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Abstract

This Master’s thesis evaluates the use of Sentinel-2 and sampled tree data, combined with
machine learning techniques, for monitoring sweet chestnut trees (Castanea sativa) showing
visual symptoms of ink disease in the Canton of Ticino, Switzerland. The study addresses
two main research questions: How to assess the spatial distribution of diseased trees using
Sentinel-2 data and sampled tree data (Research Question 1), and which features are
indicative of the disease and how they can be extracted (Research Question 2). Especially
the study area’s diverse topography, characterised by steep slopes and mixed forest types,
presents challenges not yet addressed in the existing literature. The thesis provides detailed
insight into the approach of training a Random Forest classifier by using preprocessed
Sentinel-2 data from 2017 to 2023, exceeding the standard quality of freely available Level-2A
products. The study develops a feature selection method that combines Recursive Feature
Elimination with Leave-Location-Out Cross-Validation and includes a pre-assessment of the
values of the original Sentinel-2 bands and eight selected vegetation indices using visual and
statistical methods. The resulting classification model achieved an overall accuracy of 86.7%,
but nonetheless has some weaknesses to discuss. While with remote sensing data alone,
one cannot directly detect ink disease, it offers valuable insights for identifying areas with
potential phytosanitary issues, supporting subsequent field validation. With this, the thesis
highlights the importance of collaborative work within the field of research and encourages
the use of combined methods to better understand the distribution and progression of ink
disease in Switzerland.
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Chapter 1
Introduction
The sweet chestnut (Castanea sativa Mill.) forests of Ticino are characteristic for the region
on the southern side of the Swiss Alps. The cultivation of the species has a long-standing
tradition in this area and is marked with serving multiple purposes for humans, including
food production, timber, and landscape management (Krebs et al., 2012). However, since
the 1990s, a noticeable increase in tree mortality has been observed, which has been partly
attributed to a re-emergence of ink disease caused by the invasive species P. cinnamomi
Rand and P. x cambivora (Petri) Buism. (Prospero et al., 2023). These pathogens attack
the root systems of sweet chestnut trees, leading to a decline in tree vitality and, finally
to the death of the tree (Jung et al., 2018). Visual symptoms as reduced foliage and nut
production, smaller, yellowish coloured leaves and dark, flame shaped lesions on the root
collar with a typical root rot are indicative of the disease (Prospero et al., 2023).

To assess the impact and current distribution of ink disease in southern Switzerland’s
sweet chestnut forests, the Swiss Federal Institute for Forest, Snow and Landscape Research
(WSL) has been conducting research since 2013 (Prospero et al., 2023). The investigations
include surveys based on forest service data, field sampling and laboratory analyses. Despite
these efforts, a comprehensive overview of the disease’s distribution in southern Switzerland
remains unavailable (Prospero et al., 2023). This leads to Remote Sensing (RS), which has
evolved into an important tool for various Earth observation tasks, including detecting land
use change, disaster management, ocean and urban observation, as well as forest monitoring
(Fu et al., 2024). Different types of platforms provide data targeted to specific needs,
for example Unmanned Aerial Vehicle (UAV)s enable precise data collection for specific
locations and times, while satellite-derived images allow continuous, long-term monitoring
over large areas (Matyukira & Mhangara, 2024). For example, European Space Agency
(ESA)’s Sentinel-2 mission provides a consistent source of global data with high spatial
resolution (ranging from 10x10 m to 60x60 m pixels) and a revisit time of two to five days,
depending on the location on Earth. Since its launch in 2015, Sentinel-2 data has been
freely available (Molnár & Király, 2024). The development of specialised Vegetation Index
(VI)s has further enhanced the ability to quantitatively assess the health and productivity
of vegetation, enabling accurate monitoring of forest conditions (Matyukira & Mhangara,
2024). Combined with the fast development of Machine Learning (ML) techniques within
the last years, the use of such high-dimensional (regarding spatial, temporal and spectral
dimensions) and therefore processing-intensive RS data has opened up new possibilities to
assess forest areas on large scale within short time (Torres et al., 2021). Latest research,
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Chapter 1 Introduction

conducted in southern European countries showed the suitability of RS combined with ML
methods to monitor the health of sweet chestnut trees on a landscape scale (see Marques
et al., 2019; Pádua et al., 2020; Sebastiani et al., 2024). A current lack in research is the
examination of such an approach in regions with topographical and landscape characteristics
similar to those of southern Switzerland. Furthermore, there is an increasing demand on
long-term studies that can provide better insights into the progression of ink disease (Jung
et al., 2018).

The aim of this thesis was to develop a straight-forward approach for monitoring sweet
chestnut trees that show visual symptoms of ink disease in Ticino by using Sentinel-2 time
series data and field-sampled tree data. Thus, by implementing a Random Forest (RF)
model to classify the condition of trees as either non-symptomatic or symptomatic over
multiple years, enabling to monitor the potential disease spread over time. In the literature,
the use of Sentinel-2 data to train a RF model is a common and effective approach for forest
monitoring, demonstrating strong potential for classification tasks. The method has provided
promising results in several studies, as demonstrated by Alonso et al. (2020), Guzmán Q.
et al. (2023), Molnár and Király (2024), Rösch et al. (2022), and Sebastiani et al. (2024).

The thesis was conducted in collaboration with the WSL, which provides valuable knowl-
edge from a previous pilot project, as well as data used within this work (see Prospero et al.,
2023). The thesis focuses on the region of the Canton of Ticino with three selected focus
sites for detailed analysis.

To gain a deeper understanding of the data characteristics, an initial step of this work
was to analyse the spectral information provided by Sentinel-2 time series data with both
original bands and VIs. Furthermore, a feature selection method was applied prior to set up
a RF model. The following questions will guide the investigation within this thesis:

RQ1: How can the current spatial distribution of diseased sweet chestnut (Castanea sativa)
in Ticino be assessed by using freely available remote sensing data and sampled tree
data?

RQ2: What features are indicative for such an assessment and how can they be extracted?

The following chapters will present the approach to addressing these questions, beginning
with an introductory chapter that gives the context for the research. This will be followed
by a comprehensive section about the methods, already highlighting some challenges and the
considerations behind the chosen approaches also with reference to existing literature. The
results will be presented in a consistent structure by first showing outcomes of the feature
analysis, then the feature selection and finally the results of the RS classification. The
results will be discussed, with particular attention given to the challenges and limitations
of this work. The conclusion will summarise the key findings and suggest future direction
for research, outlining the potential applications and relevance of this work in terms of
monitoring forest areas by using Sentinel-2 data.
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Chapter 2
Research Context

2.1 Sweet Chestnut in the Canton of Ticino, Switzerland
The tradition of cultivating sweet chestnut trees dates back to the Roman Age, when humans
discovered the diverse utility of the species as a source of food (nuts) and valuable timber
and provider of important ecosystem services (e.g., soil erosion control) (Prospero et al.,
2023). The species, known for its exceptional longevity, brought a wide range of use and
played a central role in the agricultural and forestry systems of southern Europe, including
the Canton of Ticino (Krebs et al., 2012). Over time, the cultivation of sweet chestnut
evolved from intensive monoculture systems to more mixed, naturally regenerated forests,
starting in 1950, when the management of chestnut stands gradually stopped (Heiniger &
Conedera, 1994).

With the introduction of alternating staple foods as for example maize and potatoes as
well as changing climatic conditions, a first decline in sweet chestnut areas began. This
decline accelerated during the 20th century with upcoming diseases and pests, including ink
disease (caused by Phytophthora spp.), chestnut blight (Cryphonectria parasitica), and the
Asian chestnut gall wasp (Dryocosmus kuriphilus) (Conedera et al., 2021).

Nowadays, higher temperatures resulting from changing climate conditions favour the
tree’s growth beyond its traditional range, particularly in northern regions of Europe, where
the species is increasingly promoted as a climate- and drought-resistant alternative for
forest management systems (Freitas et al., 2021). Nevertheless, there are also critical voices
against the promotion of sweet chestnut due to its vulnerability to several invasive pathogens
and pests. Changing climate conditions, in particular higher winter temperatures, lead
to better conditions for thermophilic pathogens that may threaten the European stands
of sweet chestnut. Conedera et al. (2021) state that the chestnut tree is not inherently
future-proof, regarding increasing occurences of drought and rising temperatures. Especially
such environments pose the best conditions for the thermophilic pathogens that cause ink
disease. This highlights the need to assess the impact of ink disease on sweet chestnut stands
in Switzerland in order to develop a sustainable long-term forest management strategy for
the country (Conedera et al., 2021).

Sweet chestnut in the Canton of Ticino region typically grow at lower elevations, ranging
from 300 to about 1,000 m a.s.l. (Krebs et al., 2012). The species prefers acidic to neutral
soils and is less suited to soils dominated by limestone, which are prevalent in the northern
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Chapter 2 Research Context

part of the canton (see section 2.3). The species occurs predominantly in the flat areas of
southern Ticino and in the valleys throughout the whole canton, where it favours sunny,
well-exposed locations and is sensitive to shade (see fig. 2.1) (Scapozza & Ambrosi, 2021). In
terms of phenology, sweet chestnut trees bloom late compared with other species, abundantly
from May to June, with fruits ripening by the end of October (Kälin et al., 2005).

Figure 2.1: Distribution of sweet chestnut in the Canton of Ticino and the Val Bregaglia,
Switzerland. The map is based on the Tree Species Map of Switzerland (Koch et
al., 2024a) with additional refinement focus exclusively on areas below 900 m a.s.l. It
highlights regions where the sweet chestnut is the dominant tree species.

4



2.2 Ink Disease

2.2 Ink Disease
Ink disease is one of the most severe biotic threats for sweet chestnut. The first occurrence of
the disease in Europe dates back to 1838 in Portugal after which it was reported also in Spain,
Italy and France. With the appearance of the chestnut blight (Cryphonectria parasitica)
in the 20th century, the threat of ink disease gained less attention after 1930 (Vannini &
Vettraino, 2001). The causal agent of ink disease are two Phytophthora species, namely
P. x cambivora, and todays’ main agent, the more aggressive P. cinnamomi (Marzocchi
et al., 2024). The pathogens spread by zoospores which can reach a plant’s root by actively
swimming through the films of water in soil pores (Prospero et al., 2023). Especially events
such as heavy rain during the growing season and disrupted soil structure due to cultivation
practices favour its spread (Cardillo et al., 2018).

(a) (b)

Figure 2.2: Typical symptoms of ink disease. Dark necrotic bark lesion at the root collar (a) is
the main symptom of ink disease and can lead to further visible signs on trees, such as
less foliage (b). Image sources (a) and (b): © Phytopathology WSL, unpublished, 2019.

The main symptom of ink disease is root rot, and as a consequence less foliage, reduced
nut production or outgrowth of thin branches due to more light in the reduced canopy cover
(see fig. 2.2b). Further symptoms at the tree base are dark coloured cortical lesions which
become visible after removing the bark (see fig. 2.2a) (Prospero et al., 2023). The pathogens
trigger two possible courses of the disease: Either a tree dies rapidly, frequently within a
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Chapter 2 Research Context

growing season, or lasts in a general state of declining vitality over many years (Prospero
et al., 2023). The conditions leading to either one or the other course of the disease rest
still unknown and are currently a subject of research. Especially the observed coexistence
between the pathogens and the chestnut tree over decades is a current focus to investigate.
The observed survival of chestnut stands in former areas affected by ink disease suggests the
possibility of creating a balanced system between the pathogen and sweet chestnut trees
(Marzocchi et al., 2024). After decades of limited spread, the disease began to re-establish
itself in the 1990s (Prospero et al., 2023). Presumed reasons for this re-emergence of the
disease are the changing climate conditions, in particular the warmer winters which lead
to better survival conditions for thermophilic species. Further, increasing drought events
weaken the vitality of the trees and make them more susceptible to pathogens (Jung et al.,
2018).

Despite ongoing research into ink disease and its spread, effective control of the disease
remains a significant challenge (see Frascella et al., 2022; Prospero et al., 2013). Since
water is one of the main vector favouring the spread of the pathogen, to mitigate the
local spread of ink disease specialists recommend the implementation of a controlled water
management in soil (Turchetti & Maresi, 2000). Additionally, the possibility of a biological
control is currently being explored. By integrating biological isolates into plant systems, the
Phytophthora species should be suppressed (Frascella et al., 2022).

The first official report of ink disease in Switzerland was in 1943. With considerably rising
infection rates and more affected trees occurring in northern regions of Europe, research at a
national level was initiated (Prospero et al., 2023). A recent study examining the distribution
of ink disease in southern Switzerland by laboratory analysis confirmed the presence of P.
cinnamomi in 20 stands, while P. x cambivora was detected in seven stands. Additionally,
three other pathogen species were identified. However, the two mentioned Phytophthora
species, P. cinnamomi and P. x cambivora, remain the predominant pathogens in this region
of Switzerland (Prospero et al., 2023).

2.3 Study Area
The study area of this thesis comprises the Canton of Ticino, which is in southern Switzerland,
ranging from Chiasso in the south (45°49'N 9°1'E) to the Piz Gaglianera in the north (46°37'N
8°57'E) (see fig. 2.3). The area is characterised by a broad range of topographic and climatic
conditions. Northern regions are influenced by its proximity to the Swiss Alps, having rough
climatic conditions, and a valley shaped landscape with steep, rocky slopes, ranging up to
over 3,000 m a.s.l. From Bellinzona and further south, the region is influenced by a more
mediterranean climate, predominantly in the area around Lago Maggiore. Also, the valleys
widen towards the border with Italy and topography gets flatter. Depending on the steepness
of the valleys, the number of sunny hours per year ranges from 1,400 in the northern parts
with high rock faces to over 2,000 in the flatter, southern Locarno region (Scapozza &
Ambrosi, 2021). About half of the total surface of the Canton of Ticino (total surface: 2,812
km2 (Ustat, 2024)) is covered by forests, which is the highest cantonal forest cover percentage
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in Switzerland (Galfetti, 2020). In the lowlands, a mean annual precipitation of 1,855 mm
and a mild climate with a mean annual temperature of 12.9 °C (MeteoSwiss, 2024) favour
the growth of sweet chestnut, which shapes the landscape of the valleys of the Ticino. Other
broadleaf species as deciduous oak (Quercus spp.), small-leaved lime (Tilia cordata), wild
cherry (Prunus avium), black alder (Alnus glutinosa), maple (Acer spp.), and ash (Fraxinus
spp.) are further part of the landscape, resulting in wide areas of mixed forest (De Angelis
et al., 2015).

Figure 2.3: The Canton of Ticino as the study area. The study area is characterised by a
diverse landscape, with the Alps to the north and flatter regions to the south. The mild
climatic conditions in the lower zones, in particular, favour the growth of sweet chestnuts.

2.4 Focus Sites
To enable a detailed evaluation of the classification approach developed in this thesis, three
focus sites were selected for further analysis (see fig. 2.4). The sites were chosen to represent
a diverse range of locations with different characteristics, allowing for an assessment of
the classification results under different topographic and sylvicultural conditions. At each
site, the classified forest area covers approximately 48.0 ha, enabling a direct comparison of
the quantified classification results. For the purposes of this classification, the criterion for
considering an area as forest cover was that at least 60% of the vegetation within a selected
pixel exceeded 3 m in height (see section 4.3). The following sites were selected for further
classification:
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Figure 2.4: Focus sites of Malvaglia, Taverne and Malcantone. The three sites were selected
to enable a detailed evaluation of the classification approach for sweet chestnut trees,
representing a range of conditions across different regions within the Canton of Ticino.

The Malvaglia focus site spans the two municipalities of Serravalle and Acquarossa, located
in the Val Blenio (coordinates of the centre of the site: 46°25'N 8°58'E). The site covers a
total area of approximately 83.0 ha and includes 48.7 ha designated as forest which consists
mainly of non-managed, old sweet chestnut coppice stands. The elevation within the focus
site ranges from 417 to 1,355 m a.s.l., resulting in a landscape characterised by significant
topographical variation, including a steep, south-facing slope. At the base of the forest area
lies the cantonal road that connects the Lukmanier Pass to Biasca, running parallel to the
Brenno river. The site includes no assessed areas of non-symptomatic and symptomatic
sweet chestnut trees, ensuring its remoteness from training samples used later in this work.

The Taverne focus site extends over the neighbouring municipalities of Torricella-Taverne,
Lamone, Origlio and Ponte Capriasca which are located north of Lugano (coordinates of the
centre of the site: 46°4'N 8°58'E). The site covers a total of 84.3 ha, of which 47.6 ha are
forests dominated by sweet chestnut. The elevation within the site ranges from 330 to 580
m a.s.l. The forest extends over a mountain base with slopes to the west, north and east,
with agricultural fields at its base, adjacent to an industrial zone and railroad tracks. The
site includes sampled trees of non-symptomatic and symptomatic sweet chestnut trees that
have been used later in this work.
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The third focus site of Malcantone lies within the municipality of Alto Malcantone to the
north-west of Lugano (coordinates of the centre of the site: 46°3'N 8°53'E) and covers a
total area of 157.6 ha, of which 44.8 ha are defined as forest. The elevation ranges from
706 to 1,291 m a.s.l. As the other focus sites, the forest at this site is dominated by sweet
chestnut which grows in form of old fruit orchards (well-spaced, big trees). The forest area
is not directly connected to inhabited zones and is accessible via secondary roads. The site
included sampled trees of non-symptomatic and symptomatic sweet chestnut trees that have
been used for this work.
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3.1 Sampled Tree Data
The original dataset used for this thesis consists of 251 sweet chestnut trees, sampled from
selected stands in the Canton of Ticino and Grisons by the Phytopathology group of the
WSL (see appendix A). According to Prospero (2022), the sites were selected based on the
presence of symptoms potentially due to ink disease. Sampling and tree assessment were
performed in 2013, 2019, 2020 and 2023, and included information about the name of the
sites, its approximate coordinates (spatial accuracy of 10 m), the visual health condition of
the trees (categorised as either “non-symptomatic” or “symptomatic”), and the results of
testing for P. x cambivora and P. cinnamomi (positive or negative) in the tree rhizosphere.
For assessing the presence of the pathogens, five chestnut trees with symptoms of ink disease
were sampled from overall symptomatic looking sectors, five non-symptomatic trees were
sampled within the same sector, and five non-symptomatic trees were sampled from a nearby
healthy-looking forest area. Some stands were re-sampled after initial sampling. For each
selected tree, soil samples were collected from the rhizosphere at a maximum distance of
1.5 m from the trunk and a depth of 5–15 cm (see fig. 3.1). Samples were analysed in the
laboratory of WSL using the baiting approach. This method involves the use of healthy
rhododendron leaves as baits for Phytophthora species (Prospero, 2022). With this procedure,
P. x cambivora and P. cinnamomi were isolated from the rhizosphere of 151 out of the 251
chestnut trees sampled.
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(a) (b)

Figure 3.1: Tree sampling for ink disease at the focus site of Taverne (Torricella-Taverne).
Screenshot of institutional internal map showing sampled trees (a) and image
of soil sample extraction (b). Soil samples were collected from dead or dying sweet
chestnut trees (b) and on a regular 50x50 m grid at five sampling times (November 2023,
February 2024, May 2024, August 2024, November 2024). Samples are either identified as
positive over all samplings (red), positive over some samplings (orange) or negative over
samplings (green) in regard to the presence of P. cinnamomi (a). Image source (a): ©
Phytopathology WSL (Basemap: Google, Imagery ©2024 Airbus, CNES / Airbus, Maxar
Technologies), unpublished, 2024. Image source (b): Created by the author, 2024.

3.2 Sentinel-2 Data
For this thesis, already preprocessed Sentinel-2 time series from March 2017 to December 2023
from Koch et al. (2024b) have been used. These data exceed the standard quality of freely
available Level-2A products, as they include additional corrections and cloud masking. The
processing was conducted by using the Framework for Operational Radiometric Correction
for Environmental monitoring (FORCE) software (Frantz, 2019) whose pipeline includes
semi-automated download of available Sentinel-2 Level-1C data via API and data processing
such as atmospheric correction, cloud masking, reprojection and gridding. Further, the
spatial resolution of the raster data was resampled to an overall resolution of 10x10 m. Final
products are Level-2 data cubes in Geo Tiff format, accompanied with meta data (Frantz,
2019). The data cubes, as displayed in fig. 3.2, are structured on a 30x30 km grid, allowing
individual grid cells to be easily accessed for analysis.
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Figure 3.2: Structure of the Sentinel-2 data processed with FORCE. The Sentinel-2 images
used in this thesis exceed the standard Level-2A quality of freely available images. The
processed data cubes allow for easy access to individual grid cells for detailed analysis.
Image source: Frantz (2019).

Spectral and temporal information about the trees was derived using preprocessed Sentinel-2
time series between 2017 and 2023, combined with the sampled tree dataset. The Sentinel-2
mission is part of the Copernicus Programme, developed by the ESA in collaboration with
the European Union (EU) (Phiri et al., 2020). It aims to provide continuous, multispectral
satellite data for specialized application in land cover mapping, for monitoring climate
change and for disaster management. Starting in 1998 under the name Global Monitoring
for Environment and Security (GMES), the ESA and EU reintroduced the programme under
the name “Copernicus” in 2014 (Jutz & Milagro-Pérez, 2020). The Sentinel-2 constellation
consists of satellite composites, complementing each other with a revisit time of five days at
the equator. Sentinel-2A has been launched in 2015, since 2017 Sentinel-2B is additionally
providing data from an altitude of 789 km on a global level (Jutz & Milagro-Pérez, 2020).
Since September 2024, a third satellite, Sentinel-2C, has started its operations and will soon
complete the mission by providing continuous, long-term data over several years (ESA, 2024).
Sentinel-2 data is freely available, which enables its use for a broad audience. The images
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comprise 13 bands, with spatial resolutions ranging from 10 to 60 m, and a spectral range
that includes visible, Near-Infrared (NIR), and Short-Wave Infrared (SWIR) bands and are
available in quality levels ranging from Level 1B to Level 2A (Phiri et al., 2020). The data
provides an appropriate base for this thesis, as the mission is specifically developed to supply
imagery for time-series landcover analysis, including forest monitoring (Molnár & Király,
2024).

The data used within this thesis are flagged Level-2 time series for spectral bands and
VIs, including all available images with land surface information within the given time
period. Additional smoothed or interpolated data was not considered, as this would most
likely have reduced the effect of spectral values to distinguish between non-symptomatic
and symptomatic sweet chestnut trees. Within this thesis, a collection of eight preprocessed
bands (see table 3.1) and eight VIs from which five were already provided were used (see
table 3.2). Three additional VIs were calculated that have been proven to be beneficial for
forest classifications. The given Coordinate Reference System (CRS) of the data is European
Terrestrial Reference System (ETRS)89-extended / Lambert Azimuthal Equal Area (LAEA)
Europe (European Petroleum Survey Group Geodesy (EPSG) 3035) which is used as the
base CRS for all spatial data within this thesis.

Table 3.1: Sentinel-2 bands used in this thesis, derived from data preprocessed with
FORCE. Source: Molnár and Király (2024).

Band Name Abbreviation
Band Central Spatial
Number Wavelength [nm] Resolution [m]

Blue BLU B2 490 nm 10 m
Green GRN B3 560 nm 10 m
Red RED B4 665 nm 10 m
Red-Edge 1 RE1 B5 705 nm 20 m
Red-Edge 3 RE3 B7 783 nm 20 m
Near-Infrared NIR B8 842 nm 10 m
Short-Wave Infrared 1 SW1 B11 1610 nm 20 m
Short-Wave Infrared 3 SW2 B12 2186 nm 20 m
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Table 3.2: Vegetation indices. The selection of eight vegetation indices was used in this thesis.

