uralistic circumstances (Andradel [2018; Lewkowicz, [2001)). This concept aligns with
Ambulatory Assessments (AA), which refers to the use of computerized or digitized
methods to study daily life through self-reports, behavioral observations, psycho-
logical test data, movement behavior, or physiological measurements(Fahrenberg,
2021). Similarly, an Ecological Momentary Assessment (EMA) is defined as the
real-time, repeated sampling of user behavior and experience in a natural environ-
ment (Shiffman et al.; 2008). These approaches are increasingly applied to mobile
phone usage studies, where smartphones serve as tools for unobtrusive, in-situ data

collection.
Smartphones

With the rise of smartphones, AA methods have evolved, allowing researchers to
study participants’ phone use remotely. These methods offer advantages over tradi-

tional studies by facilitating data collection over extended periods (weeks or months)
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(De Nadai et al., [2019; [Falaki et al.) 2010; Huber and Ghosh| 2021) or with larger
study sizes (e.g., (Bohmer et all [2011; De Nadai et al., 2019; [Verkasalo| [2009; [Yang
et al), [2016)). Furthermore, smartphones are also equipped with numerous built-in
sensors (e.g., GPS, accelerometer, light sensor, gyroscope, etc.) that can provide
additional insights into user activities and contexts beyond app usage (Otebolaku
and Andrade| |2016; Straczkiewicz et al., 2021; [Huang and Onnela; 2020).

Tappigraphy

The introduction of tappigraphy, an EMA method that collects and analyzes smart-
phone touchscreen events, offers a novel approach to studying mobile app use (Balerna

iand Ghosh| [2018). This technique offers the potential to gain insight into human

app use behavior during everyday activities through the continuous logging of taps
on smartphones at a millisecond timescale, thereby providing high-resolution data
with high ecological validity (Reichenbacher and Bartling), 2023} Zingaro et al., 2023}
Zingaro and Reichenbacher] 2022). A key strength of the method is its unobtrusive

and remote data collection approach, which captures in-situ ambulatory human-

system interface interactions (Reichenbacher et all) 2022). Furthermore, due to the

high temporal scale of data collection, collecting private information on the user

or usage is unnecessary, such as demographic information or audiovisual material

(Zingaro et al., 2023)). Therefore, tappigraphy balances the competing interests of

privacy rights and data access (Power et al 2021)), rendering it particularly suitable

for exploring human behavior in everyday activities (Reichenbacher et al., [2022]).

Originally developed and implemented in the field of behavioral and cognitive neu-
roscience, tappigraphy was used to study and identify behavioral patterns, including
cognitive performance, sleep patterns, and sensorimotor activity, in individuals with
epilepsy (Balerna and Ghosh| |2018; Duckrow et al., 2021; Huber and Ghosh) [2021]).
Recently, it has been introduced to the fields of GIScience and LBS (Reichenbacher]
et al) 2022; Zingaro et al., 2023} Zingaro and Reichenbacher, [2022). Compared

to conventional user tracking methods in cartography or GIScience, tappigraphy

is an unobtrusive and remote approach. Researchers refrain from contacting or

interfering with participants’ activities, a feature lacking in traditional techniques

such as self-report questionnaires (Fennell et al. 2019; [Khan et al., 2020)) or in-

terviews/debriefings (Riegelsberger and Nakhimovsky, 2008). This reduces costs,

which enables an increase in the length of the study duration (i.e., weeks, months,
etc.) and/or the sample size (Reichenbacher et al. 2022).

However, tappigraphy is limited to capturing app usage involving haptic interactions

(Reichenbacher et al., |2022), which is a consideration given that some participants

extensively interact with map apps while others do not (Briigger et al., [2019). This
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limitation leads into the broader discussion of current research on app usage, par-

ticularly in the context of mobile maps and location information.

Understanding these foundational terms is essential as we examine how different
contexts influence mobile phone usage. The next section will explore how the use
context of mobile phone can shape app usage patterns and the overall user experi-

ence.

2.2 Use Context in Mobile Phone Usage

The activity theory, formulated by Russian psychologists in the early 20" century,
serves as a framework for modeling human activities (Kaptelinin et al.; [1995)). It
offers a valuable lens for understanding mobile phone usage by framing activities
as the interaction between the subject, the object, and tools (Kaenampornpan and

O’Neill, 2004; |[Kim et al., [2019).

Contextual factors also play a critical role in describing an individual’s activity
(Kaenampornpan and O’Neill, [2004). Context is a multifaceted concept with various
interpretations in different fields. In this discussion, we will concentrate on its
definition in the field of human-computer interaction. According to [Abowd et al.
(1999, p. 304), context refers to “any information that can be used to characterize
the situation of an entity [person, place or object|” relevant to the human-system
interaction. When this definition is applied to users, this is called the use context
(Kim et al., |2019)), which encompasses situational factors such as location, time,
user characteristics, and technology (Kaenampornpan and O’Neill, [2004; Kaasinen)
2003).

The notion of geographic relevance further enriches our understanding of context in
use. Originating from Geographic Information Science, geographic relevance empha-
sizes a user’s need for geographic information depending on their specific situation
(Raper, 2007). This approach aims to facilitate user activities by delivering pertinent
information that addresses essential questions of where, what, and when (Reichen-
bacher et al., 2009). Understanding these contextual elements is crucial because
they directly influence how and when mobile services are used (Verkasalo, |2009).
Moreover, the insight into these learned patterns of context can help predict and
adapt to future user behavior (Otebolaku and Andrade, 2016).

Location information can be further enriched to provide more meaningful insights.
This process involves transforming raw GPS data into higher-level contextual ele-
ments through context-aware methods (Abowd et all [1999; Bartling et al., |2023).
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Enriched location data allows for a deeper understanding of how map apps are used
in specific scenarios, such as providing tailored suggestions based on the user’s real-
time context or transportation mode. Such enrichment is particularly important for

LBS, which rely heavily on precise contextual information to deliver personalized

user experiences (Kim et al., [2019).

According to activity theory, the focal activity in this thesis is the use of map apps,
where the subject is a user that engages with a mobile device to achieve a specific

goal. Various contextual factors further shape this activity. To systematically cate-

gorize these factors, Bartling et al. (2023) proposed a taxonomy that organizes the

contextual components of mobile map usage into three primary categories. Extrin-
sic context involves the technological and environmental factors, intrinsic context
refers to the user’s individual and cognitive attributes, and behavioral context en-
compasses physical or digital user activities. The detailed framework for examining
the interaction among the user, the object, the tool, and the contextual elements in
the utilization of map apps is illustrated in visualizes the activity theory

and activity-centric view for the use of the mobile map apps.

Context
%e“a\/'\oral COnte)(

Activity:
Mobile Map App Usage

Object Subject
(Goal) []_®ﬂ < > (User)

\o/

Tool
(Mobile Device)

Figure 1: Activity Framework and Context for Map App Use (adapted from |Kim et al. (2019),
enhanced with Map Use Context from|Bartling et al.| (2023))

In light of the extensive range of contextual factors at hand, this literature review
is concentrated on studies that incorporate location-based information. A number

of studies have enriched the location data with categorical information about where

phone usage occurs (environmental context). For example, Bohmer et al.| (2011)) used




Chapter 2. Related Work

AppSensor to track app usage across different geographical regions and functional
types, such as airports. They also contextualized non-stationary data with speed,
finding that at speeds greater than 25 km /h, people were less likely to use apps of
the Travel category.

Similarly, |Do et al.|(2011)), used smartphone data to explore long-term usage patterns
about places and social contexts. The location information was captured using a
multi-modal approach consisting of GPS data and Wi-Fi access points. The semantic
meaning of the places was assigned by the participants themselves, who manually
labeled eight automatically chosen places from a predefined list of 11 categories,
including home, work, transport, and restaurant. The phone information was given
by the start and end time of an app session, though due to technical difficulties with

the end of session data, they only considered usage frequency and not duration.

Further research has examined app usage by contextualizing locations into categories
such as downtown areas, suburban zones, and university campuses (Shafiq et al.|
2012)) or across functional zones such as transportation, educational institution,
work, and entertainment Yang et al.|(2016). However, these studies relied on cellular

traffic volume to as their phone usage data.

Although these studies offer valuable insights, they lack the fine-grained detail that
tap data from the tappigraphy method provides, which captures direct interactions
within an app. The enrichment of environmental and behavioral information, espe-
cially in the context of map apps, remains crucial because these applications provide
a wide array of services that are heavily dependent on contextual factors (Abowd
et al., 1999; Bartling et al., |2023). Given the importance of context in shaping
app usage, the following section will explore how mobility influences these patterns,

focusing on the dynamic relationship between user movement and app behavior.

2.3 Mobility and App Usage

In line with the taxonomy of map use context, mobility is part of the behavioral
context category (Bartling et al., 2023). The dynamic relationship between user
movement and app behavior remains an area that needs to be explored, particularly
regarding how phone-session-based data can inform our understanding of mobile
app interactions Khan et al.| (2020). This section summarizes studies on general
app usage related to mobility, excluding those focused exclusively on map apps (see
. It begins with research restricted to stationary app usage, followed by those

incorporating non-stationary data.
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In a study restricted to stationary app use, staypoints were defined as “small circular
areas” where a participant stayed for at least 10 minutes|Do et al.| (2011} p. 355). For
the place labeling, the staypoints were aggregated with a grid clustering algorithm,
to clusters of a maximum distance of 250 m. Some findings included that home,
work, friend-home were the most popular places. Moreover, maps were accessed the

most in places of holiday, relaxation and restaurants.

Another study limited to stationary app use was a six-month analysis conducted
by |De Nadai et al|(2019) to determine whether the digital behavior of people also
exhibited constraints similar to those observed in physical and social spaces (Alessan-
dretti et al.,|2018). The ‘stop events,” or what we refer to as staypoints, were defined
as places where individuals had spent at least 15 minutes within a 50 m distance.
The staypoints were then aggregated with a Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) with at least one stop event within 45 m into
‘stop locations’ to characterize a person’s mobility. Instead of contextualizing the
visited places with semantic meaning, they categorized participants as ‘explorers’
and ‘keepers’ in both the physical and social space based on their rate of discovering
new locations that are visited regularly or applications. Based on this, they showed

that the app capacity can help predict the mobility behavior and vice versa.

An early large-scale study that examined the connection between users’ applica-
tion interests and mobility properties in both stationary and non-stationary states
was [Trestian et al| (2009). They analyzed anonymized trace information and base-
stations locations for 7 days. The area of the base-stations ranged from several
100 m? to several square miles and was on average 4 km?. To study the role of
locations, they differentiated between home and work places based on the time of
day spent in a location. They were pioneers in discovering the correlation between
movement patterns and the access of apps. For instance, stationary users tended to
access different apps than those who moved more often and visited more locations.

Moreover, certain app categories were used more frequently in specific locations.

An alternative approach to understanding the influence of context on mobile phone
usage is to categorize location data according to movement type. In a self-report
survey without GPS data, Fennell et al.| (2019) examined the relationship between
mobile phone usage, physical activity, and sedentary behavior. Sedentary behavior
was classified into three categories: sitting, standing, and moving. The hypothesis
that cell phone use occurs mainly when sitting, compared to standing or moving,
and that it is positively associated with sedentary behavior (low, mid, high) but not
with physical activity was confirmed. As the data was self-reported, the findings

were contingent on the subjects’ ability to accurately estimate their phone usage.
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Consequently, this method does not match the ecological validity of automatically

collecting location data from AAs.

Another comprehensive study on the influence of people’s mobility, geospatial pat-
terns, and preferences on the use of mobile apps with a higher degree of ecological
validity was conducted by Yang et al| (2016). They used IP flow traces from a
cellular provider to gauge app usage and mobility, characterizing mobility by the
number of cells visited and by the radius of gyration, a metric for the size of the
activity space (Gonzalez et al., |2008). The cells were enriched with meaning by
manually classifying them according to their function. The study found that an in-
crease in mobility level led to increased app usage, albeit the effect varied according

to category type.

Similarly, Verkasalo (2009)) distinguished between users in a state of motion and
those who were stationary, whether they were at home or at work. Unlike the
data collection methodology employed by |Fennell et al.| (2019), Verkasalo’s study
collected data continuously and in-situ. However, the geolocation data is cell-based,
and the data collection is limited to hourly logging. If a user spent less than 10% of
their time in a cell, it was classified as being on the move; otherwise, the usage time
in a cell, along with the hourly and weekday distribution, was used to attempt to
classify a cell as home or work. The low temporal (hourly) and spatial (cell-based)
resolution resulted in the fact that the algorithm identifying the context of only 324
of the original 861 participants.

To gain a more accurate understanding of app usage in various mobility contexts, the
studies reviewed above point to the need for higher accuracy in location tracking and
consideration of both stationary and non-stationary behaviors. Numerous mobility
studies relied on less precise location data than GPS data (Fennell et al., 2019}
Trestian et al., 2009; Verkasalo|, 2009; Yang et al., 2016). They focused on contextual-
enrichment solely for stationary app usage neglecting app usage during movement
(De Nadai et al 2019; Do et al., [2011)), or considered enriched stationary settings
but lacked further context into non-stationary behavior (Verkasalo, |2009; Trestian
et al., 2009). However, to truly capture the nuances of users interact with apps, both
stationary and non-stationary situations must be considered. Furthermore, existing
research tends to measure app usage only in terms of access frequency and /or session

duration, without exploring the detailed behaviors within app sessions.

Map apps, with their inherent connection to spatial data and mobility, offer a distinct
perspective through which these dynamics can be explored in more depth. Thus,
the next section will delve into research specifically focused on map apps, examining

how they capture user interactions.
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2.4 Map App Usage

While the studies in the previous section provided insights into general app us-
age patterns and mobility, map apps—by design—play a particularly pivotal role
in understanding human mobility. This section focuses on research that directly
investigates map app usage, a field that remains underexplored compared to gen-
eral app usage studies. Although some studies have analyzed map apps as part of
broader app usage investigations (Bohmer et al., 2011; Carrascal and Church, 2015}
Do et al.,|2011; Falaki et al., 2010; Trestian et al., [2009; Yang et al., 2016]), relatively
few studies concentrate exclusively on map app usage (Kiefer et al., 2017; Riegels-
berger and Nakhimovsky| [2008} [Savino et al., 2021; Zingaro et al., 2023} |Zingaro
and Reichenbacher| 2022).

In a multi-method approach to study how people downloaded, installed and used
Google Maps for Mobile, Riegelsberger and Nakhimovsky| (2008)) tracked 24 partic-
ipants over a two-week period in four different cities. They identified the goals and
challenges encountered by users. However, this study was restricted by its exclusive
reliance on qualitative methods such as briefings, interviews, and in-situ recorded
usage. To study the user experience of map use depending on different degrees of
adaptations, researchers have also used eye-tracking data in an controlled experi-
ment (Kiefer et al.| [2017). However, such studies require a significant time input
from researchers for the data collection and are difficult to scale to larger study
sizes. In this regard, the use of AA and EMA methods to study map app use is very

limited.

Recently, the tappigraphy method has been introduced into the field of GIScience
to study the use of numerous map apps (Reichenbacher et al. |2022; Zingaro and
Reichenbacher, 2022; Zingaro et al., 2023)). In an exploratory study of the tappig-
raphy method, |[Reichenbacher et al.| (2022) investigated how much, when, for how
long, and how people use mobile maps, beyond Google Maps. This was a larger-
scale study with 211 participants who shared their data for at least two consecutive
weeks. Similar questions were analyzed in the Master thesis of Weber| (2021) at the
individual and group level, or how app use changes depending on the time of day
or day of the week using the same dataset as |[Reichenbacher et al.| (2022). Both
Weber| (2021) and Reichenbacher et al.| (2022) based their analysis on tappigraphy
data collected by Ghosh et al. where user’s location information was not collected.
Recently, map tap data collected with the tappigraphy method has been studied
in conjunction with GPS data (Zingaro et al. 2023; Zingaro and Reichenbacher,

2022)). However, they restricted spatial factors to the distance between participants

11



Chapter 2. Related Work

and their computed home location (Zingaro et al.,|2023} Zingaro and Reichenbacher]
2022).

The only study to our knowledge to also use logged app usage data to study map
apps was focused on Google Maps. Using a wrapped app, four distinct interaction
states were studied: Search, Place, Direction, and Map-View Savino et al.| (2021)).
Although this study provides detailed insights into in-app usage, it is restricted to a
single map application and does not offer broader perspectives on mobile mapping

services or the specific context of app use.

Building on the limitations identified in previous mobility and (map) app usage stud-
ies, this research aims to fill key gaps such as the reliance on low-precision location
data, the lack of insights into within-app behavior, and the insufficient contextual-
ization of both stationary and non-stationary movements. We introduce the novel
methods of tappigraphy and MapOnTap (MoT) that collects fine-grained tap data
and integrate it with GPS information to subsequently generate location-based con-
text. Specifically, the approach distinguishes between stationary and non-stationary
mobility states and augments these states with place-based information and move-
ment behavior during app usage. The following section outlines the method, from
preprocessing, data alignment, mobility state classification, and context enrichment

of mobility states.
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3 Methods

This chapter outlines the methodological framework utilized in this thesis. It encom-
passes the stages from data collection via tappigraphy and MoT to the data process-
ing required for alignment, subsequent classification of the aligned GPS data, and
the extraction of contextual information. This meticulous process lays the ground-
work for the extraction of tapping and usage patterns of map applications depending
on the state of mobility, i.e., stationary and non-stationary. An overview of the steps

is visualized in the flow chart in [Figure 2]

From preprocessing tappigraphy and GPS data to the visualization of the aligned
tap data, the computations took place in a Python 3 environment. To automate the
steps, the scripting was done in separate python files stored as functions and called

up in Jupyter Notebook files.

