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Abstract 

 

 

Wildfires are becoming increasingly frequent and destructive, posing significant risks to 

ecosystems, human health, and infrastructure. Timely and accurate detection of wildfire smoke 

is crucial for early intervention, which can mitigate the devastating effects of these fires. This 

research explores the use of Unmanned Aerial Vehicles (UAVs) equipped with optical sensors 

and deep learning models, specifically YOLOv8, to detect wildfire smoke in challenging 

environments. The primary objective of this study is to evaluate whether optical sensors, when 

paired with YOLOv8, can provide a viable and cost-effective alternative to traditional thermal 

sensors for early smoke detection, particularly in areas with dense vegetation, rugged terrain, 

and varying environmental conditions. 

Field experiments were conducted in the Büelenwald region of Switzerland, where controlled 

wildfire scenarios were simulated to generate diverse smoke conditions. The YOLOv8 model, 

known for its real-time object detection capabilities, was trained and tested on this specialized 

dataset to assess its performance in detecting smoke at early stages. The study focuses on 

optimizing detection accuracy through various techniques, including multi-rotation image 

analysis, area thresholding, and fine-tuning of the detection algorithm. 

The findings suggest that optical sensors equipped with YOLOv8 can reliably detect smoke, 

offering significant advantages in terms of operational feasibility, speed, and cost-effectiveness 

compared to traditional thermal sensors. However, the study also highlights the limitations of 

optical sensors under certain conditions, such as low visibility and adverse weather. By 

examining the influence of environmental factors like weather, terrain, and vegetation on 

detection performance, the research provides valuable insights into improving the reliability of 

smoke detection systems. 

This research contributes to the development of advanced, real-time wildfire monitoring 

solutions, demonstrating the potential of UAVs, deep learning, and optical sensors in enhancing 

wildfire detection and management. The results offer a pathway for future applications in 

wildfire monitoring, providing scalable and adaptive detection strategies that can help mitigate 

the growing risks posed by wildfires. 



Table of Contents 

 

 

ABBREVIATIONS .................................................................................................................... I 

LIST OF FIGURES ................................................................................................................. III 

LIST OF TABLES .................................................................................................................... V 

1. INTRODUCTION ................................................................................................................. 1 

1.1 The Growing Threat of Wildfires ......................................................................................... 1 

1.2 Conventional Monitoring ..................................................................................................... 4 

1.3 UAVs Monitoring ................................................................................................................. 6 

1.3.1 Drones for Wildfire Detection ....................................................................................... 6 

1.3.2 Thermal vs Optical Cameras ......................................................................................... 8 

1.3.3 AI-Driven Detection .................................................................................................... 10 

1.4 Research Objectives ........................................................................................................... 13 

2. METHODS .......................................................................................................................... 15 

2.1 Data Collection .................................................................................................................. 15 

2.1.1 Test Site and Experimental Setup ................................................................................ 15 

2.1.2 Drone Flights and Products ......................................................................................... 17 

2.1.3 Operational Considerations ......................................................................................... 19 

2.2 Data Analysis ..................................................................................................................... 20 

2.2.1 YOLOv8 for Wildfire Detection ................................................................................. 20 

2.2.2 Simple Image Analysis ................................................................................................ 23 

2.2.3 Enhanced Image Analysis ........................................................................................... 25 

2.2.4 Algorithm Tuning Process ........................................................................................... 27 

2.3 Evaluation metrics ............................................................................................................. 30 

3. RESULTS ............................................................................................................................. 35 

3.1 Image Analysis ................................................................................................................... 35 

3.1.1 Simple Image Analysis ................................................................................................ 35 

3.1.2 Enhanced Image Analysis ........................................................................................... 36 

3.2 Algorithms Tuning Process ................................................................................................ 39 



 

3.3 Algorithms Tuning Evaluation ........................................................................................... 42 

3.3.1 At 2000x2000 Resolution ............................................................................................ 42 

3.3.2 Full Resolution ............................................................................................................ 44 

3.3.3 Comparison on external Dataset ................................................................................. 47 

4. DISCUSSION ...................................................................................................................... 49 

4.1 Image Analysis Review...................................................................................................... 49 

4.1.1 Simple Image Analysis ................................................................................................ 49 

4.1.2 Enhanced Image Analysis ........................................................................................... 50 

4.2 Tuning Process Review ...................................................................................................... 54 

4.3 Optimizing Early Wildfire Detection with UAVs and YOLOv8 ....................................... 57 

4.4 Methodological limitations and Operational Considerations ............................................ 59 

5. CONCLUSION AND OUTLOOK ...................................................................................... 63 

5.1 Restatement of the Research Problem ............................................................................... 63 

5.2 Summary of key findings ................................................................................................... 63 

5.2.1 Optical Sensors as a Viable Alternative to Thermal Sensors ...................................... 63 

5.2.2 YOLOv8 Performance, Image Resolution, and Enhancement Techniques................. 64 

5.2.3 Fine-tuning and the Challenges of Generalizing Smoke Detection ............................ 65 

5.2.4 Environmental Influences and Detection Trade-offs .................................................. 66 

5.3 Insight and Future Perspectives ......................................................................................... 67 

5.4 Final Remarks .................................................................................................................... 68 

6 LITERATURE ...................................................................................................................... 70 

7. APPENDICES...................................................................................................................... 78 

 

 



i 
 

Abbreviations 
 

 

AI  Artificial Intelligence 

AP  Average Precision 

BA  Balanced Accuracy 

CNN  Convolutional Neural Network 

DFL  Distribution Focal Loss 

FN  False Negative 

FP  False Positive 

GAN  Generative Adversarial Network 

GOES-16 Geostationary Operational Environmental Satellite 16 

GPU  Graphics Processing Unit 

GPS  Global Positioning System 

GRU  Gated Recurrent Unit 

IoT  Internet of Things 

IoU  Intersection over Unit 

IR  Infrared 

LSTM  Long Short-Term Memory 

LWIR  Long Wavelength Infrared 

MAP  Mean Average Precision 

MODIS Moderate Resolution Imaging Spectroradiometer 

MTG-l1 Meteosat Third Generation Imager 

MWIR  Middle Wavelength Infrared 

PAHs  Polycyclic Aromatic Hydrocarbons 

PM2.5  Particulate Matter 

PTSD  Post-Traumatic Stress Disorder 

RGB  Red Green Blue 

RGB-D Red Green Blue - Depth 

SAOP  Situation Assessment and Observation Planning 



ii 
 

SLF  Swiss Federal Institute for Snow and Avalanche Research 

SSD  Single Shot MultiBox Detector 

TN  True Negative 

TP  True Positive 

UAV  Unmanned Aerial Vehicle 

US  United States 

UZH  University of Zurich 

RNN  Recurrent Neural Network 

VIIRS  Visible Infrared Imaging Radiometer Suite 

WUI  Wildland-Urban Interface 

YOLO  You Only Look Once 

  



iii 
 

List of Figures 
 

 

1.1 Aerial view of a neighborhood of Santa Rosa, California, after the wildfires of 2017 

[Photo by Josh Fields on pexels.com] 

2.1 The SLF Test Site Büelenwald (highlighted in white), where the data collection 

campaign was conducted [Background image from Google Earth, © 2025 Airbus. 

Image reproduced in accordance with Google Earth’s terms of use] 

2.2 The Wingtra One Gen II drone employed for the data collection campaign 

2.3 Fire locations applied on the orthomosaic of the covered area obtained during Flight 1 

2.4 Fire locations applied on the orthomosaic of the covered area obtained during Flight 2 

and Flight 3 

2.5 Evolution of multiple evaluation metrics as a function of the number of training epochs 

on the D-Fire dataset obtained during the study conducted by Tleuliyev (2023) 

2.6 Segmentation example from a full resolution image (left) to 1000x1000 pixels segments 

(right) 

2.7 Example of a 1000x1000 pixels segment (left) and the detection result (right) after 

being processed through the YOLOv8 pretrained model 

2.8 Example of a 1000x1000 pixels segment (left) that gets first rotated in the 4 possible 

orientations (middle-left), all of them are processed to the pretrained YOLOv8 model 

and signed with or without detection (middle-right), finally based on how many 

orientations showed a positive detection the image is classified as containing or not 

containing smoke (right) 

2.9 Example of two 1000x1000 pixels segments (left) that show detection of smoke after 

being processed through the pretrained YOLOv8 model (middle) and then kept (above) 

or discarded (below) based on the area of the detection 

2.10 Example of a 1000x1000 pixels segment (left) that is first rotated in the 4 possible 

orientations (middle-left), then processed through the pretrained YOLOv8 model, and 

if enough orientations show smoke detection (middle-right) the area threshold is 

applied and the detection is either kept or discarded (right) 

2.11 Tuning and evaluation workflow for the first Tuning Phase (left), the second Tuning 

Phase (middle) and the third Tuning Phase (right) 

3.1 Values of diverse evaluation metrics across different resolutions for Flight 2 (left) and 

Flight 3 (right) during the Simple Image Analysis 

3.2 F2 Score for varying resolution and confidence level on Flight 2 (left) and Flight 3 

(right) during the Simple Image Analysis 



iv 
 

3.3 F2 Score for number of rotations showing detections on Flight 2 (left) and Flight 3 

(right) during the Enhanced Image Analysis 

3.4 F2 Score for different area thresholds on Flight 2 (left) and Flight 3 (right) during the 

Enhanced Image Analysis 

3.5 Values of diverse metrics across different enhancing methods for Flight 2 (left) and 

Flight 3 (right) during the Enhanced Image Analysis 

3.6 F2 Score for Combined Methodology compared to Original and Area Threshold on 

Flight 2 (left) and Flight 3 (right) during the Enhanced Image Analysis 

3.7 Training metrics obtained during the first Tuning Phase on Flight 2 

3.8 Training metrics obtained during the first Tuning Phase on Flight 3 

3.9 Training metrics obtained during the second Tuning Phase on Flight 2 

3.10 Training metrics obtained during the second Tuning Phase on Flight 3 

3.11 Training metrics obtained during the third Tuning Phase on Flight 2 and Flight 3 

3.12 Values of diverse metrics using the original model, the first tuned model and the second 

tuned model for Flight 2 (left) and Flight 3 (right) after the first and second Tuning 

Phases 

3.13 Comparison of F2 Score for Original Model, Tuning 1 and Tuning 2 on Flight 2 (left) 

and Flight 3 (right) at 2000x2000 pixel resolution after the first and second Tuning 

Phases 

3.14 Comparison of F2 Score for Tuning 2 and Tuning 2 + Rotation on Flight 2 (left) and 

Flight 3 (right) after the first and second Tuning Phases 

3.15 Values of diverse metrics using the original model, the first tuned model and the second 

tuned model for Flight 2 (left) and Flight 3 (right)  

3.16 Comparison of F2 Score for Original Model, Tuning 1 and Tuning 2 on Flight 2 (left) 

and Flight 3 (right) at full resolution after the first and second Tuning Phases 

3,17 Comparison of the results of the detection process on 3 consecutive Flight 3 images 

with the original algorithm (left) and the tuned T2 algorithm (right) 

3.18 Comparison of the results of the detection process on 3 others consecutive Flight 3 

images with the original algorithm (left) and the tuned T2 algorithm (right) 

4.1 Example of a false positive showing detection only in one of the four rotations (above) 

and a true positive showing detection in three out of four (below) 

4.2 Examples of false positives smaller area (above) compared to true positives bigger area 

(below) 

4.3 A false positive detected in the “Flame 2” dataset (Hopkins et al., 2023) by the tuned 

algorithm caused by the grey sky opposed to the green vegetation (left) and a segment 

of image used for the third phase of the tuning process that sees grey smoke opposed to 

green vegetation (right) 



v 
 

List of Tables 
 

 

2.1 Composition of the D-Fire Dataset employed for the training of the YOLOv8 

algorithm in the study conducted by Tleuliyev (2023) 

2.2 Datasets composition employed during the first Tuning Phase 

2.3 Datasets composition employed during the second Tuning Phase 

2.4 Datasets composition employed during the third Tuning Phase 

7.1 Simple Image Analysis results on Flight 2 for different resolutions and confidence 

levels 

7.2 Simple Image Analysis results on Flight 3 for different resolutions and confidence 

levels 

7.3 Enhanced Analysis Results on Flight 2 for the three different methods on segments of 

2000x2000 resolution and confidence level 0.2 

7.4 Enhanced Analysis Results on Flight 3 for the three different methods on segments of 

2000x2000 resolution and confidence level 0.2 

7.5 Tuned Models Performance on Flight 2 at resolution 2000x2000 for varying 

confidence levels 

7.6 Tuned Models Performance on Flight 3 at resolution 2000x2000 for varying 

confidence levels 

7.7 Tuned Models Performance on Flight 2 at full resolution for varying confidence levels 

7.8 Tuned Models Performance on Flight 3 at full resolution for varying confidence levels 

7.9 Performance of the Original YOLOv8 model (above), Tuned Model (middle) and 

their difference (below) in the evaluation metrics on the external dataset where red 

indicated worst and green better performances 

 



1 
 

1. Introduction 
 

 

1.1 The Growing Threat of Wildfires 

Wildfires are a complex and dynamic natural phenomenon, playing a critical role in shaping 

ecosystems by influencing vegetation patterns, nutrient cycling, and biodiversity (Akhloufi et 

al., 2021). Historically, wildfires have contributed to the resilience of many ecosystems, where 

periodic fires naturally clear underbrush, maintain soil fertility and open spaces for new 

vegetation growth (Benzerkri et al., 2020). However, the increasing frequency, size and 

intensity of wildfires are shifting this natural balance, resulting in extensive ecological and 

human impacts (Benzerkri et al., 2020). Factors such as climate change, land-use changes, and 

fire suppression practices have amplified the wildfire risk, causing fires to deviate from 

traditional, ecologically beneficial patterns toward more destructive outcomes (Barmpoutis & 

Stathaki, 2020; Benzerki et al., 2020). 

One of the most significant drivers of intensified wildfire activity is climate change (Aslan et 

al., 2019). Rising global temperatures have led to extended fire seasons, particularly in fire-

prone regions such as California (Boroujeni et al., 2024), Australia (Chuvieco et al., 2020), and 

the Mediterranean (Benzekri et al., 2020). In recent decades, these regions have experienced 

record-breaking fire seasons, with fires burning millions of hectares and causing unprecedented 

economic losses (Dimitropoulos et al., 2016). California’s extreme wildfire activity in 2017 

and 2018 resulted in $40 billion in damages and exposed millions to harmful air quality 

conditions, raising serious public health concerns (Boroujeni et al., 2024). Similarly, the 2025 

wildfires, particularly those in Los Angeles and surrounding areas, caused devastating 

economic losses estimated around $250 billions and forced the evacuation of over 180’000 

residents (Qiu et al., 2025). In southern Europe, intense fire seasons are increasingly common, 

with areas like Portugal and Greece experiencing some of the most destructive fires on record 

due to hotter, drier summers and changes in precipitation patterns (Benzekri et al., 2020). These 

shifts contribute to drier vegetation, a critical factor that makes landscapes more susceptible to 

ignition and rapid fire spread (Bouguettaya et al., 2022). 
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Figure 1.1: Aerial view of a neighborhood of Santa Rosa, California, after the wildfires of 2017 [Photo by Josh 

Fields on pexels.com] 

 

Wildfires also have deep and lasting consequences on soil health and ecosystem services, 

especially in forested and mountainous regions (Barmpoutis & Stathaki, 2020). The 

temperature and duration of fires substantially impact the post-fire recovery of soils, often 

leading to altered physical and chemical properties that affect soil fertility, water retention, and 

erosion rates (Barmpoutis et al., 2020). Intense fires can destroy organic matter in the soil, 

which is crucial for nutrient cycling and expose topsoil layers to erosion, further complicating 

the natural recovery process (Barmpoutis et al., 2020). In regions like the Alps, where slopes 

are steep and ecosystems unstable, such post-fire erosion can be especially damaging, creating 

downstream effects on freshwater systems due to ash and sediment runoff (Burke et al., 2021). 

Aquatic ecosystems are particularly vulnerable to these changes, as runoff can alter water 

chemistry, increase turbidity, and harm freshwater species, underscoring the connection of 

terrestrial and aquatic impacts in fire-affected regions (Akhloufi et al., 2021). 

Human factors, such as urban expansion into the wildland-urban interface (WUI), the zone 

where developed areas intermingle with natural landscapes, increase fire hazards and 

complicate management efforts (Barmpoutis & Stathaki, 2020). In the United States (US), the 

number of homes in high-risk fire zones has significantly grown, placing more structures and 

people in danger while driving up control costs as firefighting efforts prioritize private property 

protection (Barmpoutis et al., 2020). The expansion of the WUI has further contributed to the 
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rising costs on wildfire response, now reaching billions annually in fire-prone regions like the 

western US (Barmpoutis & Stathaki, 2020). 

The social and health impacts of wildfires are significant and far-reaching (Chuvieco et al., 

2020). Exposure to wildfire smoke, which contains harmful pollutants like polycyclic aromatic 

hydrocarbons (PAHs) and particulate matter (PM2.5), poses substantial health risks (Bailon-

Ruiz et al., 2022). These pollutants can aggravate respiratory conditions, contribute to 

cardiovascular issues and over time, increase cancer risk (Bailon-Ruiz et al., 2022). The 

smoke’s spread, reaching well beyond the immediate fire zones, has become a pressing 

environmental and health issue, with recent fires in North America affecting air quality 

thousands of kilometers away (Chen et al., 2018). This exposure has also been linked to mental 

health repercussions, with survivors often experiencing post-traumatic stress disorder (PTSD) 

and eco-anxiety due to the traumatic experience of fire-related displacement or property loss 

(Aslan et al., 2019). 

Despite the historical low wildfire activity in some regions, such as Switzerland’s Alpine areas, 

changing climate and land-use patterns are increasing fire propensity, highlighting the need for 

region-specific adaptation strategies (Wastl et al., 2013). Alpine regions are experiencing 

increased fire risks due to drier winters and summers, driven by climate warming and altered 

precipitation regimes (Wastl et al., 2013). Even in regions like the Swiss Alps, specific areas 

like Valais and Ticino face heightened fire risk due to local topography and climate 

(Schumacher et al., 2006). For example, Ticino, located south of the Alps, experiences a 

Mediterranean-influenced climate with dry winters, making it susceptible to wildfires, 

especially under strong wind conditions (Schumacher et al., 2006). In contrast, the inner Alpine 

valleys of Valais, sheltered from precipitation by surrounding mountains, also face heightened 

risk due to drying trends and land abandonment that leave vegetation unmanaged and prone to 

fire spread (Zumbrunnen et al., 2011). The CH2018 scenarios indicates that near-surface air 

temperature will rise in the summer months by 2.5°C to 4.5°C in comparison to today, showing 

up to a quarter less rainfall and making so the topic of wildfire monitoring of crucial relevance 

for the future of our region (Fischer et al., 2019). 

As climate change continues to intensify, future projections indicate that extreme fire seasons 

may become increasingly common worldwide, making effective fire management and 

mitigation critical (Chuvieco et al., 2020). However, current fire management practices face 

challenges due to the complexity of wildfire dynamics and regional differences in climate and 
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land use (Crowley et al., 2023). Additionally, socioeconomic factors such as population density 

and local economic activity, can variably impact fire risk, influencing factors like forest 

management, land use, and infrastructure investment (Chuvieco et al., 2020).  

