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Abstract

Information retrieval systems face significant challenges when interpreting toponyms

in unstructured text due to their inherent ambiguity and context dependency. Tra-

ditional methods often struggle with the linguistic complexity involved, making it

difficult to resolve these ambiguities effectively. While transformer models offer

advanced linguistic capabilities, they are computationally expensive, and machine

learning models, in general, often face difficulties in generalising across different do-

mains. This thesis addresses these challenges by exploring how transformer models

can be efficiently and effectively applied to toponym resolution and how their capa-

bilities transfer across domains. A new method is proposed that uses a bi-encoder

architecture within the SentenceTransformers framework to efficiently compare con-

textualised toponyms with potential location candidates from a gazetteer. This

approach reduces computational demands by encoding toponyms and candidates

separately, allowing for scalable similarity comparisons. The method is integrated

into an end-to-end geoparsing pipeline through the development of the Geoparser

Python library, which leverages spaCy for toponym recognition and provides func-

tionalities for customisation and adaptation to specific text corpora. Experiments

were conducted replicating a standardised evaluation framework to assess the per-

formance of the proposed method. The results demonstrate that Geoparser achieves

competitive performance compared to state-of-the-art systems, particularly excelling

in computational efficiency. Further experiments show that the transformer model’s

performance can be enhanced for different domains with minimal additional train-

ing data. This work highlights the potential of transformer models for efficient

and effective toponym resolution, offering promising directions for future research

in Geographic Information Retrieval.
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1 Introduction

Geographic information is embedded in a wide variety of text documents, from news

articles and posts on social media to historical documents. Finding and interpreting

this information in unstructured text offers valuable insights for understanding and

assessing the spatial relevance of documents for different information needs. Ge-

ographic Information Retrieval focuses on developing methods and techniques for

extracting and using geographic information in text, for example, to improve web

search engines (Purves et al., 2018). A key component of this process is geoparsing,

which involves identifying and interpreting location references, primarily in the form

of place names, often termed toponyms.

Toponyms are often ambiguous and can thus be used in different contexts to refer to

different locations. Accurate resolution, therefore, requires a good understanding of

the linguistic and geographical context in which they are used. However, traditional

approaches to toponym resolution are often limited in this respect, especially when

dealing with linguistically complex expressions (Gritta et al., 2018b). The advent

of transformers in natural language processing has opened up new possibilities for

addressing these challenges. Transformer models have stood out for their ability

to generate contextualised representations of words and entire texts that capture

complex syntactic and semantic structures (Devlin et al., 2019). This presents a

promising potential for addressing the ambiguity of toponyms and thus enhancing

the performance of toponym resolution systems.

Nonetheless, several key issues remain in employing transformers for toponym res-

olution. First, transformer models are often computationally expensive, limiting

their practical application for large text corpora, especially in resource-constrained

environments. Secondly, texts can vary in structure, theme, and geographical scope,

which can be a substantial limitation for the generalisability of machine learning-

based methods. Third, objective and reproducible evaluation of new techniques

is crucial to assess their performance compared to existing systems; however, the

use of different test datasets and metrics often makes it difficult to compare them

effectively.
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Chapter 1. Introduction

In view of this, the following research questions arise:

1. How can the linguistic capabilities of transformer models be used for toponym

resolution in an efficient and still effective way?

2. How does the ability to resolve toponyms transfer to different text domains,

and how can systems be adapted for this purpose with limited effort?

3. How can a new toponym resolution method be evaluated in a comparable

way to allow an objective assessment of its performance compared to other

systems?

This work seeks to explore these research questions. To this end, a new method for

toponym resolution was developed with the aim of using transformer models in a

computationally efficient way. This method was integrated into a complete end-to-

end geoparsing pipeline in the form of the newly developed Geoparser Python library,

which provides functionalities that enable users to adapt different pipeline compo-

nents to the specific requirements of different text corpora. Finally, the method was

evaluated by replicating the evaluation framework developed by Hu et al. (2023a)

to compare the performance with those of state-of-the-art systems.

The thesis is structured as follows: Chapter 2 first provides some theoretical back-

ground, after which Chapter 3 gives an overview of the current research on transformer-

based toponym resolution. Chapter 4 presents the proposed method and the new

Geoparser library, followed by a description of the experiments to evaluate the

method in Chapter 5. The results are presented in Chapter 6 and discussed in

Chapter 7. Finally, the conclusions are drawn in Chapter 8.
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2 Background

2.1 Geographic Information Retrieval

Vast amounts of information are freely and easily accessible online. Much of this

information comes in the form of unstructured texts, such as news articles, blog posts

or scientific publications. For information retrieval (IR) systems, content of this kind

presents a significant challenge. The lack of a schematic data format means that

unstructured texts cannot be searched and retrieved using deterministic criteria,

as is commonly done when working with structured databases (Manning et al.,

2008). Instead, information in unstructured texts is embedded in a stream of natural

language, making it difficult to find relevant content in a targeted manner. The

inherent variability and ambiguity of natural language further add to the complexity

of processing text for IR systems (Krovetz & Croft, 1992).

One of the many difficulties that arise when working with unstructured texts is deal-

ing with geographical information. In text documents, geographical references are

often described using toponyms and spatial language (e.g. ‘near Zurich’ ) (Leidner

& Lieberman, 2011). This presents a fundamental challenge for traditional IR sys-

tems that understand geographical references as concepts described by keywords or

semantic representations rather than real geographies (Larson, 1996). They lack the

ability to incorporate geographical requirements in information searches explicitly,

as is usually done with structured geodata in traditional geographic information

systems (Machado et al., 2011).

Geographic Information Retrieval (GIR) extends traditional IR to address this issue

(Larson, 1996; Jones & Purves, 2008). One of the objectives of GIR is to interpret

the geographical context in text documents and to transform it into a geographical

footprint (Cai, 2002). Representing the geographical context of documents in this

way allows geographical scopes to be considered when searching for information and

is the basis for several systems for spatial search of unstructured web content, such

as Web-a-Where (Amitay et al., 2004), SPIRIT (Purves et al., 2007) or Frankenplace

(Adams et al., 2015).
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Chapter 2. Background

Translating geographical contexts expressed as text into geometric footprints re-

quires mapping geographical references described in natural language to real ge-

ographies (Louwerse & Zwaan, 2009). In its simplest form, this could mean, for

example, assigning the coordinates (47.37, 8.55) to the toponym ‘Zurich’ in a text

describing the city of Zurich in Switzerland. Together with other referenced loca-

tions in the text, these coordinates can be used to estimate the geographical scope

of the document and create a footprint, for example, in the form of a bounding box

(Larson & Frontiera, 2004).

However, automatically inferring geographical scopes of text documents presents

several challenges. Jones & Purves (2008) describe the three main difficulties that

GIR systems face when interpreting geographical contexts in unstructured texts:

The first challenge lies in locating geographical references within the text, which

often appear as toponyms. This process involves not only identifying words poten-

tially representing toponyms but also confirming their actual use in a geographical

sense (Jones & Purves, 2008). Because words that look like toponyms may also

appear in text without conveying any geographical meaning, which is referred to as

geo/non-geo ambiguity (Amitay et al., 2004). For example, in German, the name of

the city of Zug in central Switzerland can also be used to refer to a train. Metonymy

is another example where toponyms are used for entities that are not locations (Lev-

eling & Hartrumpf, 2008). For example, depending on the context, ‘Zurich’ may

refer to a football club or even a global insurance company. Although an association

with the namesake location may exist in these cases, these references do not refer

to actual geographical locations but to organisations or companies. In this regard,

(Gritta et al., 2020) present a comprehensive taxonomy for toponyms, distinguishing

between literal toponyms, referring to actual physical locations, and associative to-

ponyms that are only associated with them. Whether or not toponyms in texts are

used to refer to actual geographical locations can often be inferred from syntactic

and semantic cues in the context. In the two sentences, ‘They are playing against

Zurich’ and ‘They are playing in Zurich’, for example, interpreting the prepositions

preceding the toponym can help in determining which sense of ‘Zurich’ is intended

in the given context.

The second difficulty is the mapping of geographical references to their corresponding

referents (Jones & Purves, 2008). Commonly, this is done by looking up toponyms

in gazetteers (Buscaldi, 2011). These are geographical dictionaries that map to-

ponyms to geographical locations, which can then be used to extract the geometries

of referenced locations (Goodchild & Hill, 2008). The fundamental difficulty with

this is geo/geo ambiguity, i.e. the fact that different geographical entities may have
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Chapter 2. Background

the same name (Amitay et al., 2004). For example, ‘Zurich’ may refer to the city

situated on the northern end of Lake Zurich in Switzerland, but it may also refer

to the canton in which the city is located. Furthermore, there are numerous other

places in the world known as ‘Zurich’, like a small town in northern Kansas in the

United States or a district in the Dutch province of Friesland. Thus, resolving a

toponym first requires geographically disambiguating it (Overell, 2011). To do this,

contextual cues can be used to narrow down semantic and geographical scopes of

potential referents (Jones & Purves, 2008). This could be, for example, occurrences

of context words like ‘city’ and ‘Switzerland’, which may provide the necessary

information to identify the location being referred to.

The last difficulty in creating geographical footprints of documents relates to vague

geographical terminology. This arises, for example, from the use of colloquial place

names that may not have precise or consistent spatial delineations (Jones & Purves,

2008). An example of this is the ‘Niederdorf ’, the north-eastern part of Zurich’s old

town. Although official boundaries are defined for this zone, the common under-

standing of the term often extends beyond these. Vague spatial language can further

complicate the interpretation of geographical context (Schockaert & De Cock, 2007;

Derungs & Purves, 2016). These are, for example, phrases such as ‘near Niederdorf ’

or ‘an hour’s drive north of Zurich’. Interpreting vague geographical terminology

is particularly challenging, as it not only demands a good understanding of the

language but also requires shared knowledge about places, which often cannot be

derived from the context (Vasardani et al., 2013).

While processing linguistically complex spatial expressions is an important part of

creating precise document footprints, this work does not address this issue. Instead,

it focuses on the first two challenges described. These are addressed through the

process of geoparsing, which is presented next.

2.2 Geoparsing

An important step in determining the geographical scopes of documents is the identi-

fication and interpretation of geographical references in the form of toponyms. This

task is generally referred to as geoparsing and typically involves a two-step process

(Gritta et al., 2018b): the first step is toponym recognition (also geotagging), which

entails identifying toponyms in the text. The second step is toponym resolution (also

geocoding), which involves linking the identified toponyms with their corresponding

referents. In the following, these two tasks will be described along with a summary

of techniques used to approach them.
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Chapter 2. Background

2.2.1 Toponym Recognition

Toponym recognition is generally considered a specialised form of named entity

recognition (NER) (Jones & Purves, 2008). NER involves identifying and classifying

words or groups of words that represent named entities, such as names of people,

organisations or places (Nadeau & Sekine, 2007). Toponym recognition differs from

general NER in that only named entities of location-based categories are to be

identified. For this reason, off-the-shelf NER systems are often used in geoparsing

pipelines, with the output filtered in a subsequent step to include only location-based

categories (Hu et al., 2023b).

