
Creating a Diffuse Bicycle Traffic Assignment Model
for Switzerland

GEO 511 Master's Thesis

Author
Marc Morlang
19-749-126

Supervised by
Prof. Dr. Ross Purves

Faculty representative
Prof. Dr. Ross Purves

27.09.2024
Department of Geography, University of Zurich



a 
 

Abstract 
Traffic assignment models show the amount of traffic on roads and are a commonly used tool in traffic 

planning for motorised and public transport. The Swiss national model for passenger traffic NPVM of 

2017 also includes such a model for bicycles. The short distances and lack of a hierarchical road 

network of bicycle traffic make this model too sparse to be useful in traffic planning. This thesis 

presents a methodology to take the bicycle traffic distribution model of the NPVM and create a denser 

traffic pattern. The traffic distribution model provides the number of bicycle trips between each pair 

of traffic zones in Switzerland, which will be assigned to the road network of OpenStreetMap using the 

bicycle routing service Valhalla. To distribute the route start and end points within each traffic zone, 

the jittering and disaggregation approach introduced by Lovelace et al. (2022) was used. The 

distribution was weighted by population and full-time equivalents. The methodology was applied to 

the NPVM bicycle distribution model for 2017 and for the base scenario of 2050. To validate the results 

the 2017 bicycle traffic distribution model was compared to observations from automatic counting 

stations across Switzerland using GEH-values, SQV and linear regression. The results show bicycle 

traffic on roads across the country, creating a dense traffic pattern within settlements and connections 

between them. The validation indicates that the model performed better than the bicycle traffic 

distribution done for the NPVM. While the results in urban areas are acceptable, the performance of 

the model was poor in rural areas. 
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1) Introduction 

1.1) Motivation 

1.1.1) Benefits of Cycling 
Replacing short car trips with cycling has many benefits, both for individuals and the society in general. 

The biggest benefit to the person cycling is the physical activity it provides, leading to lower risks for 

cardiovascular disease and mortality, while increasing fitness. Many studies have shown that this 

benefit far outweighs the increased risk of injury and larger amount of inhaled air pollution associated 

with cycling (de Hartog, Boogaard, Nijland, & Hoek, 2010; Lindsay, Macmillan, & Woodward, 2011; 

Mueller, et al., 2015; Oja, et al., 2011; Rabl & de Nazelle, 2012). This health benefit is still present, even 

though smaller, when using e-bikes (Cairns, Behrendt, Raffo, Beaumont, & Kiefer, 2017). For society as 

a whole, the health benefits are even larger, due to a reduction in air pollution, traffic accidents, noise 

and stress. The reduction in air pollution, from carbon dioxide, black carbon, nitrogen oxide and others 

also provide a benefit to the environment and help in the fight against climate change (de Hartog, 

Boogaard, Nijland, & Hoek, 2010; Johansson, et al., 2017; Lindsay, Macmillan, & Woodward, 2011; 

Macmillan, et al., 2014; Mueller, et al., 2015). 

Another benefit of cycling is the lower amount of space needed for travel and especially parking: the 

area needed to park one car, which have an average occupancy of 1.53 people (Bundesamt für Statistik 

BFS, 2023b), can provide storage for eight bicycles. Along with that goes a reduction in congestion, 

which in turn reduces the travel times for cars and their emissions (Gössling & Choi, 2015; Tordai, 

Munkácsy, Andrejszki, & Hauger, 2023). As transportation is important to access opportunities and 

activities, it should be available to everyone. Cycling and public transport have lower costs for their 

user than car ownership, helping to increase equity and aid the economic and social development of 

poorer people (Gössling & Choi, 2015; Lee, Sener, & Jones, 2017). 

1.1.2) Cyclist Preferences and Safety 
When cyclists choose a route, they mostly decide based on distance/time, terrain, and perceived 

safety. Shorter routes are preferred, with relative deviations from the shortest option influencing the 

decision (Broach, Dill, & Gliebe, 2012). The influence of terrain on route choice is stronger for riders of 

regular bikes than those of e-bikes due to the assistance provided by latter. Due to the reduced effort 

and resulting higher speed, they also travel larger distances (Rérat, 2021). Cyclists base their route 

choice based on their perceived safety, which may not be the same as actual safety. Significant detours 

are made to avoid unsafe infrastructure, such as high car traffic, car parking or tram tracks or to benefit 

from safe infrastructure such as separated bicycle paths (Broach, Dill, & Gliebe, 2012; Fyhri, Heinen, 

Fearnley, & Sundfør, 2017; Gössling & McRae, 2022). Municipalities can increase bicycle ridership by 

providing safe roads or discourage it by not doing so (Gössling & McRae, 2022). Cycling rates in Europe 

strongly decreased after the second world war due to increased car usage and car-centric 

infrastructure. This led to car-dependent lifestyles and larger distances between homes, workplaces 

and shops, further discouraging cycling as a mode of transport (Schepers, et al., 2021). Even though 

distances increased, more than 40% of car trips in Switzerland in 2021 were shorter than five 

kilometres, a distance easily done by bicycle (Bundesamt für Statistik BFS, 2023b). 

1.1.3) Modelling Bicycle Traffic 
Traffic models are commonly used to estimate where and how much cars and public transport are 

being used. These models are then used by municipalities, cantons or traffic and spatial planners to 

evaluate infrastructure projects. With the Swiss national model for passenger traffic NPVM of 2017 

was created for cars, public transport, bicycles and pedestrians. The modelling for bicycles however, 

was performed in a way similar to car traffic (Bundesamt für Raumentwicklung ARE, 2020b), which 

does not serve the needs of cycle planning. Bicycle trips are much shorter than car trips (Bundesamt 
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für Statistik BFS, 2017d), which requires a different modelling. The longer trip length allows car traffic 

models to only focus on main roads and use few locations where trips start and end (Bundesamt für 

Raumentwicklung ARE, 2020b). For bicycle traffic the shorter routes mean that the model needs to 

result in a denser network and more trip start and end locations are required (Lovelace, Félix, & Carlino, 

2022). 

1.2) Objectives and Research Questions 
The objective of this thesis is to develop a bicycle traffic assignment model BTAM and apply it to the 

country of Switzerland. The intended result is a map showing the estimated number of cyclists on all 

roads in Switzerland. To achieve a good distribution of trips throughout traffic zones, the jittering 

method by Lovelace et al. (2022) will be applied. 

Research Questions: 

1. How can the jittering method developed by Lovelace et al. be applied to Switzerland? 

2. How can a nationwide bicycle traffic distribution model be created, which is usable on a local 

level? 
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2) Background and State of the Art 

2.1) Traffic Modelling and the Swiss National Model for Passenger Traffic 
Traffic planning is about analysing the current state of traffic and travel behaviour, then predicting the 

expected situation in the future and finally finding solutions to adapt traffic network and infrastructure 

to those changes. Traffic models aim to show traffic patterns in the area of interest, based on the traffic 

analysis and forecast. They can be used to inform changes to traffic infrastructure and public transport 

networks (Schnabel & Lohse, 2011). 

Traffic models for passenger travel work in the four stages of trip generation, trip distribution, mode 

choice and route choice. Freight traffic will not be discussed in this thesis. In the first step of trip 

generation, the number of trips originating and ending in each traffic zone is estimated. The steps of 

trip distribution and mode choice can be performed in either order or even simultaneously. In trip 

distribution the number of trips between each pair of traffic zones is determined and during mode 

choice the fraction of trips performed by each means of transport (usually foot, bicycle, car or public 

transport) is modelled. Finally, with route choice the path of trips along the transport network is 

calculated. Traffic models require multiple iterations until they reach equilibrium, because traffic 

supply and demand influence each other (i.e. high amounts of traffic on a road leads to fewer people 

taking that road) (Ortúzar & Willumsen, 2011; Schnabel & Lohse, 2011). 

The Swiss national model for passenger traffic (Nationales Personenverkehrsmodell NPVM) for 2017 

was developed by the federal office for spatial planning with support from other federal offices and 

external experts. It replaces the older national traffic model from 2000 which was less detailed and last 

updated in 2010. The NPVM is a traffic model for all of Switzerland created in the modelling software 

PTV VISUM, with the aim to analyse and predict the mobility of people on a national, cantonal and 

regional scale. The effects of changes in land use, timetables, infrastructure or other future scenarios 

can be modelled using it. The main result is the demand distribution on weekdays for the modes of 

pedestrian, bicycle, car and public transport, which contains the number of modelled trips between 

each pair of traffic zones. The demand distribution for the entire week was modelled by transforming 

these results. Other results include network utilisation for bicycle, car and public transport as well as 

travel times and distances for car and public transport (Bundesamt für Raumentwicklung ARE, 2017; 

Bundesamt für Raumentwicklung ARE, 2020c). The next chapters introduce how traffic models work in 

general and how the NPVM was created. 

2.1.1) Foundations for Traffic Modelling 
To mimic reality, the traffic model needs to reflect the structure of the area of interest. This includes 

the division of the area into smaller areas called traffic zones, the provision of road and public transport 

networks with the necessary attributes, the available modes of transport and an analysis of traffic 

(Schnabel & Lohse, 2011). 

2.1.1.1) Trips, Activities and Generalised Cost 

Trips 

Trips refer to the movement of people between two different locations, which may be within the same 

traffic zone. Trips are always performed using one of the modes of transport withing the transport 

network of that mode. Routes refer to the path of a trip along the transport network (Schnabel & 

Lohse, 2011). 

Activities 

In traffic planning activities refer to the locations at the start and end of trips and what the person does 

there. For most trips one of the activities is the home location. Other activities include work, school, 

shopping or leisure (Schnabel & Lohse, 2011). 
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Generalised Cost 

Trips have multiple expenses associated with them, with time and monetary cost often being most 

important. Different modes of transport have different categories of expense: While the expenses of 

a bicycle trip include physical exertion, with public transport the number of transfers needs to be 

accounted for. The size and importance of expenses also depends on the person, both in terms of the 

availability and accessibility of options or cost reductions (e.g. ownership of a car, distance to the 

closest bus stop) and the subjective perception and values of the person. To compare the total cost of 

different travel options the expenses need to be combined, which are then called generalised cost 

(Ortúzar & Willumsen, 2011; Schnabel & Lohse, 2011). 

2.1.1.2) Traffic Zones 

Traffic zones divide the area of interest into smaller zones, for which data (e.g. population, work places, 

shops,…) are aggregated. The generation and distribution of trips in the model is performed for traffic 

zones. To include traffic entering and exiting the area of interest, a region around this area should also 

be split into traffic zones. This region should include all places with a significant impact on the traffic 

within the area of interest, but the traffic zones can increase in size the further away they are (Schnabel 

& Lohse, 2011). The NPVM includes 7’965 traffic zones in Switzerland. An additional 13 traffic zones, 

from the municipalities of Liechtenstein and the German and Italian enclaves of Büsingen and 

Campione d’Italia, are treated like the Swiss zones during modelling (see Figure 1). Apart from these 

there are 807 traffic zones outside of Switzerland, with increasing size as they get further away (see 

Figure 2) (Bundesamt für Raumentwicklung ARE, 2020b). 

 

Figure 1: Traffic zones of the NPVM in Switzerland, coloured by urban-rural typology. 
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Figure 2: Traffic zones of the NPVM outside of Switzerland with the locations of selected cities. 

The borders of traffic zones usually follow natural and artificial breaks in the settlement, such as rivers, 

railway tracks and main roads. Spatial characteristics such as municipal zoning (e.g. industrial and 

residential zones) and catchment areas of transit stops can be used to inform the border placements. 

Administrative boundaries are also useful to consider, as data is often available aggregated according 

to them. The size (in terms of area, population or other relevant measures) of traffic zones depends 

on the task and the area, including factors such as the density of the traffic network and the included 

modes of transport (Schnabel & Lohse, 2011). When creating the traffic zones for the NPVM, the aim 

was to make them as homogenous as possible regarding the sum of population and full-time 

equivalents (called population statistics in this thesis). The average is 1552 people and full-time 

equivalents. As visible in Figure 1, the area of the traffic zones varies strongly, with an average of 5.2 

km². Traffic zones are always within a single municipality, even if this results in zones with low 

population statistics. Some facilities which generate a lot of traffic were given their own traffic zone. 

These 58 zones include airports, shopping centres and leisure facilities (Bundesamt für 

Raumentwicklung ARE, 2017). 

2.1.1.3) Origin-Destination Groups 

Origin-destination (OD) groups are disaggregated population classes which are homogeneous in their 

behaviour and belong to a pair of origin and destination activities. They are an important basis for 

traffic modelling, as they connect land use characteristics (e.g. home, workplace, school,…) with people 

(e.g. residents, workers, students,…) and their participation in traffic. They consist of activities (e.g. 

home, work, shopping) and include characteristics of the traffic zone (e.g. number of residents in an 

age group, number of workplaces) at the origin and destination. The OD-groups are generated based 
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on representative traffic surveys (Schnabel & Lohse, 2011). The homogeneous population groups are 

created based on employment status, age group, availability of mobility tools (e.g. ownership of car or 

public transport subscription). The NPVM includes 26 OD-groups, some examples are shown in Table 

1: The first line is an OD-group for trips from home to work. It is disaggregated by age groups and the 

availability of mobility tools to form several population groups with homogeneous behaviour. The 

number of employed people in the origin traffic zone and the number of workplaces in the destination 

traffic zone are used to determine the number of trips between these traffic zones for each of the 

groups (Bundesamt für Raumentwicklung ARE, 2020b). 

Table 1: Examples of OD-Groups, adapted from NPVM (Bundesamt für Raumentwicklung ARE, 
2020b). 

Activity at Origin Activity at 
Destination 

Statistics at Origin Statistics at Destination 

Home Work Number of workers 1) Number of workplaces 

Home Shopping Population 1) Sales area 

Education Home Number of student places Number of students 2) 

Work Shopping/Leisure Number of workplaces Sales area, leisure 
visitors, population 1) 

1) Disaggregated by age group and mobility tools (e.g.: number of people with these 
characteristics: age 25-44, without a car, with a public transport subscription) 

2) Disaggregated by mobility tools 

 

2.1.1.4) Travel Data 

Different types of data collection methods are required to gain the information needed for traffic 

analysis and modelling. Traffic surveys can be used for different purposes in traffic planning. They can 

be used to analyse the current transport system and identify problems within it or to create strategic 

transport models which are used in forecasting. The methods used and data collected in the survey 

depend on what it is going to be used for. Household surveys provide information on all trips done by 

a household within a time period and socio-economic data, such as family size and car ownership. They 

are useful for modelling trip generation and modal split, additionally they provide information on 

average trip lengths. Traffic counts (counting the number of vehicles passing a location) are needed for 

calibration and validation of the model. As travel choices change over time, surveys need to be 

repeated to capture this change (Ortúzar & Willumsen, 2011). 

Surveys on peoples’ actual choices or observations of their actual behaviour are called revealed 

preference. This is in contrast to stated preference methods, which collect data on the participants 

actions in a hypothetical scenario. This has the advantage of allowing questions regarding new or 

future developments in transport and infrastructure. Stated preference methods do however have the 

disadvantage of requiring the participant to imagine themselves in a fictional situation, which can 

change how they choose (Ortúzar & Willumsen, 2011; Schnabel & Lohse, 2011). 

The NPVM relies on many different data sources. Official data sets on population STATPOP and 

companies STATENT (see chapter 3.5.3) were used throughout modelling together with the micro 

census for mobility and traffic (Mikrozensus Mobilität und Verkehr MZMV), the largest revealed 

preference survey on transport in Switzerland. With the SP-survey, a stated preference survey, was 

used during trip distribution and mode choice. Count data of cars, public transport and bicycles was 

used during calibration and validation (Bundesamt für Raumentwicklung ARE, 2020b). 
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2.1.1.5) Traffic Networks 

A traffic network is required for each mode for which routing is being performed. While the network 

is a simplification of reality, it needs to include all elements relevant for the mode and use case. While 

the network for car traffic may not always need local roads, bicycle traffic is less hierarchical and more 

influenced by small roads, therefore always requiring a detailed road network. Segments should also 

get attributes regarding their characteristics, such as capacity, slope and surface type. While the 

network for private transport is based on the roads, for public transport the lines with their stops and 

timetables need to be modelled (Schnabel & Lohse, 2011). 

To calculate the routes the traffic zones need to be connected to the traffic network. This is often done 

using connector points at the centroid of the traffic zone. These connector points act as start and end 

points of all routes originating or ending in the traffic zone (Schnabel & Lohse, 2011). Other methods 

do also exist (Lovelace, Félix, & Carlino, 2022) and will be presented in chapter 2.5. The use of few 

connector points per zone results in unrealistic traffic patterns in the local network (Schnabel & Lohse, 

2011). 

Traffic Networks used in the NPVM 

Routing in the NPVM was done using three networks. A road network for cars and busses, another 

road network for bicycles and pedestrians and a rail network. Public transport lines and stops were 

included based on the 2017 timetable. Connections to the traffic zones were done using network 

nodes, with some restrictions for road types, or stops in case of public transport. Each traffic zone can 

have up to three connector nodes per mode/network, however only around 600 and 400 of almost 

8000 zones have multiple connections for car and public transport, respectively. In these cases, 

subzones were created and assigned a portion of the trip demand. The closest node to the zones 

centre, weighted by population and workplace density, was chosen as connector for the road 

networks. For public transport stops with more services and those closer to the weighted zone centre 

were selected. Around 2500 of the almost 8000 traffic zones do not have a public transport connection 

(Bundesamt für Raumentwicklung ARE, 2020b). 

The road network for cars and busses was based on the navigational network of the company TomTom. 

It includes information on the number of lanes, signalised and actual speeds, road types, capacities 

and possible turns at intersections (Bundesamt für Raumentwicklung ARE, 2017). While the network 

within Switzerland includes almost all roads, the network outside Switzerland gets less detailed with 

increasing distance (Bundesamt für Raumentwicklung ARE, 2020b). 

The road network for bicycle and pedestrians was based on the network created for cars and busses, 

but only within Switzerland. To fill in additional segments only usable by cyclists the network was 

combined with the SwitzerlandMobility bicycle routes. Additionally, randomly sampled routes on the 

network were compared to those from Google Maps bicycle routing. Differences between the routes 

on both networks were reduced by adding missing segments. Both comparisons added around 1800 

segments each to the 122’000 segments in the original network. Routing for bicycles was based on the 

routing engine from the city of Zurich. It considers motor vehicle speed and volume as well as slope. 

The gradient of segments was calculated based on elevation data from Copernicus with a resolution of 

25m. This was done by interpolating the elevation of each node using the four nearest raster cells and 

calculating the slope over the entire length of the segment (Bundesamt für Raumentwicklung ARE, 

2020b). 

The network for railways, including trams, was a combination of the rail network of the federal office 

for transportation (within Switzerland) and the Swiss federal railways (outside of Switzerland). To allow 

for routing with transfers between local transport and rail, foot paths were added to connect stations 

to stops (Bundesamt für Raumentwicklung ARE, 2017). 
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2.1.2) Four Stage Traffic Models 

2.1.2.1) Trip Generation 

During trip generation the number of trips starting and ending in each traffic zone is modelled. The 

calculation is based on the location and characteristics of the traffic zone. The location is important as 

it can promote or impede mobility or certain modes of transport. Characteristics include amongst 

others the number of residents and employees, the number of workplaces and the sales area. Most 

important however are land use and the location of the traffic zone within the study area and transport 

network. This approach assumes that all trips are done with the aim of performing an activity in a 

different location. While this assumption holds true in most cases, some trips are made with the sole 

purpose of making a trip. This is especially the case with pedestrian and bicycle traffic, where trips are 

often made for sports or leisure (Schnabel & Lohse, 2011). 

In the NPVM trips were generated based on the population characteristics of the traffic zone and 

mobility rates of the OD-groups. Trip attraction was modelled using data on employees, area for 

shopping, leisure facilities and airport passengers (Bundesamt für Raumentwicklung ARE, 2020b). 

2.1.2.2) Trip Distribution 

With trip distribution the trips starting in a given traffic zone are distributed to traffic zones in which 

they end. This assignment of traffic from origin traffic zones to its destination traffic zone creates the 

OD-matrix. It stores the number of trips from each starting zone to each destination zone, including 

intrazonal trips. The methods to determine trip distribution are in analogy to the law of gravity, as 

zones with more possible activities and zones with a lower travel cost between them have more trips. 

Additionally, the characteristics of the zones and their travellers needs to be accounted for and the 

number of trips starting and ending in each zone needs to be the same as determined in trip generation 

(Ortúzar & Willumsen, 2011; Schnabel & Lohse, 2011). 

2.1.2.3) Mode Choice 

Each trip has to be performed by a mode of transport, models usually include foot, bicycle, car and 

public transport. Which mode is chosen depends on characteristics of the travel modes (e.g. 

availability, travel time, comfort), the traveller (e.g. income, age, ownership of mobility tools) and the 

trip itself (e.g. trip purpose, mode options). The result of mode choice is the fraction of trips between 

each pair of zones is made by a particular mode (Schnabel & Lohse, 2011). 

Trip distribution and mode choice largely depend on the same factors, with travel time being the most 

important. Many of the factors in the utility function are dependent on the zones, traveller and trip 

purpose, therefore both distribution and mode choice must be performed separately for each OD-

group (Schnabel & Lohse, 2011). 

Trip distribution and mode choice were performed together in the NPVM. Travel time is the only 

contributor to the generalised cost included for pedestrians and cyclists. Car and public transport have 

additional factors, for example travel cost and availability of mobility tools. The relative importance of 

these factors was determined based on the SP-Befragung, a stated preference survey conducted 

together with the MZMV (Bundesamt für Raumentwicklung ARE, 2020b). 

2.1.2.4) Route Choice 

In the final step of the traffic model the paths taken on the traffic networks are modelled. Result is the 

amount of traffic on each segment of the traffic networks. It is important for assessing the quality of 

the network and helps with decision making in traffic planning. Route choice can be done either 

statically or dynamically, in both cases the trip start times are spread across the day by assigning them 

to a time slice. Time slices are subdivisions of a day with equal length. In static route choice routing is 

performed separately for each time slice. Traffic volume, an important factor in route choice, is only 
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based on trips started in the same time slice. Most trips should therefore be of shorter duration than 

the length of a time slice. Traffic variables are constant throughout a time slice and represent the mean 

over the time period. Dynamic route choice is more complex: Traffic flows are distributed while 

accounting for the changing position of travellers over time. Trips taking longer than one time slice are 

carried over into the calculation of the next time slice, which better estimates the traffic volume on 

sections of the network and therefore the associated cost. Different methods for static and dynamic 

route choice exist, with the general functioning of static route choice being explained next (Schnabel 

& Lohse, 2011). 

Route choice is influenced by both objective and subjective factors, especially travel time (including 

waiting time). A routing algorithm is used to find the best routes between the starting point in the 

origin traffic zone and the end point in the destination traffic zone, while considering these different 

factors. For private transport travel time increases when traffic demand approaches or exceeds the 

capacity of the road. Capacity restraint functions are used to calculate variable travel times based on 

traffic volume, capacity and road characteristics. Multiple iterations of routing and travel time 

calculation are performed until the differences between iterations are below a predefined threshold 

(Schnabel & Lohse, 2011). 

Route Choice in the NPVM 

Route choice for the NPVM was performed using a static approach. It was done separately for bicycles, 

cars and public transport, it was not modelled for pedestrians. For car traffic a multi-step process was 

used, where freight traffic from a different model was first assigned to the road network. Afterwards 

passenger traffic was added, using variable travel times as the only cost factor. Public transport was 

assigned using a timetable-specific approach (Bundesamt für Raumentwicklung ARE, 2020b). 