 

1.2 Conventional Monitoring 

Conventional wildfire monitoring methods play a crucial role in mitigating the extensive 

impacts of wildfires on ecosystems, economies, and public safety. As wildfires contribute to 

significant carbon emissions and threaten biodiversity, the need for effective detection and 

response systems has grown, emphasizing the role of monitoring technologies in fire 

management strategies (Okoro et al., 2024). Several approaches, including satellite remote 

sensing, airborne monitoring, ground patrols, and ground-based sensor networks, have proven 

crucial in this field, each offering distinct advantages and facing individual limitations. 

Satellite-based remote sensing has become fundamental in wildfire management, providing a 

continuous overview of large geographic areas (Okoro et al., 2024). Since the early 1970s, 

when Landsat satellite data became available, satellites have enabled multitemporal and 

multispectral data analysis for pre-fire vegetation assessment, active fire detection, and post-

fire recovery mapping (Chuvieco et al., 2020). Systems such as the Moderate Resolution 

Imaging Spectroradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite 

(VIIRS), equipped with optical and thermal sensors, allow scientists and fire managers to 

monitor vegetation conditions, detect hotspots, and track fire spread (Kang et al., 2023). 

However, polar-orbiting satellites like MODIS and VIIRS revisit specific areas only once or 

twice daily, resulting in significant temporal delays in data collection (Kang et al., 2023). This 

limits their utility in wildfire events in near real-time, particularly during peak fire activity 

periods, which can delay timely decision-making and response efforts (Kang et al., 2023). 

To address these temporal limitations, geostationary satellites like the Geostationary 

Operational Environmental Satellite 16 (GOES-16) and the Meteosat Third Generation Imager 

(MTG-I1) provide near real-time updates every five to ten minutes, making them highly 

effective for monitoring active fires and detecting new ignitions across wide landscapes (Xu 

et. Al, 2021). However, the lower spatial resolution of geostationary satellites, typically around 

2 kilometers, reduces their sensitivity to smaller fires or fires within dense vegetation, 

potentially delaying initial detection (Bushnaq et al., 2021). Atmospheric interference further 

complicates satellite monitoring; cloud cover, humidity, and dust can obscure fire signals, while 
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sun-heated surfaces may trigger false alarms (Kang et al., 2023). These factors collectively 

limit the reliability of satellite data in regions with complex weather patterns, requiring 

satellite-based monitoring to be supplemented by other technologies for a more accurate and 

responsive fire management approach. 

Manned aircraft equipped with high-resolution thermal and optical cameras offer a flexible, 

high-resolution method for assessing fire characteristics, spread, and intensity in real time 

(Bailon et al., 2022). This capability is particularly useful for targeted monitoring in high-risk 

areas or when satellite data is insufficient. Airborne monitoring enables fire managers to gather 

precise data to inform immediate containment strategies, thus improving fire spread models 

(Thangavel et. al, 2022). However, the high operational costs associated with fuel, maintenance 

and specialized equipment, as well as the need for trained personnel, often restrict the 

deployment of aircraft to critical fire events (Crowley et al., 2023). Furthermore, environmental 

factors, such as flight range, duration and adverse weather conditions, limit the frequency and 

geographical reach of airborne monitoring (Crowley et al., 2023). These constraints, combined 

with safety risks during extreme fire conditions, make airborne monitoring an important yet 

resource-intensive part of wildfire management (Crowley et al., 2023). 

Ground patrols provide on-the-ground information about fire behavior and environmental 

conditions, often verifying satellite or airborne data (Syaufina et al., 2022). These patrols, 

usually conducted by trained personnel with mobile applications and Global Positioning 

System (GPS) devices, deliver localized data on fire intensity, spread, and fuel moisture 

(Syaufina et al., 2022). This real-time, high-precision data is crucial in assessing conditions 

that remote sensors may not capture, including local wind speed, humidity, and terrain features 

that influence fire dynamics (Syaufina et al., 2022). However, the possibility of ground patrols 

is limited by the time required to traverse rugged or extensive terrain, resulting in portions of 

fire-prone areas potentially remaining unmonitored, especially during peak fire seasons when 

personnel may be distributed across multiple areas (Syaufina et al., 2022). Logistical challenges 

and safety risks in active fire zones further hinder the coverage and efficiency of ground patrols, 

underscoring the need for complementary monitoring methods to provide broader spatial 

coverage (Crowley et al., 2023). 

High-resolution cameras, often set up on watchtowers, are progressively used for ground-based 

wildfire detection. These setups usually combine both optical and thermal imaging and are 

frequently paired with sensors to improve detection accuracy (Okoro et al., 2024). Combined, 
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these sensors can successfully identify early signs of fire, such as smoke and temperature 

increases, especially in close-proximity situations like buildings or small forested regions 

(Okoro et al., 2024). However, these systems are constrained by limited range and visibility, 

requiring careful positioning and many installations to monitor extensive forest areas 

effectively (Okoro et al., 2024). The costs of installing and maintaining such sensor networks 

can be quite high, especially for large or remote areas, making them less feasible as the primary 

monitoring approach for wide landscapes. (Bouguettaya et al., 2023) 

Each conventional wildfire monitoring method offers strengths and limitations. Satellite 

systems offer large-scale monitoring, while airborne observations provide targeted, high-

resolution data, and ground patrols deliver localized, real-time insights. Fixed terrestrial 

cameras add an additional layer of monitoring but require considerable investment to achieve 

widespread coverage. Together, these technologies contribute to a multi-tiered wildfire 

management approach that, despite constraints, enhances fire prevention, detection, and 

response capabilities, supporting broader efforts to moderate the extensive damage caused by 

wildfires. 

 

1.3 UAVs Monitoring 

1.3.1 Drones for Wildfire Detection 

The use of Unmanned Aerial Vehicles (UAVs) in wildfire detection and management has 

expanded significantly in recent years due to their versatility, cost-effectiveness, and ability to 

collect real-time data in otherwise inaccessible areas (Okoro et al., 2024). UAVs have become 

priceless for developing early fire detection, monitoring fire progression, and assessing post-

fire impacts, all of which are essential for mitigating the devastating social, economic, and 

environmental effects of wildfires (Akhloufi et al., 2021). 

One of the primary reasons UAVs have gained traction in wildfire management is their ability 

to operate in real time, providing continuous, high-resolution imagery and data on active fires 

(Bushnaq et al., 2021). Unlike satellites, which are limited by their orbit schedules and spatial 

resolution, UAVs can be deployed over specific zones of interest, capturing data on fire size, 

perimeter, and progression (Bailon et al., 2022). UAVs can be equipped with various sensors, 

including optical and infrared cameras, allowing them to capture thermal signatures and visible 

light data, which are crucial for assessing fire severity and predicting its spread (Boroujeni et 

al., 2024). The operational flexibility of UAVs is another advantage. They can be deployed by 
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a single operator and navigate complex terrains, reducing human exposure to hazardous 

conditions (Viseras et al., 2021). Furthermore, UAVs are less expensive to operate than 

helicopters or airplanes, making them an attractive option for budget-constrained fire 

management agencies (Akhloufi et al., 2021). 

The development of autonomous UAV fleets has further boosted their utility in wildfire 

management (Viseras et al., 2021). Coordinated UAVs working in swarms can cover large 

areas, enabling continuous monitoring across a fire’s span and supporting real-time data 

integration for extensive fire mapping (Okoro et al., 2024). Advances in machine learning and 

deep learning have increased the capacity of these fleets to operate autonomously and 

coordinate effectively (Okoro et al., 2024). These algorithms enable UAVs to navigate 

dynamically changing fire conditions, optimize their flight paths, and efficiently collect data 

with minimal human oversight (Okoro et al., 2024). The Situation Assessment and Observation 

Planning (SAOP) system, for instance, exemplifies how multiple UAVs can work in unison to 

generate fire maps and make predictive assessments of fire spread (Bailon et al,. 2022). 

Moreover, UAVs have proven valuable for pre-fire risk assessments and post-fire damage 

evaluations, complementing their active fire monitoring role. In pre-fire stages, UAVs help 

assess vegetation dryness, fuel load, and other environmental variables that influence fire risk, 

enabling more accurate predictions of fire-prone areas (Boroujeni et al., 2024). Post-fire, UAVs 

can survey the impacted areas to document ecological damage, soil erosion, and changes in 

vegetation, which informs recovery works and risk assessment for future fires (Akhloufi et al., 

2021). 

Despite their benefits, UAVs face technical and operational challenges. Flight duration and 

battery life remain limiting factors, especially for small UAVs tasked with extended missions 

(Boroujeni et al., 2024). Advances in battery technology and energy-efficient flight algorithms 

are actively addressing these limitations (Viseras et al., 2021). The need for real-time 

processing also places demand on UAVs' computational capabilities, often requiring on-board 

data processing or dependence on ground-based systems for processing large volumes of data 

(Okoro et. al, 2024). In addition, effective deployment of UAVs requires robust communication 

networks, particularly in remote areas where wildfire management is needed most. Integrating 

UAVs with Internet of Things (IoT) networks can improve their reach and functionality, 

enabling UAVs to serve as aerial data relays for ground-based sensors in difficult-to-access 

areas (Bushnaq et al., 2021). 
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UAVs have transformed wildfire management by enabling rapid, targeted, and flexible 

monitoring solutions (Bailon et al., 2022). Their ability to operate autonomously and deliver 

real-time data develops fire detection and monitoring, ultimately supporting more efficient and 

informed wildfire management (Viseras et al., 2021). As these technologies continue to evolve, 

the integration of UAVs with Artificial Intelligence (AI)-driven algorithms and IoT 

infrastructure promises to further boost the efficiency in wildfire management strategies, 

offering the opportunity for more adaptive and responsive fire monitoring systems (Bushnaq 

et al., 2021). 

 

1.3.2 Thermal vs Optical Cameras 

Thermal cameras have become an effective tool in various fields for detecting and analyzing 

heat patterns that are invisible to the human eye (Bouguettaya et al., 2022). By acquiring the 

infrared (IR) radiation emitted from objects, thermal cameras generate images based on heat 

signatures rather than visible light. These cameras, often operating within the Middle 

Wavelength InfraRed (MWIR, 3’000 to 5’000 nm) and Long Wavelength InfraRed (LWIR, 

8’000 to 14’000 nm) spectral ranges, have been proved useful in applications like firefighting, 

wildlife monitoring, search and rescue and industrial inspections (Bouguettaya et al., 2022). 

Thermal cameras offer several benefits that make them suitable for wildfire detection, 

especially when mounted on UAVs (Shamsoshoara et al., 2021). Unlike optical cameras, which 

rely on visible light, thermal cameras detect infrared radiation, allowing them to capture heat 

signatures regardless of lighting conditions. This capability enables UAVs to detect fires in 

low-visibility scenarios, such as darkness or smoke-filled environments, making them a 

powerful tool for continuous wildfire monitoring (Sousa et al., 2019).  Additionally, thermal 

cameras help distinguish fires from other visible elements that may mimic flames, such as 

sunlight reflections or red-colored objects (Sousa et al., 2019). UAV-mounted thermal cameras 

can scan large areas quickly and relay high-resolution thermal imagery, allowing firefighters 

to detect hotspots, track fire movement, and assess surrounding vegetation for potential risks. 

In recent studies, researchers like Shamsoshoara et al. (2021) have demonstrated the 

effectiveness of UAV-based thermal cameras in detecting early-stage fire outbreaks, which 

could significantly enhance early warning systems and facilitate rapid responses. 

Despite these advantages, thermal cameras also have limitations when employed for wildfire 

monitoring. One significant issue is that dense tree canopies can obstruct the view of ground-
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level heat sources, making it challenging to detect fires in forested areas. This limitation means 

that fires underneath thick foliage may not reach the thermal sensors on UAVs, potentially 

delaying detection until the flames breach the canopy or expand to exposed areas. Another 

challenge is distinguishing wildfire heat signatures from other naturally heated objects in the 

environment. During summer months, materials such as rocks or metal objects absorb 

considerable solar radiation, reaching temperatures high enough to produce misleading thermal 

signatures. These false positives can confuse fire detection, leading to inefficient deployment 

of firefighting resources.  

Optical cameras play a central role in wildfire monitoring by capturing images within the 

visible spectrum (400 to 700 nm). These cameras, also known as RGB cameras, are favored 

for their affordability, high spatial resolution, ease of use, and lightweight design, making them 

well-suited for small UAV platforms and low-cost applications in forestry (Chen et al., 2018). 

UAVs equipped with optical cameras can acquire high-resolution imagery, enabling the 

detection of smoke and flames in the early stages of a wildfire, mostly under favorable visibility 

conditions. These abilities make optical cameras valuable for a range of ecological monitoring 

tasks, including initial fire and smoke identification from the air (Barmpoutis et al., 2020). 

Optical cameras offer multiple benefits that have popularized their use in wildfire detection. 

Their high spatial resolution allows them to capture fine details, which can be critical for 

identifying early signs of wildfire spread. This detail is particularly advantageous for smaller 

UAVs engaged in forest monitoring and ecological studies (Barmpoutis et al., 2020). Advances 

in optical camera technology have further enhanced their functionality. For example, CMOS 

360° cameras mounted on UAVs, as explored by researchers like Barmpoutis & Stathaki 

(2020), provide an expansive field of view, overcoming the limited range of traditional optical 

sensors and reducing the need for multiple cameras to achieve comprehensive area coverage. 

Additionally, RGB-D cameras, combining visible spectrum imaging with depth sensing, add 

another layer of data, allowing UAVs to estimate the height and extent of flames, as 

demonstrated in wildfire studies by Novac et al. (2020). Their capability to capture fine details 

makes them particularly effective in spotting early fire indicators, such as smoke plumes 

emerging from beneath tree canopies, where thermal imaging might fail to detect ground-level 

hotspots. 

Despite these advantages, optical cameras on UAVs face considerable limitations in wildfire 

monitoring. Their dependence on visible light restricts their effectiveness in low-visibility 

scenarios, such as nighttime or dense smoke conditions, making them inadequate for 
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continuous monitoring in challenging environments. Detecting fires in densely forested areas 

is also problematic, as heavy canopy cover can obstruct views of flames and smoke, preventing 

UAV-mounted optical cameras from accurately identifying ground-level fire activity. 

Environmental factors such as sunlight angles, cloud cover, and shadows can further 

complicate image analysis, creating false positives or obscuring actual fire signatures (Govil et 

al., 2020). Optical cameras alone are not sufficient for comprehensive wildfire detection, 

especially in low-visibility circumstances. In contrast, thermal cameras excel in detecting 

active flames and heat signatures regardless of lighting conditions. Consequently, an integrated 

approach combining both thermal and optical sensors is needed for a more robust and reliable 

wildfire monitoring system. By leveraging the strengths of each technology, UAV-based 

wildfire detection can achieve greater accuracy, earlier detection, and improved situational 

awareness for firefighters and emergency responders. 

 

1.3.3 AI-Driven Detection 

Computer vision, which provides machines with the ability to visually interpret environments, 

has become a keystone in the application of UAVs for early wildfire detection (Novac et al., 

2020). Two primary methods dominate computer vision approaches to wildfire detection: 

traditional machine learning and deep learning. Traditional machine learning techniques focus 

on extracting key features manually, relying on color transformations and predefined 

characteristics (Badmouths et al., 2020). However, these methods require extensive expert 

input for feature selection and often do not perform optimally in complex wildfire 

environments, such as dense forests, where flames or smoke may be obscured by vegetation or 

affected by background noise (Jadon et al., 2019). 

In contrast, deep learning techniques use powerful neural networks to automate feature 

extraction, an innovation made possible by progresses in Convolutional Neural Network 

(CNN) architectures and enhanced hardware like Graphics Processing Units (GPUs), along 

with software platforms like TensorFlow and PyTorch (Badmouths et al., 2020). Today, deep 

learning models can address the complex patterns in composite images and are widely applied 

in image processing tasks across diverse fields, from self-driving vehicles (Totakura et al., 

2021) to plant disease identification (Saleem et al., 2019). In wildfire detection, deep learning 

has excelled by overcoming traditional methods' limitations, processing complex variations in 

visual data such as shifting lighting conditions, occlusions from dense tree canopies, and 
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varying fire appearances, ultimately enabling UAVs to detect fires with greater precision (Lee 

et al., 2017). Deep learning algorithms have transformed UAV-based wildfire detection due to 

their ability to adapt to variations in the visual characteristics of flames and smoke (Zhao et al., 

2018). In wildfire scenarios, CNNs are particularly well-suited for the challenges of aerial 

imagery due to their capacity to capture detailed spatial features even in complex, chaotic 

scenes. For instance, CNNs have proven effective for detecting both flames and smoke, which 

are critical visual cues in identifying early fire stages (Bouguettaya et al., 2022). While some 

studies prioritize flame detection for its direct association with fire (Goyal et al., 2020), others 

focus on smoke, which can indicate fire even in dense, forested environments where flames 

may be hidden (Zhang et al., 2016). Recent research suggests that models capable of detecting 

both flame and smoke simultaneously are better suited for real-world applications, as this dual 

focus helps address detection gaps that arise when relying on only one feature (Hossain et al., 

2020). 

Wildfire detection via deep learning can be divided into three core methods: image 

classification, object detection, and semantic segmentation, each offering specific strengths in 

different wildfire monitoring contexts: 

Image classification models categorize input images into predefined classes, such as fire versus 

non-fire. CNNs are the preferred architecture due to their capability to handle high-dimensional 

data, accurately extracting meaningful features from 2D images (Novac et al., 2020). Lee et al. 

(2017) used AlexNet, GoogLeNet, and VGG-Net on UAV imagery, achieving accuracy rates 

of 94.8% to 99%, underscoring CNNs' effectiveness in distinguishing fire from non-fire 

images. Although highly accurate, image classification can struggle with smaller fire features, 

which may limit its application in early detection scenarios where fire starts as small spots 

(Novac et al., 2020). 

Object detection algorithms go beyond classification by identifying the location of fire features 

within images, drawing bounding boxes around flames or smoke (Solovyev et al., 2021). This 

spatial data is crucial for situational awareness, enabling responders to assess fire spread more 

accurately. Object detection methods are split into two categories: two-stage models, such as 

R-CNN (Region-based CNN), which segment images in multiple steps, and single-stage 

models, like You Only Look Once (YOLO) and Single Shot MultiBox Detector (SSD), which 

process images in one pass, optimizing for speed (Yadav, 2020). YOLO, has gained popularity 

for wildfire detection due to its real-time capabilities; YOLOv2, for instance, demonstrated 
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98.3% accuracy and 99.14% F1-score in a study on smoke detection from UAV imagery 

(Yadav, 2020). These results highlight YOLO’s efficacy for rapid-response applications, 

allowing responders to access critical fire data without delay. 

For tasks requiring pixel-level precision, semantic segmentation models classify each pixel in 

an image, which allows for detailed mapping of fire, smoke, and vegetation (Bouguettaya et 

al., 2022). Unlike object detection that uses bounding boxes, semantic segmentation assigns 

each pixel to a class, making it more suitable for complex wildfire scenes where fire contours 

are essential. DeepLab and U-Net are commonly used architectures in segmentation tasks, with 

DeepLabV3+ showing success in separating fire and smoke pixels from background vegetation 

in UAV imagery (Barmpoutis et al., 2020). In addition to CNNs, advanced architectures like 

Recurrent Neural Networks (RNNs) and Generative Adversarial Networks (GANs) have 

introduced new dimensions to wildfire detection (Benzekri et al., 2020). RNNs, particularly 

Long Short-Term Memory (LSTM) networks, manage temporal dependencies in video data, 

adding a memory component useful for tracking fire progression across frames (Bouguettaya 

et al., 2022). Benzekri et al. (2020) applied RNN models to sensor data from forest monitoring 

networks, achieving up to 99.89% accuracy with Gated Recurrent Unit (GRU) and LSTM 

models, which underscores the potential of RNNs in sequential data analysis for active fire 

monitoring. 

