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Abstract

This study investigates the credibility of using land surface temperature (LST) data retrieved from
MODIS (Moderate Resolution Imaging Spectroradiometer) satellite images, and this requires com-
paring the acquired MODIS data with data from ground-based stations named as Intercantonal
Measurement and Information System (IMIS). The study was applied for Swiss Alps covering
the period between 2000 and 2023 including four MODIS observation times (i.e., MOD21A1D,
MOD21A1IN, MYD21A1D, and MYD21A1N). The comparative analysis based mainly on a Har-
monic Regression Model which combines harmonic and linear regressions, and enables calculat-
ing the trends for both data sources. Therefore, analytical approaches were applied to support the
comparison and data analysis. Five research questions were primarily identified as a reference for
the achievement of the study. In order to compare the actual measurements, plots were created to
determine the median absolute deviation "MAD-1", R-squared, slope and mean deviation values.
While, comparison between the data means was made using the mean absolute difference "MAD-
2" and Pearson’s correlation values, and a compatibility was found between both data with a
preference for nighttime. For the comparison of trends, it was performed by comparing the trends
of the two data at each specific hour of the day during the four MODIS observation times using
the MAD-2 and Pearson’s correlation values. The comparison was also made between the mean of
the trend data of both datasets using the mean absolute error (MAE) and standard deviation val-
ues. Determining the most representative observation time required to compare IMIS trend data
at each of the MODIS observation times with the overall trends, the comparison was made using
MAD-2 and Pearson’s correlation values. It revealed that MOD21A1D observation time has the
best representativeness of trends. In order to investigate factors resulting changes in data; how-
ever, changes in IMIS data was compared with the elevation and aspect of ground stations; while
MODIS data was compared with the view angle of satellites” sensors. Therefore, elevation does
not show any noticeable effect on IMIS data, except limited LST trend means which is almost low
(< 0.05) at altitudes above 2000 m. This is also the case for the aspect where no relationship with
IMIS trends has been reported. Besides, an effect of the view angle on MODIS measurements was
noticed, but it differs between various observation times. In addition, Landsat 5, 7, and 8 observa-
tion times were utilized for comparison with the representativeness of MODIS observation times;
especially that Landsat images are not acquired at nighttime which is a limitation effecting its ac-
curacy. This study performed a comprehensive analytical approach that facilitates understanding
the relation between MODIS LST and IMIS data and trends. It supports adopting MODIS data
for calculating LST which is significant for future researches on hydroclimate analysis notably
MODIS is a daily source of LST data.
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1 Introduction

1.1 Land Surface Temperature

Land Surface Temperature (LST) is the emission of thermal radiance from land surface as a result
of the incoming solar energy that heats the ground surface or the canopy in vegetated areas. It is a
major component of atmosphere and biosphere, and it relates to surface energy and water balance
that affects the entire ecosystem at local and global scale. Even though, ground-based stations are
used to measure the temperature of any single site, yet for a comprehensive assessment (i.e., large
areal coverage), LST is measured by remote sensing where space-based thermal infrared (TIR)
sensors are used. In this respect, LST is one of the most important Earth System Data Records by
National Aeronautics and Space Administration (NASA) (King, 1999) and other space agencies
(e.g., ESA, CSA, JAXA, etc.) especially LST is a key component of the Earth’s energy balance
system, affecting the energy exchange in the Earth’s landscapes (Dimyati et al., 2024). Several
studies utilized LST for integrated analysis of surface energy balance that extends to the study of
urban heat islands, microclimate, surface soil moisture, evapotranspiration, climate change, etc.
(Hidalgo and Arco, 2022). Studying LST has been recently involved in several research themes.
For example, it predicts mortality due to chronic obstructive pulmonary disease (Mohammadi et
al.,2025); the average LST increase in winter season poses a significant threat to winter agricultural
productivity (Al-Faisal et al., 2021); LST also resulted bad effect on the land cover/use (LCU)
in Central India with increased evapotranspiration and decreased green land and expansion of
barren land (Moharir et al., [2025). In addition, LST is linked with the air temperature which is in
turn increase the melting rate of snowpack and then increasing the runoff, sea level rise, and many
other consequences. Land surface temperature has a wide relevance whether to urban and natural
environments; and thus it is reversibly affected by Earth’s surface components (e.g., urban areas
water bodies, forests, etc.). In this respect, notably that urban areas are unique socio-economic and
ecological environments with heterogeneous mixture of impervious surfaces and many other land
use-land cover (LCU) classes (Dutta et al., 2022). For example, increased urban developments and
LCU changes in Dammam Region, of Saudi Arabia, resulted short-and long-term consequences
including increase in LST of urbanized cities in this region (Rahman et al., [2017). While, LST has
less impact in natural environments with bare rocks and soil are dominant; and therefore, LST
impact can extend to soil moistures, vegetation health, shallow groundwater, etc.; however, LST
has less impact on soil moisture and canopy and wherever forests are dominant.



1.2 Satellite Thermal Sensors and Their Accuracy

Satellite thermal sensors measure the thermal radiation emitted from the Earth’s surface and re-
mote sensing techniques allow the estimation of LST at a spatially averaged pixel scale. Thus,
spatial and temporal LST trends can be extracted using a number of satellite images with thermal
bands (e.g.,, MODIS, Landsat, etc.), and this also enables studying their influencing factors such
as elevation, cloud fraction (CF), atmospheric water vapor (AWYV), and snowpack area. Thermal
infrared data has been extensively used to retrieve LST products for a range of satellites, including
for example AVHRR, MODIS, Landsat, ASTER, and SEVERI (Wang et al., 2015). The retrieval of
LST from satellite data is a complex process influenced by a multitude of factors, from surface
properties (e.g., emissivity, albedo, topography, etc.) to atmospheric conditions (e.g., water vapor,
air temperature, etc.) and observation characteristics including viewing geometries and observa-
tions time (Owe et al., 2008)). However, most of these factors can be addressed to minimize error
ratio; and then, they are validated using ground-based temperature data, such as in this study
where MODIS LST measurements will be compared with Intercantonal Measurement and Infor-
mation System (IMIS). Yet, there are many issues which are still questionable including mainly the
representation of various MODIS LST trends to the overall trend for long time period and exact
identification of the influencing (i.e., derivers) factors and their level of impact. To understand
surface energy exchange, vegetation health, water stress, and urban heat island effects, it is im-
portant to improve the knowledge of diurnal LST spatial and temporal trends that capture the
day-night variations that occur in the data. Recently, many studies have been performed to figure
the impact of increased or decreased LST on physical processes and Earth’s surface components,
such as the variation of LST and wetlands (Muro et al., 2018), agricultural pastoral (Wei et al.,
2021); mangrove forest (Thakur et al., [2021) and LCU changes (Nega and Balew, 2022). In this
regard, diurnal LST trends are always established to figure out short-term changes on the envi-
ronment and human life. Diurnal LST has been recently involved in the Early Warning Systems
(EWSs), such as Famine Early Warning Systems Network (FEWS NET) extended by United States
Geological Survey (USGS). It is also used for supporting climatic data where continuous records
are lacking, or for regions with rugged topography and absent meteorological stations. Past and
future trends of diurnal LST have been also correlated with vegetate cover (Wang et al.,2023).

For multiple acquisitions within a day, multiple sets of Annual Cycle Parameters (ACPs) can be
generated, i.e., ACPs related to morning, noon, afternoon, or night hours (Sismanidis et al., 2016).
Thus, estimations of regional temperature dynamics are provided by LST trends including heat
waves and changes in diurnal temperature, making it a significant parameter in climate studies.
Moreover, the LST is considered an essential climate variable by the Global Climate Observing
System (GCOS) for the assessment of land surface and land-atmosphere exchange processes, as
well as for providing observations of surface temperature changes at global and regional scales
(Trenberth et al.,2013). In rugged topography areas and vulnerable ecosystems such as the Swiss
Alps, there is usually a recognized response to temperature fluctuations that could be detected by
LST trends, where warming and cooling clearly affect snow-melt rates and hydrological cycles.



The accuracy of measured LST remains a challenge; and thus, robust analyses are performed to
improve the accuracy and reduce disparities of data derived from different thermal satellites im-
ages (Liu et al., 2007; Yao et al., 2021; Guo et al., 2022; Abunnasr and Mhawej, 2023; Roy et al.,
2025). To address the problem of LST accuracy in the retrieved thermal data from satellite images,
a comparative analysis with data obtained from ground-based stations will be applied, where the
IMIS ground stations provide granular temperature data that is able to capture local variations
missed by satellite observations. IMIS can serve as a reference data for quantification and vali-
dation of remote-sensing LST products. In particular, LST validation typically involves matching
the retrieved LST datasets obtained from various remote sensing sensors with multiple years of
in-situ data from distributed stations representing different land cover types (Martin et al., 2019).
This represents the concept upon which the idea of this study has been built to quantify LST
trends of the Swiss Alps using MODIS LST data. For Swiss Alps, there are several studies applied
where they utilized satellite images for identifying different themes and calculate their variables.
For example, Fontana et al.,[2008|used AVHRR, VEGETATION, and MODIS NDVI time Series for
grassland phenology in Swiss Alps where IMIS ground-based data were utilized for validation;
while, Foppa and Seiz, 2012| processed MODIS data to determine the variations in snow cover
on Swiss Alps. Besides, Tom et al., 2022 investigated the trends in Swiss Mountain Lakes using
MODIS data. Moreover, Gok et al.,[2024]investigated the LST in Swiss Alps using Landsat images.
Even though, the first three studies used MODIS data, but they did not investigate LST, while the
study elaborated by Gok et al., [2024; analyzed LST, but MODIS LST was not utilized. Therefore,
the novelty of the current study implies the adoption of MODIS data for LST calculation.; espe-
cially that MODIS data can be retrieved on daily basis which is not the case for landsat images
(i.e., 16 days’ revisit time).

1.3 Detection of LST

LST is detected using either ground-based meteorological stations/or lately by the processing of
satellite images for more comprehensive assessment. Each of LST measuring instruments has both
advantages and disadvantages. Ground-based stations can precisely measure LST, but the mea-
surements represent a unique site and the installation of several ground stations is necessary to
create a uniform distribution and this is always a challenge notably in rugged and remote regions.
Besides, LST derived from satellite images lack to the accuracy in many instances, plus the chal-
lenges created from cloud cover, fixed sensor characteristics and many other issues. Therefore,
the integration of both datasets would be more reliable and useful. For ground-based, airborne
and space borne remote sensing instruments, LST is the aggregated radiometric surface temper-
ature of the ensemble of components within the sensor field of view. In both instruments, LST
is determined from thermal emission at wavelengths in either infrared (IR) or microwave (MW)
atmospheric windows. Yet, the advantages of using LST data are still confronting with many gaps
which can be summarized as follows:

1. Confusion often exists between LST and air temperature and their impact on several land



processes (e.g., infiltration, evaporation, etc.) and the related sectors (e.g., water, agriculture,
etc.); and this must be given concern by researchers.

2. Spatial resolution sometimes results imprecise measurements (e.g., MODIS with 250 m;
AVHRR with 1.1 km); while higher spatial resolution images (e.g., Landsat with 30 m) do
not acquire night LST data and this represents a limitation effecting the accuracy of LST.

3. Validation of datasets retrieved from LST is a must, but this is often hindered by the lack of
ground-based stations.

4. Clouds sometimes create problem in retrieving complete scenes for LST. However, robust
methods for filling the gaps in MODIS are applied (e.g., Yao et al., 2021).

5. Rugged topography may cause erroneous results, and this can be also resolved by applying
topographic effect correction (Zhu et al., 2021).

6. There are various technical challenges (e.g., viewing angle) which also influences the accu-
racy of retrieved LST data.

1.4 Motivation and Research Objectives

Recently, measuring LST has been widely used in many studies and research projects to inves-
tigate the linkage between LST and other terrain and LCU components of such surface water
bodies, etc. (Pal and Ziaul, 2017; Balas, [2023)). LST has been lately adopted as a clue for evidenc-
ing climate change and to investigate the relationship between maximum thermal anomalies, heat
waves (Toomey et al.,2011; Abbas et al., 2021), and LST is also tackled to determine the influenced
terrestrial and marine ecosystems, and many hydrological processes such as evaporation, snow-
melt rates (Yang et al., 2015), and it is used to study vegetation health, droughts and forest fires
(Thakur et al., 2023; Zhao et al., 2021; Veraverbeke et al., 2012). The aforementioned applications
of LST make it a major climatic variable that can be integrated in different themes, and this by
itself a motivation to focus on investigation of LST retrieve from various instruments in order to
reach the most creditable, accurate and validated results. Space-based instruments are significant
to acquire consequent LST data (example in figure|1.1); however, there is uncertainty in quantify-
ing LST, with a special emphasis to those obtained from remote sensing sensors, and this has led
to errors in performing various assessments for the investigated climatic and hydrological pro-
cesses and even for urban heat fluxes. Therefore, a precise quantification is needed to improve the

accuracy of space-based LST-and validate it with LST measured by ground stations.
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Figure 1.1: Example showing MODIS LST maps for Swiss Alps. It is a useful tool for monitoring
and LST assessment, but the credibility of such maps can be reached if the results are compared
with ground-based data (i.e., IMIS).

