
Using Survival Analysis to Investigate Factors
Influencing Time to Map Reactivation in Map-

Assisted Pedestrian Navigation and Reactivation
Time Prediction

GEO 511 Master's Thesis

Author
Zhengfang Xu

22-737-530

Supervised by
Prof. Dr. Sara Irina Fabrikant
Mona Bartling (mona.bartling@uzh.ch)

Faculty representative
Prof. Dr. Sara Irina Fabrikant

04.10.2024
Department of Geography, University of Zurich



ii 
 

Abstract: 

Mobile maps can provide efficient navigation assistance for pedestrian navigation, 

primarily through routes displayed on the map or auditory navigation instructions. 

Research on when pedestrians need navigation assistance helps mobile map 

navigation systems provide guidance at appropriate times. There has been research 

on when to give auditory navigation instructions in pedestrian navigation. However, 

pedestrians sometimes choose to check the route on the map rather than depend on 

auditory instructions due to their limitations, such as being unavailable in noisy 

environments. Therefore, studying when pedestrians reactivate mobile map to check 

the route during navigation and the factors affecting the time of map checking are 

significant. It can help navigation systems provide proactive and context-aware 

guidance according to pedestrians’ needs, which can reduce pedestrians’ cognitive 

load and improve the pedestrian navigation experience. 

To achieve this goal, this thesis utilized a dataset from a map-assisted pedestrian 

navigation experiment in a virtual reality environment. Survival Analysis was applied 

for statistical analysis due to its advantage in analyzing time-to-event data. It focuses 

on studying how long it takes pedestrians to reactivate the mobile map to check the 

route after it has been locked, and the factors influencing this time.  

The results demonstrate that human factors (e.g., age, spatial ability, and map use 

frequency) and environmental factors (e.g., route length, route section, and 

shortcuts) significantly impact the time to map reactivation during map-assisted 

pedestrian navigation. The results also illustrate the time when pedestrians need 

navigation instructions is predictable according to these factors by applying Survival 

Analysis. 

Keywords: pedestrian navigation, mobile map, navigation guidance, time to map 

reactivation, survival analysis 
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1 Introduction: 

1.1 Motivation  
Imagine you are traveling to an unfamiliar city. When you want to go to a highly-

rated restaurant, you will most likely use a mobile map on your smartphone for 

navigation because mobile maps can help you navigate and orient yourself in 

unfamiliar cities (Delikostidis & Van Elzakker, 2009; Mantoro et al., 2012). However, 

sometimes you must stop and take out your mobile map to check if you are on the 

right route. This is a very annoying process for the navigators, especially when you 

are holding luggage or enjoying the scenery along the way. If the mobile map could 

somewhat anticipate when you need to reactivate it to check the route and provide 

timely guidance, this frustrating issue would be largely resolved. Therefore, it is 

necessary to study when the navigators need spatial information from the mobile 

navigation system. 

Mobile map navigation systems are an important part of modern navigation systems, 

especially with the popularity of smartphones and Global Positioning System (GPS) 

technology. These systems use this technology to provide accurate and real-time 

navigation support (Tang et al., 2020). Digital mobile maps can provide multiple 

levels of zoom and contain various geographic information. In addition, they can also 

display dynamic spatial information, such as point of interest (POI) markers around 

the user's location, and contain navigation instructions for the next waypoint (Brata 

& Liang, 2020). 

However, mobile map navigation systems also have their drawbacks. Reducing the 

ability of spatial learning is one of the problems brought by this system. GPS-based 

mobile navigation systems focus more on providing route guidance rather than 

enhancing users' understanding of the environment and spatial configuration 

(Münzer et al., 2012). Over-reliance on mobile map navigation systems can lead to a 

decline in spatial information acquisition skills (Parush et al., 2007). In addition to the 

impact on spatial ability, the hardware conditions of mobile devices also bring some 

challenges to navigation. For instance, the limited screen size of mobile devices can 

cause inconvenience when users need to obtain spatial information. This makes 

navigation more challenging through these devices. (Burigat et al., 2006). Most 

seriously, when using mobile map devices for navigation, people often need to shift 

their visual attention from the environment to the map, which can potentially lead 

to traffic safety issues (Calvo et al., 2014; Calvo et al., 2013; Choe et al., 2023).  
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To prevent individuals from shifting their attention from the environment to the map 

during navigation and thereby enhancing navigation safety and spatial learning 

ability, various research studies offer insights into potential methods and 

technologies that can be employed. Audio instructions, as discussed by researchers 

(Bharadwaj et al., 2019), are commonly employed in navigation systems to guide 

users to their destinations. Tactile (Eisert et al., 2013) and multimodal navigation 

instructions, which combine auditory and tactile displays (Calvo et al., 2013), have 

also been studied as being very effective.  

Aside from research on the effectiveness of different navigation instruction types, 

there is very little research about when to provide the user with such information. 

Scholars gave a general conclusion about the timing of instructions: navigators will 

feel more comfortable if they receive navigation guidance before they reach the 

decision point of the route (Winter, 2003). There is currently less empirical evidence 

on how to determine this specific time point in mobile pedestrian navigation 

systems. Most mainstream mobile map applications on the market just typically 

offer simple threshold-based alerts (Black et al., 2017). Nevertheless, people’s needs 

for the time of giving navigation instructions vary based on individual and 

environmental factors, some of which have been studied in some research about 

driving (George et al., 1996). 

Walking and driving differ systematically because pedestrians are not restricted by 

the road network (e.g., lanes, turn restrictions, one-way streets) like drivers 

(Gaisbauer & Frank, 2008). To verify whether findings from studies on driving can be 

applied to pedestrian navigation, scholars researched the time of auditory navigation 

instructions in the context of pedestrian navigation (Giannopoulos et al., 2017). This 

study showed that human factors such as age and spatial ability, as well as 

environmental factors like intersection types and road segment length, significantly 

influence when pedestrians need navigation instructions. In this study, each decision 

point was considered as the starting point to observe when participants would 

request auditory navigation instructions. 

There are two large research gaps regarding when pedestrians need navigation 

guidance from a navigation assistance system. Firstly, the type of navigation 

guidance is limited to audio. During navigation, the navigator may choose to read 

the graphical route from the map instead of using audio navigation. For different 

modalities of navigation guidance, the navigator's expected instruction time is also 

different (Kray et al., 2003). Secondly, the starting points for study when navigators 

need navigation guidance are limited by decision points, such as intersections. 

However, navigators need navigation guidance for different motivations, such as the 

need for orientation, making route decisions, monitoring progress, or recognizing 

the destination (Carpman & Grant, 2002). Hence, simply using decision points as a 
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reference for determining the timing of navigation instructions is insufficient to meet 

user needs and improve the user experience. 

Hence, it is essential to take a more flexible starting point for research and a type of 

guidance that is more suitable for walking navigation in exploring when pedestrians 

need navigation guidance and what factors affect this time. The results from this can 

help us better understand the relationship between potential impact factors and 

when pedestrians need information from the mobile map. This, in turn, improves 

navigation systems by providing a more informed perspective on when to deliver 

navigation guidance. Specifically, exploring how environmental factors influence 

navigation behaviors when to give navigation guidance can be dynamically adjusted 

based on the navigator's position and environmental factors that may impact when 

navigators need information in the context of Location-Based Services (LBS). 

Similarly, by examining human factors, adaptable navigation systems can be 

developed that allow for personalization of the time to give navigation guidance. 

Moreover, in the context of GeoAI, the findings from this thesis can also provide 

valuable insights for feature selection in the application of various AI algorithms in 

pedestrian navigation. 

1.2 Research goal 

To address the research gaps mentioned above, this thesis chooses the graphical 

navigation route shown on the map as the modality of navigation guidance from the 

mobile map navigation system. It considers each moment when the map becomes 

inactive during navigation as the starting point for researching when pedestrians 

need navigation guidance from the map. The research goal of this thesis is to 

investigate the impact of human and environmental factors on the time when 

navigators need to reactivate the map during map-assisted navigation. Further 

optimize the time for the navigation system to provide navigation instruction, 

providing pedestrians with a better navigation experience. 

To achieve this goal, several specific definitions are needed to clarify here to help 

subsequent research. This thesis considers every Map Inactive Phase (MIP) in the 

navigation trajectory as subjects or cohorts. Map reactivation is defined as an event 

of interest for MIP. This study will focus on observing when an event of interest 

occurs for each subject, in this case, when map reactivation occurs for each MIP. 

Time to Map Reactivation (TMR) is used to reflect when map reactivation occurs for 

each MIP. It also directly reflects when the navigators need to obtain information 

from the mobile map again. 
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1.3 Research questions and hypotheses 

Based on the research goal, which seeks to explore how both human and 

environmental factors affect the time to map reactivation during map-assisted 

navigation, two key questions are proposed: 

Research Question One (RQ1): Which and how do human factors influence the time 

to map reactivation within map-assisted navigation? 

Research Question Two (RQ2): Which and how do environmental factors influence 

the time to map reactivation within map-assisted navigation? 

To address the research questions posed above, this thesis formulates two 

hypotheses that reflect the expected impact of human and environmental factors on 

the time to map reactivation. These hypotheses are grounded based on prior 

research. 

For human factors, in research on the timing of navigation instructions, 

Giannopoulos et al. (2017) found that older navigators and those with higher spatial 

ability tend to request auditory navigation instructions later after they pass the 

intersections (Giannopoulos et al., 2017). The impact of gender on navigation is 

multifaceted. Some researchers have noted that males tend to have strengths in 

certain task-space tasks that require metrics or configurations of spatial capabilities 

(Sargent et al., 2019; van der Ham et al., 2015). Females may have an advantage in 

navigational tasks that require language skills, or that use categorisation strategies 

(Holden et al., 2015; Piccardi et al., 2014). However, there is no explicit research on 

how gender affects the timing of seeking navigation guidance. Therefore, a 

hypothesis is proposed in this context. The dataset used in this thesis includes self-

reported weekly map use frequency from participants, which could reflect the 

reliance on mobile maps in daily life. A study showed reliance on navigation systems 

could distract pedestrians’ attention from the environment, which might lead to a 

quicker map reactivation (Parush et al., 2007). Based on these studies, hypothesis 1 

was proposed. 

Hypothesis One (HP1): Older navigators, females and people who use the map more 

frequently tend to reactivate the map more quickly. In contrast, people with higher 

spatial abilities tend to reactivate the map more slowly. 

For environmental factors, route length has been identified as an influential factor in 

the timing of navigation instructions, with a negative effect (Giannopoulos et al., 

2017). Pedestrians have to pay extra attention to the heavy traffic density of people 

and vehicles to avoid injury (Pai et al., 2019). This may lead to difficulties in 

remembering the navigation route, which requires a quicker map reactivation. When 
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people choose to take shortcuts, it can increase the cognitive load (Cornell & Heth, 

2000), potentially leading to quicker map reactivation to check the route. In the 

second half of the route, the route information navigators need to remember is less 

than the first half. They may reactivate the map more slowly. Regarding crossing the 

road, since pedestrians need to focus most of their attention on the environment 

while crossing, it is hypothesized that this will lead to slower map reactivation. 

Hypothesis Two (HP2): Pedestrians navigating in heavy traffic density, on a longer 

route, in shortcuts would reactivate the map more quickly. Conversely, people 

walking through the second half of the route and crossing the road would reactivate 

the map more slowly. 
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2. Literature review 

This chapter will review the existing research that relates to the research interest of 

this thesis. Based on the research questions, section 2.1 will review key concepts in 

pedestrian navigation. This will offer a solid foundation for understanding pedestrian 

navigation. Sections 2.2 and 2.3 will explore the human and environmental factors 

outlined in HP1 and HP2, primarily reviewing the impact of these factors on 

navigation performance and map use habits, which are highly relevant to the thesis's 

focus on time to map reactivation. 

2.1 Pedestrian navigation 

This section begins with a discussion of the cognitive process behind pedestrian 

navigation, which helps to understand how pedestrians behave during navigation 

from a cognitive perspective. Section 2.1.2 reviews the existing navigation assistance 

systems and section 2.1.3 then focuses on the map mobile map navigation, which is 

the interest of this study. Section 2.1.4 narrows the discussion to the content directly 

related to the RQ1 and RQ2. 

2.1.1 Cognition in navigation 

The cognitive processes underlying pedestrian navigation are complex, involving 

various mechanisms (see Figure 1). Understanding the cognitive processes behind 

navigation is important. Externalized representations such as maps or diagrams and 

internal representations derived from sensory experience are two basic parts of 

pedestrian navigation (Wolbers & Hegarty, 2010).  

Externalised representations in navigation influence how individuals acquire spatial 

knowledge. These are presented in various forms, including maps, diagrams, verbal 

descriptions, etc. Research has shown that the effectiveness of these external aids 

depends on their accuracy and the human’s cognitive abilities. For instance, several 

researchers have emphasized that while external representations can help get 

spatial knowledge, their effectiveness is significantly affected by the accuracy of the 

representations (Jaeger et al., 2023). Furthermore, cognitive factors such as working 

memory and spatial reasoning also impact the utility of these external aids (Thoresen 

et al., 2016). Additionally, one study highlighted that the form in which information 

is presented, such as video versus direct navigation, may lead to differences in 

spatial knowledge acquisition (Wen et al., 2011). This indicated that the format of 

external representations is critical in shaping navigational outcomes. 

Internal representation mainly consists of three parts: perceiving spatial information 

from multiple sensory cues, creating and maintaining spatial representations in 

different memory periods, and using and manipulating these representations to 
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guide navigational behaviour (Wolbers & Hegarty, 2010).  Perceiving spatial 

information relies on the integration of multiple sensory cues, which help people 

navigate efficiently in the environment. Various sensory modalities contribute to 

spatial perception, such as visual, auditory, tactile, vestibular, and others. Visual cues 

are probably one of the most important cues in spatial navigation because they 

provide rich information about the surrounding environment (Posner et al., 1976).  

 

Figure 1: The complexity of spatial navigation (Wolbers & Hegarty, 2010). 

 

Studies have shown that auditory and vibratory signals can be used to create mental 

spatial representations It supports the idea that spatial information can be encoded 

in a non-modal manner (Chebat et al., 2015). After acquiring spatial information 

from the outside, people create and maintain corresponding spatial representations 

in memory. The cognitive map plays a crucial role in this process. The ‘cognitive map’ 

hypothesis suggests that the brain will build a unified representation of the spatial 

environment to support memory and guide future navigation actions (O’Keefe & 

Nadel, 1978). The field of neuroscience has involved lots of research in this area, 

such as summarising and comparing computational cognitive models of spatial 

memory in navigational space (Madl et al., 2015). They also investigated exploring 

the impact of complicated interactions among different brain regions on cognitive 

mechanisms. For example, it has been studied that the hippocampus and internal 

olfactory cortex are integral to the formation of map-like spatial codes, while other 

regions (e.g., posterior pressure cortex) anchor these representations to 

environmental landmarks (Epstein et al., 2017). The internal spatial representation 

will further guide the specific behaviors of people during navigation activities. People 

need cognitive maps to enhance their ability to process complex environments 

because individuals must integrate various types of internal information as well as 
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external information to develop an understanding of their surroundings (Silva & 

Martínez, 2023).  

From the point of view of creating a better navigation assistance system, this article 

focuses more on how to better provide external spatial representations. In 

navigation, acquiring spatial information from an external spatial representation 

could be studied from two perspectives: survey perspective and route perspective 

(Taylor & Tversky, 1992). Reading a navigation route from a mobile map is a kind of 

survey perspective and navigating in the real environment can be seen as a route 

perspective. Maps typically show the overall layout of an environment from a survey 

or bird's-eye view. They are generally object-centered, maintaining a stable 

orientation (such as north-up), even when rotated. In contrast, people experience 

the environment from their first-person perspective in route perspective (Dai et al., 

2018). Figure 2 illustrates an example of route perspective and survey perspective. 

 

Figure 2: a An example of route perspective display (Google Maps, 2018a). b An example of survey 

perspective display (Google Maps, 2018b). (Dai et al., 2018) 
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The difference between these two different spatial perspectives has been studied by 

many researchers. It has been pointed out that the different perspectives affect the 

acquisition of spatial information (Evans & Pezdek, 1980; Sholl, 1987; Taylor et al., 

1999; Thorndyke & Hayes-Roth, 1982). For example, researchers discovered that 

individuals who learned from maps were better at estimating overall spatial 

relationships and straight-line (Euclidean) distances between locations. In contrast, 

people who navigated the environment were more accurate in estimating local, self-

to-landmark relationships and route distances (Thorndyke & Hayes-Roth, 1982). 

Similarly, when participants learned an unfamiliar campus building either through 

maps or by navigating, those who navigated in a real environment performed better 

on tasks involving route knowledge, while map learners excelled in tasks requiring 

survey knowledge (Taylor et al., 1999). These results suggest that the spatial 

information obtained by different spatial access modalities is different. When 

adopting the route perspective, people intentionally or unintentionally acquire 

information including the sequential arrangement of landmarks, the position of 

landmarks relative to the learner, and the appearance of landmarks. In contrast, 

when learning through a bird's-eye view perspective, people acquire information 

about the global, structural relationships between landmarks (Dai et al., 2018).  

