

# Distributive Effects in the European Intercity Rail Network: A Geovisual Analysis of the Impacts of Rail Infrastructure Projects

GEO 511 Master's Thesis

Author Jens Grafström 19-734-607

**Supervised by** Dr. Tumasch Reichenbacher

**Faculty representative** Prof. Dr. Sara Irina Fabrikant

> 21.09.2024 Department of Geography, University of Zurich

## Abstract

The transportation sector causes around 28.5% of the European greenhouse gas emissions. Passenger transportation by road and air is thereby particularly problematic. However, the European rail network is in desperate need of improvements and upgrades to realize a shift toward sustainable mobility by rail. As a series of projects are currently being planned or are under construction, analyzing how they affect passenger train travel is essential. Nonetheless, such studies do not yet exist on a European scale, and local studies fail to address distributive effects. This thesis models the current full-scale European intercity rail network based on infrastructure and timetable data to fill this research gap. The modeled network is updated with new travel times resulting from all currently known projects which will be completed by 2050. A series of analyses, including network metrics such as the average shortest path length, node and edge betweenness centrality, and node closeness centrality, is conducted in close coordination with geovisual approaches such as flow and dot maps, cartograms, and isochrones. The results showcase how distributive effects strategically reshape core corridors of European train travel and particularly benefit peripheral regions. Besides the prominent Fehmarn Fixed Link, Rail Baltica, Euroalpin Tunnel, and Brenner Base Tunnel, a group of southeastern European projects emerges as an unexpected yet particularly relevant component in reshaping the continent's future rail network. The results show that new corridors are likely to emerge while certain peripheral regions particularly benefit in terms of accessibility and connectivity within the full-scale European context. Case studies moreover illustrate the dense political and planning-strategical dynamics surrounding such projects.

Keywords: rail infrastructure projects, rail network, travel time analysis, rail projects, intercity rail, network analysis, betweenness centrality.

Note: all used images are available in full resolution on GitLab (link below). https://gitlab.uzh.ch/giva/public/masters/euro\_train\_expansion\_jens\_grafstroem

# **Table of Contents**

| 1 – Introduction                                                              | 1  |
|-------------------------------------------------------------------------------|----|
| 1.1 – Motivation                                                              | 1  |
| 1.2 – Research Gap                                                            | 2  |
| 1.3 – Research Objectives                                                     | 3  |
| 1.3.1 – Goals of Research                                                     | 3  |
| 1.3.2 – Research Questions                                                    | 5  |
| 2 – Theoretical Background                                                    | 6  |
| 2.1 – Development of European Rail Infrastructure                             | 6  |
| 2.1.1 – History of Railways in Europe                                         | 6  |
| 2.1.2 – Status Quo of European Rail Infrastructure                            | 7  |
| 2.2 – Rail Infrastructure as Limiting Factor                                  | 9  |
| 2.3 – Continental Rail Corridors and Upgrade Plans                            | 10 |
| 2.4 – Intercity Train Travel in Europe                                        | 13 |
| 2.5 – Geovisualization                                                        | 14 |
| 2.5.1 – Definition and Origin of Geovisualization                             | 14 |
| 2.5.2 – Common Methods of Geovisualization                                    | 15 |
| 2.5.4 – Examples of Applications of Geovisualization in the Field of Mobility | 17 |
| 3 – Methods I: Building the Network                                           | 18 |
| 3.1 – Analysis Framework                                                      |    |
| 3.2 – City Selection                                                          | 19 |
| 3.3 – Infrastructure Data                                                     | 20 |
| 3.3.1 – Data Source and Acquisition                                           | 20 |
| 3.3.2 – Data Pre-Processing                                                   |    |
| 3.3.3 – Data Quality                                                          | 21 |
| 3.4 – Intercity Network Generation                                            | 22 |
| 3.4.1 – Routing                                                               | 22 |
| 3.4.2 – Domestic Routes                                                       | 23 |
| 3.4.3 – International Routes                                                  | 24 |
| 3.5 – Timetable Data and Regression                                           | 25 |
| 3.6 – Infrastructure Projects                                                 | 27 |
| 3.6.1 – Criteria for Included Projects                                        |    |
| 3.6.2 – Project Information Gathering                                         | 28 |
| 3.6.3 – Impact Implementation                                                 |    |
| 4 – Methods II: Analyzing the Network                                         |    |
| 4.1 – Isochrones                                                              |    |
|                                                                               |    |

| 4.2 – Cartograms                                                     |    |
|----------------------------------------------------------------------|----|
| 4.2.1 – (Centered) Distance Cartograms                               |    |
| 4.2.2 – Time-Space Cartograms / Contiguous Area Cartograms           |    |
| 4.3 – Network Metrics                                                | 34 |
| 4.4 – Further Analysis Approaches                                    | 35 |
| 4.4.1 – Relative Travel Time Reductions per Edge                     | 35 |
| 4.4.2 – Specific/Individual Project Impacts                          | 35 |
| 4.4.3 – Focus on Certain Cities (Specific Network Components)        |    |
| 4.4.4 – Implications for Travelers                                   |    |
| 4.4.5 – Case Studies                                                 |    |
| 4.4.6 – Interactive Component                                        |    |
| 4.4.7 – Publication of Technological Component                       |    |
| 5 – Results I: Full-Network Impacts                                  |    |
| 5.1 – Projects and Their Overall Network Changes                     |    |
| 5.2 – Spatial Project Patterns and Project Distribution              | 41 |
| 5.2.1 – Geographic Patterns                                          | 41 |
| 5.2.2 – Clusters of Projects                                         | 42 |
| 5.3 – Distributive Effects and Impacted Regions                      | 46 |
| 5.3.1 – Directly Impacted Regions                                    | 46 |
| 5.3.2 – Identifying the Most Important Network Edges                 | 47 |
| 5.3.3 – Identifying the Most Important Network Nodes                 | 49 |
| 5.3.4 – Valuing the Projects Individually                            | 53 |
| 6 – Results II: Case Studies                                         |    |
| 6.1 – Black Sea - Hungary Corridor(s)                                | 56 |
| 6.2 – Rail Baltica                                                   | 57 |
| 6.3 – Brenner Base Tunnel                                            | 59 |
| 7 – Results III: Practical Outcomes and Implications for Rail Travel | 61 |
| 7.1 – Reachability Ranges                                            | 61 |
| 7.2 – Accessibility and Connectivity to Major Cities                 | 64 |
| 7.3 – Replacement of Specific Air Corridors                          | 66 |
| 8 – Discussion                                                       | 71 |
| 8.1 – Interpretation & Synthesis of Results                          | 71 |
| 8.2 – Limitations                                                    | 74 |
| 8.2.1 – Conceptual Limitations                                       | 74 |
| 8.2.2 – Computational Limitations                                    | 76 |
| 8.2.3 – Interpretational Limitations                                 |    |
| 8.2.4. – Excurse to Rail Operations as a Whole                       | 80 |
| 8.3 – Recommendations                                                | 80 |

| 9 – Conclusion                                                | 82  |
|---------------------------------------------------------------|-----|
| Bibliography/References                                       | 83  |
| Personal Declaration                                          | 92  |
| A – City Selection                                            | 93  |
| B – Regression Results (Domestic + Full Europe)               | 102 |
| C – Infrastructure Projects                                   | 103 |
| C.1 – Infrastructure Project Specifications                   | 103 |
| C.2 – Infrastructure Project Information Sources              | 106 |
| D – Network Edges Raw Data                                    | 115 |
| E – Edge Betweenness Centrality                               | 130 |
| F – Node Betweenness/Closeness Centrality                     | 145 |
| G – Relative Reductions and Individual Project Impacts        | 153 |
| H – Capital and Metropole Access                              | 157 |
| I – Reachability Changes                                      | 165 |
| J – Rail Travel Times on Europe's Top 1000 Flight Routes      | 172 |
| K – Isochrones                                                | 188 |
| L – Linear Cartograms                                         | 196 |
| M – Distance Thresholds for International Network Computation | 204 |

# List of Figures

| <b>Figure 1</b> : Distribution of transportation-related greenhouse gas emissions within EU-27, based on data from Ritchie (2020) and European Commission (2022). Source: own illustration 1                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Figure 2</b> : CO <sub>2</sub> emissions of different modes of travel, based on Ritchie (2023). Source: own illustration                                                                                                                                                                                                                                                                                                                                                                          |
| <b>Figure 3</b> : European rail infrastructure network, classified by Vmax, data from OSM (01.03.2024). Source: own illustration                                                                                                                                                                                                                                                                                                                                                                     |
| <b>Figure 4</b> : The nine core corridors of the TEN-T program's core network. Source: European Commission (2024)                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>Figure 5</b> : The most important visual variables of geovisualization, based on Slocum et al. (2023). Source: own illustration15                                                                                                                                                                                                                                                                                                                                                                 |
| Figures 6 a-f: Examples of various map types. Source: Slocum et al. (2008)                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Figure 7: Sketch of this research's methodological steps. Source: own illustration                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>Figure 8</b> : Simplified example of the rail infrastructure's data structure. Source: own illustration.                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>Figure 9</b> : Example illustration of intersective re-merging of infrastructure segments. Source: own illustration                                                                                                                                                                                                                                                                                                                                                                               |
| <b>Figure 10</b> : Example sketch showcasing the simplification process of the domestic network (here: Netherlands). Source: own illustration24                                                                                                                                                                                                                                                                                                                                                      |
| <b>Figure 11</b> : Overview of the selected cities and the corresponding network connections (fastest routes). Source: own illustration25                                                                                                                                                                                                                                                                                                                                                            |
| <b>Figures 12 a-b</b> : (a) regression between realistic and potential travel times for the full European sample; (b) distribution of the linear regression's R-squared values for every individual country. Source: own illustration                                                                                                                                                                                                                                                                |
| <b>Figure 13</b> : Visualization of the infrastructure-based computation of travel time reductions. Source: own illustration                                                                                                                                                                                                                                                                                                                                                                         |
| <b>Figure 14</b> : Example visualization of the Delaunay triangulation travel time interpolation process. Source: own illustration                                                                                                                                                                                                                                                                                                                                                                   |
| <b>Figure 15</b> : Illustration of the process of producing distance cartograms, including the position distortion. Source: own illustration                                                                                                                                                                                                                                                                                                                                                         |
| <b>Figure 16</b> : Schematic example visualization of the self-made Voronoi cartogram production. Source: own illustration                                                                                                                                                                                                                                                                                                                                                                           |
| <b>Figures 17 a-b</b> : Screenshots of interactive linear cartogram web app. The pop-up appears when hovering across any given city. Cities can be clicked to visualize their respective cartograms. Different scenario combinations are possible: realistic vs. potential travel times, current vs. future scenario, reduced vs. full network, capitals vs. all cities, as well as population thresholds. The number of time ranges (i.e., circles) can be varied as well. Source: own illustration |
| <b>Figure 18</b> : Visualization of impacted lines in the European intercity rail network's projected future scenario, classified by planned Vmax along the lines. Source: own illustration                                                                                                                                                                                                                                                                                                          |
| Figure 19: Relative Travel Time Reductions (full data available in Appendix G). Source: own                                                                                                                                                                                                                                                                                                                                                                                                          |
| illustration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

**Figure 20**: Relative travel time reductions of upgraded intercity rail network sections. Background: topographic map of Europe, depicting altitude/elevation. Source: own illustration.

**Figures 30 a-b**: Cartograms for (a) current and (b) future scenario, showing reachability from Leipzig. 4-hour range highlighted for reachability context. Source: own illustration......63

**Figures 33 a-b**: Relative changes of cities' accessibility to (a) their capital and (b) the closest metropolitan city. Full data for both cases are available in Appendix H. Source: own illustration.

| <b>Figures K3 a-b</b> : Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from Narvik. Source: own illustration                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Figures K4 a-b</b> : Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from Lisbon. Source: own illustration                                            |
| <b>Figures K5 a-b</b> : Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from Chisinau. Source: own illustration                                          |
| <b>Figures K6 a-b</b> : Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from Palermo. Source: own illustration                                           |
| <b>Figures K7 a-b</b> : Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from Zurich. Source: own illustration                                            |
| <b>Figures K8 a-b</b> : Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from London. Source: own illustration                                            |
| <b>Figures K9 a-b</b> : Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from Paris. Source: own illustration                                             |
| <b>Figures K10 a-b</b> : Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from Prague. Source: own illustration                                           |
| <b>Figures K11 a-b</b> : Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from Amsterdam. Source: own illustration                                        |
| <b>Figures K12 a-b</b> : Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from Munich. Source: own illustration                                           |
| <b>Figures K13 a-b</b> : Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from Budapest. Source: own illustration                                         |
| <b>Figures K14 a-b</b> : Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from Zagreb. Source: own illustration                                           |
| <b>Figures K15 a-b</b> : Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from Brussels. Source: own illustration                                         |
| <b>Figures L1 a-b</b> : Cartograms for (a) current and (b) future scenario, showing reachability from Leipzig. 4-hour range highlighted for reachability context. Source: own illustration      |
| <b>Figures L2 a-b</b> : Cartograms for (a) current and (b) future scenario, showing reachability from Innsbruck. 4-hour range highlighted for reachability context. Source: own illustration196 |
| <b>Figures L3 a-b</b> : Cartograms for (a) current and (b) future scenario, showing reachability from Erfurt. 4-hour range highlighted for reachability context. Source: own illustration       |
| <b>Figures L4 a-b</b> : Cartograms for (a) current and (b) future scenario, showing reachability from Grenoble. 4-hour range highlighted for reachability context. Source: own illustration     |
| <b>Figures L5 a-b</b> : Cartograms for (a) current and (b) future scenario, showing reachability from Bolzano. 4-hour range highlighted for reachability context. Source: own illustration      |
| <b>Figures L6 a-b</b> : Cartograms for (a) current and (b) future scenario, showing reachability from Szczecin. 8-hour range highlighted for reachability context. Source: own illustration     |
| <b>Figures L7 a-b</b> : Cartograms for (a) current and (b) future scenario, showing reachability from Bolzano. 8-hour range highlighted for reachability context. Source: own illustration      |
| <b>Figures L8 a-b</b> : Cartograms for (a) current and (b) future scenario, showing reachability from Verona. 8-hour range highlighted for reachability context. Source: own illustration       |

**Figures L10 a-b**: Cartograms for (a) current and (b) future scenario, showing reachability from Prague. 8-hour range highlighted for reachability context. Source: own illustration............200

**Figures L11 a-b**: Cartograms for (a) current and (b) future scenario, showing reachability from Novi Sad. 12-hour range highlighted for reachability context. Source: own illustration......201

**Figures L12 a-b**: Cartograms for (a) current and (b) future scenario, showing reachability from Szczecin. 12-hour range highlighted for reachability context. Source: own illustration......201

**Figures L13 a-b**: Cartograms for (a) current and (b) future scenario, showing reachability from Belgrade. 12-hour range highlighted for reachability context. Source: own illustration......202

**Figures L14 a-b**: Cartograms for (a) current and (b) future scenario, showing reachability from Nis. 12-hour range highlighted for reachability context. Source: own illustration......202

**Figures L15 a-b**: Cartograms for (a) current and (b) future scenario, showing reachability from Subotica. 12-hour range highlighted for reachability context. Source: own illustration. ......203

# List of Tables

| <b>Table 1</b> : Overview of most common mapping techniques, based on Slocum et al. (2023) andMaciejewski (2021)                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2: Overview of classification for infrastructure project stages                                                                                                                                                                                                |
| <b>Table 3</b> : Simplified example of the infrastructure project table (full version available in AppendixC)                                                                                                                                                        |
| <b>Table 4</b> : Overview of selected network metrics (not) considered for work, with comment onrelevance within the context of this thesis. It is important to note that metric names may varydepending on the author and context34                                 |
| <b>Table 5</b> : Changes of overall network metrics between current and future scenarios: averageshortest path length (ASPL) and network diameter (NDim). Note that realistic travel times mightbe slightly skewed (as explained above)                              |
| <b>Table 6</b> : Overview of Major Identified Project Clusters/Corridors. Note that the figures are not to scale                                                                                                                                                     |
| <b>Table 7</b> : Top 20 most frequented air corridors (both directions, 2019) and correspondingrealistic travel times by rail in the current and future scenarios. The full dataset is available inAppendix J. Data source: Eurostat (2020).                         |
| <b>Table 8</b> : Top 20 air corridors (nondirectional) with the highest projected relative reductions of realistic rail travel times. The full dataset is available in Appendix J. Source: Eurostat (2020).                                                          |
| Table A: City selection used for network generation                                                                                                                                                                                                                  |
| <b>Table B</b> : Regression results between realistic and potential travel times for each country'sdomestic connections, as well as for all of Europe as once. Only connections with directrealistic travel times were used (no transfers)                           |
| <b>Table C</b> : Gathered information on all used infrastructure projects. Status: COR = "corroborated", LD = "legal design", TD = "tendering", PCO = "in partial construction", CON = "in construction" (analogue to Table 2). Sources are available in section C.2 |
| <b>Table D</b> : Travel times (realistic and potential; current and future) of the core network's edges.                                                                                                                                                             |
| Table E: Current and future edge betweenness centrality values.         130                                                                                                                                                                                          |
| Table F: Node betweenness and closeness centrality values, including differences, for all cities                                                                                                                                                                     |
| <b>Table G</b> : Relative reductions between the two cities affected by a project edges; individualpositive and negative (i.e., inverse) impacts on the average shortest path length of everyproject.153                                                             |
| Table H: Changes in capital and metropole (>500'000 inhabitants) access                                                                                                                                                                                              |
| Table I: Changes in reachability within the ranges of 4 h, 8 h, and 12 h.         165                                                                                                                                                                                |
| <b>Table J</b> : Changes of realistic travel times along Europe's top 1000 most popular flight routes.                                                                                                                                                               |
|                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                      |

# **Terms and Abbreviations**

#### **General Abbreviations**

| CO <sub>2</sub>   | carbon dioxide                          |
|-------------------|-----------------------------------------|
| CO <sub>2</sub> e | carbon dioxide equivalents              |
| ERTMS             | European Rail Traffic Management System |
| EU                | European Union                          |
| HS2               | High-Speed 2                            |
| GIS               | Geographic Information System(s)        |
| KD-tree           | k-dimensional tree                      |
| OSM               | OpenStreetMap                           |
| RQ                | research question                       |
| TEN-T             | Trans-European Transportation Network   |
| Vmax              | maximum velocity                        |
| <u>Units</u>      |                                         |
| m                 | meter(s)                                |
| km                | kilometer(s)                            |
| h                 | hour(s)                                 |
| min               | minute(s)                               |

#### Network Metrics

| ASPL | average shortest path length |
|------|------------------------------|
| EBC  | edge betweenness centrality  |
| NBC  | node betweenness centrality  |
| NCC  | node closeness centrality    |
| NDim | network diameter             |

Specifics Terms

#### potential travel time(s)

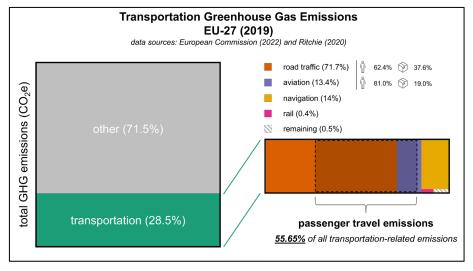
travel times that purely base on infrastructure properties (i.e., length and Vmax)

#### realistic travel time(s)

travel times that source from timetables and are achieved in reality

#### haversine distance

distance between two points on a sphere (given their longitudes and latitudes)

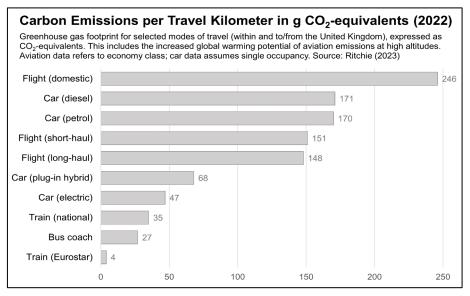

#### Euclidean distance

length of a straight (non-bent) line segment (here: given two points on a plane)

# 1 – Introduction

# 1.1 – Motivation

Transportation plays an essential role in the interconnected globalized world, facilitating the movement of both people and goods across all spatial scales. However, this vital sector is a major source of greenhouse gas emissions, thereby significantly contributing to climate change. This is especially true in Europe: among the EU-27, transportation is responsible for approximately 28.5% of all greenhouse gas emissions (European Commission, 2022). Meanwhile, the sector's share is even bigger in Switzerland at around 32%, not including international aviation (BAFU, 2020). As Figure 1 illustrates, a more differentiated view reveals that passenger road traffic (ca. 45%) and passenger aviation (ca. 11%) together account for more than half of the EU-27's transportation-related (European Commission, 2022; Ritchie, 2020). Consequently, passenger travel must be targeted by emission reductions within the transportation sector.




*Figure 1*: Distribution of transportation-related greenhouse gas emissions within EU-27, based on data from Ritchie (2020) and European Commission (2022). Source: own illustration.

It is thereby evident that trains (besides bus coaches) represent the mode of travel causing the fewest  $CO_2$  emissions (Ritchie, 2023). As is revealed by statistics for the United Kingdom (visualized in Figure 2), rail operations come with up to 35 g of CO2 equivalents ( $CO_2e$ ) per traveled km, which is surpassed by both flights (up to 246 g  $CO_2e/km$ ) and all types of cars (up to 171 g  $CO_2e/km$ ). This is even more remarkable if taking into consideration that only about 38% of all tracks in the United Kingdom are electrified, and nearly 60% of all train-related emissions source from non-electrified diesel operations (ORR, 2023a; ORR, 2023b). In return, it can be expected that the overall train-related emissions on a European scale are even smaller since around 60% of all European tracks are electrified, thereby covering over 80% of all passenger kilometers traveled by train (IEA, 2019; ORR, 2023a).

Therefore, attempts to transform the overall European mobility behavior by enhancing rail travel are not surprising. However, this desired modal shift requires rail travel to be widely perceived as an attractive alternative to cars and planes. Specifically, trains' attractiveness depends on four significant aspects: travel times, reliability, availability, and convenience (Meyer de Freitas & Blum, 2023). This means that a journey by train should not take much longer from start to end than by car or plane, should operate relatively frequently and with as few changes or transfers as possible, and should not be canceled or significantly delayed. Regardless of these central aspects being determined by different influences of various kinds,

a specific one can be seen as the most critical overall limiting factor: infrastructure (Antonowicz & Kwarcinski, 2023). Infrastructure sets up the potential framework of how frequently and efficiently trains could be run and which regions could be connected – even though the actual use of infrastructure is decided by other factors such as political/economic variables.



*Figure 2*: CO<sub>2</sub> emissions of different modes of travel, based on Ritchie (2023). Source: own illustration.

However, identifying infrastructure as a limiting factor is concerning regarding a future perspective with a desired modal shift toward passenger transportation. Since numerous sections of the European rail network are already operating near or at their limits, increased demands may not be feasible (Islam et al., 2016). This might either disable the operation of additional trains or reduce reliability, frequency, and/or travel times, negatively impacting the perceived attractivity of traveling by train. Consequently, the aim for more sustainable transportation imposes the necessity of large-scale improvements to the European rail system and thus, most importantly, its infrastructure – thereby advancing efficiency, safety, and interconnectivity within the European rail network.

It is therefore worth focusing particularly on the infrastructure improvements unfolding along train routes dedicated to medium- and long-distance travel, i.e., intercity travel. Intercity travel ranges from journeys of only some dozen kilometers to distances covering hundreds or even thousands of kilometers. Hence, it directly competes with both flights and road traffic which underlines its important role in sustainable travel (Vickerman, 2021). Intercity travel therefore represents an enormous potential for transport-related emission reductions, which is further corroborated by the fact that around 50% of all passenger kilometers represent trips reaching beyond 100 km (Rich & Mabit, 2011). Moreover, intercity travel is often associated with touristic journeys. As a matter of fact, transportation is currently responsible for half of all emissions sourced from tourism (Lenzen et al., 2018). This signifies the relevance of a modal shift since  $CO_2$  emissions associated with tourism in particular are being expected to grow by up to +164% between 2010 and 2050 (Gössling & Peeters, 2015).

### 1.2 – Research Gap

Rail travel is by any means no new field of research. Mainly thanks to the clear environmental benefits of train travel, various analyses have already centered around the importance of modal shifts toward rail transportation. The replacement of air travel by high-speed rail has thereby received particular attention. Usually, the research focus is in that case dedicated to selected city-to-city corridors with very high air travel volumes and particularly efficient high-speed rail. For instance, the very popular Barcelona-Madrid and Paris-London links have

already been subject to extensive research (e.g., Behrens & Pels, 2012; Pagliara et al., 2012). Besides this, another much more recent field of train-related research has come up around the continuous re-emergence and gain of popularity of night trains across Europe (e.g., Kantelaar et al., 2022). Such research is highly valuable and meaningful since it highlights the potential of high-speed rail and overnight services to replace air travel between certain cities where ideal preconditions are met. However, the seemingly preferred focus on "prestige" high-speed rail lines leads to only few authors addressing other air routes (e.g., Avogadro et al., 2021). Additionally, of equal importance, the train replacement of passenger road traffic on medium- and long-distance routes appears to be somewhat neglected. This is substantial since the latter is, as introduced previously, an essential contributor to Europe's greenhouse gas emissions. To sum up, in the context of a sustainable mobility shift, literature appears to be failing to treat the European rail network as an interconnected system of countless potential travel corridors. Instead, research so far mainly treats the European rail network as an inconsistent and fragmented collection of a limited number of excellent high-speed connections.

When aiming at a sustainable mobility shift, it is therefore essential to investigate the European rail network as a whole without preference for certain prestige corridors. Fortunately, there already exist a few spatial analyses for Europe's rail infrastructure as an entirety. Most notably, Calzada-Infante et al. (2020) completed extensive topological analyses for the European rail network. In addition to a general network centrality analysis, the authors focused on the connectivity in terms of realistic passenger transfers. Supporting the urgent need for large-scale rail network analyses, they highlight that network research on a continental level is very rare while mostly regional analyses were performed. Meanwhile, Martí-Henneberg (2013) spatially analyzed the historical developments that the European rail network has experienced since 1840. He revealed that "[...] around 70% of lines currently in service had already been established by 1900 [...]" and that "[...] the national level has always been the one at which the most decisions relating to rail networks have been taken, and this remains the case today" (Martí-Henneberg, 2013, p. 126).

Besides this, using another mode of transportation, Condeço-Melhorado et al. (2014) assessed how new highway infrastructure in the Netherlands affects the overall national highway network. Similar research is however scarce for rail infrastructure, especially on a European scale. Furthermore, the current status quo reveals a research gap concerning a view into the future. Meanwhile, multiple rail infrastructure projects are as of today either in planning or construction stages, some even close to completion. Examples range from prestigious projects such as the Rail Baltica program to local improvements or even minor small-scale track refurbishments. Accompanying the planning and construction stages, many of these projects have already been subject to research regarding their anticipated local economic, environmental and rail operational impacts (e.g., Lupi et al., 2020). Yet, approaches dedicated to the combined outcomes of all currently projectable infrastructure improvements are not to be found. Overall, the current literature so far only represents a set of thematic puzzle tiles whereas some essential pieces remain missing in order to complete and understand the picture of the European intercity rail network's future.

## 1.3 – Research Objectives

## <u>1.3.1 – Goals of Research</u>

As of now, the literature is lacking an overall analysis that combines the entire variety of all planned projects. This highlights the urgent need for a full-scale future-oriented perspective of the projects' impacts on a continental level. This reconnects to the issue previously raised by Martí-Henneberg (2013) who points out that both the existing rail network and planned infrastructure projects tend to be strongly bound to a local, usually national level. The problem resulting from a local scope of research is the potential negligence of a phenomenon that

Condeço-Melhorado et al. (2014) describe as distributive effects. This commonly also refers to network effects and spatial spillovers. In a geographic and infrastructure-centered context, this means that local changes to the network might also affect regions beyond the particular parts that were transformed (Laird et al., 2005). Simply put, Condeço-Melhorado et al. (2014, p. 96) summarize it as follows: "When an investment is made to improve the transport infrastructure of a region, its benefits are spread to many other regions".

Thus, the impacts and benefits of rail infrastructure projects might translate across larger parts of the European rail network and also cross international borders – given that these regions are appropriately linked to each other. According to Vrána et al. (2023), the European rail network in terms of efficient medium- and long-distance connections is still not designed for international services. This strongly relates to the previously introduced findings by Martí-Henneberg (2013). With the goal of an interconnected European rail network of efficient domestic and international passenger services, this issue therefore represents a major point of criticism. However, certain border-crossing projects now aim to (at least partially) overcome such territorial and topographical boundaries. Consequently, it makes sense to address the research gap concerning continental-scale rail network analyses from a future perspective. In return, resulting from the research context at a European scale, it is meaningful to limit the focus of attention to intercity connections and the sections of infrastructure serving those.

In combination with the climate impact of passenger travel, this brings up the question of how these projects and the resulting improvements contribute to promote a modal shift toward rail travel. This specifically concerns a reduction of travel times and increases in connectivity and frequencies. It is thereby worth to focus particularly on the changes in travel times only since they were identified to be the most important factor regarding modal choices for travel across longer distances (Nordenholz et al., 2017). Moreover, changes in connectivity and especially frequency are very complex to predict due to numerous underlying factors such as for instance the infrastructure's parallel use for freight transportation. However, the actually operated train travel times are defined by timetables and not only by infrastructure properties. This means that they are subject to political and economic variables (among others) as well as the available rolling stock. For instance, the use of tilting trains on curvy routes enables shorter travel times in comparison to conventional carriages while services routed to call at certain intermediate stations might increase the travel times again. Therefore, travel times can change while the infrastructure remains constant - or vice versa. Hence, as an attempt to uniformly identify the core European intercity rail network, it is meaningful to use potential travel times that are solely the result of infrastructure properties, i.e., maximum velocity (Vmax) per track segment length.

Subsequently, this thesis aims to address the research gap concerning the European-scale analysis of the continent's future rail network. While focusing on intercity routes, this means that every single (realistic) project that can currently be anticipated will be included in order to generate a future scenario with the help of realistic (timetable-based) and potential (infrastructure-based) travel times. The overall goal is therefore to develop and model two intercity rail network scenarios: a current and a future one. This allows for investigating the eventual impact of distributive effects and hence provides an overview of which regions will benefit to what degree from those projects. This might provide an insight to which projects are of particular importance in a European context. It might further help to identify patterns, e.g., of topographic or territorial kind, which define the current dynamics of rail infrastructure project planning. Certain projects will serve as case studies to provide additional insight to the variety of project backgrounds and resulting impacts. Overall, thanks to the European scale of research and the consequently complex spatial structure of the rail network, this analysis will involve a geovisual component. This is ideal for gaining a better understanding of the spatial and topological complexity of the current and future European intercity rail network. The secondary aim of this thesis is to serve as a starting point to further research of intercity train travel within all of Europe.

### 1.3.2 – Research Questions

In order to address the research goals, the following research questions (RQ) will be guiding through this thesis' work process and eventually be answered:

Within the context of travel time improvements resulting from infrastructure upgrades to the European intercity passenger rail network, ...

- **RQ1:** Which regions and cities benefit the most from the completion of upgrades in terms of reachability and accessibility/connectivity?
- **RQ2:** How do distributive effects change the cities' and regions' European-scale relevance within the network and how are passenger transportation patterns shifted?
- **RQ3:** Which projects make for the greatest overall operational impact on a European scale?
- **RQ4:** Which political, topographical, and topological patterns do the spatial distribution, location, and arrangement of infrastructure projects indicate?
- **RQ5:** How do the infrastructure projects vary in their nature and what implications could the particular characteristics addressed in the case studies pose to intercity rail planning on a European scale?

# 2 – Theoretical Background

### 2.1 – Development of European Rail Infrastructure

#### <u>2.1.1 – History of Railways in Europe</u>

Nearly two centuries ago, on September 27, 1825, the world's first steam-powered passenger railway began operating between Stockton and Darlington, marking the start of a new era in transportation (Cottrell & Ottley, 1975; Simmons, 1980). Before this, railways were primarily used for transporting goods like coal, with wooden tracks dating back to the 16th century in German mines. Iron rails replaced wooden ones in the late 18th century, offering greater efficiency despite initial durability issues (Fremdling, 2003). In 1830, the Manchester-Liverpool line became the first rail service exclusively dedicated to passenger use. Its success led to the spread of passenger railways across Europe and beyond, with some calling it "[...] Britain's greatest gift to the world" (Donaghy, 1966; Jarvis, 1998). In the following decades, the total length of rail lines grew substantially. Around 180'000 km of rail lines<sup>1</sup> had been built across Europe by 1900 (Martí-Henneberg, 2013). However, connectivity challenges arose due to a lack of standardization; rail widths consequently ranged from 1000 mm to 2134 mm (Puffert, 2002). Only toward the end of the 19<sup>th</sup> century, the adaptation of the 1435mm standard gauge began to spread (Puffert, 2009). The expansion of railways created an unprecedented contraction of space, disrupting local time systems and prompting the need for time synchronization. Along with the telegraph, railways played a key role in establishing standardized time zones (Wenzlhuemer, 2010).

During the 20<sup>th</sup> century, the growth rate of the European rail network declined drastically. While the total line length had already surpassed the 200'000 km mark by 1910, it peaked in 1960 with only a slightly larger total length of around 230'000 km (Martí-Henneberg, 2013). Especially throughout the First but also the Second World War, railways played an essential role in various logistical operations of both military and civil kinds (Mierzejewski, 2002; Stevenson, 1999). The interwar years provided a glimpse into the future of European railways. Although plans for transcontinental rail corridors aimed to reorganize the post-war continent, they were never realized (Anastasiadou, 2009). Instead, the rise of automobiles, supported by favorable economic policies, posed a growing threat to railways after World War II (Fremdling, 2003). Moreover, air travel became more accessible, competing with rail on longer routes (Pender & Baum, 2000). This led to widespread rail line closures from the 1940s to the 1980s. Since 1980, the total length of railways has stabilized at around 200'000 km (Martí-Henneberg, 2013; Martí-Henneberg, 2021). By the 1980s, increasing rail closures contrasted with the steady total length of railways, indicating that new tracks were built while others were closed. Fremdling (2003, p. 220) refers to this as "revival of the railways in Europe", driven by road congestion and emerging environmental concerns. However, in a less enthusiastic tone, this can be seen as the construction of new infrastructure at the cost of older, often regional and less profitable high-maintenance lines (Seidenglanz et al., 2021). A key factor supporting this revival narrative is the development of high-speed rail.

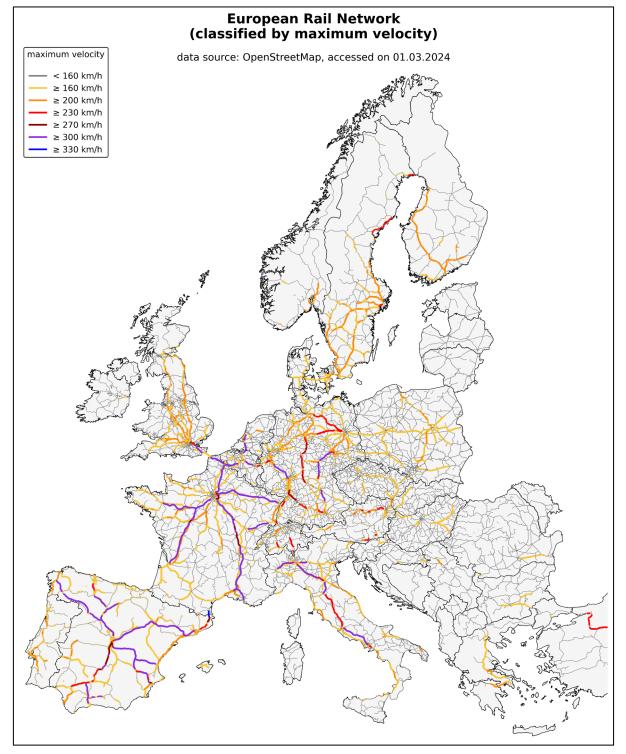
Already in 1964, Japan's Tokaido Shinkansen high-speed rail line began linking Tokyo and Osaka at speeds up to 210 km/h (Suyama, 2014). Europe's high-speed rail progress started with the French TGV project, which launched its first line between Paris and Lyon in 1981<sup>2</sup>.

<sup>&</sup>lt;sup>1</sup> The term "rail lines" is herein not equal to the actual length of tracks. For instance, one kilometer of a double-tracked rail line is composed of at least two km of tracks.

<sup>&</sup>lt;sup>2</sup> Even before the French high speed rail lines were completed, trains already operated at regular speeds of up to 220 km/h between Rome and Florence in 1977 (Fremdling, 2003). However, this rather represented more of an incremental improvement on a section of existing services rather than a complete rethinking of long-distance high-speed rail travel at a larger scale. This is why the French TGV project is commonly perceived to be the epicenter of European high-speed rail travel.

With speeds reaching up to 270 km/h and optimized routing, travel times were reduced from around four hours to just over two. The TGV's success led to a significant modal shift from air travel, with flight demand dropping over 50% within three years (X. Chen, 2011). Inspired by France's success, other European countries began developing high-speed rail networks. By 1993, France, Spain, Germany, and Italy operated 2,202 km of high-speed lines. The following year, the Channel Tunnel added 52 km to the network (Fremdling, 2003). Additionally, tilting trains and minor infrastructure upgrades allowed for higher speeds without entirely new tracks (e.g., Andersson et al., 1995). High-speed rail also spurred international infrastructure projects, such as the Oresund Bridge and the Perpignan-Figueres line, enhancing cross-border connectivity (Francisco et al., 2021; Knowles, 2006).

The increasing concern for international connectivity shifted the focus to another, commonly neglected aspect of rail infrastructure. While a standardization of rail gauges succeeded with some exceptions, the European rail network found itself as a patchwork of signaling and (given that the tracks are electrified in the first place) electrification technologies (Fabre et al., 2021; Ferrari et al., 2022). Even though certain rolling stock is capable of switching between selected electrification systems, interconnectivity is not always guaranteed – especially due to signaling incompatibilities. This has led to the establishment of the standardized European Rail Traffic Management System (ERTMS) in the early 2000s. This system's components, besides enhancing connectivity, seek to improve safety and increase both capacities and travel times (Rosberg et al., 2021; Smith et al., 2012). However, the system has been and still is implemented only gradually and along certain preferred highly frequented corridors.


### 2.1.2 - Status Quo of European Rail Infrastructure

As of 2022, the European rail network's lines total to a length of around 235'000 km (Eurostat, 2024)<sup>3</sup>. If matched with actual geodata, this translates to a track infrastructure length of roughly 487'800 km (OSM, 01.03.2024). Meanwhile, as Figure 3 illustrates, the network is particularly dense in and around Central Europe. The highest rail line densities can be found in Switzerland (133.8 m/km<sup>2</sup>), the Czech Republic (123.3 m/km<sup>2</sup>), Belgium (118.8 m/km<sup>2</sup>), and Germany (109.9 m/km<sup>2</sup>). On the opposite, the lowest densities are located in more rural countries such as Albania (7.3 m/km<sup>2</sup>), Norway (10.7 m/km<sup>2</sup>), Greece (15.3 m/km<sup>2</sup>), and Montenegro (18.4 m/km<sup>2</sup>) (Eurostat, 2024). Figure 3 furthermore tells that Germany, France, Poland, and the United Kingdom represent the countries with the largest absolute rail lengths. The only countries without relevant operable railways are the island states Iceland, Cyprus, and Malta, as well as the dwarf states Andorra and San Marino.

While the total rail length has experienced a slight overall decrease during the past decades, high-speed lines prominently expanded at the cost of less profitable routes. As of today, around 3.56% of the rail network are capable of speeds equal to or exceeding 230 km/h, most prominently in France, Germany, Spain, and Italy. Belgium, Switzerland, Sweden, Austria, the Netherlands, the United Kingdom, or Turkey are equipped with sections of high-speed rail, too. In a wider sense, 13.22% of all tracks allow for speeds between  $\geq$  160 km/h and < 230 km/h. This sums up to a total fraction of 16.78%, i.e., roughly one sixth of Europe's rail infrastructure, which is capable of hosting speeds of 160 km/h or more. The resulting corridors of higher-speed sections to some degree visually reflect the major rail transportation axes and topographic patterns. Among the countries interconnected by the European rail network, only nine do not exceed speeds of 160 km/h: Estonia, Latvia, Lithuania, Moldova, Bosnia and Herzegovina, Montenegro, Kosovo, Albania, and North Macedonia (OSM, 01.03.2024).

<sup>&</sup>lt;sup>3</sup> Despite being higher than the 200'000 km proposed by (Martí-Henneberg, 2013), this does not indicate an increase in rail lines. Instead, the European statistics include countries which had not yet been part of Marti-Henneberg's analyses. This is particularly relevant for countries emerging from the Soviet Union or in the Balkan region.

In contrast to the usually electrified high-speed lines, the national rail electrification rates vary enormously. At the lower end, Albania, Moldova and Kosovo show no electrification at all, followed by Ireland (2.6%) and the Baltics (7.9% to 11.9%). At the upper end stand Switzerland (99.8%), Luxembourg (96.7%), Montenegro (90.5%), and Belgium (88.0%). A more uniform pattern can be found in the European rail gauge widths. The only countries currently operating major components of their rail network on other gauges are Portugal and Spain (1'668 mm), Ireland (1'600 mm), Finland (1'524 mm), as well as Estonia, Latvia and Lithuania (1'520 mm). Additionally, some regional lines throughout Europe are constructed with a narrow gauge, for instance along the Spanish Atlantic coast or in the Swiss Alps (Eurostat, 2024).



*Figure 3*: European rail infrastructure network, classified by Vmax, data from OSM (01.03.2024). Source: own illustration.

It is worth noting that the effective infrastructure differs depending on whether it is viewed from a passenger or freight transportation perspective. Since freight trains physically behave differently from passenger trains, most notably due to being heavier, they cannot use tracks to the same extent as passenger trains. In particular, freight trains move slower and require more time to accelerate and slow down. Due to the different modes of operation, freight trains can usually use older, less maintained tracks (Mattsson et al., 2022). As a consequence, certain rail lines can be dedicated to freight or passenger use only, not allowing for mixed use. This is especially common in high-speed rail lines.

#### 2.2 – Rail Infrastructure as Limiting Factor

As the differentiation between freight and passenger operations indicates, infrastructure is an essential aspect of how fast, frequent, and overall efficient trains can operate. The interaction between all involved components such as tracks, rail path structure and geometry, signaling systems, and electrification type can be deemed to be the most crucial factor in terms of railway operations (Stenström et al., 2016). Safety concerns, reliability issues, and capacity bottlenecks are usually the consequence of infrastructure that is outdated, has been poorly planned, overused, and/or neglected in maintenance. As a result, various attributes of rail infrastructure can be identified as major limiting factors for improvements in rail operations – especially in terms of passenger travel times.

*Rail line geometry*: The most obvious and also most striking limitation for improvements in rail operation speeds is the spatial structure or track layout of existing rail lines. Generally said, straighter lines enable higher velocities while curvatures reduce the maximum operable speed. An ideal track should therefore follow a straight path with only wide, smooth curves (Bhardawaj et al., 2021). However, major parts of the European rail infrastructure are remnants from the early 20<sup>th</sup> century when lower speeds could be achieved (Martí-Henneberg, 2013). Consequently, curvatures could be built relatively narrow which still today slows down trains. Straightening rail lines hereby eliminates too narrow curves and also reduces the overall path distance.

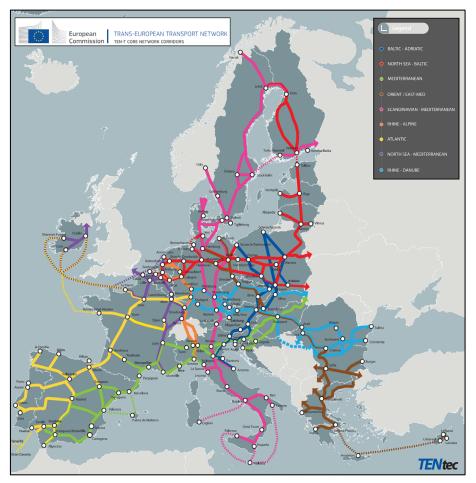
*Signaling and communication technologies*: In order to follow operation schedules and avoid potentially catastrophic crashes, track clearance must be reliably guaranteed for every section that a train wants to enter. This involves some form of communication between the train and the responsible control center. While this nowadays usually happens digitally and is fully automated, older systems still involve an analogue and manual component (e.g., the hand-over of a physical token) (Clark, 2012; Pachl, 2021). By reducing the lag between status updates and operation commands, modern systems allow for trains to run faster and more frequent on the same lines. In return, sections with less efficient systems implemented restrict train operations significantly (Goverde et al., 2013).

*Corridor design*: Smooth train operations necessitate minimizing potential disruptions, including interactions with humans and wildlife. Higher risks of human or environmental interference usually lead to slower speeds. For instance, level crossings – still numbering 94,000 across the EU (Eurostat, 2024) – can slow trains. Train stations pose similar risks, requiring trains to reduce speed unless separated bypasses are in place. Additionally, higher speeds necessitate proper vegetation clearance along the rail corridor (Hoerbinger et al., 2020). In essence, more physically isolated rail lines, such as those on viaducts or behind noise barriers, allow for higher speeds, while more exposed sections require slower speeds.

*Physical stability*: Higher speeds generate greater physical forces that infrastructure must withstand. Lower material quality or structural integrity can reduce the operable speeds. Key factors include not just the rails, but also welds, fastenings, sleepers, foundations, and the substructure (Pucillo et al., 2018). Older infrastructure is more prone to stability issues, which can limit speed. This can be due to age or natural factors, such as soil stability affecting the trackbed (Jankowski & Sołkowski, 2022). Tunnels must be designed to handle aerodynamic pressures at higher speeds, with both the entrance design and tunnel lining needing to endure these pressures (Du et al., 2021). Otherwise, trains must slow down before entering to maintain tunnel stability.

*Maintenance*: Over time, infrastructure material deteriorates due to operational stress and exposure to the elements. Common issues include trackbed failures and rail weld fatigue (Liu et al., 2021; Musgrave, 2015). Extreme weather events, exacerbated by climate change, cause severe impacts such as material deformations from high temperatures, trackbed instability from permafrost thaw, and damage from floods, droughts, storms, wildfires, landslides, or avalanches (Palin et al., 2021). Vegetation growth can further complicate these issues. Vandalism also affects track quality and safety. All these problems can reduce operational efficiency or cause disruptions if not properly maintained, with gradual deterioration often neglected. Consequently, poorly maintained tracks are a critical risk factor for slowing down train operations, especially in the long term.

In the meantime, the previously introduced interoperability issues and the resulting lack of continuous infrastructure uniformity can be seen as less of a limitation. Appropriate rolling stock can in theory overcome most of the respective limitations. For example, the Spanish manufacturer Talgo has successfully pioneered in trains that can automatically switch between gears within a matter of few seconds. Similar technologies could be expanded to match standard gauge with other kinds of wider gauges (Yuxing et al., 2018). Further technological progresses enable seamless operations between certain electrification systems (Lacôte, 2001). As an alternative to multi-voltage units, locomotives can be switched at the respective borders, even though this process is a little less efficient. Moreover, hybrid trains such as hydrogen-powered units or locomotives can provide a linkage between electrified and non-electrified infrastructure (Deng et al., 2022; Yerpes et al., 2012).


It therefore becomes clear that technological innovations and progresses in the field of rolling stock development can compensate for certain flaws in the infrastructure. In contrast, however, the previously mentioned physical limitations can hardly be overcome by rolling stock adjustments. Infrastructure sections characterized by slow signaling and communication systems on the controller end, critical human or wildlife intersections, poor physical stability, and neglected maintenance will therefore continue to slow down trains regardless. Only the rail line geometry can in some limited cases be partially compensated by tilting trains. In a general sense, it can therefore be concluded that the highest operable velocity on a track segment as well as the corresponding operation frequency are the immediate result of the infrastructure's quality. Insufficient infrastructure is therefore the most compelling limiting factor in terms of travel times.

### 2.3 – Continental Rail Corridors and Upgrade Plans

For this exact reason (and due to the neglect of railways after the Second World War), efforts of tackling infrastructure deficiencies have gained increasing attention during recent decades. Especially the standardization of infrastructure across the continent as well as the cross-border connectivity have herein piqued particular interest. Besides this, several countries have been developing comprehensive national strategies for rail travel which are usually tied to infrastructure upgrades too. This section briefly targets the idea and scope of these plans and strategies but not yet dive into their respective project specifics.

Established by the EU in 1990, the Trans-European Transport Network (TEN-T) is central to European transportation development. It includes railways, inland waterways, sea routes, and roads, aiming to link urban nodes, shipping ports, and airports for efficient goods and passenger transport. The framework consists of three layers with completion targets for 2030, 2040, and 2050. Rail receives special attention due to its low emissions and the urgent need for infrastructure upgrades (Öberg et al., 2018). The nine core network corridors, depicted in Figure 4, guide numerous rail projects aimed at meeting EU standards, including speed upgrades

and signaling standardization. Specifically, passenger trains are to achieve a minimum speed of 160 km/h on all lines, and all tracks should be equipped with ERTMS. The Connecting Europe Facility supports these goals through funding (European Commission, 2024). While some TEN-T projects focus on freight, improvements generally benefit both passengers and goods, with nearly all European rail projects linked to the TEN-T framework.



*Figure 4*: The nine core corridors of the TEN-T program's core network. Source: European Commission (2024).

However, infrastructure projects can also be driven by smaller-scale frameworks. In Germany, the 'Deutschlandtakt' aims to create a synchronized timetable system inspired by the Swiss 'Taktfahrplan'. This clock-faced scheduling would ensure trains arrive at and depart from major nodes at fixed intervals (e.g., on the hour or half-hour), enhancing connectivity, reducing wait times, and simplifying travel planning. For this to work, travel times between nodes must be short enough to fit the schedules, necessitating infrastructure upgrades to improve efficiency and reduce travel times. In Germany, these projects are legally mandated (Mitusch, 2023). Yet, immediate implementation is not always assured due to funding issues, political changes, land acquisition difficulties, and personnel shortages. Recent projections now expect the 'Deutschlandtakt' to be completed by 2070, rather than the original 2030 target (Sommer et al., 2023).

The United Kingdom's rail sector has faced a different fate with the High-Speed 2 (HS2) project, introduced in 2009 to enhance rail connections from London to major cities in the Midlands and north. The plan included a new Y-shaped high-speed line from London to Birmingham (Phase 1), splitting toward Manchester (Phase 2a) and Leeds (Phase 2b). However, due to environmental concerns, public backlash, and budget overruns, Phases 2a and 2b were canceled between 2021 and 2023, leaving only a delayed Phase 1. Similarly, high-speed and longdistance projects like Northern Powerhouse Rail and the Transpennine Route Upgrade faced substantial budget shortages in 2021 (Seidu et al., 2023). In response, the Integrated Rail Plan for the North and Midlands was introduced in late 2021, consolidating and coordinating the reduced projects to cut costs and improve efficiency. Funds were also redirected from large-scale projects to regional upgrades, highlighting the uncertainties and political influences affecting major rail initiatives (Chen, 2023; Cooke, 2024).

The Rail Baltica project exemplifies the intersection of immense political importance and the urgent need for improved rail connectivity. As a top priority of the TEN-T's North Sea-Baltic corridor, it aims to link Estonia, Latvia, and Lithuania to the remaining European network. A major challenge is addressing the prevalent Russian gauge to improve connectivity. While it will enhance passenger travel, the project's primary focus is on efficient goods transportation, including military material. Increased geopolitical tensions with Russia have elevated the project's military significance. Improving connectivity across the Suwalki Gap, which borders Poland and Lithuania between the Russian exclave Kaliningrad and Belarus, would enhance NATO's response time to incidents in the Baltic States (Bankauskaité & Šlekys, 2023; Kamiński & Śliwa, 2023; Schneider, 2020). Despite high costs, the EU has allocated €425 million to expand dual-use transportation infrastructure, demonstrating how regional rail projects are influenced by diverse political interests (CINEA, 2022).

The list of rail transportation strategies across Europe is extensive. In Switzerland, known for its dense rail network, expansion is managed through a national strategic development program, with projects organized by timelines (e.g., 'Ausbauschritt 2025' and 'Ausbauschritt 2035') or themes (e.g., noise reduction) (BAV, 2024). Austria's strategy, 'Zielnetz 2040', outlines the future rail network and necessary infrastructure, implemented by Austrian Federal Railways (ÖBB) within an annually updated framework (BMK, 2024). Denmark's goal to cut travel times between its four largest cities to one hour has faced political support issues, leading to only partial completion (Grunfelder et al., 2020). Norway's InterCity project aims to enhance rail connections around Oslo and to major cities in Norway and Sweden (Olsson & Klakegg, 2023). Portugal's national infrastructure program focuses on domestic intercity rail upgrades between its metropoles and better connectivity to Spain (Infraestruturas de Portugal, 2023), while Spain and Italy target advanced high-speed rail infrastructure as part of their national transportation strategies (Rothengatter, 2020).

However, major infrastructure and transportation expansion plans, even with political backing, do not guarantee completion. As seen with HS2, the 'Deutschlandtakt', and Denmark's One-Hour-Model, the extended timelines for such projects commonly clash with short-term political cycles. Large-scale mobility concepts, particularly costly high-speed rail plans, often remain speculative rather than concrete. New ambitious proposals frequently fail to reach construction, and those that do are often delayed and/or scaled back significantly. Consequently, the results of these infrastructure improvements often fall short of their original, ambitious goals, delivering only a fraction of the aspired benefits.

While many of the aforementioned rail expansion programs go hand in hand with the EU's TEN-T framework, intercontinental influences on the European rail network are also gaining increasingly more relevance. In particular, the Chinese Belt and Road Initiative aims to improve connectivity between the Far East and Europe via different modes of transportation – including railways. Even though this particularly addresses freight shipping, passenger travel will also benefit from the newly constructed or upgraded rail lines (Dunmore et al., 2019). More specifically, the current focus of investments lies especially in the Balkan region. The main corridor prone to such improvements is the rail line between the Greek port city Piraeus and the Hungarian capital Budapest as well as different branches connecting to and feeding into this corridor. As a result, construction projects have been or are still present in Hungary, Serbia, Montenegro, North Macedonia, and Greece – and possibly will emerge in further places, too (Fardella & Prodi, 2017; Sokołowski, 2018; Tonchev, 2022; Yang et al., 2018).

#### 2.4 – Intercity Train Travel in Europe

The improvement of rail infrastructure resulting from the various projects and expansion frameworks benefits both freight and passenger transportation on rails. As has been introduced earlier, this is essential for expanding passenger rail travel across Europe since rail infrastructure can be seen as the most limiting factor restraining rail operations. The extent of passenger rail services across Europe are therefore to some degree tied to the available infrastructure. However, further aspects such as economics, (geo-) politics, and societal tendencies play a critical role in determining the patterns of rail travel across Europe – especially in terms of mediumand long-distance services (Seidenglanz et al., 2021).

Following the rapid expansion of Europe's rail network in the mid-19<sup>th</sup> century, interregional passenger services grew significantly. By the late 19<sup>th</sup> century, a broad network of long-distance trains was established, expanding throughout the 20<sup>th</sup> century (Wolmar, 2011). Even before the formation of European communities, cross-border services were crucial to the continent's rail network (Martí-Henneberg, 2017). Trains were a highly efficient, comfortable, and luxurious mode of travel, particularly before the advent of affordable flights and well-equipped cars (Seidenglanz et al., 2021). However, the rise of cheap flights and versatile cars led to intense competition for medium- and long-distance train travel. Cars offered individualistic travel, while planes excelled in speed on longer routes. This competition resulted in significant changes in the train network. As an example, Kuster (2003) observed that from 1960 to the 21<sup>st</sup> century, the number of international destinations from Hamburg decreased, with services to places like southern France and Italy disappearing. In contrast, connections to other German cities and neighboring countries increased. This shift exemplifies a broader European trend toward more frequent short- and medium-distance connections on well-equipped corridors, accompanied by a reduction in other services (Seidenglanz et al., 2021). This has led to a more fragmented rail network, where major cities remain connected but often require multiple train changes. Smaller cities have been neglected or excluded from intercity connections, leaving them underserved. The rise of high-speed rail has further intensified the focus on major city links, making smaller towns and cities less relevant within the European intercity network.

In the meantime, political influences add complexity to changes in intercity rail travel. For instance, the Schengen Agreement's removal of border controls sped up international travel, but historically, such formalities were not major barriers to international rail connections<sup>4</sup> (Martí-Henneberg, 2017). Politics, particularly domestic and economic, significantly impact European train services. The liberalization of rail in the early 2000s, while increasing competition and improving efficiency overall, has led to controversial outcomes. On the positive side, it has expanded service to new destinations, particularly in tourist-heavy areas. However, the focus often remains on profitable, efficient lines, leaving less profitable routes underserved. This concentration on specific corridors, driven by competition and privatization, results in the neglect of potentially important but less frequented lines (Lerida-Navarro et al., 2019; Seidenglanz et al., 2021).

A notable aspect of current intercity rail connections is the revival of night trains. Despite severe declines across Europe over several recent decades – due to high operational costs and competition from budget airlines – night trains are making a comeback, even though the same challenges remain today. This dynamic is particularly driven by a growing awareness of the need for climate-friendly travel options (Curtale et al., 2023; Kantelaar et al., 2022). Therefore, night trains are now aiming to bolster long-distance services and furthermore provide a counterbalance to the fragmentation and modularization of intercity rail services.

<sup>&</sup>lt;sup>4</sup> This should not be confused with the infrastructure network's layout – which indeed is highly defined by territorial means. Yet, considering the rail network as a given entity, the establishment of international rail services (in case that there are rail connections) is not significantly affected by cross-border formalities.

Despite the aforementioned issues, medium- and long-distance services remain operating across Europe and even benefit from increased efficiencies along certain stretches. While the infrastructural restraints limit cross-border connections, the majority of inner-European borders are crossed by at least one rail service. A large set of cities is linked to medium- and long-distance services forming a relatively dense web of intercity connections across Europe. Spanning from the Arctic Circle down to Sicily, from Portugal's Atlantic coast all the way to the Black Sea – today's intercity rail services reach across the entire continent.

In conclusion, the evolution of intercity rail travel in Europe mirrors the dynamic interplay between infrastructure development, economic pressures, political influences, and emerging environmental concerns. Throughout recent decades, intercity rail travel has been forced to compete with automobiles but also, and most particularly, aviation. In return, the focus on the most efficient corridors has led to the continuous marginalization of smaller and less strategically located cities. The continuously growing popularity of high-speed rail and its associated expansion thereby bear the risk of aggravating the marginalization problem. At the same time, sustainable intercity mobility is further promoted along an increasing set of major rail axes by tackling short- and medium-distance flights. This leaves the status quo and outlook on intercity rail travel to be quite controversial, hosting major travel time improvements on one hand while experiencing significant accessibility shortfalls on the other hand. However, it is advisable to not lose sight of the rail network as a whole, rather than seeing it as a substitute to only some specific air or highway corridors.

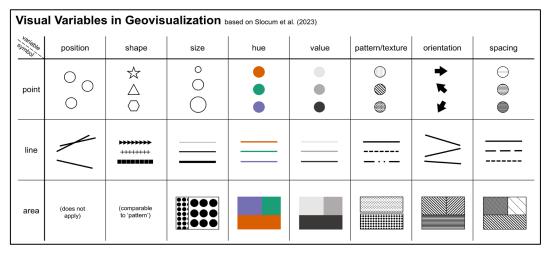
### 2.5 – Geovisualization

#### 2.5.1 – Definition and Origin of Geovisualization

The large scale of the European rail network encompasses a sophisticated spatial complexity of relevant information. The geographic extent and structure of Europe's intercity rail network poses a significant challenge to appropriately comprehending the information behind it. The same is true for countless other scientific fields dealing with geospatial data. An approach to overcoming such challenges and thereby supporting the research and analysis of complex geographic data is the field of geovisualization (short for "geographic visualization").

Common definitions describe geovisualization as the follows:

- Geovisualization is "[...] the use of concrete visual representations; whether on paper or through computer displays or other media; to make spatial contexts and problems visible, so as to engage the most powerful of human information-processing abilities, those associated with vision." (MacEachren et al., 1992, p. 101)
- "Geovisualization [...] concerns the visual representations of geospatial data and the use of cartographic techniques to support visual analytics" (Laurini, 2017, p. 225).

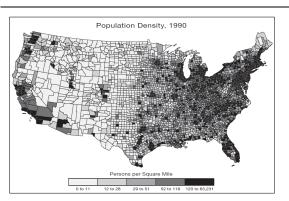

Overall, geovisualization is a valuable concept of reducing the complexity of geospatial data by utilizing the cognitive benefits from the interpretation of visual illustrations. It simplifies an abstract set of location names and/or coordinates and thereby allows for communicating multiple layers of associated information in a spatially organized manner.

While technological advancements continuously add new tools for geospatial visualization, its origins trace back to the pre-digital era. An early example is John Snow's 1854 cholera map, which plotted cholera deaths and water pump locations in Soho, England. By identifying spatial clusters of deaths, Snow traced the outbreak to a contaminated well, helping to halt the epidemic by convincing authorities to close the pump. This marks one of the first instances of geospatial analysis (Maciejewski, 2021). A few years later, Charles Minard's 1861 visualization of Napoleon's 1812-1813 Russian campaign depicted troop losses alongside geospatial and statistical data, illustrating the devastating human toll of war (Kraak, 2009).

#### 2.5.2 - Common Methods of Geovisualization

Thanks to modern technologies, today's palette of geovisual tools is seemingly endless and appears to be restricted only by an author's boundaries of imagination and creativity. Furthermore, the borders between geographic visualization and general scientific visualization are rather gradual and vary with the wide concepts of (geographic) space. However, there is a set of methods and concepts that are most commonly applied and thereby represent the cornerstone of geovisualization.

Standing behind the different geovisualization tools is the concept of visual variables, introduced by Slocum et al. (2023). In short, visual variables stand for a geographical object's properties that can be changed to visually differentiate from other objects. The core visual variables (such as size, color, and shape) are schematically presented in Figure 5. Nonetheless, these eight enlisted variables are only the most common and basic ones which have proven to be most effective. Yet, there are several more options that are used less prominently.

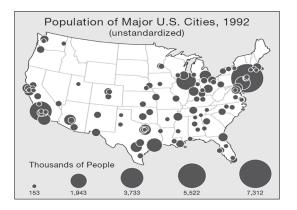



*Figure 5*: The most important visual variables of geovisualization, based on Slocum et al. (2023). Source: own illustration.

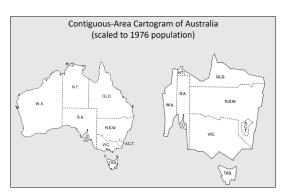
With use of the numerous visual variables, a wide set of maps can be produced to transfer the spatial data in a visual way. The focus of these so-called thematic maps is on their associated properties in the context of their spatial distribution. Among the diverse kinds of thematic maps exist typical mapping methods which are described in Table 1. Yet, further map types exist as well; combinations between different types are common, too. In recent decades, interactive maps gain increasingly more popularity since they allow for customized data exploration. Additionally, statistical visualizations (e.g., Histograms) often accompany geovisual research.

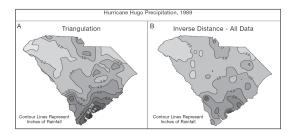
*Table 1*: Overview of most common mapping techniques, based on Slocum et al. (2023) and Maciejewski (2021). *Figures 6 a-f*: Examples of various map types. Source: Slocum et al. (2008).

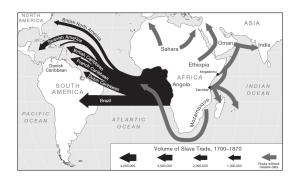
#### Illustrative Example




#### Choropleth Maps:


Map Description


Varying color values or hues represent the magnitude of a variable aggregated over a geographic area (e.g., countries, states, municipalities). For avoiding misinterpretations, the values should be normalized, for instance by the unit's population or area. The meaningfulness of choropleth maps is highly dependent on the layout and structure of the selected basis units.


*Figure 6a*: Choropleth map of the population densities in US counties as of 1990. Source: Slocum et al. (2008).











#### Proportional (Point) Symbol Maps:

Symbols (typically points/discs) of varying sizes represent the data associated with different locations. The size (e.g., height, area, ...) matches the variable's magnitude. The symbols can thereby serve as additional layer of information, for instance in the function of a pie chart. In contrast to choropleth maps, this technique is ideal for mapping absolute values.

*Figure 6b*: Proportional point symbol map of the USA's cities' population in 1992. Source: Slocum et al. (2008).

#### Dot Maps:

Small dots are placed over a certain space to indicate the spatial distribution of a specific phenomenon. The positions of the dots represent the exact locations of a single instance (dot distribution map). Alternatively, aggregated data can be visualized by randomly placing dots in the region of the aggregated unit for each single instance (dot density map).

*Figure 6c*: Dot map of wheat sourcing locations in the USA in 1992. Source: Slocum et al. (2008).

#### Cartograms:

Geographic space is distorted based on a selected variable. The map features (typically areas or distances between locations) are then proportionally scaled to match the variable's magnitude. For example, a country's area then proportionally equals its population.

*Figure 6d*: Area cartogram of the 1976 populations of Australia's territories. Source: Slocum et al. (2008).

#### Isarithmic, Isopleth, Isoline, or Contour Maps:

Continuous quantitative fields (e.g., precipitation, elevation) are used to divide space into a set of regions. Each region thereby represents a constant range of values from that field. This concept can also be applied to nonphysical fields such as travel times, in which case one speaks of isochrone maps. Point data can be turned into continuous fields by different interpolation methods.

**Figure 6e**: Isoline map of precipitation associated with 1989 Hurricane Hugo in South Carolina, with two different interpolation methods. Source: Slocum et al. (2008).

#### Flow Maps:

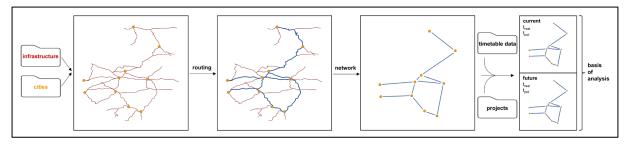
Line symbols or arrows are used to display relationships or movements between places. This often refers to the fields of mobility and economic transactions. They can also simply be used to show non-directed connections between locations. These connections can further be enhanced by visual variables (e.g., width or color) to represent the magnitudes of values.

*Figure 6f*: Flow map of the slave trade out of Africa from 1700 to 1870. Source: Slocum et al. (2008).

### 2.5.4 – Examples of Applications of Geovisualization in the Field of Mobility

Among the field of mobility planning, analysis, and research, geovisual tools have proven to be particularly valuable. The integration of geographic information systems (GIS), statistical datasets, and analytical models provides comprehensive insights into movement patterns and urban dynamics while allowing for exploring transportation systems simultaneously. Stakeholders, the broad public, and scientific researchers alike benefit from meaningful geovisual tools which thereby contribute to a better understanding and further improvements of transportation systems all around the world at different scales. While the potential applications of different kinds of thematic maps and other geovisual methods appear to be seemingly endless, a few interesting examples serve to represent and corroborate the importance of geovisualization for the field of mobility (with a particular focus on railways).

Accessibility analyses therein are a very prominent discipline. Generally speaking, this usually addresses the spatial concentration of public services such as medical facilities, supermarkets, or public transport stops, but can also target specific locations (e.g., the country's capital). Accessibility is then defined as the ability to reach these services or places with appropriate efforts. Depending on the scope of research, the mode of mobility for reaching the desired places can vary. For instance, Rossetti et al. (2020) used geovisual tools to assess the pedestrian accessibility to public transport in urban areas in Brescia, Italy. In the case of Germany, Neumeier and Kokorsch (2021) identified spatial patterns of supermarket accessibility by foot, bicycle, and car. Similar studies have been conducted all across the world with varying focuses of research. What makes geovisual tools particularly useful is the ability to comprehensively illustrate complex spatial relationships which most likely would be hard to detect and understand in the raw data.


The same advantages also unfold in combination with other geographic disciplines such as risk assessment and management. Mobility-related infrastructure is critical to a functioning society. As a consequence, the potential risks associated with disruptions or full destruction of roads and railways are of severe significance. Depending on the geographic region and terrain, threats by natural hazards are of particular importance. Critical high-risk locations are commonly found through geovisual means. This often goes hand in hand with the communication of the respective risks which is significantly eased by appropriate visualizations. The local population, authorities, and decision-makers can all benefit from geovisual approaches toward risk management thanks to its ability to unify complex spatial variables into simple and more easily understandable displays (Lagadec et al., 2018; Saint-Marc et al., 2018).

Lastly, and in this thesis' context, most importantly, geovisualization serves as an ideal concept of analyzing and simplifying rail networks as well as respecting their impacts to the society. As an example of interactive geovisualization, Fairbairn (2005) addresses that geovisualization techniques could become closely coupled to applications in journey planning. On a more analytical note, Wang et al. (2022) used cartograms to visualize regional differences in how the improved high-speed rail network in China reduced travel times to the Chinese capital. Zhiyuan et al. (2017) applied different geovisual techniques to illustrate and research passenger flows in the Shanghai metro system. Meyer de Freitas and Blum (2024) used geovisual methods to assess the current TEN-T rail corridors and a modelled medium-speeds scenario in terms of connectivity to European metropolitan regions. Vrána et al. (2023) applied various types of geovisual tools in their research on current international high-speed rail connections in Europe which helped to easily identify patterns of services. The vast set of potential applications consequently underpin the enormous potential of geovisual (research) approaches, especially in the field of mobility and railways in particular.

# 3 – Methods I: Building the Network

## 3.1 – Analysis Framework

Throughout the analysis of the future European intercity rail network, the versatility of geovisual tools and methods will significantly support the research. The core idea of this research setup is to identify a realistic network of intercity rail links that spans across all of Europe's rail network and can be analyzed accordingly. As Figure 7 illustrates, a set of cities will be defined by mixed hard and soft criteria. In parallel, raw infrastructure data will be retrieved for all of Europe. With the help of a self-made routing tool and network identification algorithm, the basis network (based on potential travel times) will be computed. This current scenario will be updated with realistic timetable-based travel times. Next, the impacts of the infrastructure projects will be included. This will eventually result in two basic scenarios, a current and a future one, thereby acting as the core of analysis. With geovisual tools, network metrics, and by the help of case studies and specific thematical focuses, the research questions will eventually be addressed.



*Figure 7*: Sketch of this research's methodological steps. Source: own illustration.

The spatial context of this work is marked by the extents of the European rail infrastructure as it is the goal to analyze as many connections across the continent as possible. However, there are different understandings of how far Europe reaches. In combination with the spatially uneven distribution of infrastructure and political conflicts, it therefore makes sense to clarify the spatial extent of this thesis. For obvious reasons, countries without any (operable) rail infrastructure are excluded. This concerns Iceland, Malta, Cyprus, Andorra, and San Marino. In the same sense, it should be noted that Monaco, being crossed by a major rail line, is in this case treated as a part of the French rail network. In the Southeast, the network includes Turkey, but only until reaching the Bosporus as this aligns with the outlines of the European continent. Toward the east, the European rail network is ending at the borders of Russia, Belarus, and the Ukraine due to the ongoing war. Since military conflicts are very destructive, especially regarding critical infrastructure, there is no certainty about how intact the Ukrainian rail network will be once the Russian attacks end. Meanwhile, the political relationships between the EU and Russia are highly confined including strict sanctions. The resulting discontinuation of international trains to Russia and Belarus will likely prevail in the near future.

The type of research will thereby be a mixed-methods approach. Besides the quantitative network analysis (i.e., changes in travel times and network metrics), the case studies and thematic focuses provide a qualitative component to this work. It is furthermore important to understand that this thesis represents only a snapshot of the dynamics surrounding rail infrastructure development. Due to the uncertainties associated with the completion of proposed expansion plans, projects might be cancelled in the near future or only be completed partially and/or with delays. However, new projects might also emerge continuously. This highlights the importance of the qualitative component of this research since it allows for identifying patterns of change. The entire methodological part of this thesis is based on publicly and openly accessible data and tools, thereby allowing for being reproduced. The technical basis of this analysis is Python (version 3.12).

### 3.2 – City Selection

The cornerstones of this research are formed by the cities that are being included. They determine the layout and structure of the resulting intercity rail network. Consequently, a meaningful selection of cities is crucial to substantiating the explanatory power of the analysis results. The challenge is thereby to find an adequate selection approach that represents the rail network appropriately, includes a large fraction of urban populations, and respects the local contexts of places. The first approach was therefore to develop a set of hard criteria (e.g., a fixed population threshold). These attempts however did not produce satisfying results. Therefore, it was decided to establish a combination of hard and soft criterions that would guide the city selection procedure accordingly. Listed below are the criteria which are based on a similar methodologic approach as in Wang et al. (2022).

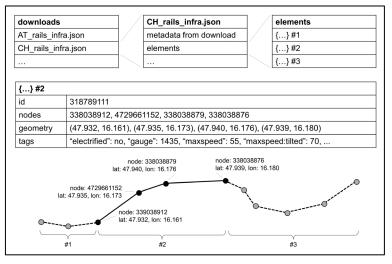
• Every country with operable rail infrastructure must host at least three cities.

Exceptions: small countries with very limited rail infrastructure (i.e., Liechtenstein, Luxembourg, Albania, Kosovo, and Montenegro) may host only one or two cities.

• Capitals must be included.

Exception: Turkey, since Ankara is not part of continental Europe.

- The biggest cities (in terms of population) of every country must be taken into consideration if being linked to the rail network.
- The rail network should be captured in its full extent; the outermost cities should therefore be included if possible and meaningful.
- Different areas of a country should be covered by selected cities; they should (as far as their setting allows for it) be relatively evenly distributed across space.
- The structure of the rail network should be appropriately represented.
- In polycentric urban areas (e.g., the German Rhine-Ruhr region), only the major cities should be selected in accordance with the rail network's structural layout.
- If reducing the network's complexity, interchange locations may be added to the network despite being of minor importance as a city itself.


To sum up, it can be said that the cities were selected in order to represent the country's geography, match the layout of its rail infrastructure, and address the largest possible part of Europe's population while keeping the resulting network's complexity as low as possible. Eventually, a total of 335 cities were selected and included into the dataset forming the spatial basis of this research. This directly covers ca. 135 million inhabitants. In addition to each city's name, further attributes such as the population size or the respective country were stored. Most importantly, the coordinates of each city's major rail station were retrieved. This had to be done manually since it was essential to strategically pick a very specific location on the tracks at the main station for the routing operation (for more details, view the routing methodology). Hereby, cities with multiple different stations connecting to different parts of the rail network posed a special challenge. Prominent examples are Paris, London, or Budapest. However, there are also instances where stations differ by track gauges, for instance in northern Spain. In such cases, each station was listed separately with a specific attribute for later identification, totaling in 366 entries. This differentiation is essential for the routing operation and consequent network generation in order to avoid misleading results. However, the resulting network will only feature the 335 cities as such. The differentiation between stations will eventually only remain relevant for the computed connections. An overview of the cities and the connections can be found in Figure 11. The full city selection can be found in Appendix A.

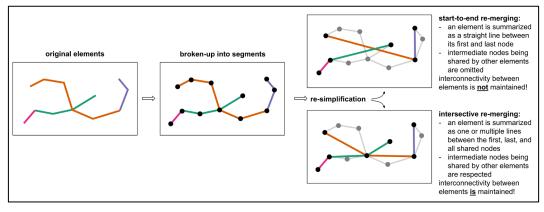
#### 3.3 – Infrastructure Data

#### 3.3.1 - Data Source and Acquisition

The physical basis of this thesis is formed by rail infrastructure data. Publicly accessible and regularly updated data is available at OpenStreetMap (OSM). OSM is a collaborative database providing free and open geographic data that is contributed and updated by a community of volunteers. The platform covers a wide range of geographic features beyond railways, for instance roads, buildings, natural landscapes, and amenities. Its community-based characteristic enhances regular updates, therefore providing ideal up-to-date geodata. Furthermore, OSM uses a tagging system which assigns descriptive attributes to map elements by using key-value pairs. The key represents a specific characteristic (e.g., "highway") while the value specifies the type or name of that characteristic (e.g., "residential" or "pedestrian"). The raw data can be downloaded from OSM through different methods.

In this case, the Overpass API (https://overpass-api.de/api/interpreter, with help of the python package requests) was used. This method takes an input query that indicates the preferred file type, the spatial frame in which the data should be downloaded, and the desired geometries. For this work, the data was downloaded for each country individually by defining the countries outlines as spatial frame. This included maritime territories which enabled full infrastructure connectivity between the United Kingdom and France as well as Sweden and Denmark where infrastructure crosses the ocean. Furthermore, it was specified that within the key "railway" only the geodata with the values "rail" and "narrow\_gauge" should be acquired. This ensured that abandoned tracks as well as local transit infrastructure such as light rails, monorails, subways, trams, and funiculars were not included in the dataset. Eventually, this results in a downloaded file for each country which, once unpacked, contains a set of all rail infrastructure elements. Each infrastructure element is then composed of a set of nodes which together represent a formation of linear segments capturing the element's geometry. Furthermore, each element is associated with tags that indicate track properties. Figure 8 presents an example of the infrastructure data's layout and structure.




*Figure 8*: Simplified example of the rail infrastructure's data structure. Source: own illustration.

#### 3.3.2 – Data Pre-Processing

The datasets for all countries were downloaded on 01.03.2024 (from OSM). However, before the data can be analyzed adequately, it must be pre-processed in several aspects. This preparation is essential for enabling an efficient and accurate network generation and were conducted for every country's network file. First off, the elements need to be unpacked from the downloaded file, i.e., the elements are extracted from the nested structure.

Next, each infrastructure element is broken up into its segments. Each segment thereby is assigned with the attributes of the element they were part of. At that point, each infrastructure entry consists of only one single segment spanning between exactly two nodes. For each segment, the physical length, i.e., the geodesic distance, is calculated based on the nodes' coordinates. Furthermore, the Vmax is retrieved from the tags. In the OSM tag structure, the Vmax values are indicated by the key "maxspeed". Since the Vmax values can be further differentiated (e.g., "maxspeed:tilting" for tilting trains), the highest value of all keys containing "maxspeed" is selected as the Vmax to proceed with. However, not every element is equipped with the same tags. This means that information on the Vmax may not always available. In that case, the segment is assigned with the country's average Vmax as its own Vmax. This value is calculated as the average of all segments equipped with a "maxspeed" key, weighted by the segment's respective length. The relevant segments are then also marked with an additional attribute to clarify the value's origin. Lastly, the time needed to travel along each segment is calculated based on the segment's length and Vmax. This value, the (potential) travel time per segment, will be the most important attribute for the later stages of network generation.

However, the splitting-up of the elements multiplies the number of single elements significantly. This would dramatically slow down the network generation process due to high inefficiencies during routing. Therefore, a data re-simplification is applied to re-merge as many segments as possible (belonging to the same original element) into one single section of infrastructure. In order to maintain interconnectivity between the elements, an intersective approach is chosen which is illustrated in Figure 9. For each newly merged element, the joined segments' travel times and lengths are summed up. Consequently, the resulting elements represent no more exact real-world geometries but are equipped with attributes containing their exact physical properties. Overall, this reduces the number of elements by around 87.8% while still accurately maintaining its physical properties and interconnectivity within the infrastructure network.



*Figure 9*: Example illustration of intersective re-merging of infrastructure segments. Source: own illustration.

### <u>3.3.3 – Data Quality</u>

The infrastructure data from OSM is generally said to be accurate and regularly updated. OSM data is therefore considered to be a valid source for any kinds of research and analyses which has also been corroborated by specific studies on that matter (e.g., Mooney & Minghini, 2017). This has also become evident throughout this thesis' work. Comparisons with recent track disruptions (e.g., on the German island Fehmarn) help to confirm and validate the data's accuracy. However, while the track geometries seem to be very accurate in any instance, there are shortfalls regarding the indication of associated operational properties. In particular, large fractions of the infrastructure elements are not equipped with any information on the respective Vmax. This overall concerns around 32.74% of all tracks which is a substantial fraction. Fortunately, a more detailed assessment reveals that this mainly concerns smaller, less frequently used tracks which are not part of the main lines. Opposing this, main lines typically come with very

accurate indications of their operative properties. This observation represents a parallel to the findings of Kounadi (2009) who claims that bigger streets are more accurate than smaller ones. Since main lines usually are the ones with the highest velocities and are predominantly used for intercity services while this thesis centrally focuses on intercity travel times, the OSM data quality can be deemed appropriate for this specific scope of research. Nonetheless, it must be acknowledged that data quality differs throughout Europe. Especially in Ireland, Moldova, northeastern Romania, and western France, some limitations do occur. Overall, the later computed network will include around 4.80% of tracks that initially did not have any Vmax values and therefore had to use the respective country's average velocity.

#### 3.4 – Intercity Network Generation

#### <u> 3.4.1 – Routing</u>

Once the infrastructure data has been pre-processed, it can be used for the computation of a web of intercity rail connections. Following the pre-processing, the infrastructure data is from now on treated as a theoretical network graph. Every simplified infrastructure element is represented as an edge spanning between two nodes. The edges are thereby weighted with different resistances which in this case are the potential travel times computed earlier. It is herein important to remind that this thesis desires to base the intercity network construction on these potential travel times for maintaining a uniform approach. This assumes that every infrastructure element is (to its full extent) traversed with the highest designated velocity. Only during later stages, these connections will be expanded thematically by adding a layer of real-world timetable-based travel times. In order to identify the potential travel times for a pair of cities, it is essential to establish an efficient routing tool. This tool should take two input coordinates, find the respective closest nodes in the network (acting as entry points), and identify the path through the infrastructure network requiring the shortest total potential travel time.

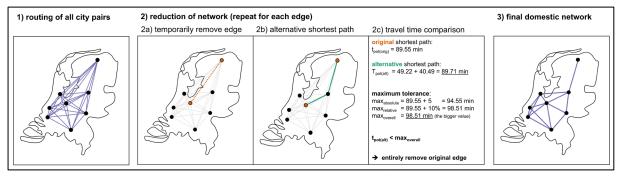
The first step is therefore to produce a method that takes any input location (in the format of latitude/longitude coordinates) and finds the closest node in the infrastructure network. Due to the high number of nodes, it is most meaningful to implement a k-dimensional tree (KD-tree) into this function. Simply put, a KD-tree is a binary search tree which allows for efficiently identifying the closest neighbor. However, due to the binary nature of this tree, the identified closest neighbor might not actually the closest point to the input coordinate. Therefore, a second verification search is implemented to find the actual, real closest neighbor. For that, the distance between the input location and the preliminary identified node is calculated. This distance is then doubled and used as diameter for constructing a square frame surrounding the original input coordinates. This square structure parallel to the latitudes and longitudes allows for an efficient binary identification of all nodes lying within the frame. Then the haversine distances from the input location to every point within the frame are calculated. The node with the shortest distance eventually represents the true closest node to the input location. For accurate routing results, it is essential that the true closest node is found. Otherwise, sidings or dead-end tracks might be targeted which would distort the routing results - which is why the input coordinates were carefully chosen manually in the first place.

Once the two start and end nodes are identified, the shortest path between them has to be found, if there is one. The term "shortest" herein refers to the topological distance which is the potential travel time (i.e., the shortest path is the one with the smallest potential travel time). For this purpose, the Dijkstra algorithm is chosen. This algorithm continuously explores the shortest paths to all other nodes and in this case terminates once it has reached the desired end node. One can thereby specify different metrics defining the topological distance (e.g., the number of edges along the way), which in this case is the edges' respective potential travel times. Once the shortest path has been found, the sum of the weights can be retrieved, thereby marking the overall potential travel time along the shortest path. It is herein important to remark

that the resistances, i.e., the infrastructure elements' potential travel times, are treated as nondirected. This means that the journey travel times from A to B and from B to A are assumed to be identical. The routing results are therefore to be treated as non-directional, too. While the Dijkstra algorithm can be inefficient for larger and more complex networks, it provides reliable results and finds the true shortest paths which means that no further operational verifications must be made.

These overall routing operations are being implemented with the help of some publicly available python packages. For the KD-tree, the package scipy.spatial.KDTree was used. For treating data as network graphs, the networkx package and its extensions were applied. This also includes the application of the Dijkstra algorithm to identify the shortest paths.

### 3.4.2 – Domestic Routes

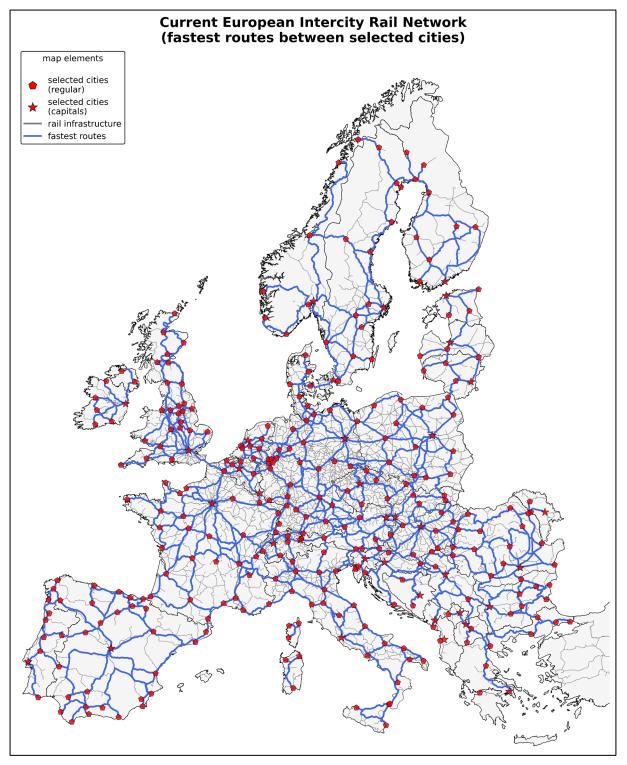

With the help of this routing approach, it has now become possible to freely calculate potential travel times between two places which is the key component of the desired goal to generate a network of intercity connections. In order to increase the efficiency of this procedure, it is most meaningful to start off with computing every country's domestic connection network only. This allows for using only the domestic infrastructure network (instead of the entire European data set) and also reduces the overall number of iterations.

Therefore, the following procedure is pursued for each country individually. First, the respective pre-processed rail network is loaded to form the basis for computation. One exception is made in the case of Austria where the southeastern German network section is also loaded. This is the only instance where a major domestic intercity connection runs through another country. Once this is successfully completed, the connections between all pairs of cities are routed and the travel times are stored accordingly. City pairs consisting of locations within the same place (e.g., between Paris Gare de Lyon and Paris Gare du Nord) are thereby not taken into consideration. Lastly, in the case of Italy, one manual addition is undertaken: an 85-min link between Messina and Villa San Giovanni. Through those two places, Italy's mainland is connected with Sicily by a boat transporting passenger trains – which is indicated to take 85 min from station to station, according to online sources. Even though no fixed infrastructure exists, this link is part of the Italian rail network.

Once all domestic network lines have been computed, the multiple stations are dealt with. Through an implemented function, all travel times running between the same cities but calling at different stations are compared from which eventually only the shortest travel time is being stored. In that case, an additional attribute remarks the station for clarity. The entire procedure also handles special cases where both cities are operating with multiple major stations, for example London and Liverpool. Here, the travel times are computed for all station pairs, but eventually only the fastest link (here: London Euston to Manchester Piccadilly) is kept.

Following this, the network is further simplified to represent only meaningful connections which also match the structure of regular intercity operations. Specifically speaking, this targets routes over longer distances that run through or very closely bypass other cities along the way. In that case, it is more realistic to split the lines into segments taking the intermediate cities into consideration as well. In particular, two thresholds were defined: if there is a route besides the most direct one, i.e., via one or multiple other cities, and the new travel time is less than 10% or 5 min longer than the original one, the indirect version should be preferred. Hereby, the larger of both values represents the effective decisive threshold. The final relative threshold of 10% was selected as a result of manual experiments and was identified as an ideal approximation to capture the non-directiveness with multiple stops that typically characterizes intercity rail services in Europe. The 5-minutes absolute threshold was established to also address sections with shorter travel times where the relative approach would not provide any satisfying results. Furthermore, five to ten minutes (depending on the country) mark the thresholds for

train delays in Europe (Grechi & Maggi, 2018). This means that deviations from schedule of up to five minutes are widely deemed acceptable/tolerable which further supports the threshold selection. At the end of the simplification (a visualization of this process is available in Figure 10), the domestic network is complete. For Luxembourg and Liechtenstein where only one city was included, no domestic connections were calculated.




*Figure 10*: Example sketch showcasing the simplification process of the domestic network (here: Netherlands). Source: own illustration.

## 3.4.3 – International Routes

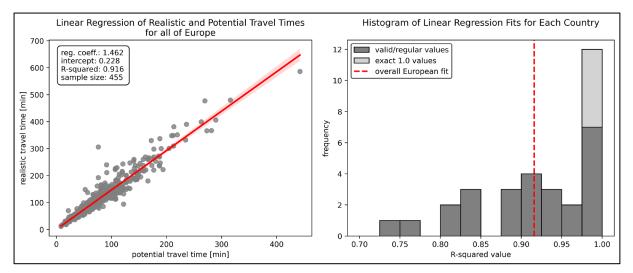
In in order to complete the network, the next step is to compute all international connections between the different countries. This means that all links between neighboring countries must be taken into consideration. However, simply pairing all cities from one country with every city from its neighboring country would be very resource demanding and hence inefficient. Besides that, international connections are also possible between countries that do not share a physical border with each other (e.g., Croatia to Italy through Slovenia, if certain cities in Slovenia were not included in the network). Consequently, to address all possible international connections, a specific system was manually set up. For every possible country pair, a distance threshold was implemented (which is available in Appendix M). Every international city pair between the two respective countries with a distance shorter than the threshold is then computed. The thresholds were selected manually and were set large enough to cover all international connections between the access points to the different sections of the respective domestic networks. This however is significantly dependent on the selected cities. Therefore, every threshold was, if necessary, equipped with one or multiple additional requirement cities.

If all the required cities for a specific country pair are present in the network, the threshold method is applied, i.e., connections are only computed for international city pairs with a distance below the threshold. Otherwise, all international city pairs are to be evaluated. Through this method, it is also possible to address the few potential special cases of international connections passing through a third country. Once all the required international connections are computed, the resulting network had to be simplified again. Thereby the exact same procedures as in the domestic networks are applied. Besides that, issues regarding multiple stations re-emerging from the international computations are also dealt with prior to the structural simplification. The eventual result is a simplistic rail network based on the potential (infrastructure-based) travel times. It consists of 683 connections. For a better understanding of the routed paths and the spatial structure of the connections, Figure 11 shows the physical paths of the routed intercity rail connections. A more abstracted visualization of the rail network will be illustrated in Figure 18.



*Figure 11*: Overview of the selected cities and the corresponding network connections (fastest routes). Source: own illustration.

### 3.5 – Timetable Data and Regression


For full comparison and analysis, it makes sense to not only rely on potential travel times, but to also include the realistic equivalent. This means that each connection should (if available) be equipped with information on its timetable-based travel times. These are manually retrieved by the following approach:

- Timetable data must be accessed through a fixed order of travel planner applications: (1) Interrail/Eurail rail planner, (2) Rome2Rio, (3), local train websites, (4) rail.cc form. Only if one option does not provide realistic results, the next one in line is to be used.
- Period of travel is the first full week of May, i.e., 06.05.2024 to 12.05.2024. Any day within that timeframe would be viable.
- Both directions are checked: from city A to city B and vice versa from city B to city A.
- For cities with multiple major stations, connections to each one of them are checked.
- For each pair of cities, the very fastest connection (i.e., at any given time within the frame, with no regards to the direction or station) is proceeded with.

The travel times are then stored in a table for each connection. In addition, it is always remarked whether the connections were direct or not. For indirect connections, the intermediate stops are noted as well. Certain instances with no current operations (despite technically being connected by infrastructure) are marked separately. In three specific cases, the connections are temporarily disrupted and re-routed or significantly slowed down due to certain incidents. This concerns the links Zurich-Lugano (derailment), Turin-Lyon (landslide), and Hanover-Hamburg (track work). Since these limitations are not present in the infrastructure data (therefore not affecting the routing and potential travel times) and are to be sorted out throughout the year, the original (hence shorter) travel times are used. This results in a full-scale European network of intercity train connections which represents the current situation.

Prior to assessing the infrastructure projects, it is important to determine the relationships between potential and realistic travel times. This will later prove to be essential for analyzing the impacts of the infrastructure projects and further enable a wider understanding of how infrastructure correlates with travel times. For this purpose, the goal is to compute linear regressions between the two values. One major limitation that was undertaken is that only direct timetable connections are included. This is due to the fact that indirect ones usually come with transfers of varying durations which would distort the results. Furthermore, it was decided to compute regressions for every single country as well as for the entire rail network as a whole. In the first case, only domestic connections are used in order to avoid distortions from varying track properties per country. Therefore, no regressions can be computed for countries with less than two direct domestic connections.

On a European scale, the sample size is a total of 455 connections. The regression produces an R-squared value of 0.916 which indicates a very good fit (1.0 would indicate a perfect fit while 0 would mean that the regression has no explanatory value at all). A visual insight to the European regression is provided in Figure 12a. Among the specific regressions for each individual country, the R-squared values vary between 0.744 and 1.0 (see Figure 12b). This means that all regressions are at least fairly accurate. The majority of R-squared values are above 0.85 which corroborates the linear relationship between the realistic and potential travel times. However, the perfect fits marked by R-squared values of 1.0 are only of limited explanatory power since they all result from countries exactly two single domestic connections, which is why the regression could be fit perfectly. These calculations are realized with help of the sklearn package in python. The full regression results are available in Appendix B.



*Figures 12 a-b*: (a) regression between realistic and potential travel times for the full European sample; (b) distribution of the linear regression's R-squared values for every individual country. Source: own illustration.

This computation of regressions also serves as validation for the routing approach used during the network generation. The high regression fits indicate that the paths between cities are/were routed in an appropriately constant manner. This allows for the conclusion that the routing tool produces results that, despite not being equal, are confidently proportional to how train schedules are operated. This further corroborates the importance of infrastructure properties as the (obvious) basis for train travel times.

## **3.6 – Infrastructure Projects**

## <u>3.6.1 – Criteria for Included Projects</u>

Next, to enable a comparison between the current situation and the future of intercity rail travel in Europe, the changes to the infrastructure must be captured. Consequently, the next step of this thesis is to gather a list of all ongoing and bindingly planned infrastructure projects as well as their consequences to existing and new rail connections. The most challenging part in this is to clearly define which projects should be included and which ones should not. Implementation time scales and focuses of improvements (e.g., local vs. interregional services) vary drastically. Moreover, the speculative nature of such projects makes it difficult to identify to which degree the projects will be completed – if at all. This therefore also must be taken into consideration when developing a clear framework of criteria on which projects should be included:

- The project must be scheduled to be completed by 2050.
- The project must benefit intercity rail travel in terms of travel time reductions.
- The project must at least have entered the stage of legally binding designing or have been legally corroborated including the definite allocation of funds.

The temporal frame is set to be spanning until 2050 since this year marks the ambitious but necessary goal of the EU but also other European countries including Switzerland to reach climate neutrality. Since sustainable mobility is a crucial component to reaching this ambitious goal, the expansion of rail operations is part of countless sustainability strategies (Bäckstrand, 2022). Consequently, it can be expected that the climate neutrality deadline also represents the major framework for the completion of rail expansion work.

Moreover, it was decided to leave out projects that only tackle capacity expansions. Even though capacities, i.e., the frequency and number of trains being able to run along a section of tracks, are essential for rail operations, the focus of this work is on travel times only. However,

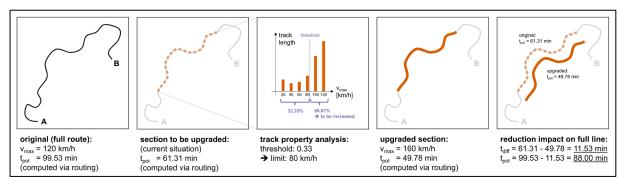
capacity upgrades in some instances also enable shorter travel times (e.g., by reducing waiting times for track clearance or similar). Whenever it is indicated that projects benefit both, they are included in the overall project selection. Lastly, projects are excluded if they are surrounded by too much uncertainty regarding their completion. Only if the legally binding designing phase (i.e., the fixation of a route in accordance with property acquisition and environmental studies) has been progressed, the project is to be taken into consideration. Alternatively, if the project is corroborated by officially and legally binding memorandums or agreements, it is respected if the funding is secured already. Project plans that have been discontinued are also excluded due to the unclarities of their revival.

## <u>3.6.2 – Project Information Gathering</u>

Based on the criteria above, the projects are then manually gathered in a table. However, the identification of projects and reliable information, especially regarding the reduction of travel times, proves to be a major challenge. The problem herein is the reliability of information, i.e., the quality of sources. For some projects, most remarkably in Germany, Italy, and Austria, detailed and accurate (official) documentations are made publicly available. However, other projects, for instance in Spain, Bulgaria, or Turkey, are not accompanied by any informative detailed publications. In that case, the information is gathered from secondary information outlets such as newspaper articles or non-scientific rail journals. Even though the data is being double-checked, and only reliable/verifiable information is used, this bears the risk of limiting the information's quality and level of detail. The last update on project information was made on 01.05.2024.

The spatial resolution of the project impacts thereby bases on the existing city selection and the previously computed network. This means that one single infrastructure improvement can impact multiple lines if different connections pass through this section of infrastructure – which is why the routed paths displayed in Figure 11 are so important. For every single affected line, another entry is made to the overall table. Each entry indicates a set of relevant attributes explaining the project's impacts. Herein, the most important element is the reduction of travel times. It is herein important to keep in mind that the changes in travel times here typically refer to realistic (timetable-based) travel times. The new travel times are indicated by either a relative reduction (e.g., "5 minutes faster") or by an absolute value (e.g., "travel times are cut to 1 hour"). At least one, but ideally both of these values are to be extracted from the project information sources and stored in the table. Furthermore, the planned completion dates, the new Vmax (if available), the overall project title, and the current implementation status are noted. The latter is classified into different categories, as presented in Table 2. Additionally, all relevant sources are stored. An example of the project table can be found in Table 3; the full table, including sources, is available in Appendix C.

| status                    | description                                                                                                                                                        |  |  |  |  |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| "corroborated"            | the project has been officially agreed upon in a legally binding framework with a clear timeline and a secured allocation of funds                                 |  |  |  |  |
| "legal design"            | the project is approved, and the construction plans are being developed, which in-<br>cludes the design of the traces, environmental studies, and land acquisition |  |  |  |  |
| "tendering"               | certain portions of the project are already being tendered for implementation/con-<br>struction (while other parts might still be designed)                        |  |  |  |  |
| "in partial construction" | some first phases of the project are being in construction while other phases are still stuck in earlier stages                                                    |  |  |  |  |
| "in construction"         | the project is mainly being constructed; the design has been completed                                                                                             |  |  |  |  |


Table 2: Overview of classification for infrastructure project stages.

| affected<br>city #1 | affected<br>city #2 | new direct connection | new time<br>[min] | reduction<br>[min] | implementation<br>status | completion<br>date |
|---------------------|---------------------|-----------------------|-------------------|--------------------|--------------------------|--------------------|
| Valladolid          | Santander           | no                    | -                 | 60                 | in construction          | 2030               |
| Sheffield           | Leeds               | no                    | 40                | -                  | corroborated             | 2041               |
| Dresden             | Prague              | no                    | 60                | -                  | legal design             | 2045               |
| Vilnius             | Riga                | yes                   | 114               | -                  | in partial construction  | 2030               |
| Perpignan           | Toulouse            | no                    | -                 | 16                 | tendering                | 2045               |
|                     |                     |                       |                   |                    |                          |                    |

#### Table 3: Simplified example of the infrastructure project table (full version available in Appendix C).

However, some infrastructure projects do not indicate the exact travel time reduction in advance but rather make it dependent on the infrastructure's upgraded properties. This usually centers around electrification and signaling improvements. For example, the Estonian rail network is to be partially electrified, thereby also increasing the Vmax. In these cases where no quantified travel time reductions are published, the improvements are computed with the help of the infrastructure-based routing tool. For each infrastructure section (either a full city-to-city connection or a shorter stretch along a route) that is to be upgraded, the routed paths are retrieved. The idea is then to adjust the Vmax of the infrastructure segments to match the new upgraded speed.