Throughout this study, map applications are defined as applications from the Google
Play Store which belong to the categories Maps and Navigation or Travel and Local.
App developers assign their application to a predefined list of app categories (Play
Console Help| 2024)). Maps and Navigation as well as Travel and Local categories
specifically address map use and travel services. The former category is defined as
containing “navigation tools, GPS, mapping, transit tools, [and| public transporta-
tion”, while the latter is defined for “Irip booking tools, ride-sharing, taxis, city

guides, local business information, trip management tools, [and]| tour booking”.
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3.1 Data Collection

The initial phase of this research is based on data collected as part of the Map on
Tap study conducted by PhD Candidate Donatella Zingaro at the Department of
Geography of the University of Zurich (UZH) (MapOnTap, 2021). It is a project
within the Digital Society Initiative and aims to understand how people use mobile
map apps in their daily lives. The objective of the MoT project is to expand the
existing knowledge on mobile app usage, which is a crucial prerequisite to conducting
finer-grained studies of smartphone usage. To achieve this objective, MapOnTap app
was developed at the Geographic Information Visualization & Analysis group at the
UZH (Ceolini, |2023) and is based on the TapCounter app from QantActions, a spin-
off company of the UZH, which explicitly excludes location data. The data obtained
from tappigraphy alone is inadequate for the purpose of retrieving the spatial context
of smartphone use, which is also of great importance for the understanding of how
users employ mobile map apps. Consequently, the MoT app captures touch events on
Android devices using the tappigraphy method and collects GPS data (MapOnTap,
2021).

The study collected taps from the moment the phone was unlocked until it was
locked in a so-called phone session. It recorded the timestamp of the tap in addition
to the name of the application and the Google Play Store category. The tappigraphy
dataset consisted of user’s tap data aggregated to app sessions, i.e., all consecutive
taps in the same application. It includes information on the precise timing of each
tap down to the millisecond, the start and end times of the app session, the number
of taps in the app session, the name, and category of the app, and unique identifiers

for the participant’s phone session.

In addition to the tap data, participants were also asked to consent to the collection
of their GPS data for the purposes of this study. They were given the option
to enable or disable the GPS tracking functionality at any time during the study
period. The GPS dataset included the location as longitude and latitude with the
corresponding timestamp of the GPS information collected. Due to privacy concerns
and the sensitive nature of GPS data, demographic information such as gender, age,

or nationality was not collected.
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3.2 Data Preprocessing

In order to analyze the usage of map applications in a geospatial context, a number
of steps must be taken. The first step was the preparation of the data for the most
complex and time-consuming step, the merging of the GPS and tap data. Following
the alignment process, the trackintel (TI) library Martin et al.| (2023) was used
to categorize aligned GPS data into two states of mobility: stationary and non-
stationary movement. The stationary category was further classified by purpose
using the frequency or Online Social Network Activity (OSNA) method, or with
POI data from OpenStreetMap (OSM). The non-stationary category was further
classified through the calculation of tap speed to differentiate between slow and fast

mobility.

It is important to note that phone sessions were derived directly from the raw tap
data. In contrast, app sessions can be defined either by the taps that make up the

phone sessions or, after data alignment, by their correspondence to the TT class.

3.2.1 Data Preparation

Given that the data was gathered through the MoT project, the initial phase of
the thesis involved preprocessing the tap and GPS data to prepare it for the data
alignment. For the GPS dataset, entries with missing data in the user 1D, latitude,
or longitude columns were removed. To mitigate issues in synchronizing GPS with
tap data, duplicates and overlaps identified by GPS timestamps were removed. The
original GPS data was stored as lists of GPS points. To make this data more
accessible during the alignment, the GPS dataframe was exploded into an ordered
dictionary of dictionaries where each entry corresponds to a positionfix, or ‘raw’ GPS
points. The dictionary key consists of the GPS timestamps, while the values are the
corresponding GPS information (timestamp, latitude, longitude, and altitude) as a

dictionary.

Similar to the GPS data, the tap data was stored in lists of taps, referred to as
“app sessions”. They are defined as consecutive taps within the same app. App
sessions corresponding to MoT (‘ch.uzh.geo.mapontap’) or SBB Preview (‘ch.sb
b.mobile.android.preview’) were removed. Although MoT was a prerequisite for
data collection, it is not a reliable indicator of typical usage patterns observed with
map apps. On the other hand, SBB Preview is a test application of SBB Mo-
bile (‘com.google.android.apps.maps’). Moreover, to enhance clarity, the app name

‘com.app.p2704IG’ was renamed to ‘com.app.stadtblatt.’
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To make the relationship between app names and categories more accessible in the
exploratory analysis, a dictionary was constructed for all app names containing the

name-category relationship, and another for map apps only.

3.2.2 Tap and GPS Data Alignment

Following the preprocessing of GPS and tap data, the subsequent phase involved
their temporal alignment. This process entailed the assignment of the temporal most
proximate GPS data point, as stored in the ordered dictionary, to a tap timestamp
that did not exceed the maximum interval threshold. In this context, multiple
timeframes were tested, specifically 15, 30, 60, 120, 300, 450, 600, 900, and 1800
seconds, for three individuals. Ultimately, an alignment time of 900 seconds was
selected by finding a balance between the lost data and how further TT classifications

of the stationary data turned out.

Given that the ordered dictionary with GPS data lacked the user ID, the align-
ment and computation of the exploded GPS dictionary were carried out for a single
user ID utilizing the function process_per_participant. To facilitate the align-
ment of data for multiple participants simultaneously, two functions were created:
align_gps_with_sessions and align_gps_with_sessions_and_export. The for-
mer function compiled the aligned data of each user into a singular large dataframe,
while the latter exported a CSV file of an individual’s aligned dataframe post-
computation. Both functions iterated through each user ID in the tap dataset,
omitting users for whom no GPS data was available, and subsequently invoked
process_per_participant. Exporting a CSV file for each individual proved ben-
eficial in managing large datasets, minimizing the potential loss of progress during

code execution interruptions.

The resulting aligned dataframe contained one row per tap with the columns: user
ID, phone session ID, tap timestamp, app name, app category, latitude, longitude,
and GPS timestamp. It is important to acknowledge that a GPS point could be
associated with multiple taps. Moreover, a tap may not be aligned with a GPS
point in the given time threshold. However, to apply functions from the TI library
and to differentiate between stationary and non-stationary movements, GPS data
was deemed essential. As a result, taps lacking GPS information were removed.
Furthermore, the taps were grouped by user ID and GPS timestamp so that there
were no duplicate GPS data for the geospatial analysis with TI. The relevant aligned
tap information was stored in lists corresponding to each GPS point. We refer to
this dataset as the aligned GPS data.
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3.2.3 Trackintel Classification

This subsection provides an overview of the classification elements derived from
aligning GPS data using the TT library. The TT library is structured around a hi-
erarchical activity-based analysis framework in transport planning, which assumes
that daily mobility involves performing activities in specific places and moving be-
tween locations for the next activity (Martin et al., 2023). While the TT hierarchy
distinguished between various types of non-stationary movement (triplegs, trips, and
tours), this analysis focuses exclusively on triplegs. Four key TI classes were em-

ployed in this study: positionfixes, staypoints, triplegs, and locations. An overview

of these classes is visualized in [Frigure 3|

Trackintel Classification
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Figure 3: Trackintel Classfication: From Positionfizes to Staypoints, Triplegs, and Locations
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The basic and smallest units are positionfizes, which are timestamped GPS points.
The model’s positionfixes input was given by the aligned GPS data. From the
positionfixes, staypoints were generated, which correspond to the stationary mobility
state classification. To complement the staypoints, they were clustered into what TI
defined as locations. The combination of positionfixes and staypoints enabled the

computation of triplegs, which is equivalent to non-stationary movement.

Extensive testing was conducted on the same three individuals utilized in the align-
ment computations to evaluate various time and gap thresholds for staypoints and
triplegs. Specifically, a range of time thresholds (0.5, 1, 2, 5, and 15 minutes) was
tested together with gap thresholds of 1, 5, 15, and 30 minutes to further refine the

identification of stationary segments.

For triplegs, a series of gap thresholds (1, 2, 5, 10, 15, and 30 minutes) was ex-
amined along with the 5-minute time threshold and 15-minute gap thresholds for
staypoints. This comprehensive approach allowed for a detailed analysis of how the
movement segments varied in response to different gap thresholds. The results of
these tests were also visualized to illustrate the changes in the movement segments,
providing valuable information on the dynamics of the mobility patterns based on
the selected thresholds. The different thresholds applied to compute the TI classes
are summarized in [Table 11

Table 1: TI Thresholds for the Computation of Staypoints, Triplegs, and Locations

Staypoint Tripleg Location
dist_threshold [m] 100 -
time_threshold [min] 5 -
gap_threshold [min] 15 15
method - between_staypoints
epsilon [m] - - 100
num_samples - - 1
distance_metric - - haversine
agg_level - - dataset

3.2.3.1 Staypoints and Locations

An individual remaining in a specific geographic location for a defined time period
is considered to be stationary, and the place in question is referred to as a stay-
point (Li et al., |2008; Martin et al., 2023)). Unlike positionfixes, staypoints posses

a semantic meaning, such as the purpose of the stay (Li et al., [2008; [Martin et al.,
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2023)). This differs from the TI location class, which consists of clustered staypoints.
The TI staypoints class is established through the application of the sliding win-
dow detection algorithm initially proposed in |Li et al.| (2008) on the positionfixes,
which incorporated both a minimum time threshold and a predefined distance. Ad-
ditionally, the T1I function provided the option to set a gap threshold to exclude of
temporal gaps. This feature is particularly beneficial for datasets characterized by

limited temporal tracking coverage (Martin et al., [2023]).

Staypoints are characterized as shapely point features that include the timestamp
of the first and last positionfix. By calculating the difference between the last and
first positionfix timestamps, a new column labeled duration was created to facilitate

comparisons regarding the length of time an individual spent while stationary.

The next step involved aggregating the nearest staypoints into locations using the
DBSCAN algorithm implemented by Martin et al.| (2023). Analyzing the significant
places visited by an individual or a group is essential for conducting a more detailed
examination of staypoints. Moreover, from a computational standpoint, extracting
POIs from OSM for locations is more efficient than extracting them from staypoints
due to the lower number of locations compared to staypoints. The use of clustered
staypoints, or locations, offers insights into frequently visited places, which can then

be analyzed across different contextual classes.

3.2.3.2 Triplegs

The counterparts to staypoints are triplegs, which are defined as segments of move-
ment between the staypoints. For the computation of triplegs, the method be-
tween__ staypoints was applied, with the consequence that positionfixes were uniquely
assigned to a staypoint or tripleg, but not both. This is in contrast to the over-

lap staypoints approach as outlined in [Martin et al.| (2023)).

A tripleg is a shapely linestring element that contains the timestamp of the first and
last positionfix assigned to the tripleg. The duration of each tripleg is computed in

a manner analogous to that employed for staypoints.

3.3 Data Analysis

After computing the spatial entities, the next step involved labeling staypoints and
triplegs with additional context. Since the tap data were not automatically inherited

from positionfixes in the TT classifications, we merged them to create a stationary
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and non-stationary dataset with taps and context. To analyze map app usage,
various metrics were calculated, including the tap speed and duration of the ses-
sion. Finally, an overview of visualization methods and statistical analysis tests is

presented.

3.3.1 Staypoint Context Labeling

Two methods were applied to generate environmental context about the staypoint:

POI and purpose. Both approaches are described in this section.

3.3.1.1 OSM & Most Frequent POI

For the retrieval of POI information, this thesis employed the Overpass API (Raifer]
nd)) to retrieve POI tags from OSM. The function get_tags_and_geom was used to
extract POIs and their geometries within a specified distance from a given point
or within a defined polygon. The methodology was based on the OSMnx functions
features_from_point and features_from_polygon which require a geometry col-
umn and a dictionary containing the tags for which POls are to be extracted (Boeing;,
2024)). It was possible for zero, one, or multiple POIs to be retrieved for a single
location. For the final dataset, we ended up using the tags computed from the center
geometry of the locations, with a radius of 100 m. An overview of the selection of
POI information and assignment to the staypoint is visualized in

POI Classification

Choose extent or e.g., center with Compute
center geometry 100m radius most frequent POI
from location
oblect # et )
-— -,
L]
‘1L bt

LR L N
1 OSM Objects

Locations

<l |ocation classified by most common POI category

Figure 4: POI Classfication: Extraction, Computation and Assignment to Staypoints

Beyond retrieving all tags for a location and storing them in a list, the func-
tion select_most_frequent_poi_tag was applied to assign each location to a
single tag, specifically the most common tag based on the POIs retrieved with
get_tags_and_geom (see . This facilitated comparisons between different
staypoints and could be used in an exploratory analysis to provide an overview of the

most frequently visited types of POIs. In a subsequent step, the specific POI tags
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were manually classified into broader categories, including food, education, trans-

portation, entertainment, healthcare, residential, commercial, and tourism (Ap-

pendix A).

The analysis could specifically focus on transportation-related POIs to assess whether
the usage of map applications was indeed higher in these locations, as found by (Yang
et al.| 2016). It was also reasonable to assume that individuals staying in hotels,

hostels, or motels were tourists and thus more likely to utilize map applications.

3.3.1.2 Purpose: Home, Work

Another classification system for staypoints was based on what [Martin et al. (2023)
referred to as purpose, differentiating between home and work locations for every
individual. Integrated within location_identifier, the TT library provided two
methods for classifying staypoints by purpose: the frequency and the OSNA method
Martin et al.| (2023)).

The frequency classification, based on the R package developed by Chen and Poorthuis
(2021)), assigned the label ‘home’ to the staypoint that was visited most often, and
‘work’ to the second most visited place. Staypoints that did not fall into either

category were not labeled.

In comparison, the OSNA approach categorized the weekdays into three temporal
segments: rest (2:00-8:00), work (8:00-19:00), and leisure (rest of the day) (Efstathi-
ades et al., 2015 Martin et al. 2023). The staypoint with the greatest cumula-
tive duration in the ‘rest’ and ‘leisure’ periods was designated to the ‘home’ label,
whereas the ‘work’ period was assigned to the most predominant location in the
work time frame. Originally devised by [Efstathiades et al. (2015)), the length of stay
was computed from geo-tagged tweets. Martin et al.| (2023) adapted the algorithm

to use the duration of a staypoint.

3.3.2 Tripleg Context Labeling

After computing triplegs, the next step involved adding contextual information to
these segments. As specific modes of transportation such as walking, jogging, cy-
cling, and driving were not directly available from the GPS data, motorization speeds
were utilized as a proxy. The TI function predict_transport_mode was applied
to compute the average speed of the triplegs and categorize them into either slow

mobility or fast mobility. The maximum speed for slow mobility was established at
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<20 km/h. It encompasses modes of non-motorized transportation, including walk-
ing, jogging, scooting, and cycling. This threshold was derived from the average
cycling speed of 17.92 km /h reported in the meta-analysis by [Kassim et al. (2020).
Segments with an average speed greater than 20 km/h were classified as fast mobil-
ity, which included travel by automobiles and public transportation modes such as

trams, buses, and trains.

Our understanding of the tripleg differs from the interpretation presented by Martin
et al.| (2023), which posited that a tripleg corresponds to a single mode of transport.
Given the heuristic nature of categorizing modes of transport into fast and slow

mobility, this thesis refrained from adhering strictly to that definition.

3.3.3 Joining Tl Classes and Computing Map Use Metrics

The tap information was exclusively stored in the positionfixes and not automatically
inherited during the creation of the TT classes. Consequently, it was a prerequisite
to join positionfixes with staypoints and triplegs to enable further analysis of tap
use metrics related to the state of mobility. Before performing these joins, it was
essential to prepare the positionfixes data, due to the one-to-many relationship be-
tween staypoints and positionfixes, as well as between triplegs and positionfixes. The
function aggregate_aligned_pfs was utilized to group positionfixes by their asso-
ciated staypoints or triplegs, concatenating the relevant tap information, including

timestamps, app names, app categories, and phone session identifiers, into lists.

Subsequently, the TI classes were joined. In the case of staypoints, two joins were
required: the first, between staypoints and locations (join_sp_locs), to incorpo-
rate location-based POI data, and the second, between staypoints and positionfixes
(join_sp_pfs), to add the tap data from positionfixes. For triplegs, only a single
join with positionfixes (join_tpls_pfs) was necessary, as the context labeling was

performed within the tripleg data itself.