However, when people are faced with complex spatial environments, there is not a 

single but a variety of ways to obtain spatial information from the outside. Especially 

during navigation, switching of spatial perspectives usually occurs. For example, 

when navigating in an unfamiliar environment using a map, people will go through 

the process of acquiring spatial information through an external map, creating a 

cognitive map in their brain, walking in the environment based on their memory, and 

viewing the map again. These behaviors are repeated during a navigation process. 

Modern technology enables navigators to access different spatial perspectives. 

Pedestrians can view maps on their smartphones; drivers in unfamiliar environments 

may rely on GPS devices with maps (Dai et al., 2018). Scholars have investigated the 

combination of the two perspectives (see Figure 3) did not improve the performance 

of spatial learning contrasted with a single spatial perspective (Brunyé et al., 2012). 

In this study, perspective switching was neither forced nor directly measured. As a 

result, it was not possible to capture whether participants made the switch. To my 

best knowledge, little research is currently investigating the topic of switching 

between different spatial perspectives.  

In this background, scholars have called for research to be conducted to examine 

when and where people switch perspectives, and what factors influence perspective 

switching (Dai et al., 2018). The research questions in this thesis are very close to 

this, but in the context of this thesis, the focus will be on analyzing when navigators 
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switch from route perspective to survey perspective for navigation purposes, and 

what human and environmental factors affect this process. 

 
Figure 3: The survey perspective (left) and route perspective (right) (Brunyé et al., 2012) 

2.1.2 Navigation assistance systems   

Based on the cognitive processes behind pedestrian navigation, various kinds of 

pedestrian navigation systems have been developed to meet the daily needs of 

pedestrian navigation. Mobile map-based navigation is one of the most dominant 

navigation aids. These systems utilize digital maps, GPS, inertial sensors, and other 

technologies to provide accurate and user-friendly navigation solutions (Brata & 

Liang, 2020; Kuang et al., 2018; Xu et al., 2019).  The research illustrated the 

advantages of mobile digital maps over traditional paper maps for navigation, such 

as dynamic geolocation information and interactive features. These digital interfaces 

allow users to zoom in and out, search for points of interest (POIs), and receive turn-

by-turn navigation instructions. Those features are essential for effective wayfinding 

in urban environments (Brata & Liang, 2020). 3D maps improve navigation by helping 

users better understand spatial relationships and navigate complex cityscapes by 

providing a more immersive navigation experience (Aditya et al., 2018). To solve the 

problem of unstable GPS signals, researchers have investigated the combination of 

inertial measurement units with other technologies, such as Bluetooth and Wi-Fi, to 

help pedestrian navigation by estimating parameters such as stride length and 

heading to achieve more accurate positioning (Kuang et al., 2018; Xu et al., 2019). 

With the development of artificial intelligence, machine learning techniques are also 

being employed to improve pedestrian navigation systems. For example, gait 

characteristics and machine learning algorithms are used to improve positioning 

accuracy. By analyzing an users’ unique walking patterns, these systems can provide 

personalized navigational assistance (Zhou et al., 2020). 

However, there are some drawbacks to mobile map navigation systems, including 

impacts on users' spatial abilities, navigational skills, and safety issues. A significant 
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disadvantage of mobile map-based navigation systems is that they may impair 

spatial learning and cognitive mapping abilities. Research has shown that people 

who regularly use navigation aids have weakened basic navigational skills. They are 

usually unable to develop a good understanding of spatial configurations. This 

phenomenon is particularly worrisome for children, who may not actively interact 

with their surroundings while relying on such technologies (Münzer et al., 2020). 

Habitual GPS users tend to rely more on stimulus-response strategies than 

developing spatial memory strategies, which could lead to poorer cognitive mapping 

over time (Dahmani & Bohbot, 2020). Cheng et al. pointed that users often focus 

their attention on their mobile devices, which can distract them from being aware of 

their surroundings. This distraction may hinder their ability to process spatial 

information effectively (Cheng et al., 2023). More serious than the adverse effects on 

navigational and spatial abilities, mobile map-based navigation systems may pose 

immediate safety concerns for pedestrians. Because people often need to shift their 

visual attention from the environment to the map (Cheng et al., 2023; Giannopoulos 

et al., 2015), this can be very dangerous when navigating in complex environments, 

which in turn may lead to traffic safety issues (Calvo et al., 2013). 

In recent years, researchers have tried to solve several problems of pedestrian 

navigation systems by developing different approaches, including auditory(Holland 

et al., 2002; Kuriakose et al., 2022; Zanchi et al., 2021) , vibro-tactile (Gkonos et al., 

2017, 2017; Schirmer et al., 2015), augmented reality (Smith et al., 2017; Takeuchi & 

Perlin, 2012), and gaze-based pedestrian navigation (Giannopoulos et al., 2015). 

Schirmer et al. have developed a tactile navigation system (see Figure 4), which is a 

novel tactile interface designed for hands-free pedestrian navigation (Schirmer et al., 

2015). The system is fully integrated into regular shoes without requiring permanent 

modifications, allowing users to navigate without diverting attention from their 

surroundings, enhancing navigation safety (Schirmer et al., 2015). Giannopoulos et 

al. introduced GazeNav, a novel gaze-based pedestrian navigation system that 

communicates routes based on the user's gaze at decision points. It can integrate 

gaze direction into navigation decisions to release visual attention (Giannopoulos et 

al., 2015). 
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Figure 4: Overview of the Shoe me the Way components: Two vibration actuators are placed near the 

user’s ankle, one on either side of the foot. The actuators are controlled by a microcontroller that is 

worn at the lower leg (Schirmer et al., 2015). 

 

Even though these new technologies show great potential in many areas, mobile 

map-based navigation systems are still the dominant navigation systems. Some 

researchers emphasized that the rise of smartphones had made mobile navigation 

applications widely accessible, allowing nearly everyone to utilize these tools for 

navigation (Tai et al., 2022). Therefore, alongside research into other navigation 

technologies, optimizing mobile map navigation aids remains important and cannot 

be ignored or set aside. 

2.1.3 Mobile map navigation 

GPS based mobile map navigation aids provide very effective help to human 

navigation. In the process of completing a navigation task, there are three main 

processes, firstly, determining one's position and the direction in which one is facing, 

secondly, route planning based on the destination location, and finally, executing the 

planned route to reach the destination (Ishikawa et al., 2008). As discussed in 2.2.1, 

navigators will do this throughout in navigation process, by relying on internal spatial 

representations from memory, or by referring to external spatial information such as 

maps, or both.  Figure 5 describes the three main stages in the navigation process 

and how they relate to each other. 



13 
 

 
Figure 5: Schematic explanation of stages involved in navigation (Ishikawa et al., 2008). 

 

Mobile map navigation systems play an important role in all three phases, and 

academics as well as designers in the industry are constantly researching how to 

optimize these phases.  

In the spatial orientation stage, the Global Positioning System (GPS) is the core 

technology used by mobile maps to determine a user's spatial location. The 

popularity of GPS technology has changed the way users interact with mobile map 

applications. Scholars point out that the emergence of geographic information 

systems (GIS) and mobile positioning technology has promoted the widespread 

application of location-based services (LBS) (Luo et al., 2016). These services cover a 

range of functions, including navigation, location-sensitive payments, and real-time 

traffic updates, thereby improving the overall utility of mobile applications. The 

ability to access such services anytime and anywhere has become possible due to 

advances in high-speed cellular networks and GPS technology (Baek, 2022). 

However, relying on GPS for location services also brings many challenges. One of 

them is that smartphones consume a lot of power when using GPS. Some studies 

have shown that the computational demands of GPS lead to increased battery 

consumption, making mobile devices unable to support long-term use of LBS 

(Aralikatti & Anegundi, 2016). In addition, privacy issues have become a key issue in 

the context of LBS. Privacy-preserving techniques such as spatial hiding are essential 

to protect users’ location data while still achieving the functionality of LBS (Shekhar 

et al., 2017). Striking a balance between providing personalized services and 

ensuring user privacy remains a key challenge in the development of mobile map 

applications.  

The integration of a digital compass, accelerometer, and gyroscope in a mobile map 

navigation system plays a significant role in determining the heading direction. 

Digital compasses are essential sensors for determining the orientation of mobile 

devices. Navigation applications can provide accurate directional guidance by 
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measuring the azimuth. Accelerometers and gyroscopes play an important role in 

improving navigation accuracy. The main function of the accelerometer is to 

measure the acceleration of the device and detect motion and changes in speed. The 

main function of the gyroscope is to provide information about the rotational 

motion of the device. This sensor combination helps mobile navigation systems 

compensate for the limitations of GPS (Link et al., 2013). In addition, advanced 

algorithms can be implemented based on the combination of these sensors to 

improve navigation performance. This is particularly important in pedestrian 

navigation because pedestrians often rely on mobile devices for real-time guidance. 

Zhang and Yan emphasized that pedestrian navigation systems utilize a combination 

of GPS, electronic compasses, and accelerometers to provide accurate and 

responsive navigation solutions (Zhang & Yan, 2019). However, the effectiveness of 

these technologies also faces some challenges. For example, the accuracy of digital 

compasses can be affected by environmental factors, such as magnetic interference 

from nearby objects. Bowers discussed the impact of compass errors on augmented 

reality navigation applications, emphasizing the need for powerful calibration 

techniques to mitigate these issues (Bowers, 2022). 

Mobile maps provide navigators with many types of assistance during the route 

planning phase. The most important functions are route calculation and 

recommendation functions. Mobile maps can use different algorithms to calculate 

various routes from the user's current location to the destination based on the user's 

preferences. Dijkstra's algorithm is fundamental for finding the shortest path in a 

weighted graph. It systematically explores all possible paths from the starting node 

to the destination, ensuring that the path with the least cumulative weight is 

selected. Based on this algorithm, many extended algorithms have been developed, 

such as the A* algorithm which incorporates heuristics to improve efficiency (Zhang 

et al., 2023), Dynamic Routing Algorithms that adapt to indoor navigation (Link et al., 

2013) and so on. In addition to recommending the shortest routes and more efficient 

routes that incorporate real-time traffic data (Liebig et al., 2017), researchers are 

beginning to explore route computation that is more responsive to people's needs, 

such as recommending routes that are more carbon-neutral (Zhang et al., 2023), 

routes with a better view of the landscape (Chen et al., 2017). 

After identifying the navigation route, the display of the route on the map becomes 

an important topic worthy of study. Routes are typically represented as colored lines 

on a map. The integration of real-time data allows for dynamic route display. For 

example, if a user encounters traffic congestion or road closures, the application can 

update the route in real time and visually represent the new path on the map. This 

feature enhances user trust and reliance on the navigation system (Petovello, 2003). 

A clear user interface is essential for effective route display. Research indicates that 

overly complex interfaces can lead to user confusion and navigation errors (Savino et 
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al., 2020). Therefore, mobile mapping applications strive for simplicity while 

providing necessary information. Because landmarks are a key element in navigation, 

scholars have also conducted extensive research on how landmarks are displayed on 

maps. It has been proposed that the inclusion of landmarks in mobile maps for 

pedestrian navigation could somewhat counteract the negative impact of using GPS-

based navigation systems on users' spatial learning (Duckham et al., 2010; Raubal & 

Winter, 2002). However, the problem of how to visualize landmarks on navigation 

routes is a trickier one, as the depiction of landmarks on mobile maps may increase 

the cognitive load of the navigator (Montello, 2005). Cheng et al. noted that 

visualizing landmarks on maps aids users' spatial learning only when the number of 

displayed landmarks remains within the limits of their cognitive capacity (Cheng et 

al., 2022). Kapaj et al. study 3D visualization of landmarks, illustrating that different 

ways of visualizing landmarks have different impacts on people with different spatial 

abilities, and call for landmarks visualization to follow human-adaptive design 

guidelines (Kapaj et al., n.d.). 

In the route execution phase, mobile maps offer various features that help users 

finish their navigation tasks successfully. One of the main features is to provide route 

information dynamically so that the navigators can check the navigation route 

anytime. There are two main ways in which mobile maps provide information in 

pedestrian navigation: graphic presentation of the route, or a combination of sound 

and vibration to provide turn-by-turn instructions. Audio turn-by-turn instructions 

from mobile maps can guide users at each decision point. This feature simplifies 

navigation by breaking down the route into manageable segments, thereby reducing 

cognitive load and enhancing user confidence to some extent (de Waard et al., 

2017). However, there are many problems with this approach, for example, turn-by-

turn navigation takes the navigator's attention away from the features of the 

environment, leading to distraction between the navigational aids and the 

environment (Gardony et al., 2013). In another aspect, audio cues may be difficult to 

hear in noisy urban environments, especially for pedestrian navigation (Heller et al., 

2020). In this case, not all users prefer audio instructions. Some individuals may find 

auditory cues intrusive and may prefer visual navigation aids, such as rechecking the 

graphical route on the mobile map (de Waard et al., 2017). However, checking the 

map requires navigators to shift their visual attention from the environment to the 

map, which may cause safety problems (Choe et al., 2023). Scholars have made 

various attempts and discussions on how to address this issue, such as the use of 

multimodal navigation assistance systems discussed in Section 2.2.2. However, there 

is a lack of evidence regarding the integration of these technologies with mobile 

maps.  
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2.1.4 Time of providing navigation instructions 

As can be seen from the above discussion, there has been much research on how to 

better provide route information for navigation. However, there has been very little 

research on when to provide this information, which is also very crucial to improve 

the user experience. If an instruction is given too early, the user might forget it by 

the time they reach the decision point. Conversely, if it's provided too late, the user 

may miss the decision point entirely or be forced to make an abrupt turn in driving 

navigation (Ross et al., 1997).  

Current research on when to give navigation guidance has focused on the field of car 

navigation, which could provide some insights into the time of giving pedestrian 

navigation instructions. By intentionally providing drivers with navigation guidance 

too early or too late and asking drivers to rate the timing of the prompts after the 

experiment, the study identified relevant influencing factors, including the distance 

and time to the next junction, driving speed, and the complexity of the navigation 

prompt information (Ross et al., 1997). The U.S. Federal Highway Administration’s 

general guidelines for navigation systems added weather and driver characteristics 

as factors that may affect navigation guidance time (Dingus et al., 1996). Age and 

gender as factors that may influence the optimal navigation guidance time were 

confirmed in subsequent empirical research (George et al., 1996), which also 

indicated that speed, turning patterns, and the number of cars on the street also had 

a significant effect.  

However, it is still worth studying whether these research results based on driving 

navigation are applicable to pedestrian navigation. Giannopoulos et al. first proposed 

the issue of studying the time of giving navigation guidance in pedestrian navigation. 

They designed an experiment to navigate in a virtual environment to observe when 

pedestrian navigators requested for audio navigation instructions. Next, in order to 

better study time-to-event data, they applied the method of survival analysis and 

confirmed that human factors such as age and spatial ability, as well as 

environmental factors such as the type of intersection (such as T intersection, Y 

intersection, etc.), route length, and the degree of visualization of the intersection, 

would have a significant impact on the optimal voice navigation prompt time 

(Giannopoulos et al., 2017). Subsequently, an in-situ study was conducted to explore 

whether the conclusions drawn in the Virtual Reality (VR) environment can be 

transferred in the real environment. The researchers selected auditory, landmark-

based turn-by-turn instructions as the navigation guidance modality and used each 

turning point as the starting point to study the navigators' most preferred navigation 

guidance provision time. The results show that, similar to the results of 

Giannopoulos et al., older people tend to get navigation instructions later. However, 

the difference is that people who show better global/egocentric orientation will 
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request route instruction earlier (Golab et al., 2022). This study also added some 

new environmental variables such as land cover, providing a new perspective for 

research in this direction. 

However, there are some limitations in these two main studies, also mentioned by 

Giannopoulos et al. (2017) and Golab et al (2021). The first one is that they both 

used auditory as the modality of navigation guidance. However, for different 

modalities of navigation instruction, the navigator's expected time is also different 

(Kray et al., 2003). The second is that they both use turn points as a starting point for 

exploring the time given to navigation. However, in pedestrian navigation, the 

situation is often more complex, e.g., pedestrians may look at the map several times 

during a route. Based on this, they also both called for future research directions to 

adopt a more flexible design in the modality of navigation guidance as well as the 

starting point for the study of preferred instruction time. 

2.2 Human factors influencing navigation and map use 

This section will focus on four human factors that may influence navigation and map 

use, including age, gender, spatial ability, and map use frequency. For each factor, it 

will expand the discussion from to perspective of how it influences the navigation 

performance and how it influences the map use strategy.  

2.2.1 Age  

The impact of age on navigation ability has always been a topic of great academic 

concern. Many research results show that as people age, various cognitive and 

sensorimotor functions decline, which directly affects their navigation skills. From a 

neurobiological perspective, neuroimaging and lesion studies have identified a 

network of structures involved in spatial navigation. These structures include the 

hippocampus, parahippocampal gyrus, cerebellum, parietal cortex, posterior 

cingulate gyrus, and posterior cingulate cortex (Moffat, 2009). Studies have shown 

that older adults have reduced or absent hippocampal activation when performing 

navigation tasks (Antonova et al., 2009; Meulenbroek et al., 2004). However, it has 

also been shown that the positive relationship between hippocampal activation and 

navigational performance is only reflected in younger people and not in older people 

(Moffat et al., 2007).  