Yet, it would in most cases be wrong to increase the Vmax for absolutely all infrastructure segments along the path since slow passing points inevitably remain after the upgrades. This is due to external limiting factors such as track geometry and curvature or level crossings that are not improved by signaling or electrification. Hence, it must be decided which infrastructure segments should be adjusted. Therefore, the frequencies of all Vmax (weighted by segment length) are cumulated in ascending order. Then, a 0.3333 threshold is applied to retrieve threshold velocity above which the tracks are to be upgraded. Thus, tracks belonging to the slowest third will remain unchanged while the Vmax of all other tracks are set to the new improved value. The selection of the 0.3333 threshold is based on visual investigations of the spatial distribution of track velocities (by the help of a similar but more detailed map as the one in Figure 3). Based on the updated infrastructure track data, the routing is then simply repeated. The new travel time can then be deducted from the original one for the same section in order to identify the relative reduction. Figure 14 visualizes this process. It is important to note that this method of retrieving travel time reductions affects potential travel times, and not realistic travel times. This is therefore clearly indicated in the collection of reductions so that it can be handled accordingly during later analyses.



*Figure 13*: Visualization of the infrastructure-based computation of travel time reductions. Source: own illustration.

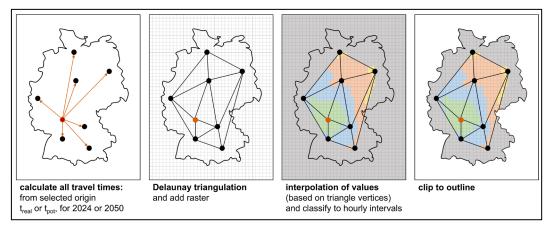
## 3.6.3 – Impact Implementation

Once all projects and corresponding impacts on travel times are collected, they have to be added to a new version of the network. In other words, the original (current) travel times of each connection affected by infrastructure projects has to be updated with the new one – and new connections have to be added wherever necessary. Here, it is preferred to use the absolute new travel times if possible. If no absolute value is indicated, the relative reduction is applied. At this point, the different types of travel times come into play since only the same travel time types can be compared, replaced, and deducted from each other. This means that only one out of the realistic and potential travel times associated with each connection can be adjusted initially. For instance, the Dresden-Prague connection indicates a new realistic travel time of 60 min. Therefore, the original realistic travel time of 133 min is being replaced. Meanwhile, the 96 min of original potential travel time remain unchanged at first.

Yet, in order to enable full comparability of the current and future scenario, an adjusted (new) potential travel time has to be determined too. This reconnects to the regressions computed earlier. With the help of the stored regression values, the future potential travel time can be calculated form the future realistic travel time – and vice versa. For domestic connections, the domestic regression is applied if available. Otherwise, the European overall regression is used. For international connections, the average regression equations of all involved countries are used. If one or multiple of the involved countries has no regression value, only the average of the remaining ones is used. If no regression is available for any of the country, the European average is applied. In the previous Dresden-Prague example, the average of the German and Czech regressions is used, resulting in a future (regressed) potential travel time of 37 min.

By this procedure, every existing connection is updated with both the new potential travel time and the new realistic travel time. It is however important to be aware that the estimated value (computed via regression) can be a potential source of uncertainty; outliers may occur. Nonetheless, this method is preferred over the pure relative reduction of travel times (e.g., the realistic travel time for Dresden-Prague is reduced by 54.88%, therefore the potential travel time would be reduced by the same fraction to a new 54.68 min). Due to the relatively high goodness of fit of the regressions as well as the appropriate sample size leading up to it, the relative approach is deemed less accurate. For cities with a new direct connection, no current direct travel times are available. There, it is remarked that the connection has been newly established, and no direct link existed prior to that. Furthermore, the connections without current services (i.e., no current realistic travel time) but with existing infrastructure (i.e., existing potential ravel time) are also equipped with a future realistic travel time through the same regression-based method. This is justified by the assumption that rail services in a future scenario will be re-established on links with existing infrastructure due to clear environmental benefits.

This eventually results in two main networks: one containing only the current links and one consisting of all future connections, equipped with current and realistic travel times for both the current situation and future scenario. These two fully comparable networks in combination will eventually represent the very core of the following analysis. Thereby, the analysis will particularly compare the realistic travel times of the current and future scenario since these are the least abstract ones. The potential travel times are thereby only of secondary relevance for the actual analysis, but instead play an important role in generating the network and implementing the project-related changes of travel times. The exact values for each network connection can be found in Appendix D.


# 4 – Methods II: Analyzing the Network

For the comparison of the two scenarios, i.e., the two networks, different methods are applied depending on the specific focus of analysis. This involves a palette of different approaches that are a result of an interplay between various quantitative applications and geovisual tools. The following section provides a general explanation (and potentially a technological insight) into the various method components that will be referred to in the results section. It is important to note that, unless indicated differently, the analysis will generally address realistic travel times.

## 4.1 – Isochrones

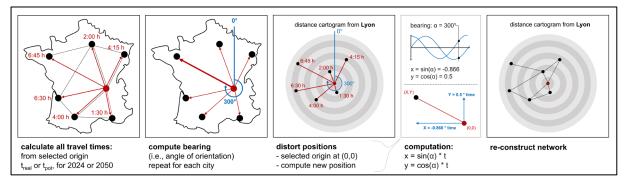
A powerful tool for visualizing changes in accessibility and travel times are isochrones. They are a type of isopleth map, which means they illustrate regions of equal values – in this case, equal travel times from an origin point. For example, an isochrone representing a one-hour travel time would encompass all locations reachable from the origin within one hour. Isochrone maps are particularly useful for showing accessibility changes on a larger scale. In comparing the current and future scenarios, they provide an overview on the rough magnitude of change.

For this thesis, raster-based isochrones are generated with the help of Delaunay triangulation interpolation. A regular raster is set up across the entire continent and a set of non-overlapping (Delaunay) triangles are calculated. For each specific input city (i.e., origin), the fastest travel times to all other cities are calculated. The destination locations and travel times then serve as input points for the interpolation. Every raster grid cell thereby receives a value, based on linear interpolation between the values at the containing triangle's vertices. This results in a continuous field which can be clipped to Europe's outlines. For visualization purposes, the travel times are then classified into hourly values (e.g., travel times up to 60.0 min are categorized into the "reachable within one hour", and so on). This entire procedure, sketched in Figure 14, can then be applied to all desired origin cities, for both realistic and potential travel times.



*Figure 14*: Example visualization of the Delaunay triangulation travel time interpolation process. Source: own illustration.

The Delaunay triangulation interpolation is chosen over other approaches (such as regular grid interpolation) as it is said to be most advantageous for cases where the input points and values are not exactly distributed evenly across space (Chen & Xu, 2004) which is the case for this particular city selection. The python package LinearNDInterpolator is used for the technical implementation. However, Chen & Xu (2004) also point out that this method's accuracy is highly dependent on the prior triangulation result and hence relies on a profound triangulation algorithm. Furthermore, values can only be interpolated within the extent of the triangulation, as is sketched in Figure 14. Extrapolation is thereby not recommended due to high uncertainties. Besides this, there is a conceptual shortfall associated with the spatially continuous visualization of a non-continuous property. The interpolation results with travel times even for


regions that are very far from any rail lines – such as islands, larger water bodies, or remote rural areas. Also, locations along high-speed lines might appear as rapidly accessible which in reality is not the case. Despite the limited quantitative information content, isochrones provide valuable qualitative insights into the spatial extents of accessibility and are appropriate tools for visually grasping the dynamics of change.

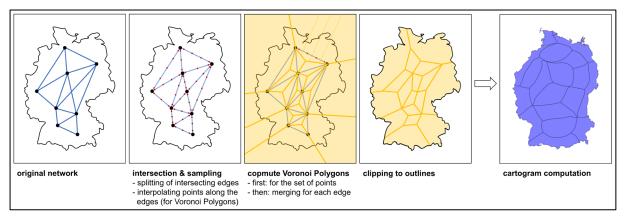
## 4.2 – Cartograms

## <u>4.2.1 – (Centered) Distance Cartograms</u>

Of more quantitative value are centered distance cartograms. In this application, they bend space around a selected origin to match the corresponding travel times. Cities with more efficient connections move closer, slower connections shift apart. These more abstract visualizations help to identify specific patterns of change. The following approach is inspired by Tom Carden's London Tube Map (Carden, 2005). Since no exact methodology is presented, this implementation is the result of trial and error. The basic concept is to select one city as center of the graph around which all other cities are to be positioned whereas their distance to the origin is proportional to the shortest travel time between both locations. Furthermore, the spatial arrangement of nodes should maintain the geographic structure as far as possible.

This means that the shortest paths from one selected input city to all other nodes are computed first. Additionally, the bearing (i.e., angle of orientation) is determined for every city (check Figure 15 for a better understanding). The cities' new positions are calculated via trigonometry whereas the sine and cosine of the bearing represent the relative proportions of the x- and y-axes. These are then multiplied with the travel time in order to identify the actual coordinates. Edges can then be reconstructed either fully or by only including those being part of a shortest path. This procedure is uniform and can be equally applied for all desired input origin nodes as well as potential and realistic travel times. Yet, this approach poses the risk of loss of geographic context due to the abstraction of spatial relationships. Nonetheless, it benefits from its dedicated focus on the pure network itself and avoids misleading outliers. The exact matching of visual and topological distances allows for precise quantitative analyses with a particular focus on the network's structure and functionality itself. These cartograms therefore mainly serve to enhance the author's understanding of the changes in city connection patterns and play a substantial background role for interpreting the quantitative results.




*Figure 15*: Illustration of the process of producing distance cartograms, including the position distortion. Source: own illustration.

## 4.2.2 - Time-Space Cartograms / Contiguous Area Cartograms

In addition to the centered approach, non-centered cartograms help for understanding the full-European rail connectivity. The basic principle is very simple: all nodes are rearranged to match mapped distances with actual travel times. The resulting city distortion vectors are interpolated which allows for distorting an entire map extent (Spiekermann & Wegener, 1994). However, topological distances do not follow the laws of geometry which poses a challenge to the implementation, especially for complex networks. Nonetheless, there are approaches that manage to provide decent approximations, for instance via multi-dimensional scaling (e.g., Shimizu & Inoue, 2009). One common problem in multi-dimensional scaling and other optimization algorithms is, however, that topography is not necessarily respected which potentially leads to confusing misplacements. Solutions to this problem have been developed, for instance by a stepwise approach (Shimizu & Inoue, 2009). Yet, these conventional methods are not appropriately applicable within the limited scope of this thesis due to the network's topological complexity.

Instead, a self-developed approach is implemented which aims to approximate time-space cartograms with an alternative method. As is summarized in Figure 16, the idea is to compute Voronoi/Thiessen Polygons (i.e., spatial units containing all points closest to the corresponding edge) around the network edges. These then serve as spatial units for being inflated or deflated based on the corresponding edges' travel times. To avoid topological faults, intersecting edges are first split up. Their travel times are recomputed based on the fractional length<sup>5</sup> of the intersected edges, thus preserving the topological accuracy. For computing the edge Voronoi polygons, a high number of points are sampled along each edge. Voronoi polygons are then computed for the points and afterwards merged by edge, before clipping them to Europe's outlines. For computing cartograms, an absolute value is needed for each polygon which eventually decides on how inflated/deflated it should be. It was decided to transform each edge's area by the edges' velocity in relation to the overall average velocity<sup>6</sup>. To enhance the contrast between efficient and slow nodes, the ratio is squared and multiplied by the polygon's area. This ensures that the Voronoi polygon's nature of uneven spatial extent (especially in edge cases) is taken into account, which avoids misleading outcomes. The eventual result then represents the area to which each polygon is to be deflated/inflated. Deflated areas stand for more efficient connections; inflated areas represent less efficient edges.

The computation is done with the help of the python cartogram 0.0.2 package which is based on the well-respected algorithm proposed Dougenik et al. (1985). The algorithm's age might however also imply that more sophisticated ones exist by now. Furthermore, the overall Voronoi-based cartogram concept comes with limitations due to the linear nature of network edges and the clipping to the country outlines. For instance, connections such as the Channel Tunnel, Oresund Bridge, or Messina Ferry are not represented ideally. In general, this method's accuracy is highly dependent on the layout and level of detail found in the network. It therefore serves no quantitative measures but provides a qualitative overview that allows for roughly comparing the connectivity and efficiency within the rail network in different regions of Europe.



*Figure 16*: Schematic example visualization of the self-made Voronoi cartogram production. Source: own illustration.

<sup>&</sup>lt;sup>5</sup> In this particular context, Euclidean distances based on the selected coordinate reference system are used instead of real-world metric distances. Since the transformation is analyzed visually only, it makes sense to assess the travel times in relation to the "visual" (i.e., Euclidean) distances.

<sup>&</sup>lt;sup>6</sup> This refers to "visual velocities", i.e., visual distances (Euclidean distance in the coordinate system) divided by the travel time. The visual velocity's unit is coordinate units per minute.

## 4.3 – Network Metrics

Besides the application of visual methods, the two (current and future) networks also allow for quantitative assessments with the help of network metrics. Such metrics can provide valuable information about the structure, behavior, and functionality of the network as a whole, but also highlight the importance of individual edges or nodes. There are countless different metrics at the node, edge, and network level. Yet only a limited selection of these metrics are actually useful for this research's specific type of network(s). The reason for this lies within the network's structure which is inherently influenced by the initial city selection rather than by organic network formation. Since not all possible connections are represented, this might skew metrics that predominantly address the network's topology. Presented in Table 4 is a description of the most basic and popular metrics with an assessment of meaningfulness for this thesis' scope.

**Table 4**: Overview of selected network metrics (not) considered for work, with comment on relevance within the context of this thesis. It is important to note that metric names may vary depending on the author and context.

| level   | metric name                       | description                                                                                                                              | relevance |
|---------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| node    | node degree                       | the number of edges connected to a node, indicating its immediate connectivity                                                           | none      |
|         | node close-<br>ness centrality    | indicates how close a node is to all other nodes in the network, based on the shortest paths                                             | high      |
|         | node between-<br>ness centrality  |                                                                                                                                          |           |
|         | eccentricity                      | the maximum shortest path distance from a node to any other node in the network, representing its farthest reach                         |           |
|         | eigenvector<br>centrality         | a measure of a node's influence, taking into account the number of direct connections and the centrality of the connected nodes          | low       |
| edge    | edge between-<br>ness centrality  | the number of shortest paths passing through an edge, indicating its importance in information (i.e., traffic) flow                      | high      |
|         | edge<br>connectivity              | the minimum number of edges that must be removed to disconnect the network, reflecting its robustness                                    | none      |
| network | average short-<br>est path length | the average distance between all pairs of nodes, representing the network's navigability and interconnectivity                           | high      |
|         | network<br>diameter               | the longest shortest path between any two nodes, indicating the maximum distance in the network                                          | moderate  |
|         | network<br>density                | the ratio of the number of edges to the total possible edges, indicat-<br>ing how dense the network is                                   | low       |
|         | clustering                        | the degree to which nodes in the network tend to cluster together, forming tightly interconnected groups                                 | none      |
|         | modularity                        | measures the strength of division of the network into modules or communities, where nodes are more densely connected within modules      | none      |
|         | network<br>centralization         | measures the degree to which the network is centered around a few highly connected nodes                                                 | low       |
|         | resilience                        | the ability of a network to maintain or quickly restore its functionality and performance after facing disruptions, failures, or attacks | low       |

As a result, only very few of the more common network metrics remain of particular interest for this thesis' context. The most relevant metrics applied in this thesis will be the average shortest path length (ASPL), network diameter (NDim), edge betweenness centrality (EBC), node betweenness centrality (NBC), and node closeness centrality (NCC). The full dataset of computed EBC and NBC/NCC values are listed in Appendix E-F. The aforementioned issue is also present in the literature surrounding transportation networks. Consequently, several authors have proposed new measures that fit their network type and are tailored to their specific scope of research (Almotahari & Yazici, 2021; X. Chen et al., 2024). However, since this thesis only focuses on the travel times and does not address the frequencies and capacities of nodes and edges, these transportation-specific network metrics usually are not applicable either. Therefore, only the few most informative network metrics are applied and compared between the networks. They are either computed manually or with the help of the respective network package's functions in python. In certain cases, such as the ASPL, the metrics can only be applied to a fully interconnected network. Since the selected European cities do not enable a full network interconnection, the largest connected part (i.e., the full network excluding Ireland, Northern Ireland, Corsica, Sardinia, and Albania) is used whenever necessary. Relating to this, a problem arises from connections that are currently not operated but are assumed to run in the future (with travel times computed via regression). This must be taken into consideration during the interpretation of the results.

## 4.4 – Further Analysis Approaches

## 4.4.1 – Relative Travel Time Reductions per Edge

Among the slightly more complex analyses is the computation of the relative change of travel times for each affected edge. The complexity sources from the fact that, as was introduced earlier, the changes in travel times were originally only available for one type (either infrastructure or timetable-based) while the other type was computed via regression. Hence, for comparability reasons, it was decided that relative reductions would only be computed for the travel time type in which the project impact was originally indicated. For instance, this means that if the project's impacts are announced as timetable-based improvements, only the current and future realistic travel times are compared to each other. For the actual computation, every edge affected by any project is worked through. Edges that currently are not operated but receive a realistic travel time in the future scenario thanks to the regression are thereby highlighted separately, but no change in travel time is computed for them. For each link affected by projects, the current travel time is retrieved. This is done through finding the shortest path between the two cities within the current network, which in most cases would simply be the original direct edge. Wherever projects represent a new direct connection, the shortest current path involves more than one edge from the current network. The current and future travel times are then used to compute a ratio of reduction which eventually results in values between 0 (no improvement) and 1 (entirely new link). The full results are listed in Appendix G. A value of 1 is thereby only achieved by links between city pairs that were not connected at all earlier. These resulting reductions can then be analyzed, for instance by flow/line maps and in relation to the topography – which might provide insights into clusters and topographical patterns of impacts.

## 4.4.2 – Specific/Individual Project Impacts

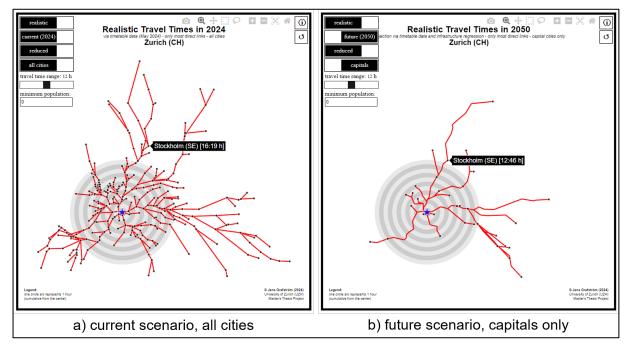
Furthermore, it also makes sense to analyze the impacts of individual projects to the full network. This particularly addresses distributive effects and serves to identify critical edges and projects within the network. For this purpose, two different kinds of approaches are chosen. First, the impacts every single upgraded edge alone are assessed. While iterating through each affected edge, the current network is updated with only the respective edge's improved travel times; the rest remains unchanged. For this new network, network metrics are retrieved and compared to the ones corresponding to the original (current) ones. In this case, due to the European context, the ASPL is used (in terms of realistic travel times). The relative change between the current and simulated ASPL thereby stands for the impact that the particular project alone would have. This reveals lots of information about the project's individual importance on a European scale. Similar to this procedure, each edge's inverse impact is analyzed as well. This means that all project impacts are implemented, apart from the specific one which is to be analyzed. Again, the ASPL of the future scenario (with all projects being implemented) can be compared to the value resulting from the simulated version (where exactly one project is not implemented, but all other ones are). The relative change of the ASPL thereby represents the dependency on the edge currently analyzed and hence showcases vulnerability. The results are then ideally visualized with flow maps for adding a spatial component. All computed values are available in Appendix G.

## 4.4.3 – Focus on Certain Cities (Specific Network Components)

As a further attempt of adding a sociodemographic layer to the observed spatial patterns of change, the network can be limited a smaller version based on a certain set of cities. In particular, this refers either to capitals only, or to cities with a specific population size. In both cases, the procedure to generate a new analyzable network are identical: first, the relevant cities are selected. Next, for every pair amongst the remaining cities, the shortest paths within the existing network are computed (based on realistic travel times). All edges being part of one of the shortest are kept (and optionally summarized into a new direct edge) while all remaining ones are discarded. The result can be computed from both (current and future) input networks. The resulting networks can then be treated exactly the same way as the other ones. In addition, these high-focus cities are also assessed in terms of accessibility from the remaining cities. Herein, the current and future travel times to the capital and closest metropole are computed and analyzed in their relative changes. The exact resulting values are available in Appendix H.

## 4.4.4 – Implications for Travelers

For analyzing how the rail network affects travelers, the focus is furthermore shifted toward travel times from certain cities. Besides the comparison of the NCC, the reachability was of major interest. Reachability is herein definable as the number of cities that can be reached within a certain time from a particular city. For every single city, this number is therefore computed for a predefined threshold, for both the current and future scenario. The difference (in detail available in Appendix I) then reveals the increase of reachable cities.


Furthermore, the changes in travel times are analyzed in comparison to Europe's most popular air routes since this aligns with the thesis' relevance of promoting a shift toward sustainability. Europe's most popular air routes are retrieved from Eurostat (2020), based on 2019 records. The pre-pandemic dataset contains a set of all recorded air routes within Europe (i.e., from airport to airport) and their passenger volumes. Turkey is however not included. These flights are then summarized to city-to-city routes, i.e., without differentiating between airports. For instance, the flights between London Heathrow and Paris Orly as well as London Gatwick and Paris Charles de Gaulle would count into the same record for Paris-London flights. From this, the top 1000 most popular flights are selected for the analysis. It can then be assessed how long air routes currently take to be travelled by train – and how this will change in the future. The full dataset, including the analyzed changes, is available in Appendix J.

## 4.4.5 – Case Studies

Lastly, it is meaningful to pick a few specific projects which serve as case studies representative of certain dynamics and processes surrounding the development and impacts of rail infrastructure upgrades. The different case studies are selected for very particular individual reasons which are elaborated later on. Each project is assessed in its pure individual impacts, its role within the European rail network, the differences between local/regional and continental outcomes, and the strategic project background. They therefore represent a thematic extension to the mainly data-based full-scale overall analysis of Europe's railways. This allows for illustrating different types of projects and outcomes and further supports a better understanding of the complex nature of rail infrastructure expansion.

## 4.4.6 – Interactive Component

Due to the high number of cities and connections, it was furthermore decided to implement the visualizations in an interactive manner. This means that it should be possible to dynamically switch between visualizations for different cities and scenarios. This is mainly implemented for the cartogram and isochrone visualizations with the help of a python flask web app. Besides that, more basic illustrations are created in the format of simple web maps, with the help of python folium / leaflet packages. While the interactive component is not essential to the written paper as such, it is highly useful for enhancing the author's understanding of the complex dynamics involved in rail upgrades. The interactive version therefore serves the author to interpret the results, especially the quantitative ones. Furthermore, the interactive tools might also be helpful for communicating the results. Yet, this is not the main target of this thesis which is why the interactive components are rather rudimentary and (as of hand-in date) will not be majorly published as such – even though the technical components are being shared publicly at the aforementioned GitLab repository (see section below). The geovisual use of such methods for a better understanding of such topics might instead be part of future work.



*Figures 17 a-b*: Screenshots of interactive linear cartogram web app. The pop-up appears when hovering across any given city. Cities can be clicked to visualize their respective cartograms. Different scenario combinations are possible: realistic vs. potential travel times, current vs. future scenario, reduced vs. full network, capitals vs. all cities, as well as population thresholds. The number of time ranges (i.e., circles) can be varied as well. Source: own illustration.

## 4.4.7 – Publication of Technological Component

The code and the most relevant files are publicly available at:

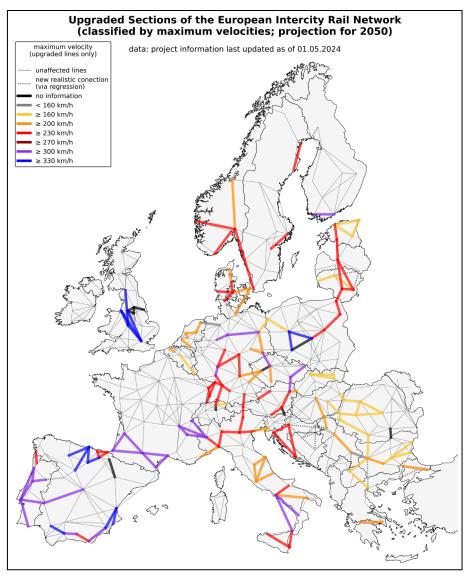
https://gitlab.uzh.ch/giva/public/masters/euro\_train\_expansion\_jens\_grafstroem.git

In case of any errors or other issues during accessing the data, please contact the author.

# 5 – Results I: Full-Network Impacts

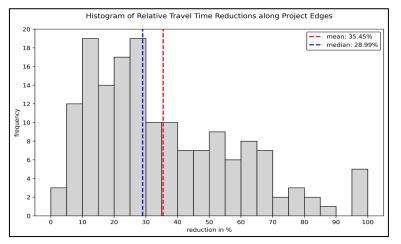
## 5.1 – Projects and Their Overall Network Changes

Before adding any project-related changes, the original intercity network forming the basis of this analysis consists of 683 connections. Their potential travel times sum up to 1'051 h 36 min (or 63'095 min). 26 of all connections are currently not actually served by trains. The realistic travel times on the remaining connections sum up to 1'574 h 45 min (or 94'485 min) in total. This already shows the contrast between potential and realistic travel times; the latter being around 49.74% higher than their potential pendants.


Meanwhile, the gathered infrastructure projects will affect 139 of the 683 connections within the current network. If weighted by track length, this corresponds to a fraction of 20.44% of the network that will be at least partially improved. Adding to this are 22 new network connections. These emerge either from entirely new lines being built or from upgrades on existing lines that improve the connections enough for them to become a shortest path within the network. In total, 180 of the 335 cities are part of at least one affected connection. As becomes evident in Figure 18, the overall 161 new/improved connections serve almost every included country; the few exceptions being Montenegro, Kosovo, Bosnia and Herzegovina, Moldova, Liechtenstein, and Ireland.<sup>7</sup> However, this does not mean that construction will actually be ongoing in all other countries since rail projects on international connections benefit both countries even if only one of the two is carrying out track work. Despite this share being highly dependent on the network's scale and city selection, it is interesting to observe that 36 of the 161 affected connections (i.e., 22.36%) are international. This closely relates to the ratio of international connections do not receive particular interest but also are not neglected neither.

From a temporal perspective, it is highly interesting to see that construction on 112 of the 164 projects (three lines come with multiple separate projects) is planned to be completed by 2030. In the meantime, only a mere 26 of the currently known projects are scheduled to be completed between 2040 and 2050. Whether they will actually be finished according to current schedules (which in some cases already had to be adjusted) remains unclear. What gives hope is that 103 projects are currently in the "in construction" stage while another 28 are in the "in partial construction" phase. Nonetheless, rail projects usually remain very time- and resource-consuming. However, the completion of multiple projects by 2030 would certainly contribute positively to the corroboration of further projects – which would be very valuable in terms of sustainable mobility.

A more technical insight into the planned projects reveals an interesting tendency regarding the planned Vmax (i.e., design speed) of the 161 upgraded/new lines. As can be seen in Figure 18, the new Vmax is equal to or greater than 350 km/h on 14 connections. Speeds of 300 km/h or more will be realized on another 28 lines, i.e., 42 lines in total. In a wider sense, a total of 93 of all 161 affected lines are going to host Vmax of 230 km/h or more. Additionally, 200 km/h or more are realized on 119 connections. Only three connections are to be operating at a new Vmax of 120 km/h which represents the lowest project design speed observed within this thesis' context. This reveals a clear tendency toward higher-speed and high-speed rail for intercity connections. However, the presence and importance of higher-speed and high-speed rail could be anticipated in advance since this thesis focuses only on travel time improvements and generally neglects pure capacity expansion projects.


<sup>&</sup>lt;sup>7</sup> Nevertheless, relevant rail projects are currently being discussed or even close to initialization in all of these countries, except for Liechtenstein (where "only" track maintenance is planned which does not affect travel times). Though, these projects were not yet corroborated as of the deadline of this thesis' project information gathering.

When comparing the future network to the current one, the sum of the potential travel times is reduced by 2'818 min (46 h 58 min) which corresponds to a reduction by 4.47%. However, this also includes new edges; the absolute difference is therefore of only minimal informative value. This is even more obvious when analyzing the changes of realistic travel times: due to the addition of values to currently non-operated edges (via regression), the sum increases by 1'113 minutes. The absolute changes of overall travel times are therefore not as indicative of the actual changes – but this will be resolved later.



*Figure 18*: Visualization of impacted lines in the European intercity rail network's projected future scenario, classified by planned Vmax along the lines. Source: own illustration.

The impacts differ significantly from project to project. Standing out are connections that overcome current gaps in the rail network. Thanks to those improvements, cities that had not been connected by rail at all or only via extensive detours will be reachable efficiently. This particularly concerns southeastern Europe (e.g., Sofia-Skopje, Patras-Athens, Durres-Tirana and Subotica - Novi Sad) but is also present in the Baltics (e.g., Pärnu-Riga and Tallinn-Pärnu) as well as the Iberian Peninsula (e.g., Murcia-Almería, Braga-Vigo). Significant reductions are also achieved along existing connections which so far have only been operable at slow speeds due to poor track quality or challenging terrain. Meanwhile, other connections which already are relatively well-equipped see improvements too. In contrast to previous examples, the resulting travel time reductions are usually not as substantial – even though exceptions do occur (e.g., on the Frankfurt-Kassel/Erfurt line or between Lisbon and Porto). In such cases, the relatively small reductions are typically desired in order to allow for tighter scheduling or similar operational improvements. Overall, the average reduction is 34.45% while the median indicates a slightly lower 28.99% (see Figure 19; full data available in Appendix G). Interestingly, the histogram shown below reveals that most projects group in a range of 5% to 40% of relative reduction. A brief correlation analysis indicated no potential relationship between relative travel time reductions and covered distances. This means that – at least in this particular study framework – the potential of relative reductions is not dependent on the connection's length.



*Figure 19*: Relative Travel Time Reductions (full data available in Appendix G). Source: own illustration.

A more substantial insight into the actual benefits of travel time reductions to the full European context can be provided by network metrics. The ASPL between all city pairs is projected to be reduced by 17.57% for potential travel times and by 10.81% for realistic travel times, as is illustrated in Table 5. Again, it must be kept in mind that the value for the latter now also includes additional links that were not operated before. This explains the lower relative reduction. Nonetheless, the reductions of both the realistic and potential travel times diverge significantly from the raw changes in the sum of travel times addressed earlier. This provides a first hint toward distributive effect: the benefits of a project can reach far beyond the pure travel times reductions between the directly involved cities. In a similar manner, the NDim is reduced significantly for both the realistic and potential travel times. This shows that the network is contracted which indicates that remotely located regions move much closer to the core and are likely better integrated into the network.

When focusing only on capital cities, the reductions of the ASPL between all pairs of capitals are even bigger at 22.26% (realistic) and 14.24% (potential). This in return indicates that there is a tendency that projects are particularly located along corridors connecting the administrative centers of all countries. Slightly lower reductions (though still higher than for the full network) are observed along the corridors between all cities of at least 500'000 inhabitants. There, the ASPL are reduced by 19.79% (potential) and 12.42% (realistic). However, all is surpassed by the changes observed between cities of one million inhabitants or more: here, the ASPL is reduced by 22.92% (potential) and 28.64% (realistic). Especially the last example showcases how the improvements particularly lay on the corridors linking major cities to each other. Especially among the cities of more than one million inhabitants also stand out with a high reduction of the NDim. The current and future longest connection, between Madrid and Istanbul, is reduced by over a third which is a substantial improvement on such a cross-continental line. This all could somehow be anticipated since the highest passenger demands could be expected between such cities which often also serve as important destinations for administrative and economic reasons – and hence are most likely to be considered for rail projects.

| . ,                     |        |                            |                  |                 |                    |                    |
|-------------------------|--------|----------------------------|------------------|-----------------|--------------------|--------------------|
| scale                   | metric | travel time type           | current<br>[min] | future<br>[min] | absolute<br>change | relative<br>change |
| 2                       | ۲L     | potential (infrastructure) | 855.38           | 705.08          | - 150.30 min       | - 17.57 %          |
| twork                   | ASPL   | realistic (timetable)      | 1130.23          | 1008.05         | - 122.18 min       | - 10.81 %          |
| full network            | NDim   | potential (infrastructure) | 2756.31          | 2292.22         | - 464.09 min       | - 16.84 %          |
| ÷                       | a<br>z | realistic (timetable)      | 4118.00          | 3321.24         | - 796.76 min       | - 19.35 %          |
| ~                       | ASPL   | potential (infrastructure) | 932.48           | 724.92          | - 207.56 min       | - 22.26 %          |
| capitals only           |        | realistic (timetable)      | 1188.03          | 1018.91         | - 169.12 min       | - 14.24 %          |
|                         | NDim   | potential (infrastructure) | 2712.58          | 2135.90         | - 576.68 min       | - 21.26 %          |
|                         |        | realistic (timetable)      | 3103.00          | 3145.24         | + 42.24 min        | + 1.36 %           |
|                         | ASPL   | potential (infrastructure) | 693.86           | 556.58          | - 137.28 min       | - 19.79 %          |
| population<br>> 500'000 |        | realistic (timetable)      | 899.61           | 787.84          | - 111.77 min       | - 12.42 %          |
| > 50                    | NDim   | potential (infrastructure) | 2712.58          | 2135.90         | - 576.68 min       | - 21.26 %          |
|                         |        | realistic (timetable)      | 3555.00          | 3145.24         | - 409.76 min       | - 11.53 %          |
|                         | ASPL   | potential (infrastructure) | 643.78           | 496.24          | - 147.54 min       | - 22.92 %          |
| population<br>> 1 Mio   |        | realistic (timetable)      | 979.79           | 699.16          | - 280.63 min       | - 28.64 %          |
|                         | NDim   | potential (infrastructure) | 1898.15          | 1350.11         | - 548.04 min       | - 28.87 %          |
|                         |        | realistic (timetable)      | 3072.00          | 2006.83         | - 1065.17 min      | - 34.67 %          |
|                         |        |                            |                  |                 |                    |                    |

**Table 5**: Changes of overall network metrics between current and future scenarios: average shortest path length (ASPL) and network diameter (NDim). Note that realistic travel times might be slightly skewed (as explained above).

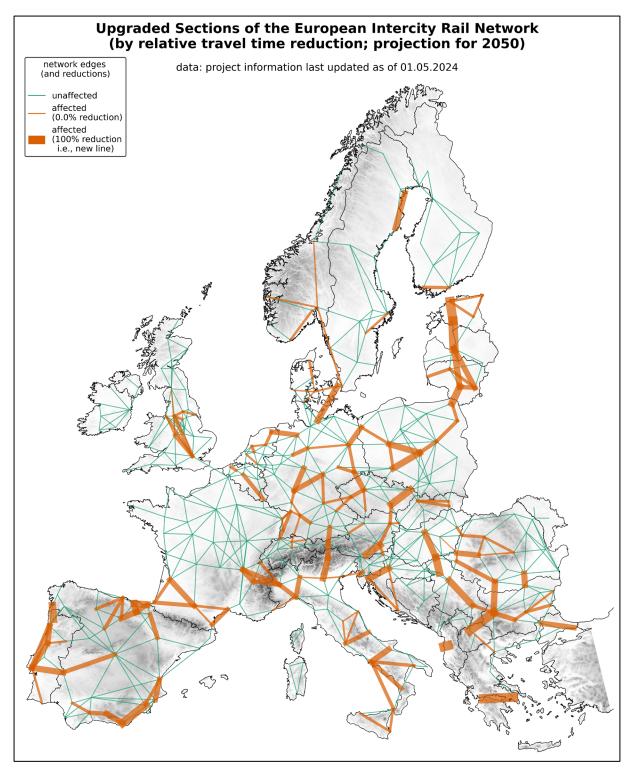
## 5.2 – Spatial Project Patterns and Project Distribution

## 5.2.1 – Geographic Patterns

Even though many parts of the network benefit from the expansion and upgrade of rail infrastructure, it can be assumed that the spatial distribution of project sites and the consequent impacts vary across Europe. This is the result of various factors such as the topography and geography, economic structure, and historical and political developments of/within a country. Of particular interest are herein territorial boundaries and topographic hindrances, as was already teased in the introduction. Figure 20 thereby visualizes the relative travel time reductions along each edge affected by projects and provides an additional topographic and territorial layer for identifying patterns.

A first striking observation can be made in the alpine region. Mountainous terrain is well-known to be a common factor slowing down rail operations. Therefore, the construction of tunnels and viaducts can significantly reduce travel times. As a consequence, it is no surprise that some of the most drastic travel time reductions are to be expected around the Lyon-Turin line, the Graz-Klagenfurt section, and the Munich-Innsbruck-Verona connection. Besides that, Figure 20 reveals further instances where particularly mountainous topography is overcome by infrastructure projects. To be specific, this concerns the connection in southern Norway, between North Macedonia and Bulgaria, the Italian links across the Apennine mountains, and the northern

and southern parts of Spain. This interesting pattern reveals how much potential for travel time improvements are hidden in large-scale challenging terrain. Yet, said projects are usually only realizable with high financial investments – which most likely is the reason why so much potential remains in the first place.


Meanwhile, no clear pattern can be found regarding larger bodies of water. The only instances where such projects are being constructed are the Third Tagus Crossing in Portugal, and the Fehmarn Fixed Link between Denmark and Germany. While these two projects are expected to allow for significant travel time improvements, they require particularly high financial investments, too. Furthermore, Europe's geography provides only few locations besides the already well-established Channel Tunnel and Oresund Bridge where such projects could possibly make sense to be implemented. Occasionally, though, spectacular mega-projects emerge, for instance a bridge-tunnel combination between Helsinki and Tallin is regularly discussed vividly (Peda & Vinnari, 2022). However, in the current setting of corroborated projects, sea-crossing rail infrastructure only represents a tiny fraction. Nonetheless, as the Fehmarn Fixed Link illustrates, such projects can come with a high potential for travel time improvements on local but also (potentially) continental scales – in case they are actually being implemented.

These large-scale topographic hurdles can however also crucially limit travel times on smaller scales which may not have become as apparent from a continental perspective. For instance, Switzerland is home to two smaller tunnel projects improving connections from Zurich toward the east and south. Along Italy's Ligurian coast, a tunnel will improve travel times between Genoa and Nice. On the line from Dresden to Prague, a tunnel will be constructed as well. Between Bremen and Groningen, a bridge will be (re-) built across a river for improved cross-border connectivity. The list of projects particularly overwinding medium- or small-scale topography goes on much further. Obviously, topography at all scales is one major reason to why rail lines are not yet smooth and (relatively) straight and therefore require improvements for achieving shorter travel times. Hence, it is unsurprising that most projects to some degree involve improved track layouts and replace older lines limited by the surrounding topography.

The second main reason for suboptimal track layouts or network disruptions is anthropogenic. Besides human settlements this also includes political and territorial boundaries. Figure 20 hints toward the assumption that newly constructed or upgraded international connections may come with particularly high relative travel time reductions. The average relative reduction on the 36 affected international connections is 41.70%; the median lies at 40.86%. This is clearly higher than the mean and median reductions (33.65% and 27.77%) of the domestic affected connections. This substantiates the theory that the currently relatively poor cross-border connectivity and the predominantly national focus of rail planning have resulted in a distinct potential to improvements which is now slowly being exploited. However, this does not necessarily mean that construction work actually takes place on both sides of the border. Instead, significant improvements can already result from designated efforts of one country improving their connections toward the border. In these cases, the potential of travel time reductions along international corridors consequently could likely be even further taken advantage of.

## 5.2.2 – Clusters of Projects

Besides the arrangement of projects in relation to geographic features, it is also worth focusing on how projects interact with and relate to each other. Thanks to geovisual methods, it is possible to manually identify projects which might be part of a corridor or some greater strategy without necessarily being officially designated as such. Those project clusters can also be interpreted as an abstract visualization of political and economic schemes surrounding railway planning and operation at various scales. Table 6 provides an insight into the identified clusters and gives a short excurse to its backgrounds and basic impacts.



*Figure 20*: Relative travel time reductions of upgraded intercity rail network sections. Background: topographic map of Europe, depicting altitude/elevation. Source: own illustration.

 Table 6: Overview of Major Identified Project Clusters/Corridors. Note that the figures are not to scale.

 Figures 21 a-o (not labeled): Visualizations of referred project segments. Source: own illustration(s).

#### visual snippet proj

### project name and description



#### Black Sea - Hungary Corridor(s) (Romania/Bulgaria/Turkey – Budapest)

This assembly of rail projects improves the connectivity across the Balkan region and provides enhanced access to Turkey and the European Black Sea ports. Most significantly, there are two competing rough corridors toward Budapest, which acts as a gateway from Southeastern to Central, Western, and Northern Europe: one via Romania (EU member state) and one through Serbia (no EU member state). This political controversy is especially present in the financial supports for projects in the respective political regions. The most notable travel time reductions are found on the Nis – Belgrade – Budapest corridor (up to 80%). More information: section 6.1.



#### Rail Baltica (Warsaw - Bialystok - Kaunas/Vilnius - Riga - Tallinn)

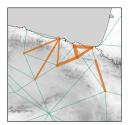
Rail Baltica is a high-speed normal-gauge rail project connecting the Baltics via Warsaw to the rest of Europe, particularly the Central and Western parts. It is of high geopolitical relevance in its function to provide rapid access to the EU and NATO's borders with Russia. Travel times will be reduced by around 30% in the Polish section and up to 80% between the Baltic metropole regions. More information: see section 6.2.

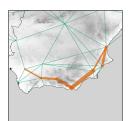
#### Brenner Tunnel + Extended Feeder (Munich – Verona, Genoa – Trieste)

North-East German Upgrades (links toward northeastern Germany)

The Brenner Tunnel particularly attempts to relieve road traffic on the transalpine route through Austria. However, this only works if suitable feeder infrastructure is constructed. It therefore makes sense that tangential connections toward Italy's major northern cities and ports are improved simultaneously. Even though it consequently particularly addresses freight traffic (and mainly aims to improve capacities), passenger connections also significantly benefit by travel time reductions of 45-65% across the Alps. More information: section 6.3.

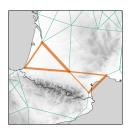
A series of rail projects roughly cluster around/toward Berlin. Even though this could imply some kinds of ties to Germany's divided past, the main reason likely lies within the importance of Berlin as a metropolitan area and rail hub. These projects act as further improvements to well-established high-speed routes. Also, the currently rather




The corridor between Basel and Mannheim/Frankfurt is an infamous bottleneck for the transportation of both goods and passengers. Located on the Rhine-Alpine TEN-T corridor, this route serves as example of issues resulting from national planning and project implementation in the context of continental transportation. Even though corridor improvements mainly address freight traffic, passengers will also benefit of desirable travel time reductions of up to around 30% along these segments.

#### Northern Spain Patch (toward Santander and Bilbao/San Sebastian)


A set of rail projects group around the northeastern region of Spain. This region is one of the few not yet accessible by continuous high-speed rail. Consequently, the lines toward Santander and the Basque region are supposed to help connect these places to the rest of the country, particularly Madrid and Barcelona. These projects become even more interesting in the context of domestic politics since both the Basque Country and Cantabria experience strong separatist movements. Thus, the reduction of travel times by 30-70% might serve more than just economic and logistical purposes – especially regarding the "Basque Y" section in the Northeast.







#### Spanish Southern Mediterranean Corridor (Sevilla – Murcia – Valencia)

In southern Spain, projects aim to improve transportation parallel to the coast, connecting multiple major cities and ports. This aims to expand the initially centralistic layout of Spain's high-speed rail (i.e., spokes coming together in Madrid). These sections are part of the TEN-T Mediterranean Corridor and – despite being planned as high-speed rail lines – will also benefit freight transportation. Most outstanding is the section between Murcia and Almeria where travel times will be reduced by nearly 80%.











### **Southern France Corridor** (*Montpellier/Narbonne – Toulouse – Bayonne/Bordeaux*)

Similarly, a gap in high-speed rail is to be filled in southern France, parallel to the Pyrenees. While most major locations in France are well interconnected by high-speed rail, Toulouse remains a major location that is not reachable as efficiently as others. Unsurprisingly, the air corridor between Paris and Toulouse is one of the busiest in Europe (Eurostat, 2020). Additionally, the connections toward Spain are improved as well. The reduction of travel times between Toulouse and Bordeaux (the fastest gateway toward Paris) are around 55%.

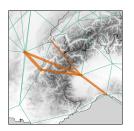
### Central/Southern Italy Patch (Rome – Ancona/Pescara, Naples – Bari/Taranto/Sicily)

As an addition to the Italian high-speed rail system, which is particularly extensive in the country's north, connections from Rome toward the south and Adriatic coast are planned. This aligns with structural and demographic differences between the south and north which are now being overcome (at least partially). Being part of the TEN-T Baltic-Scandinavian corridor, major port towns as well as southeastern Italian tourism locations will benefit from improved connectivity. The reductions range from around 20% on Sicily to 40-60% along routes traversing the Apennines.

### Western Poland Upgrades (Szczecin – Poznan – Wroclaw – Lodz – Warsaw)

As a part of a larger national plan aiming to improve sustainable mobility within Poland, a y-shaped high-speed network will link major western Polish cities to Warsaw. These sections are part of the TEN-T North Sea-Baltic Corridor which also includes the earlier mentioned Rail Baltica project. What makes this case interesting is that the full plan foresaw a spoke-like network of high-speed rails leading toward Warsaw – but is regularly debated and changed. The only corroborated remnants are of limited extent but will nonetheless reduce travel times by up to valuable 65%.

#### **Portuguese Upgrade + Madrid Link** (Faro – Lisbon – Porto – Vigo; Lisbon – Madrid)


Portugal's national infrastructure program plans on establishing high-speed rail along its densely populated Atlantic coast, but also toward the south and neighboring Spain. This includes an efficient link from Madrid toward Lisbon as well as a connection from Vigo toward Braga and Porto. Especially the links from Lisbon to Madrid and Porto are considered highly valuable due to their presence in the TEN-T Atlantic Corridor. Along these stretches, travel time reductions reach around 45-65%.

#### Western Czech Republic Patch (Dresden – Prague – Budweis/Plzen – Bavaria)

While being home to the EU's densest rail network, desires are high to improve operations in terms of efficiency. Besides the prestigious connection from Prague to Dresden, the relatively slow links to the country's Southwest and its German neighbor are to be upgraded. This is of particular relevance in terms since the TEN-T Rhine-Danube Corridor and the Orient/East-Med Corridor merge/split paths in Prague. Furthermore, Prague acts as an exceptional touristic center of gravity in this region which explains why travel time the expected reductions of 20-55% are highly desirable.

#### Trans-Austrian Corridor (Ostrava – Vienna/Bratislava – Klagenfurt/Maribor)

The Koralm Tunnel between Graz and Klagenfurt will represent a new cornerstone of rail connections from Austria, the Czech Republic, Poland, and Slovakia toward Italy. In combination with other major rail projects along this corridor, which is part of the TEN-T Baltic-Adriatic Corridor, a seamless and efficient corridor is established. This is of particular relevance considering the rather disrupted and ineffective layout resulting from the missing connection between Graz and Klagenfurt. Travel times are being reduced by 30-80% which substantially benefits rail travel in this particularly touristic area.

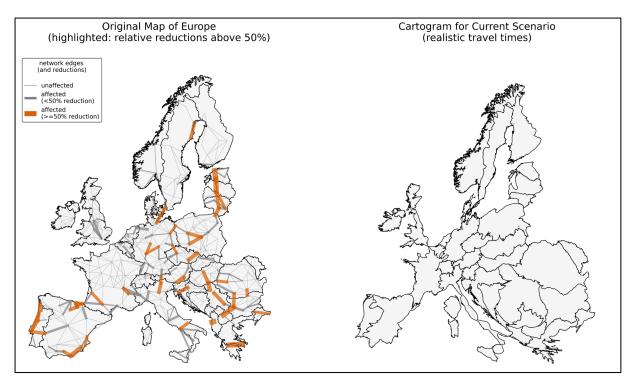


### Euroalpin Tunnel + Feeder (Genoa – Turin – Lyon/Geneva/Grenoble)

Another transalpine tunnel is being constructed across the French-Italian border. This project stands out as the fourth transalpine tunnel (following the Lötschberg, Gotthard, and Brenner Tunnels). It acts to reduce climate vulnerability since natural hazards are commonly disrupting the existing mountainous route. Furthermore, it interconnects two major metropolitan regions efficiently and improves southern France's access to the Italian port of Genova. Travel times are reduced by up to 50% along the transalpine route and its extensions.

#### Network North (London – Manchester/Liverpool, Manchester – Sheffield/Hull)




Following the partial cancellation of the ambitious HS2 project, its remnants have been joined with the Network North program which aims to improve connections from London to Birmingham, Manchester, Liverpool, and from Manchester to Sheffield as well as Leeds and Hull. What makes it special is the uncertainty it is surrounded by. Over the course of recent years, multiple project phases have been announced, cancelled, and rephrased. It is therefore an ideal example of how long-term rail projects struggle due to short-term political legislature periods. Once completed, the link between Manchester and Leeds will experience most travel time reductions (by ca. 55%). From London to Manchester, Liverpool, and Birmingham, reductions of 20-35% are projected.

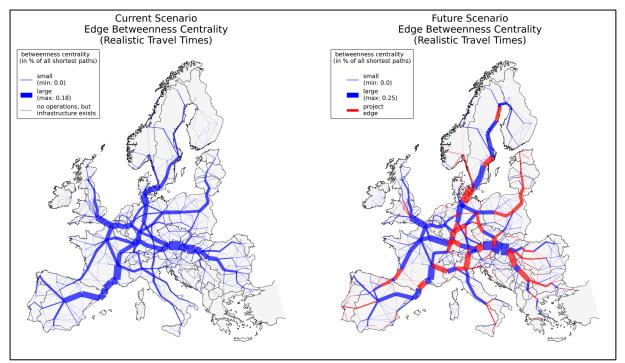
## 5.3 – Distributive Effects and Impacted Regions

## 5.3.1 – Directly Impacted Regions

As the earlier sections revealed, the infrastructure projects scatter across almost all regions of Europe. Of particular interest herein are especially those segments with the highest reductions. For instance, reductions of over 50% are predominantly found in central and eastern Europe, as well as around the Iberian Peninsula. To some degree, this invertedly reflects the status quo of intercity connections in Europe. Wherever solid infrastructure prevails and allows for efficient connections, the potential for travel time reductions is rather limited. Instead, exceptionally high reductions and improvements can be achieved between cities that currently host no connections at all or can only provide rather slow links due to poor track quality or external factors such as challenging terrain. The most significant improvements are therefore found wherever gaps and choke points in the current network are overcome.

This is supported by a quick view at the contiguous area cartogram displayed in Figure 22b. The graph highlights regions of faster and slower rail connections by visually inflating the less efficient regions and deflating the more efficient ones. Unsurprisingly, the majority of Spain and France are significantly contracted. Northern Spain (including its border to Portugal) and the country's southern coastal region as well as Frances' southwest thereby represent an exception: these are the few remaining sections of the network that are not equipped with high-speed rail. This therefore matches nicely with the observation that some of the most significant travel time reductions will occur right there. Similarly, Latvia among the Baltic States appears to be rather inflated – which also is experiencing extraordinarily high travel time reductions. These dynamics are furthermore identifiable in the southeastern European countries which appear as most strikingly inflated. This is particularly true for Serbia, Romania, Bulgaria, and Croatia. This bears an enormous potential for travel time reductions through infrastructure upgrades. Many of the projects in exactly these regions are meanwhile also showing a particularly high travel time reduction. However, this is not always exactly comparable. For instance, high reductions are also found in central Germany which however does not stand out in the cartogram. This shows that travel time reductions can also be valuable in regions that already are above the European average in terms of rail operation efficiency but in a local context act as relatively inefficient connections, thereby showing high potential to substantial travel time improvements.




*Figures 22 a-b*: (a) all project edges with relative travel time reductions above 50%; (b) contiguous are cartogram (based on edge-Voronoi computation) of Europe. The cartogram is scaled by realistic travel times. Connections slower than the European average expand space, faster ones contract space. Source: own illustration.

Another glimpse into distributive effects can be observed when differentiating the impacts more specifically per country. Despite only a certain fraction of all its connections being affected, an entire country can benefit from travel time improvements since some improved sections might be part of the most efficient paths to other locations. This impact can be nicely assessed in the case of Serbia. As can be seen in Figure 22b, this country is one of the most visually outstanding due to its high inflated area, i.e., relatively low connections. For assessing the specific distributive effects, the ASPL within all cities inside of or directly linked to Serbia is used (i.e., direct international links to neighboring countries are included). In the future scenario, the ASPL is reduced by 23.78%. This is a substantial reduction which can mainly be addressed to the Belgrade-Nis corridor's upgrade (with a relative reduction between the two cities of nearly 70%). All connections between the south and north pass through it which makes it an essential improvement for all north-south journeys. Therefore, the benefits reach far beyond the upgraded link – an ideal representation of network effects.

## 5.3.2 - Identifying the Most Important Network Edges

Distributive effects may therefore be particularly expected whenever edges that are of particularly high strategic relevance within the network are changed (ideally in a positive way). This strategic relevance of edges (or nodes) in the context of a full-scale network is commonly understood as betweenness or betweenness centrality. To be specific, the EBC refers to the percentage of fastest routes (among all shortest paths) running through a particular edge. While the results slightly differ between realistic and potential travel times, the following observations are based on the realistic ones; the results are also visualized in Figure 23 and can be studied more detailed in Appendix E. It must be kept in mind that the current scenario of realistic travel times features non-operated connections which are only actively interconnected with the network in the future scenario. This might cause certain metric distortions which have to be taken into consideration. Yet, it realistically serves as an outlook of how the network might change following the revival of existing connections. In accordance with Figure 23a, it becomes clear which network edges currently act as vital veins. In the current situation, the highest frequented edge is between Budapest and Gyor which is passed by 18.39% of all shortest paths within the network. The second and third most in-between edges are Vienna-Linz (18.35%) and Vienna-Gyor (16.55%). This paints the picture of the corridor Linz-Vienna-Gyor-Budapest being the major backbone of connections between Western and Eastern Europe. The fourth-ranked edge is Strasbourg-Karlsruhe (14.97%) which indicates that this stretch acts as an important entry into France, especially toward Paris and beyond. This is followed by the edges Lyon-Avignon-Montpellier (14.93% and 14.16%). This shows how the main pathway from central Europe toward the Iberian Peninsula runs along the Mediterranean coast instead of the alternative path along the Atlantic coast. Unsurprisingly, other edges of high betweenness seamlessly add to the two main corridors above. The Budapest-Szolnok link (13.97%) extends the Linz-Budapest corridor toward the east, while Montpellier-Perpignan-Girona-Barcelona (13.68%, 13.44%, 13.05%) confirms the mediterranean corridor's significance.

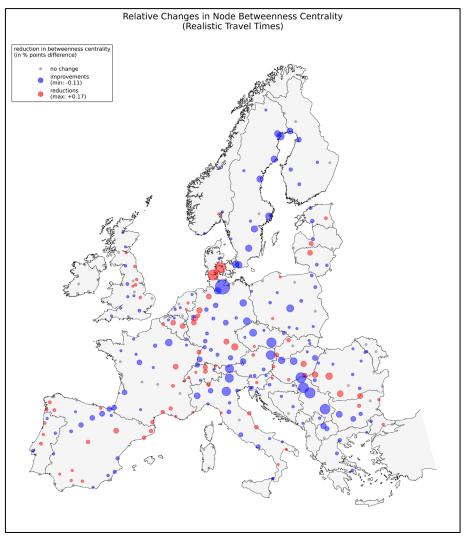
Besides this, two further corridors are indicated by the currently most in-between edges. The series of connections along the Hamburg-Padborg-Odense-Copenhagen-Malmö route achieve betweenness values from 10.74% to 13.26%. This is due to its role as a bottleneck linking Scandinavia with the rest of Europe. Since no other path is available, all shortest paths between the Nordics and the remaining continent have to cross this particular corridor. The same phenomenon can be observed for connections between the United Kingdom and mainland Europe. Since the only rail connection leads to the Channel Tunnel, it is unsurprising that the Lille-London stretch is ranked twelfth in terms of betweenness with 12.50% of all shortest paths passing this section. Lille-Brussels (11.74%) represents the most in-between extension to the Channel, thereby highlighting this link's importance for northbound connections.



*Figure 23*: European intercity rail network classified by edge betweenness centrality, based on realistic travel times, for (a) the current scenario and (b) the future scenario, including emphasis on project edges. Raw data of edge betweenness centrality is available in Appendix E. Source: own illustration.

It might therefore be assumed that edges of high betweenness can be understood as edges that come with a particularly high potential for improvements since their improvements could reach far beyond the project's physical scale. This is however only partially true, as is being addressed in section 5.3.4. Instead, when quantitatively analyzing the future upgraded scenario, the first observation is that the values generally tend to be higher (now ranging up to 24.69%). This is due to the assumption that currently (temporarily) non-operated lines will be revived by 2050. Most importantly, this re-connects Finland via Sweden to the remaining network. What however remains unchanged is that the Linz-Vienna-Gyor-Budapest corridor is at the very top regarding betweenness; hosting values from 18.37% to 24.69%. Most interestingly, this is now directly followed by the edges along the Malmö-Hamburg route which now runs more directly via Copenhagen and Lübeck (instead of Odense and Padborg). These three edges come with betweenness centralities from 16.41% to 16.90%. This highlights how beneficial the Fehmarn Fixed Link might become, as it reduces travel times along a crucial corridor.

However, when shifting the focus away from such core bottlenecks, the future scenario nicely exemplifies how line upgrades can lead to the emergence of new fastest corridors. Somehow surprisingly, the Linz-Salzburg link is now ranked seventh in terms of betweenness with a value of 15.43%. A brief glance at the current scenario reveals that the Budapest-Linz corridor does a y-intersection continuing via Regensburg-Nuremberg and via Salzburg-Munich. While both paths are of relatively equal relevance in the current scenario, the future scenario reveals a clear shift toward the southern route via Salzburg. This change must of course be interpreted in the context of the entire upgraded network, which also includes altered traffic flows thanks to the Brenner Base Tunnel. As a result, the most efficient corridor from the Southeast to the southwest will in the future scenario run through the Brenner Base Tunnel, traverse northern Italy and continue via the Euroalpin tunnel instead of passing through southern Germany. Standing out in a similar way are developments in southeastern Europe. In the future scenario, the new Budapest-Subotica line is highly ranked (13.52%) together with the Subotica-Novi Sad and Novi Sad-Belgrade links (12.65% and 12.53%). In combination, this corridor now represents the main access toward the West Balkans, Bulgaria, Greece, and Turkey. Earlier, the most efficient route had led through Romania. As can be seen in Figure 23b, further examples of newly emerging key corridors can be found along the Biscay Atlantic coast which now takes over a substantial share of the most efficient routes leading from France into Spain at cost of the Mediterranean route. Similarly, a new corridor linking Northern Europe with the Southeast emerged between Berlin and Vienna, most importantly thanks to the Berlin-Dresden-Prague route upgrades, which most likely are also responsible for the Nuremberg-Linz line's downfall.


## 5.3.3 – Identifying the Most Important Network Nodes

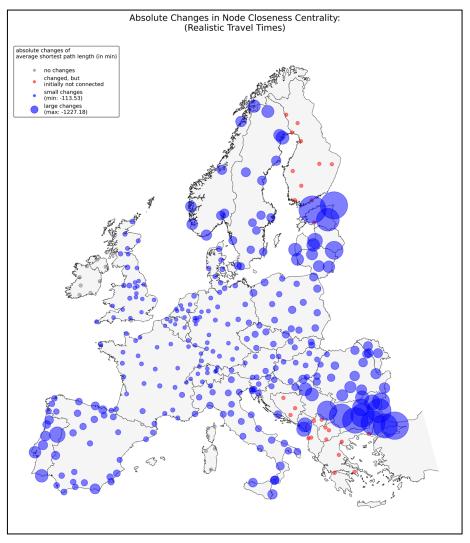
While the EBC features some significant changes, this implies that the edges' nodes will be affected in a similar way. Analogue to edges, the betweenness centrality can also be computed for nodes as well and thereby provide interesting insights into the consequences of projects for different cities. In particular, this allows for identifying current and future major rail hubs and simultaneously assessing how these roles might change.

Standing out at the very top are Vienna, Linz, Gyor, and Budapest where 19.37% to 18.53% of all current shortest paths run through. This closely relates to the EBC patterns discovered before. Unsurprisingly, Karlsruhe and Lyon as well as Lille and Strasbourg (18.48% to 15.55%) follow up closely in the ranking – which all are cities that were heard of already before. However, the NBC's unique characteristic is that it is non-directional (in contrast to an edge). Therefore, Frankfurt and Paris (15.51% and 14.91%) also enter the top ten of in-between cities. Even though their significance is well-known, the latter have not particularly been part of any emphasized edge. This is due to the reason that the connections from/to these cities are not necessarily the very most in-between ones of Europe. Instead, multiple edges of relatively high in-betweenness come together in these hubs. The full set of values is available in Appendix F.

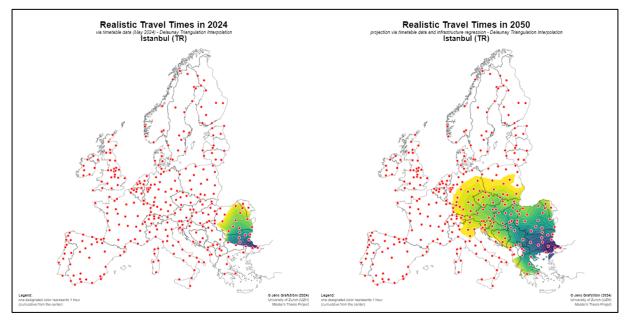
The observed changes in NBC generally go alongside the changes in EBC. Some cities are however worth emphasizing in particular. For instance, Vienna, Budapest, and Gyor remain at the very top in the future scenario since they are passed through by 28.04% to 24.66% of all

shortest paths. Standing out is thereby that Vienna, as can be seen in Figure 24, is one of the cities experiencing strong increases. This is likely due to the new emerging corridor from Berlin to Vienna via Prague and Brno (which also show a high increase). Again, remember that the connection of inactive lines generally increases the values. Meanwhile, Linz is now only found at the sixth position (18.39%) behind Hamburg (20.17%) and Karlsruhe (20.04%). While all places were highly relevant earlier already, they have simply experienced less of an increase in relevance, compared to other nodes. The opposite is observable for the Danish cities (apart from Copenhagen) which represent an example of locations that have significantly lost relevance in terms of betweenness since the shortest paths now follow other upgraded or new corridors. Their losses, most particularly present in Padborg and Odense, are captured by Lübeck's increase in betweenness as it is now ranked 10<sup>th</sup> (with a new value of 16.62%). As Figure 24 corroborates, Lübeck is the city with the largest increase in NBC. Similar examples of locations gaining in relevance are Verona (with a new value of 13.71%), Subotica (13.15%), Novi Sad (12.58%), and Innsbruck (12.19%) while places such as Arad (4.38%), Deva (2.45%) have in return lost significance. These changes illustrate how the project implications come with severe impacts on cities' roles in the network. Such findings might help to understand how political interests in projects can be highly controversial from region to region.

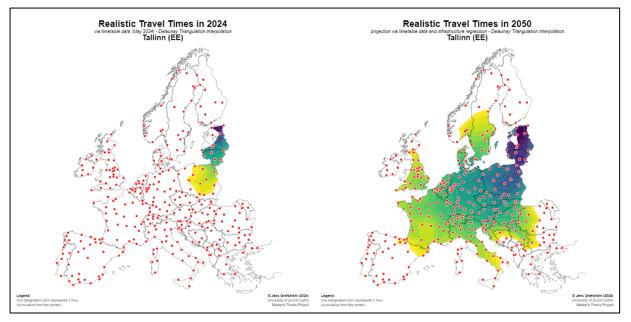



*Figure 24*: Absolute changes in node betweenness centrality (realistic travel times). The full dataset of changes is available in Appendix F. Source: own illustration.

Nonetheless, a node does not only benefit from being located along more paths through the network. Instead, it is also essential to assess a node's connectivity and accessibility to the overall network. This is referred to as the NCC. That value is defined as the inverse of the ASPL from one node to all other nodes (not to be confused with the full-network's ASPL which is based on all possible city pairs). For simplicity reasons, the ASPL will be referred to when speaking of the NCC.


Figure 25 thereby reveals a very clear pattern: the locations that benefit the most in terms of closeness centrality are located toward the outskirts of the European rail network. This makes sense since the shortest paths from the outermost locations to all other nodes in the network have the greatest chance to accumulate travel time reductions. In this case, this particularly concerns the Baltics, Scandinavia, Portugal, and the Balkan. However, there are very distinct differences between those regions. Particularly speaking, the improvements in the Baltics and in southeastern Europe are significantly greater than elsewhere. For the Baltics, this can mainly be attributed to the Rail Baltica project. Since every in- and out-bound route leads through the current Baltic bottleneck, improvements in this region will improve every single connection exiting or entering the Baltics. The assumption that Rail Baltica is the major contributor to these improvements can be supported by comparing the connections north and south of the Suwalki Gap. South of this section, the difference in NCC is clearly smaller than north of it. This stands in a slight contrast to the patterns of improvement in southeastern Europe. There, no specific bottleneck prevails in the current scenario. Instead, the various existing connections are relatively slow. The development of more efficient infrastructure, particularly through Serbia, provides new corridors which will outperform the current paths. Therefore, Bulgaria, Turkey and Serbia are the major benefiters in this region. observations are also supported quantitatively: the top four reductions of the ASPL are projected for Istanbul (reduction by 1227 min), Narva (1213 min), Tallinn (1211 min), and Plovdiv (1138 min).

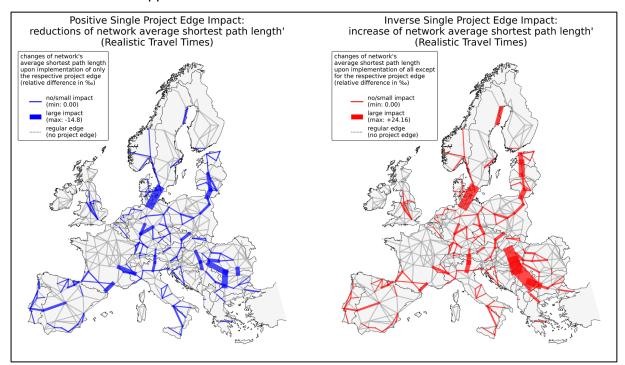
Yet, it should not be neglected that every other region benefits as well – apart from Ireland and Northern Ireland, and Corsica and Sardinia. For instance, besides the primarily disconnected cities in Finland and the Balkans, the northernmost train station in Europe, Narvik, experiences a reduction of 525 min. Lisbon benefits by a reduction of 492 min, Chişinău's ASPL is reduced by 374 min, and Palermo sees a 358-min reduction. Even the more central locations are not unaffected: Zurich (127 min), London (119 min), Paris (128 min), Prague (241 min), Amsterdam (125 min), Munich (140 min), Budapest (184 min), and Zagreb (193 min) are examples of more central cities that still benefit considerably. Nonetheless, there is a clear pattern stating that the smallest reductions are found in cities around the Dutch-German-Belgian border region. In fact, Brussels shows the lowest ASPL reduction of only 114 min. Values for further cities can be retrieved from Appendix F.


To visually underpin how these cities' NCC values specifically change in Europe, a set of isochrones were mapped. They show the differences in spatial accessibility within a full day (i.e., 24 hours) between the current and future scenario. Figures 26 and 27 visually exemplify the changes for Istanbul and Tallin, two of the most affected cities. Besides these two examples, isochrones for all remaining previously mentioned cities can be found in Appendix K.



*Figure 25*: Changes in node closeness centrality between current and future scenario. Full dataset of changes is available in Appendix F. Source: own illustration.




*Figures 26 a-b*: Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from Istanbul. Source: own illustration.



*Figures 27 a-b*: Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from Tallinn. Source: own illustration.

## 5.3.4 – Valuing the Projects Individually

Even though it could already be clearly seen how important the projects are and how they as a whole can affect different regions of the network, both directly and indirectly, it remains to be identified which projects are the most important ones. This is where the single impact analysis comes into play. As a reminder, this encompasses the changes in full-network ASPL for a simulated scenario where either only one specific project edge is implemented or all but that one are being implemented. The results of both approaches are visualized below in Figure 28 and can be accessed in Appendix G.



*Figures 28 a-b*: Impacts of individual project edges: (a) relative reduction of ASPL after implementation of a specific project only; (b) relative increase of ASPL after re-setting only the specific project but keeping all others. The exact values for each connection can be found in Appendix G. Source: own illustration.

Figure 28a immediately draws attention to two regions: the Balkans and the link between Denmark and Germany. In a scenario where only the Fehmarn Fixed Link is implemented, the ASPL is reduced by 14.80‰ (i.e., 1.48%). Following behind are two links in the Balkan. Upon further inspection, it however becomes clear that these are not part of the previously regularly mentioned Budapest-Belgrade-Sofia corridor. Instead, they are connecting Sofia to Craiova and Craiova to Timisoara and come with reductions of 10.06‰ and 9.05‰, respectively. Further highly ranked edges are Kaunas-Suwalki, Ruse-Bucharest, Lyon-Turin, Montpellier-Perpignan, Riga-Kaunas, Arad-Deva, and Subotica-Novi Sad (with reductions from 7.71‰ to 5.17‰). Project connections with high scores can herein be interpreted as overcoming current bottlenecks through which many connections pass.

It might therefore be assumed that that the relative reduction in ASPL by the implementation of a single project correlates with the edges' betweenness centralities. Following a brief linear regression (including all upgraded edges already existing in the current scenario), this thought must however be rejected due to an extremely low R-squared value of 0.131. Even though edges of high betweenness have a high potential to reduce the network's ASPL upon their upgrade, they are often (though not always) already well-equipped and leave little space for realistic optimization. Instead, a large fraction of upgrades is made along edges that currently are relatively inefficient and therefore often come with low betweenness centralities. These upgraded lines might then gain in betweenness and therefore have a great impact on the reduction of the network's ASPL. Consequently, no clear relationship between EBC and single project impact can be identified in this thesis' framework.

In Figure 28b the stark contrast regarding emphasized edges stands out. In a setting where all projects are implemented but one is left out, the Balkans are again in the center of focus. However, it is no Bulgarian-Romanian link that ranks highest. Instead, the Belgrade-Nis connection increases the ASPL the most, by 23.59‰ (i.e., 2.36%), if being undone. Among the top five, an additional three connections lay along the same corridor. This includes the Subotica-Novi Sad, Budapest-Subotica, and Sofia-Nis connections (with reductions between 21.27‰ and 11.38‰). The only unrelated connection ranked as high is between Copenhagen and Lubeck, with a value of 18.23‰. Ranks six to ten are occupied by Pärnu-Riga, Kaunas-Suwalki, Innsbruck-Bolzano, Tallin-Pärnu, and Verona-Bolzano (with values between 10.12‰ and 6.97‰). Connections that scored highly during the inverse analysis can herein be interpreted as edges of high vulnerability. If they were to be reset to the current status (or even worse: disrupted entirely), time-consuming detours would have to be undertaken.

More complex is the interpretation of the differences between the edges' relevance in the two analyses. Edges that receive high values in the first analysis but not in the second one can be understood as local bottlenecks. Upgrading them leads to immediate improvements, as is characteristic for bottlenecks. However, their upgrade's relevance is reduced in the context of the full-network upgrades. This means that their role as bottleneck does not apply on a larger scale anymore, most likely due to being undercut by another upgraded section. This applies to the aforementioned Bulgarian- Romanian edges in particular. In contrast, edges that rank highly in the inverse second analysis but not in the first one represent a different characteristic. They resemble newly established corridors or serve as crucial paths of access to other critical upgraded network components. If disrupted, other improvements cannot be (fully) benefitted from either. This is particularly relevant for the Budapest-Belgrade-Sofia corridor. The reset or disruption of one edge along this corridor would immediately reduce the benefits of the other upgrades as well. Edges that score relatively high in both analyses represent upgraded core edges. They are large-scale bottlenecks or corridors of high efficiency and frequency. This is especially applying to the Copenhagen-Lübeck connection. Similar tendencies can for instance be found in the Suwalki-Kaunas, Madrid-Badajoz, or Frankfurt-Kassel connections.

When comparing the single project impacts between domestic and international connections, another interesting observation is made. Domestic projects on average reduce the ASPL by 0.72‰ if they are implemented as the only project. Meanwhile, international projects come with a reduction of 1.23‰. Regarding the inverse analysis, a domestic project increases the ASPL on average by 1.06‰ if being the only one not implemented. In contrast to that, international projects record an increase by 2.94‰. In both cases, the average impacts of single projects are greater for international projects than for domestic ones. This reconnects to the observation made earlier stating that international projects have a greater relative impact at the full European scale than domestic ones. This relative contrast is even more striking for the inverse analysis. International connections can be seen as more vulnerable than domestic ones which supports the claim by Marti Henneberg (2013 & 2017) that international rail connectivity is relatively poor in Europe.

Overall, the results emerging from the most significant impacts of single projects indicate that the Fehmarn Fixed Link between Germany and Denmark is the one connection that on its own has the highest potential impact on the full European rail network. Its strategic location allows for it to act as a new gateway for north-south connections to/from Scandinavia. When taking grouped projects into consideration, Rail Baltica acts in a similar manner as the Fehmarn Fixed Link by improving all links from the Baltics to Europe. The most interesting pattern has however been revealed along the corridor between Hungary and the Black Sea. While the projects between Sofia, Craiova, and Timisoara are of major importance for improving the currently most efficient pathway along this route. The most striking change can be expected upon the completion of the Budapest-Belgrade-Sofia route. It will undercut the Romanian path significantly and attract most of the shortest paths toward the Southeast, metaphorically speaking. Yet, it is highly vulnerable since the full-scale benefits are only unfolded if all sections of these projects are completed. If only one section along this path is delayed or suffers from other issues preventing it from being completed, the European ASPL will increase dramatically. This consequently is an ideal example of why the European scale of analysis is so valuable - since a local analysis would not have grasped the interregional importance and dynamics of this particular corridor.

# 6 – Results II: Case Studies

Following the previous section, there are certain projects that stand out in terms of full-scale European relevance. While those particular impacts have already been addressed before, it is worth to explore the different nature of these projects. This particularly concerns their technological, political geographical, and rail-operational backgrounds. The following case studies are thereby selected specifically to serve as examples for the different directions in which the complex dynamics and processes surrounding the project implementation are headed.

## 6.1 – Black Sea - Hungary Corridor(s)

The likely most unexpected outcome of the previous analyses concerns the projects in southeastern Europe. From a technical perspective, this group of upgrades features four main components: (1) sectional upgrades to 160 km/h in Romania, (2) improvements of Bulgarian crossborder connections, (3) sectional upgrades to 160km/h along Bulgaria's core corridor (4) construction and upgrades to establish a continuous efficient corridor from Budapest via Belgrade to Sofia. Overall, these projects mainly use existing tracks which are to be upgraded. Between Subotica and Novi Sad, an entirely new connection is built; partially new constructions are planned between Belgrade and Nis. The terrain is particularly challenging in southern Serbia, western Bulgaria, and central Romania due to the mountainous landscapes.

What makes this case stand out is the complex web of political interests involved. On the one hand, multiple lines, especially in Romania and Bulgaria, are part of two TEN-T corridors. This underpins these sections' high importance to the EU. This goes alongside with political and hence financial support sourcing from the EU. Upon completion, the projects in Romania and Bulgaria as such have a significant impact on travel times connecting eastern Europe toward the western rest of the continent. As was identified earlier, the path through Romania currently represents the major (but passable) bottleneck between southeastern and central Europe. In the meantime, this current bottleneck, despite significant improvements, is going to be undercut in terms of travel times and bypassed in Serbia – who is not part of the EU.

Consequently, the EU plays no substantial role in funding these specific projects. Instead, the required projects are funded as a part of the Chinese Belt and Road Initiative which foresees the installation of strategic corridors enhancing trade toward China. Thus, in the context of political patterns and existing infrastructure in the Balkan region, Serbia provides ideal conditions for external involvement (Csapó, 2021; Stojanović et al., 2022). However, Chinese funding also occurs in EU-member states. In this particular context, the connection from Budapest to the Serbian border is upgraded and constructed with a major fraction of funding sourcing from China, too (Rogers, 2019). Once the corridors passing through Romania are undercut in terms of operational efficiency, the Serbian corridor has the potential to create new dependencies and will therefore likely become an irreplaceable component of the continent's transportation networks. While the Chinese involvement is commonly criticized (mainly due to high loans and losses in infrastructural independence) (Csapó, 2021), it allows for the construction of ambitious projects which regular travelers and the local population can majorly benefit from.

In this particular case, these travel time improvements themselves have become a political tool as well and are a substantial reason for Hungary's support of this corridor. Among the inhabitants of Serbia exists a recognized national minority of Hungarians. In certain northern municipalities they even represent a majority. These foreign Hungarians are able to obtain Hungarian citizenship and can then participate in votes in Hungarian elections. Especially in recent years, there have been major Hungarian investments, particularly in infrastructure, in northern Serbia in order to maintain relationships with the foreign Hungarians. The Budapest-Belgrade railway can thereby be considered as another such investment, at least from a Hungarian perspective (Reményi et al., 2021). This is further manifested by the connection's route layout in Hungary: the new rail line from Budapest directly approaches Subotica without connecting to any other major city. As an example, Szeged (Hungary's third largest city, located near the Hungarian-Serbian border), is bypassed even though its link to Budapest could benefit from speed upgrades or improved track paths. This underpins the new connection's pure intention to provide improved access toward Serbia.

The outcomes of this series of overall projects are significant. The overall travel time between Belgrade and Budapest is reduced form 7 h 41 min to 2 h 30 min which corresponds to an overall reduction of 67.46%. Passing through the same corridor, Sofia is connected to Budapest in 7 h 22 min instead of 20 h 45 min– reducing travel times by 64.51%. In contrast, Bucharest still lies 11 h 8 min away from Budapest which is "only" a 22.33% reduction from the current 14 h 21 min. Even though a reduction by almost one fourth is remarkable, it clarifies how Romania's improvements are relatively seen lagging behind its neighbors. Furthermore, Istanbul will be reached from Budapest in 14 h 55 min which is 50.78% less than the current 30 h 18 min and hence makes this city pair perfectly connectable by night trains. Meanwhile, Budapest will expand its status as an essential hub for travel toward southeastern Europe. Similar pattern will most likely emerge for freight traffic whereas the Hungarian capital might turn into an operational and logistical center at the intersection between central and eastern Europe – which might provide the main economic benefits of its investments in the new line.

To conclude, it can be said that the project results from a patchwork of both opposing and aligning (geo-) political interests, and logistical as well as trade-economical desires. While the political dimension of this series of projects might spark controversies, the outcomes for regular everyday passengers are substantial. Major international hubs in southeastern Europe will be reached conveniently from Budapest. While all improvements are beneficial on a local scale, the projects along the Serbian corridor clearly outpower the Romanian ones one a European level, as the previous sections' analyses revealed. Yet, this new pathway is also highly vulnerable since disruptions along any of its sections could not be compensated in terms of travel times.

## 6.2 – Rail Baltica

Somewhat familiar to the previous case, the Rail Baltica project is also of high political relevance. Yet, it also features interesting technical and geographical features which should not be left out. Simply put, Rail Baltica is an EU-backed project that is supposed to improve rail connectivity within the Baltic States – Lithuania, Latvia, and Estonia – as well as to Poland and hence remaining Europe. The project will thereby predominantly encompass newly built tracks. The project is laid out in standard gauge which differs from the Russian gauge currently present in the Baltics. In a nearly straight line from Kaunas via Riga to Tallinn, speeds reaching up to 249 km/h will be realized. Additionally, a branch line will connect the Lithuanian capital Vilnius via Kaunas to the main line. The remaining infrastructure will however remain in Russian gauge. This shows how the project is clearly addressing journeys to and between the major Baltic cities – at least in terms of passenger travel.

In reality, this project's relevance goes far beyond simply improving travel times. The project has profound strategic implications, particularly in the context of regional security and geopolitical dynamics. Currently, the only land-based route connecting the Baltics to the rest of the EU runs through the Suwalki Gap, a narrow 65-km stretch of Lithuanian-Polish border nestled between Belarus and the Russian exclave Kaliningrad. This corridor is a critical and vulnerable chokepoint, especially in the context of rising tensions between NATO and Russia. The existing infrastructure crossing the Suwalki Gap includes just two highways and a single rail line that switches from Russian to Standard gauge in Lithuania, hence making it a logistical bottleneck. In the hypothetical event of a crisis, this could severely limit the ability to move troops, equipment, and supplies quickly into the Baltic region, leaving it potentially isolated and vulnerable.

By providing a direct, high-speed rail connection from Poland to the Baltic capitals, Rail Baltica aims to significantly strengthen the EU's and NATO's ability to maintain access to the Baltics, thereby enhancing the region's strategic security and deterring potential aggression (Montrimas et al., 2021). The most important aspect herein is likely the elimination of track gauge differences. Even though gauge-switching passenger trains are well established in certain regions of Europe, this technology can be applied only to a very limited extent to freight traffic due to the immense potential weight of the cargo. This is especially problematic in a military context where goods are particularly heavy. Therefore, the current infrastructure would slow down mobilization and supply processes by requiring a transfer to fitting rolling stock. Rail Baltica would consequently significantly facilitate traffic flows toward the Baltic States – which also is of high non-military interest.

All geopolitical aspects aside, Rail Baltica also stands out for its massive scale. No other European rail project currently directly involves four countries at once. Overall, around 870 km of electrified track will be built, including rail stations and cargo terminals. This all happens in a region of particularly low population sizes and densities. The main Baltic cities included in the project (Riga, Vilnius, Tallinn, Kaunas, Panevezys, Pärnu) together account for only around two million inhabitants. The project is consequently highly ambitious and commonly discussed. The extent of how far ambitions reach is symbolically represented by regularly re-occurring proposals for a tunnel linking Tallinn with Helsinki, as mentioned earlier. This would act as a northbound extension of Rail Baltica and provide a new direct link from Helsinki toward mainland Europe (Jegelevicius, 2019; Peda & Vinnari, 2022). While the tunnel is yet far from being corroborated, the regular sections of Rail Baltica face constant implementation delays as a result of its ambitious scale. Besides that, it is safe to assume that the coordination between four different countries is far from straight-forward.

Nonetheless, Rail Baltica's implications upon completion are massive, thanks to its ambitious scale. Unsurprisingly, the cross-border link between Suwalki and Kaunas has gained most attention during earlier analyses in this thesis. Since there is no other way of bypassing the bottleneck on land, this stretch's upgrade is most vital in a full-scale European context. In contrast to the Kaunas/Vilnius-Riga connection, the greatest impact is caused by the link between Riga and Tallinn via Pärnu. This is due to the fact that the Lithuanian and Latvian metropolitan regions are already relatively well connected while Estonia is only accessible through a very slow connection. The travel times from Tallinn to Vilnius is minimized from 14 h 29 min to 3 h 20 min which corresponds to a massive reduction by 75.37%. Warsaw, the Baltic's closest and thus most important hub on the way toward the rest of Europe, can now be reached within 6 h 36 min from Tallinn, 4 h 56 min from Riga, 4 h 2 min from Vilnius, and 3 h 24 min from Kaunas. This translates to reductions of 68.35%, 54.04%, 47.51%, and 48.48%, respectively. As a result, the Baltics will drastically move closer to the rest of Europe. Due to the bottleneck structure, every single connection from or to the Baltics will benefit which underpins the project's importance for this region.

As a conclusion, Rail Baltica is a megaproject requiring high investments, but also providing essential benefits at various levels and scales. It enhances efficient and sustainable mobility within the Baltics and brings this rather remote region of Europe closer to each other, but also closer to the remaining continent. Moreover, it structurally strengthens the EU and reduces the topological remoteness of these three states while adding another backbone to the EU and NATO's defensive agility. The project therefore is an ideal, yet unique example of how civil infrastructure investments can serve a military purpose and thereby expand their benefits from a regional and European scale even further to an intercontinental level. Still, it should be hoped that the significantly reduced travel times will remain to be the only aspect ever to be actually put to test.

## 6.3 – Brenner Base Tunnel

An entirely different geographic and contextual setting is found surrounding the Brenner Base Tunnel project including its feeder infrastructure. Here, the key element is to improve an existing transalpine route. Currently, Verona and Innsbruck (extending to Munich/Salzburg) are connected by a mountainous hence curvy and high-gradient route crossing the Brenner pass. Forming one of the main international transportation corridors in Europe, both regarding passenger and freight as well as by road and rail, the corridor is running close to capacity. To increase capacities and improve travel times, the world's longest rail tunnel is being built between Innsbruck and Bolzano. By straightening the path and reducing the slope gradients, the tunnel alone will cut travel times in half between these two cities and simultaneously increase freight capacities from currently 66 to 225 trains per day (Herrenknecht, 2020).

This project's special nature is its clear dedication to freight usage. Despite being designed for mixed use, its major importance lies in freight traffic improvements. Overall, roughly 80% of trains along this section are planned to be freight trains (Bergmeister, 2014). Consequently, the rail project mainly serves as improvement of a European-scale freight transit route rather than as a pure end-to-end connection. Hence, the success of improving this corridor does not rely on the tunnel's completion alone. Instead, it is highly dependent on its feeder infrastructure as well. The reason is simple: in terms of frequency and capacity, chokepoints must be improved entirely; partial upgrades are only of minimal benefits. If the sections at one or both ends of the upgraded part remain unchanged, the number of trains reaching the upgraded section will stay constant as well, or the higher number of trains will not be able to continue beyond the upgraded section – or both. This represents a key difference to travel time upgrades. Reduced travel times along one section benefit every connection passing through it, regardless of the route's previous or following properties. This provides a first shallow dive into the deep field surrounding the complexity of high-frequency rail operations and corresponding improvements.

In the Brenner context, this dependence on feeder infrastructure is not just an operational, but also a political challenge. Since this choke point stretches across three countries, three different political decision-making and project implementation processes are followed. As a consequence, there is a risk of getting stuck in co-dependency. Since one project is only beneficial on a larger scale if the others are also implemented, one might only want to start the highly expensive constructions once the other projects are also being progressed. Such a scenario bears the risk of significant implementation disruptions or delays and might even to some degree arise political tension, also on smaller scales. Most prominently, this has been the case in Germany and bordering regions in Austria. Germany has long struggled to present a committing and realistic plan for its feeder access from Munich toward Innsbruck. Even now as such a project has been corroborated, the plans foresee a completion not earlier than 2040 which is (according to current schedules) at least eight years later than the Brenner Base Tunnel itself will be completed. As a result, fears are that freight traffic at the northern end will remain road based. Austrian municipalities therefore worry that the currently intense heavy truck traffic, a severe source of air and noise pollution, will not be alleviated or might even be intensified along the tunnel feeder pathways due to the project delays in Germany (Hawlin & Miebach, 2024; Houben, 2024).

Despite the major focus being on freight traffic, passengers will also significantly benefit from the route upgrades' completion. Traversing the Alps, the connection from Munich to Verona will be covered in 2 h 20 min instead of the current 5 h 17 min. This is a significant reduction of 55.84%. In a European context, the Brenner Base Tunnel and its feeder lines will provide another highly efficient transalpine connection. As Figure 23 indicates, it thereby has the potential to re-route the fastest/shortest east-west paths through northern Italy instead of southern Germany which is further supported by the Euroalpin tunnel toward France. While the cities

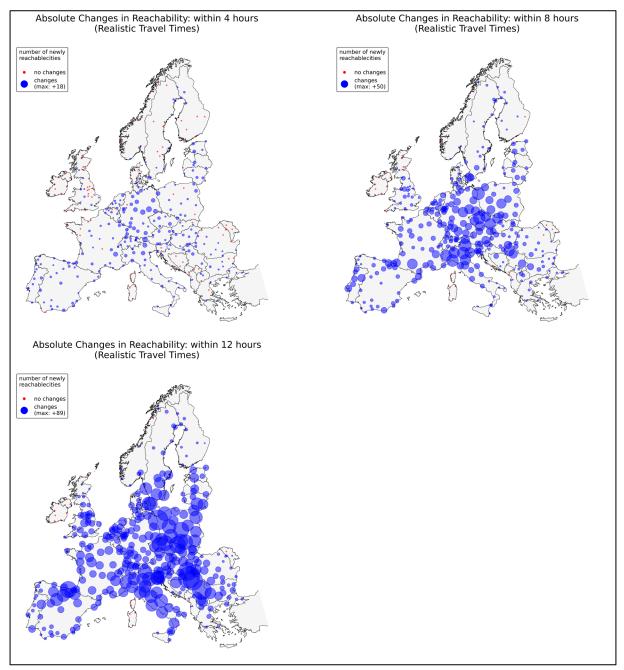
in northern Italy benefit most directly, the remaining part of the country can expect much more rapid connections in the northeastern direction. Italy thereby becomes a more integrated part of the European rail network. Especially in terms of touristic journeys, given the high number of popular destinations in all of Italy, this project alone might represent a massive incentive for a shift toward sustainable mobility – which is even more substantial when combined with all additional upgrades.

The complex situation surrounding the Brenner Base Tunnel therefore acts as an impressive example of how capacity upgrades differ from pure travel time improvements. This case shows how capacity upgrades must be part of a larger upgrade scheme and target the full bottleneck since they otherwise might not be much beneficial. This issue can lead to political challenges, especially in such a multinational case. Nonetheless, the Brenner Base Tunnel represents an important improvement in overwinding restricting topography – in this case, the Alps – which allows for significant travel time improvements and might even enhance another shift in European-scale passenger travel corridors.

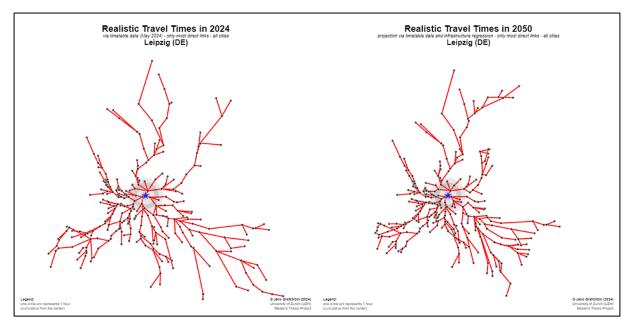
# 7 – Results III: Practical Outcomes and Implications for Rail Travel

## 7.1 – Reachability Ranges

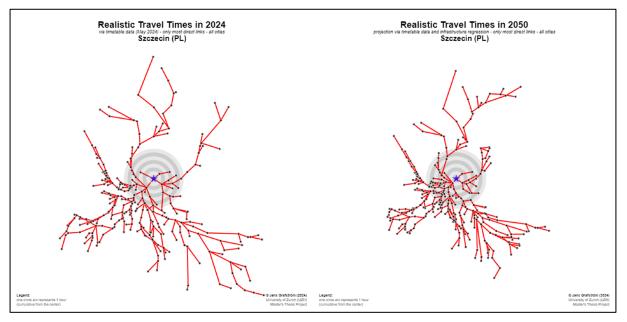
So far, insights into travel time changes have been provided on multiple occasions. However, these were usually limited to the directly impacted paths, or only provided in a full-European context. Similarly, the typical network metrics operate on the full network scale. Nearby impacts might therefore be overlooked. This would however be crucial since railways are an especially promising means of transport for short- and medium-ranged journeys, but not particularly aim to move people across the entire continent at once. Therefore, with keeping this research's motivation in mind, it is essential to identify how the entirety of full-network improvements transform the scope of feasible rail journeys from/to each city. Prominently discussed is the replacement of air travel by rail journeys. Thereby, travel time thresholds have been identified below which railways might be advantageous and preferred. A commonly agreed-upon threshold is 4 hours. However, depending on the respective studies' frameworks, 6-8 hours are present as well (Kroes & Savelberg, 2019; Reiter et al., 2022) Furthermore, one might argue that rail journeys within one day are reasonable. Therefore, 4 hours, 8 hours, and 12 hours were used as thresholds to analyze changes in reachability.


Figure 29 shows how every city's number of reachable locations within the network change between the current and future scenario (exact values are available in Appendix I). This means that all network nodes accessible within travel times below the respective thresholds are counted and compared. Interestingly, the main beneficiaries within the 4-hour threshold are predominantly very central cities. The top five improvements are recorded for Leipzig, Innsbruck, Erfurt, Bolzano, and Grenoble with 18, 17, 16, 14, and 14 newly reachable cities, respectively. Furthermore, places with ten or more newly reachable cities are Dresden, Kassel, Szczecin, Berlin, Hanover, Verona, Munich, Subotica, Basel, and Stuttgart. The dominance of German locations is herein explainable by the high NCC of German nodes. Due to the central location in Europe, these places can potentially benefit from improvements in all directions.

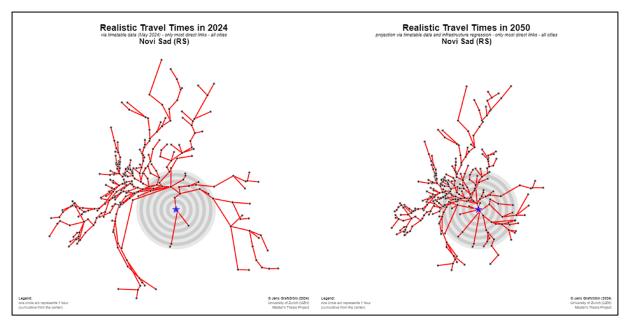
Within the 8-hour threshold, the patterns of benefit start to change. Ranking at the very top is Szczecin with a value of 50 newly reachable nodes. This is thanks to its ideal location allowing it to benefit from the Polish, Baltic, German, and Czech upgrades at once. It is next followed by Bolzano (49), Genoa, Prague, and Verona (all 47). The most striking observance is the high abundance of cities from Italy's north – especially when taking into consideration that Turin (45), Milan (42), and Bologna (41) also join the top ten ranked cities. This must clearly be attributed to the Brenner Base Tunnel and the Euroalpin Tunnel which significantly reduces travel times across the Alps. Overall, the pattern of highest impacts now resembles an arch following the German-Polish Border down to the Czech Republic and continuing via Austria, northern Italy and the Pyrenees toward Portugal's Atlantic coast, with a branch along the Budapest-Belgrade-Sofia corridor.


This again changes when applying a 12-hour threshold. Suddenly, the top five are dominated by the four Serbian cities Novi Sad, Belgrade, Nis, and Subotica (with 89, 80, 78, and 74 newly reachable nodes, respectively). This means that, thanks to the major improvements along the Budapest-Belgrade-Sofia corridor, access to other regions and further improvements is enabled. On rank six follows Bilbao (67) which underpins how important the Basque Y project is for granting this northern Spanish region access to appropriately reachable long-distance destinations. The following ranks are uninterruptedly occupied by a group of Czech and Polish cities: Ostrava, Lodz, Hradec Kralove, Krakow, Katowice, Poznan, and Prague (with 66 to 57 newly reachable cities). Furthermore, Figure 29c indicates that under this threshold, southern Italy joins its northern part in terms of recorded changes. Also, southern Scandinavia and the southern Baltics see relatively high benefits thanks to their bottleneck-overwinding projects. In the meantime, even though important improvements in reachability are also present, some

regions of central and western Europe are impacted only relatively little. Now, the greatest impacts are found along a block spanning from southern Sweden to Serbia, as well as in Italy and northeastern Spain.


In order to clearly showcase the specific impacts for the three most-benefitting cities from each scenario, cartograms are shown in Figures 30-32. They serve to illustrate how the shortest paths from each city to its reachable locations change and how certain locations move closer in terms of travel times. For further insights, cartograms for the top five differences of each scenario are made available in Appendix L.



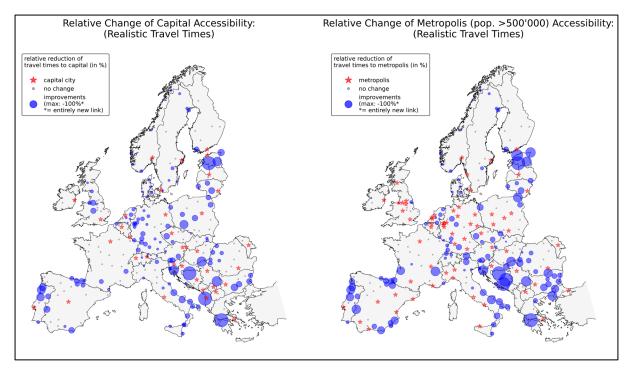

*Figures 29 a-c*: Changes in the number of reachable cities within (a) 4 h, (b) 8 h, and (c) 12 h of realistic travel times from origin. Comparison between current and future scenario; continuous scale. Exact values: Appendix I. Source: own illustration.



*Figures 30 a-b*: Cartograms for (a) current and (b) future scenario, showing reachability from Leipzig. 4-hour range highlighted for reachability context. Source: own illustration.



*Figures 31 a-b*: Cartograms for (a) current and (b) future scenario, showing reachability from Szczecin. 4-hour range highlighted for reachability context. Source: own illustration.




*Figures 32 a-b*: Cartograms for (a) current and (b) future scenario, showing reachability from Novi Sad. 4-hour range highlighted for reachability context. Source: own illustration.

#### 7.2 – Accessibility and Connectivity to Major Cities

To the changes in reachability can be added another dimension of relevance, thus transforming it into a matter of accessibility and connectivity to the network. Specifically speaking, it might be of major importance to identify whether certain regions benefit from improved access to their respective capital city or to the closest city of major population sizes. Especially the access to its capital can be of particular relevance since capitals often represent important economic and administrative places which usually are visited frequently and might also be accompanied with high amounts of travels between each other. These regions are also profiting above average, as was already indicated in Table 5. As a brief reminder, the ASPL is reduced by 10.52% in the full network. For connections between capitals only, the reduction is higher (at 14.24%). Cities of population sizes above 500'000 see similar improvements (12.42%) while the values almost doubles for cities above one million (28.64%).

However, besides these already well-known observations, the benefits are clearly not limited to only those major cities. Instead, these places of high relevance will be reached more easily from other cities. Interestingly, the improvements show similar categories regarding accessibility to both respective capital cities and cities of metropolitan characteristics with at least 500'000 inhabitants, as Figure 33 shows.



*Figures 33 a-b*: Relative changes of cities' accessibility to (a) their capital and (b) the closest metropolitan city. Full data for both cases are available in Appendix H. Source: own illustration.

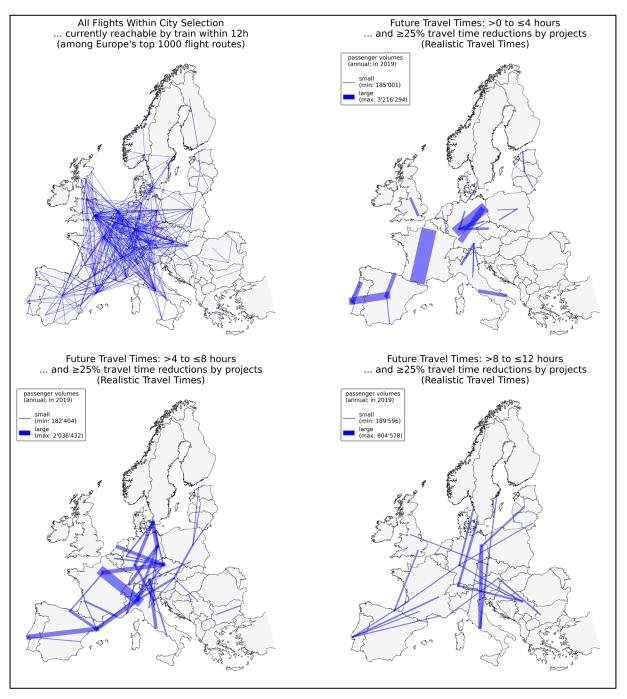
At first sight, the patterns appear to be of relatively similar nature. In both analyses, the Balkans, Baltics, and some regions around the Iberian Peninsula as well as southern Italy stand out. The pattern is therefore relatively clear: the major improvements are found at the outskirts and/or rather poorly equipped regions of the European rail network. Regarding the access to capital cities, four connections stand out as they have gained an entirely new access: Pärnu, Durres, Patras, and Banja Luka. The latter is however not part of any new project, but only a result of the inclusion of a currently not operated route. Following behind are Nis, Subotica, and Rijeka with travel time reductions of 69.88%, 69.05%, and 66.91%, respectively. Completing the top ten are Tartu (63.41%), Wroclaw (58.82%), and Porto (58.56%). Overall, 129 of the 335 cities are experiencing a reduction of travel times toward their respective capital. Taking into consideration that 36 of the 335 cities are capitals themselves, this means that 43% of the remaining 299 cities somehow benefit from the improvements. Regarding access to metropolitan regions, the cities gaining entirely new access to a metropolitan are similar. Banja Luka, Mostar, Patras, Pärnu, and Sarajevo are now newly connected to a city with a population above 500'000. The top ten are completed by Tallinn (reduction by 83.53%), Narva (70.79%), Nis (69.88%), Tartu (68.006%), Rijeka (66.91%), and Alexandroupolis (66.55%). Again, it must be noted that some of these locations (i.e., Mostar, Sarajevo, and Alexandroupolis) also benefit from the assumption that existing but non-operated lines will be in service again in the future scenario. Overall, a total of 118 out of the 267 non-metropolitan cities are experiencing improvements, which corresponds to a share of around 44%. For more detailed information, see Appendix H.

