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Abstract 
Snow serves as a crucial temporal water storage, impacting downstream water management, agriculture, 

and hydroelectric power generation. In the pre-alpine Wägital in Switzerland, one of the longest-stand-

ing global monitoring programs of snow water equivalent (SWE) exists, with April 1st SWE data span-

ning from 1943 to 2023. To overcome the limitations of relying solely on April 1st SWE measurements, 

a degree-day model was employed to reconstruct daily SWE and identify the annual maximum SWE 

(maxSWE). This thesis analyzes spatial variations in maxSWE with respect to elevation, aspect, and 

slope, as well as long-term trends and changes in meteorological parameters, SWE, and snow cover 

days. The model results reveal that April 1st measurements often fail to capture peak SWE, highlighting 

the importance of using maxSWE for more accurate trend analysis. Spatially, SWE increases with ele-

vation, is lowest on south-facing slopes, highest on wet-facing locations, and decreases with steeper 

terrain. Temporally, a general decline in maxSWE is observed across the catchment and the study pe-

riod. Positive trends dominate from the 1940s to the 1980s, followed by stronger negative trends from 

the 1980s onward. The start year of the trend analysis significantly influences the strength of these neg-

ative trends. Similar patterns are noted for annual snow cover days. Additionally, the distribution of 

maxSWE across different meteorological categories indicates that "cold and wet" years produce the 

most snow, while "warm and dry" years result in the least, with higher elevations exhibiting greater 

variability in maxSWE, particularly in "cold and wet" conditions. These findings suggest that both tem-

perature and precipitation are critical in determining SWE, while other factors, such as wind patterns 

and local topography, also influence snow accumulation. While uncertainties in input data and modeling 

limitations exist, this study underscores the value of long-term data sets like the Wägital monitoring 

program for understanding past trends and anticipating future challenges related to climate change. 

  



IV 
 

Table of Contents 
Acknowledgements ................................................................................................................................. II 

Abstract  ................................................................................................................................................ III 

List of Figures ........................................................................................................................................ VI 

List of Tables ....................................................................................................................................... VIII 

List of Abbreviations .............................................................................................................................. IX 

1 Introduction ............................................................................................................................... 1 

1.1 Aim and Research Questions .................................................................................................... 3 

2 State of the Art .......................................................................................................................... 5 

2.1 Snow water equivalent (SWE) .................................................................................................. 5 

2.2 Spatial Variation in SWE .......................................................................................................... 6 

2.3 SWE Monitorings in Switzerland ............................................................................................. 7 

2.4 International SWE Monitorings and Trend Analyses ............................................................... 9 

3 Study Site – Wägital ............................................................................................................... 12 

4 Methodology ........................................................................................................................... 15 

4.1 SWE and Meteorological Data Collection ............................................................................. 15 

4.2 Degree-day Modeling Approach ............................................................................................ 17 

4.2.1 Model Calibration ............................................................................................................ 20 

4.3 Grouping of Measurement Stations ........................................................................................ 21 

4.3.1 Elevation ........................................................................................................................... 21 

4.3.2 Aspect ............................................................................................................................... 21 

4.3.3 Slope ................................................................................................................................. 21 

4.3.4 Meteorological Year Categories ....................................................................................... 22 

4.4 Statistical Analyses ................................................................................................................. 22 

4.4.1 Trend Analyses ................................................................................................................. 23 

5 Results ..................................................................................................................................... 24 

5.1 Model Performance ................................................................................................................ 24 

5.1.1 Analysis of Degree-day Model Bias in relation to spatial characteristics ........................ 27 

5.2 April 1st SWE vs. maxSWE .................................................................................................... 28 

5.3 Spatial Analyses of maxSWE ................................................................................................. 31 



V 
 

5.3.1 Elevation ........................................................................................................................... 31 

5.3.2 Aspect ............................................................................................................................... 32 

5.3.3 Slope ................................................................................................................................. 32 

5.4 Trend Analyses ....................................................................................................................... 34 

5.4.1 Trends for Individual Stations .......................................................................................... 34 

5.4.2 Trends in measurement groups across the total observational period .............................. 35 

5.4.3 Temporal Trends .............................................................................................................. 37 

5.4.3.1 Meteorological changes 1943-2023 ......................................................................... 37 

5.4.3.2 Changes in maxSWE ............................................................................................... 38 

5.4.3.3 Changes in Snow Cover Days per year ................................................................... 42 

5.5 Meteorological Year Categories ............................................................................................. 43 

6 Discussion ............................................................................................................................... 45 

6.1 Model Performance ................................................................................................................ 45 

6.2 Model Significance ................................................................................................................. 46 

6.3 Spatial Distribution ................................................................................................................. 47 

6.4 Trends Analyses ...................................................................................................................... 48 

6.5 Meteorological Year Category ............................................................................................... 50 

6.6 Limitations and Uncertainties ................................................................................................. 50 

6.7 Recommendations for Future Research .................................................................................. 51 

7 Conclusions ............................................................................................................................. 53 

Bibliography ........................................................................................................................................... 54 

Appendix ............................................................................................................................................. VIII 

A1 Location Characteristics ...................................................................................................... VIII 

A2 List of SSE and best parameter set .......................................................................................... X 

A3 Model Performance ................................................................................................................ XI 

A4 Spatial Variation Compilations ............................................................................................. XII 

A5 Results Trend Analysis individual Stations ......................................................................... XIV 

A6 Plots Trend Analysis Groups ................................................................................................ XV 

Personal Declaration ........................................................................................................................... XIX 

 



VI 
 

List of Figures 
Figure 1: Comparison of SWE  across Switzerland in selected winters. ................................................. 6 

Figure 2: Volume of water stored in the snow cover in the Wägital on April 1st split in two elevation 

bands. ........................................................................................................................................ 9 

Figure 3: Picture a) shows the Wägital in direction South, and picture b) in direction North. .............. 12 

Figure 4: Excerpt of geological map ...................................................................................................... 13 

Figure 5: Map of all 45 locations of the measurement stations in the Wägital. ..................................... 14 

Figure 6: Pictures of the manual SWE measurement with ETH-tube during the monitoring 2024. ..... 16 

Figure 7: Schematic conceptualization of snow processes (Kokkonen et al., 2006) ............................. 18 

Figure 8: Simulated vs. Observed SWE for Mittl. Tannstofel. .............................................................. 25 

Figure 9: Simulated vs. Observed SWE for Ziggen. .............................................................................. 25 

Figure 10: Boxplots of the regression values a, b, R2, and bias ............................................................. 26 

Figure 11: Map of the spatial distribution of model bias across measurement stations. ....................... 28 

Figure 12: Box plots of the timing of maxSWE for each of the 45 stations for each year. ................... 29 

Figure 13: Cumulative frequency distribution of the data of maxSWE for all stations and all years ... 30 

Figure 14: Boxplots of the maxSWE for the 1943-2023 period across the elevation bands ................. 31 

Figure 15: Boxplots of the maxSWE for the 1943-2023 period across the aspects ............................... 32 

Figure 16: Boxplots of the maxSWE for the 1943-2023 period across the slopes ................................ 33 

Figure 17: The simulated maximum SWE for the Oberalp Boden station ............................................ 34 

Figure 18: The simulated maximum SWE for the Seeende_1 station ................................................... 35 

Figure 19: The simulated median maxSWE for measurement stations between 900-1500 m a.s.l. (a), and 

for measurement stations between 1500-1800 m a.s.l. (b) ..................................................... 36 

Figure 20: Changes in Precipitation (mm/year)  and Temperature (°C/year) in the Wägital ................ 38 

Figure 21: Change in Average Annual maxSWE (mm/year) for all measurement stations across the 

Wägital .................................................................................................................................... 39 

Figure 22: Change in maxSWE (mm/year) in the elevation bands 900-1500 m a.s.l. and 1500-1800 

m a.s.l. ..................................................................................................................................... 40 

Figure 23: Change in maxSWE (mm/year) for the different aspects N, E, S, W .................................. 41 



VII 
 

Figure 24: Change in maxSWE for measurement stations located on slopes 5-10° and slopes 20-25° 42 

Figure 25: Changes in snow cover days (days/year/year) in the Wägital .............................................. 43 

Figure 26: Boxplots of distribution of maxSWE in different meteorological years divided into two 

elevation bands. ...................................................................................................................... 44 

 

A 1: Boxplots of the maxSWE compiled for aspect and elevation ...................................................... XII 

A 2: Boxplots of the maxSWE compiled for aspect and slope. ........................................................... XII 

A 3: Boxplots of the maxSWE compiled for slope and elevation ...................................................... XIII 

A 4: The simulated median maxSWE for measurement stations with aspect N .................................. XV 

A 5: The simulated median maxSWE for measurement stations with aspect E .................................. XV 

A 6: The simulated median maxSWE for measurement stations with aspect S ................................. XVI 

A 7: The simulated median maxSWE for measurement stations with aspect W ................................ XVI 

A 8: The simulated median maxSWE for measurement stations with slope 5-10° ........................... XVII 

A 9: The simulated median maxSWE for measurement stations with slope 10-15° ......................... XVII 

A 10: The simulated median maxSWE for measurement stations with slope 15-20° ..................... XVIII 

A 11: The simulated median maxSWE for measurement stations with slope 20-25° ..................... XVIII 

 

  



VIII 
 

List of Tables 
Table 1: Model parameter ranges used for optimization for degree-day model. ................................... 19 

Table 2: Summary of statistical values of trend analysis for the groups elevation, aspect, and slope. .. 37 

 

T 1: Measurement Locations Characteristics ...................................................................................... VIII 

T 2: Results of the objective function (lowest SSE) and best-parameter sets (TT, CFMAX, SFCF). .... X 

T 3: Linear Regression Results per measurement station. ..................................................................... XI 

T 4: Statistical results of the trend analysis for each individual measurement station. ...................... XIV 

 

  



IX 
 

List of Abbreviations 
CFMAX Degree-day Factor 

CFR  Refreezing Coefficient 

CWH  Water Holding Capacity 

DEM  Digital Elevation Model 

E  East 

HMA  High Mountain Asia 

IQR  Interquartile range 

m a.s.l.  meters above sea level 

maxSWE maximal snow water equivalent 

MK  Mann-Kendall test 

N  North 

NE  North-east 

NW  North-west 

S  South 

SFCF  Snowfall Correction Factor 

SE  South-east 

SLF  Swiss Federal Institute of Snow and Avalanche Research 

SSE  sum of squared errors 

SSW  South-south-west 

SW  South-west 

SWE  Snow Water Equivalent 

TT  Threshold Temperature 

W  West 

  



  Introduction 
 

1 
 

1 Introduction 
The snowy white alpine mountain ranges are not only scenic, but the snowpack is also a critical compo-

nent of water storage in winter. Snowmelt provides water for downstream areas, including water for 

urban and agricultural use (Lopez et al., 2020; Marty et al., 2023; Viviroli et al., 2007a). Snow is also 

the foundation for winter sports and tourism (Marty et al., 2023). Additionally, snow can present natural 

hazards, such as avalanches and floods when it melts (Marty et al., 2023), which can lead to disruptions 

in transportation and impact livestock, wildlife, and infrastructure (Berghuijs et al., 2016; Croce et al., 

2018).  

Snow plays a crucial role in the climate system, with its high surface reflectance (albedo) affecting the 

surface energy balance(Wiscombe & Warren, 1980). The snow-albedo feedback mechanism, where in-

itial warming reduces snow cover, lowers the albedo, and increases absorbed solar energy, further in-

creases the air temperature. Additionally, snow's thermal insulating properties and the large energy re-

quirement for melting ice (latent heat) affect the energy balance (Armstrong & Brown, 2008).  

From a hydro-meteorological perspective, snow is just temporally frozen precipitation. Measuring snow 

water equivalent (SWE) provides insights into the amount of water stored in the snowpack as frozen 

precipitation. This information is crucial for predicting seasonal discharge, making short-range forecasts 

of the discharge, and assessing water quality aspects (Rohrer et al., 1994). The significance of snow as 

temporary water storage has been acknowledged in the literature since at least 1939 (Bader et al., 1939). 

The collection of SWE data by institutions such as the Swiss Federal Institute of Snow and Avalanche 

Research (SLF) helps to create snow-climatological data products, perform trend analyses, and develop 

numerical models that further enhance the understanding of snow’s role in the climate system (WSL, 

2024). Furthermore, various hydroelectric companies rely on SWE data to anticipate meltwater contri-

bution to reservoirs and hydroelectric power stations (Rohrer et al., 1994).  

SWE can be measured every week (e.g. Stähli & Gustafsson, 2006), every month (e.g., several SLF 

stations (Marty et al., 2023)), or once per year. If SWE is only measured once per year, it is typically 

measured on or around April 1st. Measuring SWE on the same day of the year and at the same sites 

allows one to compare the relative differences in snow storage for different years and thus obtain a 

measure of water availability. Observational data on snow, especially SWE, and other meteorological 

data, like precipitation and temperature, are also essential for understanding historical and ongoing cli-

mate change (CH2018, 2018) because snow cover reacts quickly to climate change and has a significant 

impact on the atmosphere(Armstrong & Brown, 2008).  

SWE needs to be measured at many points because snow accumulation and melt rates are influenced by 

elevation and aspect, as these factors affect air temperature and solar radiation inputs to the snowpack. 

SWE can vary significantly across different areas, primarily due to wind-driven snow drifting during 
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and after snowfall events, which is further influenced by topography and vegetation cover. For instance, 

much deeper snow accumulation is often observed on the leeward side of ridges. Additionally, there are 

feedback effects where deeper snow cover can enhance water availability for vegetation, promoting 

growth. In forested areas, this increased growth can lead to greater snow capture, as trees trap more 

snow carried by the wind (Beven, 2012). 

Historical observational data sets are the foundation for future climate change projections and scenarios. 

Additionally, the variability within the present climate offers insight into contemporary climate related 

risks (CH2018, 2018). In Switzerland (and elsewhere), several changes in snow characteristics have 

been observed since the 1960s. The proportion of precipitation that falls as snow is linked to air temper-

ature and has notably diminished as a consequence of global warming. In Switzerland, this change is 

especially evident at lower and middle elevations (FOEN, 2021). Furthermore, since 1961, snowfall 

days below 500 m above sea level (m a.s.l.) have decreased by approximately 40 %, and the water stored 

in snow, respectively the SWE, during spring below 1000 m a.s.l. has declined by up to 75 % (Marty et 

al., 2017). The zero-degree isotherm has risen significantly since the late 19th century (Scherrer et al., 

2021). Additionally, the FOEN (2018) has stated that the zero-degree isotherm in future winters will be 

higher because of climate change, which means that less precipitation will be stored in the snowpack 

and snow will melt earlier in the year. Impacts of climate change on the water cycle that are already 

apparent are changes in annual river streamflow (Nijssen et al., 2001), alterations in flow duration curves 

(Arora & Boer, 2001), shifts of flood peak magnitude and timing of it (Hirabayashi et al., 2013), and 

changes in magnitude of low-flow periods (Stahl et al., 2010). Further changes in regional hydrology 

are to be expected. 

Several studies investigating SWE data used April 1st SWE as a proxy for the maximum SWE 

(maxSWE) because SWE on April 1st is typically the day with the highest observed SWE during the 

winter season (Cayan, 1996; Changnon et al., 1991). Research has scrutinized the reliability of April 1st 

SWE measurements. For instance, Bohr & Aguado (2001) found that April 1st SWE tends to underesti-

mate the maximum SWE (maxSWE) by about 6 cm (12 %) in the Rocky Mountains. Similar studies in 

the Rio Grande, Great Basin, and Colorado River Basin have shown inconsistent trends in April 1st 

SWE, possibly due to trend detectability issues or physical mechanisms that buffer the snowpack against 

temperature changes (Harpold et al., 2012).  