As per figure[1.1)with a comprehensive LST observation, it still requires to be validated by IMIS
ground stations and this is the main objective of this study. It aims to understand if IMIS data
can also validate MODIS LST trends and to what extent these trends at different times represent
the overall trend in LST. The causes of the different LST trends at different time periods will be
investigated. Finally, the implications of the MODIS validation results for the analysis of Landsat
LST measurements will be analyzed. This study contributes to the understanding of the tempo-
ral aspect of LST trends in the Swiss Alpine Region. The context of this study implies with the
following questions:

- RQ1: How well do MODIS LST measurements correspond to IMIS ground stations mea-
surements at different observation times in the Swiss Alps?

— RQ2: How could IMIS ground station observations be used to validate MODIS LST trends
at different observation times in the Swiss Alps?

— RQ3: To what extent do LST trends at different observation times represent the overall trend
at all times?

— RQ4: What causes different LST trends at different observation times?

— RQ5: What are the implications of MODIS comparison results for the accuracy of Landsat
LST observation times?



In order to answer these questions, this study will provide a comprehensive approach of data
analysis that is capable of fulfilling the objectives of the study and suggest some implications
responsible for the improvement of satellite LST data retrieval.



2 Study Area

The study area (Figure 2.T) represents the mountainous Alpine Region of Switzerland, referred
to as the "Swiss Alps ", where it covers 2/3 of Switzerland territory with an area of about 27000
km?. Tt is characterized by a mountainous and rugged topography that extends across the width
of Switzerland from Lake Geneva in the west to the Austrian border in the east, with several

mountain peaks such as Monte Rosa (4,634 m) and Liskamm (4,527 m).
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Figure 2.1: Map for the study area showing the variations in elevation in the Swiss Alps in addi-
tion to the locations of the 80 IMIS stations that are used for IMIS LST data retrieval

The availability of long time series data from ground-based meteorological stations (i.e., IMIS) for

the Swiss Alps is the main reason for the selection of this area; in particular, it gives the opportu-



nity to benefit from the available data sets over long time periods (i.e., 2000-2023), which serves the
objective of this study. Moreover, the terrain of the Swiss Alps motivated the selection of this area
for study; especially that rugged terrain is considered as "topography effect", with high altitude
mountains affects the accuracy of data acquired by satellite imagery. Therefore, the topographic
effect creates ambiguity among the components of the satellite image scene, causing confusion in
accurately determining the categories of LST, LCU, topographic orientation, etc.



3 Data Sources and Materials

In this study, data required for analysis includes two main sources; the ground-based stations and
space-based instruments where the data retrieved from both sources will be compared in order to

reach space-based validated data with optimal accuracy.

3.1 Inter-cantonal Measurement and Information System (IMIS) data

There are 198 stations that form the Intercantonal Measurement and Information System (IMIS).
They are almost located on Jura Region and the Swiss Alps, and they are usually found above
the tree line, mainly between 2000 and 3000 m. These stations are continuously recording every
half hour. The majority of IMIS stations, which give local safety authorities vital information
for public safety in communities and on roads, are situated close to avalanche-prone areas that
could cause significant damage. Additionally, avalanche warning service of the Swiss Federal
Institute for Forest, Snow and Landscape Research(WSL) utilizes these stations for research and
snow-hydrological purposes. IMIS instruments also contain wind and snow dataset which are
responsible for the weather measurements to determine the avalanche threat, are often located
next to each other (Measurement and IMIS, 2023).

3.1.1 Main Data

For validation purpose between MODIS satellite and ground-based data, comprehensive records
from meteorological ground stations must be available with a coverage for the entire period of the
retrieved satellite images. For the Swiss Alps, not all (i.e., 198) IMIS stations are functional, and
only 142 automatic stations have been consequently installed that cover a total of 28 year. They
are producing data on a daily basis, and the measurements are taken every 30 minutes. However,
there are only 80 considered stations (out of 142), since they cover the whole studied time span
between 2000 and 2023 that coincide with the time-retrieval of MODIS images (Figure 3.1).
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Figure 3.1: Color scale visualization showing the yearly availability of IMIS LST data covered the
used stations.

3.1.2 Coordinates and Elevation Data

In order to characterize terrain variations of the 80 filtered stations, coordinates and elevation of
the adopted 80 IMIS ground stations were graphically illustrated. The estimated average elevation
of all stations is about 2288 m. This is also used for understanding the existed variations where LST
data will be acquired. Thus, coordinates and elevation, in addition to other relevant information
(e.g., climatic zone of each station, the real names and abbreviations of the stations) were provided
by the SLF as metadata of the stations.

3.2 Satellite data

Daily MODIS LST datasets were retrieved at 1 km pixel resolution using the Temperature/Emis-
sivity Separation (TES) algorithm, a physics-based algorithm that dynamically retrieves both LST
and spectral emissivity simultaneously from MODIS TIR of bands 29, 31, and 32. The TES algo-
rithm is combined with an improved Water Vapor Scaling (WVS) atmospheric correction scheme
to stabilize the retrieval under warm and humid conditions. The Day/Night algorithm retrieves
day and night LSTs and surface emissivities from pairs of day and night MODIS observations in
seven TIR bands. The product consists of LSTs, quality assessment, observation time, view angle,
and emissivities. There are two MODIS datasets retrieved for this study (Table[3.T). These are

1. MODIS/061/MOD21A1.V6.1 which is derived from MODIS-Terra satellite, which provides
daily LST and emissivity values in a 1-kilometer spatial resolution.

2. MODIS/061/MYD21A1.V6.1, which is almost similar to the previous one, but it is retrieved
by the MODIS-Aqua satellite.

MODIS-Terra satellite provides ascending data in the morning and descending data in the af-
ternoon, while Aqua satellite provides descending data in the morning and ascending data in
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the afternoon. Both products can be retrieved for free from Google Earth Engine (GEE) datasets
(https://developers.google.com/earth-engine/datasets /catalog/modis).

Table 3.1: Characteristics of both MODIS products. Terra satellite provides ascending data
in the morning and descending data in the afternoon, while Aqua satellite provides descend-
ing data in the morning and ascending data in the afternoon. Both products can be re-
trieved for free from Google Earth Engine (GEE) datasets (https://developers.google.com/earth-

engine/datasets/catalog/modis).

Characteristic MOD21A1 (Terra) MYD21A1 (Aqua)
Satellite Terra Aqua
Spatial Resolution 1 km 1 km
Datatype LST and Emissivity LST and Emissivity

Ascending morning:

o 10:49 = 0:29
Observation Times
Descending afternoon:

21:38 £ 0:29

Descending morning;:
12:45 + 0:28
Ascending afternoon:

1:57 £ 0:29

Bands MODIS bands 29, 31, 32 MODIS bands 29, 31, 32

3.2.1 Optical Data Availability

For an easy understanding of the availability of the MODIS data, the time visualization has been
divided into two different availability categories which enable explaining the detailed availability
of data.

3.2.1.1 Yearly Availabilities

In this category, the time visualization (Figures[3.23.3]3.4]3.5) shows the availability of each MODIS
dataset on yearly basis. The color of each square represents the number of observations (counts)
of each specific stations in different years, and the number could be known by referring to color
bar on the right side of each figure.

3.2.1.2 Daily Availabilities

In this category, the time visualization shows the availability of each MODIS dataset during each
hour of the day, which enables visualizing the mean of the data during each hour. The color of
each square represents the number of observations (counts) for each specific stations in different

hours of the day, and the number could be known by referring to color bar on the right side (Figure

3.6).
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3.2.2 Aspect Data

Different acquisition times result geometric changes in the sun-target-sensor configuration, and
such bias may additionally vary with slope and aspect of the topography (Gok et al., 2024). This
makes it necessary to generate the aspects which represents the topographic slope face; and thus
Copernicus DEM (Digital Elevation Model) GLO-30: Global 30m Digital Elevation Model dataset,
which is a precise digital elevation model that describes the earth’s surface including buildings,
infrastructure, and vegetation is used. It is extracted from a modified DSM (Digital Surface Model)
called World DEMé&trade that is derived from radar satellite data during the TanDEM-X Mission.

The extracted list clarifies the variation taking place in aspects of different stations” locations (Fig-

ure3.7)).
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Figure 3.7: The variations in topographic aspects between the locations of different IMIS stations.

3.2.3 View Angle Data

View angle is one of the most critical factors of sensor accuracy, the quantity of light leakage in the
oblique viewing angle changes with the surface pretilt angle, and the positional asymmetry of the
light leakage becomes more erroneous as the pretilt angle grows (Oh et al., 2015). Thus, view angle
must be investigated to deduce any relationship with the changing LST measurements. For this
reason, the list of view angles of each observation at each location of the 80 stations was derived
from the metadata of the four previously mentioned MODIS datasets.
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4 Methods

The main concept upon which the methodology of this study was built includes: i) the preparation
of the retrieve datasets from various sources with suitable (interpolated) data format for further
analysis. ii) In addition, the validation of the prepared datasets retrieved from MODIS instruments
by comparing it with datasets from ground-based stations (IMIS). Even though, both datasets
(MODIS and IMIS) have different temporal coverage; however, the rational implies that IMIS data
has been interpolated for better matching in the temporal resolution with MODIS LST.

4.1 Data preprocessing

4.1.1 IMIS Data Preparation and Interpolation

LST datasets from IMIS ground-based stations are large; especially when counting the existing 142
stations that cover a time span from 1996 to 2024 with 30 minutes measuring interval. However,
the study focuses on the time span only between 2000 to 2023 as it was controlled by the availabil-
ity of MODIS images; therefore, there has been a filtering to have only stations covering the whole
time period (2000-2023) and with complete datasets.

In this respect, uncertainty exists due to the large time difference between MODIS and IMIS
datasets; especially when comparing datasets that cover the same parameter but in different ob-
servation times. This uncertainty led to align the times of the two datasets in Python using a
linear interpolation function from the SciPy library. The function considers the two LST sets, us-
ing the IMIS LST list as the main list with its time- span, while the MODIS dataset is considered
to have a time-span that requires interpolated data. Thus, for computational purposes, the date/-
time columns of both datasets were converted to numerical values and linear interpolation was

applied according to the following equation:

(x —x1)

(=) <279 .

y=yi+

The two time periods are explained by the "Xs” 1 and 2, while the "Ys” 1 and 2 represent the LST
values. This means that x is the target time period for which y is the interpolated temperature
value. It was assumed that successive points have a linear relationship; and thus, interpolation
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function does the extrapolation for the outgoing time periods using fill_value’extrapolate’. Hence,
data gaps, where the values might be out of the bounds of the main data, are filled after being
calculated by the used equation, assuming there is a linear relationship between them. The new
interpolated data were then stored in the new files, which contain a new edited date/time column
(i.e., containing MODIS observation times) and a new edited IMIS LST column. This approach
provides a solution for aligning data with different observation times while ensuring accurate
interpolation.

For precise comparative analysis, the time and location must be strictly handled, and this leads to
better consideration of the temporal compatibility between the two datasets to be compared. For
this reason, the IMIS ground station data has been interpolated with the timing (day and night) of
the MODIS observations, four new datasets were created. These are (Figur:

— IMIS aqua daytime dataset covering the same times period as MYD21A1D.
— IMIS aqua nighttime dataset covering the same times period as MYD21A1N.
— IMIS terra daytime dataset covering the same time period as MOD21A1D.

— IMIS terra nighttime dataset covering the same time period as MOD21A1N.

These stations contain the measurements of IMIS ground stations during the same time periods
covered by the MODIS datasets, making the comparison easier and more distinct.

4.1.2 Satellite Images Processing

As one of the major open sources for satellite data, MODIS satellite data used in the study was
accessed and processed in Google Earth Engine (GEE), which is a cloud-based geospatial analytic
platform that enables the usage of numerous satellite datasets, such as Landsat, MODIS, Sentinel,
etc. with climate and socio-economic attributes. Using Java Script and Python APIs, GEE enables
users to achieve many large scales themes using different satellite data. For example, land cover
classification, environmental monitoring, climate studies, etc. Therefore, the steps were performed
as follows

1. Data required was downloaded to the local desktop, and then processed using Python.

2. Data has been converted from Kelvins to °C.

3. Ground stations were plotted and MODIS data were downloaded for each location covering
the entire study period 2000 - 2023.

