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ABSTRACT	

	
The	rise	of	new	Big	Data	sources	such	as	cellular	network	data	has	allowed	us	to	observe	and	
comprehend	 human	 behavior	 and	 the	 interactions	 between	 them	 and	 the	 environment	 on	 a	
much	 deeper	 level.	 This	 leads	 to	 both	 new	 research	 opportunities	 as	 well	 as	 challenges.	
Transport	mode	 detection	 plays	 a	 key	 role	 directly	 or	 indirectly	 in	many	 fields	 such	 as	 urban	
planning,	 epidemiology,	 transportation	 science	 and	 many	 more.	 Improving	 travel	 demand	
surveys	is	an	important	driving	factor	and	motivation	in	this	research.	Aspects	like	scalability	of	
these	 alternatives	 are	 critical	 considerations	 in	 their	 development	 in	 terms	 of	 data	 collection	
and	 processing.	 Researchers	 have	 looked	 to	 Global	 Positioning	 Systems	 (GPS)	 in	 the	 form	 of	
loggers	 or	 GPS-enabled	 mobile	 phones,	 as	 well	 as	 Call	 Detail	 Records	 (CDR)	 as	 alternatives.	
While	these	methods	have	shown	promising	results,	they	are	not	without	flaws.			
	
The	 aim	 of	 this	 research	 is	 thus	 to	 design	 a	 methodology	 that	 can	 detect	 modes	 of	
transportation	 from	 another	 more	 unknown	 type	 of	 data,	 cellular	 signaling	 data.	 Cellular	
signaling	 data	 does	 not	 require	 overhead	 as	 it	 can	 be	 described	 as	 data	 crumbs	 leftover	 by	
everyday	 usage	 of	 one’s	 cellphone.	 Based	 on	 the	 results,	 we	 can	 present	 a	 deeper	
understanding	 into	 the	data	 characteristics	 and	 its	potential	 in	understanding	human	mobility	
flows	in	cities.		This	research	will	present	a	set	of	supervised	and	unsupervised	methods	that	are	
applied	 to	 data	 that	 is	 collected	 in	 Vienna	 and	Graz	 (Austria)	 in	 two	 separate	 data	 collection	
campaigns	 by	 a	 group	 of	 2	 and	 9	 participants.	 The	 results	 from	 the	 proposed	methods	 show	
promise	 and	 are	 comparable	 to	 existing	 GPS	 studies	 of	 the	 same	 aim.	 The	 best	 performing	
method,	 a	 hybrid	method	 of	 rule-based	 heuristics	 and	 supervised	 random	 forest	managed	 to	
correctly	distinguish	between	U-Bahns,	 S-Bahns,	 cars,	bikes	and	walk	modes	73%	of	 the	 time.	
Rule-based	 methods	 perform	 especially	 well	 on	 rail	 modes	 (U-Bahn/S-Bahn).	 For	 the	 more	
similar	modes	(cars,	bikes	for	example),	random	forest	does	the	best	at	distinguishing	between	
these	modes.	While	 unsupervised	methods	 are	 not	 able	 to	 achieve	 the	 same	 accuracies,	 the	
results	are	still	comparable	with	a	68%	accuracy	achieved	with	the	partitioning-around-medoid	
technique.		
	
	
Keywords:	 Transport	 mode	 detection,	 cellular	 signaling	 data,	 fuzzy	 logic,	 rule-based	 heuristic,	
random	forest,	unsupervised	clustering,	principal	component	analysis	
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	CHAPTER	1
Introduction	

	

1.1 Context	and	Motivation	

	
	“Research	in	human	movement	in	time	and	space	has	been	around	for	at	least	
over	five	decades”	-	(Weiner,	1986).	

Research	in	human	movement	has	been	given	a	huge	helping	hand	with	the	rise	of	new	Big	Data	
sources	such	as	mobile	phone	call	detail	records	or	social	media	records	with	location	tags.	We	
now	have	the	ability	to	observe	and	comprehend	human	behavior	and	how	they	 interact	with	
their	 environment	 on	 an	 unprecedented	 level	 of	 detail.	 This	 leads	 to	 both	 new	 research	
opportunities	 as	well	 as	 challenges.	 Such	 location-based	 data	 can	 give	 us	 valuable	 insights	 to	
human	movement	 in	both	time	and	space	once	new	techniques	are	developed	to	harness	this	
potential	 (Zook	et	al.,	2015).	The	global	 spread	of	mobile	 technologies	 for	communication	has	
brought	the	world	closer	together	whilst	also	resulting	in	the	existence	of	an	unparalleled	data	
source	capable	of	describing	diverse	dealings	 in	 the	world	of	human	and	social	behavior.	One	
example	 of	 this	 is	 the	 Call	 Detail	 Records,	 the	 byproduct	 of	 billing	 services	 for	 calls,	 which	
include	timestamps	and	location	coordinates	of	these	transmissions.	These	widespread	datasets	
can	 reveal	 compelling	 information	 on	 patterns	 on	 an	 individual	 as	 well	 as	 collective	 scale	
(Blondel	 et	 al.,	 2015).This	 is	 a	 passive	 data	 type	 which	 is	 usually	 by-products	 of	 existing	
structures	that	were	generated	for	purposes	that	were	not	for	but	could	potentially	be	used	for	
research	(Chen	et	al.,	2016).	Other	passive	data	types	include	social	media	data	that	have	been	
posted	 voluntarily	 by	online	users	 (Gonzalez	 et	 al.,	 2008)	 and	 transit	 card	data	used	 in	 public	
transport	systems	(Hasan	et	al.,	2013;	Liu	et	al.,	2009).	
	
One	important	group	of	benefactors	of	this	data	is	those	in	the	field	of	transport	science.	Urban	
planners,	 policy	makers	 and	 transport	management	 are	 interested	 in	 how	people	 travel,	 how	
infrastructure	 and	 the	 environment	 affect	 movement,	 and	 of	 course,	 in	 obtaining	 a	 realistic	
picture	of	travel	demand.	In	doing	so,	many	other	fields	can	benefit	from	it.	In	this	vein,	these	
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mobile	phone	traces	have	been	used	to	further	several	aims	such	as	estimating	human	mobility	
patterns	and	population	distribution	(Calabrese	et	al.,	2015;	Gonzalez	et	al.,	2008,	2010;	Sevtsuk	
and	Ratti,	2010;Reades	et	al.,	2007),	analysis	urban	activities	(Jiang	et	al.,	2013;	Ricciato	et	al.,	
2017;	Widhalm	et	al.,	2015),	generating	Origin-destination	flows	(Calabrese	et	al.,	2011;	Horn	et	
al.,	2017;	Kalatian	and	Shafahi,	2016;	Tettamanti	et	al.,	2012;	Wang	et	al.,	2010),	and	many	more.	
All	 these	pursuits	 are	of	 great	 interest	 to	 the	 field	of	 transportation	 science	 and	planners	 are	
looking	 into	how	best	 to	yield	 this	 information	 for	 cities’	 transportation	 systems.	Singapore,	a	
rapidly		growing,	densely	populated	metropoliton	city	is	using	decade	long	demand	forecasts	on	
their	 public	 transportion,	 among	 other	 planning	 sectors	 such	 as	 land	 use	 and	 urban	
redevelopemnt	planning.	Their	SmartMobility20301	initiative	is	leading	the	way	in	incorporating	
such	location	data	to	plan	the	nations	transit	needs	and	is	continueing	to	grow	in	this	area.		
	
When	we	have	a	better	understanding	of	human	and	traffic	flows,	we	gain	greater	insights	and	
management	 capabilities	 for	 traffic	 congestion,	 health	 monitoring,	 elderly	 care	 and	 even	
epidemiology.	 One	way	 this	 can	 be	 done	 is	 by	 understanding	 the	 transport	mode	 choices	 of	
people	 and	 this	 is	 achieved	 through	 collecting	 information	 through	 travel	 demand	 surveys	 or	
travel	diaries.	Improving	travel	demand	surveys	is	an	important	driving	factor	and	motivation	in	
this	 research.	 Aspects	 like	 scalability	 of	 these	 alternatives	 are	 critical	 considerations	 in	 their	
development	 in	 terms	of	data	collection	and	processing.	For	example,	 traditional	 surveys	may	
take	the	form	of	manual	collection	and	 labeling,	 like	telephone	 interviews	and	questionnaires.	
Inaccuracies	are	introduced	as	a	result.	Researchers	have	looked	to	Global	Positioning	Systems	
(GPS)	 in	 the	 form	 of	 loggers	 or	 GPS-enabled	mobile	 phones,	 as	 well	 as	 CDRs	 as	 alternatives.	
Another	 motivation	 is	 context-aware	 location-based	 services.	 Transportation	 modes	 such	 as	
walking,	cycling	or	train	denotes	certain	characteristics	of	a	user.	One	use	of	this	knowledge	is	
targeted	 and	 customized	 advertisements	 that	 may	 be	 deployed	 to	 the	 relevant	 markets.	 As	
people	 have	 began	 to	 see	 the	 large	 potential	 of	 these	 datasets,	 and	 while	 our	
telecommunications	 infrastructure	has	 improved	 leaps	and	bounds,	 so	have	 the	quality	of	 the	
cellular	network	data	that	comes	with	it.	A	step	up	from	the	usual	CDR	data	is	Cellular	Signaling	
Data	 (CSD).	 CSD	 consists	 of	 not	 some	 normal	 CDRs,	 but	 other	 cellular	 network	 related	 data	
including	both	network	and	event-driven	data	(section	3.4.2).	With	an	additional	map-matching	
step,	 CSD	 ultimately	 lends	 itself	 an	 increased	 spatial	 and	 temporal	 resolution.	 Similar	 to	 ad	
targeting	 strategies	 of	 some	 social	media	 platforms,	 there	 are	 potential	 avenues	 to	 generate	

                                                

1https://www.lta.gov.sg/content/dam/ltaweb/corp/RoadsMotoring/files/SmartMobility2030.pdf	



3	

 

more	revenue	with	more	targeted	and	customized	services.	Telecommunication	providers	have	
taken	 notice	 and	 begun	 to	 invest	 in	 developing	 techniques	 to	mine	 information	 and	 provide	
access	 to	 this	 data.	 As	 such,	 this	 thesis	 will	 attempt	 to	 achieve	 the	 aims	 of	 transport	 mode	
detection	with	CSD.	
	
This	research	is	in	collaboration	with	Parkbob,	a	rapidly	growing	company	that	delivers	context-
aware	parking	 information	 to	drivers	as	well	 as	using	predictive	models	with	 real-time,	 crowd	
sensed	 data	 to	 provide	 parking	 availability	 information.	While	 this	 is	 in	 the	 realm	 of	 LBS,	 the	
motivation	 for	 this	 is	 largely	 driven	 by	 the	 desire	 to	 understand	 the	 transport	 demand	 that	
drives	the	need	for	this	LBS,	and	is	hence	lies	more	in	the	vein	of	transportation	science.	
	
	
	

1.2 Problem	statement	and	research	aims	

	
With	 the	 aims	 of	 transport	mode	detection	 in	mind,	 CSD	offer	 a	much	more	 opportunities	 in	
terms	 of	 types	 of	 modes	 and	 performance	 due	 to	 its	 higher	 quality.	 However,	 despite	 this	
passive	data	type	having	the	advantages	of	large	sample	size	and	long	observation	periods,	they	
also	 have	 obvious	weaknesses:	 cell	 phone	 traces	 can	 be	 sparsely	 sampled	 in	 time	 during	 idle	
periods,	they	might	provide	only	a	low	spatial	resolution	and	include	noise	stemming	from	pure	
signal	movement.	 Therefore	 the	data	has	 to	be	 carefully	processed	 to	extract	 trip	origins	 and	
destinations.	 Access	 is	 also	 hindered	 due	 to	 varying	 privacy	 and	 business-sensitivity	
considerations.	 Many	 of	 the	 previous	 studies	 involving	 cellular	 network	 data	 for	 mobility	
analysis	have	been	limited	to	CDRs	and	have	come	up	with	methods	to	alleviate	the	impact	of	
these	challenges	(Qu	et	al.,	2015;	Wang	et	al.,	2010).	It	was	only	recently	that	companies	have	
allowed	 access	 to	 this	 new	 cellular	 signaling	 data	 whose	 greater	 detail	 means	 much	 more	
information	can	be	mined	as	compared	to	CDR.	The	main	challenge	here	however,	 is	handling	
the	 still	 much	 lower	 spatial	 and	 temporal	 resolutions	 associated	 with	 this	 passive	 data	 type	
without	 having	 to	 actively	 solicit	 other	 supplementary	 data	 in	 a	 time	 and	 resource	 intensive	
manner.	 Privacy	 concerns	 also	 mean	 that	 existing	 studies	 do	 not	 have	 ground	 truth	 data	 to	
evaluate	their	results.	Because	of	this,	the	number	of	modes	that	have	been	distinguished	using	
passive	 mobile	 phone	 data	 has	 been	 rather	 limited,	 usually	 to	 between	motorized	 and	 non-
motorized,	or	private	and	public	transportation	modes.	
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As	 such,	 the	 aim	 of	 this	 paper	 is	 to	 overcome	 the	 restrictions	 of	 active	 data	 types	 (GPS)	 and	
passive	data	types	(CDR-only)	 for	mode	detection	and	propose	novel	methods	for	this	relative	
newcomer,	CSD,	while	also	accounting	for	its	low	and	irregular	spatial	and	temporal	resolution.	
The	study	area	consists	of	two	major	cities	in	Austria,	Vienna	and	Graz.	The	modes	of	transport	
of	 interest	will	be	both	private	and	public	transportation	modes:	car,	bike,	walk,	 	tram,	S-Bahn	
(commuter	trains)	and	U-Bahn	(metro).	This	 is	also	limited	by	the	amount	of	actual	data	made	
available	to	this	study.	Methods	that	are	taken	from	existing	CDR	and	GPS	studies,	whether	 in	
part	or	 in	whole,	will	be	adjusted	so	that	 they	are	more	suitable	 to	deal	with	the	unique	data	
characteristics	of	CSD.	This	 thesis	will	consist	of	 two	main	parts.	First,	 several	methods	will	be	
developed	using	combined	approaches	of	several	popular	mode	detection	methods	proposed	by	
several	 existing	 studies.	 This	will	 include	 both	 scenarios	whereby	 labels	 are	 available	 and	 the	
more	likely	ones	whereby	they	are	not.	The	second	part	will	evaluate	the	performances	of	these	
proposed	approaches,	and	compare	them	based	on	various	performance	metrics.	
	
	

Research	 Question	 1:	 Development	 and	 Implementation:	 How	 can	 various	 modes	 of	
transportation	 (walk,	 bus,	 tram,	 car)	 be	 detected	 from	 cellular	 signaling	 data	 (CSD)	
considering	its	lower	and	more	irregular	spatial	and	temporal	resolution?		
	
Hypothesis	 1:	 	 Due	 to	 the	 unique	 characteristics	 of	 this	 dataset,	 tailoring	 existing	
methods	to	be	applied	here	can	detect	various	modes	of	transportation.	This	is	possible	
by	distinguishing	between	their	spatiotemporal	characteristics	as	well	as	complementary	
common	 sense	 information	 such	 as	 locations	 of	 transport	 networks.	 Supervised	mode	
detection	methods	developed	here	would	follow	a	combination	of	rule-based	heuristics	
and	 fuzzy	 logic	 systems	 or	 machine	 learning.	 Unsupervised	 mode	 detection	 methods	
would	follow	a	clustering	approach	combined	with	unsupervised	random	forests.	These	
methods	will	use	variables	selected	through	various	variable	selection	measures.	
		

Following	 the	 implementation	 of	 this	 developed	 methods	 the	 next	 question	 addresses	 their	
performance	 and	 quality	 and	 determines	 the	 best	method	 that	 should	 be	 adopted	 for	mode	
detection	 in	 urban	 areas	 for	 these	 particular	 modes	 of	 interest.	 Using	 various	 performance	
metrics,	the	results	of	these	proposed	methods	will	be	compared	against	each	other	as	well	as	
against	those	in	existing	studies	to	give	an	idea	of	how	well	the	chosen	method	performs.	
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Research	 Question	 2:	 Evaluation	 and	 comparison:	 How	 do	 these	 proposed	 methods	
(RQ1)	 perform	 and	 compare	 against	 each	 other?	Which	 is	 the	 best	 method	 of	 mode	
detection	 for	 detecting	 these	 modes	 of	 transportation?	 What	 are	 the	 most	 useful	
features	for	transport	mode	detection	using	CSD?		
Hypothesis	 2:	 The	 results	 of	 these	 algorithms	 will	 be	 compared	 against	 ground	 truth	
provided	 by	 the	 data	 collectors’	 annotations.	 Due	 to	 the	 noisier	 and	 dirtier	
characteristics	 of	 CSD	 as	 compared	 to	 GPS	 data,	 it	 is	 likely	 that	 the	 inclusion	 of	
contextual	data	such	as	GIS	data	of	the	transportation	network	to	supplement	the	CSD	
will	lead	to	better	performances	of	the	methods.	
	
	
	

1.3 Main	expected	outcomes	

	
The	main	 contribution	of	 this	 thesis	 is	 thus	a	methodology	 to	detect	modes	of	 transportation	
from	 CSD	 data	 based	 on	 their	 spatial	 and	 temporal	 features.	 A	 set	 of	 methods	 that	 are	
permutations	of	various	existing	approaches	will	be	proposed	with	the	goal	of	 finding	the	one	
best	suited	to	CSD	after	evaluating	their	results.	This	will	be	a	novel	contribution	to	the	field	as	
transport	mode	detection	using	CSD	is	still	very	much	in	its	infancy.	
	
	
	

1.4 Thesis	structure	

	
A	 summary	 of	 related	 works	 will	 be	 presented	 in	 the	 next	 chapter,	 chapter	 2.	 It	 will	 also	
highlight	the	pros	and	cons	of	existing	mode	detection	methods	and	how	lessons	learned	from	
them	 are	 used	 in	 the	 development	 and	 creation	 of	 our	 proposed	 methods.	 Following	 this,	
chapter	 3	 will	 give	 an	 overview	 of	 the	 data	 and	 chapter	 4,	 the	methods	 proposed	 for	mode	
detection	 in	 this	 study.	 The	 evaluation	 results	 will	 be	 presented	 in	 chapter	 5,	 along	 with	
sensitivity	 analyses	 of	 the	 chosen	 parameters.	 Upon	 discussion	 of	 these	 various	 methods	 in	
Chapter	6,	the	method	(/s)	deemed	as	best	and	most	suited	for	CSD	will	be	recommended.	Both	
research	questions	as	well	as	limitations	of	the	study	will	also	be	discussed	in	this	chapter.	Lastly,	
Chapter	 7	 concludes	 the	 study	 with	 a	 summary	 as	 well	 as	 considerations	 for	 future	 work.
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	CHAPTER	2
BACKGROUND	AND	RELATED	WORK	

	
	

2.1 The	world	of	transportation	

	
Recent	decades	of	massive	population	growth	combined	with	the	huge	influx	of	urban	migration	
has	called	 for	 the	need	 to	manage	our	urban	 resources	 in	a	more	effective	way	 to	streamline	
already	 limited	 resources.	 Transportation	 is	 one	 of	 these	 key	 issues	 that	 growing	 populations	
have	to	grapple	with,	as	it	 is	an	unavoidable	aspect	of	everyday	life.	Motivated	by	the	need	to	
better	serve	society,	cities	need	to	be	able	to	forecast	future	travel	demand	so	as	to	channel	the	
right	investments	in	the	right	volumes	to	the	right	places,	such	as	to	large-scale	transportation	
projects.	Much	 effort	 has	 gone	 into	 seeking	 to	 develop	models	 that	 predict	where	 and	when	
people	travel	to,	how	they	do	it,	and	what	affects	these	choices.	Information	like	how	transport	
networks	perform	in	terms	of	congestion	and	flow,	or	how	route	and	mode	choices	respond	to	
road	pricing	schemes	are	extremely	important	in	aiding	dense	cities	keep	up	with	the	increasing	
pressures	 and	 demands	 of	 a	 growing	 population.	 By	 evaluating	 that	 information,	 decision	
makers	 are	 offered	 valuable	 insights	 into	 urban	 activities	 and	 movement	 flows,	 enabling	
themselves	 into	making	 the	best	and	most	prudent	decisions	 for	 the	good	of	 the	people	 they	
serve	 (Rasmussen	 et	 al.,	 2015).	 For	 example,	 urban	planners	 can	make	 a	 city	more	 livable	 by	
mitigating	 congestion	 and	 planning	 for	 developments	 to	 cater	 to	 high	 volumes	 of	 people.	
Transport	planners	can	understand	 the	mobility	patterns	 in	greater	depth,	knowing	 times	and	
locations	of	 traffic	hotspots	on	 the	 roads,	as	well	 as	on	 the	 transit	networks.	Even	companies	
who	want	to	streamline	their	products	and	services	can	do	so	to	those	who	need	it	most.	In	the	
grander	scheme	of	things,	models	that	can	predict	how	people	travel	in	time	and	space	can	help	
in	 the	 fight	 to	 reduce	 our	 global	 carbon	 footprint.	 Our	 reliance	 on	 motorized	 forms	 of	
transportation	 is	one	of	 the	key	driving	 forces	of	climate	change,	 further	motivating	 transport	
researchers	 and	 providers	 to	 strive	 towards	 more	 sustainable	 transport	 networks,	 one	 that	
promotes	the	use	of	non-motorized	or	public	transportation	for	example.		
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2.2 Transport	mode	detection	

	
A	key	way	to	achieve	a	greater	understanding	of	human	travel	patterns	is	an	understanding	of	
the	modes	of	transportation	they	take,	as	well	as	its	corresponding	temporal	distributions.	This	
problem	has	been	tackled	differently	based	on	the	what	objective	of	the	researchers	is	and	can	
be	 summarised	 into	 three	 main	 branches	 (Prelipcean	 et	 al.,	 2017).	 First	 is	 Location-Based	
Services	(LBS)	whereby	the	goal	 is	to	detect	the	mode	as	close	to	real	time	as	possible	so	that	
important	and	relevant	information	can	be	given	to	the	commuters	or	interested	parties	at	the	
suitable	 times	 and	 places,	 such	 as	 with	 Parkbob’s	 smart	 car	 parking	 application2.	 This	 “on-
demand”	kind	of	mode	detection	is	in	line	with	many	cities	aspirations	toward	a	fully	functional	
smart	city,	where	resources	can	be	allocated	on	the	fly	to	places	or	people	who	require	them.	
Another	 huge	 and	 long-standing	 branch	 is	 transportation	 science,	 which	 aims	 to	 generate	
reliable	 and	 usable	 statistical	 data	 on	 usage	 of	 the	 transport	 system.	 This	 data	 is	 ued	 as	 the	
foundation	 to	 answer	 many	 city	 planning	 questions	 and	 further	 many	 of	 the	 applications	
mentioned	 previously.	 With	 such	 valuable	 uses	 of	 this	 data,	 transportation	 scientists	 have	
continually	tried	to	gather	this	information	mainly	in	the	form	of	actively	solicited	travel	diaries,	
or	 paper,	 internet	 and	 phone	 surveys	 (Rojas	 et	 al.,	 2016;	 Shen	 and	 Stopher,	 2014a).	 These	
traditional	approaches	have	proven	to	be	inaccurate,	time-consuming	and	resource	intensive	as	
it	 relies	 on	 people	 manually	 self-reporting	 their	 daily	 activities,	 travels,	 and	 corresponding	
schedules.	 Often,	 these	 get	 under-reported	 due	 to	 forgetfulness	 or	 the	 amount	 of	 effort	 it	
requires	 (Bohte	 and	Maat,	 2009).	 Transportation	 scientists	 are	motivated	 to	 overcome	 these	
problems	and	automate	part	of	this	data	collection,	as	the	positive	impact	of	good	quality	data	
on	 transportation	 mode	 usage	 is	 compelling.	 Thirdly,	 transport	 mode	 detection	 is	 of	 great	
interest	to	the	field	of	human	geography,	whose	objectives	are	largely	to	enrich	these	datasets	
with	domain-specific	 semantics	 such	with	associated	Points-Of-Interests.	 This	 field	of	 research	
has	methods	of	mode	detection	similar	to	that	of	transportation	science,	but	has	outputs	that	
cover	 a	huge	 scope,	using	 these	human	mobility	 trajectories	 to	 answer	a	myriad	of	questions	
such	as	linguistic	evolution	or	human	interaction	patterns(Prelipcean	et	al.,	2017).	This	research	
will	have	aims	more	 line	with	 that	of	 transportation	science,	 in	developing	methods	 to	collect	
information	 on	 people’s	 mode	 choices.	 The	 applications	 however,	 are	 motivated	 to	 support	
Parkbob,	whose	services	lie	more	in	the	LBS	realm.		
	
	

                                                

2	http://www.parkbob.com/	
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2.3 Transport	mode	detection	using	Global	Positioning	Systems	data	

	
In	May	2000,	the	US	government	decided	to	remove	selective	availability	of	Global	positioning	
systems	(GPS),	which	was	a	military	effort	towards	security	reasons	to	intentionally	degrade	GPS	
signals.	Now	GPS	devices	can	determine	locations	with	accuracies	of	less	than	10m	(Bohte	and	
Maat,	2009)	for	various	purposes	in	the	civilian	world.	Some	examples	include	in	agriculture	to	
accurately	monitor	 yield	data	or	 to	 enable	work	 in	 poor	 visibility	 or	weather,	 aviation	 for	 the	
continuous	provision	of	reliable	and	accurate	information	on	flights	as	well	as	for	more	efficient	
air	traffic	management	(Kaplan	and	Hegarty,	2005).	Disaster	management	 is	another	area	that	
benefits	 from	 this	 technology.	 When	 little	 information	 is	 available,	 GPS	 makes	 mapping	 of	
disaster	zones	possible.	Flood	and	earthquake	prediction	capabilities	are	also	improved	with	this	
technology	(Kaplan	and	Hegarty,	2005)..	Transportation	is	a	great	benefactor	of	GPS,	with	more	
accurate	positioning	leading	to	better	schedule	adherence	and	transport	demands,	for	example.		
	 	
As	 compared	 to	more	 conventional	means	 of	 collecting	 such	 data	 through	 surveys	 and	 travel	
diaries,	 collection	 via	 GPS	 devices	 alleviates	 many	 of	 the	 formers’	 shortcomings,	 on	 top	 of	
providing	 greater	 opportunities	 of	 quality	 and	 quantity	 of	 data	 collected.	 Providing	 more	
comprehensive	 information	 on	 origins,	 destinations	 and	 the	 routes	 taken	 between	 them,	 trip	
start	and	end	times	as	well	trip	lengths	can	be	more	realistically	achieved	by	the	respondent	as	
they	do	not	rely	on	memory	or	need	to	make	the	effort	to	pen	down	their	schedule.	The	data	
tends	 to	 be	 more	 accurate	 and	 independent	 on	 the	 respondents	 perception	 of	 durations,	
distances,	 and	 departure/arrival	 times	 (Rojas	 et	 al.,	 2016;	 Shen	 and	 Stopher,	 2014a).	
Underreporting	 is	 also	 avoided	 as	 the	 GPS	 logger	 captures	 all	 movements	 of	 participants	
(Stopher	et	al.,	2008).	This	also	means	that	data	collection	can	be	done	over	a	prolonged	period	
of	time.	Furthermore,	GPS	can	also	be	used	in	conjunction	with	traditional	methods	as	a	means	
of	verification.	These	advantages	have	 led	 to	 the	 rise	of	 incorporating	 these	 technologies	as	a	
supplementary	tool	or	to	completely	replace	travel	surveys.	
	
Now,	 GPS	 units	 are	 commonplace	 and	 are	 accurate	 and	 lightweight	 enough	 to	 make	 this	 a	
feasible	alternative	 to	data	collection,	 facilitating	more	complete	analyses	 (Bolbol	et	al.,	2012;	
Gong	et	al.,	2012).	More	complex	travel	patterns	can	be	mined	from	information	on	mode	such	
as	 what	 combinations	 are	 taken,	 route	 choices	 in	 multi-modal	 trips	 and	 how	 they	 vary	 on	
different	days	or	at	different	times.	
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2.3.1 Pre-processing	

	
The	raw	GPS	datasets	collected	are	extremely	 large,	sometimes	containing	logs	 in	the	order	of	
millions.	This	also	includes	irrelevant	data	such	as	when	the	person	is	not	travelling.	Combined	
with	issues	like	signal	loss	and	cold	starts	(when	the	device	is	turned	back	on	hand	takes	time	to	
recalculate	information),	a	set	of	pre-processing	techniques	must	be	applied	to	turn	this	dataset	
into	 a	 comprehendible	 information	 source.	 This	 usually	 entails	 cleaning	 the	data	of	 noise	 and	
then	segmenting	them	into	individual	trajectories,	or	trips	with	start	and	end	points	(also	known	
as	Segment	 Identification	or	SI).	A	 commonly	used	method	 for	 this	 step	 is	 through	 the	use	of	
rule-based	algorithms,	often	by	 identifying	 stop	points	and	assign	 them	as	 start/end	points	of	
the	trajectory	(Shen	and	Stopher,	2014b).	Many	studies	use	a	threshold	of	120	seconds	as	the	
minimum	time	a	person	must	be	in	the	same	place	for	it	to	be	considered	a	start	or	end	point	
which	could	be	activities	or	mode	changing	points	(Chung	and	Shalaby,	2005;	Gong	et	al.,	2012;	
Stopher	et	al.,	2008).	Traffic	light	change	times	or	bus	stop	tend	to	be	lower	than	that,	making	it	
a	 reasonable	 criterion.	To	date,	 this	 rule	 is	 still	being	used,	but	also	 supplemented	with	other	
rules.	 For	 example,	 Schüssler	&	Axhausen	 (2009)	 combine	 this	 threshold	 and	point	 density	 as	
their	criteria	for	activity	detection.	Activity	locations	are	detected	when	observations	meet	two	
criteria:	 (1)	 low	 speeds	 (<0.1m/s)	 for	 more	 than	 120s;	 (2)	 the	 points	 are	 located	 very	 close	
together	(diameter	of	<30m).	This	 is	seen	in	Stopher	et	al.’s	paper	as	well,	where	location	and	
speed	 conditions	 (distance	 travelled,	 speed	 and	 heading	 change)	 have	 to	 hold	 for	more	 than	
120s	 on	 top	 of	 a	 point	 density	 consideration	 for	 it	 to	 be	 identified	 as	 a	 mode	 change	 point	
(Stopher	et	al.,	2008).	Examples	of	these	spatio-temporal	rules	in	different	permutations	can	be	
found	in	many	other	studies	as	well	(Bohte	and	Maat,	2009;	Gong	et	al.,	2012;	Rasmussen	et	al.,	
2015;	Shah	et	al.,	2014).	Gong	et	al.	cluster	points	within	50	m	of	each	other	for	a	minimum	of	
200s.	Trip	ends	are	hence	the	first	point	of	the	cluster	and	the	next	trip’s	start	point	is	the	last	
point	 of	 the	 cluster.	 As	 the	 consistently	 higher	 spatial	 and	 temporal	 granularity	 of	 GPS	mean	
that	these	thresholds	can	afford	to	be	that	low	without	having	the	concern	of	excluding	relevant	
points.	However	despite	the	good	results	of	the	studies	that	use	this	threshold,	some	argue	that	
the	dwell	time	of	120s	or	more	is	excessive	and	can	lead	to	the	underestimation	of	many	trips	
that	are	shorter,	and	concluded	that	60	seconds	would	be	a	better	parameter	input	(Shen	and	
Stopher,	 2014a).	 Regardless,	 the	main	 theory	 behind	 the	method	 is	 still	widely	 accepted	 as	 a	
sound	 approach	 for	 SI.	 Other	 approaches	 to	 this	 include	 using	 density-based	 clustering	 and	
machine	learning	methods	(Gong	et	al.,	2015).		
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2.3.2 Mode	detection	

	
Earlier	 GPS	 studies	 differentiated	 between	walking,	 driving	 and	motorized	modes	 (Bohte	 and	
Maat,	 2009;	 Chung	 and	 Shalaby,	 2005),	 but	more	 recent	 studies	 have	 begun	 to	 detect	 public	
transportation	modes	as	well	(Axhausen	and	Schüssler,	2009),	and	many	go	a	step	further	as	to	
classify	 these	motorized	modes	 into	 the	 various	modes	 of	 public	 transportation	 like	 buses	 or	
trains	(Gong	et	al.,	2012;	Rasmussen	et	al.,	2015;	Stenneth	et	al.,	2011).	
	
Input	 variables	 that	 determine	 modes	 such	 as	 average,	 maximum	 and	 standard	 deviation	 of	
speed,	acceleration	measures,	average	dwell	 time	and	average	heading	change	are	 frequently	
used	 in	 this	 stage	 (Gonzalez	 et	 al.,	 2010;	 Stenneth	 et	 al.,	 2011;	 Xiao	 et	 al.,	 2015).	Due	 to	 the	
growing	popularity	of	geospatial	data,	many	mode	detection	studies	also	incorporate	data	from	
external	 sources	 such	as	 the	 transportation	network	or	 real	 time	public	 transport	 information	
(Asgari	et	al.,	2016;	Gong	et	al.,	2012;	Stenneth	et	al.,	2011;	Tsui	and	Shalaby,	2006).	Especially	
in	times	of	heavy	traffic	when	movement	is	slow,	it	is	difficult	to	infer	mode	solely	from	velocity.	
The	areas	where	a	bus	or	tram	can	be	are	generally	fixed.	This	type	of	data	fusion	with	GIS	data	
has	proven	to	make	mode	detection	more	robust	and	produce	much	better	results	than	when	
compared	to	the	baseline	method	without	contextual	information.	
	
When	 it	 comes	 to	 research	 more	 in	 the	 line	 of	 transportation	 science,	 there	 seems	 to	 be	 a	
preference	 for	 inferring	modes	using	Rule-based	methods	 (Bohte	and	Maat,	 2009;	Chung	and	
Shalaby,	 2005;	 Gong	 et	 al.,	 2012)	 and	 fuzzy	 logic	 systems	 (Axhausen	 and	 Schüssler,	 2009;	
Rasmussen	et	al.,	2015).	Some	also	use	supervised	 learning	methods	such	as	Random	Forests.	
These	three	types	of	methods	will	be	described	in	greater	depth	in	the	following	section.	
	