GANs, on the other hand, have become crucial for data augmentation in deep learning, creating 

synthetic wildfire images to supplement limited datasets (Aslan et al., 2019). These synthetic 

images aid in training robust models that can generalize better across diverse wildfire scenarios. 

Aslan et al. (2019) employed GANs to generate realistic fire images for training, showing the 

potential of this technique to reinforce model performance in low-data environments (Aslan et 

al., 2019). As wildfires are unpredictable and data collection can be challenging, GANs provide 

a practical solution for enhancing dataset size and diversity. 

Despite the advances, deep learning approaches face challenges, particularly in complex 

wildfire scenarios. UAV imagery often encounters issues such as variations in smoke and flame 

appearance, occlusions from trees or structures, and changing light conditions throughout the 

day (Badmouths et al., 2020). Furthermore, segmentation models require extensive 

computational resources for training and inference, making real-time application challenging 

in remote or resource-limited settings (Bouguettaya et al., 2022). The choice of architecture, 

training dataset, and feature extraction techniques must be carefully considered to optimize 
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model performance while minimizing processing time and computational load (Zhang et al., 

2016). 

Deep learning-based computer vision has expanded the capabilities of UAVs in wildfire 

management, with each method offering specific advantages. While CNN-based models are 

prevalent for accurate classification and detection, advanced architectures like RNNs and 

GANs provide new paths for handling dynamic data and increasing model robustness. By 

combining these methods within UAV frameworks, researchers and practitioners can address 

the urgent need for early wildfire detection and response in a way that is both precise and 

adaptive to complex, real-world conditions. 

 

1.4 Research Objectives 

This research aims to investigate whether optical sensors, when paired with the YOLOv8 deep 

learning model, can serve as a solid complementary source to thermal sensors for early smoke 

detection in wildfire scenarios. While numerous smoke detection algorithms already exist, 

including those based on thermal sensing, optical imagery, and even multispectral data, this 

study will evaluate and improve upon these methods by testing their performance in 

challenging field conditions. 

The idea for this study stems from a suggestion by Schutz & Rettung Zürich, who, considering 

the limitations of thermal sensors in the region due to environmental factors such as dense 

vegetation, rugged terrain, and varying weather conditions, proposed evaluating the 

effectiveness of optical sensors as an alternative. This study aims to assess the efficiency of 

optical sensors, particularly in environments where thermal sensors face challenges. To this 

end, UAV-based flights have been organized to collect data, which will then be employed in 

this research to explore the potential of optical sensors. 

Specifically, this research explores whether the combination of optical sensors and YOLOv8 

can overcome the limitations of thermal sensors, especially in environments characterized by 

dense vegetation, rugged terrain, and varying environmental conditions. YOLOv8 will be 

employed to assess its potential in detecting smoke at the earliest possible stages of a wildfire, 

with the goal of minimizing fire spread and reducing its devastating impacts on the 

environment and human populations. 
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In addition to evaluating the optical sensor-YOLOv8 combination, this study will consider the 

influence of environmental factors such as weather conditions, terrain type, and vegetation 

density on smoke detection performance. These factors often complicate the detection process, 

and their interaction with both the sensor and model could significantly affect detection 

timeliness and accuracy. Understanding how these elements influence the system will provide 

insights into strategies for improving detection reliability in real-world wildfire scenarios. 

Moreover, this research will refine existing smoke detection methods by optimizing smoke 

detection approaches to enhance reliability and reduce false positives. Given the challenges in 

smoke detection, particularly in dynamic and unpredictable natural environments, this study 

will apply a series of advanced image processing techniques, such as multi-rotation analysis, 

area thresholding, and algorithm fine-tuning, to improve the accuracy and specificity of smoke 

detection. These enhancements aim to ensure that the detection system is not only accurate but 

also robust enough to handle the complexities of wildfire scenarios. 

The research will explore the following key questions: 

R1: Can optical sensors equipped on UAVs, when paired with YOLOv8, provide a reliable and 

efficient alternative to thermal sensors for early wildfire smoke detection in complex, 

vegetation-dense environments? What are the strengths and limitations of these methods? 

R2: What methods, technologies, or approaches can be employed to optimize the quality of 

smoke detection in complex wildfire scenarios, enhancing reliability and reducing false 

positives? 

R3: In what real-world scenarios can the combined use of optical sensors and YOLOv8-based 

detection systems be most effectively applied, and what potential benefits could this approach 

offer in terms of early detection, cost-efficiency, and operational feasibility? 

This investigation will provide valuable insights into the feasibility of optical sensors as a 

complementary tool for wildfire detection. By combining optical sensing technology with 

advanced machine learning models, this study will contribute to improve the scalability and 

cost-effectiveness of wildfire detection systems, potentially leading to more efficient and 

responsive wildfire monitoring. The results will help shape more adaptive wildfire 

management strategies, which are essential for mitigating the risks posed by increasingly 

frequent and severe wildfire events worldwide. 
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2. Methods 
 

 

2.1 Data Collection 

2.1.1 Test Site and Experimental Setup 

The data collection for this study has been conducted in the Büelenwald, in the Dischma Valley, 

located in the Davos area of Switzerland highlighted in Figure 2.1. This region is part of a 

testing zone supervised by the Swiss Federal Institute for Snow and Avalanche Research (SLF) 

and spans elevations between 1550 and 2150 meters above sea level. The presence of 

challenging mountainous terrain and dense vegetation typical of high-altitude forests makes it 

an ideal location for simulating wildfire scenarios. The site is selected for its relevance to real-

world regions prone to wildfires, as its diverse topography and vegetation types closely 

resemble areas vulnerable to forest fires globally. The high-altitude setting also introduces 

atmospheric factors, such as variable wind currents and light scattering, which can influence 

smoke dispersal and visibility, providing valuable data for refining smoke detection algorithms 

under complex conditions. 

 

Figure 2.1: The SLF Test Site Büelenwald (highlighted in white), where the data collection campaign was 

conducted [Background image from Google Earth, © 2025 Airbus. Image reproduced in accordance with 

Google Earth’s terms of use] 
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Three flights were conducted over 2 days, with carefully designed experimental setups that 

involved controlled fire scenarios to simulate different wildfire smoke conditions. These fire 

configurations produced a range of smoke densities, from low-density plumes to more 

concentrated smoke clouds. This variation was important for gathering diverse data, allowing 

for thorough evaluation of the algorithm's performance under different smoke intensities. By 

simulating realistic wildfire scenarios and creating repeatable conditions, the experiment aimed 

to test the model’s ability to detect smoke in various behaviors, setting the stage for both initial 

assessments and future refinements of the smoke detection system. 

The Wingtra One Gen II drone visible in Figure 2.2, equipped with a Sony RX1R II camera, 

was used for high-resolution data collection, capturing 42-megapixel images ideal for 

documenting environmental features and smoke dispersion. The camera’s high spatial 

resolution enabled precise identification of smoke plumes, even in areas with obstructing 

elements like trees and dense foliage. This detailed imagery was needed for analyzing smoke 

movement and dispersion, particularly in complex terrains with limited visibility. Additionally, 

the consistency and quality of the images ensured reliable data for algorithm development and 

testing, supporting the fine-tuning of smoke detection under varying conditions, including 

fluctuating visibility, lighting, and atmospheric effects. Such precision is crucial for real-world 

wildfire monitoring, where accurate, real-time data is essential. 

 

Figure 2.2: The Wingtra One Gen II drone employed for the data collection campaign 
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2.1.2 Drone Flights and Products 

The first flight, conducted on the 7th of June 2024, served as an introductory field experiment 

to evaluate the initial conditions for smoke detection. During this flight, three small fires were 

ignited at the locations represented in Figure 2.3 across the Büelenwald area. These controlled 

fires, monitored and extinguished by three individuals, were intentionally spaced to produce 

distinct smoke plumes within the coverage area, allowing the drone to capture varying smoke 

patterns in a single flight. While the smoke was intentionally kept at controllable volumes for 

clarity in initial algorithm testing, the amount produced was limited, and consequently, its 

visibility was minimal in the collected data. Despite the limited effectiveness for evaluating the 

algorithm, this first flight provided crucial insights, revealing the need for adjustments to 

optimize experimental conditions for better smoke production. 

This initial session resulted in the acquisition of 1 orthomosaic and 533 orthophotos, 

documenting smoke dispersal patterns, fire locations, and surrounding vegetation. While these 

images were not directly used for algorithm evaluation, they placed the foundation for 

improving the flight setup for future tests. 

 

Figure 2.3: Fire locations applied on the orthomosaic of the covered area obtained during Flight 1 
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Developing on the insights from the first flight, the second flight, conducted on the 27th of 

August 2024, adopted a more refined approach. The area for the drone overflight represented 

in Figure 2.4 was reduced compared to the first flight, allowing for a higher density of data. 

This flight saw three fires ignited, with two individuals assigned to each fire to increase the 

volume and continuity of smoke. The additional workforce facilitated the smoke management, 

ensuring substantial and continuous smoke plumes that could be captured from various angles 

and altitudes. Focusing on a smaller area allowed for two separate flights on the same day, 

effectively doubling the volume of data captured. The second flight generated 1 orthomosaic, 

544 orthophotos, and 544 raw JPG images.  

Later on, the same day, the third flight reflected the conditions of the second flight, ensuring 

additional data capture in the same controlled area. The purpose was to provide an extended 

dataset, ensuring that the results were comparable across multiple instances, and to analyze the 

algorithm's performance under repeated, consistent conditions. As in the second flight, the third 

flight produced 1 orthomosaic, 544 orthophotos, and 544 raw JPG images, reinforcing the 

dataset's redundancy and consistency. This extended dataset allowed for a deeper analysis of 

the smoke detection model’s stability and performance when exposed to similar conditions 

across both data collection instances. 

 

Figure 2.4: Fire locations applied on the orthomosaic of the covered area obtained during Flight 2 and Flight 3 
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The inclusion of raw JPG images as a product during Flight 2 and Flight 3 was intentional, as 

the orthophotos and orthomosaics had limitations in capturing smoke in the desired detail for 

the specific analysis goals. The orthophotos, due to the applied geometric correction, disrupted 

the structural continuity of the smoke plume, making it difficult to assess the smoke's extent 

accurately. The orthomosaic, which involves the merging of multiple captures, often led to the 

cancellation or distortion of the smoke plume, creating noise that hindered clear identification. 

These raw JPG images provide a more layered and varied view of the smoke patterns, 

contributing to a more detailed and precise assessment of the dispersal. Additionally, raw JPG 

images are the most likely format to be used in real-time detection scenarios, making them 

particularly suitable for rapid analysis and decision-making in wildfire monitoring. 

 

2.1.3 Operational Considerations 

To guarantee the safety and efficiency of the experiments, protocols were implemented 

throughout each phase of data collection. These protocols were designed not only to safeguard 

participants but also to maintain the integrity and validity of the data. Local authorities and 

residents were informed of the planned flights and controlled fires in advance, ensuring that 

any concerns about smoke sightings were addressed. This active communication helped 

minimize potential disturbances and confusion among the public, inducing an environment of 

transparency and cooperation. 

Each flight was supervised by Dr. Yves Bühler, Group Leader in Alpine Environment and 

Natural Hazards at the Swiss Federal Institute for Snow and Avalanche Research (SLF). Dr. 

Bühler’s knowledge in environmental safety and hazard management ensured that the 

experiments followed the safety standards. His supervision was fundamental for maintaining 

high levels of data integrity and environmental conformity throughout the testing process. 

Moreover, Dr. Bühler’s involvement allowed for real-time adjustments to the flight plans and 

data collection methods, particularly with regard to managing environmental factors such as 

wind, temperature and humidity, which could influence the visibility of smoke and the quality 

of the data collected. The successful execution of the controlled fires was made possible thanks 

to the assistance of Dr. Portenier, as well as volunteers from both SLF and the University of 

Zurich (UZH). Their involvement in the ignition, monitoring, and safe extinguishing of the 

fires ensured that the experimental conditions were carefully controlled, producing the 

necessary smoke volumes for data collection. These operational considerations underscore the 

critical importance of guaranteeing safety and maintaining controlled conditions when 
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collecting quality data. The research team’s collaboration with local authorities and the 

contributions of Dr. Portenier and the volunteers were very important in conducting the 

experiments smoothly, without causing undue alarm to the community. This careful planning 

and coordination reflect the study’s commitment to responsible and ethical data collection 

practices, ensuring that the testing procedures aligned with both scientific and social 

responsibility standards. 

The strategy employed in the data collection resulted in a comprehensive dataset. This is 

essential for developing and refining an advanced UAV-based smoke detection algorithm, 

capable of detecting smoke in complex, real-world conditions. By conducting flights under a 

range of managed variables, the team was able to create a dataset that will serve as the 

foundation for assessing the algorithm’s ability to perform reliably in a real world scenario. 

The consistency of conditions across flights, coupled with the controlled variability in smoke 

production, will provide a solid basis for evaluating the model’s performance. 

 

2.2 Data Analysis 

2.2.1 YOLOv8 for Wildfire Detection 

YOLO is a real-time object detection framework that offers an ideal balance between high 

detection accuracy and rapid processing speed, making it one of the most widely adopted 

models in the field of computer vision (Jiang et al., 2024). Introduced by Redmon (2016), 

YOLO revolutionized object detection by implementing a single-pass detection method, 

enabling the analysis of entire images in one forward pass of a CNN. This single-pass approach 

differentiates YOLO from traditional models that rely on region proposals or multi-stage 

processing, which can be slower and more computationally demanding (Redmon, 2016). In 

YOLO, an image is divided into a grid, with each cell responsible for predicting bounding 

boxes and class probabilities for detected objects in real time (Terven et al., 2023). This grid-

based structure allows YOLO to accomplish notable speed, making it ideal for applications 

requiring real-time detection, such as autonomous driving, surveillance, and wildfire 

monitoring (Saydirasulovich et al., 2023). One of YOLO’s key advantages is its ability to 

rapidly detect objects without compromising on accuracy. This balance between speed and 

precision has been progressively refined in subsequent versions, with YOLOv3 incorporating 

multi-scale prediction layers to improve detection performance, especially for smaller objects 

at varying scales (Casas et al., 2024). The evolution of YOLO continued with YOLOv4 and 
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YOLOv5, each introducing significant architectural developments, novel loss functions, and 

evolved data augmentation techniques (Casas et al., 2024). These improvements have 

reinforced both the accuracy and flexibility of YOLO across diverse contexts and hardware 

environments. For example, YOLOv4 integrated data augmentation and bag-of-freebies 

techniques to boost performance without increasing inference time, making the model 

particularly suitable for environments with limited processing power (Jiang et al., 2022). 

YOLOv5 further increased the model’s usability by offering multiple sizes, allowing users to 

adapt YOLO to specific hardware resources, from compact edge devices to high-capacity 

GPUs (Diwan et al., 2023). One of the most notable strengths of YOLO is its adaptability across 

different hardware environments and its capacity to be fine-tuned on domain-specific datasets 

(Jiang et al., 2024). Through transfer learning, YOLO can be customized to specialized tasks, 

such as smoke detection in wildfire monitoring. This malleability enables YOLO to achieve 

high accuracy even in challenging conditions by learning to recognize tricky features that might 

be overlooked by more general models (Jiang et al., 2024). As a result, YOLO not only 

improves detection accuracy but also reduces false positives (Terven et al., 2023). Its success 

stems from its speed, accuracy, and scalability, keeping it at the forefront of computer vision 

(Terven et al., 2023). With each iteration improving on the last, YOLO remains a key tool for 

fast, reliable object recognition across diverse applications (Redmon, 2016). 

To enhance wildfire detection capabilities, a pretrained version of YOLOv8 was employed in 

this study, specifically adapted and fine-tuned on a specialized dataset to improve its ability to 

detect smoke and fire. The model was trained by Tleuliyev (2023) using the D-Fire dataset 

exposed in Table 2.1, which contains around 21,000 labelled images with bounding box 

annotations for both smoke and fire. Although the D-Fire dataset includes both smoke and fire 

labels, our study focused exclusively on detecting smoke, as it is typically the first visible sign 

of a potential wildfire. 
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Table 2.1: Composition of the D-Fire Dataset employed for the training of the YOLOv8 algorithm in the study 

conducted by Tleuliyev (2023) 

Number of images Number of bounding boxes 
Category # Images Class # Bounding boxes 
Only fire 1'164 Fire 14'692 

Only smoke 5'867 Smoke 11'865 
Fire and smoke 4'658   

None 9'838   
 

Prior to the training, a custom configuration file was created to optimize key model parameters 

specifically for smoke detection. Hyperparameters, such as learning rate, batch size, and the 

number of epochs, were carefully selected to optimize the model's architecture for precise 

smoke and fire detection. Parameters like confidence threshold and Intersection over Union 

(IoU) were also chosen to enhance sensitivity and precision, which are crucial for minimizing 

false positives. The training was conducted over approximately 130 epochs, ensuring the model 

achieved convergence at an optimal level of accuracy. This extent provided enough time for 

the model to stabilize, preventing overfitting while enabling it to learn a strong representation 

of smoke features. Monitoring logs and convergence graphs during the training process 

confirmed that the model was on track to meet its target accuracy, as showed by the training 

metrics in Figure 2.5. 

 

       Figure 2.5: Evolution of multiple evaluation metrics as a function of the number of training epochs on the       

D-Fire dataset obtained during the study conducted by Tleuliyev (2023) 
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After training, the model's accuracy was carefully evaluated using metrics such as Precision, 

Recall, F1-score, and Mean Average Precision (mAP) at an IoU threshold of 0.50 (mAP50). 

These metrics, described in section 2.3, were helpful in verifying the model's ability to 

consistently detect smoke while minimizing false positives. Notably, the nano version of 

YOLOv8 achieved an mAP50 of 0.79 on the test set, demonstrating its ability to accurately 

detect smoke even in challenging environmental contexts. The efficiency of the nano model 

makes it particularly suitable for UAV deployment, where computational resources are limited 

but high detection accuracy remains essential, making it the best choice for our study case. 

This trained YOLOv8 model, specifically focused on smoke and fire detection, serves as the 

foundation for the wildfire detection methodology implemented in this study and will be the 

starting point to evaluate and trying to improve its performance in a real case wildfire detection 

scenario. This targeted approach will try to maximize the model's accuracy and efficiency for 

early intervention in wildfire management. 

 

2.2.2 Simple Image Analysis 

An initial analysis was performed using the raw JPG images collected during Flights 2 and 3. 

The main objective was to evaluate the performance of the pretrained YOLOv8 model across 

different image resolutions, as resolution can significantly impact the accuracy of smoke 

detection. Three resolution levels were selected for the analysis: the original full-resolution 

images at 7952x5304 pixels, segmented images at 2000x2000 pixels, and further segmented 

images at 1000x1000 pixels. 

To create the lower-resolution images, a custom segmentation process was developed using 

Python. This process involved dividing each full-resolution image into square sections of 

2000x2000 and 1000x1000 pixels. This segmentation pictured in Figure 2.6 allowed for the 

isolated analysis of smaller regions within the larger image, potentially highlighting smoke 

more effectively by focusing on specific areas and minimizing irrelevant background details. 

