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Abstract 

Accurate mapping of debris-covered glaciers (DCGs) is essential for understanding their dynamics, 

contribution to sea-level rise and role in regional hydrology. Existing glacier mapping efforts suffer from 

inaccuracies at the local scale, especially for DCGs. Current approaches often fail to distinguish debris 

from surrounding terrain due to spectral similarities. In many cases, manual delineation is required, which 

is time consuming and not suitable for large scale mapping. This thesis developed a methodology to 

refine DCG outlines using land surface temperature (LST) data, based on the assumption that glacial 

debris shows a cooler thermal signature influenced by the underlying ice. The Approach Integrates 

thermal and optical data from Landsat 5 and 8, topographic information from three digital elevation 

models (Copernicus DEM, NASADEM, and SwissAlti3D), and outlines of existing glacier inventories, 

including the Swiss Glacier Inventories (SGI2010 and 2016) and the Randolph Glacier Inventory version 

7 (RGI 7.0). 

A novel index combining LST and near infrared (NIR) data was integrated with topographic information 

and spectral indices in a random forest classifier. The transferability and robustness of the classifier 

across different regions was enhanced by using multiple combinations of input variables, which were 

subsequently integrated into a final classification. The method was calibrated on Zmuttgletscher in the 

Swiss Alps and extended to Oberaletschgletscher and Unteraargletscher. Temporal analyses for 2003, 

2010 and 2016 assessed its robustness over time, while additional applications on Belvedere Glacier 

(Italy) and Satopanth Glacier (India, Himalayas) evaluated its adaptability to different climatic regions. 

Statistical comparison with the SGI and RGI inventories yielded validation accuracies between 0.743 and 

0.929, often exceeding 0.85. While challenges remain in terms of accuracy and robustness, the method 

effectively delineates DCG outlines across different glaciers and time periods, providing a scalable and 

automated approach to DCG mapping. The automated nature of the approach and the use of open-

source data make the method a valuable tool for DCG mapping on a global scale.  

With upcoming satellite missions such as TRISHNA, SBG and LSTM expected to provide higher resolution 

thermal data, the methodology is poised for further refinement and wider application. This research 

advances the use of LST in glaciology and provides a practical tool for improving global glacier 

inventories. 
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1 Introduction 

1.1 Motivation and state of research 

Accurate and comprehensive glacier inventories are essential for understanding the impacts of climate 

change, managing water resources and assessing natural hazards (Biddle, 2015; Nunchhani et al., 2024). 

In response to climate change, recent glacier retreat has led to an increase in debris-cover on glaciers 

(Bolch et al., 2007).  

Precise mapping of debris-covered glaciers (DCGs) is particularly important for monitoring and 

modelling glacier dynamics, as DCGs often behave differently from clean-ice glaciers in terms of melt 

processes and mass balance (Herreid & Pellicciotti, 2020). Accurate delineation of DCGs is essential for 

improving climate models, particularly in regions where glaciers serve as primary freshwater sources 

(Nunchhani et al., 2024), such as the Himalayas, Andes and Alps. These regions are heavily dependent 

on glacier-fed water systems for agriculture, drinking water and hydropower (Agrawala et al., 2003), 

making accurate mapping of DCGs critical for predicting future water availability. 

In addition, DCGs contribute to sea-level rise through ice melt, highlighting the importance of accurately 

assessing their extent and behaviour. Despite their importance, DCGs are poorly represented in global 

sea-level rise models (Raper & Braithwaite, 2006; Scherler et al., 2011b). Understanding their thermal 

and structural characteristics is also critical for incorporating DCG mapping into hydrological models, 

which are essential for predicting changes in water resources and managing natural hazards. For 

example, accurate delineation of DCGs helps predict glacial lake outburst floods (GLOFs), a serious 

hazard in glaciated regions (Agrawala et al., 2003). Refining DCG mapping will improve risk assessments 

and support the development of better mitigation strategies for such hazards (Biddle, 2015; Nunchhani 

et al., 2024). 

However, the presence of debris-cover on the glacier poses a significant challenge to remote sensing-

based glacier mapping (Karimi et al., 2012). Previous attempts to automate the mapping of DCGs using 

multispectral data have been limited by the spectral similarities in the optical spectrum between 

supraglacial debris and surrounding features such as bedrock, moraines, and fluvial deposition (Biddle, 

2015; Karimi et al., 2012; Nunchhani et al., 2024).  

Existing datasets, such as the Randolph Glacier Inventory version 6 (RGI 6.0), have shown notable 

inaccuracies in delineating the extent of DCG (Attaullah et al., 2023; RGI 7.0 Consortium, 2023). The 

recently published Randolph Glacier Inventory version 7.0 (RGI 7.0) does not include specific updates 

regarding DCGs, leaving uncertainties regarding their accurate representation (Aguayo et al., 2023; 

Maussion et al., 2023). Furthermore, the RGI does not provide a specific class for DCG. Instead, DCG 

areas are included within the overall glacier outline, without distinguishing between DCG and clean-ice 

glacier areas.  

Similarly, while the Swiss Glacier Inventory 2016 (SGI2016) provides relatively accurate data for Swiss 

glaciers and includes a specific debris-cover class, the greatest inaccuracies are observed in the 

delineation of DCGs (Linsbauer et al., 2021). This is mainly due to the inherent challenges of mapping 

debris-covered areas. However, the SGI2016 achieves relatively high accuracy by relying on extensive 

manual work by glaciologists and high-resolution 3D imagery (Linsbauer et al., 2021). While this 

approach provides reliable results, it is highly labour-intensive and costly, making it impractical to scale 

to a global scale. These challenges highlight the need for more automated and scalable methods to 

improve the accuracy and reliability of DCG inventories worldwide. 
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In recent studies, thermal data has been used as a mean to differentiate between periglacial debris (PGD) 

and supraglacial debris (SGD) (Nunchhani et al., 2024; Sharda & Srivastava, 2024). The goal is to discern 

PGD from SGD by leveraging the temperature variance between them. It is hypothesized that glacial 

debris maintains a cooler temperature due to the presence of underlying ice, providing a basis for 

discrimination (Bolch et al., 2007).  

While promising, the application of thermal data for systematic mapping is still in its early stages and 

faces significant challenges, including coarse spatial resolution, mixed pixel effects, and external 

influences such as shading, snow cover, and seasonal variations (Kaushik et al., 2022). Recent advances 

have pursued multispectral approaches, combining thermal data with optical satellite imagery, with 

promising results for partially automated DCG mapping (Karimi et al., 2012; Kaushik et al., 2022; Mitkari 

et al., 2022). However, these methods have so far been constrained by limited accuracy and scalability, 

indicating the need for further refinement to improve their accuracy and applicability across diverse 

glacier regions. 

 

1.2 Research objectives and questions 

The goal of this thesis is to develop and test a methodology for refining DCG outlines by exploiting the 

thermal differences between SGD and PGD. The methodology is applied and evaluated on glaciers in 

different mountain regions worldwide, providing a basis for its potential extension to time series analyses 

and larger regional scales. The thesis addresses the following research questions: 

 

RQ1 How can land surface temperature data be used effectively to distinguish between periglacial 

and supraglacial debris in glaciated regions?  

 

RQ2 What is the potential for applying the developed methodology to refine glacier outlines and 

assess glacier changes of debris-covered glaciers across different regions, and what are its 

limitations in terms of scalability and robustness?  

 

RQ3  How can the developed methodology complement existing glacier inventories, such as the 

Randolph Glacier Inventory (RGI) or the Swiss Glacier Inventory (SGI), to improve the accuracy 

of DCG delineation? 

 

The outcome of the thesis is a glacier mapping methodology that could serve as an application for the 

upcoming satellite missions (TRISHNA, LSTM and SBG) which will provide thermal infrared (TIR) data at 

an unprecedented spatial (50 to 60-meter ground sampling distance) and temporal (1 to 3 days) scale 

and are scheduled for launch by the end of the decade (ESA, 2020, 2022; Lagouarde et al., 2018).  

The thesis output contributes to the scientific community in two ways: firstly, by advancing the use of 

LST data in the cryosphere, which has so far been limitedly explored; and secondly, by offering a mapping 

tool for the glaciological community. 
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1.3 Research aims and structure 

The aim of this study is to develop a methodology to distinguish between SGD and PGD, thereby identify 

DCGs by exploiting differences in the thermal signal. To achieve this, satellite imagery from Landsat 5 

and Landsat 8, including land surface temperature (LST) data, was combined with topographic 

information from digital elevation models (DEMs). Calibration and validation of the methodology was 

carried out using existing glacier inventories, namely the RGI and the SGI. 

The primary study site for methodology development was Zmuttgletscher, a DCG in the Swiss Alps where 

previous studies have been conducted (Mölg et al., 2019) . Zmuttgletscher benefits from extensive data 

availability, making it an ideal site for calibration and validation. To increase the extendibility of the 

methodology, two additional DCGs in the Swiss Alps, Unteraargletscher and Oberaletschgletscher, were 

included. All Swiss glaciers are catalogued in the Swiss Glacier Inventory (SGI), whose latest update in 

2016 provides highly accurate outlines and includes a separate classification for DCGs, which further 

supported the calibration and validation efforts. 

The methodology was developed within the Google Earth Engine (GEE) environment, taking advantage 

of its ability to directly import satellite imagery. The process drew on insights from previous studies using 

TIR and LST data to map DCGs but was largely developed through iterative experimentation and testing 

of different configurations. Once the classification showed satisfactory performance in capturing 

temporal changes on Zmuttgletscher, Unteraargletscher and Oberaletschgletscher for three specific 

years (2003, 2010 and 2016), all of which had corresponding glacier inventory data, it was applied to 

analyse its performance across different glaciers. 

After calibrating the methodology on the Swiss glaciers, it was extended to two different glaciers on 

which the model had not been trained: Belveldere in the Italian Alps and Satopanth in India. This 

approach allowed testing in regions with different climatic conditions, further assessing the adaptability 

and robustness of the methodology in different environmental contexts. 

This thesis is structured as follows: first, a theoretical background section provides essential information 

on thermal satellite imagery and its application in DCG mapping. Next, the study areas are introduced, 

followed by a detailed data section describing the datasets used in this study. The methods section then 

outlines the development of a methodology for refining DCG outlines, addressing RQ1. The results 

section presents key findings from the application of this methodology to Zmuttgletscher, 

Unteraargletscher, Oberaletschgletscher, Belvedere glacier and Satopanth glacier, including mapped 

outlines and statistical performance metrics. This is followed by a discussion of the potential and 

implications of the developed methodology, addressing RQ2 and RQ4. A detailed discussion of its 

limitations will address RQ3. The thesis concludes with a summary of the main findings and an outlook 

on potential directions for further research in this area. 
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2 Theoretical Background 

2.1 Thermal infrared imagery and advancing LST retrieval  

Thermal infrared (TIR) remote sensing, operating within the 8–14 μm atmospheric window wavelength 

region, has been an essential tool in Earth observation since the 1960s (Li et al., 2023). TIR instruments 

detect the thermal radiation emitted by the Earth’s surface, enabling the estimation of land surface 

temperature (LST), which reflects how hot or cold the Earth’s surface would feel to the touch (Dash et 

al., 2002; Li et al., 2023). LST is influenced by factors such as vegetation, soil moisture, and surface 

materials, making it a critical parameter for understanding various environmental processes, including 

climate patterns (Bechtel, 2015), urban heat islands (Alexander, 2020), and glacier dynamics (Nunchhani 

et al., 2024). 

Since the launch of early satellites like NASA’s Nimbus in the 1960s, a wide array of satellites has carried 

TIR sensors, including the Landsat series, Earth Observing System (EOS) Terra and Aqua satellites, 

Meteosat Second Generation (MSG) satellite series, and the Chinese Fengyun (FY) satellite series (Li et 

al., 2023). These TIR sensors have been widely used to generate different LST products across various 

spatial resolutions, from regional to global scales (Malakar et al., 2018).  

Over the past decade, there has been growing interest in LST retrieval from TIR data, leading to the 

development of new LST retrieval algorithms, the launch of new TIR instruments, and the release of 

updated LST products (Li et al., 2023). The process of retrieving LST from TIR data, however, presents 

several challenges. LST is determined by measuring radiances influenced by surface parameters and the 

atmospheric composition and thermal structure. This makes LST retrieval a complex problem, requiring 

various assumptions and constraints for accurate estimation (Li et al., 2023).   

Several retrieval algorithms have been developed since the 1970s to address these challenges, aiming 

to retrieve accurate LST by accounting for atmospheric effects and surface emissivity. They use radiative 

transfer principles to correct for distortions caused by the atmosphere but differ in their complexity and 

data requirements: the Single-Channel (SC) algorithm is straightforward and uses one thermal band, 

making it computationally simple but less robust under varying atmospheric conditions. The Split-

Window (SW) algorithm improves accuracy by leveraging the difference between two thermal channels, 

whereas the Temperature and Emissivity Separation (TES) algorithm goes a step further by estimating 

emissivity alongside temperature using spectral data. The Day/Night (D/N) algorithm uniquely exploits 

diurnal temperature variation for greater emissivity detail but requires data from both day and night 

passes, which can limit its applicability (Li et al., 2023; Malakar et al., 2018).  

Despite these advancements, current LST products face several limitations. For instance, spatial 

discontinuity occurs due to the inability of TIR remote sensing to penetrate clouds, leading to missing 

LST values over cloud-covered pixels (Bechtel, 2015).  

Generating LST requires accurate land surface emissivity, which is provided by NASA's Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Dataset (GED). 

However, gaps in the ASTER GED dataset, caused by the exclusion of pixels with unrealistic emissivity 

values, result in missing LST data. As a result, certain areas lack LST values, limiting the completeness of 

thermal information for these regions (Hulley & Hook, 2015). 

Additionally, there is a lack of spatiotemporal comparability, as differences in local viewing time and 

angle can result in significant variations in LST for the same pixel on different days. Other challenges 

include the short time spans covered by many LST products (Bechtel, 2015), which limits their use in 
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long-term analysis, and the instantaneity of LST measurements, which only provide data at the satellite 

overpass time (Li et al., 2023). 

The upcoming thermal missions, such as TRISHNA (Thermal InfraRed Imaging Satellite for High-

resolution Natural resource Assessment) (Lagouarde et al., 2018), LSTM (Land Surface Temperature 

Monitoring) (Koetz et al., 2018), and SBG (Surface Biology and Geology) (Schimel & Poulter, 2022), 

scheduled for launch by the end of the decade, are expected to address some of these limitations. These 

missions will offer unprecedented spatial resolutions of up to 60 meters and temporal resolutions of 3 

days (Koetz et al., 2018; Lagouarde et al., 2018; Schimel & Poulter, 2022), significantly enhancing the 

ability to monitor and study thermal processes of the Earth, including the thermal characteristics of 

DCGs. These advancements will likely lead to more accurate and reliable LST products, contributing to a 

deeper understanding of environmental dynamics. 

 

2.2 The use of thermal data in DCG mapping 

Due to a cooling effect of the underlying ice, SGD is assumed to show a lower temperature than PGD 

(Bolch et al., 2007). By leveraging the temperature contrasts in TIR data arising from the presence or 

absence of underlying ice, the inclusion of thermal data addresses the challenge posed by the similarities 

of SGD and PGD in the optical spectrum (Figure 1). While various studies have approached this issue 

differently, recent trends favour deep learning models for automating DCG mapping (Karimi et al., 2012; 

Kaushik et al., 2022). However, these approaches face challenges related to data resolution and factors 

beyond ice presence, such as terrain aspect (shaded or illuminated areas), which influence LST. Moreover, 

threshold-based methods can limit applicability across diverse regions, affecting model generalisation. 

 

TIR 

 

LST 

 

 

Figure 1: Illustration of a schematic cross-section of a DCG based on Shukla et al. (2010), and the retrieval of LST to 

distinguish between PGD and SGD.  

 

Several studies have explored the potential of thermal data in mapping DCGs, often combined with 

additional datasets to improve accuracy and overcome the challenges posed by complex terrain and 
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spectral similarity between SGD and surrounding PGD. TIR data, particularly from Landsat's Thematic 

Mapper (TM) bands, have been a major focus, as shown by Karimi et al. (2012), who used temperature 

differences between SGD and PGD for delineation. They achieved high accuracy using a multi-source 

approach, including optical, thermal and laser scanning (LiDAR)-derived DEM data. However, limitations 

in spatial resolution and the non-open-source nature of the WorldView-2 imagery used highlight 

barriers of the extensibility of this approach. 

Recent advances have focused on automation and machine learning. Kaushik et al. (2022) developed a 

deep neural network that integrated a wide range of datasets, including optical, near-infrared (NIR), 

short-wave infrared (SWIR), TIR, microwave, and elevation data, to produce robust results over the 

Himalayas and Karakoram regions. Despite the promise of such automated methods, challenges remain, 

such as misclassification of shadows as debris and confusion between dirty ice, snow and SGD. These 

errors highlight the difficulty of identifying DCGs in heavily debris-laden areas, even with manual 

corrections. Kaushik et al. (2022) suggested incorporating additional data sets, such as surface velocity 

data, to address these limitations. 

Other studies have combined rule-based methods with object-based image analysis (OBIA) to refine 

DCG delineation. For example, Mitkari et al. (2022) utilised thermal, optical and DEM-derived slope data 

with a focus on differentiating SGD from PGD by incorporating slope thresholds and segmentation 

techniques. While this Approach is promising, it requires extensive manual adaptation of thresholds for 

each region, which limits scalability. They recommended machine learning to improve automation and 

regional applicability. 

Across these studies, the trend is towards integrating diverse datasets and using automated approaches 

to improve the accuracy and scalability of DCG mapping. However, challenges remain, particularly 

related to the limited spatial resolution of thermal data (Karimi et al., 2012; Kaushik et al., 2022; Mitkari 

et al., 2022), the need for region-specific adjustments (Mitkari et al., 2022), and the reliance on non-open 

source datasets such as WorldView-2 imagery (Karimi et al., 2012). These limitations highlight the need 

for methods that use freely available data and are adaptable to different regions, ensuring wider 

applicability and filling gaps in current global glacier inventories. 

Whilst building on the findings of these previous studies, this work aims to maximise the extensibility of 

the methodology across different regions of interest, avoiding threshold dependency and relying solely 

on open-source data. 

 

2.3 Influence of debris thickness on LST  

Debris thickness on glaciers plays a critical role in influencing LST and the detection of underlying ice. 

On DCGs, debris generally moves downstream, with increasing debris thickness towards the glacier 

terminus (Mölg et al., 2020; Nakawo et al., 1986). When the debris-cover is thinner than 30-40 cm, the 

lower temperatures of the underlying ice make it detectable in thermal satellite imagery (Ranzi et al., 

2004). However, as debris thickness increases, this cooling effect diminishes, making thermal detection 

more difficult. Studies show that debris thicker than 40-50 cm no longer reflects the cooling influence 

of the underlying ice, making it difficult to identify using thermal data (Biddle, 2015; Ranzi et al., 2004; 

Taschner & Ranzi, 2002). 

Debris thickness data are not available for most DCG, as field measurements are very labour intensive 

due to the large variability even within a single glacier. For example, measurements on Zmuttgletscher 
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in the Swiss Alps show debris thicknesses ranging from less than 5 cm to more than 70 cm, illustrating 

significant variability (Mölg et al., 2019). This highlights the need for robust remote sensing techniques, 

as debris thickness significantly affects the thermal signal in satellite imagery. 

 

2.4 Additional bands used in DCG mapping 

Thermal satellite data (TIR or LST) alone has proven insufficient for effective DCG mapping due to 

limitations in spatial resolution and sensitivity to external factors. The coarse resolution of thermal data 

often results in mixed pixels, where multiple surface types, such as debris, vegetation and clean ice, are 

captured within a single pixel, reducing the reliability of the thermal signal. In addition, thermal data are 

influenced by topographic effects such as slope and aspect, and environmental factors such as shading, 

snow cover or surface moisture, further complicating their usefulness in discriminating between SGD 

and PGD (Alifu et al., 2015; Jawak et al., 2022; Kaushik et al., 2022). These challenges highlight the need 

to integrate LST with other datasets to improve accuracy and address its inherent limitations. 

Studies have shown the effectiveness of combining TIR with different spectral bands to improve DCG 

mapping (Jawak et al., 2022; Kaushik et al., 2022). For example, visible and near-infrared (VNIR) bands 

are particularly useful for identifying dirty ice, as their reflectance properties vary significantly between 

different surface types (Jawak et al., 2022). Healthy vegetation reflects strongly in the NIR, while rock and 

debris have low to moderate reflectance, depending on factors such as composition and moisture 

content (Holzman et al., 2021). On glaciers, clean ice and snow also reflect NIR effectively, but this 

reflectance decreases with contamination by debris or melting processes (Pope & Rees, 2014). In 

addition, shortwave infrared (SWIR) bands have been used to analyse the mineral composition of debris, 

complementing VNIR data for detailed mapping of glacier facies (Jawak et al., 2022). 

Thermal bands have been shown to further enhance debris detection when combined with reflective 

properties in the NIR and SWIR. Alifu, Tateishi, and Johnson (2015) developed a band ratio combining 

TIR, NIR, and SWIR bands for DCG mapping, demonstrating how the integration of thermal and reflective 

data can improve the distinction between SGD and PGD. The utility of NIR and SWIR bands lies in their 

ability to capture the distinct spectral characteristics of glacier surfaces and surrounding features, 

providing additional layers of information to complement LST-based analyses. 

These advances highlight the value of multispectral approaches that combine thermal and reflective data 

to overcome the limitations of LST alone. By using complementary data sets, DCG delineation can be 

refined, and the reliability of mapping methods is improved. 
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3 Study Sites 

The methodology was developed with Zmuttgletscher as the primary study area, and calibration was 

performed using data from Zmuttgletscher, Unteraargletscher and Oberaletschgletscher in the Swiss 

Alps to ensure a robust dataset. The analysis was then extended to Belvedere Glacier in northern Italy 

and Satopanth Glacier in the Himalayas, northern India, to assess the performance of the method in 

different climates and data availability. 