Approaches to toponym recognition can be categorised into lookup-based, rule-based

and machine learning-based methods (Leidner & Lieberman, 2011). Lookup-based

approaches match words against lists of toponyms, while rule-based approaches use

handcrafted rules to identify toponyms. However, both approaches are often limited

in their ability to use complex contextual cues effectively. As a result, modern

methods for toponym recognition are mostly based on machine learning techniques,

which offer greater potential for looking at words in their specific context and thus

classifying them more accurately.

Machine learning-based methods use statistical algorithms to train models to predict

probabilities for words being (geographical) named entities (Leidner & Lieberman,

2011). These models receive input features derived from the target word and its

context, which can either be manually defined or automatically extracted using

various machine learning techniques (Hu et al., 2023b). Based on these features,

the model generates an output, which is used to make a prediction about the target

word. That could be, for example, the probability of the target word being a named

entity or a probability distribution over different categories of named entities.

The effectiveness of machine learning-based toponym recognition methods strongly

depends on the quality and quantity of the training data used for training models.

As such, they are limited by the fact that creating large amounts of training data can

be very costly and that trained models generally exhibit problems with generalisabil-

ity to new text domains (Purves et al., 2018). Nevertheless, machine learning-based

approaches, especially those employing deep learning techniques, have proven to be

superior to other NER methods (Hu et al., 2023b). They benefit from sophisticated

semantic understanding capabilities that come with the use of modern model archi-

tectures for natural language processing, allowing for more precise consideration of

context when categorising words. Furthermore, recent work has also shown great

interest in exploring the use of generative large language models (LLM) for NER.
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Chapter 2. Background

These approaches formulate NER as a zero- or few-shot task, for which, for example,

an LLM is prompted with instructions to identify named entities in a presented text

(Xie et al., 2023).

2.2.2 Toponym Resolution

After toponyms have been identified in the text, the next step is associating them

with their corresponding geographical locations. This could mean, for example,

tagging toponyms with geographic coordinates or attaching unique identifiers that

link to corresponding entries in a knowledge base. As such, toponym resolution

can be understood as a specialised form of entity linking. The main challenge here

is geo/geo ambiguity, i.e. different locations sharing the same name. For example,

searching the GeoNames gazetteer for exact matches for the toponym ‘Zurich’ would

yield a list of 14 entries for locations that can be referred to using this name. Thus,

a primary goal of toponym resolution is to disambiguate toponyms by determining

from a list of potential candidates the most likely location that the toponym refers

to (Buscaldi, 2011).

Traditionally, toponym resolution begins by searching gazetteers to generate lists

of candidate locations for toponyms. These are then assessed according to vari-

ous criteria to finally select the most likely location (Leidner, 2007). To do this,

gazetteers and other types of ontologies can also be used as sources of informa-

tion in the disambiguation of toponyms. They often contain additional information

about places, which can be included in the assessment of candidates. Approaches

that make use of such resources are what Buscaldi (2011) calls knowledge-based.

In its simplest form, this can mean, for example, specifying default interpretations

for toponyms based on certain attributes. Default locations can be, for example,

ones with the largest population, the highest administrative level or ones that are

considered most relevant based on some corpus statistic (Leidner, 2007). The use

of default interpretations assumes that locations are more likely to be referenced if

they are more relevant to the context in which they occur. However, these strate-

gies have the obvious disadvantage that any references to less prominent referents of

toponyms will automatically be disambiguated incorrectly. Some knowledge-based

approaches, however, also make use of contextual elements. Gazetteers may contain

administrative-hierarchical information about locations, which can, for example, be

used to evaluate linguistic containment qualifiers (Leidner, 2007). Using this infor-

mation could, for example, help in disambiguating mentions like ‘Zurich, Kansas’

or ‘Zurich (US)’ as Zurich in Kansas, based on the provided hierarchy information

Zurich < Rooks < Kansas < United States.
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Chapter 2. Background

Map-based approaches are another group of methods for toponym resolution (Bus-

caldi, 2011). These methods are based on the assumption that geographical ref-

erences within a particular discourse are spatially autocorrelated (Purves et al.,

2018). This means, for example, that the two toponyms ‘Topeka’ and ‘Wichita’

(both names of cities in the state of Kansas) occurring in a text would make it more

likely that a mention of ‘Zurich’ in the same text would refer to the town in Kansas

rather than to the city in Switzerland. In this way, locations for a set of toponyms

can be determined by minimising a geometric distance function between location

candidates. This can mean, for example, selecting the referents for all toponyms

in a text in such a way that pairwise distances between locations are minimised

(Leidner, 2007).

Finally, there are machine learning-based, also known as data-driven, approaches

(Buscaldi, 2011). Similar to techniques used for toponym recognition, these meth-

ods use manually defined or automatically extracted features from the toponym’s

context, which are used to make predictions using a trained machine learning model.

These may consist of other toponyms occurring in the text or other kinds of textual

elements, like context words potentially providing clues pointing to certain geograph-

ical regions (Speriosu & Baldridge, 2013). For example, the word ‘Sechseläuten’, the

name of a traditional spring festival in Zurich, Switzerland, can serve as a powerful

hint in disambiguating an occurrence of ‘Zurich’. Machine learning models can be

trained to associate occurrences of certain words or even specific combinations of

words with geographies, which can, in turn, be helpful in identifying the correct

locations (DeLozier et al., 2015).

Machine learning-based toponym resolution systems typically produce rankings,

classifications or regressions (Zhang & Bethard, 2024). Ranking-based systems take

a list of location candidates and compute scores for each candidate that can then be

used to rank lists. To do this, candidates are typically specified as additional input

for models, which then generate candidate-specific scores. Classification systems,

on the other hand, predict locations for toponyms by framing toponym resolution

as a multi-class classification task, where the classes correspond to a discretised

map of the earth’s surface. In this way, models are trained to associate textual

inputs with specific classes, i.e. regions on the earth, and thus learn geographical

distributions of textual input, such as words, combinations of words or entire text

segments (DeLozier et al., 2015). Regression approaches are very similar to those

of classification, with the difference that instead of classifying, models perform mul-

tivariate regression, in which continuous values, typically geographical coordinates,

are predicted.
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Chapter 2. Background

Machine learning-based toponym resolution approaches also suffer from the fact that

they are highly dependent on the availability and quality of training data. Training

data is required for which toponyms have not only been identified but for which the

locations they refer to have also been determined. Producing such training corpora

demands extensive geographical knowledge from annotators and is a very labori-

ous and costly task (Karimzadeh & MacEachren, 2019). The availability of such

datasets, especially across diverse domains, is, therefore, one of the main challenges

in developing machine learning-based toponym resolution methods (Gritta et al.,

2018b; Hu et al., 2023a).

Despite this obstacle, developments in toponym resolution methodologies have in-

creasingly relied on deep learning techniques (Zhang & Bethard, 2024). Modern

deep learning architectures for natural language processing have created new oppor-

tunities for more sophisticated processing of text, which is a crucial requirement for

improving the quality toponym resolution (Gritta et al., 2018b; Purves et al., 2018).

Particularly influential in this regard was the introduction of the transformer archi-

tecture (Vaswani et al., 2017). It is the basis for models like BERT (Bidirectional

Encoder Representations from Transformers), which allows for words and phrases

to be analysed in the context of their entire sentence or document (Devlin et al.,

2019). Their capability of capturing both syntactic and semantic nuances in texts

offers the potential for improved handling of ambiguities in geographical references

and may ultimately lead to more precise resolution of geographical references. For

this reason, recent approaches to toponym resolution have increasingly implemented

transformer models to better account for the context in which toponyms are used.

The following section will briefly introduce transformers and how they can be used

for toponym resolution.

2.3 Transformer

In recent years, transformers have led to remarkable advances in natural language

processing. They have stood out due to their ability to capture contextual relation-

ships across large bodies of text and use them to extract deeper and more nuanced

meanings for specific tasks (Vaswani et al., 2017). There are different variations

of the transformer architecture, which are tailored for different applications and

requirements. In this work, the focus will be on encoder models, such as BERT,

which are typically used when tasks involve understanding and interpreting text

and making predictions based on it, as in word or text classification tasks (Devlin

et al., 2019). This is in contrast to decoder models, which are typically used for text

9



Chapter 2. Background

generation (Radford et al., 2018), and encoder-decoder models, which are used in

sequence-to-sequence tasks, such as machine translation (Vaswani et al., 2017). In

the following, the basics of encoder transformers and the contextualised embeddings

they generate are presented.

Encoder transformer models typically accept text of variable length as input and

generate individual vector representations for each element in the input sequence

(Devlin et al., 2019). In this sense, inputs are often considered sequences of subwords

or tokens, rather than normal words, as transformer models usually split texts into

units smaller than words to limit the size of the vocabulary (Wu et al., 2016).

Vector representations of words or tokens are often referred to as embeddings. Em-

beddings model the semantics of words by projecting them into a vector space in

which words of similar meanings are represented through similar vectors (Jurafsky

& Martin, 2024). Semantic vector spaces are based on the distributional hypothesis,

which states that words with similar meanings tend to be used in similar contexts

(Harris, 1954). Creating these embeddings thus involves using statistics derived

from text corpora that reflect the contexts in which words are used.

For natural language processing, embeddings provide the great advantage of mod-

elling the abstract concept of meaning in a mathematical vector space. As words

with similar meanings will also have similar vectors, semantic similarities between

words can be calculated using simple distance metrics, such as the scalar product

of their vectors or the cosine of the angle between them (Jurafsky & Martin, 2024).

Traditionally, word embeddings, such as those generated using Word2vec (Mikolov

et al., 2013), have been limited by the fact that they are static. This means that

a word would always be represented by the same vector, regardless of the context

in which it is used. Static embeddings are the product of every possible context

in which a word is used in a corpus without considering any potential ambiguities.

They represent a conglomeration of all the different meanings a word can have and

thus fail to reflect the specific meaning words convey in different contexts.

In contrast, embeddings generated by transformer models are dynamic, which means

that they vary depending on the context in which words are used. This is made pos-

sible by the self-attention mechanism of the transformer architecture, which allows

each word in a text to be considered in relation to all other words (Vaswani et al.,

2017). During a comprehensive pretraining, transformers are taught to weigh and

judge relationships between words using specialised pretraining tasks. They can

then use this ability when creating word embeddings to varyingly consider context

words according to the relevance they have for the target word (Devlin et al., 2019).

10



Chapter 2. Background

Thus, embeddings generated by transformer models are different depending on the

context in which words are used and are, for that reason, often also referred to as

contextualised embeddings (Jurafsky & Martin, 2024).

Typically, transformer embeddings are used as input for further machine learning

models, which are trained to make predictions based on them. This could be, for

example, the aforementioned named entity recognition, where the task may consist of

predicting whether individual words are named entities. This could be implemented,

for example, using a neural network that takes the contextualised embedding of a

target word as input and is trained to generate an output that reflects the probability

of the word being a named entity. The encoded information in the embedding about

how the word was used allows the model to interpret the specific meaning of words

more precisely and ultimately make more accurate predictions.