Upon a closer look, some interesting sights can be found. In southern Spain, only Almeria sees particular improvements in connecting toward the capital. Meanwhile, all places at the Spanish south coast show clear reductions in their metropolitan access. This discrepancy reveals how Spain's high-speed rail network evolved around a highly centralistic approach, forming a spoke-like structure linking toward Madrid, while tangential connections were less prioritized. In Spain's north, it becomes clear how significant of an upgrade the Basque Y project is for the entire region, serving to improve access to the capital and also the closest major metropolitan areas. As well on the Iberian Peninsula, the cluster of high reductions surrounding Portugal

corroborates the meaningfulness of the country's rail upgrade plans in terms of improving accessibility. Meanwhile, the German upgrades did well to improve the connectivity between Germany's western region to its capital, Berlin. Similarly, southern Italy benefits from improved access toward Rome. One example where the impacts differ slightly between capital and metropolitan access is found in Bulgaria. There, improvements regarding connectivity to the capital is found along the directly impacted edges concerning the Sofia-Plovdiv-Stara Zagora-Burgas/Varna corridor. Meanwhile all Bulgarian cities benefit from improvements in terms of connecting to the closest metropolitan area which in this case showcases the significant improvements in international connectivity since no other Bulgarian city besides Sofia is home to at least 500'000 inhabitants.

#### 7.3 – Replacement of Specific Air Corridors

This overall tendency, the improvement of reachability and accessibility, can be directly compared to specific flight routes as well. Among the 1000 flight routes within Europe that in 2019 hosted the highest number of passengers, 666 corresponding city pairs are currently connected by rail (Eurostat, 2020). This sums up to a total of over 369 million passengers that travelled by air on these corresponding routes in 2019. In the future scenario, the rail network will encompass 49 more of the 2019 air connections, adding another 21 million passengers to the total count (the full dataset, including the results below, is available in Appendix J). This alone represents an enormous potential of reducing  $CO_2$  emissions by accomplishing a mobility shift toward rail travel. Of course, not all flight connections can realistically be replaced by rail services – but some are replaceable already today and more will follow in the future.


A first glimpse into the potential of replaceability is found among the top 20 air routes with most passenger volumes, as shown in Table 7. While only two routes are not connected by rail, only five of the remaining 18 routes are not scheduled to experience improvements regarding rail travel times. Besides London-Malaga, all rail connections currently take less than twelve hours. Three connections (Amsterdam-London, Barcelona-Madrid, Berlin-Frankfurt) even come with current rail travel times below the four-hour threshold. Another one, Paris-Toulouse, will follow in the future. This indicates that a significant gap in the French high-speed rail network will be filled - which is of immense environmental relevance due to it being the fifth most frequented air corridor in Europe. The impressive reduction of travel times by over 25% is only surpassed by the Berlin-Frankfurt route's rail upgrades. This German example is of particularly high interest since the travel times were below the four-hour threshold already before and are reduced even further. The potential of air replacement by rail is therefore very high. However, this example also showcases a common issue surrounding replaceability of popular European air routes. It is likely that many of these connections particularly serve as connective flights to longer journeys. Frankfurt is for instance a well-known hub and interchange airport; the same is true for London and other larger airports. This means that flights from/to such airports are often part of a longer journey which imposes the question whether passengers would want to replace a flight by rail travel if it only represents one leg of the full journey.

Yet, there are clear reductions in rail travel times surrounding the most popular flights. Even though the reductions in some instances are not as drastically high, it likely is a very positive contributor to sustainable mobility, nonetheless. An insight into the most pressing travel time reductions is provided by Table 8 where the air routes with the highest relative reductions in travel times are listed. Standing out the most are connections from and to the Baltics. Thanks to the Rail Baltica project, inter-Baltic connectivity and links to remaining Europe are improved significantly. While long-range journeys such as to Sweden or Germany may not be realistically in favor of rail travel, despite the large reductions, a shift toward rail travel can be expected from flights between Baltic cities as well as to Poland. Further clear improvements are found regarding Portugal. From Lisbon, rail connections to Porto and Madrid will be accelerated significantly. The projected rail travel times are furthermore also particularly low while the

passenger volumes on the corresponding flights are substantial. This hosts ideal preconditions for a drastic shift toward rail travel in the future. Similarly, connections from Germany toward Italy will likely experience significant changes in favor of rail travel upon completion of the Brenner Base Tunnel and its feeder links. Likely less relevant will the connections toward Sofia be. Even though the Bulgarian Capital acts as a significant hub in southeastern Europe and rail travel times will be reduced by a large fraction, they remain relatively extensive. However, this might unveil potential for some new night train connections as accepted travel times can usually be longer than for regular day services.

Figure 34 helps to identify the most promising air corridors in terms of rail replaceability resulting from rail infrastructure upgrades. Shown in Figure 34b are all air corridors that in the future scenario can be travelled within four hours by rail and (!) have seen travel time reductions by at least 25%. This reduction threshold is essential since multiple instances of well-researched high-speed corridors have shown that a reduction of travel times by around 25% can be sufficient to convince passengers to prefer rail over air travel (e.g., Sweden: Nelldal, 1998). Since multiple high-demand air corridors are already reachable in relatively short times by rail, the component of reduction is of particular importance to further promote a mobility shift. It can therefore be projected that Portugal, Spain, France, and Germany are regions of very high potential, as Figure 34b indicates, due to the high passenger demands along their corridors of high improvements. Also, as indicated earlier, the rail projects' completion is particularly beneficial in the Baltics and traversing the Alps, but also while connecting Manchester to London and Hamburg to Copenhagen. This all corresponded to a total of around 15.6 million passengers in 2019, thereby representing a large amount of potentially avoidable CO<sub>2</sub> emissions.

In a range between four and eight hours of future rail travel time, air corridors with rail travel times reduced by over 25% are especially centered around Copenhagen, Prague, Berlin, Munich, Milan, Barcelona, and Vienna. Standing out is the Paris-Milan route due to its high passenger demand. Thanks to the Euroalpin Tunnel between Lyon and Turin, rail travel is accelerated significantly between Italy and France. Other notable high-demand routes are Lisbon-Barcelona, Barcelona-Milan, Copenhagen-Berlin, Paris-Prague, and Munich-Rome. Overall, the routes present in Figure 34c is currently flown around 17.2 million annual passengers. Another 6.57 million annual passengers travel on the routes present in Figure 34d. Again, these connections will see rail travel time reductions of over 25% and will be travelable by rail in eight to twelve hours in the future. Standing out is the link from Berlin to Rome and vice-versa. However, these routes in general represent air corridors of relatively low demand, yet high rail travel times. Their potential of replaceability is therefore limited. However, they might represent interesting options for new night train routes – which would be an ideal contribution toward sustainable mobility across the continent.



*Figures 34 a-d*: (a) routes travelable by train among Europe's top 1000 most popular air routes; air corridors that experience relative train travel time reductions by ≥ 25% and are reachable in (b) 0-4 h, (c) 4-8 h, and (d) 8-12 h. Exact values and passenger volumes can be retrieved from the raw data in Appendix J. Source: own illustration.

**Table 7**: Top 20 most frequented air corridors (both directions, 2019) and corresponding realistic travel times by rail in the current and future scenarios. The full dataset is available in Appendix J. Data source: Eurostat (2020).

| air route (both directions) |           | passengers | tcurrent | t <sub>future</sub> | drelative | dabsolute |
|-----------------------------|-----------|------------|----------|---------------------|-----------|-----------|
| Dublin                      | London    | 5107690    | -        | -                   | -         | -         |
| Amsterdam                   | London    | 4925746    | 219 min  | 219 min             |           |           |
| Barcelona                   | London    | 3387482    | 562 min  | 523 min             | - 6.94%   | - 39 min  |
| Edinburgh                   | London    | 3374774    | 256 min  | 256 min             |           |           |
| Paris                       | Toulouse  | 3216294    | 302 min  | 226 min             | - 25.17%  | - 76 min  |
| Nice                        | Paris     | 3178806    | 361 min  | 361 min             |           |           |
| London                      | Madrid    | 3147547    | 720 min  | 658 min             | - 8.61%   | - 62 min  |
| Berlin                      | London    | 2838644    | 482 min  | 442 min             | - 8.30%   | - 40 min  |
| Barcelona                   | Paris     | 2690832    | 417 min  | 378 min             | - 9.35%   | - 39 min  |
| Barcelona                   | Madrid    | 2572893    | 158 min  | 158 min             |           |           |
| Madrid                      | Paris     | 2561787    | 575 min  | 513 min             | - 10.78%  | - 62 min  |
| Geneva                      | London    | 2524519    | 374 min  | 374 min             |           |           |
| London                      | Milan     | 2503822    | 522 min  | 418 min             | - 19.92%  | - 104 min |
| London                      | Rome      | 2392594    | 718 min  | 614 min             | - 14.48%  | - 104 min |
| Belfast                     | London    | 2375583    | -        | -                   | -         | -         |
| Glasgow                     | London    | 2296483    | 301 min  | 281 min             | - 6.64%   | - 20 min  |
| London                      | Malaga    | 2276567    | 888 min  | 826 min             | - 6.98%   | - 62 min  |
| Berlin                      | Frankfurt | 2248716    | 222 min  | 159 min             | - 28.38%  | - 53 min  |
| Paris                       | Rome      | 2247612    | 573 min  | 469 min             | - 18.15%  | - 104 min |
| Copenhagen                  | London    | 2227971    | 718 min  | 594 min             | - 17.27%  | - 124 min |

[69]

**Table 8**: Top 20 air corridors (nondirectional) with the highest projected relative reductions of realistic rail travel times. The full dataset is available in Appendix J. Source: Eurostat (2020).

| air route (bot | h directions) | passengers | tcurrent | t <sub>future</sub> | drelative | dabsolute  |
|----------------|---------------|------------|----------|---------------------|-----------|------------|
| Riga           | Tallinn       | 289702     | 607 min  | 100 min             | - 83.53%  | - 507 min  |
| Tallinn        | Warsaw        | 191102     | 1251 min | 396 min             | - 68.35%  | - 855 min  |
| Warsaw         | Wroclaw       | 294171     | 255 min  | 105 min             | - 58.82%  | - 150 min  |
| Lisbon         | Porto         | 1008951    | 181 min  | 75 min              | - 58.56%  | - 106 min  |
| Sofia          | Vienna        | 347550     | 1388 min | 585 min             | - 57.87%  | - 803 min  |
| Riga           | Vilnius       | 229468     | 262 min  | 114 min             | - 56.49%  | - 148 min  |
| Riga           | Warsaw        | 191772     | 644 min  | 296 min             | - 54.05%  | - 348 min  |
| Frankfurt      | Tallinn       | 280602     | 1791 min | 830 min             | - 53.66%  | - 961 min  |
| Lisbon         | Madrid        | 1558588    | 483 min  | 231 min             | - 52.17%  | - 252 min  |
| Belgrade       | Vienna        | 213021     | 604 min  | 293 min             | - 51.49%  | - 311 min  |
| Munich         | Sofia         | 258896     | 1619 min | 804 min             | - 50.35%  | - 815 min  |
| Berlin         | Sofia         | 223520     | 1809 min | 933 min             | - 48.43%  | - 876 min  |
| Munich         | Venice        | 239201     | 377 min  | 195 min             | - 48.28%  | - 182 min  |
| Bologna        | Munich        | 206028     | 369 min  | 192 min             | - 47.97%  | - 177 min  |
| Vilnius        | Warsaw        | 233666     | 461 min  | 242 min             | - 47.51%  | - 219 min  |
| Milan          | Munich        | 502803     | 390 min  | 208 min             | - 46.67%  | - 182 min  |
| Rome           | Sofia         | 224999     | 2036 min | 1093 min            | - 46.32%  | - 943 min  |
| Stockholm      | Tallinn       | 288763     | 2225 min | 1197 min            | - 46.20%  | - 1028 min |
| Frankfurt      | Sofia         | 456935     | 1755 min | 951 min             | - 45.82%  | - 804 min  |
| Florence       | Munich        | 209195     | 406 min  | 229 min             | - 43.60%  | - 177 min  |

#### 8 – Discussion

#### 8.1 – Interpretation & Synthesis of Results

In accordance with the results presented above, it is possible to answer the research questions guiding through this thesis:

Within the context of travel time improvements resulting from infrastructure upgrades to the European intercity passenger rail network, ...

**RQ1:** Which regions and cities benefit the most from the completion of upgrades in terms of reachability and accessibility/connectivity?

Assuming that the current infrastructure remains existent, and projects do not go at the cost of other relevant tracks, every city connected to the core network (excluding Ireland, Corsica, Sardinia) benefits form improved accessibility and connectivity to the network. The ASPL from one city to all other within the network is most significantly reduced in the Baltics, southeastern Europe, and Portugal. Standing out the most are Istanbul, Narva, Tallinn, and Plovdiv. Besides Turkey, Estonia, and Bulgaria, other countries worth mentioning are Serbia, Montenegro, Latvia, and Portugal. These countries are (at least in some parts) benefitting the most form moving much closer to the rest of the network. Additionally, Norway and Sweden, as well as southern Italy and coastal Spain see moderate yet substantial improvements. Besides that, gaps in the rail network will be closed and allow multiple formerly isolated cities to access the remaining rail network. This particularly concerns Macedonia and Greece. The lowest improvements in this sense are meanwhile found around the German-Dutch-Belgian border region whereas Brussels shows the smallest reduction among all cities connected to the core network. The patterns of greatest improvements are partially explained by the regions' peripheral location. However, other rather remote regions such as Scotland or the eastern parts of Poland, Slovakia, and Hungary do not see equally substantial improvements. This highlights the dependence on certain improved key corridors that strategically target specific peripheral regions and accelerate journeys toward the rest of Europe.

At a local scale and within a demographic context, over 40% of all cities will benefit from more efficient access to their capitals and the closest metropole (cities with more than 500'000 inhabitants). Again, southeastern Europe will see the most striking relative reductions of travel times, alongside with Estonia, southern Italy, Portugal, and coastal Spain. These generally more peripheral regions make up for the majority of the reduction in the full network's ASPL of 10.81% for realistic travel times and 17.57% for potential travel times. If narrowed down to only capitals or metropoles, these reductions are even higher, ranging up to 28.64%. These two findings allow for concluding that rail upgrades particularly target connectivity from/to/within capitals and metropoles which are cities of distinctly high socio-economic and political relevance. Moreover, the changes in reachability for short journeys (below four hours) will be most prevalent in central Europe (e.g., Leipzig, Innsbruck, Erfurt, Bolzano, Grenoble). For journeys below eight hours, the major benefits are expected in regions along an arch spanning from the German-Polish border via the Czech Republic and northern Italy to the Pyrenees. Standing out are especially the northern Italian cities. Within a twelve-hour threshold, the increases in reachability will expand toward the East with Serbia, Poland, and the Czech Republic standing out. Italy, northeastern Spain, and southern Sweden represent the few western exceptions. This allows for concluding that central Europe will particularly benefit from strategic local bottleneck upgrades while eastern Europe and the central and western periphery will mainly benefit from improved accessibility across major bottlenecks to the more central and more efficiently connected parts of the network as such.

## **RQ2:** How do distributive effects change the cities' and regions' European-scale relevance within the network and how are passenger transportation patterns shifted?

With the upgraded network implemented, the most efficient European-scale transportation corridors will be reshaped which was particularly quantified by using the EBC – which visualized the distributive effects of the series of implemented projects. Most notably, the main access corridor toward southeastern Europe will be re-routed through Serbia instead of Romania. This particularly benefits Subotica, Novi Sad, Belgrade, and Nis, but goes at the expense of Szeged, Arad, and Craiova's relative network relevance. Northern Italy will gain particular relevance in two ways simultaneously. Lugano, Arth-Goldau, and Zurich as parts of the Swiss transalpine corridor will be of less relevance on a European scale while Italy's transalpine connections toward France and Austria will significantly benefit. Furthermore, the northern Italian cities will be a part of more efficient north-east connections which currently are dominated by the southern German corridor. This means that Turin, Milan, Verona, Bolzano, as well as Innsbruck and Salzburg will gain in relevance. The German cities Nuremberg and Regensburg will lose relevance due to a newly emerging corridor for connections between the North and Southeast which then will run via the Berlin-Dresden-Prague-Brno-Vienna path. Especially the Czech cities will thereby gain particular relevance. Coming from the north, the Danish cities Padborg and Odense will be bypassed by the direct connection between Copenhagen and Lubeck. The northern German city will thereby gain substantial relevance in its role as a gateway toward Scandinavia. In the southwest, an Atlantic corridor from France toward Spain will emerge, hence benefitting Bordeaux, Bayonne, San Sebastian, Vitoria-Gasteiz, and Burgos. At the negative end, this will slightly reduce the relevance of the cities along the Mediterranean path, i.e., Barcelona, Girona, Perpignan, and Montpellier. As a general conclusion, it can be said that the greatest relative loss of network relevance occurs in regions of high current relevance. Newly emerging most efficient corridors thereby compete with their pendants. However, distributive effects, i.e., the interplay of the network's structure and other project impacts, cause these patterns to be not always as straight-forward as would be expected. This is especially present in the Berlin-Prague-Vienna and southern-Alpine corridors, and was also further corroborated by the fact that no correlation between the EBC and individual impact could be found.

## **RQ3:** Which projects makes for the greatest overall operational impact on a European scale?

The most important single project edge is the Fehmarn Fixed Link on the route between Lubeck and Copenhagen. It alone will manage to reduce the full network's ASPL by 1.48% which is substantial for a relatively small project. Yet, its position along such a crucial bottleneck allows for its high importance. The Suwalki-Kaunas section of the Rail Baltica project serves a similar purpose, though shows a less striking reduction by 0.77%. Of considerable relevance is also the Lyon-Turin connection (0.64%). Standing out are the Timisoara-Craiova and Sofia-Craiova edge upgrades (1.01% and 0.91%, respectively). Meanwhile, other projects unfold their full power especially in combination with further upgrades. The projects along the Budapest-Belgrade-Sofia line are herein most dominant. This is especially corroborated by the high vulnerability in a simulated reset of only one single section. The disruption of only one upgraded line would in the future scenario cause an increase in the full-network's ASPL of up to 2.36%. Similarly high values are only found for the Copenhagen-Lubeck link (1.82%), the Innsbruck-Bolzano-Verona sections (up to 0.77%) and the Rail Baltica segments along the Riga-Pärnu-Tallinn and Kaunas-Suwalki lines (up to 1.01%). This confirms the particularly high importance of the Serbian corridor, the Fehmarn Fixed Link, sections of Rail Baltica, and the Brenner Base Tunnel. Nonetheless, it must be addressed that especially the projects attracting new efficient rail corridors throughout Europe are highly important as well, especially in a local and economic context. This for instance concerns the Berlin-Dresden, Dresden-Prague, and Brno-Vienna line, the Basque Y project together with the Bordeaux-Bayonne improvements, the Frankfurt-Kassel/Erfurt lines, as well as the Lisbon-Badajoz-Madrid upgrades. Moreover, it shall not be forgotten that every project affects at least two cities directly and is therefore automatically relevant on a local scale, too. In general, it was observed that the impacts of international project edges were notably higher than those of domestic ones.

**RQ4:** Which political, topographical, and topological patterns do the spatial distribution, location, and arrangement of infrastructure projects indicate?

The identified groups and clusters of projects appear to either be part of a specific transportation corridor, or a regional improvement patch. Interestingly, multiple project groups align with specific corridors of the TEN-T network established by the EU. This makes sense due to the funding mechanisms dedicated to the implementation of the TEN-T network. From a topographical perspective, it becomes clear that hilly and mountainous terrain is the dominant hurdle being overwound by projects. Larger water bodies are thereby only of secondary relevance due to only little meaningful potential remaining to be exploited. While there is no particular focus on international connections, they are not neglected neither. Instead, specific political patterns could be observed in a few instances. Generally speaking, projects are in some instances used to provide improved access to structurally neglected regions (e.g., southern Italy) or more autonomous regions (e.g., northern Spain). Interestingly, however, projects are not necessarily dedicated to network sections that already are of high European-scale relevance. Instead, they appear to rather fill remaining gaps. Overall, the clearest pattern is that projects are particularly present in regions of high local relative (inefficiencies) of rail services. This indicates an overall tendency that the current European rail network has in certain regions reached a (possibly temporary) optimum. This optimum covers maximum operation velocities above 200 km/h for core lines and above 160 km/h for secondary main lines. The currently planned projects thereby reflect a desire to improve suboptimal infrastructure sections to match the temporary optimum instead of further advancing the already well-equipped connections which is exactly what the TEN-T project was set up for.

# **RQ5:** How do the infrastructure projects vary in their nature and what implications could the particular characteristics addressed in the case studies pose to intercity rail planning on a European scale?

The key finding is that infrastructure projects are a political tool that plays into socio-economic fields as well. In many instances, problems are part of a greater strategy aimed at strengthening the connectivity and/or relevance of one region to/within the remaining network. The political involvements can however also become much more complex, as the projects along the Hungary-Black Sea Corridor have shown. In this instance, the EU's interests oppose Chinese desires that in return match Hungary's approach to commit domestic and foreign politics on both sides of the Hungarian-Serbian border. Less of a patchwork is the Rail Baltica instance where geopolitics and military interests mix with infrastructural development. Since politics are potentially capricious, it can be concluded that additional such projects might emerge, but also likely will disappear again before full completion. From a pure rail network and passenger travel perspective, ignoring the implications of political involvement, it can be hoped that passenger travel will benefit from a sort of arms race of infrastructure expansion in underdeveloped regions – which, however, is a highly optimistic thought.

Furthermore, it was emphasized that the dynamics of rail projects concerning travel time improvements on a European scale significantly differ from projects targeting frequency and capacity upgrades. The main difference is that capacity upgrades must cover the full bottleneck in order to unfold its large-scale benefits. Meanwhile, sectional travel time reductions are not of minor value, even if other bottleneck sections remain unchanged. For frequency-targeted projects, this results in a co-dependency which unfortunately tends to rather slow down project implementations instead of the opposite. The same also applies to multinational projects, such as the Rail Baltica project, since coordinative efforts and different economic and political situations might interfere with a synchronous project completion. It is therefore particularly helpful for projects to be controlled and advanced by a superior authority.

#### 8.2 – Limitations

#### 8.2.1 – Conceptual Limitations

The most defining conceptual aspect of this thesis is the core network's structure. It is the result of infrastructure data, a routing and simplification approach, and a series of input cities. While each component has its own limitations, which will be addressed, the city selection is worth a particular focus. Changes in the city selection would eventually result in a differently structured network which hence also behaves differently. In return, the quality of analysis would potentially be affected too. As a consequence, the previously introduced results are strictly dependent on the current city selection. Since no hard criteria could be set up to sufficiently capture the general structure of the full European rail network, the application of predominantly soft criteria might be interpreted differently and could hence lead to diverging results. In return, despite the careful choice of cities in accordance with the predefined soft criteria, relevant cities might have been left out. For instance, smaller cities with disproportionately high numbers of rail connections could be unintentionally overlooked since it usually requires high local knowledge to be aware of such locations. Even though additional research (e.g., in timetables or specific online forms) was conducted and multiple improvements and city additions were made based on the intermediate network results, some essential network nodes might remain undetected.

Another issue relates to the fact that the city selection was based on the current network. This means that, upon inclusion of planned projects, there is a chance that cities suddenly become relevant without being noticed before. As the results have shown, this already occurred among the selected cities – and could therefore also happen to previously excluded cities. For instance, cities without any current relevant rail infrastructure might in the future be connected to the intercity rail network and thereby play a more important role. Even though the city selection process took place in close correspondence with the project network research – which allowed for anticipating and including such cities (e.g., Pärnu along the Rail Baltica line between Tallinn and Riga) – the risk of omitting respective places could not be fully alleviated.

This relates to a very general limitation of this work: the current status quo literally represents nothing more than a snapshot of the never-ending dynamics constantly surrounding the field of railways in Europe. This concerns not only the infrastructure data (retrieved on 01.03.2024), but also the general pattern of current rail operations (retrieved for 06.05.2024 - 12.05.2024). This means that temporary disruptions or operational alterations might have gone undetected. Even though this was specifically looked out for in the data gathering stages, there remains a risk that such inaccuracies might have been included unknowingly. This has the potential to make the work and results slightly less representative, depending on the magnitude of the possible oversights. On the other hand, using this current snapshot as a reference for creating the future scenario and comparing the resulting model calls for the assumption that the current situation is preserved at least. This means that the potential decommissioning of existing infrastructure is not foreseen (unless being replaced by a project, in which case the future situation would be covered in the scenario).

Furthermore, the realistic travel times retrieved from timetables are potentially subject to minor inaccuracies of one or two minutes. This is due to the simple reason that timetables tend to vary throughout the year. Since the realistic travel times were retrieved for early May, current journey times might have been slightly altered already because of the snapshot-like character of data retrieval. Besides that, such minor uncertainties might also be the reason of the non-

directional travel time retrieval. This means that the realistic travel times might be correct in one direction but may be off by one or two minutes in the opposite direction. Due to simplicity reasons and the European scale of research, this error is overall negligible but might still cause minor uncertainties or lead to slight confusion.

During the computational generation of this network, one further conceptual limitation arises besides the difficulties surrounding the routing as such (which is addressed further below). In particular, the problem is centered around the simplification process which is undertaken to eventually represent only meaningful connections that also match the structure of regular intercity operations. As was indicated in the methods section, direct connections were removed whenever there was an alternative path present taking less than 10% or 5 min more time than the direct one. While this worked very well to establish a realistic structure, there were certain instances in which the fastest route within the resulting network diverges from and is slower than what is realistically being operated. For instance, journeys between Stuttgart and Zurich are in the resulting network routed via Karlsruhe and Basel which adds up to 3 h 13 min while the actually fastest service takes 2 h 58 min and runs via Singen near Lake Constance. This means that a few very distinct journeys are in reality operated more efficiently than this thesis' base network allows for. However, this only applies to a limited number of examples. The simplification thresholds were therefore selected to optimally balance the trade-off between realistic accuracy and modelled comprehensiveness.

Additionally, the network's structure being based on potential travel times bears the risk of a resulting mismatch with realistic travel times. The aforementioned network simplification might remove edges/connections where the thresholds would not actually apply in terms of realistic travel times. This is due to the reason that potential and realistic travel times may show a linear relationship but are not directly proportional. Fortunately, a manual check has indicated that issues resulting from this behavior are very rare and are especially of no major relevance due to this thesis' focus on the future development train travel. Nonetheless, one striking example worth mentioning is the connection between Klagenfurt and Graz. Here, potential travel times indicate that the fastest route (after applying the 10%- and 5-min simplification) runs via Maribor, thereby replacing the alternative route through Bruck an der Mur. In reality, however, the variant through Maribor takes a total of 3h 33 min while the originally replaced alternative route would take 2 h 53 min – which is far more than a difference of 10% or 5 min. Yet, since the emphasis of this thesis is on the changes between the current and future, this issue is less problematic. If no project lies between two such cities, there will not be any changes. And if a project were to be implemented, the new travel times would have been added to the network, and change would be detected. Nonetheless, the change might in such an instance be slightly overexaggerated which is why this issue must be kept in mind during interpretation.

Speaking of infrastructure projects, it must be mentioned that they are surrounded by multiple limitations. The most defining problem, especially during information acquisition, was the severe uncertainty of completion. As is listed in the methodology, measures were undertaken to obtain a set of realistic infrastructure projects. Despite these clear criteria, project completion can never be guaranteed in advance. Besides this, the project information data quality was of very mixed quality. Hence, information might in some cases be not perfectly exact, most particularly in terms of travel time improvements. For instance, travel times are rather indicated in rounded values (e.g., "cut travel times to below one hour"). Therefore, if necessary, underestimated improvements were used which in return means that the travel time reductions may be slightly higher in reality. Lastly, it must be noted that it is difficult to be sure that all currently relevant projects were included. Since there is no summarized overview of all projects, there is a tiny chance, that some project might have been overlooked. To avoid this, different online forms and specific magazines/journals were checked. Furthermore, the selection of projects again represents only a snapshot. It includes all known and relevant projects as of 01.05.2024. Consequently, new projects could already have emerged by the completion of this thesis.

What also must be clearly addressed is the issue surrounding connections that currently are not operated but exist in terms of functional infrastructure. It was decided to exclude these connections from the current network in terms of realistic travel times, but to include them for the future scenario. The future travel times are then – unless the connection is affected by a project – computed via the linear regression. As a result, the differences (in terms of realistic travel times) between the current and future networks go beyond the implementation of projects. While this approach is justifiable by the assumption that the infrastructure's potential will be fully exploited, it brings complications to the interpretation of changes. Due to the new connections and the network's substantial expansion, the comparison of certain network metrics (e.g., ASPL or NDim) is skewed. This has been emphasized multiple times and must be understood in order to interpret changes appropriately.

Relating to the computation of travel times via regression, it must again be clearly pointed out that the future scenario is a patchwork of direct and indirect travel time projections. Based on the type of project impact, the travel time improvements of the other type were computed based on the linear regression. This method however comes with uncertainties regarding the result's accuracy. Firstly, even though coming with high R-squared values, the regressions obviously are not exactly accurate. Secondly, the use of mixed regressions (for international connections) or the European instead of local regressions (for countries without regressed samples), increases the inaccuracy. Additionally, the upgrade of infrastructure might change the relationship between infrastructure and operated travel times. The indirectly computed travel times therefore serve as an appropriate approximation but cannot provide an entirely unerring result.

The last major conceptual limitation concerns the interoperability of trains within the European rail network. As was introduced earlier, this thesis' context assumes that differences in track gauge, signaling systems, and electrification do not pose any hurdle to train operations. This was also justified by specific technological innovations. Unfortunately, this theoretical ideal of European interoperability does not fully exist (yet) in reality. Cross-border connections often involve locomotive changes, switching rolling stock, and/or passenger transfers for overcoming the technological differences of infrastructure. In order to fulfill this thesis' projections to a full extent, a series of strategic implementations (including infrastructural upgrades and rolling stock adjustments) would have to be undertaken by 2050. Since it is unclear whether this will actually happen, there remains a degree of uncertainty. In case this will not be fully implemented, it must be expected that travel times on affected routes (in particular: cross-border operations) might be slightly longer than projected in this ideal scenario.

#### 8.2.2 – Computational Limitations

On the computational side, the limitations start at the coordinate inputs of the selected cities. As was described in the methodology, the coordinate input was needed to find the closest node of the infrastructure network which would then be used as origin or destination during routing. However, an unfortunate coordinate selection could lead to the closest node being part of the sidings or lie on some dead-end track with very low operational velocities. In such cases, the routed travel times would be particularly high. Therefore, the coordinate inputs were carefully picked with the help of satellite maps, in order to identify ideal spots. These were usually near switches (since this typically indicates that an infrastructure element ends there, i.e., a node is nearby) along the main tracks in or right in front of the respective station. However, unexpected data structures or inaccurate satellite map referencing could in certain occasions still lead to misplacements. Therefore, the immediate routing results were manually checked for outliers and otherwise outstanding results which would indicate such an incident. Furthermore, the outliers of the regression were checked, too. While certain misplacements could be identified and were cleaned out accordingly, there is a risk for undetected routing inaccuracies resulting from such instances.

During routing, further limitations occur. Most notably, the routing algorithm is only a very simplistic and somewhat idealistic approach toward accurate routing. To be specific, this version assumes that every edge can be travelled to the full extent at its Vmax. This would mean that trains accelerate or slow down instantaneously which obviously does not resemble reality. Furthermore, this Vmax corresponds to the most efficient category of trains, for instance tilting trains that can go faster on curvy tracks - which cannot be fulfilled by regular trains. The differentiation of tracks dedicated to certain uses (e.g., freight traffic only) is not respected neither. Adding to this is that frequencies and capacities are neglected, and that full interoperability across all infrastructure is seen as given. Additionally, the routing itself allows for sharp turns that technically are not operable on rails. These aspects all together lead to far too optimistic resulting travel times. More ideal routing algorithms would involve methods that approach realistic operations more closely. Therefore, the network being built based on these potential travel times brings along a certain degree of uncertainty which reconnects to the issues mentioned earlier. Nonetheless, since this thesis' focus is on infrastructural upgrades, the potential travel times represent a fair approximation to actual rail operations - which has been validated by the regression's high goodness of fit.

The necessity of basing the network generation on realistic travel times lies in the absence of optimal data gathering methods for realistic travel times. If it were possible to retrieve high quantities of accurate timetable-based travel times across international borders, the network generation logic could have been applied in an analogue manner. However, there is no single travel planner or data source that accurately covers the full European extent (which is why the manual retrieval of realistic travel times had to involve multiple different sources). Besides this, the most pressing hurdle would be the automatic gathering of data. The automated access to travel planning websites can potentially violate the user guidelines. In an instance where this is not the case, a brief trial experiment revealed issues at the server side which eventually led to unsuccessful requests and hence produced no usable outcomes. Consequently, the network generation purely based on realistic travel times might be feasible on a smaller scale but could not (yet) be implemented for entire Europe. Therefore, the infrastructure-based network generation allowed for an ideal alternative approach to generate a network following a clear and consistent logic.

Nonetheless, the infrastructure data itself is also tied to certain limitations. While the general data quality could be seen as suitable for this thesis, it comes with certain gaps regarding the Vmax. This vital information is missing in some cases which represents a major problem since the travel times per infrastructure segment rely on just exactly that particular value. As a solution, the affected elements were assigned with the weighted average velocity of all other elements within the same country. This allowed for smooth routing operations. However, this potentially reduces the accuracy of the results. Since these gaps seemed to mainly have affected tracks of secondary relevance for intercity travel, there is a chance that the used average values are higher than what the tracks would allow for in reality. In return, some shortest paths could have been led through these sections. However, thanks to the same reason (i.e., that the affected tracks tend to be less relevant in comparison to the main lines which clearly operate above the average velocities), it is unlikely that any major error would have emerged from this problem – but the problem must nonetheless be made aware of.

Another issue relates to the computation of travel time reductions. Whenever the reductions were indicated in terms of specific infrastructure upgrades (e.g., Vmax increased from 120 km/h to 160 km/h), the reduction was computed following the procedure displayed in the methodology. This however relies heavily on the assumptions made surrounding the behavior of track upgrades. It is assumed that the slowest third of infrastructure remains constant while all other sections are upgraded to the new Vmax. Even though this assumption could in one instance be confirmed, it is uncertain whether it corresponds to reality. Therefore, there remains a minor uncertainty concerning the resulting travel time reduction.

A more general problem surrounding the computational section of this thesis is a relatively high inefficiency. In the current approach of network generation, a relatively high number of connections is computed before being reduced. While this works relatively fine for a smaller number of city inputs, this inefficiency might turn into a crucial issue – especially due to the routing algorithm being based off a simple Dijkstra algorithm. The latter becomes particularly relevant due to the infrastructure data set's high number of elements. Despite the simplification process summarizing elements as far as possible, it might be advisable to implement a more efficient routing algorithm. Furthermore, the conceptual approach might be improved to require the computation of fewer connections. To conclude, it can be said that the computational efficiency is acceptable for this thesis' exact scope but might become a challenge for future work.

The second last major computational limitation concerns the area cartograms. Their computation via the approach based on Voronoi polygons is time-consuming and the results are of limited use. This is mainly due to the used external algorithm (see the methods section) but is also a result of the self-developed conceptual approach. Most notably, on the algorithm side, the computed results try to maintain the overall extent of the polygons. This means that the outermost regions are set to remain outermost which in return leads to a slightly skewed product. On the conceptual side, the Voronoi polygon-based approach struggles with visualizing change. Since there are unlimited possibilities to reshape a polygon to result in a desired area, the contractions and expansions of space are not always visible as clearly as desired. Nonetheless, it serves well to indicate regions of more or less efficient rail operations. The aforementioned problem however becomes apparent when trying to visualize change. Again, this is mainly due to the algorithm's attempt to preserve the general layout of the polygons. Therefore, the self-developed cartograms are not yet ideal to replace common time-space maps and are therefore only of limited analytical value. Still, they are valuable for mapping and understanding the current status quo of rail operations.

To complete the computational limitations, it is also worth to emphasize that the created interactive web apps are only of rudimental functionality. In particular, this concerns the smoothness of use. The produced visualizations are always loaded/generated upon request (e.g., after selecting a city or changing the scenario). This means that there is a short delay between inputting the request and being returned with the result visualization. This is only of minor significance for the distance cartograms as the result is shown within less than a second. However, the isochrone visualizations take longer to load, around three to five seconds, due to the highquantity data structure. This is already enough to reduce the effectiveness of this interactive experience. While being sufficient for private analysis-centered use, this tool would not be suitable for public use and would require the expertise of a skilled web app developer.

#### 8.2.3 – Interpretational Limitations

During the interpretation of the results, there are further limitations that must be taken into consideration. One major aspect herein concerns how nodes are treated in the final current and future intercity rail networks. Currently, the nodes are all treated as through-stations allowing for seamless travel. In reality however, it is fairly common that the corresponding stations are laid out as terminus stations. Consequently, trains need to change directions which from an operational perspective usually requires a few minutes of setting up. Therefore, travel times in reality might be higher through such stations. In general, the computed travel times assume that nodes are passed through without stop or passenger transfer. In reality, trains (apart from dedicated express services) stop, thereby adding at least one or two minutes (sometimes even more) to the overall travel times. In the case of multiple stations per city (e.g., as in Paris, London, or Budapest), connections might realistically arrive and depart from different stations. This would require a transfer which depending on the city can be time-consuming. This means that even the resulting realistic travel times are to some degree only an idealization whenever the connection passes through one or more network node(s) besides the start and end.

Moreover, passenger transfers as a general concept represent another major interpretational limitation. Connections involving transfers between different trains usually translate to layovers at the station. While these can be of various lengths, it can commonly be said that one spends more time at a station if one has to transfer trains, in contrast to staying on the same train. This means that transfers increase the travel times even further than the stops as such already do. The magnitude of waiting times during a layover is thereby highly dependent on the integration of timetables and schedules. In some extreme cases, there might even be the risk that no trains connect to each other at all – which would result in hours of waiting times. This all is not taken into consideration (quantitatively) during this thesis. In return, every connection and computed travel time assumes that a train either travels directly through stations along the way or immediately connects to the next one, without any noticeable transfer times. This consequently underpins the importance of understanding that the produced scenarios only represent an optimal setting. In reality, travel times might therefore be slightly higher than the indicated values.

Another issue relates to the interpretation of network metrics. This has already been emphasized multiple times throughout the thesis: some metrics are only computable for a certain extent of the network while others might be distorted due to the inclusion (in the future scenario) of connections that currently are not operated. The first problem refers to metrics such as the ASPL and NDim. These values are only computed for the largest connected component of the network. This means that Ireland and other disconnected regions are not represented by the resulting values. For the same reason, these two metrics are also susceptible to the secondly mentioned problems. Due to the addition of currently non-operated lines, the network (when assessed in terms of realistic travel times) suddenly grows significantly. In return, more and longer connections are possible. This does not only skew the results of the ASPL, but also concerns the NDim, eccentricity, as well as the EBC/NBC or the NCC. This must therefore always be pointed out during analysis interpretation. Nonetheless, it can be argued that the addition of such connections is correct in the thesis' context and simply reflects a meaningful component of the modeled scenario – which is exactly why it was decided to stick with this approach.

The aforementioned problem however only occurs when basing the analysis and subsequent interpretations on realistic travel times. Despite this limitation, it makes sense to maintain the research focus on realistic travel times. The reason is simple: the potential travel times are only an approximation to realistic rail operations. Most interesting for travelers is the understanding of projected real-world changes in the field of intercity rail travel. The potential travel times are a valuable tool for generating a core network and furthermore help to quantify the impacts of infrastructure upgrades. However, they shall mainly remain a basis tool supporting and facilitating the analysis of realistic travel times. Nonetheless, one must be aware of the fact that the analysis focus on realistic travel times goes alongside the aforementioned limitations, especially during interpretation.

Lastly, it is worth to mention another limitation regarding the result interpretation; in this case concerning the isochrones and area cartograms. Before, it was already explained that the latter are suboptimal for visualizing changes but instead are fairly informative about the current operational efficiency. Yet, it must be emphasized that both instances make use of projecting the travel times across the entire map of Europe. This means that not every region is part of any relevant intercity rail connection or is even served by any trains at all. Nonetheless, they are part of the visualizations (either by being inflated/deflated or by being assigned to an isochrone range). Also, as was pointed out in the methods section, no particular respect is taken to major bodies of water which are not treated as a hindrance for travel. Consequently, the interpretation of the results is most meaningful for areas close to or between included cities. Yet, once being aware of these limitations, the isochrones and area cartograms can serve as a valuable tool for visualizing differences in accessibility on a continental scale.

#### 8.2.4. - Excurse to Rail Operations as a Whole

Besides the thesis-specific limitations, there are also a few aspects that must be addressed when viewing this work in the context of sustainable mobility. Most importantly, it is important to emphasize that sustainable mobility by rail does not only require a well-functioning intercity network. Much more, the intercity network must be well-integrated with the local and regional rail system. However, the expansion of intercity rail infrastructure bears the risk of emerging imbalances if local and regional rail is being neglected – a potential issue pointed out by several researchers (e.g., Albalate & Bel, 2012). In Europe, this topic is being discussed particularly for Italy and Spain, two countries well-known for their extensive high-speed rail networks (Beria et al., 2018). While not being part of this thesis, it is crucial to understand that the improvement of Europe's intercity rail network should not take place at the expense of local and regional rail infrastructure. Unfortunately, though, this exact tendency has been dominant throughout the recent decades, as Seidenglanz et al. (Seidenglanz et al., 2021) observed.

Moreover, the pure existence of infrastructure does not automatically imply that it is used to its full potential. One central aspect herein is the cost of track access fees. Simply put, every train has to pay for the tracks it uses. How high these costs are and what further fees apply varies from country to country. However, claims are common that the costs are too expensive to allow for financial competitiveness of trains against airplanes (Donat, 2021). As a result, fewer trains might operate which in return could reduce transfer options to onward connections. This also relates to the complex field of economics and politics. The degree of liberalization and privatization of the rail system impacts how and at which costs railways are operated. Consequently, these circumstances play an important role in making use of the future potential for intercity rail travel. Furthermore, the mixed use of traces together with freight rail will additionally affect how rails are actually operated. Though being particularly excluded from this thesis, all these dynamics must at least be mentioned, too. It can therefore be said that this thesis simply produces an outlook on the projected potential for passenger travel – while reality will have to decide on how much of it will actually be exploited.

One last aspect worth mentioning is about the relevance of edges and nodes within the network. In general, an increase in relevance (e.g., due to the node/edge being part of additional shortest paths within the network) can be seen as a positive result. It provides new opportunities for both the affected region (e.g., increased touristic and/or logistical potential), as well as for rail operations in general (i.e., more efficient routes). However, this might also be viewed as a sort of burden in case of lacking facilities to handle the traffic such as insufficient noise protection. In return, the relative loss of relevance of a node or edge might also be interpreted as an alleviation from overused infrastructure. Besides this, a relative loss of relevance does not necessarily translate to fewer trains or similar shortages. In an optimistic scenario projecting an increase in rail usage, the rail services are not reduced but instead only expanded along the newly emerging corridors. In reality, however, it would not be surprising if less efficient routes (i.e., those losing relative relevance) would see fewer trains. Nonetheless, these exact dynamics cannot be fully projected yet, especially since no frequency and capacity analyses were conducted within this thesis. Again, it therefore rather serves to set up a framework in which a series of various influences (such as the ones listed above) will reshape how rail operations will look like in the future – which hopefully will be in a positive way.

#### 8.3 – Recommendations

As was pointed out multiple times, this thesis can be understood as a gateway into the field of infrastructure-based improvements and changes surrounding European rail transportation. While this work provides a framework showcasing an idealized and simplistic future scenario, further work could dive into specific addressed aspects of this work to which the doors have been opened in the earlier paragraphs.

Most particularly, it would be valuable to come up with a methodology allowing for more flexible analyses regarding scale and temporal resolution. This could for instance involve an engineering perspective by creating an updated data set of raw infrastructure data – including planned projects and their exact traces and properties (if already designed). In combination with a more efficient routing and network generation approach, this would allow for generating a vast set of scenarios at flexible scales for analyses. Upon unwrapping this concept even further, a sophisticated project differentiation filter could be implemented. This would allow for selecting projects within a range of projected completion, and/or to choose them by their current implementation status. Much more generally, projects could be filtered by all their attributes (e.g., size, location, Vmax, etc.). In a similar way, the cities that should be considered could be selected upon a flexible input of criteria such as administrative relevance, population size, or economic status. This would result in a tool of efficient, yet fully flexible network generation and hence allow for particular analyses within different frameworks at varying scales.

Going alongside (but also being highly relevant individually) is the addition of travel-specific elements to the research. Particularly speaking, this refers to station stops, transfers, frequencies of connecting operations, and the resulting waiting times. The necessary data could for instance be approximately retrieved from an analysis of timetables. Overall, this would enable an (almost) fully accurate future scenario which in return is of high value for predicting actually resulting passenger journeys. This perspective on operational aspects is highly valuable but requires significant field-related expertise which is why it reaches beyond this thesis' scope.

Leading into a different direction is the optimization of the routing algorithm with the eventual goal of matching potential travel times to realistic travel times. This would provide several benefits. Most importantly, the network generation would produce more accurate results, thereby minimizing potential uncertainties. Besides that, an improved routing would allow for directly (accurately) comparing them to realistic travel times. For instance, infrastructure sections could be identified that are currently not yet operated to their full extent. Similarly, the comparison of realistic travel times with accurate potential travel times might help to identify spots where infrastructure upgrades would be particularly beneficial.

Moreover, it would be highly interesting to approach the future infrastructure's analysis from a multimodal perspective. This means that the infrastructure would also be equipped with attributes defining the capacities. Consequently, projects targeting capacity upgrades would become relevant as well. Furthermore, track properties such as slope and corridor width could be retrieved (if not yet available). This could then eventually be used to assess future rail operations as a whole, including the mixed-use sharing of tracks among passenger and freight trains. This would represent a high-detail and integrated analysis of the future rail operations as a whole. Eventually, this would be highly valuable in a context of sustainable transportation. Such an analysis approach would allow for modelling the exact number of passenger and freight trains in the future scenario. As a result, it could be estimated how many passengers might benefit from the improved travel times showcased in this thesis – and hence allows for precise models on the projected climate impact of rail infrastructure upgrades.

In a combined multimodal and fully infrastructure-based analysis, it would furthermore make sense to dive into the field of vulnerabilities. The disruption of certain infrastructure sections could thereby be simulated, and alternative pathways be computed. This would indicate parts of the network which might require additional protection or mitigation measures to minimize negative outcomes of potential disruptions. Most interestingly, this could be done in relation to natural hazards and climate impacts. With including future infrastructure projections and modelling a climate scenario, it might be possible to identify a prognosis of how vulnerability patterns will change between the current and future.

#### 9 – Conclusion

For this thesis, the current and future European intercity rail networks were modelled. The anticipated changes induced by the projects' implementation until 2050 will affect nearly all sections of the network – apart from the fully disconnected regions. These implications must be differentiated in terms of accessibility/connectivity improvements and changes in the network's relevance. Assuming that existing infrastructure is at least maintained, no region will experience negative changes in accessibility. The lowest improvements are found in mainland Europe's Northwest while the greatest improvements are situated at the continent's outskirts. Southeastern Europe, the Baltics, and Portugal are the clear winners in this field. The changes in full-network relevance show a clear shift to newly emerging corridors in southeastern Denmark, Serbia, northern Italy, the Czech Republic, and northern Spain. This goes at the cost of western Denmark, Romania, southern and eastern Germany, as well as southern France and Spain. In combination, the most unexpected benefiter is Serbia, thanks to substantial infrastructure investments along a strategic corridor. This also makes the Budapest-Belgrade-Sofia corridor stand out as one of the most important series of upgrades. Thanks to their strategic overcoming of global bottlenecks, the Fehmarn Fixed Link and Rail Baltica project both deserve particular attention. Similarly, the Euroalpin Tunnel and the Brenner Base Tunnel significantly transform and improve the European rail network. Case studies on some of these projects have provided insights into the complexities surrounding the implementation of such infrastructural improvements. Even though this thesis represents only a snapshot of the highly dynamic situation surrounding rail infrastructure development, it provides an interesting and promising view into a field that has not yet been scholarly explored in an integrated continentalscale approach. It is therefore hoped that this work will soon be followed by even more substantial research, thereby capturing a new snapshot of the European transportation sector's path toward sustainability.

#### Bibliography/References

- Albalate, D., & Bel, G. (2012). High-Speed Rail: Lessons for Policy Makers from Experiences Abroad. *Public Administration Review*, 72(3), 336–349. https://doi.org/10.1111/j.1540-6210.2011.02492.x
- Almotahari, A., & Yazici, A. (2021). A computationally efficient metric for identification of critical links in large transportation networks. *Reliability Engineering & System Safety*, 209, 107458. https://doi.org/10.1016/j.ress.2021.107458
- Anastasiadou, E. (2009). In search of a railway Europe : transnational railway developments in interwar Europe. Technische Universiteit Eindhoven. https://doi.org/https://doi.org/10.6100/IR658478
- Andersson, E., Bahr, H. V., & Nilstam, N. G. (1995). Allowing higher speeds on existing tracks—design considerations of the X2000 train for Swedish State Railways. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 209(2), 93–104. https://doi.org/10.1243/PIME\_PROC\_1995\_209\_261\_02/AS-SET/PIME\_PROC\_1995\_209\_261\_02.FP.PNG\_V03
- Antonowicz, M., & Kwarcinski, T. (2023). Rail Transport Infrastructure as a Factor Accessibility of Rail Transport on the Example of Poland. *European Research Studies Journal*, *16*(4), 544–552. https://doi.org/10.35808/ersj/3305
- Avogadro, N., Cattaneo, M., Paleari, S., & Redondi, R. (2021). Replacing short-medium haul intra-European flights with high-speed rail: Impact on CO2 emissions and regional accessibility. *Transport Policy*, *114*, 25–39. https://doi.org/10.1016/j.tranpol.2021.08.014
- Bäckstrand, K. (2022). Towards a Climate-Neutral Union by 2050? The European Green Deal, Climate Law, and Green Recovery. In A. Bakardjieva Engelbrekt, P. Ekman, A. Michalski, & L. Oxelheim (Eds.), *Routes to a Resilient European Union* (pp. 39–61). Springer. https://doi.org/10.1007/978-3-030-93165-0\_3
- Bankauskaité, D., & Šlekys, D. (2023). Lithuania's Total Defense Review. *PRISM*, *10*(2), 54–77.
- Behrens, C., & Pels, E. (2012). Intermodal competition in the London–Paris passenger market: High-Speed Rail and air transport. *Journal of Urban Economics*, *71*(3), 278–288. https://doi.org/10.1016/j.jue.2011.12.005
- Bergmeister, K. (2014). The Brenner Base Tunnel A railway line for the future. *Global Railway Review*, *4*.
- Beria, P., Grimaldi, R., Albalate, D., & Bel, G. (2018). Delusions of success: Costs and demand of high-speed rail in Italy and Spain. *Transport Policy*, 68, 63–79. https://doi.org/10.1016/j.tranpol.2018.03.011
- Bhardawaj, S., Sharma, R. C., Sharma, S. K., & Sharma, N. (2021). On the Planning and Construction of Railway Curved Track. *International Journal of Vehicle Structures and Systems*, *13*(2). https://doi.org/10.4273/ijvss.13.2.04
- **BAFU Bundesamt für Umwelt. (2020)**. *Klimawandel in der Schweiz: Indikatoren zu Ursachen, Auswirkungen, Massnahmen.* www.bafu.admin.ch/uz-2013-d
- **BAV Bundesamt für Verkehr.** (2024). *Eisenbahnausbauprogramme Bahninfrastrukturfonds* (*BIF*): *Standbericht* 2023.

- BMK Bundesministerium für Klimaschutz, U. E. M. I. und T. (2024). Zielnetz 2040: Das Bahnnetz der Zukunft Fachentwurf.
- Calzada-Infante, L., Adenso-Díaz, B., & García Carbajal, S. (2020). Analysis of the European international railway network and passenger transfers. *Chaos, Solitons & Fractals*, *141*, 110357. https://doi.org/10.1016/j.chaos.2020.110357
- Carden, T. (2005, May 15). *Travel Time Tube Map*. https://www.tom-carden.co.uk/p5/tube\_map\_travel\_times/applet/
- **Chen, L. (2023)**. Stuck on infrastructure? Planning for the transformative effects of transport infrastructure. In *Planning in a Failing State* (pp. 138–159). Policy Press. https://doi.org/10.51952/9781447365075.ch009
- Chen, L., & Xu, J.-C. (2004). Optimal Delaunay Triangulations. *Journal of Computational Mathematics*, 22(2), 299–308.
- **Chen, X. (2011)**. Development impacts of high-speed rail: French experience and Chinese implications. *2011 5th International Association for China Planning Conference*, 1–8. https://doi.org/10.1109/IACP.2011.5982032
- Chen, X., Ma, S., Chen, L., & Yang, L. (2024). Resilience measurement and analysis of intercity public transportation network. *Transportation Research Part D: Transport and Environment*, 131, 104202. https://doi.org/10.1016/j.trd.2024.104202
- **CINEA European Climate, I. and E. E. A. (2022, April 8)**. *Transport infrastructure: projects receive EUR 425 million in EU funding to boost green mobility and to adapt the network for dual civil/defence use.*
- Clark, S. (2012). A history of railway signalling (from the Bobby to the Balise). *IET Professional Development Course on Railway Signalling and Control Systems (RSCS 2012)*, 6–25. https://doi.org/10.1049/ic.2012.0040
- Condeço-Melhorado, A., Tillema, T., de Jong, T., & Koopal, R. (2014). Distributive effects of new highway infrastructure in the Netherlands: the role of network effects and spatial spillovers. *Journal of Transport Geography*, *34*, 96–105. https://doi.org/10.1016/J.JTRANGEO.2013.11.006
- Cooke, P. (2024). Competition in the 'body without organs': an assemblage perspective on the UK's fast train (HS2) cancellation. *European Planning Studies*, *32*(7), 1464–1477. https://doi.org/10.1080/09654313.2024.2341162
- **Cottrell, P. L., & Ottley, G. (1975)**. The Beginnings of the Stockton & Darlington Railway. *The Journal of Transport History*, *3*(2), 86–93. https://doi.org/10.1177/002252667500300202
- **Csapó, D. G. (2021)**. Funding of Transport Infrastructure in Serbia: China in Focus. *China Report*, *57*(2), 210–228. https://doi.org/10.1177/00094455211004257
- Curtale, R., Larsson, J., & Nässén, J. (2023). Understanding preferences for night trains and their potential to replace flights in Europe. The case of Sweden. *Tourism Management Perspectives*, 47. https://doi.org/10.1016/j.tmp.2023.101115
- Deng, K., Fang, T., Feng, H., Peng, H., Löwenstein, L., & Hameyer, K. (2022). Hierarchical eco-driving and energy management control for hydrogen powered hybrid trains. *Energy Conversion and Management*, *264*. https://doi.org/10.1016/j.enconman.2022.115735

- Donaghy, T. J. (1966). The Liverpool & Manchester Railway as an Investment. *The Journal* of *Transport History*, 7(4), 225–233. https://doi.org/10.1177/002252666600700404
- **Donat, L. (2021)**. Für die Renaissance des europäischen Bahnverkehrs Was Deutschland jetzt tun sollte. Germanwatch e.V. https://www.germanwatch.org/de/19851
- Dougenik, J. A., Chrisman, N. R., & Niemeyer, D. R. (1985). An Algorithm to Construct Continuous Area Cartograms. *The Professional Geographer*, *37*(1), 75–81. https://doi.org/10.1111/j.0033-0124.1985.00075.x
- Du, J., Fang, Q., Wang, J., & Wang, G. (2021). Influences of High-Speed Train Speed on Tunnel Aerodynamic Pressures. *Applied Sciences*, 12(1). https://doi.org/10.3390/app12010303
- **Dunmore, D., Preti, A., & Routaboul, C. (2019)**. The "Belt and Road Initiative": impacts on TEN-T and on the European transport system. *Journal of Shipping and Trade*, *4*(1). https://doi.org/10.1186/s41072-019-0048-3
- **European Commission. (2022)**. EU Transport in Figures Statistical pocketbook 2022. In *Statistical Pocketbook 2022*. https://data.europa.eu/doi/10.2832/216553
- **European Commission. (2024)**. Trans-European Transport Network (TEN-T). https://transport.ec.europa.eu/transport-themes/infrastructure-and-investment/trans-european-transport-network-ten-t\_en
- **Eurostat. (2020)**. Detailed air passenger transport by reporting countries and routes. https://ec.europa.eu/eurostat/web/transport/data/database
- **Eurostat. (2024)**. Length of railway lines by number of tracks and electrification of lines. https://doi.org/10.2908/RAIL\_IF\_LINE\_TR
- Fabre, J., Ladoux, P., Caron, H., Verdicchio, A., Blaquiere, J.-M., Flumian, D., & Sanchez, S. (2021). Characterization and Implementation of Resonant Isolated DC/DC Converters for Future MVdc Railway Electrification Systems. *IEEE Transactions on Transportation Electrification*, 7(2), 854–869. https://doi.org/10.1109/TTE.2020.3033659
- Fairbairn, D. (2005). Geovisualization Issues in Public Transport Applications. In J. Dykes, A. M. MacEachren, & M.-J. Kraak (Eds.), *Exploring Geovisualization* (pp. 513–528). Elsevier.
- Fardella, E., & Prodi, G. (2017). The Belt and Road Initiative Impact on Europe: An Italian Perspective. *China & World Economy*, 25(5), 125–138. https://doi.org/10.1111/cwe.12217
- Ferrari, A., Mazzanti, F., Basile, D., & ter Beek, M. H. (2022). Systematic Evaluation and Usability Analysis of Formal Methods Tools for Railway Signaling System Design. *IEEE Transactions on Software Engineering*, 48(11), 4675–4691. https://doi.org/10.1109/TSE.2021.3124677
- Francisco, F., Teixeira, P. F., Toubol, A., & Nelldal, B. L. (2021). Is large technological investment really a solution for a major shift to rail? A discussion based on a Mediterranean freight corridor case-study. *Journal of Rail Transport Planning & Management*, 19, 100271. https://doi.org/10.1016/j.jrtpm.2021.100271
- Fremdling, R. (2003). European Railways 1825-2001, an Overview. Jahrbuch Für Wirtschaftsgeschichte / Economic History Yearbook, 44(1). https://doi.org/10.1524/jbwg.2003.44.1.209

- **Gössling, S., & Peeters, P. (2015)**. Assessing tourism's global environmental impact 1900–2050. *Journal of Sustainable Tourism*, *23*(5), 639–659. https://doi.org/10.1080/09669582.2015.1008500
- Goverde, R. M. P., Corman, F., & D'Ariano, A. (2013). Railway line capacity consumption of different railway signalling systems under scheduled and disturbed conditions. *Journal of Rail Transport Planning & Management*, *3*(3), 78–94. https://doi.org/10.1016/j.jrtpm.2013.12.001
- Grechi, D., & Maggi, E. (2018). The importance of punctuality in rail transport investigation on the delay determinants. *European Transport/Trasporti Europei*, 70(2), 1–23.
- Grunfelder, J., Huynh, D., & Lidmo, J. (2020). *Transit-oriented development in the Greater Copenhagen Region*. https://doi.org/10.6027/R2020:15.1403-2503
- Hawlin, A., & Miebach, E. (2024, July 27). Stau am Brenner: Wann enden die Geduldsproben? *ZDF*. https://www.zdf.de/nachrichten/wirtschaft/verkehr-stau-brenner-basistunneldeutschland-oesterreich-italien-100.html
- Herrenknecht. (2020, August 5). Mega project Brenner Base Tunnel: first milestone achieved with Herrenknecht tunnel boring machine. https://www.herrenknecht.com/en/newsroom/pressreleasedetail/mega-project-brenner-base-tunnel-firstmilestone-achieved-with-herrenknecht-tunnel-boring-machine/
- Hoerbinger, S., Obriejetan, M., Rauch, H. P., & Immitzer, M. (2020). Assessment of safetyrelevant woody vegetation structures along railway corridors. *Ecological Engineering*, *158*, 106048. https://doi.org/10.1016/j.ecoleng.2020.106048
- Houben, M. (2024, August 14). Neues Großprojekt der Bahn umstritten. *WDR*. https://www.tagesschau.de/wirtschaft/verbraucher/deutsche-bahn-grossprojekt-umstritten-brenner-100.html
- Infraestruturas de Portugal. (2023). Programa Nacional De Investimentos 2030. https://www.infraestruturasdeportugal.pt/infraestruturas/investimentos/programas/planos-estrategicos/pni2030
- International Energy Agency IEA. (2019). The Future of Rail: Opportunities for energy and the environment. www.iea.org/t&c/
- Islam, D. M. Z., Ricci, S., & Nelldal, B. L. (2016). How to make modal shift from road to rail possible in the European transport market, as aspired to in the EU Transport White Paper 2011. European Transport Research Review, 8(3), 1–14. https://doi.org/10.1007/S12544-016-0204-X/FIGURES/9
- Jankowski, W., & Sołkowski, J. (2022). The modelling of railway subgrade strengthening foundation on weak soils. *Open Engineering*, *12*(1), 539–554. https://doi.org/10.1515/eng-2022-0053
- Jarvis, A. (1998). James Cropper, Liverpool Docks and the Liverpool-Manchester Railway. *The Journal of Transport History*, *19*(1), 18–32. https://doi.org/10.1177/002252669801900103
- Jegelevicius, L. (2019). Rail Baltica strives to stay on track. *New Eastern Europe*, 03+04 (37), 93–99.
- Kamiński, M. A., & Śliwa, Z. (2023). Poland's Threat Assessment: Deepened, Not Changed. *PRISM*, *10*(2), 130–147.

- Kantelaar, M. H., Molin, E., Cats, O., Donners, B., & Wee, B. van. (2022). Willingness to use night trains for long-distance travel. *Travel Behaviour and Society*, *29*, 339–349. https://doi.org/10.1016/j.tbs.2022.08.002
- **Knowles, R. D. (2006)**. Transport Impacts of the Øresund (Copenhagen to Malmö) Fixed Link. *Geography*, *91*(3), 227–240. https://doi.org/10.1080/00167487.2006.12094170
- Kounadi, O. (2009). Assessing the quality of OpenStreetMap data. University College of London.
- Kraak, M.-J. (2009). Geovisualization. In *International Encyclopedia of Human Geography* (pp. 468–480). Elsevier. https://doi.org/10.1016/B978-008044910-4.00033-X
- Kroes, E., & Savelberg, F. (2019). Substitution from Air to High-Speed Rail: The Case of Amsterdam Airport. Transportation Research Record: Journal of the Transportation Research Board, 2673(5), 166–174. https://doi.org/10.1177/0361198119839952
- Kuster, H. (2003). Railways: Gateways Between East and West in Europe. *Promet*, *15*(4), 215–221.
- Lacôte, F. (2001). 50 Years of Progress in Railway Technology. *Japan Railway & Transport Review*, 27, 25–31.
- Lagadec, L.-R., Moulin, L., Braud, I., Chazelle, B., & Breil, P. (2018). A surface runoff mapping method for optimizing risk assessment on railways. *Safety Science*, *110*, 253–267. https://doi.org/10.1016/j.ssci.2018.05.014
- Laird, J. J., Nellthorp, J., & Mackie, P. J. (2005). Network effects and total economic impact in transport appraisal. *Transport Policy*, *12*(6), 537–544. https://doi.org/10.1016/J.TRAN-POL.2005.07.003
- Laurini, R. (2017). Geovisualization and Chorems. In *Geographic Knowledge Infrastructure* (pp. 223–246). Elsevier. https://doi.org/10.1016/B978-1-78548-243-4.50011-6
- Lenzen, M., Sun, Y.-Y., Faturay, F., Ting, Y.-P., Geschke, A., & Malik, A. (2018). The carbon footprint of global tourism. *Nature Climate Change*, *8*(6), 522–528. https://doi.org/10.1038/s41558-018-0141-x
- Lerida-Navarro, C., Nombela, G., & Tranchez-Martin, J. M. (2019). European railways: Liberalization and productive efficiency. *Transport Policy*, *83*, 57–67. https://doi.org/10.1016/j.tranpol.2019.09.002
- Liu, Y., Tsang, K. S., Tan Zhi'En, E., Alagu Subramaniam, N., & Pang, J. H. L. (2021). Investigation on material characteristics and fatigue crack behavior of thermite welded rail joint. *Construction and Building Materials*, 276. https://doi.org/10.1016/j.conbuildmat.2021.122249
- Lupi, M., Pratelli, A., Conte, D., & Farina, A. (2020). Railway Lines across the Alps: Analysis of Their Usage through a New Railway Link Cost Function. *Applied Sciences 2020*, *10*(9), 3120. https://doi.org/10.3390/APP10093120
- MacEachren, A., Buttenfield, B. P., Campbell, J. B., DiBiase, D., & Mark Monmonier. (1992). Visualization. In R. F. Abler, G. M. Marcus, & J. M. Olson (Eds.), Geography's Inner Worlds: Pervasive Themes in Contemporary American Geography (pp. 99–137). Rutgers University Press.
- Maciejewski, R. (2021). Geovisualization. In *Handbook of Regional Science* (pp. 1651–1670). Springer. https://doi.org/10.1007/978-3-662-60723-7\_70

- Martí-Henneberg, J. (2013). European integration and national models for railway networks (1840–2010). *Journal of Transport Geography*, 26, 126–138. https://doi.org/10.1016/j.jtrangeo.2012.09.004
- Martí-Henneberg, J. (2017). The influence of the railway network on territorial integration in Europe (1870–1950). *Journal of Transport Geography*, 62, 160–171. https://doi.org/10.1016/j.jtrangeo.2017.05.015
- Martí-Henneberg, J. (2021). From State-Building to European Integration: The Role of the Railway Network in the Territorial Integration of Europe, 1850–2020. *Social Science History*, *45*(2), 221–231. https://doi.org/10.1017/ssh.2021.7
- Mattsson, K., Lee, J., & Ligmajer, O. (2022). Handling increased need of maintenance to meet future freight demands: Deterioration and effective maintenance strategies for track system and rail vehicles. Chalmers University of Technology.
- Meyer de Freitas, L., & Blum, S. (2023). *High-speed rail in Europe: A review of ex-post evaluations and implications for future network expansion*. https://doi.org/10.3929/ethzb-000593596
- Meyer de Freitas, L., & Blum, S. (2024). An accessibility-based methodology to identify corridor speed upgrades in the European rail network. *Journal of Transport Geography*, *114*. https://doi.org/10.1016/j.jtrangeo.2023.103760
- Mierzejewski, A. (2002). German Railroaders and the Holocaust. *Railroad History*, 186, 65–67.
- Mitusch, K. (2023). Der Deutschland-Takt: Regulierung, Wettbewerb und Organisation auf der Schiene (V. Stocker, F. Birke, G. Brunekreeft, & H.-J. Weiß, Eds.). Nomos Verlagsgesellschaft mbH & Co. KG. https://doi.org/10.5771/9783748937463
- Montrimas, A., Bruneckienė, J., & Gaidelys, V. (2021). Beyond the Socio-Economic Impact of Transport Megaprojects. *Sustainability*, *13*(15). https://doi.org/10.3390/su13158547
- Mooney, P., & Minghini, M. (2017). Mapping and the Citizen Sensor. In G. Foody, L. See, S. Fritz, P. Mooney, A.-M. Olteanu-Raimond, & C. C. Fonte (Eds.), *Mapping and the Citizen Sensor* (pp. 37–59). Ubiquity Press. https://doi.org/10.5334/bbf
- **Musgrave, P. (2015)**. Track bed total route evaluation for track renewals and asset management "a Network Rail perspective." *Construction and Building Materials*, *92*, 2–8. https://doi.org/10.1016/j.conbuildmat.2015.03.101
- **Nelldal, B.-L. (1998)**. The experience of the SJ X2000 tilting train and its effect on the market. *Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 212*(1), 103–108. https://doi.org/10.1243/0954409981530715
- Neumeier, S., & Kokorsch, M. (2021). Supermarket and discounter accessibility in rural Germany– identifying food deserts using a GIS accessibility model. *Journal of Rural Studies*, *86*, 247–261. https://doi.org/10.1016/j.jrurstud.2021.06.013
- Nordenholz, F., Winkler, C., & Knörr, W. (2017). Analysing the modal shift to rail potential within the long-distance passenger travel market in Germany. *Transportation Research Procedia*, *26*, 81–91. https://doi.org/10.1016/J.TRPRO.2017.07.010
- Öberg, M., Nilsson, K. L., & Johansson, C. M. (2018). Complementary governance for sustainable development in transport: The European TEN-T Core network corridors. *Case Studies on Transport Policy*, *6*(4), 674–682. https://doi.org/10.1016/j.cstp.2018.08.006

- Office of Rail and Road ORR. (2023a). *Rail Emissions: April 2022 to March 2023*. https://www.gov.uk/government/statistics/rail-emissions-april-2022-to-march-2023
- Office of Rail and Road ORR. (2023b). Rail Infrastructure and Assets: April 2022 to March 2023. https://www.gov.uk/government/statistics/rail-infrastructure-and-assets-april-2022-to-march-2023
- Olsson, N. O. E., & Klakegg, O. J. (2023). A Resilience Perspective on Governance for Construction Project Delivery. In *Construction Project Organising* (pp. 85–100). Wiley. https://doi.org/10.1002/9781119813798.ch6
- OpenStreetMap OSM. (2024, March 1). OpenStreetMap. https://www.openstreetmap.org/
- Pachl, J. (2021). Railway Signalling Principles : Edition 2.0.
- Pagliara, F., Vassallo, J. M., & Román, C. (2012). High-Speed Rail versus Air Transportation. *Transportation Research Record: Journal of the Transportation Research Board*, 2289(1), 10–17. https://doi.org/10.3141/2289-02
- Palin, E. J., Stipanovic Oslakovic, I., Gavin, K., & Quinn, A. (2021). Implications of climate change for railway infrastructure. *WIREs Climate Change*, *12*(5). https://doi.org/10.1002/wcc.728
- Peda, P., & Vinnari, E. (2022). To build or not to build? Mobilization of uncertainty arguments in public decision-making on private megaprojects. *Journal of Public Budgeting, Accounting & Financial Management*, 34(6), 235–262.
- Pender, L., & Baum, T. (2000). Have the frills really left the European airline industry? *International Journal of Tourism Research*, *2*(6), 423–436. https://doi.org/10.1002/1522-1970(200011/12)2:6<423::AID-JTR240>3.0.CO;2-R
- Pucillo, G. P., Penta, F., Catena, M., & Lisi, S. (2018). On the lateral stability of the sleeperballast system. *Procedia Structural Integrity*, *12*, 553–560. https://doi.org/10.1016/j.prostr.2018.11.064
- Puffert, D. J. (2002). Path Dependence in Spatial Networks: The Standardization of Railway Track Gauge. *Explorations in Economic History*, *39*(3), 282–314. https://doi.org/10.1006/exeh.2002.0786
- Puffert, D. J. (2009). Continental Europe. In *The Economic Dynamics of Standardization in Railway Gauge* (pp. 170–192). University of Chicago Press.
- Reiter, V., Voltes-Dorta, A., & Suau-Sanchez, P. (2022). The substitution of short-haul flights with rail services in German air travel markets: A quantitative analysis. *Case Studies on Transport Policy*, *10*(4), 2025–2043. https://doi.org/10.1016/j.cstp.2022.09.001
- Reményi, P., Pap, T., & Pap, N. (2021). The changing room for manoeuvre of 'Visegrad' Hungary in the Western Balkans. An extraordinary change in Hungarian-Serbian relations. *Politics in Central Europe*, *17*(s1), 791–819. https://doi.org/10.2478/pce-2021-0032
- **Rich, J., & Mabit, S. L. (2011)**. A Long-Distance Travel Demand Model for Europe. *EJTIR*, *12*(1), 1–20. https://doi.org/10.18757/ejtir.2012.12.1.2946
- **Ritchie, H. (2020)**. *Cars, planes, trains: where do CO2 emissions from transport come from?* https://ourworldindata.org/co2-emissions-from-transport

- **Ritchie, H. (2023)**. Which form of transport has the smallest carbon footprint? https://ourworldindata.org/travel-carbon-footprint
- **Rogers, S. (2019)**. China, Hungary, and the Belgrade-Budapest Railway Upgrade: New Politically-Induced Dimensions of FDI and the Trajectory of Hungarian Economic Development. *Journal of East-West Business*, *25*(1), 84–106. https://doi.org/10.1080/10669868.2018.1561589
- Rosberg, T., Cavalcanti, T., Thorslund, B., Prytz, E., & Moertl, P. (2021). Driveability analysis of the european rail transport management system (ERTMS) - A systematic literature review. *Journal of Rail Transport Planning & Management*, *18*. https://doi.org/10.1016/j.jrtpm.2021.100240
- Rossetti, S., Tiboni, M., Vetturi, D., Zazzi, M., & Caselli, B. (2020). Measuring Pedestrian Accessibility to Public Transport in Urban Areas: a GIS-based Discretisation Approach. *European Transport \ Trasporti Europei*, 76, 1–12.
- Rothengatter, W. (2020). Intermodal dimension of climate change policy. In *Aviation and Climate Change* (pp. 181–201). Routledge.
- Saint-Marc, C., Villanova-Oliver, M., Davoine, P.-A., Pams Capoccioni, C., & Chenier, D. (2018). Mapping the narratives of natural disasters and their domino effects. The case study of floods impacting railways. *International Journal of Cartography*, 4(1), 78–103. https://doi.org/10.1080/23729333.2017.1370862
- Schneider, P. (2020). Military Mobility in Europa. *Internationales Verkehrswesen*, 72(2), 18–21.
- Seidenglanz, D., Taczanowski, J., Król, M., Horňák, M., & Nigrin, T. (2021). Quo vadis, international long-distance railway services? Evidence from Central Europe. *Journal of Transport Geography*, *92*, 102998. https://doi.org/10.1016/j.jtrangeo.2021.102998
- Seidu, R. D., Robinson, H., Young, B. E., Ryan, M., & Fong, D. (2023). Infrastructure Development in the UK: Key Drivers and Implementation Challenges. *Journal of Infrastructure Policy and Management*, 6(1), 33–51.
- Shimizu, E., & Inoue, R. (2009). A new algorithm for distance cartogram construction. *International Journal of Geographical Information Science*, *23*(11), 1453–1470. https://doi.org/10.1080/13658810802186882
- **Simmons, J. (1980)**. Rail 150: 1975 or 1980? *The Journal of Transport History*, *1*(1), 1–8. https://doi.org/10.1177/002252668000100102
- Slocum, T. A., McMaster, R. B., Kessler, F. C., & Howard, H. H. (2023). Thematic Cartography and Geovisualization (4th ed.). CRC Press.
- Slocum, T., McMaster, R. B., Kessler, F. C., & Howard, H. H. (2008). Thematic Cartography and Geovisualization (2nd ed.). Pearson.
- Smith, P., Majumdar, A., & Ochieng, W. Y. (2012). An overview of lessons learnt from ERTMS implementation in European railways. *Journal of Rail Transport Planning & Management*, *2*(4), 79–87. https://doi.org/10.1016/j.jrtpm.2013.10.004
- **Sokołowski, M. (2018)**. New Silk Road on the Balkans. Case of Macedonia and Serbia. *Polish Journal of Political Science*, *4*(2), 29–54.
- Sommer, C., Ebert, T., Herget, M., Briegel, R., & Milbradt, J. (2023). ÖPNV Sofortprogramm: Das Maßnahmenpaket für die Verkehrswende bis 2025.

- Spiekermann, K., & Wegener, M. (1994). The shrinking continent: new time space maps of Europe. *Environment and Planning B: Planning and Design*, *21*(6), 653–673. https://doi.org/10.1068/b210653
- Stenström, C., Parida, A., & Kumar, U. (2016). Measuring and monitoring operational availability of rail infrastructure. *Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit*, 230(5), 1457–1468. https://doi.org/10.1177/0954409715592189
- Stevenson, D. (1999). War by Timetable? The Railway Race before 1914. *Past & Present*, *162*, 163–194.
- Stojanović, D., Jovičić, E., & Stanisavljević, N. (2022). The Role and Significance of Chinese Investments in the Modernization of Railway Infrastructure in Serbia (pp. 194– 216). https://doi.org/10.4018/978-1-7998-8021-9.ch009
- Suyama, Y. (2014). 50 Years of Tokaido Shinkansen History. Japan Railway & Transport Review, 64.
- Tonchev, P. (2022). China's road: Into the western Balkans.
- Vickerman, R. (2021). Intercity modal competition. In C. Mulley, J. D. Nelson, & S. Ison (Eds.), *The Routledge Handbook of Public Transport* (pp. 61–71). Routledge. https://doi.org/10.4324/9780367816698
- Vrána, M., Hlisnikovský, P., Surmařová, S., Pařil, V., & Kasa, M. (2023). High-speed rail in Europe: Analysis and typology of international connections. *Journal of Rail Transport Planning & Management*, *28*, 100419. https://doi.org/10.1016/J.JRTPM.2023.100419
- Wang, L., Li, X., Ding, L., Yu, X., & Hu, T. (2022). Visualization and Analysis of Transport Accessibility Changes Based on Time Cartograms. *ISPRS International Journal of Geo-Information*, 11(8), 432. https://doi.org/10.3390/ijgi11080432
- Wenzlhuemer, R. (2010). The History of Standardisation in Europe. In *Europäische Geschichte Online*. Leibniz-Institut für Europäische Geschichte IEG.
- **Wolmar, C. (2011)**. Blood, iron, and gold: How the railroads transformed the world. *Public Af-fairs*.
- Yang, D., Pan, K., & Wang, S. (2018). On service network improvement for shipping lines under the one belt one road initiative of China. *Transportation Research Part E: Logistics and Transportation Review*, 117, 82–95. https://doi.org/10.1016/j.tre.2017.07.003
- Yerpes, A., Manzano, R., Conejo, P., & Jimenez, E. (2012). Talgo Hybrid Train: Maximum interoperability in propulsion system. *2012 Electrical Systems for Aircraft, Railway and Ship Propulsion*, 1–5. https://doi.org/10.1109/ESARS.2012.6387458
- Yuxing, W., Qiang, L., Binjie, W., Qingfeng, Q., & Jing, Z. (2018). Research on Dynamic Characteristics of Gauge Change Bogies. 2018 International Conference on Intelligent Rail Transportation (ICIRT), 1–5. https://doi.org/10.1109/ICIRT.2018.8641676
- Zhiyuan, H., Liang, Z., Ruihua, X., & Feng, Z. (2017). Application of big data visualization in passenger flow analysis of Shanghai Metro network. 2017 2nd IEEE International Conference on Intelligent Transportation Engineering (ICITE), 184–188. https://doi.org/10.1109/ICITE.2017.8056905

#### **Personal Declaration**

I hereby declare that the submitted thesis is the result of my own, independent work. All external sources are explicitly acknowledged in the thesis.

Location; Date:

Signature:

St. Gallen, 21.09.2024

J' = (stro

Jens Grafström

### A – City Selection

| city name           | iso code | coordinates                            | capital | population | multiple<br>stations |
|---------------------|----------|----------------------------------------|---------|------------|----------------------|
| Durrës              | AL       | 41.31637676387685, 19.47717709929254   | no      | 113249     | no                   |
| Fier                | AL       | 40.73020445258939, 19.55325911486487   | no      | 120655     | no                   |
| Tirana              | AL       | 41.3471158124183, 19.777352596689944   | yes     | 418495     | no                   |
| Bregenz             | AT       | 47.50295674927683, 9.73991957681453    | no      | 29574      | no                   |
| Feldkirch           | AT       | 47.24001895101847, 9.60332204828015    | no      | 35793      | no                   |
| Graz                | AT       | 47.073329984833755, 15.416460160465814 | no      | 292630     | no                   |
| Innsbruck           | AT       | 47.26327521904431, 11.401015211822248  | no      | 130585     | no                   |
| Klagenfurt          | AT       | 46.61604071611506, 14.318313453146175  | no      | 104332     | no                   |
| Linz                | AT       | 48.289855406438924, 14.291620365214    | no      | 210165     | no                   |
| Salzburg            | AT       | 47.81289914369519, 13.045310440195761  | no      | 155021     | no                   |
| Vienna              | AT       | 48.1848319636155, 16.378370160946293   | yes     | 1973403    | no                   |
| Villach             | AT       | 46.61864221817067, 13.848381300672845  | no      | 65127      | no                   |
| Banja Luka          | BA       | 44.788662924823036, 17.212558558703577 | no      | 185042     | no                   |
| Mostar              | BA       | 43.34944540230291, 17.813636254213936  | no      | 126628     | no                   |
| Sarajevo            | BA       | 43.860307514971126, 18.39918585294584  | yes     | 275524     | no                   |
| Antwerp             | BE       | 51.216243214386644, 4.420992853723842  | no      | 536079     | no                   |
| Bruges              | BE       | 51.19749307665864, 3.2172101047094017  | no      | 118509     | no                   |
| Brussels            | BE       | 50.83592003833151, 4.3362244635144895  | yes     | 1218255    | no                   |
| Ghent               | BE       | 51.035078678919824, 3.713317680713317  | no      | 265085     | no                   |
| Liège               | BE       | 50.62437509941582, 5.566697184344896   | no      | 195278     | no                   |
| Burgas              | BG       | 42.49068280782946, 27.472786169477445  | no      | 210813     | no                   |
| Plovdiv             | BG       | 42.13422905386565, 24.74122676238506   | no      | 383540     | no                   |
| Ruse                | BG       | 43.83326285094041, 25.956391042908816  | no      | 143325     | no                   |
| Shumen              | BG       | 43.27241500756297, 26.941970640952803  | no      | 89092      | no                   |
| Sofia               | BG       | 42.71279588242656, 23.321381140151345  | yes     | 1276956    | no                   |
| Stara Zagora        | BG       | 42.4161225207411, 25.629595823047485   | no      | 136144     | no                   |
| Varna               | BG       | 43.198099031118204, 27.912308169062563 | no      | 348594     | no                   |
| Veliko Tarnovo      | BG       | 43.07392957477432, 25.637734861563633  | no      | 66797      | no                   |
| Arth-Goldau         | СН       | 47.048703251649954, 8.555293096015149  | no      | 10480      | no                   |
| Basel               | СН       | 47.54707124129799, 7.58892075173689    | no      | 173552     | no                   |
| Bern                | СН       | 46.94831544237606, 7.436315188309467   | yes     | 134506     | no                   |
| Brig                | СН       | 46.319730459919526, 7.986517028649797  | no      | 12162      | no                   |
| Geneva              | СН       | 46.2106508791602, 6.142546234304431    | no      | 203840     | no                   |
| Lausanne            | СН       | 46.51775469880473, 6.6243257417467545  | no      | 141418     | no                   |
| Lugano              | СН       | 46.00506876758176, 8.946728731182784   | no      | 63185      | no                   |
| Zurich (+1)         | СН       | 47.378099165179805, 8.539146253831492  | no      | 443037     | Zurich               |
| Zurich (-1)         | СН       | 47.378148043193704, 8.541362493575344  | no      | 443037     | Zurich               |
| Brno                | CZ       | 49.1905791320434, 16.612676206368292   | no      | 396101     | no                   |
| České<br>Budějovice | CZ       | 48.97438687517213, 14.488438004720038  | no      | 96417      | no                   |
| ,<br>Hradec Králové | CZ       | 50.21464013174219, 15.810218732317747  | no      | 92763      | no                   |
| Liberec             | CZ       | 50.76062024651525, 15.046770463089864  | no      | 107309     | no                   |
| Ostrava             | CZ       | 49.850676949866056, 18.266521267010987 | no      | 283504     | no                   |
| Plzeň               | CZ       | 49.74375328703533, 13.388474353184431  | no      | 181240     | no                   |

Table 9: City selection used for network generation.

| _           |    | 1                                       |     |         |        |
|-------------|----|-----------------------------------------|-----|---------|--------|
| Prague      | CZ | 50.08325740844486, 14.436218331489227   | yes | 1357326 | no     |
| Berlin (+1) | DE | 52.52515130546339, 13.372283904306888   | yes | 3755251 | Berlin |
| Berlin (-1) | DE | 52.52699, 13.36799                      | yes | 3755251 | Berlin |
| Bielefeld   | DE | 52.028493135602886, 8.531416202816889   | no  | 333786  | no     |
| Bremen      | DE | 53.08343322500673, 8.812582074041368    | no  | 569396  | no     |
| Cologne     | DE | 50.94302605691282, 6.958592210446736    | no  | 1084831 | no     |
| Dortmund    | DE | 51.517769002614784, 7.459280917872808   | no  | 593317  | no     |
| Dresden     | DE | 51.040624299889366, 13.72946593633128   | no  | 563311  | no     |
| Duisburg    | DE | 51.42940444867688, 6.776356808750952    | no  | 502211  | no     |
| Düsseldorf  | DE | 51.21953036538851, 6.793477634657491    | no  | 619294  | no     |
| Erfurt      | DE | 50.97238995532242, 11.038043155469884   | no  | 214969  | no     |
| Essen       | DE | 51.45213793693594, 7.018727767965539    | no  | 584580  | no     |
| Frankfurt   | DE | 50.1060395934853, 8.66113453825917      | no  | 773068  | no     |
| Freiburg    | DE | 47.999156686807474, 7.842238771897548   | no  | 236146  | no     |
| Hamburg     | DE | 53.5527933683336, 10.006738028266147    | no  | 1892122 | no     |
| Hanover     | DE | 52.377040004242545, 9.741415255692775   | no  | 552710  | no     |
| Karlsruhe   | DE | 48.99464857383276, 8.405099574291475    | no  | 313092  | no     |
| Kassel      | DE | 51.31174428797717, 9.447391376216915    | no  | 204202  | no     |
| Kiel        | DE | 54.31393039807236, 10.131431000439852   | no  | 247717  | no     |
| Leipzig     | DE | 51.344574975717364, 12.380884634825689  | no  | 625341  | no     |
| Lübeck      | DE | 53.867232741879704, 10.669404870255649  | no  | 218095  | no     |
| Mannheim    | DE | 49.4794603928349, 8.46911765488034      | no  | 315554  | no     |
| Munich      | DE | 48.14065420798882, 11.556150023221415   | no  | 1512491 | no     |
| Münster     | DE | 51.95506139636848, 7.635678452580286    | no  | 314319  | no     |
| Nuremberg   | DE | 49.44545103028204, 11.082476163697892   | no  | 523026  | no     |
| Regensburg  | DE | 49.01174292538338, 12.09674085968242    | no  | 157443  | no     |
| Rostock     | DE | 54.07830966914783, 12.131433914442342   | no  | 209920  | no     |
| Saarbrücken | DE | 49.2418853826737, 6.987390169563093     | no  | 181959  | no     |
| Stuttgart   | DE | 48.78544077687866, 9.183201751413481    | no  | 632865  | no     |
| Ulm         | DE | 48.39973956058877, 9.98279860003682     | no  | 126329  | no     |
| Wuppertal   | DE | 51.254400489952204, 7.150073308128062   | no  | 358876  | no     |
| Aalborg     | DK | 57.043196174439366, 9.916677386168168   | no  | 113417  | no     |
| Aarhus      | DK | 56.14977426649749, 10.203747764096375   | no  | 285273  | no     |
| Copenhagen  | DK | 55.67185147192673, 12.565668424458236   | yes | 644431  | no     |
| Esbjerg     | DK | 55.4678154640934, 8.458903635877034     | no  | 115459  | no     |
| Odense      | DK | 55.401758670892, 10.3853025712738       | no  | 180863  | no     |
| Padborg     | DK | 54.82304875201694, 9.35883721878989     | no  | 4325    | no     |
| Narva       | EE | 59.368317912851964, 28.200544219893697  | no  | 53875   | no     |
| Pärnu       | EE | 58.39527296392951, 24.587800004146874   | no  | 51272   | no     |
| Tallinn     | EE | 59.440270198842775, 24.73671964901164   | yes | 461346  | no     |
| Tartu       | EE | 58.373636706870144, 26.70655729525739   | no  | 97524   | no     |
| A Coruña    | ES | 43.352107917856735, -8.410592330655435  | no  | 247376  | no     |
| Algeciras   | ES | 36.126535435688815, -5.449474471539967  | no  | 123639  | no     |
| Alicante    | ES | 38.34484173986132, -0.49673256671804056 | no  | 349282  | no     |
| Almería     | ES | 36.83453590276323, -2.4560128634494705  | no  | 200578  | no     |
| Antequera   | ES | 37.06998106338044, -4.719621436832545   | no  | 41154   | no     |
| Badajoz     | ES | 38.89079054926135, -6.981742659332291   | no  | 150190  | no     |
| Barcelona   | ES | 41.379197783906406, 2.1405709458163344  | no  | 1660122 | no     |
| Buildiona   | 20 | 1                                       |     | 1000122 | 10     |

| Bilbao (re-<br>gional/narrow)           | ES | 43.260284756996455, -2.9260795631405783  | no  | 346096  | Bilbao             |
|-----------------------------------------|----|------------------------------------------|-----|---------|--------------------|
| Bilbao<br>(interregional)               | ES | 43.26053113178843, -2.927912986233929    | no  | 346096  | Bilbao             |
| Burgos                                  | ES | 42.37116938823483, -3.6664740518657517   | no  | 174451  | no                 |
| Cádiz                                   | ES | 36.52771836796025, -6.286755180326387    | no  | 111811  | no                 |
| Cartagena                               | ES | 37.60528015892063, -0.9741155037660539   | no  | 218050  | no                 |
| Córdoba                                 | ES | 37.88837693979414, -4.789973540356829    | no  | 325708  | no                 |
| Gijón (re-<br>gional/narrow)            | ES | 43.53761580820216, -5.675824132132513    | no  | 268313  | Gijón              |
| Gijón<br>(interregional)                | ES | 43.53776180192165, -5.676005280560825    | no  | 268313  | Gijón              |
| Girona                                  | ES | 41.97933159643777, 2.8168372372093673    | no  | 104320  | no                 |
| Granada                                 | ES | 37.1837584799016, -3.608784964347275     | no  | 232208  | no                 |
| León                                    | ES | 42.595098760606845, -5.581386321318405   | no  | 121281  | no                 |
| Madrid (+1)                             | ES | 40.402414921083036, -3.68536587707576    | yes | 3332035 | Madrid             |
| Madrid (-1)                             | ES | 40.40427536459729, -3.6865662237122137   | yes | 3332035 | Madrid             |
| Málaga                                  | ES | 36.711207949603285, -4.433526237194415   | no  | 586384  | no                 |
| Murcia                                  | ES | 37.974492149282455, -1.1300017316297115  | no  | 469177  | no                 |
| Ourense                                 | ES | 42.35070236080785, -7.872845582074918    | no  | 105505  | no                 |
| Pamplona                                | ES | 42.82552540377751, -1.6608607272042961   | no  | 199066  | no                 |
| Salamanca                               | ES | 40.971718921298034, -5.64830055981371    | no  | 143954  | no                 |
| San Sebastián<br>(interregional)        | ES | 43.317659643462584, -1.976592642294175   | no  | 188743  | San Se-<br>bastián |
| San Sebastián<br>(regional/nar-<br>row) | ES | 43.31298614273132, -1.9815061932682498   | no  | 188743  | San Se-<br>bastián |
| Santander (re-<br>gional/narrow)        | ES | 43.45824391780236, -3.8111662291764103   | no  | 172726  | Santander          |
| Santander<br>(interregional)            | ES | 43.459259877317066, -3.8117909539794237  | no  | 172726  | Santander          |
| Santiago de<br>Compostela               | ES | 42.87075449517897, -8.544299037439748    | no  | 98687   | no                 |
| Seville                                 | ES | 37.393492964687475, -5.973210956880131   | no  | 684025  | no                 |
| Valencia                                | ES | 39.459344407973084, -0.38128195670029447 | no  | 807693  | no                 |
| Valladolid                              | ES | 41.642022795455794, -4.726911594801891   | no  | 297459  | no                 |
| Vigo                                    | ES | 42.23537816164509, -8.710694067571465    | no  | 293652  | no                 |
| Vitoria-Gasteiz                         | ES | 42.84178437655222, -2.677084412300465    | no  | 253672  | no                 |
| Zaragoza                                | ES | 41.65905395667392, -0.9112792857985567   | no  | 682513  | no                 |
| Helsinki                                | FI | 60.17165041652153, 24.941566911864445    | yes | 664921  | no                 |
| Joensuu                                 | FI | 62.59969982261569, 29.77655929132699     | no  | 76334   | no                 |
| Kolari                                  | FI | 67.34885847217133, 23.83635555452093     | no  | 3875    | no                 |
| Kuopio                                  | FI | 62.897199345215135, 27.680922679645946   | no  | 121557  | no                 |
| Oulu                                    | FI | 65.01126683215088, 25.484631108285935    | no  | 201810  | no                 |
| Rovaniemi                               | FI | 66.49800241529823, 25.70506300993194     | no  | 62420   | no                 |
| Seinäjoki                               | FI | 62.791873183946265, 22.844464449300006   | no  | 64150   | no                 |
| Tampere                                 | FI | 61.49845899486538, 23.77350049356692     | no  | 231853  | no                 |
| Tornio                                  | FI | 65.85087316234622, 24.182691243297302    | no  | 21573   | no                 |
| Turku                                   | FI | 60.45406378534739, 22.252817696013487    | no  | 189669  | no                 |
| Ajaccio                                 | FR | 41.92753805496737, 8.738977320209647     | no  | 44070   | no                 |
| Avignon                                 | FR | 43.92390008439339, 4.780328928843166     | no  | 90330   | no                 |
| Bastia                                  | FR | 42.702030910905606, 9.44758020472945     | no  | 69378   | no                 |
| Bayonne                                 | FR | 43.49704677796449, -1.470070008762129    | no  | 49207   | no                 |
| Bordeaux                                | FR | 44.82608315759758, -0.5558039234809385   | no  | 261804  | no                 |
|                                         |    |                                          |     |         |                    |

| Bourges                               | FR | 47.09445746690047, 2.39432543122802     | no  | 63702   | no      |
|---------------------------------------|----|-----------------------------------------|-----|---------|---------|
| Brest                                 | FR | 48.387871071311395, -4.479555044229427  | no  | 139619  | no      |
| Caen                                  | FR | 49.17648463676137, -0.3488641817329554  | no  | 106260  | no      |
| Calvi                                 | FR | 42.56440770095584, 8.755793359791626    | no  | 5410    | no      |
| Cherbourg-<br>Octeville               | FR | 49.63326074488161, -1.6210787407180691  | no  | 35545   | no      |
| Clermont-<br>Ferrand                  | FR | 45.778708394785156, 3.1007091175995347  | no  | 147327  | no      |
| Dijon                                 | FR | 47.323050396342715, 5.026964561388656   | no  | 159346  | no      |
| Grenoble                              | FR | 45.19126716835642, 5.71398836633718     | no  | 157477  | no      |
| La Rochelle                           | FR | 46.15270009395072, -1.1453586756924354  | no  | 78535   | no      |
| Le Havre                              | FR | 49.4927690055231, 0.12614702593788413   | no  | 166058  | no      |
| Le Mans                               | FR | 47.995429504169614, 0.1921528228238871  | no  | 145004  | no      |
| Lille (Europe)                        | FR | 50.63945853289013, 3.0762508930265136   | no  | 236710  | Lille   |
| Lille (Flanders)                      | FR | 50.63628837347249, 3.0714067349026464   | no  | 236710  | Lille   |
| Limoges                               | FR | 45.83628187444859, 1.267436960758757    | no  | 129760  | no      |
| Lyon                                  | FR | 45.76032762866298, 4.860175402004224    | no  | 522250  | no      |
| Marseille                             | FR | 43.303666554752155, 5.381651546741638   | no  | 873076  | no      |
| Metz                                  | FR | 49.10933941823257, 6.177818676831699    | no  | 120874  | no      |
| Montpellier                           | FR | 43.595318437052555, 3.9247478579198507  | no  | 302454  | no      |
| Nantes                                | FR | 47.21719653046198, -1.5424075283979215  | no  | 323204  | no      |
| Nice                                  | FR | 43.70425919998589, 7.260701343558609    | no  | 348085  | no      |
| Paris (Gare<br>Saint-Lazare)          | FR | 48.876810415031116, 2.325304925277017   | yes | 2145906 | Paris   |
| Paris (Montpar-<br>nasse)             | FR | 48.84065627737904, 2.3197564872898457   | yes | 2145906 | Paris   |
| Paris<br>(Austerlitz)<br>Paris        | FR | 48.83903862403894, 2.3682922247878975   | yes | 2145906 | Paris   |
| (Gare de l'Est)<br>Paris              | FR | 48.87741005595024, 2.359758259056418    | yes | 2145906 | Paris   |
| (Gare de Lyon)<br>Paris               | FR | 48.84466453468429, 2.373822327768317    | yes | 2145906 | Paris   |
| (Gare du Nord)                        | FR | 48.88063211930947, 2.3548809242126163   | yes | 2145906 | Paris   |
| Perpignan                             | FR | 42.696118604671575, 2.8793386377799455  | no  | 119656  | no      |
| Reims                                 | FR | 49.259162637698324, 4.024286840249119   | no  | 179380  | no      |
| Reims                                 | FR | 49.21625702794758, 3.9890541296480464   | no  | 184076  | no      |
| Rennes                                | FR | 48.1032964704555, -1.6715439677654829   | no  | 225081  | no      |
| Strasbourg                            | FR | 48.58494782839153, 7.733750893617865    | no  | 291313  | no      |
| Toulouse                              | FR | 43.61025695708779, 1.4544742983108103   | no  | 504078  | no      |
| Tours<br>(Centrale)                   | FR | 47.3877159932701, 0.6959121646064983    | no  | 137658  | Tours   |
| Tours<br>(Saint-Pierre-<br>Des-Corps) | FR | 47.38449180442222, 0.7202784644619132   | no  | 137658  | Tours   |
| Aberdeen                              | GB | 57.14331645457981, -2.098741612814794   | no  | 200680  | no      |
| Belfast (Great<br>Victoria Street)    | GB | 54.594195937642795, -5.93756123229572   | no  | 345006  | Belfast |
| Belfast (Lan-<br>yon Place)           | GB | 54.594954338685056, -5.91730226975501   | no  | 345006  | Belfast |
| Birmingham                            | GB | 52.477910651918386, -1.8994045207045334 | no  | 1137100 | no      |
| Bristol (Temple<br>Meads)             | GB | 51.449571188519876, -2.580316971183325  | no  | 472465  | Bristol |
| Bristol<br>(Parkway)                  | GB | 51.513812475285754, -2.541904208996378  | no  | 472465  | Bristol |
| Carlisle                              | GB | 54.89068591866715, -2.933378497870439   | no  | 20144   | no      |
| Derry                                 | GB | 54.99262839936011, -7.313397998972563   | no  | 85016   | no      |