Rule-based	heuristics	

Gong	 et	 al.	 (2012)	 use	 a	 rule-based	 GIS	 algorithm	 that	 automatically	 processes	 GPS	 data	 to	
detect	5	modes.	The	algorithm	also	recognizes	whether	mode	transfers	within	a	trip	are	feasible.	
By	combining	GIS	data	 like	street	centerlines,	bus	routes	and	stops,	subway	 lines,	stations	and	
station	entrances,	this	method	is	able	to	achieve	a	promising	82.6%	accuracy.	First,	trajectories	
are	 split	 into	 segments	 by	 identifying	 stop	 and	 mode	 change	 points.	 Through	 a	 set	 of	
hierarchical	 rules,	walk	modes	are	 inferred	 first	based	on	 speeds.	Next,	 by	 comparison	 to	 the	
public	transportation	network,	rail	followed	by	bus	modes	are	inferred.	The	rest	are	considered	
as	car	modes.	Thresholds	used	are	based	on	the	specifications	of	 the	city.	For	example,	 in	 the	
study	 area	 of	 NYC,	 the	maximum	 length	 of	 trains	 was	 184m,	 so	 the	 threshold	 for	maximum	
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distance	to	a	station	to	be	considered	rail	mode	was	set	at	200m	to	account	for	the	fact	that	the	
user	could	be	at	the	end	of	the	train	while	 it	stopped	at	the	station.	Other	rules	derived	from	
context	aware	 information	 include	the	third	rule,	where	the	maximum	speed	and	acceleration	
of	an	express	bus	 in	New	York	City	 is	88km/h,	or	1.5m/s2.	The	 full	 set	of	 rules	 can	be	 seen	 in	
Figure	1.The	study	showed	promising	results,	however	noted	that	the	relatively	lower	accuracy	
of	bus	and	car	mode	identification	was	due	to	the	dense	street	networks	and	the	consequences	
of	the	urban	canyon	effect	which	sometimes	cause	a	parallel	shift	of	GPS	observations	(Gong	et	
al.,	2012).	This	can	lead	to	misclassification	of	bus	modes	as	car	or	walk	modes.	Map-matching	
techniques	 derived	 from	 Chung	 and	 Shalaby's	 (2005)	 paper	were	 also	 applied	 to	match	walk	
segments	 to	 street	 segments.	 Furthermore,	 that	 paper	 developed	 a	 trip	 reconstruction	 tool	
using	GPS	data	with	a	 rule-based	algorithm	as	well,	which	achieved	an	accuracy	of	92%	of	 all	
four	 modes	 of	 interest.	 Bohte	 and	 Maat	 (2009)	 also	 use	 straightforward	 rules	 (Figure	 2)	 on	
measures	of	maximum	and	average	trip	speeds	to	infer	modes,	starting	from	the	slower	modes,	
walk,	then	bicycle	and	car,	followed	by	public	train	modes,	due	to	its	characteristic	location	that	
is	constrained	by	the	rail	network.	Stopher	et	al.	 (2008)	manage	to	achieve	an	 impressive	95%	
accuracy	with	another	hierarchical	 set	of	 rules	 together	with	external	 transport	network	data.	
Furthermore,	 the	 studies	 found	 that	 the	 distinction	 between	 bus	 and	 car	 modes	 was	 very	
sensitive	 to	 their	 specific	 rules,	 and	due	 to	 the	 similar	 speed	profiles	 of	 both	modes,	 there	 is	
usually	a	high	 trade	off	between	success	 rates	 for	one	mode	and	 the	other	 (Bohte	and	Maat,	
2009;	Gong	et	al.,	2012).		
	
	
	
	

Figure	1	Rules	used	in	Gong	et	al.'s	paper	in	the	mode	detection	process	(Gong	et	al.,	2012)	
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Figure	2	Rules	used	in	Bohte	&	Maat’s	paper	for	mode	detection	(Bohte	and	Maat,	2009)	

	
	
Another	 study	 by	 Kasahara	 applied	 a	 rule-based	mode	 detection	method,	 but	 detected	 high-
speed	modes	first,	and	assigned	modes	to	the	individual	observations	instead	of	trips	(Kasahara	
et	al.,	2017).	Observations	of	the	same	mode	are	subsequently	merged	into	trips,	provided	the	
time	period	is	less	than	a	certain	threshold.	However,	despite	the	high	performance,	some	opine	
this	method	struggles	with	low	generalizability	as	rules	obtained	from	a	one	city	may	not	be	so	
applicable	to	another	city	due	to	various	reasons	like	the	built	environment	affecting	GPS	signals	
(or	 density	 of	 cell	 towers,	 affecting	 overall	 coverage	 and	 signal	 strength).	 However,	 the	
simplicity	and	comprehensibility	of	these	methods	mean	that	it	is	feasible	to	derive	parameters	
for	 each	 city	 (lengths	 of	 trains	 or	 average	 distance	 between	 stops	 from	 the	 cities	 transport	
provider,	for	example).		
	

Fuzzy	Logic	Systems	

Fuzzy	 logic	 (FL)	 systems	 are	 powerful	 predictive	 models	 as	 they	 can	 handle	 uncertainty	 and	
vagueness	 in	a	way	that	 is	understandable	by	humans.	However,	the	success	of	a	fuzzy	expert	
system	lies	in	proper	selection	of	its	functions	and	parameters,	which	are	usually	done	manually	
(Das	 and	Winter,	 2016a).	 Unlike	 crisp	 sets	 with	 hard	 border	 values,	 fuzzy	 set	 theory	 assigns	
membership	 values	 to	 an	 element,	 introducing	 the	 concept	 of	 partial	 membership	 of	 that	
element	in	a	set,	or	a	number	of	sets.		
	
The	way	FL	is	used	in	these	studies	is	mostly	subjective,	as	the	empirical	approach	to	generating	
these	rules	is	dependent	on	human	judgment	to	define	them.	Schussler	&	Axhausen	(2009)	use	
an	 open	 source	 FL	 platform	 to	 generate	 trapezoidal	 membership	 functions	 of	 their	 fuzzy	
variables.	The	variables	were	median	of	speed,	95th	percentile	speed	and	acceleration,	and	were	
explicitly	 chosen	 over	 average	 values	 to	 make	 the	 algorithms	 more	 robust	 against	 outliers.	
Figure	3	shows	the	membership	functions	of	each	variable.	A	minimum	of	one	rule	is	defined	for	
each	 mode	 based	 on	 these	 membership	 functions,	 as	 seen	 by	 the	 examples	 in	 Table	 1.	
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Ambiguity	 and	 fuzziness	 is	 intentionally	 introduced	 through	 the	 rules	 as	 well	 as	 from	 the	
overlapping	membership	 functions.	This	 can	be	especially	useful	 for	modes	 that	have	variable	
speed	profiles,	such	as	buses	which	start	and	stop	frequently,	and	speed	changes	depending	on	
whether	 they	 are	 in	 the	 city	 center	 and	 the	 stops	 are	 close	 together,	 and	 in	 residential	 areas	
where	 there	 are	 longer	 stretches	 between	 stops	 (Tsui	 and	 Shalaby,	 2006).	Modes	 are	 finally	
inferred	based	on	the	membership	values	from	the	aggregated	membership	functions.		
	
Ramussen	et	al.	(2015)	applied	a	similar	technique	to	their	study	area	in	Copenhagen	using	the	
same	 variables,	 but	with	 values	 derived	 from	 their	 own	 expert	 knowledge	 and	 analysis.	 They	
also	 combined	 the	 FL	 system	 with	 a	 Rule-Based	method	 first	 sieve	 out	 rail	 trips,	 due	 to	 the	
assumption	that	rail	lines	are	characteristically	different	to	road	networks	and	thus	a	trajectory	
aligned	with	rail	lines	has	a	high	possibility	of	being	a	rail	tip.	The	study	found	that	the	FL	rules	
were	still	insufficient	to	effectively	distinguish	between	bus	and	car	modes.	In	response	to	that,	
they	measure	 alignment	of	 the	 identified	GPS	 stops	with	 that	of	 the	bus	 routes.	 Both	 studies	
applied	feedback	mechanisms	for	weird	combinations	such	as	car	to	bicycle	or	car-bus-car	were	
applied	to	correct	these	to	more	realistic	modes.	For	example,	 if	the	sequence	of	modes	were	
car-bus-car,	the	algorithm	would	flag	it	and	reclassify	the	trajectories	as	a	car	trip.	High	spatial	
and	 temporal	 granularity	 allows	 for	 shorter	 and	more	 detailed	 trips	 that	may	 constitute	 one	
single	journey	to	be	identified,	allowing	for	this	method	to	act	as	a	suitable	feedback	algorithm.		
	

Figure	3	Fuzzy	Logic	membership	functions	generated	by	human	expertise	(Axhausen	and	Schüssler,	2009)	
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Table	1	Examples	of	fuzzy	rules	for	mode	detection	(Axhausen	and	Schüssler,	2009)	

	
	
The	paper	did	not	report	any	accuracy	measures	of	this	probabilistic	method,	but	compared	the	
results	with	the	official	census	data	on	travel	behavior	that	was	released	a	few	years	prior	to	the	
stud,	and	concluded	that	this	form	of	mode	detection	yields	realistic	and	reasonable	results.	A	
study	released	after	 that	designed	a	more	complex	FL	system	so	as	 to	classify	more	modes.	A	
few	 more	 fuzzy	 variables	 were	 added	 to	 the	 list,	 including	 proximity	 to	 a	 network	 like	 the	
railway	or	bus	network.	This	method	was	able	to	detect	walking,	bicycling,	car,	 ferry	boat,	sail	
boat,	train,	subway,	bus,	tram	and	flight	modes	using	GPS	data	and	these	fuzzy	variables	with	an	
accuracy	of	91.6%	(Biljecki,	2010).	The	fuzzy	system	had	certainty	factors	applied	to	each	result	
to	measure	the	confidence	of	the	inference.	
	
One	 drawback	 of	 FL	 systems	 is	 that	 these	 rules	 tend	 not	 to	 take	 into	 account	 inter-variable	
correlation,	and	as	the	rules	are	generated	using	experts’	understanding	of	the	field,	any	class	
(mode)	additions	to	the	model	would	be	extremely	costly	(Elkan	et	al.,	1994).	This	may	prove	to	
be	 a	 problem	 when	 trying	 to	 transfer	 this	 method	 that	 was	 designed	 for	 GPS	 data	 to	 CSD.	
However,	 it	 is	 still	 possible	 to	 construct	 a	 FL	 model	 without	 expert	 given	 a	 set	 of	 input	 and	
output	pairs.	The	task	then	is	fundamentally	akin	to	determining	a	system	that	provides	the	best	
fit	to	these	pairs	(Mendel,	1997),	and	will	be	explored	further	in	the	next	chapter.	
	

Machine	Learning	

Due	to	certain	limitations	of	setting	rules	and	algorithms	in	programs,	some	studies	have	turned	
to	machine	 learning	methods	 instead.	These	methods	commonly	 include	neural	networks	and	
tree-based	models,	among	a	few	others.		
	
Gonzales	et	al.	applied	a	reduced	sub	sampled	GPS	dataset	to	neural	networks	to	infer	modes.	
The	subset	consisted	only	of	critical	points,	which	were	characterized	by	heading	change	and	a	
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minimum	speed	so	as	 to	 remove	 redundant	data	and	minimize	processing.	The	 inputs	 chosen	
for	 the	 neural	 network	 algorithm	 were	 the	 common	 variables	 such	 as	 acceleration,	 speed,	
distances	 between	 stop	 locations,	 dwell	 time,	 as	well	 as	 GPS	 specific	 variables	 like	 estimated	
horizontal	accuracy	uncertainty	(Gonzalez	et	al.,	2010).	The	neural	network	was	able	to	learn	to	
distinguish	 between	walk,	 car	 and	 bus	 trips.	However,	 the	 paper	 cited	 that	 the	 critical	 points	
used	in	the	proposed	algorithm	were	insufficient	to	achieve	a	good	result.	Tsui		&	Shalaby	(2006)	
proposed	a	hybrid	method	that	combines	this	neural	network	with	a	fuzzy	logic	system	for	mode	
detection.	The	fuzzy	variables	chosen	were	similar	to	the	other	FL	studies	described	above,	with	
the	inclusion	of	data	quality.	However,	the	parameters	of	these	variables	and	their	membership	
functions	were	set	by	a	neural	network	algorithm	(NEFCLASS-J).	Their	work	managed	to	identify	
modes	(walk,	bus,	bicycle,	car,	rail)	with	an	overall	accuracy	of	91%,	though	the	performance	of	
bus	 modes	 was	 relatively	 poor	 due	 to	 the	 considerable	 overlap	 of	 characteristics	 with	 other	
travel	modes.	These,	combined	with	the	 large	variability	of	movements	 in	buses	were	cited	as	
reasons	for	this	poorer	performance.	The	paper	however,	did	not	report	on	the	mode	share	of	
the	actual	data.	
	
Several	works	also	include	temporal	measures	in	their	learning	methods	such	as	time	of	day	to	
give	context	to	a	probability	model	to	estimate	mode	choice	(Liao	et	al.,	2007).	Stenneth	et	al.	
(2011)	incorporate	live	bus	and	train	times	when	inferring	between	stationary,	walking,	cycling,	
bus,	driving,	and	train	modes.	They	extracted	variables	such	as	average	speed,	heading	change,	
acceleration,	 as	 well	 as	 context-aware	 information	 like	 average	 bus	 line	 closeness,	 rail	 line	
closeness	as	well	as	bus	stop	closeness.	The	authors	ran	these	variables	through	several	learning	
algorithms	 (Random	 Forest,	 Decision	 Tree,	 Naïve	 Bayes,	 Bayesian	 Network	 and	 Multilayer	
Perceptron)	 and	 found	 that	 Random	 Forest	 had	 the	 best	 performance.	 A	 few	 important	
strengths	 of	 RF	 that	 are	 relevant	 to	 this	 study	 are	 that	 it	 is	 one	 of	 the	 highest	 performing	
machine	 learning	 algorithms	 in	 terms	 of	 accuracy	 and	 can	 run	 efficiently	 on	 large	 datasets.	
Estimates	of	what	variables	are	important	are	also	included	in	the	output,	which	can	be	useful	
for	 purposes	 like	 dimension	 reduction	 (Degenhardt	 et	 al.,	 2017).	 It	 is	 also	 able	 to	 generate	
pairwise	 proximities	 between	 data	 points	 that	 can	 be	 used	 as	 input	 in	 other	 classification	
methods	like	unsupervised	k-medoid	clustering.	
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2.4 Transport	mode	detection	using	cellular	network	data	

	
	
Pervasive	 technologies	 such	as	mobile	phones	create	datasets	 that	give	an	 inside	 look	of	how	
people	 use	 the	 city’s	 infrastructure.	 Urban	 planning	 is	 one	 of	 the	 greater	 benefactors	 of	 the	
analysis	of	 this	 collective	personal	 location	data.	Mobile	phone	 traces	contribute	 to	a	massive	
pool	 of	 passive	 data	 that	 can	 provide	 knowledge	 on	 the	 whereabouts	 and	 movements	 of	
individual	 users.	 According	 to	 the	 Global	 System	 for	 Mobile	 Communications	 Association	
(GSMA),	an	international	trade	body	that	represents	the	interests	of	the	world’s	mobile	network	
operators,	there	are	about	7.7	billion	mobile	connections	by	5	billion	unique	subscribers	in	2017.	
465	 million	 of	 these	 subscribers	 reside	 in	 Europe	 alone3.	 This	 large	 potential	 has	 not	 gone	
unnoticed	as	many	of	these	operators	have	begun	to	experiment	with	new	business	models	that	
would	generate	revenue	from	both	their	mobile	subscribers	as	well	as	other	customers	such	as	
traffic	 analysis,	 advertising	 and	marketing,	 and	 social	 networking	 companies.	 As	 such,	 it	 is	 no	
surprise	that	the	sharing	of	such	mobile	data	with	research	communities	has	started	to	pick	up	
speed	(Calabrese	et	al.,	2015).	
	
The	main	hurdle	 is	the	 lower	spatial	resolution,	 inconsistent	and	sometimes	sparse	samples	of	
data.	 As	 such,	 they	 require	 a	 specialized	 set	 of	 techniques	 for	 extracting	 valuable	 and	 usable	
information	 from	 them.	 There	 are	 various	 types	 of	 cellular	 network	 data	 such	 as	 call	 detail	
records	and	cellular	signaling	data.	The	latter,	which	is	the	one	that	will	be	used	in	this	research	
is	 known	 by	 many	 names,	 including	 floating	 cellular/phone	 data,	 sightings	 data,	 and	 so	 on.	
Furthermore,	 this	 data	 type	 can	 have	 varying	 properties	 depending	 on	whether	 the	 phone	 is	
connected	to	a	2G,	3G	or	4G	network.	This	gives	an	indication	of	how	recent	this	data	type	has	
been	incorporated	into	such	research	fields.		
	
For	example,	Sevtsuk	and	Ratti	(2010)	address	how	coarse-grained	call	volume	data	in	Rome	can	
be	used	 to	 tease	out	properties	of	user	mobility,	where	 they	 found	 regularity	and	patterns	 in	
urban	mobility	 at	 different	 times	of	 the	days,	 as	well	 as	which	day	of	 the	week	 it	was.	Other	
indicators	 like	demographic,	economic	and	 infrastructural	 indicators	were	used	to	supplement	
and	account	for	these	patterns.	Travel	routes	can	also	be	estimated	using	cellular	network	based	
voronois	and	map	matching	(Tettamanti	et	al.,	2012).	Other	studies	also	use	the	fluctuations	of	

                                                

3	https://www.gsma.com/newsroom/press-release/number-mobile-subscribers-worldwide-hits-5-billion/	
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signal	strength	in	GSM	cellular	data	to	estimate	more	precise	geographic	coordinates	for	these	
purposes	(Thiagarajan	et	al.,	2011).		
	
Transport	mode	detection	is	another	area	of	research	using	cellular	network	data	that	is	still	in	
its	 early	 stages.	 This	 is	 largely	 due	 to	 data’s	 lower	 spatial	 and	 temporal	 granularity,	 the	main	
challenges	to	the	computation	of	specific	measurements	on	speed.	However,	there	have	been	a	
few	 studies	 attempting	 to	 estimate	 coarse	 speeds	 according	 to	 the	 rate	 of	 change	 of	 the	
connected	 cells,	 as	 well	 as	 the	 distances	 between	 them	 (Gonzalez	 et	 al.,	 2008;	 Reddy	 et	 al.,	
2010a;	Sohn	et	al.,	2006).	Others	have	made	sense	of	coarse	CDR	data	by	clustering	travel	times	
of	trips	into	the	corresponding	transportation	mode	clusters	(Kalatian	and	Shafahi,	2016;	Wang	
et	al.,	2010).	The	next	 sections	will	delve	deeper	 into	how	cellular	network	data	 is	generated,	
processed,	and	used	for	transport	mode	detection.		
	
	

2.4.1 Mobile	phone	network	structure	

	
The	 basic	 network	 structure	 is	 composed	 of	 a	 Core	 Network	 (CN)	 and	 Radio	 Access	 Network	
(RAN).	The	CN	is	divided	into	either	Circuit-Switched	(CS)	for	activities	like	voice	calls	or	Packet-
Switched	 (PS)	 domains	 for	 packet	 data	 transfers.	 	 Radio	 communication	 occurs	 between	 the	
mobile	phones	(terminals)	and	the	base	station	serving	that	cell.	As	such,	cells	are	the	smallest	
spatial	entities	in	the	cellular	network,	with	a	geographic	coverage	that	varies	from	magnitudes	
of	meters	 (microcells),	up	 to	 several	kilometers	 (macrocells).	 Several	 cells	 together	make	up	a	
Location	Area	(LA)	(Janecek	et	al.,	2012;	Miao	et	al.,	2016).	This	structure	is	illustrated	in	Figure	
4.	
	
	

2.4.2 Data	Generation	

	
	Mobile	 phone	 positioning	 occurs	 whenever	 a	 terminal	 communicates	 with	 the	 network,	
essentially	when	 a	 user	 uses	 his	 phone	 (Chen	 et	 al.,	 2016).	 Calabrese	 et	 al.	 (2015)	 categorize	
mobile	 phone	 data	 into	 two	 types,	 event	 driven	 and	 network	 driven.	 Event	 driven	 data	 is	
generated	 during	 billed	 activities	 such	 when	 calls	 or	 texts	 are	 made,	 or	 when	 data	 is	 being	
transferred	while	browsing	 the	 Internet	 for	example.	These	 include	Call	Detail	Records	 (CDRs)	
and	Internet	Protocol	detail	records	(IPDRs)	respectively.	At	this	stage,	the	terminal	is	said	to	be	
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in	 active	 state,	 whereby	 the	 voice	 call	 or	 data	 connection	 is	 open.	 At	 any	 given	 time,	 the	
majority	of	mobile	terminals	are	not	in	the	active	state,	but	in	the	idle	state.	Even	terminals	that	
have	their	data	connection	permanently	switched	on	remain	 in	the	 idle	state,	switching	to	the	
active	 state	 only	 during	 packet	 bursts,	 like	 data	 downloads	 (Janecek	 et	 al.,	 2012).	 The	
information	in	each	event	that	is	ultimately	recorded	in	the	data	depends	largely	on	the	mobile	
phone	 provider	 that	 operates	 the	 network.	 For	 example,	 CDRs	 could	 include	 the	 IDs	 of	 the	
callers,	 receivers,	 cell	 towers	 and	 start	 and	 end	 time	 stamps.	 Similarly,	 IPDRs	 will	 consist	 of	
information	on	Internet	usage	and	other	cellular	data	related	activities.			
	
Network	 driven	 data	 is	 also	 known	 as	 floating	 cellular/phone	 data	 or	 signaling	 data	 and	 is	
generated	whenever	a	phone	is	localized,	i.e.,	during	different	types	of	location	updates	(Figure	
4).	 Periodic	 updates	 occur	 on	 a	 periodic	 basis	 as	 determined	 by	 the	 telecommunications	
provider	 to	 generate	 periodic	 information	 on	 which	 cell	 tower	 the	 terminal	 is	 currently	
connected	to.	Handovers	are	generated	when	an	active	terminal	moves	between	two	cells	and	
lastly,	mobility	 location	 updates	 are	 generated	when	 a	 terminal	moves	 between	 two	 location	
areas.	As	such,	depending	on	the	state	(active	vs.	idle)	of	the	terminal,	the	spatial	granularity	of	
the	data	recorded	can	be	at	the	cell	level	or	at	the	location	area	level.		
	
	

	
Figure	4	a)	Location	Area	and	Base	Stations	b)	Periodic	updates	c)	Handovers	d)	Mobility	location	updates	
(Calabrese	et	al.,	2015)	
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2.4.3 Spatial	and	Temporal	Granularity	

	
The	 frequency	 of	 the	 data	 depends	 on	 the	 type	 of	mobile	 data	 generated	 and	 is	 largely	 user	
dependent.	Chen	et	al.	(2016)	found	that	the	frequency	of	both	event	and	network	driven	data	
types	display	high	heterogeneity	 in	the	number	of	times	the	phone	was	 localized	or	a	call	was	
made	 for	example,	whereby	 the	majority	of	users	have	a	 small	number	of	 records	and	only	a	
few	have	more	 a	 large	numbers.	 Each	 voice	 call	 generates	 one	CDR.	However,	 that	 same	 call	
might	 generate	multiple	 network	 driven	 data	 points	 if	multiple	 cells	 are	 traversed	 during	 the	
duration	of	the	call.	Periodic	updates	are	typically	 in	the	order	of	a	few	hours	(Wildham	et	al.,	
2015).	For	purposes	of	clarity,	from	this	point	on	the	term	cellular	signaling	data	(CSD)	will	refer	
to	both	event	driven	and	network	driven	data.	
	
A	study	that	used	CDRs	found	that	the	average	time	interval	between	each	event	was	about	8	
hours	 (Gonzalez	et	al.,	 2008).	These	 intervals	accurately	 represent	 the	 time	 intervals	between	
each	 call	 and	 are	much	 longer	 than	datasets	 that	 include	network	 driven	data	 as	well.	 In	 the	
latter,	as	a	single	call	might	trigger	multiple	network	driven	events,	these	events	might	tend	to	
be	more	 clustered	 together	 in	 terms	 of	 the	 times	 they	 were	 recorded(Chen	 et	 al.,	 2016).	 In	
Calabrese	 et	 al.'s	 (2011)	 paper,	 the	 average	 inter-event	 time	 intervals	 that	 included	 network	
driven	data	was	found	to	be	260	minutes,	with	the	average	of	the	quartiles’	medians	to	be	less	
than	1.5	hours.	As	such,	the	data	was	fine	enough	for	the	researchers	to	identify	stops	of	lesser	
than	that	time	 interval.	However,	 it	 is	also	 important	to	note	that	stops	of	 less	than	1.5	hours	
will	 be	 missed.	 This	 might	 add	 to	 inaccuracies	 of	 the	 processed	 data	 especially	 since	 some	
household	 travel	 surveys	 define	 a	 stop	 exceeding	 5	minutes	 to	 be	 an	 activity	 that	 should	 be	
recorded	 (Chen	 et	 al.,	 2016).	 As	 for	 location	 area	 updates,	 there	 may	 be	 cases	 whereby	 no	
updates	 are	 sent	 from	 the	mobile	 phone	 despite	 large	 amounts	 of	movement	 if	 the	 location	
area	covers	a	large	area,	some	several	hundreds	of	kilometers.		
	
In	 terms	of	 spatial	 granularity,	 these	data	 types	differ	 in	 from	GPS	data	 in	 the	 sense	 that	 the	
location	 information	 has	 to	 be	 estimated	 using	 various	methods.	 As	 this	means	 that	 the	 cell	
phone	events	only	contain	approximated	locations,	this	is	significantly	less	accurate	than	that	of	
GPS	data	(Horn	et	al.,	2014).	Triangulation	is	often	used	and	results	 in	coordinates	that	do	not	
correspond	to	 the	cell	 tower	 location	but	are	an	estimate	of	 the	 terminals	position.	Measures	
such	as	received	signal	strength,	transmission	time	and	angles	of	multiple	towers	are	used	in	the	
estimation	 if	 there	 are	 multiple	 base	 stations	 in	 available	 range	 (Chen	 et	 al.,	 2016).	 The	
algorithms	here	used	are	usually	undisclosed	by	the	mobile	provider	and	use	both	event	driven	
and	 network	 data.	 Furthermore,	 most	 mobile	 providers	 do	 not	 disclose	 the	 structure	 and	
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organization	 of	 their	 cellular	 networks,	 or	 the	 spatial	 extents	 of	 each	 cell	 or	 LAs,	 which	 vary	
depending	 on	 the	 density	 of	 towers	 and	 the	 level	 of	 urbanization	 (Widhalm	 et	 al.,	 2015).	
Experiments	show	that	the	spatial	 resolution	was	found	to	be	from	the	order	of	a	 few	meters	
(Chen	et	al.,	2016)	to	about	300m	(Calabrese	et	al.,	2011;	Jiang	et	al.,	2013)	or	500m	(Horn	et	al.,	
2014)	 in	 urban	 areas	 where	 the	 density	 of	 cell	 towers	 is	 much	 higher,	 to	 that	 of	 several	
kilometers	(Horn	et	al.,	2014;	Widhalm	et	al.,	2015)	in	rural,	less	heavily	populated	areas.	
	
	

2.4.4 Pre-processing	

	
Several	pre-processing	techniques	must	first	be	applied	before	valuable	information	on	human	
patterns	 can	 be	 extracted.	 These	 vary	 depending	 on	 the	 research	 aims,	 but	 generally,	 noise	
reduction	 techniques	 in	 the	 form	 of	 filters	 or	 through	 clusters	 are	 applied	 to	 filter	 out	
inaccuracies	in	the	data.	Next,	these	observations	are	then	segmented	into	individual	segments,	
whereas	some	GPS	studies	assign	modes	to	the	observations	and	then	group	similar	consecutive	
observations	into	a	mode	trajectory	(Kasahara	et	al.,	2017;	Reddy	et	al.,	2010b).	

	

Noise	reduction	

Pre-processing	needs	to	be	done	to	reduce	noise.	This	is	done	to	lower	the	influence	of	outliers	
that	arise	from	various	phenomena	on	the	final	analysis.	One	such	phenomenon,	known	as	the	
ping-pong	 effect,	 occurs	 when	 the	 terminal	 bounces	 back	 and	 forth	 between	 multiple	 base	
stations	while	the	user	is	not	moving	(	Fiadino	et	al.,	2012;	Miao	et	al.,	2016).	This	occurs	due	to	
fluctuations	in	the	received	signal	strength	and	hence	leads	to	the	oscillation	between	different	
cell	towers	despite	being	stationary.	These	fluctuations	in	signal	strength	are	also	likely	to	have	
an	impact	on	the	estimated	triangulated	position,	leading	to	what	appears	to	be	drifts	and	shifts	
in	the	location	of	the	data	points.	Also,	in	the	event	there	are	several	cell	towers	whose	signals	
reach	a	terminal,	the	connection	of	this	device	may	hop	between	these	towers.	This	means	that	
outliers	can	suddenly	occur	kilometers	away	within	an	unrealistically	short	period	of	time.	While	
some	 (like	 the	 above)	 can	 be	 the	 result	 of	 localization	 errors,	 others	 can	 be	 intentionally	
triggered	for	privacy	protection	reasons.	For	instance,	arbitrary	events	can	be	inserted	into	the	
mobile	 traces	 to	 prevent	 the	 creation	 of	movement	 profiles.	 These	 events	 are	 part	 of	 efforts	
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towards	privacy	protection	and	are	called	temporary	mobile	subscriber	identities	or	TMSI	(3GPP,	
2010)4.		
	
One	approach	is	through	pattern-based	recognition	and	this	requires	information	on	which	cell	
tower	 the	 phone	 is	 connected	 to	 (Iovan	 et	 al.,	 2013;	 Schlaich	 et	 al.,	 2010).	 Users	 with	 high	
oscillations	 between	 cell	 towers	 are	 identified	 with	 a	 proposed	 “jumpiness	 rule”	 using	 the	
number	 of	 updates	 and	 area	 codes.	 Another	 approach	 does	 this	 through	 speed-based	
corrections.	A	threshold	is	chosen	to	distinguish	between	what	is	a	reasonable	speed	and	what	
is	 not.	 Instances	 that	 produce	 values	 that	 exceed	 this	 threshold	 are	 flagged.	 This	 can	 also	 be	
done	 through	 a	 number	 of	 ways	 as	 explored	 by	 Horn	 et	 al.	 (2014).	 They	 tested	 a	 series	 of	
filtering	 techniques	 including	 a	 recursive	 naïve	 filter,	 recursive	 look-ahead	 filter	 and	 Kalman	
filter.	Outliers	are	 identified	as	data	points	where	the	speeds	calculated	are	exceptionally	fast,	
and	 the	 threshold	was	 set	 to	 250km/h.	 The	 recursive	naïve	 filter	 simply	 removes	 any	outliers	
from	 a	 sequential	 stream	 of	 events	 whereas	 the	 recursive	 look-ahead	 filter	 accounts	 for	 the	
possibility	 that	 the	event	before	 the	outlying	 event	 is	 the	outlier	 instead.	 The	Kalman	 filter	 is	
more	complex	in	that	it	takes	a	probabilistic	approach	and	is	a	popular	choice	in	data	prediction	
tasks	 including	 traffic	modeling	using	GPS	and	other	sensor	data	 (Faragher,	2012).	 It	produces	
estimates	 of	 unknown	 variables	 in	 nosy	 time	 series	 through	 approximating	 joint	 probability	
distributions	 over	 the	 variables	 in	 their	 time	 frames	 (Kalman,	 1960).	 Results	 show	 that	 the	
recursive	 filters	outperformed	the	Kalman	 filter,	and	one	of	 the	 reasons	proposed	was	due	 to	
the	temporal	sparseness	of	the	cellular	signaling	data.	As	such,	the	former	is	more	suitable	as	a	
noise	reduction	method	for	more	irregular	data	like	CSD.	

	

Trip	extraction	

In	many	of	the	studies	using	cellular	network	data	to	mine	human	patterns,	individual	trips	are	
first	extracted	before	they	are	analyzed	for	mode	detection	or	aggregated	for	more	large-scale	
analysis	such	as	in	urban	activity	analysis.	To	achieve	this,	key	places	must	be	identified.	On	top	
of	assigning	these	users	to	these	locations,	there	must	be	a	distinction	on	whether	these	places	
are	 stops	or	 the	user	 is	merely	passing	 through	 it.	 The	 former	 can	be	places	of	 activities,	 like	
work,	home	or	 leisure,	origins	or	destinations	when	trying	to	generate	Origin-Destination	(OD)	
matrices,	or	more	exact	locations	as	start	and	end	points	of	trips.	Assigning	these	start	and	end	

                                                

4	3rd	Generation	Partnership	Project;	Technical	Specification	Group	Core	Network	and	Terminals;	
Numbering,	addressing	and	identification	
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points	 to	 specific	 locations	 can	 be	 done	 using	 a	 few	 methods.	 A	 more	 straightforward	 and	
commonly	used	approach	is	by	using	centroids	of	cell	areas	if	the	cell	tower	locations	are	known	
(Gonzalez	et	al.,	2008;	Tettamanti	et	al.,	2012).		
	
Many	other	studies	use	stop	detection	 to	 filter	out	significant	places,	with	 the	 rationale	being	
that	 if	a	person	stops	there	for	a	reasonable	time	period	these	places	are	 important	 in	human	
patterns.	 Due	 to	 the	 noisy	 and	 raw	 nature	 of	 cellular	 network	 data,	 the	 same	 event	 can	
sometimes	be	registered	as	many	consecutive	events	that	could	be	related	to	various	locations	
in	its	surroundings.	These	locations	are	filtered	out	either	by	a	set	of	rules	pertaining	to	space,	
space	 and	 time	 or	 speed.	 A	 commonly	 used	 method	 here	 is	 through	 spatial	 and	 temporal	
clustering.	Wang	et	al.	(2010)	worked	with	CDRs,	and	use	an	incremental	clustering	algorithm	to	
extract	these	stop	locations.	A	radius	corresponding	to	the	estimated	positioning	error	(set	at	1	
km)	and	minimum	dwell	time	were	defined	as	the	thresholds	to	form	clusters.	The	medoids	of	
these	clusters	were	found	and	the	remaining	points	in	the	clusters	were	deleted.	Consequently,	
these	medoids	were	set	as	the	start	and	end	points	of	each	trip.	Jiang	et	al.	(2013)	apply	similar	
thresholds	to	cellular	signaling	data,	but	with	finer	thresholds	of	300m	and	10	minutes	to	detect	
stay	locations,	as	illustrated	in	Figure	5.	
	