Index Name Abbreviation Source

Chlorophyll Carotenoid Index CCI Gamon et al. (2016)
Chlorophyll Index Red-Edge CIre Gitelson et al. (2003)
Normalised Difference Wetness Index NDWI Gao (1996)
Normalised Difference Vegetation Index NDVI Tucker (1979)
Enhanced Vegetation Index EVI Huete et al. (2002)
Soil-Adjusted Vegetation Index SAVI Huete (1988)
Green Normalised Vegetation Index GNDVI Gitelson and Merzlyak (1997)
Normalised Difference

NDVIre Gitelson and Merzlyak (1994)Vegetation Red-Edge Index

3.3 Auxiliary Data
To select areas where sweet chestnut is the predominant species for defining the regions
for classification, the Tree Species Map of Switzerland from Koch et al. (2024a) was used.
The map provides information on the dominant tree species in forested areas, derived from
Sentinel-2 time series data and represented as a raster layer with a spatial resolution of 10
m. It is important to note that the validation of the Tree Species Map by using independent
data is not yet conducted (Koch et al., 2024a).

The training areas for RF classification (see section 4.3) were further refined with help
of the swissTLM3D dataset, which includes nationwide landscape features of natural and
artificial origin, and further name data stored as vector data (Swisstopo, 2024c). This dataset
was used to exclude street segments, as well as to clip the training areas only to land cover
classes specifically associated with forested regions. To clip all data sets to the extent of the
Canton of Ticino, the swissBOUNDARIES3D dataset was used, which consists of vector files
indicating the administrative boundaries within Switzerland and Liechtenstein (Swisstopo,
2024a). For further visual assessment of trees within forest areas, digital orthophotos from
Swisstopo (2024b)’s textitSWISSIMAGE datasets were used. The orthophoto mosaics have a
spatial resolution of 10 cm in plain areas (e.g., southern Ticino) and 25 cm in alpine regions
(e.g., northern Ticino) and were acquired in 2021, respectively 2022, for the targeted regions
within this thesis (Swisstopo, 2022).

For the refinement of the classification dataset, only pixels below 900 m a.s.l. were
considered, provided they were covered by at least 60% vegetation with a height larger than
3 m (resulting in a canopy closure of at least 60%). These criteria ensured that only relevant
forest areas were included in the analysis. The selection was facilitated by using the Digital
Surface Model (DSM) (Swisstopo, 2023) and the Vegetation Height Model (VHM) (Ginzler,
2021) for Switzerland, which is a product of the Swiss National Forest Inventory (NFI).
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4.1 Overview Workflow
The general workflow elaborated to provide a structured approach to addressing the Research
Question (RQ)s stated in this thesis is illustrated in fig. 4.1. To monitor diseased sweet
chestnut trees, a RF model was used to classify predefined forest areas into non-symptomatic
and symptomatic class. The potential input features for model training were monthly
calculated median values from June to September, derived from Sentinel-2 time series data
within a period from 2017 to 2023.

Figure 4.1: Overview of the methodological approach elaborated for the analysis of the
research questions of this thesis, as stated in chapter 1. An in-depth analysis of
the input features provides insights into the data’s characteristics, facilitating the selection
of specific features (RQ2) for training the RF model to classify the selected areas within
the focus sites (RQ1).
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Training samples were generated by creating a 10x10 m grid based on point-sampled tree data.
One of the outputs of this thesis are classification maps for the three focus sites Malvaglia,
Taverne and Malcantone (see section 2.4), derived from the trained RF model. The pixels
for classification were defined using a DSM, the Tree Species Map of Switzerland, and a
self-generated canopy closure map. These maps were used to limit the focus sites to only
those with sweet chestnut and a threshold canopy closure, which is described in section 4.3.
In addition to the spectral band values from the Sentinel-2 time series, various VIs were
considered as potential input features for the RF model. To find the optimal combination and
number of features from a total number of 64 input features, Recursive Feature Elimination
(RFE) and Leave-Location-Out Cross-Validation (LLO CV) were applied within the RF
framework (see section 4.6). Prior to the final feature selection, a comprehensive analysis of
all available spectral bands and VIs was conducted. This involved visual assessment of time
series plots and boxplots, as well as statistical analysis to obtain quantitative insights into
the characteristics of the features (see section 4.5).

4.2 Generating Training Sample Areas
The sampled areas used for training the RF model are crucial to the quality and robustness
of the model’s output. A three step approach was carried out to ensure representative and
reliable training data for the model. The sampled tree data, described in section 3.1 served
as a basis for generating the training areas. Samples from the year 2013 were excluded, as
Sentinel-2 data from the given dataset for value extraction are available only since 2017 (Koch
et al., 2024b). The final dataset consisted of 95 sampled trees. Extracting values directly
from the given point coordinates would have been misleading, as these points approximate
the actual tested tree locations with an error up to 10 m, which involved the risk of selecting
a wrong tree’s values. Therefore, three successive methods to generate reliable training areas
were analysed and tested for their performance within the RF model, as visualised in fig. 4.2
and described in the following paragraphs. In general, the raster grid of the preprocessed
Sentinel-2 data was used as the base grid for all methods. The grid consists of cells with a
size of 10x10 m in the ETRS89-extended / LAEA Europe (EPSG 3035) projection each.

3x3 Pixel Neighbourhood Approach The first approach involved creating a 3x3 pixel
(30x30 m) neighbourhood around each tree’s coordinate, with the central pixel representing
the tree’s approximate location. This method aimed to mitigate possible discrepancies in
the labeled measurement locations. A Python script was used to intersect the provided
tree coordinates with the Sentinel-2 data raster grid. Each central pixel was identified and
expanded to include the neighbouring eight pixels, as the sampled tree’s coordinates were
only given with an accuracy of 10 m. The resulting squares therefore had an area of 30x30 m
(900 m2) each. The complete dataset of generated squares was then stored as Environmental
Systems Research Institute (ESRI) shapefiles to enable efficient data management with
several attributes used to define the characteristics of each area (ESRI, 1998).
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This method was a preliminary approach to generate training areas based on the given
tested tree’s coordinates and had limitations. The created areas often contained more than
only trees, as for example other land cover types such as streets, rocks or meadows. As
the tree sampling was conducted manually, the sampled trees were frequently located in
easily accessible areas near roads. This resulted in partly impure training areas which were
not fully covered by tree areas. Additionally, some areas overlapped as certain trees were
sampled within a 30 m radius of one another (see fig. 4.2, left).

Figure 4.2: Overview of the step-wise approach for generating training areas. The first
approach involved creating 30x30 m areas surrounding the sampled trees (left), followed
by the second approach which aimed to exclude street segments and non-vegetated land
cover (middle). The final approach subdivided the areas into smaller 10x10 m sections
(right).

Pure Forest 3x3 Pixel Neighbourhood Approach A second approach involved clipping
the 3x3 pixel areas by removing parts that did not contain forest cover. This refinement was
necessary, as the input data for the RF model should represent the purest possible forest
areas. To achieve this, street segments from the swissTLM3D dataset were buffered by a
diameter of 3 m and further used to remove street areas from the underlying training areas
within QGIS (version 3.34.0). The same procedure was applied by using a preprocessed
land cover classification shapefile, also derived from the swissTLM3D dataset. Subsequently,
manual adjustments were made on each training area through visual assessment with help
of the SWISSIMAGE orthophotos. These refinements were to exclude additional non-forest
areas from the training areas. As a result, the dataset included training areas with the
original 3x3 pixel size of 900 m2, as well as areas consisting of smaller parts of the original
size (see fig. 4.2, middle).

Split 3x3 Pixel Approach The third approach to generating the training areas for the
RF model based on the previous methods described in this chapter. As there was only a
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total amount of 95 sampled trees from the years 2017 to 2023 and the RF model performed
poorly on the testing data, the final decision was made to artificially increase the number of
training samples. The previously refined 3x3 pixel areas were subdivided into nine smaller
squares, each measuring 10x10 m. The partitioning of the original 3x3 pixel areas was
conducted with a Python script, which considered the original preprocessed Sentinel-2 raster
structure. To ensure the purity of the subdivided training samples, squares that did not
fully cover forest areas were clipped and duplicates were excluded (see fig. 4.2, right). This
method resulted in a significant increase in the total number of training samples, enhancing
the dataset from 95 to 541 samples. However, since the original tree sample was located
only in the central pixel of the subdivided areas, the health status of each 10x10 m area
was reassessed. Using the SWISSIMAGE orthophotos from 2021 and 2022, each square was
visually assessed and if necessary, reclassified in either non-symptomatic or symptomatic
test areas. Any changes to the labels were recorded, and the assessment year was updated
to reflect the monitoring year of the orthophotos, ensuring consistency in subsequent value
extraction steps. Additional pixel areas were added to the data set by visual analysis of
the SWISSIMAGE data to ensure a balanced representation of both non-symptomatic and
symptomatic samples.

4.3 Defining Classification Areas
In addition to defining the training areas, the pixels to be classified had to be generated.
In general, the task is given for a canton-wide evaluation of the existing sweet chestnut
tree stands. As a classification across the whole of Ticino would have gone beyond the
scope of this thesis, three focus sites were selected to undergo a classification. To facilitate
the identification of sweet chestnut stands within the given sites, the Tree Species Map
of Switzerland was used as a reference. Areas where sweet chestnut was identified as the
predominant species were extracted from the raster file and clipped to the extent of the
Canton of Ticino using the data from swissBOUNDARIES3D shapefiles. To consider only
areas located below or equal to 900 m a.s.l., the resulting map was further clipped by
using the DSM in raster format. Before the reduction of the extent based on the chosen
thresholds, the data was reprojected from LV95 LN02 (EPSG 2056) to ETRS89-extended /
LAEA Europe (EPSG 3035) to ensure spatial consistency. These preparatory steps were
performed within QGIS (version 3.34.0), resulting in a clipped raster file representing areas
of predominantly sweet chestnut below 900 m a.s.l, from which the three focus sites were
extracted.

These three focus sites were subsequently split into 10x10 m squares, corresponding to
the grid size of the Sentinel-2 data. To optimise computational efficiency for later value
extraction, a point layer representing the centroids of each 10x10 m square was generated in
Python. Thus, by iterating over each pixel in the raster and assigning an Identifier (ID) to
each point to ensure unique point labeling.

To consider potential mixed pixels at forest edges or within widely spaced trees, the
classification areas were further refined using canopy closure as a parameter. This measure
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was calculated by using the VHM and represents the proportion of vegetation that is higher
than 3 m for each square. Squares with less than 60% canopy closure were excluded from
the area to be classified. This additional refinement was also performed in QGIS (version
3.34.0).

4.4 Features Derived from Sentinel-2
Performing a classification with a RF model requires features that indicate specific values,
which are then used for both training and classification (Dobrinić et al., 2022). In the
context of this thesis, the representative values were the Digital Number (DN)s of Sentinel-2
measurements of the original bands, as well as of VIs, as they target specific information
about the condition of plants (Xiong et al., 2023). The DN unit represents the raw pixel
values derived by Sentinel-2 which can be converted to reflectance values by division of 10,000
(Reflectance = DN/10,000) (EU, 2022). These DNs were extracted from the preprocessed
data cubes using an existing R script from Koch (2023), originally developed for value
extraction of point layers. Only few adaptations were required to modify the script for
the purpose of this thesis, enabling the extraction of area-wise values instead of point-wise
values. The script reads an ESRI point shapefile and generates a Comma-separated Values
(CSV) table for each band, containing a matrix with point locations as rows and daily dates
between the 1st of January 2017 and 31st of December 2023. The final output is for each
band and VI the CSV file containing the extracted DNs over the whole time range. For
extracting DNs for the pixels within the focus sites to be classified, the original R script for
point extraction was adapted and applied to the spatial extent of the selected areas.

4.5 Pre-assessment of Spectral Bands and Vegetation Indices
Before the selection of possible input features for training the RF model (see detailed approach
in section 4.6), an in-depth analysis of the original Sentinel-2 bands and VI was performed
to better understand the spectral characteristics of non-symptomatic and symptomatic trees,
as well as to understand the dynamics of feature selection for the RF model. In the following
section, the chosen VIs are introduced and described in detail, highlighting their primary
characteristics.

4.5.1 Introduction Spectral Bands and Vegetation Indices

Greenness Indices Normalised Difference Vegetation Index (NDVI) and Enhanced Vege-
tation Index (EVI) are both sensitive to changes in chlorophyll content, but EVI is more
responsive in densely vegetated areas (Liu et al., 2024). Given that the study area included
both sparse and dense forests, the use of these two VIs aimed to provide specific insights into
the physiological state of the vegetation across varying conditions. A further chlorophyll
index is the Green Normalised Vegetation Index (GNDVI), which is a commonly used VI for
vegetation mapping and disease detection. Several studies indicated GNDVI as one of the
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most important features for such assessments since it displays water and nitrogen uptake
of a plant and therefore indicates phytosanitary characteristics (see Marques et al., 2019;
Mohammadpour et al., 2022; Molnár & Király, 2024; Pádua et al., 2020; Sebastiani et al.,
2024; Xiong et al., 2023).

To consider the presence of sparsely covered areas within the study area, where lower
foliage on diseased chestnut trees may expose the soil, the Soil-Adjusted Vegetation Index
(SAVI) was chosen. SAVI has the advantage of a soil adjustment factor, allowing for better
handling of variations in soil brightness (Mohammadpour et al., 2022).

Literature often indicates the Red Edge (RE) bands to be particularly important for
health detection, as they lie in the spectral range between the red and the NIR band, where
the reflectance difference of healthy vegetation is the largest (see Boiarskii & Hasegawa,
2019; Dobrinić et al., 2022; Pádua et al., 2020; Sebastiani et al., 2024; Tan et al., 2024).
Therefore, the Normalised Difference Vegetation Red-Edge Index (NDVIre) was selected to
consider specifically the RE1 band within an index. Since the wavelengths of the RE1 band
are less prone to oversaturation by the upper canopy, they enable an accurate detection of
even small variations in chlorophyll content of a plant’s leaves, making them particularly
useful for the early detection of plant stress (Boiarskii & Hasegawa, 2019).

Chlorophyll and Carotenoid Indices Additionally, the chlorophyll, respectively carotenoid-
specific VIs Chlorophyll Carotenoid Index (CCI), and Chlorophyll Index Red-Edge (CIre)
were considered to provide a better insight into the sampled trees’ characteristics. The
CCI is an index originally developed for evergreen trees, as it is able to estimate vegetation
dynamics over the whole season by measuring the ratio between the chlorophyll content
and carotenoid pigments (Gamon et al., 2016). Especially in winter, the chlorophyll content
in plants is reduced, while the amount of carotenoid pigments increases. This gives the
opportunity to gain insights into plants over the whole year, which are difficult to detect
with VIs such as the NDVI (Gamon et al., 2016). Regarding the deciduous sweet chestnut
trees, the index served to focus on specifically the behaviour of carotenoids within a tree,
which may contribute to detect symptomatic trees. Additionally, the Clre has been used
which indicates chlorophyll content. This index has the advantage of being insensitive to the
saturation effect. Therefore, unlike traditional VIs that typically use the red and NIR bands,
this index is calculated using the RE band (Helfenstein et al., 2022).

Water Content Indices Besides these mainly chlorophyll focused VIs, the Normalised
Difference Wetness Index (NDWI) was used to detect the water content within the trees’
leaves or canopy and with this focusing on another possible proxy for symptomatic trees.
The NDWI calculates the ratio between the green and the NIR-band, as the green band has
high and the NIR-band low reflectance values for vegetation containing water (Viana et al.,
2019).
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4.5.2 Visual Analysis

A statistical and visual analysis of the time-series data was conducted to gain a deeper
understanding of the available spectral bands and VIs and their behaviour over time. These
preliminary examinations were essential to obtain insights into the data’s characteristics.
For the analysis, monthly medians, means and standard deviations were calculated (see
appendix B). By generalising the available values on a monthly basis, this approach facilitated
the identification of consistent patterns across the spectral values and selected VIs. Plots
were made by using Python and the standard library matplotlib.

4.5.3 Statistical Analysis

Besides the visual analysis by generating plots of the data, a preliminary assessment of the
spectral bands and VIs was performed based on statistical tests and calculations. This to
provide further insight into the relationships between the sampled trees and the spectral
bands and VIs and to explore them by quantitative means. The statistical tests were
performed for each month over the entire time period from March 2017 to December 2023,
allowing an evaluation of the spectral features on a monthly basis. These tests aimed to
identify significant differences between non-symptomatic and symptomatic trees for each
band and VI. This approach was chosen to provide a general overview of which bands
and VIs showed consistent differences between non-symptomatic and symptomatic trees,
without being influenced by any potential temporal trends. The following section outlines
the statistical tests performed:

Mann-Whitney U Test: Test on Data Distribution A first approach to evaluate the
given training data was a Mann-Whitney U test to assess eventual statistical differences
between the available training data parameters. The dataset, covering the period from
March 2017 to December 2023, includes measurements from both non-symptomatic and
symptomatic chestnut trees. To evaluate the differences between these two classes, a Mann-
Whitney U, respectively two-sided t-test was conducted with each selected combination of
data. For each month and each spectral band or VI, the null hypothesis (H0) was tested,
which assumes the distribution of non-symptomatic and symptomatic trees to be equal.
Specifically, this means that there is no significant difference in their rank-based values. The
alternative hypothesis (Ha) suggests a significant difference between the distribution of the
two data sets (Nachar, 2008).

Bands and VIs from the compared classes showing significant p-values (p < 0.05) were
interpreted as especially favourable candidates for inclusion in the RF model. The choice
between the non-parametric Mann-Whitney U test and the parametric t-test was made after
conducting a previous Shapiro-Wilk test which verifies whether the data follows a normal
distribution or not (Shapiro & Wilk, 1965). The statistical analyses were performed in
Python using the scipy package (version 1.14.0).
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Cliff’s Delta: Calculation of Effect Size After the Mann-Whitney U, respectively
the two-sided t-test, the effect size was calculated to provide a quantified insight into the
differences in the classes of specific bands and VIs. For each combination of the monthly
bands or VIs, Cliff’s Delta was calculated to assess the practical significance of the differences
between the classes. The measure evaluates the whole range of data for each class. It
quantifies the proportion of the non-overlapping area between the two distributions, resulting
in a value between -1 and 1, whereas a value of 0 indicates that none of the classes has
statistically exceeding values over the other (Macbeth et al., 2010). The resulting effect
sizes are often categorised as negligible, small, medium and large, but have to be taken with
care, as their meaning may vary depending on the characteristics of the data (Meissel &
Yao, 2024). Within this work, the interpretation of Cliff’s Delta is based on the definition
outlined by Meissel and Yao (2024) which considers the absolute values of the measure. An
overview of the categories is presented in table 4.1.

Table 4.1: Interpretation of Cliff’s Delta effect sizes based on absolute values. Source:
Meissel and Yao (2024)

Interpretation Cliff’s Delta

Negligible < 0.15
Small 0.15
Medium 0.33
Large 0.47

As the preprocessed Sentinel-2 data is generally of non-parametric nature, the measure
is suitable to assess specific months and bands, respectively VIs that show the greatest
differences between the two selected classes. Such statistical methods further enable to provide
information about the relative importance of these months and bands, respectively VIs to
characterise the health condition of sweet chestnut trees. It is recommended by literature as
a complementary evaluation besides feature selection methods (Granitto et al., 2006). The
calculation of Cliff’s Delta was executed within Python by using the cliffs_delta package
(version 1.0.0) (Ernst, 2021).

4.6 Feature Selection and Model Training
The multiple values derived from the time series had to be bundled to single values as input
for RF. For this thesis, the median values calculated for the months of June, July, August,
and September of each year from 2017 to 2023 were used to characterise each training area,
resulting in a total of 64 possible input features. These specific months were chosen, as they
cover the growing season of sweet chestnut. During this period, the trees’ photochemical
processes are most active, making differences between non-symptomatic and symptomatic
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trees most evident (Sebastiani et al., 2024). An overview of all 64 available input features is
given in table 4.2.

Table 4.2: Overview of available input features for Random Forest model training and
classification. Monthly calculated median values from June to September for each year
from 2017 to 2023.

Band / Index June July August September

Blue BLU_month6 BLU_month7 BLU_month8 BLU_month9
Green GRN_month6 GRN_month7 GRN_month8 GRN_month9
Red RED_month6 RED_month7 RED_month8 RED_month9
Red-edge 1 RE1_month6 RE1_month7 RE1_month8 RE1_month9
Red-edge 3 RE3_month6 RE3_month7 RE3_month8 RE3_month9
Near-Infrared NIR_month6 NIR_month7 NIR_month8 NIR_month9
Short Wave Infrared 1 SW1_month6 SW1_month7 SW1_month8 SW1_month9
Short Wave Infrared 2 SW2_month6 SW2_month7 SW2_month8 SW2_month9
CCI CCI_month6 CCI_month7 CCI_month8 CCI_month9
CIre CIre_month6 CIre_month7 CIre_month8 CIre_month9
NDWI NDWI_month6 NDWI_month7 NDWI_month8 NDWI_month9
NDVI NDVI_month6 NDVI_month7 NDVI_month8 NDVI_month9
EVI EVI_month6 EVI_month7 EVI_month8 EVI_month9
SAVI SAVI_month6 SAVI_month7 SAVI_month8 SAVI_month9
GNDVI GNDVI_month6 GNDVI_month7 GNDVI_month8 GNDVI_month9
NDVIre NDVIre_month6 NDVIre_month7 NDVIre_month8 NDVIre_month9

In the following section, the methodologies for finding the optimal number of input features
and identifying the specific combination of features for training the final RF model will be
presented. Additionally, the approaches for testing and validating model performance will
be explained in detail. Before providing a detailed description of the implementation of the
selected methods in section 4.6.4 and section 4.6.5, this chapter will begin with a theoretical
introduction to the three key approaches chosen for this thesis: the RF model, RFE, and
LLO CV.

As previously described, the retrieved Sentinel-2 band values and selected VIs were given
as possible input features for the RF classification task within this thesis, which targets the
classification of forest areas into either symptomatic or non-symptomatic tree cover. As
the literature states, the use of a large number of input features can lead to issues such
as feature redundancy and correlation (Dobrinić et al., 2022). Especially when features
are indicating similar characteristics of the target classification, this can negatively affect
the model’s performance (Pudjihartono et al., 2022). To mitigate the risk of overfitting,
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a selection of specific features was conducted to identify the most important variables for
classification (see section 4.6). While existing literature proposes specific bands and VIs
for vegetation related topics, the choice of input features should be adapted to the specific
context of this thesis. Thus, as recommendations of features to use for such a model vary
between different research setups and study areas (see e.g., Pádua et al., 2020; Sebastiani
et al., 2024; Yu et al., 2021).