| Doncaster                       | GB | 53.52204176689714, -1.139796978651595    | no  | 109805  | no                |
|---------------------------------|----|------------------------------------------|-----|---------|-------------------|
| Edinburgh                       | GB | 55.95192581415101, -3.1894163380359988   | no  | 488050  | no                |
| Exeter                          | GB | 50.7291418706283, -3.5438242734819267    | no  | 129801  | no                |
| Glasgow                         | GB | 55.85935723228601, -4.25821292055751     | no  | 635640  | no                |
| Inverness                       | GB | 57.4799275486458, -4.223294341429295     | no  | 47380   | no                |
| Kingston u.<br>Hull             | GB | 53.74426118689597, -0.3464472816284624   | no  | 260200  | no                |
| Leeds                           | GB | 53.79364784723733, -1.5507942989190122   | no  | 789194  | no                |
| Leicester                       | GB | 52.631392312108225, -1.1238235146594402  | no  | 357394  | no                |
| Liverpool                       | GB | 53.407592478652965, -2.977826529505324   | no  | 513441  | no                |
| London<br>(Bridge)              | GB | 51.50529164318203, -0.0855039322821116   | no  | 8799728 | London            |
| London<br>(Euston)              | GB | 51.5289135777343, -0.1347287206973779    | yes | 8799728 | London            |
| London<br>(King's Cross)        | GB | 51.532030726261134, -0.12314406206855928 | yes | 8799728 | London            |
| London<br>(St Pancras)          | GB | 51.531293442671156, -0.12608904662649126 | yes | 8799728 | London            |
| London<br>(Victoria)            | GB | 51.49435145576124, -0.14391979234488542  | yes | 8799728 | London            |
| London<br>(Waterloo)            | GB | 51.50188259085412, -0.11381553493584233  | yes | 8799728 | London            |
| Manchester<br>(Piccadilly)      | GB | 53.47605192521905, -2.2253859619856526   | no  | 547627  | Manches-<br>ter   |
| Manchester<br>(Victoria)        | GB | 53.48720453654775, -2.2449705516066496   | no  | 547627  | Manches-<br>ter   |
| Newcastle<br>u.Tyne             | GB | 54.96844338017993, -1.616756686168096    | no  | 300196  | no                |
| Norwich                         | GB | 52.62653106722053, 1.307382199142596     | no  | 195971  | no                |
| Nottingham                      | GB | 52.94737530473628, -1.1412610467337256   | no  | 331297  | no                |
| Penzance                        | GB | 50.121942367224726, -5.532621285893106   | no  | 21168   | no                |
| Perth                           | GB | 56.391620240031095, -3.438381506396406   | no  | 47350   | no                |
| Peterborough<br>(Interregional) | GB | 52.57741511802135, -0.252192396428806    | no  | 194000  | Peterbor-<br>ough |
| Peterborough<br>(Regional)      | GB | 52.57732976742599, -0.25254904381321214  | no  | 194000  | Peterbor-<br>ough |
| Sheffield                       | GB | 53.37806475051299, -1.4618096145713155   | no  | 584028  | no                |
| Southampton                     | GB | 50.90740447098516, -1.41381361607332     | no  | 271173  | no                |
| Swansea                         | GB | 51.625451582287646, -3.9405465745977564  | no  | 245508  | no                |
| Thurso                          | GB | 58.590073768177874, -3.527729927059496   | no  | 7610    | no                |
| York                            | GB | 53.955779380062886, -1.096124201190496   | no  | 208400  | no                |
| Alexandroupoli                  | GR | 40.84789347348713, 25.89117530938814     | no  | 73000   | no                |
| Athens                          | GR | 38.06038823967672, 23.734309996801148    | yes | 643452  | no                |
| Larissa                         | GR | 39.629459163596024, 22.422773647779756   | no  | 148562  | no                |
| Patras                          | GR | 38.249687109305746, 21.734771903585283   | no  | 173600  | no                |
| Thessaloniki                    | GR | 40.64389956901383, 22.931584001989528    | no  | 309617  | no                |
| Osijek                          | HR | 45.5527422340516, 18.683797296928788     | no  | 96313   | no                |
| Rijeka                          | HR | 45.33009420269459, 14.430260982075016    | no  | 107964  | no                |
| Split                           | HR | 43.504697602375764, 16.44302169970109    | no  | 160577  | no                |
| Varaždin                        | HR | 46.30569025987652, 16.346719580783706    | no  | 42789   | no                |
| Zagreb                          | HR | 45.80434990014418, 15.978989118666448    | yes | 767131  | no                |
| Budapest<br>(Nyugati)           | HU | 47.51127945113849, 19.058282046015748    | yes | 1671004 | Budapest          |
| Budapest<br>(Déli)              | HU | 47.49956611223871, 19.024995385244495    | yes | 1671004 | Budapest          |
| Budapest<br>(Keleti)            | HU | 47.50050398953286, 19.085398114682835    | yes | 1671004 | Budapest          |
|                                 |    |                                          |     |         |                   |

| Debrasen                   | шп       | 47 51099416096996 21 62926961040470                                             | 20       | 201592           | 20       |
|----------------------------|----------|---------------------------------------------------------------------------------|----------|------------------|----------|
| Debrecen                   | HU<br>HU | 47.51988416086886, 21.62826861940479                                            | no       | 201582<br>129301 | no       |
| Győr<br>Miskolc            | HU       | 47.681170352413446, 17.63233326451533                                           | no       | 129301           | no       |
| Pécs                       | HU       | 48.09883640292072, 20.811758771027545                                           | no       | 145246           | no       |
|                            | HU       | 46.06601674405131, 18.223973173327746                                           | no       |                  | no       |
| Szeged<br>Szolnok          | HU       | 46.239873860962525, 20.143459393497782<br>47.17927670611352, 20.175713670941178 | no       | 158829<br>71285  | no       |
|                            | HU       |                                                                                 | no       | 71265            | no       |
| Szombathely<br>Cork        | IE       | 47.23632679853725, 16.633320856610684<br>51.901438380729594, -8.457937354490454 | no<br>no | 222333           | no<br>no |
| Dublin (Con-               |          |                                                                                 |          |                  |          |
| nolly)<br>Dublin           | IE       | 53.35237692306594, -6.249003776414832                                           | yes      | 592713           | Dublin   |
| (Heuston)                  | IE       | 53.34649077337974, -6.2933851762590445                                          | yes      | 592713           | Dublin   |
| Galway                     | IE       | 53.27341663953856, -9.046604985689697                                           | no       | 83456            | no       |
| Limerick                   | IE       | 52.65840906933754, -8.623244977244406                                           | no       | 58319            | no       |
| Sligo                      | IE       | 54.27217221208001, -8.482244691225647                                           | no       | 19199            | no       |
| Waterford                  | IE       | 52.266522987492195, -7.118260056530168                                          | no       | 53504            | no       |
| Ancona                     | IT       | 43.60759190411532, 13.49767633120252                                            | no       | 100696           | no       |
| Bari                       | IT       | 41.11780054771549, 16.870135868656536                                           | no       | 316015           | no       |
| Bologna                    | IT       | 44.50629053828535, 11.343206969929586                                           | no       | 387971           | no       |
| Bolzano                    | IT       | 46.49640559245234, 11.358670665060274                                           | no       | 106107           | no       |
| Cagliari                   | IT       | 39.216690219576805, 9.107028573890675                                           | no       | 148117           | no       |
| Cosenza                    | IT       | 39.31894438639433, 16.260659637157126                                           | no       | 63760            | no       |
| Florence                   | IT       | 43.77702747163024, 11.247756388522763                                           | no       | 360930           | no       |
| Foggia                     | IT       | 41.465751335999535, 15.555921510917754                                          | no       | 145348           | no       |
| Genoa                      | IT       | 44.417366373984734, 8.920514035165517                                           | no       | 558745           | no       |
| Lecce                      | IT       | 40.34542049082451, 18.165925484475483                                           | no       | 94783            | no       |
| Messina                    | IT       | 38.18485560747073, 15.561172156742893                                           | no       | 218786           | no       |
| Milan (Porta<br>Garibaldi) | IT       | 45.48475916928917, 9.186769450233138                                            | no       | 1354196          | Milan    |
| Milan<br>(Centrale)        | IT       | 45.48774293436178, 9.206244798882878                                            | no       | 1354196          | Milan    |
| Naples<br>(Centrale)       | IT       | 40.852982824930436, 14.273180119993086                                          | no       | 913462           | Naples   |
| Naples<br>(Interchange)    | IT       | 40.88520783188453, 14.323899234795485                                           | no       | 913462           | Naples   |
| Olbia                      | IT       | 40.92480861316997, 9.498575609306675                                            | no       | 61048            | no       |
| Palermo                    | IT       | 38.10893091197514, 13.36764417851799                                            | no       | 630167           | no       |
| Perugia                    | IT       | 43.10392074618472, 12.37555760757073                                            | no       | 166676           | no       |
| Pescara                    | IT       | 42.45758309791371, 14.212285144270789                                           | no       | 118657           | no       |
| Pisa                       | IT       | 43.70822877907478, 10.398335633681537                                           | no       | 88737            | no       |
| Rome                       | IT       | 41.90061399356659, 12.502663379723169                                           | yes      | 2748109          | no       |
| Sassari                    | IT       | 40.729544902969515, 8.554223611079232                                           | no       | 121021           | no       |
| Syracuse                   | IT       | 37.068958388994886, 15.28086928224865                                           | no       | 116244           | no       |
| Taranto                    | IT       | 40.483644103694346, 17.224232877044322                                          | no       | 188098           | no       |
| Trieste                    | IT       | 45.65876041528067, 13.77129778235539                                            | no       | 198417           | no       |
| Turin                      | IT       | 45.06049401735347, 7.677162572375207                                            | no       | 841600           | no       |
| Venice                     | IT       | 45.48232157443141, 12.231699561853524                                           | no       | 250369           | no       |
| Verona                     | IT       | 45.428776566298495, 10.98271070438972                                           | no       | 255588           | no       |
| Villa San Gio-<br>vanni    | IT       | 38.21668898235332, 15.634368514658572                                           | no       | 12752            | no       |
| Vaduz/Schaan               | LI       | 47.1685654034565, 9.508101088215607                                             | yes      | 11489            | no       |
| Kaunas                     | LT       | 54.88623777465683, 23.931747441978235                                           | no       | 305120           | no       |
| Klaipėda                   | LT       | 55.721137354635964, 21.134957492934337                                          | no       | 158420           | no       |

| v                      |    | 1                                      |     |         |    |
|------------------------|----|----------------------------------------|-----|---------|----|
| Šiauliai               | LT | 55.92263692476599, 23.31540562686701   | no  | 101511  | no |
| Vilnius                | LT | 54.66994560823776, 25.28463325438789   | yes | 581475  | no |
| Luxembourg             | LU | 49.59994730251573, 6.134694030377752   | yes | 132780  | no |
| Daugavpils             | LV | 55.8748178540611, 26.528068182102135   | no  | 78850   | no |
| Jelgava                | LV | 56.639511117315394, 23.73018214031282  | no  | 55972   | no |
| Liepāja                | LV | 56.525035365723696, 21.01850390697963  | no  | 68945   | no |
| Riga                   | LV | 56.9464378474394, 24.12014803033064    | yes | 660187  | no |
| Bălți                  | MD | 47.76100077844809, 27.909952587065693  | no  | 97930   | no |
| Chișinău               | MD | 47.01290383373783, 28.860067280701394  | yes | 639000  | no |
| Ungheni                | MD | 47.20015341903947, 27.79592517783435   | no  | 25800   | no |
| Bar                    | ME | 42.08757170624869, 19.105588825401195  | no  | 44054   | no |
| Podgorica              | ME | 42.431777589616495, 19.269164029627543 | yes | 150977  | no |
| Bitola                 | MK | 41.0204271257066, 21.343064742577788   | no  | 69287   | no |
| Skopje                 | MK | 41.9911946009942, 21.44608051211098    | yes | 526502  | no |
| Veles                  | MK | 41.72434397815813, 21.76943721664013   | no  | 48463   | no |
| Amsterdam              | NL | 52.37926771469527, 4.899141715344551   | yes | 921468  | no |
| Arnhem                 | NL | 51.984722725387975, 5.900578308196073  | no  | 164096  | no |
| Eindhoven              | NL | 51.44325529076439, 5.4811243108262655  | no  | 235691  | no |
| Groningen              | NL | 53.21072991067833, 6.5637849122522125  | no  | 202900  | no |
| Rotterdam              | NL | 51.9249126200891, 4.469780022528715    | no  | 664311  | no |
| The Hague              | NL | 52.06897905143204, 4.320262005756452   | no  | 514861  | no |
| Utrecht                | NL | 52.087499880308066, 5.111977589711167  | no  | 367497  | no |
| Zwolle                 | NL | 52.505600092960286, 6.0892770706502874 | no  | 123861  | no |
| Bergen                 | NO | 60.39007065741137, 5.333817716229017   | no  | 267117  | no |
| Bodø                   | NO | 67.28656440207081, 14.392815980498     | no  | 53259   | no |
| Drammen                | NO | 59.74006979258713, 10.205321432579693  | no  | 66214   | no |
| Kristiansand           | NO | 58.145719212187394, 7.986736409111273  | no  | 115569  | no |
| Narvik                 | NO | 68.44141969506587, 17.44475663242554   | no  | 21515   | no |
| Oslo                   | NO | 59.9107654002489, 10.754456441305683   |     | 711300  |    |
| -                      | NO |                                        | yes | 146011  | no |
| Stavanger<br>Trondheim | NO | 58.96643480651651, 5.732573074554093   | no  |         | no |
|                        |    | 63.43645153086511, 10.398871511082033  | no  | 212660  | no |
| Białystok              | PL | 53.13408685427886, 23.13602819190044   | no  | 294242  | no |
| Bydgoszcz              | PL | 53.13507072355395, 17.992039393140615  | no  | 337666  | no |
| Gdańsk                 | PL | 54.35683595716114, 18.64453700808109   | no  | 486022  | no |
| Katowice               | PL | 50.25760887182851, 19.01705009559095   | no  | 285711  | no |
| Koszalin               | PL | 54.19045475922263, 16.169667407017734  | no  | 105883  | no |
| Kraków                 | PL | 50.06838508596897, 19.947353789798754  | no  | 766683  | no |
| Łódź                   | PL | 51.757835466286025, 19.429934787545726 | no  | 670642  | no |
| Lublin                 | PL | 51.2314239342606, 22.56906761062492    | no  | 334681  | no |
| Olsztyn                | PL | 53.78556331710419, 20.497693825663358  | no  | 170225  | no |
| Poznań                 | PL | 52.402998946501526, 16.912856592955592 | no  | 546859  | no |
| Rzeszów                | PL | 50.043159973083604, 22.007805294531074 | no  | 195871  | no |
| Suwałki                | PL | 54.10462211186022, 22.948254061789456  | no  | 69206   | no |
| Szczecin               | PL | 53.418886968898285, 14.550462476142123 | no  | 396168  | no |
| Warsaw                 | PL | 52.22881577757354, 21.003214089993563  | yes | 1860281 | no |
| Wrocław                | PL | 51.098296503840025, 17.037115640598692 | no  | 672929  | no |
| Braga                  | PT | 41.54787712554409, -8.434610730578335  | no  | 193342  | no |
| Coimbra                | PT | 40.224869546729835, -8.44048505421954  | no  | 140816  | no |
| Entroncamento          | PT | 39.4615499530507, -8.474081419014531   | no  | 20141   | no |
|                        |    |                                        |     |         |    |

| _                  |    | 1                                       |     |         |        |
|--------------------|----|-----------------------------------------|-----|---------|--------|
| Faro               | PT | 37.018773930838634, -7.9400556805601745 | no  | 64560   | no     |
| Guarda             | PT | 40.55349916409098, -7.2400436876400835  | no  | 40117   | no     |
| Lisbon (Oriente)   |    | 38.767791917677734, -9.09912294954436   | yes | 545923  | Lisbon |
| Lisbon (Rossio)    | PT | 38.71436170568904, -9.14149852199962    | yes | 545923  | Lisbon |
| Porto              | PT | 41.14877621914789, -8.585000820743758   | no  | 237591  | no     |
| Arad               | RO | 46.189960761951, 21.32552252366198      | no  | 145078  | no     |
| Bacău              | RO | 46.565818183385424, 26.89481918564678   | no  | 136087  | no     |
| Brașov             | RO | 45.66158409180138, 25.61395064056485    | no  | 237589  | no     |
| Bucharest          | RO | 44.44701208821772, 26.07348246028291    | yes | 1716961 | no     |
| Cluj-Napoca        | RO | 46.78463194144769, 23.58695454844528    | no  | 286598  | no     |
| Constanța          | RO | 44.168771735717016, 28.63163528050895   | no  | 387593  | no     |
| Craiova            | RO | 44.3290150742757, 23.816981928495952    | no  | 234140  | no     |
| Deva               | RO | 45.88406638735966, 22.910758370998632   | no  | 53113   | no     |
| Galați             | RO | 45.44712673319686, 28.060280125296835   | no  | 217851  | no     |
| lași               | RO | 47.16539213879057, 27.56972991977809    | no  | 271692  | no     |
| Oradea             | RO | 47.07147108169548, 21.93517221448622    | no  | 183105  | no     |
| Pitești            | RO | 44.84919466926701, 24.884779423935846   | no  | 141275  | no     |
| Satu Mare          | RO | 47.795397911007505, 22.893030242371168  | no  | 91520   | no     |
| Suceava            | RO | 47.67040864693623, 26.266151769141374   | no  | 84308   | no     |
| Timișoara          | RO | 45.7509778984045, 21.20748014427406     | no  | 250849  | no     |
| Belgrade           | RS | 44.7929214536255, 20.455516127951267    | yes | 1378682 | no     |
| Niš                | RS | 43.31648242053823, 21.877318013048818   | no  | 183164  | no     |
| Novi Sad           | RS | 45.281877, 19.795158                    | no  | 380000  | no     |
| Subotica           | RS | 46.10215764236732, 19.67109587041512    | no  | 105681  | no     |
| Alvesta            | SE | 56.89907674126362, 14.557333942422492   | no  | 8017    | no     |
| Boden              | SE | 65.82883807783816, 21.708332572577007   | no  | 16830   | no     |
| Gothenburg         | SE | 57.709301621740146, 11.9739120125181    | no  | 579281  | no     |
| Hallsberg          | SE | 59.067078457077706, 15.109689038777717  | no  | 8525    | no     |
| Kalmar             | SE | 56.66134623025437, 16.35991939988837    | no  | 41388   | no     |
| Kiruna             | SE | 67.86808944026757, 20.19948713837393    | no  | 17513   | no     |
| Linköping          | SE | 58.416608579431355, 15.625413173963137  | no  | 115682  | no     |
| Luleå              | SE | 65.58352376126376, 22.165703065511074   | no  | 49123   | no     |
| Malmö              | SE | 55.610135763434336, 13.004024908952335  | no  | 344166  | no     |
| Östersund          | SE | 63.17047353700136, 14.637326236878245   | no  | 49806   | no     |
| Stockholm          | SE | 59.33006384702191, 18.05719770032102    | yes | 984748  | no     |
| Sundsvall          | SE | 62.38623219727761, 17.316059661700592   | no  | 58807   | no     |
| Umeå               | SE | 63.83021338803353, 20.26683597500849    | no  | 91916   | no     |
| Västerås           | SE | 59.6073394474996, 16.55230257525329     | no  | 127799  | no     |
| Divača             | SI | 45.68074230036461, 13.968430343210333   | no  | 1868    | no     |
| Koper              | SI | 45.539115827273434, 13.73874365957956   | no  | 25913   | no     |
| Ljubljana          | SI | 46.058725101889856, 14.512796209430965  | yes | 284293  | no     |
| Maribor            | SI | 46.56208848732088, 15.658125939481506   | no  | 96302   | no     |
| Banská<br>Bystrica | SK | 48.735017380230595, 19.163524751343207  | no  | 78758   | no     |
| Bratislava         | SK | 48.15881983417699, 17.106482714640592   | yes | 475503  | no     |
| Košice             | SK | 48.72271677637954, 21.268872361703302   | no  | 229040  | no     |
| Prešov             | SK | 48.98392083133166, 21.248922880086734   | no  | 89872   | no     |
| Žilina             | SK | 49.227028856900496, 18.746529724657336  | no  | 82656   | no     |
| Çorlu              | TR | 41.17754240013083, 27.78000187532291    | no  | 279251  | no     |
| -                  |    |                                         |     |         |        |

| Edirne   | TR | 41.65529101446166, 26.57990553444446  | no  | 180327   | no |
|----------|----|---------------------------------------|-----|----------|----|
| Istanbul | TR | 41.01838998803094, 28.766647252799455 | no  | 15462452 | no |
| Peja     | XK | 42.66049452777952, 20.305026341054333 | no  | 96450    | no |
| Pristina | XK | 42.658884045387374, 21.15096113310213 | yes | 207477   | no |

# **B – Regression Results (Domestic + Full Europe)**

**Table 10**: Regression results between realistic and potential travel times for each country's domestic connections, as well as for all of Europe as once. Only connections with direct realistic travel times were used (no transfers).

| country       | regression coefficient | intercept  | <b>R-squared</b> | sample size |
|---------------|------------------------|------------|------------------|-------------|
| entire Europe | 1.46215197             | 0.22774828 | 0.91552115       | 455         |
| AT            | 1.37714818             | -3.3606492 | 0.98244476       | 12          |
| BA            | 0                      | 115        | -                | 1           |
| BE            | 1.77045901             | -10.581045 | 0.95200076       | 5           |
| BG            | 1.27833186             | 22.714621  | 0.93398296       | 12          |
| СН            | 1.76922281             | -14.34038  | 0.83579644       | 10          |
| CZ            | 1.12469653             | 28.8392599 | 0.80745674       | 8           |
| DE            | 1.39397928             | -1.256045  | 0.93755317       | 50          |
| DK            | 1.82739826             | -26.118286 | 0.8111082        | 7           |
| EE            | 4.14020219             | -273.5178  | 1                | 2           |
| ES            | 1.56125453             | 6.89384671 | 0.74428211       | 48          |
| FI            | 1.4810177              | -6.2899841 | 0.93988789       | 12          |
| FR            | 1.55698721             | -7.3405113 | 0.88220264       | 49          |
| GB            | 1.35204813             | 3.46521346 | 0.89666672       | 58          |
| GR            | 2.118241               | -47.745915 | 1                | 2           |
| HR            | 1.22294124             | 49.8728221 | 0.99902486       | 3           |
| HU            | 1.4840307              | -7.492754  | 0.92496828       | 10          |
| IE            | 0.91002557             | 42.2366823 | 0.76718811       | 5           |
| IT            | 1.65099864             | -6.9070269 | 0.91768332       | 35          |
| LT            | 1.2745845              | 5.90416214 | 0.91509626       | 4           |
| LV            | 1.34384283             | 18.1975365 | 0.84035053       | 3           |
| MD            | 1.94073429             | -142.38145 | 1                | 2           |
| ME            | 0                      | 59         | -                | 1           |
| MK            | 1.31919297             | 7.47066343 | 1                | 2           |
| NL            | 1.1718341              | 6.29087839 | 0.84305524       | 12          |
| NO            | 1.35876845             | 1.41407144 | 0.9838202        | 6           |
| PL            | 1.5755905              | -16.80397  | 0.91130592       | 32          |
| PT            | 1.72175575             | -6.7949887 | 0.99618673       | 6           |
| RO            | 1.62253973             | -0.1799967 | 0.89718864       | 27          |
| RS            | 1.47843887             | -8.3867889 | 0.99523067       | 3           |
| SE            | 1.37368682             | 3.5221494  | 0.96342848       | 18          |
| SI            | 1.29800591             | -3.764682  | 0.98253772       | 3           |
| SK            | 1.18658952             | 15.4499736 | 0.99113195       | 4           |
| TR            | -0.655899              | 174.169553 | 1                | 2           |
| ХК            | 0                      | 116        | _                | 1           |

### **C** – Infrastructure Projects

### C.1 – Infrastructure Project Specifications

**Table 11**: Gathered information on all used infrastructure projects. Status: COR = "corroborated", LD = "legal design", TD = "tendering", PCO = "in partial construction", CON = "in construction" (analogue to Table 2). Sources are available in section C.2.

| affected city<br>(start) | affected city<br>(end) | new<br>direct | t <sub>new</sub><br>[min] | t <sub>reduct</sub><br>[min] | impact<br>type | Vmax<br>[km/h] | status | comp-<br>letion | sources             |
|--------------------------|------------------------|---------------|---------------------------|------------------------------|----------------|----------------|--------|-----------------|---------------------|
| Lisbon                   | Badajoz                | yes           | 110                       | -                            | timetable      | 300            | CON    | 2024            | [1], [2], [3]       |
| Ghent                    | Bruges                 | -             | 13.3                      | -                            | infrastructure | 200            | CON    | 2024            | [4]                 |
| Deva                     | Brașov                 | -             | 156.89                    | -                            | infrastructure | 160            | CON    | 2024            | [5]                 |
| Brașov                   | Cluj-Napoca            | -             | 167.6                     | -                            | infrastructure | 160            | CON    | 2024            | [5]                 |
| Deva                     | Cluj-Napoca            | -             | 91.24                     | -                            | infrastructure | 160            | CON    | 2024            | [5]                 |
| Bucharest                | Ruse                   | -             | 80                        | -                            | timetable      | ?              | CON    | 2024            | [5], [6]            |
| Drammen                  | Kristiansand           | -             | -                         | 28                           | timetable      | 250            | CON    | 2025            | [7], [8], [9]       |
| Vilnius                  | Šiauliai               | -             | 98                        | -                            | timetable      | 160            | CON    | 2025            | [10], [11]          |
| Šiauliai                 | Klaipėda               | -             | 82                        | -                            | timetable      | 160            | CON    | 2025            | [10], [11]          |
| Valencia                 | Alicante               | -             | 60                        | 68                           | timetable      | 350            | CON    | 2025            | [12], [13],<br>[14] |
| Valencia                 | Murcia                 | -             | -                         | 68                           | timetable      | 350            | CON    | 2025            | [12], [13],<br>[14] |
| Stuttgart                | Ulm                    | -             | 27                        | -                            | timetable      | 250            | CON    | 2025            | [15], [16]          |
| Stuttgart                | Zurich                 | yes           | 171                       | 7                            | timetable      | 250            | CON    | 2025            | [15], [16]          |
| Karlsruhe                | Stuttgart              | -             | 35                        | -                            | timetable      | 250            | CON    | 2025            | [15], [16]          |
| Mannheim                 | Stuttgart              | -             | 33                        | -                            | timetable      | 250            | CON    | 2025            | [15], [16]          |
| Graz                     | Klagenfurt             | yes           | 45                        | -                            | timetable      | 250            | CON    | 2025            | [17], [18]          |
| Vienna                   | Bratislava             | -             | 40                        | -                            | timetable      | 200            | CON    | 2025            | [19]                |
| Poznań                   | Szczecin               | -             | 120                       | -                            | timetable      | 160            | CON    | 2025            | [20], [21]          |
| Budapest                 | Subotica               | yes           | 72                        | -                            | timetable      | 200            | CON    | 2025            | [22], [23],<br>[24] |
| Subotica                 | Novi Sad               | -             | 42                        | -                            | timetable      | 200            | CON    | 2025            | [22], [23],<br>[24] |
| Szolnok                  | Arad                   | -             | -                         | 1                            | infrastructure | 160            | CON    | 2025            | [5], [25]           |
| Arad                     | Deva                   | -             | 55.93                     | -                            | infrastructure | 160            | CON    | 2025            | [5]                 |
| Istanbul                 | Edirne                 | yes           | 120                       | -                            | timetable      | 200            | CON    | 2025            | [26], [27]          |
| Thessaloniki             | Veles                  | -             | -                         | 14.96                        | infrastructure | 160            | CON    | 2025            | [28]. [29]          |
| Aarhus                   | Aalborg                | -             | 60                        | -                            | timetable      | 200            | CON    | 2026            | [30]                |
| Murcia                   | Almería                | yes           | 65                        | -                            | timetable      | 300            | CON    | 2026            | [31], [32],<br>[33] |
| Antequera                | Granada                | -             | -                         | 23                           | timetable      | 300            | CON    | 2026            | [34], [35]          |
| Seville                  | Antequera              | -             | -                         | 24                           | timetable      | 350            | CON    | 2026            | [34], [35]          |
| Bolzano                  | Verona                 | -             | 30                        | -                            | timetable      | 250            | PCO    | 2026            | [36], [37]          |
| Berlin                   | Szczecin               | -             | 90                        | -                            | timetable      | 160            | CON    | 2026            | [38], [39]          |
| Maribor                  | Graz                   | -             | 45                        | -                            | timetable      | ?              | PCO    | 2026            | [40], [41]          |
| Milan                    | Genoa                  | -             | 50                        | -                            | timetable      | 250            | CON    | 2026            | [42]                |
| Turin                    | Genoa                  | -             | 60                        | -                            | timetable      | 250            | CON    | 2026            | [42]                |
| Milan                    | Verona                 | -             | -                         | 5                            | timetable      | 250            | CON    | 2026            | [43]                |
| Naples                   | Taranto                | yes           | 210                       | 30                           | timetable      | 200            | CON    | 2026            | [44], [45]          |
| Venice                   | Trieste                | -             | -                         | 10                           | timetable      | 200            | PCO    | 2026            | [46], [47]          |
| Craiova                  | Timișoara              | -             | 143.94                    | -                            | infrastructure | 160            | CON    | 2026            | [5]                 |
| Timișoara                | Arad                   | -             | 40.02                     | -                            | infrastructure | 160            | CON    | 2026            | [5]                 |

| <b>D</b>             | <b>A</b> 1         | 1        | 17.00     |         |                        | 400        | 0.011     |              |              |
|----------------------|--------------------|----------|-----------|---------|------------------------|------------|-----------|--------------|--------------|
| Debrecen             | Oradea             | -        | 47.23     | -       | infrastructure         | 160        | CON       | 2026         | [5]          |
| Oradea               | Cluj-Napoca        | -        | 80.37     | -       | infrastructure         | 160        | CON       | 2026         | [5]          |
| Niš                  | Belgrade           | -        | 100       | -       | timetable              | 200        | TD        | 2026         | [50], [51]   |
| Sofia                | Craiova            | -        | 180       | -       | timetable              | 160        | PCO       | 2026         | [52], [53]   |
| Tirana               | Durrës             | yes      | 20        | -       | timetable              | 120        | CON       | 2026         | [54]         |
| Athens               | Patras             | yes      | 110       | -       | timetable              | 200        | CON       | 2026         | [55]         |
| Oslo                 | Trondheim          | -        | -         | 19      | timetable              | 200        | CON       | 2027         | [56]         |
| Vitoria-Gas-<br>teiz | Burgos             | -        | 30        | 47      | timetable              | 350        | TD        | 2027         | [57]         |
| Zaragoza             | Pamplona           | -        | 60        | -       | timetable              | ?          | CON       | 2027         | [58], [59]   |
| Žilina               | Košice             | -        | 107.48    | -       | infrastructure         | 160        | CON       | 2027         | [60], [61]   |
| Žilina               | Prešov             | -        | -         | 32.64   | infrastructure         | 160        | CON       | 2027         | [60], [61]   |
| Prešov               | Košice             | -        | -         | 2.9     | infrastructure         | 160        | CON       | 2027         | [60], [61]   |
| Koper                | Divača             | -        | -         | 18.58   | infrastructure         | 160        | CON       | 2027         | [62], [63]   |
| Naples               | Foggia             | -        | 65        | -       | timetable              | 250        | CON       | 2027         | [64]         |
| Rome                 | Ancona             | -        | 185       | 30      | timetable              | 200        | PCO       | 2027         | [65]         |
| Rome                 | Perugia            | -        | 120       | 15      | timetable              | 200        | PCO       | 2027         | [65]         |
| Ancona               | Perugia            | -        | 150       | 15      | timetable              | 200        | PCO       | 2027         | [65]         |
| Sofia                | Niš                | -        | 133.97    | -       | infrastructure         | 120        | CON       | 2027         | [51], [66]   |
| Tallinn              | Narva              | -        | 91.41     | -       | infrastructure         | 160        | CON       | 2028         | [67]         |
| Narva                | Tartu              | -        | 106.17    | -       | infrastructure         | 160        | CON       | 2028         | [67]         |
| Tallinn              | Tartu              | -        | 78.17     | -       | infrastructure         | 160        | CON       | 2028         | [67]         |
| Odense               | Esbjerg            | -        | -         | 5       | timetable              | 250        | CON       | 2028         | [30]         |
| Odense               | Padborg            | -        | -         | 5       | timetable              | 250        | CON       | 2028         | [30]         |
| Odense               | Aarhus             | -        | -         | 5       | timetable              | 250        | CON       | 2028         | [30]         |
| Bilbao               | San Sebas-<br>tián | -        | 55        | 103     | timetable              | 250        | CON       | 2028         | [68], [69]   |
| Vitoria-Gas-<br>teiz | San Sebas-<br>tián | -        | 55        | 45      | timetable              | 250        | CON       | 2028         | [68], [69]   |
| Vitoria-Gas-<br>teiz | Bilbao             | -        | 43        | 97      | timetable              | 250        | CON       | 2028         | [68], [69]   |
| Copenhagen           | Lübeck             | yes      | 110       | -       | timetable              | 200        | CON       | 2029         | [70], [71]   |
| Copenhagen           | Odense             | -        | 60        | -       | timetable              | 200        | CON       | 2029         | [30]         |
| Brussels             | Luxembourg         | -        | 120       | 60      | timetable              | 160        | CON       | 2029         | [72]         |
| Berlin               | Dresden            | -        | 80        | -       | timetable              | 200        | CON       | 2029         | [73]         |
| Łódź                 | Warsaw             | -        | 45        | -       | timetable              | 250        | PCO       | 2029         | [74]         |
| Verona               | Venice             | -        | -         | 5       | timetable              | 250        | CON       | 2029         | [75]         |
| Genoa                | Nice               | -        | -         | 8.61    | infrastructure         | 200        | LD        | 2029         | [76]         |
| Tallinn              | Pärnu              | -        | 40        | -       | timetable              | 249        | PCO       | 2030         | [77]         |
| Pärnu                | Riga               | yes      | 60        | -       | timetable              | 249        | PCO       | 2030         | [77]         |
| Riga                 | Kaunas             | yes      | 92        | -       | timetable              | 249        | PCO       | 2030         | [77]         |
| Riga                 | Vilnius            | yes      | 114       | -       | timetable              | 249        | PCO       | 2030         | [77]         |
| Kaunas               | Vilnius            | -        | 38        | -       | timetable              | 249        | PCO       | 2030         | [77]         |
| Kaunas               | Suwałki            | -        | 38        | -       | timetable              | 249        | PCO       | 2030         | [77]         |
| Suwałki              | Białystok          | -        | 79        | -       | timetable              | 249        | PCO       | 2030         | [77]         |
| Białystok            | Warsaw             | -        | 87        | -       | timetable              | 249        | PCO       | 2030         | [77]         |
| Lisbon               | Porto              | yes      | 75        | -       | timetable              | 300        | CON       | 2030         | [78]         |
| Lisbon               | Coimbra            | yes      | 51        | 39      | timetable              | 300        | CON       | 2030         | [78]         |
| Porto                | Coimbra            | -        | 30        | 45      | timetable              | 300        | CON       | 2030         | [78]         |
| Coimbra              |                    | 1        |           |         |                        |            |           |              |              |
|                      | Guarda             | -        | 127       | 16      | timetable              | 300        | CON       | 2030         | [78]         |
| Braga                | Guarda<br>Vigo     | -<br>  - | 127<br>30 | 16<br>- | timetable<br>timetable | 300<br>250 | CON<br>TD | 2030<br>2030 | [78]<br>[78] |

| Cranada           | Almoría                 | 1   | 6E        | 06      | timatabla              | 250        | CON | 2020         | [70]         |
|-------------------|-------------------------|-----|-----------|---------|------------------------|------------|-----|--------------|--------------|
| Granada<br>Madrid | Almería<br>Badaioz      | -   | 65<br>151 | 96      | timetable<br>timetable | 250<br>300 | CON | 2030<br>2030 | [79]<br>[80] |
| Amsterdam         | Badajoz<br>Utrecht      | -   | 14.74     | -       | infrastructure         | 200        | CON | 2030         | [80]<br>[81] |
| Dresden           | Leipzig                 | -   | 47        | -       | timetable              | 200        | CON | 2030         | [81]<br>[82] |
| Frankfurt         | Mannheim                |     | 29        | 9       | timetable              | 300        | LD  | 2030         | [83]         |
| Nuremberg         | Erfurt                  | -   | 29<br>60  | 9       | timetable              | 230        | CON | 2030         | [83]<br>[84] |
| Vienna            | Graz                    | -   | 110       | -       | timetable              | 230        | CON | 2030         | [84]<br>[85] |
| Plzeň             |                         | -   | -         | -<br>36 | timetable              | 200        | CON | 2030         | [85]         |
| Plzeň             | Regensburg              |     | -         | 36      | timetable              | 200        | CON | 2030         | [80]<br>[86] |
|                   | Nuremberg<br>České      | -   |           | 30      |                        |            |     |              |              |
| Prague            | Budějovice              | -   | 80        | -       | timetable              | 200        | CON | 2030         | [87]         |
| Palermo           | Syracuse                | -   | -         | 60      | timetable              | 250        | CON | 2030         | [88]         |
| Messina           | Syracuse                | -   | -         | 30      | timetable              | 250        | CON | 2030         | [88]         |
| Rome              | Pescara                 | -   | 120       | -       | timetable              | 200        | PCO | 2030         | [89]         |
| Naples            | Cosenza                 | -   | 105       | -       | timetable              | 300        | PCO | 2030         | [44], [45]   |
| Naples            | Villa San Gio-<br>vanni | -   | 170       | -       | timetable              | 300        | PCO | 2030         | [44], [45]   |
| Zagreb            | Rijeka                  | -   | 90        | -       | timetable              | 250        | PCO | 2030         | [90], [91]   |
| Zagreb            | Split                   | -   | -         | 39.25   | infrastructure         | 250        | PCO | 2030         | [90], [91]   |
| Split             | Rijeka                  | -   | -         | 56.09   | infrastructure         | 250        | PCO | 2030         | [90], [91]   |
| Plovdiv           | Stara Zagora            | -   | -         | 35      | timetable              | 160        | CON | 2030         | [92]         |
| Stara Zagora      | Burgas                  | -   | -         | 35      | timetable              | 160        | CON | 2030         | [92]         |
| Stara Zagora      | Varna                   | -   | -         | 35      | timetable              | 160        | CON | 2030         | [92]         |
| Sofia             | Plovdiv                 | -   | 80        | -       | timetable              | 200        | CON | 2030         | [93], [94]   |
| Skopje            | Sofia                   | yes | 145       | -       | timetable              | 160        | CON | 2030         | [95]         |
| Valladolid        | Santander               | -   | -         | 60      | timetable              | 350        | CON | 2030         | [96]         |
| Burgos            | Santander               | -   | -         | 60      | timetable              | 350        | CON | 2030         | [96]         |
| León              | Santander               | -   | -         | 60      | timetable              | 350        | CON | 2030         | [96]         |
| Bremen            | Groningen               | yes | 131       | -       | timetable              | 120        | CON | 2030         | [97]         |
| Helsinki          | Turku                   | -   | 78        | 36      | timetable              | 300        | LD  | 2031         | [98]         |
| Oslo              | Bergen                  | yes | 354       | 50      | timetable              | 250        | LD  | 2032         | [99]         |
| Lyon              | Turin                   | -   | 107       | 126     | timetable              | 320        | CON | 2032         | [100]        |
| Grenoble          | Turin                   | -   | -         | 82      | timetable              | 320        | CON | 2032         | [100]        |
| Geneva            | Turin                   | -   | -         | 82      | timetable              | 320        | CON | 2032         | [100]        |
| Lyon              | Grenoble                | -   | -         | 54      | timetable              | 320        | CON | 2032         | [100]        |
| Bordeaux          | Toulouse                | -   | 60        | -       | timetable              | 320        | CON | 2032         | [101]        |
| Innsbruck         | Bolzano                 | -   | 55        | 70      | timetable              | 250        | CON | 2032         | [37]         |
| Malmö             | Gothenburg              | -   | 133       | 20      | timetable              | 250        | CON | 2033         | [102]        |
| London            | Birmingham              | -   | 49        | 27      | timetable              | 360        | CON | 2033         | [103], [104] |
| Liverpool         | Birmingham              | -   | -         | 7       | timetable              | 360        | CON | 2033         | [103], [104] |
| Birmingham        | Carlisle                | -   | -         | 7       | timetable              | 360        | CON | 2033         | [103], [104] |
| Liverpool         | London                  | yes | 105       | 35      | timetable              | 360        | CON | 2033         | [103], [104] |
| London            | Manchester              | yes | 100       | 26      | timetable              | 360        | CON | 2033         | [103], [104] |
| Oslo              | Gothenburg              | -   | -         | 23      | timetable              | 250        | CON | 2034         | [105]        |
| Berlin            | Hanover                 | -   | 85        | 16      | timetable              | 300        | TD  | 2034         | [106]        |
| Brno              | Vienna                  | -   | 60        | -       | timetable              | 320        | CON | 2034         | [107]        |
| Łódź              | Wrocław                 | -   | 60        | -       | timetable              | ?          | LD  | 2034         | [108]        |
| Łódź              | Poznań                  | -   | 65        | -       | timetable              | 350        | TD  | 2034         | [109]        |
| Poznań            | Wrocław                 | -   | 80        | -       | timetable              | 350        | LD  | 2034         | [109], [110] |
| Stockholm         | Linköping               | -   | 65        | 30      | timetable              | 250        | CON | 2035         | [111]        |

| Zurich      | Arth-Goldau           | _   | _     | 6   | timetable      | ?   | LD  | 2035 | [112]         |
|-------------|-----------------------|-----|-------|-----|----------------|-----|-----|------|---------------|
| Zurich      | Bregenz               | -   | -     | 8   | timetable      | 160 | LD  | 2035 | [113], [114]  |
| Frankfurt   | Kassel                | -   | 39    | 13  | timetable      | 250 | LD  | 2035 | [115]         |
| Plzeň       | Prague                | -   | 51    | -   | timetable      | ?   | COR | 2035 | [87]          |
| Erfurt      | Frankfurt             | -   | 62    | 8   | timetable      | 230 | LD  | 2037 | [115]         |
| Munich      | Innsbruck             | -   | 55    | -   | timetable      | 250 | LD  | 2040 | [116]         |
| Salzburg    | Linz                  | -   | 56    | -   | timetable      | 250 | LD  | 2040 | [117]         |
| Leeds       | Kingston<br>upon Hull | -   | 48    | 10  | timetable      | ?   | COR | 2041 | [104], [118]  |
| Sheffield   | Manchester            | -   | 42    | 9   | timetable      | ?   | COR | 2041 | [104], [118]  |
| Sheffield   | Leeds                 | -   | 40    | -   | timetable      | ?   | COR | 2041 | [104], [118]  |
| Manchester  | Leeds                 | -   | -     | 11  | timetable      | ?   | COR | 2041 | [104], [118]  |
| Karlsruhe   | Freiburg              | -   | -     | 18  | timetable      | 250 | PCO | 2041 | [119]         |
| Karlsruhe   | Strasbourg            | -   | -     | 10  | timetable      | 250 | PCO | 2041 | [119]         |
| Strasbourg  | Freiburg              | -   | -     | 8   | timetable      | 250 | PCO | 2041 | [119]         |
| Freiburg    | Basel                 | -   | -     | 13  | timetable      | 250 | PCO | 2041 | [119]         |
| Bordeaux    | Bayonne               | -   | -     | 30  | timetable      | 320 | LD  | 2042 | [120]         |
| Toulouse    | Bayonne               | -   | 125   | -   | timetable      | 320 | LD  | 2042 | [120]         |
| Montpellier | Toulouse              | -   | -     | 27  | timetable      | 320 | TD  | 2045 | [121]         |
| Perpignan   | Toulouse              | -   | -     | 16  | timetable      | 320 | TD  | 2045 | [121]         |
| Perpignan   | Montpellier           | -   | -     | 39  | timetable      | 320 | TD  | 2045 | [121]         |
| Dresden     | Prague                | -   | 60    | -   | timetable      | 320 | LD  | 2045 | [122]         |
| Drammen     | Kristiansand          | -   | -     | 15  | timetable      | 250 | COR | 2050 | [7], [8], [9] |
| Oslo        | Trondheim             | -   | -     | 11  | timetable      | 250 | LD  | 2050 | [56]          |
| Umeå        | Luleå                 | yes | 90    | 145 | timetable      | 250 | PCO | 2050 | [123]         |
| Lisbon      | Badajoz               | yes | 80    | -   | timetable      | 300 | COR | 2050 | [2], [124]    |
| Lisbon      | Faro                  | -   | -     | 30  | timetable      | 300 | COR | 2050 | [2], [124]    |
| Amsterdam   | Zwolle                | -   | 37.52 | -   | infrastructure | 200 | CON | 2050 | [81]          |
| Zwolle      | Groningen             | -   | 35.55 | -   | infrastructure | 200 | CON | 2050 | [81]          |
| Eindhoven   | Rotterdam             | -   | 35.88 | -   | infrastructure | 200 | CON | 2050 | [81]          |
| Hanover     | Bielefeld             | -   | 31    | 17  | timetable      | 300 | COR | 2050 | [106], [125]  |
| Brno        | Ostrava               | -   | 36    | -   | timetable      | 320 | PCO | 2050 | [107], [126]  |

#### C.2 – Infrastructure Project Information Sources

[1] radioelvas: "Portugal confirma alta velocidade entre Badajoz e Lisboa em 2024". Accessed on 20.04.2024. URL: https://radioelvas.com/2023/03/16/portugal-confirma-comboio-de-alta-velocidade-entre-badajoz-e-lisboa-em-2024/.

[2] Rádio Renascença: Terceira travessia do Tejo volta à agenda do PS". Accessed on 20.04.2024. URL: https://rr.sapo.pt/2019/07/18/pais/terceira-travessia-do-tejo-volta-a-agenda-do-ps/noticia/158323/.

[3] Sul Informação: "Railway Plan foresees crossing the Tagus that brings Algarve and Alentejo closer to Lisbon". Accessed on 20.04.2024. URL: https://www.sulinformacao.pt/en/2022/11/plano-ferroviario-preve-travessia-do-tejo-que-poe-algarve-e-alentejo-maisperto-de-lisboa/.

[4] RailwayPro: "Infrabel approves EUR 1 billion loan for rail projects". Accessed on 21.04.2024. URL: https://www.railwaypro.com/wp/infrabel-approves-eur-1-billion-loan-for-rail-projects/.

[5] Compania Națională de Căi Ferate: "Stadiu Proiecte CFR Febr. 2024". Accessed on 19.04.2024. URL: https://cfr.ro/wp-content/uploads/2024/03/Stadiu-proiecte-CFR-febr-2024.pdf.

[6] Ruse Chamber of Commerce and Industry: "Modernization of the Bucharest-Gyurghevo railway line: new opportunities and benefits for the Ruse region". Accessed on 19.04.2024. URL:

https://rcci.bg/en/%D0%BC%D0%BE%D0%B4%D0%B5%D1%80%D0%BD%D0%B8%D0% B7%D0%B0%D1%86%D0%B8%D1%8F-%D0%BD%D0%B0-

%D0%B6%D0%B5%D0%BB%D0%B5%D0%B7%D0%BE%D0%BF%D1%8A%D1%82%D0 %BD%D0%B0%D1%82%D0%B0-%D0%BB%D0%B8%D0%BD%D0%B8%D1%8F/.

[7] Government.no: "National Transport Plan 2022–2033". Accessed on 14.04.2024. URL: https://www.regjeringen.no/en/dokumenter/national-transport-plan-2022-2033/id2863430/?ch=8.

[8] Jernebanedirektoratet: "Helhetlig strategi for utvikling av togtilbudet". Accessed on 14.04.2024. URL: https://www.jernbanedirektoratet.no/content/uploads/2024/01/Helhetlig-strategi-for-utvikling-av-togtilbudet.pdf.

[9] BSR Transgovernance: "MESO case Eastern Norway County Area". Accessed on 14.04.2024. URL: https://www.ostlandssamarbeidet.no/wp-content/up-loads/2016/11/ENCN\_task-3\_7\_final\_13\_may\_2014.pdf.

[10] LTG Infra: "Elektrifikavimas". Accessed on 14.04.2024. URL: https://ltginfra.lt/elektrifikavimas/.

[11] TV3 LT: "Trumpės kelionė iš Vilniaus į Klaipėdą". Accessed on 14.04.2024. URL: https://www.tv3.lt/naujiena/lietuva/trumpes-kelione-is-vilniaus-i-klaipeda-n985239.

[12] International Railway Journal: "Spain completes new line between Xátiva and La Encina". Accessed on 15.04.2024. URL: https://www.railjournal.com/passenger/main-line/spain-com-pletes-new-line-between-xativa-and-la-encina/.

[13] Alicante Plaza: "La Junta Directiva de AVE visita La Encina: las obras del Corredor avanzan pero no al ritmo deseado". Accessed on 15.04.2024. URL: https://alicanteplaza.es/la-juntadirectivadeavevisitalaencinalasobrasdelcorredoravanzanperonoalritmodeseado.

[14] EuroWeekly News: "Alicante to Valencia One-Hour Train Journey Becomes a Reality with New Route". Accessed on 15.04.2024. URL: https://euroweeklynews.com/2023/09/09/ali-cante-to-valencia-fastest-route-is-by-train/.

[15] Bahnprojekt Stuttgart-Ulm: "Reisezeiten: Regionalverkehr und Fernverkehr". Accessed on 20.04.2024. URL: https://www.bahnprojekt-stuttgart-ulm.de/mediathek/detail/media/reisezeiten-regionalverkehr-und-fernverkehr/mediaParameter/show/Medium/.

[16] Bahnprojekt Stuttgart-Ulm: "Aktuelles im Detail: Stuttgart 21: Für Fahrgäste stets stabiler Fahrplan oberstes Ziel bei Inbetriebnahme". Accessed on 20.04.2024. URL: https://www.bahnprojekt-stuttgart-ulm.de/presse/pressemitteilungen/newsdetail/news/1667stuttgart-21-fuer-fahrgaeste-stets-stabiler-fahrplan-oberstes-ziel-bei-inbetriebnahme/.

[17] ÖBB Infra: "Koralmbahn". Accessed on 20.04.2024. URL: https://infrastruktur.oebb.at/de/projekte-fuer-oesterreich/bahnstrecken/suedstrecke-wien-villach/koralmbahn.

[18]: ÖBB Infra: "Koralmbahn Graz–Klagenfurt". Accessed on 20.04.2024. URL: https://infrastruktur.oebb.at/de/projekte-fuer-oesterreich/bahnstrecken/suedstrecke-wien-villach/koralmbahn/rund-um-den-bau/printproduktionen-kab/dokument?datei=Streckenkarte+Koralmbahn. [19] ÖBB Infra: "Projekt-Information Streckenausbau Wien–Bratislava". Accessed on 20.04.2024. URL: https://infrastruktur.oebb.at/de/projekte-fuer-oesterreich/bahn-strecken/weststrecke-wien-salzburg/ausbau-marchegger-ostbahn/rund-um-den-

bau/printproduktionen-wbr/dokument?datei=Projektbrosch%C3%BCre\_Ausbau+Wien-Brati-slava\_DE+%28Marchegger+Ostbahn%29.

[20] PKP Polskie Linie Kolejowe: "O inwestycji". Accessed on 21.04.2024. URL: https://poznanszczecin.pl/o-inwestycji/.

[21] Transinfo: "Nowe perony i nowy drugi tor na linii Poznań – Szczecin". Accessed on 21.04.2024. URL: https://transinfo.pl/inforail/nowe-perony-i-nowy-drugi-tor-na-linii-poznan-szczecin/.

[22] International Railway Journal: "Upgraded Belgrade – Budapest line now set for 2025". Accessed on 21.04.2024. URL: https://www.railjournal.com/infrastructure/speeded-up-rail-link-from-belgrade-to-budapest-by-2025/.

[23] Szabad Magyar Szó: "Szabadka központjába ért a Belgrád-Budapest gyorsvasút építkezése". Accessed on 18.04.2024. URL: https://szmsz.press/2023/06/06/szabadka-kozpontjaba-ert-a-belgrad-budapest-gyorsvasut-epitkezese/.

[24] Szabad Magyar Szó: "Tizenöt kilométernyi vasutat tettek le Újvidék és Szabadka között ". Accessed: 18.04.2024. URL: https://szmsz.press/2023/08/04/tizenot-kilometernyi-vasutat-tettek-le-ujvidek-es-szabadka-kozott.

[25] RailwayPro: "Hungary awards contract to double the connection with Romania". Accessed: 18.04.2024. URL: https://www.railwaypro.com/wp/hungary-awards-contract-to-double-the-connection-with-romania/.

[26] Ministry of Foreign Affairs Directorate for EU Affairs: "Construction of Çerkezköy-Kapıkule Section of Halkalı-Kapıkule Railway Line Project". Accessed on 222.04.2024. URL: https://ab.gov.tr/52172\_en.html.

[27] Daily Sabah: "Halkalı-Kapıkule railway project to connect Türkiye, Europe". Accessed on 22.04.2024. URL: https://www.dailysabah.com/turkiye/halkali-kapikule-railway-project-to-connect-turkiye-europe/news.

[28] ergose: "Installation of a modern signaling system at Thessaloniki – Idomeni single railway line". Accessed on 22.04.2024. URL: https://www.ergose.gr/project/polykastro\_eidomeni-2/?lang=en.

[29] ergose: "Polikastro – Eidomeni". Accessed on 22.04.2024. URL: https://www.er-gose.gr/project/polykastro\_eidomeni/?lang=en.

[30] Banedanmark: "Banedanmarks Anlægsplan 2030". Accessed on 22.04.2024. URL: https://www.bane.dk/da/Borger/Publikationer/-/media/D93AB7E0ACBE4C9FA6A808D372BC6C3B.ashx.

[31] Diario de Almería: "¿Cuándo llegará el AVE a Almería?". Accessed on 20.04.2024. URL: https://www.diariodealmeria.es/almeria/llegara-AVE-Almeria\_0\_1300970016.html.

[32] Murcia Today: "excavation of murcia almeria high speed ave train tunnel gets underway". Accessed on 20.04.2024. URL: https://murciatoday.com/excavation\_of\_murcia\_almeria\_high\_speed\_ave\_train\_tunnel\_gets\_underway\_1818794-a.html.

[33] Railway Technology: "Murcia-Almería High-Speed Railway, Spain". Accessed on 20.04.2024. URL: https://www.railway-technology.com/projects/murcia-almeria-high-speed-railway-spain/?cf-view.

[34] Railway Gazette: "High speed rail bypass contract awarded". Accessed on 21.04.2024. URL: https://www.railwaygazette.com/infrastructure/high-speed-rail-bypass-contractawarded/66130.article.

[35] Tecozam: "Riofrio Viaduct - Loja Bypass". Accessed on 21.04.2024. URL: https://www.tecozam.com/en/projects/riofrio-viaduct-loja-bypass.

[36] FS Italiane: "Brennero e Fortezza – Verona". Accessed on 18.04.2024. URL: https://www.fsitaliane.it/content/fsitaliane/it/opere-strategiche/brennero-e-linea-fortezza-ve-rona.html.

[37] BBT Info: "Der Brenner Basistunnel". Accessed on 18.04.2024. URL: https://www.bbt-se.com/fileadmin/broschueren/2022/allgemeine-broschuere/.

[38] Rynek Kolejowy: "Rozpoczęła się modernizacja linii Berlin - Szczecin po niemieckiej stronie". Accessed on 19.04.2024. URL: https://www.rynek-kolejowy.pl/wiado-mosci/rozpoczela-sie-modernizacja-linii-berlin--szczecin-po-niemieckiej-stronie-105682.html.

[39] DB BauInfoPortal: "Angermünde – Grenze D/PL (– Szczecin)". Accessed on 19.04.2024. URL: https://bauprojekte.deutschebahn.com/p/angermuende-stettin.

[40] Občina Žirovnica: "Državni prostorski načrt za nadgradnjo železniške proge Ljubljana— Kranj—Jesenice—državna meja v koridorju obstoječe proge -mnenja občanov". Accessed on 19.04.2024. URL: https://zirovnica.si/drzavni-prostorski-nacrt-za-nadgradnjo-zelezniskeproge-ljubljana-kranj-jesenice-drzavna-meja-v-koridorju-obstojece-proge-mnenja-obcanov/.

[41] International Railway Journal: "Slovenia Secures EU Funding for Maribor Sentilj Upgrade". Accessed on 19.04.2024. URL: https://www.railjournal.com/regions/europe/sloveniasecures-eu-funding-for-maribor-sentilj-upgrade/.

[42] FS Italiane: "Terzo Valico - Nodo di Genova". Accessed on 22.04.2024. URL: https://www.fsitaliane.it/content/fsitaliane/it/opere-strategiche/terzo-valico.html.

[43] FS Italiane: "Brescia-Verona-Padua HS/HC Line". Accessed on 22.04.2024. URL: https://www.fsitaliane.it/content/fsitaliane/en/strategic-projects/brescia-verona-padua-hs-hc-line.html.

[44] FS Italiane: "Taranto - Metaponto – Potenza". Accessed on 22.04.2024. URL: https://www.fsitaliane.it/content/fsitaliane/en/strategic-projects/taranto-metaponto-po-tenza.html.

[45] FS Italiane: "Expansion of the Salerno-Reggio Calabria railway line". Accessed on 22.04.2024. URL: https://www.fsitaliane.it/content/fsitaliane/en/strategic-projects/expansion-of-the-salerno-reggio-calabria-railway-line.html.

[46] FS Italiane: "Venice-Trieste line". Accessed on 22.04.2024. URL: https://www.fsitaliane.it/content/fsitaliane/en/strategic-projects/expansion-of-the-venice-trieste-line-.html

[47] InTrieste: "Railway Transformation: Cutting Travel Time from Trieste to Venice". Accessed on 22.04.2024. URL: https://www.intrieste.com/2023/11/25/railway-transformation-cutting-travel-time-from-trieste-to-venice/.

[50] RailwayPro: "Serbia obtains EU grant for Corridor X". Accessed on 19.04.2024. URL: https://www.railwaypro.com/wp/serbia-obtains-eu-grant-for-corridor-x/.

[51] International Railway Journal: "Terna to construct western Bulgarian line". Accessed on 19.04.2024. URL: https://www.railjournal.com/infrastructure/terna-to-reconstruct-western-bulgarian-line/.

[52] Mirela: "Construction of the new Sofia to Vidin railway". Accessed on 19.04.2024. URL: https://m.mirela.bg/en/bulgarian-real-estates/Construction-of-the-new-Sofia-to-Vidin-railway-offer6714.html.

[53] International Railway Journey: "€2.3bn Vidin-Sofia rail modernization plan outlined". Accessed on 19.04.2024. URL: https://www.railjournal.com/infrastructure/e2-3bn-vidin-sofia-rail-modernisation-plan-outlined.

[54] EBRD: "From Tirana to Durres by train in 20 minutes". Accessed on 19.04.2024. URL: https://www.ebrd.com/news/video/from-tirana-to-durres-by-train-in-20-minutes.html.

[55] RailwayPro: "Underground concept proposed for Patras railway link". Accessed on 20.04.2024. URL: https://www.railwaypro.com/wp/underground-concept-proposed-for-patras-railway-link/.

[56] Euronoise: "The InterCity Initiative – railway development in Norway". Accessed on 18.04.2024. URL: https://www.euronoise2018.eu/docs/papers/229\_Euronoise2018.pdf.

[57] Diario de Burgos: "Las obras del AVE a Vitoria, como pronto en 2027". Accessed on 18.04.2024. URL: https://www.diariodeburgos.es/Noticia/Z69416026-DAB6-13B1-A1E5E824D5A9E7DF/202303/Las-obras-del-AVE-a-Vitoria-como-pronto-en-2027.

[58] Heraldo: "Nueva línea AVE Navarra-Zaragoza: el acceso por Plaza costaría un 41% menos que por Casetas". Accessed on 18.04.2024. URL: https://www.heraldo.es/noticias/ara-gon/2023/04/10/ave-navarra-zaragoza-alternativas-acceso-por-plaza-costaria-menos-que-por-casetas-1643863.html.

[59] Heraldo: "El AVE Zaragoza-Navarra se estrenará en 2027 con la mitad del viaje por vía convencional". Accessed on 18.04.2024. URL: https://www.heraldo.es/noticias/ara-gon/2023/01/07/el-ave-zaragoza-navarra-se-estrenara-en-2027-con-la-mitad-del-viaje-por-via-convencional-1622954.html.

[60] International Railway Journal: "Eastern Slovakia line upgrade contract awarded". Accessed on 20.04.2024. URL: https://www.railjournal.com/infrastructure/eastern-slovakia-line-upgrade-contract-awarded/.

[61] Želenice Slovenskej Republiky: "Annual Report 2022". Accessed: 20.04.2024. URL: https://www.zsr.sk/files/o-nas/vyrocne-spravy/annualreport2022.pdf.

[62] RailFreight.com: "Koper-Divaca rail line financing takes final and cheaper than expected form". Accessed: 20.04.2024. URL: https://www.railfreight.com/infrastructure/2023/05/31/ko-per-divaca-rail-line-financing-takes-final-and-cheaper-than-expected-form/.

[63] Total Slovenia News: "Breakthrough at First Koper-Divača Rail Track Tunnel". Accessed on 20.04.2024. URL: https://www.total-slovenia-news.com/business/10132-breakthrough-at-first-koper-divaca-rail-track-tunnel.

[64] FS Italiane: "Naples-Bari". Accessed on 21.04.2024. URL: https://www.fsitaliane.it/con-tent/fsitaliane/en/strategic-projects/napoli-bari-.html.

[65] FS Italiane: "Development of the Orte-Falconara". Accessed on 21.04.2024. URL: https://www.fsitaliane.it/content/fsitaliane/en/strategic-projects/strengthening-and-develop-ment-of-the-orte-falconara.html.

[66] Railway Technology: "Nis-Dimitrovgrad Railway Line Rehabilitation, Serbia ". Accessed: 20.04.2024. URL: https://www.railway-technology.com/projects/nis-dimitrovgrad-railway-line-rehabilitation-serbia/?cf-view.

[67] Eesti Raudtee: "Electrification of Estonian Railways 2020-2028". Accessed: 18.04.2024. URL: https://www.evr.ee/files/Electrification-of-Estonian-Railways-2020-2028.pdf.

[68] Euskal Trenbide Sarea: "Nueva red ferroviaroa del pais vasco en el territorio historico de Gipuzkoa". Accessed on 20.04.2024. URL: https://www.ets-rfv.euskadi.eus/contenidos/informacion/etst\_transparencia/es\_oficinas/adjuntos/200630-Informe-trimestral-Cast.pdf.

[69] Railway Gazette: "Spain: 'Basque Y' inches ahead". Accessed on 20.04.2024. URL: https://www.railwaygazette.com/in-depth/spain-basque-y-inches-ahead/61348.article.

[70] Femern: "Faktenblatt zum Fehmarnbelt-Tunnel". Accessed on 22.04.2024. URL: https://femern.com/media/m0mhwglv/231024\_faktenblatt\_presse\_fehmarnbelt-tunnel\_ok-tober\_2023.pdf.

[71] Femern: "Fakten zur Fehmarnbelt-Querung". Accessed on 20.04.2024. URL: https://www.femern.info/de/fakten-zur-fehmarnbelt-querung.

[72] Railway International: "A major Belgian rail link re-electrified using a technology never seen before in Europe". Accessed on 21.04.2024. URL: https://www.railway-international.com/news/57339-a-major-belgian-rail-link-re-electrified-using-a-technology-never-seen-before-in-europe.

[73] Berlin-Dresden: "Korridor Berlin–Dresden". Accessed on 19.04.2024. URL: https://www.berlin-dresden.de/home.html.

[74] RailwayPro: "STH releases investor variant for a new high-speed connection". Accessed on 19.04.2024. URL: https://www.railwaypro.com/wp/sth-releases-investor-variant-for-a-new-high-speed-connection/.

[75] FS Italiane: "Brescia-Verona-Padua HS/HC Line". Accessed on 21.04.2024. URL: https://www.fsitaliane.it/content/fsitaliane/en/strategic-projects/brescia-verona-padua-hs-hc-line.html.

[76] FS Italiane: "Doubling Genoa-Ventimiglia". Accessed on 21.04.2024. URL: https://www.fsitaliane.it/content/fsitaliane/en/strategic-projects/completion-of-the-track-doubling-for-the-genoa-ventimiglia-line-.html.

[77] Rail Baltica: "In brief". Accessed on 20.04.2024. URL: https://info.railbaltica.org/en/in-brief.

[78] Infrastruturas de Portugal: "Linha de alta velocidade Porto – Lisboa". Accessed: 18.04.2024. URL: https://www.infraestruturasdeportugal.pt/sites/default/files/inline-files/ApresentacaoProjetoAV\_28Set2022.pdf.

[79] RailFreight.com: "Spain launches more tenders for Mediterranean Corridor upgrades". Accessed: 19.04.2024. URL: https://www.railfreight.com/corridors/2023/11/14/spain-launchesmore-tenders-for-mediterranean-corridor-upgrades/.

[80] el Periodico: "Extremadura: AVE con destino a 2030". Accessed on 19.04.2024. URL: https://www.elperiodicoextremadura.com/extremadura/2021/01/03/extremadura-ave-destino-2030-43801239.html.

[81] ERTMS.nl: "Where will ERTMS be deployed?". Accessed on 22.04.2024. URL: https://www.ertms.nl/english/about-ertms/where/default.aspx.

[82] Leipzig-Dresden: "Sachsen kommt sich näher". Accessed on 22.04.2024. URL: https://www.leipzig-dresden.de/home.html.

[83] Frankfurt-Mannheim: "Projekt auf einen Blick". Accessed on 22.04.2024. URL: https://www.frankfurt-mannheim.de/auf-einen-blick.html.

[84] VDE8.1: "Der Streckenabschnitt VDE 8.1 Ausbaustrecke Nürnberg–Ebensfeld". Accessed on 22.04.2024. URL: https://www.vde8.de/de/projektabschnitte/ausbaustrecke-nuernberg-bamberg/ueberblick.

[85] ÖBB Infra: "Semmering-Basistunnel". Accessed on 21.04.2024. URL: https://infrastruktur.oebb.at/de/projekte-fuer-oesterreich/bahnstrecken/suedstrecke-wien-villach/semmering-basistunnel.

[86] Správa železnic: "Modernizace trati Plzeň - Domažlice ". Accessed on 21.04.2024. URL: https://www.spravazeleznic.cz/modernizace-trati-plzen-domazlice/casto-kladene-otazky.

[87] Správa železnic: "Praha-Beroun Přínosy projektu". Accessed on 21.04.2024. URL: https://www.spravazeleznic.cz/praha-beroun/prinosy-projektu.

[88] FS Italiane: "Palermo-Catania-Messina". Accessed on 19.04.2024. URL: https://www.fsitaliane.it/content/fsitaliane/en/strategic-projects/palermo-catania-messina.html.

[89] FS Italiane: "Rome-Pescara". Accessed on 19.04.2024. URL: https://www.fsitaliane.it/con-tent/fsitaliane/en/strategic-projects/rome-pescara-line-.html.

[90] RailFreight.com: "Croatia will construct new railway to port of Rijeka". Accessed on 20.04.2024. URL: https://www.railfreight.com/policy/2019/05/03/croatia-will-construct-new-railway-to-port-of-rijeka/.

[91] HZ Infra: "EU FONDOVI KARTA 30 1 2024 ENG". Accessed on 20.04.2024. URL: https://eng.hzinfra.hr/wp-content/uploads/2024/01/EU-FONDOVI-KARTA-30-1-2024-ENG-.pdf.

[92] Railway Technology: "Plovdiv-Burgas Railway Line Phase Two Rehabilitation Project, Bulgaria. Accessed on 22.04.2024. URL: https://www.railway-technology.com/projects/plovdivburgas-phase-two-railway-line-rehabilitation-project/?cf-view.

[93] Sofia Globe: "New railway line to cut Sofia – Plovdiv travelling time 'by an hour'". Accessed on 22.04.2024. URL: https://sofiaglobe.com/2019/06/11/new-railway-line-to-cut-sofia-plovdiv-travelling-time-by-an-hour/.

[94] National Railway Infrastructure Company: "Modernization of railway section Elin Pelin – Kostenetz". Accessed on 22.04.2024. URL: https://www.rail-infra.bg/en/251.

[95] EBRD: "Non-Technical Summary Railway Corridor VIII - Eastern section". Accessed on 22.04.2024. URL: https://www.ebrd.com/english/pages/project/eia/42921.pdf.

[96] Rail Target: "Adif AV Gives a New Boost to the Palencia-Santander HSL with the Contracting of the Palencia-Palencia Norte Stretch". Accessed on 19.04.2024. URL: https://www.railtarget.eu/technologies-and-infrastructure/adif-av-gives-a-new-boost-to-the-palenciasantander-hsl-with-the-contracting-of-the-palenciapalencia-norte-stretch-4222.html.

[97] Wunderlinie.nl: "Wunderlinie: the connecting link in the North Sea – Baltic Ten-T corridor". Accessed on 24.04.2024. URL: https://www.wunderline.nl/fileadmin/user\_upload/wunder-line/Wunderline\_PositionPaper\_apr24.pdf.

[98] Helsinki Times: "Berner: New rail link between Helsinki and Turku set to be completed in 2031". Accessed on 23.04.2024. URL: https://www.helsinkitimes.fi/finland/finland-news/do-mestic/15886-berner-new-rail-link-between-helsinki-and-turku-set-to-be-completed-in-2031.html.

[99] Regjeringen.no: "Statlig plan for Ringeriksbanen og ny E16 er vedtatt". Accessed on 23.04.2024. URL: https://www.regjeringen.no/no/dokumentarkiv/regjeringen-solberg/aktuelt-regjeringen-solberg/kmd/pressemeldinger/2020/statlig-plan-for-ringeriksbanen-og-ny-e16-er-vedtatt/id2695504/.

[100] TELT: "FAQ". Accessed on 21.04.2024. URL: https://www.telt.eu/en/multimedia-en/faq-lyon-turin/.

[101] International Railway Journal: "French Government commits €4bn to Bordeaux-Toulouse Project". Accessed on 21.04.2024. URL: https://www.railjournal.com/passenger/high-speed/french-government-commits-e4bn-to-bordeaux-toulouse-hs-project.

[102] Trafikverket: "The Varberg tunnel". Accessed on 23.04.2024. URL: https://bransch.trafikverket.se/en/startpage/projects/Railway-construction-projects/The-Varberg-tunnel/.

[103] Gov.uk: "PM redirects HS2 funding to revolutionise transport across the North and Midlands". Accessed on 18.04.2024. URL: https://www.gov.uk/government/news/pm-redirectshs2-funding-to-revolutionise-transport-across-the-north-and-midlands.

[104] Gov.uk: "Network North". Accessed on 18.04.2024. URL: https://www.gov.uk/govern-ment/publications/network-north.

[105] Jernbaneverket: "InterCity: Ostfoldbanen". Accessed on 23.04.2024. URL: http://www.jernbaneverket.no/Prosjekter/Inter-City-/Ostfoldbanen/.

[106] BVWP Projekte: "Korridor Berlin – Hannover – Bielefeld". Accessed on 18.04.2024. URL: https://www.bvwp-projekte.de/schiene\_2018/2-016-V02/2-016-V02.html.

[107] Vysokorychlostní tratě: "Praha - Brno - Ostrava a Brno - Břeclav". Accessed on 20.04.2024. URL: https://vrtky.cz/useky-a-mapy/praha-brno-ostrava-a-brno-breclav.

[108] CPK: "Nowa linia kolejowa Łódź – Sieradz – Wrocław. CPK przedstawia wariant inwestorski". Accessed on 19.04.2024. URL: https://www.cpk.pl/pl/aktualnosci-2/nowa-liniakolejowa-lodz-sieradz-wroclaw-cpk-przedstawia-wariant-inwestorski.

[109] CPK: "Program wieloletni". Accessed on 19.04.2024. URL: https://www.cpk.pl/pl/in-westycja/program-wieloletni.

[110] Railway News: "Poland CPKs High-Speed Rail Tunnel in Lodz receives additional permit". Accessed on 19.04.2024. URL: https://railway-news.com/poland-cpks-high-speed-railtunnel-in-lodz-receives-additional-permit.

[111] Trafikverket: "The East Link, a new doubletrack railway". Accessed on 23.04.2024. URL: https://bransch.trafikverket.se/en/startpage/projects/Railway-construction-projects/ostlanken-east-link-project.

[112] SBB: "Zimmerberg-Basistunnel 2". Accessed on 18.04.2024. URL: https://company.sbb.ch/de/ueber-die-sbb/projekte/deutschschweiz/region-zuerich/zuerich-zug-luzernstudie-zimmerberg-basistunnel-2.html.

[113] SBB: "Nutzen für die Reisenden". Accessed on 18.04.2024. URL: https://company.sbb.ch/de/ueber-die-sbb/projekte/deutschschweiz/region-zuerich/bauprojekte-regionwinterthur/zuerich-winterthur-bruettenertunnel/nutzen-fuer-die-reisenden.html.

[114] BAV: "Ausbauschritt 2035: Projekte und Nutzen". Accessed on 18.04.2024. URL: https://www.bav.admin.ch/dam/bav/de/dokumente/themen/fabi-step/as2035\_faktenblatt\_pro-jekte\_nutzen.pdf.download.pdf/Ausbauschritt%202035\_Projekte%20und%20Nutzen.pdf.

[115] Fulda-Gerstungen: "Vorzugsvariante". Accessed on 20.04.2024. URL. https://www.fulda-gerstungen.de/vorzugsvariante.html.

[116] ÖBB Infra: "Bahnprojekt Brenner-Nordzulauf". Accessed on 20.04.2024. URL: https://www.brennernordzulauf.eu/newsreader/2022-07-13-meilenstein-beim-brenner-nordzulauf-gesamtverlauf-der-neubaustrecke-steht-fest.html.

[117] ÖBB Infra: "Projekt-Information: Streckenausbau Wien – Bratislava". Accesseed on 20.04.2024. URL: https://infrastruktur.oebb.at/de/projekte-fuer-oesterreich/bahn-strecken/weststrecke-wien-salzburg/ausbau-marchegger-ostbahn/rund-um-den-

bau/printproduktionen-wbr/dokument?datei=Projektbrosch%C3%BCre\_Ausbau+Wien-Brati-slava\_DE+%28Marchegger+Ostbahn%29.

[118] NAO.uk: "The Transpennine Route Upgrade Programme". Accessed on 18.04.2024. URL: https://www.nao.org.uk/press-releases/the-transpennine-route-upgrade-programme/.

[119] Karlsruhe-Basel: "Ausbau- und Neubaustrecke Karlsruhe-Basel". Accessed on 20.04.2024. URL: https://www.karlsruhe-basel.de/home.html.

[120] Ceser: "Le Grand Projet ferroviaire du Sud-Ouest (GPSO)". Accessed on 20.04.2024. URL: https://ceser-nouvelle-aquitaine.fr/sites/default/files/2023-04/2023\_04\_19\_Rapport\_GPSO\_Vot%C3%A9%20%26%20finalis%C3%A9%20%26%20ISBN2.pdf.

[121] LNMP: "Ligne Nouvelle Montpellier-Perpignan". Accessed on 20.04.2024. URL: https://www.ligne-montpellier-perpignan.com/.

[122] Dresden-Praha: "Chancen & Nutzen: Doppelt so schnell von Dresden nach Prag". Accessed on 20.04.2024. URL: https://www.dresden-praha.eu/de/chancen.

[123] Norrbotniabanan: "Norrbottniabanan: The North Bothania Line". Accessed on 23.04.2024. URL: https://norrbotniabanan.se/eng/.

[124] International Railway Journal: "Portugal to link largest cities with high-speed rail by 2050". Accessed on 19.04.2024. URL: https://www.railjournal.com/infrastructure/portugal-to-link-larg-est-cities-with-high-speed-rail-by-2050.

[125] DB InfraGO: "Bahnprojekt Hannover–Bielefeld". Accessed on 20.04.2024. URL: https://www.hannover-bielefeld.de/.

[126] Správa železnic: "VRT Moravská brána I". Accessed on 20.04.2024. URL: https://www.spravazeleznic.cz/vrt/moravska-brana.

# D – Network Edges Raw Data

| city 1 / start  | city 2 / end                | t <sub>real</sub> [min]<br>(current) | t <sub>pot</sub> [min]<br>(current) | t <sub>real</sub> [min]<br>(future) | t <sub>pot</sub> [min]<br>(future) |
|-----------------|-----------------------------|--------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|
| A Coruña        | Santiago de Com-<br>postela | 28                                   | 20.3938277                          | 28                                  | 20.3938277                         |
| Aalborg         | Aarhus                      | 78                                   | 58.8812359                          | 60                                  | 47.1261724                         |
| Aarhus          | Esbjerg                     | 140                                  | 78.9853135                          | 140                                 | 78.9853135                         |
| Aarhus          | Odense                      | 92                                   | 65.5284013                          | 87                                  | 61.9012768                         |
| Aarhus          | Padborg                     | 121                                  | 87.7663768                          | 121                                 | 87.7663768                         |
| Aberdeen        | Edinburgh                   | 140                                  | 111.0684                            | 140                                 | 111.0684                           |
| Aberdeen        | Inverness                   | 132                                  | 101.011521                          | 132                                 | 101.011521                         |
| Aberdeen        | Perth                       | 92                                   | 78.3674723                          | 92                                  | 78.3674723                         |
| Ajaccio         | Bastia                      | 226                                  | 107.09335                           | 226                                 | 107.09335                          |
| Ajaccio         | Calvi                       | 309                                  | 158.218142                          | 309                                 | 158.218142                         |
| Alexandroupolis | Çorlu                       | x                                    | 143.984849                          | 168.489362                          | 143.984849                         |
| Alexandroupolis | Edirne                      | x                                    | 112.258476                          | 145.291959                          | 112.258476                         |
| Alexandroupolis | Thessaloniki                | 502                                  | 264.656638                          | 502                                 | 264.656638                         |
| Algeciras       | Antequera                   | 172                                  | 88.1398317                          | 172                                 | 88.1398317                         |
| Alicante        | Almería                     | x                                    | 268.259507                          | 425.715217                          | 268.259507                         |
| Alicante        | Cartagena                   | 148                                  | 52.2709344                          | 148                                 | 52.2709344                         |
| Alicante        | Córdoba                     | 298                                  | 176.936683                          | 298                                 | 176.936683                         |
| Alicante        | Madrid                      | 142                                  | 112.137795                          | 142                                 | 112.137795                         |
| Alicante        | Murcia                      | 54                                   | 34.0866543                          | 54                                  | 34.0866543                         |
| Alicante        | Valencia                    | 128                                  | 79.651809                           | 60                                  | 34.0150516                         |
| Almería         | Granada                     | 166                                  | 81.1892545                          | 65                                  | 37.2176043                         |
| Almería         | Murcia                      | -                                    | -                                   | 65                                  | 37.2176043                         |
| Alvesta         | Gothenburg                  | 155                                  | 110.039915                          | 155                                 | 110.039915                         |
| Alvesta         | Hallsberg                   | 157                                  | 97.0659208                          | 157                                 | 97.0659208                         |
| Alvesta         | Kalmar                      | 80                                   | 52.2277441                          | 80                                  | 52.2277441                         |
| Alvesta         | Linköping                   | 84                                   | 67.1537184                          | 84                                  | 67.1537184                         |
| Alvesta         | Malmö                       | 79                                   | 57.4927329                          | 79                                  | 57.4927329                         |
| Amsterdam       | Rotterdam                   | 38                                   | 25.579039                           | 38                                  | 25.579039                          |
| Amsterdam       | The Hague                   | 50                                   | 28.6237043                          | 50                                  | 28.6237043                         |
| Amsterdam       | Utrecht                     | 26                                   | 20.3439998                          | 23.5637131                          | 14.74                              |
| Amsterdam       | Zwolle                      | 65                                   | 43.5845892                          | 50.2580939                          | 37.52                              |
| Ancona          | Bologna                     | 106                                  | 71.0416961                          | 106                                 | 71.0416961                         |
| Ancona          | Perugia                     | 160                                  | 83.1362536                          | 150                                 | 95.0376476                         |
| Ancona          | Pescara                     | 70                                   | 53.1921164                          | 70                                  | 53.1921164                         |
| Ancona          | Rome                        | 215                                  | 119.587645                          | 185                                 | 116.236938                         |
| Antequera       | Cádiz                       | 216                                  | 92.0691058                          | 216                                 | 92.0691058                         |
| Antequera       | Córdoba                     | 32                                   | 23.6187905                          | 32                                  | 23.6187905                         |
| Antequera       | Granada                     | 58                                   | 36.8181022                          | 35                                  | 18.0022878                         |
| Antequera       | Málaga                      | 18                                   | 17.5538999                          | 18                                  | 17.5538999                         |
| Antequera       | Seville                     | 99                                   | 49.4089233                          | 75                                  | 43.6227099                         |
| Antwerp         | Brussels                    | 35                                   | 25.084123                           | 35                                  | 25.084123                          |
| Antwerp         | Eindhoven                   | 92                                   | 45.657257                           | 92                                  | 45.657257                          |
| Antwerp         | Ghent                       | 57                                   | 36.1296867                          | 57                                  | 36.1296867                         |

 Table 12: Travel times (realistic and potential; current and future) of the core network's edges.

|                      |               | 1   |            | I          |            |
|----------------------|---------------|-----|------------|------------|------------|
| Antwerp              | Liège         | 78  | 40.5959761 | 78         | 40.5959761 |
| Antwerp              | Rotterdam     | 32  | 28.3956711 | 32         | 28.3956711 |
| Arad                 | Deva          | 132 | 122.081297 | 90.5686503 | 55.93      |
| Arad                 | Oradea        | 145 | 98.3885647 | 145        | 98.3885647 |
| Arad                 | Szeged        | 271 | 98.8258139 | 271        | 98.8258139 |
| Arad                 | Szolnok       | 171 | 65.1372026 | 95.7869931 | 64.1372026 |
| Arad                 | Timișoara     | 85  | 45.4267975 | 64.7540432 | 40.02      |
| Arnhem               | Duisburg      | 61  | 42.4122395 | 61         | 42.4122395 |
| Arnhem               | Eindhoven     | 80  | 46.1725531 | 80         | 46.1725531 |
| Arnhem               | Münster       | 165 | 74.5841423 | 165        | 74.5841423 |
| Arnhem               | Utrecht       | 34  | 25.3614792 | 34         | 25.3614792 |
| Arnhem               | Zwolle        | 60  | 39.8361855 | 60         | 39.8361855 |
| Arth-Goldau          | Basel         | 101 | 56.3529287 | 101        | 56.3529287 |
| Arth-Goldau          | Bern          | 100 | 62.8175759 | 100        | 62.8175759 |
| Arth-Goldau          | Lugano        | 69  | 48.2359715 | 69         | 48.2359715 |
| Arth-Goldau          | Vaduz/Schaan  | 144 | 66.374931  | 144        | 66.374931  |
| Arth-Goldau          | Zurich        | 40  | 29.9136224 | 34         | 27.3229461 |
| Athens               | Larissa       | 202 | 117.902503 | 202        | 117.902503 |
| Athens               | Patras        | -   | -          | 110        | 74.4702398 |
| Avignon              | Dijon         | 183 | 107.783429 | 183        | 107.783429 |
| Avignon              | Grenoble      | 116 | 66.6511872 | 116        | 66.6511872 |
| Avignon              | Lyon          | 63  | 51.9206479 | 63         | 51.9206479 |
| Avignon              | Marseille     | 34  | 21.1237678 | 34         | 21.1237678 |
| Avignon              | Montpellier   | 70  | 21.549143  | 70         | 21.549143  |
| Bacău                | Brașov        | 348 | 209.259789 | 348        | 209.259789 |
| Bacău                | Bucharest     | 247 | 188.547251 | 247        | 188.547251 |
| Bacău                | Constanța     | 349 | 212.098044 | 349        | 212.098044 |
| Bacău                | Galați        | 237 | 125.618302 | 237        | 125.618302 |
| Bacău                | lași          | 117 | 97.0504344 | 117        | 97.0504344 |
| Bacău                | Suceava       | 100 | 81.3304824 | 100        | 81.3304824 |
| Badajoz              | Entroncamento | 165 | 94.4330767 | 165        | 94.4330767 |
| Badajoz              | Lisbon        | -   | -          | 80         | 48.7056477 |
| Badajoz              | Madrid        | 266 | 167.855859 | 151        | 92.3015119 |
| Badajoz              | Seville       | 267 | 139.039549 | 267        | 139.039549 |
| Bălți                | Ungheni       | 94  | 121.800006 | 94         | 121.800006 |
| Banja Luka           | Novi Sad      | х   | 240.248428 | 346.805825 | 240.248428 |
| Banja Luka           | Osijek        | x   | 175.157183 | 264.079765 | 175.157183 |
| Banja Luka           | Sarajevo      | x   | 228.942346 | 334.97625  | 228.942346 |
| Banja Luka           | Zagreb        | x   | 162.754781 | 248.912355 | 162.754781 |
| Banská Bystrica      | Budapest      | 334 | 152.37253  | 334        | 152.37253  |
| Banská Bystrica      | Győr          | 438 | 146.040775 | 438        | 146.040775 |
| Banská Bystrica      | Miskolc       | 405 | 121.591241 | 405        | 121.591241 |
| ,<br>Banská Bystrica | Žilina        | 99  | 66.512543  | 99         | 66.512543  |
| Bar                  | Podgorica     | 59  | 44.2686291 | 59         | 44.2686291 |
| Barcelona            | Girona        | 38  | 28.8970113 | 38         | 28.8970113 |
| Barcelona            | Valencia      | 172 | 111.782245 | 172        | 111.782245 |
| Barcelona            | Zaragoza      | 83  | 74.3682739 | 83         | 74.3682739 |
| Bari                 | Foggia        | 57  | 43.9272405 | 57         | 43.9272405 |
| Bari                 | Lecce         | 80  | 59.0938956 | 80         | 59.0938956 |
|                      |               | 1   |            | 1          |            |

Jens Grafström

|            |                 | 1   |            |            |            |
|------------|-----------------|-----|------------|------------|------------|
| Bari       | Taranto         | 80  | 43.4839921 | 80         | 43.4839921 |
| Basel      | Bern            | 58  | 40.9600901 | 58         | 40.9600901 |
| Basel      | Dijon           | 85  | 67.4784801 | 85         | 67.4784801 |
| Basel      | Freiburg        | 40  | 27.0202546 | 27         | 22.00189   |
| Basel      | Lausanne        | 133 | 83.6931362 | 133        | 83.6931362 |
| Basel      | Strasbourg      | 78  | 46.3011708 | 78         | 46.3011708 |
| Basel      | Zurich          | 53  | 41.2516845 | 53         | 41.2516845 |
| Bastia     | Calvi           | 259 | 135.651962 | 259        | 135.651962 |
| Bayonne    | Bordeaux        | 107 | 78.0484287 | 77         | 54.1690456 |
| Bayonne    | San Sebastián   | 82  | 31.8476608 | 82         | 31.8476608 |
| Bayonne    | Toulouse        | 203 | 149.03509  | 125        | 84.9978152 |
| Belfast    | Derry           | 121 | 90.4604939 | 121        | 90.4604939 |
| Belfast    | Dublin          | 125 | 94.3864116 | 125        | 94.3864116 |
| Belgrade   | Niš             | 332 | 234.633731 | 100        | 73.3116473 |
| Belgrade   | Novi Sad        | 36  | 33.6555234 | 36         | 33.6555234 |
| Belgrade   | Osijek          | х   | 116.525929 | 178.133429 | 116.525929 |
| Belgrade   | Podgorica       | 587 | 472.440396 | 587        | 472.440396 |
| Belgrade   | Sarajevo        | х   | 317.73812  | 461.369599 | 317.73812  |
| Belgrade   | Timișoara       | х   | 119.912573 | 181.639768 | 119.912573 |
| Bergen     | Drammen         | 367 | 281.605385 | 367        | 281.605385 |
| Bergen     | Oslo            | -   | -          | 354        | 259.489341 |
| Berlin     | Dresden         | 110 | 78.0277784 | 80         | 58.2907121 |
| Berlin     | Erfurt          | 97  | 74.9656724 | 97         | 74.9656724 |
| Berlin     | Hamburg         | 104 | 82.5590127 | 104        | 82.5590127 |
| Berlin     | Hanover         | 101 | 72.5831273 | 85         | 61.877566  |
| Berlin     | Leipzig         | 73  | 54.8096023 | 73         | 54.8096023 |
| Berlin     | Lübeck          | 166 | 92.3750207 | 166        | 92.3750207 |
| Berlin     | Poznań          | 165 | 109.65927  | 165        | 109.65927  |
| Berlin     | Rostock         | 120 | 93.4160602 | 120        | 93.4160602 |
| Berlin     | Szczecin        | 185 | 76.1096264 | 90         | 66.696535  |
| Bern       | Brig            | 66  | 42.6470053 | 66         | 42.6470053 |
| Bern       | Lausanne        | 67  | 53.0037008 | 67         | 53.0037008 |
| Bern       | Zurich          | 56  | 47.7290107 | 56         | 47.7290107 |
| Białystok  | Olsztyn         | 235 | 148.686111 | 235        | 148.686111 |
| Białystok  | Suwałki         | 109 | 84.3934443 | 79         | 60.8051202 |
| Białystok  | Warsaw          | 129 | 84.5278624 | 87         | 65.8825817 |
| Bielefeld  | Bremen          | 116 | 71.2309715 | 116        | 71.2309715 |
| Bielefeld  | Dortmund        | 46  | 31.9474652 | 46         | 31.9474652 |
| Bielefeld  | Hanover         | 50  | 40.102649  | 31         | 23.1395441 |
| Bielefeld  | Münster         | 57  | 36.047164  | 57         | 36.047164  |
| Bilbao     | Burgos          | 151 | 103.700409 | 151        | 103.700409 |
| Bilbao     | San Sebastián   | 211 | 91.3912915 | 55         | 30.8124988 |
| Bilbao     | Santander       | 192 | 76.1083495 | 192        | 76.1083495 |
| Bilbao     | Vitoria-Gasteiz | 153 | 83.0945538 | 43         | 23.1263722 |
| Bilbao     | Zaragoza        | 269 | 177.182457 | 269        | 177.182457 |
| Birmingham | Bristol         | 71  | 59.7970996 | 71         | 59.7970996 |
| Birmingham | Carlisle        | 173 | 115.37179  | 166        | 120.213758 |
| Birmingham | Leicester       | 57  | 33.1631604 | 57         | 33.1631604 |
| Birmingham | Liverpool       | 100 | 59.5729623 | 93         | 66.221597  |
|            |                 |     | 20.0.20020 |            | <b>_</b>   |

| Birmingham               | London           | 76       | 63.7249536               | 49         | 33.6783769               |
|--------------------------|------------------|----------|--------------------------|------------|--------------------------|
| Birmingham<br>Birmingham | Manchester       | 90       | 55.8828527               | 90         | 55.8828527               |
| Birmingham               | Nottingham       | 77       | 37.2536308               | 77         | 37.2536308               |
| Birmingham               | Sheffield        | 60       | 47.979485                | 60         | 47.979485                |
| Birmingham               | Southampton      | 159      | 98.898354                | 159        | 98.898354                |
| Bitola                   | Veles            | 150      | 108.042826               | 150        | 108.042826               |
| Boden                    | Kiruna           | 185      | 145.660069               | 185        | 145.660069               |
| Boden                    | Luleå            | 27       | 143.000009               | 27         | 143.000009               |
| Boden                    | Tornio           | X        | 68.5720804               | 96.4925964 | 68.5720804               |
| Boden                    | Umeå             | 195      | 153.131877               | 195        | 153.131877               |
| Bodø                     | Trondheim        | 586      | 442.248382               | 586        | 442.248382               |
| Bologna                  | Florence         | 37       | 23.5268982               | 37         | 23.5268982               |
| Bologna                  | Genoa            | 166      | 92.0888843               | 166        | 92.0888843               |
|                          | Milan            | 64       | 92.0000043<br>48.9779341 | 64         | 48.9779341               |
| Bologna                  |                  | 82       |                          | 82         |                          |
| Bologna                  | Venice<br>Verona | 62<br>52 | 53.8490394               | 62<br>52   | 53.8490394<br>37.7601561 |
| Bologna<br>Bolzano       |                  |          | 37.7601561               |            |                          |
|                          | Innsbruck        | 123      | 80.456779                | 55         | 39.7165934               |
| Bolzano                  | Verona           | 90       | 63.2675882               | 30         | 22.3543654               |
| Bordeaux                 | La Rochelle      | 140      | 99.3396343               | 140        | 99.3396343               |
| Bordeaux                 | Limoges          | 143      | 89.8465962               | 143        | 89.8465962               |
| Bordeaux                 | Toulouse<br>T    | 136      | 97.0201881               | 60         | 43.250523                |
| Bordeaux                 | Tours            | 105      | 65.9554316               | 105        | 65.9554316               |
| Bourges                  | Clermont-Ferrand | 148      | 80.8027124               | 148        | 80.8027124               |
| Bourges                  | Dijon            | 202      | 129.522402               | 202        | 129.522402               |
| Bourges                  | Limoges          | 135      | 87.0268545               | 135        | 87.0268545               |
| Bourges                  | Lyon             | 201      | 126.942469               | 201        | 126.942469               |
| Bourges                  | Paris<br>–       | 120      | 81.2241522               | 120        | 81.2241522               |
| Bourges                  | Tours            | 82       | 60.9681244               | 82         | 60.9681244               |
| Braga                    | Ourense          | 408      | 99.0545406               | 408        | 99.0545406               |
| Braga                    | Porto            | 36       | 23.945453                | 36         | 23.945453                |
| Braga                    | Vigo             | 150      | 76.7213331               | 30         | 18.2457979               |
| Brașov                   | Bucharest        | 148      | 105.059846               | 148        | 105.059846               |
| Brașov                   | Cluj-Napoca      | 381      | 213.225277               | 271.757662 | 167.6                    |
| Brașov                   | Deva             | 330      | 172.263446               | 254.380261 | 156.89                   |
| Brașov                   | Galați           | 309      | 212.499635               | 309        | 212.499635               |
| Bratislava               | Brno             | 100      | 67.1421911               | 100        | 67.1421911               |
| Bratislava               | Győr             | 82       | 54.5157982               | 82         | 54.5157982               |
| Bratislava               | Vienna           | 46       | 36.0326098               | 40         | 26.4889328               |
| Bratislava               | Žilina           | 123      | 82.4978077               | 123        | 82.4978077               |
| Bregenz                  | Feldkirch        | 31       | 15.8149416               | 31         | 15.8149416               |
| Bregenz                  | Munich           | 122      | 99.2606639               | 122        | 99.2606639               |
| Bregenz                  | Ulm              | 96       | 61.8116483               | 96         | 61.8116483               |
| Bregenz                  | Zurich           | 87       | 60.4387689               | 79         | 55.8424385               |
| Bremen                   | Groningen        | -        | -                        | 131        | 100.149593               |
| Bremen                   | Hamburg          | 57       | 42.2582723               | 57         | 42.2582723               |
| Bremen                   | Hanover          | 59       | 47.4983901               | 59         | 47.4983901               |
| Bremen                   | Münster          | 75       | 59.9344994               | 75         | 59.9344994               |
| Bremen                   | Zwolle           | 205      | 118.264202               | 205        | 118.264202               |
| Brest                    | Rennes           | 120      | 93.6226208               | 120        | 93.6226208               |

|           |                          | !   |            | 1          |            |
|-----------|--------------------------|-----|------------|------------|------------|
| Brig      | Lausanne                 | 102 | 62.2817988 | 102        | 62.2817988 |
| Brig      | Milan                    | 119 | 73.6849717 | 119        | 73.6849717 |
| Brig      | Turin                    | 185 | 89.0136605 | 185        | 89.0136605 |
| Bristol   | Exeter                   | 57  | 47.3595645 | 57         | 47.3595645 |
| Bristol   | London                   | 76  | 60.652289  | 76         | 60.652289  |
| Bristol   | Southampton              | 100 | 64.6466226 | 100        | 64.6466226 |
| Bristol   | Swansea                  | 85  | 62.2894125 | 85         | 62.2894125 |
| Brno      | Hradec Králové           | 133 | 86.164137  | 133        | 86.164137  |
| Brno      | Ostrava                  | 165 | 89.2820073 | 36         | 6.36681975 |
| Brno      | Prague                   | 148 | 116.968484 | 148        | 116.968484 |
| Brno      | Vienna                   | 87  | 64.2580608 | 60         | 37.780678  |
| Bruges    | Ghent                    | 22  | 17.9515227 | 12.9660596 | 13.3       |
| Bruges    | Lille                    | 100 | 43.4634186 | 100        | 43.4634186 |
| Brussels  | Ghent                    | 28  | 22.4104937 | 28         | 22.4104937 |
| Brussels  | Liège                    | 44  | 33.3638844 | 44         | 33.3638844 |
| Brussels  | Lille                    | 33  | 27.0285181 | 33         | 27.0285181 |
| Brussels  | Luxembourg               | 196 | 109.692745 | 120        | 73.7554751 |
| Bucharest | Constanța                | 150 | 99.3768807 | 150        | 99.3768807 |
| Bucharest | Craiova                  | 243 | 120.645891 | 243        | 120.645891 |
| Bucharest | Galați                   | 217 | 159.399133 | 217        | 159.399133 |
| Bucharest | Pitești                  | 111 | 63.8947396 | 111        | 63.8947396 |
| Bucharest | Ruse                     | 210 | 101.371948 | 80         | 47.3876114 |
| Budapest  | Győr                     | 65  | 59.9155371 | 65         | 59.9155371 |
| Budapest  | Miskolc                  | 134 | 97.3939626 | 134        | 97.3939626 |
| Budapest  | Pécs                     | 147 | 119.956308 | 147        | 119.956308 |
| Budapest  | Subotica                 | -   | -          | 72         | 53.9683326 |
| Budapest  | Szeged                   | 127 | 102.819387 | 127        | 102.819387 |
| Budapest  | Szolnok                  | 80  | 48.8234789 | 80         | 48.8234789 |
| Budapest  | Varaždin                 | 346 | 166.642801 | 346        | 166.642801 |
| Budapest  | Zagreb                   | 377 | 199.537151 | 377        | 199.537151 |
| Burgas    | Edirne                   | 345 | 165.581197 | 345        | 165.581197 |
| Burgas    | Shumen                   | 320 | 132.285816 | 320        | 132.285816 |
| Burgas    | Stara Zagora             | 123 | 84.0481648 | 88         | 51.0707593 |
| Burgas    | Varna                    | 213 | 135.874771 | 213        | 135.874771 |
| Burgos    | León                     | 76  | 52.4665606 | 76         | 52.4665606 |
| Burgos    | Santander                | 238 | 141.567368 | 178        | 109.595297 |
| Burgos    | Valladolid               | 39  | 28.8534473 | 39         | 28.8534473 |
| Burgos    | Vitoria-Gasteiz          | 80  | 51.9600575 | 30         | 14.799735  |
| Bydgoszcz | Gdańsk                   | 80  | 67.7364023 | 80         | 67.7364023 |
| Bydgoszcz | Kraków                   | 351 | 219.70298  | 351        | 219.70298  |
| Bydgoszcz | Łódź                     | 165 | 117.761828 | 165        | 117.761828 |
| Bydgoszcz | Olsztyn                  | 181 | 108.549688 | 181        | 108.549688 |
| Bydgoszcz | Poznań                   | 81  | 66.0742674 | 81         | 66.0742674 |
| Bydgoszcz | Warsaw                   | 178 | 127.24663  | 178        | 127.24663  |
| Cádiz     | Córdoba                  | 154 | 82.3126374 | 154        | 82.3126374 |
| Cádiz     | Seville                  | 83  | 57.7276071 | 83         | 57.7276071 |
| Caulz     | Cherbourg-Octe-<br>ville | 70  | 47.9282247 | 70         | 47.9282247 |
| Caen      | ville<br>Le Havre        | 159 | 98.3853082 | 159        | 98.3853082 |
| Juon      |                          | 100 | 00.00000Z  | 100        | 50.00000Z  |