The application of the methodology to other Swiss glaciers benefited from the use of Swiss Glacier 

Inventory (SGI) datasets, which were also used for the calibration and validation of Zmuttgletscher. This 

allowed direct comparison of model performance across Swiss glaciers under similar climatic conditions, 

glacier sizes, elevation ranges and consistent standards for ground reference data. 

The extension to Belvedere Glacier in the Italian Alps provided a glacier with comparable climatic 

conditions but was limited to the 2003 Randolph Glacier Inventory (RGI) for ground reference data. While 

the availability and accuracy of the ground reference data differed from the Swiss glaciers used in the 

initial analysis, the consistency of the remaining data set and framework allowed an assessment of the 

model's applicability under slightly different data conditions in comparable environmental settings. 

Finally, the methodology was extended to Satopanth Glacier in the Himalayas, again using RGI data for 

comparison. This application tested the model under substantially different climatic conditions, allowing 

an assessment of its robustness and adaptability beyond the European Alps. 

 

3.1 Zmuttgletscher 

The primary study site was Zmuttgletscher [45°59′ N, 7°37′ E] in the Matter Valley of the western Swiss 

Alps (Figure 2). The extensive data availability and accessibility make Zmuttgletscher an ideal study area 

for calibration and validation of the method.  

Spanning an elevation from approximately 2240 to 4150 meters above sea level (m asl), the glacier is 

flanked by the Matterhorn (4478m) and the Dent d’Hérens (4174m) to the south, and the Dent Blanche 

(4357m) to the north, which supply the glacier system with debris and avalanches. In 2016, according to 

Mölg et al (2019), the glacier spanned an area of 15.74 km2, with a substantial portion covered by debris 

originating from the surrounding rock walls. The SGI assumes a slightly smaller area of 15.82 km2 in the 

same year (GLAMOS, 2023). Zmuttgletscher lies in a relatively dry region at the main divide of the Alps, 

receiving precipitation from both northern and southern weather systems. While there are no direct 

measurements at higher elevations, estimates suggest accumulation values between 0.8 and 1.5 meters 

(Mölg et al., 2019). The glacier has several tributaries, including Tiefmattengletscher to the south, 

Stockjigletscher to the west, and Schönbielgletscher to the north. Historically, the main glacier tongue 

was nourished by all these accumulation areas, but in recent years, Tiefmattengletscher and, to a lesser 

extent, Stockjigletscher have been the main contributors. Around 2010, the almost debris-free central 

Stockjigletscher branch detached from the main tongue, while Schönbielgletscher maintains a 

continuous debris-cover even above the icefall at approximately 2900 meters (Mölg et al., 2019). Field 

measurements on Zmuttgletscher indicate debris thicknesses ranging from less than 5 cm to over 70 

cm, with thicker deposits typically found on elongated ridges and steeper slopes (Mölg et al., 2019).  
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Figure 2: Overview of Zmuttgletscher as the primary study site and its location in the Swiss Alps, showing high-

resolution Google satellite imagery overlaid with the SGI2016 glacier outlines.  

 

3.2 Unteraargletscher 

Unteraargletscher is the fourth-largest glacier in the Swiss Alps in terms of both area and length. In 2016, 

the glacier covered an area of 22.7 km² and stretched over 12.3 km (GLAMOS, 2022). Located in the 

Bernese Alps, west of the Grimsel Pass, the glacier resembles a Y-shape, formed by the confluence of 

two glacier arms (Figure 3). The southeasterly tributary, Lauteraargletscher, originates at an elevation of 

4017 m asl between Schreckhorn and Bärglistock. The northeasterly tributary, Finsteraargletscher, begins 

at the flanks of Agassizhorn, Finsteraarhorn, and Oberaarhorn, with the Strahlegg Glacier also flowing 

into the Finsteraargletscher. The merging of these glaciers creates a large medial moraine. Both glacier 

arms are roughly 1 km wide and have a similar surface inclination of approximately 4–5°. The glacier is 

flanked by steep side walls (Bauder et al., 2003; GLAMOS, 2022). 

The terminus of Unteraargletscher has a relatively low slope of about 4° and is almost entirely covered 

by debris. The debris layer is typically 10 to 20 cm thick, with the thickness increasing as it approaches 

the glacier terminus. By 2016, the glacier tongue had retreated to an elevation of 1931 m, situated 1.5 

km from Grimselsee (GLAMOS, 2022; Huss et al., 2007). 

 

Figure 3: Overview of the study site of Unteraargletscher and its location in the Swiss Alps. 
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3.3 Oberaletschgletscher 

Oberaletschgletscher is located on the southern side of the Bernese Alps in the canton of Valais (Figure 

4). In 2011, the glacier covered an area of 17.47 km² with a length of 9.16 km (GLAMOS, 2022). In 

comparison, the glacier’s area in 1973 was 21.62 km², indicating a 19.17% reduction in surface area over 

four decades, reflecting a clear trend of retreat consistent with other Alpine glaciers (GLAMOS, 2022). 

Oberaletschgletscher is a valley glacier that flows from north to southeast (Langhammer et al., 2019). Its 

terminus is at an elevation of 2130 m asl, making the glacier particularly sensitive to climatic changes 

(Peña-Haro et al., 2021). The glacier tongue is heavily debris-covered (Jouvet et al., 2011), with 

supraglacial material originating mainly from the northern headwalls and a tributary glacier to the west 

(Paul et al., 2004). This extensive debris-cover plays a crucial role in influencing glacier dynamics and 

response to climate change (Langhammer et al., 2019; Mölg et al., 2020).  

 

Figure 4: Overview of the study site of Oberaletschgletscher and its location in the Swiss Alps. Since the high-resolution 

Google Satellite Image of this area was snow covered, a scene of Landsat 5 (2010) was used for visualisation.  

 

3.4 Belvedere Glacier 

Belvedere glacier is a DCG located northeast of the highest peaks of the Monte Rosa massif, in the 

northwestern Italian Alps (Figure 5). Due to its debris-cover and favourable solar exposure, the glacier’s 

frontal sectors extend to relatively low elevations, terminating at an altitude of 1785 m asl in the year 

2000 (Ranzi et al., 2004). The glacier is the terminus of four higher glaciers: Nordend, Monte Rosa, Signal 

and Northern Locce glaciers (Colombero et al., 2019). In the RGI 7.0, Belvedere glacier is outlined as both 

the more elevated glacier areas and the lower, debris-covered part, resulting in a total area of 4.45 km2 

in 2003 (RGI 7.0 Consortium, 2023). 

Measurements carried out by the Italian Glaciological Committee (CGI) in 2006 showed that the debris-

covered area of Belvedere glacier had a surface area of 1.46 km² and a maximum length of 3091 metres 

(CGI-CNR (Comitato Glaciologico Italiano & Consiglio Nazionale delle Ricerche), 2024). In 2006, the 

glacier covered an altitude range from 2397 to 1770 m asl with an average slope of 8°. The terminus of 

the glacier has a bilobate structure, with both lobes showing signs of retreat (Salvatore et al., 2015).  

In 2019, the larger northern lobe had an average length of 650 metres and reached a minimum elevation 

of about 1810 metres, 40 metres higher than in 2006. The southern lobe was 350 metres long and 

terminated at an elevation of 1840 metres above sea level. The two lobes are separated by a medial 

moraine (Colombero et al., 2019). 
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Figure 5: Overview of the study site of Belvedere glacier and its location in the Italian Alps. 

 

3.5 Satopanth Glacier 

Satopanth glacier, located in northern India (Figure 6), covers an area of approximately 19 km², with 

approximately 60% of its surface area being covered by debris (Shah et al., 2019). The glacier extends 

over an elevation range of 3900 to 6200 m, with the debris-cover starting at around 4500-4700 m and 

spanning roughly 800 m in elevation. The debris-cover, derived mainly from the weathering of steep 

headwalls and sidewalls, is up to one metre thick and covers an area of about 11 km² (Shah et al., 2019).  

In the debris-covered section, the glacier slope is generally gentle, while the clean ice area above 4700 

m remains steep (Nainwal et al., 2016). During 2015-2017, subdebris ablation rates on Satopanth glacier 

ranged from 1.5 to 1.7 cm per day (Shah et al., 2019).  

Records show that the glacier has been retreating since at least 1936, with an average frontal retreat of 

~6 m per year and a relatively stagnant lower ablation zone with ice flow rates below 5 m per year. This 

zone has thinned at a rate of ~0.4 m per year over the past 50 years (Nainwal et al., 2016). These are 

typical characteristics of DCGs in the Himalayas, making Satopanth representative of its type (Scherler et 

al., 2011a). The application of the methodology in the Himalayas provides an opportunity to assess its 

performance in different climatic conditions and regional contexts. 

 

Figure 6: Overview of the study site of Satopanth Glacier and its loaction in northern India, Himalaya. 
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4 Data 

This thesis used LST data to develop and validate a methodology for refining the outlines of DCGs. To 

achieve this, the analysis integrated three primary data sources: satellite imagery, Digital Elevation 

Models (DEMs), and established glacier inventories. 

High-resolution satellite imagery from Landsat 5 and Landsat 8 provided LST data and additional spectral 

information at other wavelengths. Complementary topographic data from DEMs derived from 

NASADEM, Copernicus and SwissAlti3D captured terrain details over several years. In addition, three 

glacier inventories, the Randolph Glacier Inventory version 7 (RGI 7.0) and the Swiss Glacier Inventories 

(SGI) of 2010 and 2016 provided essential baselines for validation and calibration. 

Satellite imagery and DEM-derived topographic information supported the development of the method, 

while the glacier inventories were essential for calibration and validation. Together, this multi-source 

dataset provided a robust basis for accurate refinement of glacier contours, increasing the reliability of 

results across multiple glaciers and years. 

 

4.1 Satellite Imagery 

Landsat data was utilized to conduct this study, specifically drawing from Landsat 8 for the year 2016 

and Landsat 5 for the years 2003 and 2010. The collection 2, Tier 1 Level 2 (C02/T1_L2) dataset was 

employed, which contains atmospherically corrected surface reflectance and LST. 

The optical and near- to shortwave-infrared bands have a spatial resolution of 30 meters (Li et al., 2023). 

Originally at 100 meters resolution, LST is resampled to 30 meters to match the spatial resolution of the 

other bands in this product (Li et al., 2023; Malakar et al., 2018).  

The temporal resolution of the Landsat data is 16 days (Li et al., 2023). However, in mountainous regions, 

the effective use of this temporal resolution is often compromised by shadows, clouds, and seasonal 

snow cover, significantly reducing the amount of usable imagery for analysis.  

All Collection 2 surface temperature products are created with a single-channel (SC) algorithm jointly 

developed by the Rochester Institute of Technology (RIT) and the National Aeronautics and Space 

Administration (NASA) Jet Propulsion Laboratory (JPL) (Barsi et al., 2014; Jimenez-Munoz et al., 2009). 

The collected data are packaged into overlapping scenes that cover approximately 170 km x 183 km, 

using a standardized reference grid (USGS, 2021). For successful processing to surface temperature, data 

products must contain both optical and thermal data, as ASTER NDVI is required to temporally adjust 

the ASTER Global Emissivity Database (GED) product to the target Landsat scene (Hulley & Hook, 2015; 

Malakar et al., 2018); consequently, nighttime acquisitions cannot be processed for surface temperature 

(USGS, 2021). 

 

4.1.1 Landsat 5 

For the years 2003 and 2010, the study utilized the USGS Landsat 5, Collection 2, Tier 1 Level 2 dataset 

(LANDSAT/LT05/C02/T1_L2, Landsat 5 Imagery courtesy of the U.S. Geological Survey). This dataset 

includes atmospherically corrected surface reflectance and land surface temperature derived from the 

Landsat Thematic Mapper (TM) I sensor (Markham et al., 2004). It contains four visible and near-infrared 

(VNIR) bands and two shortwave infrared (SWIR) bands, all processed to orthorectified surface 
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reflectance, as well as one TIR band processed to orthorectified surface temperature. The dataset also 

includes intermediate bands utilized in the calculation of surface temperature products, alongside 

quality assurance (QA) bands (Acharya & Yang, 2015). 

Landsat 5 surface reflectance products are generated using the Landsat Ecosystem Disturbance Adaptive 

Processing System (LEDAPS) algorithm (version 3.4.0) (Schmidt et al., 2013).  

 

4.1.2 Landsat 8 

For the analysis of years later than 2013, this study utilised imagery of Landsat 8, specifically from the 

collection LANDSAT/LC08/C02/T1_L2 (Landsat 8 Imagery courtesy of the U.S. Geological Survey).  

Landsat 8, equipped with the Operational Land Imager (OLI) and the TIR Sensor (TIRS), acquires data in 

the optical and thermal spectrum (USGS, 2021). In particular, bands 10 and 11, which measure radiation 

in the intervals 10.6-11.19 μm and 11.50-12.51 μm, allow for the retrieval of LST. Thermal data is available 

at a resampled resolution of 30m, offering seasonal coverage of the global landmass since February 

2013 (Landsat 8) (Barsi et al., 2014; Earth Resources Observation and Science (EROS) Center, 2020). 

The Landsat 8 dataset includes atmospherically corrected surface reflectance and LST, encompassing 

five visible and near-infrared (VNIR) bands and two shortwave infrared (SWIR) bands, all processed to 

orthorectified surface reflectance, along with one TIR band processed to orthorectified surface 

temperature. Additionally, like Landsat 5, it contains intermediate bands used in the calculation of 

surface temperature products and quality assurance (QA) bands (Acharya & Yang, 2015). 

Landsat 8 surface reflectance products are produced using the Land Surface Reflectance Code (LaSRC) 

(Skakun et al., 2019). LST is generated from several input data sources, including atmospheric profiles 

and the NASA Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global 

Emissivity Dataset (GED) (Hulley & Hook, 2015).  

 

4.2 Digital Elevation Models (DEM) 

Three different Digital Elevation Models (DEMs) were used in this study to account for topographic 

variation and to normalise LST values. The DEMs were chosen to match the analysis years as closely as 

possible, recognising that changes in glacier extent over time alter the topography. In the absence of 

annual DEM updates, the closest available DEMs to the years of analysis were selected to minimise 

discrepancies and ensure accurate normalisation of the LST data. 

 

4.2.1 SwissAlti3D 

SwissAlti3D is a high-resolution DEM provided by the Federal Office of Topography (Swisstopo). It offers 

topographic data at 0.5- and 2-meter resolution, providing highly detailed information on elevation 

changes, including the impact of glacial retreat and other landscape alterations. SwissAlti3D is produced 

from airborne laser scanning (LiDAR) and photogrammetric methods, ensuring high accuracy in steep 

and variable terrain. The data is processed and orthorectified to remove geometric distortions, resulting 

in a georeferenced dataset that is suitable for various analytical purposes, including glacier and 

topography studies (Bundesamt für Landestopografie swisstopo, 2022). The version that was used in this 
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study stems from the year 2019 and was used for the analyses of glaciers in Switzerland for the year 

2016, at a resolution of 2 meters.  

 

4.2.1 NASADEM 

The NASADEM is a digital elevation model originating from the Shuttle Radar Topography Mission 

(SRTM), which provides elevation data with a resolution of 30 meters (NASA JPL, 2020). The SRTM data 

was collected using interferometric radar technology during a single 11-day mission in 2000, aboard the 

Space Shuttle Endeavour. The resulting elevation data was processed to fill gaps and remove artifacts, 

making it suitable for global applications (Buckley et al., 2020). The NASADEM was used in this study for 

the analysis of the year 2003.  

 

4.2.2 Copernicus DEM 

The Copernicus DEM provides global coverage with a resolution of 30 meters (Copernicus, 2010-2018). 

This DEM is part of the Copernicus Earth Observation Programme, funded by the European Union, and 

is based on data from the TerraSAR-X and TanDEM-X satellite missions, managed by the German 

Aerospace Center (DLR). The DEM is produced using synthetic aperture radar (SAR) interferometry, which 

allows for accurate elevation measurements by detecting the phase difference between radar signals 

received from slightly different angles. The data undergoes further processing to ensure consistency and 

global coverage, including noise filtering and the elimination of any anomalies introduced during data 

acquisition. This makes the Copernicus DEM particularly useful for large-scale applications, such as 

global terrain analysis and environmental monitoring (Fahrland et al., 2022). 

The acquisition date of the Copernicus DEM that was used in this study  stems from the period of 2011-

2015 and was used for analysis of the year 2010.  

 

4.2.3 SwissAlti3D 

SwissAlti3D is a high-resolution DEM provided by the Federal Office of Topography (Swisstopo). It offers 

topographic data at 0.5- and 2-meter resolution, providing highly detailed information on elevation 

changes, including the impact of glacial retreat and other landscape alterations. SwissAlti3D is produced 

from airborne laser scanning (LiDAR) and photogrammetric methods, ensuring high accuracy in steep 

and variable terrain. The data is processed and orthorectified to remove geometric distortions, resulting 

in a georeferenced dataset that is suitable for various analytical purposes, including glacier and 

topography studies (Bundesamt für Landestopografie swisstopo, 2022). The version that was used in this 

study stems from the year 2019 and was used for the analyses of glaciers in Switzerland for the year 

2016, at a resolution of 2 meters.  

 

4.3 Glacier Inventories 

To assess the performance of the developed methodology, its results were compared to existing glacier 

inventories. The Randolph Glacier Inventory (RGI) provides global coverage of glacier outlines, while the 

Swiss Glacier Inventories (SGI) served as an additional data source specifically for glaciers in the Swiss 

Alps. 
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4.3.2 Randolph Glacier Inventory version 7.0 (RGI 7.0) 

The Randolph Glacier Inventory version 7.0 (RGI 7.0) is an extensive dataset representing glacier outlines 

and attributes on a global scale. It provides a thorough representation of global glacier distribution, 

excluding ice sheets in Greenland and Antarctica, and is compiled from various remote sensing data 

sources (RGI 7.0 Consortium, 2023).  

The RGI is a subset of the Global Land Ice Measurements from Space (GLIMS) database and provides a 

snapshot of global glacier distribution around the year 2000. The RGI includes all glaciers larger than 

0.01 km² and focuses on global coverage and consistency, rather than precise outline delineation and 

measurement of glacier area change. Its strength lies in enabling large-scale analyses, such as glacier 

volume estimations and regional response of the cryosphere to climate change (RGI 7.0 Consortium, 

2023). 

Developed through an international effort since 2010, the RGI is managed by the IACS Working Group 

on the RGI and Infrastructure for Glacier Monitoring. The inventory is hosted on the GLIMS platform, 

with data freely available (RGI 7.0 Consortium, 2023). The RGI 7.0 is an improved form of the RGI version 

6.0 (RGI 6.0) and is based Landsat 5 TM images and Sentinel-2 images, and very high-resolution images 

from the “World imagery” layer of the ESRI Basemap (RGI 7.0 Consortium, 2023). In this study, the RGI 

7.0 was used to assess the methods performance in 2003 and its applicability on a global scale. An 

overview of the RGI attributes for the glaciers of interest is provided in Table 1. 

 

Table 1: Overview of the RGI 7.0 attribute table (RGI 7.0 Consortium, 2023) for the glaciers of interest, with acquisition 

date of the satellite imagery that served as a basis for DCG classification. COPDEM refers to the Copernicus DEM. 

Glacier name 
Acquisition 

date 

UTM 

zone 

Area 

[km2] 

Elevation 

median [m] 
Slope [°] 

Aspect 

[°] 
DEM source 

Maximum 

length [m] 

Zmutt 13.08.2003 32 15.4 2984.1 18.8 36.4 COPDEM90 7784 

Unteraar 13.08.2003 32 23.6 2648.2 18.1 65.9 COPDEM90 12530 

Oberaletsch 13.08.2003 32 19.3 2964.7 21.8 122.1 COPDEM90 9659 

Belvedere 13.08.2003 32 4.5 2835.2 28.6 42.5 COPDEM30 6326 

Satopanth 10.07.2002 44 57.0 4901.0 19.7 34.4 COPDEM90 20106 

 

4.3.2 Swiss Glacier Inventory 2010 (SGI2010) 

The Swiss Glacier Inventory 2010 (SGI2010) is based on high-resolution (0.25 - 0.50 m) aerial orthophotos 

(SWISSIMAGE) acquired between 2008 and 2011. The inventory was manually delineated by a single 

expert, using the high-resolution orthophotos and the SGI1973 as a reference data set. To assess the 

accuracy of the approach, the manually delineated outlines were compared to an independent 

experiment on multiple digitization of clean, snow- and/or DCGs. Showing overall very robust results, 

the accuracy decreases for small glaciers (>1.0 km2) and for DCG, systematically underestimating these 

glacier areas (Fischer et al., 2014). 

The SGI2010 contains outlines of all glaciers in the Swiss Alps (Fischer et al., 2014; Linsbauer et al., 2021), 

however without distinguishing between DCG and non DCG. Table 2 gives an overview of the attributes 

for the glaciers of interest. 
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Table 2: Overview of the attributes in the SGI2010 (Fischer et al., 2014) for the glaciers of interest. 

Glacier name sgi-id Area [km2] 

Zmutt B57-05 13.7 

Unteraar  A54g-11 22.5 

Oberaletsch B36-01 17.5 

 

4.3.1 Swiss Glacier Inventory 2016 (SGI2016) 

The SGI2016 dataset provides detailed glacier outlines, including supraglacial debris-cover and ice 

divides, for all Swiss glaciers in a state between 2013 and 2018. It represents the most accurate and 

comprehensive cartographic representation of glacier extent in Switzerland to date (Linsbauer et al., 

2021). 

The Swiss Glacier Inventory 2016 (SGI2016) dataset was produced by the Federal Office of Topography 

and is regularly maintained and updated. It is based on various input data such as aerial orthophoto 

mosaics (SWISSIMAGE), the swissAlti3D, the Topographic Landscape Model (swissTLM3D) and its object 

classes ‘debris’ and ‘glacier’. Both the swissTLM3D and the SGI2016 are based on manual outline 

delineation by glaciologists. In an expert workshop to define the requirements for the new SGI2016, a 

guideline was developed to enable the development of a consistent and exact glacier inventory 

(Linsbauer et al., 2021). The SGI2016 includes detailed mappings of glaciers within Switzerland, as well 

as separate mappings of DCGs, which served as ground reference for evaluating the performance  of the 

new methodology for the year 2016 for the three Swiss glaciers (Table 3).  