4.6.1 Random Forest Model

RF (Breiman, 2001) is a ML classification algorithm based on the principle of decision trees.
The ensemble classifier works by using the concept of bagging, also known as bootstrap

Figure 4.3: Principle of Random Forest approach. RF is a ML approach which is based on
the principle of decision trees. During the training process, given samples (j) having
given input features (i) are used to assign characteristics to distinguished classes by using
decision trees. During classification, a new data input (d) is assigned to one of the classes
according to the majority vote from the results of several decision trees. Image source:
Reprinted from Belgiu and Drăguţ (2016), Copyright 2016, with permission from Elsevier,
licensed through Copyright Clearance Center’s RightsLink® service.
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aggregation. The bagging approach works by taking randomly chosen subsets of given
training data and constructing several decision trees to define a sample’s class or predict
a sample’s value. Due to the specific, known choice of input data, RF is a supervised
classification method. Two main parameters are used to adapt a model’s performance: The
number of trees (ntrees) determines how many trees are generated with randomly chosen
subsets of the given data and has 500 as a default value, and the number of variables (Mtry)
is the number of features considered for splitting at each node. This is crucial for balancing
a model’s performance and computational time. Mtry is generally chosen by calculating the
square root of all bands within the model. Taking a randomly chosen subset of samples and
of variables for building decision trees reduces the risk of overfitting, as the subsets provide
a variability of characteristics. As visualised in fig. 4.3, RF takes the majority of decisions
of each tree for a final decision in classification tasks, while for regression, it averages the
outputs of the individual decision trees (Belgiu & Drăguţ, 2016). Besides the advantage of
reduced risk of overfitting, RF can deal with high dimensional data and extract the most
important features for model training. This is an especially important characteristic for
typically high-dimensional RS images and saves time-consuming feature selection in advance
(Mohammadpour et al., 2022).

Since the training data is crucial for the classifier’s output, some requirements need to be
considered. Training samples should be statistically independent and should represent their
classes as well as possible. For image data, samples therefore have to be as pure as possible.
Additionally, the training samples should be balanced between classes, as RF tends to favour
the classes with more instances in the dataset. Also, the number of training samples should
be adapted to the number of variables and the size of the study area. Literature suggests
that training samples should cover around 0.25% of the whole study area and that samples
should be equally distributed, as RF is sensitive to spatial autocorrelation (Belgiu & Drăguţ,
2016).

Due to the advantages discussed in this chapter, as well as the general long-term ex-
perience with its application and stable classification results mentioned in the literature,
the RF algorithm was the selected approach for the classification of non-symptomatic and
symptomatic trees within this thesis.

4.6.2 Recursive Feature Elimination

RFE is a well-established method in classification tasks to enhance a model’s performance to
identify the most relevant features while eliminating those that are less important (Brungard
et al., 2015). This technique has been recommended in literature that approaches similar
applications, such as monitoring the health status of trees (see Brungard et al., 2015; Dobrinić
et al., 2022; Pádua et al., 2020). RFE works in an iterative way, by ranking features based
on their contribution to the model’s classification accuracy which is displayed by the feature
importances. In each iteration, the least important feature is removed. The number of
iterations depends on the final number of features to keep for model training and can be
chosen by the user (Granitto et al., 2006). The RF model itself serves as an estimator of
feature importances during this process, allowing RFE to evaluate the impact of each feature
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in relation to the model’s overall performance (Granitto et al., 2006).
For this thesis, the approach was particularly important regarding the objective of identify-

ing key indicators for detecting symptomatic sweet chestnut trees. Even if RF is well-known
to handle multicollinear data, feature selection mitigates the risk of correlation, which could
arise from using the whole set of 64 available input features (Dobrinić et al., 2022). Especially
regarding the presence of multiple greenness and chlorophyll VIs selected for this thesis,
correlation was a very likely effect to consider. Further, RFE helps to reduce noise and
enhances the interpretability of feature importances (Granitto et al., 2006). Thus, the input
feature set was refined to ensure that the model concentrated on the relevant predictors,
aiming to provide better insights into the most important features for classification.

4.6.3 Leave-Location-Out Cross-Validation

Improving a model’s performance and analysing its accuracy are key parts of applying ML
methods. In this thesis, the validation method used for the RF model was a LLO CV, which
aimed to generalise the process as effectively as possible (Meyer et al., 2018). Traditional CV
assumes that data sets are independent and separates reference data into two subsets: One
part is used for training the model, a second part is used for validating its performance and
testing for prediction errors. This separation of the data ensures an independent evaluation
of a model’s performance without autocorrelating data (Karasiak et al., 2021). However,
the input data in this thesis was closely tied to geographical and topographical factors. A
missing consideration of the spatial dependence of data could have led to biased validation
scores with overestimation of a model’s performance (Pohjankukka et al., 2020).

Pohjankukka et al. (2020) describe the key point of such a spatial Cross-Validation (CV) as
making sure that “the training data set only contains data points that are at least a certain
spatial or temporal distance away from the test data set”. The key concept of this evaluation
method is to iteratively test the model’s performance by excluding one fold for testing while
using the remaining folds for training, leaving out each fold once for testing (Valavi et al.,
2018). Therefore, LLO CV was selected to better assess the model’s performance within the
specific spatial context of the thesis. This approach was expected to lead to higher error
estimates, as classification was tested on unknown locations (Meyer et al., 2018).

4.6.4 Implementation: Evaluation of Feature Combinations and Random
Forest Model Performance

After the theoretical introduction of RF, RFE and LLO CV, it follows the description of the
practical implementation of these methods within the thesis. The approach is a step-by-step
method which first aims to find the best feature combination as input for training the RF
model. Therefore, ten feature combinations were built for different numbers of features
(ranging from 6 to 23) by using RFE. Furthermore, the 180 resulting feature combinations
were validated with LLO CV. The feature combination achieving the highest mean accuracy
score was used for training the final RF model, which at the end was tested (see fig. 4.4).
The detailed validation and testing method is described in the following section 4.6.5.
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Figure 4.4: Classification approach with Recursive Feature Elimination, Leave-Location-
Out Cross-Validation, and Random Forest. For different numbers of features [6,
..., 23] features) ten feature combinations were generated using RFE. The resulting 180
feature combinations were then validated using LLO CV. The feature combination that
achieved the highest mean accuracy was selected for training the RF model.

To find the optimal number of features as well as the best combination of input features,
RFE was implemented in combination with the RF model framework. A pre-assessment
of features was conducted by evaluating the feature importances, which were obtained by
training a RF model using all 64 available input features. This initial analysis allowed for
the exclusion of half of the features (32 features), as an evaluation of the whole set would
have been computationally and time intensive.

After the analysis followed an iterative RFE approach, which tested on the classification
performance for different number of features and different feature combinations. Specifically,
for each feature count between 6 and 23, ten distinct feature combinations were generated
by using different random seeds to get variability between the combinations. To assess
the performance of each combination, LLO CV was employed, and the resulting accuracy
scores were stored. The feature combination that achieved the highest mean accuracy
across all combinations was selected for use in training the final RF classifier. To ensure an
effective choice, this process has been executed several times, showing consistent results. The
procedure has been executed within a Python script by using the scikit-learn package
(version 1.5.1) and the basic packages random, pandas, collections and numpy. The
implementation is publicly available on GitHub (see Zumbrunn, 2025).

For training the RF model, default parameters were used on a number of trees (ntrees) =
100 and the number of features to consider when splitting the model (Mtry) = 5 (square
root of features as upper boundary). The classifications were made on a yearly basis over
the period from 2017 to 2023.
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4.6.5 Implementation: Model Training and Testing

Before evaluating the feature combinations and training the RF model, the sampled tree
data was partitioned into spatial folds through a manual selection process. Nine spatial
folds, displayed in fig. 4.5, were created by visually interpreting the distribution of clustered
trees. The selection of the number of folds is based on the spatial distribution of samples
across the study area. To ensure spatial independence and avoid autocorrelation among
samples, a minimum distance of 3.4 km between each fold was ensured. Each fold represents
a distinct spatial region within the study area of the Canton of Ticino, with sizes ranging
from 17 to 135 samples. This uneven sample distribution was considered when assessing
model performance, as it may affect the accuracy across different folds.

Figure 4.5: Overview of the nine spatial folds for Leave-Location-Out Cross-Validation.
The manually selected folds ensure a minimum distance of 3.4 km between each fold. The
sample sizes of tested sweet chestnut trees within a fold range from 17 to 135.
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Figure 4.6: Principle of Leave-Location-Out Cross-Validation Other than traditional CV,
LLO CV takes into account spatial dependence. The data is divided into spatial folds,
ensuring a minimum distance between neighbouring folds. In each iteration, one fold is
held out from the training process and used for validation. This procedure is repeated
until every fold has been used once for validation.

Before conducting the LLO CV, the entire dataset was divided into a training set and a
testing set. The testing set consisted of ten samples from each fold, the remaining samples
from each fold were included in the training set. As visualised in fig. 4.6, LLO CV is part of
the Python based evaluation of feature combinations and was executed in nine iterations.
In each iteration, one fold of the training data was held out as a validation set, while the
remaining eight folds were combined to train the model. The mean accuracy across all nine
iterations was used to evaluate the performance of each feature combination, which was then
compared to other combinations.

Once the final RF model was trained using the selected input features, its performance
was evaluated using the testing set. This set consists of the total number of 90 held out
samples (ten from each fold) and was not used within the feature selection process and the
training phase. Instead, it was reserved to assess the final model’s classification accuracy by
comparing its predictions with the known labels of the samples.

The accuracy metrics used in this thesis include the precision, recall, and F1 score for
each class, as well as the Overall Accuracy (OA). Precision is defined as the ratio of True
Positives (TP) to the sum of TP and False Positives (FP) for each class:

precision = TP
TP + FP
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(Tatbul et al., 2018). This metric reflects the model’s ability to correctly identify positive
samples while avoiding false positives. Recall measures the proportion of actual positive
samples that are correctly labelled as positive by the model. It is calculated as the ratio of
TP to the sum of TP and False Negatives (FN) for each class:

recall = TP
TP + FN

(Tatbul et al., 2018). The F1 score provides a balanced evaluation of precision and recall,
combining them using the following formula:

F1 = 2 × precision × recall
precision + recall

(Dobrinić et al., 2022). Lastly, the OA of the model is calculated as the ratio of correctly
classified samples (TP) to the total number of samples across both classes and serves as an
overall measure of classification performance:

OA = TP (over both classes)
total number of samples (over both classes)

(Rösch et al., 2022).
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5.1 Visual Analysis of Time Series and Boxplots
In general, the visual assessment of the individual bands and VIs aimed to give first insight
into the data’s characteristics. By plotting the data, certain trends and effects became more
perceptible over time and are described next.

A comparative analysis of the plotted time series representing monthly means and addi-
tionally calculated standard deviations for the classes of non-symptomatic and symptomatic
trees over the whole study area revealed that data contains the presence of outliers. The
large effect of an outlier was particularly evident for the month of December 2017: High DN
values were measured for bands on the 18th of December 2017 and lead to an overestimated
mean value for both classes of non-symptomatic and symptomatic trees (see fig. 5.1). Less
apparent was the outlier in the plotted VI values (see fig. 5.2).

Figure 5.1: Time series of monthly mean values for the Sentinel-2 red band. Classified
into non-symptomatic (blue) and symptomatic (red) sweet chestnut tree classes from 2017
to 2023. Intra-seasonal months (June to September) for the species are highlighted in
grey. The plotted mean values, particularly those derived from the original bands, reveal
the presence of outliers in the data.
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Figure 5.2: Time series of monthly mean values for the Chlorophyll Index Red-Edge.
Classified into non-symptomatic (blue) and symptomatic (red) sweet chestnut tree classes
from 2017 to 2023. Intra-seasonal months (June to September) for the species are
highlighted in grey. Outliers in the VIs are less prominent compared to those in the
original bands.

To reduce this observed occurrence of outliers, the metric was changed from monthly mean
and standard deviation values to monthly calculated median values for the given classes. The
plotted values showed consistent differences in the curves from at least June to September of
every observed year. Notably, certain bands and VIs exhibited differences between classes
even throughout the whole year. In general, the spectral band DNs for symptomatic trees
were higher than those for non-symptomatic trees (see e.g., the pattern of the red band in
fig. 5.3, except for the NIR and the RE3 band, where non-symptomatic trees displayed higher
values. The VIs showed higher ratios for non-symptomatic trees than those for symptomatic
trees. This is visually represented by the CIre in fig. 5.4. Particularly during the growing
season, non-symptomatic trees consistently showed elevated values compared to symptomatic
trees.
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Figure 5.3: Time series of monthly median values for the Sentinel-2 red band. Classified
into non-symptomatic (blue) and symptomatic (red) sweet chestnut tree classes from 2017
to 2023. Intra-seasonal months (June to September) for the species are highlighted in
grey. In general, the spectral band DNs for symptomatic trees were higher than those for
non-symptomatic trees.

Figure 5.4: Time series of monthly median values for the Chlorophyll Index Red-Edge.
Classified into non-symptomatic (blue) and symptomatic (red) sweet chestnut tree classes
from 2017 to 2023. Intra-seasonal months (June to September) for the species are
highlighted in grey. The VI show a consistent difference in the curves of the non-
symptomatic and symptomatic classes between June to September across all years.
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Besides an examination of the values generalised over the whole study area, additional class-
and month-wise median values were calculated for each of the spatial folds. This examination
revealed a spatial dependence in the measurements. While the medians calculated across all
samples of the study area showed a general trend, no consistent overall structure or pattern
became visible within the plots of fold-separated monthly medians. Data availability in
general varied between the spatial folds and particularly in the winter months, the range of
the median values varied across different spatial folds. When adding the trendlines, it became
apparent that there is no visual distinction between trajectories of the two classes over all
spatial folds. The slopes of the trendlines remained approximately stable over most years,
resulting in a constant distance between them (see fig. 5.5). Only one spatial fold showed
slopes differing between the non-symptomatic and symptomatic classes over the years: In
Locarno, the difference between the classified values diverged over time. Taking the CIre
values over seven years as an example, a clear decrease was observed for the symptomatic
trees, while the trendline for the non-symptomatic trees showed a slight increase (see fig. 5.6).
The trees were tested in 2019, when the decrease of CIre values for symptomatic trees could
already be observed but getting lower for the following five years. When comparing the
SWISSIMAGE data between the year 2012 and 2020 an increase in symptomatic trees could
be observed. The trendlines of the remaining folds and VIs behaved in the same way as the
shown example of the CIre.

Figure 5.5: Time series of monthly median values for the Chlorophyll Index Red-Edge in
the area of Taverne. Classified into non-symptomatic (blue) and symptomatic (red)
sweet chestnut tree classes from 2017 to 2023. Intra-seasonal months (June to September)
of the species are highlighted in grey. With the exception of the Locarno site fig. 5.6, the
difference in the slopes of the trendlines for the median values between non-symptomatic
and symptomatic trees remained almost constant over the seven years of observation.
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Figure 5.6: Time series of monthly median values for the Chlorophyll Index Red-Edge in
the area of Locarno. Classified into non-symptomatic (blue) and symptomatic (red)
sweet chestnut tree classes from 2017 to 2023. Intra-seasonal months (June to September)
of the species are highlighted in grey. While the values for the non-symptomatic class
remained constant over the seven years of observation, the values for the symptomatic
class decreased over the same period.

In general, the boxplots of the monthly medians per band and VI further consolidated the
findings from the time series analysis. A class-wise plotting of all samples showed different
medians per class, with one class constantly having higher values than the other. The
visualised distribution of individual measurements revealed considerable overlap in the data
point ranges for both classes. In general, while in summer months, the differences between
classes become more apparent (see fig. 5.7), the winter months showed smaller variance in
data, as the trees are in a general state of reduced phytoactivity (see fig. 5.8).
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Figure 5.7: Boxplots of monthly median values for the Chlorophyll Index Red-Edge for
August 2021. Classified into non-symptomatic (blue) and symptomatic (red) sweet
chestnut tree classes. To improve readability, data points are randomly jittered along the
x-axis within each class. In summer months, the differences between classes become more
apparent.

Figure 5.8: Boxplots of monthly median values for the Chlorophyll Index Red-Edge for
December 2021. Classified into non-symptomatic (blue) and symptomatic (red) sweet
chestnut tree classes. To improve readability, data points are randomly jittered along the
x-axis within each class. Winter months generally exhibit smaller variance due to reduced
phytoactivity.
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5.2 Statistical Analysis of Features
Mann-Whitney U Test for Feature Assessment The Mann-Whitney U Test was
conducted on a total of 1,296 band, respectively VI per month and year combinations
to assess statistically significant differences between the measurements’ distribution of
non-symptomatic and symptomatic tree classes. The analysis revealed that 94.5% of
these combinations show statistically significant differences, as indicated by p-values below
0.05. The total occurrences of “no difference”-combinations for each band or VI showed
slight variability among the different features examined. Notably, the GNDVI and NDVIre
consistently showed statistically significant differences between the two target classes (starting
from March 2017 to December 2023), followed by several bands and VIs. In contrast, the EVI
as well as the NIR and RE3 bands showed up to 15 instances of no statistically significant
differences (see fig. 5.9). This evaluation provided a first impression into relevant features
used for the RF input, highlighting differences between selected months and bands and VIs.

Figure 5.9: Results of Mann-Whitney U tests. The figure shows the number of occurrences
where statistically significant differences (p-value < 0.05) were found between the distribu-
tions of measurements for each band, month and year combination. NDVIre and GNDVI
consistently showed statistically significant differences between the two target classes,
with a total of 81 significant results across twelve months over seven years (excluded are
January 2017, February 2017, and December 2020 due to missing median values).

Cliff’s Delta – Effect Size For further quantifying the magnitude of the difference in
measurement distribution between classes, Cliff’s Delta sizes were calculated for each band
and index per month and year combination. Among the total combinations analysed, 6.9%
exhibited absolute values greater than or equal to 0.47, indicating a large effect size when
comparing the data of the two classes on a monthly base. To be noted is that 93.3% of
these large effect sizes could be observed within the seasonal data for the months of June to
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September, which is positive in regard to considering these values as input for training the
RF model.

Figure 5.10: Results of calculation of Cliff’s Delta. Represented is the number of occurrences
where combinations of band, month, and year have large effect sizes (absolute values of
Cliff’s Delta ≥ 0.47). The NDWI shows the highest number of large effect sizes, with 27
occurrences across all month- and year-combinations, followed by CIre (13 occurrences),
NDVIre (12 occurrences), SW2 (11 occurrences), and NDVI (9 occurrences).

A band-wise evaluation of the measure provided additional insights into the features. The
NDWI showed to have the most occurences of large effect size by far, as 27 instances of
the absolute Cliff’s Delta values above or equal to 0.47 were recorded (see fig. 5.10). They
were followed by several chlorophyll VIs as well as the SW2 band with occurrences ranging
between eleven and 13 each. These findings suggested that these features were likely to be
significant contributors to the classification tasks undertaken by the RF model. On the other
side, the red, green, blue, SW1, NIR, and both RE bands, as well as the EVI showed to have
no or one occurrence with large effect sizes, which was notable for further feature extraction.

5.3 Evaluation of Feature Combinations
A combined use of RFE, LLO CV and RF model was used to find the optimal feature
combination in terms of both the number of features and specific input features. The
selection of seven distinct features achieved the highest mean accuracy of 77.3%, along with
the highest maximal accuracy of 81.2%, as observed during the LLO CV across all feature
combinations. Notably, the accuracy showed a distinct peak at the number of seven features.
With increasing count of features, the mean accuracies from the LLO CV decreased and
stabilised between 19 and 23 features at a mean accuracy of approximately 73.0% to 73.0%
(see fig. 5.11).
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Figure 5.11: Leave-Location-Out Cross-Validation accuracies for different numbers and
combinations of input features. The maximum, mean and minimum LLO CV
accuracies were calculated to assess the performance of ten feature combinations, with
the number of features ranging from six to 23. The final RF model was trained using a
combination of seven input features, which achieved the highest accuracy of 81.2%.

The specific feature combination selected for further RF application is presented in table 5.1.
The CIre, NDWI and the SW2 band appeared for two months each (CIre for August and
September, NDWI for June and September, and SW2 for June and August) while the NDVIre
index appeared for the month of August. Therefore, these stated VIs and the band were
selected three times for the month of August and twice for each of June and September. The
final model achieved an OA of 86.7%, with the non-symptomatic class having higher F1 and
recall scores, while the symptomatic class achieved a higher precision score (see table 5.2).
Therefore, the RF model is more effective at classifying non-symptomatic pixels, while it
shows fewer misclassification for the symptomatic class (Tan et al., 2024).

Table 5.3 shows the output of the LLO CV for the final set of features. The accuracy
values ranged from 53.1% for the spatial fold 1, which had 45 samples that remained for
training the model, to 95.2% for the spatial fold 9, which had 21 remaining samples after
the having been split into testing and training sets.
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Table 5.1: Feature importances of the seven features selected for training the final Random
Forest model. The feature importances range from 11.0% to 20.8%.

Feature Label
Feature Importance

(Final Model)

CIre_month8 20.8%
NDVIre_month8 17.4%
SW2_month6 13.6%
CIre_month9 13.0%
NDWI_month9 12.9%
SW2_month8 11.3%
NDWI_month6 11.0%

Table 5.2: Class-wise F1, precision and recall score for the final Random Forest model.
Accuracies calculated for non-symptomatic and symptomatic classified pixels.

non-symptomatic symptomatic

F1 88.9% 83.3%
Precision 85.7% 88.2%
Recall 92.3% 79.0%

Table 5.3: Leave-Location-Out Cross-Validation accuracies of each spatial fold. The
variance in accuracy scores is large, as the number of training samples across the spatial
folds differs to a large extent.

Nr. Label Nr. of Training Samples LLO CV-Accuracy

1 Calonico 45 53.1%
2 Arbedo 48 70.5%
3 Monte Carasso 27 84.0%
4 Tenero 34 90.5%
5 Locarno 125 81.6%
6 Brissago 101 94.7%
7 Monteceneri 43 81.3%
8 Mugena (Malcantone) 7 57.1%
9 Taverne 21 95.2%

40



5.4 Classification

5.4 Classification
As described in section 4.3, areas predominantly covered by sweet chestnut forest within the
focus sites were divided into 10x10 m pixels for further classification using the trained RF
model. The classification results for these pixels are presented in the following sections:

Table 5.4: Classification result of the Malvaglia focus site. n = 4, 866 pixels in total were
classified. The column labelled with "2017-2023" indicates the n and % of pixels that kept
the same labelled class over all the seven years. From the total n of classified pixels of the
Malvaglia focus site, 32.9% showed this consistency.

Malvaglia 2017 2018 2019 2020 2021 2022 2023 2017-2023

Non-symptomatic
[n] 3,977 3,143 3,819 3,539 3,939 4,109 2,192 1,423
[%] 81.7% 64.6% 78.5% 72.7% 80.9% 84.4% 45.0% 88.9%

Symptomatic
[n] 889 1,723 1,047 1,327 927 757 2,674 178
[%] 18.3% 35.4% 21.5% 27.3% 19.1% 15.6% 55.0% 11.1%

Malvaglia For the focus site Malvaglia, 4,866 pixels were classified into non-symptomatic
and symptomatic class with the trained RF model. The proportion for each class varied
over the seven observed years, with a range between 15.6% and 55.0% for symptomatic
pixels and 45.0% and 84.4% for the non-symptomatic pixels (see table 5.4). The highest
proportion of symptomatic pixels, which was observed in 2023, followed the lowest proportion
of symptomatic pixels in 2022. A clear pattern or evolution of symptomatic pixels could not
be seen from the data. 32.9% of the pixels had the same class label over the seven years, of
which 88.9% were of the non-symptomatic class and 11.1% of the symptomatic class. The
spatial analysis shows an above-average number of pixels along watercourses being classified
as symptomatic (see fig. 5.12). Two streams that divide the whole focus site into three
vertical zones could be recognized in the classification pattern, especially from 2018 to 2022
and in 2023. Furthermore, it became apparent that the lower part of the focus site was
generally more affected by symptomatic classified pixels over the entire period, while the
higher part of the focus site showed predominantly non-symptomatic areas, with exception
of the watercourses. Particularly prominent was the classification in 2023 which results in
the lower part of the slope showing symptomatic signs over the entire focus site.
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Figure 5.12: Classification of sweet chestnut for the focus site Malvaglia. Selected pixels
from the focus site of Malvaglia were classified as either symptomatic (red) or non-
symptomatic (blue) for each year from 2017 to 2023. A core area of symptomatic pixels
was observed in the lower part of the site. Additionally, two streams that divide the site
into three vertical zones were observed in the classification pattern.
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Table 5.5: Classification result of the Taverne focus site. n = 4, 758 pixels in total were
classified. The column labelled with "2017-2023" indicates the n and % of pixels that kept
the same labelled class over all the seven years. From the total n of classified pixels of the
Taverne focus site, 25.8% showed this consistency.