	

	
Figure	5	Illustration	of	data	pre-processing	to	extract	stay	locations	(Jiang	et	al.,	2013)	with	distance	and	
time	constraints	of	300m	and	10	minutes.	
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Another	 study	 by	Widhalm	 et	 al.	 (2015)	 uses	 a	 similar	 clustering	 algorithm	 to	 both	 CDRs	 and	
cellular	 signaling	data	but	 incorporates	 the	geometry	of	 the	 trajectory	 to	 filter	out	passing	by	
locations.	Figure	6	shows	an	example	of	how	B	in	I)	is	not	detected	as	a	stop	and	that	in	II)	is.	As	
the	 study	 was	 mining	 urban	 activity	 patterns,	 the	 reasoning	 behind	 this	 was	 that	 significant	
extra	distances	travelled	are	often	motivated	by	an	activity.		

	
Figure	6	Detection	of	stays	using	geometry	(Widhalm	et	al.,	2015)	

	
	

2.4.5 Mode	detection	

	
Once	these	trips	are	extracted	they	are	now	ready	to	be	analyzed	to	identify	the	trip	modes.	In	
order	to	do	so,	 information	on	these	trips	are	extracted	as	trip	 features.	Unlike	 in	GPS	studies	
that	 assign	 modes	 to	 individual	 observations,	 most	 cellular	 network	 studies	 only	 do	 so	 after	
grouping	these	observations	into	segments,	treating	the	segments	as	the	smallest	unit	to	 infer	
modes	 instead	of	on	each	 individual	observation.	Due	 to	 the	 infancy	of	mode	detection	using	
mobile	phone	data,	 the	studies	are	usually	 limited	 to	CDR-only	data	and	the	existing	methods	
used	 here	 can	 be	 classified	 into	 unsupervised	 k-means	 clustering,	 rule-based	 heuristics	 and	
machine	learning.	
	

Clustering		
K-means	
A	well-known	method	of	mode	detection	using	cellular	network	data	is	with	k-means	clustering	
of	travel	times.	Wang	et	al.	(2010)	worked	with	anonymized	CDRs	in	their	study.	Start	and	end	
points	 of	 these	 trips	were	 assigned	 to	 cells	 in	 a	 grid.	 Trips	with	 the	 same	ODs	were	 grouped	
together.	Trips	over	63	minutes	were	removed	as	they	were	deemed	to	be	too	long	a	travelling	
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time	within	the	study	area.	K-means	unsupervised	clustering	was	then	performed	on	the	travel	
times	of	each	of	these	OD	groups,	with	distinctions	between	weekdays	and	weekends.	K-means	
is	a	centroid-based	clustering	algorithm	that	uses	the	mean	value	of	each	cluster	 (centroid)	 to	
represent	the	cluster	(	
	

Figure	7).	The	goal	of	K-means	is	thus	to	reduce	the	sum	of	squared	error	between	the	individual	
objects	 in	 the	 cluster	 and	 their	 centroids	 (Hastie	 et	 al.,	 2009a).	 The	 clustering	partitioned	 the	
records	 into	two	separate	clusters	corresponding	to	the	modes	of	 interest,	namely	driving	and	
public	transport	(Wang	et	al.,	2010),	where	the	clusters	with	the	shorter	travel	time	is	assigned	
to	 driving	 and	 vice	 versa.	 There	 is	 an	 assumption	 of	 single	modal	 trips	 here,	 similar	 to	many	
mode	 detection	 studies	 of	 this	 nature.	 The	 error	 of	 the	 inference	 is	 then	 calculated	 as	 the	
average	of	differences	between	 the	 travel	 times	and	obtained	 from	the	clustering	and	 that	of	
reported	 by	 Google	 Maps.	 Silhouette	 values	 to	 measure	 how	 well	 associated	 the	 cluster	
members	are	to	the	representative	of	the	cluster	was	also	measured,	and	this	indicated	a	good	
performance	 of	 the	 model.	 Due	 to	 lack	 of	 official	 census	 data	 of	 the	 city	 with	 regards	 to	
transportation	mode,	 the	model	 could	 not	 be	 validated	 against	 such	 official	 records.	 Kalatian	
and	 Shafahi’s	 (2016)	 paper	 also	 detected	 walking,	 and	 used	 a	 similar	 approach.	 Their	 study	
worked	on	 anonymized	 signaling	 data	 and	 grouped	 the	 trips	 into	 traffic	 zones	 instead	of	 grid	
cells,	and	separated	by	time	of	day	to	account	for	traffic.	Grouping	them	by	the	hour	meant	that	
there	were	insufficient	records	to	perform	clustering	well.	As	such	they	were	grouped	into	trips	
occurring	at	similar	hours	of	the	day,	such	as	when	people	commute	home	from	4PM	to	9PM.	
However,	while	 the	paper	 stated	 that	 validation	was	done	against	 surveyed	data	 collected	by	
the	city,	the	results	of	that	validation	were	not	included	in	the	paper.	These	clustering	methods	
only	use	one	feature	of	the	trips;	the	travel	time	and	assigning	modes	to	these	clusters	may	not	
be	 so	 straightforward.	 In	 a	 city	 with	 a	 well-integrated	 public	 transport	 system	 such	 as	many	
major	cities	 in	Europe,	travel	times	when	private	or	public	motorized	modes	can	be	extremely	
similar,	if	not	shorter.		
	
	

Figure	7	Trip	data	 clustered	 to	 two	subgroups,	driving	and	public	 transit.	 The	arrows	 show	 the	average	
travel	times	of	the	subgroups.	Black	lines	are	the	travel	times	as	reported	by	Google	Maps.		(Wang	et	al.,	
2010)		
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Rule-based	mode	split		

Qu	et	al.	(2015)	worked	with	CDR	data	to	detect	transportation	mode	using	a	rule-based	mode	
split	 algorithm	 that	 combined	 speed,	 trip	 distance	 and	 a	 logit	 model.	 The	 paper	 focused	 on	
estimating	 transportation	mode	shares	at	 the	 traffic	 zone	 level	of	 the	city,	and	only	 looked	at	
commutes	between	work	and	home.	These	home-work	 trips	were	extracted	 through	a	 longer	
observational	 period	 of	 3	 weeks	 and	 was	 possible	 as	 the	 dataset	 was	 not	 subject	 to	
anonymization	every	24	hours.	By	approximating	the	home	and	work	areas	as	places	where	the	
user	 is	 mostly	 found	 between	 8pm	 –	 7am	 and	 9am-	 5pm	 respectively,	 the	 travel	 times	 are	
subsequently	estimated	as	 the	 time	difference	between	 the	 latest	 time	one	 is	 found	at	home	
and	the	earliest	time	one	is	found	at	work.	This	is	to	account	for	the	fact	that	it	is	unlikely	that	a	
user	makes	a	call	just	before	leaving	or	upon	arrival.	As	a	result,	they	were	able	to	estimate	the	
travel	distances	and	times	between	home	and	work,	and	subsequently	from	these	two	values,	
the	 speed.	 Here,	 the	 distinction	 is	 also	 between	 driving,	 public	 transportation	 and	 walking,	
where	each	trip	only	constitutes	one	of	these	modes.	

	
Figure	8	Framework	proposed	by	Qu	et	al.	(2015)	for	mode	detection	with	CDR	data	through	a	speed	split,	
augmenting	the	dataset	with	transportation	network	information	and	utility	approximations.	
	
Based	on	the	assumption	that	15km/h	is	the	maximum	speed	of	a	non-motorized	mode,	Figure	
8	 shows	 the	 speed	 rule	used	 to	 split	 the	 trips	 into	high	and	 low	 speed	 trips.	High-speed	 trips	
whose	average	distance	to	the	underlying	public	transportation	network	counted	as	a	car	trip.	
The	rest	are	fed	through	the	logit	model.	For	the	low	speed	trips,	the	distinction	is	made	using	
trip	lengths	based	on	the	rationale	that	people	do	not	walk	for	more	than	3km.	Those	more	than	
3km	 are	 also	 fed	 through	 the	 logit	model,	 which	 is	 a	 discrete	 choice	model	 that	 predicts	 an	
individuals	choice	base	on	utility	or	attractiveness.	For	example,	in	the	study	area	of	Boston,	it	is	
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regarded	as	more	attractive	to	use	public	 transportation	 in	the	central	Boston	region	and	cars	
for	 the	 surrounding	 suburb	 region.	 This	 differs	 from	 many	 GPS	 studies	 using	 rule-based	
algorithms	 that	 usually	 detect	 slowest	 modes	 first.	 This	 can	 be	 attributed	 to	 the	 better	
resolution	of	data,	enabling	more	representative	measurements	of	slower	speeds	in	modes	like	
walking,	 with	 lesser	 chances	 of	 data	 inaccuracies	 resulting	 in	 higher	 speeds.	 Linear	 relations	
between	 census	 data	 and	 the	 predictions	 for	 each	 census	 tract	 are	 used	 to	 evaluate	 the	
performance	of	 the	model	and	the	model	does	well	 for	 identifying	car	modes,	but	not	 for	 the	
other	 two.	 Also,	 while	 some	 areas	 observe	 high	 prediction	 accuracies,	 others	 have	 larger	
deviations	from	the	survey	data.	One	reason	cited	was	the	confounding	effects	of	other	factors	
such	as	income	and	land	use	that	may	have	caused	larger	errors	especially	in	their	logit	model.	
	

Machine	learning	

Machine	learning	is	sometimes	used	in	mode	detection	studies	using	mobile	phone	data,	more	
specifically,	 the	 GPS	 and	 accelerometer	 data	 collected	 from	 phone	 applications.	 However,	 a	
study	 by	 Sohn	 et	 al.,	 (2006)	 applied	 some	 of	 these	 machine	 learning	 methods	 on	 cellular	
network	data,	or	more	specifically	GSM	data.	A	special	mobile	application	was	created	for	this	
study	 to	 capture	 this	 data.	 The	 dataset	 they	 generated	 were	 labeled	 with	 these	 modes	 and	
included	 signal	 strength	 values,	 cell	 IDs,	 as	 well	 as	 the	 channel	 numbers	 of	 at	most	 7	 of	 the	
nearest	 cell	 towers.	 The	 method	 used	 here	 assumed	 that	 a	 user	 is	 stationary	 when	 the	
observations	have	a	consistent	set	of	towers	and	signal	strengths,	and	moving	when	there	are	
changes	 in	 these	 sets.	 They	 also	 found	 that	 the	 Euclidean	 distances	 between	 consecutive	
observations	were	proportional	with	the	speed	of	movement.		
	
In	 essence,	 a	 theoretical	 fingerprint	 of	 the	 signal	 strength	 and	 constituent	 cell	 towers	 were	
created	for	each	observation	and	from	this,	seven	features	were	chosen	to	train	the	model.	This	
included	 the	Euclidean	distance,	 correlation	of	 signal	 strengths	 from	common	cell	 towers	 and	
number	 of	 common	 cell	 towers	 between	 two	 measurements.	 The	 remaining	 variables	 were	
various	 descriptive	 statistics	 of	 Euclidean	 distances	 in	 the	 various	windows	 of	measurements.	
The	 classifiers	 were	 trained	 with	 a	 boosted	 logistic	 regression	 technique	 with	 a	 single-node	
decision	tree.	Overall	the	model	performed	well	with	an	accuracy	of	85%	though	the	identified	
modes	 were	 only	 stationary,	 walk	 and	 drive.	 The	 signal	 strength	 information	 however	 is	 not	
available	to	this	study	as	they	were	collected	by	an	app	developed	by	the	researchers.	There	is	
still	value	in	their	work	in	terms	of	important	variables	that	can	be	used	in	our	study.	
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In	a	more	recent	study,	Asgari	et	al.	 (2016)	developed	an	unsupervised	algorithm	that	enables	
the	mapping	of	coarse	mobile	phone	traces	over	a	multimodal	 transportation	network,	where	
mobile	 trajectories	 are	 the	 observations	 and	 hidden	 states	 to	 be	 predicted	 are	 nodes	 of	 the	
multilayer	 graph.	 This	 unsupervised	 HMM	 completes	 the	 originally	 sparse	 trajectory	 and	
enriches	 it	 with	 the	 used	 modes	 by	 leveraging	 on	 the	 transportation	 layer	 type	 and	 their	
topological	 properties	 (i.e.	 route	 complexity).	 Transition	 probability	 predicts	 how	 likely	 an	
individual	 moves	 from	 one	 hidden	 state	 to	 another	 using	 factors	 like	 edge	 type,	 speed,	 and	
length.	 The	 model	 performs	 well	 and	 proves	 that	 using	 the	 transport	 network	 improves	
performance.	Other	 studies	have	also	attempted	 to	match	 the	observations	 to	 the	underlying	
network.	
	
	

 
Figure	 9	 Average	 Euclidean	 distance	 between	 subsequent	 observations	 during	 stationary,	 walking	 and	
driving	periods.	(Sohn	et	al.,	2006)	

	
	
	

2.5 Variable	selection	

	
Methods	 like	 machine	 learning,	 FL	 systems	 and	 unsupervised	 clustering	 have	 proven	 to	 be	
powerful	tools	for	classification	tasks	in	both	GPS	and	mobile	phone	data	studies.	Especially	for	
data	with	high	dimensionality,	often	selecting	a	reduced	set	of	relevant	variables	would	be	ideal	
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if	 the	objective	was	 to	build	 a	 classification	model	 for	 the	purposes	of	 identification.	 This	will	
reduce	the	processing	time	and	storage	space	needed.	Furthermore,	selected	variables	may	also	
provide	a	suggested	 framework	 for	 future	studies	using	CSD.	To	 the	best	of	our	knowledge	of	
existing	work	using	CSD,	there	seem	to	be	no	documented	cases	of	variable	selection	processes,	
or	descriptions	of	such	methods.	As	such,	this	paper	has	explored	a	few	techniques	that	could	
be	relevant	 to	our	 research	aims.	Two	options	are	explored	here:	Random	Forest	 (RF),	a	 tree-
based	model	whereby	 labels	are	required	and	Principal	Component	Analysis	 (PCA)	where	they	
are	not.		
	

Random	Forest	

Random	Forest	 is	 a	 tree-based	 learning	model	 that	has	been	 shown	 to	perform	well	 in	mode	
detection	studies	using	GPS	data.	Labels	are	used	 in	the	generation	of	the	random	forest	(RF).	
These	algorithms	have	the	power	to	handle	high	dimensional	data	and	a	key	strength	is	that	it	
outputs	 the	most	 significant	 variables,	 which	 is	 especially	 relevant	 if	 the	 objective	 is	 variable	
selection.	 Another	 benefit	 of	 using	 RF	 is	 that	 it	 is	 able	 to	 account	 for	 and	 balance	 errors	 in	
imbalanced	 datasets,	 where	 one	 class	 may	 be	 disproportionately	 more	 represented	 than	
another.		
	
Tree-based	models	use	labels	to	build	their	trees,	by	splitting	the	population	into	two	or	more	
homogenous	sets	based	on	the	most	important	variable.	This	is	decided	by	using	the	Gini	index	
or	 entropy	 to	 evaluate	 the	 quality	 of	 a	 particular	 split,	 and	 is	 usually	 used	 in	 classification	
problems	rather	than	regression	ones	(James	et	al.,	2013).	The	Gini	index	is	defined	as:	
	

 
	

where	 	is	the	proportion	of	 individuals	that	have	class	c	at	node	n.	Gini	 is	 lowest	when	
all	observations	in	the	nodes	belong	to	the	same	class,	and	increases	as	the	observations	of	the	
same	node	have	a	more	even	class	distribution.	The	mean	decrease	of	Gini	or	the	information	
gain	for	splitting	at	node	n	on	variable	xi,	is	defined	as	the	difference	between	impurities	of	the	
node	and	the	weighted	averages	of	their	child	nodes:		
	

Gain(xi,n)	=	Gini(xi,n)	-	wLGini(xi,nL)	–	wRGini(xi,nR)	
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Where	nL	and	nR	are	the	left	and	right	child	nodes	of	parent	node	n,	and	the	weights	assigned	to	
the	left	and	right	nodes	are	wL	and	wR	respectively.	Based	on	this	calculation,	variable	xi	with	the	
lowest	 impurity	 is	 selected	 to	 be	 the	 basis	 of	 the	 split	 at	 node	 n.	An	 alternative	 to	 the	 Gini	
coefficient	is	another	measure	of	mean	decrease	in	accuracy.	Each	tree	that	uses	this	particular	
attribute	will	compute	value	separately	and	then	the	average	of	all	loss	of	accuracy	is	calculated	
(Degenhardt	et	al.,	2017).		
	
For	example,	in	a	sample	of	100	children	with	variables	gender,	height	and	age,	half	of	them	ate	
meat	 and	 the	 other	 did	 not.	 The	 most	 important	 variable	 of	 determining	 their	 meat	
consumption	status	would	be	the	one	that	produces	the	most	homogenous	or	pure	sets	after	a	
split	based	on	that	variable,	where	one	resulting	set	has	a	high	percentage	of	non-meat	eaters	
and	the	other	has	a	high	percentage	of	meat	eaters.	RF	is	an	extension	of	these	decision	trees	in	
that	it	grows	multiple	trees.	The	definition	of	an	RF	algorithm	is	“RF	is	a	classifier	consisting	of	a	
collection	 of	 tree-structured	 classifiers	 {h(x,	 k	 ),	 k	 =	 1,...}	 where	 the	 {k	 }	 are	 independent	
identically	distributed	random	vectors	and	each	tree	casts	a	unit	vote	for	the	most	popular	class	
at	input	x.”	(Breiman,	2001,	p.	2).	Each	tree	will	have	one	vote	that	will	count	towards	the	final	
classification.	While	 RF	 is	 generally	 considered	 a	 supervised	machine	 learning	method,	 it	 can	
also	be	adapted	 in	for	unsupervised	 learning	to	derive	a	proximity	matrix	 from	unlabeled	data	
(Shi	and	Horvath,	2006).	This	will	be	elaborated	further	in	Section	4.8.	
	
As	for	its	role	in	variable	selection,	there	are	various	approaches	proposed	to	identify	the	most	
important	variables	based	on	this	ranking.	Degenhardt	et	al.	(2017)	did	a	comparative	study	of	
these	methods	and	 concluded	 that	 the	Boruta	method	was	 the	most	powerful	 approach,	 and	
will	be	described	 further	 in	Section	4.9.	The	overarching	concept	 is	 to	add	randomness	 to	 the	
system	and	by	collecting	results	from	this	system,	the	deceptive	impacts	of	random	fluctuations	
and	 correlations	 can	 be	 lessened,	 providing	 a	 better	 picture	 of	 which	 attributes	 are	 really	
important	(Kursa	et	al.,	2010).		
	
	

Principal	Component	Analysis	(PCA)	

PCA	 is	 an	 unsupervised	 process	 of	 transforming	 data	 by	 plotting	 it	 on	 different	 axes	 so	 as	 to	
derive	 a	 set	 of	 smaller	 representative	 variables,	 or	 principal	 components	 (Abdi	 and	Williams,	
2010).	 The	 aim	 of	 PCA	 is	 to	 try	 and	 explain	 as	much	 variation	 as	 possible	 in	 the	 data.	 Since	
labeled	data	 is	 not	 required,	 PCA	 is	 especially	 useful	 to	determine	 inputs	 to	methods	 such	 as	
unsupervised	clustering.	These	principal	components	are	axes	whereby	the	data	is	most	spread	
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out	when	projected	to	it.	In	order	to	find	these	lines,	one	derives	eigenvectors	and	values,	which	
come	in	pairs.	The	eigenvector	is	a	direction	and	the	eigenvalue	is	a	number	representing	how	
much	 variance	 there	 is	 in	 the	 data	 in	 that	 direction,	 or	 how	 spread	 out	 the	 data	 is	 in	 that	
direction.	The	first	principal	component	is	thus	the	eigenvector	with	the	highest	eigenvalue,	and	
can	also	be	seen	as	the	line	that	is	closest	to	the	original	data	(Abdi	and	Williams,	2010).		
	
	

 
Figure	10	Example	of	first	two	components	based	on	two	variables,	word	 length	and	number	of	 lines	 in	
dictionary	definition.	Green	lines	represent	the	vectors	whose	main	direction	leads	to	the	maximum	sum	
of	squared	distances	from	the	points	to	the	vectors	(Abdi	and	Williams,	2010).	

	
	
PCA	is	commonly	used	as	a	dimension	reduction	technique	where	large	datasets	with	redundant	
variables	 can	 be	 discarded	 without	 the	 loss	 of	 variation.	 Each	 of	 the	 resulting	 principal	
components	 will	 have	 differing	 contributions	 from	 different	 variables.	 The	 first	 principal	
component	can	be	dominated	by	a	few	variables,	and	this	can	be	the	basis	of	how	the	analysis	is	
interpreted.	 These	 variables	 can	 give	 an	 indication	 of	 what	 key	 combinations	 of	 variables	
account	for	a	high	proportion	of	total	variance	in	the	data.	But	because	the	data	is	orthogonally	
transformed	 onto	 a	 new	 coordinate	 system	 and	 because	 the	 values	 are	 scaled,	 the	 variables	
(principal	 components)	 do	 not	 explicitly	 represent	 the	 system-produced	 variables,	 hence	
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applying	PCA	 to	 the	data	 set	might	 cause	 it	 to	 lose	 interpretability.	Nevertheless,	 PCA	 can	be	
used	to	select	those	variables	that	contain	the	most	information.	King	and	Jackson	(1999)	did	a	
comparative	 research	 study	 on	 the	 best	method	 of	 variable	 selection	 using	 PCA,	 so	 that	 the	
reduced	 subset	 you	 are	 left	 with	 is	 as	 representative	 of	 the	 original	 dataset	 as	 possible.	 The	
results	of	 the	study	were	conclusive	and	they	recommended	that	 the	B4	method	worked	best	
when	 complemented	 with	 the	 Broken-stick	 model	 criterion	 of	 number	 of	 variables	 to	 select	
(Jackson,	1993;	King	and	Jackson,	1999).	This	will	be	described	in	Section	4.9.	
	
	

2.6 Ethical	issues	

	
Despite	 overcoming	many	 of	 the	 shortcomings	 of	GPS,	 the	 use	 of	 CSD	 in	 any	 form	has	many	
ethical	implications	that	need	to	be	carefully	considered	before	charging	forward	with	the	use	of	
this	 type	of	data.	 Location	data	 from	mobile	phones	 can	 reveal	 a	 lot	about	a	person,	not	 just	
where	 one	 works	 and	 lives,	 but	 also	 visits.	 Activities	 like	 participation	 in	 protests,	 or	 alcohol	
consumption	based	on	frequency	of	being	located	in	bars	and	pubs	can	be	inferred	and	assumed	
of	a	user.	This	includes	their	schedules	as	well	(Carter	et	al.,	2015).	Unsurprisingly,	this	is	a	major	
concern,	 especially	 when	 such	 information	 is	 made	 available	 to	 applications	 that	 serve	 third	
parties	such	as	commercial	companies	(Calabrese	et	al.,	2015).	To	combat	this,	regulations	like	
the	General	Data	Protection	Regulation5	have	been	put	in	place	in	May	2018,	dictating	that	the	
data	 telecommunication	 companies	 release	 must	 be	 treated	 such	 that	 it	 was	 impossible	 to	
associate	the	location	data	with	a	cell	phone	number.	Exceptions	include	cases	whereby	consent	
of	the	users	who	are	tracked	is	explicitly	conveyed.	As	such,	researchers	develop	methods	that	
reflect	compliance	and	that	abide	by	these	regulations.	Some	of	these	attempts	include	location	
obsfucation,	 where	 locations	 are	 slightly	 altered	 but	 within	 the	 realms	 of	 being	 useful	 for	
services	 (Krumm,	 2009).	 Another	 key	 change	 in	 the	 GDPR	 is	 the	 strengthening	 to	 privacy	 by	
design	principles	by	making	a	 legal	 requirement.	Companies	are	now	required	 to	 include	data	
protection	from	the	onset	of	designing	a	new	system,	rather	than	an	additional	 feature	at	the	
end.	
	

                                                

5	The	General	Data	Protection	Regulation	 	 (GDPR)	aims	 to	protect	all	 EU	citizens	 from	privacy	and	data	
breaches	in	an	increasingly	data-driven	world.	It	was	first	established	in	1995	
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However,	 despite	 the	 efforts	 made	 to	 deliberately	 encumber	 any	 form	 of	 matching	 of	 these	
trajectories	 to	 individual	 users,	 it	 can	 be	 argued	 that	 it	 is	 insufficient	 to	 truly	 protect	 users’	
privacies.	While	it	 is	the	predictability	and	repetitiveness	of	human	behavior	that	make	mobile	
phone	data	valuable	in	terms	of	mobility	research,	it	is	the	very	same	set	of	traits	that	makes	it	
difficult	 to	 completely	 anonymise	 this	 data.	 A	 recent	 study	 found	 that	 just	 4	 spatiotemporal	
observations	are	required	to	uniquely	identify	95%	of	the	individuals	in	their	tests	(de	Montjoye	
et	 al.,	 2013).	 As	 such,	 moving	 forward,	 more	 complex	 techniques	 should	 be	 designed	 and	
implemented	to	protect	individual	privacy.	Furthermore,	there	is	also	the	issue	of	“group	privacy”	
where	 people	 can	 be	 targeted	 on	 the	 basis	 of	 the	 social	 group	 they	 belong	 to.	 For	 example,	
certain	 groups	 may	 be	 represented	 more	 in	 mobile	 phone	 datasets	 depending	 on	 their	 age,	
gender,	 ethnicity	 etc.	 as	 indirect	 reasons	 for	 their	 level	 of	mobile	 phone	 activity	 at	 particular	
times	or	particular	places	(Calabrese	et	al.,	2015).	Implications	of	being	recognized	as	a	result	of	
identifying	with	a	particular	social	group	start	to	become	a	concern	(Letouzé	et	al.,	2015)	.	
	
We	acknowledge	that	these	constraints	to	individual	privacy	are	important	issues	to	consider.	In	
the	 years	 to	 come,	 it	 is	 expected	 that	 the	 scrutiny	 on	 data	mining	 and	 its	 associated	 privacy	
concerns	will	continue	to	increase.	Users	of	this	data	must	be	sensitive	to	their	methodologies	
and	how	legal	privacy	 issues	might	 impact	them	(Calabrese	et	al.,	2015).	With	rising	consumer	
concern,	 there	 might	 be	 legal	 challenges	 that	 this	 field	 runs	 into	 if	 these	 concerns	 are	 not	
adequately	addressed	with	the	implementation	of	more	effective	design	frameworks	devoted	to	
privacy	protection.	
	
	

2.7 Summary	and	Research	Gaps	

	
A	major	motivation	of	pursuing	this	research	 is	that	CSD	is	a	passive	data	type.	When	carrying	
out	important	urban	movement	analyses	whose	results	will	have	an	impact	on	decisions	made	
by	city	and	transport	planners,	this	data	must	be	as	representative	of	the	population	in	question	
as	possible.	Since	cellular	network	data	already	exists	and	much	of	the	population	already	carry	
personal	mobile	devices,	there	is	no	need	to	actively	solicit	respondents	to	complete	surveys,	or	
to	track	their	movements	on	GPS	loggers	or	GPS	enabled	devices.	Even	with	GPS	enabled	mobile	
phones,	 the	 modules	 tend	 to	 be	 highly	 battery	 intensive	 due	 to	 high	 resolution	 of	 the	 data	
collected,	 which	 is	 extremely	 undesirable	 for	 respondents	 and	 proves	 to	 be	 a	 double	 edged	
sword.	When	the	only	available	cellular	network	data	was	event-driven,	i.e	CDRs,	the	studies	ran	
the	risks	of	characterizing	only	highly	active	users	(Calabrese	et	al.,	2011).	This	became	less	of	a	
problem	 when	 the	 penetration	 of	 smartphones	 increased	 and	 internet	 billing	 records	 were	
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included.	 It	was	not	until	 recently	when	companies	 started	 to	 release	datasets	 that	contained	
both	event	and	network	driven	data	that	these	cellular	network	datasets	can	be	touted	as	being	
more	representative	of	the	population.	With	the	inclusion	of	network	driven	data,	 i.e	signaling	
data	with	 periodic	 and	 location	 updates	 the	 sampling	would	 be	 less	 dependent	 on	 a	 persons	
usage	(Calabrese	et	al.,	2015).		
	
The	main	challenge	of	using	CSD	is	handling	the	lower	spatial	and	temporal	resolutions,	as	well	
as	the	inconsistent	and	sometimes	sparse	samples	of	data.	The	previous	section	has	shown	how	
more	and	more	researchers	are	trying	to	incorporate	this	data	type	into	transportation	science	
and	LBS	driven	research,	but	those	that	use	it	primarily	for	mode	detection	methods	are	few	and	
far	 between.	 Most	 of	 them	 use	 event	 driven	 data,	 and	 some	 use	 more	 current	 and	 less	
temporally	sparse	network	driven	data,	though	these	constitute	the	minority.	In	addition,	many	
of	 these	 studies	 do	 not	 have	 ground	 truth	 data	 to	 validate	 their	 studies.	 Due	 to	 privacy	 and	
ethical	 considerations,	 companies	 have	 made	 it	 difficult	 to	 track	 a	 mobile	 phone	 trace	 to	 a	
specific	user.	As	this	data	type	is	relatively	new	in	the	mode	detection	realm,	there	has	yet	to	be	
a	 data	 collection	 and	 labeling	 campaign	 to	 produce	 such	 benchmark	 ground	 truth	 data	 for	
cellular	 network	 data.	 Another	 gap	 in	 the	 body	 of	 work	 is	 that	 a	 lot	 of	 the	 studies	 only	
differentiate	between	 stationary,	walking	and	motorized	modes,	or	at	 the	most	distinguishing	
motorized	modes	 into	general	groups,	 car	or	public	 transport.	Even	when	GPS	data	 is	used,	 it	
can	be	difficult	to	differentiate	between	cars	and	buses,	especially	in	slow	and	congested	traffic	
where	 speed	 and	 acceleration	 profiles	 can	 overlap	 a	 great	 deal.	 To	 alleviate	 this	 problem,	
contextual	GIS	 information	of	public	transport	routes	have	been	used	to	supplement	the	main	
cellular	network	data.	While	this	concept	has	started	to	arise	in	studies	using	mobile	phone	data,	
they	still	lump	public	transportation	modes	into	a	single	class	(Qu	et	al.,	2015).	
	
To	the	best	of	our	knowledge	there	has	yet	to	be	a	method	using	cellular	network	data	where	
distinctions	are	made	for	bicycles,	trams,	trains	or	buses.	Supervised	machine-learning	methods	
using	CSD	data	has	also	not	yet	been	explored.	As	for	methods	that	have	been	employed	in	CDR	
studies,	 the	 differences	 in	 CSD’s	 data	 characteristics	mean	 that	 important	 values	may	 not	 be	
transferrable,	such	as	speed	and	distance	thresholds	in	RBH	methods.	This	also	means	that	it	is	
currently	unclear	as	to	which	are	the	most	important	and	useful	features	that	can	be	extracted	
from	 CSD	 data	 as	model	 inputs	 to	 distinguish	 between	 various	modes	 of	 transportation.	 This	
thesis	aims	to	address	these	gaps,	to	incorporate	methods	used	in	GPS	studies	and	apply	them	
to	cellular	signaling	data	provided	by	A1		(one	of	the	main	mobile	network	operators	in	Austria)	
for	 this	 thesis.	 For	 example,	 FL	 systems	 have	 a	 potential	 to	 be	 applied	 here	 as	 their	 fuzzy	
boundaries	mean	that	they	can	handle	more	uncertainties	in	data.	The	method	of	building	a	FL	
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system	described	above	is	especially	applicable	to	transportation	modes	as	the	consequent	part	
can	be	categorical.		
	
While	cellular	signaling	data	is	not	as	accurate	as	GPS	data,	it	is	a	step	up	from	the	usual	event	
driven	 data	 that	 has	 been	 used	 in	 mode	 detection	 studies	 with	 network	 data	 (CDR/GSM)	 in	
terms	of	spatial	and	temporal	granularity.	As	such,	 the	goal	of	 this	 research	 is	 to	propose	and	
test	 new	 mode	 detection	 methods	 that	 are	 more	 well-matched	 and	 appropriate	 for	 CSD.	
Ultimately,	this	thesis	looks	at	ways	to	infer	a	greater	number	of	modes	with	higher	accuracy		
than	the	current	state	of	the	art.
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	CHAPTER	3
DATA	AND	ITS	CHARACTERISTICS	

	
	

3.1 Cellular	Signaling	Data	

	
The	 CSD	 used	 in	 this	 thesis	 is	 provided	 by	 A1	 through	 two	 data	 collection	 campaigns.	 A16	is	
Austria’s	 leading	 communications	 provider	 and	 has	 almost	 6	 million	 mobile	 users	 across	 the	
country.	This	works	out	to	be	44.8%	and	59.9%	of	the	broadband	and	telephony	market	share	in	
in	Austria	respectively7.	The	first	data	collection	was	done	by	Invenium	Data	Insights,	a	spin	off	
company	from	the	Technical	University	of	Graz	(TU	Graz)	that	focuses	on	big	data	and	mobility8.	
The	 second	 set	 of	 data	 came	 as	 a	 result	 of	 another	 ongoing	 research	 project	 in	 TU	 Graz	
investigating	the	distribution	of	urban	activity	using	CSD.	The	study	will	only	focus	on	the	urban	
areas	of	Graz	and	Vienna.	As	such,	trips	to	and	from	these	cities	will	not	be	considered.	This	is	to	
reduce	complications	that	could	be	introduced	by	differences	of	data	quality	and	granularity	in	
urban	 and	 rural	 areas.	 Each	 CSD	 record	 consists	 of	 an	 anonymized	 ID,	 a	 timestamp	 and	 a	
triangulated	spatial	position.	Special	requests	and	procedures	had	to	be	followed	in	order	to	get	
clearance	to	link	the	raw	mobile	data	to	their	phone	numbers.	The	data	providers	do	not	reveal	
the	full	details	of	how	localization	is	done	through	triangulation.	In	the	first	dataset,	2	volunteers	
from	 Invenium	provided	 the	 data	 of	 their	 own	mobile	 phones	where	 their	 CSD	was	 collected	
from	mid	Spetember	to	mid	Novemeber.	During	this	time	they	were	mostly	in	the	Austrian	city	
of	Graz,	followed	by	Vienna.	The	second	collection	campaign	was	run	by	9	volunteers	from	the	
21st	 of	 March	 to	 18th	 of	 April.	 The	 study	 area	 was	 mostly	 in	 Graz	 and	 wider	 Styria	 and	 the	
participants	were	encouraged	 to	 travel	over	different	parts	of	 this	 study	area	and	 to	 vary	 the	
modes	 of	 transportation	 taken.	 This	 time,	 GPS	 observations	 are	 also	 recorded	with	 a	mobile	
application.	Each	participant	was	given	a	smartphone	provided	by	the	researcher,	and	this	came	

                                                

6	https://www.a1.net/	
7	https://cdn1.a1.group/final/en/media/pdf/pr-results-qu4-2017.pdf	
8	http://www.invenium.io/en/	
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with	an	application	“Modalyzer”	installed.	This	application	enables	the	collection	of	GPS	points	
each	 second,	 if	 there	 are	 enough	 GPS	 satellites,	 and	 automatically	 generates	 a	 trip	 diary	
(including	 time	of	day,	 travel	 time,	 travel	distance	and	 transport	mode).	 Each	 recorded	day	 is	
checked	and	corrected	by	the	participants	themselves,	so	 that	the	verified	data	reflect	ground	
truth	as	close	as	possible.	Additionally	they	were	asked	to	add	the	trip	purpose	in	a	“comments”	
field.	 The	 data	 annotation	 can	 be	 done	 in	 the	 app	 itself	 or	 on	 a	 corresponding	website.	 The	
participants	were	also	asked	to	use	the	smartphone	actively	in	order	to	provide	more	raw	CSD	
observations.	All	the	data	is	characterized	by	the	following	definitions:	
	

Observation	 (o):	Any	event	where	the	cell	phone	 is	communicating	with	a	cell	 tower,	
and	a	data	point	is	recorded.	Each	observation	is	a	tuple	(id,	x,	y,	t),	with	a	user	id	id,	
longitude	x,	latitude	y,	and	timestamp	t.		
	