Accurate monitoring and modeling of snow improves the ability to assess Earth system conditions, 

trends and future forecasts while serving the global interests regarding water supply and weather fore-

casting (Girotto et al., 2020). The environmental complexity and limited number of long-term in-situ 

observations are challenging the simulation and observation of fine-scale spatial and temporal seasonal 

snow-cover patterns (Peters-Lidard et al., 2018).  
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For snowmelt, there are two main types of models: temperature index models and energy balance models 

(Girotto et al., 2020). Temperature index models, also called degree-day models, use empirical relation-

ships between local air temperature and snowmelt to estimate the snow decline (Ohmura, 2001). Energy 

balance snow models are designed to simulate all energy exchanges within a snowpack, calculating 

snowmelt based on the net internal energy determined by these energy fluxes (Girotto et al., 2020). The 

appropriate modeling choice should depend on how well a process should be represented and what the 

intended application is. 

For this thesis, a unique dataset of April 1st SWE measurements from 1943-2023 from the Wägital in 

Switzerland was analyzed. A long-term dataset like that can offer valuable insights into historical vari-

ation in snowpack and trends in the region. The importance of historically available data sets cannot be 

overstated, as they provide a baseline for detecting and analyzing long-term climate trends (CH2018, 

2018). This available dataset from the Wägital is particularly valuable because it spans multiple decades, 

allowing for a comprehensive analysis of how snow patterns have evolved in response to climatic shifts 

and variability. However, April 1st measurements may not give good information on the maximum 

snowpack and lead, for example, to a potential underestimation of maximum SWE (Bohr & Aguado, 

2001). This is especially problematic if there is variability in snowmelt timing due to climate change 

(Harpold et al., 2012). It is therefore important to critically assess the data set and to capture the full 

picture of snow accumulation and melt dynamics before determining trends in SWE in the Wägital.  

1.1 Aim and Research Questions 
The overall goal of this thesis is to advance the research on the spatial and temporal variability in SWE 

while also providing valuable insights for decision-making in water resource management, ecological 

conservation, and climate adaptation strategies in alpine regions. The main goal of this research is to 

develop a degree-day model to simulate SWE using only two input datasets, precipitation and tempera-

ture, and to use the model simulations to determine the maximum SWE for each year. In addition to the 

creation of the model, the thesis includes comprehensive data and statistical analyses, as well as trend 

analysis based on the simulated SWE data. The following research questions are investigated in this 

thesis:  

(i) How well does April 1st SWE represent the maxSWE in the Wägital? 

(ii) What is the spatial variability in maxSWE across the Wägital? i.e., what is the relation be-

tween maxSWE and elevation, aspect, and slope?  

(iii) What is the trend in maxSWE and the number of snow cover days? 

a. How does the trend for maxSWE differ by elevation, aspect, and slope?  

b. How do the length and starting point of the observation period affect the identified 

trends in maxSWE and number of snow cover days?  

(iv) How does the SWE differ for warm years and cold years, and for wet years and dry years? 
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The observed April 1st SWE values were expected to reflect the maxSWE in the Wägital. However, due 

to interannual variability, these measurements may not always capture the absolute peak. It is anticipated 

that significant spatial variability regarding SWE exists within the Wägital. Specifically, higher eleva-

tions are expected to have a higher SWE than lower elevations. In terms of aspect, south-facing meas-

urement stations, which receive more sunlight, are expected to have less snow than north-facing stations, 

while east-facing stations, often on the leeward side, are predicted to accumulate more SWE than west-

facing ones. Additionally, steeper terrain is likely to have lower SWE due to the influence of gravity, in 

contrast to flatter terrain, which is expected to retain more snow.  

When examining trends over time, the overall trend in maxSWE in the Wägital is expected to be nega-

tive, reflecting the broader impacts of climate change (cf. (FOEN, 2021)). This negative trend is antici-

pated to be more pronounced at lower elevations compared to higher ones. As for aspect, the trends in 

maxSWE are expected to be most negative in the northern aspect and least negative in the southern 

aspect. Concerning slope, flatter terrains are expected to show a stronger negative trend in SWE than 

steeper terrains. Similar to the trend patterns in maxSWE, a decrease in snow cover days over time is 

expected.  

Regarding meteorological year categories, it is hypothesized that cold and wet years will yield the high-

est SWE levels, followed by warm and wet years. Conversely, warm and dry years are expected to 

produce the lowest SWE levels. This analysis will help to further understand the interplay between cli-

mate variability and SWE dynamics in the Wägital. 
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2 State of the Art 
This chapter will provide an introduction to the key parameter examined in this thesis, the SWE. Addi-

tionally, it will review current and past research on SWE measurements and trend analyses, both in 

Switzerland and internationally, to identify existing knowledge gaps. By understanding these gaps, the 

context of this thesis will be established, highlighting how its objectives aim to contribute to the already 

existing research. 

2.1 Snow water equivalent (SWE) 
The snow water equivalent (SWE), measured in millimetres of water equivalent (mm w.e.), kilograms 

per square meter (kg/m2), or liters per square meter (l/m2), indicates the depth of water that would result 

if the snow were to melt completely. This metric applies to a unit surface area of the snow sample and 

represents the snow cover across a specific region or confined area of snow (Fierz et al., 2009). 

Cover-snow depth, bulk snow density, and snow water equivalent are the three basic properties used to 

describe snow. These three properties are interconnected with each other because bulk density multi-

plied by snow depth determines the SWE (Marty et al., 2023). 

𝑺𝑾𝑬 = 𝒓𝒆𝒍𝒂𝒕𝒊𝒗𝒆	𝒔𝒏𝒐𝒘	𝒅𝒆𝒏𝒔𝒊𝒕𝒚	 × 𝒔𝒏𝒐𝒘	𝒅𝒆𝒑𝒕𝒉 

SWE is a key component of the water budget of a catchment because it is an important resource for 

hydroelectricity production but is also a potential flood risk when a high snowpack melts rapidly in 

spring (Brown et al., 2019). Water resource management in snow-dominated regions depends on the 

clear distinction between snow accumulation and snowmelt seasons. This separation allows for the pre-

diction of annual river flows based on the amount of maximum snow accumulation (Musselman et al., 

2021). The date April 1st is often used to distinguish between the winter snow accumulation and spring 

melt seasons. It also serves as an approximation for the maximum annual SWE (Pagano et al., 2004). 

However, examining the measurements of SWE across Switzerland by Pielmeier et al. (2024) (Figure 

1) for selected winters it reveals that the maxSWE does not always occur on April 1st. This observation 

highlights potential issues with the accuracy and representativeness of using April 1st SWE measure-

ments as maxSWE and also the accuracy of using April 1st for long-term trend analyses and snowpack 

dynamics. This discrepancy raises important questions about the reliability of this date as a proxy for 

capturing peak SWE and suggests a need for more nuanced approaches in trend analysis and snowpack 

assessment. 
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Figure 1: Comparison of SWE  across Switzerland in selected winters. The black line representing the current winter mean-
ing winter 2022/2023 and the grey line representing the average SWE for the period 1999-2023 (Pielmeier et al., 2024 ). 

 

2.2 Spatial Variation in SWE 
At a Swiss national scale, the mean SWE shows significant spatial variation. In low-altitude regions, 

such as the Swiss Plateau, only a few millimeters of SWE are recorded. In contrast, the Alpine regions 

exhibit far higher SWE values, typically ranging between 100 mm and 300 mm, with the highest values 

observed in the Bernese Alps and the Gotthard region, reaching up to 600 mm. Regarding days with 

measurable snowfall, on the Swiss plateau, snowfall occurs on approximately 10 to 30 days between 

September and May. In most Alpine regions, the number increases, ranging from 30 to 120 days. In 

southern Switzerland, in the Rhone Valley and the Lake Geneva region, the mean number of days with 

snowfall is less than ten days, marking the lowest in Switzerland (CH2018, 2018). 

At the catchment scale, the variability of snow accumulation and snowmelt is influenced by topography, 

whereas elevation and aspects are the dominant factors (Anderton et al., 2004; Pomeroy et al., 1998). 

The high variability of SWE at smaller scales presents challenges in establishing clear relationships 

between SWE and topographic controls like elevation and aspect (Jost et al., 2007). Jost et al. (2007) 

showed that elevation, slope aspect, and vegetation contributed 80 % to 90 % of the spatial distribution 

of snow cover and identified areas where elevation most strongly affected snow cover in British 
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Columbia, Canada. In the Swiss Alps, Grünewald et al. (2014) observed that snow depth increases with 

increasing elevation up to a certain altitude, after which it decreases at the highest elevations. Lower 

snow accumulations in forests are primarily due to the interception of snow by the canopy (Faria et al., 

2002; Winkler et al., 2005). Similarly, Zhong et al. (2021) examined snow cover distribution in the 

Chinese Altai Mountains and found that elevation and latitude are the primary factors influencing snow 

depth and SWE. Snow depths and SWE generally increase with elevation, reaching maximum values at 

specific altitude ranges, but show varying patterns depending on the region, with some areas experienc-

ing decreases at higher elevations. SWE generally increased with slope angle in the regions of alpine 

Koktokay and piedmont sloping plain but showed the opposite trend in the alpine Kanas-Hemu, where 

the effects of wind, gravity, and forest sheltering led to higher SWE on gentler slopes. 

The spatial variability of SWE is driven by a number of different processes. In Alpine areas, snow ac-

cumulation is influenced by the preferential deposition of snow in microscale topographic depressions 

or on the leeward side of ridges. In forests, the spatial variability of snow accumulation is related to 

preferential deposition around fallen tree trunks, as well as the spatial variability of snow interception 

and discharge from the forest canopy. Additionally, the spatial variability of melt energy is related to 

the local advection of energy across patchy snowpacks and the spatial variability of radiative forcing 

and air temperature (Clark et al., 2011). 

2.3 SWE Monitorings in Switzerland 

Switzerland currently has four distinct SWE monitoring programs which are still in operation today. 

Each of these programs was initiated with different specific focuses, reflecting diverse research objec-

tives and regional needs (Marty et al., 2023).  

a) Glaciers: SWE measurements at the end of winter on about a dozen of Swiss glaciers 

b) Nation-wide: In-situ SWE measurements at two dozen stations, which are mainly used for daily 

snow and avalanche monitoring. 

c)  Alpthal: In-situ SWE measurements at multiple sites for the long-term investigation of forest-

snow interactions. 

d) Wägital: Catchment-based SWE measurements on April 1st, originally used for water resource 

monitoring for hydro-power. 

End-of-winter snow depth measurements on glaciers in Switzerland (a) have been available since 1914. 

However, only the observations on the Claridenfirn are complete and consistent. Additionally, the end-

of-winter SWE measurements have only been available since 1957. The measurements are typically 

taking place in May, at the end of the accumulation period, with the goal of determining the winter’s 

SWE. 
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The SLF carries out nationwide SWE measurements at SLF stations (b). The number of stations where 

the SWE is measured twice a month has increased from 10 stations in the 1940s to around 45 stations. 

Because of the growing demand for SWE measurements in the early 2000s as verification for flood 

forecasting models, a decline in measurement stations could be halted. Some of the long-term measure-

ment series had to be abandoned due to challenges such as the lack of available observers or insufficient 

funding. At least 22 series exist with a measurement period of at least 50 years (Marty et al., 2023). 

In the Alpthal (c), manual SWE measurements are made at 15 locations which are located within differ-

ent elevations, slope exposures and vegetation types. The longest available measurement series consists 

of SWE and snow depth measurements at one location since 1969 (Stähli & Gustafsson, 2006). 

The Wägital monitoring program (d) started on April 1st 1943. Within the Wägital catchment, SWE 

measurements were accomplished at 13 locations. Nowadays, SWE is measured at 11 locations, and 

additionally, snow depth is measured at 26 locations. With the measured data, a function is fitted every 

year by interpolating the snow densities for each 100 m elevation zone and main exposures. Together 

with the respective snow depth measurements, the snow mass is estimated for the elevation zone and 

exposure. The SWE for the entire catchment can be calculated by integrating the snow mass values over 

altitude and exposition zones. To also look at possible elevation-dependent differences, the catchment 

has also been separated into two elevation bands, a lower band from 900 to 1’500 m a.s.l. with 24.68 km2 

and an upper band from 1’500 to 2’300 m a.s.l. which covers 13.49 km2 (Noetzli and Rohrer, 2014). The 

Wägital measurement series also serves as the data source for this thesis. Further details about the mon-

itoring program will be discussed in Chapter 4.1. 

Several studies (e.g. Schmucki et al., 2014; Stähli et al., 2021; Stähli & Gustafsson, 2006) have been 

conducted using data from one of the discussed individual monitoring programs. Marty et al. (2023) 

conducted the first joint analysis of these measurements despite the different temporal resolutions. To 

compare the different monitoring programs, Marty et al. (2023) used the DeltaSnow model (Winkler et 

al., 2021) to derive daily SWE values since 1957. This model only requires daily snow depth as data 

input, which was available for all but four stations and the Wägital catchment. The temporal evolution 

of daily SWE values in the Wägital was therefore not derived by the study. For the other measurement 

stations, possible long-term changes were derived using the Mann-Kendall test (MK) and Theil-Sen 

slope estimator. The long-term trends of all SWE indicators showed no clear elevation dependence. At 

almost 80 % of the stations, the date of disappearance of SWE showed a decreasing trend, suggesting 

that the snow cover disappears earlier in the year. More than 40 % of the stations showed a significant 

decreasing trend for maxSWE; the trends in April 1st SWE were similar to the maxSWE trends but with 

only 20 % significance. However, the analysis confirmed that the April 1st SWE is not a good indicator 

for trend analysis because the variability between the individual years is much higher than for maxSWE. 
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They found little evidence of a long-term trend in SWE indicators until the late 1980s; however, since 

then, the trends emerge towards decreasing. 

Noetzli & Rohrer (2014) analyzed the trends for the April 1st SWE data in the Wägital. At first glance, 

it is challenging to recognize a clear trend in Figure 2. Phases of high SWE alternate with periods with 

little SWE, where the spring snow cover contributed only minimally to the runoff from the Wägital area. 

Notably, some phases exhibit substantial variability; for instance, between the exceptionally snowy 

years of 1970 and 1975, there were a few average years and the minimum year of 1972. Snowy years 

have also occurred in more recent times, as presented by the years 1999, 2000, and 2009. In their statis-

tical evaluation, Noetzli & Rohrer (2014) revealed only a weak negative trend in the lower altitudes and 

no trends in the higher altitudes. 

 

Figure 2: Volume of water stored in the snow cover in the Wägital on April 1st split in two elevation bands. X-axis 
representing the years and y-axis representing the SWE [Mio m3], the red line represents the long-term mean SWE for both 

elevation bands together (Noetzli et al., 2019).  

 

In order to show trends in the April 1st data, a Gaussian low-pass filter was applied. The results showed 

only indistinct trends, especially at higher altitudes. At lower altitudes (900-1500 m a.s.l.), three very 

sharp downward shifts were observed. The first two shifts occurred in the early 1950s and late 1960s, 

followed by a recovery of snow and water reserves, returning to levels observed before the respective 

decline. The third downward shift occurred toward the end of the 1980s, followed by only a partial 

recovery in the measured snow values. 

2.4 International SWE Monitorings and Trend Analyses 
Across large parts of Canada, a manual biweekly gravimetric snow survey has been conducted since 

the mid-1950s. The measurements begin each year once the snowpack is well established and continue 

until the main melt period has started. Additionally, daily SWE observations are collected at 72 auto-

mated snow pillow sites (Brown et al., 2019). An analysis of trends in SWE was carried out by Brown 
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et al. (2019), focusing on three key dates, February 1st, March 1st, and April 1st, from 1967 to 2016. The 

analysis was conducted using grid cells (0.1° x 0.1° latitude-longitude). The non-parametric Kendall’s 

rank correlation was employed to assess trends. The results revealed remarkable spatial variability, but 

only a small percentage of grid points showed statistically significant trends. Among those that did, the 

significant trends predominantly indicated a decrease in SWE. For the April 1st measurements, the av-

erage SWE decreased by 5.7 mm over the observation period. The largest negative trends were observed 

at lower latitudes, while a tendency to mainly positive trends could be found in the Arctic circle. 