Taverne 2017 2018 2019 2020 2021 2022 2023 2017-2023

Non-symptomatic
[n] 2,068 3,297 4,164 2,441 3,792 2,101 1,987 1,027
[%] 43.5% 69.3% 87.5% 51.3% 79.7% 44.2% 41.8% 83.7%

Symptomatic
[n] 2,690 1,461 594 2,317 966 2,657 2,771 200
[%] 56.5% 30.7% 12.5% 48.7% 20.3% 55.8% 58.2% 16.3%

Taverne The classification for the focus site Taverne included 4,758 pixels. The proportion
per class varied among years, from a minimal proportion of 12.5% of symptomatic pixels
to a maximal proportion of 58.2% for symptomatic pixels (see table 5.5). As for the focus
site Malvaglia, the maximal proportion occured in 2023, whereas the minimal proportion
was observed in 2019. For three of the seven observed years, the proportion of symptomatic
classified pixels was over 50%, which is a high rate compared to the other two focus sites.
25.8% of the pixels had the same class label over the seven years, while 83.7% of them were
of non-symptomatic class and 16.3% of symptomatic class. As for the focus site Malvaglia,
no clear pattern of evolution of the symptomatic class could be detected for the focus site
Taverne. The visual assessment revealed that the distribution of non-symptomatic and
symptomatic pixels changed from year to year and did not show any consistent development
(see fig. 5.13). In 2017, 2020, 2022, and 2023, the spatial spread of symptomatic classified
pixels was significantly greater than in other years. A clear separation into non-symptomatic
and symptomatic regions was not possible in any of the years, as the classes were evenly
distributed over the entire foot of the mountain. Even if the focus site Taverne included
several streams, there was no clear clustering of symptomatic pixels along the watercourses,
in contrast to what was observed in the focus site Malvaglia.
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Figure 5.13: Classification of sweet chestnut for the focus site Taverne. Selected pixels from
the focus site of Taverne were classified as either symptomatic (red) or non-symptomatic
(blue) for each year from 2017 to 2023. A clear separation into class regions was not
possible in any of the years, as they were evenly distributed along the entire foot of the
mountain.44



5.4 Classification

Table 5.6: Classification result of the Malcantone focus site. n = 4, 483 pixels in total were
classified. The column labelled with "2017-2023" indicates the n and % of pixels that kept
the same labelled class over all the seven years. From the total n of classified pixels of the
Malcantone focus site, 44.4% showed this consistency.

Malcantone 2017 2018 2019 2020 2021 2022 2023 2017-2023

Non-symptomatic
[n] 2,424 3,380 4,209 3,864 3,698 3,036 3,122 1,847
[%] 54.1% 75.4% 93.9% 86.2% 82.5% 67.7% 69.6% 92.7%

Symptomatic
[n] 2,059 1,103 274 619 785 1,447 1,361 145
[%] 45.9% 24.6% 6.1% 13.8% 17.5% 32.3% 30.4% 7.3%

Malcantone The classified targets for the focus site Malcantone included a total of 4,483
pixels of which the symptomatic class ranged from 6.1% in 2019 to 45.9% in 2017 (see
table 5.6). About 44.4% of the classified areas had the same labels over all seven years, of
which 92.7% belonged to the non-symptomatic class and 7.3% to the symptomatic class.
Although a clear pattern of evolution of the labeled classes could not be seen, the general
proportion of symptomatic classified pixels was smaller compared to the other two focus
sites. A visual assessment of the classification result showed that in general, pixels in the
valleys and the south-western facing slope were mostly classified as symptomatic, while
the eastern facing slope was mainly classified as non-symptomatic over all seven years (see
fig. 5.14). The valleys as well as the south-western facing slope included several watercourses
that converge in a stream towards the inhabited zone of Vezio and Mugena. The general
pattern of the distribution of non-symptomatic and symptomatic pixels remains more or less
the same over the years, with a higher presence of symptomatic pixels in 2017 and 2018, a
decreased presence between 2019 and 2021 and in the last two years of the analysis again an
increased presence of symptomatic pixels.
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Figure 5.14: Classification of sweet chestnut for the focus site Malcantone. Selected
pixels from the focus site of Malcantone were classified as either symptomatic (red) or
non-symptomatic (blue) for each year from 2017 to 2023. Pixels in the valleys and the
south-western facing slope were mostly classified as symptomatic, while the eastern
facing slope was mainly classified as non-symptomatic over all seven years.
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Chapter 6
Discussion

6.1 General Aspects of the Approach
The final approach of this thesis included the following steps: By using preprocessed Sentinel-
2 data from 2017 to 2023 and sampled tree data, a RF model was trained to classify selected
pixels covered by sweet chestnut into symptomatic or non-symptomatic classes regarding
ink disease. This classification was conducted across three selected focus sites. The process
included a complex approach using RFE and LLO CV to select the optimal number and
combination of input features. Parallel to the ML approach, Sentinel-2 bands and VIs were
analysed both visually and statistically over time to gain insights into the data and its
characteristics.

The final results included annual classification maps from 2017 to 2023 for the three focus
areas, with pixels categorized as either symptomatic or non-symptomatic in relation to ink
disease. An in-depth analysis of bands and VIs revealed distinct features that were useful for
identifying symptomatic trees. Key factors in this process were the high-quality Sentinel-2
data (exceeding the standard 2A-level) from Koch et al. (2024b), the thorough generation
of training areas from sampled tree data including rigorous refinement procedure and a
systematic, computationally optimised approach to find the optimal feature combination for
training the RF model. The following sections provide a detailed description of these results.

6.1.1 Visual Analysis

The consistent plotted difference between the monthly medians from 2017 to 2023 of non-
symptomatic and symptomatic classes of sweet chestnut trees for each band and VI is in
general positive regarding the chosen RF approach. Nevertheless, in literature either a short
death of a tree within five to 15 years or a general state of declining vitality over many
years is found in the course of ink disease (Prospero et al., 2023). Against expectation, most
of the visualised time series over seven years did not exhibit any decreasing VI medians
or increasing band medians for symptomatic trees, which would have indicated a rapid
decline. A possible explanation for the absence of such a progression in the measured values
is that trees showing larger phytosanitary deficiencies may result in compensatory branch
production (epicormic shoots) or in a richer growth of vegetation on the ground because of
the larger amount of light passing through the damaged crown, resulting in spectral mixing
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(see Guzmán Q. et al., 2023; Prospero et al., 2023). To conclude, a distinct signal about the
course of a symptomatic tree in terms of the time series cannot be taken.

In contrast to the behaviour observed in all the other spectral bands, the NIR and RE3
band showed lower spectral DN values for symptomatic trees than non-symptomatic trees.
This difference of the bands confirm reports in the literature. For example, Pádua et al. (2020)
who assessed ink disease by using UAV-based data, observed lower reflectance values (DN =
10,000 * Reflectance, see ESA (2024)) for the wavelength regions starting from approximately
720 nm for trees having nutrient deficiencies (see fig. 6.1). These observed differences were
explained by the changes in optical properties of the trees due to their reduced vitality
(Pádua et al., 2020). While lower chlorophyll content in the leaves of diseased trees leads
to higher reflectance values in the visible range, the NIR range (700–1,100 nm) is sensitive
to changes in leaf structure, such as the thickness of intercellular space or cell membrane.
Such structural changes in the leaves of symptomatic trees result in lower reflectance in the
NIR band (Wong, 2023). Furthermore, the lower RE3 values for symptomatic trees result
from reduced water content within the leaves. Since the SWIR range (1,100–2,500 nm) is
sensitive to changes in water content, the observed lower DNs in the RE3 band indicates
reduced water within the leaves of diseased trees (Wong, 2023).

Figure 6.1: Reflectance spectra of trees in varying health conditions. "No visible problems"
(green), "Ink Disease" (grey) and "Nutrient deficiency" (yellow). Lower reflectance values
can be observed for trees with nutrient deficiencies, as well as those affected by ink
disease, in the wavelength regions starting from approximately 720 nm (RE and NIR
range). In the visible range, trees with nutrient deficiencies exhibit higher reflectance
values compared to both non-symptomatic trees and those with proven ink disease. Image
source: Pádua et al. (2020).

In general, the visual analysis contributed substantially to making preliminary decisions
regarding the data processing between the raw DN values (bands) and ratios (VIs) to its
use as input features for the RF model. The outliers, identified through plots of monthly
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means, led to the decision of using median values for aggregating data on a monthly basis.
As demonstrated in section 5.1, the median proved to be a robust statistical measure that
effectively reduced the impact of extreme values and outliers. Furthermore, the decision to
consider only data monitored between June and September of each year was consolidated
by the visual assessment as the measurements during winter months showed to be less
reliable and differences between classes became less distinct (see fig. 5.4). Especially in
context of spatial dependence, differences between spatial folds became more pronounced
between December and February. The boxplots provided valuable insights to prepare the
RF classification and further feature selection applications. The visualised distribution of
the data made apparent the difficulty in achieving a clear classification, as samples from
both classes mostly showed only slightly differing spectral responses. This finding supported
the decision to apply LLO CV and RFE as a method for selecting the most relevant input
features for training the RF model to enhance the availability to clearly distinguish between
the two defined classes.

6.1.2 Important Features

A comparison of the results from the statistical pre-evaluation of features and the results of
the evaluation of feature combinations by LLO CV mainly showed that the two different
approaches to measuring a feature’s relevance for classification led to distinct, but nonetheless
insightful results. The statistical analysis using Cliff’s Delta for effect sizes showed that the
monthly medians of NDWI occurred most frequently, followed by CIre, NDVIre, the SW2
band, NDVI, SAVI and CCI (see section 5.2). Surprisingly, the seven final features selected
by using RFE, LLO CV and RF were exactly a combination of the top four VIs having the
most occurrences of large effect sizes. Therefore, both evaluation methods identified similar
key parameters, namely the NDWI, CIre, NDVIre, and the SW2-band.

While this evaluation is not without its uncertainties, it provided fundamental insights
into the classification of sweet chestnut trees showing visual symptoms of ink disease. The
high ranking of NDWI, especially within the statistical analysis, suggests that variations
in leaf water content are a particularly strong signal for distinguishing trees affected by
visual phytosanitary issues (Gao, 1996). Furthermore, as expected from the literature,
chlorophyll-based VIs generally showed large effect sizes and significant differences between
non-symptomatic and symptomatic classes. The expected importance of the SW2 band was
also confirmed in both the statistical pre-analysis and the RF feature importance analysis.
When compared to the findings of Sebastiani et al. (2024), which also aimed to detect ink
disease and identify sweet chestnut trees with phytosanitary issues, the importance of VIs
based on RE bands is highlighted. This is consistent with the results of this thesis, where
both the NDVIre and CIre appear among the four most important features in the RF model,
with the CIre even appearing twice. In contrast to Sebastiani et al. (2024), the NDWI was
ranked higher in this thesis than the GNDVI, which was also included in the given set of
VIs used in the compared study. These differences illustrate again that the selected features
can vary depending on the specific circumstances and parameters of each study.

A general observation is that water and greenness VIs tend to achieve higher effect sizes
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and feature importances than individual bands. Nevertheless, including the RE and SWIR
bands further improved the classification model, as these bands were consistently selected
across multiple months. The predominance of VIs in the feature selection process can
be explained by the fact that VIs, calculated using original band values, target specific
vegetation parameters (such as water or chlorophyll content) (Xue & Su, 2017), making
them particularly suitable as input features for the RF model.

6.1.3 Leave-Location-Out Cross-Validation

In general, the specific LLO CV approach applied for the validation of feature combinations
was chosen to reduce spatial influence. Subsetting the samples into folds based on their
spatial distribution resulted in largely differing fold sizes, ranging from 17 to 135 samples.
The decision to choose ten samples for each fold for testing helped to maintain an evenly
distributed evaluation of the model’s performance and with this to have a most possible
generalised accuracy. Nevertheless, using the remaining samples for selecting the input
features led to some issues to consider for the interpretation of the CV scores within the
RFE-process. The training set of larger-sized folds has more impact on model training, as
the amount of remaining data after the removal of test samples is higher. This becomes
apparent when observing the accuracy scores during the validation of feature combinations
in section 5.3. The high variance in scores again highlighted the spatial dependence of
training data, which remains a crucial difficulty in the context of the diverse topographic
characteristics of the study area.

6.1.4 Distinction of Non-symptomatic and Symptomatic Trees

The classification results across the three focus sites do not reveal an increase of symptomatic
trees over the observed years. The proportion of symptomatic pixels shows irregular
patterns in each area, making it difficult to state any clear trends. An in-depth analysis
of the classification results is therefore not meaningful and would be based on too many
assumptions. Nevertheless, some noteworthy observations can be made.

In general, most pixels were classified as non-symptomatic across all three focus sites.
Except for 2017 and 2023 in Taverne, and 2023 in Malvaglia, the proportion of non-
symptomatic pixels is higher than the proportion of symptomatic areas. This trend is
particularly visible when analysing the class distribution over the seven-year periods, where
non-symptomatic pixels are more frequently assigned to the same classification over the whole
time, with proportions of at least 79.0%. This suggests that the RF model is particularly
effective at identifying sweet chestnut that show no visible symptoms of phytosanitary
deficiencies.

When focusing on the topographic conditions, it becomes apparent that symptomatic
pixels are more frequently found in lower regions of steep slopes, while non-symptomatic
pixels are predominantly found at higher elevations. This pattern is most prominent at
the Malvaglia site but can also be observed to some extent in Malcantone. In contrast,
the flatter site of Taverne, which has not as many differences in height as the other two
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sites, shows a more even distribution of both non-symptomatic and symptomatic pixels. An
enhanced occurrence of ink disease-affected trees in lower slope regions is consistent with
existing literature, which analyses the dispersion pattern of P. cinnamomi. The pathogen’s
spread is influenced by water flow within the soil, which generally moves downslope. Given
the condition that symptomatic chestnut trees are present uphill, water flows facilitate the
accumulation of the pathogen in lower slope regions. These pixels tend to have higher soil
moisture which favours the spread of the disease (Cardillo et al., 2018). The higher occurrence
of symptomatic pixels at the foot of slopes may be influenced by topographical factors,
such as proximity to streets and buildings where human activity could have introduced the
pathogen (Vannini & Vettraino, 2001). Whether the observed tendency for symptomatic
pixels to be concentrated in lower slope regions effectively stems from ink disease, or is
due to abiotic factors, such as drought, hail, other diseases, can only be confirmed through
isolation of the pathogens in the laboratory (Prospero et al., 2023).

A further observation concerns the presence of watercourses within the three focus sites.
Particularly in Malvaglia, symptomatic classified pixels are often found near streams. Simi-
larly, in Malcantone, the western-facing slope, which is traversed by multiple watercourses
shows a higher proportion of symptomatic pixels compared to the eastern-facing slope, which
has no streams on the slope, but only in the valley. As for the enhanced symptomatic
classification in lower slopes, the observation aligns with the known spread of Phytophthora
via watercourses, which increases the likelihood of symptomatic classified pixels being found
near streams (Marzocchi et al., 2024). However, it is important to mention that other factors,
such as shadows, stony subsoil, differing vegetation near the streams, or the aspect of slopes,
may also influence the spectral signals and with this the classification results (Liu et al.,
2024).

A general observation across all three focus sites is the persistence of core classified
pixel areas over the whole analysis period, expanding more or less over distinct years.
Especially the core areas classified as symptomatic are particularly valuable for planning
further field sampling as they represent the most consistent sites for disease detection. The
non-symptomatic core areas are valuable as well. As the examples of the eastern-facing
slope in Malcantone shows, such consistent non-symptomatic core areas help to prioritise
field sampling work by excluding these regions from testing. Additionally, the observation of
sites with no apparent signs of reduced vitality contributes to the knowledge about potential
future forest management, as these forest areas represent a high ecological value that could
serve as example for maintaining forest health.

6.2 Limitations of the Approach

6.2.1 Topography of Ticino

The topographical challenges of the study area, in particular the presence of deep alpine
valleys with steep slopes, are an issue that substantially impact classification outcomes.
Discrepancies arise from non-representative measurements, as the angle at which the sensor’s
signal interacts with the Earth’s surface can lead to distortions. Additional geometry
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correction steps are therefore crucial to deal with effects such as light exposure and shadowing
caused by a terrain’s characteristics. Nevertheless, such corrections cannot fully compensate
the topographical effects on the spectral signal. This leads to approximations of values which
influence the pixel-based evaluation of a tree’s health (Chen et al., 2023).

Moreover, classifying the whole of the Canton of Ticino presents considerable challenges
due to the diverse patterns of the landscape and topography. Given the 10 m spatial
resolution of Sentinel-2, it is difficult to achieve a precise detection of pure forest pixels. The
use of auxiliary data sets such as the VHM or the Tree Species Map of Switzerland helped to
refine the classification process and extract areas with higher probability of containing pure
sweet chestnut populations. The existing studies, which were conducted in predominantly flat
areas or even in sweet chestnut plantations, operate on terrain that allows for the extraction
of pure, single pixels of sweet chestnut trees (see Pádua et al., 2020; Sebastiani et al., 2024).
Compared with this thesis’ given prerequisites, the extraction within mixed forests and
changing sub-ground types is of different complexity and leads to higher levels of uncertainty
in the classification.

6.2.2 Data Availability

The choice of data was limited by the availability of training samples. As discussed earlier
in this thesis, the general set of sampled tree data collected was not optimal regarding the
objectives of this thesis. Notably, over 50.0% of the samples were collected in 2013, which
all had to be discarded, as the preprocessed Sentinel-2 imagery was only available since 2017
(Koch et al., 2024b). Initially, the use of PlanetScope data (PBC, 2024), which offers a higher
spatial resolution of 3x3 m and includes imagery from 2013, was considered. However, as
the given data set of Sentinel-2 time series is of very high processing quality and comparison
studies showed that PlanetScope data did not significantly improve classification results
(Rösch et al., 2022), Sentinel-2 images were ultimately selected as the preferred data source.
In general, a joint use of different types of data, such as additional Synthetic Aperture Radar
(SAR) data and high and mid-resolution multispectral data, has been shown to achieve best
results in vegetation monitoring tasks but would have expanded the scope of this thesis (see
Niculescu et al., 2018; Sebastiani et al., 2024; Wang et al., 2015). Moreover, PlanetScope
would not have been freely available (Rösch et al., 2022), which is a further concern in regard
to the research question. Also, alternative data sources, such as SWISSIMAGE or Light
Detection and Ranging (LiDAR) data, were unsuitable for the task of performing annual
classifications from 2017 to 2023. SWISSIMAGE data is only captured every three years,
while LiDAR data is captured every six years, making both insufficient for the required
temporal resolution (Swisstopo, 2022, 2023).

6.2.3 Scope of Optical Remote Sensing

A significant limitation of using optical RS data for monitoring forests is that it primarily
allows to assess trees based on their visible condition, but the detection of the presence of
pathogens itself, causing the ink disease, is not feasible (Sebastiani et al., 2024). Consequently,
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a verification with field sampling and laboratory analyses is still necessary and the approach
only detects trees that show signs of infection, while the actual presence of the disease remains
uncertain. Other factors, such as drought or hail, also factor into diminished tree vitality
that further complicates the interpretation of visual symptoms (Wong, 2023). Consequently,
testing in site remains necessary for definitive diagnosis. Additionally, ink disease may show
either a rapid or a slow progression depending probably on the vitality of a tree or the
amount of inoculum present in the soil (Prospero et al., 2023). The time series of seven
years used within this thesis did not reveal any distinct evidence of a rapid declining tree
vitality or tree mortality based on the spectral data. Nevertheless, conducting a long-term
analysis over more than seven years may provide further insights into patterns of tree decline
and disease progression.

6.2.4 Training Areas

Having a very limited number of training samples was one of the main obstacles in this
thesis and may be a common problem for invasive, still not widespread pathogens. The final
training dataset consisted of a combined approach of using initial sampled data, extending
and splitting up its area, and removing as well as adding some training areas by visual
assessment of SWISSIMAGE data. This mixed approach is suboptimal but was necessary to
ensure a training dataset accurately representing the two target classes of non-symptomatic
and symptomatic trees. Furthermore, literature supports the effectiveness of visually selecting
training areas, demonstrating that this approach can lead towards significant results and is a
considerable method for sample refinement and expansion (see Guzmán Q. et al., 2023; Tan
et al., 2024). Nevertheless, the described issue highlights the importance of a well-adapted
tree sampling strategy that corresponds to the RF training process. Tree sampling in the
real world is not only labour- and cost-intensive but also constrained by practical limitations.
For example, in southern Switzerland, the distribution of ink disease is known to be patchy
rather than uniform (Prospero et al., 2023). In general, ML applications always require more
data, and their maximal feasibility is limited (Viana et al., 2019). To find a balance between
the demands for the data analysts and the resources of the researchers in field is a general
challenge that became clear over the course of this thesis.

Besides the already limited number of sampled tree data, the spatial distribution of tested
trees presented another significant challenge. Invasive pathogens, particularly at the early
stages of their spread, are rarely distributed evenly across the landscape. They typically
spread from specific points of introduction, which are often linked to human activity and
therefore need some time until they are distributed over a whole area (Cardillo et al., 2018).
Additional to this biotic-driven challenge,the tree sampling involved a strategical approach
of sampling in general 15 trees per test site, originating from three different types of starting
positions (see section 3.1). While this approach is well-established for biological research, it
does not entirely meet the requirements for optimal ML model training. Specifically, the
samples are unevenly distributed in spatial clusters, making the dataset prone to overfitting
(Belgiu & Drăguţ, 2016). The effect of spatial overfitting can be observed when analysing
the results of the LLO CV. In this approach, each fold is used once for validation, and the
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resulting accuracies of the RF classifier can be compared across all folds (Meyer et al., 2018).
The large variation in CV-accuracies for each spatial fold of the final feature combination
(e.g., Taverne, Brissago, or Tenero, all which had LLO CV scores above 90.0 %, compared to
e.g., Calonico, Mugena (Malcantone), where LLO CV scores were below 60.0 %) shows that
the spatial distribution and the spatial dependency of the training data makes it difficult to
train a generalised model for the whole area of Ticino.

Due to spatial overfitting and clustered training samples, topographical input features were
excluded from the classification approach. Although the literature highly recommends the
use of terrain-related parameters (e.g., slope, terrain height, aspect) (see Rösch et al., 2022;
Xiong et al., 2023), such input features were not considered within this thesis. This because
preliminary analyses revealed that including such features was rather misleading and did not
contribute to the model training. A deeper insight into the data revealed a significant bias
in the tested samples, as no data was tested from slopes with a north exposure. Therefore,
the use of such topographical variables would have led to a bias into the model and would
have led to an overdependence of the classifier on local terrain features (Meyer et al., 2018).
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Chapter 7
Impact of the Work

This Master’s thesis evaluates the use of Sentinel-2 data combined with field sampled tree
data for monitoring the spread of ink disease in sweet chestnut stands in the Canton of
Ticino. Despite the challenges discussed above, particularly limited amounts of data and
topographical factors, the thesis presents a straight-forward approach and in-depth analysis
for monitoring tree disease in forests, with a customised processing pipeline for a direct
application.