These capabilities of transformers offer promising possibilities for tasks that require a

precise distinction between different meanings of words, as is the case with toponym

resolution. Contextualised embeddings of toponyms allow the modelling of their

relations to other words in the context, which could provide important clues for

their disambiguation. The adaptability of transformer models through task-specific

fine-tuning could further enhance these capabilities by drawing their attention to

the specific linguistic features through which geographical information is expressed.

The following chapter will present how transformers can be used for the task of

toponym resolution based on exemplary implementations.
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3 Related Work

Efforts to make use of transformer models for toponym resolution have led to a vari-

ety of approaches. At the time of writing, eight publications have been identified that

implement transformer models in toponym resolution methodologies. At the same

time, general entity linking systems have also increasingly implemented transformer-

based techniques. Hu et al. (2023a) have shown that some of these systems were

able to achieve state-of-the-art performance in the task of toponym resolution, even

outperforming some specialised toponym resolution systems. For this reason, the

following overview also includes the two best-performing entity linking systems eval-

uated by Hu et al. (2023a) for toponym resolution: BLINK (Wu et al., 2020) and

GENRE (De Cao et al., 2021).

3.1 Transformer-based Toponym Resolution

The presented approaches can be categorised into three main groups: ranking-based

approaches, localisation-based approaches and generative approaches (Table 1). In

the following, the general workings and strategies of each of these groups will be

presented:

Ranking-based approaches use transformer models to rank lists of location candi-

dates for each toponym based on their likelihood to be the correct location. Typi-

cally, bi-encoder (Halterman, 2023; Li et al., 2023) or cross-encoder (Wu et al., 2020;

Zhang & Bethard, 2023) strategies can be applied for this purpose. In bi-encoder

approaches, separate vector representations are created for the toponym in its con-

text and for each location candidate. Similarities between these representations can

then be computed to rank candidates accordingly. This approach has the advantage

of being computationally efficient, as toponyms only need to be encoded once, and

representations of candidates can be precalculated and reused. Cross-encoder ap-

proaches, on the other hand, combine the toponym and each candidate in individual

concatenated inputs to generate scores for each toponym-candidate pair. This allows

for deeper interaction between the toponym and individual candidates but is much

12
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Reference Description

Ranking-based approaches

Halterman (2023) Mordecai 3 uses the transformer-based NER model from spaCy to
recognise toponyms and then reuses the created embeddings for sim-
ilarity scoring of location candidates from GeoNames.

Li et al. (2023) GeoLM is a transformer model trained using contrastive learning to
generate geospatially grounded representations of both toponyms and
geographical entities to rank location candidates based on their cosine
similarity to the toponym.

Wu et al. (2020) BLINK first uses a transformer-based bi-encoder to create semantically
relevant candidate lists based on similarity scores of vector represen-
tations and then employs a cross-encoder for a more precise ranking
of the resulting list.

Zhang & Bethard (2023) GeoNorm uses a transformer model to generate representations of
toponym-candidate pairs, which are used to rank candidates in a two-
stage process using custom neural networks.

Localisation-based approaches

Cardoso et al. (2022) A BERT model is used to generate embeddings of toponyms with dif-
ferent amounts of context, which are then passed through LSTM units
to predict the most likely geographic region using classification.

Radford (2021) ELECTRo-map uses a transformer model to encode text documents
containing geographical references and perform multivariate regres-
sion to predict a probability distribution for geographic coordinates.

Solaz & Shalumov (2023) An encoder-decoder transformer model is used to translate texts with
toponyms into sequences of hierarchical cell encodings, which are then
used to predict the most likely geographic cell.

Generative approaches

De Cao et al. (2021) GENRE uses an encoder-decoder transformer model to translate en-
tity mentions in texts into unique textual representations in the form of
Wikipedia article titles, which are used to link toponyms to correspond-
ing entries on Wikipedia.

Hu & Kersten (2024) A Large Language Model is used to generate unambiguous geograph-
ical descriptions for marked toponyms in a given text, which are then
converted into coordinates using a geocoding service.

Zhang et al. (2024) GeoPLACE uses BERT’s masked language modelling capability to
generate likely geographic attributes for toponyms in texts, which are
used to filter candidate lists and identify the referenced location.

Table 1: Overview of transformer-based toponym resolution approaches

more computationally intensive because a separate model inference is required for

each candidate, along with the entire document context of the toponym.

Localisation-based approaches aim to directly predict the geographical position of a

toponym without relying on lists of candidates. These methods use contextualised

13
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representations of toponyms generated by transformer models to infer spatial in-

formation from text. This is done by formulating toponym resolution as either a

classification (Cardoso et al., 2022; Solaz & Shalumov, 2023) or regression (Radford,

2021) problem. Classification approaches divide the earth’s surface into discrete cells

or regions. A model is then trained to predict the most likely cell in which the ref-

erenced location is located based on the embedding of the toponym and its context.

Similarly, regression approaches aim to predict direct coordinates from embeddings.

This is done by training models to estimate the geographical coordinates of the

referenced location. In many cases, candidate lists are still used in localisation-

based approaches to ultimately link predictions to knowledge bases by selecting the

location that best matches the predicted geographical position.

Finally, generative approaches leverage the text-generative capabilities of certain

transformer architectures for resolving toponyms. Instead of scoring candidates

or directly predicting coordinates, models are trained to generate text sequences

for toponyms within a provided document that can be used to uniquely identify

the referenced location in a database. Generated texts can be, for example, a list

of administrative hierarchies (Hu & Kersten, 2024), geographical attributes (Zhang

et al., 2024), or even a descriptive identifier of the corresponding entry in a knowledge

base (De Cao et al., 2021). These texts are finally used to match toponyms with

their corresponding entries in a gazetteer by using the generated information to

identify the specific locations.

3.2 Research Gaps

The analysed methods revealed several research gaps in the application of trans-

former models for toponym resolution. First, a critical limitation of some works

concerns the lack of task-specific fine-tuning of transformer models. For example,

the approach of Cardoso et al. (2022) uses a transformer model for encoding texts

without first fine-tuning it for the specific task. Likewise, for Mordecai 3 (Hal-

terman, 2023), the transformer model was not fine-tuned for the specific similarity

comparisons used to rank candidates. The lack of specialised fine-tuning for toponym

resolution tasks could mean that the models may not be able to effectively identify

and use the relevant features in the text. Without fine-tuning, the transformer mod-

els simply create generic text representations instead of ones that explicitly capture

the relevant geographical relationships within the text.

Another issue concerns the incorporation of linguistic context into the input for

transformer models. Two works explicitly chose not to incorporate broader linguistic
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context and instead only consider geographical information in the form of other to-

ponyms in the document (Zhang & Bethard, 2023; Zhang et al., 2024). The authors

argue that the limited input size of transformer models would limit the usefulness of

incorporating linguistic context while considering all co-occurring toponyms within

the document would be more important for disambiguating toponyms. However,

such a strategy disregards any contextual clues not presented as toponyms, which

could severely limit the extent to which toponyms can be interpreted within their

context.

Third, the computational resources required to run transformer models can be very

substantial. Particularly, ranking-based cross-encoder approaches, such as those

used in the systems BLINK (Wu et al., 2020) and GeoNorm (Zhang & Bethard,

2023), can be very computationally expensive and difficult to scale. In these ap-

proaches, separate transformer representations need to be generated for each com-

bination of toponym and candidate, which can quickly accumulate large numbers

of model inferences. A much more efficient approach is the use of bi-encoder ar-

chitectures, as implemented, for example, in GeoLM (Li et al., 2023). For these

systems, the representations of toponyms and candidates are generated indepen-

dently of each other and only compared afterwards, which makes it possible to

pre-compute and cache the representations of candidates. This means that only a

single model inference would have to be carried out for each toponym to be resolved,

which substantially reduces the required resources when disambiguating toponyms.

Finally, evaluating and comparing the performance of different toponym resolution

systems is a challenging task. Although there appears to be a general agreement

on which datasets and evaluation metrics to use for assessing systems, the compa-

rability of results across different studies still presents a challenge. Differences in

evaluation processes often lead to substantial discrepancies in the reported perfor-

mance results, making it difficult to fairly compare methods with each other based

on published results. There is, therefore, a strong need for a more clearly defined

evaluation framework for toponym resolution systems to improve the transparency

and reproducibility of evaluations and enable a more precise assessment of progress

in the field.
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4 Method

The aim of this work was to explore an efficient and easily adaptable use of trans-

formers for the task of toponym resolution. To this end, a new method was devel-

oped, which is presented in this chapter.

The proposed methodology takes a ranking approach, using a bi-encoder architec-

ture to compare toponyms in their context with potential location candidates and

rank them based on their relevance. This approach was implemented using the Sen-

tenceTransformers framework introduced by Reimers & Gurevych (2019), which is

normally used to determine semantic similarities between texts. This framework

was adapted so that it can be used to efficiently determine the similarity between

contextualised toponyms and their candidates.

Furthermore, the Geoparser1 Python library developed as part of this work is pre-

sented, which integrates the proposed method into a complete end-to-end geoparsing

pipeline. The library uses the NER functionality of spaCy2 for toponym recognition

and an adapted SentenceTransformer3 model for toponym resolution. Geoparser

is designed to be easily customisable by users to meet the specific requirements of

different text types and domains.

The following sections of this chapter first describe the developed toponym resolu-

tion method and then present the architecture and functionalities of the Geoparser

Library.

4.1 Proposed Method

At the heart of the proposed method lies the idea of treating the task of toponym

disambiguation as a special form of text similarity estimation. For this purpose, the

SentenceTransformer framework was adapted to facilitate an efficient use of trans-

1https://github.com/dguzh/geoparser
2https://spacy.io/
3https://www.sbert.net/
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formers optimised for comparisons through the framework’s bi-encoder architecture.

In the following, the main elements of this approach are described.

4.1.1 Bi-encoder

Transformer models have established themselves as a powerful tool for processing

natural language. However, the application of these models also comes with high

computational demands, which significantly limits the scalability of transformer-

based approaches. To address this problem, the proposed method employs a trans-

former model using a bi-encoder architecture.

Bi-encoders are particularly suitable for applications in which many comparison op-

erations must be carried out, offering an efficient alternative to the conventional

cross-encoder architecture. Cross-encoders process objects to be compared jointly

through the model, which can result in a high number of model inferences. Bi-

encoder systems, on the other hand, allow objects to be encoded separately into

individual vector representations. The resulting vector representations can then be

compared with each other in a computationally efficient way, for example, by calcu-

lating cosine similarity scores. This leads to a substantial reduction in the required

computing power, as vector representations of objects that have been generated once

can be reused for unlimited comparisons.