 

Table 3: Overview of the attributes in the SGI2016 (Linsbauer et al., 2021) for the glaciers of interest. 

Glacier name sgi-id 
Year of 

acquisition 

Area 

[km2] 

Length 

[km] 

Elevation 

median [m] 

Slope 

[°] 

Aspect 

[°] 

Debris-cover 

[km2] 

Zmutt B57-05 2016 14.8 6.9 2995 19.4 36 3.4 

Unteraar  A54g-11 2016 22.7 12.3 2649 18.4 82 7.1 

Oberaletsch B36-01 2017 17.1 9.5 2902 21.7 122 5.6 
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5 Methods  

5.1 Developing the methodology 

The methodology was developed through an iterative testing process until a final workflow was 

established, as sketched out in Figure 7. The whole process was implemented in Google Earth Engine 

(GEE) and the main results were visualised within GEE. Python, QGIS and Excel were used as additional 

tools for statistical analysis and data visualisation.  

The workflow started with the selection of relevant data (Sections 5.1.1 and 5.1.2), being based on the 

Digital Elevation Model (DEM), satellite imagery from Landsat 5 and 8, and the glacier inventories 

introduced in the Data section. LST was normalised for elevation (Section 5.1.3) and a normalised 

difference index with NIR was calculated (Section 5.1.4). Various input layers were generated for the final 

classification, which are described in detail in Sections 5.1.5 The final classification was achieved with a 

Random Forest (RF) classifier and statistically evaluated (Section 5.1.6) against the ground reference 

derived from the glacier inventories (Section 5.1.7).  

 

Data selection          Generation of input layers                           Classification 

 

Figure 7: Flowchart of the process applied in GEE, starting with data selection of relevant input data for the generation 

of input layers that were used for DCG classification.   

 

5.1.1 Manual image selection 

In this study, individual scenes of Landsat imagery were selected to analyse glacier changes for the years 

2003, 2010, and 2016, individually for Zmuttgletscher, Unteraargletscher, and Oberaletschgletscher. 

Landsat 5 data were used for 2003 and 2010, while Landsat 8 data were used for 2016. The decision to 
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use individual scenes, rather than more automated approaches, was motivated by the greater control 

over the data. Each selected scene was visually inspected to ensure a cloud-free image, where the glacier 

was not covered by shadows or snow. The use of individual scenes, rather than composite images, 

minimized the risk of artifacts that can occur in composites combining multiple images (Qiu et al., 2023). 

The use of individual, cloud-free scenes ensured that the data were consistent and reduced the likelihood 

of errors due to varying atmospheric conditions or artifacts from blending different scenes. This way, the 

performance of the method in identifying DCG could be better evaluated while eliminating as many 

other sources of error as possible. 

An overview of the Landsat scenes that were selected is provided in Table 4. The years were chosen to 

align with the dates of the glacier inventories used for comparison and validation. Notably, the scenes 

used for Oberaletschgletscher for comparison to the SGI2016 is from 2016, although the acquisition 

date for Oberaletsch in the SGI2016 is from the year 2017. However, in summer 2017 no Landsat scene 

was found to show the whole glacier free of snow and cloud coverage, which is why a scene from summer 

2016 was selected.  

For Satopanth glacier, a scene from 2002 would have been ideal for comparability to the RGI 7.0. 

However, the closest scene available that showed the whole glacier without snow or cloud coverage was 

from the year 1998.  

 

Table 4: Overview of the Landsat scenes selected for analysis of DCG in 2003, 2010 and 2016.  

 Comparison to RGI 7.0 (2003) Comparison to SGI2010 (2010) Comparison to SGI2016 (2016) 

Zmutt LT05_195028_20030813 LT05_195028_20100901 LC08_195028_20160901 

Unteraar LT05_195028_20030813 LT05_194028_20100825 LC08_194028_20160825 

Oberaletsch LT05_195028_20030813 LT05_194028_20100825 LC08_194028_20160825 

Belvedere LT05_195028_20030813   

Satopanth LT05_146039_19981011   

 

5.1.2 Pixel-wise selection of scene and composite creation  

A second possibility for image selection is a more automated approach of pixel-wise selection of a scene 

and subsequent generation of a composite image. Landsat 5 and 8 images, respectively, were filtered to 

cover the period from June to October of the respective year to ensure comparability with the 

corresponding glacier inventory. The summer months were chosen to reduce the likelihood of snow 

cover, thus improving conditions for the observation of LST and reflections in the optical to infrared 

spectrum. To improve data quality, a cloud score algorithm was applied to remove pixels affected by 

cloud cover, leaving only clear sky observations. Cloud thresholds for the VIS, NIR, SWIR, and LST bands 

were used to calculate the score. To distinguish between clouds and snow, the Normalised Difference 

Snow Index (NDSI) was included: 

 
𝑁𝐷𝑆𝐼 =  

(𝐺𝑟𝑒𝑒𝑛 − 𝑆𝑊𝐼𝑅 1)

(𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅 1)
 

(1) 

The pixel-wise selection was based on the LST value of each pixel. A higher LST value compared to the 

same pixel in other scenes reduces the probability of clouds, shadows, and snow-covered debris, as all 

these features would cause lower LST values (Kraaijenbrink et al., 2017). Instead of using maximum LST 

values, which can introduce outliers, the top 20% of LST values were selected to provide a more robust 
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representation of high temperature areas. These selected pixels were then aggregated into a median 

composite image, providing a stable and reliable dataset for subsequent analyses. 

This approach could be used as an alternative first step in the workflow if the goal is to apply the 

methodology in a broader geographic context where visual inspection and manual image selection are 

too labour intensive. This approach was not applied for the generation of results in this thesis to isolate 

the performance of the methodology and reduce the influence of artifacts in the input data, as can be 

the case with composite images.  

 

5.1.3 Normalisation of LST for elevation  

To account for the influence of topographic variability on LST (Malbéteau et al., 2017), a normalisation 

process was employed to adjust LST for elevation effects. This normalisation was achieved through a 

systematic Approach Involving linear regression and subsequent rescaling. 

Initially, a linear regression analysis was conducted to establish the relationship between elevation and 

LST, which enabled the extraction of the regression slope and intercept (Figure 8). This regression model 

served as a predictive tool for understanding how LST varies with changes in elevation. 

 

 

Figure 8: Scatterplot of the relationship between LST and elevation, exemplary for Zmuttgletscher 2016, showing 3000 

points and including a trendline.  

 

Using the established regression model, predicted LST values were calculated based on the elevation 

data. The original LST values were then normalised by subtracting these predicted values, resulting in a 

new set of adjusted LST data that accounts for elevation effects. The formula used can be described as: 

 LSTnormalised = LSToriginal – LSTpredicted (2) 

 

To further enhance the reliability of the normalised LST, a rescaling function was applied, standardizing 

the values to a range of [0, 1]. This function computed the mean and standard deviation of the 

normalised LST within a defined region of interest (ROI). Values that fell outside three standard deviations 
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from the mean were masked out to minimize the influence of outliers. The remaining data were then 

rescaled to ensure consistency and to further reduce the impact of elevation-induced variations.  

The final output is a normalised and rescaled LST image with improved suitability for the subsequent 

classification steps, as shown in Figure 9 exemplary for Zmuttgletscher 2016. 
 

RGB Image Zmutt 2016

 

LST

 

LST normalised for elevation

 

Figure 9: Normalisation of LST for elevation by regression, visualized for Zmuttgletscher 2016.  

 

5.1.4 LST-NIR Index 

The LST-NIR Index was calculated to enhance the detection of DCGs by combining the normalised LST 

and near-infrared (NIR) bands. The normalised LST (LSTnorm) was integrated with NIR values to create a 

normalised difference index. This combination leverages the thermal properties captured by LST and the 

reflective characteristics of NIR to improve the identification of debris-covered areas. The formula for 

this index was: 

 𝐿𝑆𝑇 𝑁𝐼𝑅 𝐼𝑛𝑑𝑒𝑥 =  
𝐿𝑆𝑇𝑛𝑜𝑟𝑚 − 𝑁𝐼𝑅

𝐿𝑆𝑇𝑛𝑜𝑟𝑚 + 𝑁𝐼𝑅
 

(3) 

 

To explore the value of the NIR band in combination with LST, a cross analysis between each band of 

the Landsat image and the normalised LST was conducted (overview in Figure 10). Combining the LST 

with any other band improved the differentiation between DCG and non-DCG on the visualized image, 

thanks to the addition of a second dimension. Out of the tested band combinations of LST with the blue, 

red, green, NIR, SWIR 1 and SWIR 2 bands, the combination with NIR improved visual differentiation 

between DCG and non-DCG the most.  
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Figure 10: Visualisation of the comparison of combining different bands with LST to enhance differentiation between 

PGD and SGD, using equation (3) while substituting NIR with different bands (‘Band x’).  

 

Additionally, the relationship between different spectral bands and LST was visualised using scatterplots, 

highlighting the benefits of incorporating a second dimension to distinguish DCG from non-DCG. This 

analysis was performed in Python, using 2016 Landsat imagery of Zmuttgletscher. The DCG and non-

DCG classes used for this comparison were derived from the SGI2016 debris-cover class. 

 

5.1.5 Classification with Random Forest 

To classify DCGs, a Random Forest (RF) classifier was employed, utilizing a diverse set of input layers 

(Table 5). RF is an ensemble learning algorithm that constructs multiple decision trees during training 

and aggregates their predictions through majority voting to generate the final classification (Belgiu & 

Drăguţ, 2016). This approach enhances accuracy and reduces the risk of overfitting compared to single 

decision trees, making RF well-suited for complex, high-dimensional datasets (Mellor et al., 2015). 

Despite testing different configurations of tree numbers and sample sizes, these adjustments had a 

negligible impact on the overall classification performance. The final RF model was configured with 100 

trees and a stratified sample size of 5,000 for training and 3,000 for testing. These settings, determined 

after testing different configurations, provided a robust balance between computational efficiency and 

classification accuracy. 

 



31 

 

The classification process included the following steps:  

1. Input data 

Twenty different datasets were created, each with a unique combination of input layers. The choice 

of input layers played a crucial role in influencing the classification outcomes, with their importance 

varying based on the year and the glacier from which the data was derived. To account for this 

variability and to streamline the classification process, 20 random band combinations were 

generated and used as inputs for the classifier. 

2. Data sampling  

To extract a sample from the training data, the `stratifiedSample' function in GEE was used (GEE, 

2024). This function extracts a specified number of random points from each class, ensuring a 

balanced sample across classes. The output is a feature collection, where each feature corresponds 

to a sampled point, containing one property for each band in the input image. 

3. Initial classification 

The RF classifier was applied to each dataset, producing 20 intermediate classification outputs where 

each pixel was labelled as either 0 (non-DCG) or 1 (DCG). 

4. Summation 

These 20 binary classifications were summed pixel by pixel to produce a classification sum image. 

The values in this image ranged from 0 to 20, indicating how many of the individual classifications 

identified a given pixel as DCG (0 = none, 20 = all). 

5. Thresholding 

Otsu's method was applied to the classification sum image to determine a threshold that allowed 

the final binary classification into DCG (1) and non-DCG (0). This technique is widely used in image 

processing for automatic binarization, determining the optimal threshold value based on the 

histogram’s shape (Xu et al., 2011). Otsu’s method assumes that the image is composed of two 

classes and calculates the threshold that minimizes the within-class variance for both, consequently 

maximizing the variance between the two classes, resulting in an optimal threshold for segmentation 

(Xu et al., 2011). This approach ensured that the two classes (DCG and non DCG) were optimally 

separated, providing an automated and effective solution for final DCG classification. 

The final classification mask produced values of 0 and 1 representing non-DCG and DCG respectively. In 

a subsequent step, a smoothing filter was applied to the mask, followed by vectorisation, resulting in 

the delineation of DCG outlines. 

 

Table 5: Overview of the input layers for the Random Forest classification. 

Information content Layers 

Layers based on LST NIR Index a. LST NIR Index 

b. Super pixel means (SNIC) 

c. Smoothing Filters 

d. Edge Detection 

Topographic information e. TPI (Topographic Positioning Index) 

f. Elevation 

g. Slope 
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h. Gradient 

i. Aspect 

Normalised Difference Indices j. NDRI (Normalised Difference Rock Index) 

k. NDWI (Normalised Difference Water Index) 

l. NDSI (Normalised Difference Snow Index) 

m. NDVI (Normalised Difference Vegetation Index) 

Glacier Inventory n. Glacier outlines  

Approach I: RGI 7.0 (2003), SGI2010 and SGI2016 

Approach II: RGI 7.0 

Approach III: no glacier outlines  

 

a. LST NIR Index   

The resulting image of the Normalised Difference between LST and NIR bands served as a primary input 

to the classification. 

 

b. Super-pixel Means (SNIC)   

Derived using the Simple Non-Iterative Clustering (SNIC) algorithm, superpixel means represent clusters 

of pixels with similar characteristics, allowing the calculation of means for specific features, such as the 

LST NIR index, within each superpixel. This technique reduces noise and variability at the individual pixel 

level, improving the spatial coherence of the classification, and reduces the effect of outliers. To apply 

the SNIC algorithm to the LST-NIR image, a segment size of 5, a compactness of 1 and a connectivity of 

4 were chosen.  

In the SNIC algorithm, the segment size controls the approximate number of pixels in each superpixel, 

with a smaller size (such as 5) capturing finer local detail and larger sizes capturing broader patterns. 

Compactness controls the trade-off between colour similarity and spatial proximity, with a low value (1) 

resulting in more regular, spatially compact superpixels. A connectivity of 4 means that only pixels 

sharing an edge are considered neighbours, resulting in well-defined super-pixel boundaries. For each 

cluster generated by the algorithm, the mean LST-NIR value was selected. 

 

c. Smoothing Filters   

A smoothing filter was applied to the LST-NIR index using a boxcar kernel with a radius of 5 pixels in 

GEE. This process reduced local variation and noise by averaging pixel values within a defined 

neighbourhood, helping to smooth abrupt changes between adjacent pixels (GEE, 2023a). The result was 

a clearer representation of broader spatial patterns, while minimising finer local detail. This step helps 

to highlight general trends in the image and improves the robustness of subsequent analyses by 

reducing the influence of outliers or isolated noise. 

 

d. Edge Detection   

A 3x3 Sobel edge detection kernel was applied to the LST-NIR index to highlight areas of high spatial 

gradients, i.e. rapid changes between high and low values. This method emphasises the boundaries 

between different regions and helps to identify edges or transitions in the data, such as sharp changes 
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in land cover or temperature (Vincent & Folorunso, 2009). Default values of 1 were used for both 

magnitude and normalisation in the kernel. The result is a clearer delineation of boundaries in the LST-

NIR index.  

 

e. TPI (Topographic Position Index) 

The Topographic Position Index (TPI) measures the relative elevation of a location compared to its 

surrounding terrain and is useful for distinguishing between valleys, slopes, and ridges (De Reu et al., 

2013). The TPI was calculated by subtracting the mean elevation within a circular neighbourhood of 100 

pixels from the elevation at each point using the following formula: 

 𝑇𝑃𝐼 = 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 − 𝑚𝑒𝑎𝑛(𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑) (4) 

 

The resulting TPI values highlight variations in topography. Positive TPI values indicate that a point is 

higher than its surroundings (e.g. ridges), while negative values suggest lower elevations (e.g. valleys). 

Values near zero indicate that the point is on relatively flat or evenly sloped terrain. The TPI values were 

derived by applying this method to the elevation data, highlighting variations in topography. This 

information is particularly useful in landscape classification, hydrological modelling, and understanding 

ecological patterns by identifying key landform features (De Reu et al., 2013). 

 

f. Elevation 

Elevation data from the digital elevation models (DEMs) were included in the classification as a separate 

input layer, although they are partially included in the LST-NIR index due to the normalisation of LST 

with respect to elevation. The decision to include elevation as a separate layer was driven by its 

significant influence on glacier distribution and its critical role in the classification process. Elevation 

directly affects temperature, ice formation and debris-cover, making it a key factor in distinguishing 

glacier characteristics, justifying its inclusion despite overlap with other input variables. 

 

g. Slope 

Slope is used to account for terrain influence on LST values, with low-slope DCGs and steep surrounding 

flanks serving as key features. 

Visualizing the slope for several DCGs, i.e. Zmuttgletscher, Unteraargletscher, Oberaletsch-gletscher and 

Satopanth glacier, it could be observed that these glaciers all have a low slope, while being surrounded 

by mountain flanks of steep slopes. Other methodologies that were developed to identify or outline 

DCGs also included slope, mostly in the form of thresholds, below which a DCG is more likely (Nunchhani 

et al., 2024; Sharda & Srivastava, 2024).  

The slope was derived from the DEM using the built-in function ee.Terrain.slope in GEE, which calculates 

the local gradient based on the four connected neighbours of each pixel (GEE, 2023e).  
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h. Gradient 

The gradient describes the ratio between the elevation change of the slope and the horizontal length 

over which the change occurs. It captures the change in steepness, further informing surface and terrain 

variability. The gradient was calculated based on the DEM with the built-in function image.gradient in 

GEE. This function calculates the x and y gradients of an image, which were then used to calculate the 

magnitude according to the following equation, as suggested in the GEE documentation (GEE, 2023b).  

 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = √(𝑥 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡)2 + (𝑦 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡)2 (5) 

 

i. Aspect 

Aspect, or the direction of slope, helps identify directional effects on temperature and vegetation 

distribution. Aspect alone may not be informative for the presence and extent of a DCG, but in 

combination with other input layers that are based on LST or elevation, it adds a relevant piece of 

information. The aspect was calculated from the DEM, using the built-in function ee.Terrain.aspect in 

GEE (GEE, 2023d). 

 

j. NDRI (Normalised Difference Rock Index) 

The Normalised Difference Rock Index (NDRI) was calculated as the normalised difference between the 

SWIR 1 and the red band, as proposed by Huang & Cai (2009), to highlight debris-covered areas 

regardless of the presence of underlying glacier ice. To compute the NDRI, the built-in function 

ee.Image.normalisedDifference in GEE was used according to the following formula (GEE, 2023c): 

 
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  

(𝐵𝑎𝑛𝑑 1 − 𝐵𝑎𝑛𝑑 2)

(𝐵𝑎𝑛𝑑 1 + 𝐵𝑎𝑛𝑑 2)
 

(6) 

 

where SWIR 1 was used as Band 1 and the red band as Band 2. This approach highlights areas where 

rock or debris is present, making it easier to distinguish debris-covered terrain from other surfaces. 

 

k. NDWI (Normalised Difference Water Index) 

The Normalised Difference Water Index (NDWI) was derived from the green and NIR bands to distinguish 

water bodies from debris-covered areas. The NDWI was calculated using the same normalised difference 

formula described previously for the NDRI, with the green band as Band 1 and the NIR band as Band 2. 

This index highlights water bodies, as water mostly absorbs NIR and reflects green light, resulting in 

higher NDWI values for water and lower values for land or vegetation (McFeeters, 1996). 

 

l. NDSI (Normalised Difference Snow Index) 

The Normalised Difference Snow Index (NDSI) was calculated using the green and SWIR 1 bands to 

distinguish snow and ice from debris-covered surfaces. The NDSI was calculated using the same 

normalised difference formula as previously described, with the green band as Band 1 and SWIR 1 as 
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Band 2. This index is particularly effective in identifying snow because snow strongly reflects green light 

and absorbs SWIR, resulting in higher NDSI values for snow and lower values for other surfaces (Hall et 

al., 1995). 

 

m. NDVI (Normalised Difference Vegetation Index) 

The Normalised Difference Vegetation Index (NDVI), calculated using the green (Band 1) and NIR (Band 

2) bands, was employed to distinguish vegetated areas in the glacier forefield from debris-covered 

regions. The NDVI is effective in identifying vegetation, enabling the differentiation between vegetated 

and non-vegetated surfaces (Taloor et al., 2021). It is assumed that there is generally more vegetation 

on PGD than on SGD, based on the more stable and favourable conditions for plant growth in 

periglacial areas compared to the harsher, more dynamic environment of SGD (Sharda & Srivastava, 

2024). 

 

n. Glacier Outlines   

Glacier outlines were obtained from the glacier inventory datasets RGI 7.0 (2003), SGI2010 (2010), and 

SGI2016 (2016). These outlines represent entire glacier extents but do not distinguish between debris-

covered and clean ice areas.  

In the primary approach, for each year, only the glacier outlines from the corresponding inventory were 

used as input layers, which limits the applicability of the method to years with current glacier outlines.  

An alternative approach would be to use only the RGI 7.0 outlines for both training the classifier and for 

the testing region, even for years other than 2003. This allows the other input layers to provide updated 

information for the year of analysis, while the existing glacier outlines still serve as additional information 

for the classification. To assess different options, if and how to include glacier outlines in the 

classification, three approaches were established and tested: 

I. The glacier outlines from the corresponding year were used as an input layer. This requires a 

glacier outline of the year of interest for both the training and testing dataset, thus limiting the 

applicability of this approach to glaciers in Switzerland to the years 2003, 2010 and 2016, and 

on a global scale to the year 2003. This served as the primary approach to evaluate overall model 

performance.  

II. The 2003 glacier inventory (RGI 7.0) was used as an input layer consistently for both training and 

test datasets, regardless of the year of other input data. 

III. No glacier outlines were included. Instead of using the glacier inventory as an input layer, the 

number of band combinations was increased. This approach used 40 randomly generated band 

combinations, each consisting of 5 to 6 layers. Due to computational limitations, Otsu’s 

threshold could not be calculated within the same script; therefore, thresholds were selected 

manually in this case to simplify processing. 

The other Input layers (a-m) were used identically for all three approaches. 