The study by Musselman et al. (2021) analyzed historical daily snowmelt patterns using automated SWE 

measurements from 1’065 remote telemetry stations across the mountainous regions of western North 

America. For each station and year (1982 to 2016), they computed the cumulative annual daily melt, 

the date of maximum SWE, as well as the April 1st SWE. A trend analysis of these parameters with data 

records ≥ 30 years was conducted using a MK and the Theil-Sen slope estimator. For the full period of 

record, the average date of maximum SWE computed on all stations was found to be within one day of 

April 1st, however, with a geographical variability. The snowpack peaks around early April occurred in 

the Sierra Nevada and intercontinental regions, peaks in early March occurred in the US Pacific North-

west and Southwest, mid- to late-April maximums in interior Alaska, and near early May in cold conti-

nental regions. The melt and snowpack trends indicate that while stations with significant melt increases 

have recorded mostly in November and March, melt is increasing in all cold season months from Octo-

ber to March. The study revealed that when using April 1st as the date of maximal SWE, snowmelt has 

already started during the accumulation period in 34 – 42 % of the stations. This blurs the seasonal 

distinction between accumulation and melt phases. Additionally, the study found that the decline in the 

reported April 1st SWE is more strongly influenced by a decrease in precipitation than by temperature 

changes. 

To assess trends in SWE across High Mountain Asia (HMA) from 1987 to 2009, Smith & Bookhagen 

(2018) used passive microwave data from the special sensor microwave imager (SSMI) spatially aver-

aged from raw swath data across ten catchments. The trend was tested by using a MK test followed by 

the performance of a linear regression. The results reveal that annual trends in SWE are generally neg-

ative; however, there are distinct seasons and elevations that show heterogeneities. Across all catch-

ments, a strong, nonlinear elevation-SWE relationship could be observed. The magnitude of the relation 

is distinct and unique for each catchment. 

The recent international studies discussed above extend back as early as 1957, whereas the available 

SWE data from the Wägital dates back to 1943. Only the SLF measurement station at the Weissfluhjoch 

in Davos, Switzerland, offers a longer record of SWE than the Wägital dataset. The Wägital dataset 

includes 14 years of SWE measurements that have not been covered by previous research outside of 

Europe. Analyzing these earlier years will provide valuable insights into previously unexamined periods 
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and contribute additional knowledge about the historical evolution of SWE, enhancing the understand-

ing of long-term trends and changes. 

With this foundational background information about important key definitions and prior studies on 

SWE trend analysis in Switzerland and internationally, the focus now shifts to the study site where the 

data for this thesis was sampled. 
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3 Study Site – Wägital 
The Wägital is a north-facing catchment in the central Swiss pre-Alps, south of Lake Zurich (coordi-

nates: 2'712'675 / 1'216'471). Its main stream, the Wägitaler Aa, flows out of the Wägitalersee and leads 

eventually into the Lake Zurich. The Wägital extends in Siebnen on 445 m a.s.l., passing through 

Vorderthal and Innerthal, where the Wägitalersee is situated and reaches up to the surrounding mountain 

ranges that define the catchment’s boundaries (Figure 3). The highest peak in the catchment is the Mut-

teristock, which rises to 2’294 m a.s.l. 

  

Figure 3: Picture a) shows the Wägital in direction South, and picture b) in direction North. Both pictures were taken on 
26.03.2024 during the yearly SWE monitoring (Fiona Sigrist, 2024) 

 

Geologically (Figure 4), the Wägital is situated within a significant tectonic structure that extends in a 

southwest to northeast direction, forming a shear zone within the Drusberg nappe, which is part of the 

Helvetic radiolarite. This zone lies between the Rederten element to the east and the eastern edge of the 

Drusberg element. The Wägitalersee is located in an area characterized by the extensive Wägital Flysch. 

Additionally, the region is marked by extensive karst landscapes (Schrattenkalk Formation). Significant 

karst springs in the Wägital include the Fläschloch and Hundsloch springs. The rain and meltwater in-

filtrating through karst fissures flow rapidly through the underground systems. Due to the lack of reac-

tion time, the water from karst springs is poorly filtered (Hantke & Kuriger, 2003). 

 

a)

) 

 a) 

b) 
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Figure 4: Excerpt of geological map showing the Innerthal area of the Wägital including the Wägitalersee (Hantke, 1967), 
edited. In the east the Wägital is dominated by the Schrattenkalk formation, to the west the Wägitaler Flysch is predominant 

additionally, the west is also characterized by several slump areas. 

 

For this thesis the focus lies on the Innerthal, the part of the catchment that reaches from the artificial 

Wägitalersee up to the surrounding mountain peaks above 2000 m a.s.l. This part of the catchment has 

an average slope of 22°. Almost one-third (32 %) of the catchment is covered by forest, whereas 27 % 

is characterized by coniferous forest, 4 % by mixed woodland, and 1 % by scrubs. Another 34 % of the 

catchment is distinguished by grass and herbaceous vegetation. Rock and loose rock make up 19% of 

the total land area, and the lake and some additional wetlands cover 14 % (HADES, 2023). With 181 

inhabitants (as of 31.01.2023), the municipality of Innerthal is not heavily populated (Gemeinde Inner-

thal, 2024). 

Meteodat GmbH operates a snow measurement network in the Wägital catchment with the purpose of 

assessing the SWE of the catchment on April 1st. The snow measurements are nowadays performed at 

37 locations for snow depth, and within those locations at 11 locations, snow density is additionally 

measured (Figure 5). These snow measurements already started in 1943 when interest arose by the hy-

dropower authority of how much water would melt in wintertime, reach the lake, and furthermore, how 

it influences the hydropower supply (stated by Dr. Ilja van Meerveld, Prof. Dr. Jan Seibert, and Meteodat 

GmbH). The power authority started to measure the SWE at 13 locations, with the number of measure-

ment points increasing over the years to a maximum of 45 operational locations.  

Schrattenkalk 

Formation 

Helvetic Radiolarite 

Wägitaler Flysch 

Slump Area 
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Figure 5: Map of all 45 locations of the measurement stations in the Wägital. 
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4 Methodology 
This chapter describes the methodological framework for this thesis. The approach includes the collec-

tion of SWE and meteorological data, the implementation of a degree-day modeling approach for snow-

melt estimation and the calibration of the model to ensure accuracy. In addition, this chapter describes 

the systematic grouping of the measurement stations, which provides insight into the organization and 

analysis of the data to support the research objectives. 

4.1 SWE and Meteorological Data Collection 
The SWE measurements in the Wägital were originally (1943 – 1984) carried out by Hans Siegenthaler 

from the Laboratory of Hydraulics, Hydrology and Glaciology (Versuchsanstalt für Wasserbau, Hydrol-

ogie und Glaziologie (VAW)). From 1985, the Geographical Institute of the ETH Zurich (GIETHZ) 

continued the measurements. Meteodat GmbH has been responsible for the measurements since the 

spring of 1998 and provided the current data set used for this thesis, including the April 1st SWE data, 

elevation, aspect, and coordinates for each measurement station. A list of all stations and their exact 

locations can be found in Appendix A1. 

The SWE is measured by weighting snow cores. For the monitoring program in the Wägital, an alumi-

num cylinder called the ETH-tube, is used (Figure 6a). This tube has a cross-sectional area of 70 cm2 

and a height of 60 cm. The SWE is assessed by weighing multiple snow cores taken perpendicular to 

the ground surface along the total snow depth. When necessary, a snow pit is dug to ensure that the total 

depth is accounted for (Figure 6b). The snow cores are weighed using a calibrated spring balance, and 

the individual weights are summed to calculate the total SWE of the snowpack (Egli et al., 2009). The 

measurements are repeated until the ground surface is reached, ensuring the final sum of SWE values 

reflects the entire snowpack’s water equivalent (Marty et al., 2023). Since neither the ground nor the 

snow cover surface is perfectly level, it is essential that SWE measurements are always related to the 

corresponding snow depth. That is why, in the end, SWE for a measurement station or an area is calcu-

lated by multiplying the bulk snow density by the measured snow depth and averaged as appropriate 

(Marty et al., 2023). 

In the Wägital, the annual SWE measurements are conducted at 11 locations. Additionally, snow depth 

is measured at various locations. A maximum of 34 locations existed; nowadays, snow depth is meas-

ured at 24 locations. Some funding reasons in the 1990s caused the annulment of some stations. When 

possible, snow depth is measured using an avalanche probe, capable of reaching depths up to 240 cm. 

A longer probe, also used by the military, is required for deeper snowpacks. 
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Figure 6: Pictures of the manual SWE measurement with ETH-tube during the monitoring 2024. a) at station Aberenalp and 
b) at station Oberalp Boden where a snowpit had to be dug (Fiona Sigrist, 2024). 

 

This technique with the ETH-tube is a point-wise in-situ measurement, allowing for the investigation of 

various snow characteristics like wetness, hardness, layering, and specific surface area. However, this 

manual technique is labor-intensive and destructive, limiting its efficiency. Additionally, it offers low 

temporal and spatial resolution and cannot be applied in areas with potential avalanche risk (Botteron et 

al., 2013). 

Snow measurements in the Wägital are typically scheduled around April 1st. However, whether the 

measurements can be conducted depends on weather conditions and avalanche risk. Due to the extensive 

measurement network, multiple days are often required to complete all the measurements. Despite this, 

the data collected over several days is collectively considered as measurements taken on April 1st. 

Snow data has been collected without interruption since 1943. It was previously used to produce inflow 

forecasts for the pumped storage power plant the Wägitalersee, which was one of the largest artificial 

lakes in the world in its first years of operation. The snow data was used in particular to estimate the 

hydroelectric potential of this catchment area. Nowadays, the data is only collected for scientific pur-

poses (Noetzli and Rohrer, 2014). Based on the measured snow densities and considering the exposure, 

functions are developed which represent the elevation dependence of the snow density. These functions 

vary from year to year and depend strongly on the course of the respective winter. The functions are 

then used to interpolate the SWE values for those measurement stations where only the snow depth was 

measured (stated by Meteodat GmbH). 

Daily precipitation and temperature data are required for the degree-day model, which will be discussed 

in Chapter 4.2. Precipitation has been recorded daily since 1925 at the guardhouse (“Wärterhaus”) in 

Innerthal, as well as at Rempen, the compensating reservoir of the Wägitalersee and in Siebnen where 

the Wägital opens into the Linth valley. The three rain gauges are currently operated by the Federal 

a) b) 
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Office of Meteorology and Climatology (MeteoSwiss). The digitized precipitation data from these sta-

tions prior to 1987 had not been checked for correctness. After cleaning the data and verifying with 

Meteodat GmbH, it was decided to use the daily precipitation records from the guardhouse as the input 

data for the degree-day model because this rain gauge was situated in the Innerthal and was expected to 

represent best the precipitation patterns of the surrounding area, where the measurement stations were 

located. Daily temperature data has been recorded since 1956 at the same three stations as the precipi-

tation. However, temperature data was only available until 1991, and the data has not yet been verified 

for accuracy. A comparison between the existing temperature data from the Innerthal guardhouse and 

data from the Einsiedeln weather station, where continuous temperature measurements have been rec-

orded since 1931, revealed a strong correlation of 0.966 between the datasets. The Einsiedeln meteoro-

logical station is located 12 km to the west of Innerthal at an elevation of 911 m a.s.l. Due to these 

similarities of the two locations, it was decided to interpolate the Einsiedeln data with the Wätigal tem-

perature data to fill the gaps in the daily temperature records for the Innerthal. 

The precipitation data was also provided by Meteodat GmbH, while the temperature data from Einsied-

eln was downloaded from MeteoSwiss. In this thesis, whenever years are mentioned, they refer to hy-

drological years, which run from October 1st to September 30th. For example, the year 1943 refers to the 

hydrological year spanning from October 1, 1942, to September 30, 1943. 

With the observational SWE data, along with daily precipitation and temperature records, all data re-

quired for the next step—developing a degree-day model—was available. The detailed construction and 

methodology of the model will be examined in the following chapter. 

4.2 Degree-day Modeling Approach  
One of the purposes of snow modeling is to forecast and estimate the snowmelt input into a streamflow. 

Forecasts of streamflow are necessary for issuing flood warnings and for making decisions about water 

regulation. The model should not only produce daily snowmelt discharge series but also produce an 

estimate of the water stored in the snowpack. The estimate of the water stored in the snowpack can be 

compared with field measurements, which allows for an update on the estimated water storage (Kokko-

nen et al., 2006). 

As outlined in the Introduction, snow models generally fall into two categories: temperature index mod-

els and energy balance models (Girotto et al., 2020). For representing snowpack processes, the temper-

ature index method also called the degree-day modeling approach, has become the most widely used 

modeling approach in rainfall-runoff modeling. The reasons for that are that it has a comparatively sim-

ple structure and follows a straightforward approach (Lopez et al., 2020). The degree-day models are 

based on the assumption that the temporal variability of incoming solar radiation is well represented by 

the variations in air temperature (Ohmura, 2001; Sicart et al., 2008). These kinds of models easily meet 
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data requirements and computational demands. This allows them to offer a satisfactory balance between 

simplicity and performance, making them effective in various contexts and applications, even when data 

availability is limited (Hock, 2003). 

As foundation for the degree-day model constructed for this thesis, the snow routine of the HBV (Hy-

drologiska Byråns Vattenbalansavdelning) model was used. The HBV model is a conceptual bucket-

type and semi-distributed rainfall-runoff model used for various applications (Bergström, 1976). The 

snow routine of the HBV model relies on widely adopted and thoroughly tested conceptualizations of 

key snow processes, which are essential for rainfall-runoff modeling. Specifically, it addresses the par-

titioning of precipitation into snow and rain phase and the dynamics of snow accumulation, including 

subsequent melting and refreezing cycles of the snowpack (Figure 7). To simulate the evolution of the 

snowpack, the HBV model uses a simple approach based on the degree-day method (Lopez et al., 2020). 

It is assumed that snowmelt rate is directly proportional to the temperature above the freezing point over 

time, with a constant factor known as the degree-day factor (Collins, 1934; Martinec, 1960). The snow 

routine requires precipitation and temperature data as input. Using five calibration parameters, the model 

outputs snowpack and snowmelt results, with the latter corresponding to the SWE (Lopez et al., 2020). 

The snow routine of the HBV model contains five calibration parameters, which will be discussed in 

detail below. 

 

Figure 7: Schematic conceptualization of snow processes (Kokkonen et al., 2006) 

 

For the degree-day model constructed for this thesis, the degree-day factor CFMAX is utilized. Unlike 

models with a fixed degree-day factor (Valéry et al., 2014), CFMAX can vary since it is sampled from 

a defined range, in this case from 1-10 with increments of 0.1. This allows to account for spatial varia-

tions like slope, aspect or vegetation cover (He et al., 2014). 
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Many models use the freezing point (0°C) as the threshold temperature where precipitation falls as snow 

instead of rain (Walter et al., 2005), but some include a calibrated parameter to account for spatial vari-

ations (Viviroli et al., 2007b). In the model developed for this thesis, the threshold temperature TT is 

sampled from a range of -1.5 to 2.5°C in increments of 0.1°C. This flexibility allows the model to adjust 

the TT based on calibration, enhancing its accuracy across different spatial contexts. A single threshold 

temperature per day may not fully capture snow accumulation and snowmelt when temperatures are 

near 0°C, as the transition between rain and snow is not always abrupt in reality. Rain and snow can 

occur simultaneously, leading to a more gradual transition (Dai, 2008; Magnusson et al., 2014; Sims & 

Liu, 2015) 

Additionally, the model includes a snowfall correction factor SFCF, which represents the combined 

effect of snowfall undercatch and interception of snowfall by vegetation (Lopez et al., 2020). This pa-

rameter is sampled from a range from 0.4 to 2, also in increments of 0.1. SFCF accounts for discrepan-

cies in snowfall measurements.  