However, due to the nature of the segmentation, exceptions were made for sections at the image 

boundaries, specifically the rightmost column and bottom row, where the segmented sections 

were smaller and irregular in size. 
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Figure 2.6: Segmentation example from a full resolution image (left) to 1000x1000 pixels segments (right) 

 

The pretrained YOLOv8 model was used for this first analysis whose process is depicted in 

Figure 2.7. As part of YOLOv8's standard preprocessing pipeline, all images were 

automatically resized to 640x640 pixels while being input into the model. 

Along with testing different image resolutions, the analysis also involved adjusting the 

confidence threshold across a range from 0.1 to 0.9. The confidence threshold is a key 

parameter in YOLOv8 that determines the minimum level of certainty required for an object to 

be classified as detected. Lower thresholds make the model more tolerant in identifying 

potential smoke regions, which can be useful for detecting faint or partially obscured smoke. 

On the other hand, higher thresholds demand greater certainty, reducing false positives but 

possibly leading to missed detections, especially if the smoke is less pronounced. By 

systematically adjusting the confidence threshold, the analysis aimed to identify the optimal 

setting for each resolution, balancing detection accuracy with the trade-offs between false 

positives and false negatives. This inclusive approach sought not only to determine the best 

confidence level for reliable detection but also to assess whether image segmentation and 

resolution adjustments could simplify the model’s task by isolating the most relevant portions 

of the image. Ultimately, the goal was to identify the ideal combination of image resolution 

and confidence threshold that maximized YOLOv8’s performance in smoke detection within 

dense, forested environments. This layered analysis, varying both resolution and confidence 

threshold, should provide valuable insights into how segmentation and resolution scaling affect 

the effectiveness of smoke detection.  
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Figure 2.7: Example of a 1000x1000 pixels segment (left) and the detection result (right) after being processed 

through the YOLOv8 pretrained model 

 

2.2.3 Enhanced Image Analysis 

Building on the results from the initial analysis, two additional methods were introduced to 

improve detection accuracy: a multi-rotation process and an area threshold filter. Each method 

was tested individually to assess its impact on detection performance, and then both methods 

were combined to evaluate their joint efficiency. These methods were applied to the resolution 

and confidence level identified as optimal during the initial Simple Image Analysis. 

The first enhancement involves applying a multi-rotation process to each image before 

analysis, as showed in Figure 2.8. Since smoke detection can be influenced by the orientation 

of the image, each image was rotated into four distinct orientations (0°, 90°, 180°, and 270°) 

to determine whether examining multiple perspectives improves the model's ability to detect 

smoke. Each rotated version was then analyzed using the pretrained YOLOv8 model. 

During the analysis, each rotated image was evaluated individually, and the model recorded the 

number of orientations in which smoke was detected. This counting process provided insights 

into the consistency of smoke detection across different orientations. If multiple orientations 

detect smoke, it suggests stronger confidence in the detection’s validity. In contrast, if only one 

or none of the rotations yield detections, it may suggest that the initial detection was weak or a 

false positive. This approach provides a more comprehensive analysis and helps determine 

whether multi-rotation improves the model's reliability in identifying smoke. 
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Figure 2.8: Example of a 1000x1000 pixels segment (left) that gets first rotated in the 4 possible orientations 

(middle-left), all of them are processed to the pretrained YOLOv8 model and signed with or without detection 

(middle-right), finally based on how many orientations showed a positive detection the image is classified as 

containing or not containing smoke (right) 

 

The second enhancement involves applying an area threshold filter to the detections, setting a 

minimum size for each detected object to be considered valid. This thresholding method is 

particularly useful for filtering out smaller, irrelevant objects that might be misclassified as 

smoke due to their size and shape. By focusing only on detections that meet the predefined 

minimum area, this approach aims to increase accuracy by eliminating false positives often 

caused by small objects or background elements that resemble smoke. 

The area threshold was first tested independently of the multi-rotation method to assess its 

isolated impact on detection accuracy. Smoke clouds typically occupy a significant portion of 

the image; therefore, setting a minimum area requirement allows the model to discard 

detections that are too small to represent actual smoke as showed in Figure 2.9. This is 

particularly helpful in complex environments where natural objects like rocks, shadows, or 

foliage might resemble smoke-like features at a smaller scale. By establishing a minimum area, 

the model focuses on larger shapes that are more likely to represent real smoke clouds, thus 

reducing noise and improving accuracy. 

 

Figure 2.9: Example of two 1000x1000 pixels segments (left) that show detection of smoke after being processed 

through the pretrained YOLOv8 model (middle) and then kept (above) or discarded (below) based on the area of 

the detection 
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After evaluating each enhancement method independently, the area threshold was combined 

with the multi-rotation process. For each rotated orientation, the area threshold was applied 

after the YOLOv8 model processed the image, ensuring that only those detections meeting both 

the minimum area requirement and the orientation criteria were retained. By combining these 

methods, the process leverages both orientation diversity and size filtering to enhance detection 

reliability. 

This combined approach showed in Figure 2.10 ensures that only valid detections, based on 

both orientation and area, are counted, ultimately improving the accuracy and consistency of 

smoke identification. The area threshold serves as a filtering tool that complements the multi-

rotation method, refining the detection results by removing detections that do not meet the 

necessary criteria. Together, these two methods offer a potential strategy for improving 

YOLOv8’s smoke detection capabilities. 

 

Figure 2.10: Example of a 1000x1000 pixels segment (left) that is first rotated in the 4 possible orientations 

(middle-left), then processed through the pretrained YOLOv8 model, and if enough orientations show smoke 

detection (middle-right) the area threshold is applied and the detection is either kept or discarded (right) 

 

2.2.4 Algorithm Tuning Process 

To improve the YOLOv8 model's ability to detect smoke in complex forest environments, three 

fine-tuning phases were implemented. Each phase was designed to progressively enhance the 

model’s ability to generalize smoke detection and minimize false positives. These fine-tuning 

phases were conducted separately for datasets derived from two distinct training flights, 

ensuring that each model was adapted to its respective environmental conditions and 

perspectives. 

The first phase of the tuning process focused on refining the model's foundational detection 

capabilities using the original datasets from Flight 2 and Flight 3 exposed in Table 2.2, 

supplemented with targeted data augmentations. The augmentation process involved selecting 
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smoke images and applying rotation in four possible directions to simulate different UAV 

perspectives. For the non-smoke images, no rotation was applied, as their diversity already 

provided enough variation for the training process. The goal of this phase was to enhance the 

model’s initial ability to detect smoke while minimizing the false positives caused by specific 

environmental features. The parameters used for the tuning process involved 50 epochs, early 

stopping patience of 10 epochs and 320x320 resolution for the input images, which were 

resized to balance computational efficiency with the need for sufficient detail. After this initial 

fine-tuning, the two separate models were evaluated. The model tuned with Flight 2 data was 

tested using images from Flight 3, and vice versa. This approach ensured that each model was 

not evaluated on the dataset it was tuned on, providing a realistic assessment of its performance 

on data from a different flight. 

Table 2.2: Datasets composition employed during the first Tuning Phase 

 

 

In the second phase, the original model was tuned and tested in a similar way to the first phase. 

However, this time, the model was tuned on an extended dataset, where the smoke images were 

augmented by flipping (both vertically and horizontally), effectively tripling the number of 

images containing smoke. The non-smoke images were augmented by rotating them in four 

orientations, which quadrupled the size of this dataset portion as visible in Table 2.3. This 

expansion aimed to provide a broader set of variations to further refine the model’s 

performance. 

To increase the quality of the fine-tuning process, several parameters were adjusted. The 

number of epochs was increased to 100, with a patience parameter of 20 epochs for early 

stopping to ensure that the model had ample time to converge effectively. The input resolution 

for images remained at 320x320 pixels to maintain uniformity and balance training speed with 

model accuracy. These changes aimed to improve the model’s ability to generalize, reducing 

both false positives and false negatives, while ensuring that the model could detect smoke 

across specific scenarios and environmental conditions. After tuning, the models were again 

Smoke No Smoke Smoke No Smoke
Training 209 354 198 309

Validation 60 96 63 77
Testing 23 40 16 41

Total 292 490 277 427

Flight 2 Flight 3
First Tuning Datasets
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evaluated on a separate flight dataset, the model trained on Flight 2 data was tested on Flight 

3, and vice versa. 

Table 2.3: Datasets composition employed during the second Tuning Phase 

 

 

The third phase shifted the approach by combining the extended datasets from both Flight 2 

and Flight 3, resulting in a single Combined Tuning Dataset. This dataset represented in Table 

2.4 included all the augmented images from both datasets of the second phase, providing a 

richer and more diverse training set for improved fine-tuning. The training was conducted using 

the same parameters as in the second phase to maintain consistency. 

Because both Flight 2 and Flight 3 were used in the combined dataset, the model could no 

longer be tested on an independent flight dataset. Instead, the final algorithm was evaluated on 

the “Flame 2” dataset created with images of smoke and non-smoke scenes that were captured 

with the use of UAVs (Hopkins et al., 2023). This external dataset was specifically chosen to 

assess how well the model could generalize to new scenarios within the UAV-specific context. 

To evaluate the impact of the tuning, the performance of the final model was compared with 

that of the original YOLOv8 model. This comparison allowed for a detailed assessment of 

whether the tuning process improved the model’s ability to detect smoke in real-world different 

wildfire detection scenarios, specifically from the UAV perspective. 

Table 2.4: Datasets composition employed during the third Tuning Phase 

 

Smoke No Smoke Smoke No Smoke
Training 636 1406 492 1153

Validation 169 398 174 327
Testing 71 156 73 131

Total 876 1960 831 1708

Extended Tuning Datasets
Flight 2 Flight 3

Training
Validation

Testing
Total 1707 3668

1128
343
144

2559
725
287

Combined Tuning Dataset
Flight 2 + Flight 3

Smoke No Smoke
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These three phases formed a systematic approach to develop the YOLOv8 model’s reliability 

for UAV-based smoke detection. The workflow of the three distinct phases is represented in 

Figure 2.11. 

   

Figure 2.11: Tuning and Evaluation Workflow for the first Tuning Phase (left), the second Tuning Phase 

(middle) and the third Tuning Phase (right) 

 

2.3 Evaluation metrics 

To assess the performance of each model in detecting smoke, a range of evaluation metrics 

were calculated. These metrics provide insights into the model’s accuracy, precision, 

sensitivity, specificity, and other key performance indicators, helping to determine its reliability 

and effectiveness. 

 

1. Analyzed: This represents the total number of images analyzed, which serves as the 

baseline for calculating various metrics. 

 

2. No Smoke / Smoke: These columns indicate the number of images classified as 

containing no smoke versus those containing smoke, providing an overview of the 

dataset’s composition during evaluation. 

 

3. True Positives (TP): The number of images correctly identified as containing smoke. 

This metric reflects the model’s ability to accurately detect smoke when it is present. 
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4. False Positives (FP): The number of images incorrectly classified as containing smoke 

when there is none. False positives indicate instances where the model falsely detects 

smoke, impacting its precision. 

 

5. True Negatives (TN): The number of images correctly identified as not containing 

smoke. True negatives represent cases where the model accurately recognizes the 

absence of smoke. 

 

6. False Negatives (FN): The number of images that contain smoke but were incorrectly 

classified as not containing it. False negatives reflect instances where the model fails to 

detect smoke, impacting its sensitivity. 

 

7. Accuracy: This metric is calculated as the ratio of correctly classified images (both true 

positives and true negatives) to the total number of images (Casas et al, 2023). Accuracy 

provides an overall measure of the model’s performance: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝐴𝑛𝑎𝑙𝑖𝑧𝑒𝑑
 

 

8. Precision: Precision, also known as Positive Predictive Value, is the ratio of true 

positives to the sum of true positives and false positives (Casas et al, 2023). It indicates 

how reliable the model’s positive smoke detections are: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

9. Sensitivity (Recall): Also called Recall or True Positive Rate, sensitivity measures the 

model’s ability to correctly detect all instances of smoke. It is the ratio of true positives 

to the sum of true positives and false negatives (Swift et al., 2020): 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(Casas et al, 2023) 

(Casas et al, 2023) 

(Swift et al., 2020) 
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10. Specificity: Specificity, or True Negative Rate, is the ratio of true negatives to the sum 

of true negatives and false positives (Swift et al., 2020). It measures the model’s ability 

to correctly identify non-smoke images: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

11. Balanced Accuracy (BA): Balanced Accuracy is the average of sensitivity and 

specificity, providing a balanced view of the model’s performance in detecting smoke 

and non-smoke cases, especially useful in datasets with imbalanced classes (Brodersen, 

2010): 

𝐵𝐴 =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 

 

12. F1 Score: The F1 Score is the harmonic mean of precision and sensitivity (Zhao & Li, 

2020). It is a useful metric when there is an uneven class distribution and helps to 

balance false positives and false negatives (Zhao & Li, 2020): 

𝐹1 = 2𝑥
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑥𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

 

13. F2 Score: Similar to the F1 Score, the F2 Score also combines precision and sensitivity, 

but it gives more weight to sensitivity (Prasetiyo et al., 2021). This is useful when it is 

more important to capture all instances of smoke, even at the cost of some false 

positives: 

𝐹2 =
5𝑥𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑥𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

4𝑥𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

 

14. Box Loss: Box loss is a measure of how well the predicted bounding boxes match the 

ground truth bounding boxes (Wang et al., 2022). It typically involves calculating the 

difference between the predicted and actual coordinates (center, width, and height) of 

(Swift et al., 2020) 

(Brodersen, 2010) 

(Zhao & Li, 2020) 

(Prasetiyo et al., 2021) 
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the bounding box (Wang et al., 2022). A lower box loss means more accurate 

localization of the detected object. 

 

15. Class Loss: Class loss is used to assess how well the model classifies the objects within 

the detected bounding boxes. It calculates the error between the predicted class 

probabilities and the actual class labels for the detected object (Wu et al., 2022). This 

is typically measured using cross-entropy loss for classification tasks (Wu et al., 2022). 

 

16. DFL Loss (Distance-Intersection over Union Loss): DFL loss is an advanced loss 

function used to improve bounding box localization by evaluating the distance between 

the predicted and ground truth bounding boxes based on their overlap (IoU) (Li et al., 

2021). It encourages better localization of the detected objects and is particularly useful 

in complex detection tasks (Li et al., 2021). 

 

17. mAP50 (mean Average Precision at IoU threshold 50%): mAP50 is the average 

precision computed at a fixed Intersection over Union (IoU) threshold of 50% (Zhu et 

al., 2020). This metric evaluates how well the model can detect objects by calculating 

precision and recall at the 50% IoU threshold, where a detection is considered correct 

if the predicted bounding box overlaps the ground truth by at least 50% (Zhu et al., 

2020). 

 

18. mAP50-95 (mean Average Precision at IoU thresholds from 50% to 95%): mAP50-95 

is the mean of average precision scores calculated at multiple IoU thresholds, ranging 

from 50% to 95%, usually in increments of 5% (Reis et al., 2023). This metric provides 

a more comprehensive evaluation of the model’s performance across different levels of 

overlap between predicted and actual bounding boxes, highlighting the model’s ability 

to detect objects with higher precision at varying thresholds (Reis et al., 2023). 

 

These metrics collectively provide a complete evaluation of each model’s performance, 

offering insights into both its strengths and weaknesses in smoke detection. By examining these 
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metrics, we can understand the trade-offs involved in tuning for sensitivity against precision 

and assess how well the model balances these metrics across different scenarios. 
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3. Results 

 

 

3.1 Image Analysis 

3.1.1 Simple Image Analysis 

The results of the Simple Image Analysis shown in Figure 3.1 display the values of various 

evaluation metrics in relation to the three different resolutions employed during the analysis of 

Flight 2 and Flight 3.  

Using lower resolutions than the original images significantly increases the number of false 

positives, which rise from a few dozen to over a thousand, as well as true positives, which 

increase from just a few to several dozen in both flights. This trend is clearly influenced by the 

greater number of images analyzed resulting from the segmentation process, and thus requires 

the evaluation of normalized parameters. The accuracy value is slightly lower during the 

analysis of full-resolution images compared to lower resolution segments, while specificity 

shows little variation, consistently ranging between 0.92 and 0.96. Precision results are 

inconsistent between the two flights: in Flight 2, recision is higher when analyzing 2000x2000 

resolution images, while in Flight 3, precision is higher when analyzing full-resolution images. 

However, the increase in sensitivity is clear, as both flights show much higher values for 

segmented images, with sensitivity rising from values below 0.1 to above 0.4 in the case of the 

1000x1000 resolution images in Flight 3. The same trend is observed for F1 and F2 scores, 

which are significantly lower for full-resolution images and higher when using the 2000x2000 

resolution segments. 

 

Figure 3.1: Values of diverse evaluation metrics across different resolutions for Flight 2 (left) and Flight 3 

(right) during the Simple Image Analysis 
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The graphics in Figure 3.2 integrate the confidence level, along with resolution, as a parameter 

for determining F2. It is evident that the trend is similar for both flights. Using a low confidence 

level leads to higher F2 values, which consistently decrease as the confidence level increases. 

However, using excessively low confidence levels, such as 0.1, results in a drastic drop in F2 

values for both flights. In most cases, segments with a resolution of 2000x2000 provide the 

best F2 results at the same confidence level when compared to other resolutions. The peak 

performance for both flights is achieved when using a confidence level of 0.2, applied to the 

2000x2000 resolution segments. These results make the use of these two parameters a starting 

point for attempting to improve the current F2 value during the subsequent Enhanced Image 

Analysis. 

 

Figure 3.2: F2 Score for varying resolution and confidence level on Flight 2 (left) and Flight 3 (right) during 

the Simple Image Analysis 

 

3.1.2 Enhanced Image Analysis 

Figure 3.3 shows the F2 value as a function of the minimum number of image rotations 

analyzed that contain smoke detections. In the case of Flight 2, using a threshold of 1 results in 

a lower F2 value compared to the original one, while thresholds of 2, 3, and 4 increase it. The 

threshold of 3 provides the best results, peaking at around 0.25, nearly double the initial F2 

value. For Flight 3, similar results are observed. With thresholds of 1 or 2, the F2 values are 

lower than the original one, but they increase with thresholds of 3 or 4. Once again, the peak is 

reached with a threshold of 3, which shows around a 50% increase in the F2 value compared 

to the original. Therefore, 3 seems to be the ideal minimum number of rotations presenting 

detections required to achieve the best performance in our specific case study. 
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Figure 3.3: F2 Score for number of rotations showing detections on Flight 2 (left) and Flight 3 (right) during 

the Enhanced Image Analysis 

 

Figure 3.4 shows the different F2 values obtained in both flights as a function of the area 

threshold applied. In the case of Flight 2, the F2 value increases steadily until reaching 500’000 

pixels, where it drops sharply and then remains at values similar to or lower than the original. 

For Flight 3, the trend is similar, with the F2 value increasing as the area threshold rises, 

peaking at 500’000 pixels. After this point, the trend reverses, leading to a continuous decrease 

in F2. These results suggest that a minimum area threshold of approximately 400’000-500’000 

pixels is the ideal value for achieving the best performance in our specific case study. 