Trajectory	 (T):	A	sequence	of	observations	of	a	single	user,	in	chronological	order.	T	=	
(o1,	o2,	o3,	….on).	

	
In	the	first	collection	campaign,	the	observations	were	segmented	into	trajectories	by	Invenium	
and	 the	 two	 volunteers	 provided	 labels	 for	 99	 trajectories,	 56	 in	 Vienna	 and	 43	 in	 Graz	 by	
manually	 annotating	 the	 extracted	 trajectories	 from	 3383	 final	 observations.	 In	 the	 second	
collection	campaign,	the	9	volunteers	generated	48	days	worth	of	raw	data	in	the	cities	of	Graz	
and	Vienna.	This	translates	into	14802	raw	observations	over	920	hours.	
	
	

3.1.1 Spatial	resolution	

	
Before	 analyzing	 the	 spatial	 and	 temporal	 resolution	 of	 the	 data,	 redundant	 points	 are	 first	
removed.	 If	 a	 series	of	 points	 have	 the	exact	 same	geographic	 co-ordinates,	 the	 first	 and	 last	
points	 are	 kept	 while	 all	 points	 in	 between	 are	 removed.	 Also,	 duplicated	 observations	
(observations	 with	 the	 same	 geographic	 coordinates	 and	 timestamps)	 are	 removed.	 These	
redundant	points	do	not	offer	any	extra	information	and	will	give	us	a	misleading	indication	of	
spatial	 and	 temporal	 resolution	 that	 is	 actually	 meaningful	 as	 these	 are	 based	 on	mean	 and	
median	 values.	 Upon	 initial	 exploration	 of	 the	 data,	 the	 spatial	 resolution	 seems	 to	 vary	
considerably.		
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Figure	11	shows	examples	of	two	U-Bahn	(metro)	trajectories	(trajectories	where	the	user	was	
taking	the	U-Bahn)	that	appear	to	have	varying	spatial	resolutions.	The	pink	trajectory	seems	to	
have	observations	that	veer	up	to	about	350m	away	from	the	nearest	U-Bahn	link	(red	tracks),	
while	the	blue	trajectory	seems	to	have	a	consistent	proximity	of	less	than	150m	away	from	the	
nearest	U-Bahn	link.	This	pales	in	comparison	to	GPS	data,	which	usually	has	a	more	consistent	
accuracy	 to	 about	within	 10m	 (Bohte	 and	Maat,	 2009),	 though	 this	 can	 also	 vary.	 To	 further	
explore	 the	 spatial	 accuracy	 of	 the	 CSD	 data,	 each	 CSD	 observation	 is	 matched	 with	 the	
corresponding	GPS	point	by	time	to	the	nearest	second	(if	available),	and	the	distance	between	
them	is	calculated.	This	will	be	used	as	a	proxy	to	estimate	the	spatial	resolution	of	the	CSD	data.	
Figure	14	shows	the	distribution	of	the	spatial	resolution	of	all	the	raw	CSD	points.	For	purposes	
of	 illustration,	 the	range	on	the	x-axis	of	 the	histogram	below	has	been	capped	at	1.5km.	The	
data	has	an	extremely	large	range,	with	the	maximum	distance	being	over	67km	away	from	the	
GPS	point.	This	usually	happens	when	the	participant	is	commuting	for	long	distances	between	
cities,	where	a	single	LA	may	cover	a	large	area,	considerably	larger	than	that	of	those	in	urban	
areas	(Figure	15).	It	is	observed	that	the	distances	calculated	are	extremely	left	skewed,	with	the	
median	 distance	 (273m)	 and	 the	 even	 the	 3rd	 quartile	 (858m)	 being	 lower	 than	 the	 mean	
(1174m)	 (Table	 2).	 This	 gives	 an	 indication	 of	 the	 general	 spatial	 accuracy	 of	 the	 data.	 In	
comparison,	the	GPS	data	collected	in	tandem	with	CSD	data	had	a	mean	spatial	accuracy	of	25	
m	and	a	median	of	10	m.	
	

 
Figure	11:	Examples	of	differing	spatial	resolution	of	observations,	each	color	representing	a	different	U-
Bahn	trajectory	(Source:	OpenStreetMap)	
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Figure	12	Visualization	of	CSD	points	in	Graz	(Source:	OpenStreetMap)	

		
  
 
 
 
 

 
 
 

 
Figure	 13	 Visualization	 of	 CSD	 points	 in	 Vienna	 (Source:	
OpenStreetMap)
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Figure	14	Distribution	of	raw	CSD	observations	to	corresponding	GPS	observations	

	
	
	

	 Min.	 1st	Qu.	 Median	 Mean	 3rd	Qu.	 Max.	

Raw	(All	points)		 13.73	 149.9	 273.2	 1174	 858.6	 67200	

Raw	(In	cities)	 13.73	 120.5	 188.8	 332.1	 324.5	 64970	
Table	2	Distance	of	 raw	CSD	 to	corresponding	GPS	points	 in	all	points	and	 in	 the	urban	 study	areas	 (in	
meters)	
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Figure	15	CSD	(yellow)	and	corresponding	GPS	trajectory	(black)	when	commuting	between	cities	where	
cellular	coverage	is	not	as	strong	

	
	
Figure	16	shows	the	distribution	of	distances	between	CSD	observations	and	the	corresponding	
GPS	points	for	CSD	found	in	the	cities	of	Graz	and	Vienna.	While	the	maximum	distance	is	still	
the	same	at	almost	65km	(not	pictured),	the	mean	(332.1	m)	and	median	(188.8m)	is	now	a	lot	
lower	 (Table	2).	However,	due	 to	 the	effects	of	outliers,	 the	mean	 is	 still	 lower	 than	 the	 third	
quartile.	In	this	particular	case	of	the	CSD	found	65km	away	from	the	corresponding	GPS	point,	
the	user	was	 in	 an	area	where	 the	user	was	 travelling	 towards	Graz	 from	Vienna.	Due	 to	 the	
ping-pong	phenomenon	or	errors	in	the	triangulation	calculation,	the	recorded	CSDs	reflected	a	
jump	while	on	 the	 Semmering	expressway	 S6	 a	 freeway	 to	Graz	 for	 2	observations,	 and	 then	
back	again	to	the	original	location.	
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Figure	16	Distribution	of	raw	CSD	observations	to	corresponding	GPS	observations	in	Graz	and	Vienna.	

			
	

3.1.2 Temporal	resolution	

	
The	 temporal	 resolution	 as	 expected,	 is	 highly	 irregular,	 with	 the	 shortest	 and	 longest	 time	
interval	 between	 consecutive	 observations	 to	 be	 less	 than	 1	 second	 and	 5160	 seconds	
respectively.	The	distribution	of	these	time	intervals	is	quite	skewed	towards	the	low	end,	with	a	
median	of	26	seconds	and	mean	of	175	seconds.	In	a	CDR	study,	Calabrese	et	al.	(2011)	used	the	
mean	of	the	medians	as	an	indicator	of	the	temporal	resolution	and	the	minimum	duration	of	a	
stop	 that	 can	be	detected.	He	 found	 that	 the	arithmetic	 average	of	medians	was	84	minutes,	
meaning	that	they	could	detect	stops	as	low	as	about	1.5	hours.		
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Figure	 17	 Distribution	 of	 the	 first	 quartiles,	medians	 and	 third	 quartiles	 of	 the	 time	 intervals	 between	
observations	of	each	user	

	
	
The	 raw	dataset	has	an	arithmetic	average	of	medians	of	90	seconds,	about	1.5	minutes.	 Like	
the	spatial	accuracy,	the	distribution	of	the	time	intervals	is	extremely	left	skewed,	with	75%	of	
the	values	being	less	than	110.50	seconds	(3rd	quartile)	(Figure	17).	However,	as	public	transport	
modes	do	not	generally	stop	at	bus	or	tram	stops	for	over	a	minute	and	going	by	Calabrese	et	
al.'s	 (2011)	 interpretation	 of	 these	 values,	 it	 is	 unlikely	 that	 we	 will	 be	 able	 confidently	 to	
segment	observations	 into	trajectories	 in	between	stops.	 In	contrast,	the	sampling	rate	of	GPS	
data	 depends	 on	 the	 device	 that	 is	 collecting	 it,	 and	 this	 can	 be	 set	 differently	 for	 different	
purposes.	For	example,	 the	GPS	data	collected	 in	this	study	had	a	mean	sampling	rate	of	1.97	
seconds.	
	
	

3.2 Other	data	

	
External	 GIS	 transportation	 network	 data	 for	 contextual	 information	was	 also	 used.	 For	Graz,	
these	 static	 geospatial	 data	 of	 the	 bus,	 tram	 and	 S-Bahn	 networks	 were	 obtained	 from	
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OpenStreetMap	and	for	Vienna,	U-Bahn,	S-Bahn,	bus	and	tram	network	shapefiles	were	taken	
from	Vienna’s	Open	Government	Data	website9.	
	
There	 are	 several	 important	 things	 to	 note	 of	 the	 collected	 data.	 Firstly,	 as	 the	 process	 of	
identifying	trace	of	cellular	signaling	observations	to	a	user	is	extremely	difficult	due	to	privacy	
obligations,	 we	 were	 only	 able	 to	 get	 two	 people	 from	 Invenium	 to	 be	 able	 to	 collect	 their	
cellular	signaling	data	in	the	first	collection	run.	Secondly,	as	these	two	volunteers	had	full-time	
day	 jobs,	 they	went	about	 their	normal	daily	 routines,	meaning	 the	observations	 followed	the	
same	route	and	had	the	same	modes	almost	everyday	as	the	volunteers	travelled	to	and	from	
work	 and	 home.	 Only	when	 they	were	 in	 Vienna,	 the	modes	 and	 visited	 places	were	 slightly	
more	varied.	This	might	also	have	implications	on	phone	usage	whilst	travelling.	As	their	home	
city	 was	 Graz,	 they	 would	 not	 need	 to	 use	 navigation	 apps	 for	 example,	 to	 reach	 their	
destinations.	This	might	be	different	in	Vienna,	a	city	they	might	not	be	as	familiar	with.	As	such,	
the	temporal	resolutions	might	be	generally	higher	in	Vienna	as	the	data	is	made	of	event	driven	
data	as	well.	This	 is	 in	contrast	to	the	second	collection	campaign	where	the	data	was	actively	
sought	 over	 different	 areas	 and	 for	 different	 modes,	 where	 the	 participants	 were	 actively	
encouraged	 to	 use	 their	 phones	 more	 whilst	 travelling	 to	 increase	 the	 amount	 of	 CSDs	
generated.		
	

                                                

9	https://open.wien.gv.at/site/open-data/	
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	CHAPTER	4
METHODOLOGY	

	

4.1 Methodological	procedure		

	
Certain	considerations	were	made	prior	to	designing	the	mode	detection	algorithm:	
	

1. S-Bahn	 and	 U-Bahn	 tracks	 are	 unlikely	 to	 run	 completely	 parallel	 to	 roads,	
especially	 in	 the	 city.	 As	 such,	 a	 trajectory	with	 a	 consistently	 close	 proximity	 to	
these	 networks	 is	 highly	 likely	 to	 be	 of	 that	 particular	 mode	 (Figure	 18).	 A	
trajectory’s	 proximity	 to	 these	 networks	 can	 be	 measured	 in	 a	 few	 ways;	 as	 a	
percentage	of	points	within	a	distance	 threshold	 to	 the	network	 (Bohte	&	Maat,	
2008),	or	the	average	distance	of	all	points	to	the	network	(Qu	et	al,	2015).	

2. Fastest	 modes	 can	 produce	 both	 low	 and	 high	 speeds,	 whereas	 non-motorized	
modes	 like	 walking	 can	 only	 produce	 low	 speeds,	 not	 taking	 outliers	 or	 data	
anomalies	into	account.		

3. Slow	modes	 like	walk	 generate	poorer	quality	 data.	 Bicycles	may	 tend	 to	have	 a	
lower	 number	 of	 event	 driven	 data	 points	 (data	 generated	 when	 the	 phone	 is	
being	 used)	 as	 compared	 to	 a	 commuter	 on	 a	 tram	 for	 example,	 and	 network	
driven	data	points	(data	generated	during	location	area	changes)	if	trip	distance	is	
low	(Figure	19).	

4. As	start	and	end	points	accuracy	unclear,	it	might	problematic	to	use	the	first	and	
last	points	as	the	true	start	and	end	point.	

5. Percentile	 values	of	 speed	or	acceleration	may	be	more	meaningful	measures	 to	
use	than	merely	average	values.	

6. Differentiating	between	very	slow	cars,	bikes	and	walking	might	be	problematic	as	
they	can	have	almost	identical	motion	profiles.	This	can	be	true	for	cars	and	buses	
in	traffic	jams	as	well,	for	example.	As	such,	simple	rules	based	on	speed	may	not	
be	 sufficient.	While	 a	 possibility	 is	 using	 real	 time	 bus	 locations,	which	 is	 in	 line	
with	 the	 “smart	 city”	 goal	 that	 many	 places	 are	 aiming	 for,	 it	 still	 remains	
unavailable	 for	 many	 places,	 including	 Graz.	 Using	 the	 scheduled	 time	 is	 also	
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problematic	 due	 to	 the	 not	 uncommon	 delays	 faced	 by	 any	 public	 transport	
system,	 due	 to	 unforeseen	 circumstances	 like	 accidents,	 construction,	 or	 just	
heavy	traffic	in	general.		

	
	

 
 
Figure	18	Example	of	 two	U-Bahn	trajectories.	The	points	are	 individual	observations	of	 the	user	 taking	
the	U-Bahn.	Blue	circles	represent	a	trip	in	the	morning	and	pink	circles	represent	trips	in	the	afternoon.	
Red	tracks	symbolize	the	U-Bahn	network.	(Source:	OpenStreetMap)	
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Figure	 19:	 Example	 of	 CSD	 (pentagons)	 generated	 for	walk	 (yellow)	 and	 bike	 (blue)	 compared	 to	 their	
corresponding	GPS	tracks	(circles).	(Source:	OpenStreetMap)	
	

With	 these	considerations	 in	mind,	 there	are	several	approaches	 that	will	be	described	 in	 this	
section.	 For	 both	 supervised	 and	 unsupervised	 approaches,	 they	 can	 be	 split	 into	 two	 main	
groups	Table	3.		
	
For	group	A,	 trajectories	are	 subjected	 to	a	 set	of	 rules	 that	allow	us	 to	 filter	out	 some	more	
easily	 identified	modes	such	as	U-Bahn	and	S-Bahn.	As	such,	the	output	is	a	set	of	determined	
and	undetermined	trajectories.	The	secondary	steps	 in	this	combined	mode	detection	method	
are	either	with	a	Fuzzy	Logic	(FL)	System	or	with	Random	Forest	(RF).	Variable	selection	will	also	
be	carried	out	for	the	secondary	mode	detection	step.	This	is	done	three	ways:	
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1. Existing	Literature	 in	GPS-based	mode	detection	(Schussler	et	al.,	2009;	Ramussen	
et	al.,	2015)	95th	percentile	acceleration,	95th	percentile	speed,	median	speed	

	
2. Machine	 Learning:	 Random	 Forest	 (RF).	 This	 method	 of	 supervised	 machine	

learning	was	picked,	as	it	has	been	known	to	perform	well	in	similar	studies	as	the	
main	 mode	 detection	 step.	 However,	 in	 this	 case,	 RF	 is	 used	 as	 a	 dimension	
reduction	technique	so	as	to	obtain	an	informative	but	small	set	of	variables	to	be	
fed	 into	 the	 FL	 system.	 As	 the	 algorithm	 outputs	 variables	 that	 are	 of	 high	
importance,	it	can	be	an	indication	of	best	variables	to	use	in	the	FL	system.	

	
	
	

Supervised	A:	Combined	method	of	Rule-Based	Heuristics	(RBH)	+	secondary	mode	detection	

step	(Fuzzy	Logic	/	Machine	Learning)	

RB_FLEL	 RBH	 for	 U/S-Bahn	 and	 car	 +	 Fuzzy	 Logic	 with	 variables	 from	 existing	
literature	in	GPS	

RB_FLRF	 RBH	for	U/S-Bahn	and	car	+	Fuzzy	Logic	with	Random	Forest	for	variable	
selection	

RB_RF	 RBH	for	U/S-Bahn	and	car	+	Random	Forest	for	classification	

Supervised	B:	Fuzzy	Logic	or	machine	learning	

FLEL	 Fuzzy	Logic	with	existing	literature	in	GPS	
FLRF	 Fuzzy	Logic	with	Random	Forest	as	variable	selection	
RF	 Random	Forest	for	classification	

Unsupervised:	Combined	method	of	Rule-Based	Heuristics	(RBH)	+	secondary	mode	detection	

step	(K-means	or	Paritioning	around	Medoids)	

RB_KMEANS	 for	U/S-Bahn	and	car	+	unsupervised	K-means	clustering	
RB_PAM	 RBH	for	U/S-Bahn	and	car	+	Partitioning	around	Medoids	with	Random	

Forest	proximity	matrix	
PCA	 Principal	 Component	 Analysis,	 the	 unsupervised	 variable	 selection	

method	
Table	3	List	of	mode	detection	methods	proposed	and	their	abbreviations	

	
	
If	 labels	 are	 not	 available,	 unsupervised	methods	 will	 be	 used,	 and	 the	 two	methods	 will	 be	
Partitioning	around	Medoids	using	the	RF	algorithm	to	generate	the	dissimilarity	matrix,	and	K-
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means	clustering.	Principal	Component	Analysis	(PCA)	will	be	used	to	select	the	input	variables.	
As	mentioned	 earlier,	 the	 characteristics	 of	 cellular	 signaling	 data	 are	 still	 markedly	 different	
from	that	of	GPS	data,	and	as	such	there	may	be	other	variables	that	are	more	suitable	as	input	
fuzzy	variables.	Each	PC	will	have	a	set	of	variables	that	contribute	the	most	significantly	to	that	
PC,	thus	giving	us	an	idea	of	which	variables	are	more	informative.	With	this	in	mind,	we	use	the	
high-contributing	variables	of	the	leading	PCs	as	inputs	for	the	clustering.	PCA	was	chosen	as	it	is	
a	popular	dimension	reduction	technique,	and	as	 it	 is	especially	useful	here	 in	that	 it	does	not	
require	labels.		
	
	
	

 
Figure	20:	Methodological	Framework	
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The	methodological	framework	of	this	thesis	is	summarized	in	Figure	20.	First,	in	section	4.2,	we	
describe	 the	 computing	 environment.	 Section	 4.3	 summarizes	 how	 it	 was	 cleaned	 and	 pre-
processed	for	the	purposes	of	this	study.	Section	4.4	describes	an	initial	set	of	features	that	are	
extracted	from	the	pre-processed	data;	these	features	will	be	then	used	in	the	mode	detection	
algorithms.	The	next	Section	4.5	outlines	the	initial	and	final	designs	of	the	RBH	that	is	the	first	
step	of	all	methods	in	Group	A.	Here,	rationales	behind	the	inclusion	or	exclusion	of	certain	rules	
and	their	threshold	values	are	discussed.	Following	that	 is	the	description	of	the	methods	that	
precedes	the	RBH,	specifically,	FL	systems	in	Section	4.6	and	classification	with	Random	Forest	in	
Section	 4.7.	 Section	 4.8	 explores	 an	 unsupervised	method	 for	 situations	when	only	 unlabeled	
data	 is	 available.	 As	 these	 various	 methods	 require	 some	 form	 of	 variable	 selection	 step	 to	
reduce	 the	 number	 of	 features	 used,	 the	 next	 Section	 4.9	 outlines	 the	 two	 variable	 selection	
methods	chosen	here,	with	random	forest	that	requires	labels	and	Principal	Component	Analysis	
that	does	not.		
	
	

4.2 Computing	environment	

	
The	data	was	visualised	in	QGIS	and	R	was	used	on	RStudio	as	the	analytical	environment	where	
the	algorithms	were	coded	and	run.	The	table	below	shows	an	overview	of	the	most	important	
R-packages	used	in	this	thesis.		
	

4.3 Pre-processing	

	
The	 data	 provided	 by	 Invenium	 was	 already	 pre-processed	 and	 segmented	 into	 alternating	
stationary	and	moving	trajectories.	First,	the	outliers	were	detected	and	removed	using	Horn	et	
al.’s	recursive	look-ahead	filter	(Horn	et	al.,	2014).	The	recursive	filter	first	detects	outliers,	and	
then	looks-ahead	to	the	subsequent	observations	to	decide	which	of	these	observations	are	the	
outlier	 and	 which	 has	 the	 correct	 measurements.	 First,	 the	 speed	 between	 two	 successive	
events	 oi-1	 and	 oi	 is	 calculated	 and	 if	 this	 speed	 exceeds	 vsupersonic,	 oi	 is	 flagged	 as	 a	 potential	
outlier.	The	look-ahead	portion	of	the	filter	calculates	the	distance	between	the	oi	and	oi+1,	Di,i+1,	
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and	 the	distance	between	oi+1	and	oi-1,	Di+1,i-1.	 If	Di,i+1	 is	 larger	 than	 	Di+1,i-1,		oi	,	 is	 considered	 the	
outlier	 and	 removed.	 If	 not,	 oi-1	 is	 removed.	 The	 filter	 can	 be	 described	 in	 the	 following	
algorithm	(Horn	et	al.,	2014),	where	the	 input	for	the	filter	 is	a	sequential	 list	of	observations.	
Vsupersonic	is	set	at	260km/h,	about	twice	the	maximum	speed	limit	of	an	Austrian	highway.	For	a	
sequence	of	observations,	S:	
	
	

Sort	S	by	time	of	events		
For	i=0	to	S•	size:		
If	i	>	0	And	i	<	S.size	−	1:		

v	=	distance(Oi-1	•	position,	Oi	•	position)/(Oi	•	time	–	Oi-1•	time)		
If	v	>	Vsupersonic:		

d1	=	distance(Oi+1	•	position,	Oi	•	position)		
d2	=	distance(Oi+1	•	position,	Oi-1	•	position)		
If	d1	>	d2:		

Remove	Oi		
Else:		

Remove	Oi-1	End	if		
End	if		

End	if		
End	for		

Return	S		

	

Package	 Purpose	 Reference	
tmaptools	 Reading	in	GPX	data	 (Tennekes,	2018)	
dplyr	 Data	manimulation	 (Wickham	et	al.,	2017)	
rgdal	 Spatial	manipulation	and	projections	 (Bivand	et	al.,	2018)	
rgeos	 Spatial	calculations		 (Bivand	et	al.,	2017)	
sp	 Handling	spatial	objects	 (Pebesma	et	al.,	2018)	
flexclust	 k-means	clustering		 (Leisch	and	Dimitriadou,	2018)	
cluster		 PAM	clustering	 (Maechler	et	al.,	2018)	
frbs	 Fuzzy	Logic	methods	 (Riza	et	al.,	2015)	
randomForest	 Random	Forest	methods	 (Cutler	and	Wiener,	2018)	
Boruta	 	 Variable	selection	with	RF	 (Kursa	and	Rudnicki,	2018)	
rpart	 Tree-based	classification	 (Therneau	et	al.,2018)	
rpart.plot	 Visualisation	of	tree-based	classification	results	 (Milborrow,	2017)	
ggplot2	 Visualisation	of	data	 (Wickham	et	al.,	2016)	
Table	4	Overview	of	main	R-packages	used	
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Table	6	shows	the	list	of	features	that	were	extracted	from	each	observation.	Segmentation	will	
be	done	using	the	values	of	these	features.	The	method	is	similar	to	distance	and	speed-based	
clustering,	 as	 explained	 in	 section	 2.3.1	 and	2.4.4,	 and	 can	be	described	 as	 a	 split	 and	merge	
approach.	 After	 the	 observations	 have	 been	 pre-processed	 and	 the	 outliers	 removed,	 the	
sequences	 are	 then	 split	 into	 individual	 trip	 segments,	 alternating	 between	 moving	 and	
stationary	 trajectories.	 A	 low	 speed	 threshold	 of	 3km/h	 is	 used	 to	 differentiate	 between	
stationary	 and	 moving	 observations.	 If	 the	 inst.vel	 (speed	 between	 two	 consecutive	
observations	 oi	 and	 oi+1)	 is	 below	 3km/h,	 oi	 is	 initially	 labeled	 with	 a	 state	 of	 “Stationary”,	
otherwise	the	state	will	be	recorded	as	“Moving”.	Consecutive	stationary	observations	within	a	
certain	 distance,	maxD,	 are	 merged	 into	 a	 stationary	 segment.	maxD	 	 is	 set	 at	 500m.	 The	
algorithm	 consecutively	 examines	 the	 observations	 chronologically	 and	 incrementally	 creates	
and	 appends	 observations	 to	 clusters	 with	 small	 distances.	 The	 distance	 between	 a	 new	
stationary	 point	 and	 an	 existing	 stationary	 cluster	 is	 the	 average	 distance	 of	 that	 point	 to	 all	
points	in	already	the	cluster.	Once	the	next	stationary	observation,	Os1	exceeds	maxD,	a	moving	
segment	will	be	injected	into	the	sequence	at	the	position	preceding	Os1.	The	moving	segment	
will	be	made	of	Os1-1	and	Os1	as	 the	 start	and	end	points	of	 the	 segment	 respectively.	 In	other	
words,	 clusters	 of	 stationary	 observations	 are	 formed	 sequentially	 so	 long	 as	 the	 distance	
between	the	points	do	not	exceed	maxD.	Once	maxD	is	exceeded,	a	new	cluster	is	formed	and	a	
moving	 segment	 is	 inserted	 between	 the	 two	 clusters.	 Now	 the	 sequence	 of	 observations	
consists	 of	 groups	with	 stationary	 and	moving	 states,	 representing	 alternating	 stationary	 and	
moving	segments.	Next,	in	order	to	merge	stationary	segments	within	a	certain	range,	centroids	
of	the	stationary	segments	are	calculated.	If	centroids	of	stationary	segments	S1	and	S2	are	less	
than	maxD,	the	moving	segment	between	them,	M1,	is	treated	as	a	stationary	segment,	and	S1,	
M1	and	S2	are	merged	into	a	single	stationary	segment.	The	start	and	end	points	of	all	moving	
segments	are	the	last	and	first	points	of	the	previous	and	next	stationary	segments	respectively.	
	
Prior	 to	 the	 pre-processing	 and	 segmentation,	 each	 CSD	 observation	 is	 assigned	 a	 label	 if	 its	
time	stamp	falls	within	the	start	and	end	time	of	a	trip	reported	in	the	ground	truth	data.		After	
the	segmentation	is	done,	only	moving	segments	that	have	a	single	label	covering	over	80%	of	
the	 duration	 of	 the	 segment	 will	 be	 considered.	 The	 rest	 will	 be	 considered	 non-trips.	 After	
removing	the	outliers,	 the	subsequent	distribution	of	spatial	resolution	measured	by	distances	
to	GPS	points	of	the	remaining	points	(just	within	the	study	areas	of	Vienna	and	Graz)	is	shown	
in	Table	5.		
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	 Min.	 1st	Qu.	 Median	 Mean	 3rd	Qu.	 Max.	

Raw	(In	cities)	 13.73	 120.5	 190.6	 332.1	 324.5	 64970	
Outliers	
removed		
(In	cities)	

14.65	 119.2	 188.8	 314.6	 332	 4016	

Table	5:	Distance	of	GPS	points	to	of	CSD	points	in	metres	

	

4.4 	Feature	list	

The	 next	 section	 describes	 the	 list	 of	 features	 that	 are	 extracted	 from	 the	moving	 segments,	
which	will	be	referred	to	as	trajectories	from	now	on.	Each	trajectory	is	made	of	a	sequence	of	
observations.	
	

4.4.1 Features	at	the	observation	level	

The	 following	 table	 describes	 the	 features	 extracted	 from	 each	 observation.	 Each	 feature	
extracted	is	for	the	observation	oi.	
	
Attribute	 Description	
per_id	 ID	representing	the	user.	Data	generated	by	each	user	within	a	24	

hour	window	will	have	this	ID	
time	 Date	and	time	each	point	was	generated	[YYYY/MM/DD	

HH:MM:SS.MSMSMS]	
coords.x1	 Longitude	
coords.x2	 Latitude	
track_seg_id	 Segment	ID	of	trajectory	
state	 State	of	trajectory,	either	M	(Moving)	or	S	(Stationary)	
track_seg_point_id	 ID	of	observations	that	make	up	each	trajectory	
dist	 Great	circle	between	observation	oi	and	oi+1	
timediff	 Time	elapsed	between	observation	oi	and	oi+1	
inst.vel	 Velocity	of	oi	is	calculated	by	disti,i+1/timediffi,	i+1	

rolling2.vel	 To	smooth	out	measurement	errors	such	as	when	huge	jumps	are	
made	between	observations,	the	velocity	within	a	rolling	window	is	
calculated.	Average	velocity	of	2	consecutive	observations	calculated	
by	(dist	i,i+1	+	disti+1,i+2	)/timediff	i,i+2.		

rolling3.vel	 Average	velocity	of	3	consecutive	observations	calculated	by	(dist	i,i+1	
+dist	i+1,i+2	+dist	i+2,i+3	)/timediff	i,i+3		

Inst.acc	 Acceleration	of	oi	calculated	by	(inst.vel	i,i+1	–	inst.vel	i+1,i+2	)/timediff	i,i+2	
Rolling3.acc	 Acceleration	of	oi	calculated	using	rolling2.vel	values	
Table	6:	List	of	attributes	extracted	from	each	observation	
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Figure	21:	Example	of	attributes	extracted	for	each	observation	
 

4.4.2 Features	at	the	trajectory	level		

	
From	the	segmented	trajectories,	each	feature	that	will	be	used	 in	the	mode	detection	step	 is	
extracted.	As	mentioned	in	the	literature	review,	common	features	extracted	for	the	purposes	
of	 mode	 detection	 include,	 length	 of	 trip,	 maximum,	 average	 and	 median	 speed	 and	
acceleration	(or	95th	percentile	speed	for	example),	distance	to	transport	lines,	average	heading	
change,	whether	trajectory	intersects	a	pedestrian-only	area	(Gong	et	al.,	2012;	Gonzalez	et	al.,	
2010;	Qu	et	al.,	2015;	Stenneth	et	al.,	2011),	to	name	a	few.	
	
Spatial	features	

Comparing	the	points	with	the	existing	transportation	network,	proximity	values	can	be	derived.	
The	 network	 data	 of	 Vienna	 is	 taken	 from	 the	 official	 government-run	 open	 data	 portal	 of	
Vienna10.	Network	data	of	Graz	is	extracted	from	OSM.	Average	distances	are	calculated	as	the	
average	 distance	 of	 each	 point	 in	 each	 trajectory	 to	 the	 closest	 link	 in	 the	 relevant	 transport	
network.		

                                                

10	https://open.wien.gv.at/site/open-data/	
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Spatial	features	
Features	 Description	
Tramdist	 Average	distance	to	tram	network	
Busdist	 Average	distance	to	bus	network	
Sbahndist	 Average	distance	to	S-Bahn	network	
Ubahndist	 Average	distance	to	U-Bahn	network	(N.A.	for	Graz)		
Table	7:	List	of	spatial	features	extracted	for	each	trajectory	 	

	

Motion	features	

These	features	extracted	are	meant	to	describe	the	movement	of	the	user	during	the	course	of	
the	 trajectory.	 As	 each	 trajectory	 is	 made	 of	 a	 number	 of	 observations,	 these	 features	 are	
usually	averages	of	all	the	observations	within	a	trajectory.	For	example,	vel.inst	(Table	7)	of	the	
trajectory	 is	 the	 average	 of	 all	 inst.vel	 values	 (Table	 6)	 of	 the	 observations	 that	make	 up	 the	
trajectory.	 Motion-based	 features	 include	 measures	 of	 speed,	 acceleration	 and	 their	
corresponding	 characteristics	 such	 as	 their	 deciles,	 mean,	 maximum	 and	 minimum	 etc.	 For	
these	measures,	to	account	for	any	more	data	anomalies	that	were	not	removed	in	the	cleaning	
stage,	values	of	rolling	windows	were	also	extracted.	These	consist	of	commonly	used	features	
in	 other	 mode	 detection	 studies	 using	 GPS	 as	 well	 as	 mobile	 phone	 data	 (Axhausen	 and	
Schüssler,	 2009;	 Gong	 et	 al.,	 2012;	 Rasmussen	 et	 al.,	 2015)	 Other	measures	 such	 as	 average	
speed	 of	 the	 entire	 trajectory,	 average	 distance	 between	 points	 and	 number	 of	 points	 were	
extracted,	as	there	may	be	defined	differences	of	these	measures	between	each	mode	(Sohn	et	
al.,	2006).	For	example,	one	would	expect	the	distance	between	points	for	someone	on	a	high	
speed	 U-Bahn	 to	 be	 larger	 than	 that	 of	 someone	 who	 is	 strolling	 along	 a	 street.	 Similarly,	 it	
might	be	the	case	that	someone	on	a	bicycle	might	 leave	a	 lower	number	of	data	points	 than	
someone	on	a	tram	as	they	would	not	be	able	to	surf	the	Internet	whilst	cycling,	the	same	way	a	
commuter	 and	public	 transport	 can.	 Some	other	 secondary	 features	 are	 also	derived,	 such	as	
the	ratio	of	standard	deviation	to	the	mean	(both	speed	and	acceleration	measures)	to	test	if	it	
can	be	a	possible	indicator	that	can	differentiate	between	modes.		
 