For the proposed method, a bi-encoder approach is used to compare toponyms with

potential location candidates. This entails mapping both toponyms and candidates

into a shared vector space. Doing that allows vector representations of toponyms

and candidates to be compared with each other so that their similarities can be

determined mathematically. In this way, the candidate with the highest similarity

can then ultimately be determined as the most likely location to which the toponym

refers in the given context. The proposed approach builds on similar work that also

makes use of bi-encoder strategies. GeoLM (Li et al., 2023) employs a bi-encoder

architecture in a similar way with the goal of spatially aligning representations

produced by a language model through contrastive learning. However, it was not

optimised for the task of toponym resolution and, therefore, achieved very poor

results in this context.

In contrast, the method presented here adopts a bi-encoder-based approach specifi-

cally designed for the task of disambiguating toponyms. For its implementation, the

SentenceTransformers framework is adapted, a tool usually intended for computing

semantic similarities between texts. The intention behind using this framework is to

inherit the comparison capabilities of SentenceTransformer models and, at the same
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time, benefit from the highly useful features of the SentenceTransformers library for

implementing and fine-tuning models intuitively.

4.1.2 SentenceTransformers

The SentenceTransformers framework offers a highly efficient approach to determin-

ing semantic similarities between texts. It is typically used in applications such as

sentence similarity scoring, document clustering or semantic searches within docu-

ment collections. The framework is based on a special form of the bi-encoder archi-

tecture called a Siamese network architecture. Siamese networks are characterised

by the fact that a single model is used to encode both elements to be compared.

Determining the similarity between texts involves first independently converting

the texts into embeddings using the specially trained SentenceTransformer model.

This model is set up in such a way that embeddings of semantically similar texts

end up near each other in the embedding space, while those of dissimilar texts

remain further apart. This property of SentenceTransformer embeddings means

that semantic similarities between texts can efficiently be computed using simple

vector-based distance metrics such as cosine similarity.

The ability of SentenceTransformer models to represent semantically similar texts in

a similar way is the result of extensive pretraining. During this pretraining, models

are trained using contrastive learning to create embeddings for pairs of texts in a way

that models how their meanings compare to each other. For positive pairs of texts,

i.e. texts that are considered semantically similar, the model is tuned to produce

embeddings that are close to each other. For negative pairs, i.e. texts that do not

share similar meanings, the model is tuned to produce embeddings that are distant

from each other. Through this training process, the model acquires the ability to

capture the meaning of texts and model it in the form of embeddings.

To use SentenceTransformer models for comparing toponyms with candidates, both

the toponyms within their contexts and the candidates must first be represented

as texts. For the toponym, this is simply done by extracting the relevant text

passage surrounding the toponym. For the candidates, on the other hand, textual

representations need to be artificially constructed using information extracted from

a knowledge base. For this, attributes of location candidates, such as their name,

country, and other relevant geographic or administrative features, can be used to

craft a sentence that describes locations in a linguistically coherent form.

Transforming candidates into texts allows them to be compared with toponyms in
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the same way as would be done with two regular texts. However, the aim of the

comparison is no longer to evaluate the general semantics of the texts but rather

to determine how well the geographical information embedded in the context of

the toponym matches the attributes of different candidates. To enable the Sen-

tenceTransformer model to effectively adapt to this new task, targeted fine-tuning

is necessary.

4.1.3 Fine-Tuning

Fine-tuning the SentenceTransformer model is a crucial step in adapting it for the

specific task of disambiguating toponyms. It is performed through contrastive learn-

ing, similar to the initial pretraining, but with specially constructed training data.

For this purpose, a geographically annotated text corpus is used, which consists of

texts in which toponyms are identified and linked to their correct geographical lo-

cations in a database. For each annotated toponym, positive and negative training

examples are generated in the form of pairs of texts. Positive training examples

consist of pairs of toponyms and their correct candidate locations, whereas negative

examples consist of toponyms paired with incorrect candidates.

During fine-tuning, the weights of the model are adjusted so that it learns to produce

similar embeddings for toponym-candidate pairs referring to the same location but

dissimilar ones for pairs referring to different locations. This process should force

the model to attend to geographically relevant cues in the context of the toponym

and to align them with geographical indicators in the textual representations of

locations candidates. The fact that toponyms are only contrasted with candidates

sharing the same name should help the model discern meaningful contextual cues

rather than simply matching place names.

After the SentenceTransformer model has been fine-tuned, it can be used to generate

embeddings for both toponyms within their context and textual representations of

location candidates. The similarity between toponym and candidate embeddings

is then finally used to rank location candidates, with the most similar candidate

selected as the most likely geographical referent for the toponym.

4.2 Geoparser Library

The Geoparser library was developed to provide a complete end-to-end geoparsing

pipeline that integrates the proposed toponym resolution method. The library uses
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the NER functionality of spaCy for toponym recognition, a gazetteer integrated as

an SQLite database for generating candidate lists, and a fine-tuned SentenceTrans-

former model for toponym disambiguation. The aim of this library is to provide a

flexible and easily adaptable platform that allows users to customise the choice of

models and knowledge bases for their individual requirements and to optimise mod-

els for specific text corpora. In the following, the main components and functions of

Geoparser are presented. All descriptions refer to the latest version of the library at

the time of writing (0.1.8). Future versions may differ in functionality and features

from those described here.

4.2.1 Toponym Recognition Module

The processing pipeline of Geoparser starts with the input of texts in the form

of strings, which are preprocessed by an integrated spaCy NLP pipeline. Users can

choose between different spaCy models when instantiating Geoparser, which support

different languages as well as varying model sizes. Larger models usually provide

more accurate results but are more computationally intensive, while smaller models

are faster but potentially less accurate.

Preprocessing with spaCy involves several steps, including tokenisation, named en-

tity recognition, and finally, representing texts in specialised data containers. The

Geoparser library extends the default spaCy pipeline by introducing specialised data

structures developed specifically for geoparsing. This means that texts are converted

into customised GeoDoc objects instead of regular spaCy Doc objects. GeoDoc ob-

jects behave the same way as native spaCy Doc objects but integrate additional

features for handling toponyms. One of these features is the filtering of named enti-

ties recognised by spaCy to keep only location-related entities. This forms the step

of toponym recognition, for which toponyms are entities that have been categorised

by spaCy as LOC (Location), GPE (Geopolitical Entity) or FAC (Facility).

The individual toponyms identified in a GeoDoc are represented as GeoSpan objects.

Similar to the GeoDoc class, GeoSpan is a customised data structure based on a

regular spaCy Span that has been extended with specific functionalities. These ex-

tensions provide the framework for the interactions between text documents, trans-

former models and knowledge bases that are required for the subsequent step of

toponym resolution.
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4.2.2 Toponym Resolution Module

Once toponyms have been identified in texts, the next step involves linking them

to their corresponding geographical locations. This process begins with generating

lists of potential location candidates for each toponym. To do this, Geoparser uses

an integrated gazetteer implemented as an SQLite database. The current version

of the library uses the GeoNames gazetteer by default, which contains the names

of locations worldwide along with location attributes such as administrative hierar-

chical parents, population size or geographical coordinates. However, the design of

Geoparser is extensible, so additional gazetteers can be easily incorporated in the

future to better meet the geographical and thematic requirements of different text

domains.

Candidate lists are generated by querying the database using the recognised to-

ponym. This prompts a full-text search across primary and alternate names of

locations in the database to identify candidate locations that can be referenced by

the toponym. The query is constructed to only suggest candidates belonging to the

group of best matches based on the degree to which tokens match between the to-

ponym and the name or alternate name of the candidate. For example, searching for

the toponym ‘Zurich’ would return 14 candidates that can be primarily or alterna-

tively referred to as ‘Zurich’, and thus, all represent a 100% match with the queried

toponym. The candidate ‘Zurich Airport’, for example, would not be suggested here

because with only one of two matching tokens, it only represents a 50% match and

thus does not belong to the group of best matches. If no 100% matches are possible,

the next best group of matches is considered. For example, searching for ‘Risoux’

would return the two candidates ‘Le Mont Risoux’ and ‘Forêt du Risoux’, which

each match the query at 33% and form the group of best matches for this query.

However, if the search was for ‘Mont Risoux’ instead, these two candidates would

have different match grades (66% and 33% respectively), and only the better of the

two would be presented as a candidate. This greedy matching strategy allows the

candidate generator to produce short lists while still resorting to partial matching if

needed. The result of querying the database is returned as a list of IDs identifying

the potential geographic referents of the toponym in the underlying gazetteer.

The next step involves converting both the toponym within its context and the

location candidates into a textual form so that they can be processed by the Sen-

tenceTransformer model. For the toponym, the relevant text passage surrounding

the toponym in the document is extracted and, if necessary, shortened to meet the

input length limits of the model. In doing so, a custom truncation algorithm ensures

that the toponym remains centred within the text segment, where possible, while
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also preserving the linguistic integrity of texts by only removing entire sentences

from the beginning and end of the text. The candidates, on the other hand, are

transformed into artificial but linguistically coherent sentences using attributes from

the database. The aim of these textual representations is to describe locations using

information that can be used to differentiate between candidates. These represen-

tations are generated according to a template, which is specified by the user based

on the availability of attributes in the employed gazetteer.

After the texts have been prepared for both toponyms and candidates, a fine-tuned

SentenceTransformer model is used to convert them into embeddings. In creating

candidate embeddings, the candidates of all toponyms in the corpus are pooled to

ensure that each location candidate is encoded only once. Consequently, this process

becomes proportionally cheaper the larger the document collection to be processed

is, as toponyms may recur in other documents. For future versions of the library,

an optional caching functionality is planned that will allow users to store candidate

embeddings in the database once they have been generated, further increasing the

efficiency of geoparsing for subsequent operations.

Finally, the embeddings of toponyms are compared with those of their corresponding

candidates by calculating the cosine similarity between them. In doing so, the

candidate with the highest similarity is considered the most likely location referred

to by the toponym in the given context. The selected location is linked to the

toponym by storing the corresponding location ID in the toponym’s GeoSpan object.

This ID can later be used to retrieve further information about the location directly

from the database, which forms the basis for further geographical analyses of the

texts.

4.2.3 Training Module

A key feature of the Geoparser library is the ability to adapt SentenceTransformer

models specifically for toponym disambiguation. These adaptations are facilitated

by the GeoparserTrainer module, which provides an environment for fine-tuning

these models. Fine-tuning begins with selecting a SentenceTransformer base model,

which is loaded from the HuggingFace library. The training module is then fed

with specially created training data, to train the model to create geographically

discernible representations of toponyms and location candidates.

For this purpose, GeoparserTrainer loads geographically annotated text corpora

that must be provided in a dedicated format. This format includes the start and

end positions of the toponyms in the text, as well as the IDs that link them to
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the corresponding locations in the gazetteer. In the first step, GeoparserTrainer

converts the corpora into the customised spaCy data structures, which transform

documents into GeoDoc objects and annotated toponyms into GeoSpan objects.

For every annotated toponym, GeoparserTrainer then generates positive training

examples, in which toponyms are matched with their correct location candidates,

and negative examples, in which they are matched with the remaining locations in

the candidate list. These training examples are finally used to fine-tune the model

with a contrastive loss function using the training functionalities provided by the

SentenceTransformer library.