4. A number of studies use Kriging methods that rely on spatial interpolation of the ground
data along with satellite derived estimates (D’Agostino and Zelenka, 1992), (Journée et al.,
2012). However, in this case, kriging was not applied to MODIS data at IMIS locations. This
decision was based on factors such as the pre-processed nature of MODIS data, resolution
compatibility concerns, and the specific objectives of the analysis.

5. Additionally, it was necessary to filter out redundant entries in the dataset, as they occur
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frequently across most of the years under examination. Redundant data typically arises from
repeated observations or overlapping records that do not contribute unique information to
the analysis. Removing these duplications significantly reduced the total number of usable
data points but ensured the integrity and reliability of the dataset for the intended analysis.

6. The obtained data was transformed into comma-separated value (csv) files, each represent-
ing a station location named with available LST MODIS data in °C for that location between
2000 and 2023.

Large MODIS data availability differences can significantly impact LST calculations due to tem-
poral gaps, spatial inconsistencies, and missing data, and these differences could be addressed as
follows

1. Temporal coverage gaps: Missing daily LST values due to cloud cover or atmospheric inter-
ference can be mitigated using interpolation techniques like kriging.

2. Spatial resolution challenges: MODIS provides coarse-resolution data that may not align
with local measurement needs. Spatial interpolation methods can be used to refine and
match resolutions for more accurate calculations. Ground observations (e.g., IMIS data)
were integrated with MODIS LST values to complement and validate results.

3. Data quality control: Filtering redundant or low-quality observations ensures that the dataset

is optimized for reliable calculations.

4.1.2.1 Time and View Angle Information

The orbital change experienced by both MODIS satellites instruments in a significant daily change
in the timing of the observations, which is clearly shown in the time color scales in the data section.
This means that the diversity in observation times requires time adjustment, which includes in-
terpolation to the IMIS LST data to be consistent with the timing of the MODIS LST observations
(Guo et al., 2021). However, by using the available metadata in GEE, the times of all available
observations were exported in decimal form and then converted in Python to real-time data as
4 csv files, each specific to the times of a MODIS datasets, which were consequently used in the

interpolation process.

In addition, MODIS is a cross-track scanning radiometer with a two-sided scan mirror that images
the Earth with a total angular field of view of 110°, extending 55° on either side of the nadir (Xiong
and Barnes, 2006). The topographical nature of the Swiss Alps has an impact on temperature
patterns due to rugged topographic variations. This makes it necessary to take into account the
variations in viewing angle which was also obtained from the MODIS metadata, in the same

exported files with the LST measurements.
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4.2 Harmonic Regression Model

The study of trends over the entire projected period requires a model for analyzing the complexity
and variations that occur within the large amount of data used. For this reason, a Harmonic
Regression Model was used notably it is capable of capturing the long-term linear trend (Gok
et al., 2024); in addition, to the periodic seasonal variations of the LST, from both the IMIS and
MODIS datasets.

4.2.1 Model Coefficients

The used Harmonic Regression Model in equation 4.2(Gok et al., [2024) was designed using the
cosine and sine terms to detect the seasonal change by capturing the annual cycle:

y(t) = bo+ by -t + by - cos(wt) + b - sin(wt) 4.2)

where:

— y(t) represents the LST at time ¢.

— by is the intercept showing the mean LST baseline over the study period.

— by is the linear trend coefficient showing the magnitude and direction of the long-term
change taking place in the data.

— by and b3 are responsible for capturing the annual cycle of the data, reflecting its intensity
and phase.

— w is the angular frequency, defined as

w= =, (4.3)

where:
T = 365.25 - 24 - 60 - 60 seconds (one year).

The harmonic terms, cos(wt) and sin(wt), account for ATCs, reflecting seasonal variations.

The four b coefficients represent the parameters of the model, which are determined by the nonlin-
ear least squares optimization method in Python’s scipy.optimize.curveyit function. This function
is responsible for minimizing the residual sum of squares between the two data sets. Where it
uses np.isfinite() function to capture the measurements that prevent the process of curve fitting,
and it masks extreme LST values that might otherwise distort the LST trend (Weng and Fu, 2014).
In addition, The threshold for detecting outliers in the data was established using Z-score analysis
(Torres et al., 2017), where data points beyond +2 standard deviations were excluded. This method
ensures that extreme values, which may result from sensor anomalies, atmospheric interference,

or data collection inconsistencies, do not distort the integrity of the analysis.
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Setting the threshold at Z = +2 removes data points that fall outside two standard deviations from
the mean. This corresponds to approximately 95.4% of the data remaining, assuming a normal
distribution. To validate whether the chosen threshold is appropriate, the following checks were
applied: we generated a histogram and checked whether the data distribution closely follows a

normal curve. Also, we compared results before and after outlier removal.

4.2.2 Model Substitute

Given that the used Harmonic Regression Model was the best fit to analyze the studied data, there
are some other approaches that could be used for such analysis depending on the type of data and
specific research goals such as the Polynomial Regression and the Fourier Series.

4.2.2.1 Polynomial Regression

A forecast or prediction can be made using a variety of techniques, including polynomial and
linear regression. The linear regression model which is called polynomial regression is created
by raising each predictor variable’s (X) effect to the k-order. (Shaikh et al., [2021). It is typically
applied when a polynomial function could be used to approximate the relationship between two
data sets, which is not quite linear. Regarding the benefits of polynomial regression, it can capture
different levels of data and is adaptable to non-linear trends. However, it may over fit the data,
producing conclusions that are difficult to understand.

4.2.2.2 Fourier Series

The harmonic regression is a simple form of the Fourier Series method which also depends on sine
and cosine terms with different frequencies representing a curve that shows the sine cosine func-
tion. The benefits of the Fourier Series implies the capability of capturing different cycles of the
data (e.g., daily, seasonal, etc.), and it allows the detection of more detailed changes existed; and
then, it will enable handling data characters that follow repeated patterns at certain trend intervals
and have good statistical interpretations (Mariati et al., 2020). Besides, it is of higher complexity
and costs, in addition to its high sensitivity in choosing the number of terms responsible for the
over fit.

4.2.3 Model Limitations

Limitations often exit for the performance of models. In this respect, the harmonic regression
model is an effective way for detecting seasonal fluctuations and long-term changes in temper-
ature data, there are certain restrictions (i.e., expertise on how to run the model, software avail-
ability, etc.) and gaps (e.g., lack to sufficient data, etc.). These limitations are related to where the
model might not represent all details of the data or where improvements could be made to create

more accurate analyses.
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4.2.3.1 Assumption of a Single Annual Cycle

A single annual cycle for the seasonal change in the data is considered as gap in the performed
harmonic regression model. It depends of the sine and cosine in terms of a fixed frequency:
2 27

i ol o |
w = T 36505 24 .60 - 60 1.99 x 10~ radians/second (4.4)

This might not highly accurate knowing that temperature data passes through different seasonal
cycles; and thus,, using these fixed terms is an obstacle in the path of capturing complex variations
and periodic fluctuations among the data. Adoption of Fourier Series with different frequencies
or higher order harmonics would be a better choice that has a better flexibility to deal with the
complexity of the data.

4.2.3.2 Lack of Temperature Anomalies or Extremes

Within the used harmonic regression model, there might be a lot of deviations or outliers that are
not captured by the model, and that appear due to sudden fluctuations and extreme events that
may take place. The inability of the model to capture these changes is attributed to the overall
trend and the periodic behavior of the temperature data. This misjudgment might lead to misun-
derstanding of occurring events such as heat waves and cold spells that results in sudden extreme
LSTs. This can be solved by enriching the model with extra terms such as outliers” detection.

4.2.3.3 Linear Trend Assumption

As the b1 (equation is the linear trend coefficient that is responsible for capturing the long
term changes among data; thus, it is considered as a perfect indicator for any gradual change that
might occur. However,this coefficient lacks to the accuracy in detecting the complex non-linear
trends such as sudden changes that might take place during different time periods, and creates in
bias in understanding LSTs over long periods, that resulted in misinterpretation of the data. Also
in this case, addition of new non-linear terms may help in improving the abilities of the model in

diving into complex trends” understanding.

4.3 LST Trends Calculation

Since the main objectives of this study are to validate the MODIS LST measurements and trends
with respect to the IMIS data, and to understand the diurnal changes that occur in these trends,
thus it was necessary to correctly calculate the trends of both datasets. In addition, two sides of the
trends were considered, the overall trend and the hourly trend (e.g., Figure . In both cases, this
investigation required an approach that tends to clean the data, detect outliers, fit the harmonic
regression model used, and finally extract the trends.
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4.3.1 Overall Trends

Following the previous approach, and after reading the csv files in the LST measurements and the
date/time data, which were presented differently in different files (as date/time column in some
tiles, and year, month, day,and time columns in other files), the used code filtered the data to
obtain only the 2000-2023 period.The threshold for detecting outliers in the data was established
using Z-score analysis (Torres et al., 2017), where data points beyond +2 standard deviations were
excluded. The aforementioned harmonic regression model with b1 coefficient (Linear Trend that
was mainly calculated as change per second, and then converted to change per year) and its si-
nusoidal sine and cosine terms was applied for the data. The whole process was automated to
produce a file containing the trend that occurred in the data of each station over the period 2000-
2023 as the overall trend of each station. For further comparisons, the same methodology was
applied for both IMIS and MODIS datasets.

4.3.2 Hourly Trends

For full understanding of the changes in data and to examine the diurnal changes, the same
methodology used to obtain the overall trends was also used to obtain the hourly trends in data.
The difference is that for the overall trends, the results were a single value for each station rep-
resenting the overall trend over the entire time period examined. For the IMIS data, the process
was automated done to obtain the average of the trends of each station with respect to the time of
measurement, which is every 30 minutes. This means that each cell represents the average LST at
a given time for a given station over the entire time span, and this is repeated every 30 minutes
to cover all hours of the day. Given that MODIS measurements do not have this constant and
complementary timing, the process was automated to obtain the mean LST of each station from
the available MODIS observation times of each dataset. Due to the changes in the observation
times (due to the existing orbital change), the observation times were rounded up, e.g., all obser-
vation times between 9:00 and 10:00 were considered as 9:00. This resulted in four different files
for the four MODIS datasets of the projected time. These results provided a solid basis for later
comparisons, analysis, and validation.

4.4 Analyzing Changes Between MODIS and IMIS Data

For better validation, precise analysis of the changes occurring in both MODIS and IMIS datasets
is needed. To achieve this analysis, different methods were used to compare the changes occurring
in both datasets and the changes in the trends.

21



4.41 MODIS Versus IMIS LST Measurements

Pivotal analysis and understanding requires a distinct comparison that explains the differences
between the two datasets. For this purpose, comparison was performed between the actual mea-

surements, and between the means of these measurements.

To compare the actual measurements, four comparison figures were created for the MODIS obser-
vation and IMIS datasets. By processing both datasets stored in csv files and extracting a sample
of 10000 measurements from each dataset to manage memory and computational efficiency, a ro-
bust regression analysis was performed. The Theil-Sen Regressor from the Sklearn library, was
used to model the relationship between IMIS data represented by the 'x” variable and the MODIS
data represented by the 'y’ variable. Three values were analyzed and then calculated to ensure a
rigor analysis as follows:

1. R-squared value, which is responsible for estimating the proportion of variance explained
by the model.

2. Slope value, which shows the rate of change between MODIS and IMIS measurements.

3. MAD-1 (Median absolute deviation) which is a measurement of accuracy that represents
the median of the absolute difference between the two data sets, and it offers a direct and
robust measure of the dispersion of a random variable, and it has many applications in
different fields (Bassett and Koenker, [1978). It is more efficient than standard deviation in
life-like situations where small errors may occur in observations and measurements (Huber
and Ronchetti, 2009).

Consequently , a histogram illustrating the deviations between the two datasets was established
to the main scatter plot, where the deviation of each point representing the difference between
MODIS and IMIS data was calculated, with the x-axes constrained between -20 and 20 °C to reduce
the effects of extremes and outliers. The y-axes represent the frequency of occurrence of each
anomaly.

The analysis of this histogram helps understanding the symmetry of data, i.e. whether the occur-
ring deviations were evenly distributed around zero. Then, the skewness of the deviation, which
represents the asymmetry in the distribution of the deviation and shows any distortion, and the
spread which shows the range of the spread of the deviation values of data.