Jens Grafström

|                          |                        | ļ   |            | 1          |            |
|--------------------------|------------------------|-----|------------|------------|------------|
| Caen                     | Le Mans                | 106 | 67.4729296 | 106        | 67.4729296 |
| Caen                     | Paris                  | 115 | 89.3966891 | 115        | 89.3966891 |
| Cagliari                 | Olbia                  | 254 | 140.321095 | 254        | 140.321095 |
| Cagliari                 | Sassari                | 183 | 126.662572 | 183        | 126.662572 |
| Carlisle                 | Edinburgh              | 76  | 60.0059368 | 76         | 60.0059368 |
| Carlisle                 | Glasgow                | 73  | 61.2402634 | 73         | 61.2402634 |
| Carlisle                 | Leeds                  | 161 | 95.5931111 | 161        | 95.5931111 |
| Carlisle                 | Liverpool              | 129 | 77.976765  | 129        | 77.976765  |
| Carlisle                 | Manchester             | 108 | 73.5992407 | 108        | 73.5992407 |
| Carlisle                 | Newcastle upon<br>Tyne | 80  | 67.2621712 | 80         | 67.2621712 |
| Carlisle                 | Perth                  | 150 | 99.1300328 | 150        | 99.1300328 |
| Cartagena                | Murcia                 | 50  | 26.4778137 | 50         | 26.4778137 |
| Cherbourg-Octe-<br>ville | Rennes                 | 223 | 126.036728 | 223        | 126.036728 |
| Chișinău                 | Ungheni                | 180 | 166.113131 | 180        | 166.113131 |
| Clermont-Ferrand         | Dijon                  | 260 | 141.023001 | 260        | 141.023001 |
| Clermont-Ferrand         | Limoges                | 225 | 146.225722 | 225        | 146.225722 |
| Clermont-Ferrand         | Lyon                   | 145 | 110.143341 | 145        | 110.143341 |
| Clermont-Ferrand         | Reims                  | 343 | 175.308512 | 343        | 175.308512 |
| Cluj-Napoca              | Deva                   | 222 | 106.826197 | 147.860528 | 91.24      |
| Cluj-Napoca              | Oradea                 | 229 | 109.960114 | 130.223521 | 80.37      |
| Cluj-Napoca              | Pitești                | 638 | 334.841698 | 638        | 334.841698 |
| Cluj-Napoca              | Suceava                | 399 | 263.190877 | 399        | 263.190877 |
| Coimbra                  | Entroncamento          | 60  | 41.7249054 | 60         | 41.7249054 |
| Coimbra                  | Guarda                 | 150 | 91.7295929 | 127        | 77.7084604 |
| Coimbra                  | Lisbon                 | -   | -          | 51         | 33.5674724 |
| Coimbra                  | Porto                  | 69  | 40.7761295 | 30         | 21.3706204 |
| Cologne                  | Düsseldorf             | 28  | 17.1143977 | 28         | 17.1143977 |
| Cologne                  | Eindhoven              | 131 | 64.0033481 | 131        | 64.0033481 |
| Cologne                  | Frankfurt              | 63  | 46.3847386 | 63         | 46.3847386 |
| Cologne                  | Liège                  | 62  | 41.6467166 | 62         | 41.6467166 |
| Cologne                  | Mannheim               | 88  | 64.4057549 | 88         | 64.4057549 |
| Cologne                  | Wuppertal              | 29  | 22.5952161 | 29         | 22.5952161 |
| Constanța                | Galați                 | 237 | 143.078451 | 237        | 143.078451 |
| Constanța                | lași                   | 477 | 269.708674 | 477        | 269.708674 |
| Copenhagen               | Lübeck                 | -   | -          | 110        | 76.7914742 |
| Copenhagen               | Malmö                  | 38  | 17.2434838 | 38         | 17.2434838 |
| Copenhagen               | Odense                 | 69  | 54.1686804 | 60         | 47.1261724 |
| Córdoba                  | Madrid                 | 118 | 85.0470815 | 118        | 85.0470815 |
| Córdoba                  | Murcia                 | 404 | 185.098771 | 404        | 185.098771 |
| Córdoba                  | Seville                | 42  | 33.5601606 | 42         | 33.5601606 |
| Córdoba                  | Valencia               | 218 | 152.399162 | 218        | 152.399162 |
| Cork                     | Dublin                 | 152 | 133.512161 | 152        | 133.512161 |
| Cork                     | Limerick               | 99  | 63.1530757 | 99         | 63.1530757 |
| Cork                     | Waterford              | 184 | 108.790956 | 184        | 108.790956 |
| Cosenza                  | Naples                 | 177 | 106.270245 | 105        | 67.7814168 |
| Cosenza                  | Taranto                | 178 | 86.4086523 | 178        | 86.4086523 |
| Cosenza                  | Villa San Giovanni     | 127 | 67.8681966 | 127        | 67.8681966 |
| Craiova                  | Deva                   | 337 | 187.93005  | 337        | 187.93005  |
| 5141014                  | 2014                   |     | 101.00000  |            | 101.00000  |

| University of Zurich |                    | Master's Thesis |            |            | Jens Grafström |  |
|----------------------|--------------------|-----------------|------------|------------|----------------|--|
| <u>_</u>             |                    |                 |            |            |                |  |
| Craiova              | Pitești            | 167             | 101.115611 | 167        | 101.115611     |  |
| Craiova              | ,<br>Ruse          | 347             | 153.628467 | 347        | 153.628467     |  |
| Craiova              | Sofia              | 525             | 334.488788 | 180        | 116.332407     |  |
| Craiova              | Timișoara          | 390             | 236.195736 | 233.368372 | 143.94         |  |
| Daugavpils           | ,<br>Riga          | 205             | 114.048134 | 205        | 114.048134     |  |
| Daugavpils           | Šiauliai           | x               | 136.104473 | 190.240685 | 136.104473     |  |
| Daugavpils           | Vilnius            | x               | 94.8776129 | 136.265917 | 94.8776129     |  |
| Debrecen             | Košice             | 248             | 105.949491 | 248        | 105.949491     |  |
| Debrecen             | Miskolc            | 94              | 63.245297  | 94         | 63.245297      |  |
| Debrecen             | Oradea             | 162             | 61.1359482 | 69.5252853 | 47.23          |  |
| Debrecen             | Satu Mare          | 157             | 74.5938076 | 157        | 74.5938076     |  |
| Debrecen             | Szolnok            | 75              | 46.1859297 | 75         | 46.1859297     |  |
| Dijon                | Lausanne           | 121             | 92.3912721 | 121        | 92.3912721     |  |
| Dijon                | Lyon               | 95              | 67.0318069 | 95         | 67.0318069     |  |
| Dijon                | Paris              | 96              | 78.6928416 | 96         | 78.6928416     |  |
| Dijon                | Reims              | 196             | 93.0643021 | 196        | 93.0643021     |  |
| Dijon                | Strasbourg         | 126             | 83.523746  | 126        | 83.523746      |  |
| Divača               | Koper              | 45              | 38.8420357 | 22.5355602 | 20.2620357     |  |
| Divača               | Ljubljana          | 96              | 72.9607645 | 96         | 72.9607645     |  |
| Divača               | Rijeka             | 165             | 80.4484499 | 165        | 80.4484499     |  |
| Divača               | Trieste            | 60              | 36.6548444 | 60         | 36.6548444     |  |
|                      |                    |                 |            |            |                |  |
| Divača               | Villach            | 209             | 103.992789 | 209        | 103.992789     |  |
| Doncaster            | Kingston upon Hull | 48              | 35.2437065 | 48         | 35.2437065     |  |
| Doncaster            | Leeds              | 30              | 21.5542707 | 30         | 21.5542707     |  |
| Doncaster            | Nottingham         | 82              | 37.1305702 | 82         | 37.1305702     |  |
| Doncaster            | Peterborough       | 48              | 39.1388861 | 48         | 39.1388861     |  |
| Doncaster            | Sheffield          | 24              | 16.0271322 | 24         | 16.0271322     |  |
| Doncaster            | York               | 20              | 16.1979785 | 20         | 16.1979785     |  |
| Dortmund             | Essen              | 21              | 14.0503591 | 21         | 14.0503591     |  |
| Dortmund             | Kassel             | 132             | 91.0494287 | 132        | 91.0494287     |  |
| Dortmund             | Münster            | 29              | 24.3391676 | 29         | 24.3391676     |  |
| Dortmund             | Wuppertal          | 36              | 27.0662377 | 36         | 27.0662377     |  |
| Drammen<br>-         | Kristiansand       | 236             | 187.372405 | 193        | 140.999689     |  |
| Drammen              | Oslo               | 32              | 20.4512384 | 32         | 20.4512384     |  |
| Dresden              | Leipzig            | 68              | 47.2262255 | 47         | 34.6174765     |  |
| Dresden              | Liberec            | 123             | 82.1973211 | 123        | 82.1973211     |  |
| Dresden              | Prague             | 133             | 96.0890955 | 60         | 36.6926084     |  |
| Dresden              | Wrocław            | 213             | 125.475149 | 213        | 125.475149     |  |
| Dublin               | Galway             | 136             | 115.759142 | 136        | 115.759142     |  |
| Dublin               | Limerick           | 124             | 112.286163 | 124        | 112.286163     |  |
| Dublin               | Sligo              | 189             | 138.873574 | 189        | 138.873574     |  |
| Dublin               | Waterford          | 117             | 89.9082779 | 117        | 89.9082779     |  |
| Duisburg             | Düsseldorf         | 14              | 8.48201857 | 14         | 8.48201857     |  |
| Duisburg             | Eindhoven          | 101             | 54.0766459 | 101        | 54.0766459     |  |
| Duisburg             | Essen              | 11              | 8.45217303 | 11         | 8.45217303     |  |
| Durrës               | Tirana             | -               | -          | 20         | 13.5227064     |  |
| Düsseldorf           | Eindhoven          | 113             | 55.0626303 | 113        | 55.0626303     |  |
| Düsseldorf           | Wuppertal          | 20              | 13.4904704 | 20         | 13.4904704     |  |
| Edinburgh            | Glasgow            | 45              | 38.6550023 | 45         | 38.6550023     |  |

|               |                        | 1   |            | :          |            |
|---------------|------------------------|-----|------------|------------|------------|
| Edinburgh     | Newcastle upon<br>Tyne | 87  | 73.7750469 | 87         | 73.7750469 |
| Edinburgh     | Perth                  | 79  | 52.2871366 | 79         | 52.2871366 |
| Edirne        | Çorlu                  | 123 | 78.0143741 | 123        | 78.0143741 |
| Edirne        | Istanbul               | -   | -          | 120        | 82.5882487 |
| Edirne        | Plovdiv                | 288 | 75.2683337 | 288        | 75.2683337 |
| Edirne        | Stara Zagora           | 158 | 100.854107 | 158        | 100.854107 |
| Eindhoven     | Liège                  | 113 | 67.7427964 | 113        | 67.7427964 |
| Eindhoven     | Rotterdam              | 62  | 41.78456   | 48.336286  | 35.88      |
| Eindhoven     | Utrecht                | 48  | 37.4736836 | 48         | 37.4736836 |
| Entroncamento | Lisbon                 | 52  | 35.3852689 | 52         | 35.3852689 |
| Erfurt        | Frankfurt              | 125 | 105.78316  | 62         | 45.3780381 |
| Erfurt        | Hanover                | 143 | 93.7586053 | 143        | 93.7586053 |
| Erfurt        | Kassel                 | 90  | 65.5291424 | 90         | 65.5291424 |
| Erfurt        | Leipzig                | 40  | 28.4084866 | 40         | 28.4084866 |
| Erfurt        | Nuremberg              | 80  | 57.9841016 | 60         | 43.9432966 |
| Erfurt        | Plzeň                  | 293 | 155.225279 | 293        | 155.225279 |
| Esbjerg       | Odense                 | 79  | 53.5531983 | 74         | 54.7873376 |
| Esbjerg       | Padborg                | 86  | 52.0844287 | 86         | 52.0844287 |
| Exeter        | Penzance               | 174 | 126.559814 | 174        | 126.559814 |
| Exeter        | Southampton            | 147 | 87.5054749 | 147        | 87.5054749 |
| Faro          | Lisbon                 | 180 | 107.816881 | 150        | 91.0669173 |
| Feldkirch     | Innsbruck              | 115 | 91.6531079 | 115        | 91.6531079 |
| Feldkirch     | Vaduz/Schaan           | 18  | 9.9080569  | 18         | 9.9080569  |
| Florence      | Perugia                | 89  | 52.4758246 | 89         | 52.4758246 |
| Florence      | Pisa                   | 52  | 31.7398073 | 52         | 31.7398073 |
| Florence      | Rome                   | 95  | 68.6821721 | 95         | 68.6821721 |
| Foggia        | Naples                 | 163 | 81.7461478 | 65         | 43.5536561 |
| Foggia        | Pescara                | 91  | 69.1037911 | 91         | 69.1037911 |
| Frankfurt     | Kassel                 | 82  | 67.3088297 | 39         | 28.8785103 |
| Frankfurt     | Mannheim               | 38  | 28.8059172 | 29         | 21.7048025 |
| Frankfurt     | Nuremberg              | 123 | 92.4432634 | 123        | 92.4432634 |
| Freiburg      | Karlsruhe              | 60  | 46.565375  | 42         | 31.0306226 |
| Freiburg      | Strasbourg             | 64  | 37.6525191 | 56         | 40.8667996 |
| Galați        | lași                   | 253 | 180.2077   | 253        | 180.2077   |
| Galway        | Limerick               | 117 | 71.1804107 | 117        | 71.1804107 |
| Gdańsk        | Koszalin               | 157 | 101.782689 | 157        | 101.782689 |
| Gdańsk        | Olsztyn                | 137 | 80.5383222 | 137        | 80.5383222 |
| Gdańsk        | Warsaw                 | 148 | 126.321397 | 148        | 126.321397 |
| Geneva        | Grenoble               | 123 | 83.9177549 | 123        | 83.9177549 |
| Geneva        | Lausanne               | 35  | 24.3761678 | 35         | 24.3761678 |
| Geneva        | Lyon                   | 113 | 80.7058854 | 113        | 80.7058854 |
| Geneva        | Turin                  | 320 | 154.256887 | 238        | 145.384565 |
| Genoa         | Milan                  | 94  | 59.5118159 | 50         | 34.4682458 |
| Genoa         | Nice                   | 192 | 89.7266192 | 122.986714 | 81.1166192 |
| Genoa         | Pisa                   | 128 | 73.4711518 | 128        | 73.4711518 |
| Genoa         | Turin                  | 105 | 64.1876079 | 60         | 40.525186  |
| Ghent         | Lille                  | 72  | 33.7657067 | 72         | 33.7657067 |
| Gijón         | León                   | 91  | 52.477109  | 91         | 52.477109  |

| Gijón              | Santander        | 354 | 152.124465               | 354        | 152.124465               |
|--------------------|------------------|-----|--------------------------|------------|--------------------------|
| Girona             | Perpignan        | 38  | 23.1617394               | 38         | 23.1617394               |
| Glasgow            | Perth            | 57  | 51.7132853               | 57         | 51.7132853               |
| Gothenburg         | Hallsberg        | 130 | 84.5304586               | 130        | 84.5304586               |
| Gothenburg         | Malmö            | 153 | 100.111337               | 133        | 94.2557279               |
| Gothenburg         | Oslo             | 206 | 155.262796               | 183        | 132.138954               |
| Graz               | Klagenfurt       | -   | -                        | 45         | 35.1165182               |
| Graz               | Linz             | 190 | 141.32142                | 190        | 141.32142                |
| Graz               | Maribor          | 60  | 31.5842598               | 45         | 36.3064436               |
| Graz               | Salzburg         | 238 | 173.33958                | 238        | 173.33958                |
| Graz               | Szombathely      | 136 | 81.4579683               | 136        | 81.4579683               |
| Graz               | Vienna           | 156 | 118.190456               | 110        | 82.3155059               |
| Grenoble           | Lyon             | 83  | 59.1351301               | 29         | 23.340276                |
| Grenoble           | Turin            | 191 | 119.696448               | 109        | 72.3966841               |
| Groningen          | Zwolle           | 56  | 49.2190433               | 47.9495808 | 35.55                    |
| Guarda             | Porto            | 223 | 119.829538               | 223        | 119.829538               |
| Guarda             | Salamanca        | X   | 78.4367468               | 128.803752 | 78.4367468               |
| Győr               | Szombathely      | 69  | 56.8941505               | 69         | 56.8941505               |
| Győr               | Vienna           | 78  | 50.6266968               | 78         | 50.6266968               |
| Hallsberg          | Linköping        | 88  | 50.5849462               | 88         | 50.5849462               |
| Hallsberg          | Oslo             | 225 | 157.505964               | 225        | 157.505964               |
| Hallsberg          | Stockholm        | 88  | 62.9870729               | 88         | 62.9870729               |
| Hallsberg          | Västerås         | 81  | 46.951228                | 81         | 46.951228                |
| Hamburg            | Hanover          | 76  | 60.1438892               | 76         | 60.1438892               |
| Hamburg            | Kiel             | 88  | 46.3320094               | 88         | 46.3320094               |
| Hamburg            | Lübeck           | 46  | 26.3369287               | 46         | 26.3369287               |
| Hamburg            | Padborg          | 122 | 82.2342053               | 122        | 82.2342053               |
| Hamburg            | Rostock          | 109 | 79.482495                | 109        | 79.482495                |
| Hanover            | Kassel           | 54  | 38.9314403               | 54         | 38.9314403               |
| Hanover            | Rostock          | 213 | 119.836662               | 213        | 119.836662               |
| Helsinki           | Joensuu          | 269 | 187.282317               | 269        | 187.282317               |
| Helsinki           | Kuopio           | 260 | 166.249273               | 260        | 166.249273               |
| Helsinki           | Tampere          | 95  | 62.2671096               | 95         | 62.2671096               |
| Helsinki           | Turku            | 112 | 107.670221               | 78         | 56.9135563               |
| Hradec Králové     | Liberec          | 147 | 96.2221417               | 147        | 96.2221417               |
| Hradec Králové     | Ostrava          | 160 | 115.934556               | 160        | 115.934556               |
| Hradec Králové     | Prague           | 95  | 54.2588284               | 95         | 54.2588284               |
| Hradec Králové     | Wrocław          | 256 | 132.529418               | 256        | 132.529418               |
| lași               | Suceava          | 155 | 86.3572245               | 155        | 86.3572245               |
| lași               | Ungheni          | 34  | 18.4239315               | 34         | 18.4239315               |
| Innsbruck          | Munich           | 104 | 70.1951393               | 55         | 41.3610329               |
| Innsbruck          | Salzburg         | 104 | 85.6489605               | 108        | 85.6489605               |
| Innsbruck          | Villach          | 263 | 174.422357               | 263        | 174.422357               |
| Inverness          | Perth            | 122 | 98.3160208               | 122        | 98.3160208               |
| Inverness          | Thurso           | 222 |                          | 222        |                          |
| Istanbul           |                  | 137 | 193.561037<br>56.6696256 | 137        | 193.561037<br>56.6696256 |
|                    | Çorlu            | 137 | 56.6696256<br>121.824147 | 137        | 121.824147               |
| Jelgava            | Liepāja<br>Riga  | 46  | 22.6455916               | 46         | 22.6455916               |
| Jelgava<br>Jelgava | Riga<br>Šiauliai | 78  | 60.8340842               | 78         | 60.8340842               |
| UCIYAVA            |                  | 10  | JU.UJ+UU42               | 10         | 00.0040042               |

| Oniversity of Zun  |              |     | 110010     |            |            |
|--------------------|--------------|-----|------------|------------|------------|
|                    |              |     |            |            |            |
| Joensuu            | Kuopio       | 252 | 101.613438 | 252        | 101.613438 |
| Joensuu            | Oulu         | 585 | 229.797393 | 585        | 229.797393 |
| Joensuu            | Tampere      | 289 | 203.266154 | 289        | 203.266154 |
| Karlsruhe          | Mannheim     | 24  | 17.1646569 | 24         | 17.1646569 |
| Karlsruhe          | Strasbourg   | 45  | 30.2869526 | 35         | 26.6341744 |
| Karlsruhe          | Stuttgart    | 40  | 28.291853  | 35         | 26.0090272 |
| Kassel             | Münster      | 142 | 97.4397041 | 142        | 97.4397041 |
| Kassel             | Nuremberg    | 120 | 89.0392    | 120        | 89.0392    |
| Katowice           | Kraków       | 47  | 35.6115403 | 47         | 35.6115403 |
| Katowice           | Łódź         | 155 | 121.776913 | 155        | 121.776913 |
| Katowice           | Lublin       | 269 | 161.571058 | 269        | 161.571058 |
| Katowice           | Ostrava      | 103 | 52.7198178 | 103        | 52.7198178 |
| Katowice           | Warsaw       | 142 | 110.690053 | 142        | 110.690053 |
| Katowice           | Wrocław      | 113 | 84.6142781 | 113        | 84.6142781 |
| Katowice           | Žilina       | 453 | 91.6961059 | 453        | 91.6961059 |
| Kaunas             | Riga         | -   | -          | 92         | 61.0665416 |
| Kaunas             | Šiauliai     | 124 | 82.4547772 | 124        | 82.4547772 |
| Kaunas             | Suwałki      | 158 | 102.781484 | 38         | 30.4892885 |
| Kaunas             | Vilnius      | 65  | 51.1628583 | 38         | 25.1814124 |
| Kiel               | Lübeck       | 70  | 45.7381817 | 70         | 45.7381817 |
| Kiel               | Padborg      | 111 | 55.3296672 | 111        | 55.3296672 |
| Kingston upon Hull | Leeds        | 58  | 42.1435248 | 48         | 32.9387582 |
| Kingston upon Hull | York         | 58  | 36.1556022 | 58         | 36.1556022 |
| Kiruna             | Narvik       | 186 | 107.814477 | 186        | 107.814477 |
| Klagenfurt         | Maribor      | 153 | 89.7343155 | 153        | 89.7343155 |
| Klagenfurt         | Vienna       | 237 | 186.657681 | 237        | 186.657681 |
| Klagenfurt         | Villach      | 23  | 18.6610086 | 23         | 18.6610086 |
| Klaipėda           | Šiauliai     | 116 | 86.1485117 | 82         | 59.7024663 |
| Kolari             | Tornio       | 157 | 110.687672 | 157        | 110.687672 |
| Košice             | Miskolc      | 79  | 53.7691495 | 79         | 53.7691495 |
| Košice             | Prešov       | 37  | 22.3255647 | 38.5001451 | 19.4255647 |
| Košice             | Žilina       | 184 | 143.247348 | 142.984615 | 107.48     |
| Koszalin           | Poznań       | 209 | 145.603413 | 209        | 145.603413 |
| Koszalin           | Szczecin     | 121 | 89.5945269 | 121        | 89.5945269 |
| Kraków             | Łódź         | 154 | 129.866136 | 154        | 129.866136 |
| Kraków             | Ostrava      | 143 | 72.4420297 | 143        | 72.4420297 |
| Kraków             | Prešov       | 517 | 200.457987 | 517        | 200.457987 |
| Kraków             | Rzeszów      | 86  | 62.3267416 | 86         | 62.3267416 |
| Kraków             | Warsaw       | 137 | 115.426762 | 137        | 115.426762 |
| Kraków             | Žilina       | 232 | 111.40157  | 232        | 111.40157  |
| Kristiansand       | Stavanger    | 176 | 127.414183 | 176        | 127.414183 |
| Kuopio             | Oulu         | 237 | 157.955311 | 237        | 157.955311 |
| Kuopio             | Tampere      | 191 | 140.63836  | 191        | 140.63836  |
| La Rochelle        | Limoges      | 227 | 141.539415 | 227        | 141.539415 |
| La Rochelle        | Nantes       | 106 | 84.9408929 | 106        | 84.9408929 |
| La Rochelle        | Tours        | 109 | 79.899824  | 109        | 79.899824  |
| Larissa            | Thessaloniki | 89  | 64.5563537 | 89         | 64.5563537 |
| Le Havre           | Lille        | 242 | 123.831881 | 242        | 123.831881 |
| Le Havre           | Paris        | 129 | 92.6631361 | 129        | 92.6631361 |
|                    |              |     |            |            |            |

Master's Thesis

Jens Grafström

University of Zurich

| Le Mans   | Nantes           | 78  | 58.3887861 | 78  | 58.3887861 |
|-----------|------------------|-----|------------|-----|------------|
| Le Mans   | Paris            | 59  | 45.7260801 | 59  | 45.7260801 |
| Le Mans   | Rennes           | 45  | 35.6198954 | 45  | 35.6198954 |
| Le Mans   | Tours            | 58  | 36.187657  | 58  | 36.187657  |
| Lecce     | Taranto          | 71  | 49.7602308 | 71  | 49.7602308 |
| Leeds     | Manchester       | 54  | 37.4555547 | 43  | 29.240665  |
| Leeds     | Sheffield        | 40  | 29.4342409 | 40  | 27.0218091 |
| Leeds     | York             | 23  | 18.5546999 | 23  | 18.5546999 |
| Leicester | Liverpool        | 166 | 70.6774258 | 166 | 70.6774258 |
| Leicester | London           | 67  | 57.7999749 | 67  | 57.7999749 |
| Leicester | Manchester       | 125 | 65.1605408 | 125 | 65.1605408 |
| Leicester | Nottingham       | 29  | 19.203283  | 29  | 19.203283  |
| Leicester | Peterborough     | 55  | 39.446018  | 55  | 39.446018  |
| Leicester | Sheffield        | 65  | 41.656817  | 65  | 41.656817  |
| Leipzig   | Wrocław          | 319 | 156.799518 | 319 | 156.799518 |
| León      | Santander        | 202 | 154.535045 | 142 | 86.5369169 |
| León      | Valladolid       | 59  | 44.4755882 | 59  | 44.4755882 |
| Liberec   | Prague           | 147 | 91.6760878 | 147 | 91.6760878 |
| Liège     | Luxembourg       | 159 | 95.132349  | 159 | 95.132349  |
| Lille     | London           | 81  | 69.8643344 | 81  | 69.8643344 |
| Lille     | Paris            | 64  | 50.5894997 | 64  | 50.5894997 |
| Lille     | Reims            | 89  | 65.2177505 | 89  | 65.2177505 |
| Limerick  | Waterford        | 153 | 87.57361   | 153 | 87.57361   |
| Limoges   | Toulouse         | 218 | 156.468636 | 218 | 156.468636 |
| Limoges   | Tours            | 197 | 108.155034 | 197 | 108.155034 |
| Linköping | Stockholm        | 79  | 77.2236292 | 65  | 44.753906  |
| Linköping | Västerås         | 135 | 88.3722013 | 135 | 88.3722013 |
| Linz      | České Budějovice | 118 | 97.7843792 | 118 | 97.7843792 |
| Linz      | Munich           | 166 | 117.447682 | 166 | 117.447682 |
| Linz      | Regensburg       | 117 | 97.494732  | 117 | 97.494732  |
| Linz      | Salzburg         | 68  | 56.3021111 | 56  | 43.1040392 |
| Linz      | Vienna           | 75  | 58.3181327 | 75  | 58.3181327 |
| Lisbon    | Porto            | -   | -          | 75  | 47.5067318 |
| Liverpool | London           | 134 | 109.487089 | 105 | 75.0970207 |
| Liverpool | Manchester       | 36  | 25.8410173 | 36  | 25.8410173 |
| Liverpool | Nottingham       | 161 | 74.1383181 | 161 | 74.1383181 |
| Liverpool | Swansea          | 268 | 161.074365 | 268 | 161.074365 |
| Ljubljana | Maribor          | 109 | 89.5014026 | 109 | 89.5014026 |
| Ljubljana | Rijeka           | 162 | 117.163408 | 162 | 117.163408 |
| Ljubljana | Varaždin         | 205 | 125.370943 | 205 | 125.370943 |
| Ljubljana | Villach          | 99  | 63.9632542 | 99  | 63.9632542 |
| Ljubljana | Zagreb           | 129 | 87.050228  | 129 | 87.050228  |
| London    | Manchester       | 156 | 103.970204 | 100 | 71.3989275 |
| London    | Norwich          | 108 | 77.5759868 | 108 | 77.5759868 |
| London    | Peterborough     | 46  | 40.5462011 | 46  | 40.5462011 |
| London    | Southampton      | 75  | 53.1368019 | 75  | 53.1368019 |
| Lübeck    | Padborg          | 164 | 85.6637127 | 164 | 85.6637127 |
| Lübeck    | Rostock          | 108 | 64.8764364 | 108 | 64.8764364 |
| Lublin    | Rzeszów          | 144 | 111.900345 | 144 | 111.900345 |

| Lublin                 | 10/200200               | 110  | 70.0074000               | 110        | 70 0074000               |
|------------------------|-------------------------|------|--------------------------|------------|--------------------------|
| Lublin                 | Warsaw                  | 112  | 76.9871699               | 112        | 76.9871699               |
| Lugano                 | Milan                   | 75   | 37.4496099               | 75         | 37.4496099               |
| Luleå                  | Umeå                    | -    | -                        | 90         | 62.9531052               |
| Luxembourg             | Metz                    | 46   | 28.1971462               | 46         | 28.1971462               |
| Lyon                   | Paris                   | 116  | 99.347665                | 116        | 99.347665                |
| Lyon                   | Reims                   | 202  | 113.753726               | 202        | 113.753726               |
| Lyon                   | Turin                   | 211  | 155.769826               | 107        | 71.1497958               |
| Madrid                 | Murcia                  | 165  | 120.299882               | 165        | 120.299882               |
| Madrid                 | Ourense                 | 135  | 109.012894               | 135        | 109.012894               |
| Madrid                 | Pamplona                | 179  | 125.59979                | 179        | 125.59979                |
| Madrid                 | Salamanca               | 101  | 69.6143498               | 101        | 69.6143498               |
| Madrid                 | Valencia                | 113  | 87.585222                | 113        | 87.585222                |
| Madrid                 | Valladolid              | 64   | 47.5923645               | 64         | 47.5923645               |
| Madrid                 | Zaragoza                | 75   | 65.6927847               | 75         | 65.6927847               |
| Manchester             | Nottingham              | 108  | 60.2302408               | 108        | 60.2302408               |
| Manchester             | Sheffield               | 53   | 34.5561385               | 42         | 28.5010464               |
| Manchester             | Swansea                 | 260  | 157.436767               | 260        | 157.436767               |
| Mannheim               | Saarbrücken             | 77   | 63.642383                | 77         | 63.642383                |
| Mannheim               | Stuttgart               | 38   | 29.0052748               | 33         | 24.5742856               |
| Maribor                | Varaždin                | 119  | 50.6112292               | 119        | 50.6112292               |
| Maribor                | Zagreb                  | 158  | 97.2401132               | 158        | 97.2401132               |
| Marseille              | Nice                    | 148  | 102.928279               | 148        | 102.928279               |
| Messina                | Palermo                 | 169  | 107.256559               | 169        | 107.256559               |
| Messina                | Syracuse                | 148  | 94.1538733               | 118        | 75.655439                |
| Messina                | Villa San Giovanni      | 85   | 85                       | 85         | 85                       |
| Metz                   | Reims                   | 47   | 40.6992088               | 47         | 40.6992088               |
| Metz                   | Saarbrücken             | 62   | 39.9823125               | 62         | 39.9823125               |
| Metz                   | Strasbourg              | 47   | 37.7828942               | 47         | 37.7828942               |
| Milan                  | Turin                   | 50   | 37.9055884               | 50         | 37.9055884               |
| Milan                  | Verona                  | 73   | 47.9248489               | 68         | 45.3707381               |
| Montpellier            | Perpignan               | 92   | 63.6209863               | 53         | 38.7546608               |
| Montpellier            | Toulouse                | 132  | 96.358325                | 105        | 72.1524945               |
| Mostar                 | Sarajevo                | 115  | 104.454919               | 115        | 104.454919               |
| Munich                 | -                       | 64   | 49.2473149               | 64         | 49.2473149               |
| Munich                 | Nuremberg<br>Regensburg | 83   | 49.2473149<br>64.9170777 | 83         | 49.2473149<br>64.9170777 |
|                        |                         |      | 73.88773                 |            |                          |
| Munich                 | Salzburg<br>Ulm         | 88   |                          | 88         | 73.88773                 |
| Munich                 |                         | 73   | 54.2367111               | 73         | 54.2367111               |
| Münster                | Zwolle                  | 136  | 73.4325182               | 136        | 73.4325182               |
| Murcia                 | Valencia                | 240  | 91.0464792               | 172        | 105.752233               |
| Nantes                 | Rennes<br>–             | 76   | 62.6861386               | 76         | 62.6861386               |
| Nantes                 | Tours                   | 94   | 70.666211                | 94         | 70.666211                |
| Naples                 | Rome                    | 63   | 48.2068289               | 63         | 48.2068289               |
| Naples                 | Taranto                 | -    | -                        | 210        | 131.379289               |
| Naples                 | Villa San Giovanni      | 245  | 151.845974               | 170        | 107.151528               |
| Narva                  | Tallinn                 | 192  | 112.438422               | 104.93808  | 91.41                    |
| Narva                  | Tartu                   | 236  | 128.083655               | 166.047464 | 106.17                   |
| Newcastle upon<br>Tyne | York                    | 55   | 43.8005495               | 55         | 43.8005495               |
| Niš                    | Podgorica               | 1079 | 532.124334               | 1079       | 532.124334               |
|                        |                         |      | 302.12.1001              |            | 202.12.001               |

| Nik         Sofia         X         101-000000         101-000000           Nik         Sofia         X         104-00000         101-000000           Norwich         Peterborough         69         66.2162892         89         66.2152892           Nottingham         Peterborough         68         37.7275057         68         37.7275057           Novi Sad         Osijek         X         118.516743         180.622403         118.516743           Novi Sad         Zagreb         X         273.31425         38.912846         273.31425           Nuremberg         Plzeň         184         129.246729         148         106.570597           Nuremberg         Stutgart         129         80.6387231         129         89.6387231           Nuremberg         Ulm         121         73.3910592         121         73.3910592           Olsztyn         Poznań         205         146.546969         205         146.546969           Olsztyn         Poznań         205         146.546969         205         146.546969           Olsztyn         Warsaw         142         97.6600257         142         97.6600257           Olsztyn         Warsaw         153                                                                            | Niš     | Skopje  | x   | 187.090623 | 261.24728 | 187.090623 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|-----|------------|-----------|------------|
| Norwich         Peterborough         68         37.275057         68         37.275057           Nottingham         Sheffield         56         32.9049107         56         32.9049107           Novi Sad         Osjek         X         18.516743         180.822403         118.516743           Novi Sad         Subotica         216         143.740204         42         34.081077           Novi Sad         Subotica         216         143.740204         42         34.081077           Novi Sad         Sagreb         X         273.314925         389.912846         273.314925           Nuremberg         Pizeň         184         129.246729         148         106.570597           Nuremberg         Ultart         129         86.387231         129         86.387231           Nuremberg         Ultart         121         73.3910592         121         73.3910592           Oldans         Sassari         105         72.9478972         105         72.9478972           Olsztyn         Poznań         205         146.546669         205         146.5466696           Olsztyn         Warsaw         142         97.6600257         142         97.6600257           Oradea <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>       |         |         |     |            |           |            |
| Notlingham         Peterborough         68         37.7275057         68         37.7275057           Notlingham         Sheffield         56         32.9049107         56         32.9049107           Novi Sad         Osijek         X         118.516743         180.822403         118.516743           Novi Sad         Zagreb         X         273.319425         389.912846         273.319425           Nuremberg         Pizeň         184         129.246729         148         106.570697           Nuremberg         Stutgart         129         89.6387231         129         89.6387231           Nuremberg         Ulm         121         73.3910592         121         73.3910592           Odense         Padborg         81         62.3342616         76         55.817988           Olbia         Sassan         105         72.9478972         105         72.9478972           Olsztyn         Nurenki         391         158.44636         391         158.44636           Olsztyn         Warsk         142         97.6600257         142         97.6600257           Oradea         Satu Mare         152         80.801013         152         80.800103           Osijek                                                                     |         |         |     |            |           |            |
| Notingham         Sheffield         56         32.9049107         56         32.9049107           Novi Sad         Osijek         X         118.516743         180.822403         118.516743           Novi Sad         Zagreb         X         273.314925         389.91284         273.314925           Nuremberg         Pizeń         184         122.246729         148         106.570597           Nuremberg         Sutgat         129         89.6387231         122         89.6387231           Nuremberg         Ulm         121         73.3194252         121         73.3910592           Olstav         Padborg         81         62.3342616         76         55.817998           Olbia         Sassari         105         72.9478972         105         72.9478972           Olszyn         Poznah         205         146.546669         205         146.546669           Olszyn         Suwałki         391         158.44636         391         158.44636           Olszyn         Warsaw         142         97.6600257         142         97.660276           Oradea         Szolnok         164         74.8660869         164         74.8660869           Osijek                                                                                  |         | •       | 1   |            |           |            |
| Novi Sad         Osijek         X         118.516743         180.822403         118.516743           Novi Sad         Subolica         216         143.740204         42         34.081077           Novi Sad         Zagreb         X         273.319425         389.912846         273.319425           Nuremberg         Pizeń         184         129.246729         148         106.570597           Nuremberg         Stuttgart         129         89.6337231         129         89.6387231           Nuremberg         Ulm         121         73.3910592         121         73.3910592           Odense         Padorg         81         76.58177989         105         72.9478972           Olsztyn         Poznań         205         146.540969         205         146.540969           Olsztyn         Sasari         105         72.9478972         165         72.9478972           Oradea         Satu Mare         152         80.801013         152.48636         391         158.44636           Olsztyn         Warsaw         142         97.6600257         142.97.6600257         142.80.8001013           Oradea         Satu Mare         152         80.801013         152.80.8001013         152.80.                                               | -       | -       |     |            |           |            |
| Novi Sad         Subolica         216         143.740204         42         34.081077           Novi Sad         Zagreb         X         273.319425         389.912846         273.319425           Nuremberg         Pizeň         184         129.246729         148         165.70597           Nuremberg         Sutgart         129         89.6387231         129         89.6387231           Nuremberg         Ulm         121         73.3910592         121         73.3910592           Odense         Padborg         81         62.3342616         76         55.8817898           Olsztyn         Poznań         205         146.546969         205         146.546969           Olsztyn         Suwałki         391         158.44636         391         158.44636           Olsztyn         Warsaw         142         97.6600257         142         97.6600257           Oradea         Szolnok         164         74.8660869         164         74.8660869           Osijek         Sarajevo         X         254.637691         361.279755         254.637691           Osijek         Sarajevo         X         129.82559         182.802266         119.982559           Osio                                                                          | -       |         |     |            |           |            |
| Novi Sad         Zagreb         X         273.319425         389.912846         273.319425           Nuremberg         Pizeň         184         129.246729         148         106.570597           Nuremberg         Stutgart         129         89.6387231         129         88.6387231           Nuremberg         Ulm         121         73.3910592         121         73.3910592           Odense         Padborg         81         62.3342616         76         55.8817898           Olbia         Sassari         105         72.9478972         105         72.9478972           Olsztyn         Poznań         205         146.546969         205         146.546969           Olsztyn         Suwałki         391         158.44636         391         158.44636           Oradea         Satu Mare         152         80.801013         152         80.801013           Oradea         Satuohare         153         61.813706         153         61.813706           Osijek         Sarajevo         X         19.82.602266         119.82.559           Osio         Torndheim         480         316.062191         450         330.141556           Osigek         Sarajevo                                                                             |         | -       |     |            |           |            |
| Nuremberg         Pizeň         184         129.246729         148         106.570597           Nuremberg         Regensburg         52         48.404724         52         48.404724           Nuremberg         Stuttgart         129         89.6387231         129         89.6387231           Nuremberg         Ulm         121         73.3910592         121         73.3910592           Odense         Padborg         81         62.3342616         76         55.8817898           Olbia         Sassari         105         72.9478972         105         72.9478972           Olsztyn         Poznań         205         146.546969         205         146.546969           Olsztyn         Warsaw         142         97.6600257         142         97.6600257           Oradea         Satu Mare         152         80.8001013         152         80.800113           Oradea         Szolnok         164         74.8660869         164         74.8660869           Osijek         Satu Mare         152         80.8001013         152         80.800113           Osijek         Szolnok         146         74.8660869         164         74.8660869           Osijek         S                                                                         |         |         |     |            |           |            |
| Nuremberg         Regensburg         52         48.4404724         52         48.4404724           Nuremberg         Stuttgart         129         89.6387231         129         89.6387231           Nuremberg         Um         121         73.3910592         121         73.3910592           Odense         Padborg         81         62.3342616         76         55.8817898           Olbia         Sassari         105         72.9478972         105         72.9478972           Olsztyn         Poznań         205         146.546969         205         146.546969           Olsztyn         Suwałki         391         158.44636         391         158.44636           Oradea         Szolnok         164         74.8660869         164         74.8660869           Oradea         Szolnok         164         74.8660869         164         74.8660869           Osijek         Sarajevo         X         19.92559         182.802266         119.982559           Osijek         Sarajevo         X         19.92559         182.802266         119.982559           Ostrava         Žilina         92         61.532924         92         61.532924           Outu         So                                                                         |         |         |     |            |           |            |
| Nuremberg         Stutgart         129         89.6387231         129         89.6387231           Nuremberg         Ulm         121         73.3910592         121         73.3910592           Odense         Padborg         81         62.3342616         76         55.8817898           Olbia         Sassari         105         72.9478972         105         72.9478972           Olsztyn         Poznań         205         146.548969         205         146.548969           Olsztyn         Suwalki         391         158.44636         391         158.44636           Olsztyn         Warsaw         142         97.6600257         142         97.6600257           Oradea         Satu Mare         152         80.8001013         152         80.8001013           Oradea         Satu Mare         153         61.813706         153         61.813706           Osijek         Sarajevo         X         254.637691         361.279755         254.637691           Osijek         Subtica         X         119.82559         182.802266         119.982559           Ostrava         Prague         192         146.738903         192         146.738903           Ostrava                                                                             | -       |         |     |            | _         |            |
| Nuremberg         Ulm         121         73.3910592         121         73.3910592           Odense         Padborg         81         62.3342616         76         55.8817898           Olbia         Sassari         105         72.9478972         105         72.9478972           Olsztyn         Poznań         205         146.546969         205         146.546969           Olsztyn         Warsaw         142         97.6600257         142         97.6600257           Oradea         Satu Mare         152         80.8001013         152         80.8001013           Oradea         Szolnok         164         74.8660869         164.73603         61.813706           Osijek         Pécs         153         61.813706         153         61.813706           Osijek         Subotica         X         119.982559         182.802266         119.982559           Oslo         Troncheim         480         316.062191         450         330.141556           Ostrava         Prague         192         146.738903         192         146.738903           Oulu         Rovaniemi         138         102.112083         138         102.112083           Oulu         Seina                                                                         | -       |         | -   |            | _         |            |
| Odense         Padborg         81         62.3342616         76         55.8817898           Olbia         Sassari         105         72.9478972         105         72.9478972           Olsztyn         Poznań         205         146.546969         205         146.546969           Olsztyn         Suwalki         391         158.44636         391         158.44636           Olsztyn         Warsaw         142         97.6600257         142         97.6600257           Oradea         Szuhok         164         74.8660869         164         74.8660869           Osijek         Pécs         153         61.813706         153         61.813706           Osijek         Sarajevo         X         254.637691         361.279755         254.637691           Osijek         Sarajevo         X         119.82259         182.802266         119.982559           Osto         Trondheim         480         316.062191         450         330.141556           Ostrava         Prague         192         146.738903         192         146.738903           Oulu         Rovaniemi         138         102.112083         138         102.112083           Oulu         Seinajok                                                                         | U U     | -       |     |            |           |            |
| Olbia         Sasar         105         72.9478972         105         72.9478972           Olsztyn         Poznań         205         146.546969         205         146.546969           Olsztyn         Suwałki         391         158.44636         391         158.44636           Olsztyn         Warsaw         142         97.6600257         142         97.6600257           Oradea         Satu Mare         152         80.8001013         152         80.8001013           Oradea         Szolnok         164         74.8660869         164         74.8660869           Osijek         Pécs         153         61.813706         153         61.813706           Osijek         Sarajevo         X         254.637691         361.279755         254.637691           Osijek         Subotica         X         119.862599         102.02266         119.982559           Osio         Trondheim         480         316.062191         450         330.141556           Ostrava         Žilina         92         61.5352954         92         61.5352954           Oulu         Rovaniemi         138         102.112083         138         102.112083           Oulu         Seinājo                                                                         | -       | -       |     |            |           |            |
| Olsztyn         Poznań         205         146.546969         205         146.546969           Olsztyn         Suwalki         391         158.44636         391         158.44636           Olsztyn         Warsaw         142         97.6600257         142         97.6600257           Oradea         Satu Mare         152         80.8001013         152         80.8001013           Oradea         Szolnok         164         74.8660869         164         74.8660869           Osijek         Pécs         153         61.813706         153         61.813706           Osijek         Subotica         X         119.82559         182.802266         119.982559           Osio         Trondheim         480         316.062191         450         330.141556           Ostrava         Prague         192         146.738903         192         146.738903           Ostrava         Zilina         92         61.535254         92         61.535254           Oulu         Rovaniemi         138         102.112083         138         102.112083           Oulu         Seniago de Com-<br>postela         35         108.224489         35         108.224489           Ourense                                                                            | -       | U U     |     |            |           |            |
| Olszyn         Suwałki         391         158.44636         391         158.44636           Olszyn         Warsaw         142         97.6600257         142         97.6600257           Oradea         Satu Mare         152         80.8001013         152         80.8001013           Oradea         Szolnok         164         74.8660869         164         74.8660869           Osijek         Pécs         153         61.813706         153         61.813706           Osijek         Sarajevo         X         254.637691         861.279755         254.637691           Osijek         Subotica         X         119.82559         182.802266         119.82559           Oslo         Trondheim         480         316.062191         450         330.141556           Ostrava         Zilina         92         61.5352954         92         61.5352954           Oulu         Rovaniemi         138         102.112083         138         102.112083           Oulu         Tomio         111         63.0915344         111         63.0915344           Ourense         Saftago de Com-<br>postela         38         21.217592         38         21.217592           Ourense                                                                          | -       |         |     |            |           |            |
| Olszyn         Warsaw         142         97.6600257         142         97.6600257           Oradea         Satu Mare         152         80.8001013         152         80.8001013           Oradea         Szolnok         164         74.8660869         164         74.8660869           Osijek         Pécs         153         61.813706         153         61.813706           Osijek         Subtica         X         254.637691         361.279755         254.637691           Osijek         Subtica         X         119.982559         182.802266         119.982559           Oslo         Trondheim         480         316.062191         450         330.141556           Ostrava         Prague         192         146.738903         192         146.738903           Ostrava         Zilina         92         61.5352954         92         61.5352954           Oulu         Rovaniemi         138         102.112083         138         102.112083           Oulu         Senäjöjö         155         105.38394         155         105.38394           Ourense         Salamanca         223         95.8583916         223         95.8583916           Ourense         Sa                                                                         | ,       |         | 1   |            |           |            |
| Oracea         Satu Mare         152         80.8001013         152         80.8001013           Oracea         Szolnok         164         74.8660869         164         74.8660869           Osijek         Pécs         153         61.813706         153         61.813706           Osijek         Sarajevo         X         254.637691         361.279755         254.637691           Osijek         Subotica         X         119.982559         182.802266         119.982559           Oslo         Trondheim         480         316.062191         450         330.141556           Ostrava         Žilina         92         61.5352954         92         61.5352954           Oulu         Rovaniemi         138         102.112083         138         102.112083           Oulu         Seinäjoki         155         105.38394         155         105.38394           Oulu         Tornio         111         63.0915344         111         63.0915344           Ourense         Poto         335         108.224489         335         108.224489           Ourense         Salamanca         223         95.8583916         223         95.8583916           Ourense         Sal                                                                         | -       |         |     |            |           |            |
| Oradea         Szolnok         164         74.8660869         164         74.8600869           Osijek         Pécs         153         61.813706         153         61.813706           Osijek         Sarajevo         X         254.637691         361.279755         254.637691           Osijek         Subotica         X         119.982559         182.802266         119.982559           Oslo         Trondheim         480         316.062191         450         330.141556           Ostrava         Prague         192         146.738903         192         146.738903           Ostrava         Žilina         92         61.5352954         62         61.535294           Oulu         Rovaniemi         138         102.112083         138         102.12083           Oulu         Seinājoki         155         105.38394         155         105.38394           Oulu         Tornio         111         63.0915344         111         63.0915344           Ourense         Porto         335         108.224489         335         108.224489           Ourense         Salamaca         223         95.8583916         223         95.8583916           Ourense         Vallado                                                                         | •       |         |     |            |           |            |
| Osijek         Pécs         153         61.813706         153         61.813706           Osijek         Sarajevo         X         254.637691         361.279755         254.637691           Osijek         Subotica         X         119.982559         182.802266         119.982559           Oslo         Trondheim         480         316.062191         450         330.141556           Ostrava         Prague         192         146.738903         192         146.738903           Ostrava         Žilina         92         61.5352954         92         61.5352954           Oulu         Rovaniemi         138         102.112083         138         102.112083           Oulu         Seinäjoki         155         105.38394         155         105.38394           Oulu         Tornio         111         63.0915344         111         63.0915344           Ourense         Salamanca         223         95.8583916         223         95.8583916           Ourense         Salamanca         223         95.8583916         223         95.8583916           Ourense         Valladolid         208         84.7294702         208         84.7294702           Paelerno                                                                             | -       |         | _   |            |           |            |
| Osijek         Sarajevo         X         254.637691         361.279755         254.637691           Osijek         Subotica         X         119.982559         182.802266         119.982559           Osio         Trondheim         480         316.062191         450         330.141556           Ostrava         Žilina         92         61.5352954         92         61.5352954           Oulu         Rovaniemi         138         102.112083         138         102.112083           Oulu         Seinäjoki         155         105.38394         155         105.38394           Oulu         Seinäjoki         155         108.224489         335         108.224489           Ourense         Salamanca         223         95.8583916         223         95.8583916           Ourense         Salamanca         223         95.8583916         223         95.8583916           Ourense         Salamanca         223         95.8583916         223         95.8583916           Ourense         Santiago de Compostela         36         21.217592         38         21.217592           Ourense         Valladolid         208         84.7294702         208         84.7294702 <t< td=""><td>-</td><td></td><td></td><td></td><td>_</td><td></td></t<> | -       |         |     |            | _         |            |
| Osijek         Subotica         X         119.982559         182.802266         119.982559           Oslo         Trondheim         480         316.062191         450         330.141556           Ostrava         Žilina         92         146.738903         192         146.738903           Ostrava         Žilina         92         61.5352954         92         61.5352954           Oulu         Rovaniemi         138         102.112083         138         102.112083           Oulu         Seinäjoki         155         105.38394         155         105.38394           Oulu         Tornio         111         63.0915344         111         63.0915344           Ourense         Porto         335         108.224489         335         108.224489           Ourense         Salamanca         223         95.8583916         223         95.8583916           Ourense         Salatago de Compostela         38         21.217592         38         21.217592           Ourense         Valladolid         208         84.7294702         208         84.7294702           Palermo         Syracuse         279         175.67593         219         136.830535           Pamplona                                                                      | -       |         |     |            |           |            |
| Oslo         Trondheim         480         316.062191         450         330.141556           Ostrava         Prague         192         146.738903         192         146.738903           Ostrava         Žilina         92         61.5352954         92         61.5352954           Oulu         Rovaniemi         138         102.112083         138         102.112083           Oulu         Seinäjoki         155         105.38394         155         105.38394           Oulu         Tornio         111         63.0915344         111         63.0915344           Ourense         Porto         335         108.224489         335         108.224489           Ourense         Salamanca         223         95.8583916         223         95.8583916           Ourense         Santiago de Compostela         38         21.217592         38         21.217592           Ourense         Valladolid         208         84.7294702         208         84.7294702           Palermo         Syracuse         279         175.675593         219         136.830535           Pamplona         Zaragoza         110         72.8130452         60         34.0150516           Paris                                                                           | -       | -       |     |            |           |            |
| OstravaPrague192146.738903192146.738903OstravaŽilina9261.53529549261.5352954OuluRovaniemi138102.112083138102.112083OuluSeinājoki155105.38394155105.38394OuluTornio11163.091534411163.0915344OurensePorto335108.224489335108.224489OurenseSalamanca22395.858391622395.8583916OurenseSantiago de Compostela3821.2175923821.217592OurenseValladolid20884.729470220884.7294702PalermoSyracuse279175.675593219136.830535PamplonaSan Sebastián30676.074037730676.0740377PamplonaZaragoza11072.81304526034.0150516ParisTours6148.85041636148.8504163PárnuRiga6068.4385821PárnuTallinnX138.986494075.7252394PécsSzombathely262165.958818262165.958818PécsZagreb340145.161313340145.161313PéaPristina116107.488912116107.488912PérgignanToulouse12883.284937711276.6483568PerugiaRome13571.982469212076.8668271 </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                           | -       |         |     |            |           |            |
| OstravaŽilna9261.53529549261.5352954OuluRovaniemi138102.112083138102.112083OuluSeinäjoki155105.38394155105.38394OuluTornio11163.091534411163.0915344OurensePorto335108.224489335108.224489OurenseSantiago de Com-<br>postela3821.2175923821.217592OurenseSantiago de Com-<br>postela3821.2175923821.217592OurenseValladolid20884.729470220884.7294702PalermoSyracuse279175.675593219136.830535PamplonaSan Sebastián30676.074037730676.0740377PamplonaZaragoza11072.81304526034.0150516ParisReims4632.58390194632.5839019ParisTours6148.85041636148.8504163PárnuRiga6068.438521PárnuTallinnX138.986494075.7252394PécsSzombathely262165.958818262165.958818PécsZagreb340145.161313340145.161313PejaPristina116107.488912116107.488912PerpignanToulouse12883.284937711276.6483568PerugiaRome13571.982469212076.8668                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -       |         |     |            |           |            |
| OuluRovaniemi138102.112083138102.112083OuluSeinäjoki155105.38394155105.38394OuluTornio11163.091534411163.0915344OurensePorto335108.224489335108.224489OurenseSalamanca22395.858391622395.8583916OurenseSantiago de Compostela3821.2175923821.217592OurenseValladolid20884.729470220884.7294702PalermoSyracuse279175.675593219136.830535PamplonaSan Sebastián30676.074037730676.0740377PamplonaVitoria-Gasteiz5640.14087765640.1408776ParisReims4632.58390194632.5839019ParisTours6148.85041636148.8504163PárnuRiga6068.438521PárnuTallinnX138.986494075.7252394PécsSzombathely262165.958818262165.958818PécsZagreb340145.161313340145.161313PejaPristina116107.488912116107.488912PerugiaRome12883.284937711276.6483568PerugiaRome210147.62510812076.8668271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | -       | 1   |            |           |            |
| OuluSeinājoki155105.38394155105.38394OuluTornio11163.091534411163.0915344OurensePorto335108.224489335108.224489OurenseSalamanca22395.858391622395.8583916OurenseSantiago de Compostela3821.2175923821.217592OurenseValladolid20884.729470220884.7294702PalermoSyracuse279175.67593219136.830535PamplonaSan Sebastián30676.074037730676.0740377PamplonaVitoria-Gasteiz5640.14087765640.1408776PamplonaZaragoza11072.81304526032.5839019ParisTours6148.85041636148.8504163PárnuRiga-6068.4385821PárnuTallinnX138.986494075.7252394PécsSzombathely262165.958818262165.958818PécsZagreb340145.161313340145.161313PejaPristina116107.488912116107.488912PerugiaRome12883.284937711276.6483568271PescaraRome210147.62510812076.8668271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -       |         |     |            | -         |            |
| OuluTornio11163.091534411163.0915344OurensePorto335108.224489335108.224489OurenseSalamanca22395.858391622395.8583916OurenseSantiago de Compostela3821.2175923821.217592OurenseValladolid20884.729470220884.7294702PalermoSyracuse279175.675593219136.830535PamplonaSan Sebastián30676.074037730676.0740377PamplonaVitoria-Gasteiz5640.14087765640.1408776PamplonaZaragoza11072.81304526034.0150516ParisReims4632.58390194632.5839019ParisTours6148.85041636148.8504163PärnuRiga6068.4385821PärnuTallinnX138.986494075.7252394PécsSzombathely262165.958818262165.958818PécsZagreb340145.161313340145.161313PéjaPristina116107.488912116107.488912PergignanToulouse12883.284937711276.6483568PerugiaRome13571.982469212076.8668271PescaraRome210147.62510812076.8668271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |         |     |            |           |            |
| OurensePorto335108.224489335108.224489OurenseSalamanca22395.858391622395.8583916OurenseSantiago de Compostela3821.2175923821.217592OurenseValladolid20884.729470220884.7294702PalermoSyracuse279175.675593219136.830535PamplonaSan Sebastián30676.074037730676.0740377PamplonaSan Sebastián30676.074037730634.0150516ParisReims4632.58390194632.5839019ParisRours6148.85041636148.8504163PärnuRiga-6068.4385821PärnuTallinnX138.986494075.7252394PécsSzombathely262165.958818262165.958818PécsVaraždin309121.937397309121.937397PécsZagreb340145.161313340145.161313PejaPristina116107.488912116107.488912PerugiaRome12883.284937711276.6483568PerugiaRome210147.62510812076.8668271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | -       |     |            |           |            |
| OurenseSalamanca22395.858391622395.8583916OurenseSantiago de Compostela3821.2175923821.217592OurenseValladolid20884.729470220884.7294702PalermoSyracuse279175.675593219136.830535PamplonaSan Sebastián30676.074037730676.0740377PamplonaVitoria-Gasteiz5640.14087765640.1408776PamplonaZaragoza11072.81304526034.0150516ParisReims4632.58390194632.5839019ParisTours6148.85041636148.8504163PärnuRiga6068.4385821PärnuTallinnX138.986494075.7252394PécsSzombathely262165.958818262165.958818PécsZagreb340145.161313340145.161313PejaPristina116107.488912116107.488912PerugiaRome13571.982469212076.8668271PescaraRome210147.62510812076.8668271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -       |         |     |            |           |            |
| OurenseSantiago de Compostela3821.2175923821.217592OurenseValladolid20884.729470220884.7294702PalermoSyracuse279175.675593219136.830535PamplonaSan Sebastián30676.074037730676.0740377PamplonaVitoria-Gasteiz5640.14087765640.1408776PamplonaZaragoza11072.81304526034.0150516ParisReims4632.58390194632.5839019ParisTours6148.85041636148.8504163PärnuRiga-6068.4385821PärnuTallinnX138.986494075.7252394PécsSzombathely262165.95818262165.958818PécsZagreb340145.161313340145.161313PejaPristina116107.488912116107.488912PerpignanToulouse12883.284937711276.6483568PerugiaRome13571.982469212076.8668271PescaraRome210147.62510812076.8668271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _       |         |     |            |           |            |
| Outensepostela3621.2173923621.217392OurenseValladolid20884.729470220884.7294702PalermoSyracuse279175.675593219136.830535PamplonaSan Sebastián30676.074037730676.0740377PamplonaVitoria-Gasteiz5640.14087765640.1408776PamplonaZaragoza11072.81304526034.0150516ParisReims4632.58390194632.5839019ParisTours6148.85041636148.8504163PärnuRiga6068.4385821PärnuTallinnX138.986494075.7252394PécsSzombathely262165.958818262165.958818PécsZagreb340145.161313340145.161313PejaPristina116107.488912116107.488912PerugiaRome12883.284937711276.6483568PerugiaRome210147.62510812076.8668271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |         |     |            |           |            |
| PalermoSyracuse279175.675593219136.830535PamplonaSan Sebastián30676.074037730676.0740377PamplonaVitoria-Gasteiz5640.14087765640.1408776PamplonaZaragoza11072.81304526034.0150516ParisReims4632.58390194632.5839019ParisTours6148.85041636148.8504163PärnuRiga6068.4385821PärnuTallinnX138.986494075.7252394PécsSzombathely262165.958818262165.958818PécsVaraždin309121.937397309121.937397PécsZagreb340145.161313340145.161313PejaPristina116107.488912116107.488912PerugiaRome12883.284937711276.8668271PescaraRome210147.62510812076.8668271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ourense | postela |     |            |           |            |
| PamplonaSan Sebastián30676.074037730676.0740377PamplonaVitoria-Gasteiz5640.14087765640.1408776PamplonaZaragoza11072.81304526034.0150516ParisReims4632.58390194632.5839019ParisTours6148.85041636148.8504163PärnuRiga6068.4385821PärnuTallinnX138.986494075.7252394PécsSzombathely262165.958818262165.958818PécsVaraždin309121.937397309121.937397PécsZagreb340145.161313340145.161313PejaPristina116107.488912116107.488912PerugiaRome13571.982469212076.8668271PescaraRome210147.62510812076.8668271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |         | 1   |            |           |            |
| PamplonaVitoria-Gasteiz5640.14087765640.1408776PamplonaZaragoza11072.81304526034.0150516ParisReims4632.58390194632.5839019ParisTours6148.85041636148.8504163PärnuRiga6068.4385821PärnuTallinnX138.986494075.7252394PécsSzombathely262165.958818262165.958818PécsVaraždin309121.937397309121.937397PécsZagreb340145.161313340145.161313PejaPristina116107.488912116107.488912PerugiaRome13571.982469212076.8668271PescaraRome210147.62510812076.8668271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | -       |     |            |           |            |
| PamplonaZaragoza11072.81304526034.0150516ParisReims4632.58390194632.5839019ParisTours6148.85041636148.8504163PärnuRiga6068.4385821PärnuTallinnX138.986494075.7252394PécsSzombathely262165.958818262165.958818PécsVaraždin309121.937397309121.937397PécsZagreb340145.161313340145.161313PejaPristina116107.488912116107.488912PerugiaRome13571.982469212076.8668271PescaraRome210147.62510812076.8668271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •       |         | 1   |            |           |            |
| ParisReims4632.58390194632.5839019ParisTours6148.85041636148.8504163PärnuRiga6068.4385821PärnuTallinnX138.986494075.7252394PécsSzombathely262165.958818262165.958818PécsVaraždin309121.937397309121.937397PécsZagreb340145.161313340145.161313PejaPristina116107.488912116107.488912PerugiaRome13571.982469212076.8668271PescaraRome210147.62510812076.8668271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |         |     |            |           |            |
| ParisTours6148.85041636148.8504163PärnuRiga6068.4385821PärnuTallinnX138.986494075.7252394PécsSzombathely262165.958818262165.958818PécsVaraždin309121.937397309121.937397PécsZagreb340145.161313340145.161313PejaPristina116107.488912116107.488912PerugiaRome13571.982469212076.8668271PescaraRome210147.62510812076.8668271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -       | -       |     |            |           |            |
| PärnuRiga6068.4385821PärnuTallinnX138.986494075.7252394PécsSzombathely262165.958818262165.958818PécsVaraždin309121.937397309121.937397PécsZagreb340145.161313340145.161313PejaPristina116107.488912116107.488912PerpignanToulouse12883.284937711276.6483568PerugiaRome13571.982469212076.8668271PescaraRome210147.62510812076.8668271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |         |     |            |           |            |
| PärnuTallinnX138.986494075.7252394PécsSzombathely262165.958818262165.958818PécsVaraždin309121.937397309121.937397PécsZagreb340145.161313340145.161313PejaPristina116107.488912116107.488912PerpignanToulouse12883.284937711276.6483568PerugiaRome13571.982469212076.8668271PescaraRome210147.62510812076.8668271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |         | 61  | 48.8504163 |           |            |
| PécsSzombathely262165.958818262165.958818PécsVaraždin309121.937397309121.937397PécsZagreb340145.161313340145.161313PejaPristina116107.488912116107.488912PerpignanToulouse12883.284937711276.6483568PerugiaRome13571.982469212076.8668271PescaraRome210147.62510812076.8668271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | -       | -   | -          |           |            |
| PécsVaraždin309121.937397309121.937397PécsZagreb340145.161313340145.161313PejaPristina116107.488912116107.488912PerpignanToulouse12883.284937711276.6483568PerugiaRome13571.982469212076.8668271PescaraRome210147.62510812076.8668271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |         |     |            |           |            |
| PécsZagreb340145.161313340145.161313PejaPristina116107.488912116107.488912PerpignanToulouse12883.284937711276.6483568PerugiaRome13571.982469212076.8668271PescaraRome210147.62510812076.8668271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | -       |     |            |           |            |
| PejaPristina116107.488912116107.488912PerpignanToulouse12883.284937711276.6483568PerugiaRome13571.982469212076.8668271PescaraRome210147.62510812076.8668271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |         |     |            |           |            |
| PerpignanToulouse12883.284937711276.6483568PerugiaRome13571.982469212076.8668271PescaraRome210147.62510812076.8668271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | -       |     |            |           |            |
| PerugiaRome13571.982469212076.8668271PescaraRome210147.62510812076.8668271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -       |         |     |            |           |            |
| Pescara         Rome         210         147.625108         120         76.8668271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |         | 1   |            |           |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -       |         |     |            |           |            |
| Plovdiv Sofia 152 112.993023 80 44.8126035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |         |     |            |           |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Plovdiv | Sofia   | 152 | 112.993023 | 80        | 44.8126035 |

|                             |                  | !   |            | 1          |            |
|-----------------------------|------------------|-----|------------|------------|------------|
| Plovdiv                     | Stara Zagora     | 130 | 66.2954185 | 95         | 56.5466456 |
| Plzeň                       | České Budějovice | 110 | 84.3623783 | 110        | 84.3623783 |
| Plzeň                       | Prague           | 83  | 55.4685122 | 51         | 19.7037508 |
| Plzeň                       | Regensburg       | 150 | 113.506806 | 114        | 79.5722833 |
| Porto                       | Vigo             | 142 | 85.8912818 | 142        | 85.8912818 |
| Poznań                      | Łódź             | 181 | 111.072556 | 65         | 51.9195627 |
| Poznań                      | Szczecin         | 157 | 97.9785653 | 120        | 86.8271101 |
| Poznań                      | Warsaw           | 153 | 120.566855 | 153        | 120.566855 |
| Poznań                      | Wrocław          | 107 | 66.3431983 | 80         | 61.4398029 |
| Prague                      | České Budějovice | 98  | 74.4798537 | 80         | 45.4884841 |
| Prešov                      | Rzeszów          | х   | 199.453147 | 274.78575  | 199.453147 |
| Prešov                      | Žilina           | 186 | 146.505582 | 150.56168  | 113.865582 |
| Pristina                    | Skopje           | 160 | 91.0417473 | 160        | 91.0417473 |
| Regensburg                  | Salzburg         | 187 | 104.914083 | 187        | 104.914083 |
| Regensburg                  | Ulm              | 174 | 97.4272691 | 174        | 97.4272691 |
| Reims                       | Strasbourg       | 77  | 59.9537748 | 77         | 59.9537748 |
| Riga                        | Tartu            | 470 | 140.023317 | 470        | 140.023317 |
| Riga                        | Vilnius          | -   | -          | 114        | 77.8705214 |
| Rijeka                      | Split            | 473 | 321.718593 | 374.720983 | 265.628593 |
| Rijeka                      | Zagreb           | 272 | 185.336609 | 90         | 32.8120246 |
| Rostock                     | Szczecin         | 235 | 115.298771 | 235        | 115.298771 |
| Rotterdam                   | The Hague        | 18  | 11.3013536 | 18         | 11.3013536 |
| Rotterdam                   | Utrecht          | 37  | 27.0755198 | 37         | 27.0755198 |
| Rovaniemi                   | Tornio           | х   | 60.052629  | 82.6490223 | 60.052629  |
| Ruse                        | Shumen           | 200 | 126.718038 | 200        | 126.718038 |
| Ruse                        | Sofia            | 366 | 273.102027 | 366        | 273.102027 |
| Ruse                        | Varna            | 220 | 176.757189 | 220        | 176.757189 |
| Ruse                        | Veliko Tarnovo   | 155 | 111.197477 | 155        | 111.197477 |
| Saarbrücken                 | Strasbourg       | 106 | 54.9394005 | 106        | 54.9394005 |
| Salamanca                   | Valladolid       | 64  | 45.3428565 | 64         | 45.3428565 |
| Salzburg                    | Villach          | 152 | 111.438774 | 152        | 111.438774 |
| San Sebastián               | Vitoria-Gasteiz  | 112 | 69.6621603 | 55         | 30.8124988 |
| Santander                   | Valladolid       | 179 | 133.576396 | 119        | 71.8051742 |
| Santiago de Com-<br>postela | Vigo             | 54  | 33.865526  | 54         | 33.865526  |
| Satu Mare                   | Suceava          | 673 | 372.404542 | 673        | 372.404542 |
| Seinäjoki                   | Tampere          | 63  | 50.8668766 | 63         | 50.8668766 |
| Shumen                      | Stara Zagora     | 284 | 158.714594 | 284        | 158.714594 |
| Shumen                      | Varna            | 99  | 78.9443329 | 99         | 78.9443329 |
| Shumen                      | Veliko Tarnovo   | 131 | 99.331967  | 131        | 99.331967  |
| Skopje                      | Sofia            | -   | -          | 145        | 100.023958 |
| Skopje                      | Veles            | 52  | 33.7549832 | 52         | 33.7549832 |
| Sofia                       | Thessaloniki     | x   | 250.987735 | 413.733418 | 250.987735 |
| Sofia                       | Veliko Tarnovo   | 300 | 190.357035 | 300        | 190.357035 |
| Split                       | Zagreb           | 406 | 289.379127 | 355.766047 | 250.129127 |
| Stara Zagora                | Varna            | 221 | 162.303549 | 186        | 127.733168 |
| Stara Zagora                | Veliko Tarnovo   | 178 | 111.990677 | 178        | 111.990677 |
| Stockholm                   | Östersund        | 301 | 204.65715  | 301        | 204.65715  |
| Stockholm                   | Sundsvall        | 212 | 144.688997 | 212        | 144.688997 |
|                             |                  | 1   |            | i          |            |

| Stockholm    | Västerås  | 56  | 34.5445296 | 56         | 34.5445296 |
|--------------|-----------|-----|------------|------------|------------|
| Stuttgart    | Ulm       | 42  | 31.0076844 | 27         | 20.270061  |
| Stuttgart    | Zurich    | -   | -          | 171        | 113.048871 |
| Subotica     | Szeged    | 82  | 24.3801867 | 82         | 24.3801867 |
| Subotica     | Timișoara | x   | 137.937448 | 209.587144 | 137.937448 |
| Sundsvall    | Östersund | 136 | 97.8467207 | 136        | 97.8467207 |
| Sundsvall    | Umeå      | 156 | 107.814445 | 156        | 107.814445 |
| Szeged       | Szolnok   | 115 | 76.3420566 | 115        | 76.3420566 |
| Szombathely  | Varaždin  | 258 | 107.773988 | 258        | 107.773988 |
| Szombathely  | Vienna    | 190 | 71.452708  | 190        | 71.452708  |
| Szombathely  | Zagreb    | 289 | 140.668338 | 289        | 140.668338 |
| Tallinn      | Tartu     | 137 | 99.1540469 | 50.1218031 | 78.17      |
| Tampere      | Turku     | 100 | 71.5592089 | 100        | 71.5592089 |
| The Hague    | Utrecht   | 38  | 29.6797231 | 38         | 29.6797231 |
| Thessaloniki | Veles     | x   | 118.763217 | 158.270726 | 103.803217 |
| Trieste      | Venice    | 113 | 65.6078088 | 103        | 66.5700288 |
| Trieste      | Villach   | 193 | 85.652677  | 193        | 85.652677  |
| Trondheim    | Östersund | 224 | 152.639784 | 224        | 152.639784 |
| Utrecht      | Zwolle    | 50  | 40.4895962 | 50         | 40.4895962 |
| Vaduz/Schaan | Zurich    | 101 | 56.7258991 | 101        | 56.7258991 |
| Valencia     | Zaragoza  | 247 | 133.43573  | 247        | 133.43573  |
| Varaždin     | Zagreb    | 155 | 84.0858748 | 155        | 84.0858748 |
| Västerås     | Östersund | 364 | 211.914772 | 364        | 211.914772 |
| Venice       | Verona    | 60  | 39.1992239 | 55         | 37.4967159 |
| Venice       | Villach   | 184 | 99.0353939 | 184        | 99.0353939 |
| Vilnius      | Šiauliai  | 138 | 109.2692   | 98         | 72.2555768 |
| Warsaw       | Łódź      | 72  | 61.2772925 | 45         | 39.2259091 |
| Wrocław      | Łódź      | 184 | 133.048867 | 60         | 48.7461493 |

# E – Edge Betweenness Centrality

Table 13: Current and future edge betweenness centrality values.

| city 1 / start<br>A Coruña<br>Aalborg<br>Aarhus<br>Aarhus<br>Aarhus<br>Aberdeen<br>Aberdeen<br>Aberdeen<br>Ajaccio<br>Ajaccio | city 2 / end<br>Santiago de Compostela<br>Aarhus<br>Esbjerg<br>Odense<br>Padborg<br>Edinburgh<br>Inverness<br>Porth | current [%]           0.52551613           0.52551613           0.00357494           0.08579855           0.95808383           0.51836625 | travel times)<br><b>future [%]</b><br>0.56841541<br>0.56841541<br>0.00357494<br>0.12512289<br>1.00455805 |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Aalborg<br>Aarhus<br>Aarhus<br>Aarhus<br>Aberdeen<br>Aberdeen<br>Aberdeen<br>Ajaccio                                          | Aarhus<br>Esbjerg<br>Odense<br>Padborg<br>Edinburgh<br>Inverness                                                    | 0.52551613<br>0.00357494<br>0.08579855<br>0.95808383                                                                                      | 0.56841541<br>0.00357494<br>0.12512289                                                                   |
| Aarhus<br>Aarhus<br>Aarhus<br>Aberdeen<br>Aberdeen<br>Ajaccio                                                                 | Esbjerg<br>Odense<br>Padborg<br>Edinburgh<br>Inverness                                                              | 0.00357494<br>0.08579855<br>0.95808383                                                                                                    | 0.00357494<br>0.12512289                                                                                 |
| Aarhus<br>Aarhus<br>Aberdeen<br>Aberdeen<br>Ajaccio                                                                           | Odense<br>Padborg<br>Edinburgh<br>Inverness                                                                         | 0.08579855<br>0.95808383                                                                                                                  | 0.12512289                                                                                               |
| Aarhus<br>Aberdeen<br>Aberdeen<br>Aberdeen<br>Ajaccio                                                                         | Padborg<br>Edinburgh<br>Inverness                                                                                   | 0.95808383                                                                                                                                |                                                                                                          |
| Aberdeen<br>Aberdeen<br>Aberdeen<br>Ajaccio                                                                                   | Edinburgh<br>Inverness                                                                                              |                                                                                                                                           | 1.00455805                                                                                               |
| Aberdeen<br>Aberdeen<br>Ajaccio                                                                                               | Inverness                                                                                                           | 0.51836625                                                                                                                                |                                                                                                          |
| Aberdeen<br>Ajaccio                                                                                                           |                                                                                                                     |                                                                                                                                           | 0.56126553                                                                                               |
| Ajaccio                                                                                                                       | Dorth                                                                                                               | 0.00357494                                                                                                                                | 0.00357494                                                                                               |
| -                                                                                                                             | Perth                                                                                                               | 0.00357494                                                                                                                                | 0.00357494                                                                                               |
| Ajaccio                                                                                                                       | Bastia                                                                                                              | 0.00178747                                                                                                                                | 0.00178747                                                                                               |
|                                                                                                                               | Calvi                                                                                                               | 0.00178747                                                                                                                                | 0.00178747                                                                                               |
| Alexandroupolis                                                                                                               | Çorlu                                                                                                               | -                                                                                                                                         | 0.00893735                                                                                               |
| Alexandroupolis                                                                                                               | Edirne                                                                                                              | -                                                                                                                                         | 0.57020288                                                                                               |
| Alexandroupolis                                                                                                               | Thessaloniki                                                                                                        | 0.00536241                                                                                                                                | 0.03217446                                                                                               |
| Algeciras                                                                                                                     | Antequera                                                                                                           | 0.52551613                                                                                                                                | 0.56841541                                                                                               |
| Alicante                                                                                                                      | Almería                                                                                                             | -                                                                                                                                         | 0                                                                                                        |
| Alicante                                                                                                                      | Cartagena                                                                                                           | 0                                                                                                                                         | 0                                                                                                        |
| Alicante                                                                                                                      | Córdoba                                                                                                             | 0                                                                                                                                         | 0                                                                                                        |
| Alicante                                                                                                                      | Madrid                                                                                                              | 0.29314505                                                                                                                                | 0.04468675                                                                                               |
| Alicante                                                                                                                      | Murcia                                                                                                              | 0.00714988                                                                                                                                | 1.48896237                                                                                               |
| Alicante                                                                                                                      | Valencia                                                                                                            | 0.23237108                                                                                                                                | 1.97694164                                                                                               |
| Almería                                                                                                                       | Granada                                                                                                             | 0.52551613                                                                                                                                | 0.05183663                                                                                               |
| Almería                                                                                                                       | Murcia                                                                                                              | -                                                                                                                                         | 0.59522746                                                                                               |
| Alvesta                                                                                                                       | Gothenburg                                                                                                          | 0.02144964                                                                                                                                | 0.02144964                                                                                               |
| Alvesta                                                                                                                       | Hallsberg                                                                                                           | 0.49334167                                                                                                                                | 0.51836625                                                                                               |
| Alvesta                                                                                                                       | Kalmar                                                                                                              | 0.52551613                                                                                                                                | 0.56841541                                                                                               |
| Alvesta                                                                                                                       | Linköping                                                                                                           | 5.9201001                                                                                                                                 | 11.4040576                                                                                               |
| Alvesta                                                                                                                       | Malmö                                                                                                               | 7.34650103                                                                                                                                | 12.8697828                                                                                               |
| Amsterdam                                                                                                                     | Rotterdam                                                                                                           | 0.22164626                                                                                                                                | 0.21628385                                                                                               |
| Amsterdam                                                                                                                     | The Hague                                                                                                           | 0.00178747                                                                                                                                | 0.00178747                                                                                               |
| Amsterdam                                                                                                                     | Utrecht                                                                                                             | 0.29850746                                                                                                                                | 0.26990795                                                                                               |
| Amsterdam                                                                                                                     | Zwolle                                                                                                              | 0.00357494                                                                                                                                | 0.08043614                                                                                               |
| Ancona                                                                                                                        | Bologna                                                                                                             | 3.01367414                                                                                                                                | 1.0903566                                                                                                |
| Ancona                                                                                                                        | Perugia                                                                                                             | 0.01072482                                                                                                                                | 0.00357494                                                                                               |
| Ancona                                                                                                                        | Pescara                                                                                                             | 2.52926982                                                                                                                                | 0.56662794                                                                                               |
| Ancona                                                                                                                        | Rome                                                                                                                | 0.01251229                                                                                                                                | 0.00178747                                                                                               |
| Antequera                                                                                                                     | Cádiz                                                                                                               | 0                                                                                                                                         | 0                                                                                                        |
| Antequera                                                                                                                     | Córdoba                                                                                                             | 2.59183126                                                                                                                                | 2.24327464                                                                                               |
| Antequera                                                                                                                     | Granada                                                                                                             | 1.04745732                                                                                                                                | 0.60237733                                                                                               |
| Antequera                                                                                                                     | Málaga                                                                                                              | 0.52551613                                                                                                                                | 0.56841541                                                                                               |
| Antequera                                                                                                                     | Seville                                                                                                             | 0                                                                                                                                         | 0                                                                                                        |
| Antwerp                                                                                                                       | Brussels                                                                                                            | 1.79372598                                                                                                                                | 1.79461972                                                                                               |
| Antwerp                                                                                                                       | Eindhoven                                                                                                           | 0.17695951                                                                                                                                | 0                                                                                                        |
| Antwerp                                                                                                                       | Ghent                                                                                                               | 0.03217446                                                                                                                                | 0.03217446                                                                                               |

| A               |                | 0 22000445              | 0 0705040  |
|-----------------|----------------|-------------------------|------------|
| Antwerp         | Liège          | 0.32889445              | 0.3735812  |
| Antwerp         | Rotterdam      | 1.70256502              | 1.92153007 |
| Arad<br>Arad    | Deva<br>Oradea | 8.67995353              | 2.92608812 |
|                 | •••••          | 0.06971132              | 0.03217446 |
| Arad            | Szeged         | 0.25024578              | 0          |
| Arad            | Szolnok        | 9.25909375              | 4.75109483 |
| Arad<br>Arnhem  | Timișoara      | 0.49512914<br>1.8634373 | 1.56761105 |
|                 | Duisburg       | 1                       | 1.86433104 |
| Arnhem          | Eindhoven      | 0.00178747              | 0.00178747 |
| Arnhem          | Münster        | 0                       | 0          |
| Arnhem          | Utrecht        | 1.28429708              | 1.38528912 |
| Arnhem          | Zwolle         | 0.42184288              | 0.2842077  |
| Arth-Goldau     | Basel          | 0                       | 0          |
| Arth-Goldau     | Bern           | 0                       | 0          |
| Arth-Goldau     | Lugano         | 3.02082402              | 0.71856287 |
| Arth-Goldau     | Vaduz/Schaan   | 0                       | 0          |
| Arth-Goldau     | Zurich         | 3.42121727              | 1.15113057 |
| Athens          | Larissa        | 0.00536241              | 1.13325588 |
| Athens          | Patras         | -                       | 0.56841541 |
| Avignon         | Dijon          | 0                       | 0          |
| Avignon         | Grenoble       | 0.0768612               | 0          |
| Avignon         | Lyon           | 14.9378854              | 13.3774243 |
| Avignon         | Marseille      | 0.9419966               | 0.7703995  |
| Avignon         | Montpellier    | 14.1621235              | 12.5176513 |
| Bacău           | Brașov         | 0.01429976              | 0.01429976 |
| Bacău           | Bucharest      | 0.15193494              | 0.32710698 |
| Bacău           | Constanța      | 0.01072482              | 0.01072482 |
| Bacău           | Galați         | 0.00536241              | 0.00357494 |
| Bacău           | lași           | 0.12154795              | 0.2430959  |
| Bacău           | Suceava        | 0.51479131              | 0.54160336 |
| Badajoz         | Entroncamento  | 1.56046117              | 0          |
| Badajoz         | Lisbon         | -                       | 1.92153007 |
| Badajoz         | Madrid         | 1.97157923              | 2.43274645 |
| Badajoz         | Seville        | 0.08579855              | 0.02144964 |
| Bălți           | Ungheni        | 0.52551613              | 0.56841541 |
| Banja Luka      | Novi Sad       | -                       | 0.09652337 |
| Banja Luka      | Osijek         | -                       | 0.00357494 |
| Banja Luka      | Sarajevo       | -                       | 0.27169542 |
| Banja Luka      | Zagreb         | -                       | 0.73286263 |
| Banská Bystrica | Budapest       | 0.06971132              | 0.07864867 |
| Banská Bystrica | Győr           | 0                       | 0          |
| Banská Bystrica | Miskolc        | 0                       | 0          |
| Banská Bystrica | Žilina         | 0.45580481              | 0.48976674 |
| Bar             | Podgorica      | 0.52551613              | 0.56841541 |
| Barcelona       | Girona         | 13.0485298              | 11.2467602 |
| Barcelona       | Valencia       | 0.68817589              | 2.47207078 |
| Barcelona       | Zaragoza       | 11.9635356              | 8.33497185 |
| Bari            | Foggia         | 1.54258647              | 1.68379659 |
| Bari            | Lecce          | 0.51479131              | 0.56484047 |
|                 |                |                         |            |

| Bari               | Taranto         | 0.5273036  | 0.55769059 |
|--------------------|-----------------|------------|------------|
| Basel              | Bern            | 0.82044865 | 0.94557154 |
| Basel              | Dijon           | 0.93842166 | 5.95763696 |
| Basel              | Freiburg        | 3.48556618 | 7.02475646 |
| Basel              | Lausanne        | 0          | 0          |
| Basel              | Strasbourg      | 0.80257396 | 0.45937975 |
| Basel              | Zurich          | 3.86272232 | 1.66413442 |
| Bastia             | Calvi           | 0.00178747 | 0.00178747 |
|                    | Bordeaux        | 4.38287604 | 7.79336849 |
| Bayonne            | San Sebastián   | 4.01465725 | 7.40370006 |
| Bayonne            | Toulouse        | 0.02859952 | 0.05004916 |
| Bayonne<br>Belfast |                 | 0.02859952 | 0.03004910 |
| Belfast            | Derry<br>Dublin |            |            |
|                    |                 | 0.02144964 | 0.02144964 |
| Belgrade           | Niš<br>Navi Ord | 0.52551613 | 10.5728841 |
| Belgrade           | Novi Sad        | 2.08061489 | 12.5301636 |
| Belgrade           | Osijek          | -          | 0.06256144 |
| Belgrade           | Podgorica       | 1.04745732 | 1.13325588 |
| Belgrade           | Sarajevo        | -          | 0.85441058 |
| Belgrade           | Timișoara       | -          | 0.25382072 |
| Bergen             | Drammen         | 0.52551613 | 0.00536241 |
| Bergen             | Oslo            | -          | 0.563053   |
| Berlin             | Dresden         | 0.89641612 | 6.28831888 |
| Berlin             | Erfurt          | 5.21047457 | 6.38573599 |
| Berlin             | Hamburg         | 2.27187416 | 7.76834391 |
| Berlin             | Hanover         | 2.30762356 | 1.10108142 |
| Berlin             | Leipzig         | 0.10367325 | 0.12691036 |
| Berlin             | Lübeck          | 0          | 0          |
| Berlin             | Poznań          | 7.56278488 | 8.25632317 |
| Berlin             | Rostock         | 0.22700867 | 0.25828939 |
| Berlin             | Szczecin        | 0.92680311 | 1.03315757 |
| Bern               | Brig            | 0.43793011 | 0.36643132 |
| Bern               | Lausanne        | 0.74358745 | 0.70426312 |
| Bern               | Zurich          | 0.6041648  | 0.414693   |
| Białystok          | Olsztyn         | 0.02323711 | 0          |
| Białystok          | Suwałki         | 6.07024756 | 7.11055501 |
| Białystok          | Warsaw          | 6.52962731 | 7.6324962  |
| Bielefeld          | Bremen          | 0          | 0          |
| Bielefeld          | Dortmund        | 2.29421754 | 4.10403074 |
| Bielefeld          | Hanover         | 2.46313343 | 4.53570471 |
| Bielefeld          | Münster         | 0.18321566 | 0.18857807 |
| Bilbao             | Burgos          | 0.0536241  | 0          |
| Bilbao             | San Sebastián   | 0.75788721 | 0.50227902 |
| Bilbao             | Santander       | 0.36106891 | 0.00178747 |
| Bilbao             | Vitoria-Gasteiz | 0.00357494 | 0.06434891 |
| Bilbao             | Zaragoza        | 0.06792385 | 0          |
| Birmingham         | Bristol         | 0.12869783 | 0.12869783 |
| Birmingham         | Carlisle        | 0.28688891 | 0.06256144 |
| Birmingham         | Leicester       | 0.01072482 | 0.00893735 |
| Birmingham         | Liverpool       | 0.00893735 | 0.00893735 |
|                    |                 |            |            |

| Birmingham | London           | 0.72839396 | 1.05818214      |
|------------|------------------|------------|-----------------|
| Birmingham | Manchester       | 0.00893735 | 0.00893735      |
| Birmingham | Nottingham       | 0.00893735 | 0.00893735      |
| Birmingham | Sheffield        | 0.07149879 | 0.5809277       |
| Birmingham | Southampton      | 0          | 0               |
| Bitola     | Veles            | 0.00714988 | 0<br>0.56841541 |
| Boden      | Kiruna           | 1.04745732 | 1.13325588      |
| Boden      | Luleå            | 0.52551613 | 7.11055501      |
| Boden      | Tornio           | -          | 5.52328179      |
| Boden      | Umeå             | 2.08061489 | 0               |
| Bodø       | Trondheim        | 0.52551613 | 0.56841541      |
| Bologna    | Florence         | 4.97095362 | 7.40370006      |
| Bologna    | Genoa            | 0          | 0               |
| Bologna    | Milan            | 5.09786397 | 3.16203414      |
| Bologna    | Venice           | 0.42541782 | 0.51657878      |
| Bologna    | Verona           | 2.88676379 | 5.31236035      |
| Bolzano    | Innsbruck        | 3.99678255 | 11.9680043      |
| Bolzano    | Verona           | 3.84306015 | 11.867906       |
| Bordeaux   | La Rochelle      | 0.0768612  | 0.0768612       |
| Bordeaux   | Limoges          | 0.02144964 | 0.08222361      |
| Bordeaux   | Toulouse         | 0.40396818 | 0.50585396      |
| Bordeaux   | Tours            | 5.05317723 | 8.54768076      |
| Bourges    | Clermont-Ferrand | 0.02144964 | 0.03038699      |
| Bourges    | Dijon            | 0.03932434 | 0.0357494       |
| Bourges    | Limoges          | 0.4325677  | 0.47010457      |
| Bourges    | Lyon             | 0.1715971  | 0.13227277      |
| Bourges    | Paris            | 0.70783806 | 0.77933685      |
| Bourges    | Tours            | 0.0536241  | 0.11439807      |
| Braga      | Ourense          | 0          | 0               |
| Braga      | Porto            | 0.01251229 | 0.32174457      |
| Braga      | Vigo             | 0.51300384 | 0.86156046      |
| Braşov     | Bucharest        | 1.0134954  | 1.56582358      |
| Brașov     | Cluj-Napoca      | 0.02502458 | 0.12869783      |
| Brașov     | Deva             | 1.93404236 | 2.40057199      |
| Braşov     | Galați           | 0.48440433 | 0.49512914      |
| Bratislava | Brno             | 0.0178747  | 0.06971132      |
| Bratislava | Győr             | 1.98766646 | 0.17517204      |
| Bratislava | Vienna           | 1.64089731 | 1.26910358      |
| Bratislava | Žilina           | 3.22817052 | 0.9598713       |
| Bregenz    | Feldkirch        | 0.65600143 | 0.62025203      |
| Bregenz    | Munich           | 1.19402985 | 0.97863974      |
| Bregenz    | Ulm              | 0.37536867 | 0.49959782      |
| Bregenz    | Zurich           | 1.46036286 | 0.9187595       |
| Bremen     | Groningen        | -          | 0.49155421      |
| Bremen     | Hamburg          | 4.17552954 | 0.37536867      |
| Bremen     | Hanover          | 0.27348288 | 0.66315131      |
| Bremen     | Münster          | 4.19519171 | 0.14657253      |
| Bremen     | Zwolle           | 0.11797301 | 0               |
| Brest      | Rennes           | 0.52551613 | 0.56841541      |
|            |                  | 1          |                 |

| Brig               | Lausanne            | 0.20198409               | 0.19662168               |
|--------------------|---------------------|--------------------------|--------------------------|
| Brig               | Milan               | 0.2430959                | 0.38073108               |
| Brig               | Turin               | 0.2430939                | 0.38073108               |
| Bristol            | Exeter              | 1.04388238               | 0<br>1.12968094          |
| Bristol            | London              | 1.94476718               | 2.11636429               |
| Bristol            | Southampton         | 0.00357494               | 0.00357494               |
| Bristol            | Swansea             | 0.52551613               | 0.56841541               |
| Brno               | Hradec Králové      | 0.24667084               | 0.25560819               |
| Brno               | Ostrava             | 0.83742962               | 4.84583073               |
| Brno               | -                   | 0.25828939               | 4.84585075<br>6.87818393 |
|                    | Prague<br>Vienna    | 1.59621056               |                          |
| Brugoo             | Ghent               | 0.52551613               | 9.86147109<br>0.56841541 |
| Bruges             | Lille               | 0.52551015               | 0.50041541               |
| Bruges<br>Brussels | Ghent               |                          | •                        |
| Brussels           |                     | 1.01528287<br>10.1295916 | 1.10108142<br>6.71194924 |
|                    | Liège<br>Lille      | 11.7445706               | 8.22414872               |
| Brussels           |                     |                          | •                        |
| Brussels           | Luxembourg          | 0.0178747                | 0.10009831               |
| Bucharest          | Constanța           | 0.51300384               | 0.55590312               |
| Bucharest          | Craiova             | 0.02502458               | 0.35213156               |
| Bucharest          | Galați              | 0.02681205               | 0.06077397               |
| Bucharest          | Pitești             | 0.03753687               | 0.02681205               |
| Bucharest          | Ruse                | 0.23415855               | 0.73286263               |
| Budapest           | Győr                | 18.3859147               | 24.2738404               |
| Budapest           | Miskolc             | 0.47904192               | 0.60237733               |
| Budapest           | Pécs                | 1.00813299               | 0.53624095               |
| Budapest           | Subotica            | -                        | 13.5204218               |
| Budapest           | Szeged              | 3.21565824               | 0.47725445               |
| Budapest           | Szolnok             | 13.9744392               | 10.0241308               |
| Budapest           | Varaždin            | 0.07507373               | 0.09116096               |
| Budapest           | Zagreb              | 0.15014747               | 0.1126106                |
| Burgas             | Edirne              | 0                        | 0                        |
| Burgas             | Shumen              | 0                        | 0                        |
| Burgas             | Stara Zagora        | 0.01251229               | 0.56484047               |
| Burgas             | Varna               | 0.51300384               | 0.00357494               |
| Burgos             | León                | 0.73643757               | 0.85798552               |
| Burgos             | Santander           | 0                        | 0                        |
| Burgos             | Valladolid          | 1.21011708               | 4.49369917               |
| Burgos             | Vitoria-Gasteiz     | 2.15747609               | 5.81285191               |
| Bydgoszcz          | Gdańsk              | 0.38609348               | 0.38966842               |
| Bydgoszcz          | Kraków              | 0                        | 0                        |
| Bydgoszcz          | Łódź                | 0.00178747               | 0                        |
| Bydgoszcz          | Olsztyn             | 0.00178747               | 0.00178747               |
| Bydgoszcz          | Poznań              | 0.87049781               | 0.92054697               |
| Bydgoszcz          | Warsaw              | 0.03038699               | 0.02859952               |
| Cádiz              | Córdoba             | 0                        | 0                        |
| Cádiz              | Seville             | 0.52551613               | 0.56841541               |
| Caen               | Cherbourg-Octeville | 0.52551613               | 0.56841541               |
| Caen               | Le Havre            | 0.00357494               | 0.00357494               |
| Caen               | Le Mans             | 0.07149879               | 0.14299759               |

| Caen                | Paris               | 0.97238359 | 0.98668335 |
|---------------------|---------------------|------------|------------|
| Cagliari            | Olbia               | 0.00178747 | 0.00178747 |
| Cagliari            | Sassari             | 0.00178747 | 0.00178747 |
| Carlisle            | Edinburgh           | 0.01072482 | 0.02859952 |
| Carlisle            | Glasgow             | 0.05719903 | 0.58986505 |
| Carlisle            | Leeds               | 0          | 0          |
| Carlisle            | Liverpool           | 0.01251229 | 0.01251229 |
| Carlisle            | Manchester          | 0.0178747  | 1.07963178 |
| Carlisle            | Newcastle upon Tyne | 0.25471445 | 0.01072482 |
| Carlisle            | Perth               | 0          | 0          |
| Cartagena           | Murcia              | 0.52551613 | 0.56841541 |
| Cherbourg-Octeville | Rennes              | 0          | 0          |
| Chișinău            | Ungheni             | 0.52551613 | 0.56841541 |
| Clermont-Ferrand    | Dijon               | 0          | 0          |
| Clermont-Ferrand    | Limoges             | 0.00178747 | 0.00178747 |
| Clermont-Ferrand    | Lyon                | 0.50227902 | 0.53624095 |
| Clermont-Ferrand    | Reims               | 0          | 0          |
| Cluj-Napoca         | Deva                | 0.0357494  | 0.06613638 |
| Cluj-Napoca         | Oradea              | 3.34256859 | 3.53919028 |
| Cluj-Napoca         | Pitești             | 0.00178747 | 0          |
| Cluj-Napoca         | Suceava             | 2.90106354 | 2.98328716 |
| Coimbra             | Entroncamento       | 0.08043614 | 0.01608723 |
| Coimbra             | Guarda              | 0.52551613 | 0.60237733 |
| Coimbra             | Lisbon              | -          | 0.27348288 |
| Coimbra             | Porto               | 1.04209491 | 0.3199571  |
| Cologne             | Düsseldorf          | 2.27634284 | 2.31298597 |
| Cologne             | Eindhoven           | 0.20913397 | 0.23058361 |
| Cologne             | Frankfurt           | 5.7690589  | 4.91554205 |
| Cologne             | Liège               | 10.6247207 | 7.28215211 |
| Cologne             | Mannheim            | 1.51488069 | 1.48538743 |
| Cologne             | Wuppertal           | 6.09974082 | 3.73223702 |
| Constanța           | Galati              | 0.00178747 | 0.00178747 |
| Constanța           | lași                | 0          | 0          |
| Copenhagen          | Lübeck              | -          | 16.5841451 |
| Copenhagen          | Malmö               | 10.7355438 | 16.416123  |
| Copenhagen          | Odense              | 11.1824113 | 0.30386987 |
| Córdoba             | Madrid              | 4.00393243 | 3.81982304 |
| Córdoba             | Murcia              | 0          | 0          |
| Córdoba             | Seville             | 1.0903566  | 1.11180624 |
| Córdoba             | Valencia            | 0.01429976 | 0.01072482 |
| Cork                | Dublin              | 0.00714988 | 0.00714988 |
| Cork                | Limerick            | 0.00357494 | 0.00357494 |
| Cork                | Waterford           | 0.00178747 | 0.00178747 |
| Cosenza             | Naples              | 0.5094289  | 0.55769059 |
| Cosenza             | Taranto             | 0.03038699 | 0.01072482 |
| Cosenza             | Villa San Giovanni  | 0.02859952 | 0.01429976 |
| Craiova             | Deva                | 6.27759407 | 0.05541156 |
| Craiova             | Pitești             | 0.4861918  | 0.54160336 |
| Craiova             | Ruse                | 4.37572616 | 0          |
|                     |                     |            |            |

| Craiova    | Sofia               | 0.97417106               | 0.3735812                |
|------------|---------------------|--------------------------|--------------------------|
|            |                     |                          |                          |
| Craiova    | Timișoara           | 0.03038699<br>0.52551613 | 1.17258021               |
| Daugavpils | Riga<br>Šiauliai    | 0.52551615               | 0.01251229<br>0.00357494 |
| Daugavpils | Vilnius             | -                        | 0.00357494               |
| Daugavpils |                     | -                        |                          |
| Debrecen   | Košice              | 0                        | 0                        |
| Debrecen   | Miskolc             | 0.26633301               | 0.21628385               |
| Debrecen   | Oradea              | 0.05719903               | 4.01286978               |
| Debrecen   | Satu Mare           | 0.47546698               | 0.53087854               |
| Debrecen   | Szolnok             | 0.98489588               | 4.89945482               |
| Dijon      | Lausanne            | 0.10546072               | 0.10724819               |
| Dijon      | Lyon                | 9.02672267               | 5.40888373               |
| Dijon      | Paris               | 0.45401734               | 0.55411565               |
| Dijon      | Reims               | 0                        | 0                        |
| Dijon      | Strasbourg          | 8.62990437               | 0.03753687               |
| Divača     | Koper               | 0.52551613               | 0.56841541               |
| Divača     | Ljubljana           | 1.16364286               | 1.00455805               |
| Divača     | Rijeka              | 0.14836                  | 0.41111806               |
| Divača     | Trieste             | 1.22262937               | 1.81964429               |
| Divača     | Villach             | 0                        | 0                        |
| Doncaster  | Kingston upon Hull  | 0.50406649               | 0.54696577               |
| Doncaster  | Leeds               | 0.48976674               | 0.53266601               |
| Doncaster  | Nottingham          | 0                        | 0                        |
| Doncaster  | Peterborough        | 6.1068907                | 5.32487264               |
| Doncaster  | Sheffield           | 0.6041648                | 0.09652337               |
| Doncaster  | York                | 4.24434713               | 3.79479846               |
| Dortmund   | Essen               | 1.16364286               | 1.27446599               |
| Dortmund   | Kassel              | 0.02144964               | 0                        |
| Dortmund   | Münster             | 4.40432568               | 0.36464385               |
| Dortmund   | Wuppertal           | 5.82625793               | 3.45160425               |
| Drammen    | Kristiansand        | 1.04745732               | 1.13325588               |
| Drammen    | Oslo                | 2.08061489               | 1.689159                 |
| Dresden    | Leipzig             | 2.12887658               | 2.75091608               |
| Dresden    | Liberec             | 0.39503083               | 0.41826794               |
| Dresden    | Prague              | 1.42908213               | 7.8398427                |
| Dresden    | Wrocław             | 0.92948431               | 0.83117347               |
| Dublin     | Galway              | 0.00893735               | 0.00893735               |
| Dublin     | Limerick            | 0.00714988               | 0.00714988               |
| Dublin     | Sligo               | 0.01251229               | 0.01251229               |
| Dublin     | Waterford           | 0.00893735               | 0.00893735               |
| Duisburg   | Düsseldorf          | 2.03145947               | 2.06095272               |
| Duisburg   | Eindhoven           | 0.11976048               | 0.13763518               |
| Duisburg   | Essen               | 1.43891322               | 1.52828671               |
| Durrës     | Tirana              | -                        | 0.00178747               |
| Düsseldorf | Eindhoven           | 0.00357494               | 0.00357494               |
| Düsseldorf | Wuppertal           | 0.01966217               | 0.01966217               |
| Edinburgh  | Glasgow             | 0.50406649               | 0.01429976               |
| Edinburgh  | Newcastle upon Tyne | 3.03154884               | 2.73840379               |
| Edinburgh  | Perth               | 1.51219948               | 1.64089731               |
|            | -                   |                          |                          |

