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Abstract 
Tuberculosis and diphtheria are two infectious diseases that continue to be a major 
global health concern, particularly in developing countries. For instance, in 2023 alone, 
over one million lives were claimed by tuberculosis alone. Nevertheless, significant im-
provements have been made compared to the 19th and 20th centuries, when both diseases 
claimed a much higher death toll. This master’s thesis aims to explore the distribution of 
tuberculosis and diphtheria cases in the city of Zurich in the late 1920s and early 1930s 
with a focus on geographical patterns and socioeconomic status. While there have been 
similar studies on the spread of other diseases, these have focused on other cities and 
diseases, most notably London for cholera, and more recently, Basel, (the canton of) 
Berne for the 1918-1920 influenza pandemic and emerging cities of developing countries. 
This thesis will explore the history of Zurich’s fight against tuberculosis and diphtheria in 
relation to socioeconomic indicators, while aiming to provide new insights into its course, 
which could be central to understanding further developments in Zurich's health policy 
and geography of health. The dataset encompasses single case entries with attributes in-
cluding registration dates, gender, age, occupation, place of residence, hospital treat-
ment and mortality rates. Utilising these attributes, visualisations and clustering analyses 
were conducted. The results indicate a stronger socioeconomically underpinned cluster-
ing for tuberculosis than for diphtheria. Moreover, the mortality and case numbers in gen-
eral are higher for tuberculosis. When contextualised within a historical framework, it is 
evident that the case numbers of both tuberculosis and diphtheria case numbers had de-
clined from their respective peak values in the late 19th century, although tuberculosis re-
mained a major public health problem. Consequently, during the time period under in-
vestigation, tuberculosis was identified as the most prevalent chronic disease. Con-
versely, diphtheria, often referred to as the “strangling angel” of children had already ex-
perienced a significant decline in its prevalence and mortality. The investigation revealed 
that both diseases exhibited clustering behaviour in space. However, during more thor-
ough analyses conducted, age and particularly social class emerged as the only signifi-
cant influences on tuberculosis mortality, while no significant influences on diphtheria 
mortality manifested themselves. The absence of statistical significance in the diphtheria 
data may be attributed to the limited number of fatalities, which rendered the sample size 
inadequate for conducting a meaningful analysis. 

Keywords: Tuberculosis, Diphtheria, Historical Data, GIS, Cluster Analysis, Geographic 
Information Visualisation, Health Geography, Disease Mapping  
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1 Introduction 

1.1  Motivation 
In the context of the recent global Covid-19 pandemic, the influence and geographic pat-
terns of diseases have once again become a matter of significant importance. Notable 
diseases of the 20th century include tuberculosis, known as the “white death” or the “con-
sumption”, and diphtheria, referred to as the “strangling angel”. Tuberculosis and diph-
theria, which appeared last on a grand scale in Europe as epidemics during the Second 
World War, have persisted throughout the 20th century and have only been addressed 
through the introduction of vaccines since about the 1940s and 1950s (Holloway et al., 
2013, 2014; Ritzmann, 2015; Müller et al., 2024). 

Even today, tuberculosis and, to a lesser extent, diphtheria require attention from key 
global health players, including the United Nations and World Health Organisation 
(United Nations, 2024; WHO, 2024a, 2024b). In 2023, for instance, tuberculosis killed 
1.25 million people out of 10.8 million cases, making it the deadliest infectious disease 
worldwide (WHO, 2024b). Recent diphtheria outbreaks have occurred in areas where vac-
cine coverage is insuƯicient. However, it should be noted that from 1980 to 2000, more 
than 90% of cases could have been prevented, indicating that the work of health organi-
sations in this field is not yet complete (WHO, 2024a). Tuberculosis and diphtheria have 
long been associated with socioeconomic disadvantage, with lower living standards re-
sulting in diminished resilience to these diseases (Holloway et al., 2014, 2013; Kistemann 
et al., 2002; Müller et al., 2024). 

By approximately 1930, the global and Swiss case numbers and mortality rates of both 
tuberculosis and diphtheria had declined from their respective peaks in the late 19th cen-
tury. When assessed in terms of case numbers and mortality, Switzerland occupied a me-
dian position in international comparisons, with Zurich demonstrating a lower incidence 
compared to other Swiss cities such as Basel, Berne and Geneva (Brunner and Senti, 
1937; Kruker and Senti, 1932; Senti and Pfister, 1946). The city of Zurich meticulously doc-
umented notifiable cases of tuberculosis and diphtheria since at least the late 1920s and 
early 1930s, as mandated by epidemic laws (Bundesamt für Gesundheit, 2024a; Hollo-
way et al., 2013, p. 81; Kruker and Senti, 1932; Senti and Pfister, 1946). The data encom-
passes attributes such as age, gender, occupation and address, thereby facilitating the 
analysis of both the spatial and socioeconomic characteristics of case numbers. The First 
Law of Geography, a well-known principle in the field, posits that “everything is related to 
everything else, but near things are more related than distant things.” (Tobler, 1970, p. 
236). This phenomenon, termed TFL (Tobler’s first law of geography) (Miller, 2004; Waters, 
2017) implies that, like everything else, poverty and disease are not randomly distributed 
in space, but tend to cluster. Consequently, it is logical to study diseases associated with 
poverty in space, a domain in which health geography and, by extension geographic infor-
mation systems (GIS) shine. Health geography (Moon, 2020), which includes the 
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synonymously used terms medical geography (Tsatsaris et al., 2023) and spatial epidemi-
ology (Meliker and Sloan, 2011; Wood et al., 2023) studies health outcomes in space. The 
content of these terms comprises the spatial distribution of disease, its relationship to 
environmental and socio-demographic factors, and studies of the population at risk (Law-
son, 2006; Meliker and Sloan, 2011; Moon, 2020; Tsatsaris et al., 2023; Wood et al., 2023). 

1.2  Research gap 
The literature on the history of infectious diseases in Zurich itself is rather scarce, limited 
to the influenza pandemic of 1918-1920 and tuberculosis throughout the 19th and 20th 
centuries (Corti, 2012; Holloway et al., 2013; Ritzmann, 1998; Ziegler et al., 2024). More-
over, research on the influence of socioeconomic backgrounds on health outcomes is 
limited. This is of particular significance given the widely acknowledged fact, that a dis-
advantaged socioeconomic status is associated with an increased risk of infection and 
mortality. The question of the impact of tuberculosis, and indeed other infectious dis-
eases, on specific occupational groups and social classes remains intriguing (Ritzmann, 
1998, pp. 27–28). While other Swiss cities have been the focus of recent studies on infec-
tious diseases (Birkhölzer, 2023; Leuch, 2021), there is a very limited number of studies 
that include tuberculosis or diphtheria. Zurich, as the largest city in Switzerland, is a logi-
cal location for this study. Despite its modest size, with a contemporary population of 
450’000 and 250’000 inhabitants in 1930, it is a rational location for conducting research. 
The majority of previous research has focused on either larger millionaire cities (e.g., Lon-
don, north-eastern American cities) or, more recently, rural areas in developing countries. 
Furthermore, Swiss cities did not possess the same levels of urban deprivation (i.e. 
slums) as larger European cities. Two datasets of tuberculosis and diphtheria cases in the 
late 1920s and early 1930s allow for the expansion of research on past health conditions 
in the City of Zurich and for the addition of data on infectious diseases throughout history, 
especially in connection with socioeconomic status. The analysis of individual case data 
of diseases, as are available for this thesis, can lead to new insights into the factors con-
tributing to disease spreading, i.e. its morbidity and mortality. 

1.3  Research objectives and research questions 
Geographic information systems (GIS) have been extensively utilised for the purpose of 
disease mapping, with the employment of spatio-temporal analytic methods serving to 
enhance comprehension of local disease patterns (Gatrell and Löytönen, 1998; Kirby et 
al., 2017; Koch, 2017). Consequently, there is an opportunity to analyse this data in GIS. 
The subsequent analysis will involve the visualisation of the disease cases, thereby ena-
bling a visual inspection of the distribution. In a further step, I would also like to analyse 
these distributions and look for any patterns, such as clusters of high or low disease inci-
dence. 

The tuberculosis and diphtheria data will be studied concerning at least two diƯerent as-
pects of health geography: first, links referring to social class or socioeconomic status 
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and secondly, time and space-time connections. The analysis will provide a visual de-
scription of the temporal progression of the spread of tuberculosis and diphtheria in the 
city of Zurich, and will reveal whether there are any striking connections between the so-
cial class or socioeconomic status of the infected people and their place of residence. 
The study will ascertain whether socioeconomically disadvantaged people, i.e. poor, are 
at a higher risk of infection due to various reasons, such as worse living conditions and/or 
workplace situation. 

Drawing on the preceding paragraph, the research objectives of this master’s thesis can 
now be specified as follows: 

1. To geolocate the addresses of disease cases. 

2. To visualise the spread of tuberculosis and diphtheria in space and time. 

3. To describe how socioeconomic status / social class influences disease rates and 

leads to the emergence of hotspots. 

These research objectives give rise to a plethora of research questions that require inves-
tigation. The focal point of this thesis is as follows: 

How did socioeconomic factors influence the spatial patterns of tuberculosis and diph-
theria cases in Zurich in the late 1920s and early 1930s, and where were the hotspots 

and coldspots of these two diseases, respectively? 

With the research objectives and the main research question established, four supporting 
research questions can be formulated: 

 How did tuberculosis and diphtheria cases spread spatially and temporally in Zur-
ich during the late 1920s and early 1930s? 

 Where are hotspots and coldspots of tuberculosis and diphtheria cases in Zurich, 
and how did disease prevalence vary across the city? 

 What was the relationship between socioeconomic status and social class and 
the spatial distribution of tuberculosis and diphtheria cases? 

 To what extent did socioeconomic disparities correlate with the spatial distribution 
of tuberculosis and diphtheria cases in Zurich, and how do disease patterns reflect 
socioeconomic inequalities in the city? 

The selection of these questions is motivated by their capacity to facilitate a comprehen-
sive overview of the two diseases in Zurich during the period of transition from the early to 
the mid-20th century. The incorporation of further inquiries into the socioeconomic status 
/ social class of individuals and urban districts could facilitate an assessment of the in-
fluence of socioeconomic characteristics on the propagation of diseases and mortality 
rates.  
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2 State of research 

2.1  Disease mapping and health geography 
One of the earliest and most notable applications of disease mapping is exemplified by 
John Snow’s written account of the 1854 cholera outbreak in London’s Soho district (Pavia 
et al., 2019; Shiode et al., 2015; Shiode, 2012). Since the advent of computing technology, 
the field of digital health geography has significantly benefited from GIS, as they facilitate 
the mapping and the analysis of health-related data and its associated explanatory fac-
tors (Gatrell and Löytönen, 1998; Kirby et al., 2017; Koch, 2017). 