The following parameters extend beyond the simple degree-day model. They are, however, part of the 

HBV snow routine and add a degree of detail (Lopez et al., 2020). 

Some models disregard refreezing as it is often negligible compared to snowmelt (Magnusson et al., 

2015). The constructed model includes refreezing, controlled by the constant refreezing coefficient 

CFR set to 0.05. When temperatures fall below the threshold temperature, a portion of the liquid water 

refreezes, adding more details to the snowpack dynamics (Lopez et al., 2020). 

Furthermore, the water holding capacity CWH (set to 0.1) is incorporated into the model. The CWH 

determines the certain volume of melted water remaining in the snowpack. It is given as a fraction of 

the corresponding SWE of the snowpack (Lopez et al., 2020). 

The goal of the constructed model for this thesis is to identify the optimal parameter combination for 

TT, CFMAX, and SFCF that minimizes the objective function in each measurement station. The param-

eter range and values (Table 1) were defined based on Seibert & Vis (2012) and slightly adjusted during 

the modeling process to improve performance. With the chosen parameter ranges, a total of 63’427 

parameter combinations were possible. 

Table 1: Model parameter ranges used for optimization for degree-day model. 

Parameter Description Unit Range / Value 
TT Threshold temperature °C [-1.5 to 2.5 by 0.1] 
CFMAX degree-day factor mm t-1 °C-1 [1 to 10, by 0.1] 
SFCF snowfall correction factor - [0.4 to 2 by 0.1] 
SP initial snowpack mm 0 
CFR refreezing coefficient - 0.05 
CWH water holding capacity - 0.1 
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4.2.1 Model Calibration 

The calibration of the model is the process where the parameters get adjusted until the simulated SWE 

closely matches the observed SWE. This process relies on an objective function to quantify the differ-

ence between observed and simulated SWE (Solomatine & Wagener, 2011). 

To calibrate the model, parameter values were randomly sampled from their respective distribution us-

ing a Monte Carlo approach. Specifically, 10’000 random parameter sets were selected from a potential 

pool of 63’437 combinations. Each parameter set was then used to run the degree-day model, generating 

daily SWE data. From these model outputs, the SWE values corresponding to April 1st of each year were 

extracted. These simulated SWE values were then compared with the observed April 1st SWE data. The 

performance of each parameter set was assessed by calculating the sum of squared errors (SSE), which 

serves as the objective function. The SSE quantifies the discrepancy between the simulated and observed 

SWE values and is calculated as follows: 

𝑆𝑆𝐸 = 	8 (𝑥! − 𝑥<)"
#

!$%
 

Where n is the number of samples (years with observed April 1st data), xi is the observed SWE value 

and 𝑥< is the predicted value. 

The parameter set which minimized the SSE was selected as the optimal set. To achieve this, the param-

eter sets were sorted by their SSE values, and the set with the lowest SSE was chosen. 

Following this initial run with 10’000 parameter sets across all measurement stations, further optimiza-

tion of the model was conducted. By analyzing the dotty plots of the best-performing parameter values, 

the parameter ranges were adjusted, as detailed in Table 1. Additionally, a lapse rate was incorporated 

for both temperature and precipitation data, accounting for the variation in these variables with eleva-

tion. Specifically, a temperature lapse rate of -0.6°C per 100 meters of elevation gain and a precipitation 

lapse rate of 10 % per 100 meters of elevation gain were implemented. These adjustments lead to more 

accurate simulations of SWE. 

However, results from modeling are inevitably subject to some uncertainty because models can only 

approximate real-world conditions in a simplified form and do not represent the physical world. Sources 

of uncertainty include model selection and structure, scaling and correction of model results, input data, 

initial conditions, model parameters, data for calibration and validation, natural variability, process un-

derstanding, and unforeseeable events which tip the balance of a system. To mitigate these uncertainties, 

combining different model approaches could yield in more reliable and robust conclusions (FOEN, 

2018).  
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4.3 Grouping of Measurement Stations 
To have a look at smaller spatial resolutions and how the trends of SWE vary regarding different external 

factors the measurement stations were put into groups regarding the different topics: elevation, aspect 

and slope. 

4.3.1 Elevation 

The measurement stations are located at elevations ranging from 905 to 1’800 m a.s.l. and are distributed 

throughout the catchment area. To examine whether trends vary across different elevation ranges, the 

catchment and the measurement stations were divided into distinct elevation bands.  

In order to ensure the comparability of the data output with other studies, the delimitation of the elevation 

bands corresponds to the proposed methodology by Noetzli and Rohrer (2014). They divided the catch-

ment into two bands: a lower band spanning from 900 to 1’500 m a.s.l. and an upper band ranging from 

1’500 to 2’300 m a.s.l. 

As a result, 38 stations are situated in the lower band (Group: elevation 900-1500 m a.s.l.), and seven 

stations are located within the upper band (Group: elevation 1500-1800 m a.s.l.). This distribution 

should facilitate a comprehensive analysis of the spatial variability of the SWE with respect to elevation 

across the catchment. 

4.3.2 Aspect 

In the data set provided by Meteodat GmbH, aspects were assigned to each measurement station. Ac-

cording to a discussion with the company, the aspects were assigned subjectively by Hans Siegenthaler, 

who categorized the stations into eight different aspect groups (N, NE, E, SE, SSW, SW, W, NW). To 

limit the number of groups somewhat for this thesis, the aspect groups were reduced to the four primary 

directions: N, E, S, and W. These orientations were determined by measuring the angular orientation 

from each station on the map (swisstopo, 2024a). As a result, the stations were distributed as follows: 

ten stations were assigned to the N aspect (Group: aspect N), seven stations were in the aspect E (Group: 

aspect E), five stations to the S oriented group (Group: aspect S), and 23 stations to the W oriented group 

(Group: aspect W). This simplified classification facilitates a more manageable analysis of the influence 

of aspects on the data. 

4.3.3 Slope 

The slope for each station was derived from the DHM25 (swisstopo, 2024b), a digital elevation model 

(DEM) of Switzerland. It is represented as a raster in the scale 1:25’000, and it provides elevation data 

for Switzerland, excluding vegetation and buildings. The slope angles at the measurement stations range 

from 4.7 to 24.5°. To analyze the variation of SWE with respect to the steepness of the individual loca-

tions, the measurement stations were categorized into four groups. There are eleven stations between 0-

9.99° (Group: Slope 0-10°), 19 stations have a slope between 10-14.99° (Group: Slope 10-15°), eight 
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stations with a slope between 15-19.99° (Group: Slope 15-20°) and finally seven stations with slope 

between 20-25° (Group: Slope 20-25°). This grouping allows for a more detailed analysis of the rela-

tionship between slope steepness and SWE distribution across the stations. 

A list of all characteristics per measurement station can be found in Appendix A1. 

4.3.4 Meteorological Year Categories 

Considering different meteorological inputs, it can be valuable to examine how SWE responds to vary-

ing climate conditions. To capture the impact of these differing climatic conditions on the SWE, each 

year in the dataset was categorized into one of four distinct meteorological categories: 

- Cold and dry 

- Cold and wet 

- Warm and dry 

- Warm and wet 

These categories were determined by comparing annual average temperature and yearly precipitation 

data to their median values from the total observation period. A year was categorized as “cold” if its 

annual average temperature was below the median and “warm” if it was above the median. Similarly, a 

year was classified as “dry” if its annual precipitation was below the median and “wet” if it was above 

the median. 

To further explore the variation in maxSWE, the analysis was conducted within the two different eleva-

tion zones discussed in Chapter 4.3.1. For each meteorological year category and elevation band, the 

maxSWE values were then aggregated to find the median maxSWE per year across all stations within 

each elevation band. This approach allows to capture both the temporal (yearly) and spatial (elevation-

based) variations in SWE, providing a comprehensive view of how SWE responds to different climatic 

conditions. 

4.4 Statistical Analyses 
All statistical analyses, trend assessments, and visualizations were conducted using the R version 4.3.2 

(R Core Team, 2023). To evaluate the relationship of maxSWE within the grouping factors (elevation, 

aspect, slope, and meteorological category), several statistical tests were employed, depending on the 

distribution of the data. First, the normality of maxSWE values within each group was tested using the 

Shapiro-Wilk normality test (Shapiro & Wilk, 1965). If the Shapiro-Wilk test indicated a non-normal 

distribution (p < 0.05), the Kruskal-Wallis test was utilized. This non-parametric test compares ranks 

among more than two groups and does not assume normality, making it suitable for comparisons across 

aspects, slopes, and meteorological year categories (Kruskal & Wallis, 1952). For post-hoc analysis, 

Dunn’s test was applied (Dunn, 1964). However, in cases where the Kruskal-Wallis test was not signif-

icant (p > 0.05), no further post-hoc analysis was conducted. In the case of elevation groups, where the 
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Shapiro-Wilk test indicated normal distribution, a t-test was applied, as there were only two specific 

characteristics in the group. For all statistical analyses, a significance level of α = 0.05 was adopted. 

Any p-values below this threshold were considered indicative of statistically significant differences be-

tween groups. 

4.4.1 Trend Analyses 

To analyze possible long-term changes, the non-parametric Mann-Kendall (MK) test was applied. This 

test is designed to detect the presence of a monotonic tendency in a time series of a variable, making it 

suitable for examining changes in maxSWE over time. It is a non-parametric method which does not 

assume any specific underlying data distribution and uses rank-based measures that remain unaffected 

by outliers. The MK test provides three key pieces of information. The Kendall Tau is the Kendall rank 

correlation coefficient, which measures the monotony and direction of the trend. The value of Kendall’s 

Tau ranges from -1 to 1, with positive values indicating an increasing trend and negative values indicat-

ing a decreasing trend (Kendall, 1955; Mann, 1945). To assess the strength of a trend, a robust simple 

linear regression is performed using the Theil-Sen slope estimator. This method calculates the median 

of all slopes between pairs of points in the series, providing a reliable estimate of the trend’s magnitude 

(Sen, 1968). The third information the MK test provides is the statistical significance of the trend. The 

trend is considered statistically significant if the p-value is less than 0.05, meaning that the hypothesis 

of no trend can be rejected with 95 % confidence (Kendall, 1955; Mann, 1945). 

This trend analysis method was chosen for this thesis because studies discussed in Chapter 2, such as 

(Stähli et al., 2021) and (Marty et al., 2023), employed the same approach. 
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5 Results 
This chapter presents the results of the model performance, followed by an analysis of the spatial distri-

bution and the findings from the trend analysis. Finally, the impact of different meteorological categories 

is presented. Given the large number of measurement stations, it is difficult to present all details com-

prehensively. Therefore, in certain sections, specific stations or groups of interest were selected for 

closer examination. A complete list, including model performance values for the objective function, the 

best parameters, and any additional plots included in this study, are available in the Appendix. 

5.1 Model Performance 
The performance of the model is evaluated in three ways: first, through a visual comparison of observed 

versus simulated SWE on April 1st and throughout the entire time series, along with the results of the 

objective function. Second, a summary of the regression parameters and bias for each station is provided. 

The following figures compare the simulated and observed SWE at the stations Mittl. Tannstofel (Figure 

8) and Ziggen (Figure 9) for the period from 1943 to 2023. The top panels of the figures represent the 

SWE values recorded on April 1st of each year, while the bottom panel display the daily SWE values 

throughout the year compared to the observed April 1st SWE. 

For the Mittl. Tannstofel, the visual comparison of April 1st values (Figure 8) reveals a general 

agreement between the simulated and observed values, indicating that the model captures the annual 

variability to a reasonable extent. However, there are some discrepancies where the model either 

overestimates or underestimates the SWE for certain years. These discrepancies may be due to several 

uncertainties and limitations, which will be discussed in Chapter 6.6. 

The bottom panel for Mittl. Tannstofel captures successfully the seasonal accumulation and ablation of 

snow with the highest SWE values typically occurring in wintertime and early spring months. However, 

this daily comparison does not offer any clear conclusions about the model performance. 
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Figure 8: Simulated vs. Observed SWE for Mittl. Tannstofel. The top panel displays simulated (red) and observed (blue) SWE 
values on April 1st of each year, the bottom shows simulated daily SWE values (red) and the observed April 1st SWE  (blue). 

 

For the Ziggen station (Figure 4), the top panel presents notable differences between the observed and 

simulated values of April 1st. The simulated values are generally lower and show less variability com-

pared to the observed values, indicating that the model generally underestimates the SWE on April 1st. 

The bottom panel demonstrates that while the model generally captures the trend of SWE accumulation 

and melt, it is difficult to evaluate the performance of the model just visually.  

 

Figure 9: Simulated vs. Observed SWE for Ziggen. The top panel displays simulated (red) and observed (blue) SWE values 
on April 1st of each year, the bottom shows simulated daily SWE values (red) and the observed April 1st SWE  (blue). 
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Overall, the visual comparison between the simulated and observed SWE indicates that the model can 

effectively capture the general trends and seasonal patterns of SWE, but it also reveals specific areas 

where the model underperforms.  

Since visual comparisons alone do not completely explain the model performance, the objective function 

values are examined. For the station Mittl. Tannstofel the SSE is 555’588, while for Ziggen, it is 89’658. 

This suggests a better fit between the observed and simulated SWE values of station Ziggen compared 

to Mittl. Tannstofel, which contradicts the visual inspection. Across all 45 measurement stations, SSE 

values range from 76’302 to 1’717’548, which highlights that the model performance can vary signifi-

cantly between the different stations. A complete list of all SSE and the corresponding parameter set to 

each station is provided in Appendix A2. 

To gain a more comprehensive understanding of model performance, key regression metrics are also 

analyzed. These include the regression coefficients (a and b), the coefficient of determination (R²), and 

the bias for each station (Figure 10). 

 
Figure 10: Boxplots of the regression values a, b, R2, and bias for the degree-day model for each measurement station. The 
median values are represented by the horizontal line in each box, while the whiskers represent the data spread, including 

potential outliers.  

 

Coefficient a represents the slope of the regression line when plotting observed values against the sim-

ulated values. A coefficient value of 1 indicates that the model’s predictions are perfectly proportional 

to the observed values. As shown in Figure 10 the median value of coefficient a is close to 1, suggesting 

that, on average, the model’s predictions are well-scaled with the observed values. However, the spread 

and presence of outliers indicate variability in model performance across the different stations, meaning 

that the model does not perform the same for each measurement station. 
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Coefficient b represents the intercept of the regression line, where the regression line crosses the y-axis. 

An intercept close to 0 is desirable, indicating that there is no systematic over- or underestimation by 

the model. The boxplot for coefficient b shows that the median value is near zero, with some outliers. 

This suggests that the model does not consistently underestimate or overestimates on average, but for 

certain stations, it significantly differs. 

The coefficient of determination R2 measures the proportion of the variance in the observed data, 

which is explained by the model. Values closer to 1 indicate a better fit. The median R2 value for the 

different stations is approximately 0.75, indicating a strong, though not perfect, fit between observed 

and predicted values. Some stations exhibit outliers with poorer fits. 

The bias measures the systematic error in the model. A bias value of 1 indicates no systematic error, 

while values greater or less than 1 suggest systematic overestimation or underestimation, respectively. 

The boxplots for bias show a median of around 1, indicating minimal overall systematic error. 