In addition, the comparison of the means of MODIS and IMIS datasets was done differently.
Therefore, after processing the time columns of both datasets and filtering the data, a statistical
calculation was performed to calculate the annual mean and standard deviation of each dataset,
summarizing the variability of its actual measurements in each year separately. The annual statis-

tics of both datasets were merged into one dataset, which facilitates the comparison of mean LSTs.
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The statistical analysis enables evaluating the agreement between the two datasets, and it was per-
formed using PC (Pearson Comparison) and MAD-2. For the PC, it is responsible for quantifying
the strength of the linear relationship between the two mean datasets. For any delay between the
determining and the responding variables, it will be detected by this correlation (Andronis et al.,
2022). On the other hand, the MAD-2 calculates the average absolute difference between the mean
annual LST of the two datasets, showing the similarities between them. All these statistics were
combined into four different plots, which are responsible for the comparison between the annual
mean data of both MODIS and IMIS datasets during the four different MODIS observation times.

By comparing the actual measurements and the annual mean LSTs of MODIS and IMIS datasets,
the above analysis can provide insight into their compatibility. The use of such statistical metrics
and visualizations facilitated the understanding of the agreement between the satellite and ground
station LST data.

4.4.2 MODIS Versus IMIS LST Trends

Since the comparison between MODIS and IMIS measurements was to validate the MODIS data
with respect to the IMIS data, a comparison of the trends derived from both datasets was per-
formed for the same purpose.

Using the previously described procedures for obtaining the hourly trends of both MODIS and
IMIS data, the trends were derived and stored in the csv files. The spatial and temporal varia-
tions of the LST trends were then visualized using a heat map. The seaborn library, which is a
Python library in Matplotlib, was created to produce nice rigor statistical visualization. It facili-
tates plotting with easy-to-use function and work with Pandas Data Frames. It also facilitates the
visualization of the relationships, and trends in data in plots such as scatter plots, box plots, heat
maps and regression plots). The heat map was created with stations on the x-axis and times of
day on the y-axis. A custom color map transitioning from white (indicating lower trends) to green
(indicating higher trends) was applied to highlight variations in temperature trends (°C/year),
where each square represents the mean LST trend at each station and at each time of day for the
IMIS data (Figure[4.1)).

In addition, four other heat maps representing the means of the trends at each location at the four
different observation times of the MODIS datasets were created in the same way to represent the
MODIS trends variations (Figure [4.2).
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Given the heat maps is not enough to understand the variations that take place within the trends of
both datasets, in addition to approaching a useful comparison between both data. For this reason,
an additional step towards a clear comparison was taken by creating a scatter plot visualization for
each of the available hours, comparing the trends of both datasets at the same time and location.
In other words, the hours available in the MODIS datasets were considered in the IMIS datasets
by station name, and all other hours were filtered out in addition to the incomplete or outlier data
points. Then, metrics such as the MAD-2 and the PC, which are responsible for calculating the
discrepancies and the strength of the linear relationship between the two data, respectively, were
calculated. This approach helped to understand the differences in trend variations between IMIS
and MODIS datasets, taking into account location and time.

However, for better understanding of overall trend variation, , a general comparison was made
between the means of the two datasets. As the detailed analysis of the actual measurements
was supported by a general means analysis, trend analysis is also supported similarly, where
the means of trends of the MODIS observation time are plotted as MODIS versus IMIS data. For
in-depth and well explained analysis, two different values are calculated, the Mean Absolute Error
(MAE) and Standard Deviation were added, knowing that MAE is responsible for representing the
error between the trends and the Standard Deviation represents the precision of the comparison.
MAE is calculated using the following equation (Zhu et al., 2013):

1 n
MAE — . Z yMODIS _ | IMIS (4.5)

i=1

where:

— n is the number of data points.
MODIS
- Y

IMIS
— Y

— |-| denotes the absolute value.

is the temperature trend from MODIS for station i.

is the temperature trend from IMIS for station i.

4.5 Trends at MODIS Observation Times Versus Overall Trend

Since the variation in the trends over different MODIS observation times was studied, the tempo-
ral accuracy has to be taken into account. For this purpose, a comparison was made between the
IMIS LST trends over different MODIS observation times and the overall trend of the data over

the entire time span.

Four different scatterplots were generated, each representing a MODIS observation time. The x-

axis represents the names of the stations, and the y-axis represents the mean LST trend of each
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station over the represented MODIS observation time during the entire period of the study. Pear-
son’s correlation and MAD-2 values were added to improve the accuracy of the comparison. This
approach will help to understand the representativeness of the IMIS LST trend at each MODIS
observation time for the overall trend of data at each station over the entire period of the study.

4.6 Environmental and Sensor-related Influences on LST Changes

For the variability in LST trends, it was significant to identify the influences that may cause these
variations and differences in the analyzed data. For IMIS data, it was used to understand the effect
of elevation and aspect, while for MODIS data that was used to investigate any effect of the view
angle.

4.6.1 Elevation Effect On LST Trends

To investigate the effect of elevation change on the LST trends, a Python code was written us-
ing two data sets, one containing LST trend means of each station, and the other containing the
elevations of the stations in addition to some other related values. The LST trends” means and
elevations were aligned according to the names of stations they represent and combined into one
data frame; then a visualization using a scatterplot with the LST trends” means on the y-axis and
the elevations on the x-axis was used to better understand the variation of LST trends as a function
of elevation change.

4.6.2 Aspect Effect On IMIS Trends

In order to determine whether the variations in the topographic aspect have an effect on the LST
measurements, a similar methodology to the one used to investigate the effects of elevation on
these measurements was used. However, instead of using all aspects, bins were created due to the
large number of aspects in addition to the variability between different stations and times.

Hence, each unit of the x-axis of the generated plot represents a bin of, for example, 50 °C, the first
unit represents all data points of an aspect ranging from 0 to 50 °C, and so on. While, the y-axes
represent the means of LST trends derived using the applied harmonic regression model.

4.6.3 View Angle Effect On MODIS Measurements

Studying view angle in MODIS data; especially there is a continuous daily orbital change, is nec-
essary to determine any effect of the view angle on LST data for each observation time Thus,
view angle was compared according to various observation times (MOD21A1D, MOD21AIN,
MOY21A1D and MYD21A1N). For this purpose, we used a methodology similar to that used for
the aspect investigation, where the x-axes of the generated plot represent bins of 15 view angles
by each unit ( e.g., one unit represents data points of view angle from -75 to -60), and the whole
axes range between -75 and 75 °C, while the y-axes represent the mean of LST measurements.
This method was repeated to create four different figures representing the four different MODIS
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datasets of different observation times.

4.7 Landsat Implications

In addition to MODIS satellites, there is also an orbital change exists in Landsat and it enables
adding more acquisition times (Figure [£.3(Gok et al.,[2024)).

E Path: 194, Row: 027

5 10:15 s i
> _ A e e

S 09:30 s . V4

©

g 0B45T | (705 o LEO7 + LCOB -~-~1984-2023 ==-1998-2023

; 1 -

1985 1990 1995 2000 2005 2010 2015 2020
Landsat acquisition date

Figure 4.3: Figure 2. Acquisition times (UTC) of Landsat LT05 (red), LE07 (blue), and LCO8 (or-
ange) at path 194 and row 027. LE07’s noticeable orbital drift after 2019 (hollow blue circles),
causes a significant shift in revisit timing and has been excluded from the analysis. Linear regres-
sion lines (dotted and dashed) depict acquisition time trends, with and without abrupt LT05 orbit
changes prior to 2000. The gray-shaded area indicates the time period for which IMIS station data
exists, although with variable record length (Gok et al., 2024).

Figure [4.3| visualizes the change exits in the timing of different Landsat satellites over the studied
Swiss Alpine Region, and it is important to mention the coverage of the IMIS LST data in the study
is different from that shown in the figure. In this concern, the time span covered by different
Landsat satellites is clearly between 8:45 and 10:30 a.m. in UTC (Coordinated Universal Time)
which is 9:45 and 11:30 a.m in European time. This motivates us to make a comparison between
the representativeness of the timing of Landsat and MODIS observations in order to come up with
better implications.

The comparison is made by the creation of figure that visualizes the means and trends of LST IMIS
data of all stations at all hours of the day. Then five-time widows were created; four representing
the four MODIS observation times and one representing the Landsat satellite observation time.
The statistical values result, where the overall mean of all LST means was calculated, and then
the mean LST of each observation time of MODIS and Landsat (Time Window Mean). The mean
difference between each observation time and the total was calculated and used in the comparison
between the two data sources. In addition, a count-based representation was made, it calculates
the percentage of data in each time window from the total data. This approach helped in under-
standing the representativeness of each time window of both MODIS and Landsat, and facilitated
suggesting some implications regarding Landsat observation times.
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5 Results

5.1 Change Analysis Between MODIS and IMIS Data

As resulted from the methodology, the analysis of change between MODIS and IMIS LST data
was calculated over two levels, i.e., the analysis of the actual measurements and the analysis of
the trends.

5.1.1 MODIS Versus IMIS LST Measurements

The first comparison was done between the measurements of the two datasets depended on three
statistical values representing the variability of both datasets, which are the R-squared value that
shows the proportion of variance explained by the model, the slope value revealing the rate of
change between MODIS and IMIS measurement, and MAD-1 value that gives the median of the
absolute difference between the two datasets. In addition, a histogram was performed to investi-

gate the deviation that occurs between the datasets.

For this comparison, four figures representing four different MODIS observation times were cre-
ated showing a clear similarity between night measurements of both Terra and Aqua satellites,
and between day measurements of both satellites as well. In this regard, the observation time
of MOD21A1D (Figure R-squared value is 0.76 which shows a strong relationship and con-
sistency between the two datasets, with a remaining 0.24 of variance that might be caused by a
variety of reasons (e.g., cloud cover, solar radiation, etc.). MAD-1 value for the mentioned obser-
vation time is 3.60 °C, indicating a general agreement between the two datasets with a noticeable
expected difference due to some factors and limitations of satellite data. Finally, the slope value is
0.94 and it indicates excellent linear relation between the two datasets with a slight difference that

was clearly indicated by the other two comparison values.
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Figure 5.1: The comparison between MOD21A1D and IMIS data measurements with slope, R-
squared and Mean Absolute Deviation values calrifying the deviation btween the two datasets
represented in the histogram.
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The values of MYD21A1D (Figure observation times followed similar analysis where the R-
squared value is 0.79 and it also represents a strong relationship and consistency between the two
datasets with 0.21 remaining variance. In addition, MAD-1 value is 3.37 °C which also shows

a general agreement between the two datasets with a clear difference of 3.37 °C, and finally the

slope value is 0.89 indicating a strong linear relationship between the two datasets with a slightly

stronger difference than the one in the MOD21A1D data.
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Figure 5.2: The comparison between MYD21A1D and IMIS data measurements with slope, R-
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In both MOD21A1D and MYD21A1D data with respect to IMIS LST, the measurements are spread
across the Y-axes representing the MODIS measurements. The same phenomenon occurred in
another study (Gok et al., 2024), when comparing IMIS LST with Landsat LST measurements, and
it was attributed to differences in spatial resolution and the presence or absence of snow cover in

the different measurement areas.

For the day time, scatter plots show two main clusters that separated by the absence of plots which
can be attributed to the temperature climax during the mid-day from the MODIS measurements,
but not the IMIS data which shows a continuation of plots as an elongated stretch. This might
be attributed to the high reflection from sunlight observed by MODIS. However, this is not the
case for the night time where no remarkable change in temperature exists. This contradicts the
previous explanation of spatial resolution and the presence or absence of snow cover, which did
not appear in the study examining Landsat data because all Landsat measurements were daytime
measurements.However, the differences presented in the values between daytime and nighttime
data were relatively small; and thus, for MOD21A1N (Figure , the R-squared value is 0.66
which means that the relationship and consistency represented by both daytime data sets was
much better than the one presented here. However, MAD-1 value is 3.12 °C, which shows a better
relationship with a smaller difference between IMIS and MODIS data, and finally the slope value
is 0.89, which is almost similar to that of the daytime data with similar linear relationship between
the two MODIS and IMIS data sets.

Similar to the day time data, night data also shows a clear similarity in their comparison values,
where MYD21A1N (Figure R-squared value is 0.67 representing the same relationship and
consistency represented by the MOD21A1N data. In addition, MAD-1 value is 3.09 and the slope
value is 0.85, meaning that both night data sets show similar results concerning the representa-
tiveness of MODIS data as a function of IMIS dataset.
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Figure 5.4: The comparison between MYD21A1IN and IMIS data measurements with slope, R-
squared and Mean Absolute Deviation values clarifying the deviation between the two datasets
represented in the histogram.

The four figures (Figures[5.1-5.4) show a histogram with deviation occurs between both MODIS
and IMIS datasets at the presented observation time; in addition, to the representation of the
mean value of this deviation (Table 5.I), to the represented values, the mean deviation for the
MOD21A1D observation time is 1.39 °C, while that is 1.06 °C for MYD21A1D. This means that the
representativeness of the MYD21A1D data is slightly better than that MOD21A1D data. This is
also clear from the R-squared and MAD-1 values explained earlier. Besides, the mean deviation of
the MOD21A1N data is 1.13 °C less than that of MYD21A1N, which is 1.54 °C. Thus, MOD21A1N
has better representativeness than MYD21AIN, but this is not clear in the comparison values
where the R-squared and MAD-1 are so close, which is explained by the presence of some outliers
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that could have affected the final mean deviation value.