Cognitive and sensory changes associated with aging also introduce differences in 

the use of mobile maps. Research suggests that older users may prefer simplified 

interfaces to reduce cognitive load and improve usability. Renaud and Biljon 

highlight that Studies have shown that simplified interfaces are more popular with 

older users because they can effectively reduce cognitive load and improve usability 

(Renaud & van Biljon, 2010). As age-related differences in motivation and technology 
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acceptance also play a crucial role in the use of mobile maps, older adults may have 

some difficulty in accepting new navigation assistance technologies (Cullen & 

Kabanda, 2018). Unfamiliarity with the technology and concerns about new tools 

may also hinder their use of mobile maps. Neves et al. noted that older people's use 

of mobile devices tends to be influenced more by functional and attitudinal factors 

than by physical limitations (Neves et al., 2013). The cognitive strategies adopted by 

different age groups also affect the use of mobile maps. The decline in spatial 

awareness and memory makes the elderly more likely to choose egocentric 

strategies, that is, to understand the surrounding environment based on their own 

position and perspective. However, young users do not show any difference in 

egocentric and allocentric (which involves understanding the environment from a 

more objective, map-like perspective) strategies (Rodgers et al., 2012). 

In the literature investigating the effects of age on navigation performance and map 

use, most of the focus has been on the effects of older people, who are mostly 

defined as those aged 65 years or older (Hegarty et al., 2002; Ishikawa & Montello, 

2006; Nazareth et al., 2019). Yu et al. pointed out this gap and studied the 

differences in navigation between healthy young adults (aged 18-28) and middle-

aged adults (aged 43-61) (Yu et al., 2021). Their results showed that path integration 

abilities did not change in middle-aged adults. This provided evidence that suggests 

that age-related changes in navigation occur later in the aging process. In this thesis, 

the age difference primarily exists between the younger age groups, 18-24 and 25-33 

years old. The differences in their map use strategies still require further 

investigation. 

2.2.2 Gender 

There are significant individual differences in human navigation skills, and gender 

may be an important influential factor. Overall, opinions are different regarding 

whether gender leads to differences in navigation in academia. Some studies 

suggested that males have advantages in certain aspects of navigation (Dabbs et al., 

1998; Gagnon et al., 2018; Lawton & Kallai, 2002), while others indicate no 

significant gender differences (Driscoll et al., 2005; Herman et al., 1979; O’Laughlin & 

Brubaker, 1998). Additionally, some research shows that females may have an 

advantage in navigation tasks under specific conditions (Burigat & Chittaro, 2007). 

Thinking back to spatial perspectives discussed in section 2.1.2, research shows that 

males tend to prefer Euclidean orientation strategies based on cardinal directions 

and distances, while females are more likely to rely on landmark-based strategies 

involving a series of turns and proximal cues (Dabbs et al., 1998; Lawton & Kallai, 

2002). Females are more likely to be supported by the overview of the environment 

provided by device-assisted navigation because they are more likely to use route-



19 
 

based navigation strategies (Dabbs et al., 1998; Lawton & Kallai, 2002). Males 

demonstrate strengths in certain task-space tasks that require metrics or 

configurations of spatial capabilities, as well as the use of geometric information 

(Sargent et al., 2019; van der Ham et al., 2015). Females may have an advantage in 

navigational tasks that require language skills, or that use categorization 

strategies(Holden et al., 2015; Piccardi et al., 2014). This can partly support HP1, 

suggesting that females may be more likely to reactivate the map more quickly to 

check the graphic route for recognizing turn instructions. 

Research indicates that anxiety can negatively affect the ability to encode spatial 

information, thereby impairing navigation performance. Women showed more 

spatial anxiety in certain situations (Huang & Voyer, 2017; Lawton & Kallai, 2002). 

Therefore, women's navigation performance may be affected in certain scenarios, 

such as time-constrained navigation tasks or in crowded environments. Regarding 

the influence of age on gender, the literature indicated that spatial representation 

abilities gradually mature as individuals approach puberty (Liben et al., 2013). 

Because the participants in this experiment were all over 18 years old, there was 

basically no gender effect caused by aging. Research also suggested that motivation 

and confidence played a crucial role in mediating gender differences in navigation 

performance (Schinazi et al., 2023). This finding suggested that improving motivation 

and confidence in women may mitigate some of the performance gaps observed in 

navigation tasks. 

In the study to investigate the influence of gender on how navigators interact with 

mobile maps, researchers found that female participants spent more time in the 

route planning phase, which includes using mobile maps to find relevant 

destinations, obtain recommended routes, and memorize navigation routes (Bartling 

et al., 2024). However, this result cannot be directly transferred to the timing of map 

reactivation. On one hand, the longer time spent by females in the route planning 

phase may be due to their information gathering from the graphical route. On the 

other hand, the time invested in planning may enhance memory, reducing the need 

for quicker map reactivation. 

2.2.3 Spatial ability  

Spatial ability plays an important role in navigation, influencing how individuals 

perceive, interpret, and interact with the environment. Spatial ability encompasses 

various components, including mental rotation, perspective-taking, and spatial 

visualization. Research indicates that these abilities are very important during the 

navigation process (Allen et al., 1996; Kozhevnikov et al., 2006; Meneghetti et al., 

n.d.; Muffato et al., 2020).  People with high spatial ability perform better in 

navigation. Ramanoël et al. highlighted that spatial memory and viewpoint selection 
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abilities are important influential factors of navigational behavior (Ramanoël et al., 

2020). The decline of these abilities with age may lead to navigational ability 

decreasing in older adults. Another study pointed out that spatial navigational 

decreases are influential even in the early stages of cognitive decline, underlining the 

importance of spatial abilities in maintaining navigational competence (Laczó et al., 

2021, 2022). Furthermore, spatial abilities have been shown to be trainable. 

Participation in navigation tasks can lead to structural changes in the brain that 

enhance spatial ability (Wenger et al., 2012).  This suggested that spatial navigation 

skills could be improved through targeted training and cognitive practice (White & 

Moussavi, 2016). According to the results of an empirical study by Mona et al., 

people with higher spatial ability completed the navigation tasks more quickly. It can 

be found that various studies have shown that people with higher spatial abilities 

perform better in navigation. 

Spatial ability also has an impact on how individuals interact with and utilize maps. 

Navigators with higher spatial abilities tend to perform better in tasks involving map 

reading and navigation because they can more easily interpret spatial information 

and create internal representations of the environment (Kozhevnikov et al., 2006).  

In addition to accessing information, spatially competent people can also better 

integrate visual information from maps with their existing knowledge of the 

environment to develop more effective navigation strategies (Boccia et al., 2017). 

Nevertheless, individuals with lower spatial ability may have difficulty understanding 

and memorizing the spatial information from maps, leading them to rely more 

heavily on external assistance (Dahmani & Bohbot, 2020). This partly supports HP1, 

because people with weaker spatial abilities rely more on the navigation route 

displayed on the map for assistance, leading them to reactivate the map more 

quickly. 

The study by Giannopoulos et al. has indicated that individuals with higher spatial 

ability tend to request auditory navigation instructions later (Giannopoulos et al., 

2017). However, in a similar experiment conducted in a real-world environment, 

Antonia Golab et al. reached the opposite conclusion. They found that people with 

better global/egocentric orientation tend to request route instructions earlier (Golab 

et al., 2022). This difference, as mentioned in their discussion, may be due to 

Antonia Golab et al. using the German-language spatial strategies questionnaire 

(Münzer & Hölscher, 2011), while Giannopoulos et al. employed the SBSOD (Hegarty 

et al., 2002). Since the data in this study also utilizes the SBSOD measure, HP1 

primarily references the results from Giannopoulos et al. Results from the Mona 

study also indicated that participants with higher SBSOD scores had less active map 

use. Although the "less active map use" in this context refers to the total 

active/inactive time during a navigation task, it still provides some support for the 
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HP1 that navigators with higher spatial ability are likely to reactivate the map more 

slowly. 

2.2.4 Map use frequency  

Map use frequency is a broad concept that can refer to the frequency of map use in 

navigation tasks. It also can reflect the frequency of map use in daily life. In the 

dataset used in this study, map use frequency was based on participants’ self-

reported weekly mobile map use. To understand the possible influence of weekly 

map use frequency on TMR, it is essential to think about the motivations of map use. 

The motivations for using maps in everyday life are various. The primary motivation 

for map use should be navigation assistance. As discussed in section 2.1.3, mobile 

maps provide various forms of assistance to navigators during navigation. It can 

assist in three key stages of navigation: spatial orientation, route planning, and route 

execution. Apart from the assistance in basic navigation, mobile map applications 

can also integrate multiple components to enhance the overall pedestrian navigation 

experience. Some researchers developed the Smart Pedestrian Network (SPN) 

model, which can provide better navigation assistance by combining urban planning, 

smartphone navigation apps, and commercial components to facilitate walking 

navigation experience (Fonseca et al., 2020). This integrated approach can not only 

improve route planning by taking into account pedestrians' preferences and needs 

but also promote physical activity and sustainable urban living. In addition, more 

advanced algorithms have been developed to deal with different challenges in 

navigation. These algorithms can optimize route planning based on various criteria, 

such as terrain irregularities. For instance, mobile maps can be effectively used to 

navigate uneven terrain, ensuring that pedestrians can select routes that are not 

only the shortest but also the most walkable (Yuan et al., 2017). These studies show 

that mobile maps can provide effective assistance to pedestrians in traditional 

navigation tasks. Moreover, with the application of emerging technologies, many 

more user-friendly navigation aids are continually being introduced. 

In addition to navigation assistance, there are many other motivations for people to 

use maps in their lives. The other feature would be that people can get detailed 

information about Points of Interest (POIs) and other contextual data. Mobile maps 

can display dynamic geo-locative information, which includes various POIs such as 

restaurants, parks, and public transport stations around the user's current location 

(Brata & Liang, 2020). In addition, the development of big data has brought many 

positive impacts on mobile maps. Mobile mapping systems can enrich geographic 

information by integrating user-generated content. This approach allows users to 

contribute information about new or little-known locations, further enhancing the 

richness of the mapping experience (Lu & Arikawa, 2015). Many users also use 
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mobile maps to view information about public transportation, especially when they 

commute on a familiar route. By integrating real-time data from public 

transportation schedules into mobile maps, users can get up-to-date information 

about arrival and departure times for buses, trains, and other public 

transportation(Ying et al., 2020), allowing users to dynamically adjust their travel 

plans(Farkas, 2016).  

Based on the above discussion, weekly map use frequency does not seem to directly 

impact the speed of map reactivation during navigation due to the diverse purposes 

of map use. Additionally, map use frequency is also linked to a person's familiarity 

with the environment (Vaez et al., 2020). However, it can still reflect the degree of 

dependence on mobile maps in daily life to some extent and may influence the time 

of map reactivation in navigation. 

2.3 Environmental factors influencing navigation and map 

use  

There are five environmental factors will be discussed in this section. They are route 

length, shortcuts, spatial ability, traffic density, and road crossing. Similarly, it will 

also review the influence of these five factors on navigation performance and map 

use strategy, which will provide insights into how these environmental factors 

influence the time to map reactivation. 

2.3.1 Route length  

The length of a road has a significant impact on pedestrian navigation performance. 

Considered from a cognitive perspective, longer routes tend to result in an increased 

cognitive load because of the greater amount of information that must be received, 

integrated and remembered (Fu et al., 2015). The primary reason route length 

affects cognitive load is that longer routes typically involve more decision points, 

such as intersections and turns, which require additional cognitive resources for 

evaluation and memory retention (Krichmar & He, 2023). However, road length is 

only one of the factors in road complexity, and there are other factors that affect 

pedestrian navigation performance. Studies have shown that pedestrians often 

evaluate potential routes based on perceived efficiency, which includes not only 

physical distance but also the expected time to reach a destination (Liao et al., 2017). 

In addition, the built environment can significantly influence how pedestrians 

perceive navigation. Elements such as pavement width, the presence of trees, and 

overall aesthetics can affect the choice of navigation route (Ferrer et al., 2015). For 

instance, wide pavements and green spaces may encourage pedestrians to choose 

longer routes, as these features improve the overall walking experience. 
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Research has also shown that people may prefer longer routes with fewer obstacles. 

For instance, they tend to avoid slopes or uneven surfaces, even if it slightly extends 

their journey, as such obstacles complicate their travel (Rahaman et al., 2017; 

Tajgardoon & Karimi, 2015). This highlights the necessity for pedestrian navigation 

systems to consider not only the shortest path but also the most convenient one. 

The total route length also influences how navigators use mobile maps. Because 

users must align their current position with the information displayed on the map, 

this process can consume significant cognitive resources. As a result, the design and 

presentation of the map play a crucial role in how effectively users navigate longer 

routes. Research showed that the presence of both external and internal landmarks 

in map descriptions significantly impacted user performance, especially as route 

length increases (Westerbeek & Maes, 2013). In addition, the size and scale of the 

map can affect how users perceive and utilize route information. Researchers have 

found that while map size does not significantly influence distance judgment, it does 

impact wayfinding performance, particularly in interactive interfaces (Chen & Li, 

2020). This suggested that the physical characteristics of the map—such as its size 

and the level of detail provided—could influence the efficiency with which users 

navigate longer routes. When faced with longer routes, users may rely more on the 

map to maintain their sense of direction, but the complexity of the presented 

information might hinder their ability to do so effectively. Spatial updating is another 

critical aspect affected by route length. As people navigate longer distances, they 

must continuously update their mental representation of the environment based on 

the map's information (Xiao et al., 2015). This may result in navigators needing to 

reactivate the map more quickly to check the provided route information, which can 

support HP2. 

2.3.2 Shortcuts  

Choosing shortcuts instead of following the recommended route on a mobile map 

during navigation is often influenced by various factors, such as familiarity with the 

environment, high confidence in spatial abilities, and time constraints for completing 

the navigation task (Boone et al., 2019). During navigation, following a map-

recommended but longer route or choosing a shortcut involves different costs and 

benefits. Following the recommended route requires less cognitive effort but takes 

more travel time. On the other hand, finding a shortcut can save travel time but 

introduces additional cognitive load (Lancia et al., 2023). Marchette et al.'s research 

in the field of neuroscience supported this point, showing that individuals who take 

more shortcuts exhibit greater activation in the hippocampus during spatial encoding 

(Marchette et al., 2011). A well-designed mobile navigation system can effectively 

reduce the cognitive load on navigators during the navigation process (Cheng et al., 

2023; Fang et al., 2020; Zheng & Liu, 2021). From this perspective, when people 
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choose shortcuts, they may reactivate the map more quickly to check the route 

again. This can partially support the HP2. 

However, studies have also shown that navigators with higher spatial abilities are 

more likely to choose shortcuts during navigation tasks. Weisberg et al. emphasized 

that spatial ability is an important predictor of navigation performance, indicating 

that people with higher spatial skills are better at utilizing shortcuts effectively 

(Weisberg et al., 2014). Marchette et al. also discovered that participants who scored 

higher on spatial ability tests were more likely to adopt a place-learning strategy, 

which often involves recognizing and utilizing shortcuts (Marchette et al., 2011). This 

flexibility in navigation is crucial, as it allows individuals to adjust their routes based 

on environmental cues and previous experiences. Research suggests that people 

who prefer to take shortcuts rather than follow the recommended routes from 

mobile maps often have higher spatial abilities. The people with higher spatial 

abilities are less dependent on maps, as discussed in Section 2.2.3. From this 

perspective, it partially rejects HP2. Therefore, the impact of shortcuts on time to 

map reactivation during pedestrian navigation requires further data analysis to 

obtain more conclusive results. 

2.3.3 Route section  

Throughout different stages of the navigation route, the navigator's strategies and 

corresponding mobile map use will be different. In the early stages of navigation, 

pedestrians usually experience a higher cognitive load. This is mainly because they 

rely on external navigation aids like mobile apps and GPS devices, which require 

them to process a lot of information at once (Zhang et al., 2022). Interpreting maps, 

following directions, and staying aware of their surroundings can increase stress, 

especially in complex urban environments (Fang et al., 2015). In terms of behavior, 

early-stage navigators often exhibit caution and exploratory tendencies. They may 

frequently stop to reassess the route or check their devices, reflecting a lack of 

confidence in their spatial awareness and navigation skills (Wang et al., 2013). This 

behavior is often intensified by unfamiliar environments, leading to indecision during 

decision-making and a heavy reliance on visual cues like landmarks rather than 

abstract navigation instructions (Seo et al., 2016).  

Cognitively, pedestrians in the later stages of navigation typically develop a stronger 

spatial awareness and a better understanding of their surroundings. This increased 

familiarity allows them to rely less on external navigation aids and more on their 

internal knowledge of the environment (Montuwy et al., 2019). Studies showed that 

as pedestrians gain experience, they become better at recognizing landmarks and 

using them as navigation cues, significantly improving their ability to navigate 

effectively (Zhu et al., 2022). This shift from relying on digital maps to understanding 
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spatial relationships reflects deeper cognitive processing of the environment, 

enabling quicker decision-making and route adjustments (Ye et al., 2020). 

Behaviourally, pedestrians in the later stage of navigation exhibit greater confidence 

and fluidity in navigation. They are less likely to frequently stop and check their 

devices, having already formed a mental map of their surroundings to guide their 

route choices (Ma et al., 2024). This confidence often translates into more assured 

movement, allowing them to navigate crowded spaces with ease (Jiang et al., 2017). 

From both cognitive and behavioral perspectives, navigators in the early stages of 

navigation need to check the route on their mobile map more frequently, meaning 

they reactivate the map more quickly. However, in the later stages of navigation, as 

they become more confident in their understanding of the environment and 

navigation strategies, the need for the map decreases, leading to slower map 

reactivation. This aligns with HP2, which suggests that map reactivation occurs more 

slowly in the second half of the route. 