The aforementioned umbrella term, health geography, includes methodologies such as 
disease mapping in addition to statistical calculations (Meliker and Sloan, 2011; Moon, 
2020). Research in health geography involves the analysis of space-time data on diseases 
and the identification of patterns, integrating the disciplines of geography and health (Me-
liker and Sloan, 2011; Moon, 2020). The spatial dimension of disease mapping is a critical 
component of health geography, as it introduces an additional dimension, space, to the 
analysis. Important concepts within this discipline include morbidity and mortality. Mor-
bidity is understood to describe the amount of disease within a population, while mortal-
ity is the number of deaths from a disease, either as an absolute or relative number. Con-
sequently, both morbidity and mortality serve as indicators of the impact of a disease 
within a population. Morbidity is calculated by dividing the number of infected persons by 
the total population, or alternatively, by the number of new cases within a specified 
timespan. The calculation of mortality is derived from the number of deaths from a dis-
ease, expressed either as an absolute figure or as a rate, typically per 1000 persons. Nor-
malisation to a rate enables comparison with other diseases. The evaluation of the impact 
of a disease on a population and the assessment of health outcomes are facilitated by 
both concepts (Hernandez and Kim, 2024). 

Although cartography can be assumed to be as old as civilisation itself, the mapping of 
diseases is a relatively modern phenomenon. John Snow, who mapped the 1854 cholera 
outbreak in London’s Soho neighbourhood, is perhaps the most well-known exponent of 
early disease mapping to geographers. However, it should be noted that he was not the 
only nor the first person to undertake such a task. The 19th century witnessed a prolifera-
tion of disease mapping. A multitude of influences and concerns would manifest them-
selves and propagate the technique of mapping diseases. The social question in conjunc-
tion with the rise of industrialisation and urbanisation, rapidly established a correlation 
between poverty and health (Koch, 2017, pp. 1–74). 

The seminal work of John Snow (1813-1858) represented a pivotal moment in the evolu-
tion of disease mapping. Snow’s eƯorts to map the source of an outbreak of cholera in 
London’s Broad Street demonstrated the potential of this technique. His contributions el-
evated disease mapping to unprecedented heights (Koch, 2017, pp. 75–102; Meliker and 
Sloan, 2011). The advent of computing technology and GIS in the mid-20th century has 
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had a profound impact on disease mapping, generating a host of new possibilities. The 
integration of a vast array of data into GIS, and the expansion of analysis possibilities, 
were now suddenly possible (Koch, 2017, pp. 279–320; Meliker and Sloan, 2011). 

2.2  GIS in health geography 
A plethora of scientific papers have examined either the spread or the spatial distribution 
of cases of diƯerent diseases, such as tuberculosis (Chirenda et al., 2020; Gwitira et al., 
2021; Kanturk, 2007; Kistemann et al., 2002; Sun et al., 2015; Tiwari et al., 2006), diphthe-
ria (Setiawan et al., 2021) and cholera (Agbor, 2014; Bwire et al., 2017; Gaudart et al., 
2013; Ngwa et al., 2021; Osei and Duker, 2008; Pezeshki et al., 2012; Ruiz-Moreno et al., 
2010). However, the majority of these studies utilise more recent datasets, which are pre-
dominantly from developing countries in Africa and Asia. A significant proportion of re-
search focuses on the well-known and well-documented 1854 cholera epidemic in Lon-
don as well (Brody et al., 2000; Caplan et al., 2020; Koch and Denike, 2009; Shiode et al., 
2015; Shiode, 2012; Walford, 2020). 

A greater volume of research has been conducted on tuberculosis rather than on diphthe-
ria, a discrepancy that may be indicative of its higher prevalence and greater perceived 
danger in the past and present. Research has demonstrated that hotspots of tuberculosis 
and diphtheria incidence are often associated with low socioeconomic status (Chirenda 
et al., 2020; Gubéran, 1980; Hermans et al., 2015; Kanturk, 2007; Liu et al., 2012; Se-
tiawan et al., 2021; Shaweno et al., 2018; Sun et al., 2015; Tiwari et al., 2006; Vaughan, 
2018). These factors result in lower living standards (i.e., overcrowding, malnutrition) in-
cluding high population density, low education and poverty. Additionally, poor air quality 
was also mentioned as a contributing factor (Sun et al., 2015), which is not necessarily 
connected to low socioeconomic status, however a tendency can be observed. Chirenda 
et al. (2020) have found tuberculosis to be most prevalent among the economically active 
age group of 20- to 44-year-olds in Harare, Zimbabwe. A historical study of tuberculosis 
cases in Switzerland has also shown adolescents and young adults to be the most af-
fected age groups (Gubéran, 1980). The transmission of tuberculosis, which often occurs 
within households, communities or workplaces gives rise to spatial heterogeneity in dis-
ease patterns (Shaweno et al., 2018). Although not explicitly mentioned, it can be as-
sumed that the same pattern applies to diphtheria, due to the similarity of the transmis-
sion routes. 

It is now widely acknowledged that both tuberculosis and diphtheria are particularly prev-
alent among population experiencing poverty (Coleman, 2018; Holloway et al., 2014, 
2013; Kistemann et al., 2002; Müller et al., 2024). Furthermore, evidence suggest that co-
infection and mutual reinforcement of tuberculosis and diphtheria occur, as there is a 
complex interdependence with iron deficiency (Coleman, 2018), which may also be 
traceable to poverty. 

Research into historical health geography, focusing on the spatio-temporal analysis of 
health outcomes, has been conducted in a number of Swiss cities and cantons. For 
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example Birkhölzer (2023) investigated the 1855 Cholera epidemic in the City of Basel, 
while Leuch (2021), Staub et al., (2021) and Bernhard et al., (2023), examined the 1918 
influenza pandemic in the Canton of Berne. Finally, Burkhard (2023) mapped the spatial 
distribution of birth weights in Basel and Lausanne at the beginning of the 20th century. 

A commonality of all the Swiss examples under consideration is the mapping of the dis-
ease distribution and the spatio-temporal analysis, in conjunction with potentially con-
tributing environmental and socio-demographic factors. Furthermore, they particularly 
investigate a potential link between social class or socioeconomic status and mapped 
infection rates, as people of lower socioeconomic status are more likely to fall victim to 
such types of diseases (Holloway et al., 2014, 2013; Müller et al., 2024). The potential 
causes of this phenomenon include the standard of living of the population at risk, the 
number of people who live in the same household, the living space available per house-
hold, and the hygiene situation of the households within a neighbourhood.  

A significant number of studies to date have been based on residence, as is the case in 
this thesis. However, Shaweno et al. (2018) draw attention to workplaces and social gath-
erings which themselves pose a considerable risk of infection too and should thus not be 
dismissed. Regrettably, the workplace of the people in the dataset was not documented, 
only their occupation. This shortcoming must be kept in mind when interpreting the find-
ings. It is also important to consider the limited mobility that was characteristic of this 
period, as motorised vehicles did not become widely available until after the Second 
World War, and public transport was significantly more limited than it is nowadays. Con-
sequently, it can be hypothesised that most people were employed in close proximity to 
their place of residence. The validity of this claim is supported by the location of industries 
and factories in or close the districts known for working-class populations, such as the 
districts 3, 4, 5 and 6 where industrial plants and factories were situated along the Limmat 
river and on the western outskirts of the city of Zurich. However, a validation of this as-
sumption would require further investigation. 

2.3  Tuberculosis and diphtheria today 
Tuberculosis and diphtheria are two infectious diseases caused by diƯerent bacteria. Tu-
berculosis is caused by the bacterium Mycobacterium tuberculosis and usually aƯects 
the lungs. However, it can also aƯect other parts of the body. The primary mode of trans-
mission of tuberculosis is via airborne particles expelled by a cough or sneeze of a sick 
individual. The symptoms associated with tuberculosis include coughing, chest pain, fe-
ver, chills, weakness, fatigue and a loss of appetite. It is important to note that tuberculo-
sis can be latent or inactive, and without treatment, approximately 10% of cases will be-
come active. If left untreated, active tuberculosis can be fatal in about 50% of cases 
(CDC, 2024a). Diphtheria, another serious bacterial infection, is caused by toxins pro-
duced by the bacterium Corynebacterium diphtheriae. These toxins are capable of killing 
healthy tissue, most often in the nose, throat, or on the skin. Similar to tuberculosis, diph-
theria is spread through airborne particles spread by coughing or sneezing individuals 
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who are already infected. The symptoms include fever, a pseudomembrane in the nose or 
throat, sore throat, swollen glands, weakness, pain, rash, redness and swelling of the 
skin. Respiratory diphtheria can lead to airway obstruction, kidney failure, heart muscle 
or nerve damage, and thus result in death in approximately 50% of untreated cases and 
10% of treated cases (CDC, 2024b). 

Research has concluded that there are gender diƯerences in tuberculosis incidence rates 
and even deaths. A body of evidence has been accumulated showing that men are at 
higher risk of tuberculosis than women (Humayun et al., 2022; Miller et al., 2021). This 
phenomenon has been observed in countries across all income levels, as demonstrated 
by studies conducted by Horton et al. (2016) and Peer, Schwartz and Green (2023), who 
examined data from low- and middle-income as well as high-income countries. However, 
the reasons for this risk imbalance are not yet fully understood. Explanations include risk 
factors such as smoking, alcohol consumption and malnutrition, which are typically more 
strongly connected to the male gender (Humayun et al., 2022; Nhamoyebonde and Leslie, 
2014; Peer et al., 2023). Two main hypotheses have been postulated: the behavioural and 
the physiological or biological. The behavioural hypothesis states that males are more 
susceptible to tuberculosis due to having a higher number of social contacts, working in 
high-risk occupations and the risky behaviours mentioned above (Horton et al., 2020; Hu-
mayun et al., 2022; Miller et al., 2021; Nhamoyebonde and Leslie, 2014; Peer et al., 2023). 
Conversely, the physiological or biological hypothesis searches for an explanation in bio-
logical diƯerences in immune responses and higher genetic susceptibility (Humayun et 
al., 2022; Nhamoyebonde and Leslie, 2014). While this research is grounded in recent 
data, its findings can be extrapolated to a historical context, as many of these fundamen-
tal risk factors were evident a century earlier. A parallel observation of a higher tubercu-
losis prevalence among males was documented at the turn of the 20th century in New York 
(Nhamoyebonde and Leslie, 2014, p. 100). 