In the merged dataframes, the tap data for each staypoint or tripleg was stored
in lists. From these datasets, the app usage metrics were computed with the
preprocess_grouped_taps. For each entry in the input dataframe, representing
an individual staypoint or tripleg, the function counted the unique number of app
names and app categories accessed, determined whether a map app was used (True
or False), and calculated the total number of taps per app name, app category, and

map app, storing these values in dictionaries.

To normalize the tap counts, two main map use metrics, tap speed and duration,
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were calculated at a session level for staypoints and triplegs individually. A session
refers to consecutive taps, either in the same app or app category. Sessions with
fewer than two taps were excluded from the analysis, as it was not possible to
compute the duration or the tap speed for these sessions. Unlike the original tap
data, where app sessions were nested within phone sessions, app sessions in this
analysis were computed relative to the staypoint or tripleg. We refer to this data as

session metrics.

In instances where an app or category was accessed in multiple sessions within
a staypoint or tripleg, the median value was computed. To account for the right-
skewed distribution of the data and to facilitate comparisons across different apps or
categories, a logarithmic transformation was applied to the median session duration
(in seconds) and the median tap speed (taps per second). Consequently, references
to session duration or tap speed will be the median of the logarithm of the median
app session value of a staypoint or tripleg, respectively. These metrics were stored
as dictionaries, with the app name or category as the key and the corresponding

calculated statistic as the value.

As the focus of this study was specifically on map applications, the session metrics
were specifically stored for map apps. However, the preprocess_grouped_taps
method was also designed to compute session metrics for all app names and cate-
gories. In summary, we investigated “map app usage and mobility” across several
dimensions. These included the number of taps within map apps during a staypoint
or tripleg, the specific map applications accessed, and the session metrics associated

with these apps and their respective categories.

3.3.4 Visualization and Analysis

After the calculation and storage of the tap data along with the map usage data for
staypoints and triplegs, various forms of visualization were generated. To explore
the geographical nature of the TI classes, the function visualize_gdf created an
interactive map using Folium (python-visualization), 2024)). By default, it will color
the data by user ID, but it is possible to color by whether a map app is present in a T1
class (except for locations). One can click on a single element to check information
like the user 1D, for staypoints and triplegs the duration, and if the element includes

map app usage, the pop-up also includes the map app session metrics.

The function create_barplots provides a means to visualize categorical data in a
barplot from a dataframe or a series. Numerical data in a dataframe were visual-

ized as boxplots with the create_boxplots function. For data stored in dictionar-
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ies, the functions create_barplot_df_dict and create_boxplot_df_dict create
plots by extracting the keys and values stored within the dictionaries. Finally, with
create_grouped_boxplot one can visualize the distribution of a column grouped
by the different values, which was useful for the map app session metrics grouped

by the context categories.

With the create_marimekko function, categorical data can be plotted across two
variables. This is used to visualize the staypoint and triplegs labels on the x-axis,
and the proportion of map app usage on the y-axis. It is based on the mosaic

function from the statsmodels.graphics.mosaicplot module (Perktold et al., 2023).

To take a closer look at which map apps had the highest tap counts in staypoints,
triplegs, or a certain staypoint or tripleg label, we created Sankey diagrams with
the create_sankey function. This function makes use of the plotly.graph objects
module (Plotly Technologies Inc., 2019) and visualizes the tap count by the app

name with the corresponding app category.

Using stacked bar plots, the temporal distribution of map application usage or
app categories was visualized by the hour of the day or the day of the week with
plot_temporal_app_usage. The session start time was used to group sessions ei-
ther into 24 hours or the 7 days of the week. If an app was opened shortly before one
of the thresholds and crossed it, it was counted only once. This method provided
insights into hourly or daily temporal patterns specific to each map application. The

function could also be used more generally for all app sessions or category sessions.

To quantify the observed changes and differences, a series of statistical tests were
employed. The Kruskal-Wallis test, a non-parametric one-way analysis of variance
by ranks, was applied to the map session metrics. This test was conducted using
the stats.kruskal function from the SciPy library (Virtanen et al., 2020)). It as-
sessed the null hypothesis that the population medians across all groups were equal
(Kruskal and Wallis, [1952). When the Kruskal-Wallis test revealed statistically sig-
nificant differences, a post-hoc Dunn’s test for pairwise comparisons was conducted.
This additional step enabled the identification of specific differences between any
two groups (Terpilowski, [2019)). For comparisons between two categorical variables,
such as context classification and map use (True/False), a x? test of independence
was employed (Virtanen et al., [2020). The null hypothesis for this test posited that
there was no relationship between the two variables. When this test produced sig-
nificant results, further analysis was performed to identify categories with notable
differences. This involved conducting pairwise x? tests for all combinations within
the first category (e.g., the context categories), with a Bonferroni correction applied

to account for multiple comparisons (Perktold et al., 2023; Virtanen et al., 2020).
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These statistical methods were chosen to provide a comprehensive analysis of the
data, facilitating the identification of significant patterns and relationships within
the dataset.

Lastly, the primary functions of map apps were determined. Despite being cate-
gorized into two groups in the Google Play Store, the categorization only partially
aligned with the features of the apps, with similar apps not always placed in the
same category. Thus, map apps were manually sorted by their main function to
differentiate more clearly between them for clearer differentiation and discussion.
We identified the following categories: (offline) navigation, ticket shop, booking of
cars and bikes and /or scooters, booking travel plans (hotel, flight, car), information,
entertainment, game, flight /airline travel, and sightseeing (see Appendix: .
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4 Results

This chapter gives an overview of the computations and visualizations performed on
the aligned GPS and tap data. The first part presents some descriptive statistics
on the data from preprocessing to after the alignment. Subsequently, the chapter
is divided into three principal sections that address the research questions specified
in [section 1.2 The first two sections examine map app usage at the macro level,
with and without context. The third section focuses on map app usage at the indi-
vidual level, comparing two separate users. Keep in mind that staypoints represent

stationary mobility, while triplegs correspond to non-stationary mobility.

4.1 Descriptive Statistics

Tap data was collected for 51 participants, while GPS data was obtained from 44
individuals. To perform our analyses, we cross-referenced these datasets, resulting in
a final sample of 39 participants with both tap and GPS data available for analysis.
During the preprocessing stage, a minor proportion (~1%) of the GPS data obtained
from the 39 participants was removed due to temporal overlaps in the GPS sessions.
Furthermore, the elimination of taps in SBB Preview and MapOnTap resulted in a
reduction of 1.34% of the total taps recorded. The duration of the study, defined as
the time period between the initial and final data entry recorded, exhibited variabil-
ity between participants. Furthermore, since participants had the option to activate
or deactivate GPS tracking at any time, GPS data were not consistently collected

for the entire MoT data collection period.

Before alignment, the average study duration for the GPS dataset was 129 days,
with a median duration of 56 days. The first quartile of GPS study duration was 10
days, while the third quartile was 208 days. The longest GPS study period recorded
for a participant was 737 days (~2 years). For the tap data, the average study
period was 82 days, with a median of 34 days. The 25 percentile was 7 days and
the longest study duration extended to 320 days.

The alignment of GPS data with tap data led to some data loss, primarily because
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there were instances where no GPS point was collected within 900 seconds. Con-
sequently, significantly more GPS data was lost compared to tap data, with losses

amounting to 90.08% and 33.18%, respectively.

Table 2: Phone Usage Duration by State of Mobility and Context Categories

Context ‘ Average Minutes / Day | Total Minutes | Days Used
Mode
Slow Mobility 716.90 256651.52 358
Fast Mobility 67.47 19768.22 293
Purpose (OSNA)

Home 81.83 25366.56 310
Work 50.98 12439.18 244
Classified POI Tag (OSM)

Residential 142.30 48525.40 341
Transportation 58.48 15613.92 267
Food 35.73 7432.82 208
Commercial 21.30 2385.64 112
Education 21.13 2049.98 97
Tourism 16.24 860.58 53
Healthcare 11.74 273.73 18
Entertainment 12.23 207.85 17

An examination of smartphone usage time revealed notable differences in the aver-
age time spent on applications based on the state of mobility and context-enriched
categories. The mean duration of stationary and non-stationary periods per day
was 4 hours and 19 minutes and 12 hours and 52 minutes, respectively. Taking
into account the context-enriched states of mobility, the mean daily minutes spent
using the phone are illustrated in [Table 2] Since there were more data for triplegs
than for staypoints, and the classification method also impacted how much data
was classified for staypoints, the average time spent per day was calculated based
on the total number of days with phone use according to the method of context
classification of the state of mobility. There were 358 days of data for the triplegs
motorization speed, 328 days for the OSNA purpose classification, and 347 days for
OSM POI classification.

The classification of staypoints was associated with some data loss, as not all stay-
points were successfully classified. The OSNA technique experienced greater data
loss compared to the OSM method, averaging just 2 hours and 35 minutes of us-
able data per day, whereas the OSM method achieved an average of 3 hours and

43 minutes per day. According to the OSNA method, users spent more time on
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their devices at home (77 minutes / day) compared to at work (37 minutes / day).
Similarly, in the OSM method, residential locations showed the highest engagement,
with an average of 2 hours and 20 minutes spent per day, followed by transportation

(45 minutes / day) and dining (21 minutes / day).

No information was lost in the classification of triplegs by motorization speed. The
most significant time commitment occurred at speeds <20 km /h, averaging 11 hours
and 57 minutes per day, and only 55 minutes for fast mobility. This comparative

analysis highlights the diverse contexts that influence smartphone usage frequency.

Prior to the alignment process, 36 of the 39 participants accessed a map app at
least once during the study period. Post-alignment, data from 34 participants with
map use remained, of which 31 participants accessed map apps while stationary,
and 34 while non-stationary. In total, 54’670 aligned map taps were recorded while
stationary out of a total of 773’161, and 191’135 map taps during non-stationary
segments from a total of 54937132 recorded tap. Thus, the map taps represented
for 7.07% and 3.48% of the aligned stationary and tripleg taps, respectively. Across
the entire aligned dataset, participants used 68 different map applications, with 45

accessed in stationary states and 67 in non-stationary states.

4.2 Macro-Level Map App Usage: Stationary vs.
Non-Stationary Behavior

In response to the first research question, this section presents an overview of map
app usage, both stationary and non-stationary, at the macro level, that is, across all

participants.

A general trend emerged where map sessions were generally shorter during stationary
periods as opposed to non-stationary periods. Participants were also observed to
exhibit marginally higher tapping speeds while remaining stationary. Furthermore,
both staypoints and triplegs exhibited greater variability in median map session
duration (SP SD=1.2; TPLS SD=1.3) compared to the parameter map tap speed
(SP SD=0.5; TPLS SD=0.5).

4.2.1 Staypoints

Of the total of 6’814 staypoints, 2’200 included taps within a map app, which is

approximately one-third of all staypoints. For these staypoints with map use, the
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visualizations in this subsection will illustrate when, how, and which map applica-

tions were used.

An exponential relationship emerged between the use of map apps and the cumula-
tive number of taps within staypoints indicated by the straight line in the log-scaled
barplot . Google Maps, categorized under travel and local, accounted
for the highest cumulative tap count while stationary, with a total of 22’797 taps.
SBB Mobile, from the maps and navigation category, followed with roughly half the
number of taps, registering 12’251 taps in total.

Total Map Tap Count in Staypoints by App Name - Log Scale
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Figure 5: Barplot of Map Tap Count in Staypoints by App Name

The Sankey diagram (Figure 6)) illustrates the cumulative number of taps for maps
apps and the corresponding app category in the Google Play Store. A higher number
of apps were accessed in the travel and local category and registered higher tap
counts. Publibike recorded 3’996 taps, which constituted one-third of the total
recorded by SBB Mobile and ranked third in tap counts. Other apps in the travel
and local category varied in their functionality and exhibited tap counts within the
tap range of 1’600-2’800. These included the offline navigation app OsmAnd+, the
travel planning apps Tripadvisor and Booking, and the ticket shop app for Lisbon
Carris. The navigation app swisstopo had 1’222 taps and was ranked second among

apps in the maps and navigation category and eighth among all map apps.
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Sankey Diagram of Total Map Taps per App Name to App Category in Staypoints
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Figure 6: Sankey Diagram of Staypoint Map Apps
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Session Metrics

Before presenting the actual values for the duration and tap speed of map sessions, it
is important to highlight the discrepancies observed in the number of staypoints with
session data, classified by the name of the map application. In terms of staypoints,
of the 45 map applications accessed, a total of only eight map applications were
accessed at more than 20 staypoints, the remainder falling below this threshold.
Furthermore, the session metrics only encompassed 2’099 of the 2’200 staypoints
with map usage, as session metrics could only be calculated if there were a minimum

of two taps within a session.

Although Google Maps recorded a higher cumulative number of taps in general,
there were fewer staypoints in Google Maps (676) than in SBB Mobile (945). The
subsequent highest staypoints with map app usage were for Publibike the bike rental
app (299), offline navigation apps OsmAnd+ (103) and MAPS.ME (23), swisstopo
(41), and the ticket shop apps Fairtiq (52) and Trenitalia (33). The remaining map
apps exhibited a markedly lower number of staypoints (<20), with several apps

having a single staypoint.

Median Duration of Map App Sessions in Staypoints - No Outliers
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Figure 7: Boxplot of Log Median SP Duration

The distribution of map session duration by app name was visualized with box-
plots . Additionally, a Kruskal-Wallis was conducted and yielded a p-
value<0.001, suggesting that there were statistically significant differences in the
median session duration. Subsequently, a post-hoc Dunn’s test with a Bonferroni
adjustment was performed to check for differences between the map apps .
The findings revealed that the session durations were similar for Google Maps (3.18)
and SBB Mobile (2.89), with both values nearing 3. The offline app OsmAnd+ had
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a significantly higher median session duration (4.15), while other navigation apps
like swisstopo (3.58) and MAPS.ME (3.46) exhibited session durations more simi-
lar to Google Maps. In contrast, the shortest session durations among navigation
apps were observed for SchweizMobil (1.79) and search.ch (2.13), but there was not
enough data, with both only having two data points each.

With regard to apps related to public transport ticketing or timetables, a more
extensive range of session durations was discerned. However, for a considerable
number of apps with longer durations than SBB Mobile, the number of data points
was markedly lower, frequently amounting to only one. In addition to SBB Mo-
bile, the only two ticket shop apps with over 10 data points are Fairtiq (0.86) and
Trenitalia (2.41), which both had shorter durations than SBB Mobile. Carris (3.92)
and Orario Treni (3.29) were found to have longer session durations, with seven
and eight staypoints, respectively. Apps with slightly longer session durations, but
with much fewer available app session data available (<6 staypoints with map use)
tended to be trip planning apps such as Flightradar24Free, Airbnb, Tripadvisor, and

AirFrance.

AirFrance stood out with the highest median session duration, exceeding five. Upon
closer examination, three AirFrance app sessions with longer durations were iden-
tified: 20 minutes, 8 minutes, and just over 1 minute were identified. The shortest
session, 16 seconds, occurred in proximity to the 8-minute session, suggesting a pos-
sible relation between the two. The tap speed of the 20-minute session fell within

the range of the other three sessions and therefore did not appear to be an outlier.
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Figure 8: Boxplot of Log Median SP Taps per Second
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A Kruskal-Wallis test was performed to examine possible statistically significant dif-
ferences in the population median of the logarithmic transformed median tap speeds
in various map apps (boxplots visualized in . The null hypothesis, posit-
ing that the medians are consistent across all groups, was rejected (p < 0.05).
Subsequent post-hoc analysis using Dunn’s test revealed that Google Maps ex-
hibited a statistically higher tap speed (-0.35) compared to SBB Mobile (-0.81)
(p < 0.001) . Among navigation or routing apps, excluding search.ch (-
0.10) and SchweizMobil (0.08) due to their limited data entries (n=2 each), several
apps demonstrated lower tap speeds than Google Maps. These included MAPS.ME
(-0.46), swisstopo (-0.81), and OsmAnd+ (-1.42). However, only the difference be-
tween Google Maps and OsmAnd+ reached statistical significance (p < 0.001). It
should be noted that, despite the larger differences in median values for some appli-
cations, not all comparisons yielded statistically significant results. This outcome
may be attributed to factors such as smaller sample sizes for certain applications

and the inherent variability within groups.

A comparison of ticket shop-related applications with SBB Mobile yielded compara-
ble tap speeds for Eurail (-0.63), Carris (-0.64), Trenitalia (-0.76), and Orario Treni
(-0.92). It should be noted that Fairtiq (0.14), Trenord (-0.10), and Trainline (0.37)
exhibited noticeably faster tap speeds than MVG Fahrinfo Miinchen (-1.30) and DB
Navigator (-1.63), which demonstrated slower speeds than SBB Mobile. Of these
relationships, only Fairtiq with SBB Mobile returned a significant difference in the

post-hoc Dunn’s test.

In the case of map apps focused on air travel, the median and mean values were more
widely spread, without a discernible pattern with regard to duration. Specifically,
Flightradar24Free (-1.49) and AirFrance (-1.38) showed lower median tap speeds
compared to SBB Mobile. Conversely, Lufthansa (-0.67) had a median tap speed
more akin to that of SBB Mobile, and Swiss (-0.31) exhibited a higher median tap
speed, closely aligning with Google Maps. The only map app used during stationary
periods for entertainment purposes was Actionbound, which exhibited a tap speed
(-0.41) comparable to that of Google Maps.