The selection of RF as the classification model is suitable for this task, given the diverse
set of features derived from the Sentinel-2 time series. The characteristic will become even
more significant in future applications, as time series will be available over longer time spans
in respect to the ongoing Copernicus programme of ESA. Further, the implemented model
generally demonstrates solid accuracy metrics and is a reliable base for future projects,
particularly with new sampling data or in different study areas.

The products resulting from this work aim to support ongoing research on the occurrence
and spread of ink disease in Switzerland. The derived classification maps can be used as
a guideline to select potentially affected areas, which will then be validated through field
sampling methods. The ground-truth data will serve as feedback to refine and improve the
maps, approaching towards the aim of a comprehensive and accurate map identifying sweet
chestnut trees affected by ink disease in Ticino.

This thesis highlights the significance of a joint effort between different fields of research
and initiated the path for future collaborative projects. These efforts will contribute to an
advanced progression of alternative methods for disease detection. Through the strengthened
relationship between the WSL’s Phytopathology and the RS research groups, future work will
focus on advancing the integrated use of remote sensing and traditional biological methods
to monitor forest health.
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Conclusions

This master’s thesis aimed to develop an approach for monitoring sweet chestnut trees, with
visual symptoms of ink disease in the Canton of Ticino by using Sentinel-2 data and sampled
tree data. The thesis addressed two main questions:

RQ1: How can the current spatial distribution of diseased sweet chestnut (Castanea sativa)
in Ticino be assessed by using freely available remote sensing data and sampled tree
data?

RQ2: What features are indicative for such an assessment and how can they be extracted?

Regarding RQ1, the results of this thesis demonstrate that training a RF model using a
combination of Sentinel-2 data and sampled tree data generally is an appropriate approach
for assessing the spatial distribution of diseased sweet chestnut trees. The methodology is
supported by a broad spectrum of literature, highlighting its potential for disease monitoring
in forestry. Especially the aggregation of data into monthly medians proved to be valuable,
as it enabled to consider inter-seasonal characteristics of both the non-symptomatic and
symptomatic classes, and is highly recommended. The combined use of RFE and LLO
CV, especially developed for this thesis’ task, proved to enhance the performance of the
final RF model. Furthermore, this method enabled to gain additional insight into the
data and revealed specific features and months to be important for the classification. The
final RF model achieved an OA of 86.7%, which is comparable to similar studies in the
literature. Despite this solid metric, the resulting classification of this approach shows some
inconsistencies in the identification of non-symptomatic and symptomatic areas and therefore
must be interpreted with caution. These discrepancies result from several factors: As stated
in the introduction, the challenging topography within the study area, characterised by
steep slopes and diverse land cover, lead to unpure, mixed spectral signals which are difficult
to interpret accurately. Additionally, the small number of sampled tree data available for
this thesis required an artificial enhancement of training areas, which introduced another
uncertainty in regards to the classification. Also, the spatial dependency of this task limited
the performance of the model, as training samples were unevenly distributed within the
diverse landscape the Canton of Ticino leading to a potential overfitting of the model.

Regarding RQ2, the combined application of RFE and LLO CV highlighted a set of
seven features, including CIre, NDVIre and NDWI, and the SW2-band. These features are
indicative of changes in water content or chlorophyll levels in vegetation and are consistent
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with the current literature that states these parameters to be essential for monitoring diseased
vegetation by using satellite data. Furthermore, these findings were consistent with the
results of the preliminary visual and statistical analysis, emphasizing the importance of
in-depth analysis of the data before model training.

To conclude, this thesis shows both the potential and the limitations of RS and ML
techniques for monitoring diseased sweet chestnut trees in southern Switzerland. In general,
it is not possible to directly detect ink disease through RS data, as this provides spectral
information from the canopy and only is sensitive to visible symptoms of the disease. Field
sampling and laboratory analyses are still a requirement for the definitive detection of the
pathogen. Nevertheless, the RS approach gives valuable insights into areas areas where
chestnut trees seem to have phytosanitary issues, encouraging for further validation in field.
While the use of Sentinel-2 data was suitable for the scope of this thesis, future research
could benefit from additional data sources, such as SAR- or LiDAR-derived values to obtain
additional parameters targeting the textural structure of trees. Moreover, monitoring over
longer time periods than the seven years of this thesis could provide further insights into
the progression of tree health. This is particularly important given the complex nature
of ink disease, which can follow multiple pathways of development. Despite the given
limitations, the thesis contributed to a better understanding between biologists and RS
experts, showing their specialised requirements and potential applications. This encourages
further collaboration aimed at enhancing the understanding of ink disease distribution and
progression in Switzerland, or, more generally, to monitor tree health over time using RS
techniques.
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Name Site Year of Testing Tree Code Visual Condition P. cinnamomi /   
P. cambivora

Latitude Longitude Accuracy [m]

Verscio Bartegna 2013 B1 non-symptomatic positiv 46.19006 8.73404 3
Verscio Bartegna 2013 B4 non-symptomatic positiv 46.18986 8.73347 3
Verscio Bartegna 2013 B6 non-symptomatic positiv 46.18993 8.73626 3
Verscio Bartegna 2013 B11 symptomatic positiv 46.19001 8.73583 3
Verscio Bartegna 2013 B12 symptomatic positiv 46.19023 8.73572 5
Verscio Bartegna 2013 B14 symptomatic positiv 46.19044 8.73590 4
Verscio Bartegna 2013 B15 symptomatic positiv 46.19029 8.73570 4
Orselina Eco 2013 B3 non-symptomatic positiv 46.18060 8.79241 7
Orselina Eco 2013 B4 non-symptomatic positiv 46.18063 8.79236 8
Orselina Eco 2013 B6 non-symptomatic positiv 46.17874 8.78651 8
Orselina Eco 2013 B8 non-symptomatic positiv 46.17987 8.78755 10
Orselina Eco 2013 B9 non-symptomatic positiv 46.17999 8.78941 6
Orselina Eco 2013 B10 non-symptomatic positiv 46.17981 8.79016 8
Orselina Eco 2013 B11 symptomatic positiv 46.17898 8.78600 6
Orselina Eco 2013 B13 symptomatic positiv 46.17987 8.78757 5
Orselina Eco 2013 B14 symptomatic positiv 46.17962 8.78750 7
Orselina Fassa 2013 B7 non-symptomatic positiv 46.18232 8.79041 6
Orselina Fassa 2013 B8 non-symptomatic positiv 46.18192 8.79029 4
Orselina Fassa 2013 B9 non-symptomatic positiv 46.18208 8.79035 3
Orselina Fassa 2013 B10 non-symptomatic positiv 46.18189 8.79073 4
Orselina Fassa 2013 B11 symptomatic positiv 46.18222 8.79049 6
Orselina Fassa 2013 B12 symptomatic positiv 46.18187 8.79035 3
Orselina Fassa 2013 B13 symptomatic positiv 46.18207 8.79035 3
Orselina Fassa 2013 B14 symptomatic positiv 46.18231 8.79036 13
Orselina Fassa 2013 B15 symptomatic positiv 46.18224 8.79043 5
Ronco 2013 B6 non-symptomatic positiv 46.15200 8.73348 3
Ronco 2013 B8 non-symptomatic positiv 46.15237 8.73419 6
Ronco 2013 B11 symptomatic positiv 46.15202 8.73355 5
Ronco 2013 B14 symptomatic positiv 46.15252 8.73431 5
Ronco 2013 B15 symptomatic positiv 46.15239 8.73464 4
Biasca 2013 B3 non-symptomatic positiv 46.35337 8.97717 3
Biasca 2013 B13 symptomatic positiv 46.35875 8.97370 -
Biasca 2013 B15 symptomatic positiv 46.35753 8.97445 3
Solduno 2013 B3 non-symptomatic positiv 46.17466 8.77349 3
Solduno 2013 B6 non-symptomatic positiv 46.17501 8.77238 9
Solduno 2013 B8 non-symptomatic positiv 46.17488 8.77213 4
Solduno 2013 B9 non-symptomatic positiv 46.17482 8.77223 3
Solduno 2013 B11 symptomatic positiv 46.17495 8.77224 7
Solduno 2013 B12 symptomatic positiv 46.17488 8.77242 3
Solduno 2013 B13 symptomatic positiv 46.17500 8.77220 3
Solduno 2013 B15 symptomatic positiv 46.17491 8.77210 4
Brione 2013 B6 non-symptomatic positiv 46.18655 8.81860 8
Brione 2013 B11 symptomatic positiv 46.18638 8.81849 6
Brione 2013 B12 symptomatic positiv 46.18657 8.81846 5
Brione 2013 B13 symptomatic positiv 46.18685 8.81839 -
Arcegno 2013 B6 non-symptomatic positiv 46.16686 8.73632 9
Arcegno 2013 B10 non-symptomatic positiv 46.16804 8.73588 3
Arcegno 2013 B13 symptomatic positiv 46.16716 8.73595 8
Arcegno 2013 B14 symptomatic positiv 46.16747 8.73587 10
Arcegno 2013 B15 symptomatic positiv 46.16811 8.73635 5
Losone Arbigo 2013 B1 non-symptomatic positiv 46.17440 8.74570 4

Losone Arbigo 2013 B5 non-symptomatic positiv 46.17406 8.74565 8
Losone Arbigo 2013 B8 non-symptomatic positiv 46.17412 8.74445 6
Losone Arbigo 2013 B9 non-symptomatic positiv 46.17439 8.74419 3
Losone Arbigo 2013 B10 non-symptomatic positiv 46.17476 8.74422 11
Losone Arbigo 2013 B11 symptomatic positiv 46.17416 8.74530 3
Losone Arbigo 2013 B13 symptomatic positiv 46.17405 8.74432 6
Losone Arbigo 2013 B14 symptomatic positiv 46.17441 8.74412 4
Losone Arbigo 2013 B15 symptomatic positiv 46.17469 8.74402 3

Original Sampled Tree Data from the Phytopathology Group of theSwiss Federal Institute for Forest, Snow 
and Landscape Research (WSL), Recieved in June 2024
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Name Site Year of Testing Tree Code Visual Condition P. cinnamomi /   
P. cambivora

Latitude Longitude Accuracy [m]

Tegna Selvapiana 2013 B3 non-symptomatic positiv 46.18903 8.73601 5
Tegna Selvapiana 2013 B6 non-symptomatic positiv 46.18872 8.74052 5
Tegna Selvapiana 2013 B7 non-symptomatic positiv 46.18857 8.74066 3
Tegna Selvapiana 2013 B8 non-symptomatic positiv 46.18924 8.74017 5
Tegna Selvapiana 2013 B9 non-symptomatic positiv 46.18911 8.74033 4
Tegna Selvapiana 2013 B10 non-symptomatic positiv 46.18900 8.74069 3
Tegna Selvapiana 2013 B11 symptomatic positiv 46.18878 8.74052 3
Tegna Selvapiana 2013 B12 symptomatic positiv 46.18863 8.74012 4
Tegna Selvapiana 2013 B13 symptomatic positiv 46.18915 8.74015 4
Tegna Selvapiana 2013 B14 symptomatic positiv 46.18916 8.74024 5
Tegna Selvapiana 2013 B15 symptomatic positiv 46.18897 8.74075 -
Arbedo 2019 B3 non-symptomatic positiv 46.216778 9.054128 -
Arbedo 2019 B6 non-symptomatic positiv 46.217288 9.054324 -
Arbedo 2019 B7 non-symptomatic positiv 46.217554 9.054547 -
Arbedo 2019 B8 non-symptomatic positiv 46.217370 9.054724 -
Arbedo 2019 B9 non-symptomatic positiv 46.217252 9.054215 -
Arbedo 2019 B10 non-symptomatic positiv 46.217299 9.054244 -
Arbedo 2019 B11 symptomatic positiv 46.217129 9.054317 -
Arbedo 2019 B12 symptomatic positiv 46.217283 9.054566 -
Arbedo 2019 B14 symptomatic positiv 46.216916 9.054655 -
Arbedo 2019 B15 symptomatic positiv 46.217185 9.054528 -
Locarno Pureta 2019 B1 non-symptomatic positiv 46.173953 8.779544 -
Locarno Pureta 2019 B2 non-symptomatic positiv 46.173853 8.779844 -
Locarno Pureta 2019 B3 non-symptomatic positiv 46.173959 8.780198 -
Locarno Pureta 2019 B6 non-symptomatic positiv 46.173842 8.778808 -
Locarno Pureta 2019 B7 non-symptomatic positiv 46.173819 8.778852 -
Locarno Pureta 2019 B8 non-symptomatic positiv 46.174033 8.778495 -
Locarno Pureta 2019 B9 non-symptomatic positiv 46.174586 8.778493 -
Locarno Pureta 2019 B11 symptomatic positiv 46.173785 8.779640 -
Locarno Pureta 2019 B12 symptomatic positiv 46.174125 8.778499 -
Locarno Pureta 2019 B13 symptomatic positiv 46.174299 8.778212 -
Locarno Verigana 2019 B1 non-symptomatic positiv 46.177612 8.786775 -
Locarno Verigana 2019 B2 non-symptomatic positiv 46.177070 8.786274 -
Locarno Verigana 2019 B6 non-symptomatic positiv 46.177979 8.787259 -
Locarno Verigana 2019 B7 non-symptomatic positiv 46.178269 8.786540 -
Locarno Verigana 2019 B11 symptomatic positiv 46.176438 8.786695 -
Locarno Verigana 2019 B12 symptomatic positiv 46.177678 8.786555 -
Locarno Verigana 2019 B13 symptomatic positiv 46.177828 8.786819 -
Locarno Verigana 2019 B14 symptomatic positiv 46.177844 8.786843 -
Brissago Motto 2019 B1 non-symptomatic positiv 46.130435 8.710391 -
Brissago Motto 2019 B2 non-symptomatic positiv 46.130996 8.711313 -
Brissago Motto 2019 B3 non-symptomatic positiv 46.130825 8.711179 -
Brissago Motto 2019 B4 non-symptomatic positiv 46.130929 8.71104 -
Brissago Motto 2019 B5 non-symptomatic positiv 46.130887 8.7108 -
Brissago Motto 2019 B6 non-symptomatic positiv 46.130664 8.710611 -
Brissago Motto 2019 B8 non-symptomatic positiv 46.130849 8.710397 -
Brissago Motto 2019 B9 non-symptomatic positiv 46.130874 8.710102 -
Brissago Motto 2019 B11 symptomatic positiv 46.130832 8.71079 -
Brissago Motto 2019 B12 symptomatic positiv 46.130875 8.71011 -
Brissago Motto 2019 B13 symptomatic positiv 46.130651 8.710314 -
Brissago Motto 2019 B14 symptomatic positiv 46.130607 8.710104 -
Tenero 2019 B3 non-symptomatic positiv 46.192853 8.827177 -
Tenero 2019 B6 non-symptomatic positiv 46.192922 8.827927 -
Tenero 2019 B8 non-symptomatic positiv 46.193664 8.827351 -
Taverne 2019 B1 non-symptomatic positiv 46.058998 8.934479 -
Taverne 2019 B2 non-symptomatic positiv 46.059337 8.934813 -
Taverne 2019 B4 non-symptomatic positiv 46.059419 8.935015 -
Taverne 2019 B9 non-symptomatic positiv 46.060044 8.934007 -
Taverne 2019 B13 symptomatic positiv 46.059226 8.933918 -
Taverne 2019 B14 symptomatic positiv 46.060020 8.933875 -
Taverne 2019 B15 symptomatic positiv 46.060627 8.934624 -
Origlio 2019 B11 symptomatic positiv 46.056108 8.952123 -
Origlio 2019 B12 symptomatic positiv 46.056177 8.952023 -
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Name Site Year of Testing Tree Code Visual Condition P. cinnamomi /   
P. cambivora

Latitude Longitude Accuracy [m]

Mugena 2019 B11 symptomatic positiv 46.051072 8.883259 -
Mugena 2019 B12 symptomatic positiv 46.051572 8.883240 -
Mugena 2019 B13 symptomatic positiv 46.051599 8.882990 -
Calonico 2019 B11 symptomatic negative 46.444612 8.845151 -
Calonico 2019 B12 symptomatic negative 46.444115 8.845155 -
Calonico 2019 B13 symptomatic negative 46.444397 8.845372 -
Calonico 2019 B14 symptomatic negative 46.445186 8.845858 -
Calonico 2019 B15 symptomatic negative 46.445419 8.991886 -
Monte Carasso 2023 MC1 symptomatic positiv 46.19400079 8.991886427 -
Monte Carasso 2023 MC2 symptomatic positiv 46.19412599 8.991941823 -
Monte Carasso 2023 MC3 symptomatic positiv 46.1941032 8.992290991 -
Monte Carasso 2023 MC5 symptomatic positiv 46.19340542 8.991999008 -
Brissago Barcone 2020 3_D_T1 symptomatic positiv 46.132849 8.712841 -
Brissago Barcone 2020 3_D_T4 symptomatic positiv 46.133125 8.712623 -
Brissago Barcone 2020 3_D_T5 symptomatic positiv 46.133037 8.712547 -
Brissago Barcone 2020 3_D_T6 symptomatic positiv 46.133603 8.712603 -
Brissago Barcone 2020 3_D_T7 symptomatic positiv 46.133793 8.712176 -
Brissago Barcone 2020 3_D_T8 symptomatic positiv 46.13373 8.712083 -
Brissago Barcone 2020 3_H_T5 non-symptomatic positiv 46.137052 8.715194 -
Brissago Barcone 2020 3_S_T4 non-symptomatic positiv 46.13307 8.71225 -
Brissago Barcone 2020 3_S_T5 non-symptomatic positiv 46.133156 8.712358 -
Brissago Barcone 2020 3_S_T6 non-symptomatic positiv 46.133783 8.712296 -
Brissago Barcone 2020 3_S_T7 non-symptomatic positiv 46.133973 8.712088 -
Brissago Barcone 2020 3_S_T8 non-symptomatic positiv 46.13373 8.712083 -
Mezzovico 2020 1_D_T1 symptomatic positiv 46.106744 8.930328 -
Mezzovico 2020 1_D_T2 symptomatic positiv 46.107136 8.929689 -
Mezzovico 2020 1_D_T3 symptomatic positiv 46.107387 8.92941 -
Mezzovico 2020 1_D_T4 symptomatic positiv 46.107627 8.929381 -
Mezzovico 2020 1_D_T5 symptomatic positiv 46.107807 8.929528 -
Mezzovico 2020 1_S_T1 non-symptomatic positiv 46.106744 8.930328 -
Mezzovico 2020 1_S_T2 non-symptomatic positiv 46.106997 8.929604 -
Mezzovico 2020 1_S_T3 non-symptomatic positiv 46.107387 8.92941 -
Mezzovico 2020 1_S_T4 non-symptomatic positiv 46.107626 8.929504 -
Mezzovico 2020 1_S_T5 non-symptomatic positiv 46.107735 8.92943 -
Bironico symptomatic ? 46.125926 8.928975 -
Biasca 2013 B1 non-symptomatic negative 46.35240 8.97752 5
Biasca 2013 B2 non-symptomatic negative 46.35144 8.97821 4
Biasca 2013 B4 non-symptomatic negative 46.35351 8.97727 3
Biasca 2013 B5 non-symptomatic negative 46.35379 8.97758 3
Biasca 2013 B6 non-symptomatic negative 46.35734 8.97484 3
Biasca 2013 B7 non-symptomatic negative 46.35783 8.97456 3
Biasca 2013 B8 non-symptomatic negative 46.35912 8.97423 3
Biasca 2013 B9 non-symptomatic negative 46.35886 8.97405 3
Biasca 2013 B10 non-symptomatic negative 46.35748 8.97451 3
Claro 2013 B1 non-symptomatic negative 46.27945 9.01894 6
Claro 2013 B2 non-symptomatic negative 46.27977 9.01855 4
Claro 2013 B3 non-symptomatic negative 46.27996 9.0186 4
Claro 2013 B4 non-symptomatic negative 46.27982 9.01895 4
Claro 2013 B5 non-symptomatic negative 46.27978 9.0194 6
Claro 2013 B6 non-symptomatic negative 46.27556 9.02173 4
Claro 2013 B7 non-symptomatic negative 46.27451 9.0226 11
Claro 2013 B8 non-symptomatic negative 46.27423 9.02352 7
Claro 2013 B9 non-symptomatic negative 46.27466 9.02359 4
Claro 2013 B10 non-symptomatic negative 46.27468 9.02556 7
Cademario 2013 B1 non-symptomatic negative 46.02392 8.89168 -
Cademario 2013 B2 non-symptomatic negative 46.02383 8.89263 5
Cademario 2013 B3 non-symptomatic negative 46.02401 8.89244 5
Cademario 2013 B4 non-symptomatic negative 46.02443 8.89239 6
Cademario 2013 B5 non-symptomatic negative 46.02459 8.89256 5
Cademario 2013 B6 non-symptomatic negative 46.02381 8.89109 3
Cademario 2013 B7 non-symptomatic negative 46.02401 8.89045 4
Cademario 2013 B8 non-symptomatic negative 46.02397 8.88969 5
Solduno 2013 B1 non-symptomatic negative 46.17483 8.77282 9
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Name Site Year of Testing Tree Code Visual Condition P. cinnamomi /   
P. cambivora

Latitude Longitude Accuracy [m]

Solduno 2013 B2 non-symptomatic negative 46.17471 8.77303 5
Solduno 2013 B4 non-symptomatic negative 46.17473 8.77349 4
Solduno 2013 B5 non-symptomatic negative 46.17498 8.77324 7
Bodio 2013 B1 non-symptomatic negative 46.38208 8.90943 3

Bodio 2013 B2 non-symptomatic negative 46.38190 8.90938 4
Bodio 2013 B3 non-symptomatic negative 46.38177 8.90919 3
Bodio 2013 B4 non-symptomatic negative 46.38135 8.90963 5
Bodio 2013 B5 non-symptomatic negative 46.38125 8.90969 4
Bodio 2013 B6 non-symptomatic negative 46.38259 8.90741 4
Bodio 2013 B7 non-symptomatic negative 46.38252 8.90773 4
Bodio 2013 B8 non-symptomatic negative 46.38241 8.90815 3
Bodio 2013 B9 non-symptomatic negative 46.38265 8.90872 3
Bodio 2013 B10 non-symptomatic negative 46.38256 8.90897 3
Calonico 2019 B1 non-symptomatic negative 46.44637 8.84509 3

Calonico 2019 B2 non-symptomatic negative 46.44654 8.84528 3
Calonico 2019 B3 non-symptomatic negative 46.44649 8.84490 11
Calonico 2019 B4 non-symptomatic negative 46.44626 8.84489 4
Arcegno 2013 B1 non-symptomatic negative 46.16628 8.73683 5