Currently, Geoparser provides two pretrained models of different sizes that have been

fine-tuned for toponym disambiguation using English newspaper article texts. They

offer a ready-to-use solution for using Geoparser, allowing geoparsing without any

preparation. However, the toponym resolution quality when using these models to

texts in languages other than English and potentially also to text types other than

newspaper articles may be restricted due to the limited diversity of the training

corpora used. For this reason, it might be useful for certain applications to fine-

tune custom models from scratch using training data that is appropriate for the

task at hand. To do this, users can access a variety of base models available through

HuggingFace, allowing them to adapt the choice of model to individual requirements.

Finally, users may also choose to simply refine models that have already been fine-

tuned for toponym disambiguation, allowing them to be optimised for specific do-

mains or text types that differ from the original training corpus. To do this, new,

domain-specific corpora are geographically annotated and then fed into Geoparser-

Trainer for further fine-tuning. Since, in this case, models have already been fine-

tuned for toponym resolution beforehand, the size of the training corpus can be

substantially smaller than that required for the initial fine-tuning. This option thus

provides a practical opportunity to optimise the performance of models for specific

geoparsing tasks without the need for large amounts of training data.
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5 Experiments

This chapter describes the experiments that were conducted to evaluate the per-

formance of the Geoparser library. The experiments are divided into two main

parts. In the first experiment, the individual components of the entire geoparsing

pipeline are tested, i.e. toponym recognition, candidate generation and toponym

disambiguation. In the second experiment, the ability of the transformer model to

adapt to new domains is tested by training an already fine-tuned model using small

subsets of different corpora and evaluating the impact on performance. For these

experiments, the evaluation framework of Hu et al. (2023a) is replicated to allow a

fair and direct comparison with existing systems.

5.1 Evaluation Framework

The experiments were designed to be compatible with the evaluation framework of

Hu et al. (2023a), which provides standardised test datasets and an evaluation envi-

ronment that allows the performance of different toponym resolution systems to be

measured under identical conditions.1 The framework comprises twelve geograph-

ically annotated English text corpora spanning different domains (Table 2). Each

test set consists of several documents, each provided as a separate text file. A gold

annotation file in JSON format is also provided for every dataset, containing the

labelled toponyms for each document. Annotations include the start and end posi-

tions of toponyms in the text as well as associated geographical coordinates. In six

of the twelve datasets, GeoNames IDs of the referenced locations are also labelled.

To evaluate a toponym resolution system using this framework, prediction files must

first be created for each test dataset. For this purpose, a system first processes the

text documents, after which the identified toponyms and the geographical coordi-

nates determined by the system are written into the respective prediction files. The

format of these prediction files matches that of the gold files, allowing a direct com-

parison between them. The evaluation script by Hu et al. (2023a) can then be used

1https://github.com/uhuohuy/toponym-disambiguation-voting
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Dataset Document
Count

Toponym
Count

Corpus
Domain

GeoNames
IDs

CLDW (Rayson et al., 2017) 62 34,713 Historic No

GeoCorpora (Wallgrün et al., 2018) 6,648 3,100 Tweet Yes

GeoVirus (Gritta et al., 2018a) 229 2,170 News No

GeoWebNews (Gritta et al., 2020) 200 2,601 News Yes

LGL (Lieberman et al., 2010) 588 5,088 News Yes

NCEN (Ardanuy et al., 2022) 455 4,595 Historic No

NEEL (Rizzo & van Erp, 2016) 4,078 481 Tweet No

SemEval-2019-12 (Weissenbacher et al., 2019) 90 3,258 Scientific Yes

TR-News (Kamalloo & Rafiei, 2018) 118 1,319 News Yes

TUD-Loc-2013 (Katz & Schill, 2013) 152 3,852 News Yes

WikToR (Gritta et al., 2018b) 5,000 25,242 Wikipedia No

WOTR (DeLozier et al., 2016) 1,644 11,795 Historic No

Table 2: Overview of Datasets provided by Hu et al. (2023a)

to compare prediction files with corresponding gold files, which computes various

metrics and reflects how well the system predicted the coordinates for the toponyms

in the documents. The script optionally accepts filter files, which can be used to fil-

ter toponyms before evaluating predictions, allowing comparisons between systems

on uniform subsets of toponyms.

To compare Geoparser with other systems, the system results prepared by Hu et al.

(2023a) are used. Although the authors tested 21 systems in their work, only for

seven of them the complete sets of prediction files were available in their public

repository. Because the prediction files of those systems are required to compare

them using uniform subsets of toponyms, comparisons in this work will be limited

to these seven systems.

The compared systems include the three general entity linking systems DCA by Yang

et al. (2019), BLINK by Wu et al. (2020) and Bootleg by Orr et al. (2020), all three

of which are based on neural architectures, with the latter two also incorporating

transformer models. Three other systems are specialised toponym resolution sys-

tems. These are the adaptive context feature-based system by Lieberman & Samet

(2012), the rule-based CLAVIN by Berico Technologies (2012) and the localisation-

based deep learning system CamCoder by Gritta et al. (2018a). Finally, the voting

system proposed by Hu et al. (2023a) is also used for comparison. This system uses

spatial clustering of predictions from an ensemble of different systems to determine

coordinates for toponyms.
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5.2 First Experiment

Toponym Recognition

First, the toponym recognition component of the geoparsing pipeline is tested using

the transformer-based spaCy model for English texts en core web trf. The evalu-

ation is conducted on all twelve test datasets of the evaluation framework, with the

performance measured using the following metrics:

• Precision: the proportion of correctly recognised toponyms to all toponyms

recognised by the system.

• Recall: the proportion of correctly recognised toponyms to all toponyms an-

notated in the gold files.

• F1 Score: the harmonic mean of precision and recall.

Toponyms are only classified as correctly recognised when the string boundaries of

the recognised toponym exactly match those of gold annotations.

Candidate Generation

The second step in the pipeline involves generating a list of location candidates

for each identified toponym. In this experiment, this was done once using all the

annotated toponyms in the gold files and once using just the subset of these that

were also identified as toponyms by spaCy. The lists of candidates were generated

using a GeoNames database. Since the candidate generator produces lists of IDs

that refer to the underlying database, its evaluation requires gold toponyms to be

labelled with respective IDs. For this reason, only the six test datasets containing

GeoNames IDs could be used for this evaluation.

Three metrics were used to measure the effectiveness of the candidate generator:

• Coverage: the proportion of toponyms for which the candidate lists are not

empty.

• Recall: the proportion of toponyms for which the correct locations are in-

cluded in the candidate list.

• Mean List Length: the average length of candidate lists.
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Toponym Resolution

The next step consists of disambiguating toponyms by selecting the most likely

location from the lists of candidates. This involved first preparing a SentenceTrans-

former model to be used for creating toponym and candidate embeddings. For this

purpose, the English-language SentenceTransformer model all-distilroberta-v1

was chosen as the base model to be fine-tuned. Training examples were created us-

ing the LGL corpus, as this is also the corpus that Hu et al. (2023a) used to retrain

one of the compared systems (Adaptive Learning). Creating textual representations

of location candidates is required for both the fine-tuning of the model and the dis-

ambiguation of toponyms. For this experiment, the following template was created

to represent candidates using location information available in GeoNames: [name]

([feature type]) in [admin2], [admin1], [country]

To evaluate the toponym resolution component, two different prediction files were

created for each of the remaining eleven test datasets. For the first file, all toponyms

and their positions in the texts were directly extracted from the gold annotation files.

This allowed an evaluation of the toponym resolution component without filtering

the toponyms through the toponym recognition step. For the second file, however,

the evaluation was carried out using only the sets of toponyms recognised by spaCy

to give a more realistic picture of the performance of Geoparser when used as a

whole pipeline. Because the provided prediction files of the comparison systems

all contained the full set of toponyms, the respective sets of toponyms could be

extracted to compare the systems on identical sets of toponyms.

Given the prediction files, the evaluation script by Hu et al. (2023a) computes the

following performance metrics:

• Accuracy@161km: proportion of toponyms resolved within a radius of 161 km

(100 miles) from the correct position.

• Mean Error Distance: average geographical deviation between predicted

and actual positions.

• Area Under the Curve: error distribution of predictions, which is calculated

by integrating the area under a curve of scaled logarithmic error distances

(lower values indicate more precise predictions).
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5.3 Second Experiment

The second experiment aims to determine the extent to which the performance

of an already fine-tuned SentenceTransformer model can be improved for different

domains by refining it using small amounts of additional domain-specific training

data. For that, the model that was fine-tuned in the first experiment was further

trained with small subsets of the remaining five test datasets that contain GeoNames

IDs. Fine-tuning was only possible using these five datasets, as annotated GeoNames

IDs are a requirement for creating training examples.

The training subsets were created in sizes of 100, 200, 300, 400 and 500 toponyms.

To simulate a user annotating documents for creating training data, the training

subsets were extracted at the document level. This involved randomly selecting

whole documents until the target numbers of toponyms were reached. In doing

so, larger subsets would always contain the toponyms of smaller subsets. This was

done to gradually examine the effect of increasing amounts of training data on the

performance of the model.

After every fine-tuning, new prediction files were created for all eleven test datasets

to evaluate the performances of the new models. For the five datasets that were

also used for fine-tuning, all the documents that were used to create the training

subsets were removed from the test sets. This ensured that all models were tested

on the same set of toponyms without overlap with the data used for training. For

the remaining six datasets, the complete test sets were used. The evaluation was

conducted using the same evaluation script as in the first experiment, measuring

the performance using Accuracy@161km, Mean Error Distance and Area Under the

Curve. For this second experiment, the evaluation was carried out only using the

entire set of toponyms.
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6 Results

6.1 First Experiment

Toponym Recognition

To evaluate the toponym recognition component of Geoparser, the ability of the

spaCy model en core web trf to recognise toponyms was tested using all twelve

test datasets from the evaluation framework of Hu et al. (2023a). Performance was

measured using precision, recall and the F1 score (Figure 1).
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Figure 1: Toponym recognition performance

Precision varied considerably between datasets. The highest value was achieved for

TR-News at 0.91, followed by GeoVirus at 0.90 and GeoWebNews at 0.88. For these
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datasets, most of the toponyms recognised by spaCy were also labelled in the gold

annotations. The lowest values were measured for WikToR with 0.25 and NEEL

with 0.39. For these, spaCy identified many toponyms that were not annotated as

such in the datasets.

The highest recall of 0.94 was achieved for WikToR, followed by 0.90 for GeoVirus.

For these datasets, spaCy was able to recognise most annotated toponyms. The

lowest recall, in contrast, was measured for the datasets GeoWebNews (0.61) and

CLDW (0.67).

The best overall performance, measured by the F1 score, was achieved for GeoVirus

with 0.90, TR-News with 0.83 and TUD-Loc-2013 with 0.81. For WikToR and

NEEL, the worst overall performances were obtained with F1 scores of 0.39 and

0.50, respectively, primarily due to the low recall values.

Candidate Generation

The evaluation of the candidate generator was carried out based on a GeoNames

database using the six datasets that contain GeoNames IDs for annotated toponyms.