The only other app to display significant differences in the post-hoc Dunn’s test
was the bike rental app Publibike. With a median tap speed of -0.58, it had sig-
nificantly lower tap speeds than SBB Mobile (-0.81) and OsmAnd+ (-1.42), and,
unsurprisingly, a faster tap speed than the Fairtiq check-in check-out ticketing app
(0.14).
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Temporal Map App Access

Map Apps Accessed per Hour in Staypoints
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Figure 9: Temporal Access of Map Apps in Staypoints

We examined when each map app was accessed while stationary Map
apps were accessed more during the day than at night, with three notable peaks
throughout the day. A smaller peak was observed around 6:00, followed by a larger
one at 10:00 and another in the middle of the afternoon at 15:00. Furthermore, SBB
Mobile saw higher usage than Google Maps from 04:00 to 06:00, 15:00 to 18:00, and
20:00 to 21:00. Among navigation apps, swisstopo highlighted usage throughout the
working hours from 8:00 to 16:00, and OsmAnd+, which slightly later between 9:00
and 17:00. Bike rental in Publibike started more early in the day, from 6:00 onward,
with a marked increase at 15:00 and consistent use until 19:00. Fairtiq experienced
the highest use in the early morning between 5:00 and 6:00, gradually decreasing

usage until noon, with some activity continuing into the afternoon.

Throughout the week, map apps were accessed most on Mondays and Thursdays,
with Wednesdays showing the lowest activity. On these days, SBB Mobile had the
highest access count, with the minimum on Sunday. This differed from Google Maps,
which saw the most usage on Fridays, closely followed by Saturdays, with Sunday
again being the day of least usage. Fairtiq had slightly higher use on weekdays than
on weekends. The game Actionbound was accessed mainly on Saturday. Tripadvisor

was accessed most often on Fridays, while Uber on Fridays and Saturdays.
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4.2.2 Triplegs

Total Map Tap Count in Triplegs by App Name - Log Scale
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Figure 10: Barplot of Map Tap Count in Triplegs by App Name

Of the total of 20’026 triplegs, only one fifth involved access to map apps (3'842).

Similarly to the pattern observed in staypoints, an exponential relationship was

identified between the cumulative tap count per map app name (Figure 10)).

In the Sankey diagram, Google Maps and SBB Mobile had the highest tap counts,

with 94’275 and 32’194 taps, respectively (Figure 11{). Booking, which ranked only

sixth in staypoints, held the third-highest tap count in triplegs with 11’226 taps.

ADO Boletos de Autobtis, which was rarely used while stationary, ranked fourth in

tripleg tap counts with 7’237 taps. Other map apps with high cumulative tap counts

in both staypoints and triplegs included the navigation apps OsmAnd+ (6’952) and

swisstopo (5’779).

Given the higher total number of taps in triplegs compared

to staypoints, several apps, such as Tripadvisor (3’855), MAPS.ME (3’655), and

Publibike (3’337), fell within the tap count range of 4’000 to 10’000. Apps with

higher tap counts while non-stationary than in staypoints included Airbnb, Zoo

Zirich (only in triplegs), as well as the flight apps Flightradar24Free, Swiss, and

Lufthansa.
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Sankey Diagram of Total Map Taps per App Name to App Category in Triplegs

com.google.android.apps.maps

RAVEL_AND._LOCAL

ado.ado
net.osmand.plus
mmchipublibike:app
= com:mapswithme:maps.pro
padvisor.tripadviso
ightradar24free
= com:airbnb:android
= COM.yOC:SWiSS.SWiSS
—com.google.earth
——com.limebike
——org.peakfinder.area.alps
——net:skyscanner.android.main
——com:live:flighttracker
—de.actionbound .
——com.relayrides.android.relayrides
——ch.sbb.myway
——com:bonfire:matterhorn
—ch:loq?lrla%drmﬂ osh
——comuriliclabs.countriesbeen
— com.lufthansa.android.lufthansa
~——co.bird.android
—netosmand
h.search.android.search
.stadt.winterthur.moapp
com:staralliance.navigator
com.app.stadtblatt
com.peaklens.ar
——pt-carris:itecmic.
——de:hafas.android.db
——ch.sbb.prail2
——com:blablalines

——com:.vsct.vsc.mobile.horaireetresa-android

~—-com.comuto
——net.pluservice.ticketbv
——com:plannet.milesandmoreapp
—com:hostelworld-ap
——com:ebooker:
—de:hafas.android:zvv
—ch.schweizmobil
——com;iberia.android
——de:flixbus.app
—com:a%;@.andro/nd
——com:airfrance.android:dinamoprd
——org.paoloconte:treni_lite
—it:sistema3.apps.ibeach

ch.shb.mobile.android.b2c
MAPS_AND_NAVIGATION

[Ichiadmin:swisstopo
== com:lynxspa:prontotreno
===ch:futurecom:zoozurich
— com:fairtig-android
——org:eurail.railplanner
—com.wemlin.android
~——it.nordcom.app o "
——de.eos.uptrade.android.fahrinfo.berlin
—com.ubercab
——de.infas.mobico
~——com:thetrainline
——ch.carvelo2go.app
— nc.zvv.oneapp

bikecityguide
——com.here.app.maps
——ch:parkingcard.customer

——de.swm.mvgfahrinfo.muenchen
. ty.mobidroid.main
——mnc.android.zvvticket

Figure 11: Sankey Diagram of Tripleg Map Apps
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Session Metrics

Similarly to staypoints, a Kruskal-Wallis test was performed for the tripleg session
duration data and returned a p-value< 0.001. Consequently, a post-hoc Dunn’s test
was done to show differences between the individual apps . The boxplots
of the median duration of map sessions in revealed that Google Maps
sessions were significantly longer (3.73) compared to SBB Mobile sessions (3.24),
while both had a comparable IQR. In particular, all navigation apps with more
than 10 triplegs that involved map app use exhibited longer session durations than
Google Maps. These include MAPS.ME (3.88), swisstopo (4.34), and OsmAnd+
(4.51). Three apps exhibited shorter durations: search.ch (3.65) and Bike Citizens
(3.65) with slightly shorter times than Google Maps, and HERE WeGo much slower
with a value of 1.66, although this was based on one tripleg. OsmAnd (5.82),
SchweizMobil (5.47), and Zoo Ziirich (5.20) had the longest median durations, albeit

with fewer than five data points each.
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Figure 12: Boxplot of Log Median TPLS Duration

The range of ticket shop apps was slightly broader, with Fairtiq exhibiting the
minimum session duration (1.29) and Flixbus displaying the maximum (4.52), while
SBB Mobile occupied the middle ground. It is important to note that most ticket
shop apps had fewer than 10 data entries, except for four apps: Trenitalia (2.71)
and Fairtiq (1.29) with shorter durations, but more than 50 data entries, and ADO
Boletos de Autobus (4.34) and Orario Treni (3.67) with longer durations, but only
with 17 data points each.

Among the apps with the shortest median durations, the car rental app Turo, for-

merly RelayRides, had by far the lowest score (-0.68), followed by the airline apps
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Miles & More (0.52) and Star Alliance (0.22), although all had four or fewer data
points.

Median Tap Speed of Map App Sessions in Triplegs - No Outliers
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Figure 13: Bozplot of Log Median TPLS Taps per Second

illustrated that the median tap speed for Google Maps (-0.38) was twice
as fast as that of SBB Mobile (-0.79), closely resembling the trends observed in
staypoints. In examining other navigation apps, only HERE WeGo (-0.28) and
search.ch (-0.29) demonstrated slightly higher speeds than Google Maps, though
both had only one data entry. The offline navigation app MAPS.ME recorded a
slightly slower tap rate (-0.50), while OsmAnd and OsmAnd+ exhibited the slowest
speeds at -0.91 and -1.23, respectively. Apps with tap speeds close to that of SBB
Mobile included Bike Citizens (-0.55), SchweizMobil (-0.83), and swisstopo (0.84).
Turo recorded the fastest tap speed by far (1.37), although this was based on a single
data entry. The airline apps Star Alliance and Miles & More exhibited the next-
fastest speeds. Among apps with more than ten triplegs, Fairtiq had the highest tap
speed (-0.24), which was comparable to the faster tap speeds of navigation apps.
Interestingly, no clear trend emerged in terms of which app category had the slowest
tap speeds. The six apps with the lowest tap speeds spanned a diverse range of map
app functions. However, these apps were observed to have a tendency to display

longer session durations.

A Kruskal-Wallis test was performed to ascertain whether the data originated from
a common distribution, as was done for the staypoints. As a result of this significant
outcome, a post hoc Dunn’s test was subsequently conducted ( In the
case of navigation apps, statistically lower median tap speeds (p < 0.001) were
observed for Google Maps (-0.38) and both swisstopo (-0.84) and OsmAnd+ (-

1.23). Furthermore, a notable discrepancy was evident between the offline map
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apps MAPS.ME (-0.50) and OsmAnd+ (-1.23), with a slightly higher p-value of
0.05. Additionally, the median tap speed of Google Maps was significantly higher
than the ticket shop apps SBB Mobile (p < 0.001) and ADO Boletos de Autobis
(p < 0.05), the bike rental app Publibike (-0.79), and the city information app
Stadtblatt (-1.55). Moreover, SBB Mobile exhibited a significantly lower tap speed

than Fairtiq (p < 0.01).

Temporal Map App Access
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Figure 14: Temporal Access of Map Apps in Triplegs

Similarly to staypoints, we also visualized the temporal aspect of map app access

The access patterns of map apps throughout the day show a large
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variation, with usage increasing dramatically in the morning from 5:00 to reach a
small peak around 7:00. After a decrease until 9:00, a steady rise continued until
11:00. Usage dipped slightly during lunchtime, followed by an increase to the daily
maximum at 15:00. A brief drop occurred at 16:00, followed by another increase at

17:00, after which access steadily declined into the night.

SBB Mobile was accessed more frequently than Google Maps during the early morn-
ing hours from 4:00 to 6:00, after which both apps were used at similar rates, if not
slightly less, until noon. Fairtiq saw its highest usage in the morning between 6:00
and 7:00, as well as in the afternoon from 14:00 to 17:00. Publibike, the bike rental
service, experienced an increased use starting slightly later in the morning around
7:00 than in staypoints, with consistent use until the early afternoon, followed by
another increase from 15:00 to 18:00. Car rentals through Mobility Swiss were less
noticeable in the morning, peaking at 13:00 with some activity between 18:00 and
20:00.

The offline navigation app OsmAnd+ was accessed throughout the day with taps
from 9:00 to 16:00, while MAPS.ME was accessed later, between 17:00 and 19:00.
Travel booking apps tended to be used in the evening, with Booking accessed pri-

marily after 18:00, and Airbnb saw the most use around 20:00.

When examining usage by day of the week, access to map apps increased signifi-
cantly on Mondays and Fridays, while lower activity was observed on Sundays and
Wednesdays. Vehicle rental and reservation apps were used more during the work-
week, Publibike accessed more from Monday to Thursday, and Mobility Swiss used
more on Tuesdays and Wednesdays. Fairtiq was used throughout the week, but
the most frequently during the week, particularly from Wednesday to Friday. SBB
Mobile had the lowest usage on Sundays and Wednesdays, with the highest tap
count on Thursdays, closely followed by Mondays and Fridays. Google Maps saw
the highest usage on Fridays, with the lowest activity on Sundays and Wednesdays.

4.3 Macro-Level Map App Usage with Context
Enrichment

This section presents the results to answer research question number two about
the usage behavior of map apps with regard to context enrichment of the states
of mobility. Since the context data are of categorical nature, the map app metrics
were applied to the subgroups of staypoints and triplegs and visualized in Marimekko

charts and Sankey diagrams.
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4.3.1 Staypoints with Function Tags

For the classification of staypoints, three methods were applied: the frequency and
OSNA method (both already implemented in the TT library), and POI extraction
from OSM. Since the frequency and OSNA methods yielded very similar results,
only the results from the more complex OSNA and OSM methods are presented.

4.3.1.1 OSNA Method

The OSNA method employs a two-category classification system for staypoints,
whereby the locations are categorized as either “home” or “work”. Across all stay-
points, regardless of map app usage, a total of 2’129 staypoints were classified with
a purpose, accounting for 31.24% of the stationary dataset. Of these classified stay-
points, 34.21% were designated as work and 65.79% were designated as home. The
OSNA method found the work context for 35 unique individuals and the home

context for 29 participants.

A total of 703 staypoints had map app usage and were assigned a purpose cate-
gory, which accounted for 31.95% of all staypoints with map usage or 10.32% or
all staypoints. For the staypoints with map use, a total of 35.56% belonged to the
work category and the rest were home locations . The access of map
apps exhibited a high degree of homogeneity between home and work staypoints,
with 33.66% and 31.93%, respectively. This finding was corroborated by a x? test
of independence with a p-value of 0.4418, indicating that there was no statistically
significant association between the purpose and the access of map apps in staypoints

at the macro level.

Purpose (OSNA) vs. Map App
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Figure 15: Marimekko Chart of SP Map/No Map Use by Purpose (OSNA)

For the session metrics depending on the home and work category, only 693 stay-

points were taken into account due to the loss of some staypoints with a single tap
in a session. Upon examination of the session metrics through boxplots (Figure 16
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only minor differences were observed. The logarithm of the median duration of the
map app session was slightly higher for workplace staypoints, with an IQR that
remained nearly identical between the two categories. The median tap speed was
marginally lower at the work sites and showed a smaller IQR. A Kruskal-Wallis test
indicated that these differences were not statistically significant, with p-values of

0.14 for session duration and 0.19 for tap speed.
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Figure 16: Boxplots of Tap Metrics for Staypoint by Purpose (OSNA)
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Figure 17: Sankey Diagram of Map Taps depending on Purpose Category (OSNA)
To check which map apps were accessed depending on the context, we visualized the
total number of map taps by context category in the Sankey diagrams[Figure 17 At
home, three apps were used from the maps and navigation category: the SBB Mobile
ticketing app with by far the most taps, followed by the Fairtiq check-in check-out
app and the vehicle reservation app Mobility Swiss. In the travel and local category,
Google Maps showed substantial taps, as well as the bike rental app Publibike.
There was also use of travel booking apps like Airbnb and Booking, as well as flight
travel apps including AirFrance, Swiss and Miles & More. In the workplaces, we

also observed that Google Maps had the highest tap count. However, Swissstopo
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recorded the second-highest tap count in the maps and navigation category and only
very few taps in Fairtiq. In the travel and local category, once again, Google Maps
had the most taps, followed by Publibike. Compared to home locations, fewer taps
were recorded in flight apps and only in Flightradar24. However, there was a larger

variation of navigation apps, including MAPS.ME, search.ch, and OsmAnd+-.

4.3.1.2 OSM Method

Using the OSM method, 85.10% of staypoints (with and without map use) were
assigned to a POI. Of the 5’799 staypoints, 57.75% were classified as residential,
25.54% as transportation-related and 9.16% as food-related.

Table 3: Ratio of Reoccurring Locations by OSM Classification of Staypoints

Staypoints Regardless of Map Use Staypoints with Map Use
OSM Recurring Total Ratio .° f Recurring Total Ratio -o f

Classification Tag | Location | Staypoints Recur.rmg Location | Staypoints Recur.rlng

Locations Locations
Residential 279 3349 8.33% 93 1’231 7.55%
Transportation 76 1’481 5.13% 42 508 8.27%
Food 32 531 6.03% 8 144 5.56%
Commercial 30 189 15.87% 11 55 20.00%
Education 12 146 8.22% 4 42 9.52%
Tourism 5 60 8.33% 2 22 9.09%
Entertainment 1 19 5.26% 0 10 0.00%
Healthcare 1 24 417% 0 2 0.00%
Total 436 5799 7.52% 160 2014 7.94%

A total of 2’014 staypoints with map use were context-enriched, representing 91.55%
of the map staypoints and 29.56% of all staypoints. In the case of staypoints with
map use, the three most prevalent POI categories were also residential (55.95%),
related to transportation (23.09%) or food (6.55%). The order of the most popular
OSM classification tags remained relatively consistent when comparing stationary
data with and without map use. The only exception was for categories with minimal
data, namely entertainment (2 SP) and healthcare (10 SP) (see [Table 5]). Further-
more, the commercial category demonstrated the highest recurrence rate at the
specified location. Specifically, 20% of the commercial staypoints with map use and

15.87% without map use are located in the same place.