 



36 

 

5.1.6 Statistical metrics for performance evaluation 

To evaluate the performance of the RF classification, the results were not only visualised but also 

statistically evaluated using several metrics: accuracy, precision, recall and F1 score. These metrics are 

based on the number of true positives (TP), true negatives (TN), false positives (FP) and false negatives 

(FN) derived from the final classified image, providing a comprehensive analysis of the model's 

performance. 

Accuracy measures the proportion of correctly classified instances out of the total instances. It is useful 

when the classes are balanced but can be misleading with imbalanced datasets. Precision is the 

proportion of true positive predictions among all positive predictions made by the model. It evaluates 

the accuracy of the positive predictions and is crucial in minimizing false positives. Recall measures the 

proportion of actual positives that were correctly identified by the model. It is important for minimizing 

false negatives and is particularly useful in identifying all relevant instances in a dataset. The F1-score is 

the harmonic mean of precision and recall, providing a single metric that balances their trade-off. It is 

particularly effective for evaluating models on imbalanced datasets. The following equations (7, 8, 9, 10) 

describe the calculation of these metrics (Haranadhdy & Karthikeyan, 2022). 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(7) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(8) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(9) 

 
𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(10) 

 

5.1.7 Ground Reference  

Statistical evaluation of the results of the methodology requires a ground reference for comparison. The 

RGI and SGI datasets have been used for this purpose, recognising that they do not represent absolute 

ground truth, but provide a widely accepted basis for validation. 

For the year 2016, the SGI2016 dataset includes a specific "debris cover" class that delineates debris-

covered glacier areas. This layer was used as a ground reference to test the results of the methodology 

when applied to the 2016 data. 

The RGI 7.0 (2003) and SGI2010 datasets provide outlines of entire glacier areas but do not differentiate 

between DCG and non-DCG, unlike the SGI2016 dataset. To effectively assess the performance of the 

model in identifying DCGs in the years 2003 and 2010, it was essential to create a reliable ground 

reference dataset for comparison.  

The following workflow was implemented to generate this ground reference for DCGs: First, the 

Normalised Difference Snow Index (NDSI) was calculated to distinguish between snow or ice, and debris-

covered areas. A threshold value of 0.4 was applied to the NDSI to create a binary mask, where areas 

with NDSI values above this threshold were identified as snow or ice. This binary mask was multiplied 

with the glacier outlines to exclude regions with high NDSI values, thereby retaining only the areas 

corresponding to DCGs in the ground reference dataset. The resulting image was the glacier outline as 
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provided by either the SGI2010 or the RGI 7.0 but without areas that were identified as snow or ice. This 

approach ensured that the ground reference represents only DCG areas, allowing for a more robust 

evaluation of the classification performance. 

 

5.2 Evaluation strategy 

The methodology was evaluated through two complementary strategies: temporal analysis and glacier-

to-glacier comparison. These strategies assessed the Random Forest (RF) classifier’s ability to detect 

glacier changes over time and to generalize across different glaciers, using data from three available 

years (2003, 2010, and 2016) and multiple glacier sites. 

 

5.2.1 Temporal change analysis 

To assess the methodology's performance over time, the RF classifier was trained on data from a single 

glacier for two different years and tested on the third year. This analysis required multi-year ground 

reference data, which were available only for the Swiss glaciers: Zmuttgletscher, Unteraargletscher, and 

Oberaletschgletscher. Temporal evaluation was conducted for these glaciers using data from 2003, 2010, 

and 2016. 

 

5.2.2 Cross-glacier analysis 

To evaluate the classifier’s ability to generalize across different glaciers, the RF model was trained on 

data of two different glaciers and tested on a third. This analysis included data from all three Swiss 

glaciers for the years 2003, 2010, and 2016. 

Additionally, the methodology’s potential for global application was assessed by applying the RF 

classifier trained on the three Swiss glaciers in 2003 to Belvedere Glacier (Italy) and Satopanth Glacier 

(Himalayas), using 2003 data for both. Performance was evaluated through statistical measures, 

including accuracy, precision, recall, and F1-score. 

In the cross-glacier analysis, three approaches were tested to evaluate the impact of glacier outline 

selection on classification accuracy: 

• Approach I: Glacier outlines corresponding to the year of analysis were included as input layers. 

This approach requires ground reference data for the year of analysis and was applied to all 

glaciers for 2003 (using RGI 7.0) and to the Swiss glaciers for 2010 (SGI2010) and 2016 (SGI2016). 

• Approach II: Glacier outlines from 2003 (RGI 7.0) were used as input layers, regardless of the 

analysis year. This approach requires ground reference data from a year other than 2003 and 

was applied to the Swiss glaciers for 2010 and 2016. 

• Approach III: No glacier outlines were included in the input layers. This approach requires 

ground reference data for the year of analysis and was applied to all glaciers for 2003, and to 

the Swiss glaciers for 2010 and 2016. 

The approaches differ in their transferability to other glaciers and years. Although statistical validation is 

limited, Approaches II and III can be extended to any region and year of interest. The results from these 

three approaches provided insights into the sensitivity of the methodology to the inclusion or exclusion 

of glacier outlines, as well as its robustness when applied across different glacier environments.  
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6 Results 

The results of the methodology are presented both statistically and visually, providing a comprehensive 

evaluation of the classifier's performance in identifying DCGs compared to the ground reference data. 

The statistical evaluation includes metrics such as validation accuracy, precision, recall and F1 score, as 

described in Section 5.1.6. These metrics quantify the ability of the classifier to correctly identify DCG 

and distinguish it from non-DCG areas. 

The visualised results include a classification sum image and a final classification mask. The classification 

sum image represents the cumulative results of classifications made using different band combinations. 

Higher pixel values indicate areas that were consistently identified as DCG across multiple band 

combinations. The final classification mask is a binary output derived from the classification sum image 

by applying a threshold. It represents the final classification result, delineating DCG and non-DCG areas. 

The methodology was applied to Zmuttgletscher, Unteraargletscher, Oberaletschgletscher, Belvedere, 

and Satopanth glacier. Statistical validation was limited by the availability of ground reference data, so 

not all approaches could be tested on each glacier (see Section 5.2.3 for specifications). 

Validation accuracies across approaches were generally high, with values above 0.7, often exceeding 0.8, 

and nearly half achieving accuracies over 0.9 (Figure 11). Accuracy measures the proportion of correctly 

classified pixels but may not fully reflect the model's performance on imbalanced classes, such as DCG 

and non-DCG. Therefore, additional metrics like precision and recall were also evaluated.  

 

   

 

Figure 11:  Overview of validation accuracies of classification results generated with different approaches, for all 

glaciers and years tested.  
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6.1 Temporal change analysis  

The first step in evaluating the methodology was to apply it to one glacier at a time, with the aim of 

predicting glacier extent for one of the three years used in the analysis.  

Due to variations in the input layers and glacier characteristics, the relative importance of different layers 

varied between years and glaciers analysed. To account for this, 20 random band combinations were 

generated and classified, and then merged into a single final classification using Otsu’s threshold. Testing 

different numbers of band combinations and bands per combination showed that while increasing these 

numbers could improve the robustness of the approach, it generally did not lead to higher validation 

accuracies or improved quality of the mapped results for the glaciers analysed. The use of 20 band 

combinations with 5-6 bands per combination was found to be sufficient for primary analysis of the 

method. 

Using different band combinations and combining them for the final classification was essential to 

capture different spectral characteristics across the datasets and to ensure consistent performance when 

applying the classifier across different glaciers and years. To compare the performance for different years 

and glaciers, Figure 12 shows the validation accuracies of the different band combinations sorted by 

their median accuracy. The final classification achieved the third highest median accuracy, with high 

accuracies (>0.85) for all glaciers and years tested. Of the two band combinations with higher median 

accuracies, only one achieved higher accuracies for all glaciers and years. Nevertheless, combining all 

accuracies into one final classification was preferred to using only this single high performing band 

combination, as the robustness of the method is expected to be greater with the combined approach. 

This is particularly important as testing the method for temporal changes was only a preliminary step 

before extending it to cross-glacier analysis.  
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Figure 12: Accuracies of multiple band combinations used for the final classification, for the test year, when trained 

with the same glacier of two other years. The combinations are sorted by mean validation accuracy. The x-axis was 

adjusted to highlight differences in accuracy. 
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The Random Forest (RF) classifier was effective in identifying the main DCG areas when trained on data 

from two years and tested on a third year. The classifier’s performance was quantitatively assessed using 

statistical measures, including accuracy, precision, recall, and F1-score. These metrics were applied to 

evaluate the classification process, which ultimately produced a binary image representing the classified 

glacier change areas. 

To optimize the binary classification, Otsu’s method was applied to determine an adaptive threshold for 

distinguishing between DCG and non-DCG. In comparison to a fixed, manually determined threshold 

(used uniformly across all images), Otsu’s method improved the validation accuracy in 4 out of 9 test 

cases (Figure 13). In these instances, the use of an adaptive threshold contributed to a more accurate 

delineation of DCG areas. In 3 cases, the validation accuracy remained unaffected, showing no 

improvement or decline when applying Otsu’s method. In 2 cases, the use of Otsu’s method resulted in 

a decrease in accuracy, suggesting that in some scenarios, a manually selected threshold may provide 

more consistent or reliable results. 

 

   

Figure 13: Comparison of validation accuracies per glacier and year with temporal change analysis, creating the final 

classification mask either with Otsu's threshold or with a manually selected, fixed threshold. The y-axis was adjusted 

to highlight differences in accuracy. 

 

The statistical metrics used to assess model performance (Table 6) varied across glaciers and years. No 

systematic trends favouring either recall or precision were observed, indicating that the RF classifier 

neither systematically under- nor over-estimated DCG. The lowest accuracy was recorded for 

Zmuttgletscher in 2010, where a low recall indicated a significant portion of DCG pixels were missed. The 

corresponding high precision suggests that although fewer DCG areas were detected, they were 

classified accurately. This indicates a need for more careful threshold selection, potentially refining the 

adaptive method or further adjusting the fixed threshold. 

 

Table 6: Overview of statistical metrics to evaluate the performance of the classifier for temporal changes, applied to 

Zmuttgletscher, Unteraargletscher and Oberaletschgletscher. 

 

 
2003 2010 2016 

Zmutt Accuracy 0.943 0.854 0.926 

 
F1-Score 0.945 0.842 0.923 

 
Precision 0.916 0.920 0.959 

  Recall 0.976 0.776 0.889 
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Unteraar Accuracy 0.939 0.939 0.914 

 
F1-Score 0.939 0.939 0.906 

 
Precision 0.936 0.936 0.992 

 
Recall 0.942 0.942 0.834 

Oberaletsch Accuracy 0.889 0.913 0.970 

 
F1-Score 0.897 0.913 0.970 

 
Precision 0.838 0.918 0.960 

 
Recall 0.965 0.907 0.981 

 

Zmuttgletscher 

The mapped results for Zmuttgletscher, shown in Figure 14 show DCG delineation with high consistency 

compared to ground reference in 2003 and 2016, reflecting the high validation accuracies in these years. 

In 2010, the visualised results appear to be less accurate, as indicated by the slightly lower validation 

accuracy of 0.85, compared to accuracies greater than 0.93 in the other two years.  

The final classification sum images of 2003 and 2016 both show high values for the DCG and low values 

for the surroundings. The thresholds chosen by Otsu’s method result in a final classification mask that 

corresponds to the ground reference of the respective year, with only a few small outlying patches 

outside the glacier body being misclassified as DCG. 

The final classification sum of Zmuttgletscher in 2010 shows a large area in the main glacier body that 

was not classified as DCG by the majority of classifications from different band combinations, resulting 

in low values in the sum image and a hole in the glacier in the final binary mask. As this area was clearly 

a debris-covered part of the glacier in 2010, this suggests an error in the classification. To identify the 

source of the error, the input layers of the training years (2003 and 2016) and the test year (2010) were 

visualised and compared. In this comparison, neither the pattern of the value distribution nor the value 

ranges varied significantly between the data from the training and test years. Overall, there is variation 

in the input data, but it is not restricted to the area in the middle of the glacier, nor does it indicate that 

2010 is a general outlier in the comparison. 

 

Ground reference 2003 

 

Final Classification sum 2003 

 

Final Classification mask 2003 

 
Ground reference 2010 

 

Final Classification sum 2010 

 

Final Classification mask 2010 
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Ground reference 2016 

 

Final Classification sum 2016 

 

Final Classification mask 2016 

 

Figure 14: Classification results of Temporal changes, Zmuttgletscher. The colorbar in the final classification sum 

shows the number of times a pixel was classified as DCG by the different band combinations.  

 

Unteraargletscher 

The visualised classification results of Unteraargletscher (Appendix, Figure B 1) show a strong agreement 

with the ground reference, which is consistent with the high accuracy values observed in the statistical 

evaluation. However, closer examination of the classification sum and the final classification mask 

suggests that a more precise selection of thresholds could potentially yield better results.  

In 2003, the highest values in the classification sum image are close to the ground reference, but the 

final classification mask appears to have a threshold set too low, resulting in an overestimation of DCG 

at the glacier terminus compared to the ground reference. A similar pattern emerges in 2010, where 

areas of high values in the classification sum again correspond more closely to the ground reference 

than to the binary classification mask. In both years, the classifier tends to extend the glacier slightly 

beyond the ground reference outlines. 

In contrast, in 2016, both the classification sum and the final classification mask show a very high 

correspondence with the ground reference, indicating improved threshold selection and overall 

performance for that year. 

 

Oberaletschgletscher 

Similar to the patterns observed for Unteraargletscher, the final classification sum images for 

Oberaletschgletscher closely reflect the DCG delineation of the ground reference (Figure B 2). 

In 2003 however, the final classification mask seems to include too many pixels along the whole glacier 

outline, indicating again a need for a lower threshold to generate the binary mask. Visual inspection of 

the areas of high values in the classification sum image show rather clear delineation of the DCG, 

corresponding well with the ground reference.  

In 2010, the final classification mask aligns well with the ground reference, showing only some distinct 

patches of presumably wrongly classified DCG pixels outside the main glacier area.  

In 2016, the final classification sum shows a distinctive transition from higher to lower values on the 

glacier tongue, that seems more like an artefact than a natural feature. Nevertheless, the values on the 

glacier tongue are still high enough compared to the surrounding to be classified as DCG in the final 

mask. Consequently,  the result corresponds well with the ground reference. 
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6.2 Cross-glacier analysis 

Cross-glacier analysis refers to the classifier being trained with data of one year from two different 
glaciers (when applied on Swiss glaciers) respectively three glaciers (when extended to Belvedere 

and Satopanth glaciers) and being tested on a third, respectively forth glacier. Considering existing 

glacier outlines as an input layer, three different approaches were tested. 

6.2.1 Approach I 

The results of the statistical evaluation of the final classification (Table 7) show an overall high accuracy. 

For all three glaciers, the highest accuracies were achieved in 2003. Since the classifier for each tested 

glacier and year was trained with the two other glaciers of the respective year, this may indicate a higher 

consistency in the data between the different ROIs in 2003 than in the years 2010 and 2016.  

Precision and recall in most cases lie relatively close together, indicating the threshold applied to the 

final classification sum is effectively distinguishing between the two classes DCG and non-DCG.  All Otsu 

thresholds lie between 6 and 9, indicating that out of the 20 individual classification results from different 

band combinations, less than half produced accurate DCG classification on an individual pixel level.   

Table 7: Overview of statistical metrics to evaluate the performance of the classifier for cross-glacier analysis, 

Approach I, applied to Zmuttgletscher, Unteraargletscher and Oberaletschgletscher in 2003, 2010 and 2016, and to 

Belvedere and Satopanth glaciers in 2003. 

2003 2010 2016 

  Zmutt Accuracy 0.903 0.881 0.909 

F1-Score 0.906 0.890 0.911 

Precision 0.880 0.828 0.883 

Recall 0.934 0.962 0.942 

Otsu 9.000 8.000 7.000 

Unteraar Accuracy 0.868 0.888 0.950 

F1-Score 0.860 0.886 0.951 

Precision 0.913 0.904 0.937 

Recall 0.813 0.869 0.965 

Otsu 7.000 7.000 8.000 

Oberaletsch Accuracy 0.854 0.894 0.924 

F1-Score 0.860 0.895 0.918 

Precision 0.825 0.888 0.987 

Recall 0.898 0.902 0.859 

Otsu 8.000 8.000 8.000 

Belvedere Accuracy 0.866 

F1-Score 0.873 

Precision 0.830 

Recall 0.922 

Otsu 7.000 

Satopanth Accuracy 0.941 

F1-Score 0.944 

Precision 0.899 

Recall 0.995 

Otsu 6.000 
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Zmuttgletscher 

Overall, the final classification sum and mask images for each year for Zmuttgletscher correspond well 

to the ground reference for that year (Figure 15). One feature that can be observed in all three sum 

images is a part of the glacier front that shows significantly lower values than the main glacier body. 

According to the ground reference, these areas should be classified as DCG, which was done correctly 

in the final classification mask for all three glaciers, indicating a good performance of Otsu's threshold.  

The final classification of Zmuttgletscher 2010 shows a cohesive glacier body, in contrast to the result 

for Zmuttgletscher 2010 with temporal change analysis (section 6.1, Figure 14), where the classifier was 

trained with the two other years instead of two other glaciers. 

 

Ground reference 2003 

 

Final Classification sum 2003 

 

Final Classification mask 2003 

 
Ground reference 2010 

 

Final Classification sum 2010 

 

Final Classification mask 2010 

 

Ground reference 2016 

 

Final Classification sum 2016 

 

Final Classification mask 2016 

 

Figure 15: Classification results of Cross-glacier analysis, Approach I, Zmuttgletscher. The colorbar in the final 

classification sum shows the number of times a pixel was classified as DCG by the different band combinations. 

 

Unteraargletscher 

The results for Unteraargletscher with Approach I are found in the Appendix, Figure B 3. In 2003, the 

results show good agreement between the final classification sum and the final classification mask with 

the ground reference. However, a small area at the glacier front was classified as DCG, whereas it is not 

according to ground reference. In the sum image, this area has lower values than the rest of the glacier 

body, so applying a higher threshold would have resulted in a final mask that more closely resembled 

the ground reference. However, lowering the threshold would reduce the accuracy in the upper glacier 

arms, where similarly low values are correctly classified as DCG. 
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Both in 2010 and 2016, the high values in the final classification sum images align well with the 

corresponding ground reference. In both cases, the alignment slightly decreases in the final classification 

mask, with too many pixels at the glacier front and its side being, as well as some outlying patches, 

falsely classified as DCG. This suggests again a better result could have been achieved by applying a 

more restrictive threshold.   

 

Oberaletschgletscher 

Having been trained on Unteraargletscher and Zmuttgletscher, the classifier produced fairly accurate 

results when tested on Oberaletschgletscher, with final classification masks closely resembling the 

corresponding ground reference and only little to no outlying patches or ‘noise’ (Figure B 4).  

In both 2003 and 2010, the areas with the highest values in the final classification sum images correspond 

well with the respective ground reference. However, in both cases, it appears that a slightly higher 

threshold might result in a more accurate final classification mask, as the current threshold seems to 

include too many pixels as DCG along the entire glacier outline.  

In 2016, the values on the glacier are less uniformly high, but the threshold appears to be accurately 

chosen, effectively discriminating DCG from non-DCG in the final classification mask. 

 

Belvedere Glacier 

For Belvedere Glacier, the same approach was used, with the classifier trained on all three Swiss glaciers 

and tested on Belvedere. As only the RGI 7.0 is available to generate the ground reference for Belvedere, 

the statistical evaluation of the results is limited to the year 2003. In that year, the classification of 

Belvedere Glacier achieved a validation accuracy of 0.866, indicating a satisfactory performance of the 

method even when applied to a geographically distinct glacier. With a precision of 0.830 and a recall of 

0.922, the threshold of 7, derived from Otsu's method, seems to efficiently discriminate between DCG 

and non-DCG. 

In the visualised final classification sum, the main DCG body shows the highest values, although there 

are some outlying patches with high but slightly lower values (Figure B 5). In the final classification mask, 

many of these patches were misclassified as DCG. However, lowering the threshold would result in 

missing DCG pixels along the eastern outline of the DCG body. In addition, the final classification shows 

two medium-sized holes in the DCG body. While one of these is clearly visible in the ground reference, 

the other is only suggested there and is significantly larger in the classification result. 

 

Satopanth Glacier 

Extending the methodology used for Belvedere Glacier to Satopanth proved difficult due to the limited 

availability of Landsat 5 imagery for Satopanth. The RGI 7.0 outlines for Satopanth Glacier are based on 

2002 imagery, so finding a Landsat 5 scene close to that year would be ideal for data consistency. 

However, no Landsat 5 imagery was available for Satopanth between 2002 and 2007. Extending the time 

span to include images from 1999 to 2008 resulted in 24 scenes, but none passed visual inspection due 

to cloud cover, snow cover, shadows or incomplete coverage of the region of interest (ROI). The closest 

suitable scene identified was from 11th of October 1998 (Figure 16), which captured the entire glacier 

without snow, clouds, or shadow obstruction.  
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Figure 16: RGB image (a) and normalised LST (b) of the selected scene from 11th of October 1998 for the analysis of 

Satopanth glacier. 

 

With a validation accuracy of 0.941, the classifier showed strong performance on Satopanth Glacier. The 

visualised results closely match the ground reference, with medium to high values in the classification 

sum image across the main DCG area (Figure B 6). Distinct transitions to surrounding areas with very low 

values further facilitate the distinction between DCG and non-DCG. The final classification mask 

corresponds well to the ground reference for DCG in 2003, although minor noise around the glacier 

margins slightly reduces the clarity of the delineation. Applying a smoothing filter prior to vectorising 

the results could address this issue. In addition, an elongated feature of misclassified DCG appears to 

the south-east of the main glacier tongue. 

 

6.2.2 Approach II 

Approach II, using only the 2003 glacier inventory (RGI 7.0), was tested on Zmuttgletscher, 

Unteraargletscher and Oberaletschgletscher for the years 2010 and 2016. In this setup, all other input 

layers were identical to the ones used in Approach I, selecting satellite images from summer 2010, 

respectively 2016 and using Copernicus data for 2010 and SwissAlti3D data for 2016. Applying this 

approach to the year 2003 would equal Approach I and was thus not included here.  