| <b>F</b> alima   | Carlu                                   | 4 04745700               | 0 55700050               |
|------------------|-----------------------------------------|--------------------------|--------------------------|
| Edirne<br>Edirne | Çorlu<br>İstanbul                       | 1.04745732               | 0.55769059<br>0.56662794 |
| Edirne           | Plovdiv                                 | -<br>0.00536241          | 0.50002794               |
| Edirne           | Stara Zagora                            | 1.56046117               | 0<br>2.22003754          |
| Eindhoven        |                                         | 0.00357494               | 2.22003734<br>0.00178747 |
| Eindhoven        | Liège<br>Rotterdam                      |                          |                          |
| Findhoven        | Utrecht                                 | 0.00357494<br>0.00714988 | 0.18589686<br>0.00714988 |
|                  | • • • • • • • • • • • • • • • • • • • • |                          |                          |
| Entroncamento    | Lisbon                                  | 1.04745732<br>5.73956564 | 0.55232818<br>9.81142193 |
| Erfurt<br>Erfurt | Frankfurt                               | 0.00536241               |                          |
|                  | Hanover                                 |                          | 0.00714988               |
| Erfurt<br>Erfurt | Kassel                                  | 0.02681205               | 0.02323711               |
|                  | Leipzig                                 | 2.49352042               | 2.90642595               |
| Erfurt           | Nuremberg                               | 2.21825007               | 4.07275002               |
| Erfurt           | Plzeň                                   | 0                        | 0                        |
| Esbjerg          | Odense                                  | 0.04289928               | 0.06256144               |
| Esbjerg          | Padborg                                 | 0.47904192               | 0.50227902               |
|                  | Penzance                                | 0.52551613               | 0.56841541               |
| Exeter<br>-      | Southampton                             | 0.00357494               | 0.00357494               |
| Faro             | Lisbon                                  | 0.52551613               | 0.56841541               |
| Feldkirch        | Innsbruck                               | 0.3557065                | 0.4325677                |
| Feldkirch        | Vaduz/Schaan                            | 0.30744481               | 0.38073108               |
| Florence         | Perugia                                 | 0.50227902               | 0.5451783                |
| Florence         | Pisa                                    | 0.55232818               | 0.38251854               |
| Florence         | Rome                                    | 3.51595317               | 5.9969613                |
| Foggia           | Naples                                  | 0.03038699               | 2.24863705               |
| Foggia           | Pescara                                 | 2.04129055               | 0.0357494                |
| Frankfurt        | Kassel                                  | 4.94414157               | 6.97917598               |
| Frankfurt        | Mannheim                                | 9.92582                  | 11.9108053               |
| Frankfurt        | Nuremberg                               | 4.98972205               | 0                        |
| Freiburg         | Karlsruhe                               | 3.6267763                | 7.24104031               |
| Freiburg         | Strasbourg                              | 0.09831084               | 0.10903566               |
| Galați           | lași                                    | 0.00714988               | 0.00714988               |
| Galway           | Limerick                                | 0.00357494               | 0.00357494               |
| Gdańsk           | Koszalin                                | 0.03932434               | 0.0357494                |
| Gdańsk           | Olsztyn                                 | 0.00357494               | 0.00357494               |
| Gdańsk           | Warsaw                                  | 0.16802216               | 0.20377156               |
| Geneva           | Grenoble                                | 0.11618554               | 0.00714988               |
| Geneva           | Lausanne                                | 0.68638842               | 0.60058987               |
| Geneva           | Lyon                                    | 0.40933059               | 0.3968183                |
| Geneva           | Turin                                   | 0                        | 0                        |
| Genoa            | Milan                                   | 0.47725445               | 0.73107516               |
| Genoa            | Nice                                    | 0.25203325               | 0.36285638               |
| Genoa            | Pisa                                    | 0.03753687               | 0.18589686               |
| Genoa            | Turin                                   | 0.10903566               | 0.37536867               |
| Ghent            | Lille                                   | 0                        | 0                        |
| Gijón            | León                                    | 0.52551613               | 0.56841541               |
| Gijón            | Santander                               | 0                        | 0                        |
| Girona           | Perpignan                               | 13.4417732               | 11.6829029               |
| Glasgow          | Perth                                   | 0.05004916               | 0.05004916               |
|                  |                                         |                          |                          |

| Cothonburg               | Hallsborg             | 0.01966217               | 0.03753687               |
|--------------------------|-----------------------|--------------------------|--------------------------|
| Gothenburg<br>Gothenburg | Hallsberg<br>Malmö    | 2.93860041               | 3.08874788               |
| •                        | Oslo                  | 2.47922066               | 2.60434355               |
| Gothenburg<br>Graz       | Klagenfurt            | 2.47922000               | 2.00434355               |
| Graz                     | Linz                  | -<br>0.52909107          | 0                        |
| Graz                     | Maribor               | 1.49253731               | 0<br>1.87684333          |
|                          |                       | 0.29850746               | 0                        |
| Graz<br>Graz             | Salzburg              | 0.57556529               | 0.12869783               |
| Graz                     | Szombathely<br>Vienna | 0.4861918                | 2.12708911               |
| Graz                     |                       | 0.26812048               | 0.36106891               |
| Grenoble                 | Lyon<br>Turin         | 0.06434891               | 0.20019662               |
| Groningen                | Zwolle                | 0.52551613               | 0.39860577               |
| Gloringen<br>Guarda      | Porto                 | 0.52551015               | 0.59000577               |
| Guarda                   | Salamanca             | 0                        | 0<br>1.13146841          |
|                          |                       | -<br>0.99740817          |                          |
| Győr                     | Szombathely<br>Vienna | 16.5519707               | 0.44329252               |
| Győr                     |                       | 0.01251229               | 24.6921083               |
| Hallsberg                | Linköping<br>Oslo     |                          | 0.01251229               |
| Hallsberg                | Stockholm             | 0.09831084               | 0.18768433<br>0.22879614 |
| Hallsberg                | Västerås              | 0.10367325               |                          |
| Hallsberg                | Hanover               | 0.01251229               | 0.01251229               |
| Hamburg                  |                       | 8.36535883               | 12.3934221               |
| Hamburg                  | Kiel<br>Lübeck        | 0.47189204               | 0.49691661               |
| Hamburg                  |                       | 0.47189204               | 16.8951649               |
| Hamburg                  | Padborg<br>Rostock    | 13.2630262<br>0.29135758 | 2.49173295<br>0.2457771  |
| Hamburg<br>Hanover       | Kassel                | 8.89981232               | 10.2437771               |
| Hanover                  | Rostock               | 0                        | 0                        |
|                          |                       | -                        | •                        |
| Helsinki<br>Helsinki     | Joensuu<br>Kuopio     | 0.00357494<br>0.00178747 | 0.00357494<br>0.00178747 |
| Helsinki                 | Kuopio                | 0.01072482               | 0.563053                 |
| Helsinki                 | Tampere<br>Turku      | 0.00357494               | 0.00357494               |
| Hradec Králové           | Liberec               | 0.11082313               | 0.13942265               |
| Hradec Králové           | Ostrava               | 0.0589865                | 0.02859952               |
| Hradec Králové           | Prague                | 0.31638216               | 0.38073108               |
| Hradec Králové           | Wrocław               | 0.01072482               | 0.03932434               |
| lași                     | Suceava               | 1.95191706               | 2.00196622               |
| lași                     | Ungheni               | 1.56582358               | 1.6945214                |
| Innsbruck                | Munich                | 1.75708285               | 4.97363482               |
| Innsbruck                | Salzburg              | 2.79202788               | 7.43408705               |
| Innsbruck                | Villach               | 0                        | 0                        |
| Inverness                | Perth                 | 1.04388238               | 1.12968094               |
| Inverness                | Thurso                | 0.52551613               | 0.56841541               |
| Istanbul                 | Çorlu                 | 0.52551613               | 0.00178747               |
| Jelgava                  | Liepāja               | 0.52551613               | 0.56841541               |
| Jelgava                  | Riga                  | 2.59183126               | 1.1439807                |
| Jelgava                  | Šiauliai              | 3.60353919               | 0.02502458               |
| Joensuu                  | Kuopio                | 0.00893735               | 0.56126553               |
| Joensuu                  | Oulu                  | 0                        | 0.30120333               |
| Joensuu                  | Tampere               | 0.00357494               | 0.00357494               |
| 0001000                  | i amporo              | 0.00001707               | 5.00001 -0-              |

| Karlsruhe          | Mannheim     | 10.2770578 | 11.5399053 |
|--------------------|--------------|------------|------------|
| Karlsruhe          | Strasbourg   | 14.9655912 | 12.8671016 |
| Karlsruhe          | Stuttgart    | 8.39395835 | 8.7612834  |
| Kassel             | Münster      | 0.13674144 | 0.05809277 |
| Kassel             | Nuremberg    | 4.3587452  | 3.56242738 |
| Katowice           | Kraków       | 0.62561444 | 0.27884529 |
| Katowice           | Łódź         | 0.12869783 | 0.14299759 |
| Katowice           | Lublin       | 0          | 0          |
| Katowice           | Ostrava      | 2.71784789 | 3.34614353 |
| Katowice           | Warsaw       | 2.14675127 | 2.53999464 |
| Katowice           | Wrocław      | 1.28965949 | 0.94914648 |
| Katowice           | Žilina       | 0          | 0          |
| Kaunas             | Riga         | -          | 3.85378497 |
| Kaunas             | Šiauliai     | 4.58486013 | 1.10108142 |
| Kaunas             | Suwałki      | 5.58405577 | 6.58503888 |
| Kaunas             | Vilnius      | 0.5094289  | 1.10108142 |
| Kiel               | Lübeck       | 0.00357494 | 0.06256144 |
| Kiel               | Padborg      | 0.05004916 | 0.00893735 |
| Kingston upon Hull | Leeds        | 0.00536241 | 0.00536241 |
| Kingston upon Hull | York         | 0.01608723 | 0.01608723 |
| Kiruna             | Narvik       | 0.52551613 | 0.56841541 |
| Klagenfurt         | Maribor      | 0.20913397 | 0          |
| Klagenfurt         | Vienna       | 0.40754312 | 0          |
| Klagenfurt         | Villach      | 0.86692287 | 1.75887032 |
| Klaipėda           | Šiauliai     | 0.52551613 | 0.56841541 |
| Kolari             | Tornio       | 0.01608723 | 0.56841541 |
| Košice             | Miskolc      | 0.33068192 | 0.36106891 |
| Košice             | Prešov       | 0.08579855 | 0.16444722 |
| Košice             | Žilina       | 0.5809277  | 0.54696577 |
| Koszalin           | Poznań       | 0.02413084 | 0.02144964 |
| Koszalin           | Szczecin     | 0.46563589 | 0.51479131 |
| Kraków             | Łódź         | 0.00357494 | 0.23594602 |
| Kraków             | Ostrava      | 0.17517204 | 0.5094289  |
| Kraków             | Prešov       | 0          | 0          |
| Kraków             | Rzeszów      | 0.52551613 | 0.53802842 |
| Kraków             | Warsaw       | 0.06434891 | 0.06077397 |
| Kraków             | Žilina       | 0.17517204 | 0.01072482 |
| Kristiansand       | Stavanger    | 0.52551613 | 0.56841541 |
| Kuopio             | Oulu         | 0.01429976 | 1.11895612 |
| Kuopio             | Tampere      | 0.00536241 | 0.00536241 |
| La Rochelle        | Limoges      | 0.00178747 | 0.00178747 |
| La Rochelle        | Nantes       | 0.00536241 | 0.00536241 |
| La Rochelle        | Tours        | 0.44150505 | 0.48440433 |
| Larissa            | Thessaloniki | 0.00714988 | 1.6945214  |
| Le Havre           | Lille        | 0          | 0          |
| Le Havre           | Paris        | 0.52194119 | 0.56484047 |
| Le Mans            | Nantes       | 0.43793011 | 0.47904192 |
| Le Mans            | Paris        | 1.88578068 | 1.90008044 |
| Le Mans            | Rennes       | 1.04030744 | 1.126106   |
|                    |              | 1          |            |

| Le Mans                | Tours                     | 0.15014747               | 0.37715614               |
|------------------------|---------------------------|--------------------------|--------------------------|
| Le mans                | Taranto                   | 0.15014747               | 0.00357494               |
| Leeds                  | Manchester                | 0.01429976               | 0.00337494               |
| Leeds                  | Sheffield                 | 0.01429976               | 0.01008723               |
| Leeds                  | York                      | 0.02323711               | 0.02144964               |
| Leicester              |                           | 0.02323711               | 0.02144904               |
| Leicester              | Liverpool<br>London       | 0.96880865               | 0<br>1.0546072           |
| Leicester              | Manchester                | 0.90880805               | 0                        |
|                        |                           | 0.4861918                | 0.52909107               |
| Leicester<br>Leicester | Nottingham                | 0.00536241               | 0.52909107               |
| Leicester              | Peterborough<br>Sheffield | 0.02681205               | 0.00337494               |
|                        | Wrocław                   | 0.02081205               | 0.02081205               |
| Leipzig<br>León        | Santander                 | 0.00357494               | 0.00357494               |
| León                   | Valladolid                | 0.30744481               | 0.00357494               |
| Liberec                |                           | 0.01966217               | 0.27109542               |
|                        | Prague                    | 0.02323711               | 0.01072482               |
| Liège<br>Lille         | Luxembourg<br>London      | 12.501564                | 13.6169452               |
| Lille                  | Paris                     | 8.59772991               |                          |
| Lille                  | Reims                     |                          | 7.11234248<br>4.39360086 |
| Line                   | Waterford                 | 1.50594334<br>0.00178747 |                          |
|                        |                           |                          | 0.00178747               |
| Limoges                | Toulouse                  | 0.05541156               | 0                        |
| Limoges                | Tours<br>Stockholm        | 0.01251229<br>5.19885602 | 0.01251229<br>10.9232282 |
| Linköping              | Västerås                  | 0.24756457               | 0                        |
| Linköping<br>Linz      | České Budějovice          | 0.57735276               | 0.20913397               |
| Linz                   | Munich                    | 0                        | 0.20913397               |
| Linz                   | Regensburg                | 8.71749039               | 0<br>3.12092233          |
| Linz                   | Salzburg                  | 10.5907588               | 15.4258647               |
| Linz                   | Vienna                    | 18.3519528               | 18.3734024               |
| Linz                   | Porto                     | 10.3319320               | 0.03396193               |
| Liverpool              | London                    | 0.4861918                | 0.52909107               |
| Liverpool              | Manchester                | 0.0178747                | 0.0178747                |
| Liverpool              | Nottingham                | 0                        | 0                        |
| Liverpool              | Swansea                   | 0                        | 0                        |
| Ljubljana              | Maribor                   | 0.60058987               | 0.34319421               |
| Ljubljana              | Rijeka                    | 0.37000626               | 0.15372241               |
| Ljubljana              | Varaždin                  | 0.13227277               | 0.00714988               |
| Ljubljana              | Villach                   | 1.24050407               | 0.85798552               |
| Ljubljana              | Zagreb                    | 0.75788721               | 1.11538118               |
| London                 | Manchester                | 0.48440433               | 1.58191081               |
| London                 | Norwich                   | 0.49512914               | 0.53802842               |
| London                 | Peterborough              | 6.54660828               | 5.80927697               |
| London                 | Southampton               | 0.51836625               | 0.56126553               |
| Lübeck                 | Padborg                   | 0.05004916               | 0.00178747               |
| Lübeck                 | Rostock                   | 0.00357494               | 0.06434891               |
| Lublin                 | Rzeszów                   | 0.00357494               | 0.0357494                |
| Lublin                 | Warsaw                    | 0.52194119               | 0.53266601               |
| Lugano                 | Milan                     | 2.77772813               | 0.71856287               |
| Luleå                  | Umeå                      | -                        | 7.6324962                |
|                        |                           | İ                        |                          |

| Luxembourg          | Metz               | 0.48797927 | 0.51657878 |
|---------------------|--------------------|------------|------------|
| Lyon                | Paris              | 6.16855841 | 4.19072303 |
| Lyon                | Reims              | 0          | 0          |
| Lyon                | Turin              | 4.89766735 | 9.71757977 |
| Madrid              | Murcia             | 1.04030744 | 0.18232192 |
| Madrid              | Ourense            | 4.00929484 | 2.99579945 |
| Madrid              | Pamplona           | 0.04468675 | 0          |
| Madrid              | Salamanca          | 0.13763518 | 0.24488337 |
| Madrid              | Valencia           | 0.04468675 | 0.04468675 |
| Madrid              | Valladolid         | 1.07605684 | 2.76521584 |
| Madrid              | Zaragoza           | 11.3236214 | 7.67182054 |
| Manchester          | Nottingham         | 0.00536241 | 0          |
| Manchester          | Sheffield          | 0.01966217 | 0.03038699 |
| Manchester          | Swansea            | 0          | 0          |
| Mannheim            | Saarbrücken        | 0.29493252 | 0.38788095 |
| Mannheim            | Stuttgart          | 1.23335419 | 2.03682188 |
| Maribor             | Varaždin           | 0.31101975 | 0.45401734 |
| Maribor             | Zagreb             | 0.13227277 | 0.55411565 |
| Marseille           | Nice               | 0.42720529 | 0.20555903 |
| Messina             | Palermo            | 0.52372866 | 0.56662794 |
| Messina             | Syracuse           | 0.52372866 | 0.56662794 |
| Messina             | Villa San Giovanni | 1.56582358 | 1.6945214  |
| Metz                | Reims              | 0.50853517 | 0.43971758 |
| Metz                | Saarbrücken        | 0.17338457 | 0.17695951 |
| Metz                | Strasbourg         | 0.66404504 | 0.74716239 |
| Milan               | Turin              | 5.01385289 | 9.69970507 |
| Milan               | Verona             | 2.39520958 | 7.82107427 |
| Montpellier         | Perpignan          | 13.6759317 | 11.9814103 |
| Montpellier         | Toulouse           | 0.11797301 | 0.13227277 |
| Mostar              | Sarajevo           | 0.00178747 | 0.56841541 |
| Munich              | Nuremberg          | 2.55786934 | 4.40521941 |
| Munich              | Regensburg         | 0.18053445 | 0.30923228 |
| Munich              | Salzburg           | 10.0205559 | 9.91867012 |
| Munich              | Ulm                | 8.53516847 | 9.66931808 |
| Münster             | Zwolle             | 0.12869783 | 0.05719903 |
| Murcia              | Valencia           | 0          | 0          |
| Nantes              | Rennes             | 0.00714988 | 0.00714988 |
| Nantes              | Tours              | 0.08222361 | 0.08401108 |
| Naples              | Rome               | 3.05299848 | 5.4875324  |
| Naples              | Taranto            | -          | 0          |
| Naples              | Villa San Giovanni | 2.05201537 | 2.23791224 |
| Narva               | Tallinn            | 0.00178747 | 0.56841541 |
| Narva               | Tartu              | 0.52372866 | 0          |
| Newcastle upon Tyne | York               | 3.78675485 | 3.29251944 |
| Niš                 | Podgorica          | 0          | 0          |
| Niš                 | Skopje             | -          | 4.5687729  |
| Niš                 | Sofia              | -          | 5.55009384 |
| Norwich             | Peterborough       | 0.03038699 | 0.03038699 |
| Nottingham          | Peterborough       | 0.00357494 | 0.00357494 |
|                     |                    |            |            |

| <b>.</b>   |                        |            | 0 0000 ( 005 |
|------------|------------------------|------------|--------------|
| Nottingham | Sheffield              | 0.02144964 | 0.02681205   |
| Novi Sad   | Osijek                 | -          | 0.00178747   |
| Novi Sad   | Subotica               | 2.59183126 | 12.6481366   |
| Novi Sad   | Zagreb                 | -          | 0.29493252   |
| Nuremberg  | Plzeň                  | 0.24130843 | 0.13942265   |
| Nuremberg  | Regensburg             | 8.94449906 | 3.27643221   |
| Nuremberg  | Stuttgart              | 0.38788095 | 0.32174457   |
| Nuremberg  | Ulm                    | 0.06434891 | 0.00357494   |
| Odense     | Padborg                | 11.497006  | 0.55947806   |
| Olbia      | Sassari                | 0.00178747 | 0.00178747   |
| Olsztyn    | Poznań                 | 0.37536867 | 0.38251854   |
| Olsztyn    | Suwałki                | 0          | 0            |
| Olsztyn    | Warsaw                 | 0.12154795 | 0.18053445   |
| Oradea     | Satu Mare              | 0.03753687 | 0.02681205   |
| Oradea     | Szolnok                | 3.74653678 | 0            |
| Osijek     | Pécs                   | 0.52551613 | 0.01966217   |
| Osijek     | Sarajevo               | -          | 0.00714988   |
| Osijek     | Subotica               | -          | 0.48440433   |
| Oslo       | Trondheim              | 0.02144964 | 0.02144964   |
| Ostrava    | Prague                 | 0.67030119 | 0            |
| Ostrava    | Žilina                 | 2.31656091 | 0.97953347   |
| Oulu       | Rovaniemi              | 0.01608723 | 0.01251229   |
| Oulu       | Seinäjoki              | 0.02859952 | 2.23791224   |
| Oulu       | Tornio                 | 0.02859952 | 3.89132183   |
| Ourense    | Porto                  | 0          | 0            |
| Ourense    | Salamanca              | 0.01429976 | 0.00714988   |
| Ourense    | Santiago de Compostela | 3.53382787 | 2.47028331   |
| Ourense    | Valladolid             | 0          | 0            |
| Palermo    | Syracuse               | 0.00178747 | 0.00178747   |
| Pamplona   | San Sebastián          | 0          | 0            |
| Pamplona   | Vitoria-Gasteiz        | 0.45580481 | 0.59522746   |
| Pamplona   | Zaragoza               | 0.17517204 | 0.34140674   |
| Paris      | Reims                  | 5.24264903 | 8.38055233   |
| Paris      | Tours                  | 5.6180177  | 8.90517473   |
| Pärnu      | Riga                   | -          | 2.25221199   |
| Pärnu      | Tallinn                | -          | 1.6945214    |
| Pécs       | Szombathely            | 0.00714988 | 0.00893735   |
| Pécs       | Varaždin               | 0.00714988 | 0.00536241   |
| Pécs       | Zagreb                 | 0.02502458 | 0.02323711   |
| Peja       | Pristina               | 0.00714988 | 0.56841541   |
| Perpignan  | Toulouse               | 0.15908482 | 0.13763518   |
| Perugia    | Rome                   | 0.01251229 | 0.01966217   |
| Pescara    | Rome                   | 0.00178747 | 0.00178747   |
| Plovdiv    | Sofia                  | 0.49870408 | 4.22379122   |
| Plovdiv    | Stara Zagora           | 0.04289928 | 3.69112521   |
| Plzeň      | České Budějovice       | 0.10724819 | 0.01072482   |
| Plzeň      | Prague                 | 0.19125927 | 0.47546698   |
| Plzeň      | Regensburg             | 0.11439807 | 0.17874698   |
| Porto      | Vigo                   | 1.53364912 | 0            |
|            |                        | 1.00004012 | 0            |

|                        |                  | 1          |            |
|------------------------|------------------|------------|------------|
| Poznań                 | Łódź             | 0.35391903 | 6.58682635 |
| Poznań                 | Szczecin         | 0.0536241  | 0.04289928 |
| Poznań                 | Warsaw           | 5.38922156 | 0          |
| Poznań                 | Wrocław          | 0.60505854 | 0.51657878 |
| Prague                 | České Budějovice | 0.20198409 | 0.37715614 |
| Prešov                 | Rzeszów          | -          | 0.06613638 |
| Prešov                 | Žilina           | 0.43971758 | 0.45937975 |
| Pristina               | Skopje           | 0.01072482 | 1.13325588 |
| Regensburg             | Salzburg         | 0          | 0          |
| Regensburg             | Ulm              | 0          | 0          |
| Reims                  | Strasbourg       | 6.35803021 | 12.4506211 |
| Riga                   | Tartu            | 1.56582358 | 0          |
| Riga                   | Vilnius          | -          | 0.01251229 |
| Rijeka                 | Split            | 0.00178747 | 0.17695951 |
| Rijeka                 | Zagreb           | 0.00536241 | 0.17695951 |
| Rostock                | Szczecin         | 0.00357494 | 0          |
| Rotterdam              | The Hague        | 0.23594602 | 0.22879614 |
| Rotterdam              | Utrecht          | 0.99115202 | 1.03315757 |
| Rovaniemi              | Tornio           | -          | 0.55590312 |
| Ruse                   | Shumen           | 0.5094289  | 0.04289928 |
| Ruse                   | Sofia            | 0.02144964 | 0.04111181 |
| Ruse                   | Varna            | 1.01885781 | 0.03217446 |
| Ruse                   | Veliko Tarnovo   | 2.57038162 | 0.16623469 |
| Saarbrücken            | Strasbourg       | 0.05719903 | 0.00357494 |
| Salamanca              | Valladolid       | 0.3735812  | 1.42282599 |
| Salzburg               | Villach          | 1.85181875 | 1.7838949  |
| San Sebastián          | Vitoria-Gasteiz  | 2.86352668 | 6.4652784  |
| Santander              | Valladolid       | 0.16087229 | 0.563053   |
| Santiago de Compostela | Vigo             | 2.54356958 | 1.40137635 |
| Satu Mare              | Suceava          | 0.01251229 | 0.01072482 |
| Seinäjoki              | Tampere          | 0.03038699 | 1.68737153 |
| Shumen                 | Stara Zagora     | 0.00893735 | 0.01072482 |
| Shumen                 | Varna            | 0.00536241 | 0.00536241 |
| Shumen                 | Veliko Tarnovo   | 0.00536241 | 0.51300384 |
| Skopje                 | Sofia            | -          | 0.38609348 |
| Skopje                 | Veles            | 0.01072482 | 3.3246939  |
| Sofia                  | Thessaloniki     | -          | 0          |
| Sofia                  | Veliko Tarnovo   | 0.00357494 | 1.02600769 |
| Split                  | Zagreb           | 0.52372866 | 0.39145589 |
| Stara Zagora           | Varna            | 0.01072482 | 0.53087854 |
| Stara Zagora           | Veliko Tarnovo   | 2.07167754 | 0.14299759 |
| Stockholm              | Östersund        | 1.51219948 | 1.58727321 |
| Stockholm              | Sundsvall        | 3.06729824 | 8.57985521 |
| Stockholm              | Västerås         | 0.26543927 | 0.55590312 |
| Stuttgart              | Ulm              | 9.00348557 | 10.3190634 |
| Stuttgart              | Zurich           | -          | 0          |
| Subotica               | Szeged           | 3.0994727  | 0.0536241  |
| Subotica               | Timișoara        | -          | 0.00893735 |
| Sundsvall              | Östersund        | 0.03217446 | 0.08579855 |
|                        |                  | 1          |            |

| Sundsvall    | Umeå      | 2.59183126 | 8.15086245 |
|--------------|-----------|------------|------------|
| Szeged       | Szolnok   | 0.13763518 | 0.03753687 |
| Szombathely  | Varaždin  | 0.00357494 | 0.00357494 |
| Szombathely  | Vienna    | 0          | 0          |
| Szombathely  | Zagreb    | 0.00714988 | 0.01251229 |
| Tallinn      | Tartu     | 0.52372866 | 0.56841541 |
| Tampere      | Turku     | 0.01251229 | 0.56484047 |
| The Hague    | Utrecht   | 0.28778264 | 0.3378318  |
| Thessaloniki | Veles     | -          | 2.22718742 |
| Trieste      | Venice    | 1.37277683 | 2.18428814 |
| Trieste      | Villach   | 0.18589686 | 0.16087229 |
| Trondheim    | Östersund | 1.02600769 | 1.11180624 |
| Utrecht      | Zwolle    | 0.37536867 | 0.38788095 |
| Vaduz/Schaan | Zurich    | 0.21807132 | 0.18768433 |
| Valencia     | Zaragoza  | 0          | 0          |
| Varaždin     | Zagreb    | 0.00357494 | 0.01072482 |
| Västerås     | Östersund | 0          | 0          |
| Venice       | Verona    | 1.77138261 | 2.81526499 |
| Venice       | Villach   | 0.55947806 | 0.8651354  |
| Vilnius      | Šiauliai  | 0.01608723 | 0.00357494 |
| Warsaw       | Łódź      | 0.03217446 | 6.21324515 |
| Wrocław      | Łódź      | 0.00536241 | 0.21628385 |
|              |           |            |            |

## F – Node Betweenness/Closeness Centrality

|                 | node betweenness centrality |            |            | node closeness centrality |            |                                        |
|-----------------|-----------------------------|------------|------------|---------------------------|------------|----------------------------------------|
|                 | current                     | future     | difference | 4                         | £          | difference                             |
| node            | [%]                         | [%]        | [% points] | current                   | future     | (of ASPL)<br>[min]                     |
| A Coruña        | 0                           | 0          | 0          | 0.0006728                 | 0.0007875  | -216.49307                             |
| Aalborg         | 0                           | 0          | 0          | 0.00081971                | 0.0009807  | -200.27038                             |
| Aarhus          | 0.52687418                  | 0.57003111 | 0.04315693 | 0.00088368                | 0.00104509 | -174.78023                             |
| Aberdeen        | 0                           | 0          | 0          | 0.00074603                | 0.00083952 | -149.28141                             |
| Ajaccio         | 0                           | 0          | 0          | 2.24E-05                  | 2.24E-05   | 0                                      |
| Alexandroupolis | 0                           | 0.02157846 | 0.02157846 | 1.43E-05                  | 0.00059477 | change, but initially<br>not connected |
| Algeciras       | 0                           | 0          | 0          | 0.00061466                | 0.00071515 | -228.6242                              |
| Alicante        | 0.00359641                  | 1.47992304 | 1.47632663 | 0.00069958                | 0.0008653  | -273.76876                             |
| Almería         | 0                           | 0.03956052 | 0.03956052 | 0.00059335                | 0.00078689 | -414.51773                             |
| Alvesta         | 6.93208178                  | 12.4813436 | 5.54926184 | 0.00079082                | 0.00103969 | -302.68527                             |
| Amsterdam       | 0                           | 0          | 0          | 0.00111097                | 0.00129071 | -125.35375                             |
| Ancona          | 2.5354696                   | 0.55025085 | -1.9852188 | 0.00091284                | 0.00116236 | -235.1587                              |
| Antequera       | 2.09490928                  | 1.71728615 | -0.3776231 | 0.00069823                | 0.00082087 | -213.97346                             |
| Antwerp         | 1.76493859                  | 1.78741616 | 0.02247757 | 0.00115044                | 0.00132724 | -115.78875                             |
| Arad            | 9.16904929                  | 4.38042833 | -4.788621  | 0.00080013                | 0.00101139 | -261.0661                              |
| Arnhem          | 1.53207099                  | 1.49251047 | -0.0395605 | 0.00114609                | 0.00133215 | -121.86882                             |
| Arth-Goldau     | 2.97602992                  | 0.65454676 | -2.3214832 | 0.0011308                 | 0.00133381 | -134.60018                             |
| Athens          | 0                           | 0.57003111 | 0.57003111 | 2.10E-05                  | 0.00055733 | change, but initially<br>not connected |
| Avignon         | 14.8855442                  | 13.1268994 | -1.7586449 | 0.00106693                | 0.00126822 | -148.76303                             |
| Bacău           | 0.14745284                  | 0.28771286 | 0.14026002 | 0.00050899                | 0.00062116 | -354.80024                             |
| Badajoz         | 1.55544766                  | 1.91508874 | 0.35964108 | 0.00064239                | 0.00081996 | -337.11762                             |
| Bălți           | 0                           | 0          | 0          | 0.00046007                | 0.00055355 | -367.07769                             |
| Banja Luka      | 0                           | 0.26973081 | 0.26973081 | 0                         | 0.00085181 | change, but initially<br>not connected |
| Banská Bystrica | 0                           | 0          | 0          | 0.00086397                | 0.00104474 | -200.28099                             |
| Bar             | 0                           | 0          | 0          | 0.00044648                | 0.00061358 | -609.95003                             |
| Barcelona       | 12.6629624                  | 10.8072144 | -1.855748  | 0.00088227                | 0.00105977 | -189.84078                             |
| Bari            | 1.03576631                  | 1.12567657 | 0.08991027 | 0.00075279                | 0.00093518 | -259.07641                             |
| Basel           | 4.72028915                  | 7.78802755 | 3.0677384  |                           | 0.0014417  | -135.42903                             |
| Bastia          | 0                           | 0          | 0          | 2.47E-05                  | 2.47E-05   | 0                                      |
| Bayonne         | 3.97403391                  |            | 3.40939742 | 0.00094018                | 0.00112077 | -171.38867                             |
| Belfast         | 0.01078923                  | 0.01078923 | 0          | 9.23E-05                  | 9.23E-05   | 0                                      |
| Belgrade        | 1.57342972                  | 12.4939311 | 10.9205013 | 0.00066099                | 0.00104461 | -555.5835                              |
| Bergen          | 0                           | 0          | 0          | 0.0004969                 | 0.00063937 | -448.44568                             |
| Berlin          | 9.54757152                  | 15.4169139 | 5.8693424  | 0.001139                  | 0.00142773 | -177.55492                             |
| Bern            | 1.04655554                  | 0.93686501 | -0.1096905 | 0.00115736                | 0.00135553 | -126.32163                             |
| Białystok       | 6.08512704                  | 7.12988438 | 1.04475733 | 0.00080055                | 0.00104472 | -291.93867                             |
| Bielefeld       | 1                           | 4.15475356 | 1.9339699  | 0.00117217                | 0.00140198 | -139.83669                             |
| Bilbao          | 0.36143928                  | 0          |            | 0.00075078                | 0.0009923  | -324.1848                              |
| Birmingham      | 0.3659348                   | 0.65274856 | 0.28681376 | 0.00100763                | 0.00118797 | -150.65213                             |
| Bitola          | 0                           | 0          | 0          | 4.02E-05                  | 0.00067189 | change, but initially<br>not connected |

|                     | !          |            |            | l          |            |            |
|---------------------|------------|------------|------------|------------|------------|------------|
| Boden               | 1.57342972 |            | 5.06554459 |            |            | -493.49392 |
| Bodø                | 0          | 0          | 0          | 0.00037509 | 0.00044948 | -441.26184 |
| Bologna             | 7.98223373 | 8.50910791 |            | 0.00101993 | 0.00132507 | -225.78532 |
| Bolzano             | 3.67912823 | 11.7036198 | 8.02449156 | 0.00104488 | 0.00138374 | -234.36908 |
| Bordeaux            | 4.73467479 | 8.26814839 | 3.53347359 | 0.00102776 | 0.00120469 | -142.90514 |
| Bourges             | 0.45314776 | 0.4999011  | 0.04675334 | 0.00105    | 0.00123286 | -141.25954 |
| Braga               | 0          | 0.30929133 | 0.30929133 | 0.00059683 | 0.0007552  | -351.37735 |
| Brașov              | 1.48172124 | 2.03017389 | 0.54845264 | 0.00058971 | 0.00077038 | -397.68917 |
| Bratislava          | 3.19361277 | 0.95844347 | -2.2351693 | 0.00105583 | 0.00129125 | -172.67601 |
| Bregenz             | 1.58961357 | 1.23177069 | -0.3578429 | 0.001166   | 0.00137067 | -128.06681 |
| Bremen              | 4.14306522 | 0.55744367 | -3.5856215 | 0.00113919 | 0.00135415 | -139.34775 |
| Brest               | 0          | 0          | 0          | 0.0009252  | 0.0010756  | -151.13667 |
| Brig                | 0.17982054 | 0.18881157 | 0.00899103 | 0.00109217 | 0.00128408 | -136.84405 |
| Bristol             | 1.56983331 | 1.69930409 | 0.12947079 | 0.00100391 | 0.00114761 | -124.73427 |
| Brno                | 1.22277967 | 10.7352862 | 9.51250652 | 0.00102319 | 0.00131737 | -218.24415 |
| Bruges              | 0          | 0          | 0          | 0.00112255 | 0.00130951 | -127.18127 |
| Brussels            | 12.160364  | 8.73388358 | -3.4264804 | 0.00119812 | 0.00138674 | -113.52543 |
| Bucharest           | 0.74265883 | 1.5356674  | 0.79300858 | 0.00054337 | 0.00070399 | -419.87372 |
| Budapest            | 18.5269101 | 24.7217277 | 6.19481757 | 0.00098069 | 0.00119738 | -184.53087 |
| Burgas              | 0          | 0          | 0          | 0.00039539 | 0.00068331 | -1065.6843 |
| Burgos              | 1.82697668 | 5.32988078 | 3.5029041  | 0.00077861 | 0.00097661 | -260.40235 |
| Bydgoszcz           | 0.38481595 | 0.38841236 | 0.00359641 | 0.00090484 | 0.00111313 | -206.80083 |
| Cádiz               | 0          | 0          | 0          | 0.00065096 | 0.0007599  | -220.23896 |
| Caen                | 0.52687418 | 0.57003111 | 0.04315693 | 0.0010405  | 0.00121507 | -138.0833  |
| Cagliari            | 0          | 0          | 0          | 2.74E-05   | 2.74E-05   | 0          |
| Calvi               | 0          | 0          | 0          | 2.11E-05   | 2.11E-05   | 0          |
| Carlisle            | 0.05754257 | 0.61138983 | 0.55384726 | 0.00085081 | 0.00100173 | -177.08322 |
| Cartagena           | 0          | 0          | 0          | 0.00066142 | 0.00079483 | -253.77579 |
| České Budějovice    | 0.18161874 | 0.01438564 | -0.1672331 | 0.00102523 | 0.00129738 | -204.60631 |
| Cherbourg-Octeville | 0          | 0          | 0          | 0.00096123 | 0.00111571 | -144.0458  |
| Chișinău            | 0          | 0          | 0          | 0.00044034 | 0.00052727 | -374.40306 |
| Clermont-Ferrand    | 0          | 0          | 0          | 0.00095564 | 0.00112548 | -157.90922 |
| Cluj-Napoca         | 2.90769812 | 3.09291327 | 0.18521516 | 0.00068096 | 0.00086351 | -310.4589  |
| Coimbra             | 0.56463649 | 0.32367697 | -0.2409595 | 0.00057473 | 0.00074879 | -404.45947 |
| Cologne             | 13.062164  | 9.75346604 | -3.3086979 | 0.0012395  | 0.00145183 | -117.98898 |
| Constanța           | 0          | 0          | 0          | 0.00049787 | 0.00063446 | -432.41592 |
| Copenhagen          | 10.7604611 | 16.4661668 | 5.70570571 | 0.00087067 | 0.00116176 | -287.78353 |
| Córdoba             | 3.60899822 | 3.32847818 | -0.28052   | 0.00071585 | 0.00084304 | -210.75727 |
| Cork                | 0          | 0          | 0          | 8.80E-05   | 8.80E-05   | 0          |
| Çorlu               | 0.52687418 | 0          | -0.5268742 | 0.00036619 | 0.00060232 | -1070.5782 |
| Cosenza             | 0.02157846 | 0.00719282 | -0.0143856 | 0.00072494 | 0.00095072 | -327.58993 |
| Craiova             | 5.85675496 | 0.96923271 | -4.8875223 | 0.00058628 | 0.00080786 | -467.83207 |
| Daugavpils          | 0          | 0          | 0          | 0.00049263 | 0.00079952 | -779.18226 |
| Debrecen            | 0.6329683  | 4.57283631 |            | 0.00086074 |            | -184.48698 |
| Derry               | 0          | 0          | 0          | 6.34E-05   | 6.34E-05   | 0          |
| Deva                | 8.25016633 |            | -5.795616  |            | 0.00093301 | -302.96343 |
| Dijon               |            | 5.80101059 |            | 0.00117569 | 0.00138819 | -130.20142 |
| Divača              |            | 1.62737588 |            | 0.00091357 |            | -209.09631 |
| Doncaster           |            | 4.89291687 |            | 0.00099078 | 0.001131   | -125.1322  |
|                     | 1          |            |            | 1          |            |            |

| Dortmund       | 6.63178148 | 4.33906961 | -2 2027110 | 0.00118462 | 0 00138588 | -122.59228                             |
|----------------|------------|------------|------------|------------|------------|----------------------------------------|
| Drammen        | 1.57342972 | 1.13646581 | -0.4369639 | 0.00062618 | 0.00081525 | -370.36683                             |
| Dresden        | 2.64246282 | 8.83278488 | 6.19032206 | 0.00110853 | 0.00144205 | -208.6351                              |
| Dublin         | 0.02697308 | 0.02697308 | 0.10002200 | 0.00013472 |            | 0                                      |
| Duisburg       | 2.47882613 | 2.52647857 | 0.04765244 | 0.00120079 | 0.00140401 | -120.53756                             |
| Durrës         | 0          | 0          | 0.04700244 | 0          | 0.0001497  | change, but initially<br>not connected |
| Düsseldorf     | 1.91418964 | 1.92587797 | 0.01168834 | 0.00121215 | 0.00141762 | -119.57283                             |
| Edinburgh      | 2.54086422 | 2.22078366 | -0.3200806 | 0.00084447 | 0.00095558 | -137.68248                             |
| Edirne         | 1.05015195 | 1.68312025 | 0.6329683  | 0.00038572 | 0.00065211 | -1059.0535                             |
| Eindhoven      | 0          | 0          | 0          | 0.00112138 | 0.00130578 | -125.92945                             |
| Entroncamento  | 1.08791426 | 0          | -1.0879143 | 0.00057749 | 0.00074001 | -380.2947                              |
| Erfurt         | 7.62978547 | 11.3871356 | 3.75735016 | 0.00121228 | 0.0015072  | -161.4144                              |
| Esbjerg        | 0          | 0          | 0          | 0.00091347 | 0.00108303 | -171.39424                             |
| Essen          | 1.04475733 | 1.12387837 | 0.07912104 | 0.00119146 | 0.00139233 | -121.082                               |
| Exeter         | 0.52687418 | 0.57003111 | 0.04315693 | 0.00094325 | 0.00107453 | -129.51986                             |
| Faro           | 0          | 0          | 0          | 0.00050153 | 0.00068724 | -538.79453                             |
| Feldkirch      | 0.3992016  | 0.4351657  | 0.03596411 | 0.00112785 | 0.00133025 | -134.90222                             |
| Florence       | 4.535074   | 6.92129255 | 2.38621855 | 0.00098072 | 0.00126544 | -229.42487                             |
| Foggia         | 1.55364946 | 1.71009333 | 0.15644387 | 0.00078963 | 0.00098972 | -256.02622                             |
| Frankfurt      | 15.514017  | 16.6235097 | 1.10949273 | 0.00126834 | 0.00151941 | -130.28347                             |
| Freiburg       | 3.36264408 | 6.94466922 | 3.58202514 | 0.00122544 | 0.0014687  | -135.15987                             |
| Galați         | 0          | 0          | 0          | 0.00049514 | 0.00062878 | -429.26408                             |
| Galway         | 0          | 0          | 0          | 8.68E-05   | 8.68E-05   | 0                                      |
| Gdańsk         | 0.03596411 | 0.0323677  | -0.0035964 | 0.00085638 | 0.00104368 | -209.55531                             |
| Geneva         | 0.34525544 | 0.21938106 | -0.1258744 | 0.00109136 | 0.00126379 | -125.02028                             |
| Genoa          | 0.17622413 | 0.54665444 | 0.37043031 | 0.00096073 | 0.00127903 | -259.03335                             |
| Ghent          | 0.52687418 | 0.57003111 | 0.04315693 | 0.00115485 | 0.00133321 | -115.8487                              |
| Gijón          | 0          | 0          | 0          | 0.00068714 | 0.0008408  | -265.9545                              |
| Girona         | 13.0603658 | 11.2477747 | -1.812591  | 0.00090827 | 0.00109547 | -188.13958                             |
| Glasgow        | 0.04315693 | 0.04315693 | 0          | 0.00081118 | 0.00093285 | -160.79118                             |
| Gothenburg     | 2.48152344 | 2.60739782 | 0.12587438 | 0.00074486 | 0.00098488 | -327.18283                             |
| Granada        | 0.52687418 | 0.04315693 | -0.4837173 | 0.00066782 | 0.00079758 | -243.60708                             |
| Graz           | 1.43676611 | 2.57503012 | 1.13826401 | 0.00097932 | 0.001232   | -209.43076                             |
| Grenoble       | 0          | 0          | 0          | 0.00104502 | 0.00131332 | -195.48581                             |
| Groningen      | 0          | 0.16183849 | 0.16183849 | 0.00102253 | 0.00124133 | -172.37854                             |
| Guarda         | 0          | 0.58621496 | 0.58621496 | 0.00052362 | 0.00080885 | -673.45506                             |
| Győr           | 18.8110266 | 24.6551941 | 5.84416752 | 0.00103267 | 0.00126284 | -176.49497                             |
| Hallsberg      | 0.10789232 | 0.21578465 | 0.10789232 | 0.00070165 | 0.00090472 | -319.89218                             |
| Hamburg        | 14.4791498 | 20.1695708 | 5.69042096 | 0.00111886 | 0.00136065 | -158.82512                             |
| Hanover        | 10.9600619 | 14.2579705 | 3.29790869 | 0.00119012 | 0.00144248 | -147.00164                             |
| Helsinki       | 0.00179821 | 0.00179821 | 0          | 9.11E-05   | 0.00048074 | change, but initially<br>not connected |
| Hradec Králové | 0.10969053 | 0.13846182 | 0.02877129 | 0.00097212 | 0.00127711 | -245.66655                             |
| lași           | 1.56983331 | 1.69930409 | 0.12947079 | 0.00049281 | 0.00059775 | -356.25115                             |
| Innsbruck      | 4.21319523 | 12.1927317 | 7.97953642 | 0.00114149 | 0.00143458 | -178.97581                             |
| Inverness      | 0.52687418 | 0.57003111 | 0.04315693 | 0.00071033 | 0.00079776 | -154.2799                              |
| Istanbul       | 0          | 0          | 0          | 0.00034651 | 0.00060286 | -1227.1811                             |
| Jelgava        | 3.11628994 | 0.58801316 | -2.5282768 | 0.00057235 | 0.00082662 | -537.43514                             |

| Joensuu             | 0                        | 0                     | 0                        | 6.04E-05   | 0.00044166              | change, but initially                  |
|---------------------|--------------------------|-----------------------|--------------------------|------------|-------------------------|----------------------------------------|
|                     |                          |                       |                          |            | 0.0009564               | not connected                          |
| Kalmar              | 0                        | 0                     |                          | 0.00073796 |                         | -309.49956                             |
| Karlsruhe<br>Kassel | 18.4792577<br>8.98473324 | 20.0401<br>10.1949255 | 1.56084228<br>1.21019223 |            | 0.00152203              | -131.6057<br>-144.41221                |
| Kassei              | 3.21069573               | 3.36444229            | 0.15374656               | 0.0012267  | 0.0014908               | -144.41221<br>-242.91946               |
|                     |                          |                       |                          |            |                         |                                        |
| Kaunas              | 5.10690331               | 6.07253961            | 0.96563629               |            | 0.00093399              | -459.27974                             |
| Kiel                | 0                        | 0                     | 0                        |            | 0.00122221              | -164.17349                             |
| Kingston upon Hull  | 0.52687418               | 0<br>0.57003111       | 0<br>0.04315693          | 0.00094062 | 0.0010708<br>0.00057308 | -129.24353                             |
| Kiruna              | 0.52667416               | 1.38102174            | 0.8991027                | 0.00044366 | 0.00057308              | -509.04431                             |
| Klagenfurt          | 0.48191904               | 1.30102174            | 0.8991027                |            | 0.00124255              | -177.04111<br>-511.57959               |
| Klaipėda            |                          |                       |                          |            |                         | change, but initially                  |
| Kolari              | 0                        | 0                     | 0                        | 5.82E-05   | 0.00055183              | not connected                          |
| Koper               | 0                        | 0                     | 0                        | 0.00087294 | 0.00109998              | -236.44988                             |
| Košice              | 0.23736311               | 0.25354696            | 0.01618385               | 0.00082874 | 0.0010375               | -242.79632                             |
| Koszalin            | 0.00179821               | 0.00179821            | 0                        | 0.00084168 | 0.00110573              | -283.72101                             |
| Kraków              | 0.52507597               | 0.53586521            | 0.01078923               | 0.00086944 | 0.00111245              | -251.24389                             |
| Kristiansand        | 0.52687418               | 0.57003111            | 0.04315693               | 0.00053695 | 0.00070057              | -434.94154                             |
| Kuopio              | 0.00719282               | 0.56283829            | 0.55564547               | 8.94E-05   | 0.00049929              | change, but initially<br>not connected |
| La Rochelle         | 0                        | 0                     | 0                        | 0.00100062 | 0.00117099              | -145.39972                             |
| Larissa             | 0.00359641               | 1.13646581            | 1.1328694                | 3.06E-05   | 0.00063127              | change, but initially<br>not connected |
| Lausanne            | 0.60959163               | 0.52327777            | -0.0863139               | 0.00111847 | 0.00129927              | -124.41281                             |
| Le Havre            | 0                        | 0                     | 0                        | 0.00102117 | 0.00118984              | -138.82323                             |
| Le Mans             | 1.53926381               | 1.73886461            | 0.1996008                | 0.00111771 | 0.00132012              | -137.17592                             |
| Lecce               | 0                        | 0                     | 0                        | 0.00070577 | 0.00086761              | -264.31278                             |
| Leeds               | 0.01078923               | 0.01078923            | 0                        | 0.00096023 | 0.00109416              | -127.47374                             |
| Leicester           | 0.48911187               | 0.53047059            | 0.04135872               | 0.00101574 | 0.00116175              | -123.73252                             |
| Leipzig             | 2.11289133               | 2.62358167            | 0.51069033               | 0.00117335 | 0.00146859              | -171.33052                             |
| León                | 0.52687418               | 0.57003111            | 0.04315693               | 0.00073949 | 0.00091402              | -258.20324                             |
| Liberec             | 0                        | 0                     | 0                        | 0.00099019 | 0.00123734              | -201.72283                             |
| Liège               | 10.3540666               | 6.95006384            | -3.4040028               | 0.00120705 | 0.00140451              | -116.4742                              |
| Liepāja             | 0                        | 0                     | 0                        | 0.00052134 | 0.00073108              | -550.29713                             |
| Lille               | 17.0137203               | 16.4877452            | -0.5259751               | 0.00119257 | 0.0013816               | -114.72751                             |
| Limerick            | 0.00179821               | 0.00179821            | 0                        | 0.00010295 | 0.00010295              | 0                                      |
| Limoges             | 0                        | 0                     | 0                        | 0.00093424 | 0.00107992              | -144.39495                             |
| Linköping           | 5.45935157               | 10.9510708            | 5.49171926               | 0.00074115 | 0.00096548              | -313.50399                             |
| Linz                | 19.2354031               | 18.3902465            | -0.8451565               | 0.00114295 | 0.00139078              | -155.90471                             |
| Lisbon              | 0.52687418               | 1.39900379            | 0.87212961               | 0.00055863 | 0.00077038              | -492.05202                             |
| Liverpool           | 0                        | 0                     | 0                        | 0.00094814 | 0.00111434              | -157.30547                             |
| Ljubljana           | 1.88092284               | 1.46553739            | -0.4153854               | 0.00094767 | 0.00113381              | -173.23268                             |
| Łódź                | 0                        | 6.45196094            | 6.45196094               | 0.00087371 | 0.00118017              | -297.20133                             |
| London              | 12.1468774               | 13.2275989            | 1.08072144               | 0.00109339 | 0.0012575               | -119.3539                              |
| Lübeck              | 0.00179821               | 16.6190142            | 16.617216                | 0.00105822 | 0.00129499              | -172.77783                             |
| Lublin              | 0                        | 0                     | 0                        | 0.00080569 | 0.00101582              | -256.75032                             |
| Lugano              | 2.65235295               | 0.43696391            | -2.215389                | 0.00106117 | 0.00128707              | -165.39824                             |
| Luleå               | 0                        | 7.12988438            | 7.12988438               | 0.00048157 | 0.00065516              | -550.1921                              |
| Luxembourg          | 0.00179821               | 0.0323677             | 0.03056949               | 0.001146   | 0.00135885              | -136.68316                             |
| Lyon                | 18.0360001               | 16.8770567            | -1.1589434               | 0.0011275  | 0.00134908              | -145.66709                             |

| ••                     | 44 7000 405 | 0 07574404               | 4 00 40005             | 0 00070074 |            | 000 400 47                             |
|------------------------|-------------|--------------------------|------------------------|------------|------------|----------------------------------------|
| Madrid                 |             | 9.87574401               |                        | 0.00078671 | 0.00093574 | -202.43817                             |
| Málaga                 | 0           | 0                        | 0                      |            | 0.00080837 | -215.50668                             |
| Malmö                  | 10.3091115  | 15.9986334               |                        | 0.00084359 | 0.00112011 | -292.63475                             |
| Manchester             | 0.02157846  | 1.08971247               | 1.068134<br>2.04815594 | 0.0009297  | 0.00112249 | -184.73198                             |
| Mannheim<br>Maribor    | 11.4284944  | 13.4766503<br>1.33786481 | 0.22117926             |            | 0.00152403 | -133.95544                             |
|                        |             |                          |                        |            | 0.00116871 | -209.18383                             |
| Marseille              | 0.42437647  | 0.20499541               | -0.2193811             | 0.00102557 |            | -151.19202                             |
| Messina                | 1.05015195  | 1.13646581               | 0.08631386             |            | 0.00082901 | -343.69523                             |
| Metz                   | 0.65814317  | 0.65994138               | 0.00179821             | 0.0012152  | 0.00143945 | -128.20042                             |
| Milan                  | 7.78622934  | 11.0382838               | 3.25205445             | 0.00105029 | 0.00134408 | -208.11588                             |
| Miskolc                | 0.27692363  | 0.30749312               | 0.03056949             |            | 0.0010442  | -187.51426                             |
| Montpellier            | 13.79763    | 12.1037205               | -1.6939095             | 0.00100675 | 0.00118859 | -151.96673<br>change, but initially    |
| Mostar                 | 0           | 0                        | 0                      | 2.60E-05   | 0.00065218 | not connected                          |
| Munich                 | 11.9310928  | 14.9322976               | 3.0012048              | 0.00122948 | 0.00148472 | -139.82038                             |
| Münster                | 4.28692165  | 0.12407617               | -4.1628455             | 0.00115996 | 0.00135428 | -123.69538                             |
| Murcia                 | 0.52687418  | 1.14006222               | 0.61318804             | 0.00068714 | 0.00082934 | -249.51685                             |
| Nantes                 | 0.00359641  | 0.00359641               | 0                      | 0.00102421 | 0.00120199 | -144.40467                             |
| Naples                 | 2.57503012  | 5.01159842               | 2.4365683              | 0.00084292 | 0.00105879 | -241.88191                             |
| Narva                  | 0           | 0                        | 0                      | 0.00038622 | 0.00072709 | -1213.8522                             |
| Narvik                 | 0           | 0                        | 0                      | 0.00040575 | 0.00051554 | -524.88755                             |
| Newcastle upon<br>Tyne | 3.29341317  | 2.75305245               | -0.5403607             | 0.00091767 | 0.00104292 | -130.86561                             |
| Nice                   | 0.07732283  | 0                        | -0.0773228             | 0.00091373 | 0.00114223 | -218.93331                             |
| Niš                    | 0           | 10.1220981               | 10.1220981             | 0.00052945 | 0.00095848 | -845.44337                             |
| Norwich                | 0           | 0                        | 0                      | 0.00096819 | 0.00110465 | -127.59079                             |
| Nottingham             | 0           | 0                        | 0                      | 0.00098539 | 0.00112486 | -125.82798                             |
| Novi Sad               | 2.08591825  | 12.5766485               | 10.4907303             | 0.00067891 | 0.00107653 | -544.04586                             |
| Nuremberg              | 11.688335   | 7.65226304               | -4.036072              | 0.00124197 | 0.0014755  | -127.43666                             |
| Odense                 | 11.2082142  | 0.24275773               | -10.965456             | 0.00092408 | 0.00110461 | -176.86123                             |
| Olbia                  | 0           | 0                        | 0                      | 3.34E-05   | 3.34E-05   | 0                                      |
| Olsztyn                | 0           | 0                        | 0                      | 0.00083244 | 0.00101197 | -213.1076                              |
| Oradea                 | 3.38422255  | 3.54246462               | 0.15824207             | 0.00080084 | 0.00096131 | -208.44891                             |
| Osijek                 | 0           | 0.00539462               | 0.00539462             | 0.00073888 | 0.00093293 | -281.51688                             |
| Oslo                   | 2.08951466  | 2.26214238               | 0.17262772             | 0.00064041 | 0.0008378  | -367.8975                              |
| Östersund              | 1.02857348  | 1.11488734               | 0.08631386             | 0.00056888 | 0.00072204 | -372.88469                             |
| Ostrava                | 3.14416213  | 4.59801118               | 1.45384906             | 0.00092451 | 0.00126658 | -292.12154                             |
| Oulu                   | 0.03596411  | 3.36624049               | 3.33027638             | 0.00010793 | 0.00056837 | change, but initially<br>not connected |
| Ourense                | 3.53707     | 2.4671378                | -1.0699322             | 0.00070709 | 0.00083115 | -211.09333                             |
| Padborg                | 12.9632627  | 2.01219183               | -10.951071             | 0.000994   | 0.00118535 | -162.40311                             |
| Palermo                | 0           | 0                        | 0                      | 0.00057433 | 0.00072308 | -358.16819                             |
| Pamplona               | 0.07552463  | 0.18521516               | 0.10969053             | 0.00079268 | 0.000968   | -228.49322                             |
| Paris                  | 14.9107191  | 16.5012318               | 1.59051267             | 0.00119922 | 0.00141654 | -127.93059                             |
| Pärnu                  | 0           | 1.69930409               | 1.69930409             | 0          | 0.00081691 | change, but initially<br>not connected |
| Patras                 | 0           | 0                        | 0                      | 0          | 0.00052372 | change, but initially<br>not connected |
| Pécs                   | 0.52687418  | 0.01258744               | -0.5142867             | 0.00084733 | 0.00101785 | -197.71445                             |
| Peja                   | 0           | 0                        | 0                      | 4.00E-05   | 0.00063835 | change, but initially<br>not connected |
| Penzance               | 0           | 0                        | 0                      | 0.00079544 | 0.00089862 | -144.34096                             |
|                        |             | Ũ                        | · ·                    |            |            |                                        |

| Perpignan                   | 13.4559709 | 11.6865368 | -1.7694341 | 0.00093568 | 0.00113338 | -186.42464                             |
|-----------------------------|------------|------------|------------|------------|------------|----------------------------------------|
| Perth                       | 1.04835374 | 1.1346676  | 0.08631386 | 0.00078683 | 0.00088742 | -144.07107                             |
| Perugia                     | 0          | 0          | 0          | 0.00089491 | 0.00113565 | -236.87797                             |
| Pescara                     | 2.0355685  | 0.01798205 | -2.0175864 | 0.0008547  | 0.00107696 | -241.46142                             |
| Peterborough                | 6.12019205 | 5.33347719 | -0.7867149 | 0.00104072 | 0.00119202 | -121.95849                             |
| Pisa                        | 0.0323677  | 0          | -0.0323677 | 0.00092802 | 0.00119154 | -238.31969                             |
| Pitești                     | 0          | 0          | 0          | 0.00053308 | 0.00071506 | -477.41917                             |
| Plovdiv                     | 0.01078923 | 3.69531208 | 3.68452285 | 0.0004128  | 0.0007788  | -1138.4406                             |
| Plzeň                       | 0.06473539 | 0.11868156 | 0.05394616 | 0.00104479 | 0.00131303 | -195.52973                             |
| Podgorica                   | 0.52687418 | 0.57003111 | 0.04315693 | 0.00046021 | 0.00063775 | -604.92449                             |
| Porto                       | 1.03756451 | 0.05394616 | -0.9836183 | 0.0006003  | 0.00073705 | -309.07195                             |
| Poznań                      | 7.39871608 | 8.12788837 | 0.72917229 | 0.00098176 | 0.00122653 | -203.26968                             |
| Prague                      | 1.28841416 | 7.74307241 | 6.45465825 | 0.00103916 | 0.00138725 | -241.46353                             |
| Prešov                      | 0          | 0.06113898 | 0.06113898 | 0.00082245 | 0.00102292 | -238.28482                             |
| Pristina                    | 0.00539462 | 0.57003111 | 0.56463649 | 5.64E-05   | 0.000692   | change, but initially<br>not connected |
| Regensburg                  | 8.76804949 | 3.17742893 | -5.5906206 | 0.00119941 | 0.0014296  | -134.24805                             |
| Reims                       | 6.58412904 | 12.6234018 | 6.03927281 | 0.00121059 | 0.00143596 | -129.64702                             |
| Rennes                      | 0.52687418 | 0.57003111 | 0.04315693 | 0.00105821 | 0.00124367 | -140.91523                             |
| Riga                        | 2.09131287 | 3.37343331 | 1.28212044 | 0.00055623 | 0.00086022 | -635.34484                             |
| Rijeka                      | 0          | 0.17622413 | 0.17622413 | 0.0008267  | 0.00101595 | -225.32712                             |
| Rome                        | 3.05335275 | 5.5025085  | 2.44915574 | 0.00089327 | 0.00113325 | -237.0637                              |
| Rostock                     | 0          | 0          | 0          | 0.00101899 | 0.00124837 | -180.31405                             |
| Rotterdam                   | 1.32258007 | 1.51768535 | 0.19510528 | 0.00112709 | 0.00129995 | -117.97812                             |
| Rovaniemi                   | 0          | 0          | 0          | 7.24E-05   | 0.00057703 | change, but initially<br>not connected |
| Ruse                        | 4.12688137 | 0.22477567 | -3.9021057 | 0.00048617 | 0.00067053 | -565.53076                             |
| Rzeszów                     | 0.00179821 | 0.03596411 | 0.0341659  | 0.00080201 | 0.00101851 | -265.04299                             |
| Saarbrücken                 | 0          | 0          | 0          | 0.00119435 | 0.00141712 | -131.61691                             |
| Salamanca                   | 0          | 1.12567657 | 1.12567657 | 0.00073169 | 0.00090206 | -258.13475                             |
| Salzburg                    | 12.5892359 | 17.0991351 | 4.50989912 | 0.00116822 | 0.00141939 | -151.47838                             |
| San Sebastián               | 3.57663052 | 6.94287101 | 3.36624049 | 0.00088215 | 0.00104334 | -175.13657                             |
| Santander                   | 0          | 0          | 0          | 0.00066677 | 0.0008515  | -325.3789                              |
| Santiago de Compo-<br>stela | 3.05694916 | 1.94745644 | -1.1094927 | 0.00068746 | 0.00080611 | -214.10806                             |
| Sarajevo                    | 0          | 0.57003111 | 0.57003111 | 2.60E-05   | 0.00070776 | change, but initially<br>not connected |
| Sassari                     | 0          | 0          | 0          | 4.16E-05   | 4.16E-05   | 0                                      |
| Satu Mare                   | 0          | 0          | 0          | 0.00075558 | 0.00087945 | -186.41046                             |
| Seinäjoki                   | 0.02157846 | 1.68851486 | 1.6669364  | 0.00011402 | 0.00052159 | change, but initially<br>not connected |
| Seville                     | 0.59160957 | 0.57003111 | -0.0215785 | 0.00069337 | 0.00081363 | -213.16913                             |
| Sheffield                   | 0.11688335 | 0.10429591 | -0.0125874 | 0.00096648 | 0.00111242 | -135.74795                             |
| Shumen                      | 0.00179821 | 0.00179821 | 0          | 0.00043963 | 0.00061838 | -657.52794                             |
| Šiauliai                    | 4.12688137 | 0.57003111 | -3.5568503 | 0.00060151 | 0.00083585 | -466.10046                             |
| Skopje                      | 0.00719282 | 4.44876014 | 4.44156732 | 6.94E-05   | 0.00078209 | change, but initially<br>not connected |
| Sligo                       | 0          | 0          | 0          |            | 6.60E-05   | 0                                      |
| Sofia                       | 0.48911187 | 5.54926184 | 5.06014997 | 0.00044222 | 0.00083    | -1056.4999                             |
| Southampton                 | 0          | 0          | 0          | 0.00100137 | 0.00114545 | -125.61658                             |
| Split                       | 0          | 0          | 0          |            | 0.00075652 | -292.13872                             |
| Stara Zagora                | 1.6004028  | 3.31589074 | 1.71548794 | 0.00041389 | 0.00072901 | -1044.3649                             |

|                                                                                                                                                                                           |                                                                                                                                                                                                  |                                                                                                                                                                                             |                                                                                                                                                                                    | 1                                                                                                                                                                                                                        |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                           | 0                                                                                                                                                                                                | 0                                                                                                                                                                                           |                                                                                                                                                                                    | 0.00048505                                                                                                                                                                                                               |                                                                                                                                                                                                                              | -449.93299                                                                                                                                                                                                                                                                          |
| Strasbourg                                                                                                                                                                                | 4.83986981                                                                                                                                                                                       | 10.7173041                                                                                                                                                                                  | 5.87743432                                                                                                                                                                         |                                                                                                                                                                                                                          | 0.00091431                                                                                                                                                                                                                   | -336.73937                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                           | 15.6183129                                                                                                                                                                                       | 13.1313949                                                                                                                                                                                  | -2.4869181                                                                                                                                                                         |                                                                                                                                                                                                                          | 0.00149099                                                                                                                                                                                                                   | -126.76427                                                                                                                                                                                                                                                                          |
| Stuttgart                                                                                                                                                                                 | 9.30211649                                                                                                                                                                                       | 10.4979231                                                                                                                                                                                  | 1.19580659                                                                                                                                                                         | 0.00124934                                                                                                                                                                                                               | 0.001517                                                                                                                                                                                                                     | -141.22299                                                                                                                                                                                                                                                                          |
| Subotica                                                                                                                                                                                  | 2.59840679                                                                                                                                                                                       | 13.1520742                                                                                                                                                                                  | 10.5536674                                                                                                                                                                         | 0.00080967                                                                                                                                                                                                               | 0.00111791                                                                                                                                                                                                                   | -340.54754                                                                                                                                                                                                                                                                          |
| Suceava                                                                                                                                                                                   | 2.44196292                                                                                                                                                                                       | 2.49950549                                                                                                                                                                                  | 0.05754257                                                                                                                                                                         | 0.00053554                                                                                                                                                                                                               | 0.00065461                                                                                                                                                                                                                   | -339.67427                                                                                                                                                                                                                                                                          |
| Sundsvall                                                                                                                                                                                 | 2.59840679                                                                                                                                                                                       | 8.1728435                                                                                                                                                                                   | 5.57443671                                                                                                                                                                         | 0.00060317                                                                                                                                                                                                               | 0.00077463                                                                                                                                                                                                                   | -366.9768                                                                                                                                                                                                                                                                           |
| Suwałki                                                                                                                                                                                   | 5.59781338                                                                                                                                                                                       | 6.6030102                                                                                                                                                                                   | 1.00519681                                                                                                                                                                         | 0.00073353                                                                                                                                                                                                               | 0.00096745                                                                                                                                                                                                                   | -329.62956                                                                                                                                                                                                                                                                          |
| Swansea                                                                                                                                                                                   | 0                                                                                                                                                                                                | 0                                                                                                                                                                                           | 0                                                                                                                                                                                  | 0.00091546                                                                                                                                                                                                               | 0.00104127                                                                                                                                                                                                                   | -131.97446                                                                                                                                                                                                                                                                          |
| Syracuse                                                                                                                                                                                  | 0                                                                                                                                                                                                | 0                                                                                                                                                                                           | 0                                                                                                                                                                                  | 0.00058228                                                                                                                                                                                                               | 0.00075211                                                                                                                                                                                                                   | -387.78978                                                                                                                                                                                                                                                                          |
| Szczecin                                                                                                                                                                                  | 0.46483609                                                                                                                                                                                       | 0.51428674                                                                                                                                                                                  | 0.04945065                                                                                                                                                                         | 0.00093917                                                                                                                                                                                                               | 0.00127732                                                                                                                                                                                                                   | -281.87531                                                                                                                                                                                                                                                                          |
| Szeged                                                                                                                                                                                    | 3.10729892                                                                                                                                                                                       | 0                                                                                                                                                                                           | -3.1072989                                                                                                                                                                         | 0.00087305                                                                                                                                                                                                               | 0.00105246                                                                                                                                                                                                                   | -195.25414                                                                                                                                                                                                                                                                          |
| Szolnok                                                                                                                                                                                   | 13.8713564                                                                                                                                                                                       | 9.62938987                                                                                                                                                                                  | -4.2419665                                                                                                                                                                         | 0.00091852                                                                                                                                                                                                               | 0.00110215                                                                                                                                                                                                                   | -181.38387                                                                                                                                                                                                                                                                          |
| Szombathely                                                                                                                                                                               | 0.53586521                                                                                                                                                                                       | 0.01438564                                                                                                                                                                                  | -0.5214796                                                                                                                                                                         | 0.0009625                                                                                                                                                                                                                | 0.00117426                                                                                                                                                                                                                   | -187.35592                                                                                                                                                                                                                                                                          |
| Tallinn                                                                                                                                                                                   | 0                                                                                                                                                                                                | 1.13826401                                                                                                                                                                                  | 1.13826401                                                                                                                                                                         | 0.0004037                                                                                                                                                                                                                | 0.00079022                                                                                                                                                                                                                   | -1211.6367                                                                                                                                                                                                                                                                          |
| Tampere                                                                                                                                                                                   | 0.02337667                                                                                                                                                                                       | 1.1346676                                                                                                                                                                                   | 1.11129093                                                                                                                                                                         | 0.00011402                                                                                                                                                                                                               | 0.00050467                                                                                                                                                                                                                   | change, but initially<br>not connected                                                                                                                                                                                                                                              |
| Taranto                                                                                                                                                                                   | 0.02157846                                                                                                                                                                                       | 0.00179821                                                                                                                                                                                  | -0.0197803                                                                                                                                                                         | 0.00070645                                                                                                                                                                                                               | 0.00086846                                                                                                                                                                                                                   | -264.06069                                                                                                                                                                                                                                                                          |
| Tartu                                                                                                                                                                                     | 1.05015195                                                                                                                                                                                       | 0                                                                                                                                                                                           | -1.0501519                                                                                                                                                                         | 0.00043053                                                                                                                                                                                                               | 0.00075875                                                                                                                                                                                                                   | -1004.7479                                                                                                                                                                                                                                                                          |
| The Hague                                                                                                                                                                                 | 0                                                                                                                                                                                                | 0                                                                                                                                                                                           | 0                                                                                                                                                                                  | 0.00111388                                                                                                                                                                                                               | 0.00128471                                                                                                                                                                                                                   | -119.37431                                                                                                                                                                                                                                                                          |
| -                                                                                                                                                                                         | 0.00359641                                                                                                                                                                                       | 1.70290051                                                                                                                                                                                  | 1.69930409                                                                                                                                                                         | 3.06E-05                                                                                                                                                                                                                 | 0.0006702                                                                                                                                                                                                                    | change, but initially<br>not connected                                                                                                                                                                                                                                              |
| Thurso                                                                                                                                                                                    | 0                                                                                                                                                                                                | 0                                                                                                                                                                                           | 0                                                                                                                                                                                  | 0.00060272                                                                                                                                                                                                               | 0.00067297                                                                                                                                                                                                                   | -173.18957                                                                                                                                                                                                                                                                          |
| Timișoara                                                                                                                                                                                 | 0                                                                                                                                                                                                | 1.22457787                                                                                                                                                                                  | 1.22457787                                                                                                                                                                         | 0.00074781                                                                                                                                                                                                               | 0.00095962                                                                                                                                                                                                                   | -295.15907                                                                                                                                                                                                                                                                          |
| ,<br>Tirana                                                                                                                                                                               | 0                                                                                                                                                                                                | 0                                                                                                                                                                                           | 0                                                                                                                                                                                  | 0                                                                                                                                                                                                                        | 0.0001497                                                                                                                                                                                                                    | change, but initially                                                                                                                                                                                                                                                               |
| Tornio                                                                                                                                                                                    | 0.01438564                                                                                                                                                                                       | 5.01519484                                                                                                                                                                                  | 5.00080919                                                                                                                                                                         | 8.33E-05                                                                                                                                                                                                                 | 0.00060688                                                                                                                                                                                                                   | not connected<br>change, but initially                                                                                                                                                                                                                                              |
| Toulouse                                                                                                                                                                                  | 0 120/7076                                                                                                                                                                                       | 0.12947079                                                                                                                                                                                  | 0 00800103                                                                                                                                                                         | 0.00093552                                                                                                                                                                                                               | 0 0011/867                                                                                                                                                                                                                   | not connected<br>-198.35128                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                           | 5.47553542                                                                                                                                                                                       | 9.03238568                                                                                                                                                                                  | 3.55685026                                                                                                                                                                         | 0.00112495                                                                                                                                                                                                               | 0.00133131                                                                                                                                                                                                                   | -137.79017                                                                                                                                                                                                                                                                          |
| Trieste                                                                                                                                                                                   | 1.1346676                                                                                                                                                                                        | 1.80899462                                                                                                                                                                                  | 0.67432702                                                                                                                                                                         | 0.00092727                                                                                                                                                                                                               | 0.00133131                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                     |
| 11030                                                                                                                                                                                     |                                                                                                                                                                                                  | 1.00033-02                                                                                                                                                                                  | 0.07 -027 02                                                                                                                                                                       | 0.00032121                                                                                                                                                                                                               | 0.001110 - 11                                                                                                                                                                                                                | _220 877                                                                                                                                                                                                                                                                            |
| Trondheim                                                                                                                                                                                 | 0 52687/18                                                                                                                                                                                       | 0 57003111                                                                                                                                                                                  | 0 0/315603                                                                                                                                                                         | 0 00010035                                                                                                                                                                                                               |                                                                                                                                                                                                                              | -229.877                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                           | 0.52687418                                                                                                                                                                                       | 0.57003111                                                                                                                                                                                  | 0.04315693                                                                                                                                                                         |                                                                                                                                                                                                                          | 0.00062064                                                                                                                                                                                                                   | -391.34712                                                                                                                                                                                                                                                                          |
| Turin                                                                                                                                                                                     | 4.80840122                                                                                                                                                                                       | 9.77054899                                                                                                                                                                                  | 4.96214778                                                                                                                                                                         | 0.00103122                                                                                                                                                                                                               | 0.00062064<br>0.00131537                                                                                                                                                                                                     | -391.34712<br>-209.48448                                                                                                                                                                                                                                                            |
| Turin<br>Turku                                                                                                                                                                            | 4.80840122<br>0                                                                                                                                                                                  | 9.77054899<br>0                                                                                                                                                                             | 4.96214778<br>0                                                                                                                                                                    | 0.00103122<br>8.55E-05                                                                                                                                                                                                   | 0.00062064<br>0.00131537<br>0.00047946                                                                                                                                                                                       | -391.34712<br>-209.48448<br>change, but initially<br>not connected                                                                                                                                                                                                                  |
| Turin<br>Turku<br>Ulm                                                                                                                                                                     | 4.80840122<br>0<br>8.77883872                                                                                                                                                                    | 9.77054899<br>0<br>10.0213986                                                                                                                                                               | 4.96214778<br>0<br>1.24255993                                                                                                                                                      | 0.00103122<br>8.55E-05<br>0.00123019                                                                                                                                                                                     | 0.00062064<br>0.00131537<br>0.00047946<br>0.00149917                                                                                                                                                                         | -391.34712<br>-209.48448<br>change, but initially<br>not connected<br>-145.85095                                                                                                                                                                                                    |
| Turin<br>Turku<br>Ulm<br>Umeå                                                                                                                                                             | 4.80840122<br>0<br>8.77883872<br>2.08591825                                                                                                                                                      | 9.77054899<br>0<br>10.0213986<br>7.65316214                                                                                                                                                 | 4.96214778<br>0<br>1.24255993<br>5.56724389                                                                                                                                        | 0.00103122<br>8.55E-05<br>0.00123019<br>0.00054653                                                                                                                                                                       | 0.00062064<br>0.00131537<br>0.00047946<br>0.00149917<br>0.00069452                                                                                                                                                           | -391.34712<br>-209.48448<br>change, but initially<br>not connected<br>-145.85095<br>-389.86921                                                                                                                                                                                      |
| Turin<br>Turku<br>Ulm<br>Umeå<br>Ungheni                                                                                                                                                  | 4.80840122<br>0<br>8.77883872<br>2.08591825<br>1.05195015                                                                                                                                        | 9.77054899<br>0<br>10.0213986<br>7.65316214<br>1.13826401                                                                                                                                   | 4.96214778<br>0<br>1.24255993<br>5.56724389<br>0.08631386                                                                                                                          | 0.00103122<br>8.55E-05<br>0.00123019<br>0.00054653<br>0.00048375                                                                                                                                                         | 0.00062064<br>0.00131537<br>0.00047946<br>0.00149917<br>0.00069452<br>0.00058545                                                                                                                                             | -391.34712<br>-209.48448<br>change, but initially<br>not connected<br>-145.85095<br>-389.86921<br>-359.07089                                                                                                                                                                        |
| Turin<br>Turku<br>Ulm<br>Umeå<br>Ungheni<br>Utrecht                                                                                                                                       | 4.80840122<br>0<br>8.77883872<br>2.08591825<br>1.05195015<br>1.3675352                                                                                                                           | 9.77054899<br>0<br>10.0213986<br>7.65316214<br>1.13826401<br>1.4349679                                                                                                                      | 4.96214778<br>0<br>1.24255993<br>5.56724389<br>0.08631386<br>0.0674327                                                                                                             | 0.00103122<br>8.55E-05<br>0.00123019<br>0.00054653<br>0.00048375<br>0.00113287                                                                                                                                           | 0.00062064<br>0.00131537<br>0.00047946<br>0.00149917<br>0.00069452<br>0.00058545<br>0.00131281                                                                                                                               | -391.34712<br>-209.48448<br>change, but initially<br>not connected<br>-145.85095<br>-389.86921<br>-359.07089<br>-120.98964                                                                                                                                                          |
| Turin<br>Turku<br>Ulm<br>Umeå<br>Ungheni<br>Utrecht<br>Vaduz/Schaan                                                                                                                       | 4.80840122<br>0<br>8.77883872<br>2.08591825<br>1.05195015<br>1.3675352<br>0                                                                                                                      | 9.77054899<br>0<br>10.0213986<br>7.65316214<br>1.13826401<br>1.4349679<br>0                                                                                                                 | 4.96214778<br>0<br>1.24255993<br>5.56724389<br>0.08631386<br>0.0674327<br>0                                                                                                        | 0.00103122<br>8.55E-05<br>0.00123019<br>0.00054653<br>0.00048375<br>0.00113287<br>0.00112294                                                                                                                             | 0.00062064<br>0.00131537<br>0.00047946<br>0.00149917<br>0.00069452<br>0.00058545<br>0.00131281<br>0.00131023                                                                                                                 | -391.34712<br>-209.48448<br>change, but initially<br>not connected<br>-145.85095<br>-389.86921<br>-359.07089<br>-120.98964<br>-127.29441                                                                                                                                            |
| Turin<br>Turku<br>Ulm<br>Umeå<br>Ungheni<br>Utrecht<br>Vaduz/Schaan<br>Valencia                                                                                                           | 4.80840122<br>0<br>8.77883872<br>2.08591825<br>1.05195015<br>1.3675352<br>0<br>0.22837208                                                                                                        | 9.77054899<br>0<br>10.0213986<br>7.65316214<br>1.13826401<br>1.4349679<br>0<br>1.97982414                                                                                                   | 4.96214778<br>0<br>1.24255993<br>5.56724389<br>0.08631386<br>0.0674327<br>0<br>1.75145205                                                                                          | 0.00103122<br>8.55E-05<br>0.00123019<br>0.00054653<br>0.00048375<br>0.00113287<br>0.00112294<br>0.00076986                                                                                                               | 0.00062064<br>0.00131537<br>0.00047946<br>0.00149917<br>0.00069452<br>0.00058545<br>0.00131281<br>0.00131023<br>0.00091061                                                                                                   | -391.34712<br>-209.48448<br>change, but initially<br>not connected<br>-145.85095<br>-389.86921<br>-359.07089<br>-120.98964<br>-127.29441<br>-200.77184                                                                                                                              |
| Turin<br>Turku<br>Ulm<br>Umeå<br>Ungheni<br>Utrecht<br>Vaduz/Schaan<br>Valencia<br>Valladolid                                                                                             | 4.80840122<br>0<br>8.77883872<br>2.08591825<br>1.05195015<br>1.3675352<br>0<br>0.22837208<br>1.30909352                                                                                          | 9.77054899<br>0<br>10.0213986<br>7.65316214<br>1.13826401<br>1.4349679<br>0<br>1.97982414<br>4.50090809                                                                                     | 4.96214778<br>0<br>1.24255993<br>5.56724389<br>0.08631386<br>0.0674327<br>0<br>1.75145205<br>3.19181457                                                                            | 0.00103122<br>8.55E-05<br>0.00123019<br>0.00054653<br>0.00048375<br>0.00113287<br>0.00112294<br>0.00076986<br>0.00076716                                                                                                 | 0.00062064<br>0.00131537<br>0.00047946<br>0.00149917<br>0.00069452<br>0.00058545<br>0.00131281<br>0.00131023<br>0.00091061<br>0.00095223                                                                                     | -391.34712<br>-209.48448<br>change, but initially<br>not connected<br>-145.85095<br>-389.86921<br>-359.07089<br>-120.98964<br>-127.29441<br>-200.77184<br>-253.3436                                                                                                                 |
| Turin<br>Turku<br>Ulm<br>Umeå<br>Ungheni<br>Utrecht<br>Vaduz/Schaan<br>Valencia<br>Valladolid<br>Varaždin                                                                                 | 4.80840122<br>0<br>8.77883872<br>2.08591825<br>1.05195015<br>1.3675352<br>0<br>0.22837208<br>1.30909352<br>0.00359641                                                                            | 9.77054899<br>0<br>10.0213986<br>7.65316214<br>1.13826401<br>1.4349679<br>0<br>1.97982414<br>4.50090809<br>0.00179821                                                                       | 4.96214778<br>0<br>1.24255993<br>5.56724389<br>0.08631386<br>0.0674327<br>0<br>1.75145205<br>3.19181457<br>-0.0017982                                                              | 0.00103122<br>8.55E-05<br>0.00123019<br>0.00054653<br>0.00048375<br>0.00113287<br>0.00112294<br>0.00076986<br>0.00076716<br>0.00084896                                                                                   | 0.00062064<br>0.00131537<br>0.00047946<br>0.00149917<br>0.00069452<br>0.00131281<br>0.00131023<br>0.00091061<br>0.00095223<br>0.00103732                                                                                     | -391.34712<br>-209.48448<br>change, but initially<br>not connected<br>-145.85095<br>-389.86921<br>-359.07089<br>-120.98964<br>-127.29441<br>-200.77184<br>-253.3436<br>-213.89352                                                                                                   |
| Turin<br>Turku<br>Ulm<br>Umeå<br>Ungheni<br>Utrecht<br>Vaduz/Schaan<br>Valencia<br>Valladolid<br>Varaždin                                                                                 | 4.80840122<br>0<br>8.77883872<br>2.08591825<br>1.05195015<br>1.3675352<br>0<br>0.22837208<br>1.30909352<br>0.00359641<br>0.51428674                                                              | 9.77054899<br>0<br>10.0213986<br>7.65316214<br>1.13826401<br>1.4349679<br>0<br>1.97982414<br>4.50090809<br>0.00179821                                                                       | 4.96214778<br>0<br>1.24255993<br>5.56724389<br>0.08631386<br>0.0674327<br>0<br>1.75145205<br>3.19181457<br>-0.0017982<br>-0.5124885                                                | 0.00103122<br>8.55E-05<br>0.00123019<br>0.00054653<br>0.00048375<br>0.00113287<br>0.00112294<br>0.00076986<br>0.00076716<br>0.00084896<br>0.00043559                                                                     | 0.00062064<br>0.00131537<br>0.00047946<br>0.00149917<br>0.00069452<br>0.00131281<br>0.00131023<br>0.00091061<br>0.00095223<br>0.00103732<br>0.00064513                                                                       | -391.34712<br>-209.48448<br>change, but initially<br>not connected<br>-145.85095<br>-389.86921<br>-359.07089<br>-120.98964<br>-127.29441<br>-200.77184<br>-253.3436<br>-213.89352<br>-745.65611                                                                                     |
| Turin<br>Turku<br>Ulm<br>Umeå<br>Ungheni<br>Utrecht<br>Vaduz/Schaan<br>Valencia<br>Valladolid<br>Varaždin                                                                                 | 4.80840122<br>0<br>8.77883872<br>2.08591825<br>1.05195015<br>1.3675352<br>0<br>0.22837208<br>1.30909352<br>0.00359641                                                                            | 9.77054899<br>0<br>10.0213986<br>7.65316214<br>1.13826401<br>1.4349679<br>0<br>1.97982414<br>4.50090809<br>0.00179821                                                                       | 4.96214778<br>0<br>1.24255993<br>5.56724389<br>0.08631386<br>0.0674327<br>0<br>1.75145205<br>3.19181457<br>-0.0017982<br>-0.5124885                                                | 0.00103122<br>8.55E-05<br>0.00123019<br>0.00054653<br>0.00048375<br>0.00113287<br>0.00112294<br>0.00076986<br>0.00076716<br>0.00084896                                                                                   | 0.00062064<br>0.00131537<br>0.00047946<br>0.00149917<br>0.00069452<br>0.00131281<br>0.00131023<br>0.00091061<br>0.00095223<br>0.00103732<br>0.00064513                                                                       | -391.34712<br>-209.48448<br>change, but initially<br>not connected<br>-145.85095<br>-389.86921<br>-359.07089<br>-120.98964<br>-127.29441<br>-200.77184<br>-253.3436<br>-213.89352<br>-745.65611<br>-341.26186                                                                       |
| Turin<br>Turku<br>Ulm<br>Umeå<br>Ungheni<br>Utrecht<br>Vaduz/Schaan<br>Valencia<br>Valencia<br>Valladolid<br>Varaždin<br>Varna<br>Västerås                                                | 4.80840122<br>0<br>8.77883872<br>2.08591825<br>1.05195015<br>1.3675352<br>0<br>0.22837208<br>1.30909352<br>0.00359641<br>0.51428674<br>0                                                         | 9.77054899<br>0<br>10.0213986<br>7.65316214<br>1.13826401<br>1.4349679<br>0<br>1.97982414<br>4.50090809<br>0.00179821                                                                       | 4.96214778<br>0<br>1.24255993<br>5.56724389<br>0.08631386<br>0.0674327<br>0<br>1.75145205<br>3.19181457<br>-0.0017982<br>-0.5124885<br>0<br>2.78721836                             | 0.00103122<br>8.55E-05<br>0.00123019<br>0.00054653<br>0.00048375<br>0.00113287<br>0.00112294<br>0.00076986<br>0.00076716<br>0.00084896<br>0.00043559<br>0.00067017<br>6.46E-05                                           | 0.00062064<br>0.00131537<br>0.00047946<br>0.00149917<br>0.00069452<br>0.00131281<br>0.00131023<br>0.00091061<br>0.00095223<br>0.00103732<br>0.00103732<br>0.00064513<br>0.00086889<br>0.00075115                             | -391.34712<br>-209.48448<br>change, but initially<br>not connected<br>-145.85095<br>-389.86921<br>-359.07089<br>-120.98964<br>-127.29441<br>-200.77184<br>-253.3436<br>-213.89352<br>-745.65611                                                                                     |
| Turin<br>Turku<br>Ulm<br>Umeå<br>Ungheni<br>Utrecht<br>Vaduz/Schaan<br>Valencia<br>Valencia<br>Valladolid<br>Varaždin<br>Varna<br>Västerås                                                | 4.80840122<br>0<br>8.77883872<br>2.08591825<br>1.05195015<br>1.3675352<br>0<br>0.22837208<br>1.30909352<br>0.00359641<br>0.51428674<br>0                                                         | 9.77054899<br>0<br>10.0213986<br>7.65316214<br>1.13826401<br>1.4349679<br>0<br>1.97982414<br>4.50090809<br>0.00179821<br>0.00179821<br>0.00179821<br>0<br>2.79261297                        | 4.96214778<br>0<br>1.24255993<br>5.56724389<br>0.08631386<br>0.0674327<br>0<br>1.75145205<br>3.19181457<br>-0.0017982<br>-0.5124885<br>0<br>2.78721836                             | 0.00103122<br>8.55E-05<br>0.00123019<br>0.00054653<br>0.00048375<br>0.00113287<br>0.00112294<br>0.00076986<br>0.00076716<br>0.00084896<br>0.00043559<br>0.00067017                                                       | 0.00062064<br>0.00131537<br>0.00047946<br>0.00149917<br>0.00069452<br>0.00131281<br>0.00131023<br>0.00091061<br>0.00095223<br>0.00103732<br>0.00103732<br>0.00064513<br>0.00086889<br>0.00075115                             | -391.34712<br>-209.48448<br>change, but initially<br>not connected<br>-145.85095<br>-389.86921<br>-359.07089<br>-120.98964<br>-127.29441<br>-200.77184<br>-253.3436<br>-213.89352<br>-745.65611<br>-341.26186<br>change, but initially                                              |
| Turin<br>Turku<br>Ulm<br>Umeå<br>Ungheni<br>Utrecht<br>Vaduz/Schaan<br>Valencia<br>Valencia<br>Valladolid<br>Varaždin<br>Varaždin<br>Varna<br>Västerås<br>Veles<br>Veliko Tarnovo         | 4.80840122<br>0<br>8.77883872<br>2.08591825<br>1.05195015<br>1.3675352<br>0<br>0.22837208<br>1.30909352<br>0.00359641<br>0.51428674<br>0<br>0.00539462<br>2.07512902                             | 9.77054899<br>0<br>10.0213986<br>7.65316214<br>1.13826401<br>1.4349679<br>0<br>1.97982414<br>4.50090809<br>0.00179821<br>0.00179821<br>0.00179821<br>0<br>2.79261297                        | 4.96214778<br>0<br>1.24255993<br>5.56724389<br>0.08631386<br>0.0674327<br>0<br>1.75145205<br>3.19181457<br>-0.0017982<br>-0.5124885<br>0<br>2.78721836                             | 0.00103122<br>8.55E-05<br>0.00123019<br>0.00054653<br>0.00048375<br>0.00113287<br>0.00112294<br>0.00076986<br>0.00076716<br>0.00084896<br>0.00043559<br>0.00067017<br>6.46E-05<br>0.00044984                             | 0.00062064<br>0.00131537<br>0.00047946<br>0.00149917<br>0.00069452<br>0.00131281<br>0.00131023<br>0.00091061<br>0.00095223<br>0.00103732<br>0.00103732<br>0.00064513<br>0.00086889<br>0.00075115                             | -391.34712<br>-209.48448<br>change, but initially<br>not connected<br>-145.85095<br>-389.86921<br>-359.07089<br>-120.98964<br>-127.29441<br>-200.77184<br>-253.3436<br>-213.89352<br>-745.65611<br>-341.26186<br>change, but initially<br>not connected                             |
| Turin<br>Turku<br>Ulm<br>Umeå<br>Ungheni<br>Utrecht<br>Vaduz/Schaan<br>Valencia<br>Valencia<br>Valladolid<br>Varaždin<br>Varna<br>Västerås<br>Veles<br>Veliko Tarnovo<br>Venice           | 4.80840122<br>0<br>8.77883872<br>2.08591825<br>1.05195015<br>1.3675352<br>0.022837208<br>1.30909352<br>0.00359641<br>0.51428674<br>0<br>0.00539462<br>2.07512902<br>1.81259103                   | 9.77054899<br>0<br>10.0213986<br>7.65316214<br>1.13826401<br>1.4349679<br>0<br>1.97982414<br>4.50090809<br>0.00179821<br>0.00179821<br>0.00179821<br>0.00179823                             | 4.96214778<br>0<br>1.24255993<br>5.56724389<br>0.08631386<br>0.0674327<br>0<br>1.75145205<br>3.19181457<br>-0.0017982<br>-0.5124885<br>0<br>2.78721836<br>-1.4313715               | 0.00103122<br>8.55E-05<br>0.00123019<br>0.00054653<br>0.00048375<br>0.00113287<br>0.00112294<br>0.00076716<br>0.00076716<br>0.00084896<br>0.00043559<br>0.00067017<br>6.46E-05<br>0.00044984<br>0.00099591               | 0.00062064<br>0.00131537<br>0.00047946<br>0.00149917<br>0.00069452<br>0.00131281<br>0.00131023<br>0.00091061<br>0.00095223<br>0.00103732<br>0.00103732<br>0.00064513<br>0.00064513<br>0.00067218<br>0.00067218               | -391.34712<br>-209.48448<br>change, but initially<br>not connected<br>-145.85095<br>-389.86921<br>-359.07089<br>-120.98964<br>-127.29441<br>-200.77184<br>-253.3436<br>-213.89352<br>-745.65611<br>-341.26186<br>change, but initially<br>not connected<br>-735.30629               |
| Turin<br>Turku<br>Ulm<br>Umeå<br>Ungheni<br>Utrecht<br>Vaduz/Schaan<br>Valencia<br>Valencia<br>Valladolid<br>Varaždin<br>Varna<br>Västerås<br>Veles<br>Veliko Tarnovo<br>Venice<br>Verona | 4.80840122<br>0<br>8.77883872<br>2.08591825<br>1.05195015<br>1.3675352<br>0<br>0.22837208<br>1.30909352<br>0.00359641<br>0.51428674<br>0<br>0.00539462<br>2.07512902<br>1.81259103<br>5.21659384 | 9.77054899<br>0<br>10.0213986<br>7.65316214<br>1.13826401<br>1.4349679<br>0<br>1.97982414<br>4.50090809<br>0.00179821<br>0.00179821<br>0.00179821<br>0.64375753<br>2.92388197<br>13.7059215 | 4.96214778<br>0<br>1.24255993<br>5.56724389<br>0.08631386<br>0.0674327<br>0<br>1.75145205<br>3.19181457<br>-0.0017982<br>-0.5124885<br>0<br>2.78721836<br>-1.4313715<br>1.11129093 | 0.00103122<br>8.55E-05<br>0.00123019<br>0.00054653<br>0.00048375<br>0.00113287<br>0.00112294<br>0.00076986<br>0.00076716<br>0.00084896<br>0.00043559<br>0.00067017<br>6.46E-05<br>0.00044984<br>0.00099591<br>0.00103962 | 0.00062064<br>0.00131537<br>0.00047946<br>0.00069452<br>0.00058545<br>0.00131281<br>0.00131023<br>0.00091061<br>0.00095223<br>0.00064513<br>0.00064513<br>0.00075115<br>0.00075115<br>0.00067218<br>0.00129199<br>0.00137508 | -391.34712<br>-209.48448<br>change, but initially<br>not connected<br>-145.85095<br>-389.86921<br>-359.07089<br>-120.98964<br>-127.29441<br>-200.77184<br>-253.3436<br>-213.89352<br>-745.65611<br>-341.26186<br>change, but initially<br>not connected<br>-735.30629<br>-230.11012 |

| Villa San Giovanni | 1.56983331 | 1.69930409 | 0.12947079 | 0.00068727 | 0.00089414 | -336.64587 |
|--------------------|------------|------------|------------|------------|------------|------------|
| Villach            | 2.1021021  | 2.44376113 | 0.34165902 | 0.00103175 | 0.00125754 | -174.02344 |
| Vilnius            | 0          | 0.55384726 | 0.55384726 | 0.00062431 | 0.00090138 | -492.35574 |
| Vitoria-Gasteiz    | 2.49231267 | 6.22179065 | 3.72947798 | 0.00081759 | 0.00100152 | -224.62105 |
| Warsaw             | 7.28273183 | 8.46235457 | 1.17962274 | 0.00089671 | 0.00114472 | -241.60748 |
| Waterford          | 0          | 0          | 0          | 9.07E-05   | 9.07E-05   | 0          |
| Wrocław            | 1.16433799 | 0.99800399 | -0.166334  | 0.00094341 | 0.00120659 | -231.20141 |
| Wuppertal          | 5.74436712 | 3.33746921 | -2.4068979 | 0.00121344 | 0.00141973 | -119.74599 |
| York               | 3.79511248 | 3.29790869 | -0.4972038 | 0.00097048 | 0.00110643 | -126.61295 |
| Zagreb             | 0.54305803 | 1.43676611 | 0.89370808 | 0.00086573 | 0.00104023 | -193.77833 |
| Zaragoza           | 11.5714517 | 7.9372786  | -3.6341731 | 0.00082998 | 0.00098841 | -193.11377 |
| Žilina             | 3.35545126 | 1.44755534 | -1.9078959 | 0.0009518  | 0.00116478 | -192.10946 |
| Zurich             | 4.54766143 | 1.89530848 | -2.652353  | 0.00117824 | 0.00138553 | -126.98079 |
| Zwolle             | 0.52687418 | 0.32187876 | -0.2049954 | 0.00109341 | 0.00127062 | -127.54634 |

## G – Relative Reductions and Individual Project Impacts

**Table 15**: Relative reductions between the two cities affected by a project edges; individual positive and negative (*i.e.*, inverse) impacts on the average shortest path length of every project.