We also analyzed context-enriched staypoints by map session duration and tap

speed. There were 1’938 staypoints for which metrics could be computed (>1 tap
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Figure 18: Boxplot of Log Median SP Map Session Duration with OSM Classification

per session). The analysis of the map session duration revealed that staypoints
classified as entertainment had the longest session duration, with a median value
of approximately 5 . Additionally, the median duration of the trip was
slightly longer (3.7). The remaining categories exhibited slightly lower medians,
approximately 3, except for places of transportation (2.8) and education (2.7). In
terms of IQR, the data indicated a tendency for values to fall within the range of
1.8, with the commercial and entertainment categories showing an IQR of approxi-
mately 2.33 and healthcare displaying an IQR of 0. A Kruskal-Wallis test confirmed
a statistically significant difference in the session duration distributions (p = 0.002).
However, a subsequent post-hoc Dunn’s tests did not identify any statistically sig-
nificant pairwise differences. The lowest p-values were observed between tourism
and transportation (p = 0.068), and between entertainment and transportation
(p=0.071).
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Figure 19: Boxplot of Log Median SP Map Tap Speed with OSM Classification

For tap speed, POI classes for tourism and entertainment showed the lowest median
tap speeds, around -1.4 (Figure 19)). Residential and transportation had similar
median tap speeds of -0.65 and -0.68, respectively, while food-related staypoints had

a median of -0.73. The IQR was lower for tap speed than duration, with values
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near one for most categories, except for tourism, which exhibited a higher IQR of
1.73 and entertainment at almost triple the value with 2.84. Assuming a level of
significance a = 0.05, the Kruskal-Wallis test returned a significant difference for
tap speed (p = 0.02). A post-hoc Dunn’s tests revealed that the null hypothesis, i.e.,
no significant differences between the groups, was only rejected for the relationship
between the commercial and tourism groups (p = 0.03). For all other pairwise
comparisons, we failed to reject the null hypothesis.

Classified POI Tags vs. Map App
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Figure 20: Marimekko Chart of SP Map/No Map Use by OSM Classified Tags

The Marimekko chart in |[Fzigure 20) which illustrated the relative proportion of stay-
points with map use, indicated that staypoints categorized as residential, touristic,
and transportation exhibited the highest relative map use, accounting for approx-
imately 35%. The POI categories of food, commerce, and education POIs demon-
strated marginally less relative map usage, close to 28%. The most extreme values
were observed for entertainment locations (52%) and healthcare (8%). A x? in-
dependence test indicated that there was a relationship between POI classification
and map use (p < 0.001). A follow-up pairwise x? test of independence with the
Bonferroni adjustment revealed that only the residential and food categories exhib-
ited statistically significant differences. Without the Bonferroni correction, a greater
number of relationships were identified as statistically significant (see .

The Sankey diagrams in illustrate the map apps in the three most fre-
quently used categories. For residential POls, Google Maps had the highest tap
count, followed by SBB Mobile, Publibike, and OsmAnd-+. Other map apps showed
considerably lower tap counts. In transportation-related POIs, Google Maps and
SBB Mobile still had the highest tap counts, but the gap was smaller. We also note
that ticket shop apps were more common than in residential or food areas, and in-
cluded the apps ADO Boletos de Autobus, Carris, Orario Treni, Ticket bus Verona,
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Table 4: POI Pairwise x? Independence Test Results with Bonferroni Correction

Category 1 Category 2 | 2 Statistic | p-value lergeree::n:,f Bonfer:)czl‘:ialfl:;rrected
residential food 18.19 0.00002 1 0.000719
residential commercial 4.21 0.04023 1 1
residential healthcare 7.12 0.00762 1 0.274313

food transportation 8.88 0.00288 1 0.103768
food entertainment 4.72 0.02973 1 1
transportation healthcare 6.00 0.01433 1 0.515975

healthcare tourism 5.43 0.01983 1 0.714019

healthcare entertainment 8.26 0.00406 1 0.146001

DB Navigator and Trenitalia. Interestingly, in the maps and navigation category,
Trenitalia had more taps than swisstopo, which differed from results observed with-
out context (Figure 6]). Finally, for food-related POlIs, there was a slight shift in
map apps with the highest tap counts. While Google Maps still led, Tripadvisor,
Booking, and Carris from the travel and local category had more taps than SBB
Mobile from the maps and navigation category. Vehicle reservation apps such as

Lime, Bird, and Publibike were used at similar rates and had higher tap counts

than in the other two POI categories.
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com.google.android.apps.maps

TRAVEL_AND_LOCAL
.ch publibike.app

Inetiosmandiplis
com:bookin

— com:mapswithme:maps pro
de.actionbound

— pt.carris.tecmic
com:airbnb:android

—com.app.stadtblatt
COM.yOC:SWiSs Swiss
chlocal-android
chisearch.android search
com.flightradar24free
de.hafas.androi
comtripadvisor.tripadvisor

——com:comuto
com.airfrance.android.dinamoprd
com.plannet.milesandmoreapp
dehafas.android. 2w

ch.schweizmobil
org.paoloconte.treni_lite
it sistema3.apps.ibeach

ILh sbb.mobile.android.b2c

ch:admin:swisstopo
comfairtig:android

— com.lynxspa.prontotreno.
org.eurail railplanner
ch.mnc.zwv.oneapy
de:swm mvgfahrinfo.muenchen
ch:mobility:mobidroid. main

(a) Residential

MAPS_AND_NAVIGATION

Total Map Taps per App Name to App Category
in Transportation POIs

com.google.android.apps.maps

TRAVEL_AND_LOCAL

dezactionbound

m=chipublibikerapp

== netosmandiplus

= com:bonfire:mattertiorn
com:booking

== com:mabilityadoado

== org:paoloconte treni_lite
com.yoc:swiss swiss

— pt.carris.tecmic

= com:tripadvisor. tripadvisor
com:mapswithme-maps pro

co:bird-androi
je-hafas.android.db

netpluservice ticketbv

Ich sbb.mobile.android. b2c

comlynxspalprontotienc

MAPS_AND_NAVIGATION

ch:admin:swisstopo
= comfairtiqandroid
==it:nordcom:app
com:ubercab
— com.thetrainine
orgeeurail.railplanner

(v) Transportation

Total Map Taps per App Name to App Category
in Food POIs

com.google.android.apps.maps

Lcam tripadvisor.tripadvisor

com.booking

TRAVEL_AND_LOCAL

pt.carris.tecmic

dezactionbound

mmnetosmand.plus

w=comlimebike’

= ch:publibike:app
cobird:android

== com:lufthansa.android:lufthansa
com:mapswithme.maps.pro

— com:app:stadiblatt

— comairfrance.android.dinamoprd
COM:yOC.SWISS.SWisS

——com.airbnb.android.
com:vsctvsc.mobile-Horaireetresa.android
de:hafas.android.zvv
org:paoloconte.treni_lite
com.iberia.androi

[l ch sbbimobile android/b2c MAPS.AND. NAVIGATION

ch:admin:swisstopo’

com.fairtiq.android

com.lynxspa.prontotreno.

org:bikecityguide

(c) Food

Figure 21: Sankey Diagram of Map Taps in Top 3 OSM Categories by App Name and App
Category

4.3.2 Triplegs with Mode of Transport

Unlike the two context enrichment methods for staypoints, all triplegs were assigned
to either slow or fast mobility categories. The majority of triplegs (87.14%) had an
average speed of less than 20 km/h, categorizing them as slow mobility, while the

remainder were identified as fast mobility. Among the 3’842 triplegs involving map
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app usage, 77.85% were designated as slow mobility, and 22.15% fell under the fast
mobility category. The Marimekko chart visualized that the relative proportion of
triplegs with map app use was higher for fast mobility than for slow mobility
. Specifically, 33.04% of the triplegs in the fast mobility category involved
the use of maps, compared to only 17.14% for slow mobility. A y? test of indepen-
dence finds a statistically significant relationship between motorization speed and

map app access (p — value < 0.001).

Motorization Speeds vs. Map App

Map App
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Figure 22: Marimekko Chart of TPLS Map/No Map Use by Motorization Speed

Focusing on the map session metrics of the context-enriched triplegs, a total of
3’827 triplegs were taken into account. For the map session duration, slow mobility
indicated a slightly higher median than fast mobility (3.52 vs. 3.22), though the IQR
was similar (1.90 vs. 1.98) (see[Figure 23Ja). For tap speed, the two categories were
more similar, with a median of -0.64 for slow mobility and -0.70 for fast mobility,
and an IQR of 1.15 and 1.14, respectively b). These findings aligned with
the results of the Kruskal-Wallis test, which revealed a significant difference in the

median for session duration (p < 0.001), but not for tap speed (p = 0.28).
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Figure 23: Boxplots of Tap Metrics for Tripleg Motorization Speeds

When examining which map apps were accessed during non-stationary periods at
high speeds, Google Maps registered the highest tap count, followed by SBB Mobile
(Figure 24)a). All other apps showed much lower tap counts, with OsmAnd+,

48



Chapter 4. Results

and swisstopo showing similar levels of usage, followed by Trenitalia, Publibike,
and Orario Treni. There were three apps related to flight and airlines—mamely
Lufthansa, Swiss and Flightradar24Free—which had very few taps. Booking and

Airbnb were the only map apps used to book travel plans.

For triplegs of slow mobility, a wider variety of map apps was used (Figure 24b).
Google Maps still had the highest tap count, followed by SBB Mobile. In the

travel and local category, popular apps included Booking, ADO Boletos de Autobs,
OsmAnd-+, MAPS.ME, Flightradar, Publibike, Tripadvisor, and Airbnb. Within
the maps and navigation category, swisstopo and Zoo Ziirich had slightly higher tap

counts compared to other apps.
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Figure 24: Sankey Diagram of Map Taps in Triplegs by Motorization Speed

4.4 Micro-Level Map App Usage

In addition to a macro-level comparison of map app use, we also conducted an
analysis of individual map usage patterns. It is important to note that no two
individuals are identical. To limit the scope of this analysis, we restricted our
comparison to two individuals. The selection was made on the basis of the differing

tap speeds prior to data alignment with a similar study period length.
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This section presents findings on general app usage, map app usage, and map app
usage supplemented with location-based contextual data. For general app usage,
we report the number of taps in various app categories distinguished by mobility
state. For map app usage, we provide the tap counts in map applications by mobility
state, along with the session metrics for both states of mobility. Concerning context-
enriched map app usage, session metrics were visualized based on categorization by

purpose, OSM classified tags, and motorization speed.

4.4.1 User 20: Long Session Durations and Low Tap Speed

The duration of the study for user 20 was 27 days. Before data alignment, the
participant had a median app session duration of 44 s (log transformed: 3.78) and
a tap speed of 0.72 taps/s (log transformed 0.63). As for distances traveled, user 20

was based in Switzerland, but took two long-distance trips to northern Italy.

4.4.1.1 General App Use

The total tap count per app category showed an exponential relationship, but was
more skewed for staypoints than triplegs, since the top two categories in staypoints
had a visible higher tap count The top three categories with the highest
tap frequency were games, communication, and social apps. Of the map categories,
maps and navigation had a higher tap count than travel and local in both states
of mobility. In the travel and local category, the total tap count was very similar
in stationary and non-stationary movement. For maps and navigation, the tap
count was higher in the stationary than non-stationary state, even though in total
there were more taps in triplegs. Thus, proportionally, map apps had more taps in

staypoints than triplegs.
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Figure 25: User 20: Barplots of Tap Counts by State of Mobility
4.4.1.2 Map Use

Three different map apps were accessed by user 20: SBB Mobile, ZVV-Timetable
and Google Maps. In both states of mobility, SBB Mobile had the highest tap count.
The information app ZVV-Timetable showed much more usage during stationary

periods, whereas Google Maps was only accessed in the non-stationary state.

Table 5: User 20: Map Tap Count in Triplegs by App Name

App Name TPLS Map Taps | SP Map Taps | Total Map Tap Count

ch.sbb.mobile.android.b2c 90 120 210

de.hafas.android.zvv 31 7 38

com.google.android.apps.maps - 22 22
Staypoints

In stationary periods, ZVV-Timetable recorded the lowest session durations at 1.85,

while SBB Mobile and Google Maps had longer session durations around 2.83 and

3.13, respectively (Figure 26ja). Regarding the tap frequency, interestingly, Google
Maps had the highest tap speed near 0 (-0.04), in the middle is ZVV-Timetable at

-0.71 and SBB Mobile with the slowest tap speed at -1.11 (Figure 26b). A Kruskal-
Wallis test for both metrics returned a p — value > 0.05, so statistically the median

differences between map apps were not significant.
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Figure 26: User 20: Boxplots of Median Map Session Metrics in Staypoints

Triplegs

During movement, the app sessions were longer than while stationary. The median
app session length in ZVV-Timetable (2.30) was shorter than SBB Mobile (3.48)
(Figure 27a). The tap speed was lower in ZVV-Timetable (-0.55) than SBB Mobile
(-0.96), indicating that an increase in session duration did not lead to an increase in
taps b). To statistically check whether the differences were significant, a
Kruskal-Wallis test was employed. With a p — value > 0.05 we failed to reject the
null hypothesis.
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Figure 27: User 20: Boxplots of Median Map Session Metrics in Triplegs

4.4.1.3 Map Use with Context

Of the 41 staypoints throughout the study period, 17 were assigned a purpose and in
five of these, map use was recorded. Four of the staypoints assigned a purpose with
map use were at work, while only one was used at home. illustrates the
boxplots for the map app session metrics of staypoints, classified according to the
OSNA method. The duration of the home session was shorter (2.22) than that of the
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Figure 28: User 20: Boxplots of Median Map Session Metrics by Purpose (OSNA)
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median map session at work (3.68). With regard to tap speed, the value observed
at home (-0.61) was higher than at work (-0.69). Furthermore, a smaller IQR was
observed for tap speed (0.49) compared to duration (1.44) at work locations. A
Kruskal-Wallis test did not yield statistically significant differences in medians for

map use behavior (duration or tap speed).
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Figure 29: User 20: Bozplots of Median Map Session Metrics by POI Classified Tag

With the OSM method, five staypoints were also identified with map use and as-
signed to a POI classification. Three belonged to places of transport, one to food,
and one to a residential area. The session durations vary quite a bit, shortest in
residential places (1.50), slightly longer for food (2.22) and longest in transporta-
tion (2.71)(Figure 29)a). Interestingly, the tap speed was highest for food (-0.61)
although it did not have the longest session durations b). The tap speed
in residential areas was in the middle (0.80) and the lowest in places of transporta-
tion (-1.11). The Kruskal-Wallis test here also failed to reject the null hypothesis
(p > 0.05).

Triplegs

Of a total of 168 triplegs, 12 were identified as having accessed maps. Most of these
instances exhibited slow mobility characteristics (10). The duration of the sessions
was markedly longer in the slow mobility segments (3.48) than in fast mobility (1.03)
a). The frequency of taps was observed to be lower in slow mobility (-
0.96) than in fast mobility (-0.14). The Kruskal-Wallis test produced a p-value of
0.053, marginally above the threshold to reject the null hypothesis regarding session
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duration and motorization speed. For the tap speed, the p-value was even higher,

so the null hypothesis was also not rejected.
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Figure 30: User 20: Boxplots of Median Map Session Metrics by Motorization Speed

4.4.2 User 15: Short Session Durations and High Tap Speed

Next, we present findings for a participant who exhibited short session durations
and increased tap speed prior to GPS and tap alignment. User 15 participated for
a study period of 23 days, with a median app session duration of 22 seconds (log
transformed 3.09) and a tap speed averaging 1.88 taps/second (log transformed -
0.33). This participant was located in Switzerland and made two long-distance trips

to other countries, specifically France and Greece.

4.4.2.1 General App Use

Total Tap Count by App Category Total Tap Count by App Category
in Staypoints - Log Scale in Triplegs - Log Scale
10’00010239 45790
4388 2856
10,000
+ 1,000 + 680
< 576 S 699
o 329 o
o 260 207 189 O 1,000 877851669
o 169 a 547
[ 86 [ 1293288248
oL 46 41 3% 08,
02
26 100 70
41
10 I24
| |
.5§8§£%§§.§%E?E§§ STTElFgseesogsz2Le
o9 8>RGeEwIREAE £ B09 8GR RIS IER R on
SngoZo c Eo< 338 £ 5 S 0l SCELEfaoEg S
z 2 Q. >0z 378 S c 2 ic & S>30 23539582
o © c T £ T o o cSToTC® [} S -
2 < ) et 2 < o< ¢ 2 < O woc<g g 5 Vv
E 3 B 82, &u< E 3 ° £<o 8 2
€ > s c 2 G o c € > s ch € Ta
S & w3 e = g 8 s <
= = © = T -
5 T T &
= =
App Category App Category
(a) Staypoints ) Triplegs

Figure 31: User 15: Barplots of Tap Counts by State of Mobility
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The barplots displaying cumulative tap counts in staypoints and triplegs demon-
strated that the three most popular app categories were communication, social, and
travel and local apps, irrespective of the mobility state (Figure 31|). Moreover, the

barplots are rather skewed, even on a logarithmic scale, with the top two app cate-

gories possessing much higher tap counts than the rest. Map apps within the travel

and local category exhibited a substantially higher cumulative tap count than apps

in the maps and navigation category.

4.4.2.2 Map Use

A total of 29 out of 72 staypoints resulted in the usage of map applications. Google
Maps was the application with the highest cumulative tap count, irrespective of the
mobility state. In staypoints, the airline app Lufthansa and the ticket shop app SBB
Mobile were among the other frequently used applications. Conversely, the second
and third-highest tap counts in triplegs was recorded in Airbnb and the ticket shop
app SNCF Connect (‘com.vsct.vsc.mobile.horaireetresa.android’). It was notable
that this user had accessed three different airline apps (Lufthansa, AirFrance, and

Aegean Airlines) during the study period.