Coverage, recall and mean list length were calculated for both the total set of an-

notated toponyms and the subset filtered by the spaCy toponym recognition step

(Figure 2).

High coverage was achieved across all datasets, with slightly better coverage on the

spaCy subsets compared to the full sets of toponyms. In five out of six datasets, the

coverage was at least 0.97, with the only exception being the GeoCorpora dataset,

where coverage was slightly lower, with 0.93 for all toponyms and 0.96 for the spaCy

subset.

Recall was also high for most datasets, with consistent improvements when pro-

cessing only the spaCy-recognised toponyms. Particularly high recall was achieved

for TUD-Loc-2013, with 0.98 (all) and 0.99 (spaCy). For the GeoWebNews and

GeoCorpora datasets, the recall was the lowest on the total sets of toponyms, with

0.77 and 0.84, respectively. A particularly large increase in recall was observed on

the GeoWebNews dataset when considering the spaCy subset over the total set of

toponyms, with an increase of 0.17 from 0.77 to 0.94.

The mean list lengths ranged from 31 to 46 candidates for all toponyms and from 32

to 51 for the spaCy toponyms. For all datasets, lists were, on average, slightly longer

when only the spaCy subsets were processed. The longest average list length was

measured for the LGL dataset with a mean list length of 46 (all) and 51 (spaCy),
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Figure 2: Candidate generation performance on all toponyms in the datasets (dark
blue) and on the spaCy subsets (light blue)

while the shortest candidate lists with average lengths between 31 and 36 were

generated for GeoCorpora and GeoWebNews.

Toponym Resolution

The evaluation of the toponym resolution stage was carried out based on the Sen-

tenceTransformer model all-distilroberta-v1 that was fine-tuned using the LGL

corpus. The model was tested on the remaining eleven datasets that were not used

for fine-tuning. The tests were performed on the total sets of toponyms as well

as on the subsets of spaCy-recognised toponyms. Performance in terms of Accu-

racy@161km (A161) is reported in Figure 3. The results for Mean Error Distance

(MED) and Area Under the Curve (AUC) are provided in the appendix in Figure 5

and Figure 6, respectively.

The performance of Geoparser varied considerably between datasets. The best per-

formance in terms of A161 was achieved for the datasets GeoVirus, TUD-Loc-2013,

WikToR, TR-News and SemEval-2019-12, with values between 0.78 and 0.87. The

worst A161 was achieved for CLDW and WOTR, with values ranging between 0.47
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and 0.51. Across all datasets, the performance on the spaCy subset was always

equally good or better than on all toponyms. For the two datasets GeoWebNews

and GeoCorpora, the differences between the total set and the spaCy subset were

the greatest, with improvements of 0.15 and 0.10, respectively, when only toponyms

recognised by spaCy were considered. When measured in MED, the results show a

similar picture, with particularly low (good) values for the datasets GeoVirus and

WikToR, with values between 460 and 637 km. The worst values were measured

for CLDW, WOTR, and NCEN, with MED of over 4000 km on the total set of

toponyms and over 3000 km on the spaCy subsets. Looking at the AUC again indi-

cates similar patterns to those observed for the other metrics, with the lowest (best)

values for the datasets TR-News, WikToR and TUD-Loc-2013 and the worst values

for CLDW and WOTR. Particularly noticeable here are again the large improve-

ments for GeoWebNews and GeoCorpora when only toponyms recognised by spaCy

were processed.

Compared to the other seven systems, Geoparser achieved competitive performance

on some datasets. Considering the A161, when all toponyms were processed, Geop-

arser ranked among the top three systems on three out of eleven datasets, reaching

second place twice. Considering only the spaCy subsets, it achieved a top three

ranking in seven out of eleven datasets, including second place twice. Looking at

MED, Geoparser performed even better in comparison, achieving a top three rank-

ing in ten out of eleven datasets when considering all toponyms and in nine out of

eleven datasets for the spaCy subsets. In both cases, it came in second three times.

In terms of AUC, Geoparser also achieved solid results: it was among the top three

systems six times for both sets of toponyms, including five times among the top two

for all toponyms and six times among the top two for the spaCy subsets. For two

datasets, Geoparser was the best system in terms of AUC when all toponyms were

considered, and for three datasets, it was the best system for the spaCy subsets.

Finally, the duration for fine-tuning the SentenceTransformer model using the LGL

dataset and the runtimes for the toponym resolution process on all twelve datasets

were measured. Both processes were carried out on an Ubuntu instance with a

NVIDIA Tesla T4 GPU. Fine-tuning using the 5,088 toponyms in the training

dataset took 2 hours and 49 minutes. For the toponym resolution, a total of 98,264

toponyms from 19,264 documents were processed. The total runtime was 55 min-

utes, of which 6 minutes were spent creating the candidate embeddings, 20 minutes

creating the toponym embeddings and 29 minutes on the remaining processes such

as context truncation, candidate generation and similarity calculations. Across all

datasets, this resulted in an average of 29 resolved toponyms per second.
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6.2 Second Experiment

To test the Geoparser’s ability to adapt to different domains, the SentenceTrans-

former model that was fine-tuned for the previous experiment was incrementally

trained with additional training examples from new text corpora. For this purpose,

five additional datasets were used to create five training subsets of 100 to 500 to-

ponyms each that were used for fine-tuning, resulting in 25 new models. The new

models were then tested on the same eleven test datasets that were used for testing

in the first experiment. The performance deviation for A161 is shown in Figure 4.

Deviations in MED and AUC are provided in the appendix in Figure 7 and Figure

8, respectively. For the most part, deviations in A161, MED and AUC correlated,

which is why the following sections do not differentiate between the three metrics.

The results of this experiment are distinguished into in-domain and out-of-domain

cases. In-domain cases refer to the instances where the data used for fine-tuning

originated from the same corpus as the test data, whereas out-of-domain cases refer

to all other instances. The results of the five in-domain evaluations varied consid-

erably. While in-domain fine-tuning for GeoCorpora and SemEval-2019-12 led to

overall improvements, little to no changes in performance were observed for mod-

els fine-tuned with training examples from GeoWebNews and TUD-Loc-2013. For

TR-News, there were minimal improvements after the first two subsets; however,

performance was worse than the baseline model for the last three subsets.

Looking at all the tested datasets, there were large differences in the overall impact

of additional fine-tuning. For the datasets GeoVirus, GeoWebNews and TUD-Loc-

2013, there was little to no change in performance, regardless of which dataset or how

many toponyms were used for fine-tuning. In other datasets, however, fine-tuning

had a substantial impact on the performance of the model. For the WikToR and TR-

News datasets, fine-tuning led to consistently worse performance across all datasets

used for training. Particularly pronounced was the magnitude of the negative impact

on performance on the WikToR dataset. For other datasets, such as CLDW, NCEN

or NEEL, fine-tuning led to both improved and worsened performance, depending

on the training corpus used and, in some cases, even on the specific training subset.
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7 Discussion

7.1 Interpretation of Results

7.1.1 First Experiment

Toponym Recognition

The first experiment involved evaluating the individual pipeline components of the

Geoparser library. First, the toponym recognition stage was examined. Accord-

ing to a survey by Hu et al. (2023b) that evaluated the 27 most used toponym

recognition systems on 26 test datasets, the best systems achieved an average pre-

cision of 0.85 to 0.87. For some of the datasets, the precision achieved by spaCy in

the conducted experiments was similar to these values, and thus, solid results were

achieved. However, for other datasets, such as WikToR, NEEL or SemEval-2019-12,

precision was rather low. This is likely caused by different annotation strategies and

schemes in the production of the datasets. For example, the very low precision for

WikToR can be explained by the programmatic creation of the corpus. The authors

collected texts based on geographically linked Wikipedia articles, which meant that

each document would only be annotated with a single location (Gritta et al., 2018b).

Another example is the SemEval-2019-12 dataset, which consists of scientific arti-

cles. The creators of the dataset chose not to annotate toponyms in the addresses

of the authors of the articles (Weissenbacher et al., 2019). In an evaluation of a

toponym recognition system processing the whole document, omitted annotations

result in inherently low precisions.

For toponym recognition recall, the best systems tested by Hu et al. (2023b) achieved

values between 0.70 and 0.78. These are comparable to the recall achieved by

the evaluated spaCy model on most of the datasets. Again, some of the lower

recall values could partially be attributed to different strategies used for annotating

toponyms. For example, in the GeoWebNews, TR-News and LGL corpora, a large

number of demonyms are annotated as toponyms, which spaCy categorises as NORP

(Nationalities or Religious or Political Groups) and are therefore not considered as
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toponyms in the implemented version of Geoparser. Other reasons contributing to

low recall can, however, be attributed to limitations of spaCy itself. For example, it

was observed that spaCy sometimes was unable to extract toponyms from hashtags

in documents from the tweet datasets GeoCorpora and NEEL, especially when they

were not capitalised. Furthermore, spaCy sometimes incorrectly included the ‘the’

article preceding toponyms like ‘Middle East’ or ‘Mediterranean Sea’, which often

resulted in a failure to match the annotation for the evaluation.

Given differences in annotation procedures and strategies for categorising terms as

toponyms, it is difficult to compare performance across different datasets. Overall,

however, the capability of the spaCy NER component as a toponym recognition

module has been demonstrated to be robust and comparable to state-of-the-art

systems.

Candidate Generation

Next, candidate generation was tested. Coverage was high for all six datasets,

indicating that the candidate generator was able to successfully suggest potential

locations for most toponyms. The only dataset where coverage was slightly lower was

the tweet dataset GeoCorpora. This is likely due to the informal nature of the texts,

for which the candidate generator is faced with matching unusually constructed

toponyms with standardised names from the gazetteer. For example, difficulties

were observed when matching irregular word forms extracted from hashtags, such as

‘MississippiRiver’ or ‘South #losangeles’. Unusual or colloquial abbreviations such

as ‘Richland-ND’ for ‘Richland County, North Dakota’ or ‘SE DC’ for ‘Southeast,

Washington, D.C.’ also returned empty candidate lists for GeoCorpora. Overall,

coverage was always slightly higher on the spaCy subsets than on all toponyms,

likely because spaCy filtered out some of these special forms of toponyms.

The recall was measured to determine how often the correct referent was included

in the generated candidate lists. Candidate generators are often evaluated using

recall@n, assessing whether the correct candidate appears in the first n results from

a ranked list of candidates. For example, Zhang & Bethard (2023) report values

for recall@20 on the GeoWebNews, TR-News and LGL datasets for their Lucene-

based candidate generator of the GeoNorm system, which were 0.87, 0.97 and 0.96,

respectively. Since the candidate generator of Geoparser does not produce ranked

lists, the recall was calculated based on the entire candidate list instead. On the

same datasets, the recall of Geoparser on the entire sets of toponyms was consistently

worse than that of GeoNorm, at 0.77, 0.88 and 0.91, but better than that of the
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other two systems evaluated by Zhang and Bethard, DeezyMatch (Hosseini et al.,

2020) at 0.67, 0.70 and 0.54, and SAPBERT (Liu et al., 2021) at 0.75, 0.78 and 0.74.