Table 5.1: Comparison of Metrics for Different Observation Times (Degree Celsius)

MOD21A1ID MOD21AIN MYD21A1D MYD21A1IN

R-squared 0.76 0.66 0.79 0.67
MAD-1 3.60 3.12 3.37 3.09
Slope 0.94 0.89 0.89 0.85
Mean-Deviation 1.39 1.13 1.06 1.54

Results clearly showed good representativeness of MODIS data at the four different observation
times of the IMIS ground station data, with some differences being represented by the mean de-
viation values. Although the representation was clear, yet it was necessary to compare the means
of the data (Table instead of the actual measurements in order to obtain well explained re-
sults. As mentioned in the methodology, four plots comparing the means of the MODIS and IMIS
datasets at the four different observation times were created with two comparison values, i.e., the
Pearson correlation and the MAD-2.

Figure[5.5shows the plot and statistics of MODIS and IMIS means data of all stations at MOD21A1D
observation time. It is clear from the Pearson’s correlation value which is 0.86, that there exists a
strong but not perfect positive linear correlation between the two datasets, meaning that whenever
one of them changes, the other changes accordingly. However, MAD-2 value, which is represents
the whole data over the projected time span is 8.45 °C, showing a unexpected difference between
the two datasets, and that is clear also on the plot the existing difference in the visualized standard

deviation of the two data.

The same results were presented in the second figure (Figure which represents the data at
MYD21A1D observation time. The Pearson’s correlations value is 0.92 showing a stronger but
also not perfect positive linear correlation. While, MAD-2 value is 8.38 °C which is almost similar
to MOD21A1D time. The results of daytime observations indicate that the linear correlation of the
two datasets is strong, whereas a cleardifference in measurements exists and that might be related

to spatial resolution, calibration, viewing angle, or any other natural effects.

34



25
. - | — Datasets
earson Correlation: 0.
) ® MODIS Data
2o Mean Absolute Difference: 8.45 MODIS Std Dev
® IMIS Data
151
10 A — - TT 17T = T 17+ —
[ P dk g T T ¢ [ I } ! * 11
i ¢ ¢ T T
c ® ]
3 51 P ) * ¢ ¢ ¢ T ¢ 1 4 ¢ t
=
'_
Li‘) [ ]
®
0 s [ 2 3 * '
®
7T ¢ 1 ¢ ¢ 7 ¢ 7 ¢ s 1 ! 1 ¢
°
_5 4
_10 4 A1 —— N -
—15 = L 1+ B -

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022
Year

Figure 5.5: Comparison between MOD21A1D and IMIS data measurements’ means with Pear-
son’s correlation and mean absolute difference values clarifying the relation between the two
datasets.
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Nevertheless, the case is often different for data during the night observation times. At MOD21A1IN
time the results show an almost perfect positive linear correlation (Figure[5.7), where the value of
Pearson’s correlation is 0.93, which is very close to that of MYD21A1D, and both cannot be con-
sidered as a perfect correlation. On the other hand, MAD-2 value is very different, being 3.20 °C,
indicating that the measurements from both IMIS and MODIS sources are more representative for
each other at this time than in the daytime data.
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Figure 5.7: Comparison between MOD21A1IN and IMIS data measurements’ means with Pear-
son’s correlation and mean absolute difference values clarifying the relation between the two
datasets.

For MYD21A1N observation time indicative results have been reached (Figure . The Pearson
correlation value is 0.97, which is the best value among all observation times, and it is the closest
to a perfect positive linear correlation between IMIS and MODIS LST data. In addition, MAD-2
value is also the smallest among all others, where it is 1.45. This represents the specificity of the
measurements between the two datasets and how representative they are for each other.
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Figure 5.8: Comparison between MYD21AIN and IMIS data measurements” means with Pear-
son’s correlation and mean absolute difference values clarifying the relation between the two
datasets.

According to this observation, it is clear that the difference in LST data during the night time is
much smaller and better than it during the day time. This suggests that the reason for the dif-
ference is natural and not technical, which could be related to the solar influence during the day
or the rapid cooling that happens at night, but most likely it is due to atmospheric effects, where
the solar radiation dominates, affecting the atmospheric content such as cloud cover, humidity,
etc.. This dominance may in turn affect the acquisition of accurate LST; and therefore, by consid-
ering all these values (Table Table of the first and second comparisons, it can be concluded
that MODIS and IMIS data have a good representativeness of each other, which is better at night
times. With some differences that could be resulted due to atmospheric effects especially during
daytime.

Table 5.2: Comparison of LST Means” Metrics for Different Observation Times

MOD21A1D MOD21AIN MYD21A1D MYD21A1IN

Means’ Pearson’s Correlation 0.86 0.93 0.92 0.97
Means’ MAD-2 8.45 3.20 8.38 1.45
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5.1.2 MODIS Versus IMIS LST Trends

The analysis and visualization of the actual LST measurements clearly show that there have
change during the studied time period. This change, called the LST trend, needs to be investi-
gated and compared similarly to the actual measurements, which helps in approaching beneficial

and clear implications.

For this purpose, the two procedures mentioned in the methodology were applied. The first one
represents the visualization of the hourly trend of the day for each station as a color scaled figure
(i.e., heat map), where each square represents the mean LST trend at each station at each time of
the day for the IMIS data (Figure[.I). The number of used measurements differs from one station
to another depending on the availability of valid data but all ranges between 8640 to about 8750
measurements. For other figures representing the four MODIS datasets during their four different
observation times (Figures3.6).

The comparison between these figures was then made using a scatterplot visualization for the
available hours considering the time rounding mentioned in the methodology comparing the
trends of both datasets at the same time and location. Thus, only hours available in the MODIS
data were considered for this comparison, which used MAD-2 and Pearson’s correlation for speci-

ficity.

For MOD21A1D observation times, 10:00 AM is the first time visualized and compared (Figure[8.4]
in the Appendix). It reveals that the Pearson correlation value at this time is 0.05, which is a very
small value above zero, indicating that the relationship between the two data cannot be considered
a good positive linear correlation nor a negative one. This means that the variations that occur in
both data are not related. While, MAD-2 value is responsible to represent the difference between
the two studied data is 0.03, which is also very small, representing that the two data are quite
close with very small differences that could be caused by the represented outliers that could also

be responsible for the small Pearson’s correlation value.

In The observation times 11:00 AM and 12:00 PM (Figures in the Appendix) similar con-
clusions were reached, where at 11:00 AM the Pearson’s correlation value is 0.03 and the MAD-2
is 0.04, while at 12:00 pm, the Pearson’s correlation value is 0.14, which is a little higher than
the previous two values, but it is still far from 1, leading to the same conclusion, with MAD-2
value of 0.04 °C. it is worth mentioning that not all stations are represented at 12:00 noon due to
some reasons that prevented the measurements at that time, such as cloud cover. Having all the

measurements and stations could affect the resulting values and the conclusion.

The second observation time of MYD21A1D starting at 11:00 AM (Figure[8.7), where the Pearson’s
correlation value is -0.14, indicating linear relationship between the trends of the two data as

mostly neutral, but it is oriented in a negative direction due to the presence of the minus sign.
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However, MAD-2 value is also 0.05, which confirms the neutral relationship between the two data
and explains the Pearson’s correlation value by the presence of outliers.

Similarly, the same explanation applies for the three other times, 12:00 pm 13: pmand 14:00 pm
(Figures and in the Appendix) where the Pearson’s correlation values are -0.1, -0.09,
and -0.03; respectively. MAD-2 values are also 0.05 for all three timings, confirming the existing
neutral linear correlation between the trends of the two datasets.

The previous Figures were the daytime results from both the Aqua and Terra satellites. Regarding
the nighttime Terra dataset(i.e., MOD21A1N)), it starts at 8:00 PM (Figure in the Appendix)
when the Pearson correlation value is 0.08, which leads to the same conclusion as for MOD21A1D
datasets, and the linear correlation is considered neutral, but positively skewed. In addition,
MAD-2 value, which is 0.04, also indicates the similarity of both data, confirming that the neu-
trality represented by the Pearson correlation value is caused by the presence of outliers.

The same results also were presented at 9:00 pm (Figure (Figure|8.12) in the Appendix) and 10:00
pm (Figure (Figure 8.13) in the Appendix), where the Pearson’s correlation value is 0.09 at both
times, and MAD-2 value is also 0.04 °C at both times. This presents the same neutrality which is

positively skewed and the similarity of the data.

A tiny difference was presented by the data at 11:-00 PM (Figure in the Appendix) which
leads to the same results with a difference and neutrality is negatively skewed. The Pearson’s
correlation value is -0.09 and MAD-2 value is the same as before 0.04 °C. This small difference
might be due to the fact that not all stations are presented at this time, so that they appear at 11:00
PM after the rounding of time mentioned in the methodology, plus the cloud cover that might had
played a role in the absence of measurements.

ForMYD21AIN starting at 1:00 AM(Figure (Figure in the Appendix), the Pearson correlation
value is 0.11, almost indicating neutral linear relationship, with positive skewness represented
more by the higher PC value than in the previous data sets. However, MAD-2 value is still stable
in its previous ranges, i.e. 0.04 °C, confirming the similarity of the data. Also, the results of the
two other observation times are almost the same, and the Pearson’s correlation value at 2:00 AM
(Figure in the Appendix) is 0.1 and at 3:00 AM (Figure in the Appendix) is 0.14. Both
values confirm the same neutrality and positive skewness. In addition, MAD-2 value at both
times is 0.05 that also drives to the same conclusion of data similarity.

All values are represented in the following tables (Table , (Table , facilitating the compar-
ison between the values of different observation times of different datasets. Where these values
state a clear similarity between the trends taking place in MODIS data and that in IMIS, during
the different observation times of MODIS satellites.
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All LST (for IMIS and MODIS)metrics are presented in Tables|5.3|and [5.4| for facilitating the com-
parative analysis of different observation times from the two sources of datasets. The datasets of
from these sources almost imply similarity between the trends in MODIS and IMIS LSTs during
the different observation times of MODIS satellites.

Table 5.3: Comparison of LST Trends” Metrics for MOD21A1 Observation Times

MOD21A1D MOD21A1N
10AM 11AM 12PM 20PM 21PM 22PM 23PM

Pearson’s Correlation Value 0.05 0.03 0.14 0.08 0.09 0.09 -0.09
MAD-2 Value 0.03 0.04 0.04 0.04 0.04 0.04 0.04

Table 5.4: Comparison of LST Trends” Metrics for MYD21A1 Observation Times

MYD21A1D MYD21A1IN
1AM 12PM 13PM 14PM 1AM 2AM 3AM

Pearson’s Correlation Value -0.14 -0.1 -0.09 -0.03 0.11 0.1 0.14
MAD-2 Value 0.05 0.05 0.05 0.05 0.04 0.05 0.05

As the detailed analysis of the actual measurements was supported by a general means analysis,
trend’s analysis is also supported similarly. where the means of trends of the MODIS observation
time are plotted as MODIS versus IMIS data. And for deeper and well explained analysis, two
different values are calculated, the MAE which is the mean absolute error, that is responsible
for the error estimation between the two data sets, and the other value is the precision which is
calculated as the standard deviation of the data.

For the first observation time which is MOD21A1D (Figure , it shows that the MAE value at
this time is 0.04. Compared to the examined trends, which lie somewhere between 0.00 and 0.1,
this value is considered effective, which means a disagreement of about 40 percent between the
two data sets. In addition, the value of the standard deviation is also 0.06, which also indicates
some disagreement. The general indication of the values represented by the first observation
time, shows a general agreement between the two datasets, with a clear and considerable dis-
agreement, most likely caused by the presented outliers that reached high values (between 0.25
and 0.3) mainly in IMIS data, facing very low values represented by MODIS, which remained
below 0.1. And knowing that MAE is very sensitive to extreme values (outliers), this could have
played an important role in influencing it and the value of the standard deviation. This leads to

the indication of the mentioned considerable discrepancy between the two datasets.
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Figure 5.9: Comparison between MOD21A1D data trends” means with that of IMIS data including
MAE and standard deviation values.

The results of the second observation time MYD21A1D (Figure confirm the indication of
the first observation time. So that the MAE value at the second time is 0.05 and the standard
deviation is 0.07, this slight increase in the values came after the increase that appeared in the
trends represented by the outliers, which exceeded the values of the first observation, reaching
values above 0.3. This confirms that the general agreement that appears between the two data
sets is correct and that the presented disagreement is a false implication given and modified by
the presence and the change of some outliers.