Some	contextual	data	such	as	length	of	trip	are	also	extracted	as	Wiener	Linien	has	announced	
that	 the	 various	modes	 have	 noticeably	 different	 average	 distance	 between	 stops.	 However,	
due	 to	 the	 temporal	 resolution	 (section	3.1.2),	 the	 segmentation	may	not	 reliably	divide	 trips	
into	 individual	 journeys	between	successive	stops.	 If	 they	were,	the	ratio	of	stationary	time	to	
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travel	 time	 could	 also	 be	 extracted.	 However,	 they	 can	 still	 be	 meaningful	 as	 a	 minimum	
distance	 travelled	 for	a	particular	public	 transportation	mode	as	 the	distance	 travelled	 should	
not	be	 less	 than	 the	distance	between	 two	stops.	The	 list	of	 features	and	descriptions	can	be	
found	in	Table	8.		
	
	
	
	

Motion	features	
Features	 Description	
duration		 Duration	of	entire	trajectory	
Trip_dist	 Distance	traveled	by	all	observations	
vel.inst	 Average	inst.vel		
vel.rolling2	 Average	of	rolling2.vel		
vel.rolling3	 Average	of	rolling3.vel	
Iqr.vel3	 Inter-quartile	range	of	rolling3.vel	values	
vel.var	 Variance	of	instant	velocity	
vel.rolling2.var	 Variance	of	rolling2.vel	
vel.rolling3.var	 Variance	of	rolling3.vel	
vel.sd	 Standard	deviation	of	inst.vel	
vel.rolling2.sd	 Standard	deviation	of	rolling2.vel	
vel.rolling3.sd	 Standard	deviation	of	rolling3.vel	
vel.median	 Median	of	inst.vel	
vel.rolling2.median	 Median	of	rolling2.vel	
vel.rolling3.median	 Median	of	rolling3.vel	
vel.sd.mean	 Ratio	of	standard	deviation	to	mean	of	rolling3.vel	values	

(vel.rolling3.sd/vel.rolling3)	
percentileXspeed	 Xth	percentile	value	of	rolling3.vel	
acc.inst	 Average	acceleration	
acc.rolling2	 Average	rolling3.acc	
Iqr.acc2	 Inter-quartile	range	of	acc	values	o	
acc.var	 Variance	of	inst.acc	
acc.rolling2.var	 Variance	of	rolling2.acc	
acc.median	 Median	of	inst.acc	
acc.rolling2.var	 Median	of	rolling2.acc	
acc.sd	 Standard	deviation	of	inst.acc	
acc.rolling2.sd	 Standard	deviation	of	rolling2.acc	
acc.sd.mean	 Ratio	of	standard	deviation	to	mean	of	rolling3.acc	values	

(acc.rolling2.sd/acc.rolling2)	
percentileXacc	 Xth	percentile	value	of	rolling2.acc	
Abs_max_speed	 Maximum	inst.vel	value	
Rolling2_max_speed	 Maximum	rolling2.vel	value	
Rolling3_max_speed	 Maximum	rolling3.vel	value	
Total_speed	 Speed	of	journey.	Derived	from	trip_dist/duration	
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Eucdist_speed	 Speed	of	journey	as	the	crow	flies.	Derived	from	Euclidean	distance	
between	first	and	last	point/	timediff	between	first	and	last	point	

Avg_dist	 Average	distance	between	each	observation	
Num_points	 Number	of	points	in	the	trajectory	
Table	8	List	of	descriptive	motion	features	extracted	from	each	trajectory	

	
	

4.5 Rule-based	heuristics	

	
For	the	mode	detection	methods	of	Group	A,	 the	primary	step	 is	a	rule-based	heuristic	 (RBH).	
The	aim	of	this	is	to	attempt	to	first	identify	modes	based	on	human	reasoning	with	simple	rules	
of	 proximity	 to	 the	 transportation	 network	 and	 the	 assumption	 that	 certain	 modes	 produce	
certain	 speed	 values.	 A	 hierarchical	 set	 of	 rules	 was	 designed	 with	 an	 initial	 proximity	 to	
transport	network	split	to	identify	rail	features	(S-Bahn/U-Bahn)	with	velocity	measures.	This	is	
akin	to	Ramussen	et	al.’s	paper	(2015)	and	based	on	the	rationale	that	because	the	rail	usually	
runs	 independently	 of	 the	 road	 network,	 trajectories	 that	 have	 a	 lower	 average	 distance	 to	
these	 networks	 have	 a	 high	 probability	 of	 being	 a	 rail	 trajectory.	 Trip	 distance,	 acceleration,	
velocity	 and	percentile	 velocity	 are	used	 to	 filter	out	 car	 trips	based	on	 the	notion	 that	while	
cars	are	able	to	generate	low	speeds,	unlike	larger	modes	like	trams	and	buses,	they	are	able	to	
generate	 high	 speeds	 and	 acceleration	 as	 well.	 The	 remaining	 trajectories	 that	 do	 not	 have	
modes	assigned	are	 then	 fed	 into	a	FL	 system	or	Random	Forest.	The	 figure	below	shows	 the	
initial	 design	 of	 the	 rule-based	 heuristic	 (Figure	 22).	 The	 design	 was	 initially	 based	 around	
thresholds	 and	 values	 obtained	 from	 existing	 literature	 as	 well	 as	 vehicle	 specifications	 from	
Wiener	Linien,	the	public	transport	provider	of	Vienna.	The	motivation	behind	this	was	to	keep	
the	method	 less	data	driven,	with	the	 intention	of	 increased	generalizability.	This	would	mean	
that	other	people	would	be	able	 to	adopt	 these	methods	 for	 their	own	city’s	data	with	a	 few	
contextual	inputs.	The	rules	are	first	split	by	proximity	to	the	public	transport	network,	so	as	to	
ascertain	if	the	user	used	public	(tram/bus/U-Bahn/S-Bahn)	or	private	(car/walk/bike)	modes	or	
transport.	Studies	use	public	transport	proximity	threshold	values	that	range	from	25m	to	75m	
to	200m	when	using	GPS	data	(Bohte	and	Maat,	2009;	Gong	et	al.,	2012;	Rasmussen	et	al.,	2015)	
to	 500m	 when	 using	 CDR	 data	 (Qu	 et	 al.,	 2015).	 As	 the	 median	 distance	 to	 GPS	 data	 after	
outliers	have	been	removed	was	found	to	be	188.8m	(Table	5),	the	threshold	here	is	set	to	185m.	
	
			



57	

 

 
Figure	22:	Version	1	of	rule-based	algorithm	when	all	considerations	as	mentioned	in	section	4.1	are	taken	
into	account,	and	when	concepts	from	other	GPS	studies	using	rule-based	heuristics	are	borrowed	

	
	
Just	 for	 illustration	 purposes,	 Figure	 23	 shows	 the	 cumulative	 distributive	 function	 plot	 of	
average	distances	of	 trajectories	 to	 the	U-Bahn	network	of	 the	various	modes.	The	 trip_dist	>	
700m	rule	is	also	introduced	to	supplement	the	proximity	threshold,	which	is	derived	from	the	
statistic	provided	from	Wiener	Lienien	that	the	average	distance	between	stops	on	the	U-Bahn	
is	 754m11,	 as	 such,	 the	 rule	 removes	 trajectories	 that	 are	 shorter	 than	 this	 length	 as	 people	
cannot	hop	on	and	off	between	stops.	
	

                                                

11	https://www.wienerlinien.at/media/files/2017/facts_and_figures_2016_213708.pdf	



58	

 

 
Figure	23:	Cumulative	distribution	function	of	ubahndist.	The	diagram	shows	all	U-Bahn	trajectories	have	
an	average	distance	of	less	than	200m	to	the	U-Bahn	network	for	the	Vienna	dataset	

	
	
The	 next	 split	 is	 using	 velocity,	 separating	 high-speed	 values	 from	 that	 of	 low	 speed	ones,	 as	
high-speed	 values	 can	 be	 more	 informative	 due	 to	 the	 inherent	 fact	 that	 any	 mode	 of	
transportation	can	generate	low	speed	values.	This	threshold	value	is	derived	from	a	publication	
by	Wienier	Lienien,	which	states	the	average	speed	of	a	U-Bahn	journey	is	about	9m/s.	Hence	a	
conservative	 value	 of	 7m/s	was	 chosen	 as	 a	minimum	average	 to	 be	 considered	 as	 a	U-Bahn	
mode.	Two	speed	measures	were	used	here,	the	median	speed	as	well	as	the	average	speed	of	
the	 entire	 trip.	 The	 same	 was	 done	 for	 the	 trams	 and	 buses	 as	 well,	 whose	 stated	 average	
speeds	were	between	4.1	m/s	to	5.5	m/s,	depending	on	the	time	of	day.	Again,	a	conservative	
estimate	of	4	m/s	was	chosen	as	the	minimum	speed	values	to	be	considered	for	tram	and	bus	
modes.	 Those	 that	 do	 not	 meet	 this	 minimum	 are	 then	 split	 by	 total	 distance,	 with	 the	
assumption	 that	people	do	not	walk	more	 than	3km	 to	 get	 to	 a	destination	 if	 they	 could	use	
another	form	of	transportation.	However,	as	taking	the	bus,	riding	a	bicycle	and	walking	all	can	
be	 done	 at	 slow	 speeds	 (i.e.	 in	 congestion),	 and	 for	 a	 short	 distance	 (i.e.	 just	 one	 stop),	
trajectories	with	both	very	low	average	speeds	and	short	distances	cannot	be	assigned	as	a	walk	
trajectory	with	high	confidence.	 	The	green	boxes	 in	the	Figure	22	represent	the	nodes	where	
the	choice	of	possible	modes	have	been	narrowed	down	but	are	still	undetermined	after	all	the	
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relevant	rules	have	been	applied.	This	can	still	include	U-Bahn	and	S-Bahn	trajectories	that	were	
not	captured	by	the	 initial	 rules	due	to	 larger	 inaccuracies	 in	the	data.	Other	studies	with	GPS	
data	use	proximity	to	start	and	stop	points	to	filter	out	public	transportation	modes,	but	upon	
initial	analysis	of	the	segmented	data,	the	accuracy	of	these	points	vary	widely	and	thus	are	not	
used.		
	

For	 trajectories	 that	 have	 an	 average	 distance	 exceeding	 185m	 from	 the	 any	 transportation	
network,	they	are	categorized	as	private	modes.	Similar	to	public	modes,	the	next	split	is	then	a	
speed	split,	to	sieve	out	non-motorized	modes	from	motorized	modes	of	private	transport.	The	
value	of	4m/s	is	derived	from	the	upper	bound	of	walk	threshold	speeds	used	in	existing	studies.	
The	highest	is	used	by	Bohte	and	Maat	(2009),	of	14	km/h	or	3.83m/s.	For	those	that	exceed	this	
value,	car	modes	are	singled	out	on	the	assumption	that	they	are	able	to	produce	higher	speeds	
that	bicycles	and	walking	cannot.	Existing	studies	use	maximum	speeds	for	this.	However,	due	to	
the	noisy	nature	of	this	data	type	and	its	higher	tendency	to	have	outliers,	a	decile	value	is	used.	
In	this	case,	it	is	the	95th	percentile	speed.	For	those	that	do	not	exceed	the	4	m/s	threshold,	the	
next	split	is	on	trip	distance	of	3km	based	on	the	assumption	as	described	above.	One	potential	
area	for	improvement	is	in	the	initial	velocity	split,	which	could	be	done	with	percentile	speeds			
	
	

 
Figure	24	Cumulative	distribution	of	percentile95acc	of	trajectories	of	various	modes	in	Vienna	
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Figure	25	Cumulative	distribution	of	vel.rolling2.median	of	trajectories	of	various	modes	in	Vienna	
 

	

 
Figure	26	Second	version	of	rule-based	algorithm,	simplified	and	improved	
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as	supposed	to	average,	so	as	to	really	tune	in	on	high	speed	values.	This	is	especially	so	for	rail	
modes	 that	are	not	at	 the	mercy	of	 road	traffic.	However,	 this	might	miss	out	 rail	 trajectories	
that	have	a	lower	speed.		On	closer	inspection	to	the	speed	and	acceleration	data,	it	is	evident	
that	 the	 various	modes	 do	 not	 have	 extremely	 clear	 distinctions,	 especially	 between	 car	 and	
bike	 for	 speed	 and	 bike	 and	walk	 for	 acceleration	 (Figure	 24	 and	 Figure	 25).	 Also,	 the	 initial	
assumption	 that	 the	 trains	 are	 high-speed	 modes,	 in	 that	 they	 do	 not	 produce	 low	 average	
speeds	 was	 not	 true	 when	 looking	 at	 the	 values	 extracted	 from	 the	 data.	 Even	 walk	 modes	
produced	high	average	speed	values,	similar	to	the	distribution	of	U-Bahns	and	cars.	While	there	
are	 some	 slight	 horizontal	 shifts	 in	 the	 functions,	 the	 largely	 similar	 distributions	 mean	 that	
single	threshold	values	of	speed	and	acceleration	are	difficult	to	implement	into	the	set	of	rules.	
These	 insights	were	 taken	 into	 account	 and	 the	 rules	were	 improved	 by	 removing	 the	 speed	
thresholds	(Figure	26).	
	
A	preliminary	run	of	the	data	through	the	rule	based	showed	that	algorithm	seems	to	perform	
similarly,	 if	not	better,	without	the	added	rules	of	speed	thresholds.	Both	versions	achieve	the	
same	 proportion	 of	 correctly	 identified	modes	 for	 those	 that	 are	 determined	 (are	 in	 the	 red	
boxes).	 However,	 the	 second	 version	 identifies	more	modes.	 This	 is	 because	 a	 lot	 of	 U-Bahn	
trajectories	seem	to	produce	speeds	much	lower	than	expected	and	very	similar	to	other	modes.	
This	might	be	due	to	the	stops	that	they	make,	reducing	the	recorded	average	speeds.	
	

4.6 Fuzzy	Logic	Systems	

	
One	 secondary	 step	 of	 the	mode	detection	 algorithm	 is	 the	 FL	 system.	When	 compared	with	
existing	 FL	 studies	 (Axhausen	 and	 Schüssler,	 2009;	 Rasmussen	 et	 al.,	 2015),	 one	way	 forward	
was	to	apply	the	data	to	the	formulated	rules	and	membership	functions	from	existing	literature	
(GPS	studies).	However,	 the	velocity	and	acceleration	values	collected	from	the	data	were	too	
different	for	them	to	be	subjected	to	the	same	data	ranges	that	were	set	by	human	experts	in	
those	 studies	 (range	 of	 acceleration	 in	 GPS	 studies	 much	 lower	 than	 that	 in	 this	 study	 for	
example),	possibly	due	 to	 the	differences	 in	 spatial	and	 temporal	granularity.	 Furthermore,	as	
can	be	seen	in	the	CDF	plots	of	speed	and	acceleration,	the	differences	are	not	as	clearly	defined	
to	be	incorporated	into	rules	definitive	rules,	further	making	the	case	for	the	incorporation	of	an	
FL	 system.	As	 such,	a	more	suitable	way	 to	do	 this	 is	 to	build	our	own	rules	and	membership	
functions	based	on	parameter	values	derived	from	the	data.	The	frbs	package	in	RStudio	creates	
arbitrary	membership	functions	with	a	user	defined	number	of	labels	(5,	very	low,	low,	medium,	
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high,	 very	 high	 for	 example),	 and	 subsequently	 assigns	 rules	 based	 on	 the	 data	 and	 these	
membership	functions.	
	
The	 FL	 system	 used	 to	 investigate	 the	 feasibility	 of	 this	 method	 is	 the	 fuzzy	 rule-based	
classification	 systems	based	on	Chi's	method	 to	handle	 classification	 tasks	 (FRBCS.CHI).	 This	 is	
based	on	Wang	and	Mendel	(1992)’s	model	that	tackles	classification	problems.	They	approach	
the	 problem	by	 creating	 the	 FL	 system	 through	 space	 partitioning	 in	 4	main	 steps.	 The	 input	
variables	will	be	used	to	define	the	output	variable.	Ultimately,	the	set	of	input	variables	will	be	
chosen	from	the	list	of	features	extracted	from	the	trajectories	(Table	7	and	Table	8).	
	
	

1. For	each	input	variable,	the	data	is	normalized	and	parameter	values	are	arbitrarily	
set	based	on	the	normalized	data	(each	value	has	the	minimum	subtracted	from	it	
and	then	divided	by	the	range,	resulting	in	a	normalized	range	of	0	to	1).	The	input	
and	 output	 spaces	 (variables	 and	 labels)	 of	 the	 given	 numerical	 data	 are	 then	
divided	into	fuzzy	regions,	which	refer	to	linguistic	variables	for	each	linguistic.	For	
example,	if	there	are	3	labels	(low,	medium,	high),	and	the	membership	function	is	
set	as	trapezoid,	this	will	be	drawn	(Figure	27).	The	first	row	in	Table	8	represents	
the	 label	 of	 each	membership	 function,	 and	 the	 second	 onwards	 summarize	 the	
parameter	values.	For	example,	for	the	total_speed	variable’s	“small”	membership	
function,	the	left	corner,	upper	left,	upper	right	and	right	corner	is	not	applicable,	0,	
0,2	and	0,4	respectively.	These	are	the	normalized	total_speed	values	(Table	9).	The	
left	and	right	top	corners	of	the	trapezoids	are	the	range	in	which	its	degree	of	the	
membership	 function	equals	 to	1.	One	assumption	used	here	 is	 that	 these	spaces	
can	 be	 arbitrarily	 defined.	Membership	 functions	 can	 be	 in	 the	 form	 of	 triangle,	
trapezoid,	Gaussian	etc.		
	

2. Secondly,	 the	 IF-THEN	 rules	 are	 generated	 by	 the	 frbs.learn	 function.	 The	 fuzzy	
parameters	from	step	1	are	used	to	partition	the	input-output	space,	which	is	then	
filled	with	the	training	data	based	on	their	values.	The	process	is	repeated	for	each	
observation	in	the	training	data	to	construct	fuzzy	rules	covering	the	training	data.	
Degrees	of	 the	membership	 function	for	all	 input	and	output	pairs	are	calculated.	
Some	examples	of	the	rules	generated	for	three	of	the	modes	are	shown	below:	
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a. IF	total_speed	is	small	and	percentile95acc	is	small	and	percentile95speed	is	

small	and	vel.rolling2.median	is	small	THEN	label	is	1.	Degree	=	1.00	

b. IF	total_speed	is	small	and	percentile95acc	is	small	and	percentile95speed	is	

small	and	vel.rolling2.median	is	small	THEN	label	is	3.	Degree	=	0.874	

c. IF	total_speed	is	large	and	percentile95acc	is	medium	and	percentile95speed	

is	large	and	vel.rolling2.median	is	medium	THEN	label	is	2.	Degree	=	0.786	

	

*1	=	bike,	2	=	car,	3	=walk	
	
	
	

Fuzzy	
variables	

total_speed	 percentile95acc	 percentile95speed	 vel.rolling2.media
n	

MF*	labels	 S	 M	 L	 S	 M	 L	 S	 M	 L	 S	 M	 L	
MF*	
parameter	
*MF	=	
Membership	
Function	

0	 0.23	 0.6	 0	 0.23	 0.6	 0	 0.23	 0.6	 0	 0.23	 0.6	
0.2	 0.43	 0.8	 0.2	 0.43	 0.8	 0.2	 0.43	 0.8	 0.2	 0.43	 0.8	
0.4	 0.53	 1	 0.4	 0.53	 1	 0.4	 0.53	 1	 0.4	 0.53	 1	
NA	 0.73	 NA	 NA	 0.73	 NA	 NA	 0.73	 NA	 NA	 0.73	 NA	

Table	9	Parameter	values	of	membership	functions	of	normalized	data	
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Figure	27	Trapezoidal	membership	 functions	and	parameter	values	based	on	normalised	data.	Different	
memberships	small,	medium	large	from	left	to	right	
 

	
Each	rule’s	certainty	degree	is	calculated	by	aggregating	the	degree	of	membership	functions	in	
the	antecedent	parts	of	the	rule.	Rule	a	and	b	have	the	same	antecedent	parts,	but	the	degree	
differs.	As	a	result,	trajectories	with	characteristics	fitting	the	antecedent	parts	of	a	and	b	will	be	
preferably	assigned	to	“bike”	mode.	Redundant	rules	are	also	deleted,	resulting	in	the	final	fuzzy	
rule	base	(Chi	et	al.,	1996).		
	
Most	earlier	studies	that	use	GPS	information	use	trapezoidal	membership	functions	(Axhausen	
and	Schüssler,	2009;	Das	and	Winter,	2016a;	Rasmussen	et	al.,	2015).	Das	&	Winter	found	that	
due	to	the	geometrical	nature	of	the	trapezoidal	shape,	there	are	cases	where	an	input	feature	
may	 fall	 outside	 the	 given	 range	 and	 may	 bear	 a	 zero	 membership	 value	 (Das	 and	 Winter,	
2016b).	On	the	other	hand,	as	Gaussian	functions	are	asymptotic	in	nature,	there	will	always	be	
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a	 certain	 membership	 value	 in	 the	 range	 of	 [m,1],	 where	 limm	 à	 0.	 In	 initial	 exploratory	
sensitivity	tests,	it	is	found	that	the	Gaussian	membership	functions	do	perform	markedly	better	
in	 terms	of	accuracy,	all	other	parameters	being	set	 the	same	(number	of	 labels	etc.)	 (Section	
5.2).	
	
	

4.7 Machine	Learning	

	
After	the	first	stage	of	classification	(RBH),	an	alternative	to	the	FL	system	as	the	second	stage	is	
the	 Random	 Forest	 (RF)	 learning	 algorithm.	 RF	 is	 a	 popular	 learning	 algorithm	 due	 to	 its	
comprehensible	concepts	and	that	 they	perform	well	 in	a	variety	of	problems	and	are	easy	to	
train	 (Hastie	 et	 al.,	 2009b;	 Montini	 et	 al.,	 2014;	 Prelipcean	 et	 al.,	 2017).	 Studies	 have	 also	
showed	that	despite	the	high	performances,	RF	does	not	over	 fit	 the	data	even	as	more	trees	
are	added	to	the	forest	(Breiman,	2001;	Cutler	et	al.,	2012).		
	
The	method	is	based	on	a	combination	of	bagging,	the	process	of	aggregating	results	of	multiple	
trees	and	random	subspace,	which	is	the	selection	of	random	subset	of	variables	as	candidates	
for	 splitting	 at	 a	 particular	 node.	 In	 RF,	 optimal	 variables	 of	 each	 split	 are	 obtained	 from	 a	
random	subset	of	all	input	variables	(Breiman,	2001).	The	RF	consists	of	multiple	decision	trees	
whose	root	nodes	are	bootstrap	samples	of	the	individuals.	RF	determines	the	splitting	criterion	
based	 on	 a	 random	 subset	 of	 variables	 that	 are	 selected	 at	 each	 node.	 By	 considering	 only	
subsets	 of	 variables,	 RF	 reduces	 the	 correlation	 between	 trees.	 The	 final	 prediction	 is	 thus	
determined	as	the	majority	vote	of	all	the	trees	(James	et	al.,	2013).	This	classification	algorithm	
is	 implemented	 in	 the	 R-package	 randomForest.	 Being	 reasonably	 fast,	 it	 can	 be	 run	without	
tuning	parameters	and	also	outputs	numerical	estimates	of	variable	importance.		
	
	

4.8 Unsupervised	Learning	

	
A	 major	 hurdle	 in	 using	 CSD	 is	 the	 difficulty	 of	 obtaining	 ground	 truth	 data	 due	 to	 the	
inconveniences	imposed	by	telecommunications	provider	in	tracking	an	individual	to	their	data	
trails.	 As	mentioned	 in	 Chapter	 2,	many	 studies	 using	 cellular	 network	 data	 do	 not	 have	 the	
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privilege	of	validating	their	methods	with	ground	truth	data,	but	only	through	comparisons	with	
other	proxies	such	as	Google	Maps	and	census	data	from	travel	surveys.	As	such,	this	study	has	
also	 chosen	 to	 explore	 an	 unsupervised	method	 to	 see	 if	 it	 is	 feasible	 to	 be	 applied	 in	 other	
studies	 should	 there	 only	 be	 unlabeled	 data	 available.	 In	 unsupervised	 learning	 the	 goal	 is	 to	
cluster	the	data	and	find	patterns	to	see	if	the	data	falls	into	separate	and	interpretable	groups.	
The	common	method	of	unsupervised	learning	in	this	context,	and	one	that	will	be	tested	due	to	
its	 popularity	 is	 K-means	 clustering.	 The	 K-means	 algorithm	 partitions	 the	 points	 into	 groups	
such	that	the	sum	of	squares	from	each	constituent	point	to	the	assigned	centers	is	minimized.	
As	 using	 the	 squared	 distance	 assigns	 the	 highest	 influence	 to	 the	 largest	 distances,	 one	
drawback	of	the	K-means	method	is	a	decreased	robustness	against	outliers	that	produce	high	
Euclidean	distance	values	(Hastie	et	al.,	2009a).	One	solution	addressing	this	is	the	Partitioning	
Around	Medoid	technique	(PAM).	It	is	an	extension	of	K-medoids	clustering	and	compared	to	K-
means,	 the	 PAM	 algorithm	 searches	 for	 k	 representative	 objects,	 or	 medoids	 instead	 of	
centroids,	amongst	each	observation.	k	clusters	are	then	generated	by	assigning	each	individual	
observation	 to	 the	 nearest	 medoid.	 The	 goal	 here	 is	 to	 minimize	 the	 sum	 of	 dissimilarities	
instead	 of	 the	 sum	 of	 Euclidean	 distances	 (Kaufman	 and	 Rousseeuw,	 1990)	 to	 its	 nearest	
representative	object.	This	dissimilarity	measure	can	be	derived	from	Random	Forest	predictors	
and	 has	 been	 used	 in	 unsupervised	 classification	 studies	 in	 the	 medical	 field	 (Dudoit	 and	
ridlyand,	2002;	Shi	and	Horvath,	2006).		
	
The	PAM	algorithm	has	two	steps,	build	and	swap.	In	the	build	phase,	a	collection	of	k	objects	is	
chosen	 to	 represent	 k	 clusters.	 The	 swap	 phase	 then	 tries	 to	 improve	 the	 clustering	 by	
exchanging	these	initially	selected	objects	with	potentially	more	representative	ones,	ultimately	
minimizing	the	average	dissimilarity	of	objects	to	their	closest	selected	object,	or	the	medoids.	
One	 possible	 source	 of	 this	 dissimilarity	 input	 is	 from	 the	 proximity	measure	 produced	 by	 RF	
without	the	use	of	 labels.	 In	an	unsupervised	RF,	the	original	data	 is	set	considered	as	class	1,	
and	a	synthetic	dataset,	class	2,	is	generated	by	sampling	at	random	from	the	original	data.	As	a	
result,	 class	 2	 destroys	 the	 dependency	 structure	 in	 the	 original	 data	 and	 now	 a	 two-class	
problem	 can	 be	 fed	 to	 the	 RF	 algorithm.	 The	 rationale	 behind	 this	 is	 that	 the	 original	
observations	will	usually	end	up	in	the	same	terminal	node	of	a	tree,	what	the	proximity	matrix	
measures	(Breiman,	2001;	Liaw	and	Wiener,	2002).	After	each	tree	is	generated,	the	data	is	fed	
down	the	tree	and	proximities	are	computed	for	every	pair	of	observations.	If	the	observations	
end	up	in	the	same	terminal	node,	their	proximity	increases	by	one.	At	the	end,	proximities	are	
normalized	by	dividing	each	proximity	value	by	the	number	of	trees.	The	result	is	an	NxN	matrix	
where	each	proximity	value	is	between	0	and	1.Thus,	this	proximity	matrix	can	be	utilized	as	the	
dissimilarity	matrix	for	clustering	to	divide	the	original	data	points	into	groups.	
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Some	 of	 the	 strengths	 of	 RF	 proximities	 are	 that	 it	 handles	mixed	 variable	 types	well,	 and	 is	
robust	 to	 outlying	 observations	 (Shi	 and	 Horvath,	 2006;	 Liaw	 and	 Wiener,	 2002).	 Similar	
observations	should	end	up	in	the	same	terminal	mode	more	often	than	dissimilar	ones.	As	the	
similarity	between	an	object	and	 itself	 is	one,	 the	proximity	matrix	 is	 symmetric.	 Finally,	 from	
this	proximity	matrix,	we	can	derive	the	dissimilarity	matrix	with	the	equation	(Shi	and	Horvath,	
2006):	
	

dissimilarityij	=	sqrt(1	–	proximityij)	

	
The	 obtained	 dissimilarity	 matrix	 is	 then	 used	 as	 the	 input	 to	 the	 PAM	 clustering	 to	 obtain	
clusters	 represented	by	their	medoids	using	the	pam()	 function	 from	the	cluster	package	 in	R.	
Variables	that	are	used	in	the	clustering	are	those	that	are	identified	in	PCA	analysis	as	these	are	
the	variables	 that	 reflect	 the	greatest	variation	 in	 the	data,	and	 from	existing	 literature.	Next,	
modes	 are	 assigned	 to	 these	 clusters	based	on	 the	 characteristics	of	 these	medoids	manually	
through	 expert	 and	 contextual	 knowledge	 derived	 by	 human	 reasoning.	 The	 results	 are	 then	
compared	with	the	actual	labels	of	the	observations	to	evaluate	performance	of	this	method.	
	
	

4.9 Variable	selection	

	
As	mentioned	 earlier,	 there	 are	 three	ways	 of	 selecting	 input	 variables.	 The	 first	 is	 by	 taking	
reference	from	current	studies.	As	most,	if	not	all	the	studies	that	employ	this	method	of	mode	
detection	work	with	GPS	trajectories,	it	is	problematic	to	apply	the	same	ranges	that	were	set	by	
human	experts	to	the	data	 in	this	study.	Due	to	the	poorer	temporal	and	spatial	accuracy	and	
consistency	of	 that	 accuracy,	 the	 resulting	 values	of	 velocity	 and	acceleration	are	not	 as	 fine-
tuned	as	that	of	GPS	data.	As	such,	we	will	just	be	taking	reference	to	the	variables	that	all	these	
studies	 have	 selected,	 which	 are	 median	 speed,	 95th	 percentile	 speed	 and	 95th	 percentile	
acceleration.	 In	 order	 to	 improve	 this,	 we	 add	 proximity	 variables	 (ubahndist,	 tramdist,	

sbahndist,	busdist)	as	well	as	 the	 total_speed.	Due	 to	 the	 limitations	of	 the	segmentation	and	
data	 cleaning	 process,	 total_speed	 can	 provide	 a	 more	 realistic	 picture	 of	 the	 trajectories	
velocity.	This	following	part	describes	the	two	other	variable	selection	procedures	that	are	used	
to	pick	the	input	variables	for	the	FL	system	and	unsupervised	clustering	algorithms,	RF	and	PCA	
respectively.	
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Random	Forest	

The	data-driven	variable	selection	method	explored	here	 is	with	 the	 random	forest	algorithm.	
Section	 2.5	 has	 detailed	 some	 of	 the	 relevant	 strengths	 of	 analyzing	 large	multi-dimensional	
datasets	 with	 random	 forest.	 This	 type	 of	 variable	 selection	 method	 is	 an	 entropy	 method	
(Guyon	and	Elisseeff,	2003).	A	variable	with	high	entropy	means	it	results	in	nodes	that	are	high	
in	uniformity.	The	variables	that	are	considered	as	 inputs	 in	the	RF	algorithm	or	FL	system	are	
the	 best	 performing	 set	 of	 variables	 with	 high	 Gini	 coefficients	 (how	 much	 each	 variable	
contributes	 to	 the	homogeneity	of	 the	nodes	after	 the	 split,	 i.e.	 a	more	 informative	variable).	
The	Boruta	method	is	a	process	of	variable	selection	with	the	RF	algorithm	that	has	been	proven	
to	be	powerful	and	 robust	approach	 for	 its	purposes	 (Degenhardt	et	al.,	2017).	The	algorithm	
works	as	follows	(Kursa	et	al.,	2010):		
	

1. For	each	attribute,	a	corresponding	“shadow”	attribute	is	created	by	shuffling	
values	of	the	original	attribute	across	all	the	data	points.		

2. Classification	 is	performed	on	this	extended	database,	and	 importance	of	all	
attributes	 are	 computed.	 In	 this	 case,	 the	 mean	 loss	 of	 accuracy	 metric	 is	
used	and	Z-scores	are	calculated	by	dividing	the	average	loss	by	its	standard	
deviation.	

3. If	 the	 Z	 score	 of	 a	 shadow	 variable	 is	 significantly	 higher	 than	 that	 of	 its	
original	variable,	that	variable	is	deemed	as	unimportant.	This	is	because	the	
importance	 of	 shadow	 variables	 will	 thus	 be	 non-zero	 only	 as	 a	 result	 of	
random	 fluctuations.	 Therefore,	 these	 importance	 values	 are	 used	 as	 a	
reference	 to	 deem	 if	 a	 variable	 is	 important	 or	 not.	 All	 unimportant	 and	
shadow	variables	are	then	removed.		

4. The	 stability	 is	 increased	 as	 the	 steps	 are	 repeated	 over	 multiple	 random	
forest	runs.	

	
Figure	 28	 shows	 how	 the	 Z-scores	 vary	 amongst	 each	 variable	 and	 one	 can	 see	 that	 the	
important	 and	 unimportant	 variables	 are	 clearly	 separated	 by	 the	 variable	 that	 has	 the	most	
important	shadow	variable.	Finally,	these	variables	that	are	deemed	as	important,	as	depicted	in	
green,	are	then	used	as	the	input	variables	for	the	FL	system,	or	the	final	RF	algorithm.	
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Figure	28	Plot	of	Z-scores	after	Boruta	algorithm	is	run	on	variables.	Blue	boxplots	represent	to	minimal,	
average	 and	 maximum	 Z	 score	 of	 a	 shadow	 attribute.	 Red	 and	 green	 boxplots	 represent	 Z	 scores	 of	
respectively	rejected	and	confirmed	attributes.	Yellow	are	the	tentative	variables	
	

Principal	Component	Analysis	(PCA)	

PCA	is	a	process	of	transforming	data	by	plotting	it	on	different	axes.	As	labels	are	not	required,	
this	method	of	variable	selection	is	used	for	the	unsupervised	clustering	algorithms.	In	order	to	
find	 these	 PCs	 lines,	 one	 derives	 eigenvectors	 and	 values,	 which	 come	 in	 pairs.	 The	 principal	
component	 is	 thus	 the	 eigenvector	with	 the	 highest	 eigenvalue.	 Before	 PCA	 is	 applied	 to	 the	
dataset,	 it	 is	 first	 scaled/normalized	 so	 as	 to	 increase	 their	 comparability	 with	 each	 other.	
Standardization	 is	done	by	subtracting	the	mean	from	the	value	and	dividing	this	value	by	the	
standard	deviation.	Standardization	helps	to	understand	how	far	above	or	below	a	value	lies	in	
relation	 to	 the	other	 values	 in	 the	distribution.	Having	 a	mean	of	 0	 and	 a	 variance	of	 1,	 they	
have	 an	 equal	 scale	 and	 the	 same	 variance	 and	 all	 variables	 are	 therefore	 assumed	 to	 have	
equal	importance	and	the	same	opportunity	to	be	modeled	(Bro	and	Smilde,	2014).		
	