 

Figure 3.4: F2 Score for different area thresholds on Flight 2 (left) and Flight 3 (right) during the Enhanced 

Image Analysis 

 

Figure 3.5 compares the results of various metrics using the original model, multi-rotation, area 

threshold, and the combined method. It is evident that each method leads to a significant 

reduction in the number of false positives in both flights, dropping from over 400 to values 

ranging from 63 with the combined method in Flight 3 to 116 with the multi-rotation and 

combined methods in Flight 2. The number of true positives always decreases compared to the 
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original method, with the loss of correct detection of a number of images ranging from 1 to 5 

units, depending on the method used. 

The accuracy and specificity values show only a slight increase compared to those obtained 

during the original analysis. Sensitivity decreases slightly with all methods, but precision 

improves significantly, especially with the multi-rotation and combined methods, increasing 

from an F2 value of around 0.05 to over 0.2 with the combined method in Flight 3. The F1 and 

F2 scores improve compared to the original with all methods, achieving the best performance 

with the combined method in both flights. 

 

Figure 3.5: Values of diverse metrics across different enhancing methods for Flight 2 (left) and Flight 3 (right) 

 

Figure 3.6 graphically represents the F2 value as a function of the area threshold used and the 

method applied. Using the area threshold method alone does not lead to significant 

performance improvements. This changes when the combined method is used, where the area 

threshold and multi-rotation are combined, resulting in a notable increase in F2. In the case of 

Flight 2, a clear peak is observed with an area threshold of 0 pixels, indicating that the simple 

application of the multi-rotation method yields the best results. F2 remains higher compared to 

the original method and the area threshold alone, until a threshold of around 700’000 pixels. A 

similar trend is observed in Flight 3, where again, the combination of the area threshold up to 

300’000 pixels and the multi-rotation method yields the highest F2 values. 
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Figure 3.6: F2 Score for Combined Methodology compared to Original and Area Threshold on Flight 2 (left) 

and Flight 3 (right) during the Enhanced Image Analysis 

 

3.2 Algorithms Tuning Process 

The values obtained during the first tuning phase are shown in Figure 3.7 for Flight 2 and 

Figure 3.8 for Flight 3. The top row presents values for the training sub dataset, while the 

bottom row shows values for the evaluation sub dataset, allowing us to assess whether 

performance improvements are generalizable to the entire dataset. In both flights, for the first 

three columns on the left indicating the loss metrics, we observe a constant decrease in values, 

while in the two columns on the right, there is an increase as the number of epochs grows. This 

indicates a tuning process that is enhancing the quality of the detection, increasing the mAP50-

95 values from around 0.1 at the beginning to over 0.3 in Flight 3 and more than 0.4 in Flight 

4. 

 

Figure 3.7: Training metrics obtained during the first Tuning Phase on Flight 2 
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Figure 3.8: Training metrics obtained during the first Tuning Phase on Flight 3 

 

The same trend becomes even more evident during the second tuning phase with the use of the 

extended training datasets, shown for Flight 2 in Figure 3.9 and for Flight 3 in Figure 3.10. The 

increased number of epochs for this training phase allows for a clearer view of the correct 

tuning process. A strong and consistent decrease is observed in the loss metrics in the 3 columns 

on the left. Additionally, as in the previous tuning phase, we have an increase in the values in 

the two rightmost columns, with the mAP50-95 value rising from around 0.2 at the start of the 

process to nearly 0.5 at the end. 
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Figure 3.9: Training metrics obtained during the second Tuning Phase on Flight 2 

 

Figure 3.10: Training metrics obtained during the second Tuning Phase on Flight 3 

 

The same trend is observed during the third tuning phase, performed with the combined 

datasets, as shown in Figure 3.11. This time, the tuning process lasts for a total of 100 epochs, 

allowing for better convergence of the metric values toward the desired results. Once again, we 

observe a significant decrease in the loss metrics in the three leftmost columns and an increase 

in the metrics in the two rightmost columns, where the mAP50-95 value rises from the initial 

0.2 to nearly 0.5, indicating a much more accurate classification. 
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Figure 3.11: Training metrics obtained during the third Tuning Phase on Flight 2 and Flight 3 

 

3.3 Algorithms Tuning Evaluation 

3.3.1 At 2000x2000 Resolution 

The results shown in Figure 3.12 compare the outcomes obtained from the original model and 

those of the models developed during the first (T1) and second (T2) tuning phases.  

The number of false positives decreases significantly, dropping from over 400 with the original 

model to a few dozen with the T1 and T2 models. The number of true positives also improves, 

increasing from 27 initially to 39 with T2 in Flight 2, and from 23 to 40 with T2 in Flight 3. 

Accuracy and specificity also show substantial improvement, rising from initial values near 0.9 

to values approaching 1 with T1 and T2. A noticeable further increase is observed in precision, 

which rises from around 0.05 in the original model to nearly 0.85 with T2 in both flights, as 

well as in sensitivity, which increases from 0.3 initially to around 0.4 with T1 and 0.5 with T2. 

The best results obtained by the tuned models across various metrics are reflected in the F1 and 

F2 scores, with F2 rising from an initial 0.33 to 0.53 with T2 in Flight 2, and from 0.15 to 0.58 

with T2 in Flight 3. T1 and T2 clearly outperform the original model across all evaluation 

metrics, with T2 providing better results than T1. 
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Figure 3.12: Values of diverse metrics using the original model, the first tuned model and the second tuned 

model for Flight 2 (left) and Flight 3 (right) after the first and second Tuning Phases 

 

The graphical representation in Figure 3.13 shows the F2 values as a function of the confidence 

level and the model used. The two flights exhibit very similar results, with higher F2 values 

observed when using low confidence levels, ranging from 0.1 to 0.3, and values that 

significantly decrease as the confidence level increases. Additionally, for the same confidence 

level, it is evident that T1 always provides higher results compared to the original model, and 

T2, in turn, offers better results than T1. 

 

Figure 3.13: Comparison of F2 Score for Original Model, Tuning 1 and Tuning 2 on Flight 2 (left) and Flight 3 

(right) at 2000x2000 pixel resolution after the first and second Tuning Phases 

 

Figure 3.14 shows the F2 values when the multi-rotation method is applied to the T2 model. In 

this case, the F2 value obtained using this method does not show a significant increase when 

compared to the original model. For Flight 2, using thresholds of 1 or 2 results in a slight 

increase in F2, while thresholds of 3 or 4 lead to values lower than the original. For Flight 3, 

once again, with a threshold of 1, we observe a slightly higher F2 value compared to the original 

model, but values decrease when using a minimum of 2, 3, or 4 orientations presenting 

detections. 
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Figure 3.14: Comparison of F2 Score for Tuning 2 and Tuning 2 + Rotation on Flight 2 (left) and Flight 3 

(right) 

 

3.3.2 Full Resolution 

Figure 3.15 shows the metrics obtained after analyzing the full-resolution images using the 

original model, T1, and T2. As with the 2000x2000 resolution, the T1 and T2 models result in 

a significant reduction in false positives in both flights, decreasing from several dozen to zero 

in the case of T2. True positives also increase substantially, rising from a few to 8 in Flight 2 

and 16 in Flight 3. Accuracy and sensitivity slightly improve compared to the original model 

when using T1 and T2, reaching values very close to 1. Precision also improves dramatically, 

increasing from 0.03 in the original model to 1.00 for T2 in Flight 2, and from 0.09 to 1.00 in 

Flight 3. The best detection and classification capabilities are also reflected in the F1 and F2 

values, with F2 rising from 0.02 in the original model to 0.15 for T2 in Flight 2, and from 0.06 

in the original model to 0.36 for T2 in Flight 3. 

 

Figure 3.15: Values of diverse metrics using the original model, the first tuned model and the second tuned 

model for Flight 2 (left) and Flight 3 (right) 

 

The graphical representation in Figure 3.16 shows the F2 value as a function of the confidence 

level and the model used for the analysis. In this case, the results obtained in the two flights 
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differ, with Flight 3 generally showing higher F2 values. As in the case of the 2000x2000 pixel 

segments, lower confidence levels also yield better results for full-resolution images. The 

highest F2 values are achieved with a confidence level between 0.1 and 0.3, while higher 

confidence levels lead to a decrease in performance. Once again, the tuned models offer better 

results compared to the original model, with T1 outperforming the original model and T2 

further improving and significantly increasing the results obtained by T1. 

 

Figure 3.16: Comparison of F2 Score for Original Model, Tuning 1 and Tuning 2 on Flight 2 (left) and Flight 3 

(right) at full resolution 

 

The improved detection capabilities of the T2 algorithm compared to the original algorithm 

can be seen in Figure 3.17. Although in the second frame the smoke is identified with a lower 

confidence level by the T2 algorithm compared to the original, using the tuned algorithm we 

are also able to correctly identify the smoke in the first and third images. 
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Figure 3.17: Comparison of the results of the detection process on 3 consecutive Flight 3 images with the 

original algorithm (left) and the tuned T2 algorithm (right) 

 

The same improvement in performance can also be seen in Figure 3.18, where again the results 

comparing the detection of the original algorithm and the tuned T2 algorithm are displayed. In 

this case, the original algorithm was not able to correctly identify smoke in any of the 3 different 

images. In contrast, the tuned T2 algorithm is able to identify smoke correctly in all 3 images 

considered. 
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Figure 3.18: Comparison of the results of the detection process on 3 others consecutive Flight 3 images with the 

original algorithm (left) and the tuned T2 algorithm (right) 

 

3.3.3 Comparison on external Dataset 

Figure 3.19 shows the difference in evaluation metrics by subtracting the results obtained from 

the model of the third tuning phase (T3) from those of the original model, providing an 

overview of the differences between the two models. First, it is clear that no single model 

consistently outperforms the other across all confidence levels. The original model achieved 

better results primarily with lower confidence levels such as 0.1 and 0.2, as well as higher 

levels between 0.6 and 0.8, where the difference in F2 values becomes significant, ranging 

from -0.065 to -0.077. On the other hand, the T3 model performs better with confidence levels 
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of 0.4 and 0.5, as well as at 0.9, where a much larger number of images are correctly classified 

as positive. 

 

Figure 3.19: Difference in evaluation metrics as a function of confidence level obtained by subtracting those of 

the original algorithm from those obtained from the tuned algorithm T3, where blue indicates better 

performance and red worse. 

  

Δ TP FP TN FN Accuracy Precision Sensitivity Specificity BA F1 F2

> 0.1 -14 94 -94 14 -0.020 -0.019 -0.003 -0.219 -0.111 -0.011 -0.006

> 0.2 -41 29 -29 41 -0.013 -0.006 -0.008 -0.067 -0.038 -0.007 -0.008

> 0.3 -59 8 -8 59 -0.013 -0.002 -0.012 -0.019 -0.015 -0.007 -0.010

> 0.4 -27 -5 5 27 -0.004 0.001 -0.006 0.012 0.003 -0.002 -0.004

> 0.5 -26 -4 4 26 -0.004 0.001 -0.005 0.009 0.002 -0.002 -0.004

> 0.6 -142 -1 1 142 -0.027 0.000 -0.029 0.002 -0.013 -0.016 -0.024

> 0.7 -361 0 0 361 -0.068 0.000 -0.074 0.000 -0.037 -0.048 -0.065

> 0.8 -382 0 0 382 -0.072 0.000 -0.078 0.000 -0.039 -0.070 -0.077

> 0.9 572 0 0 -572 0.108 0.000 0.117 0.000 0.059 0.195 0.140
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4. Discussion 
 

 

4.1 Image Analysis Review 

4.1.1 Simple Image Analysis 

The segmentation process used during the analysis allowed YOLOv8 to improve its 

performance. Although the number of false positives increased, the higher number of true 

positives led to a greater sensitivity and consequently a better F2 score. In our specific case, 

the 1000x1000 resolution achieved better results compared to the original resolution, but the 

high number of false positives caused by the loss of image context made the detection process 

less ideal. The 2000x2000 resolution, on the other hand, provided the best results, maintaining 

a low number of false positives while identifying smoke clouds that were too small to be 

properly detected in the original resolution images. A similar approach was explored by Ozge 

Unel et al. (2019), who addressed the challenge of small object detection in remote sensing 

imagery by segmenting high-resolution images into smaller patches. This strategy enabled the 

detection system to focus on localized regions where small objects, such as pedestrians or 

vehicles, were more likely to appear (Ozge Unel et al., 2019). By processing these smaller 

image patches rather than the entire high-resolution image at once, their model demonstrated a 

notable improvement in detection accuracy (Ozge Unel et al., 2019). This image tiling 

technique significantly enhanced the model's ability to identify small objects that could have 

otherwise been missed in a full-resolution analysis (Ozge Unel et al., 2019). This approach 

aligns with the segmentation strategy used in this study, reinforcing the effectiveness of 

dividing images into smaller sections to improve detection performance in complex 

environments. 

The choice of confidence level also plays a critical role in the model’s performance. As the data 

suggests, lower confidence levels increase the model’s sensitivity by detecting a larger portion 

of the smoke signals, including those that are faint or partially obscured. However, this increase 

in sensitivity comes with a significant rise in false positives, where non-smoke features are 

incorrectly identified as smoke. On the other hand, raising the confidence threshold reduces 

false positives and improves precision. At higher confidence thresholds, precision can reach its 

peak, indicating that all detections are accurate. However, this comes at the expense of 
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sensitivity, as the model becomes more conservative and misses several weak or faint smoke 

signals, which are often the earliest indicators of a potential wildfire. 

This trade-off between precision and sensitivity has been widely acknowledged in object 

detection research. In a study by Mukhiddinov et al. (2023), a similar effect was observed when 

varying the confidence thresholds in a wildfire smoke detection system using UAV imagery. 

They found that lowering the threshold increased sensitivity, enabling the detection of more 

faint smoke signals, but also led to a significant increase in false positives (Mukhiddinov et al., 

2023). On the other hand, raising the threshold improved precision, reducing false positives 

but missing early-stage smoke that could be critical for timely wildfire intervention 

(Mukhiddinov et al., 2023). These findings align with our observations, suggesting that the 

optimal balance between sensitivity and precision is crucial for effective detection systems, 

particularly in real-time applications. Further supporting this, Gonçalves et al. (2023) evaluated 

YOLO-based models for detecting smoke and wildfires in both ground and aerial images, 

highlighting the trade-off between sensitivity and precision as confidence levels were adjusted. 

Their study confirmed that lower confidence thresholds result in more true positives but at the 

cost of increased false positives, which can overwhelm the model (Gonçalves et al., 2023). 

Conversely, higher thresholds were shown to reduce false positives and improve precision, but 

this made the system less sensitive to early, subtle signs of smoke, a finding that parallels our 

results, particularly with the drop in sensitivity at higher confidence thresholds (Gonçalves et 

al., 2023). Additionally, a broader study by Hao et al. (2022), while not focused specifically on 

smoke detection, examined the impact of image quality and the distance of objects on object 

detection performance. Their findings validated our results by showing that adjusting the 

confidence threshold influences detection accuracy, where lower thresholds increase sensitivity 

and allow for the detection of smaller objects but at the cost of false positives (Hao et al., 2022). 

This suggests that for wildfire detection, especially in dynamic environments, sensitivity may 

need to be prioritized, at least in the early stages of detection, to catch subtle smoke signals 

before they escalate. 

 

4.1.2 Enhanced Image Analysis 

The three primary methods, simple analysis, multi-rotation, and combined techniques 

demonstrated distinct advantages and trade-offs in enhancing the YOLOv8 model’s smoke 

detection capabilities. Each approach played a fundamental role in addressing specific 
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challenges encountered in complex forested environments, where smoke visibility can be 

highly variable due to environmental factors. 

The multi-rotation method enhances the smoke detection process by addressing the challenge 

of false positives and improving the overall consistency of detections. By rotating each image 

through multiple orientations as shown in Figure 4.2, the model can analyze smoke from 

different angles and assess detection consistency. When detections appear across multiple 

rotations, the likelihood of them being true positives increases. Conversely, if a detection only 

appears in one rotation or a limited number of perspectives, it becomes more likely to be a false 

positive. This approach ensures that only detections that are consistent across various angles 

are considered valid, thus reducing the number of false alarms. The multi-rotation method not 

only filters out inconsistent false positives but can also improves the detection of previously 

misclassified false negatives. Some smoke patterns, which may not be clearly visible from one 

perspective, can become more distinguishable from different angles, allowing the model to 

correctly identify more instances of smoke. By requiring detections to be consistent across 

multiple rotations, the method strengthens the detection framework, ensuring that valid smoke 

instances are reliably identified while minimizing errors. 

    

    

Figure 4.1:Example of a false positive showing detection only in one of the four rotations (above) and a true 

positive showing detection in three out of four (below) 

 

This multi-rotation approach yields similarities to the methods used in recent studies on object 

detection. For example, in Li et al. (2025), the authors utilized multi-scale and rotated feature 

extraction to detect rotated targets in remote sensing images. Their method addressed the 

challenge of detecting objects from various angles, improving accuracy by analyzing them 
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from different orientations (Li et al., 2025), much like how multi-rotation in our study improves 

the detection of smoke from various perspectives. Similarly, Fu et al. (2020) employed a 

rotation-aware CNN for small object detection in remote sensing images. The network in their 

approach integrated multi-scale features and rotation-invariant mechanisms, which helped 

improve robustness when objects appeared at different orientations (Fu et al., 2020). Their 

method focused on handling rotations, similar to the goal of multi-rotation in our smoke 

detection approach. Both studies, while focused on different domains, emphasize the 

importance of considering multiple orientations to increase detection accuracy (Li et al., 2025; 

Fu et al., 2020) However, the multi-rotation method comes with a trade-off: while it 

significantly improves precision by eliminating false positives, it reduces sensitivity. As the 

model demands consistency across more rotations, subtle or partial smoke signals that are not 

visible in all orientations are excluded, leading to missed detections. This reduction in 

sensitivity is a critical factor to consider, as it may result in overlooking smaller smoke signals. 

Area thresholding takes a different approach to refining the detection process by applying a 

minimum size requirement for detected smoke instances. In our case, a significant number of 

false positives are caused by small grey-colored objects that exhibit a structural shape similar 

to a rising smoke columns. By implementing a minimum area thresholding method, we can 

effectively prevent a substantial portion of these false detections. These false positives are 

primarily generated by objects such as rocks in open fields, dry tree tops, or light distortions 

caused by shadows on asphalt surfaces as showed in Figure 4.2. Introducing a minimum area 

filter is a logical approach, as all these objects tend to have a smaller area compared to the 

natural dispersion of a smoke cloud in the air. This ensures that the model prioritizes larger, 

more realistic smoke formations, significantly improving detection reliability. 
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Figure 4.2: Examples of false positives smaller area (above) compared to true positives bigger area (below) 

 

A similar approach is seen in the Fast R-CNN framework, where a similar filtering technique 

is employed to exclude regions of interest that fall outside a specified size range. This is done 

to prevent the model from focusing on irrelevant small objects that could lead to false positives. 

By excluding these non-relevant regions, the model is able to concentrate on the most important 

areas of the image, much like the application of the minimum area filter in our method to 

improve smoke detection accuracy. Additionally, Girshick et al. (2015) in their work on Fast 

R-CNN demonstrated that applying such filters significantly improved the accuracy of object 

detection by reducing noise and focusing on the most likely candidates. Likewise, the study by 

Liu et al. (2022) also utilizes a minimum size threshold for excluding small, irrelevant objects 

in object detection tasks. They introduced a multi-scale feature extraction method that filtered 

out small objects, enhancing the overall performance of the detection system. This concept is 

similarly applied in our work, where the minimum area thresholding is used to filter out small 

objects, improving the reliability of detecting larger, more relevant smoke plumes. 