The validation accuracies (Table 8) are generally high, indicating good classifier performance with this 

approach. The final thresholds for the classification mask, set using Otsu's method, range from 7 to 9, 

comparable to that of Approach I. This suggests a similar number of band combinations that result in 

effective DCG discriminations. Precision and recall values are closely aligned, confirming that the chosen 

threshold effectively discriminates between DCG and non-DCG. 

However, the visualised results for Zmuttgletscher show a relatively poor delineation of the DCG body 

(Figure 17). Several patches outside the DCG are misclassified as DCG, and the glacier tongue appears 

longer than in ground reference, closely resembling the 2003 outline. In contrast, the visualised 

classification results for Unteraargletscher (Appendix, Figure B 7) and Oberaletschgletscher (Figure B 8) 

closely match the ground reference and effectively capture the DCG outlines.  

 

a b 
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Table 8: Overview of statistical metrics to evaluate the performance of the classifier for cross-glacier analysis, 

Approach II, applied to Zmuttgletscher, Unteraargletscher and Oberaletschgletscher in 2010 and 2016. 

 

 
2010 2016 

Zmutt Accuracy: 0.885 0.840 

 
F1-Score: 0.892 0.844 

 
Precision: 0.838 0.823 

 Recall: 0.954 0.866 

 Otsu: 9.000 8.000 

Unteraar Accuracy: 0.859 0.919 

 F1-Score: 0.854 0.920 

 Precision: 0.886 0.908 

 Recall: 0.824 0.933 

 Otsu: 7.000 8.000 

Oberaletsch Accuracy: 0.870 0.882 

 F1-Score: 0.870 0.872 

 Precision: 0.871 0.958 

 
Recall: 0.868 0.800 

 
Otsu: 8.000 8.000 

 

Zmuttgletscher 

While the main glacier body of Zmuttgletscher with Approach II was identified (Figure 17), the 

delineation of its outlines is noticeably less precise compared to the previous approaches (temporal 

change analysis, Figure 14 and cross-glacier analysis Approach I, Figure 15). For both the years 2010 and 

2016, several patches outside the DCG are misclassified as DCG, and the glacier tongue appears longer 

than in ground reference, closely resembling the 2003 outline. 

In 2016, the main DCG area has medium values in the final classification sum. To ensure this region was 

correctly classified as DCG, a lower threshold was set for the final classification mask. However, this lower 

threshold resulted in extensive outlying patches being incorrectly identified as DCG, such as those south 

of the main glacier tongue. Additionally, the glacier tongue appears overly extended compared to the 

ground reference, indicating an overestimation of the glacier area.  

 

Ground reference 2010 

 

Final Classification sum 2010 

 

Final Classification mask 2010 
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Ground reference 2016 

 

Final Classification sum 2016 

 

Final Classification mask 2016 

 
   

Figure 17: Classification results of Cross-glacier analysis, Approach II, Zmuttgletscher. The colorbar in the final 

classification sum shows the number of times a pixel was classified as DCG by the different band combinations. 

 

Unteraargletscher 

For Unteraargletscher, the results align more closely with the ground reference (Figure B 7) than those 

for Zmuttgletscher. However, in both 2010 and 2016, higher values in the classification sum image match 

the ground reference outlines more precisely than the final classification mask, suggesting that a higher 

threshold could improve accuracy. Nevertheless, the classifier worked effectively here. The temporal 

comparison clearly shows the retreat of the glacier terminus from 2010 to 2016, evident in both the sum 

and mask images. In addition, the lake in front of Unteraargletscher is no longer misclassified as DCG in 

2016, resolving a problem previously seen with Approach I. 

In 2010, the main glacier body aligns well with the ground reference, except for a slightly extended 

glacier front. In the final classification sum, high values closely match the ground reference terminus, 

though the final classification mask incorrectly includes additional pixels along the lake in front of the 

glacier as DCG. Outside the main glacier body, some round-shaped patches were misclassified as DCG, 

likely reducing validation accuracy; however, these can mostly be removed with a smoothing filter. 

With a high validation accuracy of 0.919 in 2016 (Table 8), the classifier effectively captured the main 

DCG body and produced a fairly accurate delineation of the glacier front (Figure B 7). Misclassifications 

occurred along the southern edge of the main glacier body, where several pixel branches were 

incorrectly classified as DCG. Although the glacier terminus is relatively accurate in the classification sum, 

the final classification mask includes extra pixels, extending the terminus beyond the ground reference. 

Additionally, a line of pixels in the lake in front of the glacier was misclassified as DCG.  

 

Oberaletschgletscher 

The 2003 classification of Oberaletschgletscher shows numerous outlying patches misclassified as DCG 

(Figure B 8). While the main glacier body aligns well with the ground reference, the glacier front appears 

slightly narrower and less compact in the final classification mask. 

The 2016 final classification mask demonstrates strong alignment with the ground reference. A notable 

feature is the distinct transition from high to medium values across the main DCG body in the 

classification sum image, though visual inspection of the input layers did not reveal a cause for this 

transition. The glacier front again appears less compact in the final classification mask, but this time 

reflecting the narrower delineation seen in the ground reference for this area in 2016. 
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6.2.3 Approach III 

The approach of not using glacier outlines as input layers in either the training or test datasets was 

tested on Zmuttgletscher, Unteraargletscher and Oberaletschgletscher in 2003, 2010 and 2016 and on 

Belvedere and Satopanth glacier in 2003. Again, satellite images from the respective year and different 

DEMs were used to keep all other input layers identical to the first approach.  

Due to computation efficiency, the threshold could no longer be determined using Otsu’s method within 

the same script, as the number of band combinations was increased to 40. For reasons of simplicity, the 

thresholds were selected manually based on visual inspection of the final classification sum image. 

The validation accuracies (Table 9) are slightly lower than in Approaches I and II, but still satisfactory, 

especially for Unteraargletscher and Oberaletschgletscher. Zmuttgletscher, with a validation accuracy of 

0.799, again scores lower than the other two glaciers. The mapped results also show similar patterns as 

in the previous approaches, although this time the outline delineation for Zmuttgletscher is even weaker, 

failing to consistently capture the main glacier body and misclassifying large areas outside the glacier 

body as DCG (Figure 18). For Unteraargletscher (Figure B 9) and Oberaletschgletscher (Figure B 10), the 

classifier works well in identifying the main DCG body and delineates the glacier termini with satisfactory 

accuracy. 

 

Table 9: Overview of statistical metrics to evaluate the performance of the classifier for cross-glacier analysis, 

Approach III, applied to Zmuttgletscher, Unteraargletscher and Oberaletschgletscher in 2003, 2010 and 2016, and to 

Belvedere and Satopanth glaciers in 2003. 

   2003 2010 2016 

  Zmutt Accuracy 0.863 0.865 0.799 

  F1-Score 0.865 0.872 0.791 

  Precision 0.848 0.825 0.825 

  Recall 0.883 0.926 0.760 

  Threshold 20 20 10 

Unteraar Accuracy 0.743 0.785 0.911 

  F1-Score 0.653 0.741 0.910 

  Precision 0.939 0.934 0.925 

  Recall 0.501 0.610 0.894 

  Threshold 20 25 25 

Oberaletsch Accuracy 0.823 0.826 0.881 

  F1-Score 0.807 0.807 0.871 

  Precision 0.889 0.905 0.950 

  Recall 0.739 0.729 0.805 

  Threshold 35 25 15 

Belvedere Accuracy 0.792   

  F1-Score 0.791   

  Precision 0.797   

  Recall 0.785   

  Threshold 20   

Satopanth Accuracy 0.744   

  F1-Score 0.766   

  Precision 0.706   

  Recall 0.838   

  Threshold 5   
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Zmuttgletscher 

Approach III classification sum images for Zmuttgletscher in 2003 and 2010 show high values across the 

main DCG body (Figure 18), suggesting satisfactory DCG identification using multiple band 

combinations. The glacier fronts in these years show a clear transition from high to medium-low values 

but appear wider than the ground reference. 

In contrast, the 2016 image shows low to medium values throughout the main glacier body, providing 

limited discrimination between DCG and surrounding areas (Figure 18). The reduced validation accuracy 

of 0.799 in 2016 (Table 9) corresponds to significantly weaker DCG identification in the classification 

output, with extensive misclassified outlying areas and missing sections in the main glacier body. All 

three results include a significant number of outlying areas misclassified as DCG. 

 

Ground reference 2003 

 

Final Classification sum 2003 

 

Final Classification mask 2003 

 

Ground reference 2010 

 

Final Classification sum 2010 

 

Final Classification mask 2010 

 
Ground reference 2016 

 

Final Classification sum 2016 

 

Final Classification mask 2016 

 

Figure 18: Classification results of Cross-glacier analysis, Approach III, Zmuttgletscher. The colorbar in the final 

classification sum shows the number of band combinations. 

 

Unteraargletscher 

Although the validation accuracies with Approach III in 2003 and 2010 are lower than for the previously 

introduced results for Zmuttgletscher with Approach III (Table 9), the visualised results show a clearer 
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outline delineation for Unteraargletscher (Figure B 9). In all three years, the classifier effectively 

delineated the main body of DCG, closely matching the ground reference outlines. The glacier fronts in 

2003 and 2010 appear slightly extended compared to the ground references, but accurately capture the 

retreat of the glacier until 2016. 

 

Oberaletschgletscher 

Oberaletschgletscher achieves higher validation accuracies than Zmuttgletscher and Unteraargletscher 

when analysed using Approach III (Table 9). The visualized results of Oberaletschgletscher (Figure B 10) 

are comparable to those of Unteraargletscher (Figure B 9) in delineating the glaciers, with a generally 

high correspondence to the respective ground reference but also some misclassifications of both DCG 

and non-DCG. 

The final classification sum for 2003 shows high values across the main DCG, with well-defined transitions 

to the surrounding areas. Various outlying features exhibit medium to medium-high values but are 

correctly excluded from the final classification mask. This suggests that the chosen threshold effectively 

distinguishes DCG from non-DCG, contributing to the overall accuracy of the classification. 

In 2010, while the DCG is predominantly characterised by high values, the glacier tongue shows greater 

variability in values, with some lower values interspersed within the high value DCG. Additionally, a 

significant number of outlying non-DCG features display medium-high values, leading to a threshold for 

the final classification mask that fails to perfectly separate DCG from non-DCG. This results in the 

inclusion of some outlying patches and noise, as well as false negatives on the glacier tongue. These 

false negatives are particularly pronounced at the glacier terminus, where the DCG is not clearly 

delineated. 

In 2016, the classification sum image is characterised by a distinct value transition along the main DCG 

tongue, similar to the pattern observed with Approach II. The main DCG has very high values that closely 

match the outlines of the ground reference. A sharp boundary marks the transition to the frontal ~1 km 

of the glacier tongue, where values are significantly lower. As Approach III involved manual threshold 

selection, the threshold was set low enough to include this section as part of the DCG area in the final 

classification mask, thus mitigating the impact of this pronounced feature. 

 

Belvedere glacier 

When applying Approach III to Belvedere Glacier, the classifier successfully delineates the general outline 

of DCG but includes a substantial number of outlying features (Figure B 11). These features are 

prominent in both the final classification sum image and the derived mask. As these outliers show values 

similar to those of the glacier tongue in the classification sum image, adjustments of the threshold could 

not improve the final classification mask. Notably, the DCG body of Belvedere Glacier shows two small, 

distinct areas of very low values in the classification sum image, resulting in two 'holes' in the final 

classification mask. One of these holes corresponds to a feature also present in the ground reference. 

 

Satopanth glacier 

When applying Approach III to Satopanth Glacier, the visualised results are poor, with the classifier failing 

to consistently capture the entire DCG area and misclassifying numerous outlying regions as DCG (Figure 
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B 12). The final classification sum shows medium-low values across most of the DCG area, with some 

higher values observed toward the southern end of the glacier. The DCG outlines can be derived fairly 

accurately from both the final classification sum and the mask images, as they exhibit a clear transition 

to even lower values surrounding large portions of the main glacier. However, as one moves away from 

the main glacier arms, areas with higher values follow the low-value regions, leading to misclassifications 

of non-DCG areas as DCG. This results in the inclusion of many outlying patches in the final classification 

mask. Additionally, although the overall outlines of the DCG are mapped reasonably well, there are 

several missing pixels within the main glacier body where the values were too low to be classified as 

DCG, causing false negatives. 

 

6.3 Performance of the LST NIR Index 

In a simplified classification setup, the performance of the LST NIR Index was evaluated. The LST NIR 

Index was used as the primary input layer for a simplified classification, supplemented by Slope and 

NDRI layers to provide basic additional information. The random forest (RF) classifier was configured 

with 50 trees and a sample size of 5’000 points. To test the added value of the combination with NIR, 

the LST NIR index was replaced by normalised difference indices of LST combined with different optical 

to shortwave infrared bands, keeping the same additional inputs (slope and NDRI) and RF structure.  

When trained and tested on Zmuttgletscher for the year 2016, the LST NIR Index achieved the highest 

accuracy with 0.946 (Table 10). The overall accuracies were elevated due to the classifier being trained 

and tested on the same glacier and year. Consequently, the absolute accuracy values are not 

representative for broader applications. However, relative comparisons remain valid, demonstrating that 

the LST NIR Index outperformed other indices in this setup. 

 

Table 10: Cross-comparison of validation accuracies of Normalised Difference Indices with LST and one additional 

band, and normalised LST only, with simplified RF classification.  

  Validation accuracy 

Normalised difference Indices 

LST blue 0.941 

LST green 0.943 

LST red 0.938 

LST NIR 0.946 

LST SWIR1 0.934 

LST SWIR2 0.943 

Normalised LST 0.941 

 

The added value of combining LST with NIR was further evaluated through scatterplot visualisation, 

plotting LST against NIR and colouring data points by class (DCG or non-DCG) based on the SGI2016 

debris cover ground reference (Figure 19). Clustering in the scatterplot showed that DCG had low to 

medium-high LST values but consistently low NIR values, whereas non-DCG had greater scatter across 
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the range. This demonstrated that the inclusion of NIR added a valuable second dimension, enhancing 

the ability to effectively discriminate between the two classes. 

Figure 19: Scatterplot of the relation of LST and NIR for DCG and non-DCG (coloured according to SGI2016 

debriscover), with data from Zmuttgletscher 2016. Visualized in Python.  
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7 Discussion 

The discussion begins with a brief summary and interpretation of the performance of the method for 

the different approaches used (Section 7.1). To gain a deeper understanding of the performance of the 

classifier, specific results are examined through case studies (Section 7.2). The added value of the 

newly introduced LST-NIR index is discussed in section 7.3. Finally, section 7.4 focuses on the 

limitations of the methodology. 

7.1 Different Approaches 

The tested approaches included temporal change analysis of a single glacier over three years, and cross-

glacier analysis, using the most current glacier outlines as one of the input layers (Approach I), using RGI 

7.0 outlines for all years (Approach II), and excluding glacier outlines entirely from the input layers 

(Approach III). Overall, the results were promising in DCG delineation, with temporal change analysis and 

cross-glacier analysis Approach I yielding the highest accuracies. This can be explained by the greater 

consistency between training and testing data in the temporal analysis and the inclusion of up-to-date 

glacier outlines in both temporal analysis and cross-glacier analysis Approach I. Accuracies were slightly 

reduced in Approach II and further declined in Approach III.  

As accuracy metrics refer to the correspondence between the classification results and the ground 

reference derived from the RGI and SGI, they must be interpreted with caution. A lower validation 

accuracy does not necessarily indicate poor model performance, but rather highlights a larger difference 

between the results and the existing glacier inventories. Determining whether these differences are due 

to inaccuracies in the classification results or in the ground reference requires qualitative assessments of 

individual cases (see Section 7.2). 

7.1.1 Temporal change analysis 

The methodology was initially applied to assess temporal changes in DCG extent across different years 

for individual glaciers. Training the classifier using data from one glacier over two years and testing it on 

a third benefited from the consistency in the input data, allowing evaluation under 'ideal' conditions 

where input variations were expected to primarily reflect changes in glacier extent. 

This approach yielded high validation accuracies, ranging from 0.854 to 0.970 (Table 6), demonstrating 

the classifier's effectiveness in identifying DCG and accurately delineating glacier contours over time. 

However, an anomaly was observed in the classification of Zmuttgletscher in 2010 (Figure 14), where a 

large portion of the glacier was not identified by more than half of the 20 random band combinations. 

This anomaly underscores the limitations and uncertainties that can arise from irregularities in the input 

data or training process.  

In all other cases analysed (including Zmuttgletscher 2003 and 2016), the classifier performed well, 

successfully delineating DCG outlines and identifying debris-covered areas. These results support the 

suitability of the methodology for temporal change detection, assuming consistent and reliable training 

and validation data.  

This approach is constrained by the need for ground reference data for each year used in training and, 

if statistical evaluation is required, also for the test year. On a global scale, only the RGI dataset is 

available, which dates back to 2003 for most glaciers analysed in this study. Extending this temporal 
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change analysis approach to regions outside of Switzerland would require training the classifier using 

only the 2003 dataset, and not allow for statistical evaluation of the test year. This limitation halves the 

training dataset, increasing the influence of outliers and specific characteristics of individual years and 

scenes, thereby reducing the overall reliability of the classification results. Therefore, this approach was 

used as a first assessment of the performance of the methodology, benefiting from high consistency in 

training and testing datasets, but is not suitable for transfer to other regions. 

7.1.2 Cross-glacier analysis 

The methodology was subsequently applied across multiple glaciers to assess its robustness and 

potential for transferability using Approaches I, II, and III. Approaches II and III increase the transferability 

of the method as they are not restricted to specific years, although statistical evaluation is still only 

possible for years with available ground reference data. 

Approach I served as an initial test of the classifier's performance when trained with data from two 

different glaciers instead of one, increasing the variability in the training dataset. This variation 

introduced a broader range of conditions, reflecting differences across glaciers in the input layers used 

for classification. 

For instance, slope played a critical role in delineating DCG outlines for Unteraargletscher, where the flat 

glacier surface transitions abruptly into steep mountain flanks (Figure 20 b). In contrast, Zmuttgletscher, 

situated in a wider valley, although flanked by steep moraines, exhibits a slope change between the 

glacier surface and its surroundings that is less pronounced and does not consistently align with the 

glacier outlines (Figure 20 a). These differences highlight the increased complexity introduced by 

combining data from multiple glaciers. Testing the classifier with this approach thus provides a more 

comprehensive evaluation of the methodology's adaptability. 

Figure 20: Visualisation of slope based on the SwissAlti3D (2019) for Zmuttgletscher (a) and Unteraargletscher (b), at 

a resolution of 2m, used for training and testing of classifier on the respective glaciers in 2016. 

a b 



57 

Although all three approaches used in the cross-glacier analysis performed slightly less well than the 

temporal change analysis, the validation results were still generally satisfactory, with most accuracies 

being greater than 0.8. 

Approach I 

For Approach I, for Zmuttgletscher, Unteraargletscher, and Oberaletschgletscher, validation accuracies 

ranged from 0.840 to 0.940 (Table 7). 

In most cases, the final classification output effectively identified DCG and delineated glacier outlines. 

For Oberaletschgletscher and Zmuttgletscher, as well as Unteraargletscher in 2003, the classification 

results agreed well with the expected glacier shapes and ground reference data. However, in some cases 

the final classification sum, which aggregates the results of multiple band combinations, better reflected 

the true DCG outlines than the actual final classification mask produced by Otsu's thresholding method. 

This was particularly evident for Oberaletschgletscher, where a slightly higher threshold might have 

resulted in a more accurate delineation of the glacier. 

The use of Otsu's threshold in this method was chosen to automate the process and avoid manual 

selection, which is impractical when applying the method to multiple glaciers or to years without 

available ground reference data. As the thresholds vary between glaciers and years (ranging from 6 to 9 

for the 20 band combinations tested), a fixed threshold could not be used. In addition, the aim of the 

methodology was not to match the output as closely as possible to the ground reference, but rather to 

develop a semi-automated approach capable of refining glacier contours independently. Nevertheless, 

in certain cases a manually adjusted threshold might have improved the accuracy of the final 

classification mask. 

Approach I was used as a preliminary evaluation of the classifier's performance when trained and tested 

on data from different glaciers, using the same input layers as in the temporal change analysis. This 

approach is limited to years and glaciers for which a current glacier outline is available, as the method is 

designed to refine these outlines rather than generate entirely new ones. Including existing outlines as 

input layers allows more contextual information to be incorporated into the classification process, but it 

also carries the risk of introducing errors from the original outlines into the refined results. While the 

validation accuracy may appear high due to alignment to the ground reference (which is itself based on 

the included outlines), the true accuracy of the refined outlines relative to the actual glacier extent 

remains uncertain and requires further evaluation. 

Approach II 

Using Approach II, the validation accuracies of the results slightly decreased using this approach, now 

ranging from 0.840 to 0.919 (Table 8). 

In Approach II, the inclusion of the glacier inventory in the classification exploits a valuable source of 

data that can improve accuracy, as glacier inventories provide reliable information on glacier boundaries. 

As the objective of the method was to refine the boundaries, the inclusion of existing glacier inventories 

is well suited to this objective and shows potential for DCG delineation on a larger scale. The inclusion 

of the RGI 7.0 glacier outline and the lack of reliance on current glacier outlines allow for transferability 

of this approach to different glaciers and years but introduce some uncertainties.  
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When applied to a current year, the classifier must adjust the outdated 2003 glacier outline using 

information from other, current (year of analysis) input layers. This reliance on outdated outlines resulted 

in slightly decreased statistical metrics, as the ground reference and the glacier outline used as an input 

layer are of different origin. In addition, as most glaciers have retreated since 2003, the RGI outlines are 

more likely to overestimate the true extent of glaciers, as seen in the classification of Zmuttgletscher 

(Figure 17). This effect was not observed for Unteraargletscher or Oberaletschgletscher, suggesting that 

the extent of this effect may vary depending on specific glacier characteristics. 