Arcegno 2013 B2 non-symptomatic negative 46.16628 8.73662 5
Arcegno 2013 B3 non-symptomatic negative 46.16640 8.73702 3
Arcegno 2013 B4 non-symptomatic negative 46.16647 8.73725 5
Arcegno 2013 B5 non-symptomatic negative 46.16661 8.73733 4
Arcegno 2013 B7 non-symptomatic negative 46.16703 8.73617 7
Arcegno 2013 B8 non-symptomatic negative 46.16718 8.73640 11
Arcegno 2013 B9 non-symptomatic negative 46.16726 8.73590 5
Losone Arbigo 2013 B2 non-symptomatic negative 46.17431 8.74597 6
Losone Arbigo 2013 B3 non-symptomatic negative 46.17437 8.74634 6
Losone Arbigo 2013 B4 non-symptomatic negative 46.174 8.74576 5
Losone Arbigo 2013 B6 non-symptomatic negative 46.17412 8.74513 3
Losone Arbigo 2013 B7 non-symptomatic negative 46.17387 8.74431 12
Verscio Bartegna 2013 B7 non-symptomatic negative 46.19005 8.73621 3
Verscio Bartegna 2013 B8 non-symptomatic negative 46.19045 8.73601 4
Verscio Bartegna 2013 B9 non-symptomatic negative 46.19062 8.7363 10
Verscio Bartegna 2013 B10 non-symptomatic negative 46.19009 8.73506 3
Orselina Eco 2013 B1 non-symptomatic negative 46.18064 8.79258 8
Orselina Eco 2013 B2 non-symptomatic negative 46.18066 8.79259 8
Orselina Fassa 2013 B1 non-symptomatic negative 46.18261 8.78896 3
Orselina Fassa 2013 B2 non-symptomatic negative 46.18256 8.78914 13
Orselina Fassa 2013 B3 non-symptomatic negative 46.18248 8.78895 3
Orselina Fassa 2013 B4 non-symptomatic negative 46.18256 8.78813 3
Orselina Fassa 2013 B5 non-symptomatic negative 46.18244 8.78859 5
Orselina Fassa 2013 B6 non-symptomatic negative 46.18224 8.78958 4
Ronco 2013 B1 non-symptomatic negative 46.15287 8.73498 16

Ronco 2013 B2 non-symptomatic negative 46.15262 8.73498 5
Ronco 2013 B3 non-symptomatic negative 46.15273 8.73508 7
Ronco 2013 B4 non-symptomatic negative 46.15265 8.73479 3
Ronco 2013 B5 non-symptomatic negative 46.15265 8.73522 4
Ronco 2013 B9 non-symptomatic negative 46.15299 8.73435 11
Ronco 2013 B10 non-symptomatic negative 46.1524 8.73461 3
Brissago Gadero 2013 B2 non-symptomatic negative 46.12864 8.70633 5
Brissago Gadero 2013 B3 non-symptomatic negative 46.12864 8.70614 8
Brissago Gadero 2013 B4 non-symptomatic negative 46.12877 8.70605 3
Brissago Gadero 2013 B5 non-symptomatic negative 46.12884 8.70607 3
Brissago Gadero 2013 B6 non-symptomatic negative 46.12603 8.70418 15
Brissago Gadero 2013 B7 non-symptomatic negative 46.12621 8.70428 5
Brissago Gadero 2013 B8 non-symptomatic negative 46.126 8.7044 6
Brissago Gadero 2013 B9 non-symptomatic negative 46.12606 8.70472 7
Brissago Gadero 2013 B10 non-symptomatic negative 46.12592 8.70441 8
Tegna Selvapiana 2013 B1 non-symptomatic negative 46.18903 8.7363 4
Tegna Selvapiana 2013 B2 non-symptomatic negative 46.18908 8.73641 3
Tegna Selvapiana 2013 B4 non-symptomatic negative 46.18884 8.73634 4
Tegna Selvapiana 2013 B5 non-symptomatic negative 46.18885 8.73645 4
Arbedo 2019 B1 non-symptomatic negative 46.217051 9.054064 -
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Name Site Year of Testing Tree Code Visual Condition P. cinnamomi /   
P. cambivora

Latitude Longitude Accuracy [m]

Arbedo 2019 B2 non-symptomatic negative 46.216928 9.054138 -
Arbedo 2019 B4 non-symptomatic negative 46.216849 9.054233 -
Arbedo 2019 B5 non-symptomatic negative 46.216722 9.054362 -
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Year Month
BLU GRN RED RE1 RE3 NIR SW1 SW2 CCI CIre NDWI NDVI EVI SAVI GNDVI NDVIre

2017 3 334 449 563 773 1277 1520 1763 1120 -0.109 0.068 -0.072 0.466 0.193 0.299 0.549 0.328
2017 4 321 510 473 838 1753 1984 1701 991 0.064 0.114 0.075 0.611 0.304 0.516 0.586 0.401
2017 5 236 528 278 876 3692 3967 1836 804 0.316 0.327 0.367 0.869 0.664 0.903 0.765 0.638
2017 6 245 504 323 846 3889 4209 1869 798 0.226 0.365 0.384 0.856 0.678 0.885 0.786 0.665
2017 7 229 450 273 757 3636 3966 1810 756 0.253 0.386 0.372 0.870 0.663 0.905 0.795 0.678
2017 8 242 437 287 712 3137 3473 1679 702 0.214 0.349 0.347 0.848 0.594 0.871 0.777 0.660
2017 9 212 383 258 681 2638 2965 1473 625 0.201 0.293 0.336 0.841 0.522 0.861 0.772 0.627
2017 10 267 432 355 753 2137 2477 1458 675 0.104 0.189 0.259 0.750 0.419 0.725 0.704 0.534
2017 11 237 361 425 709 1321 1624 1395 755 -0.075 0.089 0.073 0.587 0.240 0.480 0.638 0.393
2017 12 296 369 495 678 1103 1360 1410 851 -0.189 0.076 -0.029 0.518 0.142 0.377 0.640 0.366
2018 1 241 319 439 581 928 1127 1135 733 -0.164 0.066 0.007 0.457 0.143 0.285 0.577 0.330
2018 2 318 378 505 672 1053 1275 1464 936 -0.136 0.061 -0.063 0.444 0.161 0.266 0.549 0.317
2018 3 322 412 561 752 1182 1434 1720 1115 -0.148 0.062 -0.084 0.448 0.176 0.272 0.561 0.317
2018 4 339 521 588 884 1586 1847 1905 1180 -0.054 0.081 -0.018 0.515 0.246 0.373 0.560 0.350
2018 5 248 553 303 898 3461 3741 1776 806 0.303 0.295 0.352 0.847 0.624 0.870 0.740 0.610
2018 6 229 473 284 779 3792 4122 1794 751 0.259 0.394 0.393 0.872 0.678 0.907 0.795 0.683
2018 7 217 435 260 734 3677 4015 1819 751 0.259 0.408 0.374 0.878 0.671 0.916 0.804 0.691
2018 8 231 428 270 691 3232 3567 1676 685 0.234 0.374 0.359 0.858 0.611 0.887 0.785 0.675
2018 9 199 372 242 642 2734 3062 1516 634 0.219 0.332 0.336 0.854 0.539 0.881 0.784 0.653
2018 10 233 387 305 678 2135 2472 1418 628 0.129 0.222 0.269 0.783 0.429 0.774 0.731 0.571
2018 11 280 380 446 701 1156 1413 1563 924 -0.081 0.065 -0.051 0.524 0.201 0.386 0.581 0.338
2018 12 200 278 383 540 910 1138 1347 820 -0.153 0.076 -0.084 0.515 0.157 0.376 0.622 0.367
2019 1 194 273 383 530 876 1096 1380 876 -0.165 0.071 -0.113 0.494 0.148 0.340 0.608 0.354
2019 2 274 361 474 631 998 1211 1467 947 -0.126 0.064 -0.091 0.450 0.153 0.275 0.546 0.322
2019 3 311 411 543 733 1179 1425 1760 1142 -0.131 0.065 -0.104 0.455 0.178 0.283 0.555 0.324
2019 4 329 491 578 883 1573 1848 1974 1220 -0.073 0.082 -0.032 0.527 0.247 0.390 0.581 0.354
2019 5 189 466 262 844 3070 3319 1718 827 0.308 0.278 0.311 0.848 0.564 0.871 0.749 0.588
2019 6 259 502 311 801 3448 3745 1778 785 0.246 0.337 0.355 0.846 0.627 0.869 0.763 0.647
2019 7 247 452 296 725 3434 3755 1788 758 0.219 0.384 0.354 0.853 0.630 0.879 0.784 0.675
2019 8 217 392 248 636 3069 3380 1609 670 0.231 0.390 0.355 0.862 0.589 0.892 0.791 0.682
2019 9 216 385 252 642 2857 3165 1548 654 0.215 0.352 0.342 0.852 0.556 0.878 0.783 0.662
2019 10 222 365 278 623 2117 2415 1288 579 0.143 0.249 0.299 0.792 0.427 0.788 0.737 0.588
2019 11 260 377 333 676 1454 1692 1285 662 0.067 0.117 0.135 0.671 0.287 0.606 0.635 0.429
2019 12 224 287 376 519 871 1088 1245 762 -0.130 0.072 -0.065 0.496 0.152 0.344 0.589 0.359
2020 1 244 309 416 571 936 1156 1402 869 -0.146 0.069 -0.094 0.482 0.156 0.323 0.586 0.344
2020 2 317 394 502 674 1081 1305 1537 962 -0.117 0.066 -0.078 0.457 0.168 0.285 0.546 0.326
2020 3 331 440 582 775 1249 1512 1741 1118 -0.135 0.065 -0.070 0.451 0.185 0.276 0.554 0.326
2020 4 344 500 558 838 1535 1787 1827 1125 -0.044 0.085 -0.017 0.517 0.244 0.375 0.558 0.355
2020 5 239 529 277 872 3702 3980 1787 806 0.320 0.330 0.377 0.868 0.665 0.902 0.764 0.638
2020 6 239 493 295 826 3739 4047 1788 763 0.258 0.357 0.386 0.864 0.667 0.897 0.783 0.661
2020 7 230 446 275 746 3522 3870 1801 749 0.247 0.381 0.364 0.867 0.650 0.901 0.793 0.677
2020 8 206 395 245 685 3155 3514 1702 699 0.241 0.368 0.346 0.869 0.606 0.904 0.798 0.673
2020 9 219 391 260 665 2730 3072 1538 645 0.208 0.317 0.331 0.844 0.539 0.865 0.774 0.644
2020 10 209 369 306 693 1964 2297 1405 653 0.104 0.190 0.234 0.761 0.393 0.741 0.722 0.532
2020 11 242 331 413 616 1090 1361 1352 758 -0.105 0.080 0.006 0.539 0.195 0.409 0.611 0.379
2021 1 274 338 445 607 994 1212 1315 820 -0.130 0.069 -0.037 0.474 0.161 0.311 0.570 0.340
2021 2 308 437 561 731 1142 1364 1549 985 -0.117 0.061 -0.060 0.432 0.162 0.247 0.524 0.310
2021 3 341 438 571 762 1212 1463 1744 1120 -0.126 0.063 -0.085 0.446 0.181 0.269 0.543 0.319
2021 4 314 469 568 846 1473 1749 1878 1173 -0.089 0.076 -0.036 0.509 0.231 0.364 0.578 0.347
2021 5 208 523 258 881 3645 3944 1825 834 0.354 0.322 0.362 0.873 0.658 0.910 0.762 0.629
2021 6 201 467 251 795 4079 4406 1844 778 0.311 0.421 0.409 0.893 0.719 0.939 0.809 0.695
2021 7 221 425 257 683 3557 3895 1735 722 0.258 0.432 0.386 0.878 0.657 0.916 0.804 0.703
2021 8 220 398 249 661 3169 3493 1631 671 0.234 0.383 0.363 0.867 0.606 0.900 0.796 0.681
2021 9 220 385 249 638 2765 3101 1476 607 0.222 0.341 0.355 0.853 0.549 0.879 0.781 0.660
2021 10 202 351 272 654 2069 2406 1356 607 0.136 0.224 0.277 0.796 0.423 0.793 0.744 0.571
2021 11 199 317 368 639 1203 1492 1319 710 -0.067 0.093 0.054 0.606 0.228 0.508 0.652 0.405
2021 12 253 314 406 563 956 1181 1311 797 -0.145 0.078 -0.055 0.511 0.165 0.366 0.609 0.368
2022 1 217 293 401 559 949 1176 1428 882 -0.152 0.076 -0.092 0.504 0.161 0.355 0.610 0.363
2022 2 284 357 470 640 1064 1304 1559 970 -0.128 0.072 -0.085 0.480 0.174 0.320 0.575 0.347
2022 3 385 483 606 795 1274 1527 1796 1148 -0.108 0.064 -0.077 0.438 0.188 0.257 0.523 0.319
2022 4 364 534 600 908 1644 1928 1930 1190 -0.049 0.083 -0.005 0.520 0.258 0.380 0.563 0.355
2022 5 237 555 275 912 3818 4098 1883 840 0.343 0.329 0.367 0.870 0.680 0.905 0.757 0.631
2022 6 247 501 294 811 3981 4303 1884 802 0.270 0.396 0.389 0.871 0.703 0.907 0.791 0.682
2022 7 228 449 267 758 3773 4127 1907 797 0.262 0.405 0.365 0.877 0.686 0.916 0.803 0.688
2022 8 244 448 282 754 3371 3717 1762 740 0.233 0.352 0.355 0.858 0.630 0.887 0.784 0.661
2022 9 187 367 227 667 2853 3187 1535 645 0.239 0.333 0.347 0.866 0.560 0.899 0.793 0.653
2022 10 243 407 313 703 2153 2489 1400 625 0.138 0.213 0.275 0.773 0.430 0.759 0.716 0.556
2022 11 189 319 355 645 1245 1514 1298 688 -0.044 0.096 0.071 0.621 0.235 0.531 0.654 0.403
2022 12 227 301 415 576 961 1226 1381 838 -0.154 0.073 -0.060 0.509 0.168 0.363 0.615 0.369
2023 1 293 352 459 611 968 1191 1475 931 -0.127 0.063 -0.101 0.454 0.155 0.280 0.549 0.327
2023 2 298 370 479 640 1026 1253 1538 969 -0.120 0.066 -0.097 0.457 0.162 0.285 0.549 0.330
2023 3 343 431 563 744 1197 1460 1765 1124 -0.129 0.066 -0.090 0.455 0.183 0.282 0.553 0.331
2023 4 310 474 528 849 1607 1863 1882 1155 -0.039 0.092 -0.009 0.555 0.263 0.432 0.593 0.370
2023 5 258 586 316 964 3845 4114 1886 851 0.313 0.306 0.365 0.850 0.671 0.875 0.745 0.613
2023 6 254 531 307 857 3934 4263 1798 756 0.269 0.362 0.406 0.862 0.692 0.893 0.776 0.663
2023 7 239 456 273 744 3802 4172 1837 751 0.259 0.418 0.387 0.877 0.693 0.915 0.802 0.696
2023 8 241 435 283 720 3220 3594 1669 681 0.219 0.354 0.364 0.853 0.612 0.880 0.784 0.665
2023 9 249 419 337 727 2398 2765 1665 777 0.124 0.241 0.243 0.778 0.467 0.767 0.733 0.579
2023 10 286 443 368 730 2109 2452 1570 729 0.097 0.192 0.216 0.735 0.413 0.702 0.690 0.537
2023 11 266 374 406 682 1340 1616 1513 852 -0.025 0.102 0.036 0.607 0.250 0.510 0.628 0.410
2023 12 194 308 406 607 1057 1320 1446 869 -0.131 0.080 -0.045 0.539 0.185 0.409 0.628 0.377
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Year Month
BLU GRN RED RE1 RE3 NIR SW1 SW2 CCI CIre NDWI NDVI EVI SAVI GNDVI NDVIre

2017 3 362 480 604 810 1282 1526 1828 1162 -0.114 0.059 -0.090 0.433 0.185 0.249 0.522 0.306
2017 4 344 528 521 865 1694 1934 1790 1063 0.025 0.099 0.036 0.569 0.283 0.453 0.565 0.376
2017 5 251 530 315 884 3370 3637 1886 871 0.260 0.285 0.315 0.839 0.607 0.859 0.745 0.608
2017 6 272 519 349 867 3639 3953 1921 861 0.201 0.322 0.345 0.836 0.642 0.854 0.767 0.639
2017 7 253 472 308 795 3428 3757 1869 821 0.216 0.335 0.334 0.847 0.627 0.871 0.776 0.650
2017 8 262 454 317 742 2960 3288 1733 762 0.183 0.303 0.308 0.824 0.560 0.836 0.758 0.632
2017 9 240 409 298 719 2516 2838 1538 688 0.160 0.253 0.295 0.808 0.494 0.813 0.748 0.595
2017 10 283 439 390 770 1993 2337 1527 742 0.064 0.162 0.208 0.713 0.387 0.670 0.684 0.503
2017 11 266 388 477 742 1313 1620 1510 841 -0.100 0.077 0.032 0.541 0.228 0.412 0.611 0.369
2017 12 362 435 578 759 1169 1434 1519 925 -0.187 0.064 -0.043 0.472 0.128 0.308 0.603 0.338
2018 1 296 372 498 629 942 1152 1230 792 -0.158 0.053 -0.023 0.409 0.137 0.213 0.529 0.301
2018 2 350 419 570 732 1087 1312 1563 1005 -0.150 0.051 -0.087 0.400 0.153 0.199 0.519 0.288
2018 3 351 448 623 805 1209 1465 1804 1177 -0.163 0.052 -0.100 0.406 0.167 0.209 0.534 0.293
2018 4 358 546 649 925 1554 1823 1993 1252 -0.084 0.068 -0.048 0.470 0.226 0.305 0.537 0.324
2018 5 273 566 355 924 3224 3504 1860 891 0.242 0.256 0.300 0.810 0.577 0.815 0.717 0.578
2018 6 235 470 290 782 3577 3893 1842 809 0.242 0.362 0.356 0.861 0.647 0.891 0.785 0.666
2018 7 237 455 289 766 3450 3784 1867 811 0.228 0.355 0.337 0.857 0.634 0.885 0.785 0.663
2018 8 256 450 306 732 3004 3331 1720 744 0.196 0.315 0.317 0.831 0.569 0.846 0.762 0.639
2018 9 222 391 280 682 2564 2887 1594 707 0.173 0.280 0.287 0.823 0.504 0.834 0.761 0.617
2018 10 252 401 344 717 2026 2365 1507 701 0.084 0.187 0.220 0.746 0.401 0.719 0.710 0.535
2018 11 278 378 446 701 1225 1481 1588 927 -0.081 0.074 -0.038 0.536 0.213 0.403 0.592 0.356
2018 12 226 314 438 598 970 1211 1457 889 -0.163 0.064 -0.094 0.472 0.159 0.308 0.590 0.341
2019 1 222 311 443 595 945 1179 1511 949 -0.175 0.061 -0.122 0.457 0.151 0.285 0.584 0.331
2019 2 306 404 545 707 1062 1292 1620 1035 -0.145 0.052 -0.111 0.410 0.152 0.215 0.525 0.295
2019 3 352 462 620 814 1246 1504 1895 1221 -0.142 0.054 -0.115 0.418 0.175 0.226 0.530 0.298
2019 4 359 525 640 935 1586 1871 2067 1279 -0.093 0.071 -0.049 0.490 0.236 0.335 0.561 0.333
2019 5 225 500 316 897 2921 3175 1840 922 0.244 0.236 0.262 0.814 0.532 0.821 0.725 0.557
2019 6 282 520 341 828 3293 3588 1861 858 0.216 0.301 0.314 0.824 0.599 0.837 0.746 0.624
2019 7 278 483 335 770 3282 3602 1867 829 0.190 0.332 0.316 0.829 0.602 0.844 0.763 0.648
2019 8 241 416 280 677 2922 3231 1672 732 0.200 0.335 0.319 0.838 0.560 0.857 0.769 0.652
2019 9 244 412 290 687 2737 3044 1629 724 0.179 0.302 0.301 0.825 0.529 0.837 0.760 0.631
2019 10 249 395 317 674 2082 2385 1385 649 0.114 0.213 0.259 0.762 0.414 0.743 0.714 0.556
2019 11 277 398 383 715 1459 1707 1385 736 0.024 0.105 0.101 0.632 0.277 0.548 0.620 0.409
2019 12 233 310 417 563 917 1149 1367 840 -0.148 0.064 -0.088 0.468 0.153 0.301 0.575 0.342
2020 1 256 335 463 623 990 1225 1538 956 -0.160 0.060 -0.115 0.452 0.157 0.278 0.571 0.326
2020 2 342 428 558 727 1115 1347 1637 1027 -0.132 0.055 -0.097 0.418 0.162 0.226 0.521 0.301
2020 3 353 474 641 828 1276 1546 1864 1200 -0.146 0.055 -0.094 0.415 0.177 0.223 0.530 0.303
2020 4 375 533 616 882 1520 1776 1929 1194 -0.065 0.073 -0.046 0.477 0.229 0.316 0.533 0.330
2020 5 257 533 317 885 3366 3645 1858 886 0.264 0.284 0.319 0.835 0.608 0.852 0.741 0.604
2020 6 261 498 316 837 3472 3781 1847 830 0.229 0.318 0.341 0.844 0.629 0.867 0.766 0.637
2020 7 256 468 313 773 3246 3591 1847 815 0.205 0.324 0.319 0.839 0.603 0.858 0.769 0.645
2020 8 236 419 292 725 2879 3227 1768 777 0.186 0.303 0.291 0.833 0.554 0.850 0.770 0.633
2020 9 248 414 310 705 2521 2855 1628 733 0.151 0.261 0.271 0.803 0.494 0.804 0.746 0.603
2020 10 233 379 350 716 1808 2137 1493 737 0.048 0.156 0.171 0.712 0.356 0.669 0.695 0.494
2020 11 274 372 471 676 1160 1448 1500 853 -0.115 0.073 -0.016 0.508 0.199 0.363 0.590 0.363
2021 1 328 403 535 698 1074 1307 1461 917 -0.138 0.057 -0.056 0.427 0.159 0.240 0.534 0.308
2021 2 345 486 631 797 1192 1422 1671 1072 -0.128 0.052 -0.079 0.393 0.157 0.190 0.497 0.287
2021 3 376 487 647 830 1254 1513 1884 1224 -0.138 0.053 -0.109 0.404 0.172 0.206 0.514 0.293
2021 4 357 514 638 902 1491 1771 2001 1263 -0.103 0.066 -0.062 0.468 0.219 0.302 0.548 0.323
2021 5 243 535 338 909 3220 3523 1955 965 0.244 0.262 0.280 0.818 0.579 0.826 0.731 0.583
2021 6 239 494 297 829 3776 4099 1941 873 0.259 0.361 0.356 0.864 0.673 0.895 0.785 0.663
2021 7 255 464 306 746 3404 3751 1858 818 0.211 0.360 0.336 0.848 0.628 0.872 0.779 0.668
2021 8 246 419 287 701 2953 3271 1699 746 0.191 0.324 0.315 0.838 0.566 0.856 0.772 0.646
2021 9 248 410 295 686 2603 2947 1579 692 0.171 0.285 0.301 0.818 0.514 0.827 0.756 0.622
2021 10 226 368 314 683 1950 2286 1451 689 0.087 0.191 0.223 0.756 0.393 0.734 0.721 0.538
2021 11 231 353 423 695 1263 1563 1478 815 -0.086 0.083 0.022 0.571 0.230 0.456 0.630 0.385
2021 12 270 342 459 621 1020 1261 1462 895 -0.157 0.068 -0.076 0.476 0.167 0.315 0.589 0.346
2022 1 257 343 475 634 1023 1267 1588 987 -0.159 0.064 -0.112 0.458 0.162 0.287 0.576 0.334
2022 2 324 407 549 718 1127 1381 1726 1084 -0.145 0.059 -0.109 0.434 0.170 0.250 0.545 0.317
2022 3 415 527 683 869 1315 1583 1962 1262 -0.126 0.053 -0.106 0.399 0.179 0.199 0.501 0.292
2022 4 413 586 672 971 1684 1973 2051 1273 -0.061 0.074 -0.023 0.487 0.251 0.330 0.538 0.336
2022 5 280 573 345 945 3543 3850 2018 956 0.259 0.285 0.305 0.828 0.631 0.843 0.735 0.599
2022 6 279 524 329 836 3750 4070 1948 869 0.238 0.354 0.352 0.850 0.669 0.875 0.772 0.659
2022 7 271 491 335 818 3517 3882 2004 893 0.203 0.338 0.317 0.839 0.639 0.858 0.774 0.650
2022 8 281 483 349 819 3143 3500 1876 842 0.175 0.291 0.300 0.816 0.583 0.825 0.756 0.619
2022 9 226 402 295 724 2646 2981 1654 746 0.166 0.270 0.284 0.818 0.513 0.826 0.761 0.607
2022 10 273 431 374 748 2023 2365 1537 734 0.079 0.175 0.208 0.723 0.395 0.684 0.689 0.516
2022 11 234 362 424 704 1306 1586 1484 817 -0.073 0.086 0.030 0.575 0.234 0.462 0.626 0.382
2022 12 272 349 478 643 1058 1338 1518 917 -0.150 0.067 -0.063 0.476 0.176 0.314 0.586 0.352
2023 1 316 389 525 679 1045 1284 1639 1043 -0.146 0.056 -0.119 0.422 0.157 0.232 0.535 0.309
2023 2 344 432 571 733 1124 1371 1734 1106 -0.134 0.056 -0.115 0.416 0.164 0.223 0.522 0.305
2023 3 381 481 640 819 1267 1544 1933 1241 -0.140 0.057 -0.110 0.418 0.181 0.227 0.528 0.309
2023 4 379 544 631 936 1658 1923 2047 1282 -0.065 0.078 -0.036 0.500 0.251 0.350 0.555 0.341
2023 5 316 626 410 1015 3481 3751 2025 996 0.230 0.251 0.291 0.793 0.601 0.789 0.706 0.565
2023 6 286 561 344 898 3789 4116 1926 862 0.246 0.325 0.361 0.843 0.669 0.864 0.758 0.640
2023 7 280 501 330 808 3623 3992 1937 849 0.212 0.353 0.345 0.846 0.658 0.869 0.776 0.663
2023 8 274 469 329 776 3088 3459 1763 767 0.183 0.304 0.324 0.825 0.583 0.838 0.760 0.633
2023 9 280 448 398 782 2362 2744 1802 881 0.087 0.214 0.206 0.745 0.450 0.717 0.716 0.554
2023 10 316 466 426 772 2016 2369 1707 842 0.055 0.165 0.164 0.693 0.385 0.639 0.668 0.506
2023 11 310 433 489 775 1454 1757 1707 972 -0.053 0.090 0.013 0.564 0.256 0.446 0.603 0.386
2023 12 235 362 487 688 1166 1450 1629 996 -0.140 0.073 -0.059 0.502 0.191 0.352 0.601 0.358
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Appendix B Monthly Aggregated Sentinel-2 Values