| city 1 / start | city 2 / end     | direct reduction<br>along edge [%] | positive single<br>impact on ASPL [‰] | negative single<br>impact on ASPL [‰] |
|----------------|------------------|------------------------------------|---------------------------------------|---------------------------------------|
| Durrës         | Tirana           | 100                                | 0                                     | 0                                     |
| Graz           | Vienna           | 29.49                              | -0.4075133                            | 0.71830019                            |
| Graz           | Maribor          | 25                                 | -0.258982                             | 0.29762828                            |
| Graz           | Klagenfurt       | 78.87                              | -1.8718062                            | 0.8414153                             |
| Brno           | Vienna           | 31.03                              | -0.5343765                            | 2.78317749                            |
| Bratislava     | Vienna           | 13.04                              | -0.1123927                            | 0.07826429                            |
| Linz           | Salzburg         | 17.65                              | -1.4543004                            | 2.02287817                            |
| Innsbruck      | Munich           | 47.12                              | -1.5949176                            | 2.25295859                            |
| Bolzano        | Innsbruck        | 55.28                              | -4.1049447                            | 7.72525466                            |
| Bregenz        | Zurich           | 9.2                                | -0.1371682                            | 0.06291885                            |
| Bruges         | Ghent            | 25.91                              | -0.0202837                            | 0.05618677                            |
| Brussels       | Luxembourg       | 38.78                              | -0.0344416                            | 0.03318375                            |
| Plovdiv        | Sofia            | 47.37                              | -0.4149665                            | 3.30221104                            |
| Craiova        | Sofia            | 65.71                              | -10.057101                            | 0.27045946                            |
| Niš            | Sofia            | 31.25                              | -2.2255369                            | 11.5150035                            |
| Skopje         | Sofia            | 100                                | 31.8464197                            | 0.78598982                            |
| Plovdiv        | Stara Zagora     | 26.92                              | -0.0192813                            | 1.40750679                            |
| Bucharest      | Ruse             | 61.9                               | -6.649437                             | 0.6317211                             |
| Stara Zagora   | Varna            | 15.84                              | -0.0042847                            | 0.20144808                            |
| Burgas         | Stara Zagora     | 28.46                              | -0.0747828                            | 0.21050531                            |
| Rijeka         | Zagreb           | 66.91                              | -0.145944                             | 0.18543231                            |
| Split          | Zagreb           | 13.56                              | -0.2219764                            | 0.18916237                            |
| Rijeka         | Split            | 17.43                              | -0.1596677                            | 0.07090763                            |
| Plzeň          | Prague           | 38.55                              | -0.2129105                            | 0.13360232                            |
| Prague         | České Budějovice | 18.37                              | -0.0437665                            | 0.06290313                            |
| Dresden        | Prague           | 54.89                              | -1.3472727                            | 4.00899621                            |
| Nuremberg      | Plzeň            | 19.57                              | -0.3300469                            | 0.00312932                            |
| Plzeň          | Regensburg       | 24                                 | -0.1691088                            | 0.0303935                             |
| Brno           | Ostrava          | 78.18                              | -4.2224801                            | 4.3483987                             |
| Copenhagen     | Odense           | 13.04                              | -1.1500956                            | 0.02986543                            |
| Copenhagen     | Lübeck           | 64.97                              | -14.799433                            | 18.5667717                            |
| Aarhus         | Odense           | 5.43                               | -0.0048968                            | 0.00684538                            |
| Esbjerg        | Odense           | 6.33                               | -0.0024484                            | 0.00342269                            |
| Odense         | Padborg          | 6.17                               | -0.6565935                            | 0.03060864                            |
| Aalborg        | Aarhus           | 23.08                              | -0.1079847                            | 0.11195135                            |
| Narva          | Tallinn          | 18.7                               | -0.0009755                            | 0.53999543                            |
| Tallinn        | Tartu            | 21.16                              | -0.3067252                            | 0.53885635                            |
| Pärnu          | Tallinn          | 100                                | 6.43179078                            | 7.17706127                            |
| Narva          | Tartu            | 17.11                              | -0.1601332                            | 0                                     |
| Pärnu          | Riga             | 100                                | 3.02141327                            | 10.2285032                            |
| Helsinki       | Turku            | 30.36                              | 0                                     | 0.00132996                            |
| Genoa          | Nice             | 9.6                                | -0.0481161                            | 0.22665449                            |
| Montpellier    | Perpignan        | 42.39                              | -6.24424                              | 3.91635699                            |

| University of Zurich |                    | Master's Thesis | ;          | Jens Grafström |
|----------------------|--------------------|-----------------|------------|----------------|
| Montpellier          | Toulouse           | 20.45           | -0.0381144 | 0.03526276     |
| Perpignan            | Toulouse           | 12.5            | -0.0329724 | 0.02276579     |
| Bayonne              | Toulouse           | 38.42           | -0.0295445 | 0.00592615     |
| Bordeaux             | Toulouse           | 55.88           | -0.6242337 | 0.33340927     |
| Bayonne              | Bordeaux           | 28.04           | -1.5457759 | 2.26863488     |
| Grenoble             | Lyon               | 65.06           | -0.2339555 | 0.18312352     |
| Lyon                 | Turin              | 49.29           | -6.4255939 | 3.22992987     |
| Karlsruhe            | Strasbourg         | 22.22           | -1.7277125 | 1.38508818     |
| Freiburg             | Strasbourg         | 12.5            | -0.0092019 | 0.00921193     |
| Grenoble             | Turin              | 42.93           | -2.0717057 | 0.05879206     |
| Bielefeld            | Hanover            | 38              | -1.0525176 | 0.51236846     |
| Karlsruhe            | Stuttgart          | 12.5            | -0.4799676 | 0.47244454     |
| Freiburg             | Karlsruhe          | 30              | -1.14666   | 0.62711532     |
|                      |                    |                 |            |                |
| Berlin               | Dresden            | 27.27           | -0.3304961 | 2.02087414     |
| Berlin               | Hanover            | 15.84           | -0.4945496 | 0.18288908     |
| Berlin               | Szczecin           | 51.35           | -1.0148165 | 0.96672426     |
| Dresden              | Leipzig            | 30.88           | -0.5183024 | 0.57329489     |
| Erfurt               | Frankfurt          | 50.4            | -4.9048439 | 2.23283474     |
| Erfurt               | Nuremberg          | 25              | -0.5514316 | 0.40129592     |
| Bremen               | Groningen          | 49.81           | -0.2401814 | 0.24604951     |
| Frankfurt            | Kassel             | 52.44           | -4.1504702 | 3.04764279     |
| Frankfurt            | Mannheim           | 23.68           | -1.0263678 | 1.14238093     |
| Mannheim             | Stuttgart          | 13.16           | -0.0713546 | 0.11066051     |
| Stuttgart            | Ulm                | 35.71           | -1.5816135 | 1.59016998     |
| Stuttgart            | Zurich             | 11.4            | -0.0104873 | 0              |
| Basel                | Freiburg           | 32.5            | -0.5221626 | 0.49376726     |
| Thessaloniki         | Veles              | 12.6            | -0.321764  | 3.21916053     |
| Athens               | Patras             | 100             | 0          | -5.0690419     |
| Budapest             | Subotica           | 65.55           | -4.4641179 | 18.4452522     |
| Debrecen             | Oradea             | 22.75           | -0.0969233 | 0.93212132     |
| Arad                 | Szolnok            | 1.54            | -0.1719478 | 3.27356769     |
| Palermo              | Syracuse           | 21.51           | -0.0012242 | 0.00117349     |
| Messina              | Syracuse           | 20.27           | -0.1793751 | 0.18599884     |
| Naples               | Villa San Giovanni | 30.61           | -1.7597957 | 1.51365111     |
| Cosenza              | Naples             | 40.68           | -0.7263051 | 0.43855436     |
| Naples               | Taranto            | 30              | -0.0090999 | 0              |
| Foggia               | Naples             | 60.12           | -0.2246474 | 0.21353684     |
| Ancona               | Rome               | 13.95           | -0.0042847 | 9.78E-05       |
| Perugia              | Rome               | 11.11           | -0.0021423 | 0.00322711     |
| Pescara              | Rome               | 42.86           | -0.0148128 | 0.00176024     |
| Ancona               | Perugia            | 6.25            | -0.0012242 | 0.00039116     |
| Genoa                | Turin              | 42.86           | -0.1192089 | 0.11174867     |
| Genoa                | Milan              | 46.81           | -0.2622074 | 0.31883182     |
| Geneva               | Turin              | 25.62           | -0.0015302 | 0              |
| Milan                | Verona             | 6.85            | -0.1368825 | 0.41863949     |
| Venice               | Verona             | 8.33            | -0.1012707 | 0.15369053     |
| Bolzano              | Verona             | 66.67           | -3.4721708 | 7.02693328     |
| Trieste              | Venice             | 8.85            | -0.1572304 | 0.23732007     |
| Kaunas               | Riga               | 62.9            | -5.3192935 | 2.53005359     |
| Raunas               | i liga             | 02.0            | 0.0102000  | 2.00000000     |

| University of Zu | rich          | Master's Th | nesis      | Jens Grafström |
|------------------|---------------|-------------|------------|----------------|
| <b>D</b> .       |               | 50.40       | 0.0070404  | 0.00010050     |
| Riga             | Vilnius       | 56.49       | -2.0276181 | 0.00219052     |
| Vilnius          | Šiauliai      | 28.99       | -0.0073452 | 0.00156466     |
| Klaipėda         | Šiauliai      | 29.31       | -0.2039907 | 0.21146366     |
| Kaunas           | Vilnius       | 41.54       | -0.1570263 | 0.3252926      |
| Kaunas           | Suwałki       | 75.95       | -7.7076561 | 8.6463056      |
| Eindhoven        | Rotterdam     | 14.13       | -0.0316948 | 0.02368554     |
| Amsterdam        | Zwolle        | 13.91       | -0.0354313 | 0.01297466     |
| Amsterdam        | Utrecht       | 27.55       | -0.0220216 | 0.00719507     |
| Groningen        | Zwolle        | 27.77       | -0.1005142 | 0.0346424      |
| Oslo             | Trondheim     | 6.25        | -0.0073452 | 0.00704097     |
| Bergen           | Oslo          | 11.28       | -0.2672496 | 0.27723802     |
| Gothenburg       | Oslo          | 11.17       | -0.6513022 | 0.65541609     |
| Drammen          | Kristiansand  | 18.22       | -0.514381  | 0.53319667     |
| Białystok        | Warsaw        | 32.56       | -3.1417927 | 3.49771695     |
| Białystok        | Suwałki       | 27.52       | -2.0829945 | 2.33408005     |
| Poznań           | Szczecin      | 23.57       | -0.0231376 | 0.01736771     |
| Poznań           | Łódź          | 64.09       | -1.6112925 | 2.55620296     |
| Poznań           | Wrocław       | 25.23       | -0.2032559 | 0.14926877     |
| Warsaw           | Łódź          | 37.5        | -0.0178734 | 1.83088572     |
| Wrocław          | Łódź          | 67.39       | -0.2928698 | 0.10669019     |
| Braga            | Vigo          | 80          | -2.204504  | 0.53198812     |
| Coimbra          | Porto         | 56.52       | -0.4685719 | 0.0337615      |
| Coimbra          | Guarda        | 15.33       | -0.1379846 | 0.09850694     |
| Coimbra          | Lisbon        | 54.46       | -0.0201994 | 0.10764563     |
| Lisbon           | Porto         | 58.56       | -0.4647121 | 0.00222964     |
| Faro             | Lisbon        | 16.67       | -0.1799875 | 0.18658559     |
| Badajoz          | Lisbon        | 63.13       | -1.7963038 | 1.56313069     |
| Arad             | Deva          | 54.19       | -5.2242714 | 1.31889119     |
| Arad             | Timişoara     | 11.9        | -0.7807534 | 0.34461447     |
| Cluj-Napoca      | ,<br>Deva     | 14.59       | -0.0046997 | 0.02703802     |
| Brașov           | Deva          | 8.92        | -0.3875482 | 1.55367961     |
| Craiova          | Timișoara     | 39.06       | -9.0542321 | 1.46747911     |
| Brașov           | Cluj-Napoca   | 21.4        | -0.289017  | 0.072881       |
| Cluj-Napoca      | Oradea        | 26.91       | -1.4181196 | 2.10312374     |
| Novi Sad         | Subotica      | 80.56       | -5.1743302 | 21.7323855     |
| Belgrade         | Niš           | 69.88       | -1.3935919 | 24.1601162     |
| Košice           | Žilina        | 24.97       | -0.513067  | 0.2406529      |
| Prešov           | Žilina        | 24.97       | -0.2195522 | 0.14611394     |
| Košice           | Prešov        | 12.99       | -0.0267268 | -0.0026993     |
| Divača           |               | 47.83       | -0.1366315 | 0.13971802     |
|                  | Koper         | 47.83       | -0.1282293 | 0.14175352     |
| Pamplona         | Zaragoza      |             |            |                |
| Murcia           | Valencia      | 28.33       | -0.0004081 | 0              |
| Alicante         | Valencia      | 53.12       | -0.7487816 | 0.86015172     |
| Antequera        | Seville       | 24.24       | 0          | 0              |
| Badajoz          | Madrid        | 43.23       | -3.3248231 | 2.25173895     |
| Santander        | Valladolid    | 33.52       | -0.3286178 | 0.10669019     |
| Burgos           | Santander     | 25.21       | -0.1391275 | 0              |
| León             | Santander     | 29.7        | -0.0024484 | 0.00140819     |
| Bilbao           | San Sebastián | 73.93       | -1.4777304 | 0.21087692     |

| University of Zurich | า               | Master's Tl | nesis      | Jens Grafström |
|----------------------|-----------------|-------------|------------|----------------|
|                      |                 |             |            |                |
| Bilbao               | Vitoria-Gasteiz | 71.9        | -0.5593568 | 0.04695933     |
| San Sebastián        | Vitoria-Gasteiz | 50.89       | -2.2293013 | 2.28481009     |
| Burgos               | Vitoria-Gasteiz | 62.5        | -1.5032694 | 2.25108381     |
| Antequera            | Granada         | 39.66       | -0.2750682 | 0.15077445     |
| Almería              | Murcia          | 87.94       | -0.8675764 | 0.35905012     |
| Almería              | Granada         | 60.84       | -0.606216  | 0.04731138     |
| Luleå                | Umeå            | 59.46       | -2.1777817 | 6.83619073     |
| Linköping            | Stockholm       | 17.72       | -0.8711123 | 1.6620199      |
| Gothenburg           | Malmö           | 13.07       | -0.6713033 | 0.67593269     |
| Arth-Goldau          | Zurich          | 15          | -0.2352211 | 0.06497246     |
| Edirne               | Istanbul        | 53.85       | -0.8376349 | 0.85823476     |
| Birmingham           | Liverpool       | 7           | -0.0007957 | 0.00068454     |
| Birmingham           | London          | 35.53       | -0.4766387 | 0.20856904     |
| Birmingham           | Carlisle        | 4.05        | -0.0431544 | 0.00420502     |
| Manchester           | Sheffield       | 20.75       | -0.0036318 | 0.00273815     |
| Leeds                | Manchester      | 20.37       | -0.0023464 | 0.00185803     |
| London               | Manchester      | 35.9        | -0.6474615 | 0.30579304     |
| Liverpool            | London          | 21.64       | -0.3271274 | 0.16782924     |
| Leeds                | Sheffield       | 0           | 0          | 0              |
| Kingston upon Hull   | Leeds           | 17.24       | -0.0006121 | 0.00058675     |

## H – Capital and Metropole Access

| node            | capi-<br>tal | t <sub>current</sub><br>[min] | t <sub>future</sub><br>[min] | differ-<br>ence [%] | <b>metropole</b><br>(≥500'000 inh) | t <sub>current</sub><br>[min] | t <sub>future</sub><br>[min] | differ-<br>ence [%] |
|-----------------|--------------|-------------------------------|------------------------------|---------------------|------------------------------------|-------------------------------|------------------------------|---------------------|
| A Coruña        | no           | 201                           | 201                          | 0                   | no                                 | 201                           | 201                          | 0                   |
| Aalborg         | no           | 239                           | 207                          | 13.39               | no                                 | 239                           | 207                          | 13.39               |
| Aarhus          | no           | 161                           | 147                          | 8.7                 | no                                 | 161                           | 147                          | 8.7                 |
| Aberdeen        | no           | 396                           | 396                          | 0                   | no                                 | 149                           | 149                          | 0                   |
| Ajaccio         | no           | Х                             | Х                            | Х                   | no                                 | Х                             | Х                            | Х                   |
| Alexandroupolis | no           | 793                           | 793                          | 0                   | no                                 | 793                           | 265.2<br>9                   | 66.55               |
| Algeciras       | no           | 322                           | 322                          | 0                   | no                                 | 190                           | 190                          | 0                   |
| Alicante        | no           | 142                           | 142                          | 0                   | no                                 | 128                           | 60                           | 53.12               |
| Almería         | no           | 374                           | 230                          | 38.5                | no                                 | 242                           | 118                          | 51.24               |
| Alvesta         | no           | 163                           | 149                          | 8.59                | no                                 | 117                           | 117                          | 0                   |
| Amsterdam       | yes          | -                             | -                            | -                   | yes                                | -                             | -                            | -                   |
| Ancona          | no           | 215                           | 185                          | 13.95               | no                                 | 170                           | 170                          | 0                   |
| Antequera       | no           | 150                           | 150                          | 0                   | no                                 | 18                            | 18                           | 0                   |
| Antwerp         | no           | 35                            | 35                           | 0                   | yes                                | -                             | -                            | -                   |
| Arad            | no           | 610                           | 492.95                       | 19.19               | no                                 | 251                           | 175.7<br>9                   | 29.97               |
| Arnhem          | no           | 60                            | 57.56                        | 4.06                | no                                 | 60                            | 57.56                        | 4.06                |
| Arth-Goldau     | no           | 96                            | 90                           | 6.25                | no                                 | 144                           | 144                          | 0                   |
| Athens          | yes          | -                             | -                            | -                   | yes                                | -                             | -                            | -                   |
| Avignon         | no           | 179                           | 179                          | 0                   | no                                 | 34                            | 34                           | 0                   |
| Bacău           | no           | 247                           | 247                          | 0                   | no                                 | 247                           | 247                          | 0                   |
| Badajoz         | no           | 266                           | 151                          | 43.23               | no                                 | 217                           | 80                           | 63.13               |
| Bălți           | no           | 274                           | 274                          | 0                   | no                                 | 274                           | 274                          | 0                   |
| Banja Luka      | no           | Х                             | 334.98                       | 100                 | no                                 | х                             | 248.9<br>1                   | 100                 |
| Banská Bystrica | no           | 222                           | 222                          | 0                   | no                                 | 268                           | 262                          | 2.24                |
| Bar             | no           | 59                            | 59                           | 0                   | no                                 | 646                           | 646                          | 0                   |
| Barcelona       | no           | 158                           | 158                          | 0                   | yes                                | -                             | -                            | -                   |
| Bari            | no           | 283                           | 185                          | 34.63               | no                                 | 220                           | 122                          | 44.55               |
| Basel           | no           | 58                            | 58                           | 0                   | no                                 | 140                           | 104                          | 25.71               |
| Bastia          | no           | Х                             | Х                            | Х                   | no                                 | Х                             | Х                            | Х                   |
| Bayonne         | no           | 273                           | 243                          | 10.99               | no                                 | 203                           | 125                          | 38.42               |
| Belfast         | no           | Х                             | Х                            | Х                   | no                                 | 125                           | 125                          | 0                   |
| Belgrade        | yes          | -                             | -                            | -                   | yes                                | -                             | -                            | -                   |
| Bergen          | no           | 399                           | 354                          | 11.28               | no                                 | 399                           | 354                          | 11.28               |
| Berlin          | yes          | -                             | -                            | -                   | yes                                | -                             | -                            | -                   |
| Bern            | yes          | -                             | -                            | -                   | no                                 | 185                           | 162                          | 12.43               |
| Białystok       | no           | 129                           | 87                           | 32.56               | no                                 | 129                           | 87                           | 32.56               |
| Bielefeld       | no           | 151                           | 116                          | 23.18               | no                                 | 46                            | 31                           | 32.61               |
| Bilbao          | no           | 254                           | 176                          | 30.71               | no                                 | 254                           | 159                          | 37.4                |
| Birmingham      | no           | 76                            | 49                           | 35.53               | yes                                | -                             | -                            | -                   |
| Bitola          | no           | 202                           | 202                          | 0                   | no                                 | 202                           | 202                          | 0                   |
| Boden           | no           | 563                           | 485                          | 13.85               | no                                 | 563                           | 485                          | 13.85               |
| Bodø            | no           | 1066                          | 1036                         | 2.81                | no                                 | 1066                          | 1036                         | 2.81                |

Table 16: Changes in capital and metropole (>500'000 inhabitants) access.

| University of Zurich |          |                 | Master                | 's Thesis           |           |            | Jens       | Grafström      |
|----------------------|----------|-----------------|-----------------------|---------------------|-----------|------------|------------|----------------|
| Bologna              | no       | 132             | 132                   | 0                   | no        | 64         | 64         | 0              |
| Bolzano              | no       | 274             | 214                   | 21.9                | no        | 163        | 98         | 39.88          |
| Bordeaux             | no       | 166             | 166                   | 0                   | no        | 136        | 60         | 55.88          |
| Bourges              | no       | 120             | 120                   | 0                   | no        | 120        | 120        | 0              |
| Braga                | no       | 217             | 111                   | 48.85               | no        | 217        | 111        | 48.85          |
| Brașov               | no       | 148             | 148                   | 0                   | no        | 148        | 148        | 0              |
| Bratislava           | yes      | -               | -                     | -                   | no        | 46         | 40         | 13.04          |
| Bregenz              | no       | 353             | 341                   | 3.4                 | no        | 122        | 122        | 0              |
| Bremen               | no       | 160             | 144                   | 10                  | yes       | -          | -          | -              |
| Brest                | no       | 224             | 224                   | 0                   | no        | 224        | 224        | 0              |
| Brig                 | no       | 66              | 66                    | 0                   | no        | 119        | 119        | 0              |
| Bristol              | no       | 76              | 76                    | 0                   | no        | 71         | 71         | 0              |
| Brno                 | no       | 148             | 148                   | 0                   | no        | 87         | 60         | 31.03          |
| Bruges               | no       | 50              | 40.97                 | 18.07               | no        | 50         | 40.97      | 18.07          |
| Brussels             | yes      | -               | -                     | -                   | yes       | -          | -          | -              |
| Bucharest            | yes      | -               | -                     | -                   | yes       | -          | -          | -              |
| Budapest             | yes      | -               | -                     | -                   | yes       | -          | -          | -              |
| Burgas               | no       | 405             | 263                   | 35.06               | no        | 405        | 263        | 35.06          |
| Burgos               | no       | 103             | 103                   | 0                   | no        | 103        | 103        | 0              |
| Bydgoszcz            | no       | 178             | 178                   | 0                   | no        | 81         | 81         | 0              |
| Cádiz                | no       | 243             | 243                   | 0                   | no        | 83         | 83         | 0              |
| Caen                 | no       | 115             | 115                   | 0                   | no        | 115        | 115        | 0              |
| Cagliari             | no       | X               | Х                     | X                   | no        | Х          | X          | X              |
| Calvi                | no       | х               | Х                     | Х                   | no        | х          | х          | Х              |
| Carlisle             | no       | 249             | 208                   | 16.47               | no        | 73         | 73         | 0              |
| Cartagena            | no       | 215             | 215                   | 0                   | no        | 215        | 164        | 23.72          |
| České Budějovice     | no       | 98              | 80                    | 18.37               | no        | 98         | 80         | 18.37          |
| Cherbourg-Octeville  | no       | 185             | 185                   | 0                   | no        | 185        | 185        | 0              |
| Chişinău             | yes      | -               | -                     | -                   | yes       | -          | -          | -              |
| Clermont-Ferrand     | no       | 261             | 261                   | 0                   | no        | 145        | 145        | 0              |
| Cluj-Napoca          | no       | 529             | 419.76                | 20.65               | no        | 473        | 354.7      | 25             |
| Coimbra              |          | 112             | 51                    | 54.46               | no        | 112        | 5<br>51    | 54.46          |
| Cologne              | no<br>no | 262             | 222                   | 15.27               |           | 112        | 51         | 54.40          |
| Constanța            | no       | 150             | 150                   | 0                   | yes<br>no | -<br>150   | -<br>150   | 0              |
| Copenhagen           |          | 150             | 150                   | 0                   |           | 150        | 150        | 0              |
| Córdoba              | yes      | -<br>118        | -<br>118              | -<br>0              | yes       | -<br>42    | -<br>42    | -              |
|                      | no       |                 |                       | 0                   | no        |            |            | 0              |
| Cork                 | no       | 152<br>avaatati | 152                   |                     | no        | 152<br>137 | 152<br>137 | 0<br>0         |
| Çorlu<br>Cosenza     | no       | 240             | 01. capital fi<br>168 | ot in network<br>30 | no        | 137        | 105        | 0<br>40.68     |
| Craiova              | no       | 240<br>243      | 243                   | 0                   | no        | 243        | 180        | 40.08<br>25.93 |
|                      | no       |                 |                       |                     | no        |            | 136.2      |                |
| Daugavpils           | no       | 205             | 205                   | 0                   | no        | 205        | 7          | 33.53          |
| Debrecen             | no       | 155             | 155                   | 0                   | no        | 155        | 155        | 0              |
| Derry                | no       | Х               | Х                     | Х                   | no        | 246        | 246        | 0              |
| Deva                 | no       | 478             | 402.38                | 15.82               | no        | 383        | 266.3<br>6 | 30.46          |
| Dijon                | no       | 96              | 96                    | 0                   | no        | 95         | 95         | 0              |
| Divača               | no       | 96              | 96                    | 0                   | no        | 225        | 225        | 0              |
| Doncaster            | no       | 94              | 94                    | 0                   | no        | 24         | 24         | 0              |

| University of Zurich |     |           | Maste     | r's Thesis     |     | Grafström |           |       |
|----------------------|-----|-----------|-----------|----------------|-----|-----------|-----------|-------|
| Dortmund             | no  | 197       | 162       | 17.77          | yes | -         | _         | -     |
| Drammen              | no  | 32        | 32        | 0              | no  | 32        | 32        | 0     |
| Dresden              | no  | 110       | 80        | °<br>27.27     | yes | -         | -         | -     |
| Dublin               | yes | -         | -         | -              | yes | -         | _         | -     |
| Duisburg             | no  | 229       | 194       | 15.28          | yes | _         | _         | _     |
| Durrës               | no  | X         | 20        | 100            | no  | X         | X         | X     |
| Düsseldorf           | no  | 243       | 208       | 14.4           | yes | -         | -         | -     |
| Edinburgh            | no  | 256       | 256       | 0              | no  | 45        | -<br>45   | 0     |
| Edirne               |     |           |           | not in network |     | 45<br>260 | 43<br>120 | 53.85 |
| Eindhoven            | no  | 74        | 71.56     | 3.29           |     | 200<br>62 | 48.34     | 22.04 |
|                      | no  | 74<br>52  | 52        |                | no  |           |           |       |
| Entroncamento        | no  | 52<br>97  | 52<br>97  | 0              | no  | 52<br>40  | 52<br>40  | 0     |
| Erfurt               | no  |           |           | 0              | no  |           |           | 0     |
| Esbjerg              | no  | 148       | 134       | 9.46           | no  | 148       | 134       | 9.46  |
| Essen                | no  | 218       | 183       | 16.06          | yes | -         | -         | -     |
| Exeter<br>-          | no  | 133       | 133       | 0              | no  | 128       | 128       | 0     |
| Faro                 | no  | 180       | 150       | 16.67          | no  | 180       | 150       | 16.67 |
| Feldkirch            | no  | 366       | 354       | 3.28           | no  | 153       | 153       | 0     |
| Florence             | no  | 95        | 95        | 0              | no  | 95        | 95        | 0     |
| Foggia               | no  | 226       | 128       | 43.36          | no  | 163       | 65        | 60.12 |
| Frankfurt            | no  | 222       | 159       | 28.38          | yes | -         | -         | -     |
| Freiburg             | no  | 344       | 254       | 26.16          | no  | 100       | 77        | 23    |
| Galați               | no  | 217       | 217       | 0              | no  | 217       | 217       | 0     |
| Galway               | no  | 136       | 136       | 0              | no  | 136       | 136       | 0     |
| Gdańsk               | no  | 148       | 148       | 0              | no  | 148       | 148       | 0     |
| Geneva               | no  | 102       | 102       | 0              | no  | 113       | 113       | 0     |
| Genoa                | no  | 275       | 246       | 10.55          | yes | -         | -         | -     |
| Ghent                | no  | 28        | 28        | 0              | no  | 28        | 28        | 0     |
| Gijón                | no  | 214       | 214       | 0              | no  | 214       | 214       | 0     |
| Girona               | no  | 196       | 196       | 0              | no  | 38        | 38        | 0     |
| Glasgow              | no  | 301       | 281       | 6.64           | yes | -         | -         | -     |
| Gothenburg           | no  | 218       | 218       | 0              | yes | -         | -         | -     |
| Granada              | no  | 208       | 185       | 11.06          | no  | 76        | 53        | 30.26 |
| Graz                 | no  | 156       | 110       | 29.49          | no  | 156       | 110       | 29.49 |
| Grenoble             | no  | 199       | 145       | 27.14          | no  | 83        | 29        | 65.06 |
| Groningen            | no  | 121       | 98.21     | 18.84          | no  | 121       | 98.21     | 18.84 |
| Guarda               | no  | 262       | 178       | 32.06          | no  | 262       | 178       | 32.06 |
| Győr                 | no  | 65        | 65        | 0              | no  | 65        | 65        | 0     |
| Hallsberg            | no  | 88        | 88        | 0              | no  | 88        | 88        | 0     |
| Hamburg              | no  | 104       | 104       | 0              | yes | -         | _         | -     |
| Hanover              | no  | 101       | 85        | 15.84          | yes | -         | -         | -     |
| Helsinki             | yes | _         | -         | -              | yes | -         | -         | -     |
| Hradec Králové       | no  | 95        | 95        | 0              | no  | 95        | 95        | 0     |
| lași                 | no  | 364       | 364       | 0              | no  | 214       | 214       | 0     |
| Innsbruck            | no  | 251       | 239       | 4.78           | no  | 104       | 55        | 47.12 |
| Inverness            | no  | 457       | 457       | 0              | no  | 179       | 179       | 0     |
| Istanbul             | no  |           |           | not in network |     | -         | -         | -     |
| Jelgava              | no  | 46        | 46        | 0              | no  | -<br>46   | -<br>46   | -     |
| Joensuu              |     | 40<br>269 | 40<br>269 | 0              | no  | 40<br>269 | 40<br>269 | 0     |
|                      | no  |           |           |                |     |           |           |       |
| Kalmar               | no  | 243       | 229       | 5.76           | no  | 197       | 197       | 0     |

| University of Zurich |     | Master's Thesis |        |       |     |     | Jens       | Grafström |
|----------------------|-----|-----------------|--------|-------|-----|-----|------------|-----------|
|                      | 1   |                 |        |       | 1   |     |            |           |
| Karlsruhe            | no  | 284             | 212    | 25.35 | no  | 40  | 35         | 12.5      |
| Kassel               | no  | 155             | 139    | 10.32 | no  | 54  | 39         | 27.78     |
| Katowice             | no  | 142             | 142    | 0     | no  | 47  | 47         | 0         |
| Kaunas               | no  | 65              | 38     | 41.54 | no  | 65  | 38         | 41.54     |
| Kiel                 | no  | 192             | 192    | 0     | no  | 88  | 88         | 0         |
| Kingston upon Hull   | no  | 142             | 142    | 0     | no  | 58  | 48         | 17.24     |
| Kiruna               | no  | 748             | 670    | 10.43 | no  | 748 | 670        | 10.43     |
| Klagenfurt           | no  | 237             | 155    | 34.6  | no  | 237 | 155        | 34.6      |
| Klaipėda             | no  | 254             | 180    | 29.13 | no  | 240 | 180        | 25        |
| Kolari               | no  | 581             | 581    | 0     | no  | 581 | 581        | 0         |
| Koper                | no  | 141             | 118.54 | 15.93 | no  | 270 | 247.5<br>4 | 8.32      |
| Košice               | no  | 307             | 265.98 | 13.36 | no  | 213 | 213        | 0         |
| Koszalin             | no  | 305             | 305    | 0     | no  | 209 | 209        | 0         |
| Kraków               | no  | 137             | 137    | 0     | yes | -   | -          | -         |
| Kristiansand         | no  | 268             | 225    | 16.04 | no  | 268 | 225        | 16.04     |
| Kuopio               | no  | 260             | 260    | 0     | no  | 260 | 260        | 0         |
| La Rochelle          | no  | 170             | 170    | 0     | no  | 170 | 170        | 0         |
| Larissa              | no  | 202             | 202    | 0     | no  | 202 | 202        | 0         |
| Lausanne             | no  | 67              | 67     | 0     | no  | 148 | 148        | 0         |
| Le Havre             | no  | 129             | 129    | 0     | no  | 129 | 129        | 0         |
| Le Mans              | no  | 59              | 59     | 0     | no  | 59  | 59         | 0         |
| Lecce                | no  | 363             | 265    | 27    | no  | 300 | 202        | 32.67     |
| Leeds                | no  | 124             | 124    | 0     | yes | -   | -          | -         |
| Leicester            | no  | 67              | 67     | 0     | no  | 57  | 57         | 0         |
| Leipzig              | no  | 73              | 73     | 0     | yes | -   | -          | -         |
| León                 | no  | 123             | 123    | 0     | no  | 123 | 123        | 0         |
| Liberec              | no  | 147             | 147    | 0     | no  | 123 | 123        | 0         |
| Liège                | no  | 44              | 44     | 0     | no  | 44  | 44         | 0         |
| Liepāja              | no  | 197             | 197    | 0     | no  | 197 | 197        | 0         |
| Lille                | no  | 64              | 64     | 0     | no  | 33  | 33         | 0         |
| Limerick             | no  | 124             | 124    | 0     | no  | 124 | 124        | 0         |
| Limoges              | no  | 255             | 255    | 0     | no  | 218 | 203        | 6.88      |
| Linköping            | no  | 79              | 65     | 17.72 | no  | 79  | 65         | 17.72     |
| Linz                 | no  | 75              | 75     | 0     | no  | 75  | 75         | 0         |
| Lisbon               | yes | -               | -      | -     | yes | -   | -          | -         |
| Liverpool            | no  | 134             | 105    | 21.64 | yes | -   | -          | -         |
| Ljubljana            | yes | -               | -      | -     | no  | 129 | 129        | 0         |
| Łódź                 | no  | 72              | 45     | 37.5  | yes | -   | -          | -         |
| London               | yes | -               | -      | -     | yes | -   | -          | -         |
| Lübeck               | no  | 150             | 150    | 0     | no  | 46  | 46         | 0         |
| Lublin               | no  | 112             | 112    | 0     | no  | 112 | 112        | 0         |
| Lugano               | no  | 165             | 159    | 3.64  | no  | 75  | 75         | 0         |
| Luleå                | no  | 590             | 458    | 22.37 | no  | 590 | 458        | 22.37     |
| Luxembourg           | yes | -               | -      | -     | no  | 139 | 120        | 13.67     |
| Lyon                 | no  | 116             | 116    | 0     | yes | -   |            | -         |
| Madrid               | yes | -               | _      | -     | yes | -   | -          | -         |
| Málaga               | no  | 168             | 168    | 0     | yes | _   | -          | -         |
| Malmö                | no  | 242             | 228    | 5.79  | no  | 38  | 38         | 0         |
|                      | 1   |                 |        | 00    | 1   |     |            | -         |

| University of Zurich |     |      | Master | 's Thesis  | i   |         | Jens       | Grafström |
|----------------------|-----|------|--------|------------|-----|---------|------------|-----------|
| Manchester           | no  | 156  | 100    | 35.9       | yes | _       | _          | _         |
| Mannheim             | no  | 260  | 188    | 27.69      | no  | -<br>38 | -<br>29    | - 23.68   |
| Maribor              | no  | 109  | 109    | 0          | no  | 158     | 155        | 1.9       |
| Marseille            | no  | 213  | 213    | 0          | yes | -       | -          | -         |
| Messina              | no  | 393  | 318    | 0<br>19.08 | no  | 169     | 169        | 0         |
| Metz                 | no  | 93   | 93     | 0          | no  | 93      | 93         | 0         |
| Milan                | no  | 196  | 196    | 0          | yes | -       | -          | -         |
| Miskolc              | no  | 134  | 134    | 0          | no  | 134     | 134        | 0         |
| Montpellier          | no  | 249  | 249    | 0          | no  | 104     | 104        | 0         |
| Mostar               | no  | 115  | 115    | 0          | no  | х       | 576.3      | 100       |
|                      |     |      |        |            |     |         | 7          |           |
| Munich               | no  | 241  | 221    | 8.3        | yes | -       | -          | -         |
| Münster              | no  | 208  | 173    | 16.83      | no  | 29      | 29         | 0         |
| Murcia               | no  | 165  | 165    | 0          | no  | 165     | 114        | 30.91     |
| Nantes               | no  | 137  | 137    | 0          | no  | 137     | 137        | 0         |
| Naples               | no  | 63   | 63     | 0          | yes | -       | -<br>204.9 | -         |
| Narva                | no  | 192  | 104.94 | 45.34      | no  | 706     | 4          | 70.97     |
| Narvik               | no  | 1247 | 1169   | 6.26       | no  | 934     | 856        | 8.35      |
| Newcastle upon Tyne  | no  | 169  | 169    | 0          | no  | 78      | 78         | 0         |
| Nice                 | no  | 361  | 361    | 0          | no  | 148     | 122.9<br>9 | 16.9      |
| Niš                  | no  | 332  | 100    | 69.88      | no  | 332     | 100        | 69.88     |
| Norwich              | no  | 108  | 108    | 0          | no  | 108     | 108        | 0         |
| Nottingham           | no  | 96   | 96     | 0          | no  | 56      | 56         | 0         |
| Novi Sad             | no  | 36   | 36     | 0          | no  | 36      | 36         | 0         |
| Nuremberg            | no  | 177  | 157    | 11.3       | yes | -       | -          | -         |
| Odense               | no  | 69   | 60     | 13.04      | no  | 69      | 60         | 13.04     |
| Olbia                | no  | Х    | Х      | Х          | no  | Х       | Х          | Х         |
| Olsztyn              | no  | 142  | 142    | 0          | no  | 142     | 142        | 0         |
| Oradea               | no  | 755  | 549.98 | 27.15      | no  | 244     | 224.5<br>3 | 7.98      |
| Osijek               | no  | 493  | 493    | 0          | no  | 300     | 178.1<br>3 | 40.62     |
| Oslo                 | yes | -    | -      | -          | yes | -       | -          | -         |
| Östersund            | no  | 301  | 301    | 0          | no  | 301     | 301        | 0         |
| Ostrava              | no  | 192  | 184    | 4.17       | no  | 143     | 96         | 32.87     |
| Oulu                 | no  | 313  | 313    | 0          | no  | 313     | 313        | 0         |
| Ourense              | no  | 135  | 135    | 0          | no  | 135     | 135        | 0         |
| Padborg              | no  | 150  | 136    | 9.33       | no  | 122     | 122        | 0         |
| Palermo              | no  | 562  | 487    | 13.35      | yes | -       | -          | -         |
| Pamplona             | no  | 179  | 135    | 24.58      | no  | 110     | 60         | 45.45     |
| Paris                | yes | -    | -      | -          | yes | -       | -          | -         |
| Pärnu                | no  | Х    | 40     | 100        | no  | Х       | 60         | 100       |
| Patras               | no  | Х    | 110    | 100        | no  | Х       | 110        | 100       |
| Pécs                 | no  | 147  | 147    | 0          | no  | 147     | 147        | 0         |
| Peja                 | no  | 116  | 116    | 0          | no  | 276     | 276        | 0         |
| Penzance             | no  | 307  | 307    | 0          | no  | 302     | 302        | 0         |
| Perpignan            | no  | 341  | 302    | 11.44      | no  | 76      | 76         | 0         |
| Perth                | no  | 335  | 335    | 0          | no  | 57      | 57         | 0         |
| Perugia              | no  | 135  | 120    | 11.11      | no  | 135     | 120        | 11.11     |
| Pescara              | no  | 210  | 120    | 42.86      | no  | 210     | 120        | 42.86     |

| University of Zurich        |     |           | Master    | 's Thesis |     |     | Jens       | Grafström |
|-----------------------------|-----|-----------|-----------|-----------|-----|-----|------------|-----------|
| Peterborough                | no  | 46        | 46        | 0         | no  | 46  | 46         | 0         |
| Pisa                        | no  | 40<br>147 | 40<br>147 | 0         | no  | 128 | 128        | 0         |
| Pitești                     | no  | 111       | 111       | 0         | no  | 111 | 111        | 0         |
| Plovdiv                     | no  | 152       | 80        | 47.37     | no  | 152 | 80         | 47.37     |
| Plzeň                       | no  | 83        | 51        | 38.55     | no  | 83  | 51         | 38.55     |
| Podgorica                   | yes | -         | -         | -         | no  | 587 | 587        | 0         |
| Porto                       | no  | 181       | 75        | 58.56     | no  | 181 | 75         | 58.56     |
| Poznań                      | no  | 153       | 110       | 28.1      | yes | -   | -          | -         |
| Prague                      | yes | -         | -         | -         | yes | _   | -          | _         |
| Prešov                      | no  | 309       | 273.56    | 11.47     | no  | 250 | 251.5      | 0         |
| Pristina                    | yes | -         | -         | _         | no  | 160 | 160        | 0         |
| Regensburg                  | no  | 229       | 209       | 8.73      | no  | 52  | 52         | 0         |
| Reims                       | no  | 46        | 46        | 0         | no  | 46  | 46         | 0         |
| Rennes                      | no  | 104       | 104       | 0         | no  | 104 | 104        | 0         |
| Riga                        | yes | -         | -         | -         | yes | -   | -          | -         |
| Rijeka                      | no  | 272       | 90        | 66.91     | no  | 272 | 90         | 66.91     |
| Rome                        | yes | -         | -         | -         | yes | _   | -          | -         |
| Rostock                     | no  | 120       | 120       | 0         | no  | 109 | 109        | 0         |
| Rotterdam                   | no  | 38        | 38        | 0         | yes | -   | -          | -         |
| Rovaniemi                   | no  | 451       | 451       | 0         | no  | 451 | 451        | 0         |
| Ruse                        | no  | 366       | 366       | 0         | no  | 210 | 80         | 61.9      |
| Rzeszów                     | no  | 223       | 223       | 0         | no  | 86  | 86         | 0         |
| Saarbrücken                 | no  | 337       | 265       | 21.36     | no  | 115 | 106        | 7.83      |
| Salamanca                   | no  | 101       | 101       | 0         | no  | 101 | 101        | 0         |
| Salzburg                    | no  | 143       | 131       | 8.39      | no  | 88  | 88         | 0         |
| San Sebastián               | no  | 295       | 188       | 36.27     | no  | 278 | 171        | 38.49     |
| Santander                   | no  | 243       | 183       | 24.69     | no  | 243 | 183        | 24.69     |
| Santiago de Compo-<br>stela | no  | 173       | 173       | 0         | no  | 173 | 173        | 0         |
| Sarajevo                    | yes | -         | -         | -         | no  | х   | 461.3<br>7 | 100       |
| Sassari                     | no  | х         | х         | х         | no  | Х   | X          | х         |
| Satu Mare                   | no  | 907       | 701.98    | 22.6      | no  | 312 | 312        | 0         |
| Seinäjoki                   | no  | 158       | 158       | 0         | no  | 158 | 158        | 0         |
| Seville                     | no  | 160       | 160       | 0         | yes | -   | -          | -         |
| Sheffield                   | no  | 118       | 109       | 7.63      | yes | _   | _          | _         |
| Shumen                      | no  | 431       | 431       | 0         | no  | 410 | 280        | 31.71     |
| Šiauliai                    | no  | 138       | 98        | 28.99     | no  | 124 | 98         | 20.97     |
| Skopje                      | yes | -         | -         | -         | yes | -   | -          | -         |
| Sligo                       | no  | 189       | 189       | 0         | no  | 189 | 189        | 0         |
| Sofia                       | yes | -         | -         | -         | yes | -   | -          | -         |
| Southampton                 | no  | 75        | 75        | 0         | no  | 75  | 75         | 0         |
| Split                       |     | 406       | 355.77    | 12.37     |     | 406 | 355.7      | 12.37     |
| -                           | no  |           |           |           | no  |     | 7          |           |
| Stara Zagora                | no  | 282       | 175       | 37.94     | no  | 282 | 175        | 37.94     |
| Stavanger                   | no  | 444       | 401       | 9.68      | no  | 444 | 401        | 9.68      |
| Stockholm                   | yes | -         | -         | -         | yes | -   | -          | -         |
| Strasbourg                  | no  | 123       | 123       | 0         | no  | 85  | 70         | 17.65     |
| Stuttgart                   | no  | 298       | 221       | 25.84     | yes | -   | -          | -         |
| Subotica                    | no  | 252       | 78        | 69.05     | no  | 209 | 72         | 65.55     |

| University of Zurich |     | Master's Thesis |        |       |     | Jens Grafström |            |            |  |
|----------------------|-----|-----------------|--------|-------|-----|----------------|------------|------------|--|
| 0                    | l   | 0.47            | 0.47   | 0     | 1   | 0.47           | 0.47       | 0          |  |
| Suceava              | no  | 347             | 347    | 0     | no  | 347            | 347        | 0          |  |
| Sundsvall            | no  | 212             | 212    | 0     | no  | 212            | 212        | 0          |  |
| Suwałki              | no  | 238             | 166    | 30.25 | no  | 223            | 76         | 65.92<br>0 |  |
| Swansea              | no  | 161             | 161    | 0     | no  | 156            | 156        | 0          |  |
| Syracuse             | no  | 541             | 436    | 19.41 | no  | 279            | 219        | 21.51      |  |
| Szczecin             | no  | 310             | 230    | 25.81 | no  | 157            | 90         | 42.68      |  |
| Szeged               | no  | 127             | 127    | 0     | no  | 127            | 127        | 0          |  |
| Szolnok              | no  | 80              | 80     | 0     | no  | 80             | 80         | 0          |  |
| Szombathely          | no  | 134             | 134    | 0     | no  | 134            | 134        | 0          |  |
| Tallinn<br>–         | yes | -               | -      | -     | no  | 607            | 100        | 83.53      |  |
| Tampere              | no  | 95              | 95     | 0     | no  | 95             | 95         | 0          |  |
| Taranto              | no  | 363             | 265    | 27    | no  | 300            | 202        | 32.67      |  |
| Tartu                | no  | 137             | 50.12  | 63.41 | no  | 470            | 150.1<br>2 | 68.06      |  |
| The Hague            | no  | 50              | 50     | 0     | yes | -              | -          | -          |  |
| Thessaloniki         | no  | 291             | 291    | 0     | no  | 291            | 210.2<br>7 | 27.74      |  |
| Thurso               | no  | 679             | 679    | 0     | no  | 401            | 401        | 0          |  |
| Timișoara            | no  | 633             | 476.37 | 24.74 | no  | 336            | 181.6<br>4 | 45.94      |  |
| Tirana               | yes | -               | -      | -     | no  | Х              | Х          | Х          |  |
| Tornio               | no  | 424             | 424    | 0     | no  | 424            | 424        | 0          |  |
| Toulouse             | no  | 302             | 226    | 25.17 | yes | -              | -          | -          |  |
| Tours                | no  | 61              | 61     | 0     | no  | 61             | 61         | 0          |  |
| Trieste              | no  | 327             | 317    | 3.06  | no  | 246            | 226        | 8.13       |  |
| Trondheim            | no  | 480             | 450    | 6.25  | no  | 480            | 450        | 6.25       |  |
| Turin                | no  | 246             | 246    | 0     | yes | -              | -          | -          |  |
| Turku                | no  | 112             | 78     | 30.36 | no  | 112            | 78         | 30.36      |  |
| Ulm                  | no  | 298             | 248    | 16.78 | no  | 42             | 27         | 35.71      |  |
| Umeå                 | no  | 368             | 368    | 0     | no  | 368            | 368        | 0          |  |
| Ungheni              | no  | 180             | 180    | 0     | no  | 180            | 180        | 0          |  |
| Utrecht              | no  | 26              | 23.56  | 9.37  | no  | 26             | 23.56      | 9.37       |  |
| Vaduz/Schaan         | yes | -               | -      | -     | no  | 171            | 171        | 0          |  |
| Valencia             | no  | 113             | 113    | 0     | yes | -              | -          | -          |  |
| Valladolid           | no  | 64              | 64     | 0     | no  | 64             | 64         | 0          |  |
| Varaždin             | no  | 155             | 155    | 0     | no  | 155            | 155        | 0          |  |
| Varna                | no  | 503             | 361    | 28.23 | no  | 430            | 300        | 30.23      |  |
| Västerås             | no  | 56              | 56     | 0     | no  | 56             | 56         | 0          |  |
| Veles                | no  | 52              | 52     | 0     | no  | 52             | 52         | 0          |  |
| Veliko Tarnovo       | no  | 300             | 300    | 0     | no  | 300            | 235        | 21.67      |  |
| Venice               | no  | 214             | 214    | 0     | no  | 133            | 123        | 7.52       |  |
| Verona               | no  | 184             | 184    | 0     | no  | 73             | 68         | 6.85       |  |
| Vienna               | yes | -               | -      | -     | yes | -              | -          | -          |  |
| Vigo                 | no  | 227             | 227    | 0     | no  | 227            | 141        | 37.89      |  |
| Villa San Giovanni   | no  | 308             | 233    | 24.35 | no  | 245            | 170        | 30.61      |  |
| Villach              | no  | 260             | 178    | 31.54 | no  | 228            | 178        | 21.93      |  |
| Vilnius              | yes | -               | -      | -     | yes | -              | -          | -          |  |
| Vitoria-Gasteiz      | no  | 183             | 133    | 27.32 | no  | 166            | 116        | 30.12      |  |
| Warsaw               | yes | -               | -      | -     | yes | -              | -          | -          |  |
| Waterford            | no  | 117             | 117    | 0     | no  | 117            | 117        | 0          |  |

| University of Zuric | h        | Master's Thesis |       |                |           |         |         | Jens Grafström |  |
|---------------------|----------|-----------------|-------|----------------|-----------|---------|---------|----------------|--|
| Wrocław             | 100      | 255             | 105   | 58.82          | 1,100     |         |         |                |  |
| Wuppertal           | no<br>no | 233             | 105   | 56.62<br>15.02 | yes<br>no | -<br>20 | -<br>20 | -<br>0         |  |
| York                | no       | 114             | 114   | 0              | no        | 23      | 23      | 0              |  |
| Zagreb              | yes      | -               | -     | -              | yes       | -       | -       | -              |  |
| Zaragoza            | no       | 75              | 75    | 0              | yes       | -       | -       | -              |  |
| Žilina              | no       | 123             | 123   | 0              | no        | 169     | 163     | 3.55           |  |
| Zurich              | no       | 56              | 56    | 0              | no        | 184     | 157     | 14.67          |  |
| Zwolle              | no       | 65              | 50.26 | 22.68          | no        | 65      | 50.26   | 22.68          |  |

## I – Reachability Changes

|                 | number of newly reachable node within rail journeys below… |     |      |  |  |  |  |
|-----------------|------------------------------------------------------------|-----|------|--|--|--|--|
| node            | 4 h                                                        | 8 h | 12 h |  |  |  |  |
| A Coruña        | 3                                                          | 4   | 6    |  |  |  |  |
| Aalborg         | 0                                                          | 5   | 21   |  |  |  |  |
| Aarhus          | 0                                                          | 7   | 15   |  |  |  |  |
| Aberdeen        | 0                                                          | 0   | 3    |  |  |  |  |
| Ajaccio         | 0                                                          | 0   | 0    |  |  |  |  |
| Alexandroupolis | 2                                                          | 7   | 16   |  |  |  |  |
| Algeciras       | 0                                                          | 5   | 6    |  |  |  |  |
| Alicante        | 5                                                          | 12  | 24   |  |  |  |  |
| Almería         | 8                                                          | 21  | 19   |  |  |  |  |
| Alvesta         | 1                                                          | 17  | 44   |  |  |  |  |
| Amsterdam       | 3                                                          | 10  | 24   |  |  |  |  |
| Ancona          | 3                                                          | 19  | 46   |  |  |  |  |
| Antequera       | 3                                                          | 7   | 15   |  |  |  |  |
| Antwerp         | 0                                                          | 12  | 20   |  |  |  |  |
| Arad            | 4                                                          | 13  | 42   |  |  |  |  |
| Arnhem          | 1                                                          | 13  | 21   |  |  |  |  |
| Arth-Goldau     | 2                                                          | 12  | 26   |  |  |  |  |
| Athens          | 1                                                          | 2   | 6    |  |  |  |  |
| Avignon         | 4                                                          | 22  | 27   |  |  |  |  |
| Bacău           | 0                                                          | 0   | 5    |  |  |  |  |
| Badajoz         | 7                                                          | 9   | 18   |  |  |  |  |
| Bălți           | 0                                                          | 0   | 0    |  |  |  |  |
| Banja Luka      | 0                                                          | 17  | 44   |  |  |  |  |
| Banská Bystrica | 1                                                          | 6   | 33   |  |  |  |  |
| Bar             | 0                                                          | 0   | 0    |  |  |  |  |
| Barcelona       | 4                                                          | 19  | 24   |  |  |  |  |
| Bari            | 2                                                          | 2   | 25   |  |  |  |  |
| Basel           | 10                                                         | 17  | 27   |  |  |  |  |
| Bastia          | 0                                                          | 0   | 0    |  |  |  |  |
| Bayonne         | 9                                                          | 29  | 25   |  |  |  |  |
| Belfast         | 0                                                          | 0   | 0    |  |  |  |  |
| Belgrade        | 8                                                          | 33  | 80   |  |  |  |  |
| Bergen          | 0                                                          | 0   | 3    |  |  |  |  |
| Berlin          | 12                                                         | 27  | 30   |  |  |  |  |
| Bern            | 4                                                          | 12  | 21   |  |  |  |  |
| Białystok       | 9                                                          | 19  | 51   |  |  |  |  |
| Bielefeld       | 8                                                          | 20  | 24   |  |  |  |  |
| Bilbao          | 6                                                          | 27  | 67   |  |  |  |  |
| Birmingham      | 3                                                          | 11  | 30   |  |  |  |  |
| Bitola          | 0                                                          | 5   | 19   |  |  |  |  |
| Boden           | 3                                                          | 8   | 14   |  |  |  |  |
| Bodø            | 0                                                          | 0   | 0    |  |  |  |  |
| Bologna         | 5                                                          | 41  | 49   |  |  |  |  |

 Table 17: Changes in reachability within the ranges of 4 h, 8 h, and 12 h.

|                     | Master | 5 110313 |    |
|---------------------|--------|----------|----|
|                     | I      |          |    |
| Bolzano             | 14     | 49       | 56 |
| Bordeaux            | 6      | 17       | 24 |
| Bourges             | 1      | 16       | 29 |
| Braga               | 3      | 18       | 9  |
| Brașov              | 1      | 7        | 19 |
| Bratislava          | 5      | 21       | 29 |
| Bregenz             | 6      | 16       | 21 |
| Bremen              | 8      | 18       | 23 |
| Brest               | 0      | 5        | 18 |
| Brig                | 3      | 11       | 20 |
| Bristol             | 1      | 5        | 23 |
| Brno                | 9      | 43       | 42 |
| Bruges              | 5      | 15       | 24 |
| Brussels            | 4      | 14       | 18 |
| Bucharest           | 1      | 4        | 16 |
| Budapest            | 5      | 13       | 37 |
| Burgas              | 1      | 6        | 20 |
| Burgos              | 3      | 16       | 50 |
| Bydgoszcz           | 0      | 15       | 37 |
| Cádiz               | 0      | 5        | 5  |
| Caen                | 0      | 10       | 24 |
| Cagliari            | 0      | 0        | 0  |
| Calvi               | 0      | 0        | 0  |
| Carlisle            | 2      | 13       | 18 |
| Cartagena           | 4      | 8        | 11 |
| České Budějovice    | 5      | 37       | 41 |
| Cherbourg-Octeville | 0      | 7        | 22 |
| Chișinău            | 0      | 0        | 1  |
| Clermont-Ferrand    | 0      | 10       | 24 |
| Cluj-Napoca         | 2      | 8        | 25 |
| Coimbra             | 4      | 21       | 11 |
| Cologne             | 5      | 17       | 21 |
| Constanța           | 1      | 3        | 7  |
| Copenhagen          | 6      | 33       | 54 |
| Córdoba             | 2      | 8        | 13 |
| Cork                | 0      | 0        | 0  |
| Çorlu               | 1      | 3        | 7  |
| Cosenza             | 2      | 5        | 40 |
| Craiova             | 2      | 15       | 30 |
| Daugavpils          | 4      | 8        | 22 |
| Debrecen            | 4      | 8        | 24 |
| Derry               | 0      | 0        | 0  |
| Deva                | 2      | 11       | 30 |
| Dijon               | 3      | 15       | 25 |
| Divača              | 0      | 15       | 45 |
| Doncaster           | 0      | 4        | 18 |
| Dortmund            | 1      | 13       | 18 |
| Drammen             | 0      | 1        | 12 |
| Dresden             | 13     | 35       | 41 |
|                     |        |          |    |

Master's Thesis

Jens Grafström

University of Zurich

| University of Zurich | Master's Thesis | 8       | Jens Grafström |  |  |
|----------------------|-----------------|---------|----------------|--|--|
| Dublin               | 0               | 0       | 0              |  |  |
|                      | 3               | 17      | 19             |  |  |
| Duisburg             |                 |         |                |  |  |
| Durrës<br>Düsseldorf | 1<br>3          | 1<br>18 | 1<br>21        |  |  |
|                      |                 |         | 7              |  |  |
| Edinburgh<br>Edirne  | 0               | 0<br>2  | 13             |  |  |
| Eindhoven            | 2               |         |                |  |  |
|                      | 4               | 14      | 24             |  |  |
| Entroncamento        | 3               | 18      | 9              |  |  |
| Erfurt               | 16              | 38      | 28<br>21       |  |  |
| Esbjerg              | 0               | 9       |                |  |  |
| Essen                | 3               | 16      | 22             |  |  |
| Exeter               | 0               | 3       | 15             |  |  |
| Faro                 | 3               | 8       | 26             |  |  |
| Feldkirch            | 4               | 15      | 20             |  |  |
| Florence             | 3               | 30      | 45             |  |  |
| Foggia               | 3               | 4       | 34             |  |  |
| Frankfurt            | 6               | 20      | 21             |  |  |
| Freiburg             | 8               | 18      | 29             |  |  |
| Galați               | 0               | 1       | 7              |  |  |
| Galway               | 0               | 0       | 0              |  |  |
| Gdańsk               | 1               | 8       | 34             |  |  |
| Geneva               | 3               | 10      | 28             |  |  |
| Genoa                | 9               | 47      | 46             |  |  |
| Ghent                | 1               | 11      | 21             |  |  |
| Gijón                | 3               | 7       | 19             |  |  |
| Girona               | 3               | 25      | 21             |  |  |
| Glasgow              | 1               | 2       | 8              |  |  |
| Gothenburg           | 1               | 9       | 48             |  |  |
| Granada              | 3               | 9       | 11             |  |  |
| Graz                 | 2               | 29      | 32             |  |  |
| Grenoble             | 14              | 28      | 40             |  |  |
| Groningen            | 7               | 19      | 32             |  |  |
| Guarda               | 7               | 28      | 35             |  |  |
| Győr                 | 6               | 19      | 32             |  |  |
| Hallsberg            | 0               | 4       | 28             |  |  |
| Hamburg              | 8               | 17      | 25             |  |  |
| Hanover              | 12              | 26      | 24             |  |  |
| Helsinki             | 0               | 0       | 4              |  |  |
| Hradec Králové       | 2               | 38      | 61             |  |  |
| lași                 | 0               | 1       | 5              |  |  |
| Innsbruck            | 17              | 33      | 22             |  |  |
| Inverness            | 0               | 0       | 1              |  |  |
| Istanbul             | 1               | 6       | 7              |  |  |
| Jelgava              | 4               | 10      | 22             |  |  |
| Joensuu              | 0               | 0       | 1              |  |  |
| Kalmar               | 1               | 6       | 42             |  |  |
| Karlsruhe            | 8               | 20      | 25             |  |  |
| Kassel               | 13              | 26      | 21             |  |  |
| Katowice             | 4               | 24      | 58             |  |  |
|                      | :               |         |                |  |  |

| Kaunas              | 6  | 16      | 49       |
|---------------------|----|---------|----------|
| Kiel                | 2  | 19      | 23       |
| Kingston upon Hull  | 0  | 2       | 14       |
| Kiruna              | 0  | 5       | 10       |
| Klagenfurt          | 6  | 21      | 23       |
| Klaipėda            | 1  | 7       | 17       |
| Kolari              | 1  | 4       | 7        |
| Koper               | 1  | 15      | 51       |
| Košice              | 1  | 17      | 32       |
| Koszalin            | 1  | 28      | 56       |
| Kraków              | 4  | 20      | 61       |
| Kristiansand        | 1  | 1       | 5        |
| Kuopio              | 0  | 2       | 5        |
| La Rochelle         | 2  | 13      | 32       |
| Larissa             | 0  | 6       | 14       |
| Lausanne            | 3  | 10      | 22       |
| Le Havre            | 0  | 11      | 23       |
| Le Mans             | 4  | 16      | 33       |
| Lecce               | 1  | 3       | 18       |
| Leeds               | 0  | 3       | 16       |
| Leicester           | 0  | 5       | 21       |
| Leipzig             | 18 | 36      | 32       |
| León                | 1  | 12      | 39       |
| Liberec             | 1  | 24      | 49       |
| Liège               | 2  | 17      | 21       |
| Liepāja             | 0  | 6       | 14       |
| Lille               | 3  | 17      | 21       |
| Limerick            | 0  | 0       | 0        |
| Limoges             | 1  | 9       | 25       |
| Linköping           | 0  | 6       | 43       |
| Linz                | 6  | 25      | 23       |
| Lisbon              | 6  | 26      | 15       |
| Liverpool           | 2  | 10      | 22       |
| Ljubljana           | 0  | 10      | 25       |
| Łódź                | 3  | 37      | 63       |
| London              | 3  | 8       | 20       |
| Lübeck              | 9  | o<br>19 | 20       |
| Lublin              | 3  | 19      | 43       |
| Lugano              | 4  | 14      | 43<br>26 |
| Luleå               | 3  | 9       | 20<br>14 |
|                     | 8  | 9<br>15 | 25       |
| Luxembourg          | 7  | 15      | 25<br>34 |
| Lyon<br>Madrid      |    |         |          |
| Madrid<br>Mélaga    | 7  | 6       | 23       |
| Málaga<br>Malmä     | 4  | 8       | 13       |
| Malmö               | 4  | 26      | 55       |
| Manchester          | 1  | 16      | 26       |
| Mannheim<br>Marihar | 9  | 20      | 26       |
| Maribor             | 5  | 23      | 33       |
| Marseille           | 2  | 18      | 28       |

Master's Thesis

Jens Grafström

University of Zurich

| University of Zurich   | Master's The | sis     | Jens Grafström |
|------------------------|--------------|---------|----------------|
| Messina                | 0            | 6       | 16             |
| Metz                   | 7            | 15      | 21             |
| Milan                  | 7            | 42      | 47             |
| Miskolc                | 3            | 9       | 28             |
| Montpellier            | 4            | 20      | 20             |
| Mostar                 | 0            | 2       | 8              |
| Munich                 | 11           | 25      | 22             |
| Münster                | 0            | 11      | 18             |
| Murister               | 6            | 11      | 18             |
| Nantes                 | 0            | 13      | 31             |
| Naples                 | 5            | 14      | 46             |
| Narva                  | 2            | 11      | 20             |
| Narvik                 | 0            | 1       | 5              |
| Newcastle upon Tyne    | 0            | 1       | 13             |
| Nice                   | 3            | 17      | 37             |
| Niš                    | 4            | 29      | 78             |
| Norwich                |              | 5       | 18             |
|                        | 1            | 3       |                |
| Nottingham<br>Novi Sad | 0            | 3<br>41 | 18<br>89       |
|                        | 7            |         |                |
| Nuremberg              | 4            | 23      | 20             |
| Odense                 | 2            | 11      | 24             |
| Olbia                  | 0            | 0       | 0              |
| Olsztyn                | 0            | 5       | 31             |
| Oradea                 | 3            | 9       | 27             |
| Osijek                 | 3            | 14      | 25             |
| Oslo                   |              | 1       | 19             |
| Östersund              | 0            | 2       | 8              |
| Ostrava                | 8            | 40      | 66             |
| Oulu                   | 2            | 4       | 8              |
| Ourense                | 3            | 3       | 12             |
| Padborg                | 1            | 16      | 22             |
| Palermo                |              | 1       | 6              |
| Pamplona               | 2            | 17      | 45             |
| Paris                  | 3            | 15      | 26             |
| Pärnu                  | 9            | 18      | 35             |
| Patras                 |              | 3       | 6              |
| Pécs                   | 1            | 10      | 27             |
| Peja                   | 0            | 1       | 11             |
| Penzance               | 0            | 0       | 6              |
| Perpignan              | 4            | 21      | 21             |
| Perth                  | 0            | 0       | 4              |
| Perugia                | 2            | 19      | 49             |
| Pescara                | 1            | 16      | 53             |
| Peterborough           | 0            | 7       | 21             |
| Pisa                   |              | 25      | 48             |
| Pitești                | 1            | 6       | 18             |
| Plovdiv                | 2            | 13      | 31             |
| Plzeň                  | 4            | 34      | 36             |
| Podgorica              | 0            | 0       | 2              |

| University of Zurich   | Master's Thesis | Master's Thesis |    |  |  |
|------------------------|-----------------|-----------------|----|--|--|
| Porto                  | 2               | 15              | 7  |  |  |
| Porto<br>Poznań        |                 |                 | 57 |  |  |
|                        | 3               | 28              |    |  |  |
| Prague<br>Prešov       | 8               | 47              | 57 |  |  |
|                        | 0               | 13              | 31 |  |  |
| Pristina               | 0               | 6               | 21 |  |  |
| Regensburg             | 2               | 24              | 18 |  |  |
| Reims                  | 5               | 16              | 31 |  |  |
| Rennes                 | 0               | 18              | 31 |  |  |
| Riga                   | 8               | 14              | 31 |  |  |
| Rijeka                 | 1               | 11              | 30 |  |  |
| Rome                   | 3               | 19              | 47 |  |  |
| Rostock                | 1               | 16              | 30 |  |  |
| Rotterdam              | 2               | 10              | 21 |  |  |
| Rovaniemi              | 4               | 5               | 8  |  |  |
| Ruse                   | 3               | 3               | 16 |  |  |
| Rzeszów                | 0               | 17              | 49 |  |  |
| Saarbrücken            | 5               | 20              | 27 |  |  |
| Salamanca              | 4               | 8               | 30 |  |  |
| Salzburg               | 4               | 24              | 22 |  |  |
| San Sebastián          | 5               | 23              | 20 |  |  |
| Santander              | 4               | 13              | 27 |  |  |
| Santiago de Compostela | 3               | 4               | 11 |  |  |
| Sarajevo               | 0               | 3               | 16 |  |  |
| Sassari                | 0               | 0               | 0  |  |  |
| Satu Mare              | 0               | 3               | 8  |  |  |
| Seinäjoki              | 0               | 3               | 5  |  |  |
| Seville                | 2               | 7               | 12 |  |  |
| Sheffield              | 0               | 7               | 19 |  |  |
| Shumen                 | 0               | 3               | 9  |  |  |
| Šiauliai               | 4               | 13              | 21 |  |  |
| Skopje                 | 3               | 13              | 40 |  |  |
| Sligo                  | 0               | 0               | 0  |  |  |
| Sofia                  | 5               | 23              | 43 |  |  |
| Southampton            | 0               | 6               | 23 |  |  |
| Split                  | 0               | 0               | 6  |  |  |
| Stara Zagora           | 1               | 8               | 22 |  |  |
| Stavanger              | 0               | 0               | 4  |  |  |
| Stockholm              | 2               | 6               | 34 |  |  |
| Strasbourg             | 8               | 17              | 23 |  |  |
| Stuttgart              | 10              | 28              | 32 |  |  |
| Subotica               | 11              | 28              | 74 |  |  |
| Suceava                | 0               | 1               | 7  |  |  |
| Sundsvall              | 0               | 4               | 15 |  |  |
| Suwałki                | 7               | 12              | 43 |  |  |
| Swansea                | 0               | 3               | 15 |  |  |
| Syracuse               | 1               | 2               | 10 |  |  |
| Szczecin               | 13              | 50              | 82 |  |  |
| Szeged                 | 3               | 10              | 30 |  |  |
| Szolnok                | 4               | 6               | 30 |  |  |
|                        | ļ               | -               |    |  |  |

| Szombathely              | 3  | 14 | 31 |
|--------------------------|----|----|----|
| Tallinn                  | 7  | 13 | 26 |
| Tampere                  | 0  | 2  | 5  |
| Taranto                  | 1  | 3  | 18 |
| Tartu                    | 3  | 11 | 17 |
| The Hague                | 1  | 11 | 21 |
| Thessaloniki             | 2  | 8  | 20 |
| Thurso                   | 0  | 0  | 0  |
| Timișoara                | 6  | 15 | 32 |
| Tirana                   | 1  | 1  | 1  |
| Tornio                   | 4  | 6  | 11 |
| Toulouse                 | 6  | 39 | 30 |
| Tours                    | 3  | 18 | 38 |
| Trieste                  | 2  | 25 | 57 |
| Trondheim                | 0  | 0  | 2  |
| Turin                    | 8  | 45 | 48 |
| Turku                    | 0  | 0  | 4  |
| Ulm                      | 8  | 32 | 27 |
| Umeå                     | 1  | 5  | 9  |
| Ungheni                  | 0  | 1  | 4  |
| Utrecht                  | 2  | 14 | 25 |
| Vaduz/Schaan             | 3  | 12 | 24 |
| Valencia                 | 1  | 9  | 21 |
| Valladolid               | 3  | 12 | 50 |
| Varaždin                 | 2  | 11 | 26 |
| Varna                    | 0  | 6  | 14 |
| Västerås                 | 0  | 5  | 21 |
| Veles                    | 2  | 11 | 37 |
| Veliko Tarnovo           | 1  | 6  | 15 |
| Venice                   | 2  | 39 | 57 |
| Verona                   | 12 | 47 | 51 |
| Vienna                   | 6  | 25 | 34 |
| Vigo                     | 4  | 4  | 4  |
| Villa San Giovanni       | 3  | 8  | 30 |
| Villach                  | 6  | 21 | 28 |
| Vilnius                  | 6  | 15 | 40 |
| Vitoria-Gasteiz          | 5  | 19 | 34 |
| Warsaw                   | 3  | 26 | 45 |
| Waterford                | 0  | 0  | 0  |
| Wrocław                  | 4  | 31 | 56 |
| Wuppertal                | 3  | 18 | 22 |
| York                     | 0  | 3  | 17 |
| Zagreb                   | 1  | 7  | 23 |
| Zaragoza<br><del>×</del> | 4  | 12 | 31 |
| Žilina                   | 2  | 13 | 39 |
| Zurich                   | 4  | 16 | 25 |
| Zwolle                   | 2  | 12 | 23 |

Master's Thesis

Jens Grafström

University of Zurich

## J – Rail Travel Times on Europe's Top 1000 Flight Routes

 Table 18: Changes of realistic travel times along Europe's top 1000 most popular flight routes.

| rank | annual<br>passen-<br>gers | city 1     | city 2    | iso<br>code 1 | iso<br>code 2 | <b>t</b> current<br>(realistic)<br><b>[min]</b> | <b>t<sub>future</sub></b><br>(realistic)<br><b>[min]</b> | drelative<br>[reduction] | d <sub>absolute</sub><br>[min] |
|------|---------------------------|------------|-----------|---------------|---------------|-------------------------------------------------|----------------------------------------------------------|--------------------------|--------------------------------|
| 1    | 5'107'690                 | Dublin     | London    | IE            | UK            | -                                               | -                                                        | -                        | -                              |
| 2    | 4'925'746                 | Amsterdam  | London    | NL            | UK            | 219                                             | 219                                                      | 0                        | 0                              |
| 3    | 3'387'482                 | Barcelona  | London    | ES            | UK            | 562                                             | 523                                                      | 0.0694                   | -39                            |
| 4    | 3'374'774                 | Edinburgh  | London    | UK            | UK            | 256                                             | 256                                                      | 0                        | 0                              |
| 5    | 3'216'294                 | Paris      | Toulouse  | FR            | FR            | 302                                             | 226                                                      | 0.2517                   | -76                            |
| 6    | 3'178'806                 | Nice       | Paris     | FR            | FR            | 361                                             | 361                                                      | 0                        | 0                              |
| 7    | 3'147'547                 | London     | Madrid    | ES            | UK            | 720                                             | 658                                                      | 0.0861                   | -62                            |
| 3    | 2'838'644                 | Berlin     | London    | DE            | UK            | 482                                             | 442                                                      | 0.083                    | -40                            |
| 9    | 2'690'832                 | Barcelona  | Paris     | ES            | FR            | 417                                             | 378                                                      | 0.0935                   | -39                            |
| 10   | 2'572'893                 | Barcelona  | Madrid    | ES            | ES            | 158                                             | 158                                                      | 0                        | 0                              |
| 11   | 2'561'787                 | Madrid     | Paris     | ES            | FR            | 575                                             | 513                                                      | 0.1078                   | -62                            |
| 12   | 2'524'519                 | Geneva     | London    | СН            | UK            | 374                                             | 374                                                      | 0                        | 0                              |
| 3    | 2'503'822                 | London     | Milan     | IT            | UK            | 522                                             | 418                                                      | 0.1992                   | -104                           |
| 14   | 2'392'594                 | London     | Rome      | IT            | UK            | 718                                             | 614                                                      | 0.1448                   | -104                           |
| 15   | 2'375'583                 | Belfast    | London    | UK            | UK            | -                                               | -                                                        | -                        | -                              |
| 16   | 2'296'483                 | Glasgow    | London    | UK            | UK            | 301                                             | 281                                                      | 0.0664                   | -20                            |
| 17   | 2'276'567                 | London     | Malaga    | ES            | UK            | 888                                             | 826                                                      | 0.0698                   | -62                            |
| 8    | 2'248'716                 | Berlin     | Frankfurt | DE            | DE            | 222                                             | 159                                                      | 0.2838                   | -63                            |
| 9    | 2'247'612                 | Paris      | Rome      | FR            | IT            | 573                                             | 469                                                      | 0.1815                   | -104                           |
| 20   | 2'227'971                 | Copenhagen | London    | DK            | UK            | 718                                             | 594                                                      | 0.1727                   | -124                           |
| 21   | 2'199'598                 | Lisbon     | London    | PT            | UK            | 1203                                            | 889                                                      | 0.261                    | -314                           |
| 23   | 2'149'539                 | London     | Paris     | FR            | UK            | 145                                             | 145                                                      | 0                        | 0                              |
| 24   | 2'109'832                 | Lisbon     | Paris     | FR            | PT            | 1058                                            | 744                                                      | 0.2968                   | -314                           |
| 25   | 2'103'647                 | Oslo       | Trondheim | NO            | NO            | 480                                             | 450                                                      | 0.0625                   | -30                            |
| 26   | 2'067'200                 | Frankfurt  | London    | DE            | UK            | 283                                             | 283                                                      | 0                        | 0                              |
| 27   | 2'036'432                 | Milan      | Paris     | FR            | IT            | 377                                             | 273                                                      | 0.2759                   | -104                           |
| 28   | 2'003'549                 | Bergen     | Oslo      | NO            | NO            | 399                                             | 354                                                      | 0.1128                   | -45                            |
| 30   | 1'946'968                 | London     | Zurich    | СН            | UK            | 378                                             | 378                                                      | 0                        | 0                              |
| 31   | 1'933'810                 | Berlin     | Munich    | DE            | DE            | 241                                             | 221                                                      | 0.083                    | -20                            |
| 33   | 1'834'163                 | London     | Munich    | DE            | UK            | 447                                             | 417                                                      | 0.0671                   | -30                            |
| 35   | 1'783'636                 | Alicante   | London    | ES            | UK            | 862                                             | 755                                                      | 0.1241                   | -107                           |
| 37   | 1'740'129                 | Hamburg    | Munich    | DE            | DE            | 314                                             | 314                                                      | 0                        | 0                              |
| 38   | 1'685'154                 | Budapest   | London    | HU            | UK            | 793                                             | 779                                                      | 0.0177                   | -14                            |
| 39   | 1'681'182                 | Oslo       | Stavanger | NO            | NO            | 444                                             | 401                                                      | 0.0968                   | -43                            |
| 11   | 1'660'456                 | Madrid     | Rome      | ES            | IT            | 916                                             | 773                                                      | 0.1561                   | -143                           |
| 13   | 1'611'394                 | London     | Stockholm | SE            | UK            | 998                                             | 860                                                      | 0.1383                   | -138                           |
| 14   | 1'580'569                 | Palermo    | Rome      | IT            | IT            | 562                                             | 487                                                      | 0.1335                   | -75                            |
| 15   | 1'563'209                 | Faro       | London    | PT            | UK            | 1383                                            | 1039                                                     | 0.2487                   | -344                           |
| 16   | 1'558'924                 | Marseille  | Paris     | FR            | FR            | 213                                             | 213                                                      | 0                        | 0                              |
| 17   | 1'558'588                 | Lisbon     | Madrid    | ES            | PT            | 483                                             | 231                                                      | 0.5217                   | -252                           |
| 19   | 1'552'302                 | Berlin     | Cologne   | DE            | DE            | 262                                             | 222                                                      | 0.1527                   | -40                            |
| 50   | 1'545'970                 | Paris      | Porto     | FR            | PT            | 944                                             | 798.8038                                                 | 0.1538                   | -145.19                        |
| 51   | 1'488'008                 | Düsseldorf | Munich    | DE            | DE            | 269                                             | 249                                                      | 0.0743                   | -20                            |

| Unive    | ersity of Zur | rich       | Mas          | hesis |       | Jens Grafström |               |        |                |
|----------|---------------|------------|--------------|-------|-------|----------------|---------------|--------|----------------|
| 52       | 1'479'686     | London     | Nice         | FR    | UK    | 506            | 506           | 0      | 0              |
| 53       | 1'467'630     | Copenhagen | Oslo         | DK    | NO    | 397            | 354           | 0.1083 | -43            |
| 55       | 1'426'018     | Frankfurt  | Hamburg      | DE    | DE    | 212            | 169           | 0.2028 | -43            |
| 56       | 1'410'148     | Athens     | London       | EL    | UK    | -              | 1791.518      | -      | -              |
| 57       | 1'401'634     | Berlin     | Paris        | DE    | FR    | 452            | 370           | 0.1814 | -82            |
| 58       | 1'399'202     | Barcelona  | Rome         | ES    | IT    | 758            | 615           | 0.1887 | -143           |
| 59       | 1'391'764     | London     | Warsaw       | PL    | UK    | 800            | 717           | 0.1038 | -83            |
| 60       | 1'387'160     | Copenhagen | Stockholm    | DK    | SE    | 280            | 266           | 0.05   | -14            |
| 61       | 1'386'340     | Oslo       | Stockholm    | NO    | SE    | 313            | 313           | 0      | 0              |
| 62       | 1'386'065     | Amsterdam  | Paris        | FR    | NL    | 202            | 202           | 0      | 0              |
| 63       | 1'382'718     | Amsterdam  | Barcelona    | ES    | NL    | 619            | 580           | 0.063  | -39            |
| 64       | 1'381'565     | Helsinki   | Stockholm    | FI    | SE    | -              | 1005.492      | -      | -              |
| 65       | 1'378'423     | London     | Oslo         | NO    | UK    | 1115           | 948           | 0.1498 | -167           |
| 67       | 1'362'762     | Bucharest  | London       | RO    | UK    | 1654           | 1447.735      | 0.1247 | -206.264       |
| 68       | 1'353'717     | London     | Vienna       | AT    | UK    | 650            | 636           | 0.0215 | -14            |
| 69       | 1'333'907     | London     | Prague       | CZ    | UK    | 649            | 492           | 0.2419 | -157           |
| 70       | 1'330'965     | Athens     | Thessaloniki | EL    | EL    | 291            | 291           | 0      | 0              |
| 71       | 1'319'418     | Amsterdam  | Berlin       | DE    | NL    | 350            | 312.5637      | 0.107  | -37.4363       |
| 72       | 1'239'196     | London     | Venice       | IT    | UK    | 655            | 541           | 0.174  | -07.4000       |
| 73       | 1'234'360     | Berlin     | Stuttgart    | DE    | DE    | 298            | 221           | 0.2584 | -77            |
| 74       | 1'233'050     | Berlin     | Düsseldorf   | DE    | DE    | 243            | 208           | 0.144  | -35            |
| 76       | 1'218'505     | Bordeaux   | Paris        | FR    | FR    | 166            | 166           | 0.144  | 0              |
| 77       | 1'215'609     | Amsterdam  | Dublin       | IE    | NL    | -              | -             | -      | -              |
| 79       | 1'207'604     | Amsterdam  | Milan        | IT    | NL    | 579            | 475           | 0.1796 | -104           |
| 81       | 1'192'843     | Milan      | Rome         | IT    | IT    | 196            | 196           | 0.1790 | 0              |
| 83       | 1'164'277     | Berlin     | Zurich       | СН    | DE    | 437            | 334           | 0.2357 | -103           |
| 85       | 1'147'902     | Milan      | Palermo      | IT    | IT    | 758            | 683           | 0.0989 | -75            |
| 86       | 1'144'665     | Amsterdam  | Madrid       | ES    | NL    | 777            | 715           | 0.0798 | -62            |
| ~-       | 1'136'524     | Frankfurt  | Munich       | DE    | DE    | 187            | 162           | 0.1337 |                |
| 87<br>88 | 1'130'324     | Barcelona  | Berlin       | DE    | ES    | 851            | 723           | 0.1504 | -23            |
| 90       | 1'129'207     | Gothenburg | Stockholm    | SE    | SE    | 218            | 218           | 0.1304 | 0              |
| 90<br>92 | 1'113'251     | Madrid     | Milan        | ES    | IT    | 720            | 577           | 0.1986 | -143           |
| 93       | 1'109'819     | Amsterdam  | Copenhagen   | DK    | NL    | 586            | 442.2077      | 0.2454 | -143.792       |
| 93<br>94 | 1'109'819     | Frankfurt  | Vienna       | AT    | DE    | 367            | 366           | 0.2434 | -140.792<br>-1 |
| 94<br>95 | 1'093'618     | Paris      | Venice       | FR    | IT    | 510            | 396           | 0.2235 | -1<br>-114     |
| 96       | 1'085'561     | Brussels   | Madrid       | BE    | ES    | 672            | 610           | 0.0923 | -62            |
| 97       | 1'072'520     | Cagliari   | Rome         | IT    | IT    | -              | -             | -      | -02            |
| 98       | 1'069'097     | Frankfurt  | Madrid       | DE    | ES    | 787            | 722           | 0.0826 | -65            |
| 99       | 1'067'164     | Amsterdam  | Manchester   | NL    | UK    | 375            | 319           | 0.1493 | -56            |
| 100      | 1'059'013     | Geneva     | Paris        | CH    | FR    | 229            | 229           | 0.1435 | 0              |
| 100      | 1'048'073     | Amsterdam  | Rome         | IT    | NL    | 775            | 671           | 0.1342 | -104           |
| 102      | 1'040'07'0    | Dublin     | Paris        | FR    | IE    | -              | -             | -      | - 104          |
| 102      | 1'047'343     | Helsinki   | London       | FI    | UK    | -              | -<br>1865.492 | _      | _              |
| 103      | 1'047'343     | Barcelona  | Seville      | ES    | ES    | -<br>318       | 318           | - 0    | - 0            |
| 104      | 1'043'023     | Frankfurt  | Paris        | DE    | FR    | 230            | 211           | 0.0826 | -19            |
| 105      | 1'034'545     | Barcelona  | Frankfurt    | DE    | ES    | 230<br>629     | 211<br>564    | 0.1033 | -19<br>-65     |
| 100      | 1'023'098     | Malmö      | Stockholm    | SE    | SE    | 242            | 228           | 0.0579 | -03<br>-14     |
| 107      | 1'023'030     | Cologne    | Munich       | DE    | DE    | 242            | 220           | 0.083  | -14            |
| 108      | 1'014'022     | Munich     | Paris        | DE    | FR    | 323            | 293           | 0.003  | -20<br>-30     |
| 103      | 1017022       |            |              |       | 1 1 1 | 020            | 200           | 0.0020 |                |

| Unive | ersity of Zur      | rich        | Master's Thesis |             |    |      |                        | Jens Grafström |              |  |
|-------|--------------------|-------------|-----------------|-------------|----|------|------------------------|----------------|--------------|--|
| 112   | 1'008'951          | Lisbon      | Porto           | PT          | PT | 181  | 75                     | 0.5856         | -106         |  |
| 113   | 1'008'288          | Barcelona   | Lisbon          | ES          | PT | 641  | 389                    | 0.3931         | -252         |  |
| 114   | 1'008'254          | Düsseldorf  | London          | DE          | UK | 248  | 248                    | 0              | 0            |  |
| 115   | 1'002'034          | Dublin      | Manchester      | IE          | UK | -    | -                      | -              | -            |  |
| 116   | 989'305            | Montpellier | Paris           | FR          | FR | 249  | 249                    | 0              | 0            |  |
| 117   | 977'778            | Hamburg     | London          | DE          | UK | 446  | 438                    | 0.0179         | -8           |  |
| 118   | 976'448            | Amsterdam   | Zurich          | CH          | NL | 428  | 394.5637               | 0.0781         | -33.4363     |  |
| 119   | 972'444            | Paris       | Vienna          | AT          | FR | 554  | 512                    | 0.0758         | -42          |  |
| 120   | 969'958            | Madrid      | Porto           | ES          | PT | 369  | 293                    | 0.206          | -76          |  |
| 120   | 969'878            | Amsterdam   | Munich          | DE          | NL | 404  | 381.5637               | 0.0555         | -22.4363     |  |
| 122   | 965'728            | Berlin      | Vienna          | AT          | DE | 421  | 348                    | 0.1734         | -73          |  |
| 122   | 956'926            | Helsinki    | Oulu            | FI          | FI | 313  | 313                    | 0.1734         | 0            |  |
| 124   | 951'905            | Barcelona   | Brussels        | BE          | ES | 514  | 475                    | 0.0759         | -39          |  |
| 125   | 948'616            | Cork        | London          | IE          | UK | -    | -                      | -              | -00          |  |
| 125   | 944'882            | Birmingham  | Dublin          | IE          | UK |      | -                      | _              | -            |  |
| 120   | 944'540            | Amsterdam   | Vienna          | AT          | NL | 593  | -<br>589.5637          | -<br>0.0058    | -<br>-3.4363 |  |
| 128   | 939'525            | Vienna      | Zurich          | AT          | CH | 440  | 420                    | 0.0455         | -20          |  |
| 120   | 927'675            | Amsterdam   | Lisbon          | NL          | PT | 1260 | 946                    | 0.2492         | -20          |  |
| 130   | 927 075<br>911'299 | London      | Sofia           | BG          | UK | 2038 | 940<br>1220.826        | 0.2492         | -817.173     |  |
| 131   | 906'717            | Berlin      | Copenhagen      | DE          | DK | 376  | 260                    | 0.3085         | -116         |  |
| 132   | 903'385            | Athens      | Paris           | EL          | FR | -    | 1667.518               | -              |              |  |
| 132   | 902'309            | Milan       | Naples          | IT          | IT | 259  | 259                    | -              | -            |  |
| 133   | 902 309<br>900'794 | Madrid      | Munich          | DE          | ES | 880  | 239<br>785             | 0.108          | -95          |  |
| 134   | 900794<br>891'190  | Barcelona   | Milan           | ES          | IT | 562  | 419                    | 0.2544         | -95<br>-143  |  |
| 136   | 889'281            | Barcelona   | Munich          | DE          | ES | 722  | 41 <del>3</del><br>627 | 0.2344         | -143<br>-95  |  |
| 137   | 888'423            | Krakow      | London          | PL          | UK | 889  | 805                    | 0.0945         | -93<br>-84   |  |
| 139   | 884'182            | Copenhagen  | Paris           | DK          | FR | 701  | 536                    | 0.2354         | -04<br>-165  |  |
| 141   | 881'458            | London      | Naples          | IT          | UK | 781  | 677                    | 0.2334         | -103         |  |
| 141   | 881'438<br>881'423 | Amsterdam   | Frankfurt       | DE          | NL | 226  | 223.5637               | 0.0108         | -2.4363      |  |
| 143   | 876'959            | Paris       | Prague          | CZ          | FR | 596  | 420                    | 0.2953         | -2.4303      |  |
| 146   | 863'648            | Amsterdam   | Stockholm       | NL          | SE | 866  | 420<br>708.2077        | 0.2955         | -157.792     |  |
| 147   | 862'156            | Cagliari    | Milan           | IT          | IT | -    | 100.2011               | 0.1022         | -107.732     |  |
| 148   | 855'487            | Frankfurt   | Lisbon          | DE          | PT | 1270 | -<br>953               | -<br>0.2496    | -<br>-317    |  |
| 140   | 848'964            | Barcelona   | Malaga          | ES          | ES | 326  | 326                    | 0.2430         | 0            |  |
| 152   | 848'433            | Copenhagen  | Helsinki        | DK          | FI | 020  | 1271.492               | -              | -            |  |
| 154   | 837'447            | Bodo        | Oslo            | NO          | NO | 1066 | 1036                   | 0.0281         | -30          |  |
| 156   | 835'758            | Bilbao      | Madrid          | ES          | ES | 254  | 176                    | 0.3071         | -78          |  |
| 159   | 824'882            | Athens      | Rome            | EL          | IT | -    | 1663.518               | -              | -70          |  |
| 160   | 822'908            | London      | Porto           | PT          | UK | 1089 | 943.8038               | 0.1333         | -145.196     |  |
| 161   | 821'579            | Berlin      | Madrid          | DE          | ES | 1009 | 881                    | 0.1269         | -128         |  |
| 163   | 813'757            | Frankfurt   | Milan           | DE          | IT | 399  | 353                    | 0.1153         | -46          |  |
| 164   | 804'578            | Berlin      | Rome            | DE          | IT | 742  | 545                    | 0.2655         | -197         |  |
| 166   | 803'002            | Malaga      | Paris           | ES          | FR | 742  | 681                    | 0.2000         | -62          |  |
| 167   | 793'826            | Bologna     | London          | IT          | UK | 586  | 482                    | 0.1775         | -02<br>-104  |  |
| 169   | 784'738            | Aberdeen    | London          | UK          | UK | 396  | 396                    | 0.1775         | 0            |  |
| 170   | 783'420            | London      | Pisa            | IT          | UK | 675  | 556                    | 0.1763         | -119         |  |
| 170   | 777'719            | Aalborg     | Copenhagen      | DK          | DK | 239  | 207                    | 0.1339         | -32          |  |
| 173   | 772'869            | Brussels    | Lisbon          | BE          | PT | 1155 | 841                    | 0.2719         | -32          |  |
| 174   | 770'693            | Düsseldorf  | Vienna          | AT          | DE | 458  | 457                    | 0.0022         |              |  |
|       |                    |             |                 | <i>/</i> (1 |    | 1.00 | 107                    | 0.0022         |              |  |

| University of Zurich |         |            | Mas                       | Master's Thesis |    |      |          | Jens Grafström |          |  |  |
|----------------------|---------|------------|---------------------------|-----------------|----|------|----------|----------------|----------|--|--|
| 175                  | 761'887 | Bari       | Rome                      | IT              | IT | 283  | 185      | 0.3463         | -98      |  |  |
| 177                  | 759'621 | Dublin     | Frankfurt                 | DE              | IE | -    | -        | -              | -        |  |  |
| 178                  | 758'629 | Amsterdam  | Prague                    | CZ              | NL | 592  | 432.5637 | 0.2693         | -159.436 |  |  |
| 180                  | 747'857 | Düsseldorf | Zurich                    | СН              | DE | 293  | 262      | 0.1058         | -31      |  |  |
| 181                  | 745'545 | Belfast    | Manchester                | UK              | UK | -    | -        | -              | -        |  |  |
| 182                  | 742'503 | Alicante   | Manchester                | ES              | UK | 1018 | 855      | 0.1601         | -163     |  |  |
| 183                  | 739'393 | Amsterdam  | Helsinki                  | FI              | NL | -    | 1713.700 | -              | -        |  |  |
| 184                  | 736'612 | Hamburg    | Stuttgart                 | DE              | DE | 288  | 231      | 0.1979         | -57      |  |  |
| 185                  | 727'171 | Berlin     | Oslo                      | DE              | NO | 773  | 614      | 0.2057         | -159     |  |  |
| 186                  | 723'922 | Budapest   | Frankfurt                 | DE              | HU | 510  | 509      | 0.002          | -1       |  |  |
| 187                  | 723'610 | Paris      | Zurich                    | СН              | FR | 234  | 234      | 0              | 0        |  |  |
| 188                  | 721'489 | Amsterdam  | Oslo                      | NL              | NO | 983  | 796.2077 | 0.19           | -186.792 |  |  |
| 189                  | 720'186 | Brussels   | Rome                      | BE              | IT | 670  | 566      | 0.1552         | -104     |  |  |
| 190                  | 719'748 | Madrid     | Santiago de<br>Compostela | ES              | ES | 173  | 173      | 0              | 0        |  |  |
| 191                  | 719'255 | Hamburg    | Vienna                    | AT              | DE | 494  | 452      | 0.085          | -42      |  |  |
| 192                  | 717'654 | Lisbon     | Rome                      | IT              | PT | 1399 | 1004     | 0.2823         | -395     |  |  |
| 193                  | 717'631 | Munich     | Rome                      | DE              | IT | 501  | 324      | 0.3533         | -177     |  |  |
| 195                  | 711'279 | Paris      | Stockholm                 | FR              | SE | 981  | 802      | 0.1825         | -179     |  |  |
| 197                  | 707'568 | London     | Toulouse                  | FR              | UK | 447  | 371      | 0.17           | -76      |  |  |
| 198                  | 706'238 | Amsterdam  | Geneva                    | СН              | NL | 431  | 431      | 0              | 0        |  |  |
| 199                  | 703'024 | Bari       | Milan                     | IT              | IT | 388  | 381      | 0.018          | -7       |  |  |
| 200                  | 702'870 | Amsterdam  | Birmingham                | NL              | UK | 295  | 268      | 0.0915         | -27      |  |  |
| 201                  | 696'482 | Berlin     | Budapest                  | DE              | HU | 564  | 491      | 0.1294         | -73      |  |  |
| 202                  | 696'260 | Lyon       | Paris                     | FR              | FR | 116  | 116      | 0              | 0        |  |  |
| 203                  | 695'712 | Frankfurt  | Stockholm                 | DE              | SE | 764  | 591      | 0.2264         | -173     |  |  |
| 204                  | 692'936 | Barcelona  | Porto                     | ES              | PT | 527  | 451      | 0.1442         | -76      |  |  |
| 205                  | 692'724 | Hamburg    | Zurich                    | СН              | DE | 427  | 344      | 0.1944         | -83      |  |  |
| 206                  | 692'187 | Frankfurt  | Rome                      | DE              | IT | 595  | 486      | 0.1832         | -109     |  |  |
| 207                  | 691'185 | Madrid     | Zurich                    | СН              | ES | 692  | 653      | 0.0564         | -39      |  |  |
| 208                  | 687'568 | Geneva     | Porto                     | СН              | PT | 941  | 826      | 0.1222         | -115     |  |  |
| 209                  | 683'651 | Manchester | Paris                     | FR              | UK | 301  | 245      | 0.186          | -56      |  |  |
| 210                  | 680'043 | Amsterdam  | Edinburgh                 | NL              | UK | 475  | 475      | 0              | 0        |  |  |
| 211                  | 679'776 | Berlin     | Stockholm                 | DE              | SE | 656  | 526      | 0.1982         | -130     |  |  |
| 212                  | 675'947 | Berlin     | Brussels                  | BE              | DE | 368  | 328      | 0.1087         | -40      |  |  |
| 213                  | 675'583 | Brussels   | London                    | BE              | UK | 114  | 114      | 0              | 0        |  |  |
| 216                  | 661'848 | Copenhagen | Frankfurt                 | DE              | DK | 484  | 325      | 0.3285         | -159     |  |  |
| 217                  | 658'111 | Dublin     | Edinburgh                 | IE              | UK | -    | -        | -              | -        |  |  |
| 218                  | 657'543 | Barcelona  | Zurich                    | СН              | ES | 534  | 495      | 0.073          | -39      |  |  |
| 219                  | 657'377 | Dublin     | Malaga                    | ES              | IE | -    | -        | -              | -        |  |  |
| 220                  | 656'557 | Amsterdam  | Malaga                    | ES              | NL | 945  | 883      | 0.0656         | -62      |  |  |
| 222                  | 652'811 | Brussels   | Milan                     | BE              | IT | 474  | 370      | 0.2194         | -104     |  |  |
| 223                  | 652'094 | Frankfurt  | Zurich                    | СН              | DE | 215  | 175      | 0.186          | -40      |  |  |
| 224                  | 640'835 | Barcelona  | Geneva                    | СН              | ES | 414  | 375      | 0.0942         | -39      |  |  |
| 225                  | 640'597 | Paris      | Warsaw                    | FR              | PL | 770  | 645      | 0.1623         | -125     |  |  |
| 226                  | 639'550 | Barcelona  | Vienna                    | AT              | ES | 953  | 811      | 0.149          | -142     |  |  |
| 228                  | 633'829 | Bucharest  | Vienna                    | AT              | RO | 1004 | 811.7359 | 0.1915         | -192.264 |  |  |
| 229                  | 632'588 | Milan      | Olbia                     | IT              | IT | -    | -        | -              | -        |  |  |
| 231                  | 628'620 | Geneva     | Zurich                    | СН              | СН | 158  | 158      | 0              | 0        |  |  |
|                      |         |            |                           |                 |    |      |          |                |          |  |  |

| Unive | ersity of Zur | rich       | Ма         | ster's T | hesis | Jens Grafström |          |        |          |
|-------|---------------|------------|------------|----------|-------|----------------|----------|--------|----------|
| 232   | 625'362       | Geneva     | Lisbon     | СН       | PT    | 1055           | 764      | 0.2758 | -291     |
| 233   | 623'617       | London     | Lyon       | FR       | UK    | 261            | 261      | 0      | 0        |
| 234   | 623'173       | Bucharest  | Paris      | FR       | RO    | 1558           | 1323.735 | 0.1504 | -234.264 |
| 235   | 622'601       | Barcelona  | Bilbao     | ES       | ES    | 352            | 242      | 0.3125 | -110     |
| 236   | 617'632       | Athens     | Frankfurt  | DE       | EL    | -              | 1521.518 | -      | -        |
| 238   | 613'420       | London     | Marseille  | FR       | UK    | 358            | 358      | 0      | 0        |
| 239   | 612'419       | Brussels   | Geneva     | BE       | СН    | 326            | 326      | 0      | 0        |
| 240   | 610'082       | Bucharest  | Rome       | IT       | RO    | 1652           | 1319.735 | 0.2011 | -332.264 |
| 241   | 606'530       | Basel      | Berlin     | СН       | DE    | 384            | 281      | 0.2682 | -103     |
| 242   | 603'648       | London     | Riga       | LV       | UK    | 1444           | 1013     | 0.2985 | -431     |
| 243   | 601'519       | Barcelona  | Dublin     | ES       | IE    | _              | -        | -      | -        |
| 244   | 598'917       | Dublin     | Munich     | DE       | IE    | _              | _        | -      | -        |
| 245   | 591'694       | Gdansk     | London     | PL       | UK    | 808            | 768      | 0.0495 | -40      |
| 246   | 587'693       | Helsinki   | Munich     | DE       | FI    | -              | 1741.492 | -      | -        |
| 247   | 587'280       | Naples     | Paris      | FR       | IT    | 636            | 532      | 0.1635 | -104     |
| 249   | 585'513       | Malaga     | Manchester | ES       | UK    | 1044           | 926      | 0.113  | -118     |
| 250   | 584'708       | Florence   | Paris      | FR       | IT    | 478            | 374      | 0.2176 | -104     |
| 251   | 581'927       | Bordeaux   | Lyon       | FR       | FR    | 282            | 282      | 0      | 0        |
| 252   | 581'008       | Geneva     | Madrid     | СН       | ES    | 572            | 533      | 0.0682 | -39      |
| 253   | 579'172       | Gothenburg | London     | SE       | UK    | 909            | 765      | 0.1584 | -144     |
| 254   | 577'144       | Brussels   | Frankfurt  | BE       | DE    | 169            | 169      | 0      | 0        |
| 255   | 574'052       | Paris      | Valencia   | ES       | FR    | 589            | 550      | 0.0662 | -39      |
| 256   | 573'442       | London     | Valencia   | ES       | UK    | 734            | 695      | 0.0531 | -39      |
| 257   | 569'154       | Cologne    | London     | DE       | UK    | 220            | 220      | 0      | 0        |
| 258   | 568'148       | Berlin     | Helsinki   | DE       | FI    | -              | 1531.492 | -      | _        |
| 259   | 564'025       | Madrid     | Vienna     | AT       | ES    | 1111           | 969      | 0.1278 | -142     |
| 260   | 562'406       | Berlin     | Lisbon     | DE       | PT    | 1492           | 1112     | 0.2547 | -380     |
| 261   | 561'918       | Berlin     | Dublin     | DE       | IE    | -              | -        | -      | _        |
| 262   | 560'930       | Brest      | Paris      | FR       | FR    | 224            | 224      | 0      | 0        |
| 263   | 560'854       | Lyon       | Nantes     | FR       | FR    | 253            | 253      | 0      | 0        |
| 264   | 558'916       | Rome       | Vienna     | AT       | IT    | 648            | 508      | 0.216  | -140     |
| 265   | 558'219       | Munich     | Stockholm  | DE       | SE    | 866            | 736      | 0.1501 | -130     |
| 267   | 555'609       | Ajaccio    | Paris      | FR       | FR    | -              | -        | -      | -        |
| 268   | 555'004       | Madrid     | Venice     | ES       | IT    | 853            | 700      | 0.1794 | -153     |
| 269   | 553'989       | Stuttgart  | Vienna     | AT       | DE    | 346            | 319      | 0.078  | -27      |
| 270   | 553'692       | Dublin     | Madrid     | ES       | IE    | -              | -        | -      | -        |
| 271   | 553'107       | London     | Manchester | UK       | UK    | 156            | 100      | 0.359  | -56      |
| 272   | 550'910       | Nantes     | Paris      | FR       | FR    | 137            | 137      | 0      | 0        |
| 274   | 547'930       | Berlin     | Milan      | DE       | IT    | 621            | 429      | 0.3092 | -192     |
| 275   | 545'591       | Bergen     | Stavanger  | NO       | NO    | 779            | 736      | 0.0552 | -43      |
| 276   | 543'670       | Helsinki   | Rovaniemi  | FI       | FI    | 451            | 451      | 0      | 0        |
| 277   | 542'260       | Athens     | Berlin     | DE       | EL    | -              | 1503.518 | -      | -        |
| 278   | 541'007       | Hanover    | Munich     | DE       | DE    | 238            | 238      | 0      | 0        |
| 280   | 538'667       | Dublin     | Faro       | IE       | PT    | -              | -        | -      | -        |
| 281   | 538'045       | Frankfurt  | Oslo       | DE       | NO    | 881            | 679      | 0.2293 | -202     |
| 284   | 532'354       | Brussels   | Malaga     | BE       | ES    | 840            | 778      | 0.0738 | -62      |
| 285   | 530'248       | Munich     | Vienna     | AT       | DE    | 231            | 219      | 0.0519 | -12      |
| 286   | 528'771       | Helsinki   | Oslo       | FI       | NO    | -              | 1318.492 | -      | -        |
| 287   | 527'918       | Belfast    | Birmingham | UK       | UK    | -              | -        | -      | -        |

| University of Zurich |         |              | Master's Thesis        |    |    |      | Jens Grafström |        |          |  |
|----------------------|---------|--------------|------------------------|----|----|------|----------------|--------|----------|--|
| 289                  | 526'606 | Berlin       | Manchester             | DE | UK | 638  | 542            | 0.1505 | -96      |  |
| 290                  | 526'454 | Faro         | Manchester             | PT | UK | 1539 | 1139           | 0.2599 | -400     |  |
| 291                  | 526'318 | Frankfurt    | Helsinki               | DE | FI | -    | 1596.492       | -      | -        |  |
| 293                  | 525'429 | Frankfurt    | Prague                 | CZ | DE | 366  | 209            | 0.429  | -157     |  |
| 294                  | 523'585 | Copenhagen   | Malaga                 | DK | ES | 1439 | 1215           | 0.1557 | -224     |  |
| 295                  | 523'020 | Athens       | Munich                 | DE | EL | -    | 1374.518       | -      | -        |  |
| 296                  | 521'813 | Düsseldorf   | Hamburg                | DE | DE | 207  | 199            | 0.0386 | -8       |  |
| 297                  | 521'521 | Frankfurt    | Warsaw                 | DE | PL | 540  | 434            | 0.1963 | -106     |  |
| 298                  | 517'200 | Budapest     | Paris                  | FR | HU | 697  | 655            | 0.0603 | -42      |  |
| 300                  | 514'027 | Barcelona    | Venice                 | ES | IT | 695  | 542            | 0.2201 | -153     |  |
| 301                  | 513'250 | Copenhagen   | Zurich                 | СН | DK | 699  | 500            | 0.2847 | -199     |  |
| 302                  | 512'292 | Copenhagen   | Munich                 | DE | DK | 586  | 470            | 0.198  | -116     |  |
| 303                  | 512'125 | Amsterdam    | Warsaw                 | NL | PL | 668  | 587.5637       | 0.1204 | -80.4363 |  |
| 304                  | 512'008 | Oslo         | Paris                  | FR | NO | 1098 | 890            | 0.1894 | -208     |  |
| 305                  | 511'000 | Malaga       | Stockholm              | ES | SE | 1719 | 1481           | 0.1385 | -238     |  |
| 307                  | 510'096 | Frankfurt    | Manchester             | DE | UK | 439  | 383            | 0.1276 | -56      |  |
| 308                  | 510'077 | Kristiansand | Oslo                   | NO | NO | 268  | 225            | 0.1604 | -43      |  |
| 309                  | 509'767 | Bordeaux     | London                 | FR | UK | 311  | 311            | 0      | 0        |  |
| 310                  | 505'218 | Barcelona    | Manchester             | ES | UK | 718  | 623            | 0.1323 | -95      |  |
| 311                  | 502'803 | Milan        | Munich                 | DE | IT | 390  | 208            | 0.4667 | -182     |  |
| 312                  | 500'678 | Lisbon       | Munich                 | DE | PT | 1363 | 1016           | 0.2546 | -347     |  |
| 313                  | 500'473 | Dublin       | Glasgow                | IE | UK | -    | -              | -      | -        |  |
| 314                  | 500'092 | Amsterdam    | Athens                 | EL | NL | -    | 1745.081       | -      | -        |  |
| 315                  | 497'204 | Athens       | Zurich                 | СН | EL | -    | 1575.518       | -      | -        |  |
| 316                  | 495'204 | London       | Luxembourg             | LU | UK | 263  | 234            | 0.1103 | -29      |  |
| 319                  | 491'495 | Helsinki     | Paris                  | FI | FR | -    | 1807.492       | -      | -        |  |
| 320                  | 490'225 | Belfast      | Liverpool              | UK | UK | -    | -              | -      | -        |  |
| 323                  | 488'756 | Rome         | Turin                  | IT | IT | 246  | 246            | 0      | 0        |  |
| 324                  | 488'137 | Lisbon       | Zurich                 | СН | PT | 1175 | 884            | 0.2477 | -291     |  |
| 325                  | 486'438 | Madrid       | Seville                | ES | ES | 160  | 160            | 0      | 0        |  |
| 326                  | 486'219 | Frankfurt    | Venice                 | DE | IT | 532  | 357            | 0.3289 | -175     |  |
| 327                  | 486'004 | Dublin       | Lisbon                 | IE | PT | -    | -              | -      | -        |  |
| 328                  | 485'990 | Düsseldorf   | Madrid                 | DE | ES | 806  | 744            | 0.0769 | -62      |  |
| 329                  | 481'863 | Belfast      | Edinburgh              | UK | UK | -    | -              | -      | -        |  |
| 330                  | 481'393 | Amsterdam    | Bucharest              | NL | RO | 1597 | 1401.299       | 0.1225 | -195.700 |  |
| 333                  | 478'816 | Brussels     | Copenhagen             | BE | DK | 604  | 480            | 0.2053 | -124     |  |
| 334                  | 478'701 | Amsterdam    | Nice                   | FR | NL | 563  | 563            | 0      | 0        |  |
| 335                  | 476'368 | Amsterdam    | Hamburg                | DE | NL | 314  | 286.2077       | 0.0885 | -27.7923 |  |
| 339                  | 470'116 | Brussels     | Vienna                 | AT | BE | 536  | 535            | 0.0019 | -1       |  |
| 340                  | 470'061 | Frankfurt    | Krakow                 | DE | PL | 606  | 522            | 0.1386 | -84      |  |
| 341                  | 465'994 | London       | Stuttgart              | DE | UK | 332  | 317            | 0.0452 |          |  |
| 342                  | 464'693 | Hamburg      | Paris                  | DE | FR | 429  | 380            | 0.1142 |          |  |
| 343                  | 464'583 | Düsseldorf   | Paris                  | DE | FR | 231  | 231            | 0      | 0        |  |
| 344                  | 463'643 | Cologne      | Hamburg                | DE | DE | 226  | 218            | 0.0354 | -8       |  |
| 345                  | 463'618 | Bastia       | Paris                  | FR | FR | -    | -              | -      | -        |  |
| 347                  | 460'619 | London       | Newcastle<br>upon Tyne | UK | UK | 169  | 169            | 0      | 0        |  |
| 348                  | 460'409 | Berlin       | Malaga                 | DE | ES | 1177 | 1049           | 0.1088 | -128     |  |
| 349                  | 459'920 | Dublin       | Rome                   | IE | IT | -    | -              | -      | -        |  |