Table	 10	 shows	 the	 summary	 of	 the	 first	 8	 components	 when	 PCA	 is	 performed	 on	 all	
trajectories	 and	 corresponding	 variables	 of	 Vienna.	 The	 last	 row	 shows	 the	 cumulative	
proportion	of	variance	explained	in	the	data	by	that	PC	and	the	ones	that	came	before	it.	
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Importance	of	
components	

PC1	 PC2	 PC3	 PC4	 PC5	 PC6	 PC7	 PC8	

Standard	
deviation	

4.954	 3.592	 1.773	 1.533	 1.349	 1.228	 1.097	 0.991	

Proportion	of	
Variance	

0.463	 0.243	 0.059	 0.044	 0.034	 0.028	 0.023	 0.019	

Cumulative	
Proportion	

0.463	 0.707	 0.766	 0.810	 0.844	 0.873	 0.896	 0.914	

Table	10	Importance	of	components	in	PCA	of	Vienna		
	
	

 
Figure	29	Variables	ranked	based	on	their	contributions	to	the	first	principal	component	in	the	dataset	for	
this	study	(Vienna).	

	
As	mentioned,	each	principal	component	will	be	dominated	by	a	variety	of	input	variables.	For	
example,	 when	 looking	 at	 the	 first	 principal	 component	 (PC1)	 (Figure	 29),	 it	 is	 dominated	 by	
vel.var,	which	contributes	over	80%	of	the	component.	The	subsequent	variables	are	also	other	
measures	of	variance	of	velocity.	Furthermore,	we	can	see	from	Table	10	that	PC1	contributes	
to	almost	half	of	 the	variance	observed	 in	 the	data.	This	could	 indicate	 the	 importance	of	 the	
variation	 in	 velocity	 when	 it	 comes	 to	 mode	 detection.	 It	 is	 interesting	 to	 note	 that	 the	 GIS	
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information	such	as	tramdist,	ubahndist	are	not	found	to	contribute	highly	to	these	first	few	PCs.	
This	might	be	due	to	the	low	variability	in	our	ground	truth	data,	where	most	of	these	follow	the	
same	paths,	or	use	the	same	mode.	As	such,	there	is	a	low	range	of	average	trajectory	distances	
to	 the	 U-Bahn	 line,	 for	 example.	 Figure	 30	 shows	 PC2	 and	 the	 contributing	 variables.	 The	
cumulative	 proportion	 of	 variance	 explained	 by	 the	 first	 two	 PCs	 is	 relatively	 high,	 at	 70%.	
trip_dist	contributes	a	vast	proportion	of	PC2,	which	can	also	be	an	indicator	of	the	importance	
of	this	particular	variable.		
	
 

 
Figure	30	Variables	ranked	based	on	their	contributions	to	the	second	principal	component	in	the	dataset	
for	this	study	(Vienna)	
	

Now	with	 the	 PCA	 done,	 the	 next	 step	 is	 to	 the	 part	 of	 variable	 selection	 from	 the	 long	 list.	
Because	 the	 data	 is	 orthogonally	 transformed	 onto	 a	 new	 coordinate	 system,	 the	 values	 are	
scaled	and	variables	do	not	explicitly	represent	the	system-produced	variables,	hence	applying	
PCA	to	the	data	set	causes	it	to	lose	interpretability.	However,	PCA	can	still	be	used	as	a	method	
of	unsupervised	variable	selection.	This	can	be	done	in	a	few	ways	(King	and	Jackson,	1999),	but	
as	 mentioned	 in	 section	 2.4.5,	 a	 recommended	 method	 of	 variable	 selection	 using	 PCA	 is	 a	
combination	of	the	Broken-stick	model	and	the	B4	method.		
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The	Broken-stick	model	assumes	that	the	expected	eigenvalue	distribution	will	follow	a	Broken-
stick	distribution,	meaning	that	observed	eigenvalues	that	exceed	the	expected	value	generated	
by	 the	 broken	 stick	 model	 is	 deemed	 as	 interpretable.	 This	 model	 has	 been	 identified	 as	 a	
consistent	approach	to	derive	a	cut	off	 for	eigenvalues	 (Bro	and	Smilde,	2014;	 Jackson,	1993).	
The	B4	method	is	a	relatively	simple	approach	to	variable	selection.	For	example,	if	the	Broken-
stick	model	finds	that	the	number	of	variables	and	hence	PCs	to	use	is	k,	the	B4	method	retains	
all	 k	 variables	 starting	 with	 the	 first	 component	 and	 keeping	 the	 variable	 with	 the	 greatest	
contributions	to	it.	This	is	repeated	k	times	for	the	k	principal	components	to	obtain	the	reduced	
subset	 of	 variables.	While	 there	 are	 other	methods	 of	 variable	 selection	 using	 PCA	 available,	
King	 &	 Jackson	 found	 that	 this	 combination	 was	 preferred	 because	 of	 its	 simplicity	 and	
performance,	with	good	measures	of	fit	and	similarity	(King	and	Jackson,	1999).	Figure	31	shows	
the	plot	of	eigenvalues	using	the	data	from	the	PCA	of	Viennese	trajectories.	According	to	the	
broken	stick	model,	only	 the	 first	 two	components	are	seen	as	 interpretable.	Next,	 to	 identify	
the	 two	components,	we	 look	at	 the	highest	 contributing	variables	of	PC1	and	PC2	each.	This	
results	 in	 trip_dist	 and	 vel.var,	 which	 would	 then	 be	 included	 in	 the	 list	 of	 variables	 around	
which	to	perform	unsupervised	clustering.	
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Figure	31	Comparison	of	eignevalues	and	values	from	the	Broken-stick	model	

	
	
	
As	 the	dataset	we	have	 is	not	 large,	 the	 chosen	method	 to	evaluate	 the	performances	of	 the	
proposed	algorithms	is	using	a	Leave-One-Out	Cross	Validation	(LOOCV)	approach.	The	LOOCV	is	
a	 type	 of	 cross-validation	 that	 for	 k	number	 of	 observations,	 the	 algorithm	 is	 run	 k	 times.	 At	
each	iteration	the	ith	observation,	where	i	=	1,	2,	…	k,	is	removed	and	the	algorithm	is	tested	on	
the	 ith	 	observation.	 For	 example,	 on	 the	 RBH	 +	 FL	 using	 existing	 literature	method,	 in	 the	 ith	
iteration,	observation	i	will	be	the	test	data	and	the	rest	will	be	fed	into	the	algorithm.	So	if	i	is	
not	identified	with	a	mode	in	the	RBH	step,	only	then	will	the	algorithm	continue	into	the	fuzzy	
logic	step,	whereby	all	datapoints	except	 i	will	be	used	to	run	the	RF	for	variable	selection	and	
then	generate	the	FL	system.	i	will	then	be	used	as	the	test	for	the	FL	system	to	assign	a	mode.	



 

 

	CHAPTER	5
RESULTS	

	

5.1 Validation	

	
Validation	will	be	the	basis	of	several	metrics	of	performances.	Most	mode	detection	studies	use	
4	particular	measures,	namely	accuracy,	precision,	recall	and	F1-score.	As	the	datasets	provided	
were	rather	imbalanced	in	terms	of	class	distribution,	other	metrics	that	try	to	account	for	this	
are	also	explored.	They	can	be	described	as	follows	(Tan	et	al.,	2006):		
	

1. Accuracy:	 The	 percentage	 of	 correctly	 inferred	modes	 out	 of	 the	 total	 number	 of	
trajectories,	and	is	an	intuitive	performance	measure.	This	refers	to	all	modes		

2. Precision:	The	percentage	of	correctly	 identified	modes	out	of	the	total	number	of	
trajectories	 identified	 with	 that	 particular	 mode.	 For	 example,	 precision	 is	 the	
probability	that	a	randomly	selected	trajectory	identified	as	a	car	in	the	algorithm	is	
actually	a	car	trajectory.	Each	mode	will	have	a	precision	value.	

3. Recall:	 The	 percentage	 of	 correctly	 identified	 modes	 out	 of	 the	 number	 of	
trajectories	 of	 that	 particular	 mode.	 For	 example,	 recall	 is	 the	 probability	 that	 a	
randomly	selected	car	 trajectory	 is	 identified	as	a	car	 in	 the	algorithm,	and	 is	how	
good	the	algorithm	is	as	detecting	that	particular	mode.	Each	mode	will	have	a	recall	
value.	

4. F1	score:	A	metric	that	is	a	combination	of	both	precision	and	recall	to	give	a	better	
sense	 of	 the	 performance	 of	 the	 algorithm.	 It	 is	 the	 geometric	 mean	 of	 both	
precision	 and	 recall,	 and	 is	 especially	 useful	 when	 there	 is	 an	 uneven	 class	
distribution.	A	higher	F1	score	ensures	that	both	precision	and	recall	are	reasonable	
high.	Each	mode	will	have	a	F1	value.	

5. Kappa	 statistic/Cohen’s	 Kappa:	 An	 accuracy	 metric	 that	 is	 normalised	 by	 the	
imbalance	 of	 classes	 in	 the	 data,	 by	 taking	 into	 account	 the	 possibility	 of	 correct	
identification	 occurring	 by	 chance.	 It	 compares	 the	 actual	 accuracy	 with	 the	
expected	accuracy,	which	is	the	accuracy	that	results	from	classification	by	random	
chance.	 For	 example,	 a	 classifier	 is	 designed	 to	 assign	 whether	 an	 object	 was	 an	
apple	or	a	pear.	Assuming	there	are	10	apples	and	10	pears,	and	that	the	classifier	is	
not	that	powerful,	the	results	are:	
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	 Apple	 Pear	

Apple	 8	 2	

Pear	 5	 5	

		
	
The	 observed	 accuracy	 is	 (8+5)/20	 =	 65%,	 which	 seems	 to	 be	 above	 average.	 	 To	 calculate	
expected	 accuracy,	 we	 use	 the	 number	 observations	 of	 each	 class	 as	 well	 as	 the	 number	 of	
identified	instances	of	each	class.		
	

Probability	of	object	being	an	apple	=	10/20	=	0.5	
Probability	of	classifier	identifying	an	apple	=	13/20	=	0.65	
Probability	of	both	agreeing	=	0.4*0.65	=	0.325	
	
Probability	of	object	being	an	pear	=	10/20	=	0.5	
Probability	of	classifier	identifying	an	pear	=	7/20	=	0.35	
Probability	of	both	agreeing	=	0.5	*	0.35	=	0.175	

	
Expected	accuracy	is	the	probability	of	agreement	for	both	apples	and	pears	=	0.325	+	0.175	=	
0.5	
	

Equation	for	Kappa:   
	
	
Where	P0	=	observed	accuracy,			Pe	=	expected	accuracy	

	
Kappa	=	(0.65-	0.5)/	(1-0.5)	=	0.3	

	
This	shows	that	the	model	does	not	actually	perform	as	well	as	the	65%	accuracy	suggests,	as	it	
performs	 only	 marginally	 better	 than	 if	 the	 classifier	 chose	 how	 to	 identify	 the	 objects	 by	
random	chance.	The	table	below	shows	how	the	Kappa	statistic	can	be	interpreted.	
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Value	of	Kappa	 Level	of	Agreement	 %	of	Data	that	are	Reliable	
0–.20	 None	 0–4%	
.21–.39	 Minimal	 4–15%	
.40–.59	 Weak	 15–35%	
.60–.79	 Moderate	 35–63%	
.80–.90	 Strong	 64–81%	
Above.90	 Almost	Perfect	 82–100%	

Table	11	Interpretation	of	Cohen's	Kappa	(McHugh,	2012)	

	
	

5.2 Parameter	settings	

	
Parameter	 settings	 for	 FL	 systems	 and	 RF	 algorithms	 are	 chosen	 on	 the	 recommendation	 of	
sensitivity	analyses.	The	following	section	details	the	sensitivity	tests	that	they	were	subjected	
to.	
	

5.2.1 Fuzzy	Logic	Systems	

	
For	 FL	 systems,	 the	parameters	 that	 are	 tested	are	 the	membership	 function	 shapes,	 and	 the	
number	of	linguistic	terms	used	to	describe	the	variables.	Most	earlier	studies	that	use	GPS	data	
use	trapezoid	(Axhausen	and	Schüssler,	2009;	Das	and	Winter,	2016a;	Rasmussen	et	al.,	2015)	
membership	function.	Das	&	Winter	found	that	due	to	the	geometrical	nature	of	the	trapezoidal	
shape,	there	are	cases	where	an	input	feature	may	fall	outside	the	given	range	and	may	bear	a	
zero	membership	value	 (Das	and	Winter,	2016).	On	the	other	hand,	as	Gaussian	 functions	are	
asymptotic	 in	 nature,	 there	will	 always	 be	 a	 certain	membership	 value	 in	 the	 range	 of	 [m,1],	
where	limm	à0.	The	studies	mentioned	also	use	3	levels	of	membership	functions	for	the	fuzzy	
variables	 (i.e.	 low,	 moderate,	 high).	 Figure	 32	 shows	 how	 the	 various	 performance	 metrics	
change	with	Trapezoid	or	Gaussian	membership	 function	shapes,	and	the	number	of	 linguistic	
terms	 from	 2	 to	 6.	 The	 sensitivity	 analyses	were	 done	with	 variables	 from	 existing	 literature,	
though	 the	 input	 variables	 should	 be	 arbitrary	 as	 the	 aim	 is	 to	 compare	 the	 parameters.	 The	
graph	 shows	 that	 in	 general,	 as	 suggested	 by	 Das	 and	 Winter	 (2016b),	 results	 from	 using	
Gaussian	 membership	 functions	 seem	 to	 perform	 slightly	 better	 than	 that	 of	 Trapezoid	
membership	functions.	In	terms	of	the	number	of	levels,	the	results	show	that	across	accuracy	
and	kappa,	having	5	 levels	 leads	to	the	best	performance	for	Gaussian	membership	 functions.	
For	Trapezoid	membership	functions,	the	best	number	of	levels	to	use	is	not	as	clear.	Having	2	
levels	yields	the	highest	accuracy	and	having	5	yields	the	highest	kappa.	As	such,	the	FL	systems	
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used	in	this	study	will	be	set	to	Gaussian	membership	functions	and	with	5	descriptive	levels	(i.e.	
very	low,	low,	moderate,	high,	very	high).		
	
	

 

Figure	32	Sensitivity	analysis	for	FL	parameters	of	RB_FLEL	method	on	the	Viennese	dataset.	

	
	

5.2.2 Random	Forest		

	
For	the	random	forest	algorithms,	the	sensitivity	analysis	tests	for	the	number	of	trees	(ntree)	to	
grow	and	the	number	of	variables	randomly	sampled	as	candidates	for	each	split	(mtry).	These	
parameters	tested	will	include	ntree	=	100,	200,	400,	500,	600,	1000	and	1500	and	mtry	=	1,	2,	4,	
5,	 6	 and	 7.	 The	 results	 can	 be	 seen	 in	 Figure	 33.	 There	 is	 a	 general	 increase	 in	 accuracy	 and	
Kappa	 for	 all	 ntree.	 There	 seems	 to	 be	 no	 clear	 pattern	 with	 ntree.	 The	 best	 performing	
permutation	of	these	parameters	 is	ntree	=	400,	mtry	=	6,	as	 it	has	the	highest	Kappa	statistic	
and	 accuracy.	 As	 such,	 the	 parameters	 that	 will	 be	 set	 for	 all	methods	 using	 RF	 as	 the	main	
mode	detection	method	will	 use	 these	parameters.	As	 Liaw	and	Wiener	 (2002)	have	 found	 in	
their	studies,	that	while	various	parameter	settings	in	RF	leads	to	different	variable	importance	
values,	the	ranking	of	the	importance	is	quite	stable.	Furthermore,	regardless	of	the	parameters	
for	RF	and	FL,	the	overall	accuracy	seems	to	vary	with	a	relatively	small	range	of	0.1	(out	of	1).	
Consequently,	while	it	is	still	important	to	validate	results,	it	may	not	be	of	huge	consequence	to	
use	parameter	settings	that	deviate	slightly	from	the	optimal	specification.	
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Figure	33	Sensitivity	analysis	for	RF	parameters	

	

5.2.3 Unsupervised	K-means	and	PAM	with	RF	

	
For	the	unsupervised	clustering	methods,	the	number	of	clusters,	k,	will	be	set	to	the	number	of	
classes	of	interest.	This	would	correspond	to	the	number	of	classes	in	the	data.	For	Vienna,	the	
number	of	clusters	set	 is	4.	As	we	do	not	set	 the	 initial	points	 for	 the	building	of	 the	clusters,	
each	 algorithm	 is	 run	 5	 times.	 Each	 time	 the	 cluster	 centroids	 and	medoids	 are	 analyzed	 and	
modes	assigned	manually.	The	performance	metrics	are	 then	averaged	over	 the	5	 runs.	While	
this	leads	to	some	bias	in	terms	of	knowing	the	number	of	modes	that	exist	in	the	dataset	(not	
known	 in	 real	 life	 if	 truly	 unsupervised),	 this	 is	 sufficient	 for	 the	 purposes	 of	 the	 experiment,	
which	is	to	test	the	feasibility	of	this	unsupervised	learning	technique	on	mode	detection.	
	
	

5.3 Pre-processing	and	trip-segmentation	

	
The	results	are	presented	in	this	section	in	terms	of	precision,	recall,	F1	for	the	various	modes,	
followed	 by	 accuracy	 and	 kappa.	 They	 are	 evaluated	 on	 their	 ability	 to	 correctly	 identify	 the	
mode	of	transport	of	the	segments.	Each	method	is	referred	to	by	an	abbreviated	code,	as	show	
in	Table	12.		
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Code	 Method	
RB_prefix	 Combined	with	rule-based	heuristic	
FLEL	 Fuzzy	Logic	with	variables	from	existing	literature	
FLPCA	 Fuzzy	Logic	with	variables	selected	from	PCA	
FLRF	 Fuzzy	Logic	with	variables	selected	from	RF	
RF	 Random	Forest	
PAM	 Partitioning	Around	Medoids	
KMEANS	 K-means	clustering	
Table	12	Code	for	methods	 	

	
As	precision,	recall	and	F1	scores	are	calculated	for	each	mode	in	each	method,	the	averages	of	
these	measures	 for	each	method	are	calculated	by	summing	the	product	of	each	class’s	value	
and	the	number	of	modes	in	that	class,	and	dividing	it	by	the	total	number	of	instances.		
	
The	pre-processsing,	trip-segmentation	and	labeling	led	to	the	final	dataset	as	shown	in	Table	15.	
In	 total	 there	 are	 399	 trajectories,	 86	 of	 which	 are	 non-trips.	 144	 trajectories	 belong	 to	 the	
Vienna	 dataset	 and	 255	 trajectories	 for	 Graz.	 The	 non-trips	 are	moving	 trajectories	 whereby	
there	were	no	corresponding	GPS	 labels	 for	mode	of	 transportation	 that	was	 reported	by	 the	
participant.	 This	 could	 be	 due	 to	 underreporting,	 that	 was	 observed	 in	 GPS	 studies	 like	
Rasmussen	et	al.	(2015)	and	Stopher	et	al	(2008).	Some	of	these	non-trips	were	a	result	of	the	
algorithm	identifying	periods	where	the	participant	is	stationary	as	periods	of	moving	due	to	the	
noisiness	in	the	data.	When	a	person	is	at	work,	for	example,	the	CSD	generated	could	still	lead	
to	 speeds	 that	 are	 higher	 than	 walking	 due	 to	 errors	 in	 triangulation	 estimation,	 or	 due	 to	
jumping	 between	 cell	 towers.	 As	 the	 method	 of	 data	 cleaning	 here,	 like	 other	 studies	 using	
cellular	network	data,	clean	outliers	using	a	speed	 threshold.	Errors	 that	are	smaller	but	 large	
enough	 to	 generate	 speeds	 that	would	 be	 realistic	 in	 faster	modes	 of	 transportation	 are	 not	
filtered	out.	For	example,	if	a	person	were	stationary,	data	points	that	have	speeds	of	over	6m/s	
would	not	be	removed,	as	it	is	still	a	realistic	speed	for	a	bicycle.	As	such,	the	algorithm	would	
detect	these	as	moving	segments.	Even	though	the	processing	step	tries	to	account	for	this	by	
dissolving	short	moving	segments	where	the	previous	and	subsequent	stationary	segments	have	
centroids	 that	 are	 less	 than	 500m	 apart,	 non-trips	 still	 occur	 as	 there	 is	 a	 trade	 off	 between	
missing	 out	 shorter	 trips	 or	 different	 parts	 of	 trips	 (i.e.	 when	 a	 journey	 consists	 of	 multiple	
modes)	and	having	less	non-trips.	This	is	further	compounded	by	the	fact	that	the	respondents	
in	the	second	data	collection	campaign	were	instructed	to	actively	collect	data,	and	encouraged	
to	collect	data	for	varying	transportation	modes.	This	means	that	multiple	changes	can	happen	
within	a	smaller	area	for	the	sake	of	data	collection.	This	can	also	lead	to	another	source	of	non-
trips,	whereby	a	single	trajectory	has	multiple	mode	labels.	In	this	scenario,	if	a	moving	segment	
has	 two	 labels	and	neither	 label	has	 temporal	 coverage	exceeding	80%	of	 the	duration	of	 the	
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moving	segment,	it	will	still	be	regarded	as	a	non-trip.	This	study	assumes	that	the	segmentation	
in	the	first	data	collection	campaign	(from	Invenium)	yields	no	non-trips.		
	
Despite	efforts	to	collect	varying	modes,	the	resulting	classes	are	still	quite	imbalanced,	with	U-
Bahn	 trajectories	making	 the	majority	 in	 the	 Vienna	 dataset	 and	 bicycles	 and	 car	 trajectories	
making	the	majority	 in	the	Graz	dataset.	 In	both	cases,	 there	are	modes	where	there	are	only	
one	or	two	instances,	like	tram	for	Vienna	and	bus	for	Graz.	Because	of	this,	the	tram	modes	will	
be	excluded	in	the	analysis	for	Vienna	and	similarly,	the	bus	modes	for	Graz.	This	is	partly	due	to	
the	fact	that	in	machine	learning	methods,	one	would	need	to	have	at	least	two	instances	of	a	
particular	 mode	 to	 train	 and	 test	 a	 model.	 To	 maintain	 consistency	 amongst	 the	 city-wide	
analysis,	 these	minority	modes	are	excluded.	 It	 is	worth	noting	 that	 for	 the	Viennese	dataset,	
there	 is	 a	 more	 even	 split	 on	 private	 and	 public	 transportation	 modes,	 whereas	 in	 the	 Graz	
dataset,	the	significant	majority	belongs	to	private	modes	(car	and	bicycle).	
	
	
	
Mode	 Bicycle	 Bus	 Car	 S-Bahn	 Tram	 U-Bahn	 Walk	 Total	
Vienna	 0	 0	 16	 6	 2	 31	 1	 56	
Graz	 18	 0	 18	 0	 1	 NA	 6	 43	
Table	13	Table	of	number	of	trips	extracted	from	first	data	collection	(A)	
	
	
	
Mode	 Bicycle	 Bus	 Car	 S-Bahn	 Tram	 U-Bahn	 Walk	 Non-

trips	
Total	

Vienna	 15	 0	 0	 9	 2	 22	 20	 23	 91	
Graz	 58	 1	 55	 7	 12	 NA	 4	 63	 200	
Table	14	Table	of	number	of	trips	extracted	from	second	data	collection	(C)		
	
	
	
Mode	 Bicycle	 Bus	 Car	 S-Bahn	 Tram	 U-Bahn	 Walk	 Non-

trips	
Total	

Vienna	 15	 0	 17	 15	 2	 53	 21	 23	 146	
Graz	 76	 0	 73	 7	 13	 NA	 10	 63	 255	
Table	15	total	mode	shares	of	data	(A	+	C)		
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5.4 Supervised	methods	

	
In	this	subsection,	we	will	present	the	results	of	the	supervised	methods,	both	with	and	without	
the	inclusion	of	RBH.	For	both	Graz	and	Vienna,	a	similar	pattern	can	be	seen	with	regards	to	the	
overall	performance	of	the	methods.	In	both	cities,	RB_RF	algorithm	is	the	highest	performing,	
in	terms	of	both	accuracy	and	Kappa	statistic	(Figure	34	and	Figure	35).	In	Vienna,	it	achieved	an	
accuracy	 of	 0.73	 and	 a	 kappa	 statistic	 of	 0.61.	 While	 Cohen	 views	 anything	 above	 0.61	 as	
substantial,	McHugh	(2012)	opines	that	it	should	be	seen	as	moderate,	as	it	implies	that	around	
to	40%	of	the	information	might	be	unreliable.	Nevertheless,	the	study	put	0.6	as	a	threshold	for	
Kappa	for	placing	confidence	 in	the	study	results.	For	Graz,	all	 the	proposed	methods	perform	
poorer	in	comparison	to	the	Vienna	dataset,	with	the	best	faring	RB_RF	algorithm	achieving	an	
accuracy	 of	 0.61	 and	 has	 a	 corresponding	 Kappa	 of	 0.36.	 There	 is	 lesser	 variation	 in	 the	
performance	 across	 the	methods	 in	 the	 Graz	 dataset.	 Table	 16	 (Vienna)	 and	 Table	 17	 (Graz)	
show	the	corresponding	precision,	recall	and	F1	statistic	measures	when	excluding	the	non-trips	
and	 when	 RBH	 is	 included	 or	 not.	 RB_RF	 has	 the	 highest	 F1-score	 compared	 to	 all	 other	
algorithms.	The	F1-score,	which	gives	an	indication	of	the	values	of	both	precision	and	recall,	is	
high	for	all	the	public	transportation	modes	(S-Bahn,	U-Bahn),	moderate	for	the	walking	modes	
and	not	as	high	for	car	and	bike.	This	is	also	true	for	the	Kappa	score.		
	



 

 

 
Figure	34	Results	for	Vienna	dataset	

	

 
Figure	35	Results	for	Graz	data	 	
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Precision	 Recall	

	

F1	

Bike	 0.43		 0.45		 0.60		 0.27		 0.29		 0.63		 0.40		 0.33		 0.40		 0.40		 0.40		 0.33		 0.41		 0.38		 0.48		 0.32		 0.33		 0.43		

Car	 0.46		 0.40		 0.50		 0.32		 0.31		 0.38		 0.35		 0.24		 0.29		 0.35		 0.29		 0.18		 0.40		 0.30		 0.37		 0.33		 0.30		 0.24		

S-Bahn		 0.76		 0.70		 0.88		 0.63		 0.44		 0.88		 0.87		 0.93		 0.93		 0.67		 0.53		 0.93		 0.81		 0.80		 0.90		 0.65		 0.48		 0.90		

U-Bahn		 0.79		 0.76		 0.77		 0.78		 0.59		 0.74		 0.94		 0.91		 0.92		 0.72		 0.49		 0.92		 0.86		 0.83		 0.84		 0.75		 0.54		 0.82		

Walk		 0.71		 0.53		 0.67		 0.67		 0.41		 0.61		 0.48		 0.43		 0.67		 0.48		 0.43		 0.67		 0.57		 0.47		 0.67		 0.56		 0.42		 0.64		

Average	 0.68		 0.62		 0.70		 0.61		 0.46		 0.65		 0.70		 0.67		 0.69		 0.58		 0.46		 0.61		 0.68		 0.63		 0.71		 0.59		 0.45		 0.52	

Table	16	Precision,	Recall	and	F1	values	for	each	mode	in	Vienna	
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Precision	 Recall	

	

F1	

Bike	 0.61		 0.57		 0.62		 0.61		 0.56		 0.60		 0.75		 0.86		 0.74		 0.75		 0.83		 0.74		 0.67		 0.68		 0.67		 0.67		 0.67		 0.66		

Car	 0.61		 0.56		 0.60		 0.62		 0.61		 0.56		 0.59		 0.40		 0.67		 0.58		 0.42		 0.63		 0.60		 0.46		 0.63		 0.60		 0.50		 0.59		

S-Bahn		 0.67		 0.00		 1.00		 0.50		 0.56		 1.00		 0.86		 0.00		 0.71		 0.43		 0.71		 0.29		 0.75		 0.00		 0.83		 0.46		 0.63		 0.44		

Tram		 0.00		 0.00		 0.33		 0.00		 0.00		 0.50		 0.00		 0.00		 0.08		 0.00		 0.00		 0.15		 0.00		 0.00		 0.13		 0.00		 0.00		 0.24		

Walk		 0.14		 0.11		 0.00		 0.42		 0.13		 0.00		 0.08		 0.08		 0.00		 0.42		 0.08		 0.00		 0.11		 0.10		 0.00		 0.42		 0.10		 0.00		

Average	 0.54		 0.47		 0.56		 0.56		 0.51		 0.55		 0.59		 0.52		 0.61		 0.59		 0.55		 0.59		 0.56		 0.48		 0.58		 0.57		 0.51		 0.55		

Table	17	Precision,	Recall	and	F1	values	for	each	mode	in	Graz	

	



 

 

5.4.1 With	RBH	vs.	without	RBH	

	
Figure	34	shows	the	accuracy	and	kappa	of	the	dataset	from	Vienna.	It	can	be	observed	that	the	
combined	methods	 (inclusion	 of	 RBH)	 yield	 consistently	 higher	 results,	 with	 the	 exception	 of	
when	RF	is	used	in	isolation.	The	increase	in	accuracy	when	RBH	is	used	is	most	pronounced	in	
the	two	fuzzy	logic	methods,	RB_FLEL	and	RB_FLRF,	whilst	having	only	a	slight,	but	still	positive	
change	in	RF	algorithm.	There	is	a	huge	improvement	in	Kappa	scores,	especially	for	RB_FLRF.	In	
general,	these	metrics	do	not	fare	as	well	as	when	RBH	is	not	used.	For	example,	when	RBH	is	
included,	 average	 precision,	 recall	 and	 F1-score	 values	 are	 generally	 in	 the	 high	 0.60s	 and	
exceed	0.7	 for	 RB_RF	 and	RB_FLEL.	However,	when	RBH	 is	 not	 included,	 these	 values	 remain	
between	0.4	and	0.6.	 	As	expected,	it	 is	the	public	transportation	modes	that	benefit	the	most	
from	the	inclusion	of	RBH	since	it	exploits	the	fact	that	these	public	transportation	modes	follow	
fixed	 routes.	 The	 consistent	 better	 performance	 of	 the	 hybrid	 rule-based	 methods	 show	
promise	 in	 using	 this	 simple	 method	 as	 a	 primer	 for	 the	 secondary	 mode	 detection	 steps,	
especially	when	it	comes	to	the	rail	modes.	This	is	also	consistent	with	results	from	other	mode	
detection	other	 studies	using	 rule-based	heuristics.	Of	 all	 the	 S-Bahn	and	U-Bahn	 trajectories,	
less	 of	 them	 are	 assigned	 S-Bahn	 and	 U-Bahn	modes	 when	 RBH	 is	 not	 used.	 Thus,	 it	 can	 be	
inferred	 that	 RBH	 is	 highly	 useful	 in	 the	 mode	 identification	 when	 there	 are	 public	
transportation	 modes	 that	 follow	 distinct	 routes.	 Consistent	 with	 this	 observation,	 S-Bahn	
modes	fare	particularly	well	 in	the	Graz	dataset,	amidst	the	generally	poor	performance	of	the	
other	modes.	From	this	we	can	conclude	that	the	inclusion	of	the	transport	network	in	the	form	
of	 the	 RBH	 is	 effective	 for	 both	 private	 and	 public	modes	 of	 transportation.	 The	 second	 best	
performing	 method,	 RB_FLEL,	 is	 20.7%	 more	 accurate	 than	 its	 non-RBH	 counterpart,	 and	
experiences	a	34.9%	increase	in	the	Kappa	statistic.	This	means	that	with	the	inclusion	of	RBH,	
there	is	a	higher	probability	that	modes	were	assigned	correctly	by	virtue	of	an	accurate	model	
rather	than	by	pure	chance.	
	
Interestingly,	 despite	 the	 inference	 that	 public	 modes	 benefit	 more	 from	 the	 RBH	 step,	 the	
private	modes	seem	to	have	a	greater	decrease	in	precision	than	that	of	public	transportation.	
For	example,	in	RB_FLEL,	bike	and	car	precision	values	drop	from	0.43	and	0.46	to	0.27	and	0.32	
respectively.	On	the	other	hand,	S-Bahn	and	U-Bahn	precision	only	drop	from	0.79	and	0.76	to	
0.78	and	0.6.	This	suggests	that	RBH	is	also	important	in	making	sure	that	S-Bahn,	U-Bahn	and	
walk	 trajectories	 are	 not	mistakenly	 assigned	 as	 bike	 and	 car	modes.	 Conversely,	 there	 recall	
measures	for	these	private	modes	do	not	show	a	clear	decrease	when	RBH	is	used,	suggesting	
that	many	of	the	rail	modes	that	would	be	identified	by	the	RBH	are	identified	as	these	private	
modes	when	RBH	is	not	used.	
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For	Graz	however,	this	pattern	is	only	seen	when	RF	is	used.	For	the	FL	methods	(FLEL	and	FLRF),	
the	results	are	poorer	when	RBH	is	used	(when	both	accuracy	and	Kappa	are	taken	into	account).	
Again,	this	is	likely	to	be	a	result	of	the	bike	and	car	heavy	data	in	Graz	as	compared	to	rail	mode	
heavy	data	in	Vienna.	The	RBH	step	is	only	able	to	identify	modes	of	a	relatively	low	number	of	
trajectories	in	the	earlier	step.	Despite	being	able	to	detect	some	car	trajectories,	a	lot	of	the	car	
trajectories	still	do	not	reach	the	upper	threshold	set	in	the	RBH	(percentile95speed	>12.5m/s).	
However,	 when	 this	 value	 is	 lowered,	 many	 other	 modes	 are	 misidentified	 as	 car	 modes,	
defeating	the	purpose	of	the	RBH.	This	is	due	to	the	fact	that	there	are	quite	a	number	of	tram,	
bike	and	car	 trajectories	whose	percentile95speed	 values	are	 found	 just	below	that	 threshold,	
leading	 to	 the	 tradeoff	 between	 precision	 and	 recall	 in	 the	 RBH	 step.	 In	 both	 cities,	 the	 best	
performing	 non-RBH	method	 is	 also	 RF,	which	 is	 expected,	 as	 RF	 is	 a	 popular	 choice	 and	 has	
many	 strengths	 (section	 4.7).	 Figure	 37	 and	 Figure	 38	 show	 that	 the	 drop	 in	 performance	 is	
much	 clearer	 in	 the	 U-Bahn	 and	 S-Bahn	 modes,	 again	 with	 the	 exception	 of	 RF	 which	 still	
performs	well	without	RBH.	Car	modes	are	also	identified	in	the	RBH	step	on	the	premise	that	it	
is	able	to	generate	high	speeds.	As	such,	the	same	figures	also	show	a	slight	improvement,	albeit	
much	less	evidently.	
	