Route choice for bicycle traffic requires different approaches than for car traffic. First, bicycle traffic 

does not require an iterative approach to determine travel times, because increased traffic volumes 

do not lead to a decrease in travel time at current cycling volumes. Second, route choice depends on 

many different factors (e.g. car traffic or slope), not just travel time. These change the attractiveness 

of routes and are difficult to quantify consistently. For the NPVM travel time, slope, volume and speed 

of car traffic were used to select routes. The weighting of these factors was based on the bicycle routing 

model from the city of Zurich. Instead of using the route with the lowest generalised cost, multiple 

routes were calculated and one of them selected. This ensures that different alternative paths were 

being used in the final model (Bundesamt für Raumentwicklung ARE, 2020b). 

2.1.3) Calibration and Validation of the NPVM 

2.1.3.1) Calibration 

After running the entire NPVM traffic model using uncalibrated parameter values, two stages of 

calibration were performed. In the first stage, the results were calibrated to better fit the MZMV 

indicator values, for example modal split, average trip distance or fraction of traffic within traffic zones. 

In a second stage the model was calibrated based on traffic counts for cars and public transport. This 

stage was mainly used on a local level and resulted only in minor changes to indicator values. A 

sensitivity analysis for car traffic and public transport was performed after calibration, with all results 

being found plausible and as expected (Bundesamt für Raumentwicklung ARE, 2020b). 

2.1.3.2) Validation 

The modal split across all trips in Switzerland was captured well by the NPVM (see Figure 3, left most 

columns), compared to the MZMV survey. However, bicycle traffic was strongly underestimated for 

distances between five and fifteen kilometres (see Figure 3). The strong discrepancies for distances 

above 75 km are due to differences between the MZMV and data from the Swiss national railways. The 

average trip distances were generally as in the MZMV, except for short trips on foot or by bicycle in 
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municipalities with intermediate or rural typology. These had to be adjusted to better match the modal 

split. All in all, the model was found to sufficiently match the MZMV survey (Bundesamt für 

Raumentwicklung ARE, 2020b; Bundesamt für Raumentwicklung ARE, 2020c). 

 

Figure 3: Comparison of modal split between NPVM and MZMV for different distance classes 
(adapted from: (Bundesamt für Raumentwicklung ARE, 2020c)). 

A comparison of car and public transport traffic between the modelled values and those observed by 

traffic counters and transport agencies found they were matching well. For bicycle traffic 85 counting 

stations were used, with data from the year 2016. To generate direction-specific count data, the counts 

were halved for all but one station, resulting in 169 direction-specific count values. Unlike those for car 

traffic, these were only used for validation and not during calibration (Bundesamt für 

Raumentwicklung ARE, 2020b). 

Figure 4 shows a plot of the observed against the modelled annual average weekday traffic AAWT of 

bicycles (left) and cars (right). For bicycles the points are spread out and do not follow the black line 

which shows the 1:1-relationship, with only 19% of the variation being explained. Furthermore, a lot 

of points are on the y-axis, which means that cyclists were observed in these locations, but none were 

modelled. The slope of the regression (0.5413) indicates an underestimation of bicycle counts. This is 

confirmed by comparing the sum of traffic across all stations, which also shows a slightly lower value 

for modelled than for observed counts. For car traffic however, the points follow the optimal line very 

well with the slope of the regression line and R-squared both being a perfect 1.00 (Bundesamt für 

Raumentwicklung ARE, 2020b). 
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Figure 4: Plot of observed AAWT against modelled AAWT at counting stations (left: bicycle, right: 
cars). The dotted line is a linear regression and the solid line shows the ideal 1:1-relationship. From 

NPVM, adapted from (Bundesamt für Raumentwicklung ARE, 2020b)). 

To quantitatively compare the modelled and observed bicycle counts the GEH-value was calculated, 

which is a quality measure commonly used in transport modelling. The measure is explained in more 

detail in chapter 2.9. The results are shown in Table 2, 43% of stations have a GEH-value below 10 and 

can therefore be considered as good, while 26% of stations have a GEH of above 25, which indicates a 

bad fit. Counting stations outside of settlement areas and with lower traffic volumes generally have 

better GEH-values than those within settlements. This might be due the measure being more generous 

for counts below the working range of 2’000 to 50’000 (Bundesamt für Raumentwicklung ARE, 2020b). 

Table 2: Distribution of GEH-values for bicycle traffic in the NPVM (Bundesamt für Raumentwicklung 
ARE, 2020b). 

GEH Number of Stations Cumulative fraction [%] 

<= 5 41 24 

5-10 32 43 

10-15 25 58 

15-20 17 68 

20-25 10 74 

>25 44 100 

 

2.1.4) Transport Outlook 2050 
The transport outlook for the year 2050 was developed by multiple Swiss federal offices. It used the 

NPVM for passenger traffic, the Swiss model for freight traffic (Aggregierte Methode Güterverkehr 

AMG) and the Swiss land use model (Flächennutzungsmodell FLNM). The outlook was developed to 

explore transport under different scenarios and is not a prediction of the future. It is the strategic basis 

for national planning of infrastructures and used to inform political decisions in spatial and traffic 

planning. Like the NPVM it covers all of Switzerland and considers border-crossing traffic. The base 

year for the outlook is 2017. Four different scenarios were implemented using the three models AGM, 

FLNM and NPVM by running them with modified input data. For the NPVM this includes for example 
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the homogeneous population groups and public transport supply. These data sets were created by 

analysing past developments and using them to apply to the different scenarios (Bundesamt für 

Raumentwicklung ARE, 2022b). 

The transport outlook presents four different possible states of traffic for the year 2050, based on 

currently foreseeable developments (Bundesamt für Raumentwicklung ARE, 2022b; Bundesamt für 

Raumentwicklung ARE, n.d.): 

Business-as-usual scenario 

In the business-as-usual scenario current trends are continued. Foreseeable demographic, technical 

and economic developments are taken into account as well as planned infrastructure projects. While 

technology does develop, its impact on mobility is slow. The volume of traffic and the settlement 

structure remain the same, as urban sprawl continues and sustainability is not a societal focus 

(Bundesamt für Raumentwicklung ARE, 2022b; Bundesamt für Raumentwicklung ARE, n.d.). 

Base scenario 

This scenario is building on top of the business-as-usual scenario and additionally includes different 

developments and measures which improve sustainability and resource efficient mobility. The 

development of bicycle infrastructure increases the number of cyclists. Using a car becomes 

comparatively more expensive than taking public transport. While commute traffic decreases, traffic 

to leisure activities increases. The population growth is strongest in urban municipalities, with many 

rural areas even experiencing a reduction in population. This is the scenario mainly used for planning 

and will be used in this thesis (Bundesamt für Raumentwicklung ARE, 2022b; Bundesamt für 

Raumentwicklung ARE, n.d.). 

Sustainable society scenario 

Builds on the base scenario and includes technological developments to improve sustainability. A 

strong sense of responsibility exists towards the environment and society. Using a private car becomes 

more expensive and the use of public transport cheaper, resulting in less traffic than in other scenarios 

(Bundesamt für Raumentwicklung ARE, 2022b; Bundesamt für Raumentwicklung ARE, n.d.). 

Individualised society scenario 

Also builds on the base scenario. Technological developments are mainly used for personal benefit, 

with most people owning a private car. Sustainability is only considered if it does not impede one’s 

activities and is not expensive. Public transport becomes more expensive, while private cars do not 

(Bundesamt für Raumentwicklung ARE, 2022b; Bundesamt für Raumentwicklung ARE, n.d.). 

2.2) Propensity to Cycle Tool 
Inspiration for this thesis are the “Propensity to Cycle Tool” (PCT) and “Network Planning Tool for 

Scotland” (NPT). These tools model the dispersion of bicycle traffic on the road network in England and 

Wales (PCT) as well as in Scotland (NPT) under different scenarios (Lovelace & Morgan, 2023b). 

The PCT for England was commissioned in 2015 by the English Department for Transport, with the 

extension to Wales being funded in 2018 by the Welsh government (Woodcock, et al., Propensity to 

Cycle Tool, n.d. a) and its results are accessible on the website www.pct.bike. It used different scenarios 

of cycling amounts to show traffic volumes of people travelling to work or school and analyse possible 

health and carbon emission benefits. The aim was to enable and direct investments in cycling both 

nationally and locally. The PCT therefore included estimates of cycling amounts at the levels of areas, 

desire-lines and on the road network as well as health economic and carbon emission impacts. 

Separate, but similar, models were calculated for commuter traffic and travel to school, with other trip 

purposes not included (Goodman, et al., 2019; Lovelace, et al., 2017). 
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2.2.1) Travel to Work 
For travel to work, the OD-data was generated from the 2011 UK census, combining the locations of 

work and residence. It was aggregated to Middle Super Output Area zones, which are statistical regions 

with an average population of 3300. The baseline propensity to cycle was modelled as a function of 

route distance and hilliness, based on the interzonal OD data and estimates accounting for traffic not 

included in this dataset. This function represents the likelihood that a person is going to choose cycling 

for commute, given the distance and hilliness of the route. Four different scenarios of increased cycling 

propensity were generated, which can be thought of as representing changes in cycling culture, 

infrastructure and technology. The first scenario doubles the number of people cycling to work 

nationally. This was based on the UK governments target to double cycling by 2025. The OD data for 

this scenario was based on the sum of observed cyclists from the census, and modelled cyclists based 

on the propensity to cycle equation. The second scenario, called gender equality, increased women’s 

propensity to cycle to be as high as that of men for each OD-pair. This was based on the observation 

that women cycle the same or more than men in regions where cycling is very common. The third 

scenario, Go Dutch, used the propensity to cycle from the Netherlands. This scenario can be thought 

of as England and Wales having the Dutch infrastructure and bicycle culture, but keeping its trip 

distances and hilliness. Unlike the first two scenarios, this one only depends on trip distances and 

hilliness, not the 2011 propensity to cycle. To create this scenario, the British and Dutch national travel 

surveys were analysed and used to create scaling factors converting the UK propensity to cycle into 

the Dutch propensity to cycle. The fourth and final scenario was an extension to the Go Dutch scenario, 

which additionally increased cycling to model the adoption of e-bikes (Lovelace, et al., 2017). 

The results of the different scenarios, including the baseline case, were visualised separately for each 

region. Travel between regions and within a statistical zone was not displayed. The centroids of 

statistical zones were used as start and end point for desire lines and routes on the OpenStreetMap 

(OSM) road network. The routes were calculated using the bicycle routing engine CycleStreets, which 

offers both direct and cycle-friendly routes. Additionally, the sum of all bicycle commuters on a road 

segment can be viewed (Lovelace, et al., 2017). Examples of the visualisation are shown in Figure 5 and 

Figure 6. 

The health impact of increased cycling levels was modelled using an approach based on the Health 

Economic Assessment Tool from the World Health Organisation. The increased physical activity from 

cycling was used to estimate the number of premature deaths avoided. The reduction in carbon 

emissions was modelled by assuming all modes being equally likely to be replaced by cycling and 

applying the average CO²-equivalent emissions per kilometre of car driving (Lovelace, et al., 2017). 

    

Figure 5: Visualisation of the Propensity to Cycle Tool commuting model around Oxford. A) desire lines 
under the baseline scenario. B) visualisation of the fastest routes under the baseline scenario 

(screenshots from: (Woodcock, et al., Propensity to Cycle Tool, n.d. b)). 

A) B) 
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Figure 6: Visualisation of the Propensity to Cycle Tool commuting model in Oxford. A) estimated 
number of commuter cyclists on road segments under the baseline scenario. B) estimated number of 
commuter cyclists on road segments under the Go Dutch scenario (screenshots from: (Woodcock, et 

al., Propensity to Cycle Tool, n.d. b)). 

2.2.2) Travel to School 
The travel for school model was based on the National School Census for 2011, which only covers 

public schools in England, excluding private schools and Wales from the model. The OD data connects 

the pupils place of living, aggregated to Lower Super Output Areas (statistical zones with a population 

of around 1560 people), to their school. Separate models were calculated for primary and secondary 

school children. Next to the baseline scenario, the Government target (double cycling) and Go Dutch 

scenarios from Travel to Work were implemented (Goodman, et al., 2019). With Go Cambridge an 

additional scenario was added in 2019, applying the method of Go Dutch with reference data from the 

authority of Cambridge instead of the Netherlands (Goodman, 2019). The health impact from 

increased cycling levels was estimated using the additional physical activity energy expenditure from 

cycling compared to the pupil’s previous mode of travel to school. The carbon impact from reduced 

emissions from car traffic was calculated similarly to the travel to work method, but accounting for the 

increased number of trips due to drive home of the accompanying person. The visualisation of the 

results was the same as explained in the travel to work chapter (Goodman, et al., 2019). 

2.3) Network Planning Tool for Scotland 
The NPT was built for Scotland, based on the PCT. It was funded by Transport Scotland and is currently 

being developed at the University of Leeds, UK. The aim is to create a map of cycling potential on the 

street-level for the entirety of Scotland, which will enable strategic network planning. The main result 

is an interactive map with the estimated number of cyclists on each road segment for different trip 

purposes, scenarios and network types (Lovelace & Morgan, NPT Scotland, 2023b). 

Four trip purposes are already implemented, as well as the option of displaying the sum of them. The 

first trip purpose is travel to work, which was estimated using the 2011 Census data, like in the PCT. 

The second and third types are travel by pupils to primary school and secondary school. The fourth 

purpose was not included in the PCT and includes other everyday trips: shopping, access to leisure 

facilities (e.g. parks or recreational destinations) and personal trips to visit family and friends. Not 

currently implemented are recreational cycling, where cycling itself is the main aim of travel, and 

mixed-mode trips. The scenarios implemented for these trip purposes are baseline, Go Dutch and e-

bike. They work the same as in the PCT (Lovelace & Morgan, NPT Scotland, 2023b). 

The OD-matrices created for the different purposes and scenarios are mapped onto the OSM road 

network using the routing engine CycleStreets, which was also used for PCT. The display can again be 

selected to show cyclist numbers per street segment based on direct routing or with detours to avoid 

roads with much traffic and use cycle-friendly roads instead. Other layers allow to show cyclist counts 

A) B) 
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on a simplified road network where parallel ways of the same road are added together, the cycle 

friendliness and the gradient of roads (Lovelace & Morgan, NPT Scotland, 2023b). An example of the 

cyclist traffic dispersion map is shown in Figure 7. 

    

Figure 7: Visualisation of the National Planning Tool for Scotland model in the centre of Edinburgh for 
all trip purposes using the simplified road network. A) estimated number of cyclists on road segments 

under the baseline scenario. B) estimated number of cyclists on road segments under the Go Dutch 
scenario (screenshots from: (Lovelace & Morgan, 2023a)). 

2.4) Routing Engines 
Many different routing engines exist, with different properties. To reflect cyclist’s route choices the 

routing service should have a routing profile for bicycles, which considers trip length or distance, 

hilliness and cycle friendliness in routing. Being able to host the service locally for free and all required 

data being available are the other requirements for their use in this thesis. 

Many routing services use the OpenStreetMap (OSM) road network and provide routing APIs for 

bicycles (OpenStreetMap, 2023). A popular routing engine not using OSM is Google Maps. While it 

does offer a routing profile for cyclists and returns multiple route options, the methods used to 

generate the routes are not clear (Google, n.d.). The city of Zurich has a routing service for within the 

city, which uses the city’s own road network. It has both an option for direct routes and for using more 

cycle friendly routes which avoid busy roads (Stadt Zürich, n.d.). 

The service used for the Propensity to Cycle Tool and the Network Planning Tool for Scotland is 

CycleStreets (Lovelace, et al., 2017; Lovelace & Morgan, NPT Scotland, 2023b). This routing service is 

only for cyclists and covers the United Kingdom as well as some other countries, including Switzerland. 

Four different routing profiles are available, which are fastest, balanced, quietest and ebike. With the 

exception of ebike, all profiles include hilliness in their evaluation. Quietest and balanced additionally 

include the busyness of roads. Unfortunately, this service does not provide the ability to locally host 

the service (Nuttall & Lucas-Smith, n.d.). Openrouteservice does allow downloading and running the 

service locally. However, the avoidance of busy roads is only available for pedestrian traffic (gGmbH, 

2023). The routing engine Valhalla can be hosted locally and allows the adjustment of a wide range of 

routing parameters, including hilliness and road types. As it is the only routing engine found that fits 

all the criteria and has the added advantage of customisation, it was chosen for this thesis and will be 

introduced in the next chapter (Valhalla, 2023). 

2.4.1) Routing Engine Valhalla 
Valhalla is an open-source routing service using open source data by Mapzen, which is a Linux 

Foundation Project since 2019 (Mapzen, 2019; Valhalla, 2023). It uses the OSM road network and 

Shuttle Radar Topography Mission SRTM elevation tiles as data input. Together they are converted into 

a graph network in a hierarchical data structure and split into tiles. Routing is performed using an A* 

A) B) 
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algorithm, with the cost of edges and nodes in the network being computed during routing (Valhalla, 

2023). 

2.4.1.1) Using Valhalla 

A demonstration of the Valhalla Routing Engine is provided by FOSSGIS e.V. on the website 

https://valhalla.openstreetmap.de. It allows routing on the global OSM-network, as well as the 

adjustment of routing parameters. However, the rate at which routes can be requested is limited 

(FOSSGIS e.V., 2024; Valhalla, 2023). To calculate a large number of routes, such as for this thesis, 

Valhalla can be hosted locally on a computer or on a server and then accessed by API. This is possible 

using a Docker image by Valhalla or by GIS-OPS, a small company focussing on geographic information 

science. For this thesis the version provided by GIS-OPS on Github was chosen, due to its easier 

installation process (GIS-OPS, 2021; GIS-OPS, 2024; Valhalla, 2023). Docker images are software 

packages which include all information needed to run an application. When running an image using 

Docker, it becomes a container which is isolated from its environment, ensuring that it works 

regardless of the hardware and software infrastructure. Docker-Desktop is a free program allowing to 

run Docker images. For this thesis Docker Desktop version 4.30.0 is used (docker, n.d. a; docker, n.d. 

b). 

2.4.1.2) Description 

Valhalla can provide different routing related services: Routing can be performed with and without a 

predefined order between multiple points. Time-distance matrices can be created between multiple 

points, but without returning the routes themselves. Other services are the creation of isochrone and 

isodistance maps. Finally, Valhalla can match coordinates onto the road network and provide 

information on nodes and edges near a location (Valhalla, 2023). For this thesis only the routing 

between points with a predefined order will be used. 

As mentioned before, Valhalla stores the graph created from the road network and enriched with 

elevation data in tiles with a hierarchical structure (see Figure 8). The highest level contains only long-

distance roads (OSM-tags motorway, trunk and primary) and is split into 4° tiles (light blue in Figure 8). 

The second level is in 1° tiles and additionally contains secondary and tertiary roads (green in Figure 

8). The lowest level is stored in 0.25° tiles and contains all roads (orange in Figure 8). These tiles are 

subdivided again into bins of 0.05° size, which are used for finding edges near input coordinates. Tiling 

the data allows the routing engine to only load the parts of the road network which are necessary for 

routing, reducing memory requirements. This allows the engine to work on a wider range of devices, 

including mobile phones, where offline routing is most useful. The hierarchy increases this advantage, 

by not all loading local roads between origin and destination, when routing over a long distance. For 

bicycle and pedestrian routing however, only the lowest level is used (Valhalla, 2023). 

Instead of storing the network segments with their cost, Valhalla stores them with their attributes. This 

approach is called dynamic run-time costing and only calculates the cost when the route is being 

computed. As discussed before, the generalized cost of edges consists of more factors than just its 

length or the time of traversing it. Road and surface type, elevation change and other parameters are 

used to improve routing. Additionally, different modes of traffic have access to different roads and 

need different routing parameters. This approach allows Valhalla to use different parameters for each 

route, without recalculating the entire network (Valhalla, 2023). 
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Figure 8: Example of the hierarchical tile structure used, over the Germany (blue: highest level, green: 
medium level, orange: lowest level) (image from Valhalla, 2024). 

In Valhalla, the computation of routes starts with identifying the closest edge to each location included 

in the request. Only the edges in the bins closest to each location and usable by the selected mode are 

considered. No more bins are analysed, when the next bin is further away from the location than the 

closest found edge or the distance has become too great. In a second step the path is being computed 

using a bidirectional A* algorithm with dynamic, run-time costing, a variation of Dijkstra’s algorithm. 

The algorithm and costing will be explained in the next section. Unidirectional A* algorithms are used 

when the routing has a fixed start or end time, when it involves public transport or is between adjacent 

edges. Next, the sequence of edges and nodes is formed into the path and enriched with attributes. 

The attributes are then used to create navigation maneuvers. Finally, the route shape is encoded and 

returned with the response in a JSON object (Valhalla, 2023). 

Valhalla has to be accessed via its API, even if it is hosted locally using Docker Images. A route is 

requested by including JSON-formatted information regarding the locations, routing model and 

output. The output also takes the form of a JSON object. It includes summary information on the entire 

trip as well as the legs between the requested locations. Each leg has its own summary as well as a 

shape in the form of an encoded polyline and a list of maneuvers for navigation. If requested it also 

includes elevation information at regular intervals along the route (Valhalla, 2023). The encoded 

polyline format compresses a series of coordinates into a single string, reducing the file size. To do so, 

each latitude and longitude is converted into an ASCII character and stored. As the coordinates are 

rounded it is a lossy compression algorithm, Valhalla uses six instead of the usual five decimal places 

(Google, 2024; Valhalla, 2023). 
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A* routing algorithm 

The A* routing algorithm is a variation on Dijkstra’s algorithm and looks for the path with the lowest 

cost between a starting node and a goal node in a network. It works in the following steps, repeating 

steps two to six until the goal node is reached (Hart, Nilsson, & Raphael, 1968): 

1. Visit the starting node. 

2. Mark the node currently visited as “closed”. Store the previously visited node and the cost of 

the path to the starting node. 

3. Calculate the heuristic for all neighbouring nodes. The heuristic for the A* algorithm is the sum 

of the cost to the starting node and the cost to the goal node. The cost to the starting node is 

the cost of the shortest discovered path. The cost to the goal node is unknown and has to be 

approximated using additional information about the routing problem. For the algorithm to 

work, this cost must be lower or equal to the cost along the network, if it is set to zero the 

algorithm is identical to Dijkstra’s algorithm. For example, when calculating the shortest path 

by distance along a road network, the airline distance to the goal (or any shorter distance 

value) could be used. 

4. All neighbouring nodes which are not marked as “closed” are marked as “open” and their 

heuristic is stored. 

5. Neighbouring nodes marked as “closed” and with a lower cost to the starting node than 

previously determined are marked as “open” and their heuristic is stored. 

6. If the current node is the goal node, the algorithm is finished. Otherwise, visit the “open” node 

with the lowest heuristic value and go to step 2. 

Valhalla uses a bidirectional A* algorithm, which starts simultaneously from the starting node towards 

the goal node and from the goal node towards the starting node. It ends when the paths meet in the 

centre and is more efficient, as it visits fewer nodes. The heuristic used is the sum of the known shortest 

cost to the starting node and the distance on the earth’s surface multiplied by a cost factor based on 

the cost model (Valhalla, 2023). 

2.5) Distribution of Route Start and End points 
Where the routes between pairs of traffic zones enter and exit the road network has a strong influence 

on the final trip distribution: A smaller number of these connector points results in a concentration of 

traffic near them. The traffic pattern only appears realistic and diffuse, when multiple connector points 

are used for each traffic zone (Friedrich & Galster, 2009; Jafari, Gemar, Ruiz Juri, & Duthie, 2015; 

Schnabel & Lohse, 2011). 

The connector points are usually based around the traffic zones centroid, with different methods to 

both determine the centroid and to assign connector points. In homogeneous traffic zones, the 

geometrical centre can be used as centroid, otherwise the centre of gravity of the zones origins and 

destinations might be used. This distribution can alternatively be approximated using the density of 

weighted network nodes. Another approach to determine a zones centroid is to perform an 

accessibility analysis and choose the network node with the highest accessibility as centroid (Friedrich 

& Galster, 2009). 