B.2 Monthly Mean Values of Symptomatic Sweet Chestnut
Tree Samples (2017-2023)
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Year Month
BLU GRN RED RE1 RE3 NIR SW1 SW2 CCI CIre NDWI NDVI EVI SAVI GNDVI NDVIre

2017 3 96 119 159 153 212 235 300 210 0.066 0.029 0.075 0.085 0.036 0.128 0.064 0.057
2017 4 114 113 177 142 372 377 303 236 0.130 0.054 0.128 0.141 0.087 0.211 0.086 0.088
2017 5 63 89 71 123 394 413 191 117 0.077 0.056 0.048 0.034 0.062 0.051 0.032 0.040
2017 6 60 89 91 128 499 529 236 117 0.072 0.059 0.043 0.042 0.077 0.063 0.033 0.038
2017 7 56 82 72 118 501 531 216 101 0.067 0.067 0.038 0.037 0.076 0.055 0.032 0.038
2017 8 70 94 88 126 413 428 197 102 0.061 0.064 0.039 0.042 0.063 0.063 0.036 0.041
2017 9 59 84 72 121 369 401 204 109 0.056 0.052 0.041 0.037 0.059 0.055 0.034 0.038
2017 10 91 114 109 169 444 492 294 165 0.062 0.048 0.059 0.058 0.076 0.088 0.047 0.056
2017 11 72 102 136 184 360 418 321 194 0.086 0.031 0.089 0.090 0.065 0.135 0.053 0.056
2017 12 737 630 586 562 526 510 318 213 0.071 0.031 0.094 0.115 0.261 0.173 0.118 0.079
2018 1 113 141 188 206 262 316 387 232 0.092 0.032 0.081 0.095 0.033 0.143 0.087 0.072
2018 2 106 118 172 188 239 278 364 242 0.061 0.028 0.092 0.088 0.031 0.132 0.064 0.061
2018 3 100 121 171 173 206 236 364 262 0.058 0.029 0.074 0.092 0.029 0.138 0.068 0.061
2018 4 94 118 158 154 347 347 295 230 0.109 0.035 0.106 0.111 0.073 0.166 0.058 0.066
2018 5 81 117 111 177 610 636 257 176 0.092 0.081 0.075 0.058 0.099 0.088 0.053 0.068
2018 6 73 106 92 142 525 550 227 115 0.074 0.059 0.038 0.036 0.073 0.054 0.031 0.033
2018 7 51 81 78 125 522 538 209 120 0.069 0.067 0.044 0.035 0.075 0.053 0.028 0.038
2018 8 61 84 78 112 463 494 195 104 0.066 0.068 0.044 0.040 0.073 0.061 0.035 0.040
2018 9 55 84 72 126 464 504 230 121 0.062 0.062 0.049 0.037 0.074 0.055 0.031 0.040
2018 10 85 110 107 165 429 486 271 146 0.062 0.055 0.065 0.055 0.071 0.082 0.046 0.053
2018 11 106 107 118 146 242 272 277 199 0.054 0.014 0.055 0.057 0.038 0.086 0.044 0.028
2018 12 97 116 163 182 253 303 353 215 0.075 0.035 0.070 0.100 0.034 0.159 0.081 0.067
2019 1 94 105 152 167 236 284 354 226 0.070 0.033 0.084 0.097 0.035 0.145 0.082 0.067
2019 2 96 117 171 185 235 278 366 244 0.065 0.033 0.097 0.101 0.033 0.151 0.077 0.070
2019 3 89 112 166 174 245 278 346 243 0.058 0.033 0.083 0.097 0.040 0.146 0.067 0.067
2019 4 118 127 172 172 302 322 332 238 0.076 0.036 0.093 0.107 0.056 0.160 0.073 0.069
2019 5 75 102 121 155 541 555 222 165 0.130 0.101 0.099 0.080 0.100 0.121 0.065 0.092
2019 6 68 86 89 114 405 412 195 125 0.084 0.067 0.054 0.043 0.063 0.064 0.036 0.044
2019 7 77 98 93 129 468 490 231 132 0.062 0.085 0.048 0.047 0.073 0.070 0.044 0.048
2019 8 56 82 69 117 509 539 249 122 0.058 0.080 0.051 0.038 0.082 0.058 0.038 0.043
2019 9 62 84 68 113 442 468 214 108 0.054 0.069 0.044 0.037 0.069 0.056 0.037 0.042
2019 10 70 108 98 158 497 534 231 133 0.064 0.077 0.066 0.061 0.083 0.091 0.052 0.067
2019 11 63 94 100 163 339 391 280 161 0.057 0.027 0.063 0.061 0.062 0.091 0.042 0.045
2019 12 98 107 143 168 259 314 359 226 0.071 0.029 0.080 0.088 0.041 0.132 0.070 0.059
2020 1 102 108 146 162 232 276 335 216 0.070 0.031 0.075 0.096 0.035 0.144 0.080 0.064
2020 2 129 136 170 180 225 259 336 227 0.057 0.033 0.072 0.103 0.032 0.154 0.089 0.070
2020 3 104 130 181 193 272 307 336 242 0.057 0.031 0.081 0.095 0.041 0.142 0.073 0.066
2020 4 85 102 157 142 406 412 290 227 0.114 0.044 0.125 0.128 0.090 0.192 0.068 0.080
2020 5 77 109 85 143 607 632 224 123 0.077 0.068 0.060 0.043 0.091 0.065 0.041 0.052
2020 6 64 94 81 126 455 481 194 102 0.065 0.054 0.042 0.032 0.061 0.048 0.030 0.033
2020 7 63 87 79 123 443 462 192 109 0.059 0.072 0.040 0.036 0.063 0.053 0.033 0.041
2020 8 52 77 65 116 425 456 193 107 0.052 0.072 0.043 0.031 0.065 0.047 0.031 0.041
2020 9 64 90 74 121 438 470 201 104 0.056 0.064 0.045 0.039 0.068 0.059 0.039 0.042
2020 10 77 109 110 176 535 594 287 156 0.091 0.066 0.081 0.082 0.099 0.124 0.055 0.079
2020 11 83 102 138 172 294 356 365 221 0.066 0.027 0.097 0.081 0.049 0.121 0.060 0.052
2021 1 99 117 158 183 246 284 325 209 0.068 0.032 0.098 0.093 0.035 0.139 0.071 0.069
2021 2 100 145 199 206 252 280 346 241 0.054 0.029 0.084 0.100 0.033 0.150 0.074 0.068
2021 3 104 120 167 171 231 265 330 237 0.056 0.030 0.078 0.095 0.039 0.143 0.070 0.065
2021 4 78 98 141 147 291 303 286 215 0.091 0.033 0.100 0.100 0.059 0.150 0.055 0.063
2021 5 80 104 104 146 652 668 242 161 0.096 0.087 0.083 0.062 0.105 0.094 0.055 0.074
2021 6 65 100 81 135 501 517 204 115 0.074 0.068 0.039 0.031 0.064 0.047 0.030 0.035
2021 7 66 98 81 142 584 640 313 160 0.066 0.074 0.039 0.032 0.087 0.047 0.030 0.033
2021 8 52 71 56 101 422 451 202 97 0.046 0.053 0.036 0.024 0.060 0.036 0.025 0.030
2021 9 68 96 76 137 455 493 245 127 0.051 0.059 0.043 0.033 0.069 0.049 0.033 0.039
2021 10 58 94 91 161 511 561 290 156 0.073 0.068 0.074 0.056 0.088 0.084 0.043 0.064
2021 11 63 104 135 205 370 431 308 179 0.090 0.034 0.105 0.095 0.066 0.142 0.055 0.058
2021 12 327 285 261 265 315 339 344 212 0.082 0.035 0.140 0.108 0.041 0.163 0.107 0.077
2022 1 84 97 139 154 219 260 345 228 0.072 0.037 0.088 0.101 0.034 0.152 0.078 0.070
2022 2 94 103 147 162 216 252 347 236 0.064 0.035 0.087 0.097 0.035 0.146 0.070 0.071
2022 3 106 119 159 165 213 241 332 238 0.061 0.031 0.084 0.091 0.039 0.136 0.066 0.067
2022 4 104 109 159 148 407 418 278 218 0.103 0.038 0.113 0.120 0.083 0.180 0.067 0.071
2022 5 52 97 78 153 646 685 254 151 0.082 0.095 0.076 0.049 0.101 0.073 0.050 0.070
2022 6 73 96 89 121 507 534 190 104 0.082 0.064 0.041 0.039 0.072 0.059 0.032 0.036
2022 7 60 80 74 115 523 547 197 116 0.071 0.078 0.049 0.038 0.079 0.056 0.031 0.043
2022 8 56 76 70 112 489 523 223 125 0.062 0.064 0.050 0.036 0.075 0.054 0.029 0.041
2022 9 47 77 59 115 472 503 208 106 0.058 0.060 0.047 0.032 0.073 0.049 0.030 0.039
2022 10 76 106 98 164 527 581 279 148 0.066 0.066 0.080 0.068 0.092 0.102 0.056 0.068
2022 11 61 101 127 182 364 416 292 178 0.102 0.037 0.107 0.102 0.068 0.153 0.060 0.065
2022 12 91 105 156 174 246 305 340 216 0.077 0.034 0.082 0.104 0.040 0.156 0.074 0.067
2023 1 103 107 147 161 214 254 352 236 0.068 0.030 0.079 0.091 0.033 0.136 0.074 0.063
2023 2 90 104 151 164 208 247 345 238 0.066 0.031 0.081 0.090 0.032 0.135 0.063 0.064
2023 3 125 141 181 182 228 257 356 254 0.063 0.034 0.079 0.101 0.037 0.151 0.077 0.071
2023 4 89 115 175 169 412 412 317 244 0.128 0.043 0.117 0.134 0.089 0.201 0.065 0.079
2023 5 70 104 121 139 672 689 224 174 0.101 0.083 0.093 0.080 0.117 0.120 0.064 0.079
2023 6 56 97 72 148 696 734 305 145 0.069 0.057 0.044 0.041 0.100 0.061 0.039 0.037
2023 7 71 90 77 118 508 546 217 114 0.059 0.076 0.038 0.034 0.074 0.051 0.033 0.038
2023 8 63 83 78 120 459 489 205 109 0.062 0.071 0.045 0.040 0.070 0.059 0.034 0.043
2023 9 67 98 131 166 552 593 300 239 0.092 0.083 0.108 0.081 0.101 0.122 0.055 0.084
2023 10 73 96 95 146 494 554 310 175 0.060 0.053 0.087 0.063 0.089 0.095 0.051 0.062
2023 11 98 113 155 178 324 360 369 235 0.084 0.039 0.087 0.103 0.058 0.155 0.061 0.067
2023 12 80 100 144 171 256 297 335 220 0.078 0.037 0.084 0.102 0.044 0.153 0.069 0.067
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Year Month
BLU GRN RED RE1 RE3 NIR SW1 SW2 CCI CIre NDWI NDVI EVI SAVI GNDVI NDVIre

2017 3 76 89 106 107 204 216 222 160 0.059 0.021 0.062 0.070 0.040 0.105 0.057 0.046
2017 4 103 86 153 107 338 336 266 216 0.116 0.047 0.116 0.135 0.084 0.203 0.082 0.081
2017 5 80 85 78 111 413 423 181 112 0.082 0.048 0.054 0.042 0.068 0.063 0.035 0.040
2017 6 59 78 77 113 454 489 213 105 0.060 0.047 0.041 0.042 0.073 0.062 0.034 0.035
2017 7 62 75 74 105 412 433 189 99 0.063 0.053 0.042 0.037 0.063 0.055 0.030 0.033
2017 8 66 86 77 113 403 413 175 92 0.053 0.051 0.041 0.039 0.061 0.058 0.033 0.036
2017 9 57 71 64 95 354 369 163 83 0.059 0.045 0.052 0.042 0.060 0.063 0.035 0.037
2017 10 85 98 101 140 368 400 250 151 0.065 0.040 0.068 0.062 0.068 0.093 0.044 0.052
2017 11 57 73 99 125 280 319 238 162 0.069 0.025 0.084 0.079 0.056 0.118 0.043 0.049
2017 12 839 712 650 621 572 539 258 191 0.057 0.024 0.103 0.105 0.295 0.157 0.118 0.074
2018 1 122 155 180 188 239 277 356 212 0.079 0.021 0.086 0.079 0.030 0.118 0.089 0.055
2018 2 117 120 159 179 221 252 288 194 0.049 0.019 0.077 0.070 0.031 0.105 0.062 0.048
2018 3 87 96 129 138 186 217 317 231 0.054 0.018 0.061 0.067 0.031 0.101 0.058 0.044
2018 4 97 93 124 122 314 317 244 199 0.099 0.027 0.090 0.098 0.068 0.146 0.056 0.055
2018 5 95 111 135 169 633 643 237 189 0.103 0.077 0.091 0.075 0.108 0.112 0.059 0.075
2018 6 62 86 74 125 473 497 211 110 0.068 0.050 0.043 0.033 0.068 0.049 0.027 0.030
2018 7 52 72 68 115 473 491 194 112 0.061 0.054 0.046 0.033 0.069 0.049 0.027 0.034
2018 8 66 82 77 112 398 423 181 102 0.058 0.053 0.046 0.040 0.064 0.060 0.034 0.037
2018 9 55 75 74 118 391 414 208 122 0.064 0.052 0.055 0.043 0.064 0.065 0.034 0.041
2018 10 76 89 100 138 335 380 239 140 0.064 0.043 0.066 0.058 0.059 0.086 0.043 0.048
2018 11 66 78 93 134 291 324 259 168 0.048 0.015 0.060 0.055 0.046 0.082 0.036 0.030
2018 12 80 85 117 144 228 262 269 171 0.055 0.024 0.071 0.070 0.036 0.105 0.054 0.049
2019 1 81 81 112 131 201 236 287 191 0.057 0.024 0.075 0.076 0.033 0.113 0.065 0.052
2019 2 76 87 125 151 198 224 281 192 0.050 0.020 0.072 0.070 0.030 0.105 0.055 0.049
2019 3 66 82 126 136 210 235 285 205 0.044 0.020 0.061 0.071 0.036 0.107 0.050 0.046
2019 4 95 90 138 135 272 286 296 211 0.074 0.026 0.073 0.088 0.052 0.132 0.057 0.052
2019 5 89 99 118 164 452 452 201 156 0.125 0.076 0.086 0.080 0.084 0.120 0.059 0.077
2019 6 73 82 89 111 436 441 179 118 0.084 0.055 0.057 0.047 0.070 0.071 0.037 0.040
2019 7 82 97 95 126 447 470 217 126 0.061 0.059 0.048 0.047 0.071 0.070 0.039 0.041
2019 8 58 77 68 119 517 555 280 140 0.057 0.058 0.057 0.039 0.084 0.058 0.037 0.036
2019 9 67 79 71 108 418 442 212 111 0.059 0.053 0.046 0.041 0.067 0.062 0.037 0.038
2019 10 60 85 84 123 427 452 170 111 0.064 0.059 0.070 0.061 0.075 0.091 0.046 0.060
2019 11 67 76 102 144 317 348 225 147 0.074 0.026 0.071 0.069 0.060 0.103 0.042 0.049
2019 12 90 89 115 146 255 302 316 206 0.060 0.024 0.075 0.070 0.043 0.105 0.060 0.050
2020 1 88 86 118 142 237 278 292 196 0.058 0.023 0.068 0.074 0.039 0.110 0.064 0.049
2020 2 101 110 139 161 217 245 304 208 0.046 0.022 0.069 0.075 0.033 0.113 0.067 0.051
2020 3 71 101 155 172 262 299 309 229 0.051 0.021 0.065 0.073 0.040 0.109 0.055 0.048
2020 4 67 76 130 116 346 351 251 198 0.098 0.035 0.107 0.112 0.079 0.168 0.056 0.067
2020 5 79 90 97 125 616 635 211 127 0.100 0.068 0.079 0.064 0.104 0.097 0.047 0.062
2020 6 61 79 70 113 459 479 185 101 0.065 0.045 0.051 0.036 0.069 0.053 0.029 0.032
2020 7 66 78 80 110 392 403 169 100 0.063 0.054 0.044 0.040 0.060 0.061 0.033 0.036
2020 8 57 71 75 117 369 386 194 117 0.064 0.059 0.049 0.039 0.059 0.059 0.030 0.041
2020 9 64 81 79 109 374 392 182 107 0.063 0.052 0.056 0.049 0.062 0.073 0.041 0.042
2020 10 62 79 94 137 410 445 222 133 0.087 0.054 0.084 0.083 0.081 0.124 0.050 0.072
2020 11 72 82 114 138 261 307 313 200 0.057 0.022 0.087 0.069 0.046 0.104 0.047 0.044
2021 1 134 150 186 209 279 315 305 198 0.052 0.024 0.099 0.085 0.040 0.128 0.072 0.059
2021 2 131 156 193 193 235 258 307 221 0.048 0.022 0.077 0.082 0.035 0.123 0.069 0.056
2021 3 87 102 147 151 212 241 287 213 0.050 0.021 0.065 0.075 0.037 0.113 0.058 0.049
2021 4 69 83 126 133 280 294 272 207 0.078 0.024 0.086 0.087 0.055 0.130 0.048 0.051
2021 5 84 84 129 138 615 614 261 207 0.122 0.084 0.106 0.086 0.115 0.129 0.060 0.084
2021 6 76 92 94 122 463 472 186 112 0.084 0.059 0.043 0.043 0.068 0.065 0.036 0.036
2021 7 58 72 73 96 404 431 188 119 0.058 0.052 0.039 0.035 0.061 0.053 0.030 0.030
2021 8 56 68 67 98 383 404 200 106 0.056 0.051 0.045 0.035 0.061 0.053 0.030 0.033
2021 9 65 82 80 115 372 404 203 113 0.063 0.054 0.051 0.044 0.063 0.066 0.036 0.041
2021 10 52 75 86 131 390 422 255 147 0.077 0.056 0.081 0.061 0.073 0.091 0.042 0.059
2021 11 69 88 119 165 317 357 243 159 0.076 0.026 0.100 0.086 0.060 0.129 0.047 0.049
2021 12 287 246 222 228 290 307 303 188 0.070 0.030 0.129 0.093 0.042 0.139 0.092 0.067
2022 1 76 85 123 136 212 246 296 203 0.052 0.027 0.076 0.081 0.036 0.121 0.063 0.056
2022 2 79 84 123 136 197 224 288 205 0.048 0.025 0.072 0.076 0.035 0.114 0.057 0.054
2022 3 86 97 134 139 205 227 280 207 0.049 0.021 0.067 0.073 0.039 0.109 0.054 0.050
2022 4 100 96 151 126 360 369 252 202 0.089 0.032 0.098 0.112 0.078 0.168 0.065 0.064
2022 5 61 84 101 133 611 642 174 135 0.090 0.094 0.090 0.068 0.108 0.103 0.059 0.083
2022 6 76 89 90 114 383 394 174 98 0.071 0.053 0.037 0.040 0.057 0.060 0.034 0.033
2022 7 72 82 111 120 426 426 179 130 0.089 0.076 0.062 0.058 0.078 0.088 0.040 0.053
2022 8 70 80 112 115 401 412 195 134 0.086 0.068 0.063 0.064 0.077 0.095 0.043 0.054
2022 9 59 77 95 105 384 399 191 120 0.084 0.060 0.066 0.062 0.072 0.093 0.044 0.050
2022 10 76 94 104 134 399 436 232 139 0.071 0.056 0.089 0.080 0.079 0.119 0.059 0.068
2022 11 53 72 100 124 285 314 231 170 0.084 0.030 0.103 0.089 0.059 0.133 0.048 0.055
2022 12 61 79 122 139 218 265 282 180 0.046 0.028 0.071 0.079 0.037 0.118 0.052 0.056
2023 1 85 84 119 130 197 233 303 213 0.056 0.023 0.070 0.076 0.037 0.114 0.062 0.052
2023 2 79 94 138 151 210 242 309 223 0.048 0.024 0.075 0.077 0.037 0.116 0.056 0.055
2023 3 106 122 163 164 228 251 318 235 0.052 0.026 0.073 0.084 0.041 0.125 0.063 0.057
2023 4 87 109 173 163 409 412 315 250 0.101 0.037 0.107 0.123 0.087 0.185 0.063 0.073
2023 5 85 103 163 135 649 644 215 207 0.117 0.085 0.109 0.106 0.127 0.160 0.077 0.093
2023 6 67 94 85 133 562 592 249 129 0.075 0.052 0.045 0.046 0.086 0.068 0.041 0.037
2023 7 72 85 83 109 416 442 174 104 0.062 0.059 0.041 0.040 0.066 0.061 0.035 0.037
2023 8 66 82 85 119 367 390 191 110 0.061 0.058 0.045 0.045 0.060 0.067 0.037 0.041
2023 9 89 106 182 173 416 435 336 274 0.106 0.078 0.116 0.110 0.092 0.165 0.067 0.090
2023 10 84 102 130 153 409 453 356 230 0.068 0.049 0.091 0.083 0.081 0.124 0.061 0.067
2023 11 79 87 128 138 293 323 280 182 0.070 0.031 0.081 0.089 0.057 0.134 0.052 0.058
2023 12 76 96 149 161 256 296 307 219 0.062 0.032 0.076 0.092 0.045 0.137 0.063 0.061