Nevertheless, the approach has significant advantages. It is highly transferable, allowing application to 

any glacier (as long as it is mapped in the RGI 7.0) and year, even in the absence of current outlines. 

Furthermore, while the inclusion of RGI outlines introduces some uncertainty, it also adds valuable prior 

information that improves the performance of the classifier compared to an approach without outlines. 

Overall, Approach II shows promising potential for DCG delineation, although further refinement of the 

methodology could improve its performance. A key advantage of this approach is its transferability to 

other regions and years, as it incorporates some information from existing glacier outlines while 

remaining adaptable. However, this transferability was not explored within the scope of this thesis, as it 

precludes statistical evaluation due to the lack of a comparable ground reference. Instead, such 

applications would require a qualitative assessment of the results. 

Approach III 

Approach III eliminates reliance on existing glacier outlines, instead utilizing satellite imagery and 

topographic data. This approach avoids the potential propagation of inaccuracies from outdated 

inventories. However, it results in slightly less accurate delineations compared to Approach II, with 

validation accuracies ranging from 0.743 to 0.911 (Table 9). It is important to note that validation here 

refers to comparison with ground reference data derived from existing glacier inventories, which are not 

definitive truths but come with their own uncertainties. By not including glacier outlines, this approach 

is less likely to conform exactly to the extent and boundaries established in existing inventories, which 

naturally reduces its 'validation' accuracy in statistical terms. Nevertheless, the mapped results suggest 

a decrease in performance compared to previous methods. Specifically, for Zmuttgletscher, the 

delineated areas show irregular shapes and many patches that are likely misclassified as DCG, 

highlighting a notable decrease in accuracy. 

Unlike the previous approaches, Approach III used 40 band combinations for the final classification, 

doubling the 20 combinations used previously. This adjustment took into account the reduced 

information available to the classifier due to the exclusion of glacier inventory outlines. Different band 

combinations proved to be effective depending on the input data, and increasing their number improved 

the robustness of the classifier in identifying DCG across glaciers and years. 

However, increasing the number of band combinations doubled the computational load, exceeding the 

capacity of Google Earth Engine (GEE) with the original script. As a result, the threshold selection method 

was changed from Otsu's algorithm to manual selection based on the visualised classification sum image, 

simplifying the process while maintaining reasonable accuracy. 
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7.2 Case studies of model performance 

This section provides an in-detail discussion of specific classification results or characteristics that could 

be observed in a number of results, to better understand the performance of the classifier and possible 

interpretation of its results.  

7.2.1 Distinct value transitions on the main DCG body 

In several cases, a distinct transition from high to low values on the main DCG tongue could be observed 

in the final classification sum images. 

To explore potential causes for the lower values observed at the glacier tongue's front, classification sum 

images for Zmuttgletscher (generated with Approach I) were overlaid onto a high-resolution satellite 

image (Figure 21). This comparison, however, did not clarify the reason for reduced values in this area. 

Although the frontal glacier region does contain slightly more ice cliffs, which might influence slope and 

temperature data, these specific input layers did not exhibit any evident patterns explaining this 

transition. The classifier was trained with data from Unteraargletscher and Oberaletschgletscher and then 

applied to Zmuttgletscher, so this transition could stem from inconsistencies among any of the input 

layers of these glaciers. Yet, a review of all input layers showed no distinct outliers that could account for 

this effect. 

Figure 21: Classification sum of Zmuttgletscher 2016 generated with Approach I and overlaid on high-resolution google 

satellite imagery (a) and zoom to glacier front (b and c). Compared to the SGI2016 glacier outlines.  

Similar high-to-low transitions on the main DCG body were observed in other cases. For example, 

Zmuttgletscher's classification sum images in 2003 and 2010, generated with Approach I (Figure 15), as 

well as Oberaletschgletscher's 2016 results using Approaches II (Figure B 8) and III (Figure B 10), 

displayed this pattern. In none of these cases did any input layer convincingly account for the observed 

transition. 

a 

c 

b 
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The classification sum image of Oberaletschgletscher generated with Approach III (Figure B 10) shows a 

sharply defined transition, appearing as though cut off with a knife. Unfortunately, the available high-

resolution satellite imagery for this area shows the glacier covered in snow, limiting the information that 

can be derived. However, overlaying the SGI2016 debris-cover outlines reveals a high level of detail in 

delineating individual ice cliffs on the glacier tongue (Figure 22).  

The frontal ~1 km of the glacier tongue, which shows significantly lower values compared to the upper 

glacier, contains a greater density of ice cliffs. As with the previously discussed Zmuttgletscher results, 

these ice cliffs might influence various input layers used in the classification. Despite this, a review of all 

input layers did not reveal any clear explanation for the marked transition observed in the classification 

sum image. 

This highlights the need for a more detailed analysis of the methodology’s performance, including its 

application to a broader range of glaciers, to determine if these patterns recur and to identify their 

underlying causes. Despite these value transitions, the overall performance of the classifier was not 

significantly affected, as the thresholds for differentiating DCG from non-DCG were set low enough to 

capture the main DCG bodies in all cases. However, using a higher threshold could help exclude more 

outlying patches falsely classified as DCG, such as in the 2016 result for Oberaletschgletscher with 

Approach III. Identifying and, ideally, addressing the cause of these transitions would enhance the 

methodology by improving classification precision and reducing errors. 

Figure 22: Classification sum of Oberaletschgletscher 2016 generated with Approach III and overlaid on high-resolution 

google satellite imagery (a), with zoom to glacier front (b and c). Compared to the SGI2016 debriscover outlines.  

7.2.2 Potential DCG misclassifications and ‘noise’ 

In many cases, the final classification masks included DCG patches outside the main glacier body, which 

were not present in the corresponding ground references and were assumed to be misclassifications. 

However, some of these patches may in fact represent real DCG. 

a 

c 

b 
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A notable example is Oberaletschgletscher 2010, which was generated based on temporal analysis and 

showed several distinct medium-sized outlying patches (Figure 23). Comparison of these patches with 

SGI2010 outlines shows that they are also delineated as glacier area in the SGI. The RGB Landsat image 

used as the classification baseline shows these patches primarily as snow/ice, which were excluded from 

the ground reference by the NDSI mask. However, the parts classified as DCG in the final mask coincide 

with the debris-covered parts of these patches, suggesting that the performance of the method was 

better than initially assumed.  

Figure 23: DCG classification result of Oberaletschgletscher 2010 overlaid on the corresponding Landsat scene and 

compared to SGI2010 outlines.  

As the size of such patches is reduced, their correspondence with existing glacier inventories decreases, 

probably due to mixed pixel signals or the presence of small snow or clouds in the scene causing local 

variations. Single pixels or very small outlying patches were therefore treated as 'noise' or 

misclassifications and removed using a smoothing filter. 

For Satopanth Glacier in 2003 using Approach I (Figure B 6), the final classification sum displayed 

numerous very small outlying patches, predominantly single pixels or small clusters. Applying a 

smoothing filter before vectorizing the results effectively reduced this 'noise,' enhancing the visibility of 

overall DCG patterns.  

Upon closer inspection, this noise primarily falls on debris-covered or partially debris-covered areas 

outside the RGI outlines (Figure 24). Larger patches outside the RGI boundaries, which likely represent 

misclassifications, were not eliminated by the smoothing filter. However, removing the smaller noise 

significantly clarifies the results, making the output more interpretable. The refined outlines align more 

closely with actual DCG, reducing the influence of pixel-level variations and improving the usability of 

the result. 
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Figure 24: Classification result for Satopanth glacier with Approach I, showing the DCG outlines of the classifier 

compared to RGI 7.0 outlines and DCG 'noise' that was filtered out by applying a smoothing filter (a), with zoom to 

areas on upper south-western glacier arm (b and c).  

7.2.3 Glacier terminus and wideness: the need for accurate thresholding 

The actual glacier extent of the final classification result heavily depends on the threshold that was 

applied to the classification sum image. In many cases, there is a rather clear and distinct value transition 

of higher values for DCG and lower values for the surrounding. However, in some cases, distinct value 

transitions on the glacier, as previously discussed, or a stepwise value transition at the glacier terminus 

or its sides, make it less clear where the threshold to differentiate between DCG and non-DCG should 

be set. Using Otsu’s method to determine the threshold is a way to maximise the difference between 

the two classes but does not consider spatial patterns. Setting the threshold manually and individually 

for each glacier, as was done in Approach III, does consider spatial patterns as the threshold was selected 

based on visualisation of the final classification sum, nevertheless it is debateable what an accurate 

threshold is.  

The final classification sum of Approach I for Zmuttgletscher 2003 shows a stepwise transition of values 

at the glacier front (Figure 25 a). The threshold used for deriving the final mask image, determined using 

Otsu’s method was 9 and included also the area of slightly lower values to be part of the DCG. Manually 

setting a higher threshold of e.g. 17 would exclude this area from the DCG body, marking it as non-DCG 

(Figure 25 b). To assess whether Otsu’s threshold was set accurately, or if the drop in values could 

translate to a shorter glacier tongue, the results of both thresholds were tested against the ground 

reference and compared to high-resolution satellite imagery (Figure 26 a).  

Compared to the ground reference, Otsu’s threshold is more effective in capturing DCG than the 

increased threshold of 17 is. The accuracy of the result decreases for the higher threshold, as well as F1-

score and recall (Table 11). Precision increases slightly, as less pixels are misclassified as DCG, probably 

addressing noise and patches outside the main DCG area.  

a 

c 

b 

b 

c 
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Table 11: Comparison of statistical metrics for Zmuttgletscher 2003 with cross-glacier analysis, Approach I, when using 

different thresholds, either based on Otsu’s method (9) or manually selected (17). 

Threshold = 9 (Otsu) Threshold = 17 

Accuracy 0.940 0.881 

F1-Score 0.939 0.869 

Precision 0.952 0.970 

Recall 0.927 0.787 

Visualizing the results derived from the two different thresholds reveals their spatial patterns and 

differences (Figure 25 b). The outline generated with the lower threshold more closely follows the RGI 

outline at the glacier front, while the higher-threshold outline aligns better with the RGI outline in the 

upper glacier regions, particularly at the northwestern glacier arm and along both sides of the main 

glacier tongue. 

Comparing these outlines to high-resolution satellite imagery, the lower-threshold outline clearly 

exaggerates the glacier tongue's width, crossing the apparent boundary of the side moraines (Figure 25 

b). Since the higher-threshold outline generally fits better overall, it raises the question of whether the 

glacier front might also be more accurately represented by this outline, potentially suggesting that the 

RGI outline depicts the front as overly extended.  

Figure 25: Final classification sum of Zmuttgletscher 2003, with Approach I (a), and derived outlines based on different 

thresholds (b). Overlaid on high-resolution Google satellite imagery.  

To examine the patterns of outlines at the glacier front more closely, Figure 26 provides a zoom into this 

region. The high-resolution satellite imagery used for this comparison (Figure 26 a and b) was acquired 

between 26.09.2016 and 04.09.2023 (Google Earth, 2024), so it cannot be used directly to derive the 

extent of the glacier in 2003. What is clearly visible, however, is a distinct feature in the ground moraine, 

resembling a line that marks the boundary between a slightly more vegetated area in the glacier forefield 

and the debris-covered area closer to the glacier (Figure 26 b, b1). The fact that this transition is so 

distinct and clearly visible suggests that the glacier has been at this extent for some time. Whether this 

was the case in 2003 is more challenging to determine. 

a b 
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To compare the outlines with images closer to the glacier's 2003 state, they were superimposed on a 

2005 aerial image (Bundesamt für Landestopografie swisstopo, 2005) as the closest available scene 

(Figure 26 c and d). While the distinct feature identified as b1 is less visible in this scene, four other 

features were identified in the region that was classified as either DCG or non-DCG depending on the 

threshold used (Figure 26 d, d1-d4).  

Figure 26: Different outlines for Zmuttgletscher in 2003, generated using Approach I, showing variations based on 

different thresholds. The outlines are overlaid on high-resolution Google satellite imagery (a and b) and a 2005 aerial 

image (c and d). Images b and d zoom in on the area of discussion, showing a ground moraine feature matching the 

RGI 7.0 terminus (b1), as well as a lake (d1), melt river (d2), possible ice cliffs (d3), and vegetation (d4). 

Feature d1 appears to be a lake, which could be either a supraglacial lake or a lake in the glacier forefield. 

While supraglacial lakes on DCG are typically smaller than on clean ice glaciers (Zeller et al., 2022) it 

remains possible that this lake is supraglacial. Feature d2 shows a meltwater stream, which could also be 

in the glacier forefield or supraglacial. Supraglacial streams are less common on DCG than on clean-ice 

glaciers, and tend to be smaller in volume (Fyffe et al., 2019), but their presence on DCG cannot be ruled 

out.   

a b 

c d 

b1 

d1 

d2 

d3 
d4 
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Feature d3 suggests the presence of possible ice cliffs, which would support the classification of this area 

as DCG. In contrast, feature d4 appears to show vegetation, which would indicate the absence of DCG 

in this area. However, vegetation is not a definitive indicator, and its presence does not completely rule 

out DCG.   

None of these features provide definitive evidence for or against the presence of DCG in this particular 

region. While features d1, d2 and d4 lean slightly towards a non-DCG classification and feature d3 

suggests the presence of DCG, these interpretations are non-conclusive. This suggests that the true DCG 

outline is likely to lie somewhere between the different outlines presented. However, a precise qualitative 

assessment of the exact extent is beyond the scope of this paper.   

7.2.4 Holes in the main DCG body: the case of Belvedere glacier 

For Belvedere Glacier, holes appear in the final classification mask over the main glacier area when using 

both Approach I (Figure B 5) and III (Figure B 11). Examination of the Landsat scene used for classification 

shows that the areas classified as non-DCG correspond to pixels potentially representing snow or cloud 

cover. However, the coarse resolution of the scene makes it challenging to definitively identify these 

patches as snow, as they are only suggested by lighter-coloured pixels. In the NDSI mask, these areas 

were classified as snow/ice and subsequently excluded from the RGI-based ground reference. As the 

holes appear in both the ground reference and the classification result, this feature does not affect the 

validation accuracy. However, the occurrence of such non-DCG holes within the DCG body seems highly 

unlikely from a glaciological perspective and was therefore investigated further. 

Comparison with a high-resolution satellite image, although from a more recent date, provides no 

evidence of permanent snow cover in these areas (Figure 27), supporting the assumption that this 

feature is specific to the single scene used for classification. To qualify as DCG, an area must consist of 

glacier ice covered by debris. The observed holes, though located near the side border of the main 

glacier body, are surrounded by DCG. Given the flow dynamics of glaciers, it is reasonable to expect 

underlying ice in these areas, as ice is present both upstream and downstream of the holes. Additionally, 

since the surrounding ice is debris-covered and there are no topographic barriers to glacier flow or 

debris transport in these regions, these areas are likely to be DCG despite their classification as non-DCG 

in this instance. 

Comparison to the normalised LST (Figure 27 d) reveals lower temperatures in these areas, which 

influenced LST-based input layers, such as the LST NIR Index and its variations, leading to the observed 

holes in the final classification. This further supports the assumption that these features are specific to 

the single scene used for classification, likely resulting from localized snow cover or potentially high-

altitude clouds. While such clouds are barely discernible in optical imagery, they are clearly reflected in 

the LST signal, potentially contributing to the classification anomalies.  
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Figure 27: Classification result of Belvedere glacier 2003 (Approach I) compared to RGI 7.0 outlines, overlaid on Landsat 

scene used for classification (a), high-resolution Google satellite imagery (b, c), and normalised LST (d).  

7.2.5 The issue with temporal change analysis on Zmuttgletscher 2010 

A large hole was observed in the main DCG body of Zmuttgletscher in 2010, which was misclassified as 

non-DCG with the temporal change analysis (Figure 14). In this approach, the classifier was trained on 

data from 2003 and 2016 and applied to 2010. While this approach typically yielded high validation 

accuracies and strong alignment with ground reference, this case deviates from this trend. The actual 

absence of DCG in the region of the hole is highly unrealistic due to the dynamics of the glacier, and no 

such reports are found in the extensive analysis of Zmuttgletscher and its debris-cover by Mölg et al. 

who have documented changes in the debris-cover of the glacier over the past decades, suggesting that 

this result is an error in the classification.  

When all input layers were examined, no significant deviations were found in neither the layers based 

on the Landsat scene, nor in the ones containing topographical information. The classifier performed 

well for Zmuttgletscher in 2010 with all other approaches tested using the same input data (Approach I 

uses identical input data per glacier as the temporal change analysis). This suggests that factors such as 

clouds or snow in the scene, which could explain problems such as those seen for Belvedere Glacier, are 

unlikely in this case.  

One input layer that differs significantly in 2010 is the glacier outline, which according to the SGI2010 

inventory is significantly narrower than the outlines in 2003 and 2016. The glacier outlines in the ground 

reference show a pattern of being wider in 2003, then narrower in 2010 and wider again in 2016. This 

progression is highly unlikely and suggests a likely discrepancy in the 2010 glacier outline (discussed 

further in Section 7.4.1). This discrepancy is particularly relevant because the classifier was trained on 

data from 2003 and 2016, where such inconsistencies were absent, and then applied to 2010. The 

inconsistency between the glacier outline in 2010 and other input layers such as slope, elevation and 

LST (none of which showed evidence of glacier narrowing) likely contributed to the poor performance 

of the classifier for that year, including the large area of DCG misclassified as non-DCG.   

a 
b 

c 
c 

b a d
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This problem was not observed with any of the other approaches, including Approach I of the cross-

glacier analysis, which uses the same input layers for classification as the temporal change analysis. 

However, in the cross-glacier analysis, the training data for classification came from Unteraargletscher 

and Oberaletschgletscher in 2010, where the glacier outlines were also slightly narrower than in other 

years for the respective glaciers (as the ground reference for 2010 was consistently based on SGI2010). 

This alignment of the glacier outline standards reduced inconsistencies between the training and test 

datasets in the cross-glacier analysis, probably leading to the observed improved performance of the 

classifier for Zmuttgletscher in 2010 with this approach.   

This discrepancy between the glacier outlines and other data may have contributed to the large area of 

DCG being misclassified as non-DCG. However, the specific placement of the misclassified hole in the 

middle of the glacier cannot be fully explained by this inconsistency, leaving some uncertainty as to the 

exact cause. 

7.3 Benefit of LST NIR Index 

To improve the detection of DCG, this method used a normalised difference index combining the LST 

and NIR bands. This index allowed improved differentiation of DCG from surrounding surfaces such as 

snow, ice, soil, vegetation and rocky terrain by utilising the reflective qualities and higher spatial 

resolution of the NIR band alongside the thermal signal of the LST band. 

Incorporating NIR into the LST-NIR index offers several advantages for DCG mapping:  

• Differentiation: NIR helps to distinguish SGD from surrounding features such as snow/ice, soil,

vegetation and, to some extent, rocky surfaces, improving the accuracy of the classification.

• Second dimension: The combination of LST and NIR introduces a second dimension to the

dataset, helping to better differentiate between DCG and non-DCG by exploiting the different

spectral and thermal characteristics of surfaces.

• Validation accuracy: A cross-analysis tested the performance of different band combinations

with normalised LST using a random forest classifier, with all other input variables held constant.

Combining LST with NIR achieved the highest validation accuracy, and provided most consistent

and complete data when mapped, ensuring reliable classification under different conditions.

Combining LST with any additional band enhanced the visual differentiation between DCG and

non-DCG by providing a second dimension of information. This improvement was largely due

to the higher spatial resolution of the additional bands, which at 30 m offer finer detail compared

to the coarser resolution of LST. Among the tested combinations, which calculated the

normalised difference between LST and blue, red, green, NIR, SWIR 1, and SWIR 2 bands,

respectively, the pairing of LST with the NIR band demonstrated the greatest improvement in

distinguishing DCG from non-DCG, highlighting the value of the NIR band for this purpose.

7.4 Limitations 

7.4.1 Coarse resolution and mixed pixels 

While a resolution of 30 m is considered high resolution in satellite remote sensing, it is relatively coarse 

for capturing the small-scale changes required to delineate DCG outlines in alpine glacier environments. 

The LST data, originally at 100 m resolution and resampled to 30 m, face inherent limitations in 
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representing fine detail. Each 30 m pixel contains mixed reflectance signals from different surface 

characteristics, and at 100 m this issue is exacerbated, resulting in greater loss of information.  

Glacier outlines, where distinct changes in the LST signal are expected, are particularly susceptible to 

these mixed pixel effects. Consequently, resolution limitations prevent the developed methodology from 

achieving the level of detail and precision found in datasets such as the SGI2016. 

Figure 28 illustrates the challenges posed by 30 m and 100 m resolution data in accurately delineating 

DCG outlines. Subfigure (b) shows an RGB image of the Landsat scene used for classification, while (a) 

shows a high-resolution Google satellite image of the glacier front for comparison. Features such as ice 

cliffs and moraine structures, which are sharply defined in the high-resolution imagery, become blurred 

and blended into mixed pixels at 30 m resolution, demonstrating the limitations in capturing the fine 

scale detail required for accurate DCG mapping. The visualised LST of the same area (c), originally at 100 

m resolution but resampled to 30 m, shows even less information on where to draw DCG outlines. 

The challenges of using open source thermal data for DCG mapping due to its coarse resolution have 

also been noted in other studies (Jawak et al., 2022; Karimi et al., 2012), and although partially addressed 

in this thesis by integrating multiple layers of information, this remains a limiting factor. 

Figure 28: Exemplary visualisation of the glacier tongue of Zmuttgletscher 2016 with (a) high-resolution Google 

satellite imagery, (b) Landsat 8 RGB of 30 m resolution, and (c) Landsat 8 LST [°K] of 100m resolution resampled to 

30m, illustrating the challenges in DCG delineation with data of coarse resolution.  

7.4.1 Ground reference 

An important limitation of this study is the accuracy of the ground reference data. The RGI 7.0, SGI2010 

and SGI2016 glacier inventories are considered the true glacier outlines against which the performance 

of the method is assessed through visual comparison and statistical evaluation. However, these glacier 

outlines have inherent uncertainties. 