The simplest method to determine connector points is to choose the node in the network which is 

closest to the centroid (Lovelace, Félix, & Carlino, 2022). Many more complex approaches exist in the 

literature, some of which will be quickly introduced: One method by Friedrich and Galster (2009) 

weights nodes according to the total length of the segments linking to it and chooses nodes with a high 

weight as connector. A second method from the same paper tries to choose nodes with equal travel 

times towards the centroid. There are also methods that assign separate connector nodes for different 

directions of travel (Friedrich & Galster, 2009; Jafari, Gemar, Ruiz Juri, & Duthie, 2015). One way of 
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further spreading out the route start and end points is to subdivide traffic zones into subzones and 

apply the described methods to these smaller zones. The method used in this thesis is called jittering, 

it distributes multiple route start and end points throughout the traffic zone based on a geographical 

variable and will be explained in the next section (Lovelace, Félix, & Carlino, 2022). 

2.5.1) Origin-Destination Data Jittering 
Jittering means to add random noise to data for visualisation. In this case it is used to represent the 

spread of route start and end points within a traffic zone, which is especially important to consider for 

pedestrian and bicycle traffic. The method makes it possible to distribute connector nodes based on a 

variety of variables and to use multiple routes between each OD-pair (Lovelace, Félix, & Carlino, 2022). 

The method works by choosing random coordinates within the appropriate traffic zones as start and 

end points for each route. This way routes have different connector points which are distributed across 

the traffic zone, avoiding a high concentration of trips in a small area. To avoid route start and end 

points in unrealistic locations (e.g. inside a forest or lake) additional geographic data can be used to 

constrain the coordinates being selected. These additional data can simply be the settlement area 

within the traffic zone, but more complex data with weighting by population density or other relevant 

factors might also be used (Lovelace, Félix, & Carlino, 2022). 

To further distribute the connector nodes across the traffic zone, especially when the number of trips 

between zones has a large variability or is very high, multiple routes can be used between each OD-

pair. With this process of disaggregation, the total number of trips between two traffic zones is spread 

across multiple routes, which have different start and end points. Using an upper threshold of trips per 

route, OD-pairs can be automatically disaggregated into multiple routes (Lovelace, Félix, & Carlino, 

2022). 

This method has the advantage of creating a more diffuse route network than other approaches, 

especially compared to simple centroid to centroid connections. Furthermore, it allows for 

customisation to fit the available data and requirements of the project, while being simple to 

implement. However, the use of randomness reduces reproducibility of the results. As the method was 

only published in 2022, further research on the quality of the method and optimal configuration needs 

to be done (Lovelace, Félix, & Carlino, 2022). 

2.6) Aggregation of Trip Data 
To visualise the number of trips on the road network, the trips need to be aggregated from the 

different routes passing through the same road segment. The routing engine used in this thesis only 

returns a linestring (an ordered list of coordinates) of the route and not the identifiers of the segments 

used. Identifying the road segment from the original network therefore becomes computationally 

expensive. Instead, the network can be rebuilt using the linestrings returned by the routing engine, 

using a method described by Morgan and Lovelace (2021). 

First, the linestrings are broken down into their individual segments, by extracting each neighbouring 

pair of coordinates. The coordinate pairs are then stored so that the southernmost of the two point is 

first (if the latitude is the same, the westernmost coordinate is first). This way segments traversed in 

opposing directions are stored in the same way and duplicates can easily be removed. Next, the 

number of trips can be aggregated for each segment and additional attributes returned by the routing 

engine can be stored. Finally, touching segments with the same attributes can be merged back into 

linestrings. Large datasets can also be split into multiple regions, to improve performance (Morgan & 

Lovelace, 2021). 

The resulting network only includes the road segments used for at least one route and the attributes 

returned by the routing engine. If the entire network or additional attributes are needed, another 
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approach, such as identifying the segments in the original network by their coordinates, should be 

chosen. Another limitation occurs, when the start- and end points of routes can be in the middle of a 

segment as opposed to their ends. In these cases, the method will return colinear segments of different 

lengths. As these errors are short, they only have a small impact on the resulting network (Morgan & 

Lovelace, 2021). 

2.7) Classification into Urban and Rural 

2.7.1) Municipalities 
Classifying municipalities into different groups with similar characteristics is useful for statistical data 

analysis and often allows to identify more connections in the data (Bundesamt für Statistik BFS, 2017c). 

The federal office for statistics in Switzerland publishes different spatial typologies of municipalities. 

“Areas with urban character” (AUC) focuses on urban areas and is based on morphological and 

functional criteria. “Typology of municipalities” (ToM) provides a differentiation into 9 or 25 different 

categories, based on AUC as well as population statistics and accessibility. “Urban-rural typology” 

(URT) is in turn based on ToM and only consists of the classes urban, intermediate and rural 

(Bundesamt für Statistik BFS, 2024). With regards to cycling, a differentiation of urban and rural regions 

is helpful, as the amount of traffic and the traffic patterns differ (Stiftung SchweizMobil, 2018), 

therefore the urban-rural typology will be used in this thesis, which is also used for the NPVM 

(Bundesamt für Raumentwicklung ARE, 2020b). 

As mentioned, the URT is based on the ToM which in turn is based on the areas with AUC, a flowchart 

of the different categories is shown in Figure 9. The classification of areas with urban character is based 

on data from 2012 and is consistent over all of Switzerland. Both morphological (e.g. population and 

workplace density) and functional (e.g. commuter flow) aspects of urbanity are included. 

Municipalities are classed into five categories which can be combined into three groups. Only the three 

groups are used for the typology of municipalities: core agglomeration, agglomeration belt & multiply 

oriented municipalities and finally rural municipalities without urban character (Bundesamt für 

Statistik BFS, 2014). 

To form the ToM, the three categories of AUC are each split into three subcategories based on density, 

size and accessibility. For URT the subcategories are merged to form the urban, intermediate and rural 

categories. Periurban municipalities with low density are assigned to the rural category, while rural 

core municipalities are assigned to the intermediate category, otherwise the categories are the same 

as with the AUC (Bundesamt für Statistik BFS, 2017c). 
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Figure 9: Flowchart showing the relationship between the different municipality typologies 
(Bundesamt für Statistik BFS, 2014; Bundesamt für Statistik BFS, 2017c). 

2.7.2) Bicycle Counting Stations 
The characteristics of bicycle traffic in Switzerland are very different for urban and rural areas. A 

classification of the counting stations is therefore very useful for the data analysis. Applying the urban-

rural typology of the municipalities onto the counting stations assumes homogeneity of the 

municipalities. Municipalities however often include both urban and rural areas, such as agricultural 

land and forests next to settlements. For this reason, SwitzerlandMobility use a different classification 

scheme: All counters are classified as urban, if there is more urban than rural area within a radius of 

500m around the counting station. Urban areas are defined as settlement area within municipalities 

classified as urban centres by the municipality classification from the year 2000 of the federal office of 

spatial planning. Rural areas are defined as agricultural land, forest, and tourism zones. Urban counting 

stations clearly separated from the settlement area by a river or train line are manually reclassified as 

rural (Stiftung SchweizMobil, 2018). 

2.8) Imputation of Bicycle Traffic at Long Term Counters 
Due to the high temporal variability in cycling, missing data can significantly impact the accuracy of the 

calculated AAWT (El Esawey, 2017). This is especially the case if data is continuously missing for a 

longer period, while randomly distributed short gaps have less of an impact (El Esawey, 2018b). To 

address this issue different imputation methods exist, for example expansion factor models, regression 

models and models using neural networks (Beitel & Miranda-Moreno, 2016; El Esawey, 2018a). The 

data required by different models can include historical counts at the same station, counts at other 

stations with similar temporal patterns and relationships with other variables such as weather and land 

use (El Esawey, 2017). 
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Expansion factor models are mainly used to calculate the annual average daily traffic AADT from short-

term counting stations (with counts for a few days or weeks) using expansion factors of long-term 

counting stations (with counts for the whole year) and are based on methods from motorised traffic 

counts developed by the US Federal Highway Administration. An expansion factor relates the bicycle 

count on a day or collection of days to the average bicycle count over a longer period. For example a 

factor for all weekdays in January, one for all weekends in January, one for all weekdays in February, 

etc. This allows them to account for temporal variation in bicycle traffic. While traditional methods use 

monthly and day-of-week expansion factors, the disaggregate factor method DFM uses a factor for 

each individual day, which additionally accounts for day-to-day variation in weather (Nosal, 2014). The 

DFM was introduced in 2014 by Nosal and has since been improved and expanded by multiple authors. 

These additions include different ways to identify outliers in the long term counts and methods to 

match short and long term counts (Beitel & Miranda-Moreno, 2016; Beitel, McNee, McLaughlin, & 

Miranda-Moreno, 2018; El Esawey, 2023; Nosal, 2014; Nosal, Miranda-Moreno, & Krstulic, 2014). As 

the imputation of missing data used in this thesis is based on DFM, it will be explained in more detail 

in the next chapter. 

2.8.1) Disaggregate Factor Method 
The core of the DFM has remained unchanged from Nosal (2014). The daily factors of the long-term 

counter (equation ( 2 )) act as expansion factors and relate the daily counts to the annual average 

traffic. Equation ( 3 ) allows to estimate the annual average traffic for the short-term counter using the 

daily factors from the long-term counter. It gives an estimate of annual average weekday traffic AAWT 

for each day with short term measurements. The average of those values can be used to estimate 

AAWT for the year (Nosal, 2014). Nosal et al. (2014) made a comparison between this base DFM and 

the traditional expansion factor method (with monthly and day of the week expansion factors), a day 

by month method (with day of the week expansion factors for each month) and a weather model 

method. The less short-term count data is available, the larger is the difference between the methods, 

with DFM performing the best. With more than about two weeks of contiguous data however, the 

differences in performance become small. For the largest amount of short-term data tested (30 days), 

the average absolute relative error AARE of all models is between 8 % and 10 %, with the weather 

model being slightly better than DFM (Nosal, Miranda-Moreno, & Krstulic, 2014). 
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AAWTi  annual average weekday traffic for station i 

ni  number of days with data for station i 

cid  bicycle count for station i on day d 

dfid, dfjd  daily factor for station i on day d, daily factor for reference station j on day d 

AAWTid
̂  AAWT for station i, estimated using day d 
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To match the short-term counters with long term counters of similar temporal behaviour, Nosal (2014) 

uses k-means clustering to create factor groups of the long-term counters. The indices used for 

clustering represent the daily and hourly variation of the counts. Beitel and Miranda-Moreno (2016) 

expanded on this method by introducing a third index representing weekly and monthly count 

variation. The short-term counters are then matched to one of the clusters of long-term counters 

(Beitel & Miranda-Moreno, 2016). 

They also introduced two different modifications to the DFM method. While Nosal (2014) had only 

used weekdays for the DFM and manually removed holidays and missing counts, one of the 

modifications treats weekdays separately to weekends and holidays. The reason being the different 

cycling demand on weekdays opposed to weekends and holidays, which can introduce error into the 

estimate. Their second modification introduces an iterative algorithm to remove outliers from the daily 

AADT estimates. Erroneous data is removed if the daily AADT estimate is outside a certain interval of 

the mean of the AADT estimates. This accounts for errors in both the short-term counts and the long-

term reference counts. The separation of weekdays and weekends/holidays results in a decreased 

AARE of 18%, the filtering approach reduces AARE by 25 % (Beitel & Miranda-Moreno, 2016). 

Beitel et al. (2018) introduced methods to automatically validate and interpolate long term bicycle 

counts. Daily factors are used to calculate the correlation between all pairs of counting stations using 

equation ( 4 ). For each counting station i, the two counting stations with the highest correlation in 

their daily factors is chosen as reference stations j, if the correlation is at least 0.75. To identify days 

with anomalous data the ratio 
𝑑𝑓𝑖

𝑑𝑓𝑗
 is calculated for each day. All days for which the ratio to both 

reference stations is outside the interval [1/2, 2] are removed. The daily factors of days with removed 

data are calculated as the average of the daily factors of the reference stations. As the correlation 

decreases with more days of anomalous data, this method is only suitable for counting station where 

not many days need interpolation. This method was able to identify over 90% of days with 12 or more 

hours of anomalous data. However, this method is vulnerable to multiple stations having anomalies 

on the same day (Beitel, McNee, McLaughlin, & Miranda-Moreno, 2018). 
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Correl(DFi,DFj) correlation between the vector of daily factors DFi of station i and the vector 

of daily factors DFj of reference station j 

El Esawey (2023) has developed a method to identify anomalous data in long term bicycle counts with 

at least 300 days of data. As the method by Beitel et al. (2018), this method is also based on daily 

factors. The mean, standard deviation and coefficient of variation are calculated for each day over all 

stations. If the coefficient of variation is below a certain threshold (e.g. 20 %) for a day, all data of this 

day is considered to be good. Otherwise, outliers are identified in an iterative process for each day, 

until the number of newly identified outliers becomes small. In the first step of this process, the lowest 

and highest daily factors are removed if data is available for more than three counting stations. Next 

an upper and lower limit are defined as the mean of the daily factors plus/minus two standard 

deviations. All daily factors falling outside this range are then removed. Two refinements to this 

method were also proposed. The first refinement calls for a recalculation of the AADT and daily factors 

after each iteration. The second refinement expands upon the first refinement by additionally 

removing all data of counting stations with fewer than 300 valid days of data. Of the three variations, 

the first refinement showed the best results. Over 95% of the outliers that were smaller than 50% or 

larger than 250% of the correct value were identified (El Esawey, 2023). 
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2.9) GEH and SQV Measures 
The GEH-value (named after its originator Geoffrey E. Havers, see equation ( 5 )) and Scalable Quality 

Value SQV (equation ( 6 )) are measures used in traffic planning. Their purpose is to compare pairs of 

modelled values and observed values, for example traffic counts at a counting station, and to assess 

the quality of the match (Friedrich, Pestel, Schiller, & Simon, 2019). While the GEH-value was used to 

validate the NPVM model, the Swiss Association of Traffic Engineers and Traffic Experts SVI now 

recommends to use of newer SQV instead (Bundesamt für Raumentwicklung ARE, 2020b; 

Schweizerische Vereinigung der Verkehrsingenieure und Verkehrsexperten SVI, 2019). 

The GEH-value was created in the 1970s to have a measure which combines absolute and relative 

deviation of modelled and observed traffic volumes. This was necessary, as absolute deviation is only 

useful for low values and relative deviation only for high values. The SQV was developed by Friedrich 

et al. (2019) to address multiple issues with the GEH-value: Firstly, it is not unitless (it has a unit of 

sqrt(vehicles/hour)) and does not range between zero and one. Secondly, it is asymmetrical, giving a 

different result for the same absolute deviation above or below the observed value. And thirdly, it is 

best used for values in the range from 2’000 to 50’000 and cannot be scaled to serve other value 

ranges. To solve the first and third problem, the SQV uses a scaling factor f, which normalises the 

observed and modelled values and has the same unit as the value of interest. It should be chosen 

before model validation and should represent the order of magnitude the values are expected to be 

in (Bundesamt für Raumentwicklung ARE, 2020b; Friedrich, Pestel, Schiller, & Simon, 2019). 
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m  modelled value 

c  observed value 

f  scaling factor 

Both GEH-value and SQV have value ranges which indicate the quality of a range of measure values. 

Even though they are both using three ranges for evaluation, the GEH-values and SQV cannot be 

directly translated. Furthermore, for the GEH-value they were created for hourly car traffic volumes 

and the SQV is too new to know what values are attainable in practice. Those ranges can nevertheless 

serve as an orientation for analysis and are shown in Table 3 and Table 4. To show these value ranges 

on a plot, such as in Figure 31 and Figure 32, the equations ( 5 ) and ( 6 ) need to be solved for modelled 

counts. Friedrich et al. (2019) did this transformation for the GEH-value (see equation ( 7 )), the 

transformation for SQV is shown in appendix 1, resulting in equation ( 8 ) (Friedrich, Pestel, Schiller, & 

Simon, 2019; Schweizerische Vereinigung der Verkehrsingenieure und Verkehrsexperten SVI, 2019). 

Table 3: Evaluation of GEH-value (Bundesamt für Strassen ASTRA, 2018). 

GEH-value Evaluation 

< 5 Very good match 

< 10 Good match 

< 15 Acceptable match 
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Table 4: Evaluation of SQV (Friedrich, Pestel, Schiller, & Simon, 2019). 

SQV Evaluation 

≥ 0.9 Very good match 

≥ 0.85 Good match 

≥ 0.8 Acceptable match 
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2.10) Research Gaps 
During the review of the literature multiple research gaps were found, which this thesis will try to fill: 

1. While a bicycle traffic route choice was done for the NPVM, they did so with only one 

connector node for each traffic zone. Furthermore, the road network is based on a network 

developed for car traffic, which does not include all ways usable by bicycles. 

2. The bicycle traffic route choice model in the NPVM requires special software, which is not free 

to use. This hinders the creation of traffic assignment maps with modifications to the 

infrastructure. 

3. The results of the jittering approach have, to the knowledge of the author, not been compared 

to bicycle count data. 

The bicycle traffic assignment model developed in this paper has the advantage of relying completely 

on freely available data and software, making it easier to assess the impact of planned infrastructures. 

With the use of jittering the model has many connector points in each traffic zone, distributing it more 

evenly and improving local traffic patterns. 

  



26 
 

3) Data 

3.1) Road Network 
The road network used for this thesis is OpenStreetMap OSM from January 2017. The OSM-data for 

Switzerland was downloaded from the website geofabric.de (Geofabrik, 2017). OSM is an online map 

of the world that was founded in 2004 and is created by volunteers. As it is available with an open 

database license the map data can be accessed freely and used for analysis or other projects 

(OpenStreetMap, 2024h). As anyone, including people without geographic education or local 

knowledge to the area they map, can contribute to the map, OSM is an example of volunteered 

geographic information. A problem with such information is that its accuracy and completeness are 

not as reliable as that of proprietary or government maps. Traditional map makers have control over 

the contributors and can implement quality control systems, whereas volunteered geographic 

information has to deal with antisocial behaviour creating wrong data (Goodchild, 2007). 

Features in OSM are stored as elements (nodes, ways and relations) with associated tags to describe 

their attributes. A node represents a point in space and is assigned coordinates in the coordinate 

reference system WGS84. (OpenStreetMap, 2024f). An ordered collection of nodes form a way, which 

can represent both linear and area features. Ways where the first and last node are different are called 

open ways, they always represent a linear feature. In closed ways the first and last node are the same, 

they can represent linear features (e.g. a roundabout) or area features (e.g. a house) (OpenStreetMap, 

2024j). When ways cross at the same level, they need to share a node in this location (e.g. roads at an 

intersection). If they cross on different levels, they may not share a node (e.g. a road on a bridge passing 

over another road). In this case the ways should be tagged to indicate a non-level crossing 

(OpenStreetMap, 2024g). Multiple nodes, ways and relations can together form a relation, which 

defines a relationship between these elements (OpenStreetMap, 2024f). All elements can be assigned 

any number of tags, which give a description of the feature. Tags consist of a key and a value, where 

the key notes the topic/category/type and the value provides the detail. Tags are usually written with 

the syntax key=value. A key can only be assigned once to an element. The OpenStreetMap Wiki 

provides conventions on how to use tags and what meaning they have (OpenStreetMap, 2024c). 

Multiple studies have been conducted to assess the quality of OSM in terms of positional accuracy, 

attribute accuracy, completeness and other qualities. Using the decrease in map edits as it gets more 

complete and a visual assessment of completeness, it was estimated that the world map was about 

83% complete in 2016. The completeness varies by region and reaches above 95% for most European 

and North American countries, including Switzerland. It also varies with population density, being 

highest in areas with high and low density and less complete in areas of medium density (Barrington-

Leigh & Millard-Ball, 2017). In a comparison with proprietary road maps different studies for Canada 

(in 2015) and Germany (in 2009) found for positional accuracy that 78 percent and 73 percent, 

respectively, of OSM-roads are within five meters of the reference map. In Germany all roads were 

within 30 meters of the reference, while 92 percent were in Canada. For both countries the 

completeness of OSM was lower than that of the proprietary map. Both studies showed a higher 

positional accuracy and completeness in urban areas than in rural areas (Ludwig, Voss, & Krause-

Traudes, 2011; Zhang & Malczewski, 2018). However, a similar study for Germany in 2011 estimated 

that the OSM road network was 27% longer than that of a proprietary mapping agency due to a larger 

pedestrian network. While the road network of OSM was 9% shorter in 2011, it was estimated to be 

comparable to the proprietary map in terms of completeness by the end of 2012 and in topology and 

street name information by 2017 (Neis, Zielstra, & Zipf, 2012). Another study in Canada for 2017 

focused on bicycle infrastructure in large and mid-sized cities. They found that the length of 

infrastructure in OSM was comparable to the map by the city, while OSM included more small paths. 

However, the categorisation of bicycle infrastructure was inconsistent in OSM (Ferster, Fischer, 
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Manaugh, Nelson, & Winters, 2020). Different studies, with some focusing on bicycle tracks and lanes, 

have found that the completeness and accuracy of attributes in OSM varies strongly by region, even 

within countries (Hochmair, Zielstra, & Neis, 2015; Vierø, Vybornova, & Szell, 2024). 

3.2) National Model for Passenger Traffic 
The bicycle distribution for 2017 (Eidgenössisches Departement für Umwelt, Verkehr, Energie und 

Kommunikation UVEK, 2019) and for the base scenario of 2050 (Eidgenössisches Departement für 

Umwelt, Verkehr, Energie und Kommunikation UVEK) from the Swiss national model for passenger 

traffic NPVM are used in this thesis. They include a list with all pairs of traffic zones and the number of 

bicycle trips between them (separately for both directions). The private car assignment model for 2017 

(Bundesamt für Raumentwicklung ARE, 2022a) was additionally used for visualisations, as the model 

for bicycle traffic is unfortunately not available. An explanation of the NPVM model is in chapter 2.1. 

3.3) Traffic Zones 
The geometry of traffic zones within Switzerland (including Liechtenstein and enclaves) (Bundesamt 

für Raumentwicklung ARE, 2019a) and their centroids (Bundesamt für Raumentwicklung ARE, 2020a) 

was used for this thesis. For visualisations the geometry of traffic zone outside of Switzerland 

(Bundesamt für Raumentwicklung ARE, 2019b) was also used. All traffic zone data is for the year 2017. 

An explanation of traffic zones is in chapter 2.1.1.2. 

3.4) Bicycle Counting Stations 
Automatic bicycle counting stations measure how many bikes pass by them and at what time. Most 

stations use induction coils in the ground, but radar and pressure sensors are also used. Like the more 

established counting stations for car traffic, they are a basis for analysing, modelling, and planning 

traffic. The foundation SwitzerlandMobility has started installing such stations along their bike route 

network in 2004 with multiple cantons and cities following. While there were only 52 counting stations 

along those routes in 2017, there were already 85 in 2022 (Stiftung SchweizMobil, 2018; Stiftung 

SchweizMobil, Bundesamt für Strassen ASTRA, 2023). Manual counts of bikes are another option to 

determine the number of bicyclists on a road, however they are only conducted over a limited 

timeframe of a few days or weeks, while automatic counters can operate year-round. Manual counts 

are therefore not able to capture seasonal variation in bicycle traffic and need extrapolation to get a 

measure of yearly bike traffic. Automatic bicycle counts are the more common type in Switzerland and 

will be the only method included in this thesis (Baehler, Marincek, & Rérat, 2018). To match the data 

from the national traffic model, annual average weekday traffic AAWT will be used instead of annual 

average daily traffic AADT. AADT is calculated as the total number of cyclists over the year, divided by 

the number of days. For AAWT only weekdays (Monday to Friday) are used in the calculation. Using 

only AAWT results in a focus on commuter traffic, as leisure travel is more prevalent on weekends 

(Stiftung SchweizMobil, 2018). 

Figure 10 shows a map with the locations of all counting stations used for this thesis. The data on 

counting stations comes from many different sources, mainly cantons and municipalities. Appendix 4 

lists the different sources and appendix 5 all stations. The next section gives an overview over the 

bicycle count data sources and their data: 
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Figure 10: Locations of all bicycle counting stations used in the analysis. 