Median Values of Bands [DN] Median Values of Vegetation Indices [-]

Appendix B Monthly Aggregated Sentinel-2 Values

B.4 Monthly Standard Deviation Values of Symptomatic
Sweet Chestnut Tree Samples (2017-2023)

74



Year Month
BLU GRN RED RE1 RE3 NIR SW1 SW2 CCI CIre NDWI NDVI EVI SAVI GNDVI NDVIre

2017 3 319 433 553 769 1227 1478 1792 1134 -0.119 0.060 -0.092 0.454 0.189 0.280 0.550 0.314
2017 4 330 504 478 840 1714 1947 1688 966 0.043 0.095 0.060 0.593 0.288 0.490 0.569 0.378
2017 5 236 522 267 884 3696 3966 1838 796 0.317 0.327 0.372 0.876 0.669 0.915 0.767 0.643
2017 6 249 502 312 834 3900 4229 1883 785 0.235 0.365 0.394 0.865 0.685 0.898 0.789 0.668
2017 7 224 448 264 755 3647 4013 1814 749 0.255 0.386 0.378 0.877 0.671 0.916 0.798 0.683
2017 8 230 432 274 717 3138 3484 1685 693 0.219 0.346 0.354 0.857 0.597 0.886 0.783 0.664
2017 9 205 388 249 693 2626 2961 1472 613 0.205 0.291 0.342 0.846 0.521 0.869 0.774 0.629
2017 10 265 430 348 754 2104 2453 1461 667 0.108 0.186 0.266 0.755 0.417 0.732 0.704 0.537
2017 11 240 363 428 723 1297 1590 1413 748 -0.084 0.081 0.071 0.579 0.231 0.468 0.635 0.382
2017 12 201 284 425 616 1021 1286 1450 845 -0.193 0.068 -0.041 0.514 0.177 0.370 0.643 0.359
2018 1 244 325 445 602 937 1135 1100 746 -0.151 0.056 0.016 0.437 0.145 0.256 0.554 0.309
2018 2 304 364 504 672 1034 1258 1508 953 -0.145 0.051 -0.088 0.426 0.158 0.239 0.549 0.303
2018 3 324 405 564 756 1159 1415 1757 1138 -0.155 0.051 -0.101 0.424 0.172 0.235 0.550 0.297
2018 4 344 517 590 887 1518 1784 1929 1199 -0.079 0.071 -0.044 0.500 0.227 0.350 0.551 0.335
2018 5 239 547 287 884 3471 3760 1770 779 0.304 0.295 0.365 0.858 0.628 0.887 0.744 0.620
2018 6 219 466 267 773 3840 4168 1805 743 0.261 0.394 0.400 0.878 0.687 0.917 0.799 0.685
2018 7 211 431 245 728 3686 4026 1814 741 0.263 0.411 0.381 0.886 0.675 0.929 0.808 0.696
2018 8 226 426 260 687 3235 3577 1668 667 0.236 0.374 0.365 0.865 0.614 0.897 0.787 0.680
2018 9 195 369 232 643 2718 3047 1504 614 0.227 0.328 0.344 0.862 0.537 0.893 0.786 0.655
2018 10 216 378 290 665 2089 2427 1400 610 0.133 0.217 0.274 0.791 0.421 0.786 0.735 0.572
2018 11 257 358 427 676 1119 1371 1544 924 -0.080 0.064 -0.059 0.516 0.189 0.374 0.580 0.336
2018 12 198 274 380 552 897 1127 1383 836 -0.164 0.062 -0.091 0.491 0.156 0.337 0.608 0.344
2019 1 193 267 376 537 873 1095 1401 880 -0.168 0.058 -0.126 0.475 0.150 0.312 0.595 0.332
2019 2 273 355 471 644 996 1216 1488 957 -0.134 0.051 -0.112 0.424 0.152 0.236 0.536 0.298
2019 3 311 408 549 750 1173 1426 1793 1159 -0.139 0.052 -0.120 0.429 0.175 0.243 0.541 0.301
2019 4 333 488 581 892 1554 1829 2025 1247 -0.079 0.072 -0.040 0.508 0.241 0.361 0.566 0.337
2019 5 166 459 219 829 3167 3432 1698 793 0.317 0.278 0.341 0.872 0.582 0.907 0.760 0.606
2019 6 251 494 303 794 3467 3760 1767 768 0.234 0.335 0.362 0.846 0.629 0.869 0.765 0.650
2019 7 234 445 284 717 3464 3767 1778 743 0.217 0.383 0.359 0.858 0.638 0.887 0.788 0.681
2019 8 210 384 241 638 3099 3412 1588 656 0.233 0.385 0.356 0.869 0.599 0.903 0.796 0.684
2019 9 208 379 246 641 2878 3196 1538 638 0.214 0.353 0.351 0.856 0.565 0.884 0.785 0.668
2019 10 214 352 264 603 2074 2359 1264 557 0.143 0.236 0.306 0.797 0.428 0.794 0.739 0.588
2019 11 255 372 327 675 1415 1647 1249 639 0.070 0.118 0.147 0.677 0.279 0.615 0.641 0.436
2019 12 231 287 370 526 858 1077 1263 770 -0.131 0.065 -0.072 0.482 0.153 0.323 0.582 0.346
2020 1 240 303 417 573 911 1126 1417 879 -0.147 0.059 -0.102 0.465 0.156 0.297 0.579 0.327
2020 2 299 382 507 670 1063 1285 1545 970 -0.124 0.056 -0.086 0.437 0.166 0.256 0.542 0.313
2020 3 325 421 567 754 1218 1473 1745 1111 -0.141 0.055 -0.086 0.430 0.184 0.245 0.546 0.307
2020 4 344 496 574 840 1423 1684 1854 1152 -0.077 0.069 -0.043 0.484 0.219 0.325 0.545 0.331
2020 5 233 517 263 861 3684 3959 1784 795 0.327 0.331 0.387 0.876 0.670 0.914 0.769 0.647
2020 6 229 488 286 816 3706 4022 1786 750 0.257 0.352 0.389 0.868 0.665 0.902 0.784 0.661
2020 7 222 442 262 745 3511 3851 1797 740 0.249 0.375 0.365 0.871 0.646 0.907 0.793 0.678
2020 8 196 392 233 684 3146 3503 1700 683 0.244 0.361 0.346 0.875 0.604 0.913 0.801 0.675
2020 9 213 388 253 657 2718 3052 1525 634 0.204 0.309 0.333 0.847 0.538 0.870 0.775 0.643
2020 10 197 361 291 678 1894 2214 1373 630 0.117 0.192 0.254 0.779 0.390 0.768 0.723 0.545
2020 11 236 328 417 624 1077 1354 1391 772 -0.112 0.074 0.002 0.534 0.191 0.400 0.612 0.371
2021 1 262 322 438 598 967 1185 1365 848 -0.139 0.058 -0.056 0.456 0.160 0.284 0.573 0.323
2021 2 304 430 556 721 1121 1331 1579 1000 -0.125 0.052 -0.080 0.412 0.156 0.218 0.517 0.295
2021 3 338 436 578 764 1192 1441 1788 1145 -0.133 0.052 -0.103 0.419 0.175 0.229 0.531 0.299
2021 4 319 466 582 846 1430 1702 1906 1191 -0.113 0.067 -0.054 0.490 0.219 0.335 0.571 0.332
2021 5 194 519 232 863 3762 4063 1800 801 0.371 0.333 0.380 0.893 0.676 0.939 0.773 0.645
2021 6 189 459 235 785 4082 4409 1828 759 0.315 0.418 0.412 0.898 0.724 0.946 0.811 0.697
2021 7 216 425 249 687 3593 3948 1734 701 0.259 0.424 0.390 0.882 0.669 0.922 0.806 0.702
2021 8 215 394 244 649 3163 3481 1612 657 0.235 0.383 0.367 0.868 0.607 0.902 0.797 0.683
2021 9 213 383 242 633 2739 3098 1442 587 0.224 0.342 0.362 0.857 0.551 0.886 0.783 0.664
2021 10 193 347 262 647 2028 2362 1342 597 0.142 0.219 0.283 0.806 0.418 0.808 0.748 0.575
2021 11 196 316 360 637 1185 1477 1326 696 -0.071 0.087 0.063 0.601 0.222 0.501 0.651 0.401
2021 12 209 278 380 545 911 1134 1325 790 -0.149 0.070 -0.068 0.511 0.161 0.366 0.612 0.358
2022 1 221 300 415 577 938 1167 1471 887 -0.158 0.064 -0.117 0.483 0.158 0.325 0.602 0.344
2022 2 285 363 483 649 1050 1290 1598 975 -0.139 0.060 -0.107 0.457 0.169 0.286 0.566 0.325
2022 3 379 478 621 814 1251 1508 1857 1169 -0.117 0.051 -0.096 0.414 0.181 0.221 0.519 0.295
2022 4 359 530 604 914 1556 1838 1956 1200 -0.072 0.072 -0.025 0.497 0.239 0.345 0.557 0.338
2022 5 240 562 262 921 3845 4110 1884 837 0.360 0.311 0.379 0.878 0.685 0.917 0.757 0.626
2022 6 236 495 281 819 4012 4325 1876 788 0.270 0.395 0.398 0.878 0.710 0.917 0.794 0.684
2022 7 223 446 256 751 3790 4146 1894 776 0.270 0.409 0.378 0.884 0.693 0.926 0.806 0.695
2022 8 239 448 275 756 3386 3732 1764 725 0.240 0.351 0.368 0.865 0.634 0.897 0.787 0.664
2022 9 183 366 220 669 2810 3149 1528 636 0.246 0.334 0.358 0.873 0.558 0.909 0.794 0.657
2022 10 240 398 308 695 2127 2460 1370 604 0.139 0.209 0.286 0.781 0.433 0.771 0.720 0.562
2022 11 187 320 351 656 1226 1499 1282 659 -0.049 0.090 0.076 0.625 0.228 0.537 0.649 0.394
2022 12 221 298 434 596 951 1226 1428 850 -0.158 0.060 -0.070 0.485 0.166 0.327 0.608 0.348
2023 1 292 351 465 637 969 1196 1513 930 -0.134 0.051 -0.123 0.429 0.151 0.243 0.545 0.305
2023 2 295 367 486 653 1019 1246 1572 975 -0.131 0.054 -0.104 0.438 0.159 0.256 0.545 0.313
2023 3 332 417 567 749 1171 1436 1812 1132 -0.139 0.052 -0.103 0.430 0.177 0.245 0.549 0.307
2023 4 312 468 526 857 1521 1786 1893 1136 -0.074 0.081 -0.027 0.537 0.238 0.405 0.588 0.359
2023 5 251 581 291 952 3994 4280 1841 822 0.330 0.332 0.392 0.874 0.705 0.911 0.766 0.643
2023 6 247 525 301 846 3966 4292 1821 745 0.269 0.362 0.415 0.870 0.702 0.905 0.782 0.667
2023 7 224 447 256 739 3799 4180 1831 738 0.267 0.418 0.395 0.885 0.697 0.928 0.808 0.700
2023 8 233 432 273 723 3207 3598 1661 672 0.221 0.349 0.372 0.859 0.613 0.888 0.784 0.669
2023 9 245 417 311 718 2347 2731 1657 731 0.134 0.259 0.264 0.806 0.470 0.809 0.748 0.610
2023 10 279 437 360 738 2035 2378 1588 727 0.098 0.188 0.220 0.740 0.405 0.710 0.691 0.545
2023 11 259 380 413 710 1329 1614 1551 855 -0.032 0.099 0.044 0.620 0.247 0.529 0.633 0.410
2023 12 199 316 414 626 1044 1308 1485 870 -0.143 0.068 -0.048 0.533 0.181 0.398 0.620 0.360
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Year Month
BLU GRN RED RE1 RE3 NIR SW1 SW2 CCI CIre NDWI NDVI EVI SAVI GNDVI NDVIre

2017 3 348 470 607 807 1254 1499 1825 1152 -0.119 0.054 -0.102 0.416 0.177 0.224 0.523 0.299
2017 4 358 529 543 864 1667 1923 1791 1063 -0.003 0.081 0.011 0.539 0.270 0.409 0.554 0.356
2017 5 252 532 304 893 3358 3630 1907 862 0.251 0.286 0.322 0.845 0.612 0.868 0.748 0.612
2017 6 278 521 348 873 3699 4010 1950 857 0.200 0.320 0.347 0.841 0.650 0.862 0.770 0.640
2017 7 244 466 295 796 3459 3783 1888 816 0.215 0.332 0.336 0.853 0.628 0.879 0.779 0.652
2017 8 253 446 307 745 2932 3270 1748 763 0.182 0.303 0.312 0.830 0.557 0.845 0.762 0.635
2017 9 231 403 292 723 2510 2834 1542 679 0.160 0.248 0.303 0.814 0.492 0.821 0.752 0.594
2017 10 280 436 386 770 1976 2335 1530 732 0.065 0.162 0.219 0.717 0.390 0.676 0.684 0.508
2017 11 268 385 479 745 1290 1593 1479 824 -0.114 0.071 0.022 0.537 0.218 0.405 0.614 0.362
2017 12 228 320 474 649 1062 1355 1496 882 -0.197 0.060 -0.069 0.472 0.172 0.308 0.616 0.337
2018 1 299 379 509 643 943 1156 1293 835 -0.147 0.048 -0.008 0.403 0.136 0.204 0.517 0.299
2018 2 343 406 557 708 1062 1286 1562 987 -0.152 0.046 -0.107 0.384 0.149 0.176 0.514 0.279
2018 3 357 445 623 789 1188 1443 1781 1155 -0.161 0.048 -0.111 0.390 0.162 0.184 0.522 0.284
2018 4 375 546 656 918 1495 1775 1997 1243 -0.103 0.062 -0.071 0.455 0.209 0.283 0.530 0.319
2018 5 255 549 329 922 3201 3479 1860 857 0.244 0.262 0.315 0.827 0.584 0.841 0.729 0.593
2018 6 228 468 282 789 3575 3901 1877 813 0.235 0.361 0.360 0.864 0.646 0.895 0.787 0.667
2018 7 233 453 279 766 3435 3778 1881 803 0.227 0.354 0.341 0.862 0.633 0.893 0.788 0.665
2018 8 248 445 297 728 2988 3310 1717 734 0.195 0.314 0.324 0.835 0.567 0.852 0.764 0.642
2018 9 215 383 266 676 2552 2868 1581 682 0.176 0.283 0.293 0.831 0.501 0.847 0.764 0.624
2018 10 236 388 331 708 1993 2326 1495 681 0.083 0.181 0.227 0.748 0.398 0.722 0.714 0.533
2018 11 260 359 430 671 1152 1388 1547 873 -0.091 0.073 -0.047 0.530 0.201 0.396 0.591 0.354
2018 12 227 311 433 589 945 1181 1446 874 -0.165 0.057 -0.113 0.457 0.155 0.286 0.586 0.329
2019 1 224 310 445 593 924 1152 1488 930 -0.173 0.053 -0.143 0.440 0.148 0.260 0.576 0.317
2019 2 310 402 542 696 1051 1276 1605 1013 -0.149 0.046 -0.133 0.393 0.147 0.190 0.516 0.283
2019 3 353 458 620 809 1233 1489 1885 1203 -0.149 0.049 -0.129 0.405 0.170 0.207 0.523 0.289
2019 4 368 531 656 941 1548 1842 2070 1264 -0.100 0.065 -0.061 0.475 0.226 0.312 0.556 0.324
2019 5 216 495 286 895 2939 3209 1841 920 0.234 0.235 0.280 0.837 0.541 0.856 0.733 0.572
2019 6 274 514 333 829 3280 3574 1867 850 0.201 0.295 0.321 0.825 0.597 0.837 0.746 0.624
2019 7 264 471 323 756 3259 3593 1869 818 0.186 0.326 0.317 0.833 0.602 0.850 0.766 0.648
2019 8 231 408 270 673 2914 3239 1682 727 0.198 0.326 0.316 0.841 0.563 0.862 0.771 0.651
2019 9 233 409 287 687 2723 3047 1635 720 0.176 0.294 0.305 0.827 0.529 0.840 0.762 0.629
2019 10 239 382 306 661 2045 2336 1376 631 0.116 0.210 0.272 0.768 0.414 0.752 0.716 0.560
2019 11 274 383 366 686 1414 1656 1361 710 0.026 0.107 0.120 0.650 0.271 0.575 0.623 0.421
2019 12 251 318 424 565 902 1135 1383 834 -0.144 0.058 -0.101 0.463 0.150 0.295 0.571 0.335
2020 1 256 331 460 608 966 1197 1525 938 -0.157 0.055 -0.127 0.443 0.152 0.264 0.569 0.316
2020 2 324 413 547 713 1100 1317 1618 1004 -0.135 0.051 -0.107 0.407 0.158 0.210 0.518 0.295
2020 3 354 460 624 804 1241 1503 1858 1183 -0.151 0.051 -0.109 0.403 0.171 0.204 0.523 0.296
2020 4 376 526 635 877 1457 1719 1935 1191 -0.093 0.062 -0.072 0.451 0.205 0.277 0.526 0.317
2020 5 247 529 301 889 3414 3692 1874 882 0.275 0.293 0.339 0.854 0.621 0.880 0.749 0.617
2020 6 254 495 312 833 3486 3792 1879 833 0.224 0.313 0.345 0.848 0.632 0.871 0.768 0.637
2020 7 248 460 302 764 3274 3612 1864 817 0.200 0.319 0.324 0.842 0.604 0.863 0.773 0.646
2020 8 228 416 282 717 2874 3236 1773 772 0.187 0.297 0.296 0.838 0.554 0.856 0.770 0.634
2020 9 244 411 302 696 2494 2825 1618 720 0.148 0.255 0.280 0.806 0.491 0.808 0.748 0.602
2020 10 232 375 349 705 1765 2087 1480 719 0.047 0.154 0.179 0.718 0.353 0.678 0.694 0.500
2020 11 267 370 469 679 1140 1436 1524 857 -0.121 0.067 -0.027 0.505 0.193 0.357 0.590 0.355
2021 1 304 381 517 659 1021 1243 1456 902 -0.146 0.051 -0.086 0.417 0.154 0.225 0.533 0.300
2021 2 347 466 604 771 1175 1404 1655 1059 -0.128 0.047 -0.094 0.380 0.151 0.171 0.491 0.280
2021 3 374 477 642 825 1238 1500 1884 1204 -0.140 0.048 -0.126 0.391 0.166 0.186 0.509 0.283
2021 4 359 508 644 900 1455 1740 1991 1230 -0.120 0.061 -0.085 0.457 0.207 0.285 0.548 0.317
2021 5 238 535 293 900 3262 3576 1959 922 0.275 0.270 0.312 0.853 0.596 0.880 0.743 0.604
2021 6 223 484 278 826 3810 4132 1958 872 0.256 0.358 0.364 0.871 0.680 0.906 0.787 0.665
2021 7 248 460 295 746 3429 3782 1875 807 0.212 0.357 0.342 0.851 0.630 0.877 0.781 0.668
2021 8 239 415 278 692 2958 3280 1708 733 0.196 0.318 0.321 0.841 0.566 0.861 0.773 0.646
2021 9 242 403 285 676 2594 2937 1580 677 0.174 0.278 0.305 0.823 0.516 0.834 0.758 0.622
2021 10 221 362 310 684 1938 2275 1451 675 0.087 0.188 0.225 0.760 0.393 0.739 0.721 0.541
2021 11 234 345 419 680 1222 1510 1463 810 -0.092 0.079 0.028 0.572 0.222 0.458 0.630 0.380
2021 12 241 318 437 593 978 1225 1467 885 -0.158 0.061 -0.093 0.477 0.162 0.316 0.595 0.340
2022 1 263 344 477 631 994 1242 1586 975 -0.163 0.056 -0.136 0.449 0.156 0.273 0.570 0.321
2022 2 321 404 550 719 1115 1371 1731 1069 -0.149 0.051 -0.137 0.422 0.164 0.233 0.539 0.305
2022 3 409 518 681 858 1292 1564 1983 1264 -0.132 0.047 -0.128 0.384 0.172 0.175 0.497 0.281
2022 4 409 579 681 963 1616 1897 2062 1268 -0.086 0.064 -0.044 0.458 0.232 0.287 0.530 0.318
2022 5 277 585 323 955 3579 3891 2031 932 0.270 0.276 0.323 0.846 0.651 0.869 0.741 0.602
2022 6 269 520 320 839 3773 4111 1956 869 0.227 0.350 0.356 0.850 0.672 0.875 0.772 0.660
2022 7 264 486 311 810 3545 3908 2008 880 0.214 0.343 0.330 0.854 0.652 0.881 0.780 0.659
2022 8 272 477 329 810 3188 3536 1866 823 0.182 0.292 0.315 0.831 0.598 0.846 0.763 0.627
2022 9 215 395 276 719 2650 2985 1644 724 0.176 0.272 0.298 0.833 0.518 0.849 0.768 0.616
2022 10 278 434 369 755 2025 2374 1547 720 0.072 0.171 0.213 0.726 0.396 0.688 0.692 0.522
2022 11 236 366 430 718 1279 1562 1475 795 -0.088 0.080 0.031 0.573 0.227 0.460 0.627 0.375
2022 12 278 352 485 637 1027 1301 1522 914 -0.159 0.060 -0.062 0.468 0.176 0.301 0.583 0.338
2023 1 317 388 527 676 1031 1277 1646 1032 -0.147 0.049 -0.145 0.405 0.151 0.208 0.526 0.296
2023 2 339 425 567 723 1108 1356 1761 1105 -0.140 0.048 -0.129 0.399 0.157 0.199 0.518 0.290
2023 3 366 462 621 799 1240 1511 1936 1222 -0.148 0.049 -0.129 0.399 0.174 0.198 0.524 0.294
2023 4 374 530 629 911 1593 1860 2038 1238 -0.095 0.068 -0.055 0.481 0.226 0.321 0.551 0.326
2023 5 302 617 370 997 3549 3826 2018 952 0.244 0.272 0.315 0.826 0.632 0.839 0.732 0.603
2023 6 274 556 329 912 3837 4160 1949 864 0.242 0.326 0.365 0.851 0.677 0.876 0.766 0.645
2023 7 266 490 317 807 3632 4007 1945 844 0.212 0.351 0.348 0.852 0.661 0.879 0.782 0.666
2023 8 268 463 319 778 3082 3454 1762 758 0.180 0.296 0.325 0.829 0.584 0.843 0.763 0.633
2023 9 265 436 348 759 2337 2718 1715 811 0.091 0.212 0.219 0.771 0.454 0.756 0.728 0.565
2023 10 303 461 405 777 1987 2348 1685 803 0.059 0.162 0.174 0.705 0.388 0.657 0.674 0.513
2023 11 299 430 478 775 1437 1744 1691 952 -0.064 0.088 0.011 0.569 0.251 0.453 0.610 0.385
2023 12 238 357 472 679 1138 1408 1620 988 -0.145 0.064 -0.075 0.486 0.183 0.329 0.596 0.348

Median Values of Bands [DN] Median Values of Vegetation Indices [-]

Appendix B Monthly Aggregated Sentinel-2 Values

B.6 Monthly Median Values of Symptomatic Sweet Chestnut
Tree Samples (2017-2023)
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