However, researchers have identified several reasons why pedestrians may need 

navigation prompts. These include orientation, route decisions, monitoring progress, 

and recognizing the destination (Carpman & Grant, 2002). As they get closer to the 

destination, pedestrians may check the map more often. This is especially true in 

unfamiliar places or when the destination is hard to spot. They may use the map to 

confirm their location, leading to quicker map reactivation. This behavior differs 

from what is stated in Hypothesis 2, and further data analysis is required to support 

this. 

2.3.4 Traffic density  

Navigating in crowded areas presents a unique set of challenges. This has significant 

impacts on pedestrian behavior and safety. In heavy-density environments, the 

interactions between people can lead to a variety of challenges, including increased 

stress, changes in walking speed, and increased risk of accidents. One of the main 

effects of walking in crowded areas is high stress levels. Beermann’s research 

showed that as crowd density increased, people experienced increased stress, which 

could lead to discomfort and anxiety (Beermann & Sieben, 2023). This stress 

increases when navigating through tight spaces, as people often feel their personal 

space is invaded. Walking speed is largely influenced by traffic density. This created 

unpredictable movement patterns, complicating navigation for everyone. 

Additionally, Wang et al. emphasized that pedestrians adjusted their walking speed 

based on crowd density, causing overall speed to decrease as density increases 

(Wang et al., 2016). The risk of accidents in crowded areas is a key concern. High-

density crowds can lead to dangerous situations, especially during emergencies or 

moments of panic (Dias et al., 2012).  
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Navigating in heavy traffic density poses difficulties for pedestrians. Many studies 

have shown that crowded environments increase stress and cognitive load (Bilotta et 

al., 2018; Bitkina et al., 2019; Mavros et al., 2022). A VR navigation experiment also 

demonstrated that heavy traffic conditions led to higher self-reported workload and 

agitation among navigators (Bartling et al., 2024). 

Regarding the impact of traffic density on mobile map use, Mona et al. reported no 

significant effect of changes in traffic density on map interaction patterns. They also 

found no influence of traffic density on overall map active or inactive time (Bartling 

et al., 2024). However, due to the stress and increased cognitive load that navigators 

experience in crowded environments, this thesis still hypothesizes that higher traffic 

density will lead to faster map reactivation. 

2.3.5 Road crossing 

Pedestrian road-crossing behavior is highly flexible (Gaisbauer & Frank, 2008), 

sometimes even not restricted by traffic rules and signals, especially on side streets 

or in low-traffic environments. Research shows that pedestrians make quick 

decisions in navigating based primarily on safety, rather than traffic rules. This 

especially happens when they are confident in their environment (Tom & Granié, 

2011). A study on pedestrian road-crossing behavior found that pedestrians engaged 

in actions such as diagonal crossing and mid-block crossing on major urban roads 

(Papadimitriou et al., 2016). 

Even though pedestrians crossing the road sometimes violate traffic rules, they need 

to focus more on their surroundings while crossing the road to avoid oncoming 

vehicles and ensure their safety. Because safety is a very important issue in 

pedestrian navigation (Fang et al., 2015; Schwarz et al., 2015). Some researchers 

have developed an app specifically to improve the safety of pedestrians crossing the 

road, in order to further improve the safety of pedestrians crossing the road (Wang 

et al., 2012). Therefore, this paper proposed in HP2 that because pedestrians need 

to focus more on the environment rather than on the mobile map, crossing road 

behavior will lead to map reactivation occurring more slowly. 
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3. Methods  

This chapter begins by briefly outlining the experimental design of the VR study on 

which this thesis is based. Section 3.2 will then introduce the dataset used in the 

thesis, along with the methods for extracting the dependent and independent 

variables. Specifically, Section 3.2.2 will explain the important concept of the 

censored data within this dataset. Section 3.3 will discuss the survival analysis 

method used in this thesis. It is important to note that the data used in this case is 

part of a larger study. In this chapter, it will focus only on the experimental design, 

procedures, and data which is relevant to this thesis. For more detailed information 

about the experiment, please refer to Bartling (2024). 

3.1 VR experiment 

The data used in this thesis comes from a study that explored pedestrian map 

interaction during navigation in a virtual city. This study developed a CAVE VR system 

that synchronizes with a mobile map on a standard mobile phone for navigating 

within a virtual reality city. The experiment took place in September and October 

2023 at the CAVE lab in the Department of Geography at the University of Zurich, 

with 54 participants in total. 

3.1.1 VR urban environment  

A large virtual environment (VE) was constructed using Unity (v.2021.3.24) and the 

"Fantastic City Generator" tool. The city included common categories of Points of 

Interest (POI). Some POI categories were relevant to completing the navigation 

tasks, such as coffee shops, restaurants, supermarkets, hotels, attractions, and 

kiosks. Others, like parks, sports facilities, and educational institutions, were not 

directly related to the tasks but kept as these POIs are typically found in a city.  

The experiment created two levels of traffic density: light and heavy traffic density 

(see Figure 6). This was achieved by adjusting the number of vehicles, such as cars 

and buses, along with the number of pedestrians in the virtual environment, as well 

as controlling noise levels. These conditions were implemented to simulate real-

world urban environments, where navigators often face varying traffic densities. For 

example, commercial centres and transportation hubs are usually congested during 

peak hours, while suburban areas tend to have lighter traffic density. This setup 

effectively facilitated this thesis to research when pedestrians reactivate mobile 

maps in navigation under different traffic conditions.  
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Figure 6: A participant was navigating in a) the light traffic condition with few pedestrians and vehicles 

and b) the heavy traffic condition with increased numbers of pedestrians and vehicles (Bartling et al., 

2024) 

3.1.2 Mobile map application  

A mobile map was designed based on this VR urban environment. The mobile map 

included two versions: an adaptive version and a non-adaptive version. In the non-

adaptive version, all POIs were initially displayed at 100% opacity. When participants 

used the search bar, the POIs matching the search query retained their full opacity, 

while the others were dimmed to 50%, highlighting the queried POIs. In the adaptive 

version, the map was simplified based on the task and the participant's location. 

Only task-relevant POIs were displayed, with the three closest ones shown at 100% 

opacity and all others at 50%. Task-irrelevant POIs, like supermarkets and 

restaurants, were completely removed to reduce visual complexity. The POI design 

was modeled based on Google Maps' symbology to align with participants' 

familiarity with that style. Since the primary distinction between the map versions 

lies in the route planning phase, this thesis mainly focuses on the pedestrian's route 

execution stage. In this case, the map adaptation condition is not considered within 

the scope of this research. 

Participants used this mobile map application to complete navigation tasks within 

the VE. They received instructions through pop-up messages on the mobile map, 

providing details of the scenario’s storyline and the scenario’s task prompts. They 

could choose to search for their destination using the search bar. The search bar was 

placed at the top of the interface, allowing participants to search for their desired 

location (see Figure 5a). They can also directly confirm their navigation destination 

by observing the POI icons. Once the destination was identified, they needed to click 

on the destination icon and select "navigate to this place" to enable navigation 

mode. 

After entering navigation mode, the application would automatically recommend the 

shortest route based on the user's current location and destination. However, it 

should be pointed out that the system's recommended shortest route is calculated 
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from the main road network. There may also be other shortcuts between the 

starting point and the destination. In navigation mode, two new buttons would 

appear in the bottom right corner of the interface (see Figure 7b). The red “x” button 

allowed users to exit navigation mode. If participants select the wrong destination or 

wish to change their destination, they can use this button to exit and choose a new 

location. The other button, a compass icon, could center the map on the user and 

adjusts the orientation to match the direction they are facing. Additionally, the 

mobile map was configured with an automatic screen lock after 10 seconds of non-

interaction. If the user did not interact with the map within 10 seconds, it switched 

to inactive mode. It would require the user to tap "unlock" on the screen to 

reactivate it. This design aims to closely replicate real-world navigation scenarios 

where mobile maps automatically lock after a period of inactivity. While the default 

screen lock time for iPhones is 30 seconds, the map's automatic lock was adjusted to 

10 seconds in this study due to the relatively short navigation routes in the 

experiment. 

 
Figure 7: Mobile map interface showing a) main interface; b) navigation mode to a supermarket 

3.1.3 Map-assisted navigation task 

Each participant was asked to complete 16 navigation tasks, with 8 tasks conducted 

under heavy traffic density condition and the other 8 under light traffic density 

condition. The specific task information was presented to the participants via pop-up 

text messages on the mobile map.  
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It is noteworthy to mention that while the task instructions specified the category of 

POI that participants needed to visit, they had complete freedom to choose any 

specific POI belonging to that category as their destination. For example, if the task 

required visiting a restaurant, participants could choose any restaurant to complete 

the navigation task. Participants were informed that they had enough time to finish 

the tasks but were encouraged to complete them as efficiently as possible to ensure 

that they completed all conditions within a reasonable time duration. 

3.2 Data preprocessing 

Section 3.2.1 will first provide an overview of the dataset that will be utilized in this 

thesis. Section 3.2.2 will then illustrate the method to extract the dependent 

variable, which is the time to map reactivation in this thesis. The methods to extract 

the human factors and environmental factors will be discussed in section 3.2.3 and 

section 3.2.4. 

3.2.1 Dataset overview 

A total of 58 participants took part in the experiment. However, data from 4 

participants could not be used because of technical issues such as VE crashes. As a 

result, valid data was obtained from 54 participants. Since each participant was 

required to complete 16 navigation tasks, there were ultimately 863 pedestrian 

navigation trajectories collected in this dataset (with one navigation trajectory data 

lost from a single participant).  

The trajectory data is recorded in CSV file format, capturing a participant's position 

within the virtual environment (VE). The dataset includes the following parts: time, 

position, rotation, task states, and map interactions. The data is stored in point 

data format. The time indicates the exact time when the point was recorded, such as 

'2023-09-22 15:11:14.178'. The position includes ‘posX’, ‘posY’, and ‘posZ’, such as '-

1260.3, 1.304999, -936.9'. Since the user's vertical position is fixed to avoid that they 

might ‘fly’ by some crash, ‘posY’ representing the vertical location will not be used in 

the data analysis. Rotation data indicates the player's direction of rotation, which is 

irrelevant in this case and will not be used in the analysis. For the map task state, it 

indicates the completion status of the navigation task, such as ' 

setNavigationTarget:Bricks Hotel' or 'checkedIn:Bricks Hotel’. This part is used to 

mark key points in the navigation route and extract the completed navigation route. 

Map interactions indicate the user’s interactions with the map during navigation. In 

this case, we mainly focus on the following two types: 

‘mapLog:isScreenLocked+False’ and ‘mapLog:isScreenLocked+True’. They indicate 

the activation and deactivation states of the map, which will be used to determine 

when the mobile map entered a non-active state and when it was reactivated. 
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By default, the point data was recorded every 0.5 seconds. However, when changes 

in task state or map interactions occurred, independent records were also made 

outside of the default time intervals.  

3.2.2 Dependent variable extraction and censored data 

The dependent variable of this study is the TMR of each subject MIP, which refers to 

the duration from each moment when the map becomes inactive to when it is 

reactivated. Hence, the subjects corresponding to TMR are not specific navigators 

but each map inactive phase during the navigation process. In each navigation 

trajectory, the number of MIPs varies depending on the route length and the user's 

navigation strategies with the mobile map. Figure 8 illustrates one navigation 

trajectory where the participant navigated to an attraction from a coffee shop. 

During this navigation process, the mobile map experienced two instances of 

transitioning from being locked to reactivated. However, after the third map lock, 

the map was not reactivated again because the participant reached the destination.  

This situation is referred to as censored data. Censored data is a critical 

consideration in this case. The goal of this thesis is to study the factors that influence 

the TMR of each MIP. Nevertheless, due to the presence of censored data, there are 

three map inactive phases in this navigation trajectory, but only two map 

reactivation events occurred. Censored data occurred because the participant 

reached their destination, marking the observation came to an end. For example, if 

the navigator arrived at their destination 10 seconds after the last map lock, even 

though I do not know the specific TMR, I can conclude that the time to map 

reactivation is greater than 10 seconds. This portion of the data still holds big value. 

Because it indicates that, under the existing conditions of the independent variables, 

the TMR is greater than a certain threshold, which is the time from the last map lock 

point to the destination. Discarding this data simply because we did not observe the 

map reactivation event would be a significant loss and could lead to biases in our 

experimental results. Fortunately, survival analysis provides specific methods for 

analyzing such data. I will discuss it in later chapters. 
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Figure 8 : This trajectory represents a participant's navigation route from a coffee shop to an 

attraction. After the navigation started, the mobile map remained in an active state. Before the 

participant crossed the street, the map was locked for the first time. After crossing, the participant 

reactivated the map. The map was then locked again, and after moving forward a bit, the participant 

chose to reactivate it once more. The map was locked for the third time and remained inactive until 

the task ended. 

 

For the method to extract the dependent variable TMR, firstly I need to identify 

which points in the trajectory data correspond to map lock events, marking these 

points as starting points of that map inactive phase. This could be done by analyzing 

the map interactions in the dataset. If a map reactivation was observed after a map 

lock, it would be marked as the endpoint, and the event status of this MIP would be 

recorded as "occurred." The time difference between these two points represented 

the value of TMR. If a map lock event occurred but no map reactivation was 

observed before the participant reached the endpoint, the event status was marked 

as "censored." The time difference between the map lock point and the time of 

reaching the endpoint would represent the value for the censored data. 
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3.2.3 Human factors extraction 

As mentioned in the hypothesis, age, gender, spatial ability, and map use frequency 

will be four human factors to be explored. These variables were collected through 

demographic questionnaires finished by participants before the experiment. Age and 

gender data are directly reflected in the demographic questionnaires. For spatial 

ability, I use the SBSOD scores from the SBSOD test as an indicator of spatial ability 

(Hegarty et al., 2002). Map use frequency uses the data from participants' self-

reported weekly usage of mobile maps. It is categorized into three levels: "High" 

(four or more times a week), "Medium" (two to four times a week), and "Low" (a 

maximum of once per week). 

3.2.4 Environmental factors extraction  

For environmental variables, the thesis focuses on five key factors: traffic density, 

navigation route length, route section, road crossing, and whether shortcuts. 

Unlike human individual variables, some of these environmental factors are not 

directly available in the raw data and require further processing. 

Traffic density is part of the experimental setup and can be directly extracted. All 

map reactivation events that occur under heavy traffic density are marked as 1, 

while those that occur under light traffic density are marked as 0. 

For navigation route length, in each navigation route, when a point's task state was 

marked as ‘set navigation,’ it indicated that the participant had confirmed the 

destination and enabled navigation mode by clicking the destination icon. This 

means this participant had finished route planning and entered the route execution 

phase. This point will be marked as the starting point of the navigation route. Once 

the pedestrian checked in at the destination, the task state would display ‘check in,’ 

indicating that the navigation task had been completed. This point will be marked as 

the endpoint of the navigation route. 

Since the dataset is point data, to calculate the total length of the navigation route, 

the Euclidean distance between each pair of consecutive points will be calculated 

first. The total route length then will be obtained by summing all these Euclidean 

distances. Each MIP will have a corresponding total length of the route to which the 

event belongs. (see Figure 9 as an example) 
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Figure 9: A navigation route with 3 MIPs occurred. These 3 MIPs has a same corresponding total 

length 138.5 distance units of the route. 

 

For route section, I will calculate the distance from each map lock point to the 

starting point of the entire navigation route. This distance was then divided by the 

total length of the navigation route to determine the navigation completion rate for 

each MIP. If the navigation completion rate is below 50, the MIP will be considered 

occurring in the first half of the route. Conversely, if the rate is 50 or higher, the MIP 

will be marked occurring in the second half of the route. 

To determine if there is road crossing during the map inactive phase, the entire 

traffic network was first constructed of the VE (see Figure 10). Then, I will perform 

spatial intersection calculations to check if there are intersections between the 

navigation route and the city's traffic network. If a MIP intersects with the road 

network, it will be marked as involving a road crossing. 
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Figure 10 : The entire road network of the VE. 

 

Regarding the variable of shortcuts, building blocks were first established. This factor 

will be detected by conducting spatial intersection calculations between navigation 

trajectory and the building blocks. As I mentioned in 3.1.2, the recommended 

navigation route provided by the mobile map is based on the main traffic network 

within the VE. However, participants were informed that they could freely choose 

whether to follow the suggested route or not. In cases where participants cut 

through building blocks, the navigation routes that intersected with building blocks 

were considered routes with shortcuts. The variable shortcuts for the MIP would be 

marked as 1.  

 
Figure 11 : The entire building blocks of the VE. 



36 
 

3.3 Modelling approach 

After preprocessing the data and extracting the dependent and independent 

variables, it is crucial to find a suitable data analysis method to explore the influence 

of independent variables on dependent variables. Regarding the data analysis model, 

Section 3.3.1 will first discuss the challenges that may arise when conducting 

regression analysis based on the data in this case study. Following that, Section 3.3.2 

will provide a basic introduction to survival analysis and explain key concepts within 

this methodology. Finally, Section 3.3.3 will explore which type of regression model 

in survival analysis is most suitable for the data analysis in this case. 