The results of the second observation time MYD21A1D (Figure 5.24) confirm the indication of the
tirst observation time. The MAE value at the second time is 0.05 and the standard deviation is
0.07, this slight increase in the values occurred after the increase in the trends represented by the
outliers, which exceeded the values of the first observation by reaching values above 0.3. This con-
firms that the general agreement appears between the two datasets is correct, and the presented
disagreement is a false implication given and modified by the presence and the change of outliers.
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Figure 5.10: Comparison between MYD21A1D data trends” means with that of IMIS data includ-
ing MAE and standard deviation values.

Similar results are presented in the night observation times. Where in MOD21A1N (Figure
the MAE value is 0.04 and the standard deviation is 0.05, with one outlier exceeding 0.3 in IMIS
trends and the others mostly below 0.2. In addition, in the MYD21A1N (Figure , the MAE
value is 0.05, and the standard deviation is 0.07, also with one outlier above 0.3 but with more of
them above 0.2.
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Figure 5.11: Comparison between MOD21A1N data trends” means with that of IMIS data includ-

ing MAE and standard deviation values.
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Figure 5.12: Comparison between MYD21A1N data trends” means with that of IMIS data includ-

ing MAE and standard deviation values.

As an overall result taken for the MAE and standard deviation values (Table [5.5), there is a clear

general agreement between the two data sets at all observation times. This agreement is affected

by the presence of outliers that differ in their values from one observation time to another, leading

to some disagreements represented by the MAE and the standard deviation values. The same

final result could be applied as a result of the whole comparison of the trends, where the detailed

hourly comparison and the general mean’s comparison lead to the same mentioned conclusion.

Table 5.5: Comparison of LST Trends” Metrics for Different Observation Times

MOD21A1D MOD21A1IN

MYD21A1D MYD21A1N

MAE Value
Standard Deviation Value

0.04 0.04
0.06 0.05

0.05 0.05
0.07 0.07
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5.2 Trends at MODIS Observation Times Versus Overall Trend

Since there are LST trend changes between different times, it is preferred to represent the overall
trend with respect to the trend of each observation time(Figure 8.I). This approach was used to
find out the most representative observation time for overall trends occurring in the data.

MOD21A1D dataset, which represents the day observation time of the Terra satellite, seems to be
in good agreement with the overall trend (Figure [5.13). It shows a small difference. Thus, trends
at MOD21A1D time appear to be slightly higher than those represented by the overall curve.
However, the Pearson’s correlation value is 0.91, which indicates perfect correlation between the
two data with almost small difference mentioned. This is also represented by MAD-2 value ( 0.03).
Overall, LST trends at MOD21A1D time has a good representation for the entire trend of the data.

IMIS Data at MOD21A1D Time (Terra ay): Pearson Corr=0.91, MAD=0.03 —e— |MIS Overall Trend
—e— IMIS Data at MOD21A1D Time (Terra Day)
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Figure 5.13: Representativeness of IMIS LST trend at MOD21A1D times for the overall trend of
the data over the whole study period including MAD-2 and Pearson’s correlation values.

MOD21A1IN and MYD21AIN (Figures and represent the night observation time of
MODIS Terra and Aqua satellite; respectively; however, they do not seem to agree with the over-
all trend. There is a clear difference between the two datasets and the overall trend, where the
curves seem to have different variation. In addition, troughs and peaks in the data at MODIS ob-
servation times curves do not appear in the overall trend. Moreover, Pearson’s correlation value,
which is 0.35 for both MOD21A1IN and MYD21A1N figures, shows a very low value that indicates
a clear disagreement between the represented datasets. With the MAD-2 value, which is 0.04 for
MOD21A1N and 0.05 for MYD21A1N shows a slight disagreement.
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Similarly, the trend of MYD21A1D represents the day observation time of MODIS Aqua satellite,
and it disagrees with the overall trend (Figure[5.16). Also, the difference between the two datasets
is clear where MYD21A1D curve appears to be higher than that of the overall trend with some fluc-
tuations. The Pearson’s correlation value is 0.39 which is also considered as low values indicating
disagreement between the two datasets. The MAD-2 value is 0.05 which is a bit considerable in

comparison with the overall trends’ values represented by the data.

—e— |MIS Overall Trend
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Figure 5.16: Representativeness of IMIS LST trend at MYD21A1D times for the overall trend of
the data over the whole study period including MAD-2 and Pearson’s correlation values.

Resulted values (Table of applied the comparison reveals that the best representative trend
for the overall trend of the whole data is the trend of the time limits of the MOD21A1D dataset,
which is the daytime dataset of the MODIS Terra satellite. The Pear-son’s correlation values is the
highest (0.91) and MAD-2 value is the lowest (0.03).

Table 5.6: Comparison of Metrics of LST Trends at Different Observation Times Versus Overall
Trend

MOD21A1D MOD21AIN MYD21A1D MYD21A1IN

Pearsons’ Corellation Value 0.91 0.35 0.39 0.35
MAD-2 Value 0.03 0.04 0.05 0.05
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5.3 Environmental and Sensor-related Influences on LST

There are variables (i.e., influences) that might cause change in the LST measurements and trends.
These influences must be identified in order to determine their impact of the calculated LST data.

5.3.1 Elevation Effect

Elevation above sea level is one of the most attractive variables that could influence LSTs notably
that air temperature decreases with altitude. The approach mentioned in the methodology was
applied to investigate if elevation has any effect on LST. This was analyzed in the scatter plot
(Figure which represents the variation of the mean LST trends as a function of the changes
in station’s altitude. Results does not show any relation between the elevation of various IMIS
stations and the LST trend means. However, there is clear density of plots below 0.05 LST trend
means between 2000 and 2800 m elevation (Figure[5.17). .
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Figure 5.17: Change of mean LST trends as a function of station’s elevation variation.
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5.3.2 Aspect Effect

The topographic aspect is also considered as one of the causes that impacts LST trends. The same
graphical comparison (scatter plot) made with elevation was also made between LSTs” trends and
aspects (Figure [5.18), with the difference that the aspects are combined as bins on the x-axes due
to their random distribution among different stations. The resulted curve does not show any
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Figure 5.18: Change of mean LST trends as a function of station’s aspect variation.

relationship between the change in LST s’ trends and the change in station aspect. This may be
attributed to the fact that the influence of the other relevant factors can make much impact that

minimize the aspect impact.

5.3.3 View Angle Effect

For the retrieved MODIS LST data, and due to the orbital change, it is not feasible to get the
trends of each location at each observation time with the same view angle. For this reason, the
different view angles may give erroneous results and this will actual MODIS LST measurements.
Therefore, scatter plots were generated for each station (e.g. AMD?2 in Table 8.2l and at different
observation times). In addition, the same scatterplot was generated for the means” average of
all stations (Figure 5.19] [5.20} [5.21] and [5.22)), which helps to draw a general and comprehensive

conclusion.

Therefore, scatterplot show the following results for various observation times, LST and the view
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Figure 5.19: Change of LST as a function of view angle variation at all stations at MOD21A1D
observation time, showing the nubmber of observations at each view angle.
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Figure 5.20: Change of LST as a function of view angle variation at all stations at MOD21A1N
observation time, showing the nubmber of observations at each view angle.
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Figure 5.21: Change of LST as a function of view angle variation at all stations at MYD21A1D
observation time, showing the nubmber of observations at each view angle.
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Figure 5.22: Change of LST as a function of view angle variation at all stations at MYD21A1IN
observation time, showing the nubmber of observations at each view angle.
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angles:

— MOD21A1D: Sharp increase (about 3°) in LST with positive view angle (0° to 75°), beside a
decrease (about 2°) with negative view angle (0° to -75°).

— MOD21A1N: Slight increase (about 0.5°) in LST with positive view angle, and slight increase
(< 1°) with negative view angle.

— MYD21A1D: There is no define behavior between LST and the view angle.

— MYD21A1N: Sharp increase (> 3°) in LST with negative view angle, besides undefined trend

of LST with positive view angle.

5.4 Landsat Implications

As mentioned in the methodology, a statistical and visualization process was applied to under-
stand the representativeness of the Landsat observation time of the total IMIS LST measurements
compared to that of MODIS. The five observation times were visualized on a plot representing
the mean LST at all hours of the day taken from the IMIS measurements. It (Figure shows
that MOD21A1D observation time is from 9 AM to 12 PM, MOD21A1N from 8 PM to 11 PM,
MYD21A1D from 11 AM to 2 PM, MYD21A1N from 1 AM to 3 AM, and Landsat from 9:45 AM to

11:30 AM, taking into account the time rounding mentioned in the previous methods.
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Figure 5.23: IMIS mean LST during hours of the day of all stations over the whole study period
with MODIS and Landsat observation times marked with respect to the IMIS curve.

The overall mean of IMIS data was then calculated and found to be -1.14 °C. In addition, the
statistics (Table[5.7/and Table[5.8) included the time window means that include the means of IMIS
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data during the five observation times, as well as the mean difference between each observation
time and the overall mean; in addition to the count based representation that shows the percentage
of data included in each time window from the total data.

MOD21A1D 9-12 MOD21A1N 20-23 MYD21A1D 11-14

Time Window Mean 2.43 -3.39 3.45
Mean Difference with Overall (-1.14 °C) 3.87 1.95 4.89
Count-Based Representation (%) 12.5 12.5 12.5

Table 5.7: Representativeness of different MODIS observation times for the overall LST mean of
all stations during the daytime hours over the whole study period in IMIS data.

MYD21A1N 1-3 Landsat 9:45-11:30

Time Window Mean -4.31 3.01
Mean Difference with Overall (-1.14 °C) 2.86 4.45
Count-Based Representation (%) 8.33 8.33

Table 5.8: Representativeness of different MYD21A1 and Landsat observation times for the overall
LST mean of all stations during the daytime hours over the whole study period in IMIS data.

The time window mean is 2.43 °C for MOD21A1D observation time, with a difference of 3.87 °C
from the overall mean, and its count-based representation value is 12.5% from the overall mea-
surement count. The mean of MOD21A1N observation time is -3.39, with a mean difference of 1.95
from the overall mean, and its count-based representation value is similar to that of MOD21A1D,
which is 12.5%. For the MYD21A1D observation time, the time window mean is 3.45 °C, resulting
in a mean difference of 4.89 °C for the overall mean; and similarly, the count-based representation
value of MYD21A1D is 12.5%.

The different count-based representation values were calculated for the remaining two observa-
tion times. Thus, the mean LST of the MYD21A1N observation time is -4.31 °C with a mean
difference of 2.86 °C from the total, but the count-based representation values are 8.33%. The
statistics of the Landsat observation time shows that its mean is 3.01 °C with a mean difference
of 4.45 °C, and a count-based representation value similar to that of MYD21A1N which is 8.33%.
All statistics were helpful for understanding the representativeness of the five different satellite
observation times for overall IMIS measurements.
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6 Discussion

Recently, there is significant dependence on remote sensing platform for broader implications in
acquiring geospatial data, such as CHIRPS, TRMM, GPM, ERAS5, etc. This is less time-consuming
and can provide data which is lacking into the available records, data with uncertainty, or data
with difficulty to be measured. However, the acquired data from remote sensing must be credible
to be utilized for further analysis, and this data is often compared with data taken from ground-
based stations to assure its certainty, like the case in this study where the main objective is to inves-
tigate the correspondence between satellite data (i.e. MODIS LST) and the datasets retrieved from
IMIS ground-based stations for the Swiss Alps, the majority of this work implies a comparative
analysis between the two data sources. The positive agreement will motivate the use of satellite
data; especially where ground stations are absent or where rugged topography dominates. The
analytical methods used in this research can be extended to other types of satellite imagery with

more distinctive spatial signatures.

Within the context of the results from this study, LST is not the same as the air temperature which
is mentioned in the daily weather reports, and it varies throughout the year. Thus, LST is moni-
tored because the warmth rising off Earth’s landscapes influences weather and climate patterns.
In addition, LST is a key indicator of the Earth surface energy budget, and its implications are
required for hydrology, meteorology, and climatology. It has fundamental importance to the net
radiation budget at the Earth surface and to monitoring the state of crops and vegetation, as well
as an important indicator of both the greenhouse gases (GHGs) effect and the energy flux between
the atmosphere and ground (Becker and Li, [1995).Many studies investigate the trends” variations
exist in LST ground stations data, which is usually a key information for studying many relevant
topics. For instance, Wei et al., 2021|analyzed the LST variation in the agricultural pastoral ecotone
of northern China from 2003 to 2020, and Xing et al., 2020|examined the year-to-year variations of
LST under clear-sky conditions for the whole world based on ATC model" (Li et al., 2022). While
many researchers have used MODIS LST products to investigate temperature trends, only a few
have evaluated the reliability of these trends (Xu, 2023).
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6.1 MODIS Versus IMIS Data Comparisons

Results showed a similarity between MODIS Terra and Aqua whether for nighttime or daytime
measurements when compared with IMIS data. However, the spread shape shows a clear spread
of the MODIS data with highest LST, which might be attributed to temperature climax and dif-
ferentiation during the day, but this was not marked during the night time when temperature
difference is often limited. This shape also appeared in a similar comparison between the same
IMIS data and different Landsat LST observations during a different study period (Gok et al.,
2024) ; and this was explained in relation to differences in spatial resolution and the existence of
snow cover with dissipated snow patches due to differential melting between sun-exposed and

shaded snow areas.