 

 

 
Figure	36	Precision	of	each	mode	in	Vienna	

 
Figure	37	Recall	of	each	mode	in	Vienna	

 
Figure	 38	 F1	 of	 each	 mode	 in	 Vienna
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Figure	39	Precision	of	all	modes	in	Graz	

 
Figure	40	Recall	of	all	modes	in	Graz	

 
Figure	 41	 F1	 statistic	 for	 all	 modes	 in	 Graz
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The	 following	 tables	 go	 further	 in-depth	 to	 show	 the	 confusion	 matrices	 of	 each	 of	 the	 top	
performing	 combined	 methods	 in	 Vienna	 and	 Graz.	 Labels	 represent	 the	 transportation	
reported	 by	 the	 data	 collector	 and	modes	 refer	 to	 what	 is	 inferred	 by	 the	 algorithm.	 “Total	
(actual)”	 refers	 to	 the	 actual	 frequency	 of	 each	 transportation	mode	 while	 “Total	 (inferred)”	
refers	 to	 the	 frequency	 of	 modes	 inferred	 by	 the	 algorithm.	 The	 confidence	 rate	 can	 be	
understood	 as	 the	 precision	 when	 non-trips	 are	 also	 taken	 into	 account.	 For	 Vienna,	 the	
combined	method	of	RBH	and	RF	(Table	18)	yields	the	best	performance	when	the	non-trips	are	
excluded.	 This	 is	 followed	 closely	 by	 the	 combined	method	 of	 RBH	 and	 FLEL.	 The	 confidence	
rates	 reflect	 the	 performance	when	 the	 non-trips	 are	 taken	 into	 account.	 For	 example,	when	
non-trips	 are	 also	 fed	 into	 the	 RB_FLEL	 algorithm	 (Table	 19),	 5	 of	 the	 trajectories	 that	 are	
assigned	mode	 “S-Bahn”	are	 actually	non-trips.	As	 such,	out	of	 22	 trajectories	 identified	as	 S-
Bahn,	 (as	 supposed	 to	 17),	 13	 are	 actually	 S-Bahn	 trajectories.	 The	 confidence	 rate	 is	 0.59	 as	
supposed	 to	 0.76	 if	 non-trips	were	 not	 considered.	 As	 a	 result	 the	 total	 accuracy	 of	 the	 best	
performing	method,	RB_RF,	is	lowered	from	0.73	to	0.61.	These	tables	highlight	a	weakness	of	
the	segmentation	approach,	as	reflected	in	the	lower	confidence	rates.		
	
	
Vienna	

RBH	+	RF		

	
Mode	

	 	 	 	 	 	
Label	 Bike	 Car	 S-Bahn	 U-Bahn	 Walk	

Total	
(actual)	 Recall	

Bike	 6	 3	 0	 2	 4	 15	 0.40		
Car	 1	 5	 0	 10	 1	 17	 0.29		
S-Bahn	 0	 1	 14	 0	 0	 15	 0.93		
U-Bahn	 1	 0	 1	 49	 2	 53	 0.92		
Walk	 2	 1	 1	 3	 14	 21	 0.67		
Non-trip	

	
2	 5	 7	 9	 23	

	
	 	 	 	 	 	

121	 0.73		
Total	
(inferred)	 10	 12	 21	 71	 30	 144	 0.61		
Precision	 0.60		 0.50		 0.88		 0.92		 0.77		

	
Kappa	 =	
0.61	Confidence	 0.35		 0.40		 0.59		 0.71		 0.50		 	

Table	18	Confusion	matrix	of	Rule-Based	Heuristics	+	Random	Forest	Vienna	
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Vienna	

RBH	+	FLEL		

	
Mode	

	 	 	 	 	 	
Label	 Bike	 Car	 S-Bahn	 U-Bahn	 Walk	

Total	
(actual)	 Recall	

Bike	 6	 4	 0	 3	 2	 15	 0.40		
Car	 2	 6	 	1	 7	 1	 17	 0.35		
S-Bahn	 0	 1	 13	 1	 0	 15	 0.87		
U-Bahn	 1	 0	 1	 50	 1	 53	 0.94		
Walk	 5	 2	 2	 2	 10	 21	 0.48		
Non-trip	 3	 2	 5	 7	 6	 23	 0.70		

	 	 	 	 	 	
121	

	Total	
(inferred)	 17	 15	 22	 70	 20	 144	 0.59		
Precision	 0.43		 0.46		 0.76		 0.79		 0.71		

	
Kappa	 =	
0.58	Confidence	 0.35		 0.40		 0.59		 0.71		 0.50		

	Table	19	Confusion	matrix	of	Rule-Based	Heuristics	+	Fuzzy	Logic	with	Existing	Literature	Vienna	

	
	
The	results	for	Graz	are	lower	than	that	achieved	by	the	Vienna	dataset,	which	shows	that	these	
methods	are	more	suitable	to	identifying	other	public	transportation	modes	(Table	20	and	Table	
21).	Again,	the	number	of	non-trips	lowers	the	confidence	greatly,	to	0.41	from	an	accuracy	of	
0.61	when	non-trips	are	not	considered.	Walk	trips	for	Graz	perform	very	poorly	for	these	two	
methods,	assigning	all	walk	 trajectories	as	bike	and	car	modes.	Compared	to	Vienna,	 the	walk	
modes	 fare	 considerably	 worse,	 even	 when	 the	 same	 variables	 are	 used,	 i.e	 in	 RB_FLEL.	 On	
closer	 inspection	 of	 the	 trajectories,	 the	 speed	 and	 acceleration	 profiles	 of	 walk	 trajectories	
extracted	 in	 the	 Graz	 dataset	 are	 extremely	 different	 than	 those	 extracted	 in	 the	 Viennese	
dataset	(Table	22).	This	could	be	due	to	the	fact	that	the	majority	of	respondents	were	based	in	
Graz,	meaning	that	when	data	was	being	collected	in	Vienna,	more	data	points	were	generated	
as	walking	 around	an	unfamiliar	 city	might	mean	navigation	 applications	might	 be	open	 for	 a	
greater	proportion	of	the	time.	The	data	generated	in	this	case	would	be	more	reflective	of	the	
actual	 location	 and	 speeds.	 While	 both	 RB_RF	 and	 RB_FLEL	 display	 considerable	 confusion	
between	car	and	bike	modes,	RB_RF	is	able	to	distinguish	between	the	two	modes	to	a	slightly	
higher	degree,	as	can	be	seen	in	the	confusion	matrices	(Table	20	and	Table	21).	
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Graz	

RBH	+	FLEL		

	
Mode	

	 	 	 	 	 	Label	 Bike	 Car	 S-Bahn	 U-Bahn	 Walk	 Total	 Recall	

Bike	 57	 16	 0	 2	 1	 76	 0.75		
Car	 22	 43	 3	 0	 5	 73	 0.59		
S-Bahn	 0	 1	 6	 0	 0	 7	 0.86		
Tram	 10	 3	 0	 0	 0	 13	 0.00		
Walk	 4	 7	 0	 0	 1	 12	 0.08		
Non-trip	 42	 32	 1	 7	 0	 82	

	
	 	 	 	 	 	

181	 0.59		

Total	 135	 102	 10	 9	 7	 263	 0.41		
Precision	 0.61		 0.61		 0.67		 0.00		 0.14		 	 Kappa	 =	

0.34	Confidence	 0.42		 0.42		 0.60		 0.00		 0.14		
	Table	20	Confusion	matrix	of	Rule-Based	Heuristics	+	 Fuzzy	 Logic	with	 variables	 from	existing	 literature	

Graz	

	
	
Graz	

RBH	+	RF		

	
Mode	

	 	 	 	 	 	Label	 Bike	 Car	 S-Bahn	 U-Bahn	 Walk	 Total	 Recall	

Bike	 56	 20	 0	 0	 0	 76	 0.62		
Car	 21	 51	 0	 1	 0	 73	 0.60		
S-Bahn	 0	 2	 5	 0	 0	 7	 1.00		
Tram	 9	 2	 0	 2	 0	 13	 0.33		
Walk	 4	 8	 0	 0	 0	 12	 NaN	
Non-trip	 60	 26	 1	 0	 0	 87	

	
	 	 	 	 	 	

181	 0.61		

Total	 150	 109	 6	 3	 0	 268	 0.42	
Precision	 0.74		 0.67		 0.71		 0.08		 0.00		 	 Kappa	 =	

0.36	Confidence	 0.37		 0.47		 0.83		 0.67		 0.00		
	Table	21	Confusion	matrix	of	Rule-Based	Heuristics	+	Random	Forest	Graz	
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Min	 1st	Q	 Median	 Mean	 3rd	Q	 Max	

percentile95acc	 Graz	 0.27		 0.58		 1.44		 1.49		 2.34		 3.21		

	
Vienna	 0.01		 0.07		 0.23		 0.53		 0.83		 1.98		

percentile95speed	 Graz	 5.94		 9.36		 13.38		 13.51		 17.09		 24.87		

	
Vienna	 0.68		 2.52		 6.92		 7.54		 9.20		 27.84		

total_speed	 Graz	 1.44		 3.66		 5.86		 5.76		 7.50		 12.41		

	
Vienna	 0.45		 1.05		 1.96		 2.77		 2.99		 8.33		

Table	22	Comparison	of	speed	and	acceleration	profiles	of	walk	trajectories	in	Graz	and	Vienna	

	
	
The	results	presented	in	this	section	indicate	that	the	initial	RBH	step	is	a	worthy	inclusion	in	the	
proposed	methods	when	CSD	is	concerned.	By	placing	a	higher	 importance	on	these	proximity	
and	95th	percentile	speed	and	acceleration	measures,	the	RBH	step	is	useful	in	filtering	out	the	
rail	 and	 some	 car	modes,	 in	 the	 process	 preventing	 these	 rail	modes	 from	being	mistaken	 as	
other	modes.	Precision	for	rail	modes	and	recall	for	other	modes	benefit	slightly	more	from	RBH.	
In	Viennese	dataset	 supports	 this	 conclusion	more	 strongly	 as	 compared	 to	 the	Graz	 dataset,	
likely	due	to	the	large	number	of	rail	modes	in	the	former	dataset.	Despite	this,	both	cities	still	
show	that	there	is	a	case	for	incorporating	RBH	into	the	mode	detection	step,	especially	when	it	
is	combined	with	RF	in	the	RB_RF	method.		
	
	

5.4.2 Random	Forest	vs	Fuzzy	Logic		

	
Now	that	it	is	clear	that	the	inclusion	of	RBH	is	beneficial,	further	evaluation	of	results	will	focus	
on	 the	 combined	methods.	While	 RBH	 increases	 performance,	 some	 examples	 of	modes	 that	
are	not	 identified	 in	 the	RBH	 step	 include	 rail	 segments	 that	have	 lower	 tramdist	values	 than	
sbahndist/ubahndist	values	(distance	to	appropriate	network	is	not	the	smallest	out	of	all	public	
transportation	modes)	or	car	segments	that	are	considered	as	part	of	the	public	transportation	
network	 due	 to	 their	 proximity	 to	 the	 network	 links,	 to	 name	 a	 few.	 In	 order	 to	 study	 the	
differences	 between	 the	 two	 secondary	 mode	 detection	 methods	 (Fuzzy	 Logic	 and	 Random	
Forest),	Table	23	and	Table	24	show	the	confusion	matrices	of	trajectories	that	are	identified	in	
the	secondary	steps	of	RB_FLEL	and	RB_RF	algorithm	in	Vienna.	
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RB_FLEL	 Mode	
	 	 	 	Label	 Bike	 Car	 S-Bahn	 U-Bahn	 Walk	

Bike	 6	 2	 0	 1	 2	
Car	 2	 1	 1	 1	 1	
S-Bahn	 0	 0	 1	 1	 0	
U-Bahn	 1	 0	 0	 7	 1	
Walk	 5	 1	 1	 1	 10	
Table	23	Confusion	matrix	of	trajectories	that	are	assigned	modes	in	the	FLEL	step	of	RB_FLEL	
	
	
RB_FLEL	 Mode	

	 	 	 	Label	 Bike	 Car	 S-Bahn	 U-Bahn	 Walk	
Bike	 6	 1	 0	 0	 4	
Car	 1	 0	 0	 4	 1	
S-Bahn	 0	 0	 2	 0	 0	
U-Bahn	 1	 0	 0	 6	 2	
Walk	 2	 0	 0	 2	 14	
Table	24	Confusion	matrix	of	trajectories	that	are	assigned	modes	in	the	RF	step	of	RB_RF	
	

 
Figure	42	CDF	for	95th	percentile	speeds	in	private	modes	in	Vienna	
	

When	 it	 comes	 to	 the	 trajectories	 that	 cannot	 be	 determined	 by	 proximity	 to	 the	 rail	
infrastructure	 and	 by	 high	 speeds	 of	 the	 car	modes,	 RF	 fares	 considerably	 better	 in	 correctly	
identifying	the	walk	modes.	However,	the	recall	for	walk	is	lower	in	RF	as	it	incorrectly	identifies	
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more	bike	modes	as	walk	modes.	The	FLEL	algorithm	conversely	misidentifies	the	walk	modes	as	
bike	modes.	Both	fare	poorly	when	it	comes	to	identifying	car	trajectories.	The	variables	used	in	
the	 RB_FLEL	 algorithm	 attempt	 to	 distinguish	 the	 modes	 by	 their	 proximity	 to	 the	 public	
transportation	 network,	 the	 upper	 range	 of	 speed	 and	 acceleration	 values	 produced	 in	 the	
trajectories	as	well	as	the	median	speed.	While	these	variables	work	well	to	account	for	outliers	
in	 the	 data,	 they	may	 not	 work	 so	 well	 for	 the	 larger	 overlaps	 of	 the	 variable	 values	 across	
modes,	as	shown	in	the	CDF	plots	in	Chapter	4,	and	another	example	shown	in	Figure	42.		
	
	

 

 
Figure	43	Example	of	 unmatched	bike	 start	 point	 (red	 circle).	 Small	 points	 represent	GPS	observations,	
larger	 pentagons	 represent	 CSD	 observations.	 Blue	 indicates	 bicycle	 and	 green	 indicates	 cars.	 (Source:	
OpenStreetMap)	
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These	overlaps	are	accentuated	even	more	due	to	the	lower	and	consequently	coarser	temporal	
and	spatial	resolution.	Furthermore,	faster	modes	like	cars	that	make	a	slower	journey	or	slower	
modes	like	bicycles	that	go	at	a	relatively	quicker	speed	are	not	that	easily	distinguished	when	
these	percentile	values	are	used.			
	
	
Another	possible	 reason	 for	why	FL	may	have	worked	better	 in	GPS	studies	 is	 that	 the	higher	
spatio-temporal	 resolution	 of	 GPS	 data	 means	 that	 the	 trips	 that	 are	 extracted	 are	 more	
complete	in	terms	of	start	and	end	points,	as	supposed	to	starting	and	ending	mid-journey.	This	
is	 very	 much	 a	 possibility	 in	 CSD	 as	 there	 may	 not	 have	 been	 data	 generated	 at	 times	
corresponding	to	the	start	and	end	of	a	moving	segment.	For	example	Figure	43	show	the	first	
point	of	 the	extracted	bike	 trajectory	 coincides	with	points	 in	 the	middle	of	a	bike.	While	 the	
segmentation	 approach	 attempts	 to	 account	 for	 this	 (segmentation	 assigns	 the	 last	 and	 first	
point	of	the	previous	and	next	stationary	segment	as	the	start	and	end	point),	this	just	serves	as	
a	stop-gap	measure	and	a	lot	of	information	of	the	actual	journey	could	still	be	missing.	Despite	
the	 fact	 that	 fuzzy	 logic	 systems	are	meant	 to	be	able	 to	account	 for	overlaps	and	 fuzzy	 sets,	
these	overlaps	seem	to	be	almost	complete,	at	least	for	the	variables	used.	The	randomness	of	
RF	and	resulting	diversity	of	trees	leads	to	a	higher	performance	in	this	case.	The	same	can	be	
said	for	the	results	 in	Graz,	where	the	RF	methods	outperform	the	FL	methods,	though	not	by	
much	(Table	20	and		Table	21).		
	
	
	
To	summarize,	both	Graz	and	Vienna	datasets	show	that	RF	outperforms	FL.	RF	is	able	to	better	
identify	modes	with	a	more	similar	motion	profile,	more	specifically	between	cars	and	bicycles.	
Especially	when	combined	with	the	RBH	step,	RF	proves	to	be	well	suited	for	this	task.	However,	
it	 is	not	to	say	that	FL	is	not	a	worthwhile	option.	RB_FLEL	trails	very	closely	behind	RB_RF	for	
Vienna,	which	shows	that	FL	is	still	a	feasible	choice	when	it	comes	to	CSD.	The	next	section	will	
explore	 in	 further	 detail	 the	 effect	 the	 different	 sets	 of	 variables	 used	 has	 on	 the	 overall	
performance	of	the	proposed	methods.		
	

5.4.3 Variables	for	mode	detection		

	
This	 section	 compares	 the	 variable	 selection	 methods	 used	 in	 the	 FL	 systems,	 namely	 those	
selected	by	RF	with	Boruta	and	variables	used	in	existing	studies.	Table	25	gives	an	overview	of	
the	variables	that	are	selected	by	the	RF	Boruta	method	for	the	Graz	and	Viennese	datasets.	As	
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the	algorithm	is	iterated	for	each	observation	in	the	LOOCV	method,	the	RF	methods	(RB_FLRF,	
RB_RF,	RB_FLRF,	FLRF)	produce	a	different	set	of	 important	variables	at	each	iteration,	though	
they	are	generally	similar	each	time.	The	frequency	of	each	variable	selected	is	displayed	in	the	
table	as	well.	As	expected,	decile	variables	like	percentile95acc	and	percentile95speed	as	well	as	
those	that	account	for	outliers	such	as	vel.rolling2.median	and	acc.median	are	considered	more	
important	as	inputs	to	the	classifier	than	those	that	do	not	such	as	vel.inst.	This	makes	sense	as	
the	data	can	still	have	inaccuracies	and	errors	after	the	initial	cleaning	process.	The	RF	variable	
selection	method	 also	 seems	 to	 select	 variables	 that	 are	 found	 in	 existing	 literature,	 namely	
percentile	 values	of	 speed	and	acceleration,	 as	well	 as	 some	measure	of	median	and	average	
speeds.	 In	addition,	 it	also	consistently	selects	all	the	spatial	features.	Notably,	there	seems	to	
be	considerably	more	variables	selected	by	RF	in	Vienna	than	in	Graz.	This	could	be	due	to	the	
more	 even	 distribution	 of	 trajectories	 across	 the	modes	 in	 Vienna	 than	 in	 Graz,	 leading	 to	 a	
greater	 number	of	 variables	 being	 identified	 as	 important	 in	 accounting	 for	 these	modes.	 For	
Graz	where	the	dataset	 is	car	and	bike	heavy,	there	 is	an	emphasis	on	velocity	measures.	This	
could	 give	 an	 indication	 that	 the	 best	 way	 to	 distinguish	 between	 bike	 and	 car	 is	 through	 a	
combination	of	these	variants	of	velocity	measures.	Interestingly,	RF	does	not	identify	busdist	as	
an	important	variable	in	Graz.	Possible	reasons	could	be	that	bus	modes	are	not	present,	or	that	
car	and	bicycle	that	constitute	the	majority	of	the	dataset,	have	trajectories	that	may	coincide	
rather	similarly	with	bus	routes.		
	
	
RF*	 Existing	

Literature*	
PCA	 	

Vienna	 Freq	 Graz	 Freq	 Variables	 Variables	 	
vel.rolling2.var	 121	 vel.rolling3.median	 181	 percentile95acc		 vel.var	 	
vel.rolling2.sd	 121	 vel.rolling3	 181	 percentile95speed	 trip_dist	 	
ubahndist	 121	 vel.rolling2.median	 181	 vel.rolling2.median	 	 	
trip_dist	 121	 sbahndist	 181	 total_speed	 	 	
tramdist	 121	 percentile85speed	 181	 	 	 	
total_speed	 121	 percentile80speed	 181	 	 	 	
sbahndist	 121	 percentile70speed	 181	 	 	 	
rolling3_max_speed	 121	 acc.median	 181	 	 	 	
rolling2_max_speed	 121	 tramdist	 181	 	 	 	
percentile95speed	 121	 rolling3_max_speed	 180	 	 	 	
percentile95acc	 121	 percentile95speed	 132	 	

	
	
	
	
	
	

	 	
percentile90speed	 121	 percentile65acc	 86	 	 	
percentile85speed	 121	 percentile60speed	 44	 	 	
percentile80acc	 121	 vel.rolling3.median	 43	 	 	
eucdist_speed	 121	 	 	 	 	
busdist	 121	 	 	 	 	
avg_distance	 121	 	 	 	 	
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percentile70speed	 118	 	 	 	
	
	
	
	
	
*Spatial	 variables	
are	 also	 included	
after	 variable	
selection	

	 	
percentile75speed	 116	 	 	 	 	
percentile65speed	 114	 	 	 	 	
acc.sd.mean	 112	 	 	 	 	
vel.rolling2	 104	 	 	 	 	
num.points	 86	 	 	 	 	
duration	 86	 	 	 	 	
percentile90acc	 62	 	 	 	 	
iqr.vel3	 59	 	 	 	 	
percentile60speed	 53	 	 	 	 	
Table	 25	 Variables	 selected	 for	 FL	 by	 RF	 and	 existing	 literature	 (in	 no	 particular	 order),	 and	 variables	
selected	by	PCA	for	unsupervised	methods	

	
	
Despite	 the	better	performance	of	RF	as	 supposed	 to	 FL	 in	both	Vienna	and	Graz,	 the	 results	
show	that	when	it	comes	tot	the	task	of	variable	selection,	RF	is	not	such	a	good	choice.	Figure	
34	 and	 Figure	 35	 give	 side-by	 side	 comparisons	 of	 RB_FLEL,	 RB_FLRF,	 FLEL	 and	 FLRF	 for	 both	
cities.	For	Vienna,	FLEL	performs	better	than	FLRF	with	or	without	RBH.	Even	though	variables	
selected	 by	 RF	 contain	 those	 in	 EL,	 the	 inclusion	 of	 these	 additional	 variables	 derived	 from	
RFseem	to	have	a	negative	effect	on	the	FL	system,	a	trend	observed	in	both	cities.		
	
The	FL	system	performed	better	on	CSD	when	variables	obtained	from	other	GPS	studies	were	
used	as	supposed	to	those	that	were	obtained	from	CSD	itself.	This	is	true	despite	the	fact	that	
the	FLRF	variables	also	contained	a	few	of	the	variables	used	in	FLEL.	A	common	feature	of	the	
variables	used	in	each	case	is	they	tend	to	be	more	robust	against	outliers	or	anomalies	in	the	
data	 such	 as	 percentile95acc	 or	 vel.rolling2.sd.	 Measures	 of	 maximum	 speed	 like	
rolling3_max_speed	 were	 identified	 as	 important	 variables	 but	 even	 then,	 this	 value	 was	
calculated	using	a	rolling	window	of	3	consecutive	observations	(Section	4.4.2).		
	
	
	
	

5.5 Unsupervised	methods	

	
This	section	will	look	at	the	two	unsupervised	methods	Partioning	around	Medoids	(PAM)	and	K-
means.	For	PAM,	as	the	dissimilarity	measure	is	derived	from	the	proximity	matrix	generated	by	
an	 unsupervised	 random	 forest,	 each	 set	 of	 clusters	 will	 be	 different	 due	 to	 the	 random	
subsample	of	candidate	variables	considered	for	each	split.	While	this	method	does	not	have	a	
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long	run	time,	the	process	of	assigning	the	modes	to	the	clusters	 is	done	manually	and	is	thus	
time-consuming.	As	such,	 the	algorithm	 is	 run	5	 times,	and	 the	 results	are	averaged	based	on	
these	5	runs.	The	same	is	done	for	the	K-means	algorithm.	
	
As	mentioned	in	chapter	4,	the	variables	used,	as	inputs	for	the	clustering	will	be	a	combination	
of	those	derived	from	PCA	and	those	from	existing	literature.	For	PCA,	the	variables	that	were	
selected	 in	each	 iteration	are	very	 consistent,	with	vel.var	and	 trip_dist	 always	being	 selected	
(Table	25).	When	compared	to	the	variables	selected	by	the	Boruta	method,	the	only	common	
variable	 between	 the	 two	 methods	 is	 trip_dist.	 This	 suggests	 that	 the	 spatial	 variables	 are	
generally	 important	 for	 splitting	 the	data	 into	homogenous	groups,	while	vel.var	 and	 trip_dist	
account	for	the	most	variation	in	the	dataset,	regardless	of	the	modes	taken.	
	
Like	the	supervised	methods,	using	RBH	in	the	initial	step	of	identifying	some	rail	and	car	modes	
with	a	substantial	accuracy	leaves	less	room	for	error	in	the	secondary	step,	especially	when	no	
labels	are	used	to	build	or	train	any	model	or	system.	From	this	set	of	results,	PAM	is	preferred,	
as	expected	due,	possibly	due	to	its	better	ability	to	handle	outliers	(Section	4.8).	Furthermore,	
as	 the	 cluster	 centers	are	medoids,	 actual	observations	and	not	 centroids	of	 the	 clusters,	 it	 is	
easier	 to	 assign	 mode	 classes.	 Being	 represented	 by	 actual	 observations	 makes	 them	 more	
interpretable	and	realistic.	An	example	of	the	cluster	centers	of	the	PAM	and	K-means	algorithm	
can	be	seen	in	Table	26	and	Table	27.	For	example,	if	a	majority	S-Bahn	cluster	had	both	S-Bahns	
and	cars,	 the	centroid	of	 the	cluster	may	have	a	higher	sbahndist	 value,	but	 its	medoid	might	
have	 attributes	 that	 are	more	 characteristic	 of	 S-Bahns.	 This	 can	make	 it	more	 challenging	 to	
confidently	assign	that	cluster	with	the	mode	S-Bahn	based	on	an	average	of	the	cluster’s	points.	
For	the	medoids,	 it	 is	arguably	easier	to	see	the	clusters	that	could	be	majority	U-Bahn	and	S-
Bahn	clusters	 from	the	variables	ubahndist	and	sbahndist.	Conversely,	 the	centroids	 for	 the	K-
means	all	have	relatively	high	values	(>150m)	for	all	their	proximity	features,	making	the	clusters	
less	 characteristic	 of	 individual	 modes.	 The	 mode	 column	 shows	 the	 modes	 that	 have	 been	
manually	assigned	to	the	clusters	based	on	the	medoids’	and	centroids’	feature	characteristics.	
While	mode	assignment	was	done	with	5	modes	 in	mind,	 the	best	mode	 for	each	cluster	was	
assigned,	even	 if	 it	meant	 some	modes	were	not	 represented.	For	example,	 in	Table	26,	both	
cluster	2	and	4	are	assigned	as	U-Bahn	due	to	the	low	ubahndist	values,	and	as	such,	car	modes	
are	 not	 assigned	 to	 any	 cluster.	 The	 same	 is	 done	 for	 mode	 assignment	 in	 the	 K-means	
algorithm.		
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Medoid	 sbahndist	 ubahndist	 total_speed	 vel.var	 trip_dist	 percentile95acc	 label	
1	 88.96		 332.94		 8.63		 504.10		 4154.33		 7.92		 S-Bahn	
2	 279.00		 107.60		 2.53		 10.19		 650.17		 0.29		 U-Bahn	
3	 615.00		 632.30		 5.56		 25.08		 150.04		 1.38		 bike	
4	 1465.62		 193.72		 4.23		 141.55		 2028.13		 1.90		 U-Bahn	
5	 767.50		 146.90		 1.32		 3.45		 200.05		 0.06		 walk	
Table	26	Example	of	medoids	of	each	cluster	for	PAM	and	the	mode	assigned	
	
	
	
Centroid	 sbahndist	 ubahndist	 total_speed	 vel.var	 trip_dist	 percentile95acc	 label	
1	 225.35		 163.40		 4.66		 114.12		 478.45		 1.32		 U-Bahn	
2	 1350.14		 174.88		 4.83		 170.39		 1025.60		 1.12		 U-Bahn	
3	 787.40		 316.22		 2.96		 17.35		 354.77		 0.45		 Walk	
4	 398.23		 2934.25		 4.76		 112.66		 1345.13		 1.08		 Bike	
5	 636.65		 728.41		 6.12		 282.57		 6768.38		 3.42		 Car	
Table	27	Cluster	centroids	for	K-means		

	
	
Table	28	and	Table	29	show	the	confusion	matrices	as	a	result	of	the	mode	assignment	for	one	
of	 the	 better	 performing	 runs	 of	 the	 RB_PAM	 and	 RB_KMEANS	 algorithm	 respectively.	 It	 is	
important	 to	 note	 that	 the	 clustering	 was	 done	 on	 the	 entire	 dataset,	 not	 just	 those	 whose	
modes	were	assigned	in	the	secondary	step	(PAM	or	K-means).	For	visualization	purposes,	and	
to	understand	the	performance	of	these	unsupervised	methods,	the	tables	below	only	show	the	
labels	 and	 assigned	modes	 of	 the	 trajectories	whose	modes	were	 assigned	 in	 the	 PAM	 or	 K-
means	step.	 Just	by	 looking	at	 the	clusters	 formed,	 it	 is	evident	 that	 the	RB_PAM	algorithm	 is	
able	to	divide	the	trajectories	into	more	distinct	modes	as	there	is	less	overlap	actual	modes	in	
the	 clusters.	 For	 example,	 Table	 29	 shows	 that	 cluster	 4	 consists	 of	 a	 substantial	 number	 of	
almost	 all	 the	 other	modes.	 Furthermore,	 looking	 at	 the	 actual	 labels,	 it	 seems	 that	 a	 single	
mode,	 like	walk,	 is	 quite	 spread	 across	 a	 few	 clusters	 (1,2,4	 and	 5).	 Arguably,	 these	 overlaps	
occur	to	a	slightly	greater	extent	in	the	K-means	clusters	than	that	of	the	PAM	ones.		
	
It	 can	 also	 be	 observed	 that	 RB_PAM	 does	 a	 better	 job	 at	 drawing	 distinctions	 between	 the	
various	modes,	as	can	be	seen	in	Figure	44.	RB_PAM	performs	better	in	overall	accuracy	and	has	
a	higher	Kappa	coefficient,	meaning	that	more	of	the	results	can	be	considered	as	reliable	(Table	
30).			
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PAM	 Assigned	mode	(cluster	number)	

Label	 Bike	(3)	 S-Bahn	(1)	 U-Bahn	(2,	4)	 Walk	(5)	
Bike	 3	 0	 4	 4	
Car	 4	 1	 1	 0	
S-Bahn	 0	 2	 0	 0	
U-Bahn	 2	 0	 4	 3	
Walk	 3	 1	 0	 14	
Table	28	Confusion	matrix	of	trajectories	whose	modes	are	assigned	by	the	PAM	step		
 

	
K-means	 Assigned	mode	(cluster	number)	

Label	 Bike	(4)	 Car	(5)	 U-Bahn	(1,	2,)	 Walk	(3)	
Bike	 10	 0	 0	 1	
Car	 4	 0	 2	 0	
S-Bahn	 2	 0	 0	 0	
U-Bahn	 7	 0	 2	 0	
Walk	 9	 4	 5	 0	
Table	29	Confusion	matrix	of	trajectories	whose	modes	are	assigned	by	the	K-means	step	
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Figure	44	Precision,	Recall	and	F1-score	for	RB_PAM	and	RB_KMEANS	in	Viennese	dataset	

	
	
	

Vienna	 RB_PAM	 RB_KMEANS	

Accuracy	 0.68		 0.61		

Kappa	 0.55		 0.46		
Table	30	Performance	of	unsupervised	methods	in	the	Viennese	dataset	
	

	
	
The	 clustering	 however,	 does	 not	 seem	 to	 work	 very	 well	 when	 it	 comes	 to	 distinguishing	
between	 bike	 and	 car	modes,	 as	 can	 be	 seen	 in	 the	Graz	 dataset,	where	 the	majority	 of	 the	
trajectories	 consist	 of	 bicycle	 and	 car	 trajectories	 Table	 31.	 Table	 32	 and	 Table	 33	 Table	 33	
shows	 the	 composition	 of	 each	 of	 the	 clusters	 formed.	 It	 illustrates	 that	 even	 if	 labels	 were	
present	 and	 the	modes	 could	be	assigned	 to	 clusters	 to	maximize	 accuracy,	 this	 accuracy	will	
still	be	mediocre	as	the	bike	and	car	modes	are	quite	spread	across	most	of	the	clusters.	Both	
the	PAM	and	K-means	method	face	a	similar	 issue,	though	PAM	still	seems	to	perform	slightly	
better	than	K-means.		
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Graz	 RB_PAM	 RB_KMEANS	

Accuracy	 0.56		 0.50	

Kappa	 0.31		 0.16	
Table	31	Performance	of	unsupervised	methods	in	the	Graz	dataset	
	

	

RB_PAM	 Cluster		

	 	 	 	Label	 1	 2	 3	 4	 5	

Bike	 4	 28	 17	 25	 0	

Car	 12	 14	 12	 14	 14	

S-Bahn	 1	 0	 0	 0	 1	

Tram	 2	 2	 1	 8	 0	

Walk	 2	 2	 0	 2	 2	
Table	32	Overview	of	the	composition	of	clusters	generated	in	PAM	on	Graz	dataset	
	

	
	

RB_KMEANS	 Cluster		

	 	 	 	Label	 1	 2	 3	 4	 5	

Bike	 27	 8	 20	 19	 0	

Car	 8	 23	 13	 11	 11	
S-Bahn	 0	 1	 0	 0	 1	

Tram	 10	 1	 1	 1	 0	

Walk	 5	 1	 0	 0	 2	
Table	33	Overview	of	the	composition	of	clusters	generated	in	K-means	on	Graz	dataset	
	

	

5.6 Summary	of	main	results	

	
This	 section	 summarizes	 the	 key	 findings	 of	 the	 results	 presented	 in	 the	 chapter.	 The	 best	
performing	method	is	RB_RF	for	both	cities	and	RB_FLEL	follows	closely	for	the	Viennese	dataset.	
Both	datasets	indicate	that	the	inclusion	of	the	initial	RBH	step	leads	to	a	positive	effect	on	the	
overall	performance	on	the	method	chosen,	especially	when	 it	 is	used	 in	conjunction	with	RF.	
When	it	comes	to	the	secondary	mode	detection	step,	RF	outperforms	FL.	The	benefit	of	RF	over	
FL	is	more	evident	when	it	comes	to	the	more	complicated	modes	that	produce	similar	values	of	
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speed	and	acceleration;	bikes,	 cars	and	 trams	etc.	A	clear	 strength	of	RF	 is	 in	 identifying	walk	
modes,	a	relatively	poorly	performing	mode	for	the	RB_FLEL	method.	However	when	there	is	a	
more	even	split	between	private	and	public	 transportation	modes	 in	 the	dataset,	 FL	performs	
comparatively	well	too,	as	can	be	seen	by	RB_FLEL	on	the	Viennese	dataset.		
	