Canton Basel-Landschaft 
AAWT is available for five stations on a monthly basis (Kanton Basel-Landschaft, 2018). Coordinates 

were approximated using the cantonal GIS-browser (Kanton Basel-Landschaft, n.d.). 

Canton Basel-Stadt 
Hourly counts for 25 stations and coordinates are available. Two stations collect data in only one 

direction (Kanton Basel-Stadt, 2024). The coordinates for one station had to be obtained from a 

different source (Kanton Basel-Stadt, 2013). 

Canton Geneva 
Hourly counts for five stations and a map with their locations were provided on request through email 

from Yves Steiner of the cantonal office of transport (Steiner, 2024). The coordinates were 

approximated using the basemap in the swisstopo GIS-Browser (Bundesamt für Landestopografie 

swisstopo, 2024). 

Canton Schaffhausen 
Average weekday traffic for each hour of the day for three stations was provided on request through 

email from Martin Baggenstoss of the cantonal office of traffic and infrastructure (Baggenstoss, 2024). 

The coordinates are available on the cantonal GIS-Browser (Kanton Schaffhausen, 2023). 

Canton St. Gallen 
AAWT for 14 stations and their coordinates were provided on request through email from Ina Stenzel 

of the cantonal office for building and the environment (Stenzel, 2024). 
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Canton Ticino 
Monthly counts and the yearly ratio of weekday to daily traffic are available for seven stations 

(Repubblica e Cantone Ticino, n.d. a). The ratio of weekday to daily traffic was used to calculate the 

monthly weekday traffic under the assumption that the ratio does not change significantly over the 

year using equation ( 9 ). The coordinates are available separately (Repubblica e Cantone Ticino, n.d. 

b). 

 
𝑀𝐴𝑊𝑇𝑚𝑦 = 𝑀𝐴𝐷𝑇𝑚𝑦 ∗

𝐴𝐴𝑊𝑇𝑦

𝐴𝐴𝐷𝑇𝑦
 ( 9 ) 

 

MAWTmy  monthly average weekday traffic for month i in year y 

MADTmy  monthly average daily traffic for month i in year y 

AAWTy, AADTy  AAWT and AADT in year y 

Canton Zürich 
AADT and AAWT for 2022 and AADT for 2017 are available for ten stations on the cantonal GIS-

browser, with one station only collecting data in a single direction of traffic (Kanton Zürich, 2023). To 

calculate the AAWT in 2017 the ratio of weekday to daily traffic for 2022 was applied to the AADT in 

2017 using equation ( 10 ), under the assumption that the ratio of weekday to daily traffic remains 

constant over multiple years. The coordinates of the stations were taken from the GIS-browser. 

 
𝐴𝐴𝑊𝑇𝑖 = 𝐴𝐴𝐷𝑇𝑖 ∗

𝐴𝐴𝑊𝑇𝑗

𝐴𝐴𝐷𝑇𝑗
 ( 10 ) 

 

AAWTi, AADTi  AAWT and AADT in year i 

AAWTj, AADTj  AAWT and AADT in reference year j 

Municipality Bern 
AAWT is available for 14 stations (Stadt Bern, 2018). The coordinates can be viewed in the cities GIS-

browser (Stadt Bern, n.d.). Two of the stations only collect data for a single direction of traffic. Two 

other stations had missing data, which was imputed by the municipality (Stadt Bern, 2018). 

Municipality Biel 
AAWT is available for ten stations as well as a map of their locations (Stadt Biel, 2020). The coordinates 

were approximated using the basemap in the swisstopo GIS-Browser (Bundesamt für Landestopografie 

swisstopo, 2024). 

Municipality Köniz 
AAWT and coordinates for four stations were provided on request through email from Judith Albers of 

the municipal department of planning and traffic (Albers, 2024). 

Municipality Kriens 
Daily counts for four stations and a map with their locations are available (Eco-Counter, 2024b). The 

coordinates were approximated using the basemap in the swisstopo GIS-Browser (Bundesamt für 

Landestopografie swisstopo, 2024). 

Municipality Lucerne 
Monthly AAWT for twelve stations was provided on request through email from Martin Luternauer of 

the municipal office for mobility (Luternauer, 2024). The municipality of Lucerne does not include 

holidays in AAWT. The coordinates are available from the canton of Lucerne (Kanton Luzern, 2021). 

Municipality St. Gallen 
Hourly counts for 14 stations and their coordinates are available (Stadt St. Gallen, 2024). 
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Municipality Wil SG 
Daily counts for three stations were provided on request through email from Alessandra D'Errico of 

the municipal department for spatial planning (D'Errico, 2024). The coordinates are available on the 

cities GIS-browser (Gemeinde Wil, n.d.). 

Municipality Winterthur 
Daily counts for one station and a map with its location are available (Eco-Counter, 2024a). The 

coordinates were approximated using the basemap in the swisstopo GIS-Browser (Bundesamt für 

Landestopografie swisstopo, 2024). 

Municipality Zürich 
Counts for every quarter-hour and coordinates are available for 21 locations. Three of these locations 

have multiple counters observing the same road segment in different directions or at different times 

of the year and one station only observes traffic in a single direction (Stadt Zürich, 2024a). The data of 

different stations at the same location was combined before further data preparation. Correction 

factors for each station are also available to account for measurement errors and cyclists riding next 

to the measurement device (Stadt Zürich, 2024a; Stadt Zürich, 2024b). These factors were applied after 

aggregating the data. 

SwitzerlandMobility 
AAWT and maps of the locations are available for 43 stations, with one station only collecting data for 

one direction of travel. While there are 52 stations along the SwitzerlandMobility route network, data 

of nine was not published due to missing data (Stiftung SchweizMobil, 2018). The coordinates were 

approximated using the basemap in the swisstopo GIS-Browser (Bundesamt für Landestopografie 

swisstopo, 2024). 

3.5) Other Data 

3.5.1) Typology of Municipalities 
The urban-rural classification for the year 2012 is included in the data of the traffic zones (Bundesamt 

für Raumentwicklung ARE, 2019a) and was also used for the NPVM (Bundesamt für Raumentwicklung 

ARE, 2020c). To show the typology of municipalities, the original dataset was used (Bundesamt für 

Statistik BFS, 2017a). 

3.5.2) Landcover 
SwissTLMRegio is a landscape model showing natural and artificial objects in a highly generalised 

vector map with a positional accuracy of 20 to 60 meters. It covers all of Switzerland as well as some 

areas of the surrounding countries. The model is separated into six different thematic groups 

(transportation, hydrography, landcover, buildings, miscellaneous, names). Only the landcover group 

is needed for this thesis, it displays the primary groundcover such as settlement areas, lakes and forests 

(Bundesamt für Landestopografie swisstopo, 2023b). The version for 2020 will be used, as the older 

ones are no longer available (Bundesamt für Landestopografie swisstopo, 2020). 

3.5.3) Resident and Business Statistics 
Information on the distribution of residents and businesses across Switzerland are available in the two 

datasets from the federal office of statistics: STATPOP (Bundesamt für Statistik BFS, 2018a) and 

STATENT (Bundesamt für Statistik BFS, 2021). They include over 70 measures of residents and 

households and around 600 measures of businesses and employees, including the number of residents 

and full-time equivalents. The data are aggregated to grid cells of one hectare and available as point 

data, referencing the southwest corner of each cell. The data are collected from different 

administrative sources, such as municipal and cantonal resident registries, and are geolocated using 

the federal register of buildings and dwellings. Buildings are referenced using the centre of their 
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footprint, or another point inside the footprint if the centre falls outside it. Businesses with multiple 

buildings are referenced to the building which receives postal deliveries. 

There are three main issues with this dataset, some of which can be resolved before use. Firstly, the 

data is updated annually for December except those on agricultural businesses, which is updated for 

January. Secondly, for data protection resident data with absolute values between one and three as 

well as business data between one and four are grouped together and included as either three or four. 

And finally, all residents and businesses which cannot be located are assigned to a cell of the hectare 

raster, locally distorting the values. Such resident data are assigned to the central grid cell of the 

municipality. Businesses which were not directly locatable are georeferenced using a three-step 

system, first trying to use the average coordinates of all businesses locations along the same street, 

then the average coordinates of all locations in the same postcode and finally assigning the business 

to the central grid cell of the municipality. The federal office of statistics provides a dataset which 

enables the removal of data from residents and businesses with approximated locations (Bundesamt 

für Statistik BFS, 2018b; Bundesamt für Statistik BFS, 2023a). 

3.5.4) Borders 
swissBOUNDARIES3D (Bundesamt für Landestopografie swisstopo, 2023a) is a vector map by the 

federal department of topography, which includes the municipal, cantonal and international borders 

of Switzerland. To be consistent with other data sets, the version for 2017 is used in this thesis. 

International borders, apart from Switzerland’s, were downloaded from OSM using the website osm-

boundaries.com (Ground Zero Communications AB, 2024; OpenStreetMap, 2024k). 

3.5.5) Elevation Tiles 
Elevation Tiles from NASAs Shuttle Radar Topography Mission (SRTM) are used to add elevation data 

to the road network. The data was collected in February 2000 using an imaging radar on the Space 

Shuttle, covering 80% of the earth’s land surface (NASA, n.d.). The data is available in 1°-tiles with a 

resolution of 1 arcsecond from an external website. To cover all of Switzerland 15 tiles are required 

between 45° to 47° north and 5° to 10° east, see Table 5 (Watkins, n.d.). At a latitude of 45° the 

resolution is around 31m north-south and 22m east-west (Esri, n.d.). The routing service requires this 

data to be in a specific format, data from swisstopo, which is higher resolution and quality, was 

therefore not usable. 

Table 5: SRTM-tiles required to cover all of Switzerland (Watkins, n.d.), arranged according to their 
geographic locations. 

 N47E006 N47E007 N47E008 N47E009 N47E010 

N46E005 N46E006 N46E007 N46E008 N46E009 N46E010 

 N45E006 N45E007 N45E008 N45E009  
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4) Methodology 
The aim of this bicycle traffic assignment model BTAM is to estimate the daily number of cyclists on all 

road segments in Switzerland in the years 2017 and 2050, based on the bicycle traffic distribution from 

the Swiss national model for passenger traffic NPVM. Figure 11 gives an overview of the steps taken 

to achieve this goal. Each origin-destination (OD) pair is included twice in the traffic matrix of the 

bicycle traffic distribution, once for each direction of travel. Even though this doubles the number of 

routes, this separation was kept as elevation, one-way streets and other characteristics of the route 

network can lead to differing routes in opposing directions. To nevertheless reduce computational 

effort, OD-pairs with very few daily trips were removed (chapter 4.1). Next, route start and end points 

were distributed throughout the traffic zones (chapter 4.2). The jittering method with disaggregation 

and weighting by population statistics was used, based on the methods described by Lovelace, Félix 

and Carlino (2022). After preparing both the routing engine and OpenStreetMap (OSM) road network 

(chapters 4.3 and 4.4), routes between traffic zones were calculated using the Valhalla routing engine 

(chapter 4.5). Then, for each road segment the annual average weekday traffic AAWT of all routes 

passing through was summed up (chapter 4.6). Finally, the results were verified (chapter 4.8) and the 

2017 model was validated by comparing them to data collected by automatic bicycle counting stations 

across Switzerland (chapters 4.7 and 5.2.2). 

 

Figure 11: Flow diagram of the methodology (only the most important datasets are shown). 

4.1) Exclusion of Origin-Destination Pairs with few Daily Trips 
OD-pairs with few bicycle trips between them according to the NPVM traffic matrices for 2017 and 

2050 were excluded from the model. Not including OD-pairs reduced the number of routes that 

needed to be calculated, which was the part of the model taking the longest time. By removing pairs 

with low AAWT the effect on the resulting model was minimised. Separate thresholds of minimum 

AAWT were set for traffic zones of different urban-rural typology (URT) types (urban, intermediate and 

rural) to account for the much higher bicycle traffic volumes in cities than in rural areas (Stiftung 

SchweizMobil, 2018). Pairs of traffic zones in different typologies were removed based on the lower 

threshold. The thresholds were also calculated separately for the years 2017 and 2050. To minimise 

the number of parameters needed, it was decided to remove a set percentage of trips from each URT-

type and year. After experimenting with different values, 1 % was chosen. 

The following steps were done separately for different URT-types and years. First, the OD-pairs were 

grouped according to their AAWT, but OD-pairs with zero trips between them were excluded. The 
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bounds of the groups were set relative to the order of magnitude of the AAWT, with two digits of 

precision (e.g.: 0.11-0.12, 0.12-0.13, …, 0.99-1.0, 1.0-1.1, …). This allows for very fine groups at small 

AAWT-values and larger groups at higher AAWT-values. Then the cumulative number of trips in each 

of these groups and all groups with smaller individual AAWT-values was calculated. Finally, the 

threshold was chosen as the lowest bound, for which the cumulative trips made up at least a 1 % of 

the total trips. Due to the grouping of trips across a range of AAWT-values, the final thresholds are 

slightly larger than 1% and differ for different URT-types and years. The resulting thresholds and the 

percentage of trips and OD-pairs they eliminate are shown in Table 6 and Table 7. 

Table 6: Minimum number of trips per OD-pair for different URT-types in 2017. 

for 2017 threshold [AAWT] OD-pairs removed [%] 
(excluding OD-pairs 
with zero trips) 

trips removed [%] 

rural 0.006 55 1.16 

intermediate 0.01 69 1.86 

urban 0.1 84 1.62 

total  71 1.62 

 

Table 7: Minimum number of trips per OD-pair for different URT-types in 2050. 

for 2050 threshold [AAWT] OD-pairs removed [%] 
(excluding OD-pairs 
with zero trips) 

trips removed [%] 

rural 0.005 51 1.05 

intermediate 0.01 63 1.53 

urban 0.1 80 1.38 

total  65 1.38 

 

4.2) Selection of the Route Start and End Points 
To create a more realistic traffic pattern, the start and end points of routes were chosen using the 

jittering approach with disaggregation described by Lovelace, Félix, & Carlino (2022). Disaggregation 

allows to use multiple different routes for OD-pairs with many trips. Jittering distributes the start and 

end locations of routes throughout their respective traffic zones. Disaggregation was performed 

separately for the 2017 and 2050 data, while jittering was done together to reduce the number of 

routes required. The next two sections explain the process in more detail. 

4.2.1) Disaggregation 
The number of trips between traffic zones varies over multiple orders of magnitude. If there was only 

one route between each pair of traffic zones, the number of trips represented by that route would 

therefore also vary drastically. Routes associated with a high number of trips can lead to unrealistic 

traffic patterns at the start and end location, where a lot of traffic would suddenly appear or disappear. 

To reduce this issue OD-pairs with too many trips were disaggregated and assigned multiple routes 

with different start and end points within the same traffic zones. This way each route only carries a 

fraction of the trips. As with the minimum number of trips between traffic zones, this threshold is also 

calculated separately for 2017 and 2050. To assure disperse routing in all regions, even where bicycle 

traffic is low, it was calculated individually for each traffic zone and separately for incoming and 

outgoing trips. 

First, the incoming and outgoing AAWT-values were collected for each traffic zone, with intrazonal 

trips being included in both groups. Next, the 90th percentile of these AAWT-values was selected as the 
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maximum allowed number of trips per route. The 90th percentile was chosen after exploring different 

values to limit the number of additional routes created, while creating enough disaggregation. This 

maximum was set to two times the minimum number of trips per OD-pair, if it was below. Otherwise, 

the number of trips on a route would be below the minimum number of trips per route determined in 

the previous chapter. 

Routes between OD-pairs were disaggregated, when the number of trips was higher than the lowest 

of these values: outgoing AAWT-threshold for the origin-traffic zone, incoming AAWT-threshold for the 

destination-traffic zone or AAWT of ten. The upper limit of ten on the number of trips per route was 

added, as the threshold for some pairs would otherwise be very high. When disaggregation was 

needed, the number of routes was determined using equation ( 11 ). The number of trips per route 

was then calculated using equation ( 12 ). The resulting AAWT for each route is lower than the 

threshold to allow all routes to have the same number of trips, while retaining the total number of 

trips between each pair of traffic zones. 

 
𝑛𝑟 = 𝑐𝑒𝑖𝑙 (

𝐴𝐴𝑊𝑇

max (𝐴𝐴𝑊𝑇)
) ( 11 ) 

   
 

𝐴𝐴𝑊𝑇𝑟 =  
𝐴𝐴𝑊𝑇

𝑛𝑟
 ( 12 ) 

 

nr  number of routes 

max(AAWT) threshold AAWT 

AAWTr  AAWT for each route 

4.2.2) Jittering 
The start and end points for each route were chosen from the centre points of the Swiss hectare raster 

within the traffic zone. They were selected randomly, weighted by the sum of population and full-time 

equivalents (population statistics) in the respective raster cell. This data was also used during the 

creation of the traffic zones (Bundesamt für Raumentwicklung ARE, 2017). 

4.2.2.1) Preparation of the Resident and Business Statistics 

The federal office of statistics uses the coordinates in the southwestern corner of each hectare raster 

cell as identifier and locator (Bundesamt für Statistik BFS, 2018b). To better represent the location of 

population and workplaces in the cell, the centre point was used instead for this thesis. Grid cells for 

which the centre point was outside of Switzerland are not able to have a traffic zone assigned and are 

therefore removed. 

As described in chapter 3.5.3, the location of residents and workplaces was not always known and 

therefore had to be estimated by the federal office of statistics when creating the hectare raster 

datasets (Bundesamt für Statistik BFS, 2018b; Bundesamt für Statistik BFS, 2023a). As this changes the 

spatial distribution of the population statistics, some of these estimates were removed for the thesis 

using a dataset provided by the federal office of statistics together with the main data: residents and 

full-time equivalents which were assigned to the central coordinate of their municipality or based on 

their postal code were removed. The businesses with locations determined based on their street were 

kept, as this amount of distortion is smaller and should not be an issue for the use in this thesis. 

The data on residents and businesses were combined to act as weights in the jittering process. The 

sum of residents and full-time equivalents was chosen as population statistics, as they best represent 

the number of people departing and arriving in an area. It also avoids having routes start or end outside 

of populated areas. Other information such as the number of students or customers is however not 

included, as data was not available. 
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4.2.2.2) Jittering 

Jittering was used to select the start and end points of routes. Multiple routes can have the same start 

and end points, as this distributes the traffic more closely in line with the population statistics. Routes 

within a traffic zone must have a different start and end point. For trafficzones with only one 

hectarraster point, as well as special cases explained in the next chapter, the intrazonal routes were 

removed. 59 OD-pairs (0.003 % of OD-pairs for 2017, 0.002% for 2050) with 3308.245 trips (0.12 %) in 

2017 and 4726.007 trips (0.10 %) in 2050 were skipped due to this. To reduce the number of routes 

being calculated, the same ones were used for both 2017 and 2050. When one year required fewer 

routes than the other year, the additional routes were assigned zero trips. 

4.2.3) Special Cases 

4.2.3.1) Too Many Routes between Traffic Zones 

Due to disaggregation some OD-pairs required more routes than there are unique routes between the 

traffic zones. This limit exists, as there are only a limited number of hectare raster points within each 

traffic zone. It was calculated as the product of the number of hectare raster points in the origin traffic 

zone with those in the destination traffic zone. For all OD-pairs where the required number of routes 

was larger or equal to the number of possible unique routes a different approach than described above 

was chosen. 

Instead of selecting routes based on a maximum number of trips per route, all unique routes were 

used. The number of trips for each route were assigned according to the fraction of population 

statistics at the start and end points, as illustrated in Figure 12. This approach had to be used for 517 

OD-pairs (0.03 % of OD-pairs for 2017, 0.02 % for 2050). 

 

Figure 12: Illustration for the assignment of trips to all unique routes. 

In case of intrazonal traffic the calculation of trips per route was more complicated, as routes must 

start and end in at different points. The fraction (from all trips for the OD-pair) of trips belonging to a 

route was first calculated as described above and then adjusted using a correction factor (equation ( 

13 )). The correction factor was calculated using equation ( 14 ). It represents the fraction of routes 

that would be assigned to all routes with the same start and end point. 
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𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑡𝑟𝑖𝑝𝑠)𝑖𝑛𝑡𝑟𝑎𝑧𝑜𝑛𝑎𝑙 =  

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑡𝑟𝑖𝑝𝑠)𝑖𝑛𝑡𝑒𝑟𝑧𝑜𝑛𝑎𝑙

1 − 𝑐
 ( 13 ) 

   
 
 𝑐 =  ∑ (

𝑃𝑖

𝑃𝑧𝑜𝑛𝑒
)

2𝑛

𝑖=0

 ( 14 ) 

 

fraction(trips)intrazonal fraction of trips used for routes within a traffic zone 

fraction(trips)interzonal fraction of trips used for routes between different traffic zones 

(calculated as described above) 

c   correction factor 

n   number of hectare raster points in the traffic zone 

Pi   population statistic for hectare raster point i 

Pzone   population statistic for the traffic zone 

4.2.3.2) Traffic Zones with Manually Assigned Coordinates 

In two cases, which are described below, the automatic assignment of route start and end points based 

on the hectare raster of the population statistics did not work. The route start or end coordinates for 

these traffic zones were assigned manually and are shown in Table 8. During jittering these manually 

placed points were treated the same as the automatically selected points from the hectare raster. 

The traffic zone at the Papiliorama near Kerzers, FR does not contain any hectare raster points, due to 

the zone having a small area. To allow for the automatic assignment of routes to and from the traffic 

zone, a point near the entrance to the park was selected and used. 

The road network in village of Zermatt, VS was mapped in OSM as mostly consisting of footways and 

pedestrian zones, which cannot be used by bicyclists. This resulted in the routing engine not being able 

to calculate many routes and other routes using hiking paths around the village. While the municipality 

does not allow private cars, bicycles are allowed (Zermatt Tourismus, n.d.), indicating a mapping error 

in OSM. As many road segments would need to be changed, it was decided against editing the 

erroneous road attributes. Instead, all traffic zones of Zermatt were assigned a single, common route 

start and end point (see Table 8) at the entrance of the village. This does however result in the model 

not including any traffic within the village. Fortunately, the village’s only road connection is to the north 

resulting in an absence of through-traffic and confining the problem to the village itself. 

Table 8: Traffic zones with manually assigned coordinates as route start and end points. 

Location Traffic zone ids Assigned coordinates [EPSG:4326] 

Papiliorama, Kerzers, FR 226503005 46.988675 N, 7.199911 E 

Zermatt, VS 630001001, 630001002, 
630001003, 630001004, 
630001005, 630001006, 
630001007 

46.029327 N, 7.754288 E 

 

4.3) Routing Engine Parameters 
The routing engine Valhalla is used to create the paths along the OSM-network based on the route 

start and end points created in the previous chapter. It allows to adjust several parameters that 

influence the routing behaviour for bicycles. The default values and the values used in this thesis are 

shown in Table 9, as well as a description of their effect. As described in chapter 2.4.1.2, the routing 

engine searches for the path with the lowest generalized cost, which combines multiple factors 

influencing bicyclist route choice. Parameters are used to adjust the weighting or size of the different 

costs to reflect different cyclist preferences. Three different types of parameters are used in the routing 
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engine: Cost parameters give an amount of seconds that is added to the path cost and the path time. 

Penalty parameters give an amount of seconds that is only added to the path cost. Factor parameters 

multiply the cost on a road segment to avoid or favour certain attributes (Valhalla, 2023). 

Table 9: Parameters for bicycles in the Valhalla Routing Engine (Valhalla, 2023). Changes to the 
default value are highlighted in blue. 

Parameter Description Default value Value used 

avoid_bad_surfaces Factor to avoid bad road surfaces, 
based on the bicycle type. (0: does 
not avoid bad surfaces, 1: avoids bad 
surfaces strongly) 

0.25 0.25 

bicycle_type Type of bicycle, has an affect on the 
cycling speed and avoidance of bad 
surfaces. (Road bicycle, Hybrid/City 
bicycle, Cross bicycle, Mountain 
bicycle) 

Hybrid/City Hybrid/City 

country_crossing_cost Cost for crossing international 
borders. 