Table 6: User 15: Map Tap Count in Triplegs by App Name

App Name TPLS Map Taps | SP Map Taps | Total Map Tap Count
com.google.android.apps.maps 2464 511 2975
com.airbnb.android 461 47 508
com.vsct.vsc.mobile.horaireetresa.android 364 18 382
com.lufthansa.android.lufthansa 74 121 195
ch.sbb.mobile.android.b2¢c 102 86 188
com.riliclabs.countriesbeen 149 149
com.airfrance.android.dinamoprd - 78 78
com.aegean.android 6 6
Staypoints

Taking a closer look at the session duration of map apps in staypoints, values
ranged from 2.43 (SNCF Connect) to 5.09 (SBB Mobile). Google Maps, Airbnb,
and Lufthansa were around 3.2 a). The tap speed ranged from -0.05
(AirFrance) to -2.19 (SBB Mobile). Google Maps had a median tap speed of -0.83,

and all other apps except SBB Mobile had a faster tap speed (Figure 32b).
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Figure 32: User 15: Bozplots of Median Map Session Metrics in Staypoints
Triplegs

Next, we present the results for the map session metrics in triplegs. In terms of
session duration, there was considerable variability between the different apps
a). The two ticket shop apps SBB Mobile and SNCF Connect, as well as
Aegean Airlines, had the shortest session durations of approximately 2.5. In con-
trast, the longest session durations were observed in the Countries Been application,
with a median duration of 4.89 and Airbnb also with a value exceeding 4. Google
Maps (3.68) and Lufthansa (3.81) fell within the mid-range of tap speed. With re-
spect to the tap speed, the values ranged from -1.33 (Lufthansa) to 0.12 (Countries
Been) (Figure 33Jp). Google Maps exhibited a tap speed of -0.63, while SBB Mobile
demonstrated a higher value of 0.07. The Kruskal-Wallis test produced a p-value of
0.04 for the duration of the session, which led to the rejection of the null hypothesis.
Conversely, the p-value of 0.24 for tap speed did not meet the significance threshold

for rejection.
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Figure 33: User 15: Bozplots of Median Map Session Metrics in Triplegs
4.4.2.3 Map Use with Context

Staypoints

For user 15, a total of 12 staypoints with map app usage were identified and assigned
a purpose (out of 101 staypoints and 26 staypoints with a purpose). The sessions
were longer at home (3.57) than at work (2.64). The tap speed was slightly higher at
home (-0.47) than at work (-0.66). However, the Kruskal-Wallis test did not indicate
significant differences (p — value > 0.05).
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Figure 34: User 15: Boxplots of Median Map Session Metrics by Purpose (OSNA)

A total of 29 staypoints were context-enriched with a POI tag and included map use.
The duration of the sessions was found to be the longest in residential areas (3.71),
intermediate in food-related locations (3.48), and shortest in transportation-related

areas (2.54). The range was highest in residential areas, which also exhibited the
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highest number of staypoints in this category (22 vs. 5 and 2) (Figure 35la). The
lowest median tap speed was recorded at places of transportation (-1.43), while areas
of food (-0.66) and residential (-0.44) exhibited slightly higher values (Figure 35]b).
These differences were statistically insignificant for both duration and tap speed, as

indicated by the Kruskal-Wallis tests with p-values greater than 0.05.
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Figure 85: User 15: Boxplots of Median Map Session Metrics by POI Classified Tag
Triplegs

For user 15, a total of 56 triplegs involved map usage. The median session duration
was slightly longer during slow mobility (3.62) than during fast mobility (3.46), with
a similar IQR (1.68 and 1.71) (Figure 36ja). It was observed that the minimum
(within 1.5 IQR of the lower quartile) and maximum (within 1.5 IQR of the upper
quartile) of the boxplot were approximately 1 unit higher for slow mobility compared
to fast mobility. The differences in tap speed were somewhat more pronounced.
During slow mobility, user 15 had a median of -0.64, which was slightly lower than
the median of -0.36 during fast mobility. The IQR was nearly identical at 0.88, but
the minimum and maximum values within 1.5 IQR of the first and third quartiles
were more extreme in slow mobility. Although minor variations were detected in the
boxplots, the Kruskal-Wallis test produced p-values exceeding 0.05 for both metrics.
Thus, we failed to reject the null hypotheses.
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Figure 36: User 15: Boxplots of Median Map Session Metrics by Motorization Speed
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5 Discussion

The objective of this discussion is to synthesize and interpret the findings on the
usage patterns of map apps in the context of user mobility presented in
The analysis distinguished between stationary and non-stationary states of mobility
and investigated the impact of context-enriched factors, including purpose, points
of interest (POI), and motorization speeds on mobile map app usage. This chapter
addresses the observed differences between stationary and non-stationary behaviors,
the role of context in enriching the understanding of these patterns, and how indi-
vidual variations in map usage emerge are discussed. Furthermore, the constraints
of the data and methodologies are addressed. This discussion also highlights the
broader implications for mobile app design and future research of mobility and app

usage.

Before presenting the findings, it is essential to note that they pertain specifically
to mobile applications on smartphones and tablets. Thus, the results cannot be
generalized to the use of the underlying services (Bohmer et al., 2011)). For example,
if a map service was utilized at home on a computer, the data was not collected.
Similarly, if the map service was accessed via an internet browser app, it was also

not be recognized as map use.

5.1 Macro-Level Map App Usage: Stationary vs.
Non-Stationary Behavior

The first inquiry sought to identify and analyze macro-level tapping and usage
patterns in mobile map applications, differentiating between stationary and non-

stationary states of user mobility.

There was more data for non-stationary movement than stationary, based on the
average time spent per day but also in total time spent. This differs from exist-
ing literature that takes into account phone usage and the states of mobility like
Verkasalo| (2009)), and the intra-session data from Trestian et al.| (2009)). While the
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time spent on phones was higher than in previous studies, the values are closer with
the average inter-session move and stationary times (where no phone was used) from
Trestian et al.| (2009) at 8 hours and 23 minutes, and 4 hours and 25 minutes, respec-
tively. This increase in phone use likely reflects the shift in society, where phones

are becoming more present and a part of daily life (Trott et al., [2022).

Delving into map use, we noted an increased use of maps in stationary than non-
stationary state of mobility, with one-third of staypoints recording map use and
one-fifth of triplegs. Additionally, the cumulative tap counts by map app name also
showed that there was an exponential relationship (straight line in the log-scaled
barplots), regardless of the state of mobility. Google Maps and SBB Mobile were
the two most popular map apps by far, with the most number of accesses from

staypoints and triplegs, and the highest tap count.

Regarding the map metric session duration, it was observed that map application
sessions were generally longer when users were non-stationary as opposed to station-
ary. For instance, the two most frequently used apps, Google Maps, demonstrated
session times of 3.18 for stationary phases compared to 3.73 for non-stationary pe-
riods. Similarly, SBB Mobile had session durations of 2.89 and 3.24 for stationary
and non-stationary phases, respectively. Interestingly, all map apps with at least
five data points for both mobility states were longer in the stationary state, except
Tripadvisor and Flightradar24. Staypoint sessions were also longer for AirFrance
(SP n=4, TPLS n=10) than tripleg sessions. The data had a limited dataset for
map apps with a flight and travel plan purpose, so further research would be needed
to check if the longer staypoint than tripleg durations indicated a different kind of

map use for such apps.

The longer duration of map sessions in triplegs suggested an increased cognitive load
when moving in the environment, which requires users to spend more time in the
app (Griffin et al., 2024). It also raises the question of how mobile map design could
pose potential safety concerns to the user when attention is divided between the
application and the environment. For example, in the context of the development
and design of navigation map apps, this could apply to apps that inform users about
traffic zones, report accidents, speed limits while driving, or select the safest route

when planning (instead of duration) (e.g., Kusumasari et al.| (2022))).

An intriguing question arises regarding potential differences in app usage duration
between tourists and locals. Some evidence indicated that apps utilized in foreign
countries, such as Carris (3.92) and Orario Treni (3.29), demonstrated prolonged
usage while stationary. They had 7 and 8 data points, respectively. Insufficient

data was available for other ticket shop apps, including DB Navigator, Trenord, and

60



Chapter 5. Discussion

Trainline, as they had fewer than five data points for stationary usage, thereby lim-
iting the informative value of the data. The trend was less clear in non-stationary
movement, where ADO Boletos, Flixbus, Orario Treni, and Trenord had higher
median session durations than SBB Mobile. Four apps exhibited shorter sessions:
MVG Fahrinfo Miinchen, SNCF Connect, Trainline, and Trenitalia. Trenitalia is
worthy of further investigation as it exhibited a markedly lower value (2.71) and
ranked third in terms of data source, with a total of 55 triplegs, after SBB Mobile
and Fairtiq. The post-hoc Dunn’s test revealed a statistically significant difference
to OsmAnd—+. It would be beneficial to conduct further research to determine the
number of individuals who accessed the app and whether similar trips were taken.
This could indicate whether they used the app more frequently, indicating that they
use it more as a local than a tourist, which would explain the shorter duration. Fur-
thermore, it was notable that navigation apps such as swisstopo and offline apps,
including OsmAnd-+, MAPS.ME, exhibited slightly longer durations than Google
Maps, both in stationary and non-stationary states of mobility. This may be in-
dicative of users of these apps spending more time exploring the map. In addition,
the utilization of offline navigation maps could be indicative of the apps used by

tourists, as they lack access to mobile data or need to save battery.

Very interesting was Fairtiq, which reflected a unique map use pattern. The median
session duration was much lower than other map apps, with values of 0.86 and 1.29
for staypoints and triplegs, respectively. This can be explained by the way that
Fairtiq works, namely, it only required users to start and stop the trip (check-in and
check-out). The app then automatically computed and selected the least expensive
ticket for the traveled route throughout the day, removing the step of the user having

to plan or pick the correct ticket and knowing the name of the stations.

Similarly to the duration, the tap speed of Fairtiq was notably slower than that of
other map apps. The straightforward nature of the process, which merely requires
a simple swipe to check in and out, is likely the reason behind this outcome. In
terms of mobility states, map app sessions exhibited a marginally higher frequency
in stationary scenarios compared to non-stationary ones. Overall, the variability in
tap speeds was notably lower than for durations, signifying a more consistent range
for tapping frequency across different map applications. We also recognize that the
level of aggregation of the tap speeds by the state of mobility and per app was too
high to reflect the differences between different map activities, including exploration,
search, and route planning, or following navigation directions (Kiefer et al., [2017)).
These activities may differ in tap speeds, but would not be reflected at this level of

analysis (tap speed per session).

61



Chapter 5. Discussion

For map apps, there were some significant differences in the median tap speed, ac-
cording to the post-hoc Dunn’s test. In general, the tap speed of (offline) navigation
apps was higher than that of the ticket-shop apps. Google Maps exhibited a tap
speed of -0.35, which was more than twice the speed of SBB Mobile’s tap speed of
-0.81 when comparing their logarithmic values. Note that when the logarithm is

reversed, the actual difference in tap speeds is slightly less pronounced.

It was also interesting that the number of apps with significantly different medians
was limited to a few apps, like Google Maps, SBB Mobile, Publibike, OsmAnd+
and Fairtiq. However, a closer look at the number of times accessed from staypoint
or tripleg showed that these apps were frequented the most. Since map apps only
make up such a small part of phone use in general (Reichenbacher et all [2022), a

larger-scale study could reveal more indicative patterns.

We also explored the temporal aspect of map app access by time of day and day
of the week. In this regard, existing research with tappigraphy visualized map use
in regard to map taps (Reichenbacher et all 2022). They mentioned a day-night
pattern, which was also reflected in our data. However, they found the highest
use in the afternoon until the early evening (13:00-19:00) of the second half of the
week (Thursday to Sunday). The two peaks were spotted around lunch (13:00) and
before dinner (18:00). Our findings differed slightly, but we considered the time
an app was accessed, and not the tap count. For stationary movement, maps were
accessed steadily in the morning from 5:00 until the early afternoon. Similarly to
Reichenbacher et al.| (2022), the highest map use was recorded in the afternoon, but
cut off slightly earlier at 17:00. We found three local peaks, two in the morning
at 6:00 and 10:00, and the largest one in the middle of the afternoon at 15:00.
Throughout the week, we found the highest map use on Mondays and Thursdays,
which decreased over the weekend (Friday to Sunday). For the non-stationary data,
we saw four peaks throughout the day, a small one in the morning (7:00), then
before lunch (11:00), in the middle of the day (15:00), and before dinner (18:00).
We see more similarity to the existing literature with the days of the week, with
Thursdays to Saturdays having the highest number of maps accessed. Interestingly,
non-stationary map use was lowest on Sundays, with local peaks on Mondays and

Fridays.

In addition to observing when the map apps were accessed the most, we also visual-
ized which map apps were accessed. App-specific variations were consistent across
both datasets, such as SBB Mobile being accessed more frequently than Google
Maps during early morning hours. Google Apps was accessed more in the after-

noon, with a peak around 2pm. This differed slightly from Bohmer et al.| (2011)),

62



Chapter 5. Discussion

who found a strong peak in the early evening hours, though they also mentioned a
higher use in the afternoon. Fairtiq showed peak usage in the very early morning
before work (SP: 5:00, TPLS: 5:00-7:00) which could indicate usage during the com-
mute in the morning. However, it is unclear why this is not matched in the evening
for the evening commute, and is instead accessed more often in the early afternoon.
The access of the bike rental app Publibike started slightly earlier while stationary,
at 6:00, and an hour later in triplegs. In both states of mobility, it was accessed
much more frequently in the later afternoon, with a peak at 15:00, and steady use
until dinner time (18:00). Additionally, the stationary data highlighted the use of
travel booking apps like Booking and Airbnb, which were mainly accessed in the
evening, a detail less noticeable in the non-stationary data. There was also some
weekend-specific behavior in the stationary dataset, such as the increased usage of
the Actionbound game on Saturdays and Uber’s peak on Fridays and Saturdays,

which were not as pronounced in the triplegs data.

In this thesis, the apps which were used before or after a session were not taken into
account. However, we looked at the specific example of AirFrance, which had excep-
tionally high session duration, with only four sessions of which one was extremely
long (20 minutes) . It was noted that the very long session was followed by
a relatively short session. This could indicate a possible relation between temporally
close sessions. For example, for AirFrance, a user could have spent a considerable
amount browsing and comparing flights and booking a flight. Soon after, the user
returned to the app to quickly check something about the newly booked trip. We
conclude that possible directions for future research include the study of temporally
close sessions of the same app to better understand how a specific application is
used, or the study of apps that precede and follow an app session (see (Bohmer
et al., 2011))).

5.2 Macro-Level Map Usage with Context Enrichment:
Impact of Purpose, POls, and Modes of Transport

The second research question aimed to investigate whether distinct map usage be-
haviors could be discerned through context enrichment of stationary locations (pur-
pose and POIs) and categorization of non-stationary travel by transport modes (fast
vs. slow mobility). We will first compare the two context enrichment methods em-
ployed for stationary data and how they compare with the existing literature. In a

second step, we discuss the findings of the categorization for non-stationary data.
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5.2.1 Stationary Movement with Purpose and POls

The first thing to take into account with both staypoint classification methods is
that not all staypoints were classified. With the OSNA method, only a third of
all staypoints were enriched with context. We then further restricted the analysis
to staypoints that included map use, which was also about a third of the classified
app or approximately 10% of the stationary data. We also noticed that the OSNA
method was not able to find the context for every individual, especially the home
category. This differs from the frequency method, which is bound to find context
for all participants as long as the users visited at least two locations. The OSM
method classified more than double the staypoints at 85.10%. For the enriched
map use data, it is 29% of all stationary data. The trade-off between the purpose
and POI classification is the loss of data for purpose method because fewer social
contexts are considered (finer-grained classes with POIs tags than purpose), but it
is computationally more efficient. Future research could integrate these methods to
determine work and residential locations, followed by computing the OSM tag for
classifying the remaining data. Thus, the system could autonomously distinguish
between the user’s own home and other residences, such as those of family or friends,
akin to the differentiation made in the study by Do et al. (2011)) regarding home

and friend-home, but without necessitating the user to manually label the locations.

Examining the relative proportion of staypoints with map use visualized in Marimekko
charts, the purpose classification did not indicate different map use at home (33.65%)
and work (31.93) locations, as visualized in the Marimekko chart in or
the x? independence test. In contrast, the POI classification found a relationship
between the classified POI categories (residential, transportation, food, commer-
cial, education, tourism, entertainment, and healthcare) and the access of map apps
. Upon statistical inspection with the adjusted pairwise x? test of inde-
pendence, the only statistically significant relationship was found between residential
and food locations. The Bonferroni correction, which is known to be conservative,
adjusts the significance threshold to account for multiple comparisons, reducing the
risk of false positives (VanderWeele and Mathur, 2019). However, it may increase
the likelihood of Type II errors (false negatives), potentially overlooking some real

associations.