The combination of multi-rotation and area thresholding provides the best overall performance, 

leveraging the strengths of both techniques. Multi-rotation strengthens detection reliability by 

ensuring consistency across different perspectives, while area thresholding eliminates small, 

irrelevant objects that could otherwise be misclassified as smoke. This integrated approach 

enhances the model's ability to distinguish true smoke instances while minimizing false 

positives more effectively than either technique alone. By applying both filtering mechanisms, 

the model achieves improved precision without excessively sacrificing recall. This 

combination results in a model that is both more stable and more reliable for operational 

wildfire detection, as it effectively reduces the impact of false positives while maintaining high 

specificity. However, this combined approach comes at the cost of reduced sensitivity, similar 

to the multi-rotation method alone. The stricter filtering criteria introduced by the area 
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thresholding limit the detection of smaller or partially obscured smoke signals. While the 

combined method significantly improves precision and specificity, the reduction in sensitivity 

emphasizes the ongoing challenge of balancing the detection of faint or partially obscured 

smoke with the need to minimize false positives. 

The improvements provided by segmentation, multi-rotation, and area thresholding 

demonstrate that segmentation alone is not sufficient to achieve optimal performance in smoke 

detection. While increasing resolution can enhance precision and specificity, it does not 

completely resolve the challenges of false positives or unreliable detections. Each method 

contributed unique strengths to the smoke detection process, with the simple analysis method 

serving as an effective baseline. The choice of approach should depend on the operational 

context, balancing the need for precision with the need to detect all possible instances of smoke. 

 

4.2 Tuning Process Review 

The tuning process aimed to refine the YOLOv8 model’s smoke detection capabilities by 

adapting it to the complex challenges of wildfire monitoring. This process consisted of three 

distinct phases, each designed to optimize different aspects of the model’s performance. 

Initially, the model demonstrated high precision but struggled with a large number of false 

positives. The high number of false positives reduced precision and highlighted the difficulty 

in distinguishing smoke from other environmental features, such as shadows, vegetation, and 

terrain. Sensitivity was also relatively low, which meant that the model failed to detect a 

significant number of smoke instances. 

Following the first tuning phase, precision improved, and the number of false positives 

decreased, suggesting that the model was becoming better at identifying true instances of 

smoke. The second tuning phase further improved precision, reducing false positives, and 

specificity reached near-perfect levels. This suggests that this phase helped the model become 

better at excluding irrelevant features such as roads, rocks, and vegetation. The F2 score 

showed significant improvement, reflecting the model’s better capability to detect true 

positives without increasing false positives. This is a positive outcome because high specificity 

helps reduce false alarms. In terms of F1 and F2 scores, both improved throughout the tuning 

phases. The second phase exhibited the highest F1 score, showing that the model was 

increasingly capable of balancing precision and sensitivity. The F2 score showed even more 

substantial improvements, with the second phase achieving the highest values. These findings 
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are consistent with Yang et al. (2024), who improved the YOLOv8 model for wildfire detection 

by incorporating deformable convolutions and CoordAtt mechanisms, achieving significant 

precision improvements without compromising recall. 

Interestingly, when the multi-rotation method was applied to the tuned models, the results were 

less favorable than when applied to the original model. The original model showed a more 

significant improvement in performance, especially regarding increased precision as more 

rotations were applied. In contrast, the fine-tuned models showed less improvement with the 

multi-rotation method, suggesting that the multi-rotation approach may be more effective when 

applied to the original YOLOv8 model compared to its use on a finely-tuned version. The fine-

tuned model, having already been adapted to specific dataset characteristics, may have become 

too selective in its detection, with the multi-rotation method adding complexity without 

providing significant benefits. While the multi-rotation method remains valuable, its 

effectiveness should be evaluated based on the current state of the model. This finding aligns 

with Saydirasulovich et al. (2023), who also fine-tuned YOLOv8 for wildfire smoke detection 

and noted that further modifications to the model, did not always improve performance 

significantly. 

The analysis of image resolutions and confidence levels revealed that the model’s performance 

was influenced by these factors. At lower resolutions, the model tended to detect more smoke 

instances but at the cost of a higher number of false positives, which lowered precision. Higher 

resolutions reduced false positives but also resulted in fewer true detections, as the model 

became more selective. The 2000x2000 resolution provided the best balance between detecting 

true smoke instances and minimizing false positives. The model performed better at lower 

confidence levels, as these settings allowed it to capture more instances of smoke, though they 

led to a higher number of false positives. Increasing the confidence level beyond this range 

improved precision but decreased sensitivity, leading to fewer detected instances of smoke. A 

comparison of Flight 2 and Flight 3 showed a consistent pattern, with Flight 3 generally 

yielding higher F2 scores at lower confidence thresholds. This suggests that the dataset from 

Flight 3 contained clearer smoke patterns, which made detections more reliable. Both flights 

confirmed that the 2000x2000 resolution, combined with moderate confidence levels, was the 

optimal choice for achieving the highest F2 scores. Similar conclusions were reached by Ramos 

et al. (2024), who found that hyperparameter optimization of YOLOv8, particularly in 

adjusting confidence thresholds, had a significant impact on precision and recall, underscoring 

the importance of fine-tuning these parameters based on the specific dataset and environment. 
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The third phase of tuning and its testing on an external database, which had characteristics 

different from those of the datasets obtained from the two flights in the Büelenwald region, 

highlighted the limitations of the tuning process. The original model performed better than the 

models produced from our datasets. In most cases, smoke was correctly detected, with a 

relatively low number of false positives. The model obtained from the third tuning phase was 

able to classify a considerable number of smoke-containing images with a higher confidence 

level, allowing the use of a higher confidence level in practical applications. However, it also 

revealed the shortcomings of the tuning process, producing a significantly higher number of 

false positives compared to the original model. These challenges are consistent with findings 

from Rothmeier et al. (2024), who explored the fine-tuning of object detection models for 

adverse weather conditions. Their study demonstrated that, although the model showed 

significant improvements under specific conditions, the performance dramatically decreased 

when applied to general conditions outside the fine-tuned scenario (Rothmeier et al., 2024). 

This overfitting issue, where the model excels on the specialized dataset but struggles with 

more generalized data, mirrors the difficulties observed in our smoke detection model after 

fine-tuning. The increased number of false positives in the practical application phase 

highlights a similar risk of overfitting, where the model becomes too tailored to the training 

data and loses its ability to generalize effectively, thus affecting the robustness of its predictions 

in real-world scenarios. 

It is important to note that a large portion of these false positives were caused by a few features 

that repeatedly triggered false detections. One example is the sky, which, in the case of the 

original algorithm, did not cause significant problems, but this was not the case with our final 

tuned model. These false positives were triggered by the similarity between images captured 

by UAVs with a horizontal perspective of the ground, where a grey sky is depicted in the upper 

part of the image and green vegetation below. This composition closely resembled the images 

used in the tuning process, where often, in 2000x2000 resolution images, a portion of the image 

depicted smoke opposing the green vegetation underneath. However, in our case, the images 

were captured using a vertical perspective of the terrain studied. Other elements that 

occasionally caused false positives included rocks resembling columns of smoke and puddles 

of water. In these cases, the problem was observed in both the original model and the fine-

tuned one. 
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Figure 4.3: A false positive detected in the “Flame 2” dataset (Hopkins et al., 2023) by the tuned algorithm 

caused by the grey sky opposed to the green vegetation (left) and a segment of image used for the third phase of 

the tuning process that sees grey smoke opposed to green vegetation (right) 

 

4.3 Optimizing Early Wildfire Detection with UAVs and 

YOLOv8 

The combined use of optical sensors and deep learning models, such as YOLOv8, for wildfire 

detection represents an innovative and effective approach compared to traditional systems. The 

use of UAVs equipped with optical sensors offers significant advantages over optical satellites, 

particularly in terms of real-time data collection, higher spatial resolution, and operational 

flexibility. However, with recent advancements in optical satellite technology, high-resolution 

optical satellites have significantly improved large-scale detection, providing broad coverage 

and continuous monitoring (Li et al., 2019). In this context, it is valuable to explore the 

differences and synergies between these two systems and how UAV-based systems with 

YOLOv8 compare to the state-of-the-art in wildfire detection. 

UAVs equipped with optical sensors offer numerous operational advantages over optical 

satellites, especially in wildfire detection. One key differentiator is the ability of UAVs to 

capture real-time data. While optical satellites are limited by their revisit times, often only once 

or twice a day, UAVs can be deployed on-demand to fly over a specific wildfire or a high-risk 

area, delivering immediate data (Kang et al., 2023). This ability to provide real-time feedback 

is crucial for fire management teams, enabling faster decision-making and resource allocation 

to mitigate wildfire damage (Okoro et al., 2024). Furthermore, UAVs offer superior spatial 
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resolution, particularly in complex terrains such as dense forests or mountainous regions, where 

optical satellites may struggle to detect small smoke plumes or subtle environmental changes 

(Akhloufi et al., 2021). With high-resolution cameras, UAVs can capture more detailed 

imagery, which is critical for detecting early signs of wildfire, such as faint smoke or minor 

temperature variations. Unlike satellites, which may not be able to identify subtle indicators of 

fire in thick vegetation, UAVs can provide precise and localized data, improving the reliability 

of early detection (Boroujeni et al., 2024). Operational flexibility is another advantage of 

UAVs. Unlike satellites, which follow predetermined orbits, UAVs can be dispatched at any 

time to monitor a wildfire’s progression. This makes UAVs particularly suitable for tracking 

fires across irregular and rugged terrains, where other monitoring systems may not be able to 

provide accurate or timely data. Additionally, UAVs are more cost-effective than satellite 

systems, which require substantial infrastructure and operational costs (Bailon et al., 2022). 

UAVs can be deployed at a fraction of the cost, enabling scalable and widespread monitoring, 

especially in remote areas or regions where traditional systems may be limited (Chen et al., 

2022). 

Despite their advantages, UAVs do have limitations compared to optical satellites. One of the 

primary challenges is their limited flight time due to battery constraints. UAVs are typically 

restricted to shorter flight durations, meaning their coverage is limited to smaller areas. In 

contrast, satellites can monitor vast areas continuously without the need for recharging, making 

them more suitable for long-term, large-scale wildfire detection (Xu et al., 2021). Another 

limitation of UAVs is their susceptibility to weather conditions. Strong winds, rain, or other 

adverse weather conditions can interfere with UAV operations, potentially compromising their 

effectiveness during critical wildfire events. Satellites, particularly those in geostationary orbit, 

are generally unaffected by such conditions, providing more consistent coverage regardless of 

local weather (Bushnaq et al., 2021). The development of high-resolution optical satellites has 

significantly enhanced their role in wildfire detection. Modern satellites can now capture 

images with resolutions as fine as 30 cm, providing highly detailed imagery of large areas, 

including fire perimeters, smoke plumes, and land-use changes (Xu et al., 2021). These high-

resolution satellites are crucial for monitoring the spread of wildfires in remote or hard-to-reach 

areas, where ground-based sensors or UAVs may not be able to provide effective coverage. 

Despite these advancements, optical satellites still face limitations, particularly in terms of 

temporal resolution. The revisit time of satellites is often too slow for early wildfire detection, 

which is critical for minimizing damage. Wildfires can develop rapidly, and the ability to detect 
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them in their early stages is essential for effective intervention (Kang et al., 2023). While high-

resolution satellites offer detailed imagery, they may not provide the same level of immediacy 

or accuracy as UAVs, which can monitor fire behavior in real time. Additionally, while high-

resolution satellites improve detection accuracy, they are often limited by atmospheric 

interference. Clouds, dust, and smoke can obscure satellite imagery, making it difficult to 

monitor fires during certain weather conditions (Bushnaq et al., 2021). UAVs, however, can be 

deployed immediately over a fire, avoiding the delays caused by cloud cover and other 

atmospheric factors. 

The integration of YOLOv8 with UAVs marks a significant advancement in wildfire detection. 

YOLOv8 is a deep learning-based model known for its real-time object detection capabilities, 

which makes it highly suitable for dynamic environments like wildfire zones. The model can 

process images in real time, identifying key features such as smoke or flames, which is critical 

for early detection and rapid response (Jiang et al., 2022). YOLOv8's ability to classify and 

localize objects with high precision makes it particularly effective for detecting early signs of 

wildfires, providing immediate alerts to fire management teams (Jiang et al., 2024). Compared 

to traditional satellite systems, YOLOv8-equipped UAVs offer faster and more precise 

detection, minimizing false positives and false negatives. Unlike optical satellites, which often 

require manual interpretation of imagery, YOLOv8 can automatically detect and classify 

wildfire-related features, improving efficiency and accuracy (Terven et al., 2023). The model 

can be trained to detect both smoke and fire, enabling UAVs to capture detailed, real-time data 

of both the initiation and progression of wildfires (Zhang et al., 2016). YOLOv8’s integration 

with UAVs allows for high-resolution data collection, enabling real-time fire detection while 

also minimizing operational costs. This combination of cutting-edge AI technology and cost-

effective drone platforms presents a scalable solution for wildfire management, particularly in 

regions where satellite monitoring might be cost-prohibitive or insufficient (Boroujeni et al., 

2024). 

 

4.4 Methodological limitations and Operational 

Considerations 

This study presents several limitations related to the data collection process, environmental 

variables, and the model's application to real-world wildfire scenarios. The primary dataset 

used to train and test YOLOv8 was derived from controlled fire scenarios. While these 

controlled environments provided valuable insights into the model’s performance, they may 
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not fully replicate the dynamic, unpredictable conditions of natural wildfires. The controlled 

fires had limited variations in smoke intensity and patterns, which may have restricted the 

model’s ability to generalize to more complex, real-world wildfire scenarios. 

Environmental variability, such as changes in weather conditions, terrain complexity, and 

vegetation density, posed challenges to the model's performance. Dense forests, mountainous 

terrain, and varying atmospheric conditions can affect the UAV’s ability to capture clear smoke 

signals. While the study accounted for diverse conditions through controlled flights, real-world 

scenarios often present greater unpredictability, which could further limit the model's 

effectiveness. For example, forest canopies can obscure smoke, and variations in lighting, such 

as glare or shadows, can complicate detection, introducing noise that may interfere with 

accurate smoke identification. Elements such as clouds and fog produced by the typical 

evaporation of forests can also constitute important disturbing elements in mountain contexts 

that must be prevented through specific and targeted tuning processes. 

Another key limitation relates to the dataset itself. The “D-Fire” dataset, used for training 

YOLOv8. Thus dataset is relatively small and specific, containing images from limited 

conditions that may not represent the full range of smoke appearances, intensities, and 

dispersions encountered in wildfires. This limits the model’s ability to generalize to a wider 

variety of wildfire scenarios. Additionally, while YOLOv8 excels in real-time detection, its 

performance is still constrained by the quality of input data, such as image resolution, lighting, 

and the presence of visual obstructions. In real-world settings, smoke may be faint or obscured 

by trees, buildings, or other objects, which could affect detection accuracy. 

The image resolution and segmentation process also presented challenges. While segmenting 

full-resolution images into smaller regions improved detection by focusing on smaller areas, it 

also reduced spatial context, particularly for larger smoke plumes that span multiple segments. 

This limitation may have caused the model to miss broader features of smoke, which could be 

critical for identifying larger or more significant wildfires. Additionally, the trade-off between 

image resolution and computational demands remains a challenge. Lower resolution improves 

real-time processing but sacrifices fine detail, whereas higher resolution provides more detail 

but increases computational load, complicating fast decision-making in emergency scenarios. 

The generalizability of the findings is another important consideration. While this study 

demonstrated promising results in the Büelenwald region, environmental factors such as 

climate, terrain, and vegetation vary significantly across wildfire-prone areas globally. These 
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factors, along with local fire behavior, could impact the model’s performance in other regions. 

The model's reliance on a relatively specific dataset also limits its ability to generalize to 

unforeseen wildfire scenarios. 

Operational and practical limitations must also be addressed. UAVs are constrained by battery 

life, limiting their flight duration and coverage area in a single mission. Additionally, the 

complexities of operating UAVs in challenging terrains or adverse weather conditions could 

hinder their widespread adoption for wildfire monitoring. Effective communication systems, 

robust flight planning, and coordination with firefighting teams will be essential for integrating 

UAVs into wildfire monitoring systems. Moreover, the real-time data processing capabilities 

of UAVs need further refinement to ensure immediate, actionable insights during wildfire 

events. External computational resources or onboard processing may become bottlenecks in 

situations requiring rapid decision-making. 

During the analysis, several additional limitations became apparent. One key limitation is the 

variability in pixel representation, which is influenced by changes in drone altitude and the lack 

of geometric corrections in the images. In practice, a fixed pixel threshold for area-based 

filtering may correspond to different physical ground sizes depending on the altitude at which 

the drone operates. This variability can introduce discrepancies, as a threshold that is 

appropriate at a lower altitude might miss smaller smoke plumes, while at higher altitudes, it 

could erroneously include irrelevant features such as small shadows or vegetation clusters. As 

such, the effectiveness of area thresholding becomes highly dependent on the altitude and 

geometry of the images, requiring careful calibration for different flight conditions. 

Another limitation arises from the reliance on RGB imagery alone for smoke detection. While 

RGB images provide valuable visual data, they can also introduce ambiguities, especially when 

smoke is faint or partially obscured by other environmental factors. Smoke signals can be 

visually similar to mist, fog, or cloud cover, making it challenging to differentiate between 

these phenomena solely based on color information. This issue is particularly prevalent in dense 

forest environments, where the background can be highly cluttered and visually complex. As a 

result, the model may struggle to accurately distinguish between smoke and other natural 

features, leading to both false positives and missed detections. 

The environmental diversity across datasets also poses a challenge. While fine-tuning on 

datasets from different flight conditions improved the model's performance, it also highlights 

the variability in terrain, lighting, and atmospheric conditions. These factors can greatly 
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influence the visibility of smoke, as lighting changes can alter the color of smoke or even 

obscure it completely. Thus, the model’s effectiveness in detecting smoke in diverse 

environmental conditions may require more extensive training on varied datasets that reflect 

the broad range of real-world scenarios. 

Lastly, the need for real-time processing in real-world applications adds computational 

challenges, particularly when the model has to handle high-resolution images or large areas 

during flight. Future UAV-based systems need to address these challenges by exploring lighter 

versions of the model or techniques like model pruning or quantization, which reduce 

computational load without sacrificing detection accuracy. 

While this study demonstrated significant improvements in smoke detection through fine-

tuning and advanced methods, there are still several challenges to address. The need for more 

training datasets, the ambiguity introduced by relying solely on RGB imagery, and the potential 

for enhanced detection through multi-spectral and thermal sensors suggest that addressing these 

limitations will be crucial for the further development and deployment of UAV-based smoke 

detection systems. 
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5. Conclusion and Outlook 

 

 

5.1 Restatement of the Research Problem 

The increasing frequency and severity of wildfires make early detection and rapid response 

critical for minimizing their impact on ecosystems, public health, and infrastructure. Wildfires 

threaten biodiversity, air quality, and human lives, highlighting the need for more effective 

detection solutions. Traditional methods like satellite remote sensing, airborne monitoring, 

ground patrols, and fixed cameras have limitations, including resolution, real-time capabilities, 

and adaptability to environmental changes. Satellites face delays due to their orbit, airborne 

methods are costly and weather-dependent, and ground-based methods are resource-intensive 

and limited by terrain. This study focused on UAVs equipped with optical sensors, which offer 

flexibility, cost-effectiveness, and real-time data collection, addressing many traditional system 

limitations. It assessed whether UAV-mounted optical sensors, paired with deep learning 

models like YOLOv8, could provide a more efficient and complementary means of early smoke 

detection. The research also examined how environmental factors such as terrain, vegetation, 

and weather affect detection accuracy and timeliness. Understanding these influences is critical 

for optimizing detection in various environments. The goal was to evaluate if optical sensors 

could serve as a cost-effective alternative to thermal sensors, explore how environmental 

conditions impact their reliability and consider how they can be integrated into current 

surveillance methods. 