A main source of problems for the candidate generator of Geoparser were demonyms,

which occurred frequently in datasets like GeoWebNews, TR-News or LGL. For ex-

ample, searching for ‘African’ would return candidates such as ‘African Banks’,

‘African Lake’ or ‘African Jordan’, but not the candidate ‘Africa’ implied by the

annotators, which constitutes a 0% match for the token-based full-text search engine

underlying the candidate generator. Other instances in which the candidate genera-

tor often showed difficulty in recommending the correct location were abbreviations

such as ‘B.C.’ for ‘British Columbia’. If abbreviations were not recorded in the

gazetteer, the candidate generator was unable to retrieve the implied referents and

instead suggested candidates for which the abbreviation did occur in the name, such

as ‘Marungu B.C.’. In other cases, however, the reason that the correct candidate

was not found was that the annotations were simply inaccurate. For example, to-

ponyms such as ‘University of California’ would sometimes be annotated with the

referent for ‘California’ or ‘Central Europe’ with the referent for ‘Europe’. In such

cases, the candidate generator correctly retrieved candidates for the complete name,

but the incorrect annotation meant that the result would automatically be cate-

gorised as faulty. Finally, in some instances, the annotated GeoNames IDs were no

longer up to date, meaning that attempts to match candidates with the supposedly

correct referent were categorised as errors, even if they would have been correct.

Finally, the length of the generated candidate lists did not vary greatly between

the datasets, except for the LGL corpus, for which lists were, on average, a bit

longer. The fact that toponyms in the LGL corpus resulted in longer candidate

lists indicates that toponyms are potentially more ambiguous than those in other

datasets. This is not surprising, given the way the LGL corpus was constructed.

With the aim of making the dataset more challenging for geoparsing evaluations, the

authors specifically aimed to include articles from newspapers based in places with

highly ambiguous names, the idea being that the articles they publish would more

likely contain ambiguous toponyms (Lieberman et al., 2010). Overall, candidate

lists were observed to be longer for the toponyms in the spaCy subsets than when

all toponyms were processed, suggesting that spaCy filters out toponyms that are

either more difficult to query or just generally less ambiguous.
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Toponym Resolution

Lastly, the complete toponym resolution component was tested. An important con-

sideration in this evaluation is that the outcome of the embedding-based disam-

biguation is strongly influenced by the quality of the preceding candidate generation.

Whenever relevant candidates are not presented for selection, the disambiguator will

automatically fail to make correct predictions as it is forced to choose a candidate

from a list where all of them are incorrect. The recall of the candidate generator

thus forms an accuracy ceiling for the overall performance of the toponym resolution

stage. This is illustrated, for example, by the results for GeoWebNews. For this

dataset, a strong increase in performance from an A161 of 0.68 to 0.83 was observed

when only the spaCy subset was processed compared to the entire set of toponyms.

Much of this difference is likely attributable to the candidate generator, where recall

was particularly low for all toponyms at 0.77 but relatively high at 0.94 for the spaCy

subset. This suggests that spaCy filters out a large proportion of the toponyms con-

tributing to low candidate generation recall and, in doing so, substantially improves

the measured performance for the overall toponym resolution.

However, it is likely that there are also other factors contributing to the overall better

performances on spaCy subsets, as is evident from the results for TUD-Loc-2013. For

this dataset, there were also improvements in the toponym resolution performance

on the spaCy subset compared to all toponyms, however, candidate generation recall

was almost identical for both sets. This suggests that spaCy is likely also filtering out

toponyms that are generally more difficult to resolve, independently of the ability

of the candidate generator to suggest relevant candidates.

Overall, Geoparser was able to achieve competitive toponym resolution performance

for most of the datasets. Exceptions were the three datasets CLDW, NCEN and

WOTR, for which performances were very low. Given that all three of these corpora

are composed of historical documents, a possible explanation for the poor perfor-

mance on these datasets could be an inability of the SentenceTransformer model to

generalise to these new domains. After all, to fine-tune the model underlying the

Geoparser, the LGL corpus, which consists solely of newspaper articles, was used.

Linguistic and structural differences between newspaper articles and historical texts

could have affected the effectiveness of the model when processing documents from

these new domains. Having said that, it is surprising that the performance on the

tweet datasets GeoCorpora and NEEL did not suffer to a similar extent, given the

large differences in both language and structure of tweets compared to news arti-

cles. While it is still likely that out-of-domain usage of the model contributed to the

poor performance on the historical datasets, other factors are likely to have played
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a bigger part in it.

The bigger cause of the poor performance on the historical datasets likely relates to

the gazetteer employed for candidate generation. GeoNames includes some historical

toponyms and even defines dedicated feature types for them (e.g. historical political

entity). However, the coverage of historical toponyms in GeoNames has been shown

to be largely insufficient to meet requirements for spatial analyses of historical doc-

uments (Grover & Tobin, 2014). It is, therefore, likely that the GeoNames-based

candidate generator of Geoparser could have had difficulties suggesting relevant lo-

cations for some of the historical toponyms. However, the fact that these datasets

do not use GeoNames as a source for grounding toponyms also means the degree to

which the gazetteer contributed to the poor performance could not be quantified.

However, this claim is supported by the fact that systems like Adaptive, CamCoder

and CLAVIN, which all also use GeoNames as a gazetteer, had similar performance

ceilings on the historical datasets. The Wikipedia/Wikidata-based systems BLINK

and Bootleg, on the other hand, appear to have performed better on these datasets,

which could indicate that these knowledge bases may provide more comprehensive

coverage of historical toponyms than GeoNames.

Another important consideration when interpreting the measured toponym resolu-

tion performances is the metric used to evaluate them. For example, Geoparser

scored much better compared to other systems when evaluated in terms of AUC,

compared to A161 or MED. The A161 is a metric that treats all predictions with an

error distance of less than 161 km equally, regardless of how precise the predictions

are within this threshold. Similarly, all error distances greater than 161 km are also

considered equally. The AUC, on the other hand, differentiates between continuous

error distances and also accounts for different magnitudes of error distances by loga-

rithmising them. A particularly high AUC can mean that the system produced more

precise predictions, even if overall, fewer predictions fell below the 161 km threshold.

That is because the AUC strongly rewards more accurate predictions compared to

even minor deviations, but can be very forgiving of major outliers. Extreme outliers

can arise, for example, when the evaluation script assigns maximum error distances

of 20039 km to missing predictions, as is the case for Geoparser when empty lists

are produced during candidate generation.

Finally, the runtimes for the toponym resolution process on the complete sets of

all twelve datasets were measured. This was done to get a general impression of

the efficiency of Geoparser and to compare it with existing transformer-based sys-

tems. Unfortunately, a proper comparison could not be made as the systems to

be compared were not operated on the same platform used for running Geoparser.
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However, an approximate comparison could be made with the runtimes measured by

Hu et al. (2023a) using the same twelve datasets. For the transformer-based systems

BLINK, Bootleg, GENRE, ExtEnD and LUKE, they used a NVIDIA Tesla V100

GPU and measured runtimes of 40.4h, 3.2h, 22.6h, 3.5h and 6.5h. In comparison,

Geoparser only required 0.9h to complete the same task using a NVIDIA Tesla T4.

Considering that the GPU used for running Geoparser has only half the number of

CUDA cores of the GPU used by Hu et al. (2023a), it is possible that Geoparser

would have performed even better in a direct comparison.

7.1.2 Second Experiment

The second experiment aimed to investigate how well the Geoparser could be opti-

mised for specific domains by further fine-tuning it on small amounts of data from

different corpora. The baseline model for this experiment was the model from the

first experiment, which was trained on the complete LGL corpus of newspaper arti-

cles. It was then further fine-tuned using subsets of toponyms from five additional

datasets, consisting of tweets (GeoCorpora), scientific articles (SemEval-2019-12),

and news articles (GeoWebNews, TR-News and TUD-Loc-2013).

It was observed that further fine-tuning with data from new domains led to improved

performances on datasets from these respective domains. For example, fine-tuning

with subsets of the tweet dataset GeoCorpora led to improvements on the test set

of GeoCorpora itself and on the other tweet dataset NEEL, with increases in A161

of up to 0.07 and 0.05, respectively. Similarly, further fine-tuning using training

data from SemEval-2019-12 led to improvements in A161 of up to 0.05 on the test

set of that same corpus. Additional training with toponyms from the remaining

three datasets, which all consist of newspaper articles, on the other hand, resulted

in little or no change in performance across most of the other newspaper article

corpora. This suggests that further training on domains differing from the original

training data indeed improves the quality of toponym resolution for these domains.

In doing so, the size of the subset used for additional training seems to be of limited

importance, given that improvements in performance did not grow proportionally

with the amount of training data used.

In some cases, additional training also led to drastic changes in performance on other

datasets. For example, it is unclear why the quality of toponym resolution on the

WikToR dataset deteriorated so much after fine-tuning using any of the five training

corpora. Furthermore, datasets such as CLDW or NCEN also showed unexpected

results, with both positive and negative changes in performance, sometimes even
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varying between different subsets of the same training corpus. For example, fine-

tuning with training data from GeoCorpora led to better overall performance on

the CLDW dataset, except for the training subset of 400, for which performance

dropped anomalously.

A possible explanation for these sudden changes in performance could be overfitting

caused by specific training subsets, through which the model acquired a bias for

certain interpretations of toponyms. For example, a sample from evaluations on the

CLDW dataset showed that the baseline model correctly resolved 91% of the 533

occurrences of the toponym ‘Penrith’. After fine-tuning the model with increasing

subsets from the GeoCorpora corpus, the rate of correctly resolved occurrences of

this toponym fluctuated slightly but was particularly bad after fine-tuning with the

subset of 400, after which the model was unable to resolve the toponym correctly

even once. This suggests that the model learned to interpret this toponym in a

specifically erroneous way based on new training examples introduced in that subset.

Such rapidly developed distortions, especially for frequently occurring toponyms,

would explain why the performance in some cases changed so drastically even from

one subset to the next. The fact that such biases were able to be acquired with

just small amounts of training data suggests issues with training hyperparameter

settings, which were, in fact, not optimised in the context of these experiments.

7.2 Limitations

Although the experiments that were conducted provided valuable insights into the

capabilities of Geoparser, there are a few limitations that affect the interpretation

and generalisability of the results. A first limitation is presented by the fact that

the experiments were conducted only with a GeoNames-based candidate generator,

while the annotated toponyms were grounded with GeoNames for only six of the

twelve datasets. Whether the source gazetteer used for annotations matches that of

the candidate generator can, however, have a major influence on its ability to propose

relevant candidates and, thus, also on the overall performance of toponym resolution.

Generating candidates for toponyms in GeoNames-based datasets offers an inherent

advantage for GeoNames-based candidate generators, as relevant candidates are

guaranteed to exist in the gazetteer, as toponyms would otherwise not have been

annotated with coordinates in the first place.