Surprisingly, map apps were not accessed much more often in places of transporta-
tion than any other place. In fact, it was very similar to residential areas and
tourist attractions . However, map use is still higher than in places of
commerce, education, and dining, which is understandable. People were more likely

to use map apps to plan a trip or explore an area while at home, in tourist areas
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(e.g., if they had not been there before), or in a place of transport (e.g., waiting for
public transport at a train station or bus stop) than at work, eating out, or studying.
Previous research had demonstrated a correlation between the distance traveled by
participants and their use of maps (Yang et al., 2016} [Zingaro and Reichenbacher,
2022). A distinct ‘home’ and ‘travel’ map use behavior was found by Zingaro and
Reichenbacher| (2022)), where they considered the distance away from home. With
our method, we could supplement the statement that people access map apps less
often in places of food than at home. On the other hand, we were unable to statisti-
cally find that map use was higher in places of transport than other functional places
(cf. (Yang et all 2016)). From the Marimekko plot, we visually observed that the
proportion of staypoints with map access was higher in transportation hubs than in
commercial areas, educational institutions or food locations. However, it should be
noted that in their study, Yang et al| (2016) only considered places of transporta-
tion, educational institutions, work, and entertainment but not home or residential

areas, as they were limited to phone traffic with mobile data.

Regarding map session metrics, no statistical differences were found between usage
at home and at work . This could indicate that only differentiating
between home and work locations is not fine-grained enough to discern the ‘home’
and ‘travel’ map use behavior was found by |Zingaro and Reichenbacher| (2022).
Other potential reasons for similar map usage behavior at home and work locations
might be the rising trend of remote work, which blends non-work and work activities
on smartphones (Das Swain et al/ 2022)), an individual’s unemployment or work
in the evening or on the weekends. With the OSM classification, the Kruskal-
Wallis test found a difference between the OSM groups and median session duration.
Though a post-hoc Dunn’s test did not reveal which categories had different median
durations, areas of entertainment and tourism did show a tendency for longer session
durations than the rest of the categories. As for tap speed, it was also noted that
the variability was much higher for entertainment and tourism, with a slightly lower
median compared to the rest of the categories. However, statistically, we only found
that the tap speed between commercial and touristic areas was different. A possible
reason for the lower tap speed in tourist areas could be that people spent more time

studying the map visually than exploring it through haptic interactions.

Very interesting were the findings on which apps had the most taps, depending on
the context of the staypoint. With purpose distinction, we observed a greater use
of travel booking apps and flight apps at home, while at work, navigation apps
were more prominent . Google Maps, SBB Mobile and Publibike had
a relatively high proportion in both places. For the three most common POI clas-

sification (residential, transportation, and food), we found that Google Maps was
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the most used app. Similarly to the home category, SBB Mobile and Publibike
were the second and third most used apps in residential areas. While booking and
flight apps were accessed in residential areas, they were much less used than in the
home category. We did observe the presence of the navigation apps OsmAnd+ and
swisstopo which were not present at the OSNA home staypoints. In transportation
places, ticket shop apps were more present, which makes sense as people needed to
buy tickets before using public transportation vehicles. The food staypoints showed
a slightly different map use behavior. Vehicle reservation apps were more present,
indicating that travel to and from restaurants was likely less with public transport
than short-distance vehicles like scooters and bikes. Surprisingly, SBB Mobile was
not the second most used app, instead, the booking apps Tripadvisor and Booking,

held the second and third place, respectively.

Future work could combine the study of contextual information about stationary
periods with the distances traveled by individuals. The existing literature has in-
dicated that there is a relationship between map use and distance traveled (Yang
et al., 2016} Zingaro and Reichenbacher) [2022). As an exploratory work, this thesis
presented a significant contribution by demonstrating an automatic classification of
locations that could be expanded to numerous categories, in contrast to the manual
classification of places employed by Yang et al.| (2016)); Do et al.| (2011)). Furthermore,
the study revealed that map apps with distinct primary purposes could be differen-
tiated based on the location-based context of the use of mobile devices. In a next
step, we discuss the findings of map use in the context enrichment non-stationary

mobility.

5.2.2 Non-Stationary Movement with Mode of Transportation

Unlike stationary data classification methods, all triplegs were classified with a mo-
torization speed to approximate the modes of transportation. The majority of non-
stationary data was classified as slow mobility, indicating more local travel than
long-distance trips. This is understandable, as most of the individuals were based
in a larger Swiss city. Travel in urban areas is often easier with slower modes of
transport than driving (e.g., traffic, limited and expensive parking spaces). In terms
of relative map use, maps were twice more likely to be used in fast mobility than
slow mobility . Given the increased number of slow mobility triplegs,
it was not surprising that a greater variety of map applications were used during
periods of slow mobility compared to fast mobility . In both situations,
Google Maps and SBB Mobile were the two most frequently utilized apps. Addition-

ally, there was a higher number of booking apps and total number of touchscreen
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interactions in map apps in the slow mobility context. While at first it may be sur-
prising that booking apps where used while non-stationary, a more detailed look into
some apps indicated that they function is not only limited to booking hotels, cars or
flights. For example, Tripadvisor contains restaurant recommendations, while Book-
ing.com has suggestions for attractions. It was also no surprise that Zoo Ziirich, an
app with information about the zoo, was only accessed during slow mobility, since

fast mobility transport modes cannot be used in the zoo.

The analysis of map use behavior also indicated interesting results .
During slow mobility, a significant increase in time spent interacting with map ap-
plications was observed compared to during fast movement. However, the frequency
of user interactions (tap speed) remained consistent across both slow and fast travel
modes. This disparity in usage duration without a corresponding change in in-
teraction frequency could suggest potential differences in navigation complexity or
environmental engagement based on travel speed. Slow modes of travel, such as
walking, may have necessitated more frequent reference to map applications, be it
for guidance while navigating or to book travel plans in the booking apps. Extended
map usage during slow travel might have indicated heightened user engagement with
the surrounding environment, manifesting itself as exploratory behavior or multi-
tasking. The consistency of the tap speed across the travel modes suggested that
the underlying interaction paradigm remained constant, possibly due to the consis-
tent interface design or the user adopting a uniform interaction rhythm to manage
the cognitive load. These observations highlight the need for further research to
elucidate the cognitive processes and user motivations underlying these patterns,

potentially forming the design of more context-aware navigation systems.

5.3 Micro-Level Map App Usage Patterns: The Role of
Mobility and Context

The final area of investigation focused on comparing tapping and usage patterns
within map applications at the micro-level, considering both the user’s state of

mobility and the context-enriched mobility state.

A comparison was conducted between two users with distinct general app usage
behaviors: user 20, who exhibited longer session durations and a lower tap speed
prior to data alignment, and user 15, who had shorter sessions and a higher tap
speed. Notably, user 20 preferred apps in the maps and navigation category

ure 25)), whereas user 15 had higher tap counts in the travel and local category
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(Figure 31|), regardless of whether they were stationary or in motion. Both users
accessed SBB Mobile and Google Maps, yet their engagement differed: user 15 only
accessed Google maps while Stationary, and preferred SBB Mobile.

Upon comparing stationary map session metrics, an interesting reversal was observed
in session durations relative to their overall app behavior. Despite user 20 typically
having longer general session durations, their map session durations were shorter
than those of user 15, especially for SBB Mobile (5.09 for user 15, 2.8 for user 20).
However, the tapping speed did not show a clear difference between the users. For
both users, SBB Mobile had the lowest tap speed, but it was slower for user 20
(-1.11) than for user 15 (-2.19). In contrast, Google Maps exhibited a higher tap
speed in user 15 (-0.83) compared to user 20 (-0.04). If we compared the individuals’
results to their general session metrics before the alignment (taking the natural
logarithm), we noticed that the session durations were shorter and tap speeds lower
for all map apps in user 20. For user 15, map sessions were longer than the average
app session, except for SNCF Connect, the ticketing app in France. This divergence
between general app metrics and map app behavior suggests that general app session
metrics cannot fully predict map app usage, pointing to the specialized nature of

map interactions.

When considering map usage during triplegs, the differences between the two par-
ticipants became less distinct than in the general session metrics before alignment.
User 15 exhibited longer map sessions than user 20, which was consistent with their
stationary behavior. Upon examining the duration of the map sessions in relation to
their overall session length, the analysis revealed that the median duration of map
sessions for user 20 was shorter than their average session duration.(Figure 27).
In contrast, user 15 did not show a definitive trend, with roughly half of the apps
showing longer sessions and the other half shorter compared to their average app
session before alignment . The tap speed during triplegs did not show
marked differences between the users, with both generally exhibiting lower speeds
during map app use compared to general app sessions. While for user 20 all apps
had slower speeds than the general tap speed, user 15 had two exceptions with SBB

Mobile and Countries Been.

These findings revealed that individual behavior in map app usage remained rela-
tively consistent regardless of the state of mobility. Moreover, an individual’s average
tap speed and session length across all apps did not necessarily imply similar pat-
terns of map app usage. User 15, despite having longer map sessions, did not show
a proportionate decrease in tap speed, further underscoring that session length does

not necessarily directly correspond to interaction intensity.
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In the final part of the analysis, the map session metrics were contextualized using
staypoint and tripleg data. Fewer staypoints were identified for user 20 than for
user 15, both with and without context. User 20’s map sessions were shorter at
home than at work, while user 15 displayed the opposite pattern. Additionally, user
20’s median session durations were more extreme compared to user 15. Both users
exhibited faster tap speeds at home than at work, though the differences between
categories were not statistically significant, aligning with the results of the macro-

analysis.

The OSM method revealed that both participants only accessed map apps in resi-
dential, dining, or transportation areas. The median map session duration in places
of transportation was longer for user 20 than user 15. The food and residential
areas for user 20 included only one staypoint each, with relatively short session
durations (2.22 and 1.50, respectively). However, the lack of classified staypoints
with map use likely affected the results. In contrast, user 15 recorded the longest
durations in residential areas (3.71), followed closely by food locations (3.48). These
findings aligned with the general population, where no significant differences in ses-
sion duration were noted between food, residential, and transportation areas. Both
participants exhibited the lowest values in the transportation category, at -1.11 for
user 20 and -1.43 for user 15. This differed from the broader population, where the
slowest tap speeds were found in regions associated with tourism and entertainment,
at approximately -1.4. The lower tap speed of these categories could hint at the role

of increased cognitive load in map use.

The absence of any recorded staypoints classified under tourism, despite visits to
foreign countries, suggests that the current method for categorizing 'tourism’ stay-
points did not effectively capture the app usage patterns of tourists. This approach
neglected crucial factors such as an individual’s usual place of residence and their
frequency of visits to a particular region. For instance, under the existing system,
a first-time trip to Greece would not be fully identified as a tourist exploration.
Rather, only specific instances, such as visits to historical sites, might be captured,
while ignoring periods of low interaction in transit areas where users might engage
less frequently with the app due to the unfamiliar environment demanding more of

their attention for information processing.

In tripleg contexts, user 15 again had more context-enriched map use than user
20. However, the contextual augmentation of triplegs with motorization speed did
not reveal significant differences in session duration or tap speed for either partici-
pant. Nevertheless, both participants exhibited longer session durations during slow

mobility, a trend consistent with the general population (which was statistically sig-
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nificant). Notably, user 20 had shorter session lengths than user 15, and their slow
mobility closely aligned with the fast mobility speeds of user 15. Tap speed also fol-
lowed a similar pattern, with both participants displaying slower tap speeds during
slow mobility. While the general population showed a tap speed of approximately
-0.65, the tap speed of user 20 was lower in slow mobility (-0.96) and faster in fast
mobility (-0.14). User 15’s tap speeds were near the average for slow mobility (-0.64)
and only slightly faster in fast mobility (-0.36).

The fact that the general app use behavior of an individual differed from their
map app usage underlines the need for specific research into map usage behavior.
The findings of the micro-level analysis suggested that individual users had distinct
preferences and usage patterns. Thus, map apps could benefit from personalized
features that adapt to a user’s preferred mode of interaction (e.g., shorter sessions
for goal-oriented users, or extended sessions for more exploratory users). This could

improve user satisfaction by aligning the app’s functionality with user behavior.

5.4 Limitations & Future Research

This study examined the relationship between the use of map applications in the
context of human mobility. The tappigraphy method, derived from the field of neu-
roscience, is distinguished by its high temporal resolution and high validity, making
it an effective tool for studying map app usage through the analysis of app session
duration and tap speed. The integration of GPS data with tap data enabled the
elucidation of the locations and circumstances (stationary vs. non-stationary) of
map application usage. However, the approach was subject to several limitations

that can affect the generalizability and precision of its findings.

Firstly, the dataset was relatively limited in size, comprising a restricted number
of users. Furthermore, map application sessions represent only a minor aspect of
overall mobile phone usage, further constraining the available data. As a result, the
scope of the conclusions that can be drawn was limited. Moreover, the data may
not fully represent the diverse behaviors of users. However, as AAs, the GPS and
tappigraphy methods make it possible to scale this to a larger study size and to longer
study periods than traditional studies. Although crucial demographic variables such
as gender, age, and occupation were not collected due to privacy restrictions, the
proposed approach still gives considerable insight into the daily use of mobile map

applications.

Another limitation is the exclusion of Apple users, as the study only captured data
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from Android devices. This introduces a bias in the findings, as it does not account

for the behavior of i1OS users.

Furthermore, a considerable amount of data was lost during the alignment process,
particularly in the case of GPS data, which could potentially introduce biases or
inconsistencies in the identification of staypoints and triplegs. A subsequent step
would be to examine the impact of re-merging the aligned data aggregated by GPS
points with the original GPS dataset on the classifications. This would assist in
mitigating the loss of GPS data and ensure that the differentiation between sta-
tionary and non-stationary movement is based on a comprehensive understanding
of the movement data, regardless of whether taps were recorded or not. Moreover,
the precision of GPS-based classification could be improved by incorporating other
smartphone collected data. For example, acceleration and gyroscope data could
facilitate more precise classifications (Otebolaku and Andrade, 2016} [Straczkiewicz
et al., 2021} Huang and Onnela), 2020).

The categorization of apps using Google Play Store classifications represented a valu-
able preliminary step in the selection of map applications. However, these categories
are broad, and some apps with similar functions were not consistently classified. For
instance, apps related to the purchase of tickets were found in both the “maps and
navigation” and the “travel and local” categories, which could complicate the in-
terpretation of map app usage based on the Google Play Store classification. To
gain a more precise understanding of map app usage based on the app’s specific
purpose, a more detailed classification was necessary. In this study, the refinement
of these classifications was conducted manually, which facilitated a more compre-
hensive understanding of the intended use of the app. However, this procedure was
both time-intensive and complex since applications often fulfilled multiple roles, ren-
dering category assignment subjective to the researcher’s discretion. Thus, although
the preliminary categorization was beneficial for the initial selection of apps, it is

insufficient for more comprehensive analyses.

Moreover, the findings of the study were contingent upon the criteria established for
categorizing aligned data into stationary and non-stationary activities. Although
uniform thresholds were applied across all subjects to ensure comparability, these
thresholds may not fully capture individual variations in movement patterns. For
example, for individuals who traveled longer distances, increasing the gap threshold
for triplegs could better capture the longer trips, which could provide more accurate
classifications. The different thresholds from study to study also makes it more

difficult to compare the results with existing literature.

The classification of stationary data by context presented both opportunities and
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challenges in spatial analysis. While selecting the most frequent tag for a POI was
computationally efficient, it may oversimplify the complex nature of space. This
method, based on Tobler’s first law of geography, assumed spatial auto-correlation
(Tobler}, 1970)). However, it failed to account for the potential overlap of function
types within a single location. As Yang et al.| (2016, p. 6) noted, the same location
may hold various meanings for different individuals at different times, highlighting
the semantic complexity of place. The accuracy of such classifications remains un-
certain, particularly when applied to clustered staypoints (locations) rather than

staypoints.

Finally, in the classification of non-stationary data, motorization speeds were used
as a proxy for distinguishing between active and passive modes of transport. To
the best of our knowledge, this was the first study to contextualize non-stationary
movement. However, this approach was coarse and may have oversimplified the
dynamics of user movement. Future research could benefit from more nuanced

transport classification methods to capture the full spectrum of mobility behaviors.

Building on the limitations discussed earlier, this thesis opened numerous avenues
for further investigation. It uncovered specific user preferences and behaviors in the
use of map apps. One practical application of these findings is the design of mobile
map apps tailored to individual user profiles to enhance both user satisfaction and
spatial learning. At a broader level, the differentiation between stationary and non-
stationary use of map apps revealed that users engage with these apps for longer
periods while in motion, particularly when moving at slower speeds (< 20 km/h).
These findings warrant a further exploration into how mobility impacts map usage,
including the potential to enrich touchscreen interactions by adding finer-grained
contextual elements related to the user’s state of mobility. Such research could
inform the development of interfaces optimized for either quick glance interactions
or more deliberate use, depending on the state of mobility and context. Since
this was the first study to our knowledge to give context to the non-stationary
use of maps, future work could refine the geospatial classification to better reflect
different modes of transport. Additionally, integrating location-based context with
the distance traveled, or examining app usage patterns that occur temporally close
to one another or across consecutive app sessions, could provide further valuable

insight.