In contrast to tuberculosis, diphtheria is not characterised by a gender disparity; rather, it 
is marked by a more pronounced age disparity. Historically, diphtheria was recognised as 
a major cause of childhood mortality (Byard, 2013). At the turn of the 20th century, it was 
a serious childhood disease, with 70% of those infected being younger than 15 years of 
age (Byard, 2013). However, in the 1930s, a shift in the age demographic of those aƯected 
was noted, with the incidence now aƯecting slightly older age groups, such as adoles-
cents. Concurrently, the mortality rate simultaneously receded (Cheeseman et al., 1939; 
Dauer, 1950; Picken, 1937).  
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2.4  History of tuberculosis and diphtheria: a Swiss perspective 
Throughout the 19th and the early 20th century, Switzerland experienced a prevalence of 
multiple diseases, among them tuberculosis and diphtheria. While diphtheria manifested 
in waves, tuberculosis was a chronic disease. Tuberculosis was identified as the foremost 
cause of mortality in Central Europe (Ritzmann, 1998, pp. 21–22). However, a decline in 
the incidence of both diseases was observed in Switzerland throughout the 19th century 
and into the 20th century. A decline in mortality has been observed since at least the 1880s 
(Kruker and Senti, 1932; Senti and Pfister, 1946). This decline has been attributed to im-
provements in living conditions, including better nutrition, sanitation, ventilation and hy-
giene (Gubéran, 1980; Holloway et al., 2014, 2013; Müller et al., 2024; Ritzmann, 1998, 
pp. 21–24). This suggests that the increased general immunity in the population resulting 
from these improved living conditions enables infected individuals' immune systems to 
adequately combat the disease, thereby reducing case outbreaks (Holloway et al., 2014, 
2013; Müller et al., 2024). 

The Industrial Revolution and the accompanying urbanisation provided ample breeding 
grounds for infectious diseases. These diseases proliferated in the unsanitary and over-
crowded living quarters of rapidly expanding cities. The substandard and unhygienic 
working and living conditions experienced by factory workers were conducive to the rapid 
transmission of diseases. Since the 1880s tuberculosis had reached epidemic status, 
with the poor populations of highly urbanised regions being especially hard hit. By 1900, 
absolute tuberculosis numbers peaked, with over 9000 fatalities recorded in the entirety 
of Switzerland (Kruker and Senti, 1932). The disease burden did not spare the young, with 
the 15 to 35 age group facing the greatest risk due to their professional activities and so-
cial interactions (Corti, 2012; Gubéran, 1980). Indeed, young adults constituted the de-
mographic with the highest number of tuberculosis cases (Ritzmann, 1998, pp. 21–24, 
27–31). 

During the 1930s, tuberculosis continued to exact a significant toll on lives worldwide, 
including Switzerland. While significant variations in incidence were observed among in-
dividual countries, Switzerland’s position in international statistics was in the lower me-
dian range. Switzerland lagged behind wealthy industrialised nations such as Germany 
and the United Kingdom, but outperformed less industrialised countries such as Spain, 
Czechoslovakia and France. The mortality rate decreased to 124,5 out of 100’000 by 1930, 
though had reached 264,7 in 1901. In 1931, the number of nationwide tuberculosis fatal-
ities was recorded as 4969 (Kruker and Senti, 1932; Senti and Pfister, 1946). 

The treatment for tuberculosis that was available at the time was initially limited to stays 
in sanatoria located at higher altitudes. There, patients underwent various treatments, in-
cluding air, lying and dietary treatments (Corti, 2012; Holloway et al., 2013; Ritzmann, 
2010a, 1998, pp. 39–42; Rucker and Kearny, 1913; Silberschmidt, 1930). Prior to the ad-
vent of antibiotics, eƯective medical treatment was non-existent, with sanatoria being the 
sole option available. A specific cure would not be available until 1943 (Corti, 2012; 
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Holloway et al., 2014, 2013; Ritzmann, 2010a, 1998, p. 141). The earliest sanatoria, es-
tablished from 1868 onwards, were private institutions, accessible only to the wealthy, 
such as the sanatoria in Davos, Arosa, Leysin and Crans-Montana, all located in the Swiss 
Alps (Peter, 2019; Ritzmann, 2017). In response to the widespread nature of the disease, 
public sanatoria were also established from the 1890s onwards by the cantons them-
selves and by charitable organisations, such as the sanatoria in Heiligenschwendi, Braun-
wald and Wald (Peter, 2019; Ritzmann, 2017, 2010a, 1998, pp. 42–44). The proliferation of 
sanatoria and the treatment of patients therein resulted in an increase in fatalities, with a 
decrease in the number of deaths in people’s homes. By 1930, approximately 15 to 20% 
of tuberculosis fatalities occurred in sanatoria (Kruker and Senti, 1932; Senti and Pfister, 
1946). 

The history of medicinal tourism in Switzerland is long and distinguished, with the tradi-
tion of sanatoria dating back to the 19th century. During this period, foreigners would travel 
to the Swiss Alps with the hope of being cured by the allegedly beneficial climate. How-
ever, rich foreigners were seldom found in a densely populated city such as Zurich. In-
stead they favoured the highly prestigious and secluded locations in the Swiss Alps, 
where the sanatoria catering to such clientele were situated (Ritzmann, 2010a). Conse-
quently, there is no need to be concerned about the potential influence of foreign entities. 

Unfortunately, precise global or national numbers for diphtheria could not be found. How-
ever, an analysis of publications concerning the city of Zurich reveals that diphtheria has 
been a notifiable disease for a longer duration than tuberculosis. Furthermore, if the num-
bers of the city of Zurich are used as a reference, cases have dropped by two-thirds since 
1900. From 1916 to 1925, Zurich recorded 2641 cases (128,2 per 100’000) and in the sub-
sequent decade from 1926 to 1933, this figure decreased to an approximated 1405 cases 
(58,7 per 100’000). The number of fatalities was as low as 90 (4,4 per 100’000) from 1916 
to 1925 and 36 from 1926 to 1933 (1,5 per 100’000). The majority of cases is observed in 
school-aged children. The temporal distribution of cases is also of interest, with the high-
est number of cases occurring during the winter months (Brunner and Senti, 1937). 

Extensive vaccination eƯorts against diphtheria commenced in the 1940s, resulting in a 
long-term near-eradication of the disease (Müller et al., 2024; Ritzmann, 2015). In the late 
19th century in Geneva, the use of serum as a therapeutic agent for diphtheria patients 
yielded favourable outcomes, with a significant reduction in mortality from 37% to 5% 
(Kaba, 2010). The dissemination of this serum appears to have occurred swiftly, and se-
rotherapy was the only medical remedy until the advent of vaccines (Gubéran, 1980, p. 
577). Furthermore, Switzerland initiated government controls of serum in 1926 (Kaba, 
2010, p. 115), indicating a nationwide utilisation of this therapeutic approach. 

In the contemporary era, the prevalence of these two diseases has been significantly re-
duced due to preventative measures and the advent of eƯective treatments. Since the 
advent of their respective cures, both diseases have been combated with great eƯective-
ness, resulting in a significant decrease in their prevalence (Bundesamt für Gesundheit, 
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2024b, 2024c). However, 550 cases of tuberculosis are still registered annually, although 
many of these are among migrants from Africa and Asia, where tuberculosis remains en-
demic. Among the native population, a significant proportion of cases are observed in the 
elderly, who were infected during their childhood (Bundesamt für Gesundheit, 2024b). No 
data is available for diphtheria, although sporadic cases continue to be reported, partic-
ularly in areas where the vaccine protection is inadequate (Bundesamt für Gesundheit, 
2024c).  
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2.5  Zurich in the 1920s and 1930s 

 

Figure 1: Aerial image of central sea-side Zurich (1925) (ETH-Bibliothek, 2025) 

 

Figure 2: Aerial image of Zurich’s industrial outskirts (1929) (ETH-Bibliothek, 2025) 
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Figure 3 illustrates the 8 districts of Zurich from 1913 to 1933, with a map of Switzerland, 
indicating the location of Zurich with a small red square. The districts have been num-
bered in a clockwise direction, commencing with the centrally located district 1 in the 
medieval city centre, then moving south to district 2, and so forth. 

 

Figure 3: Zurich district map including Swiss reference map 

Economic development 

At the beginning of the 19th century, the textile industry (silk and cotton) along the Limmat 
river had dominated the urban economy. The arrival of the railway in 1847 led to Zurich 
transforming into an important industrial centre and transport hub. Concurrently, the 
banking and insurance industry was established to finance further developments. By the 
close of the 19th century, heavy industry had been relocated from the city centre to the 
outskirts of Aussersihl and Oerlikon, and the textile industry, which had previously domi-
nated, was overtaken by the metal, engineering and electrical industries. Meanwhile, the 
city also became the financial centre of Switzerland (Behrens et al., 2015). 
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Population 

In the late 19th century, a number of communities in the vicinity of Zurich were experienc-
ing financial diƯiculties, which led to a desire to join the city. This was driven by the need 
to alleviate the administrative and financial burdens arising from rapid population growth. 
This eventuality was realised with the first city unification in 1893 (Behrens et al., 2015; 
Schulamt Stadt Zürich, 2016). Municipalities with a high proportion of socioeconomically 
disadvantaged residents, i.e. predominantly working class, such as Wiedikon and 
Aussersihl (later districts 3 and 4), vigorously advocated for this integration, while more 
aƯluent municipalities initially opposed it (Rebsamen et al., 1992, pp. 274–276; Stadt Zü-
rich, 2018a). 

Zurich’s population grew exponentially during the 19th century, rising from approximately 
10’000 inhabitants in the historic city centre in 1800 to around 150’000 in 1900 and 
250’000 by 1930 (Statistik Stadt Zürich, 1931). The ongoing growth of the city by 1930 is 
primarily driven by population influx (Senti, 1928). During the period referred to as the 
“Goldene Zwanziger” (the German term for the Roaring Twenties), the city of Zurich un-
derwent rapid growth. An extensive second expansion of the city was unsuccessful in 
1929 due to the resistance of wealthy municipalities along the shores of Lake Zurich. Con-
sequently, a compromise was reached with the negotiation of the second city unification 
in 1931, which was subsequently implemented in 1934 (Brodbeck and Hermann, 2012; 
Rebsamen et al., 1992; Schulamt Stadt Zürich, 2016; Stadt Zürich, 2018a). 