600 s 0 s 

country_crossing_penalty Penalty for crossing international 
borders. 

0 s 0 s 

cycling_speed Cycling speed on smooth roads 
without elevation change. Is different 
based on the bicycle type. The speed 
used in routing modifies this value 
based on the road surface and grade. 

18 km/h 13.6 km/h 

gate_cost Cost for crossing a gate with 
undefined or private access. 

30 s 10 s 

gate_penalty Penalty for crossing a gate with 
undefined access. 

300 s 0 s 

maneuver_penalty Penalty, when the name of the road 
changes along the route. Avoids 
turning. 

5 s 9.4 s 

service_penalty Penalty for accessing a service road 
(local road for access to a destination 
(OpenStreetMap, 2024a)). 

15 s 0 s 

use_ferry Factor to avoid ferries. (0: avoids 
ferries strongly, 1: does not avoid 
ferries) 

0.5 0 

use_hills Factor to avoid steep road sections. 
(0: avoids steep grades strongly, 1: 
does not avoid steep grades) 

0.5 0.0 

use_living_streets Factor to avoid living streets (shared 
space for different modes of traffic 
(OpenStreetMap, 2024i)). (0: avoids 
living streets strongly, 1: does not 
avoid living streets) 

0.5 1 

use_roads Factor to avoid roads with high 
speeds and certain classifications and 
favour cycleways and paths. (0: 
avoids roads strongly, 1: does not 
avoid roads) 

0.5 0.0 
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As Valhalla allows to change the routing parameters for each route, it is possible to represent different 

types of cyclists. Using multiple population groups and trip purposes is not as common during routing 

as in the other steps of traffic demand modelling (Bundesamt für Strassen ASTRA, 2018). However, 

cyclists route choices are strongly influenced by trip purpose and their personal preferences. These 

differences can be captured using cyclist typologies, of which many exist in the literature (Dill & McNeil, 

2013). It would therefore be advantageous to use different parameter sets to represent these cyclist 

types. As the creation of suitable groups with their different characteristics is difficult and would 

require a lot of additional data, it was decided to not include it in this thesis. 

4.3.1) Selecting Parameter Values 
The hybrid bicycle type was chosen as it reflects both cycling for transport and recreational cycling, 

while the other cycling types are tailored to cycling for sports (Valhalla, 2023). The cycling speed was 

adjusted to match the values observed by the Swiss micro census for mobility and traffic MZMV 2015 

for bikes and e-bikes, weighted by their respective daily average trip numbers. 0.24 daily trips were 

made by regular bicycles at an average speed of 13.3 km/h and 0.02 trips by e-bike at a speed of 17 

km/h (Bundesamt für Statistik BFS, 2017d), giving a weighted average of 13.6 km/h. The cost and 

penalty for crossing gates and international borders were reduced, as they pose no large barrier to 

cycling within the Schengen area. The use of ferries is to be avoided strongly, as the OD-pairs from the 

NPVM represent only trips by bicycle. Even so some routes were using ferries during testing. To avoid 

this issue all ferry paths were removed from the OSM-network (see chapter 4.4). Living streets (shared 

space for different modes of traffic (OpenStreetMap, 2024i)) and service roads (local road for access 

to a destination (OpenStreetMap, 2024a)) are preferable for cyclists, as they have less motorised 

traffic. 

Literature was used to identify suitable values for the parameters which have a less direct impact on 

routing: maneuver_penalty, use_hills and use_roads. The parameter avoid_bad_surfaces was left at 

its default value, because no suitable literature was found. Different papers have found that cyclists 

prefer smooth surfaces such as asphalt over irregular surfaces such as cobblestone or gravel, but none 

have analysed the implications on route choice (Hardinghaus & Weschke, 2022; Toljic, Brezina, & 

Emberger, 2021). 

4.3.1.1) Valhalla Parameter: maneuver_penalty 

The penalty parameter maneuver_penalty adds a cost in seconds to the trip cost (but not the trip time) 

when the road name changes along the trip. It is meant to reduce the number of turning maneuvers 

along a route (Valhalla, 2023). For cyclists turning adds a time delay to the route and is connected with 

an additional mental cost of having to remember where to turn (Broach, Dill, & Gliebe, 2012). 

In a paper by Meister et al. revealed preference data from GPS sensors was used to model the effect 

of different attributes on cyclists’ route choices in the greater Zurich area. The value of distance was 

used to describe how much longer/shorter a route the cyclist is willing to take is, based on the road 

attribute. A road section with a grade of 2-6 % for example is valued the same as a flat road section 

that is 55% longer. They also looked at the effect of bike infrastructure and traffic volumes, however 

these results are not as the authors expected and might be influenced by factors other than the cyclists 

route choices (Meister, Felder, Schmid, & Axhausen, 2023). Broach et al. (2012) did a similar study for 

commuters and non-commuters in the city of Portland, USA and have more reliable results for road 

types as well as turning maneuvers. 

Broach et al. (2012) found that one turn per kilometre has the same effect on the route choice as an 

increased distance of 4.6 % for non-commuters and 2.6 % for commuters. Using a weighted average, 

the combined distance value for turning is therefore 3.56 %. For this thesis, the distance values for 

commuters and non-commuters were combined, weighted by the proportion of trip distance related 
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to commuting, which is reported in the MZMV for 2015. Across all transport modes 52 % of the daily 

distance travelled on weekdays was for commuting (trips to/for work and education). This value is 

unfortunately not disaggregated for the different travel modes. While the proportion of bicycle trips 

related to commuting is also reported, it is not disaggregated into weekday and weekday, resulting in 

potentially larger inaccuracies (Bundesamt für Statistik BFS, 2017d). 

The parameter value for maneuver_penalty has the unit of seconds and can be calculated using 

equation ( 15 ). The average cyclist speed (13.6 km/h, see chapter 4.3.1 and Table 9) was used in 

conjunction with the distance value for a kilometre (3.56 %). The result is a penalty of 9.4 seconds for 

every turn along the route. 

 
𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =

𝑑𝑣

𝑣 ∗ 100
∗ 3600 ( 15 ) 

 

penalty  maneuver penalty in seconds 

dv  distance value in percent per kilometre 

v  cycling velocity in km/h 

4.3.1.2) Valhalla Parameter: use_hills and use_roads 

The parameters use_hills and use_roads are factors applied during routing, making it impossible to 

convert their effects into value of distance and directly compare them to the literature. Instead, some 

routes were calculated with a variety of parameter values (ranging from 0 to 1 with a step size of 0.1). 

The resulting distances in each slope/road class (see Table 10 and Table 11) for each route were then 

weighted by the values of distance from the literature and the best parameter value was chosen: First, 

the route start and end points were selected from the traffic zone OD-pairs of the NPVM. As the 

literature evaluates bicycle trips within a city, only urban traffic zones were used. Then, a route was 

created from each of the traffic zones to one other, randomly chosen, traffic zone with at least one trip 

per day. This ensured that all urban areas across Switzerland were considered. The routes were 

calculated between the centroids of the traffic zones, which were weighted by population statistics 

(Bundesamt für Raumentwicklung ARE, 2017). The other parameter values were set to the values used 

in the final model (see Table 9). Next, the weighted length of the route was calculated by applying the 

values of distance for different slope/road classes (explained in more detail below). As a change in one 

parameter might lead to a change in another, use_roads and use_hills were first set to their default 

values. The parameter value resulting in the lowest weighted distance for the largest number of routes 

was selected for use in the final model. The process was repeated with the calculated values until the 

parameter values (rounded to 0.1) no longer changed. A weighting by population and full-time 

equivalents is implied by this method, as all traffic zones are of similar size in that regard (Bundesamt 

für Raumentwicklung ARE, 2017). In contrast, a weighting by the number of trips was not chosen, as 

the large cities with many trips likely would have dominated over the effects of the smaller cities with 

fewer trips. 

use_hills 

To calculate the weighted length of each route, the elevation every 30m along the route was taken 

from the routing engine. The slope between each set of neighbouring points was calculated and the 

distance weighted according to the slope classes from Meister et al. (2023), see Table 10. Downward 

slopes were unfortunately not included in the literature and had to be grouped with slopes between 0 

and 2 %, which served as reference in the paper. 
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Table 10: Slope classes and values of distance for 1 km of road (Meister, Felder, Schmid, & Axhausen, 
2023). 

Slope Value of distance of 1 km 

<2 % 1 km 

2-6 % 1.55 km 

6-10 % 4.11 km 

>10 % 5.33 km 

 

use_roads 

According to Broach et al. (2012), roads with a traffic volume of 10-20 thousand vehicles a day and no 

bike lane have an increased value of distance by 22.3% and 36.8% for non-commuters and commuters 

respectively. Cyclists are willing to travel longer distances when they are able to use separated bicycle 

infrastructure such as bike paths, which therefore have a value of distanced decreased by around 22% 

for non-commuters and 13.4% for commuters. While the paper makes a distinction between bike paths 

(off-street, regional) and bike boulevards (residential road with traffic calming and enhanced right of 

way), this is not possible with the OSM-data. Therefore, the average of both categories was used 

(Broach, Dill, & Gliebe, 2012). The aggregation of distance values for commuters and non-commuters 

was performed in the same way as for the parameter maneuver_penalty, resulting in a distance value 

increased by 30 % for busy roads and decreased by 18 % for bike paths (Table 11). 

OSM-ways were classified according to their highway and cycleway tags (see appendix 3) and assigned 

the distance values according to Broach et al. (2012) (Table 11). The classification tries to translate the 

categories used in the paper into OSM tags with help of the OSM-wiki (OpenStreetMap, 2024b). The 

road class was determined for each route segment, allowing to weight its length by the distance values 

in Table 11. To be able to access the highway type along the route, a separate OSM-file had to be 

created where the highway type was added to the road name. This change was not applied to the 

OSM-file used for the model itself, as the maneuver_penalty parameter uses a change in road name 

as an indicator for turning maneuvers. 

Table 11: Road classes and values of distance for 1 km of road (Broach, Dill, & Gliebe, 2012). 

Road description Category in Broach et al. (2012) Value of distance of 1 km 

Bicycle friendly road Bike boulevard and bike path 0.82 km 

Bicycle neutral road Reference category 1 km 

Bicycle unfriendly road AADT 10-20k without bike lane 1.3 km 

 

4.4) OSM Tags 
As discussed in chapter 3.1, the completeness and accuracy of OSM-attributes, or tags, is sometimes 

lacking (Ferster, Fischer, Manaugh, Nelson, & Winters, 2020; Hochmair, Zielstra, & Neis, 2015; Vierø, 

Vybornova, & Szell, 2024). This was confirmed when exploring the OSM-data and during the test runs 

of the BTAM. It was therefore decided to correct some of the attributes of nodes and ways that can 

influence routing. Most of the changes were applied to the entire OSM-network for Switzerland. 

Additionally, ways near counting stations were examined after test runs of the model to detect and 

manually change incorrect attributes. This way the evaluation of the model is less influenced by errors 

in the road network. 

Summary and order of the changes made to the OSM-network: 

• Ways without the tag “highway” were removed. Otherwise, Valhalla would in a few cases 

include ferry sections in the routes. 
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• Manual correction of errors near bicycle counters: To aid in the detection of errors in the road 

network the results of the test runs were analysed visually to detect unexpected traffic 

volumes in the areas around counting stations. The modelled counts were also compared to 

the observed bicycle counts at the bicycle counters. A comparison of the 2017 OSM-network 

with the 2024 OSM-network (OpenStreetMap, 2024k) and swisstopos aerial images from 

around 2017 (Bundesamt für Landestopografie swisstopo, 2024) was used to correct attributes 

and add missing ways. Additional sources on construction sites or roadway restrictions were 

used when necessary. Due to missing familiarity with the areas, not all errors will have been 

caught and the corrections may be erroneous themselves. One example is Strandweg between 

Oberseestrasse and Seedamm in Rapperswil (see Figure 13), near counting station C_SG_06. 

This road section was tagged as “footway”, suggesting that cycling is prohibited and not 

allowing routing for bicycles. The road section is however part of the national cycle route 9 by 

SwitzerlandMobility, which was established along with the other national cycling routes in the 

1990s, showing that cycling is allowed there (Stiftung SchweizMobil, 2009; Stiftung 

SchweizMobil, n.d.). To solve the issue the tags are changed to reflect the tags currently used 

by OSM: highway=footway is replaced with highway=path and bicycle=designated is added 

(OpenStreetMap, 2024k). 

 

Figure 13: Overview of Strandweg between Oberseestrasse and Seedamm in Rapperswil. 
SwitzerlandMobility cycle routes are marked in blue (source: (Bundesamt für Landestopografie 

swisstopo, 2024)). 

• The surface-tag was added to ways where it was missing or had an untypical value (values not 

in Table 12). This tag is used for the Valhalla parameter avoid_bad_surfaces but is missing from 

87% of the ways available for cyclists (based on the highway tag (see appendix 3)). Due to the 

variety of surface types, only the general values of paved or unpaved were assigned depending 

on the surface types of the other ways with the same highway tag. Table 12 gives an overview 

over which surface types were considered as paved and which as unpaved, this categorisation 

is based on the OpenStreetMap Wiki (OpenStreetMap, 2024e). While this approach is 

simplistic and most of the ways had no surface type, all surface types are either predominantly 

paved or unpaved. 
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Table 12: Categorisation of surface types into paved and unpaved (based on (OpenStreetMap, 
2024e)). 

paved unpaved 

asphalt concrete:plates compacted ground 

bricks paved dirt pebblestone 

chipseal paving_stones earth rock 

cobblestone sett fine_gravel sand 

cobblestone:flattened unhewn_cobblestone grass unpaved 

concrete wood grass_paver woodchips 

concrete:lanes  gravel  

• The tag bicycle=no was removed from nodes with the tag highway=crossing. These nodes 

indicate where pedestrians can cross the road. However, bicycle traffic following the road is 

also prohibited by the tag, which is not intended. 

• The tags carriage, motor_vehicle, motorcar and motorcycle (based on (OpenStreetMap, 

2024d)) were removed from all ways, as they have no impact on bicycle traffic, but seemed to 

influence routing during testing. 

• The tags access and vehicle were removed from ways which had either the bicycle or cycleway 

tag. These tags represent access restrictions to ways. As the bicycle and cycleway tags are more 

specific for bicycle traffic, only they should be considered when they are available. 

4.5) Routing 
The routes were calculated by the routing engine Valhalla with the parameters described in chapter 

4.3. Route start and end points from chapter 4.2 and the road network from chapter 4.4 were used. 

The engine returns whether routing was successful, as well as the route’s length and an encoded 

polyline of the route path. The polyline was converted into a sorted list of points and stored. The first 

and last points are the closest points to the hectare raster centroids selected as route start and end 

points. The points in between are nodes of the OSM road segments. 

The routing program was not able to find a valid route between some of the start and end points. The 

reason was either a lack of bicycle-accessible roads near one point or the road network around one 

point being disconnected. The affected point was replaced by another start or end point (selected 

randomly as described in chapter 4.2) and the route recalculated. The locations and number of routes 

affected are summarised in Table 13. 

Table 13: Inaccessible locations which caused routes to fail. 

Location Number of routes affected 

Chüngeliinsel, Bielersee, BE 29 

Engstligenalp, Adelboden, BE 38 

St. Martin, Pfäfers, SG 2 

Total 69 

 

4.6) Aggregation of Trips 
The trips of the routes were aggregated onto the route start and end points as well as the road 

segments the route passes through. The number of trips starting or ending in a route start or end point 

was computed for both 2017 and 2050, using the first and last node returned by the routing engine. 

The method to calculate trips for each route segment is based on the paper from Morgan & Lovelace 

(2021), which is described in chapter 2.6. Each neighbouring pair of points in the sorted list of route 

points represents one segment. Segments visited by at least one route were stored with the number 
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of trips and routes passing through in 2017 and 2050. Trips were collected separately for both 

directions of travel. The first and last segment of each route were excluded, as the first and last point 

of the route do not correspond to OSM-nodes. Including them would lead to two overlapping segments 

(one for the routes ending and one for the routes passing through). 

4.7) Preparation of Counting Station Data 
As the data on counting stations were from many different sources, they required extensive 

preparation and included duplicate entries of the same station. In the case of duplicates, the data 

source with more information was used. This was only the case for stations from SwitzerlandMobility, 

which were removed as most other data sources provided coordinates, while SwitzerlandMobility only 

had a map for the station’s location. While some counting stations can detect the direction of bicyclists, 

this information was not used for this study as it was only available for few of them. Some operators 

correct or filter the counts before publishing. This editing ranges from deleting invalid data, to 

interpolation of small data gaps, and accounting for weather or site-specific conditions (Baehler, 

Marincek, & Rérat, 2018; Stiftung SchweizMobil, 2018). While this reduces the comparability, the 

modifications are minor and should not change the counts so much as to make them unusable for this 

analysis. 

As the national traffic model only considers traffic within Switzerland for bicycles, travel across the 

border could not be included in this thesis. The modelled traffic near the border is therefore lower 

than the measured traffic, which does include international trips. To remove this effect from the 

validation, all counting stations within 1.65 km of the border were not included. This distance was 

chosen, as it is half of the average trip length by bicycle in 2015. Furthermore, about 50% of trips are 

shorter than 1.65 km (Bundesamt für Statistik BFS, 2017d). The distance was calculated using the 

OpenStreetMap road network and the routing service Valhalla, using the same network and 

parameters as for the traffic assignment model in chapter 4.5. 

For data analysis it was necessary to classify the counters into urban and rural, which is described in 

chapter 4.7.1. For cycling stations with count data of days or months available, the AAWT was 

calculated using equation ( 1 ). Missing data was imputed using the method described in chapter 4.7.2, 

which is based on the methods introduced in chapter 2.8.1. After all unusable stations were removed, 

the OSM-road segments to which the counters belong were manually identified. 

Appendix 5 shows the counting stations along with their annual average weekday traffic, coordinates 

and data source, while Appendix 4 shows their data sources and the number of used and unused 

counting stations. 

4.7.1) Classification into Urban and Rural Counting Stations 
The classification of bicycle counting stations was adapted from the method used by 

SwitzerlandMobility, as introduced in chapter 2.7.2 (Stiftung SchweizMobil, 2018). Changes were made 

to allow the usage of the newer municipality classification (urban-rural-typology 2012 using 

municipality geometries of 2017 (Bundesamt für Statistik BFS, 2017a)) and the landcover data of 

swissTLMRegio (Bundesamt für Landestopografie swisstopo, 2020). The municipalities geometry was 

from the swissBOUNDARIES3D dataset for 2017 (Bundesamt für Landestopografie swisstopo, 2023a). 

Bicycle counting stations were classified as urban when there is more urbanised than non-urbanised 

area in a radius of 500m around them. Within Switzerland only settlement areas in urban and 

intermediary municipalities were considered as urbanised. As the swissTLMRegio covers areas closely 

outside Switzerland, but the urban-rural typology does not, all settlement area outside of Switzerland 

were counted towards the urbanised area. Non-urbanised areas were made up of everything except 

settlement areas (regardless of their typology), lakes and reservoirs. This means they also included 
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areas not classified by swissTLMRegio (mostly agricultural land). Lakes and reservoirs were excluded 

from the evaluation, as they would distort the results due to their size and oftentimes close proximity 

to settlements. After the automatic assignment, the classification of all counting stations was manually 

verified. If an obvious misclassification was detected, the stations classification was changed. Three 

such locations were found, see Figure 14: 

• C_GE_05: changed from rural to urban (on a bridge connecting settlement areas) 

• C_SG_04: changed from urban to rural (separated from much of the settlement area by a 

railway) 

• C_TI_01: changed from rural to urban (mostly surrounded by settlement area, which was not 

included in swissTLMRegio) 

 

Figure 14: Land use around the bicycle counting stations which were reclassified manually. 

4.7.2) Imputation of Missing Days and Months 
The imputation of missing days and months for the long-term counting stations was based on the 

disaggregate factor method DFM and some of the additions described in chapter 2.8.1. This method 

was chosen as it provides good results, while only requiring count data of a single year for multiple 

stations. While the method was developed to calculate the annual average daily traffic AADT for short-

term counting stations, it can be adapted to work for long-term counting stations and AAWT data. To 

select reference stations for stations with missing data, the approach by Beitel et al. (2018) was chosen, 

as it requires no additional data. Another advantage is that it does not assume that all stations can be 

grouped together, unlike the method by El Esawey (2022). During the process, counts and AAWT were 

always rounded to the nearest integer. 

Data with subdaily frequency was aggregated to daily traffic counts. After applying the DFM to the 

daily data, it was aggregated to monthly counts to be used as additional reference stations for the DFM 

with the monthly counts. Counters with more than half a year (130 weekdays or 6 months) of missing 

data were removed from the analysis. The DFM-procedure is the same for days and months, for better 

readability it will only be presented for daily data. 

4.7.2.1) Calculating Correlation between Counting Stations 

First, the AAWT was calculated for each station using equation ( 1 ). Next, the correlation between 

each pair of bicycle counters was determined using equation ( 4 ) from Beitel et al. (2018). This method 

uses daily factors for each day and station (equation ( 2 )), which are expansion factors for an individual 

day of the year. By using the daily factors, the counts of the stations are normalised by the AAWT of 

the station. The daily factor therefore only describes the variation of bicycle traffic over the year and 

not the amount of traffic, which allows to correlate stations with different magnitudes of bicycle traffic. 
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Beitel et al. (2018) removed anomalous data after calculating the correlation, which results in missing 

data influencing the correlation between stations. For this reason, they recommend to only use 

stations with at most 15 days of missing data. To avoid this issue and be able to use stations with more 

missing data, days without data (for one of the two stations for which correlation is being calculated) 

were excluded for the computation of correlation in this thesis.  

The resulting correlation values range from 0 and 1, with 1 indicating perfect correlation of the daily 

factors. A correlation of 0.75 was considered sufficient, as suggested by Beitel et al. (2018). Stations 

which had a sufficient correlation for fewer than two other stations were assessed manually. If the 

temporal pattern seemed uncharacteristic and hinted towards measurement errors the station was 

removed from the analysis. 

4.7.2.2) Imputation of Missing Data 

In the next step, the corrected AAWT was iteratively computed for each station by imputing the traffic 

counts of the missing days. This process was performed for each station separately. The identification 

of reference stations was additionally done separately for different missing days of the same station. 

The selection of reference stations was adjusted from Beitel et al. (2018). The three (or two if not 

enough stations were available) stations with the highest correlation were selected as potential 

reference stations. The correlation had to be at least 0.75 and data needed to available on the day 

being imputed. To avoid outliers influencing the imputation, the two potential reference stations 

whose daily factors for the day were closer together were selected as reference stations. 

The daily factors from the reference stations were then used to impute the missing count using 

equation ( 16 ). The equation is based on equation ( 2 ), which was introduced by Nosal (2014). It uses 

the mean of the daily factors of the reference stations and applies it to the previously calculated AAWT 

to get the traffic count on the specific day. After the counts for all missing days of a station were 

imputed in this way, the new AAWT was calculated using equation ( 1 ) and both imputed and 

measured traffic counts. If the new and old AAWT differed (when rounded to a whole number) the 

process of estimating traffic counts and calculating AAWT was repeated. 

 
𝑐𝑖�̂� = 𝐴𝐴𝑊𝑇𝑖,𝑜𝑙𝑑 ∗

1

𝑛𝑗
∗ ∑ 𝑑𝑓𝑗𝑑

𝑗
 ( 16 ) 

 

cid̂  estimated bicycle count for station i on day d 

AAWTi,old AAWT for station i, before the current iteration of imputation 

nj  number of reference stations j 

dfjd  daily factor of reference station j on day d 

4.7.2.3) Skipping Identification of Anomalous Data 

The identification and replacement of anomalous data as described in Beitel et al. (2018) or El Esawey 

(2023) was skipped. The method from El Esawey (2023) was not usable, as it assumes all data to be 

correlated, which is not necessarily the case when evaluating counting stations across all of 

Switzerland. 