For	FL	methods,	the	evidence	shows	that	they	perform	better	when	variables	from	EL	are	used	
as	 supposed	 to	 that	 obtained	 from	 variable	 selection	 through	 RF.	 However,	 both	 cases	 use	
variables	 that	 are	 less	 sensitive	 to	 outliers,	 giving	 an	 indication	 of	what	 type	 of	 variables	 are	
suitable	to	be	used	when	dealing	with	the	noisier	CSD.	
	
For	unsupervised	methods,	RB_PAM	proves	to	be	a	better	choice	than	RB_KMEANS	for	CSD.	By	
using	a	combination	of	variables	obtained	through	PCA	and	EL,	RB_PAM	was	able	to	achieve	a	
commendable	overall	accuracy	of	0.68	in	the	Viennese	dataset,	which	is	comparable	to	even	the	
best	accuracy	of	0.73.	Unsupervised	clustering	fails	when	it	comes	to	very	homogenous	datasets	
like	Graz,	where	 the	 trajectories	 are	mostly	 split	 between	 the	more	problematic	 bike	 and	 car	
modes.	Using	the	RF	proximity	matrix	as	an	input	to	measure	dissimilarity	in	the	PAM	algorithm	
leads	to	better	mode	detection	capabilities	than	when	just	normal	sum	of	squared	distances	is	
used	in	K-means.		However,	the	manual	assignment	of	modes	limits	the	number	of	runs	that	this	
method	can	be	tested	and	as	such,	needs	some	further	work	to	truly	understand	its	value	and	
shortcomings.	



 

 

	CHAPTER	6
DISCUSSION	

	
	
This	 section	 will	 discuss	 the	 results	 presented	 in	 the	 previous	 chapter,	 in	 response	 to	 the	
research	questions	that	guide	this	thesis	with	the	hopes	of	contributing	to	the	existing	work	in	
the	field	of	transportation	mode	detection	using	mobile	phone	data.		
	

6.1 Research	Question	1	

	
Development	and	Implementation:	How	can	various	modes	of	transportation	(walk,	bus,	tram,	
car)	be	detected	from	cellular	signaling	data	(CSD)?	
	
From	the	results	presented	in	Chapter	5,	the	best	method	for	detecting	cellular	data	is	RB_RF	for	
both	 cities.	 In	 Vienna,	 when	 non-trips	 are	 not	 considered,	 the	 accuracy	 of	 the	 algorithm	
manages	to	distinguish	between	bike,	car,	S-Bahn,	U-Bahn	and	walk	modes	up	to	an	accuracy	of	
73%	and	Kappa	of	0.61.	In	the	Graz	dataset,	the	algorithm	manages	to	distinguish	between	bike,	
car,	S-Bahn,	tram	and	walk	modes	for	61%	of	the	trajectories	with	a	Kappa	of	0.36.	While	not	as	
high	as	that	of	GPS	studies,	the	results	are	still	comparable	to	existing	research	using	GPS	data,	
considering	the	 lower	spatial	and	temporal	 resolution	of	 the	data.	For	example,	Rasmussen	et	
al.'s	 (2015)	 baseline	 algorithm	 manages	 to	 achieve	 an	 81.7%	 accuracy	 when	 distinguishing	
between	similar	modes	and	non-trips	are	not	considered.	Their	baseline	algorithm	is	similar	to	
RB_FLEL.	Other	GPS	studies	using	RBH	achieve	accuracies	between	70%	(Bohte	and	Maat,	2009),	
78-86%	(Gong	et	al.,	2012)	to	more	than	90%	(Biljecki,	2010).	Those	that	use	machine	learning	
methods	achieve	accuracies	up	to	93%	(Stenneth	et	al.,	2011).	
	
It	 is	 challenging	 to	 make	 direct	 comparisons	 with	 existing	 mobile	 phone	 transport	 mode	
detection	 studies	 due	 to	 the	 differences	 in	 data	 available	 and	 validation	 approach.	 The	 data	
used	 in	 this	 particular	 thesis	 is	 actively	 sought	 and,	 as	 such,	 does	 not	 follow	 what	 would	
otherwise	be	a	more	repetitive	pattern	of	a	home	to	work	routine,	for	example.	This	means	that	
unlike	existing	mobile	phone	studies,	OD	matrices	cannot	be	extracted	and	aggregated	 to	any	



105	

 

meaningful	degree,	and	it	would	be	futile	to	compare	it	with	existing	census	data.	For	example,	
Qu	et	al	(2015)	used	a	large	amount	of	data	with	IDs	that	did	not	reset	every	24	hours,	meaning	
they	were	able	to	extract	home-work	trips	of	individuals	and	this	is	how	the	data	was	cleaned.	In	
that	 respect,	 only	 the	 home	 and	work	 trips	 (derived	 from	 the	 inferred	 location	 of	 home	 and	
work,	 and	not	 directly	 from	any	one	CDR	observation)	were	 considered.	 The	 studies	 are	 thus	
only	isolated	to	routine	home	and	work	trips.	Wang	et	al	(2010)	also	do	the	same.		
	
Many	existing	studies	do	not	have	ground	truth	data	to	compare	their	results	to,	and	as	a	result	
validate	their	findings	with	official	census	data	(Kasahara	et	al.,	2017;	Qu	et	al.,	2015;	Wang	et	
al.,	2010).	To	our	knowledge,	Sohn	et	al.	(2006)	is	the	only	mode	detection	study	using	cellular	
data	 that	 compares	 the	 result	 to	 ground	 truth.	While	 the	 paper	 achieves	 85%	 accuracy	 using	
machine-learning	 methods,	 the	 study	 only	 distinguishes	 between	 walk,	 drive	 and	 stationary.	
Because	 of	 the	 improved	 spatio-temporal	 granularity	 as	 compared	 to	 CDR,	 this	 introduces	
greater	 information	 to	 work	 with.	 A	 further	 significant	 difference	 is	 that	 these	 studies	 group	
public	 transportation	 into	 one	 mode	 (i.e.	 distinguish	 between	 walking,	 driving	 and	 public	
transportation).		
	
Due	to	the	reasons	stated,	the	methods	proposed	by	this	research	is	a	substantial	improvement	
to	 the	 state	 of	 the	 art	 and	 contributes	 to	 the	 current	 work	 in	 mode	 detection	 using	 mobile	
phone	data,	with	a	greater	number	of	modes	being	detected	with	reasonable	accuracy.		
	
	

6.2 Research	Question	2	

	
Evaluation	 and	 comparison:	 How	 do	 these	 proposed	 methods	 (RQ1)	 perform	 and	 compare	
against	each	other?	Which	 is	 the	best	method	of	mode	detection	for	detecting	these	modes	of	
transportation?		
	
This	 section	 explores	 how	different	 aspects	 of	 the	proposed	methods	 address	 the	 spatial	 and	
temporal	 challenges	 posed	 by	 CSD.	 Consistent	with	 findings	 from	 existing	 studies,	 the	 results	
show	that	incorporating	GIS	data	in	the	form	of	the	transportation	network	in	the	RBH	generally	
leads	to	a	better	overall	result.	The	RBH	step	only	consists	of	a	few	rules,	and	yet	is	still	able	to	
effectively	filter	out	certain	modes.	Existing	RBH	studies	have	a	larger	variety	of	rules	when	GPS	
data	is	used,	such	as	individual	speed	thresholds	for	each	mode.	Due	to	the	lower	resolution	of	
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CSD	 data,	 the	 trips	 may	 not	 be	 as	 intricately	 represented.	 Subsequently,	 the	 comparatively	
simpler	and	rather	general	set	of	rules	is	sufficiently	open	to	encompass	the	nuances	in	the	data	
and	 preemptively	 extract	 rail	 and	 car	 modes	 in	 CSD.	 Compared	 to	 many	 GPS	 studies,	 the	
hierarchical	RBH	detects	the	slower	walking	modes	first.	Due	to	the	lower	data	quality	of	lower	
speed	CSD	 trajectories,	 a	RBH	 that	 filters	out	 the	quicker	modes	 first	 is	more	 suitable	 for	 this	
data	type.	The	initial	RBH	step	also	means	that	a	certain	priority	is	placed	on	spatial	features	for	
the	 rail	 modes,	 and	 upper	 speed	 thresholds	 for	 private	 car	 modes.	 The	 assumption	 that	
proximity	to	transportation	networks	takes	precedence	over	many	other	speed	and	acceleration	
variables	for	rail	modes	have	proven	to	work	in	the	two	datasets.		
	
Between	the	two	secondary	mode	detection	methods,	fuzzy	logic	and	random	forest,	both	Graz	
and	Vienna	datasets	show	a	better	performance	of	RF	than	FL,	regardless	of	the	variables	used	
in	 the	 latter.	This	 is	expected	as	RF	has	proven	to	be	a	popular	choice	amongst	many	existing	
studies.	RF	is	able	to	better	handle	imbalanced	class	conditions,	which	is	usually	unavoidable	in	
many	 real	 life	 situations	 like	 in	 this	 scenario.	 These	 generated	 forests	 can	 also	 be	 saved	 and	
transferred	for	application	to	other	sets	of	data	(Breiman,	2001).	RF	seems	to	do	a	better	job	at	
distinguishing	between	the	more	problematic	modes,	car	and	bicycles.	From	the	results,	 it	can	
be	observed	that	small	differences	that	exist	in	these	problematic	segments	be	more	accurately	
defined	by	 the	 forest	generated	 in	RF	 than	by	 the	rules	generated	by	FL.	 It	proves	 to	be	even	
more	difficult	to	generate	any	sort	of	hard	rule	through	human	reasoning	to	distinguish	between	
these	two	modes	in	the	RBH	step.	As	such,	RF	is	a	suitable	supplementary	step	to	deal	with	the	
more	 complicated	 differences	 that	 the	 initial	 human-reasoning-derived	 RBH	 cannot	 handle.	
With	that	said,	the	FL	option	still	proves	to	be	a	viable	one,	with	RB_FLEL	trailing	closely	behind	
RB_RF	in	performance.	In	terms	of	transferability,	the	fuzzy	rules	and	random	forest	generated	
from	studies	like	these	have	the	potential	to	be	applied	to	other	cities,	for	example.	The	benefit	
of	 FLS	 as	 predictive	models	 is	 how	 they	 handle	 uncertainty	 that	 is	 understandable	 and	more	
interpretable	by	humans.	Transferability	of	these	fuzzy	rules	and	random	forests	however,	was	
difficult	to	investigate	due	to	the	different	mode	compositions	of	the	two	datasets.		
	
The	 FLRF	methods	were	an	attempt	 to	 customize	 FL	methods	 to	 suit	 CSD.	 It	was	expected	 to	
perform	better	than	FLEL	as	variables	used	in	the	latter	was	thought	to	be	more	suited	to	GPS	
data	 than	 cellular	 phone	 data,	 seeing	 that	 they	 were	 borrowed	 from	 existing	 GPS	 studies.	
However,	contrary	to	what	was	anticipated,	variables	taken	from	existing	GPS	studies	seem	to	
lend	themselves	to	better	results	than	those	extracted	from	the	CSD	through	RF.	One	possible	
implication	of	this	could	be	that	CSD	data	is	more	similar	to	GPS	data	than	previously	thought.	
Despite	the	lower	data	quality	of	CSD,	the	distinguishing	power	of	the	GPS	studies’	variables	still	
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has	 a	 place	 and	 can	 still	 be	 used.	 It	 is	 also	worth	 noting	 that	 the	 run	 time	 for	 extracting	 the	
variables	using	RF	is	substantial,	especially	when	compared	to	using	EL,	which	has	no	time	cost	
whatsoever.	Each	iteration	in	Boruta	requires	a	large	number	of	trees	to	be	iteratively	generated	
with	the	inserted	shadow	variables	and	this	leads	to	a	higher	computational	complexity	in	time	
taken	and	memory	used,	making	the	FLRF	option	even	less	desirable.	
	
A	further	reason	these	methods	are	suited	to	CSD	data	is	the	fact	that	the	features	are	extracted	
from	 the	 segmented	 trajectories,	 and	 not	 individual	 observations	 like	 in	 most	 GPS	 studies	
(instant	 velocity,	 instant	 acceleration).	 There	 is	 too	 much	 variation	 in	 the	 sampling	 rate	 and	
spatial	accuracy	for	 instantaneous	features	to	be	used	effectively	here.	This	was	proven	 in	the	
variable	selection	outcomes	of	PCA	and	RF,	where	all	the	variables	that	were	deemed	important	
or	 reflected	 a	 wide	 variation	 in	 the	 data	 were	 those	 that	 were	 less	 sensitive	 to	 outliers	 like	
percentile	values.	In	addition,	these	percentile	values	of	velocity	and	acceleration	are	based	on	
windows	of	multiple	points	instead	of	just	instantaneous	values	(rolling3.vel	and	inst.acc2).	The	
RF	 variable	 selection	method	also	 included	all	 the	 spatial	 variables	 (ubahndist,	 sbahndist	etc.)	
and	these	values	are	average	distance	values	of	all	observations	to	the	corresponding	networks.	
As	the	spatial	accuracy	in	cities	is	a	lot	higher	than	that	of	outside	cities,	these	average	values	for	
distances	to	the	transportation	network	seem	to	be	adequate	 for	 the	effectively	detecting	rail	
modes.		
	
Overall,	variables	that	are	more	suitable	to	deal	with	the	spatial	and	temporal	characteristics	of	
CSD	 data	 are	 variables	 that	 are	 less	 sensitive	 to	 outliers.	 The	 coarser	 granularities	mean	 the	
values	extracted	have	a	greater	range	of	error.	95th	percentiles	can	be	compared	to	maximum	
values	to	shed	some	information	on	higher	speed	modes.	By	using	the	percentile	values	instead	
of	 absolute	 values,	 relevant	 information	 on	 these	maximum	 speeds	 can	 be	 drawn	 from	 CSD.	
Mode	specific	variables	like	distance	to	the	rail	network	are	highly	useful	for	the	rail	modes.	Trip	
distance	 is	 also	 useful	 for	 detecting	 rail	 and	 car	 modes.	 The	 consistently	 longer	 distances	 of	
these	mode	types	set	 them	apart	 from	the	greater	variation	 in	distance	of	 the	others.	For	 rail	
modes	 especially,	 the	 user	 is	 free	 to	 use	 their	mobile	 phone,	 increasing	 the	 amount	 of	 event	
driven	data	generated.	As	a	result,	 less	estimation	of	what	is	actually	happening	is	required.	In	
cars,	it	is	not	uncommon	to	have	navigation	apps	open	and	running	during	journeys.	Compared	
to	bike	modes,	it	is	difficult,	or	at	least	highly	discouraged,	to	use	a	mobile	device	whilst	riding,	
limiting	the	CSD	generated	to	network	driven	data.	This	may	also	be	the	case	for	walk	trips.	The	
shorter	trip	distances	of	these	two	modes	also	mean	that	the	network	driven	data	generated	is	
much	less	than	when	trip	distances	are	longer,	as	the	chances	and	frequency	of	passing	through	
different	 location	 areas	 and	 switching	 between	 cell	 towers	 is	 lower.	 total_speed	 is	 another	
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important	 variable,	 a	 velocity	 measure	 that	 aggregates	 the	 total	 distance	 travelled	 over	 the	
duration	of	 the	 trip.	 The	 inconsistencies	of	 the	data	make	 this	 approach	of	obtaining	average	
velocity	measures	more	 suitable	 as	 it	 evens	 out	 the	 over	 and	 underestimations.	 inst.vel	 that	
averages	all	the	instantaneous	velocity	values	calculated	for	the	entire	trip	does	not	give	much	
information	due	to	the	variation	and	noise	in	the	data.	With	that	said,	many	cases	are	not	well	
captured	 by	 these	 variables	 alone.	 For	 example,	 the	 faster	 car	 modes	 that	 make	 a	 slower	
journey	or	 slower	modes	 like	bicycles	 that	 go	at	 a	 relatively	quicker	 speed	are	not	 that	easily	
distinguished	when	these	percentile	values	are	used.	
	
The	poorer	performance	on	the	Graz	dataset	reveals	that	applying	these	variables	to	the	fuzzy	
logic	 systems	 still	 does	 not	 uniquely	 separate	 all	 modes;	 car	 and	 bike	 trips	 have	 highly	
overlapping	 profiles	 of	 these	 speed	 and	 acceleration	 profiles.	 This	 is	 also	 seen	 in	GPS	 studies	
that	 use	 FLS	 to	 detect	 transportation	modes	 (Bolbol	 et	 al.,	 2012;	 Tsui	 &	 Shalaby,	 2006).	 The	
additional	 step	 that	 Rasmussen	 et	 al.	 (2015)	 used	 to	 combat	 this	 problem	 involves	 individual	
stops	at	bus	stops,	a	level	of	detail	that	is	not	attainable	using	CSD.	A	different	approach	will	be	
required	to	supplement	the	proposed	CSD	methods	to	separate	bike	and	car	trips.		
	
As	 it	 is	often	easier	to	obtain	unlabeled	data	than	 labeled	data,	there	 is	a	huge	motivation	for	
developing	a	workable	unsupervised	method	to	detect	modes	of	transportation	from	CSD.	The	
unsupervised	methods	explored	here	are	a	hybrid	approach	of	RBH	and	two	types	of	clustering;	
PAM	 and	 K-means.	 The	 input	 variables	 are	 obtained	 through	 PCA.	 Between	 the	 two	 types	 of	
clustering,	PAM	edges	out	K-means	slightly.	As	K-means	is	based	on	means,	it	is	highly	sensitive	
to	outliers.	This	could	contribute	to	the	less	distinct	clusters	produced	by	K-means.	RB_KMEANS	
performs	particularly	poorly	for	the	walk	modes,	though	rail	modes	seem	to	be	comparable	to	
that	in	RB_PAM.	Using	RF	for	the	dissimilarity	matrix	in	PAM	leads	to	more	meaningful	clusters.	
By	using	the	random	forest	dissimilarity	matrix	as	opposed	to	just	Euclidean	distance,	the	former	
is	based	on	the	ranks	of	 the	variables	and	 is	scale	 independent.	As	a	result,	and	 in	agreement	
with	Shi	and	Horvath	(2006),	the	results	show	that	using	the	RF	dissimilarity	in	PAM	is	useful	for	
clustering	data	 into	groups	 that	can	be	 interpreted	as	 thresholds,	 such	as	 the	 likely	maximum	
distance	 of	 sbahndist	 of	 a	 S-Bahn	 segments.	 Like	 the	 supervised	 methods,	 the	 unsupervised	
methods	also	perform	better	on	the	Viennese	dataset	than	on	the	Graz,	demonstrating	that	the	
unsupervised	methods	work	better	on	distinguishing	public	transportation	modes	as	opposed	to	
private	transportation.	Again,	this	is	likely	to	be	because	the	distinct	routes	of	the	rail	network	
sets	it	apart	from	the	other	modes	in	terms	of	its	spatial	distribution,	allowing	more	distinct	and	
meaningful	 clusters	 to	 form	 on	 this	 basis.	 On	 top	 of	 this,	 having	 medoids	 representing	 the	
clusters	 as	 supposed	 to	 centroids	 makes	 the	 mode	 assignment	 more	 intuitive,	 which	 is	
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important	 as	 this	 step	 is	 done	 manually	 and	 through	 human	 reasoning.	 While	 this	 manual	
assignment	 can	be	perceived	 as	 a	 strength,	where	human	expertise	 is	 tapped	 into	 to	 identify	
nuances	that	machines	may	not,	the	manual	assignment	of	modes	is	also	a	source	of	subjectivity,	
whereby	the	capacity	of	the	algorithm	to	correctly	identify	modes	relies	greatly	on	how	well	the	
human	 expert	 can	 assign	 the	modes	 to	 the	 clusters.	 This	 becomes	 especially	 problematic	 for	
cases	 like	 the	 Graz	 dataset	 where	 the	majority	 of	modes	 are	 bike	 and	 car,	modes	 that	 have	
similar	speed	and	acceleration	profiles.		
	
	

6.3 Limitations	of	the	study	

	
A	 major	 limitation	 of	 the	 study	 is	 the	 amount	 of	 data.	 While	 there	 have	 been	 huge	
improvements	 in	accessibility	to	CSD,	the	current	situation	still	puts	considerable	strain	on	the	
process	of	gaining	access	to	CSD	datasets,	let	alone	those	that	are	trackable	and	identifiable	to	a	
specific	person	so	that	ground	truth	can	be	collected.	This	study	and	 its	 findings	are	therefore	
limited	to	the	ground	truth	that	is	provided	by	the	respondents.	As	the	majority	of	the	ground	
truth	data	was	generated	for	another	study,	we	had	no	 input	on	how,	when,	what	and	where	
the	data	is	collected.	Furthermore,	the	low	number	of	relevant	data	(located	in	Graz	and	Vienna)	
meant	 there	was	 a	 need	 to	 combine	 data	 from	 two	 different	 collection	 campaigns.	 The	 data	
from	 	 both	 scenarios	 were	 different	 in	 terms	 of	 how	 they	 were	 collected.	 The	 former	 was	
collected	whilst	respondents	were	going	about	their	day,	leading	to	very	many	similar	trips	due	
to	routines,	and	the	latter,	where	the	participants	were	encouraged	to	collect	more	and	varied	
types	 of	 data	 across	 various	 parts	 of	 Austria	 and	 to	 use	 their	 devices	 more	 to	 increase	 the	
amount	of	data	generated.	This	could	 lead	to	discrepancies	 in	variables	 like	num.points	within	
the	 same	modes.	 Another	 data	 inconsistency	 is	 that	 the	 participants	 of	 both	 data	 collection	
campaigns	were	based	in	Graz,	meaning	that	their	traveling	behavior	and	phone	usage	patterns	
are	 different	 when	 in	 Vienna,	 a	 place	 that	 is	 likely	 to	 be	 less	 familiar.	 Chances	 of	 having	
navigation	 apps	 turned	 on	 while	 driving	 or	 walking	 around	 the	 city	 are	 higher,	 leading	 to	 a	
higher	 frequency	 and	 density	 of	 observations.	 It	 is	 also	 possible	 that	 different	 cities	 have	
differing	 degrees	 of	 car-friendliness,	 resulting	 in	 different	 needs	 for	 using	 these	 navigation	
systems	 to	 aid	 a	 journey.	 For	 the	 purposes	 of	 this	 research	 however,	 these	 possible	
inconsistencies	were	kept	in	mind	but	not	considered	a	big	problem	as	the	same	inconsistencies	
would	probably	be	present	 in	 real	 life,	 in	 addition	 to	 individual	 differences	 in	phone	use.	 The	
different	 labeling	procedures	of	the	two	data	collection	campaigns	also	mean	that	assumption	



110	

 

that	no	non-trips	were	generated	from	the	first	data	collection	campaign	had	to	be	made.	This	
could	have	inflated	the	success	of	the	methods	proposed.		
	
The	imbalanced	dataset	might	also	be	a	source	of	bias	in	the	methods.	While	this	was	addressed	
by	 removing	modes	with	only	one	or	 two	 trajectories,	 some	modes	 like	public	U-Bahns	 in	 the	
Vienna	dataset	and	private	bike	and	car	modes	in	the	Graz	dataset	are	over	represented,	leaving	
the	rest	underrepresented.	Nevertheless,	this	noticeably	different	modal	make	up	in	the	Vienna	
and	 Graz	 datasets	 make	 them	 both	 good	 case	 studies	 to	 evaluate	 the	 effectiveness	 of	 the	
methods	 on	 the	 various	 modes;	 between	 public	 and	 private	 transportation	 in	 Vienna	 and	
between	the	car	and	bike	modes	in	Graz.	
	
	
	
	
	
	
	



 

 

	CHAPTER	7
CONCLUSION	AND	FUTURE	WORK	

	
	
In	this	thesis,	we	proposed	various	novel	methods	to	detect	modes	of	transportation	in	CSD	with	
inconsistent	 sampling	 rates	 and	 lower	 spatial	 precision	 of	 location	 estimates.	 The	 presented	
approaches	 consist	 of	 hybrid	 methods	 combining	 an	 initial	 rule-based	 heuristic	 step	 with	 a	
secondary	 fuzzy	 logic,	supervised	random	forest	or	unsupervised	clustering	step.	The	variables	
tested	were	those	used	in	existing	literature	as	well	as	data-driven	ones	extracted	from	the	CSD	
data	using	PCA	and	RF.	The	 results	have	shown	promise	 in	using	 this	newer	data	 type	 for	 the	
purposes	of	transport	mode	detection.	The	best	performing	method	is	a	hybrid	method	of	RBH	
and	RF,	where	a	success	rate	of	73%	is	achieved	in	the	Viennese	dataset,	a	result	comparable	to	
existing	GPS	studies	and	a	step	forward	in	mobile	phone	data	studies	in	terms	of	the	number	of	
modes	detected	and	the	performance	achieved.	While	the	results	for	RB_RF	in	the	Graz	dataset	
is	lower	at	0.61,	RB_RF	still	outperforms	all	of	the	other	proposed	methods.		
	
Consistent	with	existing	studies,	this	thesis	found	the	inclusion	of	RBH	to	be	beneficial	for	mode	
detection	tasks	when	it	comes	to	CSD	data.	Rail	modes	are	reliably	detected	based	on	proximity	
measures	 and	 minimum	 trip	 distances	 and	 certain	 car	 modes	 can	 be	 identified	 with	 the	
95thpercentile	 speed	 and	 acceleration	 values	with	 relative	 efficacy.	However,	with	 car	modes,	
there	is	a	more	delicate	balance	to	be	struck	when	deciding	the	percentile	value	that	is	used	in	
the	 RBH,	 as	 the	 similarities	 between	 certain	 private	 modes	 like	 cars	 and	 bikes	 are	 quite	
substantial.	Overlaps	in	locations	of	private	and	public	transportation	modes	like	cars,	buses	and	
trams	make	 it	 difficult	 to	 use	proximity	 to	 public	 transportation	network	 alone	 to	 confidently	
identify	bus	and	tram	modes.	New	methods	need	to	be	explored	in	order	to	achieve	that.	While	
RBH	in	combined	methods	leads	to	reasonable	mode	detection	results,	the	combination	of	RBH	
with	 RF	 is	 more	 advantageous	 than	 the	 combination	 of	 RBH	 with	 FL.	 The	 randomness	 of	 RF	
makes	it	more	suitable	in	accounting	for	the	small	differences	in	certain	modes.		
Furthermore,	the	study	also	found	that	when	it	comes	to	speed	and	acceleration	measures,	the	
ones	 that	 are	 less	 sensitive	 to	 outliers	 are	 almost	 always	 chosen	 as	 input	 variables	 in	 all	 the	
methods.	 These,	 along	 with	 spatial	 proximity	 features,	 are	 regarded	 as	 informative	 and	
important	variables	when	the	goal	is	to	distinguish	between	modes	of	transportation	with	CSD.	
This	 thesis	 also	 explores	 the	unsupervised	 alternative	 in	mode	detection	methods,	 comparing	
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the	ever-popular	K-means	algorithm	with	the	PAM	clustering	method.	The	results	presented	in	
the	thesis	show	that	PAM	is	a	better	fit	for	CSD.	As	the	PAM	uses	a	dissimilarity	measure	derived	
from	 the	 proximity	 matrix	 from	 an	 unsupervised	 RF,	 the	 resultant	 clusters	 are	 more	
homogeneous	in	their	modes	than	when	K-means	is	used.	Also,	as	the	clusters	are	represented	
by	medoids	 in	 PAM	and	not	 centroids,	 the	 assignment	 process	 becomes	much	more	 intuitive	
and	 straightforward.	 However,	 the	 process	 of	 assigning	 modes	 needs	 to	 be	 improved	 and	
perhaps	 automated.	 The	 current	 approach	 of	 manual	 assignment	 makes	 this	 method	 a	
considerably	 bigger	 undertaking,	 especially	 when	 the	 algorithm	 requires	 several	 iterations	 to	
ensure	reliability	of	the	result.	That	being	said,	the	preliminary	results	of	unsupervised	learning	
for	mode	detection	in	CSD	shows	that	there	is	huge	potential	in	these	methods	when	combined	
with	the	initial	RBH,	which	is	especially	useful	due	to	the	hassle	of	gaining	access	to	this	CSD.	
	
The	main	 challenge	 still	 lies	 in	 the	more	 complicated	and	problematic	modes	of	bike,	 car	and	
tram;	modes	that	use	the	road	and	will	have	heavily	overlapping	speed	and	acceleration	profiles,	
especially	during	congestion.	As	there	has	been	insufficient	data	on	buses,	this	mode	has	been	
left	out	of	the	study,	but	it	is	likely	that	it	would	have	performed	similarly	to	the	tram	modes	in	
Graz.	GPS	studies	have	found	ways	to	deal	with	this	similarity	in	speed	and	acceleration	profiles	
by	 incorporating	things	 like	bus	schedules	and	bus	stops.	Future	works	 in	this	area	should	add	
strategies	 to	 further	 distinguish	 between	 these	 complicated	 modes,	 keeping	 the	 spatial	 and	
temporal	challenges	of	CSD	in	mind.	For	example,	the	irregular	temporal	resolution	means	that	
it	might	be	difficult	to	detect	any	individual	bus	or	tram	stops,	as	such	using	live	schedules	might	
be	more	suitable.	This	would	be	a	bigger	undertaking	but	might	be	necessary	to	achieve	higher	
rates	of	correct	mode	identification.	Future	work	developing	the	unsupervised	methods	should	
incorporate	 strategies	 to	 automate	 the	 process	 of	 assigning	modes	 to	 these	 clusters	 so	 as	 to	
increase	the	stability	and	lower	the	sensitivity	of	these	unsupervised	methods.		
	
Trip	 segmentation	could	be	another	 focus	 for	 future	work.	Depending	on	 the	ultimate	goal	of	
mode	detection,	the	trade-offs	between	decreasing	the	number	of	non-trips	and	sacrificing	the	
detection	of	shorter	actual	trips	must	be	negotiated	and	a	balance	must	be	struck.	For	example,	
when	the	goal	is	studying	urban	activity,	activity	locations	are	used	as	the	start	and	end	points	of	
trips	(Widhalm	et	al.,	2015).	This	approach	tackles	the	issue	of	overlooking	short	trips	that	may	
be	part	of	multi	modal	trips,	effectively	reducing	the	dilemma	between	minimizing	non-trips	and	
maximizing	 actual	 trips.	 Transferability	 of	 these	 methods	 should	 also	 be	 explored	 in	 greater	
detail.	 Applications	 of	 these	 methods	 and	 their	 usage	 will	 benefit	 greatly	 should	 these	
algorithms	 be	 transferable	 across	 cities,	 making	 transportation	 mode	 detection	 much	 more	
accessible	 to	many	more	 groups.	When	 transferring	 the	model	 across	 different	 scenarios	 and	
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case	 studies,	 it	 is	 vital	 to	 contemplate	 the	 impact	of	 the	differences	of	 the	built	environment,	
the	 transportation	 network	 etc.	 These	may	 be	 significant,	 or	 have	 little	 effect	 on	 the	 overall	
algorithm	 and	 thus	 will	 have	 a	 considerable	 consequence	 on	 the	 generalizability	 and	 thus	
potential	 users	 of	 the	 proposed	 methods.	 Future	 works	 could	 investigate	 these	 properties	
further,	and	if	necessary,	proposed	improvements	to	the	methods	to	increase	the	transferability.	
This	could	be	in	the	form	of	generalizable	algorithms	or	those	that	use	a	set	of	city-specific	input	
parameters	that	are	easily	attainable.		
	
While	 the	 proposed	 methods	 may	 not	 perform	 well	 in	 distinguishing	 between	 bike	 and	 car	
modes,	 they	 are	 able	 to	 distinguish	 between	 different	 categories	 of	 modes	 to	 a	 reasonable	
degree.	Depending	on	the	application	and	intended	purpose	of	mode	detection,	the	data	can	be	
processed	in	a	certain	way	that	is	useful	to	the	user.	For	example,	if	companies	collect	data	from	
travellers’	 phones	 with	 the	 intention	 of	 estimating	 road	 usage,	 it	 would	 be	 sufficient	 to	
differentiate	 between	 rail	modes,	walk	 and	 the	 others	 (grouping	 all	modes	 that	 use	 the	 road	
network,	like	bikes,	cars	and	trams,	together).	This	level	of	distinction	enables	the	application	to	
filter	out	the	irrelevant	walk	and	rail	modes	from	their	usage	reports,	and	with	this	purpose	in	
mind,	 the	 proposed	 methods	 enable	 such	 information	 to	 be	 reliable	 extracted	 from	 CSD.		
Furthermore,	despite	 some	modes	having	an	appreciable	 level	of	 confusion,	 the	methods	 can	
still	be	useful	when	it	comes	to	individual	modes	of	interest,	depending	on	what	the	real	world	
application	 is.	The	results	of	this	study	show	that	there	 is	huge	promise	and	potential	 in	using	
CSD	for	transport	mode	detection,	as	a	gateway	to	many	other	applications.	
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