The urban development map of Zurich in figure 4 the temporal evolution of the city with 
colour-coded initial development stages. For the purposes of this study, all phases up to 
the 1930s are of interest; however, as these are included in the 1910-1940 step, it can be 
assumed that all areas of Zurich up to the red, excluding the orange and yellow, had been 
developed by the time of the study. The most significant disparities are observed in west-
ern and northern Zurich, which, fortunately, are mostly outside the reference of the ad-
ministrative boundaries of the city until 1934, with the exception of districts 3, 4 and 5. 
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Figure 4: Urban development of Zurich since 1850, adapted from (Brodbeck and Hermann, 2012) and (Behrens, Motschi 
and Schultheiss, 2015) 

Life expectancy in Switzerland at birth in 1930 was approximately 60 years, whereas in 
2023 it is recorded as being over 82 years. However, this figure is arguably an underesti-
mation due to the impact infant mortality. For instance, individuals born in 1917 could 
expect to reach 63 years of age and even 70 years of age for men and women, respectively. 
By 2017, this figure had increased to 91 and 94 years, respectively. Life expectancy at age 
65 remained at 11 to 12 years in 1930, while it has increased to 20 to 22 years in 2023 
(Bundesamt für Statistik, 2024) 

The population numbers of the city of Zurich have been drawn from the statistical year-
book of the city of Zurich of 1930 (Statistik Stadt Zürich, 1931) and the city portrait (Stadt 
Zürich, 2018b). The age pyramid in figure 5 illustrates the relative population distribution 
of the city of Zurich in 1930 compared to today, symbolised by the dotted black line. The 
population in 1930 was characterised by a younger demographic, with women outnum-
bering men, beginning at approximately 15 years of age. 
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Figure 5: Relative age distribution pyramid of Zurich in 1930 (Stadt Zürich, 2018b) 

The city’s population is segmented into five-year age groups in the statistical yearbooks. 
For the purpose of clarity, these groups have been condensed into ten-year groups. Table 
1 illustrates the population of the aforementioned age groups, ranging from 0-9 years of 
age to 60+ years of age. The largest single group is that of the 20-29-year-olds, constituting 
over 57’000 of a city population of almost 250’000 (23.6%). The second largest age group 
is the next older 30-39-year-olds with over 45’000 individuals (18.6%). The remaining age 
groups comprise between 22’000 and 30’000 individuals, with the exception of the 40-49 
age group which includes 34’000 individuals (14%). The smallest age group is the elderly, 
here condensed into the 60+ age group, comprising 22’000 individuals (9%). A remarkable 
fact is that only in the age group 0-9 are more people of the male gender, while in all the 
other cohorts, the female gender dominates. 
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Table 1: Zurich’s population subdivided into age cohorts (Statistik Stadt Zürich, 1931) 

Age Males Females Total Share of total 

0-9 14072 13884 27956 11.4% 

10-19 14341 15456 29797 12.2% 

20-29 27434 30222 57656 23.6% 

30-39 20624 24849 45473 18.6% 

40-49 15456 18799 34255 14% 

50-59 12469 14994 27463 11.2% 

60+ 8697 13344 22041 9% 

Total 113093 131548 244641  

 

When the population is subdivided into districts (see table 2), it becomes evident that the 
largest districts by population are districts 3, 4 and 6. Each of these districts houses over 
15% of the city’s population, totalling approximately 38’000 at least. In contrast, district 
7, with a population of approximately 31’000 accounts for 12.5% of the city’s total popu-
lation. All other districts have a population of less than 25’000, thus constituting below 
10% of the city’s total population. 

Table 2: Zurich’s population subdivided by districts (Statistik Stadt Zürich, 1931) 

District Population Share of population 
1 21’824 8.7% 
2 21’719 8.7% 
3 38’716 15.5% 
4 38’771 15.5% 
5 17’613 7.1% 
6 56’420 22.6% 
7 31’137 12.5% 
8 23’620 9.5% 
Total  249’820 
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Health 

Statistics published by the city of Zurich demonstrate that a reduction of mortality from 
both tuberculosis and diphtheria has been ongoing since the 1880s. The canton of Zurich 
proudly claimed the rank of most eƯective tuberculosis controller by the 1930s, achieving 
the lowest tuberculosis mortality rate among all cantons (Ritzmann, 1998, p. 36). The City 
of Zurich meticulously collected district-based statistics on diseases. The districts in Zur-
ich are particularly well-suited for statistical analysis as they align closely with the social 
conditions of their inhabitants, thereby facilitating insights into the correlation between 
poverty and disease (Ritzmann, 1998, pp. 36–37).  

The city’s statistics demonstrate that tuberculosis was the more deadly of the two dis-
eases in question, aƯecting more than 100 per 100’000 people, in contrast with only 2 for 
diphtheria. Moreover, the data indicate that since the turn of the century, tuberculosis fa-
talities have fallen by about two-thirds and diphtheria fatalities by almost 90%. While the 
city experienced approximately 200 fatalities due to tuberculosis, diphtheria accounted 
for a mere 6 fatalities in 1928 (Kruker and Senti, 1932; Senti, 1928; Senti and Pfister, 1946; 
Statistik Stadt Zürich, 1931). Mortality by cause of death and per 100’000 is markedly 
higher for tuberculosis, at 84 for lung tuberculosis and 22 for tuberculosis of other organs, 
which adds up to 106. Conversely, diphtheria exhibits an exceptionally low mortality rate 
of 2. By 1930, the districts 3, 4 and 5, characterised by their industrialisation and substan-
tial working class populations, experienced the highest tuberculosis mortality rates (Ritz-
mann, 1998, pp. 36–37; Statistik Stadt Zürich, 1931). The historical city centre of Zurich 
was also characterised by the same unfavourable living conditions, although there was 
no industrial presence here (Ritzmann, 1998, pp. 36–37). 

In the 1930s, tuberculosis was among the most prevalent infectious diseases, with an an-
nual incidence of approximately 500 to 600 cases in the city of Zurich alone. In compari-
son with other Swiss cities and with the world average, Zurich exhibits a tuberculosis mor-
tality rate of 91,2 per 100’000 inhabitants (Kruker and Senti, 1932; Senti and Pfister, 1946). 
This figure represents the lowest recorded numbers in any major Swiss city, with Basel, 
Berne and Geneva all demonstrating higher rates of mortality. However, there are a num-
ber of cities with even lower mortality rates than Zurich, many of which are located in Ger-
many and the USA (Brunner and Senti, 1937). The establishment of the public Zurich san-
atorium had been opened in the community of Wald in the Zurich Oberland in 1898 was a 
significant development in the response to tuberculosis. The sanatorium was dedicated 
to providing free or aƯordable treatment to those, who were financially disadvantaged 
(Peter, 2019; Ritzmann, 2017). Significantly, the 1928 legislation mandating the reporting 
of tuberculosis cases also incorporated the stipulation that individuals diagnosed with 
tuberculosis should receive treatment regardless of their financial status (Holloway et al., 
2013, p. 81). This suggests that, in principle the entire population of Zurich had equal ac-
cess to treatment in sanatoria. The forest school at the Zürichberg was inaugurated in 
1914. During the summer months, approximately 50 children at risk of tuberculosis were 
able to attend this school, which primarily took place outdoors. The time spent outside 
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and the location being free of pollution should have strengthened the accepted children, 
who were of fragile nature and descending from families in need, i.e. mostly working-class 
backgrounds (Matthijs, 2024). This suggests that at least some form of social awareness 
regarding tuberculosis was already present during this period, indicating the potential for 
well-directed interventions. The impact of equal treatment by legal mandate and well-di-
rected interventions on this phenomenon is diƯicult to estimate, but it shows that there 
was some knowledge of the influence of diƯerent socioeconomic backgrounds and that 
steps were taken to counteract this. 

By the 1930s, diphtheria appeared to have lost much of its former severity. In the 50 years 
prior, incidence and fatalities were drastically reduced (Brunner and Senti, 1937; Statistik 
Stadt Zürich, 1931). Nevertheless, the majority of cases continued to aƯect school-aged 
children, who, in addition to being more susceptible to infection, were also particularly 
exposed to the disease within the school environment. The decline in diphtheria cases 
was evident across the entire city of Zurich (Brunner and Senti, 1937). The protective eƯi-
cacy of the diphtheria vaccination programme was documented as early as 1937, and it 
is plausibly that this initiative contributed to the observed decline in cases. Seasonal var-
iation is evident, with higher numbers and mortality observed during the colder months 
(Brunner and Senti, 1937). 
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2.5.1 The 8 districts of Zurich 

The city of Zurich is located at the outflow of lake Zurich where the Limmat river starts its 
course and merges with the Sihl river shortly after. The city is surrounded by several hills, 
namely the Uetliberg to its west, the Zürichberg to its east and the Käferberg and Höng-
gerberg to the north. The city is located on the floodplain of the Sihl and along the banks 
of the Limmat rivers and the lakeshores. 

The city of Zurich consisted of 8 districts (formerly 5 up to 1913) shown in the map in figure 
6 together with the built-up areas. These had been formed from the villages and munici-
palities surrounding the city core of Zurich in 1893. Many of them were in financial trouble 
and their means were overstretched because of fast population growth. This is why the 
city was expanded to include several directly neighbouring municipalities in the first city 
unification. A cantonal vote was held, and overwhelming support was found for the mer-
ger. The support was especially strong in the aƯected, financially strained municipalities. 

Figure 6: Contemporary map of the city of Zurich including administrative dis-
tricts (Statistik Stadt Zürich, 1931) 
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The unification should ease the administrative burden and allow for better coordination 
of resources. Some wealthy municipalities such as Wollishofen and Enge opposed this 
move but were forced to abide by the federal court. The 8 districts would stay unchanged 
until the second city unification of 1934 and from then on there would be 11 districts. 
Eventually Schwamendingen would be split oƯ from district 11 in 1971 to form the 12 dis-
tricts known today (Rebsamen et al., 1992; Schulamt Stadt Zürich, 2016). 

Table 3 is intended to provide a concise overview of the main characteristics of each dis-
trict, as well as the social class that is its defining feature. The descriptions are based on 
individual district descriptions from Rebsamen, Bauer and Capol (1992, pp. 272–287). 

Table 3: Main characteristics of each district and defining social class 

District Characteristics 
1 (Altstadt) - Medieval city centre 

- Mixed aƯluent and poor neighbourhoods 
2 (Enge, Wollishofen, 
Leimbach) 

- Historical residential buildings of middle- and upper-
class 

- Among wealthiest districts of Zurich 
3 (Wiedikon) - Densely populated working-class district 

- Strong industrialisation 
4 (Aussersihl) - Rapidly developed to an industrial hub 

- Densely populated working-class district 
- Close to railways 

5 (Industriequartier) - Strong industrial presence 
- Close to Limmat river and railways 
- Working-class district 

6 (Oberstrass, Unter-
strass, Wipkingen) 

- Suburban, working-class settlement structure and 
apartment buildings 

- Strong population growth since industrialisation 
7 (Fluntern, Hottigen, 
Hirslanden) 

- Best residential locations of Zurich 
- Undeveloped areas of forest for leisure 
- Representative, aƯluent suburban development 

8 (Riesbach) - Once middle-class country houses and natural idylls 
- Representative development along lakefront 
- Suburban, middle-class neighbourhood 
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2.5.2 Socioeconomic characteristics of districts 

The districts of the city of Zurich can thus be classified into socioeconomic classes de-
pending on the demographic composition of their inhabitants. The three classes are work-
ing- or lower-class, middle-class and upper-class. Working class districts are distin-
guished by high population density and a low-income structure. Conversely, upper-class 
districts are distinguished by lower population density and a higher income structure. 
Middle-class districts, as intermediate zones, exhibit median population densities and 
average income structures. The following districts can be characterised as working or 
lower class: districts 3, 4 and 5 and the Niederdörfli neighbourhood of district 1. Con-
versely, the districts 1, 2 and 7 are identified as the primary upper-class districts of the 
city of Zurich. The remaining districts of Zurich, namely 6 and 8, are assumed to be middle 
class, although their structure may vary, and they can be classified as either lower- or up-
per-class districts, depending on the specific neighbourhood. 

The map below (figure 7) illus-
trates the population density of 
the city of Zurich in 1930. As is 
clearly evident, the northeast-
ern districts (specifically 4, 5 
and 6) are collectively with dis-
trict 1 the most densely popu-
lated of the city. This observa-
tion lends further credence to 
their categorisation as districts 
of lower socioeconomic status. 
Conversely, the more aƯluent 
districts 2, 7 and 8, are distin-
guished by the comparatively 
lower population densities, at-
tributable to the preponder-
ance of wealth. 