The method from Beitel et al. (2018) was tested, but many of the values identified as anomalous 

showed no sign of irregularity upon manual inspection. When imputing the AAWT from short-term 

counter data of a few days or weeks it is important to remove anomalous days from the long-term 

counts, as their impact on the AAWT of the short-term counter is large. For this thesis however, at 

least half a year of data was available for the bicycle counters, reducing the impact of erroneous data. 

Furthermore, days with data identified as anomalous would require imputation. Together with days 
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falsely identified as anomalous, this would introduce uncertainty into the result and undo the benefits 

of replacing actual outliers. 

Instead, three counting stations were identified as potential references and the two of them with more 

similar daily factors used for imputation. This way outliers were not removed from the dataset, which 

comes with the uncertainty of imputation, but the effect of the outlier was not passed on to imputed 

counts. 

4.7.3) Matching Modelled and Observed Traffic 
To compare the model to the counting stations data the modelled trip count for 2017 at each of the 

counting stations was manually collected. The AAWT from the closest road segment to the counting 

station on the same road was chosen (see Figure 15). As the coordinates provided by the stations 

operators did not always line up with the OSM-roads a manual approach was deemed more reliable 

than an automatic process. In some cases, a road is included in OSM with multiple parallel lines to 

represent different lanes. Here the trips from the entire cross-section were collected (see Figure 15). 

For counting stations observing only one direction of traffic, the modelled trips for only that direction 

were used. 

 

Figure 15: Examples of matching bicycle counters with road segments. 

4.8) Verification 

4.8.1) Comparing Routes 
As routing took a lot of time it was performed over several days with pauses in between. Additionally, 

some routes needing to be replaced due to a lack of roads for bicycles or a disconnected road network. 

To ensure that no routes were missing or included twice, the completed routes after chapter 4.5 were 

compared against the planned routes from chapter 4.2. Fortunately, no routes were found to be 

missing or included multiple times. 

4.8.2) Comparing Trips 
The number of trips for each road segment is the main result of the model. It is therefore important to 

ensure that all trips are accounted for during the entire modelling process. To verify this, the number 

of trips before and after modelling was compared in total and for all traffic zones, for both 2017 and 

2050. The OD-matrix after the removal of pairs with too few trips (chapter 4.1) was chosen as the 

baseline, as it is very early in the model and the number of trips does not change much afterwards. It 

was compared to the number of trips starting at the different route start and end points (chapter 4.6). 

Ideally the number of trips on road segments would have been used, as it is the main result. This was 

not possible, as routes traverse multiple segments, which would have resulted in all trips being counted 

multiple times. 
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To determine the total number of trips at the beginning of the model, the trips across all OD-pairs were 

summed up. The number of trips at the end of the model consists of multiple parts: The number of 

trips originating from each route start point were summed up and combined with the number of trips 

removed due to being within a traffic zone with only one route start and end point. As shown in Table 

14, the number of trips before and after the model has remained the same. 

Table 14: Comparing the total number of trips at the beginning and end of the model. 

  2017 2050 

Beginning of the model Trips after ch. 4.1 2767967.379 4936894.222 

End of the model 

Trips removed in ch. 4.2.3.2 3308.245 4726.007 

Trips after ch. 4.6 2764659.134 4932168.215 

Total 2767967.379 4936894.222 

Difference  0 0 

 

Next, the number of trips starting in each individual traffic zone before and after routing was 

compared. For the baseline, this was again computed using the OD-matrix, but this time summed for 

each traffic zone instead of across all traffic zones. To collect the trips after routing, each traffic zone 

was assigned the route start points (collected in chapter 4.6) which were inside its borders. The 

number or trips originating in a traffic zone was then calculated as the sum of all trips starting at points 

assigned to that traffic zone. This method has the disadvantage that the location on the road network 

where the path starts (and for which the number of trips was being collected) may not be in the same 

traffic zone as the hectare raster point the trips were assigned to in chapter 4.2. The number of trips 

before and after routing can therefore be different. Even so, the number of trips before and after 

routing is similar for most traffic zones, as shown in Figure 16. The results are very similar for both 

2017 and 2050. As expected, the number of trips before and after routing is slightly different for most 

traffic zones, but overall following the ideal 1:1 relationship. The linear regression and R-squared also 

confirm the result. The traffic zones with zero trips after routing are those in Zermatt and other traffic 

zones where all route start points on the road network were outside the traffic zone. 

 

Figure 16: Plot with the number of trips starting in each traffic zone before and after routing, for 2017 
and 2050.  
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5) Results 

5.1) Exploratory Analysis 

 

Figure 17: Modelled bicycle traffic for Switzerland in 2017. 
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Figure 18: Modelled bicycle traffic for Switzerland in 2050. 

 

Figure 19: Difference [%] in modelled AAWT from 2017 to 2050 across all of Switzerland. 
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Figure 17: Modelled bicycle traffic for Switzerland in 2017. shows the results of the bicycle traffic 

assignment model BTAM for all of Switzerland in 2017. Bicycle traffic is higher in more populated areas. 

The difference between the alps and the Swiss plateau is especially strong. While bicycle traffic covers 

a dense network with relatively high traffic throughout in the plateau, in the alps bicycles are only used 

in the valleys. The Jura mountains are also identifiable, however the difference to the plateau is only 

marked by a slight decrease in traffic. Cities and their agglomerations are also easily identifiable due 

to their much higher bicycle traffic. Especially Geneva, Basel and Zurich appear to have very high annual 

average weekday traffic AAWT, but smaller cities like Chur or Yverdon do also stand out against the 

lower traffic in the surrounding area. While traffic in the alps is confined to the valleys and separated 

by mountain ranges, some mountain passes are modelled to have a significant amount of traffic. This 

is especially the case for the Grimselpass with over 30 cyclists a day in 2017, even though it reaches an 

elevation of 2165 m above sea level (myswitzerland, n.d.). 

The bicycle dispersion map for 2050 (see Figure 18) looks very similar to that of 2017, with slightly 

higher traffic but no changes in large scale patterns visible. Figure 19 shows how the modelled AAWT 

has changed from 2017 to 2050. In most of Switzerland a strong increase in bicycle traffic can be seen. 

This increase is not limited to bigger cities where bicycle traffic is already strong in 2017, but it also 

extends to some of the more rural areas, especially in the Swiss plateau. Decreases in bicycle traffic 

are also visible, but they are mostly confined to very rural areas. In the alps many areas at the end of 

valleys are modelled to experience a decrease in cyclists. Additionally, some areas in the Jura 

mountains and the border region of the cantons of Bern and Lucerne are affected. 

 

Figure 20: Modelled bicycle traffic for 2017 in northeastern Switzerland. 
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Figure 21: Change [%] in bicycle traffic in northeastern Switzerland between 2017 and 2050. 

A closer look at northeastern Switzerland in 2017 (Figure 20), reveals a network of cities connected by 

roads. Cities are visible as areas with very high bicycle traffic. In bigger cities a network of major roads 

with more traffic is visible, especially in Zurich and Winterthur, while in smaller cities only the centre 

has more cyclists. Between cities there is a network of major roads, carrying a relatively high volume 

of traffic. The density of this network varies across the area: in the northeast a very dense network is 

visible, while the network in the east of the canton of Zurich is much sparser. In the southeast the 

connectedness of these roads is reduced even more as they only follow the valleys. Between and 

around the major roads a fine network of roads with little traffic is visible. 

Looking at the change in bicycle traffic from 2017 to 2050 in northeastern Switzerland (Figure 21), the 

patterns found in the map for all of Switzerland (Figure 19) are confirmed. Bicycle traffic is expected to 

increase in most areas, with larger increases in urban areas. Rural areas also generally gain cyclists, but 

not everywhere. 



52 
 

 

Figure 22: Modelled bicycle traffic for the city of Zurich. 

Zurich is the largest city in Switzerland with a population of almost 400’000 in 2017 (Bundesamt für 

Landestopografie swisstopo, 2023a). It also belongs to the areas with the most modelled cyclists. 

Figure 22 shows that an increase until 2050 is nevertheless expected, with no roads in the city seeing 

a decrease in the number of cyclists. The largest counts are on major roads and on roads around the 

city centre, with over 5’600 daily cyclists. The area west of the Altstadt is expected to see a smaller 

increase in cyclists than the rest of the city, where a growth of over 90% is expected on almost all 

roads. A lack of cyclists, especially in 2017, can be seen along the south bank of the river Limmat (in 

the west of the city), which is part of a SwitzerlandMobility bicycle route (Bundesamt für 

Landestopografie swisstopo, 2024). Bicycle counter M_Zürich_11 is also located there and observed 

367 bicycles, whereas only two have been modelled. 
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Figure 23: Modelled bicycle traffic for the town of Wetzikon in the canton of Zurich. 

Even in the smaller town of Wetzikon, which had a population of almost 25’000 in 2017 (Bundesamt 

für Landestopografie swisstopo, 2023a), there are only few small roads with a decrease in traffic. These 

roads are very short and the decrease may be due to the random assignment of trips. In 2017 the road 

going southwest to northeast carries the most bicycle traffic, with almost 2’000 daily cyclists in some 

sections. By 2050 two other roads going perpendicular to that road carry a similar amount of traffic, 

which has increased to well over 2’000. This is due to the traffic increase being mostly along and near 

these roads, while the growth is smaller in the bulk of the town. In general, the increase in bicycle 

traffic is much lower than in the city of Zurich. 
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Figure 24: Modelled bicycle traffic for rural municipality of Fischingen in the canton of Thurgau. 

 

Figure 25: Modelled bicycle traffic for village of Mesocco in the canton of Grisons. 
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The rural areas of Fischingen in Figure 24 and Mesocco in Figure 25 show a different pattern than the 

urban areas shown before. Fischingen had a population of 2’600 in 2017 and is located in the Swiss 

plateau. Mesocco had a population of only 1’300 and is towards the end of a valley in the southern 

alps (Bundesamt für Landestopografie swisstopo, 2023a). Overall, there are way fewer cyclists, the 

largest number of cyclists is in the town of Balterswil to the northwest of Fischingen. The villages within 

the municipalities of Fischingen and Mesocco have barely more cyclists than the roads between 

settlements: up to 90 AAWT in Fischingen and 20 in Mesocco (for 2017). The largest difference to the 

urban municipalities however is the change from 2017 to 2050. While the urban municipalities had 

almost no road segments with decreasing bicycle traffic, in these rural areas it is very common. In 

Fischingen the villages in the north of the municipality see a small increase in cyclists, but in the area 

to the south, where there are only a few hamlets, a decrease can be seen. In Mesocco the decrease is 

much stronger than in Fischingen and encompasses almost all roads in the municipality. The difference 

in traffic development between these two rural municipalities and to the urban municipalities is 

expected: Under the base future scenario, the population increase in Switzerland is modelled to be 

mainly in cities and their agglomerations. Rural areas on the other hand, especially in poorly accessible 

regions, will see small growth or even population loss (Bundesamt für Raumentwicklung ARE, 2022b). 

Another observation is in the 2050 BTAM for Mesocco: A winding road in the forest has traffic up to a 

certain point and no traffic afterwards, which indicates that there is a route start or end point there. 

Such unexpected route start or end points are also visible in other locations, where remote homes or 

mountain huts have access to the road network. 

 

Figure 26: Results of the BTAM (left) compared to the private car assignment performed during the 
NPVM (right) for Wetzikon. 
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Figure 26 and Figure 27 show a comparison of 

the BTAM with jittering and disaggregation to 

the car assignment model from the NPVM, 

which did not use these methods. Instead, 

the NPVM selected only one point in most 

traffic zones to assign traffic onto the road 

network, as was explained in chapter 2.1.1.5 

(Bundesamt für Raumentwicklung ARE, 

2020b). While the BTAM shows traffic on 

almost all roads within the settlement, the 

NPVM assignment model leaves many roads 

empty. This difference is striking, even when 

taking into account that bicycles are able to 

use some paths that cars cannot. In Wetzikon 

a network of roads in the settlement areas is 

used by NPVM, which includes all major 

roads. This contrasts with Mesocco, where 

traffic is only on the highway, and even the 

cantonal road (in orange) sees no traffic. The 

only exception is one road leading into the 

forest. The end of this road is likely where 

routes to and from this traffic zone start and 

end. Such traffic on smaller roads which 

suddenly ends is also visible in the NPVM 

model in Wetzikon, one in each traffic zone. 

However, they are shorter and always end 

within the settlement area. Traffic dead ends like these are also present in the BTAM, but mainly occur 

at the edge of the settlement or in dead end roads. Within the settlement it is not easily possible to 

detect points where routes start or end, unlike in the NPVM. In some rare cases, such as visible in the 

BTAM for 2050 in Mesocco (see Figure 25), traffic leads to remote houses and ends there, similar to 

the NPVM in Mesocco (see Figure 27).  

5.2) Validation 

5.2.1) Analysis of Route Lengths 
The length of calculated routes was returned by the routing engine Valhalla. It includes all segments 

of the routed path, but not the distance from the selected coordinates of the hectare raster to the 

nearest road segment. This means that only the distance covered by bicycle is included and not the 

access to the road system (Valhalla, 2023). 

5.2.1.1) Comparison to Shortest Path 

The Valhalla parameters influence how much longer than the shortest path the calculated routes are, 

by prioritising path attributes other than distance. Comparing the amount of detour to values from 

literature can give an idea of whether the parameter set is reasonable. The routing engine does provide 

an option to calculate the shortest path between two points. When enabled, only distance is used to 

evaluate route options and other parameters, such as use_hills, are ignored (Valhalla, 2023). Using the 

same urban OD pairs as for the evaluation of the use_hills and use_roads parameters (chapter 4.3.1.2), 

it was observed that around 75 % of routes were less than 10% shorter than the shortest possible path. 

Around 2.6 % of routes were more than 50 % longer than the shortest path. The result does not change 

much, when including traffic zones of all municipality types. Broach et al. (2012) observed that the 

Figure 27: Results of the BTAM (left) compared to the 
private car traffic assignment performed during the 

NPVM (right) for Mesocco, Grisons. 
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routes chosen by cyclists in Portland, USA were less than 10 % longer than the shortest path in half of 

the cases and 5 % of routes were more than 50 % longer (see Table 15), which is considerably lower 

than with the routing from Valhalla. The higher percentage of routes with small detours indicates that 

the routes are shorter than what was observed by Broach et al. One explanation could be that the 

Valhalla parameter set overvalues the route distance and undervalues other effects influencing a 

cyclist’s route choice. Differences in the road networks of Portland and Switzerland may also lead to 

differences in the amounts of detour. As most of the parameters, especially use_roads and use_hills, 

are already chosen in a way resulting in longer detours, changes in the parameter set are unlikely 

improve the model in this regard. 

Table 15: Route length compared to the shortest possible path. 

 Broach et al. (2012) Urban traffic zones All traffic zones 

<10 % longer than shortest path 50 % 75.4 % 74.5 % 

<50 % longer than shortest path 95 % 98.6 % 98.4 % 

 

5.2.1.2) Trip Length Distribution 

Figure 28 shows the distribution of route lengths across the trips in both 2017 and 2050. The 

cumulative distributions in the left plot for 2017 and 2050 are very similar. They have the same shape 

with many short routes below four kilometres and almost no routes above ten kilometres. The 

histogram on the right also shows a strong increase in the number of bicycle trips in the 2050 basic 

scenario compared to the 2017 model. The mean shows that trips in 2050 are slightly longer than those 

in 2017: It grows from 2.23 km to 2.6 km (see Table 16). In both years more than half of trips are shorter 

than two kilometres, the median trip length in 2017 was modelled to be 1.45 km and 1.59 km in 2050. 

The histogram shows that most trips are between 0.5 and 3 kilometres long with almost no trips longer 

than six kilometres. There are however few trips in both years which are zero kilometres long and some 

which are up to 294 km. Routes can have a length of zero kilometres even though they do not have 

the same start and end coordinates (see chapter 4.2.2.2), as the closest point on the road network may 

be the same. 

Table 16: Characteristics of the trip length distribution for the BTAM and MZMV 2015. Source for 
MZMV data: (Bundesamt für Statistik BFS, 2017b). 

 BTAM 2017 BTAM 2050 MZMV 2015 
(AAWT) 

MZMV 2015 
(AADT) 

Mean [km] 2.23 2.60 2.9 3.3 

Median [km] 1.45 1.59 -- -- 

Minimum [km] 0 0 -- -- 

Maximum [km] 294.31 294.65 -- -- 
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Figure 28: Distribution of trip lengths for the BTAM. 

To validate the results, the modelled distribution of trip lengths was compared to that observed by the 

Swiss micro census for mobility and traffic MZMV in 2015. The distribution of trip lengths was 

unfortunately only available for annual average daily traffic AADT, while the model was created using 

annual average weekday traffic AAWT. While weekday and weekly traffic are different, they are similar 

enough to draw a useful comparison. Figure 29 shows the percentage of trips in different distance 

classes. While the general shape of all curves is very similar, the MZMV shows fewer trips between one 

and three kilometres and more between five and ten. This difference is also present in the mean trip 

distance, which is 2.9 km for AAWT according to the MZMV and only 2.23 in the BAM (see Table 16). 

The MZMV mean trip distance for AADT with 3.3 km is larger than that for AAWT, indicating that the 

difference in the distributions is at least in part due to using a comparison of weekday with weekly 

traffic. 

 

Figure 29: Distribution of trip lengths in the BTAM compared to observations from MZMV 2015. Data 
from MZMV is for the entire week (AADT), data from the assignment model only on weekdays 

(AAWT) (MZMV data: (Bundesamt für Statistik BFS, 2017d)). 
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5.2.2) Comparison with Bicycle Counters 
In this chapter the bicycle traffic modelled with the BTAM on individual street segments will be 

compared to bicycle counts observed by counting stations across Switzerland, using the data set 

prepared in chapter 4.7. 

5.2.2.1) Linear Regression 

Figure 30 shows plots of observed AAWT against modelled AAWT at counting stations for the BTAM of 

this thesis. Ideally all points would fall onto the solid line which shows the 1:1-relationship, where 

observed and modelled values are equal. Upon a visual comparison of the different plots, urban 

counting stations, especially those with high counts, fall closest to this line and rural counting are very 

spread out. While urban stations have observed and modelled counts up to around 8’000 with the bulk 

around 1’000, the rural stations only reach 500 for the observed and 1’200 for the modelled values. 

Three counting stations have a modelled count of zero, meaning that no bicycles were modelled to use 

the road section for 2017, even though bicycles were observed there. 

 

 

Figure 30: Plot of observed AAWT against modelled AAWT at counting stations. The dotted line is a 
linear regression and the solid line shows the ideal 1:1-relationship. 

Top: all counting stations 
Bottom left: rural counting stations 

Bottom right: urban counting stations 



60 
 

The linear regression characteristics support the observations that the BTAM for urban stations has 

the best results: The intersection with the y-axis is similar for all three plots, ranging from 163 to 261. 

The slopes of the different plots are all positive and below one, indicating an underestimation of the 

modelled values. This is especially the case for rural counting stations, where the slope is only 0.11, 

which is almost horizontal. The urban counters have a significantly higher slope with 0.67 and across 

all counters it is even a bit better with 0.69. The coefficient of determination R-squared supports the 

analysis of the slope, also indicating that urban counters perform best, and the rural counters worst. 

The highest R-squared is for of all counters, which is however still quite low with 0.47. The value for 

urban counters is slightly lower with 0.4. The R-squared for rural counters is -6.2; a negative R-squared 

indicates that the regression line is a worse fit than a horizontal line through the mean of the modelled 

values (Chicco, Warrens, & Jurman, 2021), showing that the BTAM performed very poorly for rural 

counters. 

5.2.2.2) GEH-Value and SQV Evaluation 

The share of bicycle counting stations in the different GEH-classes for the BTAM is similar to the NPVM 

(see Table 17), with the NPVM having slightly better results. Around half the stations have a GEH-value 

smaller than 15, which is considered acceptable. Rural counters performed better, with almost 70 % 

being acceptable, higher than the 60 % of the NPVM. The GEH-value is however best suited for counts 

above 2’000 and overestimates the quality of lower values (Bundesamt für Raumentwicklung ARE, 

2020b). The urban bicycle counting stations having the highest counts and the rural ones the lowest 

counts may be the reason for this difference rather than the quality of the models. When looking at 

the Scalable Quality Value SQV (Table 18) only 35 % of counters are considered acceptable with a SQV 

above 0.8. Rural counters are again performing better than urban ones. The SQV was scaled with a 

scaling factor f of 1’000, as the mean of the observed counts is 1130 and the median is 636. With rural 

counting stations having counts of around 200, the same effect may apply as for the GEH-values where 

low counts get better results. 

Table 17: Distribution of GEH-values at bicycle counting stations in the BTAM and the NPVM 
(Bundesamt für Raumentwicklung ARE, 2020b). 

GEH 

Cumulative fraction [%] 

BTAM 
NPVM 

All counters Urban counters Rural counters 

<= 5 18 16.5 22.9 24 

5-10 38.7 38.3 40 43 

10-15 51.3 46.1 68.6 58 

15-20 66 60.9 82.9 68 

20-25 74 68.7 91.4 74 

>25 100 100 100 100 

 

Table 18: Distribution of SQV at bicycle counting stations in the BTAM. 

SQV (f=1000) 
Cumulative fraction [%] 

All counters Urban counters Rural counters 

>= 0.9 13.3 11.3 20 

0.85-0.9 21.3 19.1 28.6 

0.8-0.85 35.3 35.6 34.3 

0.75-0.8 40.6 38.2 48.6 

0.7-0.75 45.3 42.5 54.3 

< 0.7 100 100 100 
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Figure 31 and Figure 32 show the plots of observed against modelled AAWT again, coloured by GEH-

value and SQV. They confirm the observations made about the tables, with most rural counters being 

within the dotted line of acceptable GEH and SQV. It also confirms that the low counts from the rural 

stations are responsible for the better GEH and SQV, as the range of acceptable values is very wide for 

low counts. The worse results for SQV compared to GEH are explained by the narrower acceptable 

range of SQV. 

 

Figure 31: Plot of observed AAWT against modelled AAWT for bicycle counters. Coloured by GEH. The 
solid line shows the ideal 1:1-relationship, values inside the dotted line are considered acceptable. 

 

Figure 32: Plot of observed AAWT against modelled AAWT for bicycle counters. Coloured by SQV, with 
f=1000. The solid line shows the ideal 1:1-relationship, values inside the dotted line are considered 

acceptable. 

The results from the linear regression and GEH/SQV are contradictory, with former indicating better 

performance of the BTAM for urban stations and latter a better performance of rural stations. This is 

likely due to lower counts being given better evaluations by SQV and GEH-value (Friedrich, Pestel, 

Schiller, & Simon, 2019) and urban stations generally observing more traffic. To address this issue the 

SQV was recalculated using separate scaling factors f for urban and rural counting stations. With a 

mean of 190 and a median of 162 for the observed traffic, rural counting stations get a scaling factor 

of 100. Urban counting stations have a mean of 1416 and a median of 950 and therefore remain with 

a scaling factor of 1’000. Table 19 and Figure 33 show the new results: only 14.3 % of rural counters 

are now considered acceptable, compared to 34.3 % with a scaling factor of 1’000. The acceptable 
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range in the plot is now also much narrower, showing most points far outside it. These results with 

different scaling factors do match up with the observations from the linear regression: The BTAM 

performs relatively well for urban counters and badly for rural ones. 

Table 19: Distribution of SQV at bicycle counting stations in the BTAM, using different scaling factors 
for urban and rural counters. 