3.3.1 Challenges of regression analysis 

Modeling the relationship between a dependent variable and a set of independent 

variables is a popular interest in different research domains. It enables me to identify 

and quantify how changes in covariates impact the dependent variable. 

Undoubtedly, the most widely used approach is the family of linear regression 

models. However, linear regression models face several challenges, including 

meeting fundamental assumptions, handling censored data, addressing late entry 

variables, and accommodating time-varying coefficients. These issues may lead to 

biased estimates, loss of valuable information, and inadequate modelling of real-

world phenomena. There is a need to adopt alternative approaches for more 

accurate data analysis. 

The first challenge of utilizing linear regression models is that it should fulfill 

fundamental assumptions, notably the normality of error terms (Poole & O’Farrell, 

1971). If these assumptions are violated, estimates can become biased and 

inconsistent. Although some studies attempt to bypass these assumptions or 

transform the data to fit them (Eppinga et al., 2017; Tyrrell et al., 2016), linear 

regression often fails with time-to-event data, which are usually skewed rather than 

normally distributed (Clark et al., 2003).  

In our case study, censored data meaning the map reactivation event was not 

observed until the destination of the navigation route. Even though the data could 

not show a specific time to map reactivation, it revealed the TMR in the last map 

inactive phase should be greater than the time duration of last MIP. Traditional 

linear regression usually assumes full observation of dependent variables. Under this 

assumption,  censored data can lead to biased regression coefficients if treated as 

fully observed or significant data loss if it is excluded (DiFilippo et al., 2023; Uh et al., 

2008).  

Additionally, some covariates, like road crossing, only become observable after the 

follow-up begins. These kinds of variables are defined as late entry variables 
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(Clayton & Hills, 2013). These variables must be given enough caution because 

analyzing these improperly can lead to huge bias. Because it is impossible to make 

predictions based on future covariate values (Moore, 2016c). The Stanford heart 

transplant study exemplifies this issue, as the initial analysis included transplant as a 

predictor without any processing. The results firstly showed whether accepting a 

heart transplant is a significant influential factor on the survival time (Clark et al., 

2003). However, Gail (2008) argued that transplants should be treated in a different 

way because it may occur due to the long survival time. His study gave a totally 

converse result that the transplant did not significantly influence the survival time 

(GAIL, 2008).  

In regression modelling, coefficients are typically constant, but independent 

variables can have a time-varying effect in many real-world phenomena. For 

instance, in fluid dynamics, diffusion coefficients may change over time (Wu & 

Berland, 2008). In this study, these dependent variables might affect TMR differently 

at different time points. Traditional linear regression usually fails to capture this 

variability, leading to inaccurate conclusions (Lu & Liang, 2006).  

Furthermore, predicting results from linear regression is always an exact value. 

However, the exact time of giving navigation instructions cannot really meet user 

needs due to the complexities of navigation. Instead, it is better to predict the 

probability of TMR within a certain timeframe based on current conditions. This 

approach allows navigation systems to optimize responses according to user 

preferences, providing flexibility in timing for map reactivation. 

3.3.2 Survival analysis introduction  

In order to better address the above challenges, survival analysis will be deployed as 

the analysis method due to its unique advantages in analyzing time-to-event data. 

Survival analysis is a series of statistical methods focusing on survival time, which are 

follow-up times from a defined starting point to an event of interest occurs (Bewick 

et al., 2004). It can also be utilized to explore the factors that influence survival time 

(Moore, 2016a). Survival analysis is a versatile statistical methodology with 

applications across a wide range of domains. In fields like medicine and biostatistics, 

It is particularly popular in fields like medicine and biostatistics, events of interest 

include death, recurrence, and recovery. For instance, researchers have used survival 

analysis to examine survival outcomes in heart failure patients, showing that factors 

such as age, renal dysfunction, and blood pressure are significant risk factors for 

mortality in these patients (Ahmad et al., 2017). Additionally, survival analysis is also 

applied in many other fields. For example, in engineering, it is used to study the 

lifespan of equipment and optimize maintenance strategies (Ma & Bechinski, 2009). 

In the social sciences, survival analysis has been utilized to study various 
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phenomena, including marriage and divorce rates (Abdel-Sater, 2022). The 

agricultural and ecological sciences have also benefited from survival analysis, 

particularly in the study of species survival and population dynamics (Ma, 2010). 

Moreover, survival analysis has found applications in the field of economics, where it 

is used to analyze time-to-event data related to economic indicators, such as the 

duration of unemployment spells and the factors that influence job seekers' time to 

reemployment (LeClere, 2005). Most relevant to this thesis is the use of survival 

analysis to examine the time of navigators requesting audio navigation instructions. 

In that research, decision points, where pedestrians need to choose among multiple 

available directions or paths (Tzeng & Huang, 2009), were considered as the starting 

points, while the event of interest was when the navigator requested navigation 

instructions (Giannopoulos et al., 2017). 

3.3.3 Concepts in survival analysis 

The survival function is a fundamental concept in survival analysis, which is a branch 

of statistics that deals with the time until an event of interest occurs. The survival 

function provides the probability that a subject will survive until the event of interest 

occurs beyond a specified time t. In this case, the survival function will show the 

probability that a map inactive phase does not occur map reactivation before a 

certain time t. Mathematically, it is defined as: 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) 

This function starts with a value of 1 at time 0. Obviously, all MIPs will not happen 

map reactivation at time 0. As time progresses, it either decreases or stays the same, 

but never goes below 0. Additionally, it is right continuous, meaning it doesn’t jump 

or change abruptly when moving from one point in time to the next.  One of the 

most common methods for estimating the survival function is the Kaplan-Meier 

curves (Kaplan & Meier, 1958), which is particularly useful when dealing with 

censored data. The Kaplan-Meier estimator is a non-parametric statistic that 

provides a step function estimate of the survival function, allowing for the 

incorporation of censored observations without making strong parametric 

assumptions about the underlying survival distribution. In other words, Kaplan-Meier 

curves are the reflections of the observed data distribution. 

Data from Participant 8 is used to illustrate the survival function. For Participant 8, 

there are a total of 59 MIPs records, with map reactivation events occurring 45 times 

and 14 censored cases. The survival function for Participant 8's MIP data is shown in 

Figure 12. In the survival function, the x-axis represents time, and the y-axis shows 

the probability that the subject is still "surviving" at the corresponding time on the x-

axis. For example, at time 0, none of the MIPs have experienced a reactivation event, 

so the survival probability is 1. The time corresponding to a 50% survival probability 
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is around 14 seconds, meaning there is a 50% chance that the participant will 

reactivate the map within 14 seconds 

 

 
Figure 12 : Example of MIP survival function from participant 8. 

 

The survival function is one of the most important concepts in survival analysis and 

also one of the key outputs of regression analysis. As a predictive result of regression 

models, the survival function effectively addresses the output limitations of 

traditional linear models. After fitting a regression model, it can generate the 

survival function corresponding to specific values of the covariates by inputting 

those values. Furthermore, based on the survival function, navigation assistance 

system can be set a criteria according to user’s preference, such as using the median 

survival time to provide route instructions to navigators. 

The hazard function is another critical concept in survival analysis, representing the 

instantaneous risk of an event occurring at a specific time, given that the subject has 

survived up to that time (Moore, 2016a). The concept of the hazard function is used 

to describe the relative probability that a subject who/which has survived up to a 
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certain time point will continue to survive to the next time point. Formally, given 

that a subject has already survived up to time t, the hazard function ℎ(𝑡) may be 

expressed as: 

ℎ(𝑡) =  lim
∆𝑡 →0

(
𝑃(𝑡 < 𝑇 ≤ 𝑡 + ∆𝑡 |𝑇 > 𝑡)

∆𝑡
) 

The hazard function and the survival function are mathematically related and can be 

derived from one another. Let us denote the time from the point where mobile map 

was locked (in analogy to the time-to-event concept) as t, having a cumulative 

distribution function T such as 𝐹(𝑡) = 𝑃𝑟(𝑇 ≤ 𝑡),  and survival function 𝑆(𝑡). It is 

clear that there is 𝑆(𝑡) = 1 − 𝐹(𝑡) . Hazard function, which is the probability of a 

process ending at point t, given that it has lasted up to that point, can be also 

defined as:  

ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
 

Next, I will use an extreme simulation case to illustrate the relationships between 

the survival function, hazard function, cumulative distribution function (CDF), and 

probability density function (PDF) (Clark et al., 2003). Suppose the map inactive 

phase is reactivated uniformly within a 20-second observation window. The survival 

function, hazard function, CDF, and PDF are shown in Figure 13: 
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Figure 13: Four important concepts of survival analysis a) CDF, b) PDF, c) Survival function, d) Hazard 

function. 

 

The introduction of the hazard function provides insights into the dynamics hazard 

associated with the event of interest, allowing researchers to understand how 

various covariates influence the hazard over time. Unlike traditional linear regression 

models that model time directly, a series of hazard-based regression models have 

been developed. These models are more flexible, and less affected by underlying 

assumptions. Most importantly, they offer significant advantages in handling 

censored data. They can also address late-entry variables and explore time-

dependent coefficients in time-to-event data. Chapter 3.3.4 will focus on discussing 

regression models. 
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3.3.4 Regression model selection 

Regression models in survival analysis are essential tools for understanding the 

relationship between covariates and the time until an event occurs. There are two 

main types of regression models. The first type is a family of hazard-based models, 

the most famous of which is the Cox proportional hazards model (Cox).  The second 

type is models that directly focus on survival time, such as the accelerated failure 

time (AFT) model. Based on Cox and AFT, scholars have developed many new models 

to optimize the limitations present in the original models. In terms of model 

selection, I will discuss which regression model is better to use in this study, 

considering the challenges of regression analysis presented in 3.3.1.  

In response to the underlying assumption, the original Cox model assumed that 

hazard is proportional (PH), which means that relative hazard remains constant over 

time for different levels of predictors covariates. This assumption brought significant 

limitations on the Cox model. This is because assuming the effect of a covariate on 

hazard is constant is not aligned with many situations (Lo et al., 2020). If the Cox 

model is still chosen for regression modeling without this assumption being met, it 

could lead to potentially biased results (Kim et al., 2015). However, some of the Cox-

based models that have recently been newly developed can bypass that assumption 

by allowing the effect of covariates on Hazard to change (Liu et al., 2018).   

The AFT models also have the underlying assumption that the effect of covariates on 

survival time is accelerated or decelerated by a constant factor. In other words, it 

assumes that the relationship between covariates and survival time is a 

multiplicative scale. More specifically, a change in a covariate may cause survival 

time to become some constant multiple of what it was before. In addition to this, 

using the AFT model needs to be explicit about the type of distribution, e.g., 

exponential, log-log, log-normal, or Weibull, which is still limited, although the 

Weibull distribution already offers a great deal of flexibility (Royston & Lambert, 

2011). Recently, a general parametric AFT model has been proposed, which provides 

more flexibility by using restricted cubic splines to model the baseline (Crowther et 

al., 2023). In general, although both the traditional Cox and AFT models have some 

assumption limitations, the newly developed models have been able to avoid these 

assumption limitations very well. 

In terms of dealing with censored data, the biggest advantage of survival analysis is 

that it can deal with censored data more efficiently. The Cox model has the ability to 

deal with censored data since it was first proposed (Cox, 1972). The Cox model 

applies partial likelihood, which allows us to define survival distributions based on 

other covariates using an unspecified baseline survival function (Moore, 2016b). In 

the subsequent development of the Cox model, the approach to handling censored 

data has been preserved and optimized (Crowther et al., 2023; Royston & Lambert, 
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2011). In contrast to the Cox model, the AFT model also has the ability to handle 

censored data. One of the most prominent methods is the Buckley-James method 

(Buckley & James, 1979; Lai & Ying, 1991), which is an iterative method based on the 

expectation-maximization algorithm. However, this method is not very stable, 

especially when the amount of data is small (Hsu et al., 2015). In the subsequent 

development of the AFT model, some new approaches had been proposed to 

address the instability of the aft model when dealing with censored data, such as the 

use of a multiple imputation approach to derive two hazard scores to select an 

imputing hazard set for each censored observation (Hsu et al., 2015). Overall, both 

the Cox model and AFT model are capable of handling censored data, but the Cox 

model is more stable in handling censored data, especially for smaller datasets. 

The late entry variable is a significant challenge to regression analysis. If it is not 

handled well, the results of parameter estimation of the covariate can be 

dramatically biased. The classical Cox modeling framework provides a way to deal 

with late entry covariate. Firstly, the data set is preprocessed, and the data format is 

adjusted to the ‘start-stop’ format based on the late entry covariate, as described in 

(Moore, 2016c). Then the partial likelihood is adjusted to achieve the regression 

modelling of the late entry covariate (Therneau, 1997). The method has been 

developed in its entirety in the ‘survival’ package for the R language. Comparatively, 

the AFT model does not perform as well in dealing with late entry covariates, and 

one of the possible reasons for this is that the AFT model is a full-parameter model 

that uses maximum likelihood estimation for parameter estimation. However, new 

extensions based on AFT that can handle late entry covariates are still proposed, 

such as the flexible parametric accelerated failure time model proposed in 2023 

(Crowther et al., 2023), which theoretically confirms the possibility of the AFT model 

to handle late entry covariates. The Cox model has been more well-established in 

dealing with late-entry covariates, and the AFT model has been extended to deal 

with late entry variables in recent years. Comparatively speaking, the Cox model is 

more advantageous in this problem. 

When considering the time-varying effect, both the initial Cox model and the AFT 

model do not take the time-varying effect into account well. This is mainly due to 

their underlying assumptions. The Cox model assumes that hazard is proportional 

(PH), which means that relative hazard remains constant over time, i.e. the effect of 

covariates on hazard is constant. The AFT model assumes that the effect of 

covariates on survival time is accelerated or decelerated by a constant factor, which 

means that the effect of covariates on time is constant in multiplicity. Some new 

developments were designed to release these limitations. For the Cox model, firstly 

Schoenfeld residuals can be used to help us determine if the covariate under study is 

proportional. If that coefficient exhibits no-proportionality, a Prentice modification 

of the Wilcoxon test could be used to solve this problem. Alternatively, it could be 
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solved by by defining a time-dependent covariate, 𝑔(𝑡) = 𝑧 ∗ 𝑙𝑜𝑔(𝑡), (Moore, 

2016c). There are also many extensions of AFT to solve this problem, such as the 

latest flexible parametric accelerated failure time model. It is inspired by the 

Royston–Parmar flexible parametric model that uses restricted cubic splines to 

model time-dependent coefficients. It is transformed into the AFT model, helping the 

AFT model relax the constant acceleration factor assumption (Crowther et al., 2023). 

It can be found that after continuous iterations and developments, both the Cox 

model and the AFT model have the ability to deal with the time-dependent 

coefficient. 

The content of the model output has a very important impact on the interpretation 

of the effect of covariates on the dependent variable, as well as the model 

prediction. In the Cox model, the object of regression modeling is hazard, and the 

interpretation of the regression coefficients in the Cox regression model is a little 

different from that of the coefficients in the traditional linear regression, mainly 

because the Cox regression model focuses on the changes in the hazard rate (HR) 

rather than modeling time directly. The Cox regression model has the form: 

ℎ(𝑡|𝑋) = ℎ0 ∗ 𝑒𝑥𝑝(𝛽1𝑋1 +  𝛽2𝑋2  ⋯ + 𝛽𝑛𝑋𝑛) 

where ℎ(𝑡|𝑋) is the hazard function for a given covariate 𝑋𝑛 , ℎ0 is the baseline 

hazard function, 𝛽𝑛 is the coefficients. 

HR can be denoted as: 

𝐻𝑅 = 𝑒𝑥𝑝(𝛽𝑖) 

HR indicates how the hazard rate changes when the covariate 𝑋𝑖 is increased by one 

unit. This is explained as follows: 

⚫ If HR > 1, it means that a one-unit increase in the covariate  𝑋𝑖 will increase the 

risk of an event, and the hazard rate is multiplied by the HR. 

⚫ If HR < 1, it means that a one-unit increase in the covariate  𝑋𝑖 will decrease the 

risk of an event, and the hazard rate is multiplied by the HR. 

⚫ If HR = 1, it indicates that the covariate has no effect on the risk of an event 

occurring. 

In the AFT model, the regression coefficients explain the accelerating or decelerating 

effect of the covariates on event times. Specifically, the coefficients in the AFT model 

describe how the covariates affect the degree of speeding up or slowing down of the 

arrival time to the event. The AFT model has the form:  
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𝑙𝑜𝑔(𝑇) = 𝛽0 +  𝛽1𝑋1 +  𝛽2𝑋2  ⋯ +  𝛽𝑛𝑋𝑛 +  𝜖 

where 𝑇 is the survival time, 𝑋𝑛 is the covariates, 𝛽𝑛 is the coefficients, ∈ represents 

the error term. 

Acceleration Factor (AF) can be denoted as: 

𝐴𝐹 =  𝑒𝑥𝑝(𝛽𝑖) 

⚫ If AF >1, it means that every increase of one unit in the covariate X leads to a 

longer survival time, decelerating the occurrence of events, and the survival 

time increases by AF times 

⚫ If AF <1, it means that every increase of one unit in the covariate X leads to a 

shorter survival time, accelerating the occurrence of events, and the survival 

time decreases by AF times 

⚫ If AF =1, it indicates that the covariate has no effect on the survival time. 