 

 

The correlation between building insurance values (figure 8) and population density, as 
well as rental prices (figures 9 and 10), is indicative of a divergent relationship. Districts 1, 
4 and 5 now display high values. The district with the highest values is district 1, which is 
characterised by historic buildings in the medieval old town and the splendour of highly 
prestigious streets, such as the Bahnhofstrasse and the main station. This distribution is 
likely attributable to the higher valuation of apartment buildings, predominantly present 
in working-class districts 4 and 5, in comparison to single-family residences and villas 
found in aƯluent districts. The presence of factories in the districts of 3, 4 and 5 may also 

Figure 7: Population density map 
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be a contributing factor, given that these 
factories can be quite valuable buildings. 
The middle to upper class districts 2 and 8 
display average values, which can be at-
tributed to their more expensive and ur-
banised building styles. The districts 3, 6 
and 7 exhibit low values, with two of these 
(3 and 6) being intuitive as they contain a 
mixture of apartment and suburban build-
ings, resulting in lower values. District 3 
has the lowest values.  

 

 

 

 

This phenomenon is illustrated in the subsequent maps depicting rental prices (figure 9 
and 10). The working-class districts 3, 4 and 5 are the cheapest and most aƯordable dis-
tricts in terms of rents. Conversely, the aƯluent districts 7 and 8 are among the most ex-
pensive residential districts in Zurich, along with district 1. Districts 2 and 6 are positioned 
in the median range of the rent price spectrum, aligning with their respective average pop-
ulation densities and suburban characteristic. 

 

Figure 9: Rent map for 3 room apartments   Figure 10: Rent map for 4 rooms apartments 

  

Figure 8: Building insurance value map 



23 

3 Data 
The data utilised in this thesis was reported by physicians in the city of Zurich based on 
legal obligations (Bundesamt für Gesundheit, 2024a). The obligation concerning tubercu-
losis was established in 1928 and came into eƯect in 1932 (Holloway et al., 2013, p. 81; 
Kruker and Senti, 1932; Senti and Pfister, 1946). Since 1876, the Swiss cause-of-death 
statistics have obliged physicians to register causes of death on a national scale since 
1876 (Ritzmann, 2010b, 1998, pp. 24–27). The data was collected and registered by the 
health authorities of the City of Zurich, and was transcribed as part of an ongoing doctoral 
thesis in medicine at the Institute of Evolutionary Medicine of the University of Zurich 
(IEM, 2024). For the years 1927 to 1935, the original sources were photographed and dig-
itized in the form of a Microsoft Excel spreadsheet. The data contains a wealth of infor-
mation which will be presented in the next section. 

3.1  Disease datasets 
The images below (figures 11 and 12) illustrate the original data on tuberculosis cases. 
The information is documented in a notebook with prearranged pages, columns and rows, 
thus facilitating data capture. The tuberculosis dataset under consideration herein ranges 
from the start of 1932, when the reporting obligation came into eƯect, to the end of 1935, 
and includes 2046 entries. The following table 4 illustrates the attributes, their descrip-
tions and an example. The original column names have been included for reference. It 
should be noted that not all columns were utilised nor required for the analysis. The col-
umns marked “hospital admission date”, “date of death” and “tuberculosis type” were ex-
cluded from the analysis. The remaining columns will be utilised directly, with the excep-
tion of “district”, which will function as a control variable or reference during geocoding of 
addresses. 

 

Figure 11: First part of the original tuberculosis dataset 
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Figure 12: Second part of the original tuberculosis dataset 

Table 4: Transcribed attributes of tuberculosis data 

Attribute name Description Example  
Date of registration 
(Anzeigedatum) 

Date 05.01.1932 

Gender 
(Geschlecht) 

Categorical m 

Age 
(Alter) 

Number 30 

Occupation  
(Beruf) 

Text Hilfsarbeiter 

District 
(Kreis / Med. Distrikt) 

Number 3 

Street name 
(Strasse) 

Text Birmensdorfer 

House number 
(Hausnummer) 

Number 120 

Hospital admission 
(Spital) 

Categorical 1 [yes] 

Hospital admission date 
(Spitaleintritt) 

Date 11.01 

Death 
(Gestorben) 

Categorical Yes 

Date of death 
(Wann gestorben) 

Date 27.11.1933 

Tuberculosis type 
(Tuberkuloseart) 

Text Lungentuberkulose 
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Figure 13 displays the original data on diphtheria cases. The notebook utilised is nearly 
analogous to the one utilised in the case of tuberculosis, with prearranged pages, col-
umns and rows. The attributes of the diphtheria dataset below (table 5) bear a strong re-
semblance to the attributes of the tuberculosis dataset, albeit with slightly more exten-
sive information. This dataset commences in March 1927 and concludes in October 
1930, encompassing 670 entries. In a similar manner to the tuberculosis data, a number 
of columns will be excluded and subsequently not utilised further in the analysis. These 
include “medical district”, “hospital admission date”, “outbreak centre”, “deregistraton 
date”, “date of death”, and “diphtheria type”. The remaining columns will be utilised for 
the analysis, with the exception of the “district” column, which will serve as control. 

 

Figure 13: Original diphtheria dataset 
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Table 5: Transcribed attributes of diphtheria data 

Attribute name Description Example  
Disease start date 
(Krankheitsbeginn) 

Date 16.03. 

Date of registration 
(Anzeigedatum) 

Date 20.03.1927 

Gender 
(Geschlecht) 

Categorical w 

Age 
(Alter) 

Number 8 

Occupation  
(Beruf) 

Text Käser 

District / neighbourhood 
(Kreis/Quartier) 

Number and Text 1 Z 

Medical district 
(Med. Distrikt) 

Number 1 16 

Street name 
(Strasse) 

Text Peterhofstatt 

House number 
(Hausnummer) 

Number 11 

Hospital admission 
(Spital) 

Categorical Ja 

Hospital admission date 
(Spitaleintritt) 

Date 20.03. 

Outbreak centre 
(Ansteckungsherd) 

Text Wipkingen 

Deregistration date 
(Abmeldungsdatum) 

Date 30.04. 

Death 
(Tod) 

Categorical nein 

Date of death 
(Wann gestorben) 

Date 27.02.1928 

Diphtheria type 
(Diphtherieart) 

Text Mandeln 
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3.2  Geodata 
The geodata utilised in this thesis encompasses the administrative districts and neigh-
bourhoods of Zurich, derived from the city’s geoportal (Stadt Zürich, 2025a, 2025b), in ad-
dition to Lake Zurich (Stadt Zürich, 2025c). Schools were selected as points of interest in 
conjunction with diphtheria case data, and the location of these is available for reference 
(Stadt Zürich, 2025d). Furthermore, a document exists which lists the construction year 
of each school, thereby allowing the extraction of those which were already built and in 
use at the time (Amt für Städtebau, 2008). All of the aforementioned geodata were pro-
vided and downloaded in ESRI shapefile format. To provide context on the Swiss national 
scale, the Swiss Map Vector dataset was used for the Borders and background map of 
Switzerland (swisstopo, 2024a). The historical background maps employed for the visual-
isations were obtained from the Federal OƯice of Topography and include the map sheets 
158 Schlieren, 159 Schwamendingen, 160 Birmensdorf and 161 Zürich of the so-called 
“Siegfriedkarte” in the edition of 1930. The map is presented at a scale of 1:25’000, oƯer-
ing a high level of detail in smaller areas (swisstopo, 2024b). The map incorporates the 
map sheet 008 Aarau, Luzern, Zug, Zürich of the so-called “Dufourkarte”. The scale of this 
map is 1:100’000, which provides less detail but is adequate for general overviews. These 
were provided as georeferenced tiƯ files (swisstopo, 2024c). 

3.3  Statistical data 
Data concerning individual districts and city-wide characteristics was drawn from diƯer-
ent editions of the statistical yearbook of the city of Zurich (Stadt Zürich, 2024). The pop-
ulation numbers, district areas, number of buildings, insurance value of buildings, hous-
ing data and rental prices referring to the year 1930, found in the yearbooks of 1930 and 
1935 (Statistik Stadt Zürich, 1936, 1931), were used. The data used for the HISCO classi-
fication was kindly provided by my supervisor Prof. Dr. phil. Kaspar Staub.  
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4 Methods 
Regarding the supporting tools employed in this thesis, the AI-based ChatGPT and DeepL 
applications were incorporated to enhance the outcome. ChatGPT helped in writing code 
for the analysis as well as troubleshooting any errors encountered and interpreting the 
statistical outputs. As a non-native speaker, I relied on DeepL to improve my writing style 
and make it more concise. Although these technologies aided in the research, all deci-
sions regarding interpretation and methodological choices were made autonomously. 

The general data processing of this master’s 
thesis is outlined in the adjacent figure 14. The 
data processing is comprised of four primary 
steps. Initially, the addresses were extracted 
from the original data through concatenation of 
street names and house numbers. Secondly, 
geocoding is employed to locate these ad-
dresses in space. This step is of paramount im-
portance in ensuring the integrity of the ge-
ocoding process, which in turn, contributes to 
the overall data quality. Subsequently, the 
paths diverge, as the data can either be visual-
ised most likely in the form of maps or pro-
cessed for analysis. The visualisation was 
mainly conducted using the open-source soft-
ware QGIS. The analysis was executed on vari-
ous platforms, including GeoDa, R and Python. 

4.1  Geocoding residential addresses 
Geocoding, the process of transforming locational information such as addresses into 
geographic coordinates, is a widespread methodology to extract locational information 
from non-spatial data (Kirby et al., 2017). 

The necessity to correct the display dates, by adding the year, was evident in the majority 
of cases where this information was absent. This correction was deemed essential for 
subsequent time-based analysis of the case chronology. 

In order to geocode, i.e. extract a location, from the data at hand, three general steps were 
taken. Firstly, the columns marked “street name” and “house number” were linked, with 
the suƯix “street” appended to the street name. The city (Zürich) was then added to the 
address to ensure the correct location. Secondly, general exceptions were defined in or-
der to avoid adding the suƯix “street”, if it was already present in the “street name”. Finally, 
the more fine-grained exceptions had to be identified in the data and subsequently imple-
mented in the formula. Notably, in Zurich there exist addresses which are lacking the term 

Figure 14: Data manipulation steps (adapted by the author) 
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“street”, as found in squares, yards and alleys. The comprehensive description of the ex-
act geocoding methodology can be found in the appendix. 

Utilising this formula, the majority of addresses can be compiled for further utilisation in 
geolocation. The geocoding process was facilitated by an Excel tool provided by the Fed-
eral OƯice of Topography (swisstopo, 2023). This tool enables the entry of addresses, sub-
sequently returning the corresponding coordinates in two distinct coordinate reference 
systems (CRS). The first is the oƯicial Swiss CRS, known as CH1903+ / LV95 (national sur-
vey of 1995), and the second is the well-known WGS84 (World Geodetic System 1984). 