 

5.2 Summary of key findings 

5.2.1 Optical Sensors as a Viable Alternative to Thermal Sensors 

While thermal sensors have been the standard for detecting flames due to their ability to 

identify heat signatures, this study showed that optical sensors, paired with deep learning 

models like YOLOv8, offer a viable and cost-effective complementary alternative for early 

smoke detection, though they still face generalization challenges. Thermal sensors are effective 

for identifying flames or hotspots but lose effectiveness in the early stages of a wildfire, when 

smoke is present but flames are not visible. Additionally, environmental factors like 

temperature changes and reflective surfaces can cause false positives or delays in detection. In 
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contrast, optical sensors detect smoke in the visible spectrum, making them ideal for early 

wildfire response, as they can identify smoke before flames appear. Unlike thermal sensors, 

they do not rely on temperature differences, and they are lightweight and cost-effective, which 

makes them well-suited for UAV-based monitoring systems that prioritize low weight and cost. 

UAVs equipped with optical sensors can efficiently cover large areas and provide real-time 

visual data for continuous monitoring, especially in regions where thermal sensors are too 

costly or impractical. When combined with models like YOLOv8, optical sensors enable rapid 

and accurate smoke detection, even in complex terrains or dense vegetation. 

Although optical sensors have limitations, such as reduced effectiveness in low-visibility 

conditions like heavy smoke or fog, integrating them with thermal sensors provides a more 

comprehensive solution. This study confirms that optical sensors, when paired with machine 

learning models, offer a reliable and cost-effective alternative or complement to thermal 

sensors for early smoke detection, improving response times and supplementing traditional 

methods. Their cost-effectiveness, real-time data capabilities, and ability to detect early smoke 

make them a promising option for large-scale, UAV-based wildfire detection. With further 

optimization, optical sensors could play a crucial role in enhancing the efficiency and 

scalability of wildfire detection, particularly in regions with limited access to traditional 

thermal sensing technologies. 

 

5.2.2 YOLOv8 Performance, Image Resolution, and Enhancement 

Techniques 

A key finding of the study was the impact of image resolution on detection accuracy. While 

full-resolution images provide high detail, the resizing process for YOLOv8 can result in the 

loss of critical features needed to detect faint smoke patterns. To address this, image 

segmentation techniques were used, dividing full-resolution images into smaller sections of 

2000x2000 and 1000x1000 pixels. This allowed the model to focus on smaller, more relevant 

regions, improving accuracy and sensitivity. The study also explored enhancement techniques 

like multi-rotation and area threshold filtering to optimize YOLOv8’s performance. Multi-

rotation involved rotating images at four orientations, allowing the model to detect smoke from 

different perspectives, especially useful when smoke appeared differently depending on the 

UAV’s orientation. Analyzing the images on these varied perspectives significantly improved 

its robustness in real-world scenarios, ensuring consistent smoke detection from multiple 

angles. Area threshold filtering ensured that only objects above a certain size were considered 
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valid detections, eliminating irrelevant objects or background noise that could be misidentified 

as smoke. By setting a minimum size threshold for smoke plumes, this technique reduced false 

positives and increased accuracy. The combination of multi-rotation and area threshold filtering 

proved highly effective. Multi-rotation accounted for changing smoke orientations, while area 

threshold filtering ensured only relevant detections were considered. Together, these 

enhancements significantly improved the model’s ability to detect smoke, especially in 

challenging environments where smoke direction and scale varied. 

 

5.2.3 Fine-tuning and the Challenges of Generalizing Smoke Detection 

One of the key findings of this study was the significant improvement in YOLOv8’s 

performance through fine-tuning, tailored to the unique characteristics of wildfire datasets from 

UAV flights. The fine-tuning process was conducted in three phases. In the first phase, 

YOLOv8 was adapted to specific environmental conditions like lighting, terrain complexity, 

and smoke density using datasets from Flights 2 and 3. Smoke images were augmented with 

rotations at four orientations to help the model distinguish smoke from other features. In the 

second phase, the training dataset was expanded using image mirroring, tripling the smoke 

dataset and exposing the model to diverse conditions. Key hyperparameters such as learning 

rate and batch size were adjusted, with training lasting 50 epochs in the first phase and 100 in 

the second, allowing the model to focus on fine details through a reduced learning rate. The 

first two phases of fine-tuning demonstrated the potential of adapting YOLOv8 to specific 

conditions, like those in the Büelenwald region, reducing false positives and improving 

detection accuracy. Tailoring the model to regional characteristics made it more reliable in 

detecting smoke. 

Despite these advances, the third phase revealed challenges in generalizing the model across 

diverse environments. Smoke varies in density, color, and form based on fire intensity, weather, 

and landscape, and factors like UAV altitude, distance, and angle can alter detection. 

Environmental elements such as water, rocks, or varying lighting can also resemble smoke, 

leading to false positives. This third phase highlighted the need for a more robust, universal 

model. More diverse and extensive training datasets are crucial for improving the general 

performance of the model. While fine-tuning worked well for Büelenwald, region-specific 

models are not feasible for all areas. Therefore, the most important conclusion is that 

significantly increasing training data, covering a broader range of environmental conditions, 
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will enhance the general performance of wildfire detection models. This would create a more 

robust model that could be adapted for specific applications and perform reliably across diverse 

environments. 

 

5.2.4 Environmental Influences and Detection Trade-offs 

This study highlighted the significant role environmental factors play in the performance of 

YOLOv8 for wildfire smoke detection. Terrain, vegetation density, weather, and lighting 

conditions were found to heavily influence the model’s ability to reliably detect smoke. Dense 

vegetation and complex terrain, like forests or mountainous regions, can obstruct smoke 

detection by optical sensors, making it hard to see smoke plumes. Lighting conditions, such as 

glare, shadows, or low light, can further complicate detection, as varying light angles 

throughout the day may obscure smoke. Atmospheric factors like humidity and wind also 

impact detection, with humidity influencing smoke dispersion and wind causing smoke to shift, 

making it difficult to track consistently. These dynamic conditions require continual refinement 

of the detection algorithms to adapt to changing environments, ensuring accurate smoke 

detection. 

Another key finding was the trade-off between sensitivity and false positives. With a low 

confidence threshold, YOLOv8 had higher sensitivity, detecting faint or partially obscured 

smoke, but this led to more false positives, with features like clouds or shadows being 

misidentified as smoke. Increasing the threshold reduced false positives but also missed 

detections, decreasing true positives. This emphasizes the need for a balance between 

sensitivity and specificity, crucial in wildfire detection, where both false negatives and 

positives must be minimized. 

The findings suggest that careful calibration of detection thresholds is essential for reliable 

early smoke detection while minimizing false alarms. Furthermore, incorporating more training 

data that represents a variety of environmental conditions would significantly improve model 

performance. Adjusting and fine-tuning the model with diverse training data is crucial for 

optimizing its performance in real-world wildfire scenarios. By continually refining the model 

with data reflecting changing environments, smoke detection accuracy under diverse 

conditions can be enhanced. 
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5.3 Insight and Future Perspectives 

This study significantly contributes to wildfire detection by evaluating and improving UAV-

based systems using optical sensors integrated with deep learning models. Traditional methods, 

such as thermal imaging and satellites, are limited by their real-time responsiveness and 

adaptability, as well as their inability to provide detailed data in areas difficult to reach. In 

contrast, combining optical sensors with models like YOLOv8 offers a scalable, cost-effective, 

and flexible solution for real-time wildfire monitoring. These systems can be quickly deployed 

in underserved or hard-to-reach regions, crucial for global wildfire management. 

YOLOv8’s ability to process images in real-time and detect smoke accurately, even in complex 

environments like varying terrain and lighting, marks a significant advancement in deep 

learning for environmental monitoring. This real-time detection enables rapid intervention, 

potentially saving lives, protecting ecosystems, and minimizing wildfire impacts. UAVs with 

optical sensors provide proactive monitoring, allowing fire management teams to act sooner 

than with traditional methods, improving resource allocation and reducing wildfire spread. This 

research also highlights the intersection of machine learning and remote sensing in 

environmental monitoring. YOLOv8’s use of data augmentation techniques like multi-rotation 

and area threshold filtering improves performance in dynamic environments. Fine-tuning with 

domain-specific datasets focused on smoke detection further enhances model accuracy. The 

integration of high-quality, diverse training data equips the model to generalize across various 

wildfire scenarios, showing potential for broader applications such as deforestation monitoring 

and wildlife conservation. 

The environmental and societal benefits of early wildfire detection are significant. It helps 

reduce biodiversity loss, soil degradation, and harmful pollutant release by enabling faster 

response times. Early detection can limit fire intensity and duration, protecting ecosystems and 

reducing greenhouse gas emissions. From a societal perspective, it minimizes health risks by 

reducing exposure to harmful wildfire smoke, which contains pollutants that affect respiratory 

health, particularly in vulnerable populations. Faster responses also improve evacuation plans 

and reduce firefighting costs.  

As wildfires increase due to climate change, governments must adopt more scalable, effective 

monitoring technologies. UAV-based systems offer a flexible solution, and this research 

provides a detailed analysis of integrating UAVs into operational smoke detection. 

Policymakers could incorporate UAVs into national or regional wildfire monitoring, 
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establishing guidelines for their safe deployment. This would encourage adoption, equipping 

fire management agencies with an essential tool for combating severe wildfires. Furthermore, 

integrating UAV data into broader wildfire management systems, such as GIS, can enhance fire 

risk predictions, evacuation plans, and air quality monitoring. UAVs could also support long-

term monitoring of fire-affected areas, aiding ecosystem recovery and biodiversity restoration. 

Post-fire UAV imagery can track vegetation changes, soil erosion, and regrowth, supporting 

environmental recovery strategies. 

 

5.4 Final Remarks 

This research highlights the potential of UAV-based optical sensors combined with deep 

learning models like YOLOv8 for enhancing early wildfire detection. Detecting smoke before 

flames become visible is crucial for minimizing wildfires' impact on ecosystems, human 

populations, and infrastructure. UAVs offer a cost-effective, scalable, and flexible solution, 

addressing limitations in traditional detection systems like resolution, temporal coverage, and 

adaptability. YOLOv8, when fine-tuned, proved effective in detecting smoke in diverse 

environments, with techniques such as data augmentation and resolution segmentation 

improving sensitivity and reducing false positives. 

However, challenges remain, especially with environmental factors like terrain and weather, 

which affect detection accuracy in real-world wildfire scenarios. Despite these challenges, the 

study lays a strong foundation for future work, focusing on integrating multi-sensor systems, 

refining smoke detection algorithms, and testing UAVs in live wildfire events. It also 

emphasizes the need for collaboration between machine learning, remote sensing, and wildfire 

management experts to develop comprehensive solutions. 

As wildfires become more frequent and severe, the development of advanced technologies for 

timely, actionable insights is crucial for firefighting teams and emergency responders. 

Persistent advancements in UAV technology and deep learning algorithms promise to improve 

wildfire detection's speed, accuracy, and scalability. Integrating these technologies into existing 

management frameworks could significantly enhance wildfire detection, response, and 

mitigation efforts. Ultimately, this study contributes to both scientific understanding and real-

world applications, positioning UAV-based optical sensors and YOLOv8 as key tools in global 

wildfire management, helping save lives, protect ecosystems, and reduce the social and 

economic costs of wildfires. 
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7. Appendices 
 

 

Table 7.1: Simple Image Analysis results on Flight 2 for different resolutions and confidence levels 

 

 

Table 7.2: Simple Image Analysis results on Flight 3 for different resolutions and confidence levels 

 

  

Confidence Resolution Analized No Smoke Smoke TP FP TN FN Accuracy Precision Sensitivity Specificity BA F1 F2
0.1 1000 26112 25992 120 44 3547 22445 76 0.861 0.012 0.367 0.864 0.615 0.024 0.054
0.2 1000 26112 25992 120 39 1433 24559 81 0.942 0.026 0.325 0.945 0.635 0.049 0.100
0.3 1000 26112 25992 120 35 1199 24793 85 0.951 0.028 0.292 0.954 0.623 0.052 0.102
0.4 1000 26112 25992 120 27 851 25141 93 0.964 0.031 0.225 0.967 0.596 0.054 0.099
0.5 1000 26112 25992 120 20 584 25408 100 0.974 0.033 0.167 0.978 0.572 0.055 0.092
0.6 1000 26112 25992 120 15 376 25616 105 0.982 0.038 0.125 0.986 0.555 0.059 0.086
0.7 1000 26112 25992 120 6 202 25790 114 0.988 0.029 0.050 0.992 0.521 0.037 0.044
0.8 1000 26112 25992 120 0 41 25951 120 0.994 0.000 0.000 0.998 0.499 #DIV/0! #DIV/0!
0.9 1000 26112 25992 120 0 0 25992 120 0.995 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!
0.1 2000 6528 6447 81 30 1402 5045 51 0.777 0.021 0.370 0.783 0.576 0.040 0.085
0.2 2000 6528 6447 81 27 490 5957 54 0.917 0.052 0.333 0.924 0.629 0.090 0.161
0.3 2000 6528 6447 81 24 403 6044 57 0.930 0.056 0.296 0.937 0.617 0.094 0.160
0.4 2000 6528 6447 81 18 284 6163 63 0.947 0.060 0.222 0.956 0.589 0.094 0.144
0.5 2000 6528 6447 81 11 200 6247 70 0.959 0.052 0.136 0.969 0.552 0.075 0.103
0.6 2000 6528 6447 81 7 125 6322 74 0.970 0.053 0.086 0.981 0.534 0.066 0.077
0.7 2000 6528 6447 81 4 60 6387 77 0.979 0.063 0.049 0.991 0.520 0.055 0.052
0.8 2000 6528 6447 81 0 11 6436 81 0.986 0.000 0.000 0.998 0.499 #DIV/0! #DIV/0!
0.9 2000 6528 6447 81 0 0 6447 81 0.988 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!
0.1 Full 544 480 64 2 87 393 62 0.726 0.022 0.031 0.819 0.425 0.026 0.029
0.2 Full 544 480 64 1 31 449 63 0.827 0.031 0.016 0.935 0.476 0.021 0.017
0.3 Full 544 480 64 1 24 456 63 0.840 0.040 0.016 0.950 0.483 0.022 0.018
0.4 Full 544 480 64 0 14 466 64 0.857 0.000 0.000 0.971 0.485 #DIV/0! #DIV/0!
0.5 Full 544 480 64 0 7 473 64 0.869 0.000 0.000 0.985 0.493 #DIV/0! #DIV/0!
0.6 Full 544 480 64 0 2 478 64 0.879 0.000 0.000 0.996 0.498 #DIV/0! #DIV/0!
0.7 Full 544 480 64 0 0 480 64 0.882 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!
0.8 Full 544 480 64 0 0 480 64 0.882 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!
0.9 Full 544 480 64 0 0 480 64 0.882 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!

Confidence Resolution Analized No Smoke Smoke TP FP TN FN Accuracy Precision Sensitivity Specificity BA F1 F2
0.1 1000 26112 26005 107 51 3614 22391 56 0.859 0.014 0.477 0.861 0.669 0.027 0.062
0.2 1000 26112 26005 107 45 1038 24967 62 0.958 0.042 0.421 0.960 0.690 0.076 0.149
0.3 1000 26112 26005 107 37 1062 24943 70 0.957 0.034 0.346 0.959 0.652 0.061 0.121
0.4 1000 26112 26005 107 23 771 25234 84 0.967 0.029 0.215 0.970 0.593 0.051 0.094
0.5 1000 26112 26005 107 16 516 25489 91 0.977 0.030 0.150 0.980 0.565 0.050 0.083
0.6 1000 26112 26005 107 13 365 25640 94 0.982 0.034 0.121 0.986 0.554 0.054 0.081
0.7 1000 26112 26005 107 7 185 25820 100 0.989 0.036 0.065 0.993 0.529 0.047 0.056
0.8 1000 26112 26005 107 1 38 25967 106 0.994 0.026 0.009 0.999 0.504 0.014 0.011
0.9 1000 26112 26005 107 0 0 26005 107 0.996 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!
0.1 2000 6528 6453 75 27 1375 5078 48 0.782 0.019 0.360 0.787 0.573 0.037 0.079
0.2 2000 6528 6453 75 23 427 6026 52 0.927 0.051 0.307 0.934 0.620 0.088 0.153
0.3 2000 6528 6453 75 20 352 6101 55 0.938 0.054 0.267 0.945 0.606 0.089 0.149
0.4 2000 6528 6453 75 14 239 6214 61 0.954 0.055 0.187 0.963 0.575 0.085 0.127
0.5 2000 6528 6453 75 11 166 6287 64 0.965 0.062 0.147 0.974 0.560 0.087 0.115
0.6 2000 6528 6453 75 6 105 6348 69 0.973 0.054 0.080 0.984 0.532 0.065 0.073
0.7 2000 6528 6453 75 3 47 6406 72 0.982 0.060 0.040 0.993 0.516 0.048 0.043
0.8 2000 6528 6453 75 2 10 6443 73 0.987 0.167 0.027 0.998 0.513 0.046 0.032
0.9 2000 6528 6453 75 0 0 6453 75 0.989 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!
0.1 Full 544 493 51 5 104 389 46 0.724 0.046 0.098 0.789 0.444 0.063 0.080
0.2 Full 544 493 51 3 32 461 48 0.853 0.086 0.059 0.935 0.497 0.070 0.063
0.3 Full 544 493 51 2 18 475 49 0.877 0.100 0.039 0.963 0.501 0.056 0.045
0.4 Full 544 493 51 1 12 481 50 0.886 0.077 0.020 0.976 0.498 0.031 0.023
0.5 Full 544 493 51 1 7 486 50 0.895 0.125 0.020 0.986 0.503 0.034 0.024
0.6 Full 544 493 51 0 3 490 51 0.901 0.000 0.000 0.994 0.497 #DIV/0! #DIV/0!
0.7 Full 544 493 51 0 3 490 51 0.901 0.000 0.000 0.994 0.497 #DIV/0! #DIV/0!
0.8 Full 544 493 51 0 0 493 51 0.906 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!
0.9 Full 544 493 51 0 0 493 51 0.906 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!
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Table 7.3: Enhanced Analysis Results on Flight 2 for the three different methods on segments of 2000x2000 

resolution and confidence level 0.2 

 

 

Table 7.4: Enhanced Analysis Results on Flight 3 for the three different methods on segments of 2000x2000 

resolution and confidence level 0.2 
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Table 7.5: Tuned Models Performance on Flight 2 at resolution 2000x2000 for varying confidence levels 

 

 

Table 7.6: Tuned Models Performance on Flight 3 at resolution 2000x2000 for varying confidence levels 

 

  

Original Confidence Analized No Smoke Smoke TP FP TN FN Accuracy Precision Sensitivity Specificity BA F1 F2
0.1 6528 6447 81 30 1402 5045 51 0.777 0.021 0.370 0.783 0.576 0.040 0.085
0.2 6528 6447 81 27 490 5957 54 0.917 0.052 0.333 0.924 0.629 0.090 0.161
0.3 6528 6447 81 24 403 6044 57 0.930 0.056 0.296 0.937 0.617 0.094 0.160
0.4 6528 6447 81 18 284 6163 63 0.947 0.060 0.222 0.956 0.589 0.094 0.144
0.5 6528 6447 81 11 200 6247 70 0.959 0.052 0.136 0.969 0.552 0.075 0.103
0.6 6528 6447 81 7 125 6322 74 0.970 0.053 0.086 0.981 0.534 0.066 0.077
0.7 6528 6447 81 4 60 6387 77 0.979 0.063 0.049 0.991 0.520 0.055 0.052
0.8 6528 6447 81 0 11 6436 81 0.986 0.000 0.000 0.998 0.499 #DIV/0! #DIV/0!
0.9 6528 6447 81 0 0 6447 81 0.988 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!