Despite these limitations, it is important to highlight that this study is the first
of its kind to employ tappigraphy data—recognized for its high temporal resolution
and ecological validity—with GPS data and generate added context to examine map

app usage. This innovative approach provides a more nuanced and comprehensive
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understanding of user behavior by distinguishing between stationary and mobile in-
teractions and contextualizing both states of mobility. The ability to capture these
detailed behavioral patterns marks a substantial advancement in the study of hu-
man mobility and app usage, offering insights that would not have been possible
with traditional methods alone. These contributions underscore the value of cur-
rent research and demonstrate its capacity to provide valuable insights for further

exploration and improvement.
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6 Conclusion

This thesis explored the usage patterns of mobile map apps in relation to human
mobility and the role of environmental and behavioral contextual enrichment. By
leveraging the novel combination of the tappigraphy method and GPS collection, a
geospatial analysis of map app usage was performed on a macro- and microscale,
revealing significant patterns in touchscreen interactions that aligned with movement

types and location-based contextual factors.

Map app usage patterns demonstrated distinct behaviors across both stationary and
non-stationary contexts. Irrespective of mobility status, an exponential relationship
was observed between the number of taps on map applications and the application
name. In terms of map app sessions, users in the non-stationary state engaged longer
with map apps than while stationary, whereas stationary users exhibited slightly
faster tap rates. This suggests that increased cognitive load may prompt longer
map sessions during transit. The analysis also pointed to variations in app usage
time depending on the app’s intended purpose. Particularly notable was Fairtiq, the
check-in check out ticket shop app, which exhibited unique patterns characterized
by short sessions and low tap speed. Consistent with (Reichenbacher et al., 2022),
a day-night usage pattern was identified with regard to the access of map apps.
Moreover, in both stationary and non-stationary contexts, map apps were accessed
most often in the mid-afternoon. Additionally, map apps experienced higher usage

during weekdays compared to weekends.

The use context of map activity further highlighted variations in touchscreen inter-
actions. For stationary periods, two approaches were utilized to enrich staypoints:
the OSNA method to distinguish between home and workplace, and POI catego-
rization using OSM data. The OSNA method did not yield significant differences
in map session metrics, such as session duration and tap speed, possibly due to its
coarse classification or the impact of remote work. In contrast, the OSM classifica-
tion demonstrated statistically significant differences in map session duration and
tap speed. The results demonstrated that different map applications were utilized
depending on the POI context: Google Maps exhibited the highest aggregate tap

count in the three most frequent POI categories (residential, transportation, and
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food-related areas). In contrast to transportation and residential areas, travel book-
ing apps like Tripadvisor and Booking showed higher tap counts than SBB Mobile.
Furthermore, vehicle reservation apps registered a higher tap count in food-related

places.

To enrich the moving segments, the average speed to a tripleg was computed and
classified into slow and fast mobility with a threshold of 20 km/h. In triplegs,
proportionally, map apps were accessed twice more often in fast than slow mobility.
In addition, map sessions were significantly longer in slow mobility, but no differences

were found regarding the tap speed and motorization speed.

At the micro-level, individual user behavior demonstrated that average session
length and tap speed in all apps did not directly translate to similar behavior in map
apps. Furthermore, longer map app sessions did not imply a lower tap speed. The
relatively low number of map sessions for both participants did not reveal significant
differences between the different context categories, but showed similar trends to the

overall study population.

While these findings offer new insights into mobile map app usage, the study is
not without limitations. The alignment of GPS and tappigraphy data resulted in
some data loss, which may have impacted the accuracy of contextual classifica-
tions. Moreover, the relatively small sample size may limit the generalizability of
the results. Future research should focus on expanding the dataset and refining

context-enrichment methods.

The practical implications of these findings suggest that map app developers could
optimize user experiences by adapting to mobility contexts, such as providing sim-
plified interfaces during fast mobility or more comprehensive interaction options
during stationary periods. Additionally, integrating contextual information can en-
hance user experience by offering personalized, relevant content based on location

and state of mobility.

In conclusion, this thesis has demonstrated the value of combining tap with GPS
data to examine the everyday use of mobile map apps in real-world contexts. The
findings advanced our understanding of how mobility and use context influence app
interactions, providing valuable insights for both theoretical research and practical
app design. Future studies should continue exploring these dynamics with larger
datasets and more granular contextual analyses to deepen our understanding of

mobile map usage in everyday life.
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A POI Tags

An overview of the POI tag extracted from OSM is given by the dictionary called

tags. To classify these into larger categories, the dictionary tags classified was used.

tags = {
"amenity": ["restaurant", "pub", "bar", "cafe", "college", "school",
"university", "bus_station", "charging_station", "casino",
"cinema", "clinic", "doctors", "hospital'],
"building": ["apartments", "bungalow", "detached", "house", "residential",
"commercial", "retail", "government", "trainstation",
"college", "university", "transportation", "hotel"],

"highway": "bus_stop",

"public_transport": True,

"railway": ["station", "tram_stop"],

"tourism": ["attraction", "hotel", "hostel", "motel", "camp_site",

"gallery", "museum", "theme_park", "viewpoint", "zoo"]

tags_classified = {

"food": ["restaurant", "pub", "bar", "cafe", "fast_food"],

"education": ["college", "school", "university"],

"transportation": ["bus_station", "fuel", "parking", "charging station",
"trainstation", "station", "tram_stop", "stop_position",
"platform", "stop_area", "stop_area_group",
"ferry_terminal", "transportation", "bus_stop",
"technical_station", "platform_section", "footway"],

"entertainment": ["casino", "cinema", "arts_centre", "gallery", "museum",
"theme_park", "zoo", "viewpoint'],

"healthcare": ["clinic", "doctors", "hospital"],

"residential": ["apartments", "bungalow", "detached", "house", "residential"],

"commercial": ["commercial", "retail", "government", "townhall"],

"tourism": ["attraction", "hotel", "hostel", "motel", "castle", "camp_site"]
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Chapter B. Map App Usage Metrics

Table 7: Cumulative Tap Count by Map App

App Name Sp_map_tap_count | tpls_map_tap_count | total_map_tap_count
com.google.android.apps.maps 22'797 94’275 117’072
ch.sbb.mobile.android.b2c 12’251 32’194 44’445
com.booking 1’686 11226 12’912
net.osmand.plus 2'788 6’952 9'740
com.mobilityado.ado 150 7237 7'387
ch.publibike.app 3’996 3’337 7'333
ch.admin.swisstopo 1222 5'779 7°001
com.tripadvisor.tripadvisor 2’003 3’855 5’858
com.mapswithme.maps.pro 1°001 3’655 4’656
com.flightradar24free 198 3’092 3’290
com.airbnb.android 413 2'480 2’893
com.lynxspa.prontotreno 626 1620 2'246
pt.carris.tecmic 1’632 210 1’842
ch.futurecom.zoozurich 0 1’668 1'668
de.actionbound 1’081 419 1’500
COM.yOC.SWiSS.SWiss 206 1044 1’250
com.fairtig.android 321 785 1’106
com.lufthansa.android.lufthansa 138 843 981
com.app.stadtblatt 303 580 883
ch.schweizmobil 17 758 775
org.paoloconte.treni_lite 221 487 708
com.comuto 102 548 650
it.nordcom.app 125 525 650
org.eurail.railplanner 58 528 586
com.ubercab 105 480 585
com.google.earth 0 518 518
com.airfrance.android.dinamoprd 248 159 407
com.bonfire.matterhorn 166 233 399
com.ebookers 0 385 385
com.live.flighttracker 0 385 385
com.vsct.vsc.mobile.horaireetresa.android 18 364 382
ch.local.android 32 340 372
org.bikecityguide 13 333 346
com.hostelworld.app 0 345 345
net.skyscanner.android.main 0 316 316
com.limebike 191 95 286
ch.mobility.mobidroid.main 23 258 281
de.hafas.android.zvwv 30 236 266
com.blablalines 0 241 241
co.bird.android 208 23 231
com.plannet.milesandmoreapp 9 218 227
com.staralliance.navigator 0 208 208
de.flixbus.app 8 188 196
com.iberia.android 4 189 193
ch.mnc.zvv.oneapp 40 141 181
com.thetrainline 48 131 179
ch.search.android.search 52 101 153
com.riliclabs.countriesbeen 0 149 149
de.swm.mvgfahrinfo.muenchen 54 85 139
net.osmand 0 136 136
net.pluservice.ticketbv 15 115 130
de.hafas.android.db 17 106 123
it.sistema3.apps.ibeach 5 115 120
ch.carvelo2go.app 0 102 102
ch.parkingcard.customer 0 74 74
com.peaklens.ar 47 24 71
ch.sbb.prail2 0 36 36
ch.stadt.winterthur.moapp 0 36 36
com.wemlin.android 0 29 29
de.eos.uptrade.android.fahrinfo.berlin 0 28 28
org.peakfinder.area.alps 0 27 27
com.here.app.maps 0 23 23
mnc.android.zvvticket 0 23 23
de.infas.mobico 0 21 21
ch.sbb.myway 0 14 14
com.aegean.android 0 6 6
com.relayrides.android.relayrides 0 2 2
com.attidomobile.passwallet 2 0 2

——
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Chapter B. Map App Usage Metrics

Table 8: Map App Session Metrics by State of Mobility and App Category
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Median of Medianof | Median of

Median of | Log Median Log Median | Log Median

Log Median SPTap SP Count TPLS TPLSTap | TPLS Count

SP Session Speed with Map Session Speed with Map

App Name App Name Abbreviation App Use Duration[s] | [taps/s] AppUse | Duration[s]| [taps/s] App Use
ch.admin. SWi Navi 3.58 -0.81 41 4.34 -0.84 107
ch.carvelo2go.app carvelo Reserve automobile, bike, scooter 4.10 -0.46 2
ch Zoo Ziirich Navigati 5.20 -0.67 5
ch.local.android local.ch Sightseeing 3.90 -0.43 1 3.04 -0.52 18
ch.mnc.zw.oneapp W Ticket shop public transport (train, bus) 4.23 -0.54 1 3.60 -0.60 2
ch.mobility.mobidroid.main Mobility Swiss Reserve bike, scooter 2.51 -0.46 1 2.80 -0.85 12
ch.parkingcard.customer Parki Other 6.67 -2.37 1
ch.publibike.app Publibike Reserve automobile, bike, scooter 2.47 -0.58 299 2.62 -0.79 230
ch.sbb.mobile.android.b2c SBB Mobile Ticket shop public transport (train, bus) 2.89 -0.81 945 3.24 -0.79 1506
ch.sbb.myway MyWay Tracking 3.72 -1.09 1
ch.sbb.prail2 P+Rail Other 2.25 -0.91 1
ch. i SchweizMobil Navigatit 1.79 0.08 2 5.47 -0.83 4
ch.search.android.search search.ch i 2.13 -0.10 2 3.65 -0.29 1
ch.stadt.winterthur.moapp Winterthur Information 4.42 -0.83 1
co.bird.android Bird Reserve automobile, bike, scooter 3.03 -1.10 2 4.23 -1.09 1
com.aegean.android Aegean Airlines Flight / Airlines 2.49 -0.70 1
com.airbnb.android Airbnb Book travel plans (hotel, flight, car) 3.88 -0.55 5 4.16 -0.54 12
com.airfrance.android.dinamoprd AirFrance Flight / Airlines S22 -1.38 4 4.02 -1.01 10
com.app.stadtblatt Stadblatt Information 4.30 -0.69 5 4.37 -1.65 26
com.atti il PassWallet Sigl il 1.30 -0.61 1
com.blablalines BlaBlaCar Daily Reserve automobile, bike, scooter 5.43 -0.71 1
com.bonfire.matterhorn Matterhorn Ticket shop public transport (train, bus) 5.55 -0.44 1 1.71 -0.10 1
com.booking Booking.com Book travel plans (hotel, flight, car) 2.79 -0.30 7 4.23 -0.77 37
com.comuto BlaBlaCar Reserve automobile, bike, scooter 5.04 -1.48 1 4.30 -0.90 4
com.ebookers ebookers Book travel plans (hotel, flight, car) 2.45 0.01 4
com.fairtiq.android Fairtiq Ticket shop public transport (train, bus) 0.86 0.14 52 1.29 -0.24 130
com.fli 4free Flightradar24Free Flight/ Airlines 4.25 -1.49 6 3.25 -0.75 75
com.google.android.apps.maps Google Maps Navigation 3.18 -0.35 676 3.73 -0.38 1598
com.google.earth Google Earth Information 5.71 -1.10 2
com.here.app.maps HERE WeGo Offline 1.66 -0.28 1
com.hostelworld.app ; Book travel plans (hotel, flight, car) 3.28 -0.59 4
com.iberia.android Iberia Flight / Airlines 2.56 -1.17 1 4.19 -1.10 3
com.limebike Lime Reserve automobile, bike, scooter 1.10 -0.41 1 5.07 -2.03 1
com.live.flighttracker Live Flight Tracker Flight/ Airlines 4.52 -0.53 1
com.lufthansa.android.lufthansa Lufthansa Flight / Airlines 2.93 -0.67 4 3.68 -0.79 10
com.lynxspa Trenitalia Ticket shop public transport (train, bus) 2.41 -0.76 33 2.71 -0.95 55
com. maps.pro MAPS.ME: Offline maps GPS Nav__[Offline i 3.46 -0.46 23 3.88 -0.50 59
com.mobilityado.ado ADO Boletos de Autobus Ticket shop public transport (train, bus) 4.48 -1.05 1 4.34 -1.22 17
com.peaklens.ar PeakLens Sightseeing 3.20 -1.12 1 2.64 -0.35 3
com.plannet.milesandmoreapp Miles & More Flight / Airlines 0.23 0.46 1 0.52 0.40 2
com.relayrides.android.relayrides Turo Reserve bike, scooter -0.68 1.37 1
com.riliclabs.countriesbeen Countries Been Other 4.89 0.12 1
com. navigator Star Alliance Flight / Airlines 0.22 0.47 4
com Trainline Ticket shop public transport (train, bus) 0.94 0.37 4 2.40 -0.35 8
com.tripadvisor.tripadvisor Tripadvisor Book travel plans (hotel, flight, car) 4.05 -0.17 5 3.30 -0.20 9
com.ubercab Uber Reserve automobile, bike, scooter 4.22 -0.95 2 3.59 -0.70 9
com.vsct.vsc.mobile.horaireetresa.android SNCF Connect Ticket shop public transport (train, bus) 2.43 -0.42 1 2.68 -0.98 5
com.wemlin.android Wemlin Information 1.97 0.37 3
COM.Y0C.SWiSS.SWiSS SWISS Flight / Airlines 2.42 -0.31 8 2.90 -0.77 16
de.actionbound Actionbound Entertainment 2.98 -0.41 14 3.02 -0.65 8
de.eos.uptrade.android.fahrinfo.berlin BVG Fahrinfo Ticket shop public transport (train, bus) 4.17 -1.53 2
de.flixbus.app Flixbus Ticket shop public transport (train, bus) 2.08 0.00 1 4.52 -0.84 5
de.hafas.android.db DB Navigator Ticket shop public transport (train, bus) 2.33 -1.63 3 3.24 -0.85 7
de.hafas.android.zw ZVV-Timetable Information 2.24 -0.57 4 2.80 -0.77 11
de.infas.mobico infas mobico Tracking 3.03 -0.84 2
de.swm.mvgfahrinfo. MVG Fahrinfo Miinchen Ticket shop public transport (train, bus) 3.20 -1.30 3 3.06 -0.59 6
it.nordcom.app Trenord Ticket shop public transport (train, bus) 1.34 -0.10 4 3.30 -0.62 8
it.sistema3.apps.ibeach iBeach.it Book travel plans (hotel, flight, car) 2.28 -0.67 1 2.00 -0.21 1
mnc.android.zvwticket ZVV-Tickets Ticket shop public transport (train, bus) 2.43 -0.49 1
net.osmand OsmAnd Offline i 5.82 0.91 1
net.osmand.plus OsmAnd+ Offline Navigation 4.15 -1.42 103 4.51 -1.23 175
net.pluservice.ticketbv Ticket bus Verona Ticket shop public transport (train, bus) 2.39 -0.60 1 3.94 -0.46 3
net. android.main Book travel plans (hotel, flight, car) 4.11 -1.05 4
org.bikecityguide Bike Citizens Navigation 2.90 -0.33 1 3.65 -0.55 10
org.eurail Eurail/Interrail Rail Planer Information 2.92 -0.63 2 3.44 0.44 12
org.paoloconte.treni_lite Orario Treni Ticket shop public transport (train, bus) 3.29 -0.92 8 3.67 -0.71 17
org. area.alps PeakFinder Sig| il 3.38 0.16 1
pt.carris.tecmic Carris Ticket shop public transport (train, bus) 3.92 -0.64 7 2.52 0.08 3
Median 3.03 -0.55 4 3.70 -0.70 4
2.96 -0.62 50.87 3.45 0.64 63.91
App Category
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C.1 Staypoint Map Session Metrics
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C.2 Tripleg Map Session Metrics
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Table 11: Dunn’s Test Results for the Log Duration of Tripleg App Sessions by Map App (a=0.01)
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Table 12: Dunn’s Test Results for the Log Tap Speed in Tripleg App Sessions by Map App (a=0.01)
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