Compared to the interpretation of the HR, the interpretation of the AF can be 

considered more intuitive and can directly adjust survival time, increasing or 

decreasing survival time (Swindell, 2009). 

In conclusion, Cox and AFT models have performed well in relaxing the basic 

assumptions, handling the censored data, and considering the time-dependent 

coefficient after continuous improvement and development. Cox based models show 

some advantages in dealing with the late entry variable and are more stable in 

dealing with the censored data. The AFT model has a more intuitive interpretation of 

the coefficient because it directly models time. However, according to the principle 

of interconversion between the survival function and risk function explained in 3.3.3, 

even if Cox is modelled on hazard, it can be converted to time scale as well. 

Therefore, I plan to use the generalised survival models developed based on Cox for 

regression modelling in this thesis (Liu et al., 2018). 

Generalised Survival Models (GMS) could be denoted as 𝑔(𝑆(𝑡|𝑧)), for link 

function g, survival S, time t, and covariates z (Liu et al., 2018). They are modelled by 

a linear predictor in terms of covariate effects and smooth time effects. Proportional 

hazards and proportional odds models are the important components of GMSs. In 

other words, GMS are significant extensions of Royston–Parmar models (Royston & 

Lambert, 2011), which are derived from Cox models. They allow the use of natural 

spline functions to create a set of basic functions for fitting non-linear relationships. 

Natural spline constructs smooth nonlinear effects for covariates through a set of 

knots and associated degrees of freedom. It also allows the use of degrees of 

freedom to control the flexibility of the natural spline function ns in modelling the 
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baseline logarithmic cumulative risk. Also addresses the issue of time-varying 

coefficients. These models have already been implemented the models in R, rstpm2 

package. 

The derivation of specific mathematical formulas will not be discussed here; for 

specific mathematical formulas see (Liu et al., 2018). The interpretation of 

coefficients will be discussed specifically, and other forms that can be derived based 

on the output of the model will be explained. About the interpretation of the 

coefficient, since GMS is still essentially an extension of the Cox model, the 

significance of the coefficient derived from the regression is relatively the same as 

the Cox model. When interpreting the coefficient, it is often interpreted in terms of 

the HR (see the explanation from 3.3.3). 

But HR is still not that intuitive to understand, especially when survival analysis is 

deployed to non-medical fields. When getting a coefficient of HR greater than 1, it 

indicates that this factor will make the hazard of map reactivation happening higher, 

in other words, the mobile map will be reactivated faster. In addition to HR, I also 

want to know how much a covariate change will accelerate this event. Specifically, 

how much faster will the mobile map be reactivated than it did before this covariate 

change? At this point, the hazard function or HR would not be able to give us this 

answer directly. However, according to the principle of interchangeability between 

the hazard function and the survival function discussed in 3.3.3, the corresponding 

survival function can be derived before and after the covariate change. It can then 

reveal the difference between the two survival functions how much of a change in 

time will be brought about by a change in one of the covariates. Specifical results will 

be shown in 4.3 and 4.4. 
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4. Results 

In this chapter, I will first present the results of the extraction of dependent and 

independent variables. I will then report the fitting of the survival analysis model and 

provide the summary of the model in section 4.2. Section 4.3 will focus on the results 

related to RQ1 and HP1, and section 4.4 will primarily discuss the results for RQ2 and 

HP2. 

4.1 Variable extraction 

This section aims to give an overview of the results of variable extraction. Section 

4.1.1 will mainly focus on the dependent variable extraction. Section 4.1.2 and 

section 4.1.3 will primarily focus on the independent variable extraction results of 

human and environmental factors. The results for variable extraction are the basis of 

survival model building. Understanding the distribution of dependent variables and 

corresponding independent variables will provide a deep insight into the regression 

model.  

4.1.1 Descriptive analysis of dependent variable  

As discussed in Section 3.2.2, in this study, the dependent variable is not the 

navigator, but rather the time to map reactivation corresponding to each map 

inactive phase. Across 863 pedestrian navigation trajectories, there were 3117 MIPs 

in total, with 2494 map reactivation events and 623 censored events. For more 

details on censored data, please refer to the discussion in section 3.2.2. In survival 

analysis, when dealing with censored data, the time from the start of observation to 

the end is still counted as the time to the event of interest.  There will be a specific 

column indicating whether the event of interest occurred or was censored.  

In this dataset, the median TMR was 3.27 seconds, meaning that 50% of the mobile 

map reactivation occurred within 3.27 seconds after the map was locked during 

navigation. Error! Reference source not found. displays the distribution of TMR for 

3117 MIPs. The data shows a pronounced right-skewed distribution, indicating that 

most map reactivation events occurred within a short time after the map was locked. 



48 
 

 
Figure 14 : The distribution of TMR for 3117 map inactive phase. 

4.1.2 Descriptive analysis of human factors  

It is important to emphasize again that since the subjects in this case are the MIPs, 

the extraction of independent variables is based on the 3,117 MIPs, rather than the 

participants. Human factors are participant-based variables, I need to map these 

human factors to each specific MIP. This involves assigning the age, gender, map use 

frequency, and SBSOD score of the participant corresponding to each MIP.  

For the age factor, among the 54 participants, 23 were aged 18–24 years, 29 were 

between 25–34 years, and 2 were aged 35–44 years. After mapping the age factor to 

the MIPs, out of a total of 3,117 MIPs, the age group of 18-24 years accounts for 

1,341 MIPs, while the age group of 25-34 years accounts for 1,703 MIPs, and the 35-

44 years age group has fewer samples, with only 73 MIPs from this group. Figure 13 

illustrates the specific age group distribution among the 54 participants and the 

3,117 MIPs. 
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Figure 15: Distribution of the age factor among participants and MIPs, with their absolute values and 

percentages 

 

In terms of the gender factor, there are 33 female and 21 male participants. After 

mapping gender to the MIPs, as Figure 14 shows, among all the MIPs, 2,112 are from 

female participants, while 1,005 MIPs are from male participants. 

 

 
Figure 16: Distribution of the gender factor among participants and MIPs, with their absolute value 

and percentages 

 

For map use frequency, it is categorized into three levels: "High" (four or more times 

a week), "Medium" (two to four times a week), and "Low" (a maximum of once per 

week). Among participants, they reported their weekly map use frequency, with 36 

participants using the mobile map four or more times per week, 15 using it two to 

four times per week, and three participants using it no more than once per week. 

When mapping this variable to the MIPs, 2,273 MIPs correspond to high frequent 

map users, 709 to medium users, and only 135 MIPs come from low frequent map 

users (see Figure 17). 
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Figure 17: Distribution of the map use frequency independent variable among participants and MIPs, 

with their absolute value and percentages 

 

Human factor spatial ability is reflected by the SBSOD score. The SBSOD scores are 

derived from each participant's performance on the SBSOD test, but they also need 

to be mapped to individual MIPs. Unlike categorical variables such as gender, age 

groups, and map use frequency groups, the SBSOD is a continuous variable. Here, I 

use a histogram to display the distribution of SBSOD scores among the MIPs. Figure 

18 reveals that there are 1089 MIPs corresponding to participants with SBSOD scores 

between 4 and 5. Next, 874 MIPs are corresponding to participants with SBSOD 

scores between 5 and 6. For the other values and corresponding percentages please 

see Figure 18. 

 
Figure 18: Distribution of the SBSOD independent variable among MIPs, with their absolute value and 

percentages 

4.1.3 Descriptive analysis of environmental factors  

Following the method for extracting environmental factors described in Section 

3.2.3, I completed the extraction of these variables. Similarly, the environmental 

factors are also mapped to each map inactive phase under study. For traffic density, 
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1701 MIPs occurred under heavy traffic conditions, while 1416 MIPs occurred under 

light traffic conditions (see Figure 19). 

 

 
Figure 19: Distribution of the traffic density independent variable among MIPs with their absolute 

value and percentages 

 

By the ratio by dividing the distance from the starting point of each MIP to the start 

of the route by the total length of the navigation route, I determined the route 

completion rate for each MIP. Based on the ratio, I identified whether the MIP 

occurred in the first half or the second half of the route. For the route section 

variable, 1843 MIPs occurred in the first half of the route, while 1274 MIPs occurred 

in the second half (see Figure 20). 

 

 
Figure 20: Distribution of the route section independent variable among MIPs with their absolute 

value and percentages 

 

Whether MIPs belong to the pedestrian navigation trajectories that contain 

shortcuts can be determined by calculating the intersection between the trajectory 

and the building block of VE. After performing this calculation, 2,401 MIPs were 

found from trajectories without shortcuts, while 716 MIPs were from trajectories 

that involved shortcuts (see Figure 21). 

 
Figure 21: Distribution of the shortcuts independent variable among MIPs with their absolute value 

and percentages 
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By spatially intersecting the MIP trajectories with the road network in the VE, it 

allowed me to determine whether road crossing occurred during each MIP. After the 

calculations, it was found that 460 MIPs involved road crossings, while 2,657 MIPs 

did not involve any road crossings (see Figure 22). 

 
Figure 22: Distribution of the road crossing independent variable among MIPs with their absolute 

value and percentages 

 

For the route length corresponding to MIPs, it is a continuous variable. In this 

dataset, there are 863 different navigation routes, which means there are 863 

unique route lengths. When these route lengths are mapped to the corresponding 

MIPs, I obtained the distribution of route length among MIPs, as shown in Figure 23. 

It can be observed that 1,031 MIPs are from routes with lengths between 100-200 

units, and 998 MIPs are from routes between 200-300 units. The values 

corresponding to other route length intervals are displayed in Figure 23. 

 

 
Figure 23: Distribution of the route length independent variable among MIPs, with their absolute 

value and percentages 

4.2 Regression model 

To show the result of the regression model, this section will follow a sequence: the 

result of correlation analysis among independent variables will be displayed first, 

followed by the result of feature selection and the result of model diagnostics.  
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4.2.1 Correlation analysis 

Before conducting the regression analysis, I first performed a correlation analysis 

among the independent variables. This step is important as it helps identify the 

relationships between the independent variables. It can help to avoid the problem of 

multicollinearity, which can lead to biased estimates in the regression model and 

may affect the interpretability of the coefficients. Furthermore, correlation analysis 

can guide feature selection. For those independent variables that show a strong 

correlation with each other, it should be cautious to include them all in the 

regression model. 

 
Figure 24: Correlation among Independent Variables 

 

From the Figure 24, it can be observed that none of the independent variables 

exhibit strong correlations with one another. This indicates that multicollinearity is 

unlikely to be a major issue in the regression analysis, ensuring that the estimated 

coefficients for each variable will be reliable and interpretable.  

4.2.2 Feature selection  

To fit the GSM, a stepwise selection method was used to identify the most important 

factors from an initial set of four human factors and five environmental factors: age, 

gender, spatial ability, map use frequency, traffic density, route length, route 

section, shortcuts, and road crossing. Specifically, it begins by fitting a model that 
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includes all the potential independent variables. Then, the significance of each 

variable was evaluated based on the p-value from statistical tests. At each step, the 

variable with the highest p-value that exceeds a pre-specified threshold, 0.05 in this 

case, was removed from the model. The stepwise approach allowed for a systematic 

assessment of the contribution of each variable to the model. The Table 1 presents 

the results when all independent variables are included in the regression model. 

 

 

 

   β value SE Z P 

Intercept -9.244  0.305  -30.302  <.001 

age -0.176  0.038  -4.669  <.001 

gender -0.053  0.050  -1.061  .288 

SBSOD score -0.228  0.019  -11.808  <.001 

map use frequency 0.185  0.040  4.668  <.001 

traffic density -0.008  0.041  -0.206  .836 

route section -0.131  0.043  -3.052  .002 

shortcuts 0.100  0.049  2.042  .041 

route length 0.001  0.000  7.828  <.001 

road crossing -0.054  0.071  -0.755  .45 

Table 1: Summary table of all independent variables effect on TMR 

 

As a result of the variable selection process, six key predictors were selected as 

statistically significant: age, spatial ability (as measured by SBSOD score), map use 

frequency, route length, route section, and shortcuts. These variables demonstrated 

a significant impact on the TMR and were retained in the final regression model for 

further analysis. In contrast, variables such as gender, traffic density, and road 

crossing were found to be less significant and were subsequently excluded from the 

model to improve its accuracy and interpretability. This refined model focuses on the 

most influential factor, providing a clearer understanding of what factors will 

influence the time to map reactivation during map-assisted pedestrian navigation.  

After identifying the independent variables that have a significant effect on the 

model, I further tested the degrees of freedom of the model. I fitted a series of GSMs 

with different degrees of freedom to determine the optimal model complexity. 

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) were 

used to compare these models. The results (see Table 2) showed that the model had 

the lowest AIC and BIC values when the degree of freedom was set to 6, indicating 

that the model performed best in balancing goodness of fit and model complexity. 

Therefore, the model with a degree of freedom of 6 was finally selected for 

subsequent analyses. 
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Degree of freedom AIC BIC 

1 15993.72 16043.25 

2 15421.59 15477.32 

3 14884.07 14945.99 

4 14848.14 14916.25 

5 14836.43 14910.73 

6 14802.6 14883.09 

7 14815.51 14902.19 

8 14804.6 14897.48 
Table 2: AIC and BIC comparison across different degrees of freedom for GSM 

 

After determining the optimal degrees of freedom and identifying the statistically 

significant independent variables, I proceeded to refit the model. This resulted in the 

final model, as presented Table 3. The refined model includes only the variables that 

showed a significant effect on the outcome, ensuring a more accurate 

representation of the data. By excluding non-significant predictors, the model 

improves both interpretability and performance, allowing for more reliable 

predictions regarding the impact of the selected factors. 

 

   β value SE Z P 

Intercept -8.930  0.613  -14.546  <.001 

age -0.176  0.037  -4.719  <.001 

SBSOD score -0.233  0.018  -12.931  <.001 

map use frequency 0.192  0.039  4.969  <.001 

route section -0.139  0.042  -3.267  .001 

shortcuts 0.095  0.049  1.965  .049 

route length 0.001  0.000  7.987  <.001 

Table 3: Summary of the model with six degrees of freedom, including only significant influential 

factors 

 

It is important to note that in survival analysis, the regression model coefficients (β) 

established for hazard are often interpreted in terms of the hazard ratio (HR) rather 

than the β values themselves. When the HR is greater than 1, it indicates that the 

covariate is associated with a higher hazard of the event of interest, which in this 

case is map reactivation. An HR greater than 1 indicates a quicker map reactivation. 

Conversely, an HR less than 1 indicates a slower map reactivation. The HR 

calculated based on the β values from the model are shown in the Table 4. The more 

detailed results directly related to RQ1 and RQ will be elaborated in sections 4.2 and 

4.3. 
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  HR 

Intercept / 

age 0.838 

SBSOD score 0.792 

map use frequency 1.211  

route section 0.870  

shortcuts 1.099  

route length 1.001 

Table 4: The HR corresponding to the independent variables, calculated as 𝑒𝛽. 

4.2.3 Model diagnostics 

When diagnosing survival analysis models, unlike linear regression models, it cannot 

directly compare predicted values with actual values. This is because the results 

derived from survival analysis are not specific values but instead survival curves 

under the conditions of given independent variables.  

Therefore, to diagnose the regression models in survival analysis, it can compare the 

predicted survival curves fitted by the regression model with the empirical survival 

curve derived from the data itself. Based on this principle, this part conducted the 

comparisons by comparing the overall Kaplan-Meier (KM) curve from the data with 

the predicted curve generated by the model using the mean values of all 

independent variables as input to illustrate the model's fit. The KM curves reflect the 

survival probabilities in the observed data, for more discussion about the KM curve, 

please see section 3.3.3. The survival curve predicted by the model represented the 

survival probabilities predicted by the model based on the covariates. If these two 

curves are close to each other and follow the same trend in the graph, it indicates 

that the model fits the data well. At the same time, this graphical comparison can 

also help us to identify possible biases or anomalies in the model. Figure 25 showed 

that the model fitted well. 
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Figure 25 : KM curve from the observed samples vs predicted survival function with mean covariates 

 

 

The Cox-Snell residual is another important diagnostic metric for a survival model 

(Ansin, 2015). It is used to measure the difference between observed and predicted 

survival times for each subject. If the model is well-fitted, the Cox-Snell residuals 

should follow an exponential distribution with a hazard ratio of one. After plotting 

the cumulative risk function 𝐻(𝑡) of the Cox-Snell residuals against the line 𝑦 = 𝑥 , a 

good model fit will have the cumulative hazard closely following the line 𝑦 = 𝑥, 

which indicates that the residuals follow the expected exponential distribution.  

Figure 26 illustrates the goodness of fit of the model by comparing the cumulative 

risk function with the Cox-Snell residuals. Cox-Snell residuals also showed that the 

model had good fitness. 
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Figure 26 : Plots of Cox–Snell residuals from the GSM model 

4.3 Results for human factors 

In HP1, I hypothesized that older individuals would reactivate the map more slowly 

than younger individuals, males would reactivate the map more slowly than females, 

people with higher spatial abilities would reactivate the map more slowly, and those 

who use maps more frequently in their daily lives would reactivate the map more 

quickly.  

In this chapter, I will verify the hypotheses made in HP1 based on the β values 

derived from the regression model and the HR values calculated from these β 

values. Here, I reiterate the interpretation of the hazard ratio (HR). When HR > 1, it 

indicates that an increase in the variable raises the hazard of map reactivation, 

resulting in a shorter TMR, meaning the map is reactivated more quickly. When HR = 

1, the variable has no effect on TMR. Conversely, when HR < 1, an increase in the 

variable reduces the hazard of map reactivation, leading to a longer TMR, meaning 

the map is reactivated more slowly. 