In the context of the tuberculosis data, this workflow of methods returns 2002 out of 2046 
addresses, with the remaining 44 entries lacking addresses. However, approximately 500 
addresses fail to yield any results, either due to non-localisable house numbers, incorrect 
street names or streets that have been renamed since. Manual inspection of the ad-
dresses that could not be geolocated reduced the number to 121. In addition, one ad-
dress was removed because it was in Lausanne, resulting in 1922 geolocated addresses.  

The data was then reduced to the extent of the city of Zurich before 1934 to guarantee the 
continuity of the reference frame. This process resulted in a reduction of the dataset from 
the original 2046 to 1852 entries, representing a loss of 194 entries. Additionally, the num-
ber of geographic locations decreased from 1922 to 1762, marking a loss of 160. Concur-
rently, the mortality data was reduced from 378 to 357 entries, representing a loss of 40 
entries, and from 361 to 338 locations, representing a loss of 23 locations. 

For the diphtheria data, an initial 670 entries yielded 468 addresses. Following the imple-
mentation of manual corrections and the deciphering of a few more addresses, 469 ad-
dresses were located within the city of Zurich out of a total of 477 addresses. However, it 
was noted that approximately 200 addresses were not present in the transcription of the 
original records and thus could not be incorporated into the subsequent visualisation and 
analysis. 

4.2  Defining the 8 districts of Zurich 
Firstly, the area of Lake Zurich needed to be subtracted from the shoreline districts. This 
was done, as the substantial lake area does not feature any habitation and is conse-
quently, irrelevant for the analysis. In light of change to the districts, it was necessary to 
adapt them to correspond with the extents of the 1913 to 1933 period. The internal re-
structuring of the five districts (I through V) established in the first city unification of 1893 
gave rise to eight districts (1 through 8) in 1913, through the reorganisation of neighbour-
hood or the replication of existing districts, which have remained predominantly unal-
tered to the present day. Districts 1, 2, 4 and 8 have retained their original boundaries. In 
contrast, the remaining four districts have undergone substantial changes since the 
aforementioned period. The district of Wiedikon (district 3) has undergone changes in its 
boundaries in the vicinity of the Triemli hospital, as illustrated in the accompanying map 
(figure 15). However, these boundary shifts have occurred in two distinct directions: the 
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district has expanded towards the Triemli hospital, while the border has been moved in 
the opposite direction, just north of the hospital. 

  

Figure 15: Border changes of district 3 

The administrative boundaries of district 5 have been modified in the Hard area, situated 
in the extreme northwest of the district and city. Previously, the districts encompassed 
the area known as the “Hardhof” (refer to map label for details). The area in question today 
is part of district 9. The alteration in the district’s boundaries is illustrated in the accom-
panying figure 16. 

 
Figure 16: Border changes of district 5 
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The area of district 6 used to include the neighbourhood of Wipkingen represented by a 
dashed red line and accompanied by a corresponding map label (see figure 17). In 1934, 
Wipkingen was incorporated into district 10, along with its western neighbour, Höngg. 

 

Figure 17: Border changes of district 6 

A comparable situation is found in district 7, where the neighbourhood of Witikon was 
only added in 1934, but the hamlet of Eierbrecht (see map label), which is now part of the 
neighbourhood of Witikon, already belonged to the city of Zurich. The divergence is high-
lighted by a dashed red line in the image below (figure 18). 

 

Figure 18: Border changes of district 7 
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The districts that necessitated adaptation were manipulated in QGIS. To this end, the pol-
ygons of the districts were adapted using the vertex tool available in the edit submenu. 
The borders were then adjusted in accordance with the dotted border lines present on the 
underlying and highly precise “Siegfriedkarte” background map. In the case of district 6, 
the three neighbourhoods of Oberstrass, Unterstrass and Wipkingen could simply be 
merged to form district 6. 

4.3  Socioeconomic data from statistical yearbooks and HISCO 
In order to undertake this research, socioeconomic data was required and found in two 
sources. The statistical yearbook(s) of the city of Zurich and the HISCO classification of 
occupations. The Historical International Standard of Classification of Occupations 
(HISCO) was defined as an information system on the history of work (van Leeuwen et al., 
2002). The application of HISCO facilitates the allocation of occupations documented in 
each case entry to a designated social class and corresponding socioeconomic status. 
This approach enables an expansion of the analysis by incorporating this significant as-
pect of disease. The process involves a comparison of the registered occupations with 
lookup tables, where each occupation is assigned an individual code. This individual code 
is then compared with a reference table and assigned to a corresponding social class. 
The incorporation of individual- and district-level socioeconomic data this will signifi-
cantly enhance the analytical value of the study. 

District- and city-level socioeconomic data is available in the statistical yearbook of the 
City of Zurich (Stadt Zürich, 2024). As in 1930, a census was held and the year is situated 
amidst the studied time period, and importantly before the second city unification of 
1934, this will be the primarily used yearbook (Statistik Stadt Zürich, 1931). This utilisation 
of this data facilitates the extraction of the socioeconomic character of individual city dis-
tricts and enhance the understanding of the living conditions of their inhabitants. This will 
facilitate further insights into the potential association of disease occurrence with socio-
demographic factors (i.e., poverty). The socioeconomic indicators selected for the analy-
sis encompass population density (people/km2), insurance value per building (in 
1000CHF) and rental prices (CHF). These indicators will be mapped by district. The utili-
sation of this comprehensive dataset facilitates the formulation of conclusions pertaining 
to the impact of sociodemographic factors at district level, thereby providing a more pro-
found understanding of the information gained from the HISCO classification of occupa-
tions. 

4.4  Visualisation 

4.4.1 Visualisation methods 

As proposed in the literature, I will create dot maps in order to visualise the distribution of 
individual disease cases in the city of Zurich (Shaweno et al., 2018, p. 4). This method 
bears a strong resemblance to John Snow’s seminal cholera map, in which each cholera 
case was represented by a dot denoting the respective residence (Osei, 2014). The merits 
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of this approach include its ease of interpretation and its widespread utilisation (Shaweno 
et al., 2018). Furthermore, the creating of density- or heatmaps, potentially kernel density 
estimations, is proposed to visualise disease densities and identify hotspots (Kirby et al., 
2017, p. 5; Shiode et al., 2015). A further common visualisation method involves display-
ing case numbers or other statistical and attribute information, which has been aggre-
gated to administrative units. This results in choropleth maps, which are frequently em-
ployed (Kirby et al., 2017, p. 6; Sasaki et al., 2008; Shaweno et al., 2018, p. 10). Another 
such visualisation method is cartograms, anamorphic maps, in which the geographic size 
of an area is adapted or distorted to be proportional to a specific attribute, such as popu-
lation, while their colour remains free to display any other attribute, e.g. the population 
density, as in regular choropleth maps (Nusrat and Kobourov, 2016). 

An objective of this study was to create animated chronological maps, for which the op-
portunity arose to create short animations of monthly disease incidence, visualised by 
heatmaps. Research has determined that approximately two-second intervals between 
frame changes are optimal for ensuring eƯective change recognition and interpretation, 
while minimising the risk of change blindness over the duration of exposure (Fabrikant et 
al., 2010; GriƯin et al., 2006; Harrower and Fabrikant, 2008; Lowe, 2003; Sweller, 1994). 

In order to enable the visualisation of the results, I used the layout creator of the free 
open-source GIS software QGIS. I also utilised the R programming language for statistical 
computing and data visualisation as well as the Python programming language. In both 
QGIS and Python, I tried to utilise the historical federal maps from the late 1920s and early 
1930s to ensure a more coherent result, thereby facilitating the visualisation of the situa-
tion during that period. The general overview map, designated “Dufourkarte”, at a scale of 
1:100’000, and the more detailed map entitled "Siegfriedkarte”, at a scale of 1:25’000, 
were utilised. Depending on scale and scope, I will utilise either of these maps as a back-
ground map. Using ESRI’s ArcGIS environment, a storymap was created to visualise the 
animated maps and to make them accessible to the broader public together with further 
findings. It can be found following this link: https://arcg.is/0CzKDP. 

In order to project the data on a mapped space, it is necessary to select a CRS in which 
the data will be displayed. The CRS employed are enumerated below, along with their re-
spective EPSG designations: 2056 (LV 95), the standard Swiss CRS, 21781 (LV 03), an 
older version of the standard Swiss CRS, 4326 (WGS 84), the Mercator projection and 
3857, referred to as Web Mercator or Pseudo-Mercator. The focus of this study is the Swiss 
CRS (LV95), due to its reference to Switzerland and its metric coordinate system, which 
allows the best depiction of areas in Switzerland. 

4.4.2 Visual variables 

The optimal approach, colloquially known as best-practice, to cartographic principles is 
based on the foundational work of Bertin and Slocum (Bertin, 2011; Bertin and Berg, 1983; 
Slocum et al., 2022). These principles encompass a range of aspects, from fundamental 
guidelines such as ensuring high contrast, selecting appropriate sizes and shapes, to 
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more sophisticated concepts including the placement and arrangement of map ele-
ments. In regard to the selection of colours, including the choice of colour-blind safe col-
ours, the ColorBrewer website (Brewer et al., 2013) was utilised. This website assists in 
the choice of compatible colours for maps. The classification scheme employed for the 
maps was quantiles, with a preference for quartiles and quintiles, as this allows classes 
to be presented in a quantifiable order, i.e. from highest to lowest values, while ensuring 
an equal number of members in each class (Slocum et al., 2022, pp. 87–88). 

A square window was chosen for the layout of the maps, as this corresponds well with the 
dimensions of the 8-district city of Zurich, which measures approximately 10 by 10 kilo-
metres. As suggested by best practice, a frame line was drawn around the map itself and 
individual map elements to ensure clear separation of content (Slocum et al., 2022, p. 
267 Ư). An appropriately sized title was placed above the map, but still within the frame 
line, to ensure clear communication of the map content. The legend, scale bar and source 
information were placed at the bottom of the map and arranged accordingly to ensure 
maximum visibility of the area of the city of Zurich itself. Finally, the maps were exported 
as PNG files, which ensure high data quality while maintaining ease of use. 