In the case of Zmuttgletscher, the ground reference inventories indicate that the glacier area decreased 

between 2003 and 2010, but then increased again by 2016 (Figure 29). It is unlikely that the glacier would 

narrow and then widen in such a short period of time, suggesting potential inaccuracies in the glacier 

outlines used as ground reference. In a comprehensive analysis of the evolution of Zmutttgletscher over 

the past decades by Mölg et al. (2019), no narrowing of the glacier tongue in 2010 is indicated.  

a b c 
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Figure 29: Comparison of the Glacier Inventory outlines for Zmuttgletscher, showing whole glacier outlines for the 

years 2003 (RGI 7.0), 2010 (SGI2010) and 2016 (SGI2016). A narrowing of the glacier tongue can be observed for the 

outline of 2010. 

 

In 2003 and 2016, the glacier inventories did not include a specific debris-cover class, requiring the 

glacier outlines to be masked with an NDSI mask to derive the DCG area. This process introduced an 

additional layer of uncertainty into the ground reference, as the NDSI mask itself has an inherent 

uncertainty component, increasing the overall uncertainty of the resulting DCG delineation. 

As a result, the statistical evaluation, while useful as an initial quantitative assessment of model 

performance, must be interpreted with caution. It remains unclear whether lower validation accuracies 

are due to uncertainties in the results of the methodology or uncertainties in the existing inventories 

used as a ground reference. Nevertheless, the SGI2016, which benefits from extensive expert input and 

high-resolution imagery for DCG delineation (Linsbauer et al., 2021), is expected to be more accurate 

than the results of this thesis, which rely on a more automated approach and lower resolution data. In 

contrast, the SGI2010, delineated by a single expert (Fischer et al., 2014), is likely to be less objective and 

may contain greater uncertainties than the SGI2016. Similarly, the RGI 7.0, which prioritises global 

coverage over precision at the level of individual glaciers, has uncertainties that are particularly 

pronounced for the DCG (RGI 7.0 Consortium, 2023). 

 

7.4.2 Debris thickness  

Another factor contributing to uncertainties in the method is the debris thickness of SGD. As discussed 

in section 2.3 (Influence of debris thickness on LST), debris layers greater than 50 cm can attenuate the 

thermal signal from the underlying ice, reducing the effectiveness of LST in distinguishing SGD from PGD 

(Bolch et al., 2007; Ranzi et al., 2004). Precise data on debris thickness distribution are not available for 

the glaciers analysed. However, it is known that debris thickness typically increases down-glacier as ice 

flow velocity decreases. 

The results were generally more accurate in delineating DCG up-glacier and less accurate down-glacier 

towards the terminus. However, this can mainly be explained by the characteristics of non-DCG in these 

areas. While in higher areas the clear transition between snow/ice and debris makes classification easier, 
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towards the glacier terminus the distinction between DCG and non-DCG becomes more difficult due to 

the debris covering both the glacier and its forefield. This highlights the challenge that the methodology 

was designed to address. Thus, the influence of debris thickness on the classification results remains 

unclear. 

However, the inclusion of additional input layers in the classification process is assumed to improve the 

robustness of the method to local variations in debris thickness. No specific areas of the analysed glaciers 

were consistently misclassified across the different approaches, suggesting that variations in debris 

thickness do not significantly affect the results. For example, although Mölg et al. (2019) reported higher 

debris thickness on the elongated southern ridge of Zmuttgletscher, no anomalies were observed in the 

classification results for this region. 

For Unteraargletscher, a debris thickness of 10–20 cm was reported (GLAMOS, 2022; Huss et al., 2007). 

While this does not enable precise evaluation of model performance relative to debris thickness, the 

method performed well overall in the case of Unteraargletscher. It remains unclear to what extent this 

success is influenced by the relatively thin debris cover. 

More detailed information on the distribution of debris thickness on DCGs would be valuable for 

assessing the contribution of debris thickness to uncertainties in the results. However, in the absence of 

detailed debris thickness data for the glaciers analysed, the exact impact of this factor on the results of 

the method remains unclear. 

 

7.4.3 Other influences on LST 

Several factors other than the underlying ice influence LST, which can affect its reliability in DCG 

delineation. Elevation plays an important role, as LST tends to decrease with increasing altitude 

(Malbéteau et al., 2017). This effect has been addressed by normalising LST values using a regression-

based elevation correction. Slope and aspect also influence LST, with steeper slopes and south-facing 

aspects typically showing higher LST values. These variables were included in the classification process 

to account for their effects, following the approach of previous studies that used thermal data to 

discriminate between SGD and PGD while also incorporating topographic information. Mitkari et al. 

(2022) and Karimi et al. (2012) included slope in their analyses but used region-specific thresholds. A key 

advantage of the methodology presented in this thesis is that it eliminates the need for manual threshold 

adjustments for each region, making the process more automated and scalable. 

Other factors include shadows, snow and cloud cover, which can distort LST and other optical reflectance 

values. These problems were mitigated by carefully inspecting individual scenes and selecting those free 

of such disturbances. However, daily variations in LST caused by changing weather conditions remain a 

source of uncertainty. While the selection of scenes from summer months minimises seasonal variability, 

this does not fully address daily variability. A potential solution could be to create an averaged LST image 

from several cloud- and snow-free scenes. Unfortunately, the availability of such images is limited, with 

only one suitable scene per summer representing the entire glacier without snow, cloud, or shadow 

interference in most regions used in this analysis. Kaushik et al. (2022) observed misclassifications where 

shadows were incorrectly identified as DCG. Other studies (Karimi et al., 2012) have addressed this issue 

by distinguishing between shadowed and illuminated areas and performing separate classifications of 

DCG and non-DCG for each. Incorporating a similar approach into this methodology may provide an 

opportunity to improve the accuracy of DCG delineation, particularly in regions where shadows 

significantly affect image availability and classification results. 
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In alpine environments, several additional factors can influence LST and limit the precision of DCG 

mapping. Vegetation in the glacier forefield or surrounding areas alters surface temperatures, 

particularly during the summer months, as dense vegetation absorbs and retains heat differently than 

bare rock or ice (Holzman et al., 2021; Li et al., 2013). This variation, which could mislead DCG mapping, 

was addressed by incorporating the NDVI index into the classification. Surface moisture also plays a role 

(Bechtel, 2015; Holzman et al., 2021); wet or saturated surfaces, such as meltwater ponds or wet debris, 

tend to exhibit lower LST values compared to dry debris. This variability, particularly near glacier termini 

or in areas of significant melting, was mitigated by including the NDWI index. Additionally, albedo 

variations across different rock types influence LST, as lower albedo surfaces absorb more solar radiation, 

resulting in higher temperatures (Azzoni, 2017). Such local and inter-glacier variations in albedo can 

further complicate LST interpretation.  

These factors underscore the importance of carefully considering the complex and dynamic surface 

processes that influence thermal signals, even though LST remains a valuable indicator for DCG mapping.  
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8 Conclusion and Outlook 

8.1 Conclusion 

The aim of this thesis was to develop a methodology for refining DCG outlines by exploiting the different 

thermal signals between SGD and PGD. This methodology was applied to analyse temporal changes in 

DCG across three years and extended to delineate outlines for different glaciers in a cross-glacier 

analysis. 

 

The thesis addressed the following research questions: 

 

RQ1 How can land surface temperature data be used effectively to distinguish between periglacial 

and supraglacial debris in glaciated regions? 

 

The methodology developed incorporates LST to distinguish between PGD and SGD for DCGs. While 

LST alone is insufficient to make this distinction due to its coarse resolution, resulting in mixed pixels, 

and the influence of factors such as surface temperature variability and debris thickness, it proved 

valuable when combined with additional input data. This integration allowed LST to contribute effectively 

to the mapping of DCG extent and the delineation of outlines.  

The methodology achieved generally satisfactory results, with overall high validation accuracies in 

delineating DCG areas. However, some limitations remain. The classifier occasionally misclassified 

outlying patches or areas in the glacier forefield as DCG or failed to identify some DCG regions on the 

main glacier body. The causes of these misclassifications could not always be determined, highlighting 

the need for further refinement of the method to improve its robustness and reliability. 

 

RQ2 What is the potential for applying the developed methodology to refine glacier outlines and 

assess glacier changes of debris-covered glaciers across different regions, and what are its 

limitations in terms of scalability and robustness?  

 

The methodology was applied to five different glaciers to assess its potential in different regions and 

time periods. Only open-source data was used to ensure global applicability to DCGs. Two approaches, 

Approach II and Approach III, were developed and tested for their transferability to map DCG in different 

regions. Of these, Approach II consistently outperformed Approach III in both validation accuracy and 

quality of visualised results across all glaciers and years tested. Approach II is therefore recommended 

for future applications. The developed methodology, specifically Approach II, shows promise as an 

additional tool for refining glacier outlines for any year and glacier for which data are available. By using 

open-source data, the method can be applied globally and across different time periods.  

Although the developed method has proven its usefulness, there are still several limitations that may 

affect its scalability and robustness. The methodology still relies on visual inspection of results, and 

manual adjustment of thresholds could in some cases improve the effective discrimination between DCG 

and non-DCG. 
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A significant challenge is the reliance on coarse resolution LST data, which often results in mixed pixels 

that obscure the distinction of DCG contours. In addition, variations in debris thickness can attenuate 

the thermal signal from the underlying ice, making it difficult to interpret LST data to refine DCG 

contours. Topographic effects such as slope and aspect also influence LST, further limiting its direct 

applicability without complementary data sources. 

To address these issues, the methodology incorporates a variety of additional input data to improve 

classification accuracy and mitigate the limitations of LST. The use of multiple band combinations and 

their integration into a composite classification framework has been shown to improve the robustness 

of the methodology across different regions. This approach accounts for the variability in DCG 

characteristics between different glacier types and climatic settings. 

Validation of the methodology was limited by the availability of ground reference data, which restricted 

assessments to specific glaciers and time periods. Extending the validation dataset to a wider range of 

glacier types and climatic conditions will be crucial to further improve the scalability and robustness of 

the approach. 

 

RQ4  How can the developed methodology complement existing glacier inventories, such as the 

Randolph Glacier Inventory (RGI) or the Swiss Glacier Inventory (SGI), to improve the accuracy 

of DCG delineation? 

 

The developed methodology addresses a key limitation of the Randolph Glacier Inventory (RGI), which 

lacks explicit outlines of DCGs, by providing a means to delineate these areas. This extension could refine 

RGI data for both historical periods (~2000, consistent with RGI outlines) and more recent years, 

providing a valuable update to its global dataset.  

In contrast, the Swiss Glacier Inventory (SGI) achieves high precision in glacier mapping through 3D 

visualisation and expert analysis but is limited to Switzerland. While the developed method cannot match 

the detail of the SGI due to its reliance on open-source satellite imagery, it provides a scalable, 

automated alternative suitable for global application. It can serve as an efficient means of delineating 

DCG, particularly in regions where extensive expert work or high-resolution datasets are not available.  

 

8.2 Outlook 

The method will benefit from forthcoming advances in remote sensing technologies, in particular the 

expected launch of new satellite missions by 2028. These missions will provide higher resolution TIR 

data, both in spatial detail and with more frequent revisits, which is particularly important in high alpine 

environments where cloud cover often obscures observations. 

An important next step is to extend the methodology, in particular Approach II, to analyse more recent 

years and a wider range of glaciers. This would allow further refinement and validation of its effectiveness 

across different glacier types and regions. However, the current limitations of ground reference data, 

particularly on a global scale, limit the ability to perform quantitative statistical analyses on 

contemporary datasets. To address this, the methodology would benefit from targeted qualitative 

assessments of model performance for selected glaciers in recent years, providing insights into its 

adaptability and reliability under varying conditions.  
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Currently, the methodology relies on individual Landsat scenes as the data base, which have been 

manually selected to ensure that they are free of clouds, snow, shadows and other disturbances. A 

potential improvement could be the implementation of a composite-based approach, which would 

increase automation and potentially improve the availability of suitable input data. This approach could 

address situations where a glacier is partially clouded in several scenes, allowing the construction of a 

complete dataset by combining cloud-free sections from different scenes. 

In addition, the use of LST values averaged over an entire summer season could be explored to mitigate 

the daily variability caused by changing weather conditions. While this approach is currently limited by 

the availability of suitable LST data, upcoming satellite missions are expected to improve not only the 

spatial but also the temporal resolution of LST datasets. These advances would allow the generation of 

more robust seasonal composites, further improving the accuracy and reliability of the methodology. 

These refinements and extensions would not only refine the methodology, but also position it as a 

valuable tool for integrating new remote sensing datasets into glacier monitoring frameworks. By filling 

gaps in existing glacier inventories and addressing current limitations in DCG delineation, the 

methodology can contribute to a more accurate and comprehensive understanding of glacier dynamics 

at both regional and global scales.  



75 

 

Acknowledgements 

I would like to thank my supervisors from the Remote Sensing Laboratories at the University of Zürich 

for their invaluable guidance and support throughout this thesis. Firstly, I would like to thank Gabriele 

Bramati for his patience in addressing my many questions and for guiding me through the entire 

process. I also wish to thank Dr. Kathrin Naegeli for her expertise and insightful feedback, which greatly 

contributed to the refinement of this work. Special thanks go to Dr. Hendrik Wulf for his assistance 

with Google Earth Engine and his creative problem-solving ideas. Their combined support has been 

instrumental in the completion of this thesis. 

I also thank Dr. Andreas Linsbauer from the Glaciology and Geomorphodynamics group at the 

University of Zürich for his valuable insights into the SGI products. 

 

  

  



76 

 

References 

Acharya, T. D., & Yang, I. (2015). Exploring Landsat 8. International Journal of IT, Engineering and 

Applied Sciences Research (IJIEASR), 4(4), 4–10. 

Agrawala, S., Raksakulthai, V., van Aalst, M., Larsen, P., Smith, J., & Reynolds, J. (2003). Development 

and Climate Change in Nepal: Focus on Water Resources and Hydropower. Organisation for Economic 

Co-Operation and Development (OECD). 

Aguayo, R., Maussion, F., Schuster, L., Schaefer, M., Caro, A., Schmitt, P., Mackay, J., Ultee, L., Leon-

Muñoz, J., & Aguayo, M. (2023). Assessing the glacier projection uncertainties in the Patagonian Andes 

(40–56° S) from a catchment perspective. Glaciers/Glacier Hydrology. 

https://doi.org/10.5194/egusphere-2023-2325 

Alexander, C. (2020). Normalised difference spectral indices and urban land cover as indicators of land 

surface temperature (LST). International Journal of Applied Earth Observation and Geoinformation, 86, 

102013. https://doi.org/10.1016/j.jag.2019.102013 

Alifu, H., Tateishi, R., & Johnson, B. (2015). A new band ratio technique for mapping debris-covered 

glaciers using Landsat imagery and a digital elevation model. International Journal of Remote Sensing, 

36(8), 2063–2075. 

Attaullah, H., Khan, A., Khan, M., Atta, H., & Iqbal, M. S. (2023). Implications of Accuracy of Global 

Glacier Inventories in Hydrological Modeling: A Case Study of the Western Himalayan Mountain Range. 

Water, 15(22), 3887. https://doi.org/10.3390/w15223887 

Azzoni, R. S. (2017). The dark side of the ice: Glaciological and biological aspects of supraglacial debris 

[Doctoral Thesis, Università degli Studi di Milano]. https://doi.org/10.13130/r-s-azzoni_phd2017-02-24 

Barsi, J. A., Schott, J. R., Hook, S. J., Raqueno, N. G., Markham, B. L., & Radocinski, R. G. (2014). Landsat-8 

Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration. Remote Sensing, 6(11), 11607–11626. 

https://doi.org/10.3390/rs61111607 

Bauder, A., Funk, M., & Gudmundsson, G. H. (2003). The ice-thickness distribution of Unteraargletscher, 

Switzerland. Annals of Glaciology, 37, 331–336. https://doi.org/10.3189/172756403781815852 

Bechtel, B. (2015). A New Global Climatology of Annual Land Surface Temperature. Remote Sensing, 7, 

2851–2870. https://doi.org/10.3390/rs70302850 

Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future 

directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31. 

https://doi.org/10.1016/j.isprsjprs.2016.01.011 

Biddle, D. (2015). Mapping debris-covered glaciers in the Cordillera Blanca, Peru: An object-based image 

analysis approach. [University of Louisville]. https://ir.library.louisville.edu/etd/2220 

Bolch, T., Buchroithner, M., Kunert, A., & Kamp, U. (2007). Automated delineation of debris-covered 

glaciers based on ASTER data. In GeoInformation in Europe, Proceedings 27th Annual Symposium 

European Association of Remote Sensing Laboratories (EARSeL) (pp. 403–410). Millpress. 

Buckley, S. M., Agram, P. S., Belz, J. E., Crippen, R. E., Gurrola, E. M., Hensley, S., Kobrick, M., Lavalle, M., 

Martin, J. M., Neumann, M., Nguyen, Q. D., Rosen, P. A., Shimada, J. G., Simard, M., & Tung, W. W. 

(2020). NASADEM. National Aeronautics and Space Administration, Jet Propulsion Labratory. 



77 

 

Bundesamt für Landestopografie swisstopo. (2005). Aerial Images swisstopo color (Version 20050817) 

[Dataset]. 

https://map.geo.admin.ch/#/map?lang=en&center=2616828.2,1094051&z=8&topic=ech&layers=ch.s

wisstopo.lubis-luftbilder_farbe@year=all@features=lubis-luftbilder_farbe_000-293-

635&bgLayer=ch.swisstopo.pixelkarte-farbe&featureInfo=default 

Bundesamt für Landestopografie swisstopo. (2022). swissALTI3D Das hoch aufgelöste Terrainmodell der 

Schweiz. Schweizerische Eidgenossenschaft. 

CGI-CNR (Comitato Glaciologico Italiano & Consiglio Nazionale delle Ricerche). (2024). Inventory of 

Italian Glaciers. CGI Italian Glaciers BETA Version V.1. 

https://repo2.igg.cnr.it/ghiacciaiCGI/ghiacciai_new.html 

Colombero, C., Comina, C., De Toma, E., Franco, D., & Godio, A. (2019). Ice Thickness Estimation from 

Geophysical Investigations on the Terminal Lobes of Belvedere Glacier (NW Italian Alps). Remote 

Sensing, 11(7), 805. https://doi.org/10.3390/rs11070805 

Copernicus. (2018). Copernicus DEM [Dataset]. Deutsches Zentrum für Luft- und Raumfahrt (DLR) e.V. 

2010-2014 and Airbus Defence and Space GmbH 2014-2018 provided under COPERNICUS by the 

European Union and ESA. 

Dash, P., Göttsche, F.-M., Olsesen, F. S., & Fischer, H. (2002). Land Surface Temperature and Emissivity 

Estimation from Passive Sensor Data: Theory and Practice-Current Trends. International Journal of 

Rempote Sensing, 23(13), 2563–2581. https://doi.org/10.1080/01431160110115041 

De Reu, J., Bourgeois, J., Bats, M., Zwertvaegher, A., Gelorini, V., De Smedt, P., Chu, W., Antrop, M., De 

Maeyer, P., Finke, P., Van Meirvenne, M., Verniers, J., & Crombé, P. (2013). Application of the 

topographic position index to heterogeneous landscapes. Geomorphology, 186, 39–49. 

https://doi.org/10.1016/j.geomorph.2012.12.015 

Earth Resources Observation and Science (EROS) Center. (2020). Collection-2 Landsat 8-9 OLI 

(Operational Land Imager) and TIRS (Thermal Infrared Sensor) Level-1 Data Products [Other]. U.S. 

Geological Survey. https://doi.org/10.5066/P975CC9B 

ESA. (2020, November 16). LSTM (Land Surface Temperature Monitoring) Copernicus. eoPortal. 

https://www.eoportal.org/satellite-missions/lstm#references 

ESA. (2022, December 2). TRISHNA (Thermal infraRed Imaging Satellite for High-resolution Natural 

resource Assessment). eoPortal. https://www.eoportal.org/satellite-missions/trishna 

Fahrland, E., Paschko, H., Jacob, P., & Kahabka, H. (2022). Copernicus Digital Elevation Model, Product 

Handbook. Airbus Defence and Space GmbH. 

Fischer, M., Huss, M., Barboux, C., & Hoelzle, M. (2014). The new Swiss Glacier Inventory SGI2010: 

Relevance of using high-resolution source data in areas dominated by very small glaciers. Arctic, 

Antarctic, and Alpine Research, 46(4), 933–945. 

Fyffe, C. L., Brock, B. W., Kirkbride, M. P., Mair, D. W. F., Arnold, N. S., Smiraglia, C., Diolaiuti, G., & Diotri, 

F. (2019). Do debris-covered glaciers demonstrate distinctive hydrological behaviour compared to clean 

glaciers? https://doi.org/10.17863/CAM.36254 

GEE. (2023a). Convolutions | Google Earth Engine [Based on work created and shared by Google and 

used according to terms described in the Creative Commons 4.0 Attribution License]. Google for 

Developers. https://developers.google.com/earth-engine/guides/image_convolutions 



78 

 

GEE. (2023b). Ee.Image.gradient | Google Earth Engine [Based on work created and shared by Google 

and used according to terms described in the Creative Commons 4.0 Attribution License]. Google for 

Developers. https://developers.google.com/earth-engine/apidocs/ee-image-gradient 

GEE. (2023c). Ee.Image.normalizedDifference | Google Earth Engine [Based on work created and shared 

by Google and used according to terms described in the Creative Commons 4.0 Attribution License]. 