In summary, the model performs well overall. However, the variability and the presence of outliers 

suggest that there is room for improvement, particularly for certain stations.  

5.1.1 Analysis of Degree-day Model Bias in relation to spatial characteristics 

To investigate whether the outliers in model bias were connected to the specific spatial characteristics – 

elevation, aspect, and slope – a map was created to visualize the bias at each measurement station (Figure 

11). 

Upon examining the data, two stations with a bias of less than 0.5 were identified. Both stations belong 

to aspect W and are among the five stations located below 950 m a.s.l. However, no clear connection to 

the slope could be established. In contrast, four measurement stations exhibited a bias greater than 2. 

All of these stations are located within the lower elevation band (900-1500 m a.s.l.), although their ele-

vations vary between 990 and 1360 m a.s.l. Two of these stations are also faced W, while the other two 

belong to aspect S, spanning across three different slope groups. 
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Figure 11: Map of the spatial distribution of model bias across measurement stations. Each station is represented by a color, 

where the color indicates the degree of bias. Purple represent bias below 0.75, the blue tones represent biases above 1.25, 
and beige markers indicate bias close to 1. 

 

5.2 April 1st SWE vs. maxSWE 

If the maxSWE consistently occurred always on April 1st each year, constructing the model would have 

been unnecessary, and trend analysis could have been performed directly using the observed data. How-

ever, other studies like Bohr & Aguado (2001) found that April 1st underestimates maxSWE. By using 

the degree-day model, the daily SWE throughout the entire time series could be calculated, which made 

it possible to identify the precise timing of maxSWE occurrence for each year and for each measurement 

station from 1943 to 2023. 

The boxplots in Figure 12 illustrate the timing of maxSWE across the observation period and for all 

measurement stations. Each boxplot represents a specific year, and the spread within each boxplot re-

flects the variation in the dates when maxSWE occurred at each station in that year. The variability in 

timing among years suggests significant inter-annual differences between measurement stations. This 

analysis highlights the complex temporal pattern of maxSWE, which is station- and year-specific. How-

ever, it can be stated that maxSWE does not always occur on April 1st. 
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Figure 12: Box plots of the timing of maxSWE for each of the 45 stations for each year. Each box represents the interquartile 
range, the solid horizontal line the median, and the whiskers extend to the most extreme data points within 1.5 times the IQR 
from the first and third quartile. Data points outside this range are considered outliers and are shown as individual points. 

The dashed red line represents the April 1st date. 

 

To better understand these patterns, the median date of maxSWE occurrence for each year was extracted. 

The corresponding plot (Figure 13) illustrates the median occurrence date of maxSWE, revealing the 

variability in timing throughout the years as well as the frequency of maxSWE occurrences on specific 

dates. Contrary to the assumption that maxSWE typically coincides with April 1st (indicated by the red 

dashed line), the findings reveal that maxSWE can occur at various times during the winter period. In 

the Wägital region, for example, maxSWE occurred before April 1st in approximately 60 % of observed 

years. Although there was a noticeable increase in the frequency of maxSWE occurrences on April 1st, 

many instances occurred both before and after this date. 

In summary, while there is a higher likelihood of maxSWE occurring on April 1st, significant occur-

rences are distributed over a broader temporal range. These findings underscore the importance of mod-

eling maxSWE to perform meaningful spatial and trend analyses, as maxSWE does not consistently 

align with April 1st. 
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Figure 13: Cumulative frequency distribution of the data of maxSWE for all stations and all years, with April 1st indicated by 

the red dashed line. 
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5.3 Spatial Analyses of maxSWE 
This chapter delves into the spatial analysis of maxSWE across the groups introduced in Chapter 4.3, 

focusing on how various geographic and topographic parameters influence the distribution and magni-

tude of maxSWE. The median maxSWE for each station was calculated and used to create the following 

boxplots. 

5.3.1 Elevation 

In Figure 14 the relationship between elevation and maxSWE is illustrated. The analysis includes 38 

stations in the elevation band between 900-1500 m a.s.l. and seven stations in the 1500-1800 m a.s.l 

band. The boxplots provide a summary of the maxSWE distribution across the two elevation ranges. 

 
Figure 14: Boxplots of the maxSWE for the 1943-2023 period across the elevation bands, the number of stations in each 

elevation band is represented by the white numbers. Each box represents the interquartile range, the solid horizontal line the 
median, and the whiskers extend to the most extreme data points within 1.5 times the IQR from the first and third quartile. 

Data points outside this range are considered outliers and are shown as individual points.  

 

The median of the lower elevation band (900-1500 m a.s.l.) is 302 mm SWE, and the inner quartile 

range (IQR), which measures the middle 50 % of the data, shows a moderate spread in maxSWE. In 

contrast, the higher elevation band (1500-1800 m a.s.l.) shows a median maxSWE of 616 mm SWE. 

The IQR is wider compared to the lower elevation band, suggesting a greater variability in maxSWE. 

Two outliers are present in the upper elevation band, representing a station with a significantly lower 

and a station with a significantly higher maxSWE, at the same time, these outliers also represent the 

highest and lowest maxSWE. Statistically, the results indicate a significant difference in maxSWE be-

tween the two elevation bands (p = 0.03). Overall, the data show that maxSWE increases with elevation. 
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5.3.2 Aspect 

The following boxplot Figure 15 illustrates the distribution of maxSWE regarding the different aspects 

(see Chapter 4.3.2). There are seven measurement stations oriented into direction E, ten measurement 

stations look in direction N, five of the measurement stations are oriented to S, and 23 measurement 

stations have aspect W. 

 
Figure 15: Boxplots of the maxSWE for the 1943-2023 period across the aspects, the number of stations in each aspect is 

represented by the white numbers. Each box represents the interquartile range, the solid horizontal line the median, and the 
whiskers extend to the most extreme data points within 1.5 times the IQR from the first and third quartile. Data points outside 

this range are considered outliers and are shown as individual points. 

 

The highest median of maxSWE is found in aspect E with 365 mm, followed by aspect N with 337 mm. 

As the third follows aspect W with a maxSWE median of 319 mm, while the smallest maxSWE median 

is found in aspect S. The IQR is widest in aspect W and narrowest in aspect N. Two outliers are present, 

one in aspect N and one in aspect W, these outliers represent each a station with much higher maxSWE. 

Notably, the stations with both the highest and lowest maxSWE medians are in the Western aspect. 

However, assessing these results statistically, the results indicate no significant difference between the 

aspects (p = 0.4), suggesting that the variation in maxSWE is not statistically significant across the 

different aspects.  

5.3.3 Slope 

The boxplots in Figure 16 depict the relationship between slope and maxSWE in the Wägital. The meas-

urement stations are divided as follows: 11 stations can be found in the flat terrain (0-10°), 19 stations 

are in the flat to medium terrain (10-15°), eight stations are in the medium to steep terrain (15-20°), and 

seven stations can be found in the steep terrain (20-25°). 
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Figure 16: Boxplots of the maxSWE for the 1943-2023 period across the slopes, the number of stations in each slope section 
is represented by the white numbers. Each box represents the interquartile range, the solid horizontal line the median, and 
the whiskers extend to the most extreme data points within 1.5 times the IQR from the first and third quartile. Data points 

outside this range are considered outliers and are shown as individual points. 

 

The highest measured median maxSWE regarding the slope was found in the flat terrain (0-10°) with 

345 mm. The medians for the slope group 10-15° with 292 mm and group 10-15° with 297 mm indicate 

similar values. The steepest slope group (20-25°) has the lowest median maxSWE at 203 mm. The IQR 

has a very similar width for the three groups with slopes above 10°. In the flat terrain (0-10°), the IQR 

is narrower, suggesting a lower variability of maxSWE. Two outliers in the flat terrain group suggest 

stations with higher maxSWE. The station with the highest median maxSWE is located in the 0-10° 

slope group, while the station with the lowest maxSWE median is found in the 10-15° slope group. 

Statistically, the differences between the different slopes are not significant, with p = 0.5.  

In addition, an attempt was made to combine the groups and compile the three above-discussed boxplots. 

The idea was to see how SWE interacted regarding elevation, aspect, and slope together, but because of 

data scarcity for some group elements, it delivers results with unsatisfactory significance, which renders 

the interpretation difficult. Nevertheless, a few general patterns emerged: in lower elevations, eastern 

aspects had the highest median maxSWE, followed by northern aspects, with southern aspects showing 

the lowest maxSWE. For elevation and slope, the pattern remained consistent, with maxSWE decreasing 

as the slope increased, regardless of the elevation band. No clear pattern could be determined for the 

relationship between slope and aspect. The corresponding plots for this combined analysis can be found 

in Appendix A4.  
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5.4 Trend Analyses 
The trend analysis, outlined in Chapter 4.4.1, was performed first for each individual station across all 

years and then for the groups discussed in Chapter 4.3. To capture not only long-term changes from 

1943 to 2023 but also trends within this period, heatmaps were employed to visualize trends. 

5.4.1 Trends for Individual Stations 

For each station, the maxSWE of each year was derived represented with the black dots in Figure 17 

and Figure 18. These data points formed the basis for conducting the Theil-Sen trend analysis over the 

entire observation period from 1943 to 2023, with the trendline depicted in blue. The nonparametric 

MK-test was used to assess for the statistical significance of the trend (p < 0.5). 

The station Oberalp Boden (Figure 17), situated at an altitude of 1800 m a.s.l., is the highest located 

station in the Wägital monitoring program. Located on a western aspect with a 5° slope, the station 

recorded its highest annual maxSWE of 2640 mm in 1975, while the lowest maxSWE of 643 mm oc-

curred in 1997. The trend line at Oberalp Boden revealed a negative slope of 6.1 mm per year, with a p-

value of 0.007, indicating a statistically significant decreasing trend. 

 
Figure 17: The simulated maximum SWE for the Oberalp Boden station (black dots) and linear trend line (blue line). 

 

The station Seeende_1 (Figure 18) is situated at 930 m a.s.l. and is one of five stations across the moni-

toring program located below 1000 m a.s.l. The location is compared to Oberalp Boden at a steeper 

location with slope 18.6° and oriented to N. For this station, the highest annual maxSWE was recorded 

764 mm in 1970, while the lowest maxSWE of 24 mm occurred in 2023. The trend line for Seeende_1 

also displayed a negative slope of 1.7 mm per year, with a p-value of 0.014, signifying a statistically 

significant decreasing trend. 
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Figure 18: The simulated maximum SWE for the Seeende_1 station (black dots) and linear trend line (blue line). 

 

The trend lines for all 45 stations revealed consistent negative and significant trends. The values of the 

slope ranging between -0.15 and -0.2. Due to the similarity in trends across stations, further individual 

details are not provided here. Instead, the focus shifts to how trends manifest within the designated 

groups. Slope values and p-values for each station are detailed in Appendix A5. 

5.4.2 Trends in measurement groups across the total observational period 

To understand broader trends, the stations were grouped according to the parameters discussed in Chap-

ter 4.3. The median maxSWE for the stations in each group was calculated for each year, and these 

median values were used to derive the trend line for each group (blue line in the plots). 

Two trend plots were generated to analyze the trends in maxSWE across the two different altitude 

ranges. The first plot (Figure 19a) represents the measurement stations between 900 and 1500 m a.s.l., 

while the second plot (Figure 19b) covers the stations between 1500 and 1800 m a.s.l. 

For stations between 900-1500 m a.s.l., the slope of the Theil-Sen regression line is -2.9 mm per year, 

indicating a decreasing trend in the maxSWE. The p-value for the MK-test is 0.004, indicating that this 

negative trend is statistically significant and reflects a consistent decline in maxSWE over time. 

The slope of the Theil-Sen regression line is -4.4 mm per year for the stations between 1500-1800 

m a.s.l., which is steeper than that for the lower altitude range. The p-value (0.00598) accounts for the 

statistical significance of the slope, confirming the pronounced decreasing trend. The steeper negative 

trend suggests that stations at higher altitudes are experiencing a more rapid decline in maxSWE com-

pared to lower altitude stations. 
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Figure 19: The simulated median maxSWE for measurement stations between 900-1500 m a.s.l. (a), and for measurement 

stations between 1500-1800 m a.s.l. (b) in black dots, and linear trend line (blue). 

 

The statistical outcomes of the trend analysis for each group are detailed in Table 2. Across all group 

parameters, the trends are consistently negative and statistically significant. The most pronounced neg-

ative trend, with a slope of 4.4 mm per year, is observed in stations located between 1500 and 1800 

m a.s.l., indicating a steeper decline in maxSWE at higher elevations. Conversely, the mildest negative 

trend, with a slope of 1.9 mm per year, is found in stations oriented towards the south (aspect S). All p-

values for the trends are below 0.05, confirming the statistical significance of these negative trends and 

underscoring the robustness of the findings. The Theil-Sen slope values, being generally more negative 

for groups compared to individual stations, suggest that analyzing data in groups provides a clearer and 

more comprehensive understanding of the overall trends in maxSWE across the catchment area. 

b) 

a) 
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Table 2: Summary of statistical values of trend analysis for the groups elevation, aspect, and slope. 

Group Theil-Sen Slope p-value MK-test 
elevation 900-1500 m a.s.l. -2.9 0.00465 
elevation 1500-1800 m a.s.l. -4.4 0.00598 

   
aspect E -3.1 0.00332 
aspect N -2.9 0.00378 
aspect S -1.9 0.0109 
aspect W -3.2 0.00042 

   
slope 0-10° -3.2 0.00332 
slope 10-15° -2.8 0.00341 
slope 15-20° -2.7 0.00199 
slope 20-25° -2.5 0.00135 

 

5.4.3 Temporal Trends 

The discussed trend plots focused on how the maxSWE changed over the entire period from 1943 to 

2023. To give more detailed information about the development of the maxSWE and other parameters 

like trends in precipitation, temperature and snow cover throughout the years, the data is graphically 

presented in the following heatmaps. The heatmaps allow to show the intensity of changes across the 

different years. The start year (y-axis) and the end year (x-axis) define the periods over which changes 

are calculated, the respective square indicates by its color code the trend direction. The cells along the 

diagonal line represent changes over one year intervals. The heatmaps give a more detailed view of 

specific years or periods. 

5.4.3.1 Meteorological changes 1943-2023 

For precipitation, there is no clear trend in annual precipitation over the total time period, as indicated 

by the very light top right corner in Figure 20, left. Even though the trend over the total time period is 

slightly negative (1.9), it is not significant (p-value = 0.16). This also corresponds with the annual pre-

cipitation amounts throughout Switzerland where there are no statistically significant trends observed 

(Meteo Schweiz, 2024). Looking at 10-year time intervals, the colors are stronger, and therefore the 

changes are larger. The early periods, starting in the 1940s and 1960s, show more variability in precip-

itation changes. In more recent years, starting in the 1980s to 2000s there are more cells with lighter 

colors representing less variability. With several red clusters in the years until the 2000s, it looks like 

the trend was rather positive. Notable blue patches at the beginning of the 21st century suggest a shift in 

precipitation patterns.  

An increase in average annual air temperature in the Wägital can be observed over the total study period, 

represented by the red coloring in the upper-right portion of the heatmap (Figure 20, right). Notable 

clusters of red were spotted in the 1940s, 1990s, and recent years, since ca. 2005. Notable clusters of 
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blue are visible in the 1960s and the late 1990s. The early periods until the 1960s show more variability 

with a mix of warming and cooling trends. From the 1980s onwards a clear trend of increasing temper-

atures is indicated. The results correspond to the findings by Begert & Frei (2018), who observed the 

temporal pattern in Switzerland from 1864 until 2016, with an apparent increase over time and relatively 

warm years in the 1940s. 