Given that Landsat do not have nighttime measurements; therefore, the spread shape did not
appear in the nighttime scatter plots, and this indicates that the spread is not due to the coarse
spatial resolution of MODIS, but more likely due to the effect of solar radiation on MODIS mea-
surements during daytime. With the fact that the coarse spatial resolution of MODIS (i.e., 1km)
reduces the matching with IMIS measurements at a specific node. Thus, traditional LST measure-
ments are obtained from ground-based stations. However, these measurements do not represent
the spatial distribution of LST since they are point-based measurements (Becker and Li, 1995).
This raises a challenge in assessing spatial representativeness of ground stations, because validat-
ing LST products with a spatial resolution of hundreds or thousands of meters with ground based
measurements will result error from the scale mismatch with land cover type (LCT) making the

validation less reliable and hinder the process (Yu et al., 2017).

The comparison between IMIS and MODIS data at the four different observation times depends
more on the meaning of the calculated values that were represented in the results. Therefore, all
values in the MOD21A1D and MYD21A1D comparison indicates a good compatibility between
the datasets at these times. This has negligible effect of outliers on the mean deviation values that
differs slightly. Also, the comparison between the day and night time representativeness was per-
formed using small values with slight differences due to the higher temperature difference during
data time. These results can be reanalyzed due to the small difference (weak accuracy) in values
between data sets, and due to the appearance of the unexpected features in some observation
times and absence in another, such as the speared of MODIS data at IMIS LST 0 °C.

The means comparison and the difference between the day and night observation times is clear,
and it obviously confirms the accuracy of the night observation times with day observations. This
is also confirmed by the calculated values that indicated the significant difference between the
means of the MODIS and IMIS data during the day observation times, which was absent in the
nighttime observations.
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Nighttime values indicate relatively positive linear correlation between MODIS and IMIS data at
night times, with a minor difference. The results assure the accuracy of MODIS nighttime data
over daytime data with respect to IMIS data. In addition, many studies have shown that MODIS
daytime LST presents obviously lower levels of validation accuracy than nighttime LST due to
high levels of daytime LST heterogeneity (Wang et al., 2008,Coll et al., [2009). In the daytime, hill
shadows within pixels can produce considerable LST heterogeneities, while at night, the ground
surface becomes cool and more homogeneous, when it is free of solar heating uncertainties (Wang
et al.,2008).

6.2 MODIS Versus IMIS Trends Comparisons

Considering the hourly trends, the Pearson’s Correlation values that have slight difference be-
tween each other, indicated the absence of any correlation between the MODIS and IMIS data.
However, the shapes of the two curves at all times show clear correlation whether positive or neg-
ative between the data. This concludes that low Pearson’s Correlation values are caused by the
presence of outliers the affected the shape and calculation of the right correlation. Therefore, it
is not reliable to depend only on Pearson’s Correlation to investigate the relation between these
two datasets where in-depth analysis could be achieved using robust statistical measurement that
might be more comprehensive and avoid the effects of outliers. Hence, current guidelines recom-
mend using robust methods to identify outliers, such as those relying on the median as opposed
to the mean (Leys et al., 2019), and this is makes the necessity of using MAD-2. In addition, there
is significance in using the scatter plots which played a role in understanding the effect of outliers
on the statistical values.

For means comparison, the slightly affective MAE values indicted that the compared datasets are
a bit different and lack strong compatibility. Although the results were not expected according to
the values presented, it is obvious that Terra data is slightly more compatible with the IMIS data
than that of Aqua. Knowing that a clear correlation was presented by the actual measurements,
reanalysis and assessment of the MAE values results is necessary, since they could be affected by
the outliers. In addition, the high standard deviation values, indicated that MAE values increase
as the standard deviation values between the Terra and Aqua data increase.

However, the scatter plots showed that these high values were caused by the presence of outliers,
and this confirms the compatibility of the datasets retrieved by the actual measurements. In a
statistical context, there are concerns about the disproportionate influence of outliers on statistical

analyses, based on sample means and variance.

Studies provided evidence on the effect of outliers resulted in inflation of Type I error rates (Zim-
merman, (1994, Wilcox, 1998, Liao et al., 2016).
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6.3 Limitations of Environmental and Sensor-related Influences on LST

Based on the analysis (scatterplots) of the studied influences, elevation and aspect of ground sta-
tion did not show remarkable effect on the trend measurements. While, LST measurements from
MODIS satellites vary with viewing angle at different observation times.

Using the means of all MODIS actual measurements instead of trends helped to identify different
effects of the view angle on satellite’s LST measurements which showed an impact of observation
times of the view angle on LST. This effect increases the differences between satellite LST prod-
ucts; and thus, increasing the challenge of using multi-sensor and multi-decadal data to provide
harmonized LST datasets suitable for long-term climate observations (Ermida et al., 2017). This
could be caused by the effect of the viewing angle (obliqueness) on the pixel size, and it was noted
that the pixel size varies with the viewing angle if the instantaneous field of view (IFOV) remains
constant for all viewing directions (Ren et al., 2015).

These influences made it difficult to determine the exact effect of the satellite’s pointing angle (i.e.
nadir) on LST measurements, and this has several branches that need to be resolved before reach-
ing a final conclusion. In addition, considering daytime and nighttime data separately for such
comparison might come up with different conclusions concerning the view angle effect. Thus,
many biases may exist according to the observation time; especially that the quality of MODIS
data has a Root Mean Square Error (RMSE) of 2.44 K and 3.70 K at nighttime and daytime, respec-
tively (Xu, 2023). In addition, there is different climatic conditions between day and night which
may also affects the quality of LST between day and night time observations; while, the observed
dependencies of nighttime biases on view angle agree with results reported for night-time LST
from the AVHRR and SEVIRI LST (Trigo et al., 2021). In contrast, at daytime, the differences were
considerably larger and asymmetric with respect to nadir; and this suggests that these differences
are linked to illumination geometry and reflect the viewing geometry dependence of shadow and
sunlit areas in the sensor’s field of view (Pérez-Planells et al., 2023).

In order to reach better clarification of the effect of elevation and aspect on LST measurements, it
would be better to compare it to the ground-based LST measurements instead of its comparison
with trends. This step is responsible for increasing the number of data points used, providing
better explanation of any change. In this respect, the elevation and aspect play a role in LST
measurement notably that elevation is linked with air temperature, and the aspect with sunlight
orientation increases air temperature; however, this effect will evenly influence all ground stations
and space-borne measurements, which makes it as a constant variable on the resulted LST values.
It is worth mentioning that there are other factors that could emerge and impact IMIS diurnal
trend patterns, such as climatic conditions (e.g., wind speed, humidity), type of surficial materials
that capture heat (e.g., clayey soil, bare rock, etc.), as well as rapid dynamics of clouds-masking
that prevent sunlight to reach terrain surface.
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6.4 Landsat Implications

In reference to the presented results, it is obvious that the MOD21A1N observation time data has
the best mean deference (1.95 °C) from the over all (-1.14 °C) and count based representation val-
ues 12.5%. This means that the MOD21A1N observation time has a higher representativeness
than all the other times, including those of Landsat 5, 7, and 8, which are shown earlier (Figure
4.3). The concluded results states that this is a limitation for Landsat measurements. Therefore,
using only LST values from a single Landsat scene to represent a season or a whole year shows
some limitation of the LST value representativeness (Dang et al., 2020) which would have higher
accuracy during night time specially if they have similar observation time as that of MO21AIN.
Therefore, consisting of two platforms launched in a similar time period as Landsat 7 ETM+ (al-
though the Aqua platform was released in 2002), MODIS products can provide high accurate LST
data (Burnett and Chen, 2021).

The processing of additional type of satellite images would be helpful for validation and regu-
lating some issues that might existed in MODIS data. This is the case for Landsat images which
have higher spatial resolution. In this respect, the comparison of observation time was carried out,
and it has been resulted that MOD21A1N observation time data has the best mean deference (1.95
°C) from the overall (-1.14°C) and count based representation values 12.5%. This means that the
MOD21A1N observation time has a higher representativeness than all the other times, including
those of Landsat 5, 7, and 8, which are shown earlier (Figure . This is a limitation for Landsat
measurements. Therefore, using only LST values from a single Landsat scene to represent a sea-
son or a whole year shows some limitation of the LST value representativeness (Dang et al., 2020);
while it has higher accuracy during night time specially if they have similar observation time as
that of MO21A1N. Therefore, with two platforms launched in a similar time period as Landsat
7 ETM+ (although the Aqua platform was released in 2002), MODIS products can provide high
accurate LST data (Burnett and Chen, 2021).

Based on the aforementioned discussion, the explicit unexpected results in this study must be ac-
knowledged, such as MODIS LST spread of data, absence of aspect effect, etc. These results might
have different causes that could enhance cloud correction methods to reduce residual contamina-
tion affecting LST accuracy. In addition, the general compatibility that appeared between datasets,
which provide credibility of using LST measurements directly from satellite data with a special
emphasis to MODIS Terra and Aqua sensors. This will motivate performing similar research stud-
ies to calculate LST over different time periods, notably LST of drought indices can be used for
assessing climate change regime and identifying its geographic and temporal dimensions.
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7 Conclusion

The novelty of this study is represented mainly by the use of MODIS data, which has not been
used for measuring LST in Swiss Alps before. The presence of similar study done by Gok et al.,
2024} but using another satellite image types (Landsat), was helpful and it was used as a reference
line for the workflow in this study, which has been implemented in synergy with the primarily
identified research questions which have been responded as follows:

— There is similarity in the LST measurements acquired and calculated form MODIS and IMIS
ground stations at different observation times in the Swiss Alps, but they have a preference
for night time observations that showed higher similarity than day time data.

— IMIS ground-based stations proved to be creditable reference for validation of LST data ac-
quired from MODIS satellite images. Thus, results showed a similarity between MODIS
and IMIS trends, which was indicated in the scatter plots, where a preference of night time
observation exists in the trends” means comparison.

— MODIS LST trends, at different observation times, represent the overall trend at all time and
this was evidenced by the similarity between the obtained trends, where IMIS data trend at
MOD21A1D (Terra daytime observation) is the best representative of the IMIS overall trend.

— A number of factors resulted in different LST trends at different observation times. Thus,
LST showed different behavior with the view angle at various observation times, even that
it was not defined for MYD21A1D. In addition, there was a remarkable effect of the elevation
above 2000 m on the LST as resulted from the scatterplots. Nevertheless, no clear effect of
aspect on LST has been reported.

— The implications of the comparison between MODIS and Landsat LST observation has been
viewed from the complementary of characteristics between both satellites. Thus, MODIS
is characterized by short revisit time, day and night observations, but with relatively low
spatial resolution (1 km). Besides, the high spatial resolution (60 m in the thermal bands)
in Landsat serves for accurate LST data, but it is hindered by the individual daytime obser-
vation and the longer revisit time (16 days). Hence, the implication of using both satellite

includes the utility from the advantages present in each satellite.

The existed challenges in the study were addressed by analytical methods required to guarantee
reliable comparison of MODIS satellites LST measurements IMIS data, this will assure optimal

results when similar approaches are applied for researches on climate change, evapotranspiration,
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and urban heat managements, etc.

As a matter of concern, the absence of both elevation and aspect effects raises questions regarding
the unexpected results; especially elevation was found to have an impact in many studies using
MODIS LST, particularly those conducted over a large area where the terrain is variable (Phan
et al., 2018). For example, in air temperature (Ta) estimation using MODIS LST data, along with
ground LST, elevation was considered one of the most impactful variables effecting the results
of Ta estimation" (Gawu¢ and Struzewska, 2016, Chen et al., 2016,Huang et al., 2017,Phan et al.,
2018). This makes it questionable if such an effect would appear when the number of used stations

and LST measurements are increased.

In this regards, questions have been raise: Should the LST measurements be used instead of trends
to figure out the effect of these variables on IMIS measurements? While the accuracy of the mea-
surements is essential for these obvious variations, so what other influences on LST measurements
might be studied for better understanding of the existing trends over such a long-time span? Con-
sidering that analysis of different possible influences is crucial to explain the changes taking place
within the data, and these influences may differ between regions.