SQV 
Cumulative fraction [%] 

Urban counters (f = 1’000) Rural counters (f = 100) 

>= 0.9 11.3 2.9 

0.85-0.9 19.1 2.9 

0.8-0.85 35.6 14.3 

0.75-0.8 38.2 20 

0.7-0.75 42.5 22.9 

< 0.7 100 100 

 

 

Figure 33: Plot of observed AAWT against modelled AAWT for rural bicycle counters. Coloured by SQV, 
with f=100. The solid line shows the ideal 1:1-relationship, values inside the dotted line are considered 

acceptable. 
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6) Discussion 
The aim of this thesis was to create a bicycle traffic distribution model BTAM based on the bicycle 

distribution model from the Swiss national model for passenger traffic NPVM. By using the 

disaggregation and jittering approaches described by Lovelace et al. (2022), the model was supposed 

to distribute route start- and endpoints across traffic zones and allow for realistic traffic patterns even 

on a local level. In this chapter the research questions introduced in chapter 1.2 will be addressed and 

limitations of the approach will be discussed. 

6.1) Discussion of Research Questions 

6.1.1) Research Question 1: How can the jittering method developed by Lovelace et al. be 

applied to Switzerland? 
The jittering and disaggregation method was developed by Lovelace et al. (2022) in order to distribute 

the route start and end points in traffic assignment throughout a traffic zone. The purpose of this was 

to create more diffuse traffic, which is important for local traffic analysis and short routes such as from 

bicycles. The jittering approach achieves this goal by having different route start and end points for all 

routes. These locations can be chosen randomly from the entire traffic zone, only a certain subzone or 

weighted by a geographic variable. Additionally, disaggregation can be applied to create multiple 

routes for one origin-destination (OD) pair (Lovelace, Félix, & Carlino, 2022; Schnabel & Lohse, 2011). 

In this thesis both jittering and disaggregation were used, with route start and end points being 

distributed using a weighting method. Geographically referenced data on population and companies 

in Switzerland is available aggregated for raster cells with an area of one hectare (Bundesamt für 

Statistik BFS, 2018b; Bundesamt für Statistik BFS, 2018b). For the BTAM the centre points of these 

hectare raster cells were used as potential route start and end points for the jittering algorithm. They 

were selected randomly, weighted by the sum of population and full-time equivalents (see chapter 

4.2.2), a method also used for the NPVM (Bundesamt für Raumentwicklung ARE, 2020b). Using these 

weights not only assigns more routes to areas with more people, but also avoids route start and end 

points in areas without buildings. 

In the paper by Lovelace et al. (2022) it is suggested to sample these points in a way that reflects traffic 

demand, for example using the density of the transport network, city centres or workplaces. While the 

data used for the BTAM is well suited to reflect trips to and from work, it does not include other trip 

attractors such as shopping centres, public transport stations or leisure facilities. With 78 % of trips 

starting or ending at home and 28 % of trips being conducted for commute this methodology includes 

the most important route start and end points (Bundesamt für Raumentwicklung ARE, 2020c). While 

including additional data would have improved the model, collecting and combining it would have 

been challenging. Another issue with the selection of route start and end locations is that the distance 

between these points was not directly included. Especially for trips within a traffic zone or between 

neighbouring ones this can result in very short trips, which are not common according to the Swiss 

micro census for mobility and traffic MZMV (Bundesamt für Statistik BFS, 2017d). Other issues resulting 

from this omission are routes which start and end in the same location or involve too few segments to 

be included in the trip aggregation. The first issue occurs when one location on the road network is the 

closest road to two separate hectare raster points. When a route is assigned to start and end at such 

hectare raster points, it has a length of zero metres. The second issue is a result of removing the first 

and last segment of each route. This is necessary to allow for trip aggregation as explained in chapter 

4.6, but results in routes with fewer than three segments being completely ignored for aggregation. 

Preventing either of these issues would be complicated and likely not worth it for the few cases where 

the problem occurs. 
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When applying the disaggregation approach, the maximum number of trips for routes before they get 

disaggregated must be set. Due to the recent publication of these methods, the optimal value is not 

yet known or even well analysed. (Lovelace, Félix, & Carlino, 2022). For the BTAM this threshold was 

set differently for each traffic zone, using the 90th percentile of all OD-pairs involving this traffic zone. 

This was done to account for the wide range of values across the country with the aim of, on one hand, 

creating a diffuse network, even in rural areas with very few trips. And on the other hand, avoid 

creating extremely many routes in cities with many trips. The same idea was also applied to the 

removal of OD-pairs with very few trips, where the removal threshold was set separately for urban, 

intermediate and rural municipalities. Figure 24 and Figure 25 show the results of the BTAM for the 

rural municipalities of Fischingen and Mesocco. They show a diffuse traffic pattern, even though the 

traffic volume is small. While this shows that the idea of using separate thresholds for different areas 

works, a comparison to a model without this modification would show if it is necessary. 

Figure 26 and Figure 27 show a comparison of the BTAM of 2017 with the car assignment model from 

the NPVM. The BTAM used the jittering and disaggregation approach based on Lovelace et al. (2022), 

which created many route start and end points throughout the traffic zone, even in the rural 

municipality of Mesocco. This contrasts with the NPVM, which only used one connector point for these 

traffic zones. The result shows a much less diffuse traffic pattern with obvious route start and end 

points. This is not much of an issue for regional car traffic, which has a hierarchical road network and 

long distances. Bicycle traffic however has shorter routes without a clear road hierarchy, which means 

that all roads need to be included at any level of road traffic analysis (Schnabel & Lohse, 2011). In 

Mesocco (Figure 27) the connector point of the NPVM is even in the forest, creating a locally very 

unrealistic traffic pattern. While the BTAM also has some route start and end locations in seemingly 

unpopulated areas, the use of the hectare raster ensures that there always is someone working or 

living in the area. The use of the traffic zone centroid, as done for the NPVM, does not guarantee this. 

The use of the jittering and disaggregation method with the Swiss hectare raster worked well and 

resulted in a dense traffic pattern without obvious route start and end points. Weighting hectare raster 

cells by their population and full-time equivalents includes the two most important types of origins 

and destinations (home and workplace), but leaves out many others. 

6.1.2) Research Question 2: How can a nationwide bicycle traffic distribution model be 

created, which is usable on a local level? 
As discussed in the previous section, the jittering and disaggregation method from Lovelace et al. 

(2022) were used in this thesis, which helped to distribute the modelled bicycle traffic across all roads, 

even minor ones. The comparison to the NPVM, where this was not done, showed that an approach 

such as this is necessary to model traffic on minor roads and therefore necessary for use of the model 

at a scale smaller than regional. Nevertheless, there are issues with the distribution of traffic in the 

model, as was mentioned in chapter 5.1: Roads outside of settlements which do not directly connect 

any settlements are often modelled to have no traffic, as for example along the south bank of the 

Limmat in Figure 22. Especially leisure cyclist do often not follow a direct route and instead prefer 

attractive scenery (Bernardi, La Paix Puello, & Geurs, 2018), which cannot be modelled using the 

routing service used for this thesis (Valhalla, 2023). Especially in rural areas this can lead to bad 

modelling results, which is also supported by the linear regression performed in chapter 5.2.2.1. 

The linear regression for the BTAM (chapter 5.2.2.1, Figure 30) and NPVM (chapter 2.1.3, Figure 4) for 

bicycles show similar spreads when looking at counts below 4000, which is around the maximum for 

the NPVM. However, the BTAM shows a cluster of points following the 1:1-line, while the NPVM is 

spread out more evenly. Furthermore, the NPVM has a lot of counting stations with a modelled AAWT 

of zero, where the observed AAWT is up to 1500 cyclists a day. The BTAM does also have such values, 
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however there are only three of them and all have an observed AAWT of less than 400. Both are 

however much worse than the results for the NPVM model for car traffic (Bundesamt für 

Raumentwicklung ARE, 2020b). 

Table 20 summarises the characteristic values for the linear regressions for NPVM and BTAM from 

Figure 4 and Figure 30. While the intercept for rural BTAM counters is best among the bicycle models, 

this is only by a small amount and they perform by far the worst when considering slope and R-squared. 

The slope shows slightly better results for urban counters from BTAM (0.67) than for NPVM bicycle 

counters (0.541). A larger difference exists with R-squared, where the urban counters from BTAM 

(0.474) perform significantly better than NPVM (0.192). Even so, less than half of the variation is 

explained by the model. The NPVM model for car traffic was plotted with the axis of modelled and 

observed values switched, which changes the values for slope and intercept (Piñeiro, Perelman, 

Guerschman, & Paruelo, 2008). It is nevertheless possible to observe that it performs much better in 

all metrics than the four bicycle models (Bundesamt für Raumentwicklung ARE, 2020b). 

Table 20: Characteristic values for the linear regression of BTAM and NPVM (Bundesamt für 
Raumentwicklung ARE, 2020b). 

 BTAM NPVM 

 All counters Rural Urban Bicycle Car * 

Slope 0.69 0.108 0.67 0.541 1.00 

Intercept 178 163 261 383 -7.38 

R-squared 0.474 -6.243 0.4 0.192 1.00 

* The linear regression for the NPVM with car traffic was performed with observed values on the x-
axis instead of the y-axis. This means the values for slope and intercept are not directly comparable 
to the other regressions (Piñeiro, Perelman, Guerschman, & Paruelo, 2008). 

 

The analysis shows that the method presented in this thesis can be used to create a bicycle traffic 

assignment model which creates a dense enough network for local bicycle traffic analysis. 

Furthermore, the use of freely available data and software makes it possible to modify the model itself 

or its inputs. The accuracy of the BTAM however is not great. While the results in urban areas are 

acceptable, the model performed very poorly in rural areas. 

6.2) Methodology and Limitations 

6.2.1) Route Preparation 
In chapter 4.1, the first part of the methodology, origin-destination OD pairs from the NPVM bicycle 

distribution model were excluded for the BTAM. The removal was based on the number of trips 

between the traffic zones and their municipality type (urban, intermediate or rural). The aim was to 

remove many OD-pairs to reduce the number of routes needed to be calculated, while keeping as 

many trips as possible. The results are shown in Table 6 and Table 7, with 71 % of OD-pairs and only 

1.62 % of trips being removed for 2017 and similar results for 2050. While the aim of reducing the 

number of OD-pairs was achieved, the thresholds of annual average weekday traffic AAWT between 

traffic zones of different municipality types vary a lot: In 2017 the threshold for rural traffic zones was 

only 0.006, while it was 0.1 for urban ones. One the one hand, with only around two trips per year the 

threshold for rural traffic zones is very low and even multiple such routes using the same road will not 

result in a significant amount of traffic. But on the other hand, the threshold for urban traffic zones is 

quite high with one trip every two weeks. This could have been corrected for by using different 

percentages of trip removal for the different municipality types, however that would have increased 

the number of parameters to be set manually. Using a different method may have resulted in better 

thresholds, but for the purpose of this thesis the method nevertheless seems sufficient. 
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In the second step of the methodology (chapter 4.2.1) the number of routes between each pair of 

traffic zones was determined using the method of disaggregation introduced by Lovelace et al. (2022). 

Similarly to the removal of OD-pairs, disaggregation needs to be balanced with the number of routes 

requiring calculation. This does again require the use of a manually determined parameter, in this case 

the 90th percentile of routes from a traffic zone was used as a maximum number of trips for each route, 

with a ceiling of ten trips per route. While a few values were tested for these parameters, no rigorous 

analysis was performed. The lack of obvious route start and end points in Figure 26 does however 

suggest that the choice of parameters was sufficiently good. 

The jittering approach (chapter 4.2.2) was successfully used to distribute route start and end points 

throughout the traffic zones. However, as discussed in chapters 5.1 and 6.1.1 the method resulted in 

some of these points being outside of settlement areas, creating a point where there is no traffic going 

any further. These traffic dead ends are not always realistic, especially when they are going towards 

mountain huts. This issue could potentially be reduced by not using hectare raster points with a sum 

of population and full-time equivalents below a certain value, however this would also impact small 

villages and hamlets. Both the distribution of traffic across all roads (as opposed to only a few) and the 

general absence of obvious route start and end points indicate that the disaggregation and jittering 

methods worked and improved the resulting traffic assignment model. 

6.2.2) Road Network and Routing 
The road network from OpenStreetMap OSM was used for the BTAM as it is freely available and many 

routing engines are compatible with it. However, as it is volunteered geographic information with less 

quality control than traditional mapping services the quality of the road network is an issue (Goodchild, 

2007). As mentioned in chapter 3.1, many studies found that the quality of OSM maps is good enough 

in areas where the project had time to develop, such as Switzerland. Categorisation of bicycle 

infrastructure however was found to be inconsistent (Ferster, Fischer, Manaugh, Nelson, & Winters, 

2020). In chapter 4.4 some of these issues were addressed. While some problems were solved for the 

entire network, this was mostly done manually and only around bicycle counting stations. Errors in the 

OSM data are therefore still present in most of the network, including manually corrected areas due 

to a lack of local knowledge. A newer network, for example from early 2024, would likely be more 

reliable, as literature observed OSM to improve over time (Neis, Zielstra, & Zipf, 2012). This would 

however have introduced other challenges, as infrastructure changes after 2017 would change the 

results and would need to be reverted around bicycle counting stations. 

The Valhalla routing engine was used to create the paths between route start and end point. While it 

does allow for the adjustment of a lot of different parameters, some aspects influencing cyclists route 

choice are not available. A preference for scenic routes (Prato, Halldórsdóttir, & Nielsen, 2018) for 

example is not reflected in any of the routing parameters in Valhalla. This results in no cyclists being 

modelled for roads which are more scenic but also longer. The routing service openrouteservice shows 

that it is possible to implement, as they have done so to preference green and quite routes, however 

only for pedestrian traffic (gGmbH, 2023). A major advantage of the Valhalla routing engine is the 

ability to change parameters for each route request. This allowed for the calibration of the use_roads 

and use_hills parameters and would enable the use of multiple parameter sets for different origin-

destination groups with different route preferences. This was not done for this thesis as the calibration 

of different parameter sets would have required a lot of additional data and added a lot of complexity. 

6.2.3) Evaluation 
To validate the BTAM the modelled counts on road segments were compared to observed counts from 

automatic bicycle counting stations across Switzerland. The counting stations are however not 

distributed evenly (see Figure 10) and only 150 were available to cover all of Switzerland. With only 35 
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counters, rural areas are especially underrepresented. This misrepresentation can potentially have an 

impact on the evaluation of the model quality by skewing the results towards areas with more 

counters. To enable the use of more counting stations, some missing data was imputed. Additionally, 

the annual average weekday traffic AAWT for stations from the cantons of Ticino and Zurich had to be 

estimated using annual average daily traffic AADT. While these measures inherently introduce error, it 

is likely much smaller than those of the BTAM and therefore does not significantly influence the 

evaluation results. Another issue with counting stations and the model is that the model cannot 

represent all factors influencing cycling. Weather for example has a strong influence on cycling (Fyhri, 

Heinen, Fearnley, & Sundfør, 2017) but is not included in the NPVM (Bundesamt für Raumentwicklung 

ARE, 2020b) and therefore not in the BTAM. Finally, the use of AAWT instead of AADT results in a focus 

on commuter traffic, as leisure traffic is more prevalent on weekends (Stiftung SchweizMobil, 2018). 

This was not avoidable, as the NPVM was calculated using AAWT and not transformed to AADT for 

bicycles (Bundesamt für Raumentwicklung ARE, 2020b). This is likely to have improved the results of 

the BTAM, routing engines are better at predicting commuter traffic than leisure traffic, where scenic 

routes are often preferred (Prato, Halldórsdóttir, & Nielsen, 2018). 

The second evaluation approach used GEH-value and SQV, which are commonly used in traffic planning 

and recommended by the Swiss Association of Traffic Engineers and Traffic Experts SVI (Schweizerische 

Vereinigung der Verkehrsingenieure und Verkehrsexperten SVI, 2019). As mentioned before, the value 

range of 2’000 to 50’000 from the GEH-values does not match with the observed or modelled bicycle 

traffic (Bundesamt für Raumentwicklung ARE, 2020b). The SQV does solve this problem by using a 

scaling factor. The issue of smaller counts resulting in better evaluations by these measures does 

however persist (Friedrich, Pestel, Schiller, & Simon, 2019). For the evaluation of the BTAM with the 

same scaling factor for urban and rural stations, this resulted in better results for rural counting stations 

than for urban counting stations, as the latter have generally higher traffic volumes. This result is 

contrary to the observations from plotting the data and using linear regression. Using different scaling 

factors for urban and rural stations gave results that matched up with the linear regression. There are 

however urban counting stations with traffic volumes as low as some of the rural ones. These are still 

benefitting from the high scaling factor and being evaluated too optimistically. 
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7) Conclusion 
The aim of this thesis was to create a bicycle traffic assignment model with a high network density. To 

map the trips onto the road network, the bicycle distribution from the Swiss national model for 

passenger traffic NPVM for 2017 and 2050 was used in combination with the road network from 

OpenStreetMap OSM and the routing engine Valhalla. The start and end points of the routes were 

determined using the disaggregation and jittering approach from Lovelace et al. (2022), weighted by 

the population and full-time equivalents of the area. The result was a map with the estimated bicycle 

traffic on road segments in all of Switzerland for both 2017 and 2050. The main goal was achieved, as 

the model resulted in a traffic pattern utilizing almost all roads within settlements. 

A comparison of the model with observations from 150 bicycle counting stations across Switzerland 

was performed to assess the quality of the model. This analysis consisted of both a linear regression 

and the calculation of GEH-values and SQV. The traffic volumes modelled in urban areas matched up 

with the observations to an acceptable degree. In rural areas however, the model performed badly. 

The thesis provides a methodology to create traffic assignment models for bicycles that utilise the 

entire road network, instead of focussing on major roads only like the NPVM bicycle traffic assignment 

model did. Additionally, only freely available software and data were used and it is possible to modify 

the road network. These characteristics make the model useful in spatial and traffic planning for 

bicycles and enable the modelling of possible infrastructure changes. 

7.1) Future Work 
Multiple different options for future work based on this thesis exist: 

Firstly, the model could be improved upon. Using a routing engine that can model routes preferred by 

leisure cyclists may improve the model outside of settlements. This could be combined with the use of 

different routing parameter sets to model route choices of different types of cyclists. To reduce the 

time the model requires to run, the thresholds used during jittering and disaggregation could be 

optimized. 

Secondly, the model could be redone when the next iteration of the NPVM becomes available. This 

would allow the use of a newer and improved OSM road network. As the number of bicycle counting 

stations has increased over the past years, the analysis would also benefit from such work. 

Thirdly, the idea of the methodology could be applied to other countries. However, given the data 

requirements this may require extensive modifications. 

And finally, the model could be applied and compared to other tools available for bicycle traffic 

planning. 
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Appendix 

1) Solving the SQV-Equation for Modelled Counts 
Process of solving the SQV-equation (equation ( 6 ), (Friedrich, Pestel, Schiller, & Simon, 2019)) for 

modelled counts m. The transformation was aided and verified using the WolframAlpha answer 

engine (Wolfram, n.d.). 

 
𝑆𝑄𝑉 =

1

1 + √
(𝑚 − 𝑐)2

𝑓 ∗ 𝑐

 
( 6 ) 

take the reciprocal and reverse the equality: 

1 + √
(𝑚 − 𝑐)2

𝑓 ∗ 𝑐
=  

1

𝑆𝑄𝑉
  

subtract 1: 

√
(𝑚 − 𝑐)2

𝑓 ∗ 𝑐
=  

1 − 𝑆𝑄𝑉

𝑆𝑄𝑉
 

raise to the power of 2: 

(𝑚 − 𝑐)2

𝑓 ∗ 𝑐
=  

(1 − 𝑆𝑄𝑉)²

𝑆𝑄𝑉2
 

multiply by f*c: 

(𝑚 − 𝑐)2 =  
𝑓 ∗ 𝑐 ∗ (1 − 𝑆𝑄𝑉)²

𝑆𝑄𝑉2
 

take the square root: 

𝑚 − 𝑐 = ± √
𝑓 ∗ 𝑐 ∗ (1 − 𝑆𝑄𝑉)²

𝑆𝑄𝑉2
 

add c: 

 

𝑚 = 𝑐 ± √
𝑓 ∗ 𝑐 ∗ (1 − 𝑆𝑄𝑉)²

𝑆𝑄𝑉2
 ( 10 ) 
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2) Software Used 
Geographical operations and visualisations were performed using the graphical modeller in QGIS 

Firenze version 3.28.15 (QGIS, 2024). Python version 3.11.5 (Python Software Foundation, 2023) was 

used with the development environment Spyder version 5.4.3 (IDE, 2023). Within Python many 

external packages were used: 

• Matplotlib, version 3.7.2 (The Matplotlib development team, 2023) 

• Numpy, version 1.24.3 (NumPy team, 2023) 

• PyOsmium, version 3.7.0 (Osmcode, 2023) 

• Pandas, version 2.0.3 (NumFOCUS, 2023) 

• Polyline, version 2.0.2 (Jansen & Custódio, 2024) 

• Pyproj, version 3.6.1 (Whitaker, 2023) 

• Requests, version 2.31.0 (Reitz, 2023) 

• Scipy, version 1.11.1 (SciPy, 2023) 

• Sklearn, version 1.5.0 (scikit-learn, 2024) 
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3) Classification of OSM-Ways into Bicycle Friendly, Neutral and Unfriendly 
Bicycle friendly road (bicycle way separated from motorised traffic or on a living street) 

• highway=cycleway 

• highway=footway 

• highway=living_street 

• highway=path 

• highway=pedestrian 

• highway=steps 

• highway=track 

• Bicycle track (separated from motorised traffic) 

o highway=* + cycleway=designated 

o highway=* + cycleway=segregated 

o highway=* + cycleway=track 

o highway=* + cycleway=opposite_track 

o highway=* + cycleway=track;opposite_track 

Bicycle neutral road (bicycle lane or low to medium traffic volume) 

• highway=residential 

• highway=road 

• highway=service 

• highway=unclassified 

• Bicycle lane (not separated from motorised traffic) 

• highway=* + cycleway=* (except no, none) 

Bicycle unfriendly road (high traffic volume) 