T1 Confidence Analized No Smoke Smoke TP FP TN FN Accuracy Precision Sensitivity Specificity BA F1 F2
0.1 6528 6447 81 29 37 6410 52 0.986 0.439 0.358 0.994 0.676 0.395 0.372
0.2 6528 6447 81 27 12 6435 54 0.990 0.692 0.333 0.998 0.666 0.450 0.372
0.3 6528 6447 81 23 10 6437 58 0.990 0.697 0.284 0.998 0.641 0.404 0.322
0.4 6528 6447 81 18 6 6441 63 0.989 0.750 0.222 0.999 0.611 0.343 0.259
0.5 6528 6447 81 13 4 6443 68 0.989 0.765 0.160 0.999 0.580 0.265 0.191
0.6 6528 6447 81 10 1 6446 71 0.989 0.909 0.123 1.000 0.562 0.217 0.149
0.7 6528 6447 81 7 0 6447 74 0.989 1.000 0.086 1.000 0.543 0.159 0.106
0.8 6528 6447 81 3 0 6447 78 0.988 1.000 0.037 1.000 0.519 0.071 0.046
0.9 6528 6447 81 0 0 6447 81 0.988 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!

T2 Confidence Analized No Smoke Smoke TP FP TN FN Accuracy Precision Sensitivity Specificity BA F1 F2
0.1 6528 6447 81 40 23 6424 41 0.990 0.635 0.494 0.996 0.745 0.556 0.517
0.2 6528 6447 81 39 7 6440 42 0.992 0.848 0.481 0.999 0.740 0.614 0.527
0.3 6528 6447 81 33 5 6442 48 0.992 0.868 0.407 0.999 0.703 0.555 0.456
0.4 6528 6447 81 25 3 6444 56 0.991 0.893 0.309 1.000 0.654 0.459 0.355
0.5 6528 6447 81 18 2 6445 63 0.990 0.900 0.222 1.000 0.611 0.356 0.262
0.6 6528 6447 81 12 0 6447 69 0.989 1.000 0.148 1.000 0.574 0.258 0.179
0.7 6528 6447 81 9 0 6447 72 0.989 1.000 0.111 1.000 0.556 0.200 0.135
0.8 6528 6447 81 4 0 6447 77 0.988 1.000 0.049 1.000 0.525 0.094 0.061
0.9 6528 6447 81 0 0 6447 81 0.988 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!

T2 + R Nr. Rotations Analized No Smoke Smoke TP FP TN FN Accuracy Precision Sensitivity Specificity BA F1 F2
>0 6528 6447 81 54 67 6380 27 0.986 0.446 0.667 0.990 0.828 0.535 0.607
>1 6528 6447 81 46 12 6435 35 0.993 0.793 0.568 0.998 0.783 0.662 0.602
>2 6528 6447 81 32 1 6446 49 0.992 0.970 0.395 1.000 0.697 0.561 0.448
>3 6528 6447 81 18 0 6447 63 0.990 1.000 0.222 1.000 0.611 0.364 0.263

Original Confidence Analized No Smoke Smoke TP FP TN FN Accuracy Precision Sensitivity Specificity BA F1 F2
0.1 6528 6453 75 27 1375 5078 48 0.782 0.019 0.360 0.787 0.573 0.037 0.079
0.2 6528 6453 75 23 427 6026 52 0.927 0.051 0.307 0.934 0.620 0.088 0.153
0.3 6528 6453 75 20 352 6101 55 0.938 0.054 0.267 0.945 0.606 0.089 0.149
0.4 6528 6453 75 14 239 6214 61 0.954 0.055 0.187 0.963 0.575 0.085 0.127
0.5 6528 6453 75 11 166 6287 64 0.965 0.062 0.147 0.974 0.560 0.087 0.115
0.6 6528 6453 75 6 105 6348 69 0.973 0.054 0.080 0.984 0.532 0.065 0.073
0.7 6528 6453 75 3 47 6406 72 0.982 0.060 0.040 0.993 0.516 0.048 0.043
0.8 6528 6453 75 2 10 6443 73 0.987 0.167 0.027 0.998 0.513 0.046 0.032
0.9 6528 6453 75 0 0 6453 75 0.989 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!

T1 Confidence Analized No Smoke Smoke TP FP TN FN Accuracy Precision Sensitivity Specificity BA F1 F2
0.1 6528 6453 75 34 35 6418 41 0.988 0.493 0.453 0.995 0.724 0.472 0.461
0.2 6528 6453 75 32 9 6444 43 0.992 0.780 0.427 0.999 0.713 0.552 0.469
0.3 6528 6453 75 30 5 6448 45 0.992 0.857 0.400 0.999 0.700 0.545 0.448
0.4 6528 6453 75 28 3 6450 47 0.992 0.903 0.373 1.000 0.686 0.528 0.423
0.5 6528 6453 75 23 0 6453 52 0.992 1.000 0.307 1.000 0.653 0.469 0.356
0.6 6528 6453 75 17 0 6453 58 0.991 1.000 0.227 1.000 0.613 0.370 0.268
0.7 6528 6453 75 9 0 6453 66 0.990 1.000 0.120 1.000 0.560 0.214 0.146
0.8 6528 6453 75 3 0 6453 72 0.989 1.000 0.040 1.000 0.520 0.077 0.050
0.9 6528 6453 75 0 0 6453 75 0.989 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!

T2 Confidence Analized No Smoke Smoke TP FP TN FN Accuracy Precision Sensitivity Specificity BA F1 F2
0.1 6528 6453 75 42 23 6430 33 0.991 0.646 0.560 0.996 0.778 0.600 0.575
0.2 6528 6453 75 40 5 6448 35 0.994 0.889 0.533 0.999 0.766 0.667 0.580
0.3 6528 6453 75 38 2 6451 37 0.994 0.950 0.507 1.000 0.753 0.661 0.559
0.4 6528 6453 75 32 0 6453 43 0.993 1.000 0.427 1.000 0.713 0.598 0.482
0.5 6528 6453 75 20 0 6453 55 0.992 1.000 0.267 1.000 0.633 0.421 0.313
0.6 6528 6453 75 13 0 6453 62 0.991 1.000 0.173 1.000 0.587 0.295 0.208
0.7 6528 6453 75 10 0 6453 65 0.990 1.000 0.133 1.000 0.567 0.235 0.161
0.8 6528 6453 75 3 0 6453 72 0.989 1.000 0.040 1.000 0.520 0.077 0.050
0.9 6528 6453 75 0 0 6453 75 0.989 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!

T2 + R Nr. Rotations Analized No Smoke Smoke TP FP TN FN Accuracy Precision Sensitivity Specificity BA F1 F2
>0 6528 6453 75 48 43 6410 27 0.989 0.527 0.640 0.993 0.817 0.578 0.614
>1 6528 6453 75 37 5 6448 38 0.993 0.881 0.493 0.999 0.746 0.632 0.541
>2 6528 6453 75 31 0 6453 44 0.993 1.000 0.413 1.000 0.707 0.585 0.468
>3 6528 6453 75 25 0 6453 50 0.992 1.000 0.333 1.000 0.667 0.500 0.385
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Table 7.7: Tuned Models Performance on Flight 2 at full resolution for varying confidence levels 

 

 

Table 7.8: Tuned Models Performance on Flight 3 at full resolution for varying confidence levels 

 

  

Original Confidence Analized No Smoke Smoke TP FP TN FN Accuracy Precision Sensitivity Specificity BA F1 F2
> 0.1 544 480 64 2 87 393 62 0.726 0.022 0.031 0.819 0.425 0.026 0.029
> 0.2 544 480 64 1 31 449 63 0.827 0.031 0.016 0.935 0.476 0.021 0.017
> 0.3 544 480 64 1 24 456 63 0.840 0.040 0.016 0.950 0.483 0.022 0.018
> 0.4 544 480 64 0 14 466 64 0.857 0.000 0.000 0.971 0.485 #DIV/0! #DIV/0!
> 0.5 544 480 64 0 7 473 64 0.869 0.000 0.000 0.985 0.493 #DIV/0! #DIV/0!
> 0.6 544 480 64 0 2 478 64 0.879 0.000 0.000 0.996 0.498 #DIV/0! #DIV/0!
> 0.7 544 480 64 0 0 480 64 0.882 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!
> 0.8 544 480 64 0 0 480 64 0.882 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!
> 0.9 544 480 64 0 0 480 64 0.882 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!

T1 Confidence Analized No Smoke Smoke TP FP TN FN Accuracy Precision Sensitivity Specificity BA F1 F2
> 0.1 544 480 64 6 15 465 58 0.866 0.286 0.094 0.969 0.531 0.141 0.108
> 0.2 544 480 64 6 5 475 58 0.884 0.545 0.094 0.990 0.542 0.160 0.112
> 0.3 544 480 64 4 5 475 60 0.881 0.444 0.063 0.990 0.526 0.110 0.075
> 0.4 544 480 64 2 1 479 62 0.884 0.667 0.031 0.998 0.515 0.060 0.039
> 0.5 544 480 64 1 0 480 63 0.884 1.000 0.016 1.000 0.508 0.031 0.019
> 0.6 544 480 64 0 0 480 64 0.882 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!
> 0.7 544 480 64 0 0 480 64 0.882 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!
> 0.8 544 480 64 0 0 480 64 0.882 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!
> 0.9 544 480 64 0 0 480 64 0.882 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!

T2 Confidence Analized No Smoke Smoke TP FP TN FN Accuracy Precision Sensitivity Specificity BA F1 F2
> 0.1 544 480 64 8 5 475 56 0.888 0.615 0.125 0.990 0.557 0.208 0.149
> 0.2 544 480 64 8 0 480 56 0.897 1.000 0.125 1.000 0.563 0.222 0.152
> 0.3 544 480 64 6 0 480 58 0.893 1.000 0.094 1.000 0.547 0.171 0.115
> 0.4 544 480 64 5 0 480 59 0.892 1.000 0.078 1.000 0.539 0.145 0.096
> 0.5 544 480 64 2 0 480 62 0.886 1.000 0.031 1.000 0.516 0.061 0.039
> 0.6 544 480 64 2 0 480 62 0.886 1.000 0.031 1.000 0.516 0.061 0.039
> 0.7 544 480 64 0 0 480 64 0.882 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!
> 0.8 544 480 64 0 0 480 64 0.882 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!
> 0.9 544 480 64 0 0 480 64 0.882 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!

Original Confidence Analized No Smoke Smoke TP FP TN FN Accuracy Precision Sensitivity Specificity BA F1 F2
> 0.1 544 493 51 5 104 389 46 0.724 0.046 0.098 0.789 0.444 0.063 0.080
> 0.2 544 493 51 3 32 461 48 0.853 0.086 0.059 0.935 0.497 0.070 0.063
> 0.3 544 493 51 2 18 475 49 0.877 0.100 0.039 0.963 0.501 0.056 0.045
> 0.4 544 493 51 1 12 481 50 0.886 0.077 0.020 0.976 0.498 0.031 0.023
> 0.5 544 493 51 1 7 486 50 0.895 0.125 0.020 0.986 0.503 0.034 0.024
> 0.6 544 493 51 0 3 490 51 0.901 0.000 0.000 0.994 0.497 #DIV/0! #DIV/0!
> 0.7 544 493 51 0 3 490 51 0.901 0.000 0.000 0.994 0.497 #DIV/0! #DIV/0!
> 0.8 544 493 51 0 0 493 51 0.906 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!
> 0.9 544 493 51 0 0 493 51 0.906 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!

T1 Confidence Analized No Smoke Smoke TP FP TN FN Accuracy Precision Sensitivity Specificity BA F1 F2
> 0.1 544 493 51 8 9 484 43 0.904 0.471 0.157 0.982 0.569 0.235 0.181
> 0.2 544 493 51 7 2 491 44 0.915 0.778 0.137 0.996 0.567 0.233 0.164
> 0.3 544 493 51 7 2 491 44 0.915 0.778 0.137 0.996 0.567 0.233 0.164
> 0.4 544 493 51 4 1 492 47 0.912 0.800 0.078 0.998 0.538 0.143 0.096
> 0.5 544 493 51 3 0 493 48 0.912 1.000 0.059 1.000 0.529 0.111 0.072
> 0.6 544 493 51 2 0 493 49 0.910 1.000 0.039 1.000 0.520 0.075 0.049
> 0.7 544 493 51 1 0 493 50 0.908 1.000 0.020 1.000 0.510 0.038 0.024
> 0.8 544 493 51 0 0 493 51 0.906 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!
> 0.9 544 493 51 0 0 493 51 0.906 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!

T2 Confidence Analized No Smoke Smoke TP FP TN FN Accuracy Precision Sensitivity Specificity BA F1 F2
> 0.1 544 493 51 17 3 490 34 0.932 0.850 0.333 0.994 0.664 0.479 0.379
> 0.2 544 493 51 16 0 493 35 0.936 1.000 0.314 1.000 0.657 0.478 0.364
> 0.3 544 493 51 15 0 493 36 0.934 1.000 0.294 1.000 0.647 0.455 0.342
> 0.4 544 493 51 11 0 493 40 0.926 1.000 0.216 1.000 0.608 0.355 0.256
> 0.5 544 493 51 10 0 493 41 0.925 1.000 0.196 1.000 0.598 0.328 0.234
> 0.6 544 493 51 3 0 493 48 0.912 1.000 0.059 1.000 0.529 0.111 0.072
> 0.7 544 493 51 2 0 493 49 0.910 1.000 0.039 1.000 0.520 0.075 0.049
> 0.8 544 493 51 0 0 493 51 0.906 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!
> 0.9 544 493 51 0 0 493 51 0.906 #DIV/0! 0.000 1.000 0.500 #DIV/0! #DIV/0!
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Figure 7.9: Performance of the Original YOLOv8 model (above), Tuned Model (middle) and their difference 

(below) in the evaluation metrics on the external dataset where red indicated worst and green better 

performances 

 

  

Original Analized No Smoke Smoke TP FP TN FN Accuracy Precision Sensitivity Specificity BA F1 F2
> 0.1 5313 430 4883 4812 48 382 71 0.978 0.990 0.985 0.888 0.937 0.988 0.986
> 0.2 5313 430 4883 4787 33 397 96 0.976 0.993 0.980 0.923 0.952 0.987 0.983
> 0.3 5313 430 4883 4746 21 409 137 0.970 0.996 0.972 0.951 0.962 0.984 0.977
> 0.4 5313 430 4883 4650 12 418 233 0.954 0.997 0.952 0.972 0.962 0.974 0.961
> 0.5 5313 430 4883 4504 6 424 379 0.928 0.999 0.922 0.986 0.954 0.959 0.937
> 0.6 5313 430 4883 4336 2 428 547 0.897 1.000 0.888 0.995 0.942 0.940 0.908
> 0.7 5313 430 4883 3857 0 430 1026 0.807 1.000 0.790 1.000 0.895 0.883 0.825
> 0.8 5313 430 4883 2624 0 430 2259 0.575 1.000 0.537 1.000 0.769 0.699 0.592
> 0.9 5313 430 4883 185 0 430 4698 0.116 1.000 0.038 1.000 0.519 0.073 0.047

Tuned Analized No Smoke Smoke TP FP TN FN Accuracy Precision Sensitivity Specificity BA F1 F2
> 0.1 5313 430 4883 4798 142 288 85 0.957 0.971 0.983 0.670 0.826 0.977 0.980
> 0.2 5313 430 4883 4746 62 368 137 0.963 0.987 0.972 0.856 0.914 0.979 0.975
> 0.3 5313 430 4883 4687 29 401 196 0.958 0.994 0.960 0.933 0.946 0.977 0.966
> 0.4 5313 430 4883 4623 7 423 260 0.950 0.998 0.947 0.984 0.965 0.972 0.957
> 0.5 5313 430 4883 4478 2 428 405 0.923 1.000 0.917 0.995 0.956 0.957 0.932
> 0.6 5313 430 4883 4194 1 429 689 0.870 1.000 0.859 0.998 0.928 0.924 0.884
> 0.7 5313 430 4883 3496 0 430 1387 0.739 1.000 0.716 1.000 0.858 0.834 0.759
> 0.8 5313 430 4883 2242 0 430 2641 0.503 1.000 0.459 1.000 0.730 0.629 0.515
> 0.9 5313 430 4883 757 0 430 4126 0.223 1.000 0.155 1.000 0.578 0.268 0.187
Δ Analized No Smoke Smoke TP FP TN FN Accuracy Precision Sensitivity Specificity BA F1 F2

> 0.1 0 0 0 -14 94 -94 14 -0.020 -0.019 -0.003 -0.219 -0.111 -0.011 -0.006
> 0.2 0 0 0 -41 29 -29 41 -0.013 -0.006 -0.008 -0.067 -0.038 -0.007 -0.008
> 0.3 0 0 0 -59 8 -8 59 -0.013 -0.002 -0.012 -0.019 -0.015 -0.007 -0.010
> 0.4 0 0 0 -27 -5 5 27 -0.004 0.001 -0.006 0.012 0.003 -0.002 -0.004
> 0.5 0 0 0 -26 -4 4 26 -0.004 0.001 -0.005 0.009 0.002 -0.002 -0.004
> 0.6 0 0 0 -142 -1 1 142 -0.027 0.000 -0.029 0.002 -0.013 -0.016 -0.024
> 0.7 0 0 0 -361 0 0 361 -0.068 0.000 -0.074 0.000 -0.037 -0.048 -0.065
> 0.8 0 0 0 -382 0 0 382 -0.072 0.000 -0.078 0.000 -0.039 -0.070 -0.077
> 0.9 0 0 0 572 0 0 -572 0.108 0.000 0.117 0.000 0.059 0.195 0.140
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The files used and elaborated during this research include: 

 

 

• The raw JPG images obtained during the execution of Flight 2 and Flight 3 in the 

Büelenwald region. 

 

• A portion of the Python codes used to execute the various processes implemented 

throughout the research. 

 

• The original Pytorch file for YOLOv8 developed in the study by Tleuliyev (2019). 

 

• The Pytorch files for YOLOv8 developed during the various fine-tuning phases 

conducted in this study. 

 

 

These files are available at the following repository link: 

https://drive.google.com/drive/folders/1lCLej7aYVJOIleax2upmywNHU2g8Szhb?usp=drive

_link 

  

https://drive.google.com/drive/folders/1lCLej7aYVJOIleax2upmywNHU2g8Szhb?usp=drive_link
https://drive.google.com/drive/folders/1lCLej7aYVJOIleax2upmywNHU2g8Szhb?usp=drive_link
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