The visual variables framework was employed, albeit predominantly one of its primary 
components, colour, was featured, with size arguably utilised to a similar extent. The vis-
ual variable colour, which consists of the three components hue, lightness and satura-
tion, was employed and manipulated according to colour schemes provided by Color-
Brewer2. Depending on the nature of data and number of classes, either sequential or 
diverging colour schemes with the appropriate number of grades were chosen. Therefore, 
for rental prices and building insurance values two distinct diverging colour schemes with 
5 classes each, red-blue and purple-green, were chosen, respectively. The distinct colour 
schemes were chosen to ensure distinguishability between the two maps. The 5 classes 
were chosen, to allow for a median value to be established, which allows to depict which 
districts are below, above or on average. For sequential colour schemes, such as popula-
tion density, morbidity and mortality, single hue colour schemes with 4 classes were cho-
sen, in order to make full use of quartiles, which are a common method of data classifi-
cation allowing representation of values above and below the median. The colours blue 
and red were chosen for morbidity and mortality respectively, as the colours are carrying 
cultural meaning, i.e. red signifying a negative event, such as death. Where deemed nec-
essary to enhance contrast, the transparency of the basemap was adapted. This adjust-
ment was implemented in maps that incorporated red dots, such as mortality dot maps, 
the local G* maps and the HDBSCAN cluster maps, as the relatively dark red colour of the 
dots compromised the visibility on the underlying dark basemap. In maps incorporating 
social class, the blue-red colour ramp was chosen. In this context, blue represents the 
working-class, with the colour being reminiscent of the term “blue-collar worker”, while 
red represents the upper-class. In the case of choropleth maps, the transparency of the 
choropleth layer was modified to ensure the preservation of orientation with respect to 
underlying basemap. 
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In order to capitalise on the enhanced visualisation capabilities of QGIS in comparison to 
GeoDa, the results were saved to the data in GeoDa and subsequently visualised in QGIS. 
This approach was adopted for the local G* and HDBSCAN cluster maps. 

4.5  Analysis 
As the work initially was conducted with point data, and subsequent analysis involved 
district-level data, it was necessary to aggregate the data. The point-in-polygon counting 
method of QGIS was utilised for the aggregation of the data to the reconstructed districts. 
The calculation of disease and mortality rates necessitated the disaggregation of the data 
collected over a period of four years to a yearly basis, thus facilitating meaningful com-
parisons. Furthermore, the data was normalised to a specific population, which was set 
at 1’000 individuals for morbidity, i.e. infection rates, as this is a frequently employed fig-
ure. However, for the mortality rate, 1’000 persons is inadequate in the context of the dis-
eases in question, which is why 100’000 people were chosen as a reference frame. Con-
sequently, the calculated district-level figures were then divided by the district’s resident 
population and subsequently multiplied by 1’000 and 100’000, respectively. These values 
were then divided by the number of years, which is 4 in both cases, to represent yearly 
rates. The formula employed in the QGIS field calculator is as follows, where NUMPOINTS 
denotes the number of points of cases or fatalities, respectively, counted in a district: 

(NUMPOINTS/ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)  ∗ 1000 / 4 

The methods employed to achieve the initially stated objectives are informed by extant 
research, as previously referenced. The analysis is twofold: visual, as discussed above, 
and statistical, by the use of geographical data analysis methods and software. A com-
prehensive overview of the available methods for analysing epidemiological data can be 
found in the works of Osei (2014), Kirby, Delmelle and Eberth (2017), and Shaweno et al. 
(2018). Examples of these include nearest neighbour analysis, Ripley’s alphabet of func-
tions, Moran’s I and local indicator of spatial association (LISA). 

Cluster analysis is a subfield of spatial statistics and is well-suited to the research objec-
tives of this thesis. The field of cluster analysis is broad and oƯers numerous possibilities, 
encompassing the investigation of non-random clustering of events in space. The utilisa-
tion of nearest neighbour analysis and the nearest neighbour index (NNI) as a fundamen-
tal metric for assessing the degree of clustering has been a pervasive practice across di-
verse studies (Bhatia, 2010; Kirby et al., 2017; Peterson, 2009). The NNI can be viewed as 
a fundamental component of Ripley’s alphabet of functions, with the G-function being a 
notable example. These functions have been employed not only to analyse the clustering 
behaviour of data but also to compare it to random distributions (Kirby et al., 2017; Osei, 
2014). 

Finally, the method of density-based spatial clustering of applications with noise 
(DBSCAN) and its hierarchical twin (HDBSCAN) are more focused on densities and also 
have been utilised in disease research. They are capable of detecting clusters 
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independently of their size and shape, which is advantageous when dealing with real-
world applications (Khan et al., 2014; Schubert et al., 2017). 

Moran’s I is another index that calculates the degree of clustering and is considered to be 
more sophisticated than the NNI. It is also frequently employed in health geography re-
search. Moran’s I is able to determine the spatial autocorrelation of variables (Agbor, 
2014; Kirby et al., 2017; Osei and Duker, 2008). As Moran’s I is a single value computed for 
the global distribution, it is expanded by local indicators of spatial association (LISA), 
which are another means to investigate the interaction between spatial units and the in-
fluence they take on each other on a localised level (Kirby et al., 2017; Osei, 2014). A re-
lated concept is that of local G / G* (Getis-Ord), which is capable of identifying clusters 
of high or low values, i.e. hotspots and coldspots, respectively (Chirenda et al., 2020; 
Getis and Ord, 1992). Local G* was chosen over LISA, as the identification of clusters is a 
research objective of this thesis. 

Regression analysis constitutes yet another set of methods employed in the field of dis-
ease research. In essence, this analytical approach entails the establishment of a rela-
tionship between a dependent variable and one or more independent variables, with the 
objective of ascertaining the strength of the relationship (Agbor, 2014; Bernhard et al., 
2023; Bingham et al., 2004; Bwire et al., 2017; Coleman, 2018; Horton et al., 2016; Hu-
mayun et al., 2022; Kirby et al., 2017; Kistemann et al., 2002; Pape et al., 2024; Peer et al., 
2023; Pezeshki et al., 2012; Sun et al., 2015). Regression analysis can be enriched by in-
corporating space, as is demonstrated in geographically weighted regression (GWR), 
which accounts for the spatially varying influence of independent variables. GWR has 
been employed in research to explore the association between certain influencing factors 
and disease prevalence (Kirby et al., 2017; Sun et al., 2015). 

The analysis was conducted using GeoDa, a geostatistical software tool that has been 
developed for the analysis of spatial data (Anselin et al., 2006). The following applicable 
methods were employed: DBScan, HDBScan, Moran’s I, local G / G* and LISA. Notably, 
GeoDa was also employed by Burkhard (2023) in her Master’s thesis. The implementation 
of the nearest neighbour analysis and associated methodologies, such as the G-function 
and regression, was conducted utilising the R programming language. The selection of R 
was motivated by its emphasis on statistical analysis and the availability of an extensive 
range of adaptable options in addition to dedicated packages. 

Regarding the software applications employed for the analysis: R was utilised and run 
within the RStudio environment on version 4.3.1 (2023-06-16). The QGIS version em-
ployed is 3.34.12 “Prizren”, GeoDa is run on the current version 1.22 and Python on ver-
sion 3.11.8  



37 

5 Results 
The results of the analysis are presented in a variety of forms. Firstly, there are the dia-
grams I have created, many of which are based on basic statistical calculations made in 
Excel. These include the calculation of the absolute number of cases and fatalities per 
age group or district, as well as the calculation and comparison of relative shares of the 
total amount in relation to population. Secondly, I have created maps to visualise the re-
sults of case geolocation and the social class attribute. The cartographic representations 
facilitate the visual examination of the distribution of cases and the formulation of pre-
liminary observations regarding potential hotspots and influencing factors. Thirdly, I cal-
culated statistical indices to demonstrate clusters or influences of certain factors on a 
more technical basis. These indices provide a reliable statistical foundation for cluster 
analysis. Finally, the temporal aspect of the data is presented in the form of histograms, 
graphs and sequentially arranged maps. This enables the analysis of temporal develop-
ments and changes over time in the intensity and distribution of the diseases. Conse-
quently, the monitoring of hotspots facilitates the analysis of their persistence. The story-
map with the animated maps, can be found here: https://arcg.is/0CzKDP. 

For the purpose of reference, a general overview map of the city of Zurich and its popula-
tion is provided here to support the results and allow for comparison (figure 19). Of par-
ticular note is the form chosen for the population distribution map by district, which is 
included in the form of a carto-
gram. This cartographic repre-
sentation is intended to facili-
tate a more robust comparison 
with the disease’s case num-
bers. The cartogram highlights 
the low population density and 
comparatively small popula-
tion of districts 2 and 7. The be-
low-average population density 
of district 3 can be attributed to 
its substantial size, remains un-
derdeveloped. District 8, while 
exhibiting below-average popu-
lation density, is notable for its 
substantial population size. 
Conversely, districts 1, 4, 5 and 
6, which demonstrate above-
average population density, are 
also characterised by substan-
tial populations, as evidenced 
by their considerable sizes.  

Figure 19: Population cartogram, coloured by population density 
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5.1  Tuberculosis 
Regarding fundamental statistics, the data on tuberculosis reveals an average age of 31 
years and a median age of 30 years. The distribution of cases across gender lines reveals 
a slightly higher prevalence of male cases, with 982 (53%) being male and 870 (47%) being 
female. This is an anomalous finding given the city of Zurich’s demographic composition, 
which is characterised by a relatively higher proportion of women in the population. Fur-
thermore, approximately three-quarters of all patients, amounting to 1426 cases (77%), 
have been referred to a hospital for treatment, while the mortality rate stands at 357 out 
of 1852 cases (approximately 20% of the total cases). 

A more detailed analysis of the age in the following diagram (figure 20) shows that the 20–
29-year-olds, who represented 23.6% of the population in 1930, suƯered a morbidity 
higher than their proportion of the population, as 617 or 33.5% of the cases concerned 
this age group. The only other age group with more cases than their relative population 
size suggests is the 30–39-year-olds with 18.6% share of total population and 426 or 
23.2% of cases. All other age groups exhibit case shares that are lower than their popula-
tion shares. The youngest group (ages 0-9) exhibits the lowest case count of 102, consti-
tuting 5.5% of total cases, even though they constitute 11.4% of the population. The age 
group over 60 years old suƯered 120 cases (6.5%), followed by the 10–19-year-olds, with 
159 case (8.6%). Finally, the 50-59 age group accounts for 193 cases (10.5%), while the 
40-49 age group accounts for 223 cases (12.1%). 

 

Figure 20: Tuberculosis age distribution 

The distribution of fatalities is slightly more equal in relation to the population. The young-
est age groups, ranging from 0 to 19 years, experience a minimal number of fatalities with 
only 11 cases (3.1%) in the 0-9 age group and 10 (2.8%) in the 10-19 age group. Notably, 
both age groups constitute more than 10% of the total population. The 20-29 age group 
exhibits a close correlation between its share of fatalities and its population share, with 
81 deaths (22.9% of total fatalities) and 23.6% of the population, respectively. All older 
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age group exhibit a higher proportion of fatalities in comparison to their respective popu-
lation shares. The 30-39 age group accounts for 80 deaths (22.7%), while representing 
18.6% of the population. The remaining age groups all suƯered 59 or 56 fatalities, corre-
sponding to 16.7% and 15.9% of the total, with declining shares of population from 14% 
to 11.2% and 9%, respectively. The most pronounced disparity between the proportions 
of fatalities and population is observed in the over 60 age group, where the gap between 
the population share of 9% and the fatality share of 15.9% approaches a factor of two. 