  
Figure 20: Changes in Precipitation (mm/year)  and Temperature (°C/year) in the Wägital, shown for different start and end 

years of the observation period. For precipitation (left), blue indicates an increase and red a decrease in annual 
precipitation. For temperature (right) red indicates an increase and blue a decrease in annual temperature. The color 

intensity reflects the magnitude of the change. 

 

After looking at the climatic changes in the Wägital, the next focus will be on the maxSWE and how it 

changed over time and space. 

5.4.3.2 Changes in maxSWE 

The following heatmaps represent the change of maxSWE, the color-coding is used to indicate the mag-

nitude of change in mm/year, with blue representing an increase in SWE and orange representing a 

decrease. 

Figure 21 shows the change in average annual maxSWE across the Wägtial. For that, the maxSWE of 

each station for each year was derived to calculate the average maxSWE of each year in the Wägital. It 

is noticeable that for shorter periods (years or decades), the variability is more extensive (indicated by 

the darker coloring) than when looking at longer periods. For the total observation period, it can be 

observed by the light orange color in the top right corner that there is a negative trend in the maxSWE, 

which is around 2.0 mm/year change. If the observation period is split up into two periods, 1943 to 1980 

and from 1980 to 2023, a positive trend of 5.7 mm/year is observed in the first period, which is also 

indicated by the stronger blue tones until the 1980s, and a negative trend with a change of 4.6 mm/year 

is observed from 1980 until 2023. Most data sets that measured SWE start in the 1960s, and looking at 

the changes in the heatmap between the start year 1960 and the end year 2023, the triangle would mostly 
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be orange. In comparison to the total observation period the change from 1960 until 2023 shows, with 

4.5 mm/year a stronger negative trend. 

 
Figure 21: Change in Average Annual maxSWE (mm/year) for all measurement stations across the Wägital shown for 

different start and end years of the observation period. Blue indicating an increase and orange a decrease in average annual 
maxSWE. The color intensity reflects the magnitude of the change. 

 

To provide a more comprehensive analysis of the variations in maxSWE throughout the Wägital, the 

alterations for the distinct groups are displayed, described and compared. 

First, a look at the different elevation bands is taken in Figure 22. The maxSWE shows different trend 

patterns for the two elevation bands. However, all in all, a predominant trend towards a decrease in 

maxSWE over the total observation period is for both elevation bands recognizable. The overall lighter 

coloring for the lower elevation band suggests less change than for the higher elevation, which confirms 

the trend analysis in Chapter 5.4.2.  

Focusing on temporal patterns, it is visible that during the period from 1940-1980, the patches of blue 

and orange both are stronger/darker than for the years 1980-2020, suggesting that the variability of the 

snowpack change was bigger in the first 40 years of the observation period. Furthermore, the trend until 

the 1980s suggests a positive trend for both elevation bands, which is slightly more pronounced for the 

higher elevation band. With end year later than 1980s the change is rather negative. In the 1990s a cold 

period with high snow years appears. For trend analyses starting in the 1990s until 2023, the change 

looks rather positive or close to 0 for the lower elevation band. For the higher elevation band, the trends 

until 2023 are still mostly negative. 
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Although the color scaling and the absolute trend analysis in Chapter 4.3.2 show that a decrease in 

maxSWE is greater at high altitudes (4.4 mm) than at low elevations (2.9 mm), it must be considered 

cautiously. The percentage decrease is smaller at high altitudes (0.71 %) than at low altitudes (0.96 %), 

which indicates that the impact of temperature and precipitation on the amount of snow at low elevations 

is greater than at high elevations. 

  
Figure 22: Change in maxSWE (mm/year) in the elevation bands 900-1500 m a.s.l. and 1500-1800 m a.s.l. shown for 
different start and end years of the observation period. Blue indicating an increase and orange a decrease in annual 

maxSWE. The color intensity reflects the magnitude of the change. 

 

The maxSWE differentiated by aspect (Figure 23) shows a similar pattern for all aspects to the average 

annual maxSWE and the maxSWE looked at by elevation differences. The variability is more pro-

nounced between the individual years and decadal changes compared to bigger time periods. However, 

in the second half of the observation period, the changes are less pronounced, with smaller color patches 

than in the first half. For all aspects, a positive trend until the 1980s is observable, but a predominant 

negative trend for all aspects over the total period is recognizable. The high snow years in the beginning 

of the 1970s and during the 1990s and their impact on the trend analysis are similar in all aspects. 

Focusing on differences between the individual aspects, based on the very light color coding, Aspect S 

indicates the least strong changes, followed by Aspect W. For Aspect N and Aspect E, the heat maps 

look very similar, and no clear difference can be determined.  
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Figure 23: Change in maxSWE (mm/year) for the different aspects N, E, S, W shown for different start and end years of the 
observation period. Blue indicating an increase and orange a decrease in annual maxSWE. The color intensity reflects the 

magnitude of the change. 

 

Regarding changes in maxSWE within different slopes (Figure 24), the patterns already look very sim-

ilar to the heat maps that were discussed previously. Both displayed slope ranges show a general trend 

towards decreasing maxSWE over the observation period. Until the 1980s, an increase in maxSWE in 

flat and steep slopes is observed, followed by a decrease until the end of the observation period. Because 

of the similarity between the heatmaps of all slope ranges, the focus will be on the most gentle slope 

range (Slope 5-10°) and the steepest slope range (Slope 20-25°). 

The gentle slope (Slope 5-10°) presents a slightly more distinct change than the steeper slopes (Slope 

20-25°), indicated by the slightly stronger color coding. Especially until the 1970s, the trend looks more 

positive, indicating that the snow scarce winters in the 1940s have a bigger impact on gentle slopes than 

on steep slopes. The high snow years in the 1990s are pronounced for both slope ranges, and looking at 

trend analyses starting in 1990 there is almost no trend distinguishable until 2023. 
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Figure 24: Change in maxSWE for measurement stations located on slopes 5-10° and slopes 20-25°, shown for different start 

and end years of the observation period. Blue indicating an increase and orange a decrease in annual maxSWE. The color 
intensity reflects the magnitude of the change. 

 

It can be concluded that regardless of the spatial characteristics, all data plots concerning maxSWE 

exhibit a consistent pattern of increasing maxSWE until the 1980s, indicating low snow years in the 

1940s. For the second half of the observation period, a decrease in maxSWE is evident. Moreover, it is 

noted that beginning the analysis in the 1960s yields a more negative change in maxSWE compared to 

starting in the 1940s. A cold period, characterized by high snow years in the 1990s, is visible across all 

plots; however, the trends for the most recent two decades indicate a negative change in maxSWE once 

again. 

5.4.3.3 Changes in Snow Cover Days per year 

For the examination of snow cover days, a threshold of 50 mm for a day to count as a snow cover day 

was established, ensuring that only days with significant snow accumulation are considered in the anal-

ysis. The 50 mm limit was derived from (Kelly, 2009; Kelly et al., 2003), who noted that the detection 

of shallow snow below 5 cm depths is unreliable. For each measurement station, the number of snow 

cover days was determined. To get an overview across the entire Wägital, the median number of snow 

cover days per year from all measurement stations was calculated for this analysis, presented in Figure 

25. The violet colors indicate an increase in snow cover days in a year per year, and the orange colors 

indicate a decrease in snow cover days in a year per year. 

The pattern of the change in snow cover days shows a very similar pattern to the changes in maxSWE. 

The variability between the individual years is strong regarding snow cover days, indicated by the dark 

colors (diagonal line in Figure 25). The variability lessens when looking at changes across longer peri-

ods. An increase in yearly snow cover days is observable from the 1940s until the 1980s. In the 1980s, 

there were several winters with low snow cover days, which indicates a turning point. After the 1980s, 

the change in snow cover days was negative. And for the total observation period, a general trend 
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towards decreasing days per year with a snow cover of more than 50 mm is displayed by the light orange 

color in the top right of the plot, suggesting that there are each year less snow covered days in the Wägital 

since the 1980s. 

 
Figure 25: Changes in snow cover days (days/year/year) in the Wägital, shown for different start and end years of the 

observation period. Violet indicating an increase and orange a decrease in annual maxSWE. The color intensity reflects the 
magnitude of the change. 

 

5.5 Meteorological Year Categories 

In Figure 26, the distribution of maxSWE across different meteorological year categories and elevations 

is presented. The plot is divided into two panels, each representing the measurement stations located in 

the elevation zones 900-1500 m a.s.l. and 1500-1800 m a.s.l. Each panel contains boxplots for four me-

teorological year categories: cold and dry, cold and wet, warm and dry, and warm and wet. These box-

plots depict the distribution of maxSWE in the respective year categories, showing the median, inter-

quartile range, and potential outliers. 

For the lower elevation zone (900-1500 m a.s.l.), the "warm and dry" category shows the lowest median 

maxSWE (around 200 mm) with very little variation, indicating minimal SWE in warm and dry years. 

The "cold and dry" category has a slightly higher median (around 250 mm) but with a wider variability. 

The "warm and wet" category has a median of around 300 mm with more variation. The "cold and wet" 

category has the highest median (around 425 mm) with some variation and a few outliers around 

750 mm and 950 mm. Statistically, the difference between “cold and wet“ and “warm and dry” is highly 

significant (p = 0.00004), and the difference between “cold and wet” and “warm and wet” is also sig-

nificant (p = 0.004). Comparison between the other categories is, however, not significant in the lower 

elevation zone. 



  Results 
 

44 
 

The higher elevation zone (1500-1800 m a.s.l.) follows a similar pattern regarding median values. Most 

snow accumulates in "cold and wet" conditions and least in "warm and dry" years, this difference is also 

supported by the strong statistical significance (p = 0.000003). In "warm and wet" years, there is slightly 

more snow than in "cold and dry" years, however, statistical comparisons do not show significant dif-

ferences. 

Generally, higher elevations tend to have higher median maxSWE across all meteorological categories 

compared to the lower elevation zone. The variability is greater in the higher elevation zone for each 

meteorological category. 

Overall, it is evident that maxSWE varies with different meteorological conditions and elevations. The 

variation across the different meteorological categories highlights the importance of considering both 

temperature and precipitation when assessing SWE. 

 
Figure 26: Boxplots of distribution of maxSWE in different meteorological years divided into two elevation bands. The 

number of years in each category is represented by the white numbers. Each box represents the interquartile range, the solid 
horizontal line the median, and the whiskers extend to the most extreme data points within 1.5 times the IQR from the first 

and third quartile. Data points outside this range are considered outliers and are shown as individual points. 
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6 Discussion 
The SWE is a crucial measure for topics such as water management, agricultural planning, and climate 

policy. Historical SWE data provides valuable insights into climatic changes and acts as a base for var-

ious climate change scenarios. Numerous studies have analyzed SWE trends in Switzerland (Marty et 

al., 2023; Stähli & Gustafsson, 2006), as well as in other snow-covered regions like North and West 

America (Bohr & Aguado, 2001; Brown et al., 2019; Musselman et al., 2021) and High Mountain Asia 

(Smith & Bookhagen, 2018). The available data for these studies dates back to the mid-1950s at the 

latest. For the Wägital, SWE has been recorded on April 1st every year since 1943, making this dataset 

one of the longest-standing SWE datasets globally. However, since there is only one measurement per 

year, and April 1st may not always represent the date when maxSWE occurred, trend analyses based 

solely on this observational data could lead to misleading conclusions. It was, therefore, crucial to de-

termine the maxSWE of each year by modeling daily SWE with a degree-day model and using the 

observed April 1st SWE to calibrate the model. The model output allowed to examine the behavior of 

maxSWE across different spatial features, analyze the trends dating back to the 1940s, and observe 

patterns of maxSWE according to meteorological year categories. 

The results can be summarized as follows: The degree-day model developed to assess daily SWE in the 

Wägital demonstrates good performance overall, although there are some outliers for specific measure-

ment stations. The model emphasizes the variability of maxSWE occurrence, showing that it can happen 

at various dates during the winter period, with the most dates of occurrence being before April 1st, how-

ever, during the observation period April 1st was the date where it most frequently occurred. Spatial 

analysis reveals that maxSWE increases with elevation, is lower on southern aspects, and tends to in-

crease with decreasing slope gradients. Long-term trends in maxSWE are predominantly negative across 

all individual stations and group combinations. When focusing on shorter periods, similar trend patterns 

are observed for the groups. Trends from the 1940s to the 1980s are mostly positive, while trends from 

the 1980s until the 2020s are predominantly negative. Furthermore, trends starting in the 1960s until 

2023 are more strongly negative than trend analyses starting in the 1940s. The snow scarce winters in 

the 1940s stand out, as well as the high snow years in the 1990s. The change in the amount of snow 

cover days in a year presents the same pattern as the maxSWE. Lastly, maxSWE varies with different 

meteorological conditions, with cold and wet years leading to high SWE years and warm and dry winters 

leading to snow scarce years, indicating the importance of considering temperature and precipitation 

when assessing SWE. The discussion will explore these findings now in greater detail. 

6.1 Model Performance 
Comparing the performance of the degree-day model constructed for this thesis to the degree-day model 

by Lopez et al. (2020) for the Allenbach catchment, also based on the HBV snow routine, the perfor-

mance is slightly worse with model performance values of ~0.75 compared to ~0.90. Several factors can 
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contribute to this discrepancy. As input data, Lopez et al. (2020) used high-resolution gridded data, 

which provides a comprehensive spatial coverage of the entire catchment area. That allows to account 

for spatial variability in precipitation and temperature. The meteorological data used for this thesis might 

not capture the complete spatial variability across the catchment, leading to potential inaccuracies in the 

model outputs. Additionally, in the study by Lopez et al. (2020), the SWE data used for model calibra-

tion and validation consisted of 18 years of gridded daily SWE data based on observed snow data from 

338 stations, which already included error correction methods which made the model calibration and 

validation especially robust.  

Regarding potential pattern between the model bias and the spatial characteristics of the measurement 

stations, one observation was that four out of six stations at the extreme ends of bias (both <0.5 and >2) 

were associated with aspect W. Despite this, there are a total of 23 stations with aspect W, most of which 

showed a normal model performance, making it difficult to draw definitive conclusions from the aspect 

characteristic alone. An additional observation concerns stations located below 950 m a.s.l. Three out 

of five stations in this elevation range exhibited significant model bias. One hypothesis is that the model 

may struggle to accurately account for transitions between snow and rain events. As the zero-degree 

isotherm has risen significantly in the last 40 years (Scherrer et al., 2021), the model may be failing to 

fully capture this shift. 

To further improve the degree-day model for the Wägital, more detailed input data should be used, and 

model calibration should be complemented by a thorough validation process. It was discussed that for 

the purposes of this thesis, it made sense to prioritize the use of as many observed data points as possible 

for calibration. However, if the model were to be applied to a different catchment or used for forecasting, 

validation would be essential to enhance robustness and reliability. 

6.2 Model Significance 
Marty et al. (2023) stated that trends on April 1st were similar to the maxSWE trends but with lower 

significance, and the variability for the individual years was higher for April 1st SWE than maxSWE. In 

a study regarding snowpack changes in three different American basins, the maxSWE values were 

greater than April 1st SWE for each year, highlighting the importance of daily data and especially using 

maxSWE instead of April 1st SWE for trend analyses (Harpold et al., 2012). As for the Wägital catch-

ment, more than half of the maxSWE across all years and stations were measured before April 1st, indi-

cating that melting had already started on April 1st. This supports the hypothesis in research question (i) 

that April 1st SWE does not always represent the absolute peak in SWE, even though April 1st is still the 

date when maxSWE most frequently appeared. The trend analysis in this study, which identified signif-

icant trends in maxSWE, underscores the necessity of using maxSWE rather than April 1st SWE for 

accurate assessments and highlights the importance of implementing a degree-day model to determine 
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maxSWE. This is particularly evident when compared to the study by Noetzli & Rohrer (2014), where 

the analysis using April 1st SWE data from the Wägital did not reveal clear trends. 