Given that MOD21A1D appeared to be the most representative of the overall in IMIS data trends,
is it convenient to rely on it to understand long-term variations of IMIS LST trends? All these
questions open the door to many significant ideas and complications that would be extremely
beneficial if solved.

This study did not only brought up and responded to a lot of key questions, but also expressed
different methodologies for achieving a comprehensive approach in LST measurements studies.
While, the lack of long-term LST records in the past has hindered the application of satellite LST in
several climate studies, and only a few studies have examined the role of LST datasets in climate
variations (Trigo et al., 2008,Jiménez-Mufioz et al., 2013). The study sheds the light on different
gaps created a facility for more in-depth studies to understand LST measurements and their im-

plications.

Based on the findings of this study, it can be concluded that MODIS datasets for measuring LST
have good reliability for calculating the temperature of land surface with various LCU compo-
nents and over different time periods. During the implementation of this study, there are chal-
lenges raised and they need to be addressed in-depth for selected pilot areas where long time
series data with high accuracy is available to perform distinctly comparative analysis between
MODIS LST data and data from ground stations. If these areas include mountainous (as the Swiss

Alps) and flat terrain, more precision in data comparison can be reached.

In addition, the variety of land characteristics (e.g., elevation, aspect, etc.) must be strictly studies
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to appraise the influence of these characteristics on data accuracy; which means that the terrain
characteristics should be categorized according to their interaction with heat received from sun-
light radiation. Moreover, this must be integrated with the validation of technical influences (e.g.,
view angle) that often resulted from the space-borne sensors. In addition, down-scaling between
various satellite images can be utilized; specially to integrate the short revisit time of MODIS
images with high-resolution thermal images (e.g., Aster, Landsat, etc.), but with relatively long
revisit time.

The study concludes that MODIS datasets for measuring LST are useful tool that can be adopted to
assess heat fluxes and differentiate various surface heat radiation; and this in turn can be applied
in serval themes with a special emphasis to study drought indices induced by climate change,
identifying heat islands for further innovative cooling shelter, soil dryness/moisture for agricul-
tural purposes, regional heat flow dynamics, indicative hydrological clues (e.g., paleodrainages,
wet horizons, etc.); porous rocks and lineaments, as well as this can extend to agriculture in defin-

ing vegetation health and crop-water requirement.
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8 Appendices

8.1 Code

The code can be accessed at https://github.com/asheib/AS_Master_Thesis_Code.git.

LST Trends Across Different Datasets
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Figure 8.1: The IMIS LST trends at all MODIS observation times versus the overall trend of the
data.
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of actual measurements.
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Comparison of Trends at Hour 10:00
Pearson Corr: 0.05, MAD: 0.03

IMIS
® MODIS

/,‘“},"l‘,« \,)\q il i

‘",A,h

N

\ Af‘

0.251

0.20 1

in
=
o
anjeA puaiL

0.10
0.05

Station

Comparison between MOD21A1D data trends with that of IMIS data at 10 am.
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Comparison of Trends at Hour 11:00
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Comparison between MOD21A1D data trends with that of IMIS data at 11 am.
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Comparison of Trends at Hour 12:00
Pearson Corr: 0.14, MAD: 0.04
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Comparison of Trends at Hour 14:00
Pearson Corr: -0.03, MAD: 0.05
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Comparison between MOD21A1N data trends with that of IMIS data at 20 pm.
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Comparison of Trends at Hour 21:00
Pearson Corr: 0.09, MAD: 0.04
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Comparison of Trends at Hour 23:00
Pearson Corr: -0.09, MAD: 0.01
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Comparison between MYD21A1N data trends with that of IMIS data at 1 am.
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Comparison of Trends at Hour 2:00
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Comparison between MYD21A1N data trends with that of IMIS data at 2 am.
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Table 8.1: Average LST (°C) of all stations from IMIS (at all times of the day) and the four MODIS times datasets through the whole study period

Station IMIS Average (°C) MOD21A1D Average (°C) MOD21AIN Average (°C) MYD21A1D Average (°C) MYD21A1N Average (°C)

AMD?2 3.01 11.66 -6.78 6.51 -6.66
ANV2 -3.91 6.88 5.38 10.76 3.75
ANV3 -2.58 3.19 -3.97 6.87 -5.89
ARO2 -4.67 3.02 -7.24 3.78 -6.31
ARO3 -2.62 3.64 -7.63 3.15 -8.29
ATT2 -2.83 4.49 -5.67 4.04 -5.63
BED3 -0.99 271 -1.36 6.31 -1.23
BER2 -2.27 6.22 -2.94 4.84 -3.27
BER3 -2.59 3.24 -6.38 6.85 -6.66
BEV2 -3.05 3.15 -6.83 4.06 -8.20
BOG2 -0.65 4.19 -5.60 5.00 -7.41
CAM2 -1.26 4.45 -4.34 3.58 -4.54
CHA2 -0.79 8.19 -2.52 5.79 -4.73
CMA2 -1.05 3.25 1.68 5.55 1.54
DAV2 -3.31 3.16 -4.62 4.49 -5.16
DAV3 -2.94 6.07 -7.23 3.17 -6.44
DIA2 -2.76 1.82 -3.20 6.85 -4.32
DTR2 0.73 11.36 -3.21 2.10 -4.79
EGH2 -1.93 10.34 -2.77 11.57 -2.69
ELM2 -0.53 6.79 -4.34 8.33 -5.21
ELS2 -0.24 8.86 2.66 6.11 0.32
FAE2 0.50 10.02 1.91 8.64 1.43
FIR2 0.02 9.26 0.63 8.20 1.77
FIS2 -0.99 9.48 0.05 10.05 -1.00
FNH2 -0.71 8.55 0.54 10.44 1.39
FUL2 -1.75 6.05 1.24 9.02 -1.79
GAD2 -1.74 7.54 -1.65 517 -0.80
GAN2 1.16 1.51 -0.14 7.75 2.63
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Station

IMIS Average (°C)

MOD21A1D Average (°C) MOD21A1IN Average (°C) MYD21A1D Average (°C)

MYD21A1N Average (°C)
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0.43
-1.49
-1.30
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1.20
-0.88
-0.35
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Station IMIS Average (°C) MOD21A1D Average (°C) MOD21AI1IN Average (°C) MYD21A1D Average (°C) MYD21A1N Average (°C)
SCA2 -0.35 5.49 -1.32 6.39 0.80
SCA3 -2.30 6.27 -4.48 4.09 -3.53
SCB2 1.29 12.81 6.13 12.89 3.25
SCH2 -2.04 4.36 -1.18 4.59 -1.00
SIM2 -1.60 7.39 0.32 6.54 0.91
SLF2 1.84 11.53 -0.99 11.83 -1.75
SMN2 -3.45 3.33 -6.17 4.34 -6.34
SPN2 -2.40 5.48 -5.50 4.11 -5.68
SPN3 -3.31 3.97 -3.42 541 -6.77
STH2 0.70 8.78 3.95 9.48 4.22
STN2 -3.84 1.07 -8.47 1.08 -9.49
TAM2 -3.48 1.64 0.01 2.62 0.26
TAM3 -1.37 6.70 -0.85 8.84 0.07
TIT2 -0.57 -2.57 -0.76 -0.32 -1.46
TRU2 -3.01 13.12 -0.92 10.13 -4.73
TUJ2 -0.47 7.34 -1.45 7.48 -2.22
TUM2 -0.01 10.19 -2.49 7.81 -3.32
URS2 -0.41 5.05 -3.50 7.84 -3.14
VAL2 -1.17 12.56 -3.90 9.72 -2.70
VDS2 -1.99 7.05 -2.85 6.45 -3.73
VIN2 -3.84 5.68 -4.19 6.11 -6.32
WEJ2 -2.96 5.00 -3.40 5.41 -4.11
ZER2 -4.01 5.30 -7.57 4.78 -8.34




6.

Table 8.2: Metadata Of Used IMIS ground stations (IM1S2023)

Station Abr. Station number station name Station location East Coordinates North Coordinates
AMD 2 Amden Barenfall 729500 225840
ANV 2 Anniviers Orzival 607468 115206
ANV 3 Anniviers Tracuit 616833 107764
ARO 2 Arolla Les Fontanesses 600558 97471
ARO 3 Arolla Breona 609546 103997
ATT 2 Les Attelas Lac des Vaux 586953 105990
BED 3 Bedretto Cassinello 683169 149445
BER 2 Bernina Motta Bianca 799121 144312
BER 3 Bernina Puoz Bass 790343 146291
BEV 2 Bever Valetta 783955 157064
BOG 2 Bosco Gurin Hendar Furggu 679538 131902
CAM 2 Campolungo Fontane 698228 146844
CHA 2 Chaussy Pierres Fendues 578868 136214
CMA 2 Crap Masegn La Fuorcla 733073 189894
DAV 2 Davos Barentalli 782062 174726
DAV 3 Davos Hanengretji 778292 184616
DIA 2 Les Diablerets Tsanfleuron 584900 129200
DTR 2  Dotra Preda 709714 155619
EGH 2 Eggishorn Flesch 650210 140815
ELM 2 Elm Chuebodensee 729279 199678
ELS 2 Elsige Elsige 615575 153165
FAE 2 Farmel Farmel 604344 152125
FIR 2 First Schmidigen-Bidmeren 647887 168807
FIS 2 Fisi Fisi 618068 146709
FNH 2 Finhaut L'Ecreuleuse 563303 105584
FUL 2 Fully Grand Cor 573059 115974
GAD 2 Gadmen Gschletteregg 673273 177447
GAN 2 Gandegg Gandegg 624748 142041



08

Station Abr. Station number station name Station location East Coordinates North Coordinates
GLA 2 Glérnisch Guppen 721610 206302
GOM 2  Goms Bodmerchumma 661029 141320
GOM 3 Goms Treichbode 660649 148952
GOR 2 Gornergrat Gornergratsee 626731 92906
GUT 2 Guttannen Homad 665114 170140
ILI 2 Val d’llliez Les Collines 552841 115728
JUL 2 Julier Vairana 773049 149949
KES 2 Kesch Porta d’Es-cha 788351 166289
KLO 2 Klosters Madrisa 785499 198213
KLO 3 Klosters Gatschiefer 790141 190813
LAG 2 Piz Lagrev Tscheppa 777150 147050
LAU 2 Lauenen Truttlisbergpass 595482 141633
LUK 2 Lukmanier Lai Verd 703037 162315
MAE 2 Minnlichen Itramen 638674 163168
MEI 2 Meiental Laucheren 685005 177555
MTR 2 Matro Predanass 713717 140779
MUN 2  Mund Chiematte 637466 131413
NAR 2 Nara Bassa di Nara 709823 147852
NAS 2 Naluns Schlivera 814920 188734
OBM 2 Ober Meiel Obere Meiel 582760 141183
OBW 2 Oberwald Jostsee 667290 155257
OBW 3 Oberwald Mallige 670293 151138
ORT 2 Ortstock Ortstock Matt 715769 197452
OTT 2 Ottere Ottere 609435 154275
PAR 2 Parsenn Kreuzweg 780436 191675
PMA 2 Piz Martegnas Colms da Parsonz 760854 160907
PUZ 2 Puzzetta Ils Plauns 709039 164889
ROA 2 Rotschalp Rotschalp 642412 180499
SAA 2 Saas Seetal 634036 113469
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Station Abr. Station number station name Station location East Coordinates North Coordinates
SCA 2 Schachental Seewli 697589 185439
SCA 3 Schachental Alpler Tor 702186 194253
SCB 2 Schonbuel Schonbuel 650770 181126
SCH 2 Schilthorn Turliboden 630363 158481
SIM 2 Simano Piano del Simano 718450 147400
SLF 2 SLF Davos Stilli (SLF) 783879 187447
SMN 2 Samnaun Ravaischer Salaas 820671 204667
SPN 2 Simplon Ze Seewe 652382 120004
SPN 3 Simplon Wenghorn 646837 114241
STH 2 Stockhorn Vorderstocken 606198 170095
STN 2 St. Niklaus Oberer Stelligletscher 624091 112974
TAM 2 Taminatal Wildsee 748557 203769
TAM 3 Taminatal Schaftali 753894 195299
TIT 2 Titlis Titlisboden 674132 182107
TRU 2 Trubelboden Trubelboden 611306 135519
TUJ 2 Tujetsch Culmatsch 698313 171100
TUM 2 Tumpiv Val Miez 720868 182318
URS 2 Urseren Giltnasen 682405 160066
VAL 2 Vallascia Vallascia 690126 155980
VDS 2 Vallee de la Sionne Donin du Jour 594521 130015
VIN 2 Vinadi Alpetta 828725 202232
WEFJ 2 Weissfluhjoch Versuchsfeld Weissfluhjoch 780849 189231
ZER 2 Zermatt Triftchumme 622354 99001
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