For toponyms in datasets that have not been grounded using GeoNames, however,

it is likely that some locations will not be found in GeoNames. Toponyms may

refer to locations that are missing from GeoNames, and thus, relevant candidates
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are potentially never proposed, preventing toponyms from being resolved correctly.

Instead, they are grounded using other knowledge bases such as Wikipedia, Open-

StreetMap or Unlock, which are likely to have been specifically selected because of

more suitable coverages for the geographical scope of the respective datasets. Con-

sequently, it is expected that a GeoNames-based candidate generator would perform

worse on these datasets than on those based on GeoNames. However, since candi-

date generation recall could not be measured without annotated GeoNames IDs for

toponyms, it remains unclear, for example, how much of the poor performance on

the three historical corpora CLDW, NCEN and WOTR is ultimately attributable

to the choice of gazetteer.

Next, the datasets used for the experiments are diverse in structure and thematic

focus, allowing for comparisons to be made across different domains. Nevertheless,

the datasets are still exclusively English-language texts. This substantially limits

the generalisability of the findings and leaves open how well the proposed method

might perform for other languages. That said, being able to use Geoparser for

other languages is one of the fundamental design goals of the library. Users can

choose from a variety of different language spaCy models, and there are several

multilingual SentenceTransformer models that can be fine-tuned to disambiguate

toponyms. However, it is unknown whether and how well the architecture of the

Geoparser, which was designed based on requirements for English texts, will work for

other languages. Different languages may have unique requirements for geoparsing

tasks that extend beyond the language of neural models (Leppämäki et al., 2024).

Investigating the applicability of Geoparser for individual languages will, therefore,

be an important aspect of future work.

Replicating the evaluation framework of Hu et al. (2023a) for evaluating toponym

resolution performance provided major benefits for comparisons with state-of-the-

art systems. However, it also introduced limitations, especially with respect to the

choice of evaluation metrics. Point-based error distance metrics such as A161, MED,

and AUC can make it difficult to interpret system performances, which was also

highlighted by Geoparser’s metric-dependent performance ranking. Furthermore,

the choice of gazetteers used for grounding locations can also considerably influence

the computed performances (Leppämäki et al., 2024; Gritta et al., 2020). Different

gazetteers may assign different coordinates to the same location, which can lead to

erroneous interpretations of predictions during evaluation, especially for locations

spanning large areas. This provides an additional advantage for GeoNames-based

systems on GeoNames-grounded datasets, for which predictions of correct locations

will always match the geographical positions provided in the annotations. Hu et al.

(2023a) address this problem by removing toponyms of large-area locations such
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as ‘Canada’ or ‘Russia’ before the evaluation. A potentially better solution would

be the use of polygon-based evaluation methods that assess predictions based on

containment or overlap with annotated polygons (Leppämäki et al., 2024; Zhang

& Bethard, 2024). However, such methods are difficult to implement due to the

limited availability of polygon geometries in most gazetteers, especially for small-

scale locations.

Finally, it should be mentioned that the experiments were conducted without any

attempts to optimise performance. Many elements of the Geoparser configuration,

such as the format of the textual representations of location candidates, the choice

of the SentenceTransformer base model or the hyperparameters used for fine-tuning,

were specified without investigating how different configurations could affect over-

all performance. This has, in some cases, led to issues, such as in the domain

adaptation experiment, where poorly configured settings are likely the cause of the

observed unexpected behaviours. Given the multitude of possible adjustments and

settings that could be considered when configuring Geoparser, it is likely that a thor-

ough optimisation of the individual components could potentially lead to improved

performance. Therefore, an important goal for future work will be to systemati-

cally investigate and evaluate various configuration parameters to fully realise the

potential of Geoparser.

7.3 Future Work

The presented results have demonstrated that Geoparser, in its current form, was

able to achieve competitive performance and particularly stood out for its efficient

use of a transformer model. However, it was outperformed by some state-of-the-art

systems with respect to the accuracy of toponym resolution predictions and showed

particularly poor performance on selected datasets. Given the still prototypical

nature of Geoparser, it is likely that the full potential of the proposed method has

not yet been realised and that the optimisation of individual system components

could improve overall performance.

For example, there are a variety of different SentenceTransformer models that could

be used as base models for creating embeddings. For the conducted experiments, the

all-distilroberta-v1 model was used, which was originally trained as a general-

purpose model for text similarity tasks. However, other models exist that were

trained for different specific tasks, such as semantic search or question answering,

which could potentially have different effects on the final performance for the task of

toponym resolution. There are also larger-scale SentenceTransformer models, which,
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although likely to have a negative impact on the efficiency of the system, could po-

tentially lead to better performance. Finally, the SentenceTransformer framework

also offers fundamentally different model architectures that may be better suited for

disambiguating toponyms. One example would be an asymmetric model architec-

ture, where two separate models would be employed for the encoding of candidates

and toponyms.

Another important consideration when using SentenceTransformer models is the

employed pooling method. In the current version, default mean pooling was used,

which means that toponyms are represented based on averaged token embeddings

of all the tokens in the provided context. For general text similarity tasks, this is

a reasonable strategy to capture information about the entirety of the text. For

toponym resolution, however, the focus should be on the toponym itself, which is

not ideally done with mean pooling. Embeddings generated for toponyms are likely

obscured by other words in the context, leading to potentially unreliable cues during

disambiguation. A better alternative to mean pooling would be to directly use token

embeddings of the toponyms in question. Token embeddings would likely represent

toponyms more distinctively while still incorporating relevant information from the

context, thanks to the attention mechanism of transformer models. However, imple-

menting such a custom pooling method requires more complex adaptations to the

SentenceTransformer framework, which natively does not support such representa-

tion formats.

Furthermore, default configurations provided by the SentenceTransformer library

were used for the fine-tuning of models. In future work, these should be optimised

for the task at hand to avoid potential bottlenecks caused by improper hyperpa-

rameters. Similarly, the choice of loss function used for training should also be

investigated. For the conducted experiments, a contrastive loss function was used,

which distinguishes between correct and incorrect candidates in a binary fashion.

However, candidates may also be considered more or less similar for a particular

toponym, and differentiating between different candidates, for example, based on

their geographical position, could allow more nuanced distinctions between repre-

sentations of locations. This could be implemented, for example, using a cosine

similarity loss function, where distances of candidates to locations referenced by

toponyms would be specified as continuous labels for training examples.

The construction of training examples also requires careful examination. Currently,

a positive training example and a variable number of negative training examples are

created for every toponym. In doing so, the number of negative training examples

is limited only by the number of potential candidates for the respective toponym.
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For unambiguous toponyms, on the other hand, no negative training examples are

created at all since only the correct candidate is suggested for those. While this

approach maximises the number of training examples that can be created from lim-

ited training corpora, it can also lead to largely unbalanced training data. The

effect of this imbalance should be assessed and potentially addressed, for example,

through random sampling of incorrect candidates and discarding training examples

for unambiguous toponyms. Furthermore, other strategies for creating training ex-

amples could be explored. For example, a careful selection of candidates for creating

negative training examples could potentially improve the quality of training data.

This could be done, for example, based on the distances of candidates to toponym

locations or by filtering candidates based on certain feature types.

Another aspect to be considered is the way in which candidate locations are textu-

ally represented. For the conducted experiments, candidates were represented using

five attributes retrieved from GeoNames, which were used to construct an artifi-

cial sentence in the format: [name] ([feature type]) in [admin2], [admin1],

[country]. Further attributes from GeoNames could potentially be incorporated,

such as the name of third-order administrative divisions or numerical attributes,

such as population numbers or geographical coordinates. Opportunities for inte-

grating more detailed information about places would arise from using other knowl-

edge bases like Wikidata, which contain more diverse information about places in

the form of graph-based statements, such as Zurich - part of - Greater Zurich

Area. Also, unstructured descriptions of locations, for example, in the form of text

extracted from corresponding Wikipedia entries, as done by Wu et al. (2020) for

BLINK, could be a way to increase information in location representations. However,

choosing knowledge bases like these also means potentially limiting the coverage of

toponyms, as they often generally have worse location coverage than specialised

gazetteers like GeoNames.

Finally, an integral part of future work on the Geoparser library will be the in-

tegration of additional gazetteers or knowledge bases for candidate generation. It

was illustrated how much the quality of toponym resolution results depends on the

employed gazetteer being suitable for the requirements of individual text corpora.

These requirements may be geographic, like the availability of fine-grained locations

for specific regions, or thematic, such as coverage of historical toponyms. Extending

the library to include additional information sources is an important part of the

ability to adapt the geoparsing pipeline to individual requirements. The architec-

ture of Geoparser provides the necessary interface for such extensions, which makes

it possible to integrate new gazetteers in a modular way.
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This thesis has explored the use of transformer models for toponym resolution. The

motivation behind this work was the challenge to make use of the advanced natu-

ral language processing capabilities of transformer models for disambiguating loca-

tion references without compromising efficiency and scalability. To this end, a new

method was proposed that uses a bi-encoder-based ranking approach built on the

SentenceTransformers framework, allowing toponyms within texts to be efficiently

compared with location candidates from a gazetteer.

One of the main contributions of this work was integrating the proposed method

into a dedicated geoparsing pipeline, which was published as an open-source Python

library under the name Geoparser. The library makes use of the NER functionality

of spaCy for toponym recognition and uses specially fine-tuned SentenceTransformer

models for disambiguating toponyms. Thanks to its modular architecture, the li-

brary can be flexibly adapted to different scenarios. Users can employ different

models and knowledge bases to suit individual requirements of specific text corpora

and customise models by fine-tuning them or training them from scratch.

Geoparser was evaluated by replicating the evaluation framework of Hu et al. (2023a),

which allowed direct comparability with existing toponym resolution systems. The

experiments showed that the proposed method achieved competitive performance on

several datasets, standing out in particular for its low runtimes. The system’s abil-

ity to adapt to different text domains was also investigated. By further fine-tuning

the model on small amounts of data from domain-specific corpora, improvements in

performance on corresponding datasets were obtained.

In summary, this work has shown that transformer models can indeed be used

both efficiently and effectively for resolving toponyms despite their computationally

expensive nature. Given the prototypical nature of Geoparser, it is likely that op-

timisations to the model architecture and training processes could further improve

the overall performance of the system. Given the flexibility of Geoparser to be easily

adapted for different scenarios, it has the potential to become a viable solution for

a wide range of real-world applications.
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Appendix

The following pages contain supplementary figures referenced in Chapter 6, provid-

ing additional visualisations of the results in terms of Mean Error Distance and Area

Under the Curve.
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Figure 5: Toponym resolution Mean Error Distance on all toponyms in the
datasets (dark blue) and on the spaCy subsets (light blue);
*** indicates the best system, ** the second-best, and * the third-best
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Figure 6: Toponym resolution Area Under the Curve on all toponyms in the
datasets (dark blue) and on the spaCy subsets (light blue);
*** indicates the best system, ** the second-best, and * the third-best
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fine-tuning (model deterioration in orange and improvement in green)
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Figure 8: Area Under the Curve deviation from baseline model after further
fine-tuning (model deterioration in orange and improvement in green)
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