6.3 Spatial Distribution 

The findings regarding the spatial distribution (research question ii) in elevation corroborate previous 

studies (Anderton et al., 2004; Pomeroy et al., 1998; Zhong et al., 2021), which highlight elevation as 

the dominant factor influencing snow cover properties. In the Wägital, it was observed that in the lower 

elevation band (900-1500 m a.s.l.), the median SWE was 302 mm with moderate variability. In the 

higher elevation band (1500-1800 m a.s.l.), the median SWE increased to 616 mm, indicating higher 

snow accumulation at greater altitudes. This pattern aligns with the findings of Grünewald et al. (2014) 

and Zhong et al. (2021), where snow depth also increased with elevation. The variability (IQR) in SWE 

was more prominent in the higher elevation band in the Wägital, suggesting a more heterogeneous snow 

distribution. This variability may be attributed to localized microclimatic conditions and topographical 

variations, as noted by Jost et al. (2007). 

The highest median regarding the aspect was recorded on E facing slopes in the Wägital (365 mm), 

followed by north facing (337 mm) and west-facing slopes (319 mm). The smallest median SWE was 

observed on S facing slopes. This pattern supports the findings of Zhong et al. (2021) that leeward 

slopes, particularly those facing north, east, and southeast, tend to accumulate more snow due to wind 

patterns and reduced solar radiation. The larger IQR on aspect W indicates a greater variability in SWE, 

which could be due to the varying influence of wind and solar exposure. 

Regarding the relationship between slope angle and SWE, the highest median SWE was found in flat 

terrain (0-10°) with 345 mm. The medians for slopes 10-15° and 15-20° were similar around 292-

297 mm. A marked decrease in median SWE was noted for slopes of 20-25° (203 mm), suggesting that 

steeper slopes may lead to reducing SWE. This trend aligns with the findings by Zhong et al. (2021). 

The lower variability in flat terrain suggests a more uniform snow distribution, likely due to less influ-

ence from gravitational movement.  

Similar to findings regarding the spatial variability and distribution of SWE in the Chinese Altai Moun-

tains (Zhong et al., 2021), with the conclusions in British Columbia, Canada (Jost et al., 2007), and other 

parts of the Swiss Alps (Grünewald et al., 2014), the influence of elevation, slope, and aspect was ob-

served in the Wägital. The fact that only statistically significant difference of maxSWE only showed in 

elevation, among the three spatial characteristics examined, elevation is the dominant factor in deter-

mining maxSWE at the measurement stations. However, the results do not consider the influence of 

vegetation cover, which Faria et al. (2002), Winkler et al. (2005), and Stähli et al. (2021) discussed.  
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6.4 Trends Analyses 
The analysis revealed that all individual stations within the Wägital monitoring program exhibit statis-

tically significant negative trends in maxSWE over the entire observation period (research question (iii)). 

The uniformity of these trends across diverse stations, regardless of altitude or other geographic factors, 

strongly indicates a widespread reduction in SWE in the region. This consistency is notable also when 

compared to other studies, such as the analysis of (Marty et al., 2023), who found a significant decrease 

of maxSWE for 40 % of stations across several different monitoring programs across Switzerland, as 

well as international studies such as those in North America (Musselman et al., 2021) and Canada 

(Brown et al., 2019). 

When the stations were grouped by elevation, a more nuanced pattern emerged. Stations in the higher 

altitude band (1500-1800 m a.s.l.) exhibited a steeper negative trend compared to those at lower altitudes 

(900-1500 m a.s.l.). While this stronger trend at higher altitudes aligns with general findings from moun-

tainous regions, such as High Mountain Asia (Smith & Bookhagen, 2018), their study reveals that the 

relationship between elevation and SWE trends is complex and varies significantly depending on the 

catchment and the elevation bands. For example, in some northern catchments of High Mountain Asia, 

such as the Syr Darya, strong positive SWE changes are observed in high-elevation winter months, while 

mid-elevation bands exhibit more pronounced negative trends in spring SWE. This pattern contrasts 

with the Ganges/Brahmaputra catchment, where the most negative SWE trends occur at the highest 

elevations due to increased temperatures in low-precipitation, high-altitude zones. This complexity sug-

gests that while higher elevations in our study area may show a more rapid absolute decline in maxSWE, 

the specific patterns could vary depending on local climatic and topographic factors. 

Moreover, while the absolute reduction in maxSWE at higher elevations in the Wägital region is larger, 

the percentage decrease compared to median maxSWE is lower than at lower altitudes. This implies that 

although high elevations experience greater snow accumulation and thus a larger absolute reduction, the 

relative impact is less severe. In contrast, lower elevations, which are more sensitive to temperature 

increases, could face more significant relative declines in SWE. These findings emphasize the im-

portance of considering local and regional factors, such as elevation and exposure, in understanding 

snow decline trends.  

In addition to elevation, trends regarding aspect and slope were also negative (research question (iii a.). 

Notably, stations with aspect S showed the least negative trend, likely due to increased solar radiation 

at these sites, which affects snow accumulation and melt patterns. This suggests that solar radiation 

plays a mitigating role in SWE decline. Meanwhile, trends in slope are relatively consistent ranging 

from -3.2 to -2.5 mm/year, indicating that the rate of maxSWE decline is not substantially different 

across slope ranges. This lack of variation suggests that slope may not be as strong a determinant of 

SWE trends in this region as elevation or aspect.  
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The long-term trends observed in the Wägital catchment, particularly the decreasing maxSWE, parallel 

findings in other mountainous regions worldwide (Brown et al., 2019; Smith & Bookhagen, 2018). 

However, it is noteworthy that in some regions, like the Arctic Circle, trends can be positive (Brown et 

al., 2019). The fact that all Wägital stations showed significant decreases emphasizes that this region is 

particularly vulnerable to reductions in snowpack. 

The consistent and statistically significant decline in maxSWE across both individual stations and alti-

tude groups has critical implications for the hydrological systems in the Wägital catchment. The de-

creasing snowpack could lead to reduced water availability during the melt season, impacting water 

resources, hydroelectric power generation, and potentially leading to earlier and more pronounced spring 

runoff. 

Focusing on changes in maxSWE for different start and end years, specific patterns could be observed 

in the change of average maxSWE and maxSWE divided by group. First, the variability of maxSWE 

between the individual years is remarkable, when looking at changes in longer time periods, the varia-

bility becomes smaller. In winter, small-scale phenomena such as inversions and cold air lakes often 

determine local weather patterns in Switzerland (CH2018, 2018), which can lead to this yearly variabil-

ity in SWE. Additionally, while no significant trend in precipitation was observed over the entire period, 

the variability in precipitation during shorter intervals could be influencing the year-to year variability 

in maxSWE. This suggests that while temperature is the dominant factor driving long-term trends, pre-

cipitation patterns play a role in short-term fluctuations. A noticeable shift from a positive trend in the 

earlier period (1943-1980) to a negative trend in maxSWE from 1980 onwards was revealed. These 

trend patterns indicate scarce snow winters in the 1940s which is consistent with the relatively warm 

temperatures and low precipitation years observed in the Wägital but also across Switzerland (Begert & 

Frei, 2018; Meteo Schweiz, 2024). The observed negative trends in maxSWE, particularly from the 

1980s onwards, align with increasing air temperatures in the Wägital and in Switzerland (CH2018, 

2018), emphasizing the influence of temperature on snowpack dynamics. The 1990s stand out as a pe-

riod with high snow years, which temporarily disrupts the overall declining trend, except for trends in 

high elevations. This period is marked by cooler temperatures throughout the decade and higher precip-

itation in the beginning of the decade. It is, however, followed by a return to the negative trend in the 

2000s. Trend analyses starting in the 1990s can, therefore, suggest an increase or no specific trend in 

maxSWE in Switzerland. If the trend analysis had started in the 1960s, the total trends would have been 

stronger negative than they are for the total observation period, which was indicated by the different 

color coding. The findings of this thesis visualized by the heatmaps highlight the significance of the start 

year and the length of the observation period in trend analysis, answering the research question (iii b.). 

The low snow years in the 1940s have a noticeable impact on the long-term trends, particularly in the 
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early part of the records. This suggests that the initial conditions of the dataset can significantly influence 

the interpretation of trends over time. 

The consistency across spatial characteristics like elevation, aspect and slope with a unified pattern sug-

gests that the observed trends are robust and reflect a broad-scale response of the snowpack to climatic 

changes rather than being heavily influenced by local topographic factors. 

The stronger negative trends observed in recent decades could partly be explained by the snow-albedo 

feedback mechanism. The reduced snow cover days per year leads to lower surface reflectance and 

further warming. As the snow cover decreases, the ground absorbs more solar radiation, accelerating 

snowmelt and reducing maxSWE (Armstrong & Brown, 2008). 

6.5 Meteorological Year Category 

The results of the meteorological years category, which regards research question (iv), demonstrate that 

both temperature and precipitation are critical in determining SWE in the Wägital. Lower temperatures 

combined with higher precipitation lead to increased snow accumulation. The higher elevations were 

shown to be more conducive to snow accumulation, possibly due to cooler temperatures that prevent 

snowmelt and higher precipitation rates. The significant differences observed between the "cold and 

wet" and "warm and dry" categories highlight the substantial impact these conditions have on SWE. The 

variability was highest in the “cold and wet” category at higher elevations, indicated by the spread of 

maxSWE values, which could be a sign that other factors like wind patterns, snowpack density or local 

topography might also be influencing snow accumulation next to temperature and precipitation. 

6.6 Limitations and Uncertainties 

This thesis was initiated due to the limitation of having SWE data for only the April 1st of each year 

since 1943 in the Wägital catchment. This challenge was tackled by developing a degree-day model 

with daily precipitation and temperature data, which simulated SWE for each day of the observation 

period. 

Results from modeling are inevitably subject to some uncertainty because models can only simulate 

actual conditions in a simplified form and do not represent the physical environment. One significant 

challenge in hydrological modeling is the uncertainty in input data (FOEN, 2018). In this thesis, the lack 

of continuous temperature measurements for the entire observation period in the Wägital region required 

the interpolation of data from the nearby Einsiedeln meteorological station. Daily precipitation and tem-

perature data were used as inputs, but these daily averages do not account for temperature variations 

throughout the day. This limitation means that the model may not accurately capture the interactions 

between temperature and precipitation, potentially leading to discrepancies in snowmelt processes. For 

example, rapid daytime warming followed by freezing nighttime temperatures could create snowmelt 

dynamics that the model does not fully capture. 
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Additionally, the model assumes a fixed temperature threshold (TT) to distinguish between rain and 

snow, which might oversimplify the phase transition process. The use of a lapse rate to adjust tempera-

ture and precipitation data based on elevation could also lead to inaccuracies, as it fails to account for 

the unique spatial and natural variability of each measurement station. Furthermore, the TT, which also 

incorporates temperature compensation per altitude, might be overcorrected when combined with the 

lapse rate. The accuracy of the input data is crucial for reliable model outputs. This accounts also for the 

observed April 1st SWE data used for model calibration, where measurement errors or inconsistencies 

in the data collection could impact the accuracy of the results. 

For each measurement station, the parameter set (TT, CFMAX, SFCF), which minimized the objective 

function, was extracted from the model. However, the concept of equifinality suggests that multiple 

parameter sets can produce similar performance during the calibration period but may behave differently 

outside these conditions (Hakala et al., 2019). This implies that the chosen parameter sets may not be 

the only optimal solutions, which could affect the robustness of the results. Moreover, the model cali-

bration was not complemented by a robust validation phase, this might affect the reliability of the sim-

ulated maxSWE values. The validation would become particularly important when extending the model 

to future projections or applying it to other catchments. 

Furthermore, this thesis does not account for the influence of vegetation cover, microtopography, mi-

croclimatic variability (such as wind exposure), or changes in land use. These factors could influence 

snow accumulation, the distribution of snow, and melting processes. The findings from the Wägital 

catchment may not be directly applicable to other regions with different climatic, topographic, or hy-

drological conditions. Additionally, the interpretation of trends, especially based on the color-coding in 

the heatmaps, may be subject to bias. While comparisons with international studies are provided, differ-

ences in data collection methods, and model types may limit the direct comparability of results. 

6.7 Recommendations for Future Research 
The limitations and uncertainties discussed in this thesis highlight several opportunities for future re-

search to improve understanding and modeling of SWE dynamics. 

Regarding the measurement monitoring in the Wägital, it is crucial to continue the program to see how 

the SWE evolves over time. Continuous collection of SWE data, along with detailed records of meteor-

ological variables, will improve trend analyses and model accuracy. Expanding the network of observa-

tion locations in the Wägital would provide more detailed information about the spatial variability and 

heterogeneity of snow accumulation throughout the year. Instead of the timely extensive monitoring 

program, it could be considered to include remote sensing data which can provide high-resolution im-

ages that give valuable insights into snow cover and can help estimate the SWE (e.g. Steiner, 2019). 
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Additionally, Noetzli et al. (2019) explored the potential of drones to estimate snow reserves in the 

Wägital, which could be further elaborated. 

As input factors for the model, future studies should aim to use high-resolution gridded meteorological 

data and integrate detailed spatial variability in temperature and precipitation. Additionally, incorporat-

ing parameters such as vegetation cover or land-use change could provide further insights into how these 

factors influence SWE trends. This would further help in understanding the impacts of human activities 

on snowpack dynamics. Further research using the same data set could explore how changes in maxSWE 

might affect downstream water availability, hydroelectric power generation, and agricultural planning. 

To improve model robustness, future research with the same data set could include validation by split-

ting the observational data into different time periods. This would increase confidence in the simulation 

results. Considering the limitations of the degree-day model, it could be explored to use different mod-

eling approaches, such as machine learning algorithms which could maybe handle the complexities and 

non-linearities in snowpack dynamics. 

Instead of comparing the trends in SWE solely to local climatic changes, the research could be expanded 

to enhance the understanding of how local factors interact with global climate trends. Additionally, the 

model output could be used to explore questions about the duration of snow cover, and a closer look at 

the timing of maxSWE could be taken and how this has shifted throughout the years. The frequency and 

intensity of snow events could also be analyzed to gain deeper insights into changing snowpack dynam-

ics. 

While this thesis has provided valuable insights into SWE trends in the Wägital catchment, there remain 

numerous opportunities for future research to refine, validate, and expand upon these findings. By ad-

dressing the identified limitations and exploring new avenues for study, future research can contribute 

to a deeper understanding of snowpack dynamics and their implications for both local and global water 

resources.  
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7 Conclusions 
This thesis has provided a comprehensive analysis of SWE trends in the Wägital catchment, utilizing 

one of the longest-standing SWE datasets known globally. By implementing a degree-day model to 

reconstruct daily SWE and determine maxSWE, this research has addressed the limitations of relying 

solely on April 1st measurements. The model results revealed that the April 1st measurement often does 

not represent the peak SWE, underscoring the importance of using maxSWE for more accurate trend 

analyses. The spatial analysis of maxSWE highlighted consistent patterns of snow accumulation, show-

ing that SWE increases with elevation, is lowest on southern aspect, and decreases with steeper slopes. 

The temporal trends revealed a predominant decline in maxSWE across the catchment and the total time 

period. This trend is, however, not gradual, from the 1940s to the 1980s, trends are primarily positive, 

while trends observed from the 1980s onward are stronger negative. Depending on the year the trend 

analysis starts, the trends are revealed to be less or stronger negative. These findings provide a more 

nuanced understanding of snow dynamics in the Wägital catchment, they offer insights into both long-

term trends and shorter-term fluctuations that are crucial for managing water resources in the region. 