• highway=primary 

• highway=primary_link 

• highway=secondary 

• highway=secondary_link 

• highway=tertiary 

• highway=tertiary_link 

• highway=trunk 

• highway=trunk_link 
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4) List of Sources of Counting Stations 

name ID 
data 
frequency 

counting 
stations 

counting 
stations 
included 

urban 
stations 
included 

rural 
stations 
included 

Canton Basel Landschaft C_BL monthly 5 4 4 0 
Canton Basel Stadt C_BS subdaily 25 12 12 0 
Canton Geneva C_GE subdaily 5 4 4 0 
Canton Sankt Gallen C_SG yearly 14 13 7 6 
Canton Schaffhausen C_SH yearly 3 3 1 2 
Canton Ticino C_TI monthly 7 7 3 4 
Canton Zürich C_ZH yearly 10 10 1 9 
Municipality Bern M_Bern yearly 14 14 14 0 
Municipality Biel M_Biel yearly 10 10 10 0 
Municipality Köniz M_Köniz yearly 4 4 4 0 
Municipality Kriens M_Kriens daily 4 3 3 0 
Municipality Luzern M_Luzern monthly 12 12 12 0 
Municipality Sankt Gallen M_StGallen subdaily 14 14 13 1 
Municipality Wil M_Wil daily 3 3 3 0 
Municipality Winterthur M_Winterthur daily 1 1 1 0 
Municipality Zurich M_Zürich subdaily 21 21 21 0 
SwitzerlandMobility SM yearly 43 15 2 13 
Total   195 150 115 35 
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5) List of all Bicycle Counting Stations 

data source 
station ID (from 
source) station ID east north 

direction 
observed 

days 
imputed 

months 
imputed 

classifi-
cation 

included 
in 
analysis 

reason for 
exclusion 

AAWT 
observed 

AAWT 
modelled 

Canton Basel 
Landschaft 

650 C_BL_01 2610120 1265244 both 0 2 urban yes  1737 2500 

Canton Basel 
Landschaft 

1050 C_BL_02 2612382 1263376 both 0 0 urban yes  1087 1359 

Canton Basel 
Landschaft 

2150 C_BL_03 2621405 1261213 both 0 0 urban yes  224 186 

Canton Basel 
Landschaft 

2750 C_BL_04 2617843 1263399 both 0 4 urban yes  837 2007 

Canton Basel 
Landschaft 

2751 C_BL_05 2619689 1264675 both 0 0 urban no 
too close to 
border 

333  

Canton Basel 
Stadt 

350 C_BS_01 2610808 1268902 both 0 0 urban no 
too close to 
border 

5267  

Canton Basel 
Stadt 

352 C_BS_02 2611223 1268324 west 0 0 urban yes  3576 2100 

Canton Basel 
Stadt 

354 C_BS_03 2611960 1267510 both 0 0 urban yes  8524 7148 

Canton Basel 
Stadt 

403 C_BS_04 2611151 1266828 both 0 0 urban yes  2899 1927 

Canton Basel 
Stadt 

659 C_BS_05 2609684 1269581 both 0 0 urban no 
too close to 
border 

316  

Canton Basel 
Stadt 

660 C_BS_06 2609310 1269351 both 0 0 urban no 
too close to 
border 

112  

Canton Basel 
Stadt 

901 C_BS_07 2612066 1265994 both 0 0 urban yes  3272 3216 

Canton Basel 
Stadt 

902 C_BS_08 2610867 1266582 both 0 0 urban yes  7004 3950 

Canton Basel 
Stadt 

903 C_BS_09 2614016 1269097 both 0 0 rural no 
too close to 
border 

2102  

Canton Basel 
Stadt 

904 C_BS_10 2611817 1268208 both 0 0 urban yes  1543 3931 

Canton Basel 
Stadt 

905 C_BS_11 2610922 1267185 both 0 0 urban yes  2154 2433 

Canton Basel 
Stadt 

906 C_BS_12 2609956 1267796 both 0 0 urban no 
too close to 
border 

2181  
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days 
imputed 

months 
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cation 
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in 
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reason for 
exclusion 

AAWT 
observed 

AAWT 
modelled 

Canton Basel 
Stadt 

907 C_BS_13 2609443 1267936 both 0 0 urban no 
too close to 
border 

459  

Canton Basel 
Stadt 

908 C_BS_14 2614063 1267937 both 0 0 urban no 
too close to 
border 

1864  

Canton Basel 
Stadt 

909 C_BS_15 2609535 1266556 both 0 0 urban yes  1378 1602 

Canton Basel 
Stadt 

910 C_BS_16 2609688 1267215 both 0 0 urban yes  1729 716 

Canton Basel 
Stadt 

911 C_BS_17 2613448 1267413 both 0 0 urban yes  2058 896 

Canton Basel 
Stadt 

912 C_BS_18 2610056 1269573 both 0 0 urban no 
too close to 
border 

949  

Canton Basel 
Stadt 

913 C_BS_19 2609117 1268773 both 0 0 urban no 
not enough 
valid data 

  

Canton Basel 
Stadt 

914 C_BS_20 2611638 1270570 both 0 0 urban no 
too close to 
border 

1039  

Canton Basel 
Stadt 

916 C_BS_21 2611743 1269878 both 74 0 urban no 
too close to 
border 

470  

Canton Basel 
Stadt 

917 C_BS_22 2613267 1267433 south 0 0 urban yes  579 1639 

Canton Basel 
Stadt 

918 C_BS_23 2610864 1269466 both 0 0 urban no 
not enough 
valid data 

  

Canton Basel 
Stadt 

919 C_BS_24 2612483 1267172 both 22 0 urban yes  1315 1572 

Canton Basel 
Stadt 

920 C_BS_25 2612113 1266089 both 0 0 urban no 
not enough 
valid data 

  

Canton 
Geneva 

9000 Aire (Furet) C_GE_01 2498309 1118116 both 89 0 urban yes  1404 3677 

Canton 
Geneva 

9001 Ansermet 
Totem 

C_GE_02 2499722 1116630 both 1 0 urban yes  1674 1705 

Canton 
Geneva 

9002 Acacias C_GE_03 2499615 1116522 both 0 0 urban yes  3183 5603 

Canton 
Geneva 

9003 Florissant C_GE_04 2502505 1115453 both 0 0 urban no 
too close to 
border 

662  

Canton 
Geneva 

9004 Pont Butin C_GE_05 2497498 1117633 both 0 0 urban yes  1629 2187 
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station ID (from 
source) station ID east north 

direction 
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days 
imputed 

months 
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classifi-
cation 
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in 
analysis 

reason for 
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AAWT 
observed 

AAWT 
modelled 

Canton Sankt 
Gallen 

125 C_SG_01 2730171 1243238 both 0 0 rural yes  19 35 

Canton Sankt 
Gallen 

200 C_SG_02 2754695 1225947 both 0 0 urban no 
too close to 
border 

311  

Canton Sankt 
Gallen 

202 C_SG_03 2753418 1261689 both 0 0 urban yes  598 265 

Canton Sankt 
Gallen 

203 C_SG_04 2737106 1252725 both 0 0 rural yes  345 4 

Canton Sankt 
Gallen 

204 C_SG_05 2722963 1258463 both 0 0 rural yes  191 353 

Canton Sankt 
Gallen 

205 C_SG_06 2704119 1231233 both 0 0 urban yes  423 766 

Canton Sankt 
Gallen 

206 C_SG_07 2738218 1219832 both 0 0 rural yes  114 41 

Canton Sankt 
Gallen 

208 C_SG_08 2704608 1231879 both 0 0 urban yes  948 1922 

Canton Sankt 
Gallen 

209 C_SG_09 2721323 1257557 both 0 0 urban yes  102 390 

Canton Sankt 
Gallen 

210 C_SG_10 2752057 1212570 both 0 0 urban yes  250 129 

Canton Sankt 
Gallen 

211 C_SG_11 2756034 1260683 both 0 0 urban yes  537 443 

Canton Sankt 
Gallen 

212 C_SG_12 2747650 1258126 both 0 0 urban yes  497 325 

Canton Sankt 
Gallen 

213 C_SG_13 2734257 1252205 both 0 0 rural yes  203 172 

Canton Sankt 
Gallen 

214 C_SG_14 2722915 1221880 both 0 0 rural yes  149 30 

Canton 
Schaffhausen 

9983 C_SH_01 2687617 1283214 both 0 0 rural yes  123 416 

Canton 
Schaffhausen 

9984 C_SH_02 2688878 1282973 both 0 0 urban yes  159 332 

Canton 
Schaffhausen 

9985 C_SH_03 2687646 1283120 both 0 0 rural yes  144 80 

Canton Ticino 5101 C_TI_01 2723833 1119882 both 0 1 urban yes  244 894 

Canton Ticino 5102 C_TI_02 2720901 1116206 both 0 1 urban yes  315 774 
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AAWT 
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AAWT 
modelled 

Canton Ticino 5103 C_TI_03 2720122 1114864 both 0 0 rural yes  396 867 

Canton Ticino 5301 C_TI_04 2714698 1136002 both 0 0 rural yes  162 52 

Canton Ticino 5401 C_TI_05 2704037 1113292 both 0 2 urban yes  1480 1559 

Canton Ticino 5402 C_TI_06 2701150 1115278 both 0 0 rural yes  285 339 

Canton Ticino 5403 C_TI_07 2700967 1119297 both 0 3 rural yes  131 247 

Canton Zürich 217 C_ZH_01 2676485 1262503 both 0 0 rural yes  37 51 

Canton Zürich 316 C_ZH_02 2693307 1246934 both 0 0 urban yes  620 177 

Canton Zürich 317 C_ZH_03 2690493 1254553 both 0 0 rural yes  89 230 

Canton Zürich 416 C_ZH_04 2694535 1247785 both 0 0 rural yes  292 556 

Canton Zürich 516 C_ZH_05 2695665 1257225 south 0 0 rural yes  158 166 

Canton Zürich 517 C_ZH_06 2694001 1252331 both 0 0 rural yes  70 235 

Canton Zürich 616 C_ZH_07 2678790 1254016 both 0 0 rural yes  294 1215 

Canton Zürich 617 C_ZH_08 2695707 1265826 both 0 0 rural yes  252 619 

Canton Zürich 716 C_ZH_09 2678747 1254056 both 0 0 rural yes  195 1224 

Canton Zürich 817 C_ZH_10 2703727 1240830 both 0 0 rural yes  198 431 

Municipality 
Bern 

501 M_Bern_01 2600042 1200472 both 0 0 urban yes  1016 679 

Municipality 
Bern 

502 M_Bern_02 2598033 1199013 both 0 0 urban yes  332 75 

Municipality 
Bern 

503 M_Bern_03 2599004 1198406 both 0 0 urban yes  1095 1134 

Municipality 
Bern 

504 M_Bern_04 2600876 1200326 both 0 0 urban yes  4103 3655 

Municipality 
Bern 

505 M_Bern_05 2599868 1199351 both 0 0 urban yes  4734 8471 

Municipality 
Bern 

506 M_Bern_06 2598575 1199273 east 0 0 urban yes  904 1006 

Municipality 
Bern 

507 M_Bern_07 2599802 1199939 both 0 0 urban yes  3281 3018 

Municipality 
Bern 

508 M_Bern_08 2600559 1198766 both 0 0 urban yes  2201 2182 
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AAWT 
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AAWT 
modelled 

Municipality 
Bern 

509 M_Bern_09 2598037 1199904 both 0 0 urban yes  1446 1417 

Municipality 
Bern 

510 M_Bern_10 2601629 1198658 both 0 0 urban yes  1489 1257 

Municipality 
Bern 

511 M_Bern_11 2600349 1200194 north 0 0 urban yes  2761 1356 

Municipality 
Bern 

512 M_Bern_12 2600782 1199268 both 0 0 urban yes  3865 4510 

Municipality 
Bern 

513 M_Bern_13 2599389 1199603 both 0 0 urban yes  2033 1127 

Municipality 
Bern 

514 M_Bern_14 2599228 1199867 both 0 0 urban yes  1642 1758 

Municipality 
Biel 

V1  M_Biel_01 2584734 1220676 both 0 0 urban yes  450 289 

Municipality 
Biel 

V2  M_Biel_02 2586210 1221472 both 0 0 urban yes  890 126 

Municipality 
Biel 

V3  M_Biel_03 2584951 1220252 both 0 0 urban yes  860 1436 

Municipality 
Biel 

V4  M_Biel_04 2585394 1220046 both 0 0 urban yes  1880 2878 

Municipality 
Biel 

V5  M_Biel_05 2585685 1220313 both 0 0 urban yes  760 1869 

Municipality 
Biel 

V6  M_Biel_06 2586562 1220847 both 0 0 urban yes  660 1181 

Municipality 
Biel 

V7  M_Biel_07 2587482 1221647 both 0 0 urban yes  400 453 

Municipality 
Biel 

V8  M_Biel_08 2586099 1221782 both 0 0 urban yes  670 2918 

Municipality 
Biel 

V9  M_Biel_09 2585362 1220779 both 0 0 urban yes  980 1890 

Municipality 
Biel 

V10 M_Biel_10 2586325 1221387 both 0 0 urban yes  1280 1694 

Municipality 
Köniz 

K5-VV M_Köniz_01 2598015 1196845 both 0 0 urban yes  590 273 

Municipality 
Köniz 

K6-VV M_Köniz_02 2598041 1196689 both 0 0 urban yes  950 1234 
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AAWT 
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Municipality 
Köniz 

L2-VV M_Köniz_03 2598528 1197576 both 0 0 urban yes  930 424 

Municipality 
Köniz 

L3-VV M_Köniz_04 2598285 1197805 both 0 0 urban yes  940 369 

Municipality 
Kriens 

Horwerstrasse M_Kriens_01 2664231 1209343 both 6 0 urban yes  329 349 

Municipality 
Kriens 

Langmatt M_Kriens_02 2662416 1209657 both 0 0 urban yes  352 428 

Municipality 
Kriens 

Nidfeldstrasse M_Kriens_03 2665284 1209048 both 0 0 urban no 
not enough 
valid data 

  

Municipality 
Kriens 

Schlundstrasse M_Kriens_04 2664559 1208934 both 1 0 urban yes  876 649 

Municipality 
Luzern 

603 M_Luzern_01 2665630 1210518 both 0 0 urban yes  2178 2488 

Municipality 
Luzern 

604 M_Luzern_02 2666273 1211842 both 0 0 urban yes  4495 8154 

Municipality 
Luzern 

605 M_Luzern_03 2666180 1210824 both 0 3 urban yes  1977 2212 

Municipality 
Luzern 

606 M_Luzern_04 2666494 1211286 both 0 0 urban yes  1876 1602 

Municipality 
Luzern 

607 M_Luzern_05 2666945 1211977 both 0 0 urban yes  1283 1944 

Municipality 
Luzern 

608 M_Luzern_06 2666221 1212155 both 0 4 urban yes  2077 4668 

Municipality 
Luzern 

610 M_Luzern_07 2665037 1211726 both 0 0 urban yes  759 431 

Municipality 
Luzern 

611 M_Luzern_08 2665974 1210619 both 0 0 urban yes  1589 1829 

Municipality 
Luzern 

612 M_Luzern_09 2666116 1210676 both 0 0 urban yes  2281 2016 

Municipality 
Luzern 

613 M_Luzern_10 2665176 1211654 both 0 0 urban yes  810 131 

Municipality 
Luzern 

614 M_Luzern_11 2665885 1210304 both 0 0 urban yes  1410 1686 

Municipality 
Luzern 

615 M_Luzern_12 2665378 1209981 both 0 0 urban yes  1104 3162 
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AAWT 
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AAWT 
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Municipality 
Sankt Gallen 

Burgstrasse 12 M_StGallen_01 2745336 1253891 both 10 0 urban yes  283 406 

Municipality 
Sankt Gallen 

Lindenstrasse 134 M_StGallen_02 2748073 1255854 both 8 0 urban yes  229 1564 

Municipality 
Sankt Gallen 

Lindenstrasse 81 M_StGallen_03 2747554 1255462 both 0 0 urban yes  203 1321 

Municipality 
Sankt Gallen 

Linsebühlstrasse / 
Singenbergstrasse 

M_StGallen_04 2746938 1254665 both 0 0 urban yes  352 827 

Municipality 
Sankt Gallen 

Museumstrasse M_StGallen_05 2746437 1254745 both 0 0 urban yes  347 806 

Municipality 
Sankt Gallen 

Oberstrasse 149 M_StGallen_06 2744761 1253254 both 0 0 urban yes  609 2524 

Municipality 
Sankt Gallen 

Rorschacher Strasse 
61 / Singenberg 

M_StGallen_07 2746765 1254778 both 0 0 urban yes  561 4911 

Municipality 
Sankt Gallen 

Rosenbergstrasse 
Veloweg 

M_StGallen_08 2744901 1254044 both 0 0 urban yes  478 556 

Municipality 
Sankt Gallen 

Sitterviadukt A1 / 
Gaiserwaldweg 

M_StGallen_09 2743810 1254104 both 0 0 rural yes  135 161 

Municipality 
Sankt Gallen 

Splügenweg / Olma M_StGallen_10 2746835 1255406 both 0 0 urban yes  209 658 

Municipality 
Sankt Gallen 

St.Georgen / 
Mühlegg 

M_StGallen_11 2746390 1253897 both 0 0 urban yes  276 594 

Municipality 
Sankt Gallen 

St.Jakob-Strasse 84 
/ Olma 

M_StGallen_12 2746631 1255304 both 0 0 urban yes  387 1229 

Municipality 
Sankt Gallen 

Teufener Strasse 55 M_StGallen_13 2745565 1253682 both 0 0 urban yes  149 1777 

Municipality 
Sankt Gallen 

Vadianstrasse 8 M_StGallen_14 2745945 1254253 both 1 0 urban yes  931 1303 

Municipality 
Wil 

Haldenstrasse M_Wil_01 2721169 1258569 both 0 0 urban yes  526 164 

Municipality 
Wil 

Klosterweg M_Wil_02 2721673 1258548 both 5 0 urban yes  289 797 

Municipality 
Wil 

Wilenstrasse M_Wil_03 2720798 1257896 both 2 0 urban yes  529 615 

Municipality 
Winterthur 

Frohbergstrasse  M_Winterthur_01 2697038 1261505 both 85 0 urban yes  1073 405 
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Municipality 
Zurich 

5 M_Zürich_01 2682933 1248821 both 1 0 urban yes  967 1832 

Municipality 
Zurich 

6 M_Zürich_02 2682873 1245891 both 1 0 urban yes  1781 783 

Municipality 
Zurich 

7 M_Zürich_03 2681857 1251991 both 7 0 urban yes  652 2234 

Municipality 
Zurich 

8 M_Zürich_04 2683573 1248545 both 1 0 urban yes  1797 2475 

Municipality 
Zurich 

9 M_Zürich_05 2684578 1251967 both 32 0 urban yes  511 1867 

Municipality 
Zurich 

10 M_Zürich_06 2682375 1247055 both 0 0 urban yes  2083 3765 

Municipality 
Zurich 

12 M_Zürich_07 2681385 1247736 both 1 0 urban yes  1623 149 

Municipality 
Zurich 

13 M_Zürich_08 2682683 1250570 south 1 0 urban yes  977 1203 

Municipality 
Zurich 

15 M_Zürich_09 2683405 1251617 both 7 0 urban yes  321 705 

Municipality 
Zurich 

16 M_Zürich_10 2682647 1250364 both 25 0 urban yes  1242 1800 

Municipality 
Zurich 

52 M_Zürich_11 2678956 1250443 both 21 0 urban yes  367 2 

Municipality 
Zurich 

53 M_Zürich_12 2679028 1250674 both 4 0 urban yes  39 35 

Municipality 
Zurich 

54 M_Zürich_13 2684006 1246566 both 0 0 urban yes  2107 2373 

Municipality 
Zurich 

55+1997+2319+ 
722+2320+2637 

M_Zürich_14 2682278 1248325 both 0 0 urban yes  8140 7869 

Municipality 
Zurich 

56 M_Zürich_15 2679337 1249346 both 17 0 urban yes  519 382 

Municipality 
Zurich 

57 M_Zürich_16 2682946 1248225 both 0 0 urban yes  2251 2057 

Municipality 
Zurich 

59 M_Zürich_17 2682755 1247323 both 0 0 urban yes  815 1021 

Municipality 
Zurich 

60 M_Zürich_18 2682731 1247708 both 1 0 urban yes  974 3370 
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Municipality 
Zurich 

61+62 M_Zürich_19 2683447 1247063 both 0 0 urban yes  3387 3711 

Municipality 
Zurich 

732+1037 M_Zürich_20 2681319 1248665 both 0 0 urban yes  2999 895 

Municipality 
Zurich 

1692 M_Zürich_21 2682881 1246549 both 119 0 urban yes  377 0 

Switzerland 
Mobility 

BE-00001 SM_01 2594070 1221299 both 0 0 rural yes  375 33 

Switzerland 
Mobility 

BE-00002 SM_02 2609107 1190343 both 0 0 rural yes  464 80 

Switzerland 
Mobility 

BE-00003 SM_03 2647415 1176579 both 0 0 rural yes  92 12 

Switzerland 
Mobility 

BL-00006 SM_04 2610181 1265331 both 0 0 urban no duplicate 1711  

Switzerland 
Mobility 

BS-00354 SM_05 2611959 1267512 both 0 0 urban no duplicate 8524  

Switzerland 
Mobility 

BS-00901 SM_06 2611753 1266134 both 0 0 urban no duplicate 3272  

Switzerland 
Mobility 

BS-00905 SM_07 2610925 1267191 both 0 0 urban no duplicate 2154  

Switzerland 
Mobility 

BS-00914 SM_08 2611615 1270626 both 0 0 urban no duplicate 1039  

Switzerland 
Mobility 

FR-00001 SM_09 2572663 1153901 both 0 0 rural yes  31 14 

Switzerland 
Mobility 

GE-00010 SM_10 2502555 1115428 both 0 0 urban no duplicate 625  

Switzerland 
Mobility 

GR-00001 SM_11 2761027 1197607 both 0 0 rural yes  251 495 

Switzerland 
Mobility 

GR-00002 SM_12 2790693 1161708 both 0 0 rural yes  80 218 

Switzerland 
Mobility 

OW-00001 SM_13 2656207 1189683 both 0 0 rural yes  119 40 

Switzerland 
Mobility 

SG-00001 SM_14 2712898 1231630 both 0 0 rural yes  233 15 

Switzerland 
Mobility 

SG-00202 SM_15 2753420 1261679 both 0 0 urban no duplicate 598  
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Switzerland 
Mobility 

SG-00203 SM_16 2737109 1252726 both 0 0 rural no duplicate 345  

Switzerland 
Mobility 

SG-00205 SM_17 2704127 1231237 both 0 0 urban no duplicate 423  

Switzerland 
Mobility 

SG-00208 SM_18 2704626 1231873 both 0 0 urban no duplicate 948  

Switzerland 
Mobility 

SG-00210 SM_19 2752091 1212567 both 0 0 urban no duplicate 250  

Switzerland 
Mobility 

SG-00211 SM_20 2756015 1260687 both 0 0 urban no duplicate 537  

Switzerland 
Mobility 

SG-00213 SM_21 2734253 1252215 both 0 0 rural no duplicate 203  

Switzerland 
Mobility 

SG-00214 SM_22 2722931 1221876 both 0 0 rural no duplicate 149  

Switzerland 
Mobility 

SH-00001 SM_23 2704940 1281283 both 0 0 rural yes  416 161 

Switzerland 
Mobility 

SH-00002 SM_24 2687649 1283114 both 0 0 rural no duplicate 144  

Switzerland 
Mobility 

SO-00001 SM_25 2635175 1243033 both 0 0 rural yes  217 144 

Switzerland 
Mobility 

TG-00001 SM_26 2732784 1278451 both 0 0 urban yes  843 229 

Switzerland 
Mobility 

TI-00001 SM_27 2714697 1136011 both 0 0 rural no duplicate 161  

Switzerland 
Mobility 

TI-00002 SM_28 2720125 1114863 both 0 0 rural no duplicate 379  

Switzerland 
Mobility 

TI-00010 SM_29 2723831 1119883 both 0 0 urban no duplicate 244  

Switzerland 
Mobility 

TI-00012 SM_30 2704037 1113292 both 0 0 urban no duplicate 1603  

Switzerland 
Mobility 

TI-00013 SM_31 2701150 1115274 both 0 0 rural no duplicate 291  

Switzerland 
Mobility 

VD-00002 SM_32 2508898 1139845 both 0 0 rural yes  56 73 

Switzerland 
Mobility 

VS-00001 SM_33 2597565 1121281 both 0 0 rural yes  252 0 
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Switzerland 
Mobility 

ZH-00001 SM_34 2690433 1254712 both 0 0 urban yes  148 224 

Switzerland 
Mobility 

ZH-00316 SM_35 2693283 1246952 both 0 0 urban no duplicate 641  

Switzerland 
Mobility 

ZH-01001 SM_36 2681839 1251995 both 0 0 urban no duplicate 640  

Switzerland 
Mobility 

ZH-01003 SM_37 2682704 1250602 south 0 0 urban no duplicate 979  

Switzerland 
Mobility 

ZH-01004 SM_38 2683455 1247052 both 0 0 urban no duplicate 3160  

Switzerland 
Mobility 

ZH-01006 SM_39 2682922 1248823 both 0 0 urban no duplicate 968  

Switzerland 
Mobility 

ZH-01007 SM_40 2684003 1246566 both 0 0 urban no duplicate 2106  

Switzerland 
Mobility 

ZH-01008 SM_41 2682363 1247052 both 0 0 urban no duplicate 2079  

Switzerland 
Mobility 

ZH-01009 SM_42 2682946 1248226 both 0 0 urban no duplicate 2226  

Switzerland 
Mobility 

ZH-10502 SM_43 2684384 1236400 both 0 0 rural yes  92 0 
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