Nevertheless, HR only reflects the effect of the independent variables in terms of 

hazard—how the hazard of map reactivation changes when an independent variable 

changes. However, the concept of "hazard" cannot be directly applied to navigation 

assistance systems. One major advantage of survival analysis is that, based on the 

estimated hazard ratio, it allows me to obtain survival functions for specific values of 

predictors. Then point estimates could be derived for various quantiles of the 

distribution (e.g., the median). They are useful for predicting when the mobile map 

navigation system should provide guidance automatically.  
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Moreover, using the GSM in survival analysis also allows me to explore whether 

these variables have time-varying effects. In this case, it means examining whether 

the impact of changes in covariates on the hazard of map reactivation varies over 

time. For example, a variable may increase the hazard of map reactivation at 2 

seconds of map inactivity, but after 10 seconds of inactivity, the same variable might 

have no impact on the probability of map reactivation. Investigating this is 

meaningful because it helps determine if the influence of certain variables on map 

reactivation strengthens or weakens as time progresses. 

Therefore, in this chapter, when discussing the effects of human factors on TMR, I 

will first explore the impact of changes in independent variables on HR. Then, I will 

hold other variables constant while adjusting the variable under discussion to fit the 

survival curves, estimating the median survival time to interpret how changes in 

independent variables affect the dependent variable from a time perspective. 

Finally, I will investigate whether this covariate has a time-varying effect. 

4.3.1 Age 

From Table 4, it can be concluded that the HR corresponding to the covariate age is 

0.84 (p < 0.001). This means that the hazard of map reactivation occurring becomes 

lower and the TMR becomes longer with increasing age. In other words, older 

individuals tend to reactivate the map more slowly. 

By holding all other covariates at their mean values and setting the variable age to 0 

(representing the 18-24 age group) and 1 (representing the 25-34 age group), I 

generated survival curves for these MIPs in these two age groups. From these 

survival curves, I calculated the median TMR for the two groups: 3.03 seconds for the 

18-24 age group and 4.55 seconds for the 25-34 age group (see Figure 27). This 

indicates that as age increases from the 18-24 group to the 25-34 group, the median 

TMR extends by 1.52 seconds.  
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Figure 27: The survival curve for 18-24 age group (blue) vs. the survival curve for 25-33 age group 

(red). The 95 % confidence intervals are presented. 

 

The GSM model can take account of time-varying effects of covariates. To explore 

whether a variable has time-varying effects, I compared the model with the age 

covariate considered as time-varying against the original model using ANOVA 

analysis. According to the result, the p-value was less than 0.001, which 

demonstrates that the age covariate has a time-varying effect.  

From the Figure 28, it shows that the HR is predominantly less than 1, indicating that 

an increase in age reduces the hazard of map reactivation, leading to a longer TMR 

and a slower occurrence of map reactivation. The HR varies over time, suggesting 

that the impact of age on the hazard of map reactivation changes at different time 

points. At approximately 1.8 seconds, the HR reaches its minimum value of about 

0.6, indicating that if the map remains inactive for 1.8 seconds, older individuals 

have only a 60% probability of reactivating the map compared to younger individuals 

at that time. After 6 seconds, the HR stabilizes around 0.83. This means if map 

inactivity remains beyond 6 seconds, although older individuals still have a lower 

probability of map reactivation compared to younger individuals, it rises to about 

83%. 
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Figure 28: Time-Varying Hazard Ratio of the Age Covariate 

 

Based on the HR values and the median estimates of TMR derived from the fitted 

survival curves, along with the time-varying effect of age on HR, I can conclude that 

contrary to HP1, an increase in age leads to an increase in TMR, indicating that map 

reactivation occurs more slowly. 

4.3.2 Spatial ability 

In terms of spatial ability, SBSOD score was used to reflect the spatial ability in this 

thesis. From Table 4, it can be found that the HR corresponding to the SBSOD score is 

0.79 (p < 0.001). This means that the hazard of map reactivation occurring becomes 

lower and the TMR becomes longer with increasing spatial ability.  In other words, 

people with higher spatial ability tend to reactivate the map more slowly. 

By fixing the values of the other independent variables at their means and setting 

the SBSOD score to 5 and 6, I obtained the survival curves for two different SBSOD 

score groups. The median time to map reactivation for these groups was found to be 

6.57 seconds and 10.1 seconds, respectively. This indicates that when the SBSOD 

score increases from 5 to 6, the median time to map reactivation increases by 3.53 

seconds. 
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Figure 29: The survival curve for SBSOD 5 group (blue) vs. the survival curve SBSOD 6 group (red). The 

95 % confidence intervals are presented. 

 

To explore the time-varying effect of spatial ability, I incorporated the SBSOD score 

as a factor with the time-varying effect and conducted an ANOVA analysis with the 

previous model. The p-value from the ANOVA results of less than 0.001. This 

indicates that the SBSOD score also exhibits a time-varying effect. The Figure 30 

illustrates how the HR associated with the SBSOD score changes over time. It can be 

observed that the HR consistently remains below 1, indicating that higher SBSOD 

scores reduce the hazard of map reactivation, resulting in longer TMR and slower 

map reactivation. The HR initially reaches its lowest value at approximately 0.7, 

suggesting that individuals with high spatial ability have the lowest probability of 

activating the map immediately after it becomes inactive, with a probability of only 

70% compared to those with low spatial ability. However, if the map has remained 

inactive for more than 2 seconds, even though the probability of map reactivation 

for individuals with high spatial ability is still lower than that of those with low spatial 

ability, the probability of map reactivation increases to 80% compared to those with 

low spatial ability. 
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Figure 30: Time-Varying Hazard Ratio of the SBSOD score  

 

Considering the HR values, the median estimates of TMR obtained from the fitted 

survival curves, and the time-varying effect of SBSOD score on HR, it can be 

concluded that, in line with HP1, a higher SBSOD score leads to a longer TMR. This 

indicates that people with higher spatial abilities tend to reactivate the map more 

slowly 

4.3.3 Map use frequency 

For the covariate map use frequency, there were three different frequencies of map 

use used by participants, namely ‘High’ (four or more times a week), ‘Medium’ (two 

to four times a week), and ‘Low’ (a maximum of once per week). Its corresponding 

HR of 1.21 (p<0.001) could be extracted from Table 4, which means that the increase 

in map use frequency will raise the hazard of map reactivation and thus shorten the 

TMR. In other words, individuals who use the map more frequently tend to 

reactivate the map more quickly. 

Similarly, by keeping the other independent variables at their mean values and 

adjusting the map use frequency to 2 (two to four times a week) and 3 (four or more 

times a week), I generated the survival curves for these two distinct map use 

frequency groups. The median time to map reactivation for these groups was 

calculated to be 5.56 seconds and 3.54 seconds, respectively. This suggests that as 

the map use frequency rises from medium to high, the median time to map 

reactivation is reduced by 2.02 seconds (see Figure 31). 
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Figure 31: The survival curve for the medium frequent map use group (blue) vs. the survival curve for 

the high frequent map use group (red). The 95 % confidence intervals are presented. 

 

Consistent with the previous methods, ANOVA analysis revealed a time-varying 

effect for the variable map use frequency (p = 0.046). Figure 32 illustrates that the 

HR is generally above 1. This indicates that individuals who use maps more 

frequently have a higher hazard of map reactivation, resulting in a shorter TMR and 

faster map reactivation. It can be observed that HR reaches its peak value of 

approximately 1.4 around the 2-second point. This suggests that if map inactivity 

lasts for 2 seconds, individuals who use maps frequently are 1.4 times more likely to 

activate the map compared to those who use maps moderately. As time goes on, 

although the hazard of map reactivation for frequent users remains higher than that 

for moderate users, the relative HR stabilizes around 1.2. 
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Figure 32: Time-Varying Hazard Ratio of the map use frequency  

 

Taking into account the HR values, median TMR estimates from the fitted survival 

curves, and the time-varying effect of map use frequency on HR, it can be concluded 

that, consistent with HP1, individuals who use maps more frequently experience a 

shorter TMR. This suggests that frequent map users are likely to reactivate the map 

more quickly. 

4.3.4 Gender 

From Table 1, it can be observed that the coefficient for gender from the regression 

model is -0.053, with a p-value of 0.288. This indicates that gender does not have a 

significant effect on TMR. This is inconsistent with HP1 which females have a shorter 

TMR and reactivate the map more quickly. 

4.4 Results for environmental factors 

In HP2, it is hypothesized that heavy traffic and shortcuts will lead to quicker map 

reactivation. Additionally, map reactivation is expected to occur more quickly in the 

second half of the road, while longer road lengths will also contribute to faster map 

reactivation. Conversely, map reactivation from MIP which involves road crossings 

will happen more slowly.  

Consistent with the methods used in section 4.3, this chapter will first examine the 

HR corresponding to these environmental factors. Next, I will keep other variables 

constant while varying the focus variable to fit the survival curves and estimate the 
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median survival time, allowing for an interpretation of how changes in 

environmental variables impact the dependent variable from a temporal 

perspective. Finally, I will assess whether these environmental factors exhibit time-

varying effects. 

4.4.1 Traffic density 

The results from the model fitting (Table 1) indicate that the coefficient for traffic 

density is -0.008, with a p-value of 0.836. This finding is inconsistent with HP2, as 

traffic density did not demonstrate a significant effect on TMR. 

4.4.2 Route section 

For the route section, according to what is stated in 3.2.3, I divided the MIPs under 

study into the first half and the second half of the route. According to the results of 

the Table 4, the HR corresponding to the route section is 0.87 (p = 0.001), which 

means that if the map reactivation occurs in the second half of a navigation route, it 

will reduce the hazard of map reactivation, and thus increase the TMR. This means 

that individuals tend to reactivate the map more slowly in the second half of the 

road. 

By setting the other independent variables to their mean values and adjusting the 

map section to 0 (first half of the route) and 1 (second half of the route), I generated 

the survival curves for these two route section groups. The median time to map 

reactivation for these route section groups was found to be 3.03 seconds for the first 

half and 4.04 seconds for the second half. This indicates that the median TMR in the 

second half of the route is 1.01 seconds longer than in the first half (see Figure 33). 
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Figure 33: The survival curve for first half group (blue) vs. the survival curve for second half group 

(red). The 95 % confidence intervals are presented. 

 

After incorporating the time-varying effect for the route section and conducting an 

ANOVA analysis, the p-value from ANOVA analysis was found to be 0.558. This 

indicates that there is no significant time-varying effect associated with the route 

section. Overall, based on the HR and the median TMR obtained from the fitted 

curves, it can be concluded that consistent with HP2, the TMR is longer in the second 

half of the navigation route. This indicates that individuals tend to reactivate the 

map more slowly during the second half of their navigation route. 

4.4.3 Shortcuts 

In the analysis of the independent variable shortcuts, the HR corresponds to this 

covariate is 1.1 (p = 0.049) according to the Table 4. It means that the hazard of map 

inactivation occurring in shortcuts is elevated, which in turn leads to a shorter TMR. 

In other words, navigators tend to reactivate the map more quickly when taking 

shortcuts. 

By fixing the other independent variables at their mean values and categorizing the 

shortcuts as 0 (non-shortcuts) and 1 (shortcuts), I created the survival curves for 

both groups (see Figure 34). The median TMR for the shortcuts group was 3.03 

seconds, while for the non-shortcuts group, it was 3.54 seconds. This suggests that 

the median TMR is 0.51 seconds shorter when shortcuts are taken compared to 

routes without shortcuts. 
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Figure 34: The survival curve for non-shortcuts group (blue) vs. the shortcuts group (red). The 95 % 

confidence intervals are presented. 

 

After incorporating a time-varying effect for the independent variable shortcuts, the 

ANOVA analysis showed a p-value of 0.08. This indicates that the variable shortcuts 

did not show a significant time-varying effect. Based on the HR associated with the 

shortcuts variable and the median estimates of TMR derived from the fitted curves, 

it can be concluded that consistent with HP2, taking shortcuts results in a shorter 

TMR, indicating that people reactivate the map more quickly when utilizing 

shortcuts. 

4.4.4 Route length 

For the variable ‘route length’, it could be found that the corresponding HR is slightly 

greater than 1, with a p-value of 1.001, from Table 4. This reflects the fact that for 

every length unit increase in total route length, there is a slight increase in the 

hazard of map reactivation occurring in the navigation route, leading to a minor 

decrease in TMR. In other words, people tend to reactivate the map more quickly on 

longer navigation routes. 

The Figure 35 shows the survival curves for TMR based on the fitted models for a 

100-unit route and a 200-unit route. It can be observed that the median TMR for a 

length of 200 units is 1.01 seconds shorter than that for a length of 100 units. 
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Figure 35: The survival curve for the long route length (200 units) group (blue) vs. the short length 

(100 units) group (red). The 95 % confidence intervals are presented. 

 

After incorporating the time-varying effect for route length and conducting an 

ANOVA analysis, the resulting p-value was 0.017, indicating that route length does 

exhibit a significant time-varying effect. However, due to the small of the HR 

associated with route length, the specific time-varying effect was not observable 

(see Figure 36). Based on the HR associated with route length and the median TMR 

estimates for routes of 100 and 200 units, the conclusion can be drawn that, 

consistent with HP2, an increase in route length leads to a shorter TMR. In other 

words, people tend to reactivate the map more quickly when navigating longer 

routes. 
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Figure 36: Time-Varying Hazard Ratio of route length 

4.4.5 Road crossing 

According to the results in Table 3, the β coefficient for the variable road crossing is -

0.054, with a p-value of 0.45. This indicates that road crossing does not have a 

significant impact on TMR, which contradicts the hypothesis stated in HP2. 

Overall, based on the results from the GSM model fit, the original hypothesis can be 

partially accepted. Three covariates—route section, whether shortcuts and total 

length of the navigation route—were found to significantly affect TMR. However, 

traffic density and road crossing did not show any significant effect. Among the three 

covariates with significant effects, the result of the total length of the navigation 

route aligns with the original hypothesis that an increase in the total length of the 

route will raise the hazard of map reactivation, which will lead to a shorter TMR. The 

presence of shortcuts also increases the risk of map reactivation risk and shortens 

the TMR. Moreover, the TMR for the second half of the route compared to the first 

half of the route, the hazard of map reactivation was reduced and the TMR became 

longer. This result is also consistent with that of the original hypothesis. 
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5. Discussion 

This thesis contributed to the study area of when to provide navigation instructions. 

It significantly supplements existing research in this area (Giannopoulos et al., 2017; 

Golab et al., 2022). Specifically, it considered each moment the map becomes 

inactive as the starting point for determining when the next navigation instruction 

should be given. The guidance modality is in the form of a graphical navigation route 

on a mobile map. It explored how human factors—such as age, gender, spatial 

ability, and map use frequency—and environmental factors—such as route length, 

route section, shortcuts, road crossing, and traffic density—affect the time to map 

reactivation.  Sections 5.1 and 5.2 will discuss the results of RQ1 and RQ2 

respectively. Section 5.3 will discuss how the results could benefit the mobile 

navigation system. Section 5.4 will summarize the limitations of this study and point 

out future research directions. 

5.1 Discussion of human factors 

HP1 hypothesized human factors including age, map use frequency, spatial ability, 

and gender would influence the time to map reactivation. Specifically, older people, 

females, and pedestrians who use maps more frequently would reactivate the map 

more quickly. Pedestrians with a higher spatial ability would reactivate the map 

more slowly. This section will discuss the results compared to HP1. 

5.1.1 Age 

HP1 hypothesized that an increase in age would shorten TMR, meaning older 

pedestrians would reactivate the map more quickly during navigation. However, the 

results from the regression model showed the opposite conclusion: as age increases, 

TMR becomes longer, indicating that older navigators tend to reactivate the map 

more slowly during navigation. 

One potential reason for getting contrary results could be the very close age range in 

this study. HP1 was formulated based on prior research about the age influence on 

navigation performance and map use. However, most of these studies have primarily 

focused on comparing younger adults with older adults, where younger adults are 

usually under 30 years old, and older adults are usually above 60 years old. A 

comprehensive review of age-related impacts on navigation also highlighted this 

point (van der Ham & Claessen, 2020). In this study, they described the age 

distribution among research about how age influences navigation in different age 

groups. It indicated the age distribution was notably skewed, with a focus on 

participants aged 18-30 and those over 60 years old (see Figure 37). This suggests 

that the effect of age on navigation performance may be more persuasive when 



72 
 

comparing these more distinct age groups that have large age gaps. However, in this 

study, our two main age groups are 18-24 years and 25-33 years, which cannot 

directly reference the impact of age in comparisons between young and old adults, 

as was discussed in 2.2.1. This may lead to a bias in the hypothesis regarding the 

effect of age on TMR. 

Alternatively, this study concludes that even closely related age groups, such as 18-

24 years and 25-33 years, exhibit significant differences in navigation behavior and 

map use. This finding highlights the need for future research to go beyond the typical 

comparisons between younger and older adults. Researchers should consider closer 

age ranges when studying the impact of age on navigation and map use. Exploring a 

broader spectrum of age groups can provide deeper insights into how age influences 

navigation strategies and using behaviors on mobile maps across different stages of 

adulthood. 