Google for Developers. https://developers.google.com/earth-engine/apidocs/ee-image-

normalizeddifference 

GEE. (2023d). Ee.Terrain.aspect | Google Earth Engine [Based on work created and shared by Google 

and used according to terms described in the Creative Commons 4.0 Attribution License]. Google for 

Developers. https://developers.google.com/earth-engine/apidocs/ee-terrain-aspect 

GEE. (2023e). Ee.Terrain.slope | Google Earth Engine [Based on work created and shared by Google and 

used according to terms described in the Creative Commons 4.0 Attribution License]. Google for 

Developers. https://developers.google.com/earth-engine/apidocs/ee-terrain-slope 

GEE. (2024). Google for Developers [Based on work created and shared by Google and used according 

to terms described in the Creative Commons 4.0 Attribution License]. Google Earth Engine (GEE) 

Documenation. https://developers.google.com/earth-engine/apidocs 

GLAMOS. (2022). The Swiss Glaciers 1880-2021/22 [Glaciological Reports No 1-142, Yearbooks of the 

Cryospheric Commission of the Swiss Academy of Sciences (SCNAT), published since 1964]. VAW / ETH 

Zurich. https://doi.glamos.ch/pubs/glrep/glrep_series.html 

GLAMOS. (2023). The Swiss Glaciers 1880-2022/23 [Glaciological Reports No 1-142, Yearbooks of the 

Cryospheric Commission of the Swiss Academy of Sciences (SCNAT), published since 1964]. VAW / ETH 

Zurich. doi:10.18752/glrep_series 

Hall, D. K., Riggs, G. A., & Salomonson, V. V. (1995). Development of methods for mapping global snow 

cover using moderate resolution imaging spectroradiometer data. Remote Sensing of Environment, 

54(2), 127–140. https://doi.org/10.1016/0034-4257(95)00137-P 

Haranadhdy, B. R., & Karthikeyan, P. R. (2022). Classification of Fire and Smoke Images using Decision 

Tree Algorithm in Comparison with Logistic Regression to Measure Accuracy, Precision, Recall, F-score. 

2022 14th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics 

(MACS), 1–5. https://doi.org/10.1109/MACS56771.2022.10022449 

Herreid, S., & Pellicciotti, F. (2020). The state of rock debris covering Earth’s glaciers. Nature Geoscience, 

13(9), 621–627. https://doi.org/10.1038/s41561-020-0615-0 

Holzman, M. E., Rivas, R. E., & Bayala, M. I. (2021). Relationship between TIR and NIR-SWIR as Indicator 

of Vegetation Water Availability. Remote Sensing, 13(17), 3371. https://doi.org/10.3390/rs13173371 

Huang, Q., & Cai, Y. (2009). Mapping Karst Rock in Southwest China. Mountain Research and 

Development, 29(1), 14–20. https://doi.org/10.1659/mrd.857 

Hulley, G., & Hook, S. (2015). The ASTER Global Emissivity Database (ASTER GED) (No. Version 3.0). Jet 

Propulsion Laboratory, California Institute of Technology. 

Huss, M., Sugiyama, S., Bauder, A., & Funk, M. (2007). Retreat Scenarios of Unteraargletscher, 

Switzerland, Using a Combined Ice-Flow Mass-Balance Model. Arctic, Antarctic, and Alpine Research, 

39(3), 422–431. https://doi.org/10.1657/1523-0430(06-036)[HUSS]2.0.CO;2 



79 

 

Jawak, S. D., Wankhede, S. F., Luis, A. J., & Balakrishna, K. (2022). Multispectral Characteristics of Glacier 

Surface Facies (Chandra-Bhaga Basin, Himalaya, and Ny-Ålesund, Svalbard) through Investigations of 

Pixel and Object-Based Mapping Using Variable Processing Routines. Remote Sensing, 14(24), 6311. 

https://doi.org/10.3390/rs14246311 

Jimenez-Munoz, J. C., Cristobal, J., Sobrino, J. A., Soria, G., Ninyerola, M., & Pons, X. (2009). Revision of 

the Single-Channel Algorithm for Land Surface Temperature Retrieval From Landsat Thermal-Infrared 

Data. IEEE Transactions on Geoscience and Remote Sensing, 47(1), 339–349. IEEE Transactions on 

Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2008.2007125 

Jouvet, G., Huss, M., Funk, M., & Blatter, H. (2011). Modelling the retreat of Grosser Aletschgletscher, 

Switzerland, in a changing climate. Journal of Glaciology, 57(206), 1033–1045. 

https://doi.org/10.3189/002214311798843359 

Karimi, N., Farokhnia, A., Karimi, L., Eftekhari, M., & Ghalkhani, H. (2012). Combining optical and thermal 

remote sensing data for mapping debris-covered glaciers (Alamkouh Glaciers, Iran). Cold Regions 

Science and Technology, 71, 73–83. https://doi.org/10.1016/j.coldregions.2011.10.004 

Kaushik, S., Singh, T., Bhardwaj, A., Joshi, P. K., & Dietz, A. J. (2022). Automated Delineation of 

Supraglacial Debris Cover Using Deep Learning and Multisource Remote Sensing Data. Remote 

Sensing, 14(6), 1352. https://doi.org/10.3390/rs14061352 

Koetz, B., Bastiaanssen, W., Berger, M., Defourney, P., Del Bello, U., Drusch, M., Drinkwater, M., Duca, R., 

Fernandez, V., Ghent, D., Guzinski, R., Hoogeveen, J., Hook, S., Lagouarde, J.-P., Lemoine, G., Manolis, I., 

Martimort, P., Masek, J., Massart, M., … Sobrino, J. (2018). High Spatio- Temporal Resolution Land 

Surface Temperature Mission—A Copernicus Candidate Mission in Support of Agricultural Monitoring. 

IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 

8160–8162. https://doi.org/10.1109/IGARSS.2018.8517433 

Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F., & Immerzeel, W. W. (2017). Impact of a global 

temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature, 549(7671), 257–260. 

https://doi.org/10.1038/nature23878 

Lagouarde, J.-P., Bhattacharya, B. K., Crebassol, P., Gamet, P., Babu, S. S., Boulet, G., Briottet, X., 

Buddhiraju, K. M., Cherchali, S., Dadou, I., Dedieu, G., Gouhier, M., Hagolle, O., Irvine, M., Jacob, F., 

Kumar, A., Kumar, K. K., Laignel, B., Mallick, K., … Ramakrishnan, R. (2018). The Indian-French Trishna 

Mission: Earth Observation in the Thermal Infrared with High Spatio-Temporal Resolution. IGARSS 2018 

- 2018 IEEE International Geoscience and Remote Sensing Symposium, 4078–4081. 

https://doi.org/10.1109/IGARSS.2018.8518720 

Langhammer, L., Rabenstein, L., Schmid, L., Bauder, A., Grab, M., Schaer, P., & Maurer, H. (2019). Glacier 

bed surveying with helicopter-borne dual-polarization ground-penetrating radar. Journal of Glaciology, 

65(249), 123–135. https://doi.org/10.1017/jog.2018.99 

Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I. F., & Sobrino, J. A. (2013). Satellite-derived 

land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131, 14–37. 

https://doi.org/10.1016/j.rse.2012.12.008 

Li, Z.-L., Wu, H., Duan, S.-B., Zhao, W., Ren, H., Liu, X., Leng, P., Tang, R., Ye, X., Zhu, J., Sun, Y., Si, M., Liu, 

M., Li, J., Zhang, X., Shang, G., Tang, B.-H., Yan, G., & Zhou, C. (2023). Satellite Remote Sensing of Global 

Land Surface Temperature: Definition, Methods, Products, and Applications. Reviews of Geophysics, 

61(1), e2022RG000777. https://doi.org/10.1029/2022RG000777 



80 

 

Linsbauer, A., Huss, M., Hodel, E., Bauder, A., Fischer, M., Weidmann, Y., Bärtschi, H., & Schmassmann, E. 

(2021). The New Swiss Glacier Inventory SGI2016: From a Topographical to a Glaciological Dataset. 

Frontiers in Earth Science, 9, 704189. https://doi.org/10.3389/feart.2021.704189 

Malakar, N. K., Hulley, G. C., Hook, S. J., Laraby, K., Cook, M., & Schott, J. R. (2018). An Operational Land 

Surface Temperature Product for Landsat Thermal Data: Methodology and Validation. IEEE Transactions 

on Geoscience and Remote Sensing, 56(10), 5717–5735. IEEE Transactions on Geoscience and Remote 

Sensing. https://doi.org/10.1109/TGRS.2018.2824828 

Malbéteau, Y., Merlin, O., Gascoin, S., Gastellu, J. P., Mattar, C., Olivera-Guerra, L., Khabba, S., & Jarlan, L. 

(2017). Normalizing land surface temperature data for elevation and illumination effects in 

mountainous areas: A case study using ASTER data over a steep-sided valley in Morocco. Remote 

Sensing of Environment, 189, 25–39. https://doi.org/10.1016/j.rse.2016.11.010 

Markham, B. L., Storey, J. C., Williams, D. L., & Irons, J. R. (2004). Landsat sensor performance: History 

and current status. IEEE Transactions on Geoscience and Remote Sensing, 42(12), 2691–2694. 

https://doi.org/10.1109/TGRS.2004.840720 

Maussion, F., Hock, R., Paul, F., Raup, B., Rastner, P., Zemp, M., Andreassen, L., Barr, I., Bolch, T., 

Kochtitzky, W., McNabb, R., & Tielidze, L. (2023). The Randolph Glacier Inventory version 7.0 User guide 

v1.0. https://doi.org/doi:10.5281/zenodo.8362857 

McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of 

open water features. International Journal of Remote Sensing. 

https://doi.org/10.1080/01431169608948714 

Mellor, A., Boukir, S., Haywood, A., & Jones, S. (2015). Exploring issues of training data imbalance and 

mislabelling on random forest performance for large area land cover classification using the ensemble 

margin. ISPRS Journal of Photogrammetry and Remote Sensing, 105, 155–168. 

https://doi.org/10.1016/j.isprsjprs.2015.03.014 

Mitkari, K. V., Arora, M. K., Tiwari, S. P., Sofat, S., Gusain, H. S., & Tiwari, R. K. (2022). Large-Scale Debris 

Cover Glacier Mapping Using Multisource Object-Based Image Analysis Approach. Remote Sensing, 

14(3202). https://doi.org/10.3390/ rs14133202 

Mölg, N., Bolch, T., Walter, A., & Vieli, A. (2019). Unravelling the evolution of Zmuttgletscher and its 

debris cover since the end of the Little Ice Age. The Cryosphere, 13(7), 1889–1909. 

https://doi.org/10.5194/tc-13-1889-2019 

Mölg, N., Ferguson, J., Bolch, T., & Vieli, A. (2020). On the influence of debris cover on glacier 

morphology: How high-relief structures evolve from smooth surfaces. Geomorphology, 357, 107092. 

https://doi.org/10.1016/j.geomorph.2020.107092 

Nainwal, H. C., Banerjee, A., Shankar, R., Semwal, P., & Sharma, T. (2016). Shrinkage of Satopanth and 

Bhagirath Kharak Glaciers, India, from 1936 to 2013. Annals of Glaciology, 57(71), 131–139. 

https://doi.org/10.3189/2016AoG71A015 

Nakawo, M., Iwata, S., Watanabe, O., & Yoshida, M. (1986). Processes which Distribute Supraglacial 

Debris on the Khumbu Glacier, Nepal Himalaya. Annals of Glaciology, 8, 129–131. 

https://doi.org/10.3189/S0260305500001294 

NASA JPL. (2020). NASADEM Merged DEM Global 1 arc second V001 [Dataset]. NASA EOSDIS Land 

Processes DAAC. https://doi.org/doi:10.5067/MEaSUREs/NASADEM/NASADEM_HGT.001 



81 

 

Nunchhani, V., Hazarika, S., Murtem, R., Bandyopadhyay, A., & Bhadra, A. (2024). Analysis of the 

temporal variations in glaciers’ surface area in Alaknanda River Basin, Uttarakhand. Journal of Water 

and Climate Change, 00(0), 2–17. https://doi.org/10.2166/wcc.2024.593 

Paul, F., Kääb, A., Maisch, M., Kellenberger, T., & Haeberli, W. (2004). Rapid disintegration of Alpine 

glaciers observed with satellite data. Geophysical Research Letters, 31(21), 2004GL020816. 

https://doi.org/10.1029/2004GL020816 

Peña-Haro, S., Lukes, R., Carrel, M., & Lüthi, B. (2021). Image-based flow measurements in wide rivers 

using a multi-view approach. Interpraevent Conference Proceedings, 146–153. 

Pope, A., & Rees, G. (2014). Using in situ spectra to explore Landsat classification of glacier surfaces. 

International Journal of Applied Earth Observation and Geoinformation, 27, 42–52. 

https://doi.org/10.1016/j.jag.2013.08.007 

Qiu, S., Zhu, Z., Olofsson, P., Woodcock, C. E., & Jin, S. (2023). Evaluation of Landsat image compositing 

algorithms. Remote Sensing of Environment, 285, 113375. https://doi.org/10.1016/j.rse.2022.113375 

Ranzi, R., Grossi, G., Iacovelli, L., & Taschner, S. (2004). Use of multispectral ASTER images for mapping 

debris-covered glaciers within the GLIMS Project. In International Geoscience and Remote Sensing 

Symposium (IGARSS) (Vol. 2, p. 1147). https://doi.org/10.1109/IGARSS.2004.1368616 

Raper, S. C. B., & Braithwaite, R. J. (2006). Low sea level rise projections from mountain glaciers and 

icecaps under global warming. Nature, 439(7074), 311–313. https://doi.org/10.1038/nature04448 

RGI 7.0 Consortium. (2023). Randolph Glacier Inventory—A Dataset of Global Glacier Outlines (Version 

Version 7.0) [Dataset]. Boulder; National Snow and Ice Data Center. 

https://doi.org/10.5067/f6jmovy5navz 

Salvatore, M. C., Zanoner, T., Baroni, C., Carton, A., Banchieri, F. A., Viani, C., Giardino, M., & Perotti, L. 

(2015). The state of Italian glaciers: A snapshot of the 2006-2007 hydrological period. Geografia Fisica e 

Dinamica Quaternaria, 38(2), 175–198. 

Scherler, D., Bookhagen, B., & Strecker, M. R. (2011a). Hillslope-glacier coupling: The interplay of 

topography and glacial dynamics in High Asia. Journal of Geophysical Research: Earth Surface, 116(F2). 

https://doi.org/10.1029/2010JF001751 

Scherler, D., Bookhagen, B., & Strecker, M. R. (2011b). Spatially variable response of Himalayan glaciers 

to climate change affected by debris cover. Nature Geoscience, 4(3), 156–159. 

https://doi.org/10.1038/ngeo1068 

Schimel, D. S., & Poulter, B. (2022). The Earth in Living Color—NASA’s Surface Biology and Geology 

Designated Observable. 2022 IEEE Aerospace Conference (AERO), 1–6. 

https://doi.org/10.1109/AERO53065.2022.9843640 

Schmidt, G., Jenkerson, C. B., Masek, J., Vermote, E., & Gao, F. (2013). Landsat ecosystem disturbance 

adaptive processing system (LEDAPS) algorithm description. In Open-File Report (Nos. 2013–1057). U.S. 

Geological Survey. https://doi.org/10.3133/ofr20131057 

Shah, S. S., Banerjee, A., Nainwal, H. C., & Shankar, R. (2019). Estimation of the total sub-debris ablation 

from point-scale ablation data on a debris-covered glacier. Journal of Glaciology, 65(253), 759–769. 

https://doi.org/10.1017/jog.2019.48 



82 

 

Sharda, S., & Srivastava, M. (2024). Mapping of Debris-Covered Glaciers Using Object-Based Machine 

Learning Technique. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-

024-01832-2 

Shukla, A., Gupta, R. P., & Arora, M. K. (2010). Delineation of debris-covered glacier boundaries using 

optical and thermal remote sensing data. Remote Sensing Letters, 1(1), 11–17. 

https://doi.org/10.1080/01431160903159316 

Skakun, S., Vermote, E. F., Roger, J.-C., Justice, C. O., & Masek, J. G. (2019). Validation of the LaSRC 

Cloud Detection Algorithm for Landsat 8 Images. IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing, 12(7), 2439–2446. IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2019.2894553 

Taloor, A. K., Manhas, D. S., & Kothyari, G. C. (2021). Retrieval of land surface temperature, normalized 

difference moisture index, normalized difference water index of the Ravi basin using Landsat data. 

Applied Computing and Geosciences, 9, 100051. https://doi.org/10.1016/j.acags.2020.100051 

Taschner, S., & Ranzi, R. (2002). Comparing the opportunities of Landsat-TM and Aster data for 

monitoring a debris covered glacier in the Italian Alps within the GLIMS project. IEEE International 

Geoscience and Remote Sensing Symposium, 2, 1044–1046. 

https://doi.org/10.1109/IGARSS.2002.1025770 

USGS. (2021). Landsat Collection 2 Level-2 Science Products. In Fact Sheet (Nos. 2021–3055). U.S. 

Geological Survey. https://doi.org/10.3133/fs20213055 

Vincent, O., & Folorunso, O. (2009). A Descriptive Algorithm for Sobel Image Edge Detection. InSITE 

2009: Informing Science + IT Education Conference. https://doi.org/10.28945/3351 

Xu, X., Xu, S., Jin, L., & Song, E. (2011). Characteristic analysis of Otsu threshold and its applications. 

Pattern Recognition Letters, 32(7), 956–961. https://doi.org/10.1016/j.patrec.2011.01.021 

Zeller, L., McGrath, D., & McCoy, S. W. (2022). Supraglacial lakes on debris-covered glaciers: High 

resolution observations of subseasonal lake expansion, drainage, and the controlling processes. C52E-

0400. AGU Fall Meeting Abstracts. 

  



83 

 

Appendix  

A Google Earth Engine Scripts 

The scripts can be accessed via Google Earth Engine (GEE), or via a Github repository. 

 

Access to the complete GEE repository: 

https://code.earthengine.google.com/?accept_repo=users/lorenamueller/Refine_DCG_Outlines 

 

The individual scripts can be accessed in GEE using the following links:  

1. Data selection and generation of input layers : 

https://code.earthengine.google.com/c9ec0115fe6a3a9cf7caba6d3d026777 

2. DCG classification 

2.1 Temporal change analysis : 

https://code.earthengine.google.com/edc08407b2806461cf9ed1f6c3236dac 

2.2 Cross-glacier analysis Approach I : 

https://code.earthengine.google.com/ec3a2c3f327361dec06de5abec84afdd 

2.3 Cross-glacier analysis Approch II : 

https://code.earthengine.google.com/f99ef368609dc8816f57b6391595de75 

2.4 Cross-glacier analysis Approch III : 

https://code.earthengine.google.com/42f0f4394a22b95070c2a2f69a2afe96 

 

For a complete workflow, first the data selection and generation of input layers must be run, either 

based on manually selected single scenes or on the creation of a composite image (can be selected 

inside the script). The generated layers are then used for classification with any of the introduced 

approaches in a next step. 

 

Github repository: https://github.com/LorenaMueller/refine_DCG_outlines 

 

  

https://code.earthengine.google.com/?accept_repo=users/lorenamueller/Refine_DCG_Outlines
https://code.earthengine.google.com/c9ec0115fe6a3a9cf7caba6d3d026777
https://code.earthengine.google.com/edc08407b2806461cf9ed1f6c3236dac
https://code.earthengine.google.com/ec3a2c3f327361dec06de5abec84afdd
https://code.earthengine.google.com/f99ef368609dc8816f57b6391595de75
https://code.earthengine.google.com/42f0f4394a22b95070c2a2f69a2afe96
https://github.com/LorenaMueller/refine_DCG_outlines
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B Classification Results 
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Final Classification mask 2016 

 

Figure B 1: Classification results of Temporal changes, Unteraargletscher. The colorbar in the final classification sum 

shows the number of times a pixel was classified as DCG by the different band combinations. 
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Ground reference 2010 
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Ground reference 2016 

 

Final Classification sum 2016 

 

Final Classification mask 2016 

 

Figure B 2: Classification results of Temporal changes, Oberaletschgletscher.  
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Ground reference 2003 

 

Final Classification sum 2003 

 

Final Classification mask 2003 
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Figure B 3: Classification results of Cross-glacier analysis, Approach I, Unteraargletscher. 
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Figure B 4: Classification results of Cross-glacier analysis, Approach I, Oberaletschgletscher. 
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Figure B 5: Classification results of Cross-glacier analysis, Approach I, Belvedere glacier. 
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Figure B 6: Classification results of Cross-glacier analysis, Approach I, Satopanth glacier 
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Figure B 7: Classification results of Cross-glacier analysis, Approach II, Unteraargletscher. 
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Figure B 8: Classification results of Cross-glacier analysis, Approach II, Oberaletschgletscher. 
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Figure B 9: Classification results of Cross-glacier analysis, Approach III, Unteraargletscher. 
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Figure B 10: Classification results of Cross-glacier analysis, Approach III, Oberaletschgletscher. 
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Figure B 11: Classification results of Cross-glacier analysis, Approach III, Belvedere glacier. 
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Figure B 12: Classification results of Cross-glacier analysis, Approach III, Satopanth glacier. 
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Glacier outlines (current) 

 

Gradient 

 

 

Figure C 1: Overview of the input layers for the Random Forest Classification, for Zmuttgletscher 2016. All input 

layers were scaled to a value range of [0, 1]. The inclusion of Glacier outlines (current) as displayed here corresponds 

to the input dataset of temporal change analysis and cross-glacier analysis Approach I. 

 

D Ground reference for 2003 and 2010 

   

Figure D 1: Creation of ground reference exemplary for Belvedere glacier 2003, with (a) mask of RGI 7.0 glacier 

outlines (with 0 = no glacier and 1 = glacier), (b) mask of the Normalised Difference Snow Index (NDSI) after 

applying a threshold of 0.4 (with 0 = no snow/ice and 1 = snow/ice), and (c) resulting ground reference after 

subtracting the NDSI mask from the RGI outlines (with 0 = no DCG and 1 = DCG). 

 

a b c 
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E Cross-comparison of normalised difference indices with LST   
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Figure E 1: Complete comparison of the bands tested in a normalised difference index (NDI) with LST, showing the 

grayscales of each band, the normalised difference index with LST, and a scatterplot of the relation between the 

respective band (y-axis) and LST (x-axis), with data points coloured as non-DCG (grey) and DCG (blue), according to 

the SGI2016 debris cover outlines. 
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