Moreover, the emphasis of the study on the spatial variability of SWE reinforces the complexity of 

snowpack behavior in mountainous regions, where elevation, aspect, and slope interact with meteoro-

logical conditions to influence snow accumulation and melt. The insights gained in this study improve 

the understanding of historical SWE trends and might enhance the ability to predict future changes in 

snowpack, which are important for water management, agricultural planning, and hydroelectric power 

generation. 

Several limitations come with this study, including uncertainty in the input data, assumptions that had 

to be made to develop the degree-day model, and inherent uncertainties of the model itself. The degree-

day approach, while effective for estimating snow accumulation and melt, simplifies complex processes. 

Other critical factors, such as variation in daily precipitation types, wind redistribution and vegetation 

cover, are not accounted for. These limitations leave room for future research on this topic. 

By offering insights into long-term snowpack dynamics, this thesis adds valuable perspective to ongoing 

discussions on climate change. The insights gained in this thesis highlight the importance of historical 

data sets and the urgency of continued monitoring and research to be better equipped to mitigate and 

adapt to the evolving challenges posed by climate change. 
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Appendix 

A1 Location Characteristics 

T 1: Measurement Locations Characteristics 

 
Name 
 

X coordinate 
 

Y coordinate 
 

Elevation 
[m a.s.l.] 

Aspect 
 

Slope 
 [°] 

1 Eggstofel 2710150 1217560 1325 S 8.9 
2 Eggstofel-Boden 2709900 1217780 1330 N 4.7 
3 Salzlecki 2708590 1216910 1440 N 4.7 
4 Salzlecki-Bügel 2708860 1216340 1480 E 13.8 
5 Heizlihöhe 2709290 1215880 1400 E 11.6 
6 Heizlihöhe-Profil 2709340 1215700 1380 E 13.1 
7 Heizlihöhe-Totalisator 2709700 1215520 1330 E 12 
8 Tannstofel 2710100 1215650 1340 N 16.2 
9 Mittl. Tannstofel 2710600 1216060 1250 N 6 
10 Waldschneise 2710940 1216300 1220 N 8.6 
11 Oberstock 2711470 1216500 1170 N 6.9 
12 Stuckliwald 2713075 1218775 1190 N 8.9 
13 Seeende_1 2711970 1213800 930 N 18.6 
14 Aberenalp 2711530 1212507 1100 N 9.6 
15 Rinderweid 2712424 1212950 1310 W 5.3 
16 Lauibüel Hütte 2713060 1213430 1500 W 12.5 
17 Lauibüel Totalisator W 2713019 1213595 1470 W 24.5 
18 Lauibüel Totalisator S 2713122 1213507 1495 W 20.5 
19 Löcherenwald 2713255 1213694 1560 W 13.9 
20 Gängen 2713540 1213630 1600 W 8.6 
21 Oberalp Hütten 2710845 1211270 1565 N 10.2 
22 Oberalp Boden 2711675 1210975 1800 W 5 
23 Schwarzenegg 2714500 1218050 1380 W 11.9 
24 Schwarzenegg Hütten 2714320 1218080 1330 W 15.9 
25 Schwarzenegg untere Hütten 2714200 1217900 1280 W 12.7 
26 Masten 2714080 1217630 1210 S 13.1 
27 Oberhalb Wald 2713950 1217550 1170 W 16.9 
28 Unterhalb Wald 2713750 1217250 1090 S 16.2 
29 Fällätschen 2713650 1217100 1030 W 14.7 
30 Unterhalb Fällätschen 2713570 1217200 990 S 14.8 
31 Hohfläschen_1 2714250 1215830 1480 W 19.5 
32 Obere Hütten 2714330 1215650 1445 S 13.5 
33 Unterhalb Hütten 2714220 1215670 1425 W 15.2 
34 Oberhalb Naturfreundehaus Hütten 2714100 1215595 1390 W 11.8 
35 Naturfreundehaus Hütten 2713985 1215570 1360 W 22.9 
36 Unterhalb Naturfreundehaus Hütten 2713850 1215660 1320 W 24 
37 Boden ob Gatter 2713650 1215640 1240 W 22.4 
38 Aberligaden 2713400 1215390 1080 W 20 
39 Ziggen 2713150 1215385 945 W 24.3 
40 Unteralten 2713212 1216463 920 W 13.1 
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41 Seeende_2 2713195 1220219 1290 E 14.9 
42 Rötstock 2708257 1218890 905 E 14.7 
43 Rohr 2711949 1213958 1200 E 13.3 
44 Hohfläschen_2 2710770 1217498 1510 W 15.6 
45 Blattli 2714350 1215930 1510 W 12.6 
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A2 List of SSE and best parameter set 

T 2: Results of the objective function (lowest SSE) and best-parameter sets (TT, CFMAX, SFCF). The parameters were 
selected from the defined parameter range, based on the minimization of the objective function.  

 station TT CFMAX SFCF Lowest SSE 
1 Eggstofel 0.9 3 0.6 1208783.5 
2 Eggstofel-Boden 1.3 1 0.6 756495.0 
3 Salzlecki 2 7.1 0.5 1182641.0 
4 Salzlecki-Bügel 1.3 1 0.6 626356.8 
5 Heizlihöhe 2 7.1 0.5 716864.2 
6 Heizlihöhe-Profil 0.5 1.8 0.6 526140.4 
7 Heizlihöhe-Totalisator 0.5 1.8 0.6 883529.7 
8 Tannstofel 0.9 3 0.6 455687.8 
9 Mittl. Tannstofel 1.3 1 0.6 555588.4 
10 Waldschneise 1.3 1 0.6 407691.3 
11 Oberstock 0.5 1.8 0.6 445506.0 
12 Stuckliwald 0.9 3 0.6 634167.1 
13 Seeende_1 1.1 1.3 0.8 444779.1 
14 Aberenalp 2.5 4.1 0.8 918212.6 
15 Rinderweid 0.5 1.8 0.6 986625.0 
16 Lauibüel Hütte 0.9 3 0.6 736986.8 
17 Lauibüel Totalisator W 0.9 3 0.6 982030.9 
18 Lauibüel Totalisator S -0.4 3 0.7 605506.9 
19 Löcherenwald 0.5 1.8 0.6 932086.2 
20 Gängen 0.5 1.8 0.6 988655.7 
21 Oberalp Hütten 2.5 4.9 0.7 1164307.4 
22 Oberalp Boden 1.7 8 0.9 1717548.8 
23 Schwarzenegg 1 8.1 0.5 680382.5 
24 Schwarzenegg Hütten 2.3 8.2 0.4 249409.8 
25 Schwarzenegg untere Hütten 0.4 7.2 0.4 280648.4 
26 Masten 0.9 4.4 0.5 228505.6 
27 Oberhalb Wald 1.3 9.9 0.4 227366.7 
28 Unterhalb Wald -0.4 3 0.7 137680.3 
29 Fällätschen -0.4 3 0.7 113381.3 
30 Unterhalb Fällätschen -0.4 3 0.7 76302.5 
31 Hohfläschen_1 0.1 8.7 0.6 736463.3 
32 Obere Hütten 2.5 9.3 0.4 526552.1 
33 Unterhalb Hütten 2 7.1 0.5 489496.6 
34 Oberhalb Naturfreundehaus Hütten 1 8.1 0.5 452241.6 
35 Naturfreundehaus Hütten 1 8.1 0.5 605003.5 
36 Unterhalb Naturfreundehaus Hütten 2.3 8.2 0.4 374566.0 
37 Boden ob Gatter 2.3 8.2 0.4 437498.7 
38 Aberligaden -0.4 3 0.7 175427.2 
39 Ziggen -0.4 3 0.7 89658.6 
40 Unteralten 0.5 1.8 0.6 358440.6 
41 Seeende_2 1.8 3 0.7 392831.3 
42 Rötstock 0.9 4.4 0.5 323936.3 
43 Rohr 0.9 3 0.6 719228.7 
44 Hohfläschen_2 2 7.1 0.5 826297.5 
45 Blattli 0.1 8.7 0.6 104635.5 
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A3 Model Performance 

T 3: Linear Regression Results per measurement station. 

 station a b r2 bias 
1 Eggstofel 1.00 -34.79 0.71 1.14 
2 Eggstofel-Boden 0.93 38.60 0.73 1.28 
3 Salzlecki 0.96 59.88 0.77 0.89 
4 Salzlecki-Bügel 0.94 15.96 0.80 1.13 
5 Heizlihöhe 0.89 104.70 0.80 0.84 
6 Heizlihöhe-Profil 0.99 21.57 0.83 1.22 
7 Heizlihöhe-Totalisator 0.93 30.38 0.73 0.99 
8 Tannstofel 0.90 20.60 0.86 1.31 
9 Mittl. Tannstofel 1.03 6.50 0.83 0.99 
10 Waldschneise 0.92 36.74 0.83 1.24 
11 Oberstock 0.95 18.81 0.81 0.98 
12 Stuckliwald 0.78 125.45 0.71 0.67 
13 Seeende_1 0.96 29.27 0.80 0.89 
14 Aberenalp 0.92 168.00 0.77 0.63 
15 Rinderweid 1.02 12.68 0.74 0.98 
16 Lauibüel Hütte 0.89 18.50 0.80 1.14 
17 Lauibüel Totalisator W 1.01 61.12 0.77 1.16 
18 Lauibüel Totalisator S 0.81 150.64 0.83 1.12 
19 Löcherenwald 1.09 -35.05 0.78 1.12 
20 Gängen 1.07 -9.20 0.78 1.07 
21 Oberalp Hütten 1.06 -58.36 0.78 1.69 
22 Oberalp Boden 0.73 243.84 0.72 1.62 
23 Schwarzenegg 1.04 109.40 0.74 1.06 
24 Schwarzenegg Hütten 0.99 36.01 0.84 1.14 
25 Schwarzenegg untere Hütten 1.08 91.56 0.67 0.74 
26 Masten 0.84 32.54 0.79 1.41 
27 Oberhalb Wald 0.97 72.85 0.58 0.65 
28 Unterhalb Wald 0.69 9.61 0.74 1.71 
29 Fällätschen 0.54 -2.71 0.64 2.46 
30 Unterhalb Fällätschen 0.67 0.26 0.74 2.18 
31 Hohfläschen_1 0.85 17.68 0.81 1.51 
32 Obere Hütten 1.12 -20.47 0.81 1.32 
33 Unterhalb Hütten 0.94 82.48 0.80 1.14 
34 Oberhalb Naturfreundehaus Hütten 0.88 87.59 0.79 1.00 
35 Naturfreundehaus Hütten 1.03 -151.03 0.71 2.22 
36 Unterhalb Naturfreundehaus Hütten 1.02 41.89 0.65 1.33 
37 Boden ob Gatter 0.88 25.61 0.71 1.08 
38 Aberligaden 1.01 34.59 0.71 0.74 
39 Ziggen 1.39 35.99 0.47 0.47 
40 Unteralten 1.78 17.71 0.39 0.23 
41 Seeende_2 0.94 68.51 0.83 0.90 
42 Rötstock 0.95 -0.66 0.87 1.30 
43 Rohr 1.05 90.76 0.53 0.39 
44 Hohfläschen_2 0.79 -50.42 0.68 1.65 
45 Blattli 1.14 -27.24 0.74 1.19 
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A4 Spatial Variation Compilations 

 

A 1: Boxplots of the maxSWE compiled for aspect and elevation, the left plot representing measurement stations in the lower 
elevation band (900-1500 m a.s.l.) and the right plot representing stations in the upper elevation zone (1500-1800 m a.s.l.). 

Each box represents the interquartile range, the solid horizontal line the median, and the whiskers extend to the most extreme 
data points within 1.5 times the IQR from the first and third quartile. Data points outside this range are considered outliers 

and are shown as individual points. 

 

 

A 2: Boxplots of the maxSWE compiled for aspect and slope. Above each plot the representative slope range is marked. Each 
box represents the interquartile range, the solid horizontal line the median, and the whiskers extend to the most extreme data 
points within 1.5 times the IQR from the first and third quartile. Data points outside this range are considered outliers and 

are shown as individual points. 
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A 3: Boxplots of the maxSWE compiled for slope and elevation, the left plot representing measurement stations in the lower 
elevation band (900-1500 m a.s.l.) and the right plot representing stations in the upper elevation zone (1500-1800 m a.s.l.). 

Each box represents the interquartile range, the solid horizontal line the median, and the whiskers extend to the most extreme 
data points within 1.5 times the IQR from the first and third quartile. Data points outside this range are considered outliers 

and are shown as individual points. 
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A5 Results Trend Analysis individual Stations 

T 4: Statistical results of the trend analysis for each individual measurement station. Including the Theil-Sen slope tau value 
and the MK-test p value regarding the statistical significance. 

 Station tau p_value 
1 Eggstofel -0.191 0.011 
2 Eggstofel-Boden -0.181 0.016 
3 Salzlecki -0.164 0.029 
4 Salzlecki-Bügel -0.181 0.016 
5 Heizlihöhe -0.217 0.004 
6 Heizlihöhe-Profil -0.180 0.017 
7 Heizlihöhe-Totalisator -0.180 0.017 
8 Tannstofel -0.187 0.013 
9 Mittl. Tannstofel -0.181 0.016 
10 Waldschneise -0.181 0.016 
11 Oberstock -0.180 0.017 
12 Stuckliwald -0.192 0.011 
13 Seeende_1 -0.183 0.015 
14 Aberenalp -0.106 0.161 
15 Rinderweid -0.180 0.017 
16 Lauibüel Hütte -0.191 0.011 
17 Lauibüel Totalisator W -0.187 0.013 
18 Lauibüel Totalisator S -0.186 0.013 
19 Löcherenwald -0.180 0.017 
20 Gängen -0.180 0.017 
21 Oberalp Hütten -0.170 0.024 
22 Oberalp Boden -0.184 0.015 
23 Schwarzenegg -0.214 0.004 
24 Schwarzenegg Hütten -0.187 0.013 
25 Schwarzenegg untere Hütten -0.176 0.019 
26 Masten -0.209 0.006 
27 Oberhalb Wald -0.206 0.006 
28 Unterhalb Wald -0.191 0.011 
29 Fällätschen -0.186 0.013 
30 Unterhalb Fällätschen -0.194 0.010 
31 Hohfläschen_1 -0.199 0.008 
32 Obere Hütten -0.201 0.007 
33 Unterhalb Hütten -0.179 0.018 
34 Oberhalb Naturfreundehaus Hütten -0.214 0.004 
35 Naturfreundehaus Hütten -0.217 0.004 
36 Unterhalb Naturfreundehaus Hütten -0.182 0.016 
37 Boden ob Gatter -0.184 0.015 
38 Aberligaden -0.191 0.011 
39 Ziggen -0.191 0.011 
40 Unteralten -0.180 0.017 
41 Seeende_2 -0.185 0.014 
42 Rötstock -0.188 0.013 
43 Rohr -0.192 0.011 
44 Hohfläschen_2 -0.174 0.021 
45 Blattli -0.188 0.013 
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A6 Plots Trend Analysis Groups 

 

A 4: The simulated median maxSWE for measurement stations with aspect N in black dots, and linear trend line (blue). 

 

 

A 5: The simulated median maxSWE for measurement stations with aspect E in black dots, and linear trend line (blue). 
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A 6: The simulated median maxSWE for measurement stations with aspect S in black dots, and linear trend line (blue). 

 

 

A 7: The simulated median maxSWE for measurement stations with aspect W in black dots, and linear trend line (blue). 
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A 8: The simulated median maxSWE for measurement stations with slope 5-10° in black dots, and linear trend line (blue). 

 

 

A 9: The simulated median maxSWE for measurement stations with slope 10-15° in black dots, and linear trend line (blue). 
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A 10: The simulated median maxSWE for measurement stations with slope 15-20° in black dots, and linear trend line (blue). 

 

 

A 11: The simulated median maxSWE for measurement stations with slope 20-25° in black dots, and linear trend line (blue). 
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