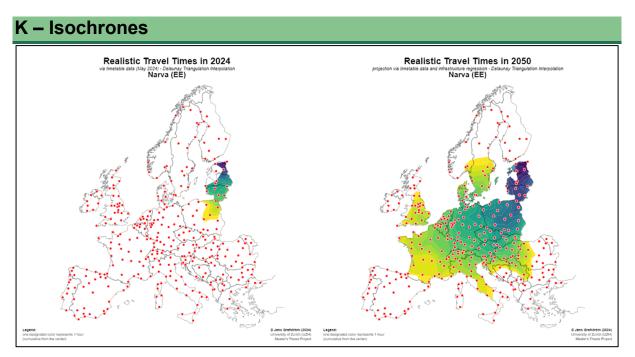
| Unive | ersity of Zur | ich        | Mas                       | nesis |    | Jens Grafström |          |        |                   |
|-------|---------------|------------|---------------------------|-------|----|----------------|----------|--------|-------------------|
| 350   | 457'789       | Amsterdam  | Bristol                   | NL    | UK | 295            | 295      | 0      | 0                 |
| 351   | 456'935       | Frankfurt  | Sofia                     | BG    | DE | 1755           | 950.8262 | 0.4582 | -<br>804.173<br>8 |
| 353   | 456'390       | Copenhagen | Vienna                    | AT    | DK | 766            | 608      | 0.2063 | -158              |
| 354   | 454'528       | Amsterdam  | Budapest                  | HU    | NL | 736            | 732.5637 | 0.0047 | -3.4363           |
| 355   | 451'735       | Frankfurt  | Porto                     | DE    | PT | 1156           | 1009.803 | 0.1265 | -146.196          |
| 356   | 451'506       | Budapest   | Rome                      | HU    | IT | 791            | 651      | 0.177  | -140              |
| 357   | 450'137       | Lisbon     | Milan                     | IT    | PT | 1203           | 808      | 0.3283 | -395              |
| 358   | 449'098       | Alicante   | Barcelona                 | ES    | ES | 300            | 232      | 0.2267 | -68               |
| 359   | 447'740       | Amsterdam  | Basel                     | СН    | NL | 375            | 341.5637 | 0.0892 | -33.4363          |
| 360   | 447'683       | Milan      | Vienna                    | AT    | IT | 537            | 392      | 0.27   | -145              |
| 361   | 447'170       | Munich     | Oslo                      | DE    | NO | 983            | 824      | 0.1617 | -159              |
| 362   | 447'001       | Rome       | Venice                    | IT    | IT | 214            | 214      | 0      | 0                 |
| 363   | 445'782       | Paris      | Seville                   | ES    | FR | 735            | 673      | 0.0844 | -62               |
| 364   | 444'837       | Bucharest  | Timisoara                 | RO    | RO | 633            | 476.3684 | 0.2474 | -156.631          |
| 365   | 444'522       | Barcelona  | Copenhagen                | DK    | ES | 1113           | 889      | 0.2013 | -224              |
| 366   | 442'478       | Katowice   | London                    | PL    | UK | 842            | 758      | 0.0998 | -84               |
| 367   | 440'413       | Barcelona  | Prague                    | CZ    | ES | 995            | 773      | 0.2231 | -222              |
| 368   | 439'872       | Amsterdam  | Glasgow                   | NL    | UK | 520            | 500      | 0.0385 | -20               |
| 369   | 438'121       | Brussels   | Munich                    | BE    | DE | 347            | 327      | 0.0576 | -20               |
| 370   | 437'766       | Brussels   | Dublin                    | BE    | IE | -              | -        | -      | -                 |
| 371   | 437'054       | Alicante   | Amsterdam                 | ES    | NL | 919            | 812      | 0.1164 | -107              |
| 372   | 436'130       | Belfast    | Glasgow                   | UK    | UK | -              | -        | -      | -                 |
| 373   | 433'455       | Frankfurt  | Geneva                    | СН    | DE | 322            | 282      | 0.1242 | -40               |
| 374   | 432'682       | Bergen     | Copenhagen                | DK    | NO | 796            | 708      | 0.1106 | -88               |
| 375   | 431'599       | Rome       | Warsaw                    | IT    | PL | 1060           | 820      | 0.2264 | -240              |
| 376   | 428'149       | London     | Vilnius                   | LT    | UK | 1261           | 959      | 0.2395 | -302              |
| 377   | 428'130       | Lyon       | Toulouse                  | FR    | FR | 265            | 238      | 0.1019 | -27               |
| 378   | 427'615       | Bucharest  | Madrid                    | ES    | RO | 2115           | 1780.735 | 0.158  | -334.264          |
| 379   | 426'631       | Bordeaux   | Marseille                 | FR    | FR | 372            | 269      | 0.2769 | -103              |
| 380   | 423'952       | Barcelona  | Santiago de<br>Compostela | ES    | ES | 331            | 331      | 0      | 0                 |
| 383   | 422'165       | Bristol    | Dublin                    | IE    | UK | -              | -        | -      | -                 |
| 384   | 421'683       | Belgrade   | Zurich                    | СН    | RS | 1044           | 713      | 0.317  | -331              |
| 385   | 421'275       | Alicante   | Stockholm                 | ES    | SE | 1693           | 1387     | 0.1807 | -306              |
| 386   | 418'909       | Helsinki   | Malaga                    | ES    | FI | -              | 2486.492 | -      | -                 |
| 387   | 418'577       | Prague     | Rome                      | CZ    | IT | 789            | 572      | 0.275  | -217              |
| 389   | 415'446       | Berlin     | Riga                      | DE    | LV | 962            | 571      | 0.4064 | -391              |
| 390   | 414'206       | Amsterdam  | Venice                    | IT    | NL | 712            | 576.5637 | 0.1902 | -135.436          |
| 391   | 413'036       | Bremen     | Munich                    | DE    | DE | 297            | 297      | 0      | 0                 |
| 392   | 411'445       | Alicante   | Brussels                  | BE    | ES | 814            | 707      | 0.1314 | -107              |
| 393   | 409'847       | Bucharest  | Cluj-Napoca               | RO    | RO | 529            | 419.7577 | 0.2065 | -109.242          |
| 396   | 407'960       | Alicante   | Birmingham                | ES    | UK | 938            | 804      | 0.1429 | -134              |
| 397   | 407'895       | Barcelona  | Naples                    | ES    | IT | 821            | 678      | 0.1742 | -143              |
| 398   | 406'196       | Rome       | Zurich                    | СН    | IT | 380            | 374      | 0.0158 | -6                |
| 399   | 404'979       | Bologna    | Paris                     | FR    | IT | 441            | 337      | 0.2358 | -104              |
| 400   | 404'667       | Copenhagen | Rome                      | DK    | IT | 1079           | 794      | 0.2641 | -285              |
| 401   | 404'506       | London     | Seville                   | ES    | UK | 880            | 818      | 0.0705 | -62               |
| 402   | 403'257       | Birmingham | Paris                     | FR    | UK | 221            | 194      | 0.1222 | -27               |

| University of Zurich Master's Thesis |         |             |                        | Jens ( | Grafström |      |          |        |          |
|--------------------------------------|---------|-------------|------------------------|--------|-----------|------|----------|--------|----------|
| 403                                  | 403'080 | Frankfurt   | Gothenburg             | DE     | SE        | 675  | 496      | 0.2652 | -179     |
| 407                                  | 400'208 | Stockholm   | Zurich                 | CH     | SE        | 979  | 766      | 0.2176 | -213     |
| 408                                  | 398'464 | Bristol     | Edinburgh              | UK     | UK        | 317  | 313      | 0.0126 | -4       |
| 414                                  | 390'314 | Barcelona   | Bologna                | ES     | IT        | 626  | 483      | 0.2284 | -143     |
| 415                                  | 386'892 | Krakow      | Warsaw                 | PL     | PL        | 137  | 137      | 0.2204 | 0        |
| 416                                  | 386'357 | Vienna      | Warsaw                 | AT     | PL        | 497  | 341      | 0.3139 | -156     |
| 418                                  | 385'855 | Geneva      | Nice                   | СН     | FR        | 358  | 358      | 0      | 0        |
| 419                                  | 384'362 | Brussels    | Nice                   | BE     | FR        | 458  | 458      | 0      | 0        |
| 420                                  | 383'574 | Bucharest   | Frankfurt              | DE     | RO        | 1371 | 1177.735 | 0.141  | -193.264 |
| 421                                  | 383'396 | Frankfurt   | Valencia               | DE     | ES        | 801  | 736      | 0.0811 | -65      |
| 422                                  | 382'548 | Berlin      | Thessaloniki           | DE     | EL        | -    | 1212.518 | -      | -        |
| 423                                  | 381'942 | Athens      | Madrid                 | EL     | ES        | _    | 2124.518 | _      | -        |
| 424                                  | 381'555 | Frankfurt   | Lyon                   | DE     | FR        | 328  | 302      | 0.0793 | -26      |
| 425                                  | 380'232 | Barcelona   | Budapest               | ES     | HU        | 1096 | 954      | 0.1296 | -142     |
| 427                                  | 379'745 | Dublin      | Liverpool              | IE     | UK        | -    | -        | -      | -        |
| 428                                  | 379'674 | Munich      | Warsaw                 | DE     | PL        | 559  | 496      | 0.1127 | -63      |
| 429                                  | 379'198 | Berlin      | Geneva                 | CH     | DE        | 544  | 441      | 0.1893 | -103     |
| 430                                  | 379'103 | Alicante    | Oslo                   | ES     | NO        | 1810 | 1475     | 0.1851 | -335     |
| 431                                  | 378'728 | Düsseldorf  | Frankfurt              | DE     | DE        | 91   | 91       | 0      | 0        |
| 434                                  | 377'019 | Alicante    | Newcastle<br>upon Tyne | ES     | UK        | 1031 | 924      | 0.1038 | -107     |
| 435                                  | 375'754 | Cluj-Napoca | London                 | RO     | UK        | 1266 | 1133.748 | 0.1045 | -132.251 |
| 437                                  | 375'130 | London      | Wroclaw                | PL     | UK        | 729  | 645      | 0.1152 | -84      |
| 438                                  | 374'599 | Amsterdam   | Valencia               | ES     | NL        | 791  | 752      | 0.0493 | -39      |
| 439                                  | 373'754 | Munich      | Zurich                 | СН     | DE        | 209  | 201      | 0.0383 | -8       |
| 440                                  | 372'591 | Cologne     | Vienna                 | AT     | DE        | 430  | 429      | 0.0023 | -1       |
| 441                                  | 372'135 | Bergen      | Trondheim              | NO     | NO        | 879  | 804      | 0.0853 | -75      |
| 442                                  | 370'496 | Berlin      | Naples                 | DE     | IT        | 805  | 608      | 0.2447 | -197     |
| 443                                  | 370'381 | Birmingham  | Malaga                 | ES     | UK        | 964  | 875      | 0.0923 | -89      |
| 444                                  | 367'446 | Amsterdam   | Bergen                 | NL     | NO        | 1382 | 1150.207 | 0.1677 | -231.792 |
| 445                                  | 367'212 | Alicante    | Bristol                | ES     | UK        | 938  | 831      | 0.1141 | -107     |
| 447                                  | 365'740 | Brussels    | Stockholm              | BE     | SE        | 884  | 746      | 0.1561 | -138     |
| 448                                  | 365'697 | Rome        | Valencia               | ES     | IT        | 930  | 787      | 0.1538 | -143     |
| 450                                  | 365'547 | Athens      | Barcelona              | EL     | ES        | -    | 1966.518 | -      | -        |
| 451                                  | 365'496 | Alicante    | Glasgow                | ES     | UK        | 1163 | 1036     | 0.1092 | -127     |
| 452                                  | 365'262 | Copenhagen  | Milan                  | DK     | IT        | 883  | 678      | 0.2322 | -205     |
| 455                                  | 364'392 | Amsterdam   | Gothenburg             | NL     | SE        | 777  | 613.2077 | 0.2108 | -163.792 |
| 456                                  | 363'605 | Amsterdam   | Newcastle<br>upon Tyne | NL     | UK        | 388  | 388      | 0      | 0        |
| 457                                  | 363'283 | London      | Verona                 | IT     | UK        | 595  | 486      | 0.1832 | -109     |
| 458                                  | 362'902 | Edinburgh   | Paris                  | FR     | UK        | 401  | 401      | 0      | 0        |
| 459                                  | 362'446 | Marseille   | Nantes                 | FR     | FR        | 350  | 350      | 0      | 0        |
| 461                                  | 357'341 | Manchester  | Munich                 | DE     | UK        | 603  | 517      | 0.1426 | -86      |
| 462                                  | 357'258 | Madrid      | Malaga                 | ES     | ES        | 168  | 168      | 0      | 0        |
| 463                                  | 356'781 | Bilbao      | London                 | ES     | UK        | 711  | 525      | 0.2616 | -186     |
| 466                                  | 353'752 | Frankfurt   | Hanover                | DE     | DE        | 136  | 93       | 0.3162 | -43      |
| 471                                  | 350'345 | London      | Turin                  | IT     | UK        | 472  | 368      | 0.2203 | -104     |
| 473                                  | 348'220 | Brussels    | Porto                  | BE     | PT        | 1041 | 895.8038 | 0.1395 | -145.196 |
| 474                                  | 347'550 | Sofia       | Vienna                 | AT     | BG        | 1388 | 584.8262 | 0.5787 | -803.173 |
| 475                                  | 346'664 | Bristol     | Malaga                 | ES     | UK        | 964  | 902      | 0.0643 | -62      |

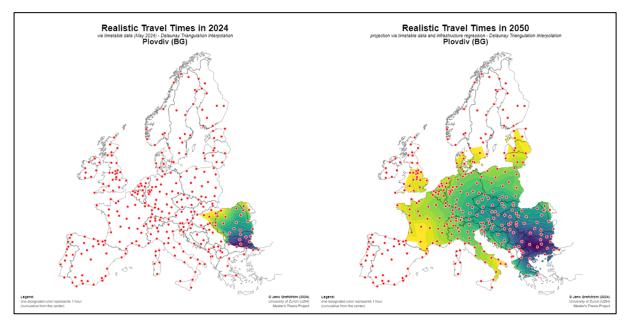
| University of Zurich |                    |                   | Ma                    | nesis |    | Jens Grafström |          |        |          |
|----------------------|--------------------|-------------------|-----------------------|-------|----|----------------|----------|--------|----------|
| 476                  | 346'612            | Bucharest         | Munich                | DE    | RO | 1235           | 1030.735 | 0.1654 | -204.264 |
| 470                  | 340'012<br>344'621 | Amsterdam         |                       | DE    | NL | 289            | 281.5637 | 0.0257 | -204.204 |
|                      |                    |                   | Stuttgart             |       | PT | 1146           |          |        |          |
| 479<br>480           | 343'726            | Amsterdam         | Porto                 | NL    |    | 619            | 1000.803 | 0.1267 | 145.196  |
| 480                  | 342'360            | Copenhagen        | Prague                | CZ    | DK |                | 400      | 0.3538 | -219     |
| 481                  | 341'931            | Luxembourg        | Porto                 |       | PT | 1083           | 937.8038 | 0.1341 | -145.196 |
| 482                  | 341'210            | Berlin<br>Maaluid | Bucharest             | DE    | RO | 1425           | 1159.735 | 0.1862 | -265.264 |
| 486                  | 338'217            | Madrid            | Valencia              | ES    | ES | 113            | 113      | 0      | 0        |
| 487                  | 337'973            | Lisbon            | Lyon                  | FR    | PT | 942            | 651      | 0.3089 | -291     |
| 488                  | 337'752            | Budapest          | Munich<br><del></del> | DE    | HU | 374            | 362      | 0.0321 | -12      |
| 489                  | 336'983            | Rome              | Tirana                | AL    | IT | -              | -        | -      | -        |
| 490                  | 336'254            | Lisbon            | Vienna                | AT    | PT | 1594           | 1200     | 0.2472 | -394     |
| 491                  | 335'749            | Barcelona         | Düsseldorf            | DE    | ES | 648            | 609      | 0.0602 | -39      |
| 492                  | 334'121            | Helsinki          | Riga                  | FI    | LV | -              | 2102.492 | -      | -        |
| 493                  | 333'833            | Brussels          | Prague                | BE    | CZ | 535            | 378      | 0.2935 | -157     |
| 494                  | 333'828            | Barcelona         | Bucharest             | ES    | RO | 1957           | 1622.735 | 0.1708 | -334.264 |
| 496                  | 333'389            | Barcelona         | Helsinki              | ES    | FI | -              | 2160.492 | -      | -        |
| 497                  | 331'928            | Dresden           | Frankfurt             | DE    | DE | 233            | 149      | 0.3605 | -84      |
| 498                  | 331'675            | Stockholm         | Warsaw                | PL    | SE | 974            | 801      | 0.1776 | -173     |
| 499                  | 331'548            | Lisbon            | Manchester            | PT    | UK | 1359           | 989      | 0.2723 | -370     |
| 501                  | 330'797            | Athens            | Bucharest             | EL    | RO | -              | 1069.270 | -      | -        |
| 503                  | 329'783            | Frankfurt         | Zagreb                | DE    | HR | 655            | 630      | 0.0382 | -25      |
| 504                  | 328'974            | Basel             | London                | СН    | UK | 325            | 325      | 0      | 0        |
| 505                  | 328'953            | Copenhagen        | Manchester            | DK    | UK | 874            | 694      | 0.2059 | -180     |
| 506                  | 328'794            | Genoa             | Rome                  | IT    | IT | 275            | 246      | 0.1055 | -29      |
| 507                  | 328'716            | Athens            | Vienna                | AT    | EL | -              | 1155.518 | -      | -        |
| 508                  | 328'608            | Alicante          | Leeds                 | ES    | UK | 986            | 879      | 0.1085 | -107     |
| 512                  | 326'964            | Brussels          | Warsaw                | BE    | PL | 686            | 603      | 0.121  | -83      |
| 513                  | 326'474            | Copenhagen        | Düsseldorf            | DE    | DK | 479            | 355      | 0.2589 | -124     |
| 514                  | 326'189            | Geneva            | Rome                  | СН    | IT | 452            | 452      | 0      | 0        |
| 515                  | 325'380            | Malaga            | Oslo                  | ES    | NO | 1836           | 1569     | 0.1454 | -267     |
| 517                  | 324'821            | Basel             | London                | FR    | UK | 325            | 325      | 0      | 0        |
| 518                  | 324'698            | Barcelona         | Stockholm             | ES    | SE | 1393           | 1155     | 0.1709 | -238     |
| 519                  | 323'942            | Bilbao            | Munich                | DE    | ES | 889            | 673      | 0.243  | -216     |
| 521                  | 323'316            | Amsterdam         | Lyon                  | FR    | NL | 318            | 318      | 0      | 0        |
| 522                  | 323'304            | Bristol           | Glasgow               | UK    | UK | 317            | 310      | 0.0221 | -7       |
| 523                  | 322'993            | Brussels          | Zurich                | BE    | СН | 330            | 330      | 0      | 0        |
| 526                  | 321'813            | Milan             | Prague                | CZ    | IT | 678            | 456      | 0.3274 | -222     |
| 527                  | 321'339            | Frankfurt         | Stuttgart             | DE    | DE | 76             | 62       | 0.1842 | -14      |
| 528                  | 320'052            | Aberdeen          | Amsterdam             | NL    | UK | 615            | 615      | 0      | 0        |
| 529                  | 319'626            | Düsseldorf        | Manchester            | DE    | UK | 404            | 348      | 0.1386 | -56      |
| 531                  | 317'539            | London            | Split                 | HR    | UK | 1321           | 1240.766 | 0.0607 | -80.234  |
| 532                  | 317'095            | Birmingham        | Frankfurt             | DE    | UK | 359            | 332      | 0.0752 | -27      |
| 533                  | 316'697            | Madrid            | Prague                | CZ    | ES | 1153           | 931      | 0.1925 | -222     |
| 536                  | 316'396            | Eindhoven         | London                | NL    | UK | 241            | 229.3363 | 0.0484 | -11.6637 |
| 537                  | 316'322            | Milan             | Tirana                | AL    | IT | -              | -        | -      | -        |
| 538                  | 316'057            | Nantes            | Toulouse              | FR    | FR | 335            | 259      | 0.2269 | -76      |
| 539                  | 315'930            | Warsaw            | Zurich                | СН    | PL | 755            | 609      | 0.1934 | -146     |
| 540                  | 315'611            | Copenhagen        | Madrid                | DK    | ES | 1271           | 1047     | 0.1762 | -224     |
| 543                  | 315'033            | Lisbon            | Luxembourg            | LU    | PT | 1197           | 883      | 0.2623 | -314     |

| University of Zurich |         |            | Master's Thesis |    |    |      | Jens Grafström |           |          |  |
|----------------------|---------|------------|-----------------|----|----|------|----------------|-----------|----------|--|
| 544                  | 314'721 | Kaunas     | London          | LT | UK | 1196 | 921            | 0.2299    | -275     |  |
| 545                  | 314'469 | London     | Thessaloniki    | EL | UK | -    | 1500.518       | -         | -        |  |
| 546                  | 314'161 | London     | Poznan          | PL | UK | 647  | 607            | 0.0618    | -40      |  |
| 547                  | 313'533 | Bologna    | Madrid          | ES | IT | 784  | 641            | 0.1824    | -143     |  |
| 548                  | 313'512 | Budapest   | Warsaw          | HU | PL | 607  | 484            | 0.2026    | -123     |  |
| 549                  | 313'274 | Frankfurt  | Nice            | DE | FR | 573  | 525.9867       | 0.082     | -47.0133 |  |
| 550                  | 312'966 | Bilbao     | Paris           | ES | FR | 566  | 380            | 0.3286    | -186     |  |
| 551                  | 312'722 | Lille      | Nice            | FR | FR | 425  | 425            | 0         | 0        |  |
| 552                  | 311'704 | Helsinki   | Prague          | CZ | FI | -    | 1671.492       | -         | -        |  |
| 554                  | 311'363 | Bologna    | Frankfurt       | DE | IT | 463  | 354            | 0.2354    | -109     |  |
| 556                  | 310'542 | Berlin     | Edinburgh       | DE | UK | 738  | 698            | 0.0542    | -40      |  |
| 557                  | 310'334 | Belgrade   | Podgorica       | ME | RS | 587  | 587            | 0         | 0        |  |
| 558                  | 309'631 | Olbia      | Rome            | IT | IT | -    | -              | -         | -        |  |
| 559                  | 309'376 | Naples     | Venice          | IT | IT | 277  | 277            | 0         | 0        |  |
| 561                  | 309'081 | Bratislava | London          | SK | UK | 696  | 676            | 0.0287    | -20      |  |
| 562                  | 308'684 | Naples     | Rome            | IT | IT | 63   | 63             | 0         | 0        |  |
| 563                  | 308'070 | Bristol    | Faro            | PT | UK | 1459 | 1115           | 0.2358    | -344     |  |
| 564                  | 307'753 | Barcelona  | Nice            | ES | FR | 420  | 381            | 0.0929    | -39      |  |
| 565                  | 306'050 | Munich     | Naples          | DE | IT | 564  | 387            | 0.3138    | -177     |  |
| 567                  | 304'193 | Barcelona  | Warsaw          | ES | PL | 1169 | 998            | 0.1463    | -171     |  |
| 568                  | 304'162 | Nice       | Rome            | FR | IT | 467  | 368.9867       | 0.2099    | -98.0133 |  |
| 569                  | 303'335 | Glasgow    | Malaga          | ES | UK | 1189 | 1107           | 0.069     | -82      |  |
| 570                  | 303'113 | Bremen     | Frankfurt       | DE | DE | 195  | 152            | 0.2205    | -43      |  |
| 571                  | 302'512 | Barcelona  | Lyon            | ES | FR | 301  | 262            | 0.1296    | -39      |  |
| 575                  | 299'890 | Copenhagen | Warsaw          | DK | PL | 694  | 535            | 0.2291    | -159     |  |
| 576                  | 299'866 | Athens     | Milan           | EL | IT | -    | 1547.518       | -         | -        |  |
| 578                  | 299'447 | Alicante   | Madrid          | ES | ES | 142  | 142            | 0         | 0        |  |
| 579                  | 299'359 | Budapest   | Madrid          | ES | HU | 1254 | 1112           | 0.1132    | -142     |  |
| 580                  | 299'338 | Amsterdam  | Bordeaux        | FR | NL | 368  | 368            | 0         | 0        |  |
| 582                  | 298'960 | Bilbao     | Seville         | ES | ES | 414  | 336            | 0.1884    | -78      |  |
| 583                  | 298'836 | Dublin     | Leeds           | IE | UK | -    | -              | -         | _        |  |
| 587                  | 297'523 | Helsinki   | Tallinn         | EE | FI | -    | 2202.492       | -         | -        |  |
| 588                  | 297'300 | Amsterdam  | Marseille       | FR | NL | 415  | 415            | 0         | 0        |  |
| 589                  | 297'271 | Madrid     | Toulouse        | ES | FR | 362  | 346            | 0.0442    | -16      |  |
| 590                  | 297'214 | Stockholm  | Vienna          | AT | SE | 1046 | 874            | 0.1644    | -172     |  |
| 592                  | 296'165 | Budapest   | Eindhoven       | HU | NL | 704  | 703            | 0.0014    | -1       |  |
| 593                  | 296'019 | Amsterdam  | Stavanger       | NL | NO | 1427 | 1197.207       | 0.161     | -229.792 |  |
| 595                  | 295'665 | Eindhoven  | Malaga          | ES | NL | 967  | 893.3363       | 0.0762    | -73.6637 |  |
| 597                  | 294'454 | Copenhagen | Stavanger       | DK | NO | 841  | 755            | 0.1023    | -86      |  |
| 598                  | 294'171 | Warsaw     | Wroclaw         | PL | PL | 255  | 105            | 0.5882    | -150     |  |
| 599                  | 294'139 | Malaga     | Rome            | ES | IT | 1084 | 941            | 0.1319    | -143     |  |
| 600                  | 293'786 | Brussels   | Oslo            | BE | NO | 1001 | 834            | 0.1668    | -167     |  |
| 603                  | 291'734 | Frankfurt  | Malaga          | DE | ES | 955  | 890            | 0.0681    | -65      |  |
| 604                  | 291'333 | Faro       | Lisbon          | PT | PT | 180  | 150            | 0.1667    | -30      |  |
| 607                  | 290'000 | Dortmund   | Katowice        | DE | PL | 582  | 520            | 0.1065    | -62      |  |
| 608                  | 289'702 | Riga       | Tallinn         | EE | LV | 607  | 100            | 0.8353    | -507     |  |
| 609                  | 289'010 | Barcelona  | Hamburg         | DE | ES | 841  | 733            | 0.1284    | -108     |  |
| 610                  | 288'763 | Stockholm  | Tallinn         | EE | SE | 2225 | 1197           | 0.462     | -1028    |  |
| 611                  | 288'629 | Geneva     | Vienna          | AT | CH | 598  | 578            | 0.0334    | -20      |  |
| <b>J</b> 1 1         |         | 1          |                 |    |    | 1000 | 0.0            | 1 2.000 1 |          |  |

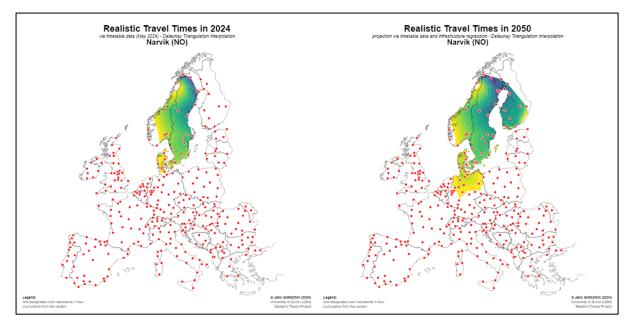
| University of Zurich |                    |                         | Master's Thesis  |          |          |            | Jens Grafström |                  |              |
|----------------------|--------------------|-------------------------|------------------|----------|----------|------------|----------------|------------------|--------------|
| 612                  | 288'327            | Copenhagen              | Nice             | DK       | FR       | 1057       | 850.9867       | 0.1949           | -206.013     |
| 613                  | 288'024            | Bologna                 | Rome             | IT       | IT       | 132        | 132            | 0                | 0            |
| 614                  | 287'558            | Nice                    | Zurich           | СН       | FR       | 470        | 350.9867       | 0.2532           | -119.013     |
| 615                  | 287'152            | Birmingham              | Faro             | PT       | UK       | 1459       | 1088           | 0.2543           | -371         |
| 616                  | 287'039            | Alicante                | Eindhoven        | ES       | NL       | 941        | 822.3363       | 0.1261           | -118.663     |
| 617                  | 284'321            | Malaga                  | Zurich           | СН       | ES       | 860        | 821            | 0.0453           | -39          |
| 620                  | 283'067            | Gdansk                  | Stockholm        | PL       | SE       | 982        | 852            | 0.1324           | -130         |
| 621                  | 281'578            | Palermo                 | Pisa             | IT       | IT       | 709        | 634            | 0.1058           | -75          |
| 622                  | 281'450            | Amsterdam               | Brussels         | BE       | NL       | 105        | 105            | 0                | 0            |
| 624                  | 281'109            | Gdansk                  | Warsaw           | PL       | PL       | 148        | 148            | 0                | 0            |
| 625                  | 280'995            | Dublin                  | Zurich           | СН       | IE       | -          | -              | -                | -            |
| 626                  | 280'602            | Frankfurt               | Tallinn          | DE       | EE       | 1791       | 830            | 0.5366           | -961         |
| 627                  | 279'608            | Florence                | Frankfurt        | DE       | IT       | 500        | 391            | 0.218            | -109         |
| 629                  | 278'961            | Alicante                | Paris            | ES       | FR       | 717        | 610            | 0.1492           | -107         |
| 630                  | 278'933            | Leeds                   | Malaga           | ES       | UK       | 1012       | 950            | 0.0613           | -62          |
| 631                  | 278'852            | Porto                   | Zurich           | СН       | PT       | 1061       | 946            | 0.1084           | -115         |
| 632                  | 278'471            | Birmingham              | Düsseldorf       | DE       | UK       | 324        | 297            | 0.0833           | -27          |
| 633                  | 278'423            | Belfast                 | Bristol          | UK       | UK       | -          | -              | -                | -            |
| 635                  | 277'751            | Düsseldorf              | Malaga           | DE       | ES       | 974        | 912            | 0.0637           | -62          |
| 636                  | 277'577            | Nantes                  | Nice             | FR       | FR       | 498        | 498            | 0                | 0            |
| 637                  | 277'509            | Bologna                 | Palermo          | IT       | IT       | 694        | 619            | 0.1081           | -75          |
| 638                  | 277'342            | Palermo                 | Turin            | IT       | IT       | 808        | 733            | 0.0928           | -75          |
| 639                  | 277'310            | Oslo                    | Riga             | LV       | NO       | 1735       | 1185           | 0.317            | -550         |
| 640                  | 276'368            | Barcelona               | Stuttgart        | DE       | ES       | 607        | 546            | 0.1005           | -61          |
| 641                  | 276'020            | Geneva                  | Manchester       | СН       | UK       | 530        | 474            | 0.1057           | -56          |
| 643                  | 275'980            | Copenhagen              | Gothenburg       | DK       | SE       | 191        | 171            | 0.1047           | -20          |
| 645                  | 274'326            | Barcelona               | Cologne          | DE       | ES       | 620        | 581            | 0.0629           | -39          |
| 647                  | 273'250            | Athens                  | Brussels         | BE       | EL       | -          | 1690.518       | -                | -            |
| 648                  | 272'316            | Frankfurt               | Toulouse         | DE       | FR       | 532        | 437            | 0.1786           | -95          |
| 649                  | 272'203            | Helsinki                | Rome             | FI       | IT       | -          | 2065.492       | -                | -            |
| 650                  | 272'148            | Lyon                    | Madrid           | ES       | FR       | 459        | 420            | 0.085            | -39          |
| 652                  | 271'707            | Madrid                  | Santander        | ES       | ES       | 243        | 183            | 0.2469           | -60          |
| 653<br>055           | 271'092            | Munich                  | Thessaloniki     | DE       | EL       | -          | 1083.518       | -                | -            |
| 655<br>656           | 270'622<br>270'616 | Bordeaux                | Nice<br>Florence | FR<br>IT | FR<br>NL | 520<br>680 | 417<br>576     | 0.1981<br>0.1529 | -103<br>-104 |
| 656<br>658           | 269'689            | Amsterdam<br>Naples     | Turin            | IT       | IT       | 309        | 309            | 0.1529           | - 104<br>0   |
| 660                  | 269'360            | Manchester              | Rome             | IT       | UK       | 874        | 309<br>714     | 0.1831           | -160         |
| 661                  | 269'062            | Alicante                | Dublin           | ES       | IE       | 0/4        | 7 14           | -                | - 100        |
| 662                  | 268'778            | Liverpool               | Malaga           | ES       | UK       | 1022       | 931            | 0.089            | -91          |
| 664                  | 268'575            | Belfast                 | Newcastle        | UK       | UK       | -          | -              | 0.000            | -01          |
|                      |                    |                         | upon Tyne        |          |          |            |                | -                | -            |
| 666                  | 267'097            | Alicante                | Liverpool        | ES       | UK       | 996        | 860            | 0.1365           | -136         |
| 668<br>660           | 266'176            | Amsterdam               | Leeds            | NL       | UK       | 343        | 343            | 0                | 0            |
| 669<br>670           | 265'980            | Birmingham              | Edinburgh        | UK       | UK       | 246        | 242            | 0.0163           | -4           |
| 670<br>671           | 264'916<br>264'876 | Copenhagen<br>Bucharest | Dublin<br>Iasi   | DK<br>RO | IE<br>RO | -<br>364   | -<br>364       | -<br>0           | - 0          |
| 672                  | 264'872            | Florence                | Rome             | IT       | IT       | 95         | 364<br>95      | 0                | 0            |
|                      |                    |                         | Newcastle        |          |          |            |                |                  |              |
| 673                  | 264'731            | Malaga                  | upon Tyne        | ES       | UK       | 1057       | 995            | 0.0587           | -62          |
| 674                  | 264'444            | Frankfurt               | Leipzig          | DE       | DE       | 165        | 102            | 0.3818           | -63          |


| University of Zurich |         |            | Master's Thesis |    |    |      | Jens Grafström |        |          |  |
|----------------------|---------|------------|-----------------|----|----|------|----------------|--------|----------|--|
| 675                  | 263'821 | Prague     | Zurich          | СН | CZ | 525  | 384            | 0.2686 | -141     |  |
| 676                  | 263'542 | Krakow     | Munich          | DE | PL | 625  | 458            | 0.2672 | -167     |  |
| 677                  | 263'217 | Amsterdam  | Naples          | IT | NL | 838  | 734            | 0.1241 | -104     |  |
| 678                  | 262'307 | Geneva     | Munich          | СН | DE | 367  | 359            | 0.0218 | -8       |  |
| 679                  | 261'535 | Belgrade   | Frankfurt       | DE | RS | 971  | 659            | 0.3213 | -312     |  |
| 681                  | 260'554 | Riga       | Stockholm       | LV | SE | 1618 | 1097           | 0.322  | -521     |  |
| 682                  | 260'520 | Brussels   | Lyon            | BE | FR | 213  | 213            | 0      | 0        |  |
| 683                  | 260'000 | Bastia     | Marseille       | FR | FR | -    | -              | -      | -        |  |
| 684                  | 259'666 | Sofia      | Varna           | BG | BG | 503  | 361            | 0.2823 | -142     |  |
| 685                  | 259'374 | Munich     | Toulouse        | DE | FR | 625  | 519            | 0.1696 | -106     |  |
| 688                  | 258'896 | Munich     | Sofia           | BG | DE | 1619 | 803.8262       | 0.5035 | -815.173 |  |
| 689                  | 258'335 | Düsseldorf | Prague          | CZ | DE | 457  | 300            | 0.3435 | -157     |  |
| 690                  | 257'882 | Budapest   | Dublin          | HU | IE | -    | -              | -      | -        |  |
| 691                  | 257'856 | Munich     | Nice            | DE | FR | 666  | 380.9867       | 0.4279 | -285.013 |  |
| 692                  | 256'694 | Cologne    | Zurich          | СН | DE | 265  | 234            | 0.117  | -31      |  |
| 693                  | 256'550 | Barcelona  | Oslo            | ES | NO | 1510 | 1243           | 0.1768 | -267     |  |
| 694                  | 256'448 | Amsterdam  | Düsseldorf      | DE | NL | 135  | 132.5637       | 0.018  | -2.4363  |  |
| 695                  | 256'020 | Amsterdam  | Toulouse        | FR | NL | 504  | 428            | 0.1508 | -76      |  |
| 696                  | 255'973 | Belgrade   | Paris           | FR | RS | 1158 | 805            | 0.3048 | -353     |  |
| 698                  | 255'867 | Prague     | Stockholm       | CZ | SE | 899  | 666            | 0.2592 | -233     |  |
| 699                  | 255'675 | Bilbao     | Malaga          | ES | ES | 422  | 344            | 0.1848 | -78      |  |
| 700                  | 255'111 | Lyon       | Porto           | FR | PT | 828  | 713            | 0.1389 | -115     |  |
| 701                  | 254'125 | Düsseldorf | Milan           | DE | IT | 477  | 440            | 0.0776 | -37      |  |
| 703                  | 253'382 | Frankfurt  | Riga            | DE | LV | 1184 | 730            | 0.3834 | -454     |  |
| 704                  | 253'302 | Faro       | Paris           | FR | PT | 1238 | 894            | 0.2779 | -344     |  |
| 705                  | 253'250 | Ajaccio    | Marseille       | FR | FR | -    | -              | -      | -        |  |
| 706                  | 253'156 | Berlin     | Bologna         | DE | IT | 610  | 413            | 0.323  | -197     |  |
| 707                  | 251'085 | Amsterdam  | Faro            | NL | PT | 1440 | 1096           | 0.2389 | -344     |  |
| 708                  | 250'066 | Basel      | Hamburg         | СН | DE | 374  | 291            | 0.2219 | -83      |  |
| 709                  | 250'013 | Basel      | Budapest        | СН | HU | 629  | 566            | 0.1002 | -63      |  |
| 711                  | 249'734 | Frankfurt  | Marseille       | DE | FR | 425  | 399            | 0.0612 | -26      |  |
| 712                  | 249'465 | Frankfurt  | Nuremberg       | DE | DE | 123  | 122            | 0.0081 | -1       |  |
| 713                  | 249'304 | Alicante   | Copenhagen      | DK | ES | 1413 | 1121           | 0.2067 | -292     |  |
| 717                  | 246'398 | Prague     | Warsaw          | CZ | PL | 437  | 378            | 0.135  | -59      |  |
| 718                  | 246'375 | Alicante   | Belfast         | ES | UK | -    | -              | -      | -        |  |
| 720                  | 245'683 | Valencia   | Zurich          | СН | ES | 706  | 667            | 0.0552 | -39      |  |
| 721                  | 245'459 | Bordeaux   | Lisbon          | FR | PT | 967  | 578            | 0.4023 | -389     |  |
| 725                  | 245'030 | Brussels   | Manchester      | BE | UK | 270  | 214            | 0.2074 | -56      |  |
| 726                  | 245'027 | Madrid     | Marseille       | ES | FR | 430  | 391            | 0.0907 | -39      |  |
| 728                  | 243'221 | Budapest   | Milan           | HU | IT | 680  | 535            | 0.2132 | -145     |  |
| 729                  | 242'653 | Gothenburg | Munich          | DE | SE | 777  | 641            | 0.175  | -136     |  |
| 730                  | 242'170 | Amsterdam  | Bilbao          | ES | NL | 768  | 582            | 0.2422 | -186     |  |
| 733                  | 240'710 | Barcelona  | Birmingham      | ES | UK | 638  | 572            | 0.1034 | -66      |  |
| 735                  | 239'930 | Lisbon     | Nantes          | FR | PT | 1166 | 777            | 0.3336 | -389     |  |
| 737                  | 239'764 | Amsterdam  | Liverpool       | NL | UK | 353  | 324            | 0.0822 | -29      |  |
| 738                  | 239'723 | Venice     | Zurich          | СН | IT | 317  | 301            | 0.0505 | -16      |  |
| 741                  | 239'201 | Munich     | Venice          | DE | IT | 377  | 195            | 0.4828 | -182     |  |
| 742                  | 238'801 | Munich     | Zagreb          | DE | HR | 468  | 468            | 0      | 0        |  |
| 744                  | 238'228 | Lisbon     | Toulouse        | FR | PT | 845  | 577            | 0.3172 | -268     |  |

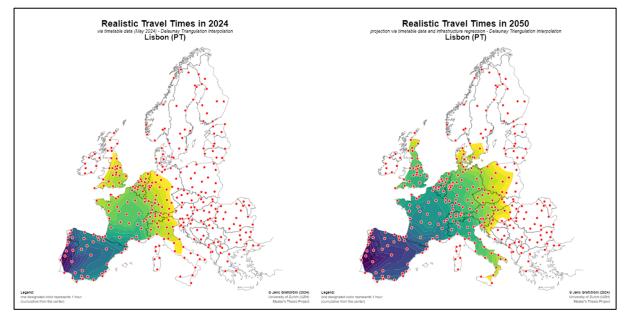
| University of Zurich |         |            | Master's Thesis |    |    |      | Jens Grafström |        |          |  |
|----------------------|---------|------------|-----------------|----|----|------|----------------|--------|----------|--|
| 745                  | 238'045 | Düsseldorf | Stockholm       | DE | SE | 759  | 621            | 0.1818 | -138     |  |
| 747                  | 237'532 | Frankfurt  | Graz            | AT | DE | 482  | 470            | 0.0249 | -12      |  |
| 748                  | 237'421 | Lisbon     | Marseille       | FR | PT | 913  | 622            | 0.3187 | -291     |  |
| 749                  | 237'276 | Naples     | Palermo         | IT | IT | 499  | 424            | 0.1503 | -75      |  |
| 750                  | 236'844 | Gothenburg | Helsinki        | FI | SE | -    | 1223.492       | -      | -        |  |
| 751                  | 236'773 | Eindhoven  | Faro            | NL | PT | 1462 | 1106.336       | 0.2433 | -355.663 |  |
| 752                  | 236'253 | Athens     | Sofia           | BG | EL | -    | 646.2707       | -      | -        |  |
| 753                  | 235'592 | Lyon       | Munich          | DE | FR | 421  | 365            | 0.133  | -56      |  |
| 754                  | 235'480 | Hamburg    | Lisbon          | DE | PT | 1482 | 1122           | 0.2429 | -360     |  |
| 755                  | 235'312 | Paris      | Pisa            | FR | IT | 530  | 411            | 0.2245 | -119     |  |
| 756                  | 235'222 | Budapest   | Zurich          | СН | HU | 583  | 563            | 0.0343 | -20      |  |
| 757                  | 235'159 | Lyon       | Rome            | FR | IT | 457  | 353            | 0.2276 | -104     |  |
| 758                  | 234'689 | Belfast    | Malaga          | ES | UK | -    | -              | -      | -        |  |
| 759                  | 234'655 | Bilbao     | Frankfurt       | DE | ES | 796  | 591            | 0.2575 | -205     |  |
| 762                  | 234'307 | Lille      | Toulouse        | FR | FR | 366  | 290            | 0.2077 | -76      |  |
| 763                  | 234'103 | Gdansk     | Oslo            | NO | PL | 1099 | 940            | 0.1447 | -159     |  |
| 764                  | 234'019 | Aalborg    | Amsterdam       | DK | NL | 635  | 589.2077       | 0.0721 | -45.7923 |  |
| 765                  | 233'827 | Düsseldorf | Dublin          | DE | IE | -    | -              | -      | -        |  |
| 766                  | 233'718 | Münster    | Munich          | DE | DE | 326  | 315            | 0.0337 | -11      |  |
| 767                  | 233'666 | Vilnius    | Warsaw          | LT | PL | 461  | 242            | 0.4751 | -219     |  |
| 768                  | 233'652 | Madrid     | Naples          | ES | IT | 979  | 836            | 0.1461 | -143     |  |
| 769                  | 233'555 | Bari       | London          | IT | UK | 910  | 799            | 0.122  | -111     |  |
| 772                  | 232'957 | Budapest   | Prague          | CZ | HU | 378  | 351            | 0.0714 | -27      |  |
| 773                  | 232'915 | Rome       | Stockholm       | IT | SE | 1359 | 1060           | 0.22   | -299     |  |
| 775                  | 232'287 | Barcelona  | Liverpool       | ES | UK | 696  | 628            | 0.0977 | -68      |  |
| 776                  | 232'136 | Manchester | Prague          | CZ | UK | 805  | 592            | 0.2646 | -213     |  |
| 777                  | 231'507 | Brussels   | Helsinki        | BE | FI | -    | 1751.492       | -      | -        |  |
| 778                  | 231'448 | Budapest   | Copenhagen      | DK | HU | 909  | 751            | 0.1738 | -158     |  |
| 779                  | 230'262 | Birmingham | Glasgow         | UK | UK | 246  | 239            | 0.0285 | -7       |  |
| 780                  | 229'823 | Faro       | Frankfurt       | DE | PT | 1450 | 1103           | 0.2393 | -347     |  |
| 781                  | 229'729 | Brussels   | Venice          | BE | IT | 607  | 493            | 0.1878 | -114     |  |
| 782                  | 229'468 | Riga       | Vilnius         | LT | LV | 262  | 114            | 0.5649 | -148     |  |
| 783                  | 229'435 | Brussels   | Valencia        | BE | ES | 686  | 647            | 0.0569 | -39      |  |
| 784                  | 229'327 | Budapest   | Helsinki        | FI | HU | -    | 2022.492       | -      | -        |  |
| 785                  | 229'313 | Palermo    | Verona          | IT | IT | 746  | 671            | 0.1005 | -75      |  |
| 786                  | 228'428 | Oslo       | Warsaw          | NO | PL | 1091 | 889            | 0.1852 | -202     |  |
| 789                  | 228'167 | Bucharest  | Warsaw          | PL | RO | 1468 | 1152.735       | 0.2148 | -315.264 |  |
| 790                  | 227'821 | Amsterdam  | Bologna         | IT | NL | 643  | 539            | 0.1617 | -104     |  |
| 791                  | 227'815 | Bordeaux   | Lille           | FR | FR | 230  | 230            | 0      | 0        |  |
| 793                  | 227'728 | Eindhoven  | Valencia        | ES | NL | 813  | 762.3363       | 0.0623 | -50.6637 |  |
| 794                  | 227'103 | Frankfurt  | Salzburg        | AT | DE | 275  | 250            | 0.0909 | -25      |  |
| 795                  | 227'095 | Belfast    | Faro            | PT | UK | -    | -              | -      | -        |  |
| 798                  | 226'791 | Frankfurt  | Vilnius         | DE | LT | 1001 | 676            | 0.3247 | -325     |  |
| 799                  | 226'502 | Copenhagen | Geneva          | СН | DK | 806  | 607            | 0.2469 | -199     |  |
| 800                  | 225'178 | Graz       | Munich          | AT | DE | 326  | 308            | 0.0552 | -18      |  |
| 801                  | 224'999 | Rome       | Sofia           | BG | IT | 2036 | 1092.826       | 0.4632 | -943.173 |  |
| 802                  | 224'321 | Nice       | Vienna          | AT | FR | 823  | 564.9867       | 0.3135 | -258.013 |  |
| 803                  | 224'161 | Alicante   | Edinburgh       | ES | UK | 1118 | 1011           | 0.0957 | -107     |  |
| 804                  | 224'115 | Dortmund   | London          | DE | UK | 285  | 285            | 0      | 0        |  |


| University of Zurich |         |            | Master's Thesis        |    |    |      | Jens Grafström |        |             |  |
|----------------------|---------|------------|------------------------|----|----|------|----------------|--------|-------------|--|
| 805                  | 223'520 | Berlin     | Sofia                  | BG | DE | 1809 | 932.8262       | 0.4843 | -876.173    |  |
| 806                  | 223'335 | Athens     | Copenhagen             | DK | EL | -    | 1763.518       | -      | -           |  |
| 807                  | 223'215 | Hanover    | Vienna                 | AT | DE | 418  | 418            | 0      | 0           |  |
| 808                  | 222'658 | London     | Salzburg               | AT | UK | 535  | 505            | 0.0561 | -30         |  |
| 809                  | 222'354 | Bologna    | Bucharest              | IT | RO | 1520 | 1187.735       | 0.2186 | -332.264    |  |
| 811                  | 222'238 | Dublin     | Newcastle<br>upon Tyne | IE | UK | -    | -              | -      | -           |  |
| 813                  | 221'932 | Budapest   | Stockholm              | HU | SE | 1189 | 1017           | 0.1447 | -172        |  |
| 814                  | 221'862 | Copenhagen | Riga                   | DK | LV | 1338 | 831            | 0.3789 | -507        |  |
| 816                  | 220'535 | Lille      | Marseille              | FR | FR | 277  | 277            | 0      | 0           |  |
| 817                  | 220'227 | Dublin     | Vienna                 | AT | IE | -    | -              | -      | -           |  |
| 818                  | 220'084 | Munich     | Prague                 | CZ | DE | 316  | 248            | 0.2152 | -68         |  |
| 819                  | 219'564 | Copenhagen | Edinburgh              | DK | UK | 974  | 850            | 0.1273 | -124        |  |
| 820                  | 219'507 | Marseille  | Munich                 | DE | FR | 518  | 462            | 0.1081 | -56         |  |
| 821                  | 219'327 | Madrid     | Nantes                 | ES | FR | 683  | 546            | 0.2006 | -137        |  |
| 822                  | 218'293 | Cologne    | Rome                   | DE | IT | 645  | 545            | 0.155  | -100        |  |
| 823                  | 218'268 | Barcelona  | Bordeaux               | ES | FR | 340  | 248            | 0.2706 | -92         |  |
| 825                  | 217'509 | Düsseldorf | Rome                   | DE | IT | 673  | 573            | 0.1486 | -100        |  |
| 827                  | 216'936 | Frankfurt  | Thessaloniki           | DE | EL | -    | 1230.518       | -      | _           |  |
| 828                  | 216'262 | Luxembourg | Munich                 | DE | LU | 293  | 263            | 0.1024 | -30         |  |
| 829                  | 215'905 | Bristol    | Geneva                 | СН | UK | 450  | 450            | 0      | 0           |  |
| 830                  | 215'319 | Frankfurt  | Naples                 | DE | IT | 658  | 549            | 0.1657 | -109        |  |
| 831                  | 214'987 | Hanover    | Zurich                 | СН | DE | 351  | 268            | 0.2365 | -83         |  |
| 832                  | 214'741 | Copenhagen | Lisbon                 | DK | PT | 1754 | 1278           | 0.2714 | -476        |  |
| 833                  | 214'552 | Bordeaux   | Geneva                 | CH | FR | 395  | 395            | 0      | 0           |  |
| 835                  | 214'215 | Düsseldorf | Lisbon                 | DE | PT | 1289 | 975            | 0.2436 | -314        |  |
| 836                  | 213'612 | Berlin     | Nice                   | DE | FR | 795  | 601.9867       | 0.2428 | -193.013    |  |
| 837                  | 213'554 | Athens     | Geneva                 | CH | EL | -    | 1733.518       | -      | -           |  |
| 838                  | 213'230 | Aberdeen   | Manchester             | UK | UK | 324  | 324            | 0      | 0           |  |
| 839                  | 213'021 | Belgrade   | Vienna                 | AT | RS | 604  | 293            | 0.5149 |             |  |
| 840                  | 213'013 | Seville    | Valencia               | ES | ES | 260  | 260            | 0      | 0           |  |
| 842                  | 212'457 | Helsinki   | Milan                  | FI | IT | -    | 1949.492       | -      | -           |  |
| 843                  | 212'418 | Innsbruck  | London                 | AT | UK | 551  | 472            | 0.1434 | -79         |  |
| 844                  | 212 410 | Dublin     | Prague                 | CZ | IE | -    | -              | 0.1404 | -75         |  |
| 845                  | 211'265 | Amsterdam  | Krakow                 | NL | PL | 782  | 696.5637       | 0.1093 | -85.4363    |  |
| 847                  | 210'688 | Almeria    | Madrid                 | ES | ES | 374  | 230            | 0.385  | -144        |  |
| 849                  | 210'380 | Bodo       | Trondheim              | NO | NO | 586  | 230<br>586     | 0.505  | 0           |  |
| 850                  | 210'380 | Birmingham | Munich                 | DE | UK | 523  | 466            | 0.109  | -57         |  |
| 851                  | 209'873 | Budapest   | Oslo                   | HU | NO | 1306 | 400<br>1105    | 0.1539 | -201        |  |
| 852                  | 209'867 | Dresden    | Munich                 | DE | DE | 252  | 211            | 0.1627 | -201<br>-41 |  |
| 853                  | 209'820 | Krakow     | Oslo                   | NO | PL | 1205 | 998            | 0.1027 | -41         |  |
|                      |         | 1          |                        |    |    | 406  |                | 0.1718 |             |  |
| 856                  | 209'195 | Florence   | Munich                 | DE | IT |      | 229            |        | -177        |  |
| 857                  | 209'049 | Lyon       | Nice                   | FR | FR | 245  | 245            | 0      | 0           |  |
| 858                  | 208'781 | Krakow     | Manchester             | PL | UK | 1045 | 905            | 0.134  | -140        |  |
| 861                  | 208'346 | Milan      | Porto                  | IT | PT | 1089 | 870            | 0.2011 | -219        |  |
| 862                  | 208'184 | Athens     | Budapest               | EL | HU | -    | 1012.518       | -      | -           |  |
| 863                  | 208'130 | Alicante   | Düsseldorf             | DE | ES | 948  | 841            | 0.1129 | -107        |  |
| 864                  | 208'035 | Bergen     | London                 | NO | UK | 1514 | 1302           | 0.14   | -212        |  |
| 865                  | 207'861 | Helsinki   | Zurich                 | СН | FI | -    | 1771.492       | -      | -           |  |

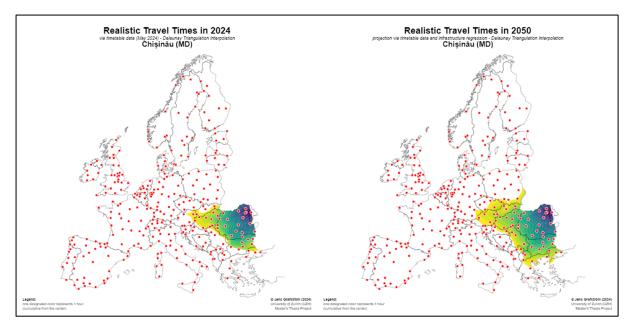
| University of Zurich |         |            | Mas          | Jens Grafström |    |      |                      |        |          |
|----------------------|---------|------------|--------------|----------------|----|------|----------------------|--------|----------|
| 866                  | 207'841 | London     | Tirana       | AL             | UK | -    | -                    | -      | _        |
| 868                  | 207'548 | Belgrade   | Munich       | DE             | RS | 835  | 512                  | 0.3868 | -323     |
| 869                  | 207'279 | Athens     | Warsaw       | EL             | PL | -    | 1496.518             | -      | -        |
| 870                  | 207'081 | Geneva     | Nantes       | CH             | FR | 366  | 366                  | 0      | 0        |
| 871                  | 206'546 | Helsinki   | Lisbon       | FI             | PT | -    | 2549.492             | -      | -        |
| 872                  | 206'335 | Hamburg    | Madrid       | DE             | ES | 999  | 891                  | 0.1081 | -108     |
| 873                  | 206'028 | Bologna    | Munich       | DE             | IT | 369  | 192                  | 0.4797 | -177     |
| 874                  | 205'853 | Nice       | Oslo         | FR             | NO | 1454 | 1204.986             | 0.1713 | -249.013 |
| 875                  | 205'819 | Barcelona  | Turin        | ES             | IT | 512  | 369                  | 0.2793 | -143     |
| 876                  | 205'631 | Paris      | Sofia        | BG             | FR | 1942 | 1096.826             | 0.4352 | -845.173 |
| 878                  | 204'766 | Barcelona  | Bristol      | ES             | UK | 638  | 599                  | 0.0611 | -39      |
| 879                  | 204'659 | Innsbruck  | Vienna       | AT             | AT | 251  | 239                  | 0.0478 | -12      |
| 880                  | 204'439 | Madrid     | Stockholm    | ES             | SE | 1551 | 1313                 | 0.1534 | -238     |
| 882                  | 203'985 | Faro       | Liverpool    | PT             | UK | 1517 | 1144                 | 0.2459 | -373     |
| 885                  | 203'433 | Milan      | Zurich       | СН             | IT | 184  | 178                  | 0.0326 | -6       |
| 886                  | 203'323 | Brussels   | Gothenburg   | BE             | SE | 795  | 651                  | 0.1811 | -144     |
| 888                  | 203'123 | lasi       | London       | RO             | UK | 1820 | 1687.748             | 0.0727 | -132.251 |
| 889                  | 202'602 | Dublin     | Hamburg      | DE             | IE | -    | -                    | -      | -        |
| 890                  | 202'458 | Frankfurt  | Luxembourg   | DE             | LU | 200  | 181                  | 0.095  | -19      |
| 891                  | 202'443 | Krakow     | Stockholm    | PL             | SE | 1088 | 910                  | 0.1636 | -178     |
| 892                  | 202'401 | Düsseldorf | Warsaw       | DE             | PL | 561  | 483                  | 0.139  | -78      |
| 894                  | 201'894 | Brussels   | Budapest     | BE             | HU | 679  | 678                  | 0.0015 | -1       |
| 895                  | 201'795 | Amsterdam  | Hanover      | DE             | NL | 249  | 227.5637             | 0.0861 | -21.4363 |
| 896                  | 201'770 | Faro       | Leeds        | PT             | UK | 1507 | 1163                 | 0.2283 | -344     |
| 897                  | 201'768 | Nice       | Stockholm    | FR             | SE | 1337 | 1116.986<br>7        | 0.1646 | -220.013 |
| 899                  | 201'672 | Berlin     | Venice       | DE             | IT | 618  | 416                  | 0.3269 | -202     |
| 900                  | 201'194 | Hamburg    | Manchester   | DE             | UK | 602  | 538                  | 0.1063 | -64      |
| 902                  | 201'062 | Lisbon     | Stockholm    | PT             | SE | 2034 | 1544                 | 0.2409 | -490     |
| 903                  | 200'970 | Rome       | Verona       | IT             | IT | 184  | 184                  | 0      | 0        |
| 904                  | 200'487 | Poznan     | Warsaw       | PL             | PL | 153  | 110                  | 0.281  | -43      |
| 907                  | 198'950 | Budapest   | Manchester   | HU             | UK | 949  | 879                  | 0.0738 | -70      |
| 910                  | 198'390 | Manchester | Southampton  | UK             | UK | 231  | 175                  | 0.2424 | -56      |
| 911                  | 198'061 | Amsterdam  | Nuremberg    | DE             | NL | 349  | 345.5637             | 0.0098 | -3.4363  |
| 912                  | 197'462 | Berlin     | Bristol      | DE             | UK | 558  | 518                  | 0.0717 | -40      |
| 913                  | 197'452 | Barcelona  | Santander    | ES             | ES | 401  | 341                  | 0.1496 | -60      |
| 915                  | 196'870 | Copenhagen | Gdansk       | DK             | PL | 702  | 586                  | 0.1652 | -116     |
| 917                  | 196'795 | Basel      | Vienna       | AT             | CH | 486  | 423                  | 0.1296 | -63      |
| 918                  | 196'502 | Edinburgh  | Frankfurt    | DE             | UK | 539  | 539                  | 0      | 0        |
| 919                  | 196'247 | Brussels   | Hamburg      | BE             | DE | 332  | 324                  | 0.0241 | -8       |
| 920                  | 195'860 | Eindhoven  | Lisbon       | NL             | PT | 1282 | 956.3363             | 0.254  | -325.663 |
| 923                  | 195'502 | Stuttgart  | Thessaloniki | DE             | EL | -    | 1183.518<br>1879.492 | -      | -        |
| 924                  | 194'569 | Helsinki   | Vienna       | AT             | FI | -    | 6                    | -      | -        |
| 925                  | 194'305 | Brussels   | Paris        | BE             | FR | 97   | 97                   | 0      | 0        |
| 927                  | 193'357 | Munich     | Stuttgart    | DE             | DE | 115  | 100                  | 0.1304 | -15      |
| 928                  | 193'151 | Madrid     | Warsaw       | ES             | PL | 1327 | 1156                 | 0.1289 | -171     |
| 929                  | 193'085 | Frankfurt  | Turin        | DE             | IT | 449  | 403                  | 0.1024 | -46      |
| 930                  | 192'893 | Edinburgh  | Geneva       | СН             | UK | 630  | 630                  | 0      | 0        |
| 932                  | 192'754 | Madrid     | Nice         | ES             | FR | 578  | 539                  | 0.0675 | -39      |


| University of Zurich |                    |            | Master's Thesis        |    |    |            | Jens Grafström |             |          |
|----------------------|--------------------|------------|------------------------|----|----|------------|----------------|-------------|----------|
| 933                  | 192'683            | Amsterdam  | Nantes                 | FR | NL | 339        | 339            | 0           | 0        |
| 934                  | 192'642            | Lisbon     | Valencia               | ES | PT | 596        | 344            | 0.4228      | -252     |
| 935                  | 192'545            | Munich     | Turin                  | DE | IT | 440        | 258            | 0.4136      | -182     |
| 937                  | 192'430            | Frankfurt  | Wroclaw                | DE | PL | 446        | 362            | 0.1883      | -84      |
| 938                  | 192'412            | London     | Nuremberg              | DE | UK | 406        | 405            | 0.0025      | -1       |
| 939                  | 191'898            | Alicante   | Helsinki               | ES | FI | -          | 2392.492       | -           | -        |
| 940                  | 191'772            | Riga       | Warsaw                 | LV | PL | 644        | 296            | 0.5404      | -348     |
| 941                  | 191'306            | Basel      | Porto                  | СН | PT | 1008       | 893            | 0.1141      | -115     |
| 942                  | 191'190            | Bristol    | Newcastle<br>upon Tyne | UK | UK | 230        | 230            | 0           | 0        |
| 943                  | 191'102            | Tallinn    | Warsaw                 | EE | PL | 1251       | 396            | 0.6835      | -855     |
| 945                  | 190'821            | Hamburg    | Stockholm              | DE | SE | 552        | 422            | 0.2355      | -130     |
| 947                  | 189'983            | Düsseldorf | Thessaloniki           | DE | EL | -          | 1321.518       | -           | -        |
| 948                  | 189'596            | Berlin     | Pisa                   | DE | IT | 699        | 502            | 0.2818      | -197     |
| 951                  | 189'037            | Malaga     | Milan                  | ES | IT | 888        | 745            | 0.161       | -143     |
| 952                  | 188'065            | Gothenburg | Malaga                 | ES | SE | 1630       | 1386           | 0.1497      | -244     |
| 954                  | 187'997            | Dortmund   | Munich                 | DE | DE | 306        | 286            | 0.0654      | -20      |
| 955                  | 187'410            | Brussels   | Toulouse               | BE | FR | 399        | 323            | 0.1905      | -76      |
| 956                  | 186'878            | Tirana     | Vienna                 | AL | AT | -          | -              | -           | -        |
| 957                  | 186'590            | Bremen     | London                 | DE | UK | 389        | 389            | 0           | 0        |
| 958                  | 186'336            | Basel      | Nice                   | СН | FR | 425        | 403.9867       | 0.0494      | -21.0133 |
| 960                  | 185'458            | Madrid     | Manchester             | ES | UK | 876        | 758            | 0.1347      | -118     |
| 961                  | 185'289            | Amsterdam  | Luxembourg             | LU | NL | 301        | 225            | 0.2525      | -76      |
| 963                  | 185'048            | Barcelona  | Florence               | ES | IT | 663        | 520            | 0.2157      | -143     |
| 964                  | 185'001            | Copenhagen | Hamburg                | DE | DK | 272        | 156            | 0.4265      | -116     |
| 965                  | 184'935            | Edinburgh  | Malaga                 | ES | UK | 1144       | 1082           | 0.0542      | -62      |
| 966                  | 184'758            | Faro       | Newcastle<br>upon Tyne | PT | UK | 1552       | 1208           | 0.2216      | -344     |
| 968                  | 184'607            | Budapest   | Lisbon                 | HU | PT | 1737       | 1343           | 0.2268      | -394     |
| 971                  | 182'796            | Düsseldorf | Helsinki               | DE | FI | -          | 1626.492       | -           | -        |
| 972                  | 182'783            | Madrid     | Sofia                  | BG | ES | 2499       | 1553.826       | 0.3782      | -945.173 |
| 973                  | 182'767            | Edinburgh  | Southampton            | UK | UK | 331        | 331            | 0           | 0        |
| 974                  | 182'698            | Berlin     | Warsaw                 | DE | PL | 318        | 275            | 0.1352      | -43      |
| 975                  | 182'455            | Cagliari   | Pisa                   | IT | IT | -          | -              | -           | -        |
| 976                  | 182'404            | Bologna    | Vienna                 | AT | IT | 516        | 376            | 0.2713      | -140     |
| 977                  | 182'362            | Manchester | Milan                  | IT | UK | 678        | 518            | 0.236       | -160     |
| 978                  | 182'221            | Marseille  | Rome                   | FR | IT | 554        | 450            | 0.1877      | -104     |
| 982                  | 181'702            | Budapest   | Stuttgart              | DE | HU | 489        | 462            | 0.0552      | -27      |
| 983                  | 181'620            | Venice     | Vienna                 | AT | IT | 444        | 362            | 0.1847      | -82      |
| 985                  | 181'225            | Split      | Zagreb                 | HR | HR | 406        | 355.766        | 0.1237      | -50.234  |
| 986                  | 181'029            | Oslo       | Zurich                 | CH | NO | 1096       | 854            | 0.2208      | -242     |
| 987                  | 180'818            | Geneva     | Malaga                 | CH | ES | 740        | 701            | 0.0527      | -39      |
| 988                  | 180'709            | Basel      | Lisbon                 | CH | PT | 1122       | 831            | 0.2594      | -291     |
| 989                  | 180'676            | Alicante   | Bilbao                 | ES | ES | 396        | 318            | 0.197       | -78      |
| 991<br>004           | 180'510            | Aarhus     | Copenhagen             | DK | DK | 161        | 147            | 0.087       | -14      |
| 994<br>006           | 179'728            | Brussels   | Bucharest              | BE | RO | 1540       | 1346.735       | 0.1255      | -193.264 |
| 996<br>007           | 179'302            | Stuttgart  | Zurich                 | CH | DE | 193        | 157            | 0.1865      | -36      |
| 997<br>000           | 179'195            | Basel      | Frankfurt              | CH | DE | 162        | 122            | 0.2469      | -40      |
| 999<br>1000          | 178'955<br>178'835 | Lyon       | Rennes                 | FR | FR | 220<br>481 | 220<br>442     | 0<br>0.0811 | 0<br>-39 |
| 1000                 | 178'835            | Barcelona  | Basel                  | ES | FR | 401        | 442            | 0.0011      | -39      |

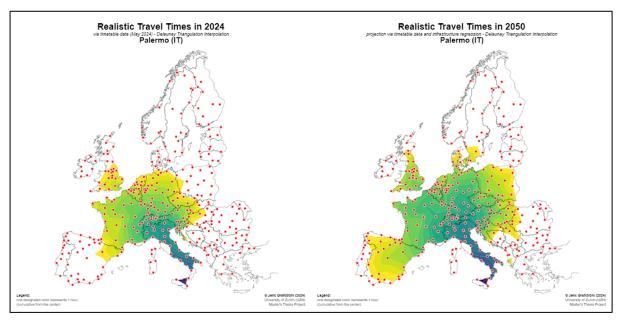



*Figures 35 a-b*: Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from Narva. Source: own illustration.

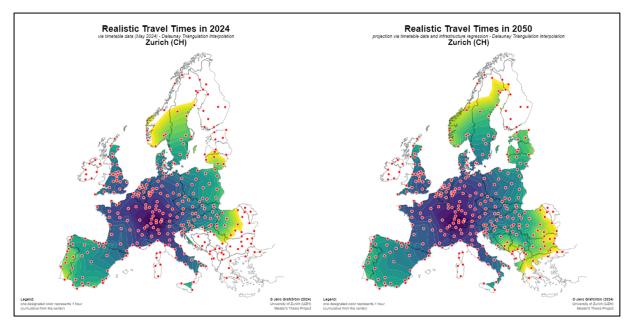



*Figures 36 a-b*: Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from Plovdiv. Source: own illustration.

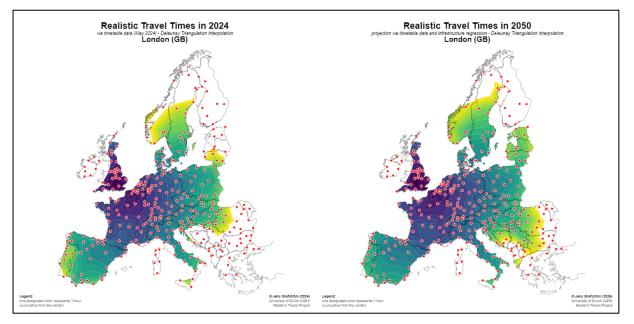



*Figures 37 a-b*: Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from Narvik. Source: own illustration.

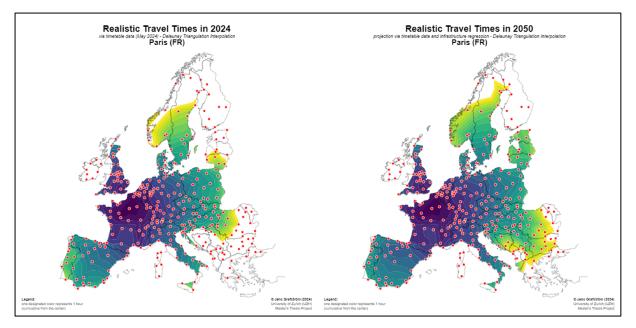



*Figures 38 a-b*: Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from Lisbon. Source: own illustration.

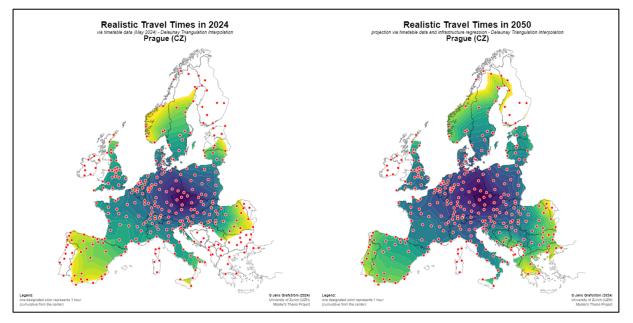



*Figures 39 a-b*: Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from Chisinau. Source: own illustration.

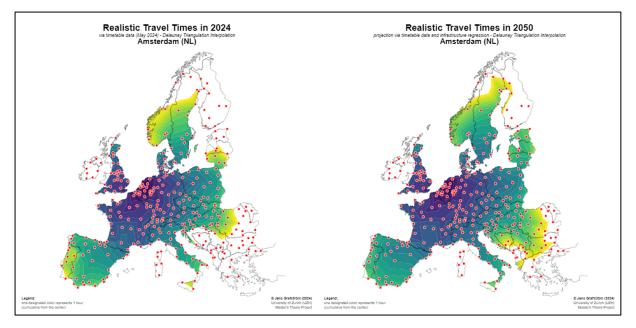



*Figures 40 a-b*: Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from Palermo. Source: own illustration.

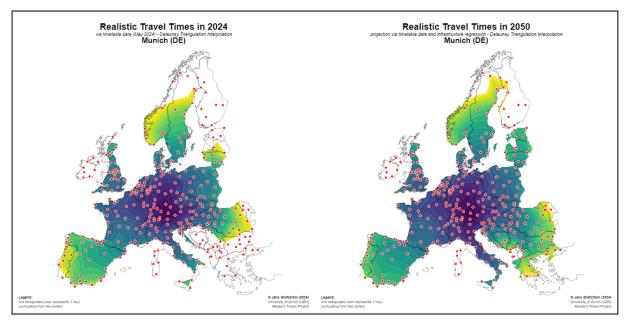



*Figures 41 a-b*: Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from Zurich. Source: own illustration.

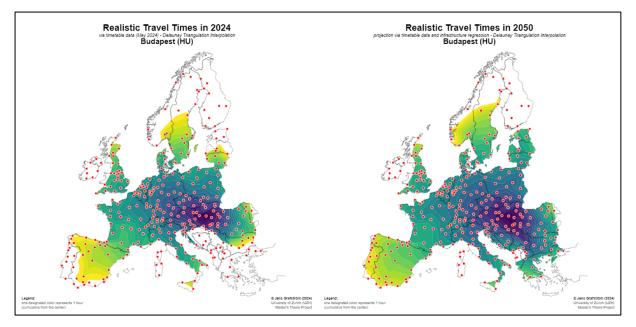



*Figures 42 a-b*: Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from London. Source: own illustration.

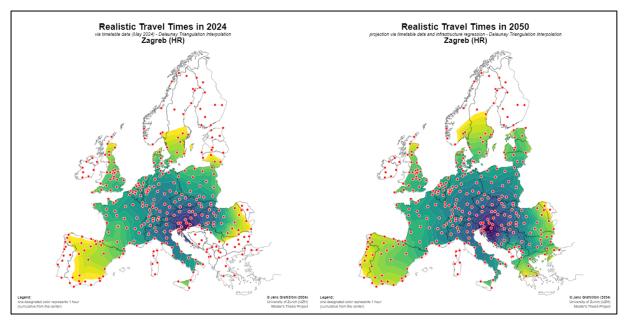



*Figures 43 a-b*: Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from Paris. Source: own illustration.

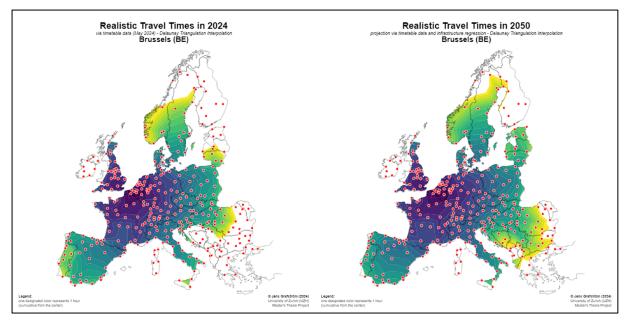



*Figures 44 a-b*: Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from Prague. Source: own illustration.

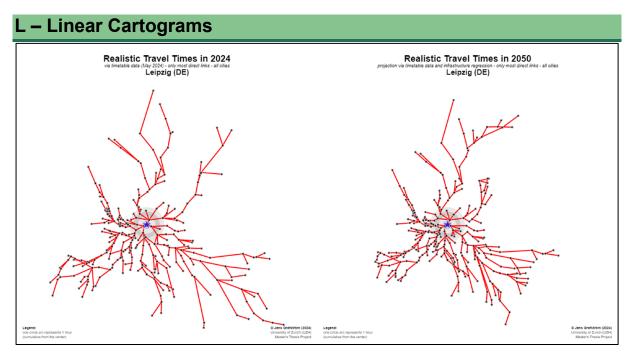



*Figures 45 a-b*: Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from Amsterdam. Source: own illustration.

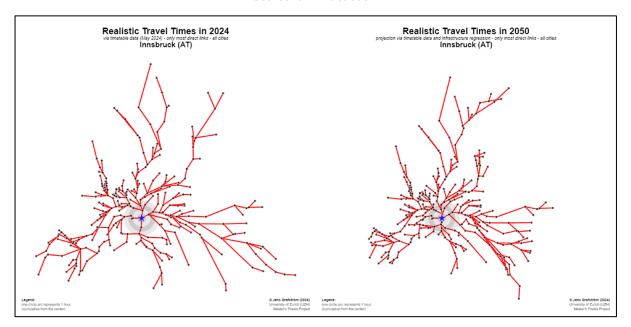



*Figures 46 a-b*: Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from Munich. Source: own illustration.

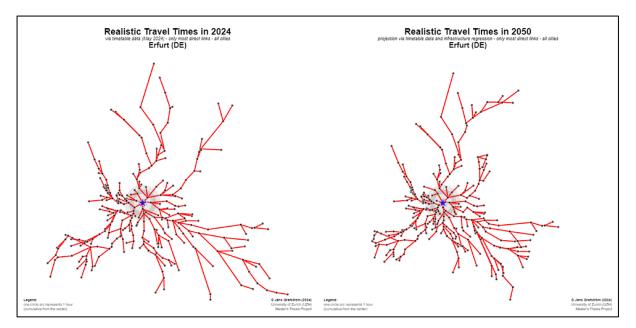



*Figures 47 a-b*: Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from Budapest. Source: own illustration.

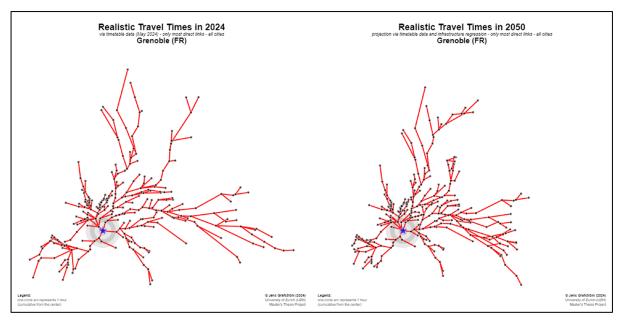



*Figures 48 a-b*: Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from Zagreb. Source: own illustration.

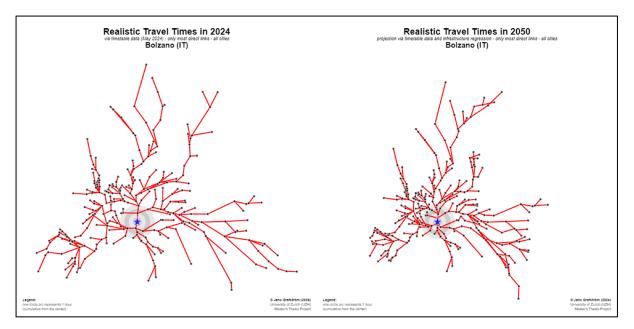



*Figures 49 a-b*: Isochrones covering a 24-hour range of (a) current and (b) future rail travel starting from Brussels. Source: own illustration.

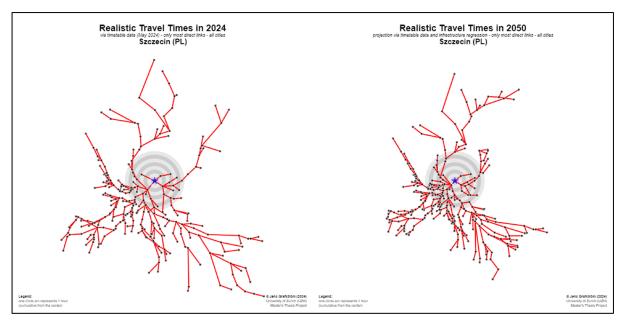



*Figures 50 a-b*: Cartograms for (a) current and (b) future scenario, showing reachability from Leipzig. 4-hour range highlighted for reachability context. Source: own illustration.

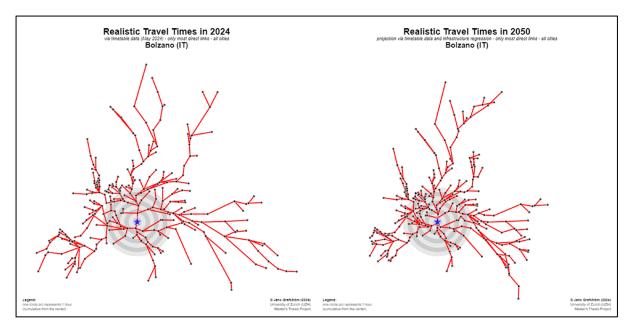



*Figures 51 a-b*: Cartograms for (a) current and (b) future scenario, showing reachability from Innsbruck. 4-hour range highlighted for reachability context. Source: own illustration.

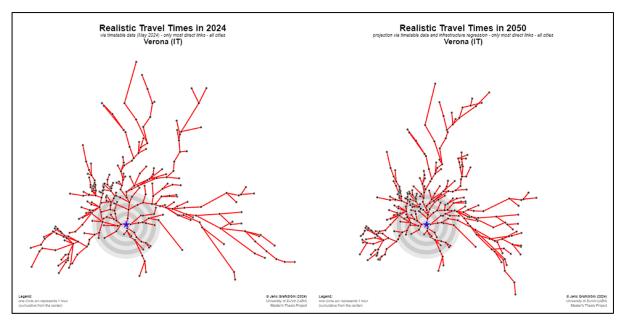



*Figures 52 a-b*: Cartograms for (a) current and (b) future scenario, showing reachability from Erfurt. 4-hour range highlighted for reachability context. Source: own illustration.

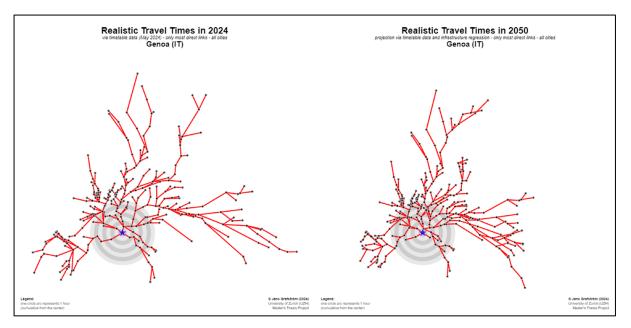



*Figures 53 a-b*: Cartograms for (a) current and (b) future scenario, showing reachability from Grenoble. 4-hour range highlighted for reachability context. Source: own illustration.

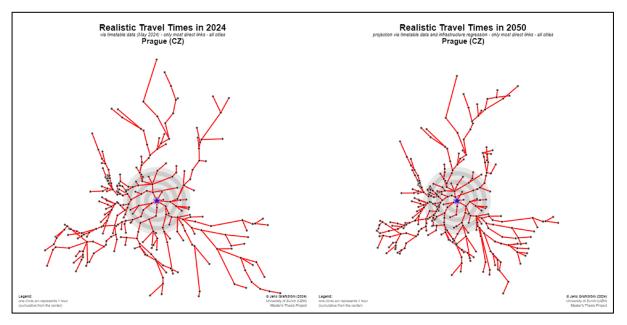



*Figures 54 a-b*: Cartograms for (a) current and (b) future scenario, showing reachability from Bolzano. 4-hour range highlighted for reachability context. Source: own illustration.

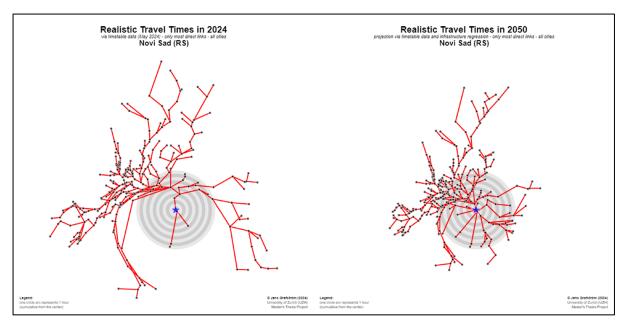



*Figures 55 a-b*: Cartograms for (a) current and (b) future scenario, showing reachability from Szczecin. 8-hour range highlighted for reachability context. Source: own illustration.

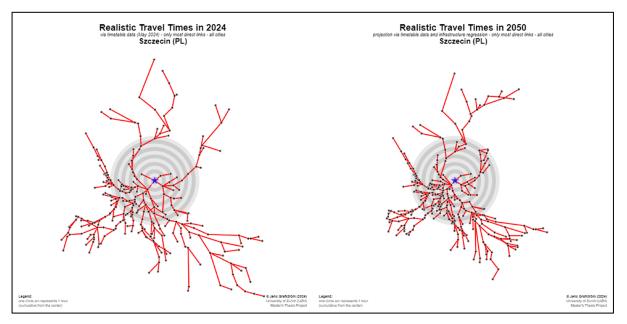



*Figures 56 a-b*: Cartograms for (a) current and (b) future scenario, showing reachability from Bolzano. 8-hour range highlighted for reachability context. Source: own illustration.

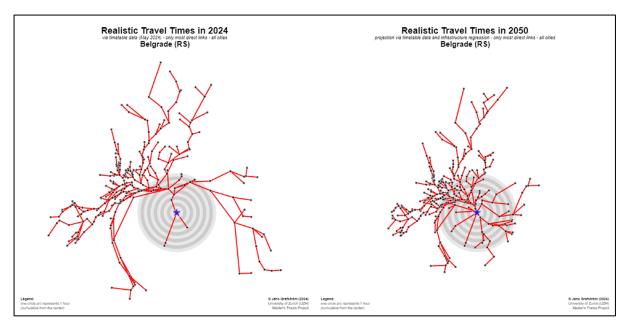



*Figures 57 a-b*: Cartograms for (a) current and (b) future scenario, showing reachability from Verona. 8-hour range highlighted for reachability context. Source: own illustration.

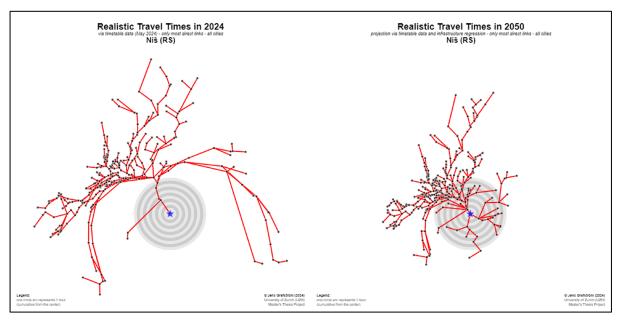



*Figures 58 a-b*: Cartograms for (a) current and (b) future scenario, showing reachability from Genoa. 8-hour range highlighted for reachability context. Source: own illustration.

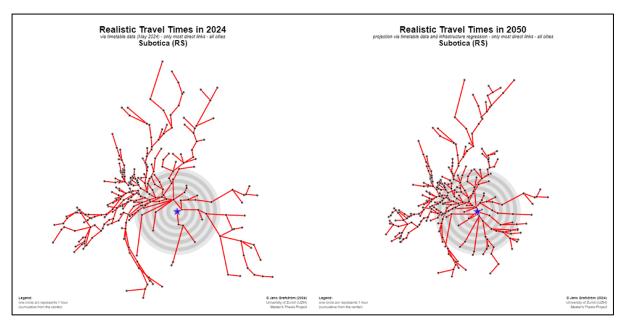



*Figures 59 a-b*: Cartograms for (a) current and (b) future scenario, showing reachability from Prague. 8-hour range highlighted for reachability context. Source: own illustration.




*Figures 60 a-b*: Cartograms for (a) current and (b) future scenario, showing reachability from Novi Sad. 12-hour range highlighted for reachability context. Source: own illustration.




*Figures 61 a-b*: Cartograms for (a) current and (b) future scenario, showing reachability from Szczecin. 12-hour range highlighted for reachability context. Source: own illustration.



*Figures 62 a-b*: Cartograms for (a) current and (b) future scenario, showing reachability from Belgrade. 12-hour range highlighted for reachability context. Source: own illustration.



*Figures 63 a-b*: Cartograms for (a) current and (b) future scenario, showing reachability from Nis. 12-hour range highlighted for reachability context. Source: own illustration.



*Figures 64 a-b*: Cartograms for (a) current and (b) future scenario, showing reachability from Subotica. 12-hour range highlighted for reachability context. Source: own illustration.

## **M** – Distance Thresholds for International Network Computation

| country pair | conditional<br>distance<br>[km] | condition: required cities                                                              | alternative<br>distance<br>[km] |
|--------------|---------------------------------|-----------------------------------------------------------------------------------------|---------------------------------|
| NO-SE        | 280                             | Kiruna, Hallsberg                                                                       | 425                             |
| FI-SE        | 120                             | Tornio, Boden                                                                           | 200                             |
| DK-SE        | 50                              | none                                                                                    | 50                              |
| DE-DK        | 160                             | Padborg                                                                                 | 250                             |
| DE-PL        | 300                             | none                                                                                    | 300                             |
| LT-PL        | 120                             | Suwałki                                                                                 | 400                             |
| LT-LV        | 220                             | Siauliai                                                                                | 270                             |
| EE-LV        | 150                             | Valga                                                                                   | 250                             |
| DE-NL        | 200                             | Arnhem, Zwolle                                                                          | 300                             |
| BE-NL        | 110                             | Eindhoven, Antwerp                                                                      | 150                             |
| BE-DE        | 125                             | Liège, Duisburg                                                                         | 190                             |
| BE-LU        | 200                             | none                                                                                    | 200                             |
| DE-LU        | 200                             | none                                                                                    | 200                             |
| FR-LU        | 60                              | Metz                                                                                    | 300                             |
| BE-FR        | 100                             | Lille (Europe)                                                                          | 270                             |
| FR-GB        | 260                             | Lille (Europe)                                                                          | 370                             |
| DE-FR        | 180                             | Strasbourg, Mannheim, Metz                                                              | 460                             |
| CH-FR        | 200                             | Dijon                                                                                   | 430                             |
| ES-FR        | 170                             | Perpignan, Bayonne, San Sebastián (interregional), San Sebas-<br>tián (regional/narrow) | 300                             |
| ES-PT        | 200                             | Badajoz                                                                                 | 500                             |
| FR-IT        | 250                             | Nice                                                                                    | 325                             |
| CH-IT        | 265                             | none                                                                                    | 265                             |
| AT-IT        | 180                             | Villach, Bolzano                                                                        | 450                             |
| AT-CH        | 225                             | none                                                                                    | 225                             |
| CH-DE        | 250                             | Mannheim                                                                                | 320                             |
| AT-DE        | 300                             | none                                                                                    | 300                             |
| IT-SI        | 25                              | Divača                                                                                  | 130                             |
| HR-IT        | 70                              | Rijeka, Trieste                                                                         | 150                             |
| HR-SI        | 150                             | none                                                                                    | 150                             |
| AT-SI        | 150                             | Villach                                                                                 | 285                             |
| AT-CZ        | 130                             | České Budějovice                                                                        | 270                             |
| CZ-DE        | 250                             | Plzeň                                                                                   | 320                             |
| CZ-PL        | 140                             | Hradec Králové                                                                          | 230                             |
| DE-PL        | 330                             | none                                                                                    | 330                             |
| PL-SK        | 160                             | Kraków, Prešov                                                                          | 320                             |
| CZ-SK        | 170                             | Žilina                                                                                  | 350                             |
| AT-SK        | 65                              | none                                                                                    | 65                              |
| AT-HU        | 120                             | Szombathely, Győr                                                                       | 300                             |
| SK-HU        | 180                             | none                                                                                    | 180                             |
| HR-HU        | 320                             | none                                                                                    | 320                             |
| BA-HR        | 370                             | none                                                                                    | 370                             |
| HR-RS        | 175                             | Slavonski Brod                                                                          | 330                             |

**Table 19**: Distance thresholds used during the computation of the international connections.

| HU-RS | 180 | Subotica           | 280 |
|-------|-----|--------------------|-----|
| BA-RS | 230 | none               | 230 |
| BA-ME | 190 | none               | 190 |
| ME-RS | 300 | none               | 300 |
| ME-XK | 170 | none               | 170 |
| RS-XK | 300 | none               | 300 |
| AL-ME | 140 | none               | 140 |
| MK-XK | 100 | none               | 100 |
| AL-MK | 180 | none               | 180 |
| MK-RS | 170 | none               | 170 |
| BG-MK | 190 | none               | 190 |
| BG-RS | 150 | none               | 150 |
| AL-GR | 300 | none               | 300 |
| GR-MK | 220 | none               | 220 |
| GR-BG | 250 | none               | 250 |
| GR-TR | 510 | none               | 510 |
| BG-TR | 180 | Edirne             | 380 |
| BG-RO | 200 | Ruse               | 300 |
| RO-RS | 150 | none               | 150 |
| HU-RO | 280 | Szolnok, Satu Mare | 360 |
| MD-RO | 120 | lași               | 400 |
| GB-IE | 150 | none               | 150 |
| AT-LI | 150 | none               | 150 |
| CH-LI | 160 | none               | 160 |
| IT-MC | 160 | none               | 160 |
| FR-MC | 20  | Nice               | 180 |