 

 
Figure 37: Age distribution of subjects in studies exploring the impact of age on navigation (van der 

Ham & Claessen, 2020). 

5.1.2 Spatial ability  

People with high spatial ability usually perform better in navigation, including 

enhanced spatial information acquisition, improved spatial memory, and overall 

better navigational skills (Kozhevnikov et al., 2006; Laczó et al., 2021; Ramanoël et 

al., 2020). For a more detailed exploration of these aspects, please refer to section 

2.2.3. In this study, I similarly observed the influence of spatial ability on time to map 

reactivation, which is consistent with HP1. The results indicate that people with 

higher spatial ability tend to have longer TMRs, suggesting that they reactivate the 

map more slowly during navigation. 

One potential explanation for this finding is that individuals with high spatial ability 

may rely more on their cognitive mapping skills and internal representations of the 

environment (Castellar & Juliasz, 2018). This helps them to pay more time and 

attention to the environment before rechecking the map. The slower map 

reactivation may also reflect a strategic approach to navigation, where they prefer to 

utilize their spatial skills instead of immediately relying on external aids such as 
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mobile maps. This reliance on internal cognitive resources can potentially result in 

longer TMRs. 

Furthermore, the analysis of the time-varying effect of spatial ability on TMR 

provides a deeper understanding of how spatial ability influences TMR. The results 

showed that, under the overall influence, spatial ability has the greatest impact at 

the moment immediately the map becomes inactive. Specifically, people with high 

spatial ability are significantly less likely to unlock the map right as it enters the 

inactive state compared to those with lower spatial ability. 

5.1.3 Map use frequency 

This study explored the impact of participants' self-reported weekly map use 

frequency on the time to map reactivation during map-assisted navigation. As 

discussed in section 2.2.4, the motivations for using maps in daily life extend beyond 

navigation needs, including various motivations such as checking points of POIs, 

viewing public transportation schedules, and other informational purposes (Brata & 

Liang, 2020; Farkas, 2016; Ying et al., 2020).  

These diverse reasons for map use make it challenging to directly hypothesize how 

weekly mobile map use frequency impacts TMR. Nevertheless, I observed a 

significant effect of map use frequency on TMR. Consistent with HP1, participants 

who use maps more frequently have shorter TMRs. In other words, those who use 

mobile maps more frequently tend to reactivate the map more quickly during 

navigation. This finding suggests that self-reported weekly map use frequency is a 

reasonable indicator of participants' reliance on mobile maps for navigation, even 

though their overall usage includes non-navigation activities.  

5.1.4 Gender 

HP1 hypothesized that females might have a shorter TMR, meaning that females 

activate the map more quickly during navigation. However, based on the results 

from the regression model, gender did not appear to be a significant factor 

influencing TMR. This finding aligns with previous research outcomes which 

indicated no significant gender differences in navigation (Driscoll et al., 2005; 

Herman et al., 1979; O’Laughlin & Brubaker, 1998). This illustrates that gender may 

not play an important role in determining the time of map reactivation during 

navigation tasks. 

5.2 Discussion for environmental factors  

HP2 hypothesized environmental factors including traffic density, route section, 

route length, shortcuts, and road crossing would influence the time to map 
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reactivation. Specifically, pedestrians navigating in heavy traffic density, in a longer 

route, and in shortcuts would reactivate the map more quickly. Pedestrians 

navigating in the second half of the route would reactivate the map more slowly. 

Similarly, if participants are crossing the road, they would reactivate the map more 

slowly. This section will discuss the results compared to the HP2. 

5.2.1 Traffic density 

In HP2, it was hypothesized that high traffic density would result in a shorter TMR, 

implying that people would reactivate the map more quickly when navigating in 

heavy-traffic environments. However, the results from the model fitting indicate that 

traffic density is not a significant factor influencing TMR. Contrary to the HP2, the 

heavy traffic did not have a significant impact on the time to map reactivation during 

navigation. 

The main paper of this study also discussed that traffic density does not significantly 

affect map interaction or the completion time of navigation tasks (Bartling et al., 

2024). This may be explained by the uneven distribution of traffic density within the 

virtual environment. Specifically, while navigating in the VE, certain areas may 

experience extremely high traffic density, causing participants to allocate additional 

attention to their surroundings to avoid collisions with other pedestrians. However, 

in other areas, even with increased traffic density, participants might still be able to 

move smoothly along the path. This uneven distribution could reduce the impact of 

traffic density on TMR, making it difficult to observe any significant effects. 

Additionally, the heavy traffic density simulated in the VR environment still differs 

from real-world conditions. In the VE, even if participants collide with pedestrians or 

vehicles, they do not experience any real harm. As a result, some participants might 

ignore the need to be careful with others. However, in the real world, this is a 

serious issue as it directly impacts pedestrian safety during navigation (Zhang et al., 

2022). Therefore, the effect of traffic density on TMR needs further investigation in 

real-world navigation tasks, where safety concerns play a critical role. 

5.2.2 Route section  

For the variable route section, HP2 hypothesized that TMR would be longer in the 

second half of the navigation route, meaning map reactivation would occur more 

slowly. The results align with this hypothesis. However, there was a potential risk 

that could have led to rejection when making this hypothesis. Specifically, as the 

navigator approaches the destination in the second half of the route, they might 

need to reactivate the map more quickly to check whether they are nearing their 

destination, driven by a destination recognition need for map use (Carpman & Grant, 

2002). 
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From the results, this potential risk did not lead rejection of HP2. This suggests that 

the motivation to check the map for destination recognition only arises when the 

navigator is close enough to the destination. This also depends on the total length of 

the route. When the route is long, most map reactivations in the second half may 

not be directly related to destination recognition. However, when the route is short, 

the likelihood that map reactivation in the second half is linked to destination 

recognition becomes much higher. 

5.2.3 Shortcuts 

Consistent with HP2, the results revealed the significant impact of shortcuts on TMR, 

demonstrating that TMR is shorter on shortcut routes, meaning people reactivate 

the map more quickly. In section 2.3.2, I discussed the uncertainty in making 

assumptions about the shortcuts variable. On the one hand, people who tend to 

choose shortcuts often have higher spatial ability (Boone et al., 2019), which could 

lead to a longer TMR. On the other hand, shortcuts increase route uncertainty and 

reduce the navigator’s confidence in their memory of the route (Lancia et al., 2023), 

potentially resulting in a shorter TMR. Based on the results, it showed that the latter 

consideration that shortcuts reducing navigators’ confidence and leading to quicker 

map reactivation has a stronger impact. 

Another point worth discussing is that the p-value for the shortcuts variable is 0.049, 

which is very close to the significance threshold of 0.05. One potential factor 

contributing to this borderline significance is the method used to extract the 

shortcuts variable. There will be a detailed discussion about this limitation in the 

section 5.4. 

5.2.4 Route length 

The analysis results support the HP2 that in longer navigation routes, TMR is shorter, 

meaning people navigating in longer routes would reactivate the mobile map more 

quickly. One reason might be that longer routes may increase the overall cognitive 

load for the navigator (Fu et al., 2015). As the route becomes more complex, there is 

a greater need for spatial updates and reassurance(Krichmar & He, 2023), which 

could need faster map reactivation. This aligns with research suggesting that people 

rely more on navigation aids when faced with longer, more demanding routes 

(Giannopoulos et al., 2017). 

5.2.5 Road crossing 

Inconsistent with HP1, I did not observe a significant effect of the road crossing 

variable on TMR. Road crossing is a typical late-entry variable (Matsuura & Eguchi, 

2005). From the collected data, it can be found which MIPs involve road crossings 



76 
 

and which do not. However, when the map enters the map inactive phase, it cannot 

be predicted whether or when a road crossing will occur. It is possible that a longer 

TMR leads to the occurrence of a road crossing, rather than the road crossing 

causing the TMR to increase. The study mentioned that using future events to 

predict outcomes is unscientific (Moore, 2016c), so such variables must be analyzed 

with great caution. This is also one of the strengths of survival analysis, which 

handles these variables effectively. 

5.3 Implications for the navigation system  

This thesis applies survival analysis to investigate the factors influencing TMR during 

navigation. The results indicate that age, spatial ability, map use frequency, route 

length, route section, and shortcuts all have a significant impact on TMR. These 

findings have practical applications for improving mobile map-based navigation 

systems, especially for optimizing the time of providing navigation instructions. 

When applying theory to practice, it is crucial to consider whether the data required 

by the theoretical model is accessible at the practical level. In this case, all the 

variables found to significantly impact TMR are easily accessible at the application 

level. Specifically, user age and spatial ability can be obtained through user profiles 

and initial questionnaires like the SBSOD test (Hegarty et al., 2002). Map use 

frequency can be tracked directly by the mobile map application, providing more 

accurate data compared to the self-reported weekly map use frequency used in this 

study. Route length can be calculated by the navigation system once the user’s 

destination is set, based on the route suggested by the algorithm (Du et al., 2019; Xu 

et al., 2016). Route sections and shortcuts can be dynamically detected using 

location-based services (Ariffin et al., 2011), which allows the system to determine at 

any given moment whether the pedestrian is on a shortcut or in which part of the 

route. 

Based on these variables, the navigation system could generate survival curves for 

each map inactive phase. The navigation system could then use a quantile point 

estimate from survival curves, such as the median TMR, to determine when to 

proactively provide navigation instructions. The quantile point estimate could be 

selected according to the user’s preferences. It is an improvement for pedestrian 

navigation, as mainstream mobile map applications like Google Maps only provide a 

single choice of ‘more frequent and detailed audio announcements’ (see Figure 38), 

rather than multiple choices for users. 
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Figure 38: Google Maps walking navigation settings. (Google Maps, 2024) 

 

This time predictions from Survival Analysis allow the navigation system to predict 

the probability of map reactivation at different time points based on user-specific 

information and location data. By implementing this method, the navigation system 

could automatically be aware of the probability that a user will reactivate the map at 

any given moment after it becomes inactive. This would allow the system to provide 

timely and proactive navigational instructions, helping to reduce cognitive load, 

enhance spatial learning, and offer a more seamless navigation experience for users. 

This proactive assistance could be beneficial in helping users stay oriented without 

frequent map-checking, thereby improving both the effectiveness and user 

experience of mobile navigation systems. 

Two navigation scenarios are used to illustrate how navigation systems could utilize 

the results and model from this thesis to optimize the time of providing navigation 

instructions. Scenario 1: A pedestrian whose age is 27 years old. His SBSOD score 
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was collected with the value of 4 when he first registered for this navigation system. 

His weekly map use frequency is 6 times a week from the application track data. 

Now he is navigating a route with a total length of 200 meters and in the first half of 

the route, following the recommended route from the system. A survival curve for 

Scenario 1 could be generated.  Scenario 2: A pedestrian whose age is 18 years old. 

Her SBSOD score was collected with the value of 5 when she first registered for this 

navigation system. Her weekly map use frequency is 5 times a week from the 

application track data. Now she is navigating a route with a total length of 300 

meters and in the first half of the route. She chooses to walk through a shortcut 

rather than follow the recommended route.  

According to the survival curves (see Figure 39), the mobile map navigation system 

could provide navigation instructions proactively 2.6 seconds after the map is locked 

in scenario 1. In scenario 2, it could provide navigation instructions proactively 3.8 

seconds after the map is locked. If the user prefers to get navigation instructions 

later, third-quarter TMR can be used rather than median TMR. This gives the 

flexibility of setting time for navigation instructions to the user.  

 

Figure 39: The survival curve for the scenario 1 (blue) vs. the scenario 2 (red). The 95 % confidence 

intervals are presented. 

5.4 Limitations and future research  

While this thesis found some significant results on the human and environmental 

factors influencing time to map reactivation during navigation, several limitations 

remain and are worth further investigation. One limitation is that the analysis in this 
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thesis is based on pedestrian trajectory data collected in a virtual environment. 

However, pedestrian navigation and map use behaviors in the real world are 

different from those in a VR environment. In real-world navigation, interactions with 

mobile map systems involve dynamic elements such as avoiding obstacles and 

adapting to constantly changing surroundings (Zhang et al., 2022). The advantage of 

using a VR environment is that it provides a controlled setting where users can 

interact with digital maps in a more immersive environment (Cogné et al., 2017). VR 

allows researchers to control variables that are difficult to manage in real-world 

scenarios. However, despite these advantages, VR cannot fully simulate the 

complexities of real-world environments. Therefore, future research should aim to 

extend these findings to real-world navigation studies. Expanding this research 

direction into real-world settings would provide a more comprehensive 

understanding of when pedestrians need navigation guidance from navigation 

systems. 

Another limitation of this thesis is the focus on analyzing when map reactivation 

occurs—that is when the map transitions from an inactive state to an active state. 

This is used to explore when users need spatial information provided by the 

navigation system. However, during the active map state, pedestrians also engage in 

shifts between the map view and the real-world navigation view. They may glance at 

the route on the map briefly before redirecting their attention to the real 

environment. Since I can only capture the active and inactive states of the map, it is 

difficult to determine whether pedestrians distribute their attention on the map 

during the map's active periods. Eye-tracking technology could offer a better 

solution to this issue. Eye tracking has been widely applied in the field of spatial 

cognition and has provided many new perspectives (Cheng et al., 2023; 

Giannopoulos et al., 2015; Kapaj et al., n.d.). Future research could integrate eye-

tracking technology to capture how pedestrians allocate their visual attention to the 

map during navigation. This would allow for a more detailed understanding of how 

users balance their focus between digital maps and their surroundings during real-

time navigation. 

Additionally, since this thesis is based on an existing dataset, the variables that could 

be extracted for analysis were limited. There are several potential variables, 

particularly environmental factors such as the visibility of intersections 

(Giannopoulos et al., 2017) or the user's positional relationship to points of interest 

(POIs), that were not considered but are worth investigating. Future research could 

expand the range of variables to provide more comprehensive and in-depth 

perspectives on this topic. This broader exploration could lead to a deeper 

understanding of how various environmental and contextual factors influence the 

time of map reactivation during navigation. 
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Lastly, there is a limitation in processing the environmental factor shortcuts. In the 

current method, I assigned the label ‘is shortcuts’ to all MIPs along the entire route if 

a shortcut appeared at any point during navigation. The reason for this approach is 

that shortcuts could have a multifaceted influence on the navigator (Lancia et al., 

2023), even on MIPs occurring before or after the actual shortcut. For example, 

pedestrians might need to check the map more frequently before getting into the 

shortcuts to make this decision. However, this method has limitations. If the shortcut 

comprises only a small portion of the overall route, the influence of the shortcuts on 

MIPs far from the shortcuts might be very small. Due to the scope of this thesis, I did 

not explore exactly how far-reaching the influence of shortcuts extends on map 

reactivation across the entire route. Investigating the precise extent of shortcut 

influence on MIP activation could be a potential direction for future research, 

helping to get a deeper understanding of how shortcuts affect navigational behavior. 
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6. Conclusion and outlook 

In the research area about the time of navigation instructions given by pedestrian 

navigation systems, this thesis is the first to use each moment when the map 

becomes inactive as the starting point to investigate and graphic route displayed on 

the mobile map as the modality of navigation guidance. It aimed to explore which 

and how human factors (including age, gender, spatial ability, and map use 

frequency) and environmental factors (including route length, route section, 

shortcuts, traffic density, and road crossings) influence the time to map reactivation. 

The research is based on a large pedestrian trajectory dataset (Bartling et al., 2024), 

along with map interaction data collected from a mobile map navigation task 

conducted in a virtual environment. Survival Analysis methods were applied to 

statistically analyze the data. 

My results showed that among the human factors, age, spatial ability, and map use 

frequency had significant effects on the time to map reactivation. Among the 

environmental factors, route length, route section, and shortcuts significantly affect 

the time to map reactivation. The following list of bullet points outlines how these 

factors specifically influence the time to map reactivation: 

⚫ Older pedestrians tend to reactivate the map more slowly 

⚫ Pedestrians with higher spatial ability reactivate the map more slowly 

⚫ Pedestrians who use map more frequently reactivate the map more quickly 

⚫ Pedestrians navigating longer routes reactivate the map more quickly 

⚫ Pedestrians navigating in the second half of the route reactivate the map more 

slowly 

⚫ Pedestrians navigating in route with shortcuts reactivate the map more quickly 

 

The results of this thesis have significant practical implications for the design of 

pedestrian map navigation systems, especially for providing context-aware and 

appropriately timed navigation guidance. Specifically, the mobile map navigation 

system can obtain the influential factors dynamically according to the pedestrians’ 

position and navigation context, such as in which route section or the length of the 

navigation route. Based on these factors, the navigation system can generate the 

survival curves of time to map reactivation in real-time. These survival curves 

indicate the probability of map reactivation across time. Then the navigation system 

can dynamically adjust the timing of navigation instructions based on user 

preferences, such as using the median survival time as a reference and integrating it 

with the survival curve.  

This study supplements the existing  research on context-aware map adaptations 

(Bartling et al., 2023) from the perspective of optimizing the timing of navigation 
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instructions, while also contributing to the research framework of mobile map 

adaptation design (Fabrikant, 2023). Moreover, in the context of GeoAI (Janowicz et 

al., 2020), this study identifies key features that affect how long users will reactivate 

mobile maps again during navigation. This contributes to the feature engineering for 

the application of GeoAI in optimizing the time of providing navigation guidance, 

which can reduce cognitive load, ultimately improving the overall navigation 

experience. 
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