When comparing the proportion of the infected individuals in each age group who died 
from tuberculosis, the lowest values were observed in the youngest age groups. Con-
versely, the highest absolute values are observed among the working-age population be-
tween 20 and 40 years. However, the highest case-based mortality, defined as the propor-
tion of fatalities occurring in relation to infections, is observed among the oldest age 
groups, with nearly half of the infected individuals succumbing to tuberculosis. Up to the 
age of 40, the share of fatalities from total cases is below the average of approximately 
20%, i.e. less than 1 out of 5 infected persons dies. However, from the age of 40 onwards, 
the mortality rate increases to approximately 25% (26.5%) for the 40-49 age group, to 29% 
for those aged 50-59, and finally 46.7% for those aged 60 and older. 

The subsequent diagram (figure 21) illustrates the frequency of cases and fatalities per 
social class. The most tuberculosis cases were registered in the middle-class with 578 
cases. In contrast, the upper-class registered the lowest number of cases, with only 458 
cases documented. The lower-class, with 532 cases, occupies the median position be-
tween the upper- and middle-classes. However, 409 cases could not be assigned to a so-
cial class. A similar distribution is observed in the fatality data, with the majority, 139 
deaths, occurring among the middle-class. The lower-class has suƯered the least num-
ber of deaths, with only 90, while the upper-class has suƯered 101 deaths. Notably, 26 
deaths remain unassigned to any social class. The mean of 20% mortality is observed 
across all three social classes, although the upper-class has experienced slightly higher 
mortality in proportion to cases. 

 

Figure 21: Tuberculosis social class distribution 
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The following diagram (figure 22) illustrates the allocation of tuberculosis cases and fatal-
ities at district level, based on geolocation as determined by the address of the cases. 
Despite the districts having been registered separately, I considered the data extracted 
from the locations more reliable and conducted the primary analysis using this data. 
However, minor discrepancies were identified between the two datasets, potentially at-
tributable to the reorganisation of the city’s districts in 1934. The districts with the highest 
number of cases are districts 3 (327 cases), 4 (348 cases) and 6 (329 cases). The remain-
ing districts have registered less than 200 cases, with district 1 having the most cases 
among them, almost reaching 200 cases. Districts 7 and 8 have been recorded with ap-
proximately 170 and 150 cases, respectively. Conversely, districts 2 and 5 reported the 
lowest number of cases, with slightly more than 100 cases each. Districts 3, 4 and 6 re-
ported the highest numbers of fatalities, with 53, 58 and 73 cases, respectively. All other 
districts have recorded fewer than 40 fatalities, as illustrated in the accompanying dia-
gram. The lowest number of deaths was recorded in districts 2 and 7, with approximately 
25 cases each. 

 

Figure 22: Tuberculosis district distribution  
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The distribution of the tuberculosis cases in the city of Zurich is illustrated in the map be-
low, with each green dot representing a single case. The cases are distributed throughout 
the built-up inhabited areas of the city of Zurich. Three areas of higher case density can 
be discerned. The first of these is situated in the easter half of district 1 (east of the Lim-
mat river), where the historic old town is located, exhibits higher case density. Secondly, 
the working-class districts 3 and 4, located to the south of the railways display higher case 
density. Finally, district 5, situated north of the railways, also exhibits a higher case den-
sity. Conversely, district 2, situated along the western lakeshore, exhibits only few cases. 
A similar pattern can be seen in district 7, but more than district 2, which exhibits fewer 
cases than high-density areas. Districts 6 and 8 exhibit medium case densities. 

 

Figure 23: Tuberculosis case map  
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The distribution of tuberculosis fatalities in figure 24, symbolised by red dots, appears to 
closely mirror the tuberculosis case distribution, although it is significantly less dense, as 
it contains only a fifth of the data volume. The areas of higher density can again be de-
scribed in a similar manner to the tuberculosis cases. The historic old town in district 1, 
located east of the Limmat river, exhibits the highest density of deaths, with the working-
class districts 3, 4 and 5, situated to the south and north of the railways, also displaying a 
high density of fatalities, albeit to a lesser extent. Conversely, districts 2 and 7 exhibit a 
markedly lower incidence of fatalities. Districts 6 and 8, which are characterised by a me-
dium density of fatalities, provide the middle ground. 

 

Figure 24: Tuberculosis mortality map  
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The following maps (figures 25 and 26) present data on the incidence of tuberculosis per 
1’000 inhabitants and mortality per 100’000 inhabitants within the total population on a 
district level. The districts that have been most severely aƯected in terms of morbidity, or 
infection rate, are districts 4 and 6, followed by districts 1 and 3, as illustrated by the dark 
blue colour hues. Conversely, districts 7 and 8 exhibit comparatively lower rates, while 
districts 2 and 5 display the lowest rates, illustrated by light blue and white colour hues, 
respectively. The analysis of tuberculosis mortality rates reveals both similarities and dif-
ferences. The districts with the highest mortality rates are districts 5 and 8, followed by 
districts 1 and 4, indicated by the dark red and red colour hues, respectively. The high 
mortality rates in districts 1 and 3 are reminiscent of their high morbidity rates, while the 
high mortality rates of districts 5 and 8 are quite the opposite of their low morbidity rates. 
Conversely, districts 3 and 6 exhibit comparatively lower mortality rates, while districts 2 
and 7 display the lowest mortality rates, illustrated by their light red and white colour 
hues, respectively. The low mortality rates in districts 2 and 7 are once again reminiscent 
of their low morbidity rates. It is worth mentioning that district 6 has a relatively low mor-
tality rate despite having the highest morbidity rate. It is important to note that the size of 
the districts is distorted according to the total number of cases and fatalities reported, 
respectively, in order to provide an indication of both the rates and the total numbers. 

 

Figure 25: Tuberculosis morbidity cartogram   Figure 26: Tuberculosis mortality cartogram 
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The HDBSCAN clustering (figures 27 and 28) yielded eight distinct clusters of tuberculosis 
cases and six distinct clusters of tuberculosis fatalities, symbolised through distinct col-
ours of the respective dots, while dots not assigned to any cluster remain white. The case 
clusters appear to align with the districts, although in districts 3 and 4 there is only a sin-
gle, green cluster, while in district 8 there are two, brown and pink clusters. With these 
exceptions, it appears that every remaining cluster corresponds to a district. This is best 
illustrated by the blue cluster (district 5), the lavender-purple cluster (district 6) and the 
orange cluster (district 1). For the fatality clusters, the approximate locations of the clus-
ters remain consistent, although their size and extent diminish. Notably, the two clusters 
in district 8 have merged into one, while the cluster in district 7 has disappeared, as has 
the cluster in district 2. Concurrently, the large cluster in districts 3 and 4 split up into two 
distinct green and blue clusters, roughly corresponding to districts 3 and 4, respectively. 
The orange, yellow and lavender-purple clusters correspond to districts 1, 5 and 6, re-
spectively. 

 

Figure 27: HDBSCAN clusters of tuberculosis cases  Figure 28: HDBSCAN clusters of tuberculosis fatalities 

  



45 

The results of the HDBSCAN clustering of tuberculosis cases by social class are displayed 
below (figure 29). It is evident to the observer that while the upper- and middle-classes 
each have a single cluster, designated by red and orange colours respectively, the lower-
class is divided into nine such clusters. These clusters are dispersed throughout the city 
of Zurich, with notable variations in size. The largest cluster encompasses 74 points, while 
the smallest cluster includes 20 points. In contrast, the middle-class cluster counts 574 
points, and the upper-class cluster 449 points. The clusters are distinguished by a range 
of blue colour hues and their locations are delineated as follows: The “Lower-class 1” 
cluster is located in district 1 and the southern part of district 6, “Lower-class 2” is situ-
ated in the west of district 4, “Lower-class 3”is in the remainder of district 6, “Lower-class 
4” is in districts 7 and 8, “Lower-class 5” is in district 5, “Lower-class 6” is in district 3, 
“Lower-class 7” is in the northeast of district 4, “Lower-class 8” is in the southeast of dis-
trict 4 and the northeast of district 3, and finally, “Lower-class 9” is in district 2. It was 
Notably, some of these clusters were quite similar to the district boundaries, while others, 
mainly the clusters in district 3 and 4, were more fragmented. This is because there are 
four clusters in these two districts. The grey points represent non-clustered data points. 

 
Figure 29:HDBSCAN clusters of tuberculosis cases by social class  
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The results of the HDBSCAN clustering of tuberculosis fatalities are presented below (fig-
ure 30). The upper- and middle-class demographics are each represented by a single 
cluster, coloured red and orange, respectively. The lower-class was subdivided into four 
clusters, covering most of the city and being coloured in hues of blue. The points that were 
not part of any cluster are coloured grey. The lower-class clusters encompass between 
12 and 25 points each, while the middle- and upper-class clusters encompass 132 and 
93 points, respectively. The distribution of the lower-class clusters is as follows: “Lower-
class 1” is located in districts 1, 7 and 8, “Lower-class 2” in districts 3 and 4, “Lower-class 
3” in districts 4 and 5, and "Lower-class 4” in district 6. 

 

Figure 30: HDBSCAN clusters of tuberculosis fatalities by social class 
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The social class distribution of tuberculosis cases (figure 31) exhibits high heterogeneity, 
as no district is clearly dominated by any specific social class. This is illustrated by the 
intermingling of blue, white, and red dots on the map. Nevertheless, certain trends can be 
discerned. Specifically, a higher prevalence of blue dots, indicative of the lower-class, is 
observed in districts 3, 4 and 5. Conversely, district 2 exhibits a predominance of red, in-
dicate of the upper-class, over blue dots. White dots, representing the middle-class, are 
visible across all districts. The map does not provide any indication of a region or district 
that is clearly dominated by a certain social class or that is devoid of another. 

 

Figure 31: Social class map of tuberculosis cases 
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The NNI for tuberculosis cases is 0.518. The corresponding z-score is -38.72, with a p 
value extremely close to 0. The NNI for tuberculosis fatalities is 0.735. The corresponding 
z-score is -8.91, with a p value of approximately 0. The range of nearest neighbour dis-
tances for tuberculosis cases range from 0 to 615 metres. The median nearest neighbour 
distance is 29m, the mean distance is 38m. For tuberculosis fatalities, the median dis-
tance is 78m, the mean distance is 110m, and the distance range extends from 0 to 789m. 
The distribution of nearest neighbour distances for both tuberculosis cases and fatalities 
is presented below (figures 32 and 33). The histogram of tuberculosis cases displays an 
exponential decline. The majority of cases are located within 100m of their nearest neigh-
bour. In contrast, the histogram of tuberculosis fatalities exhibits a less pronounced de-
cline, with the majority of nearest neighbours situated within approximately 300m. This is 
reasonable, as there are fewer fatalities, and therefore distances can be expected to in-
crease. 

 

Figure 32: NN-distances of tuberculosis cases 
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Figure 33: NN-distances of tuberculosis fatalities 

The G-function, or cumulative distance plot, for tuberculosis cases (figure 34) reveals a 
steep rise to 20% within the first meters of distance. Subsequently, approximately half of 
the nearest neighbours are within 30m and 80% within 60m of each other.  

 

Figure 34: G-function of tuberculosis cases  
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The same plot for the tuberculosis fatalities (figure 35) reveals a steep, albeit compara-
tively reduced, incline within the first metres. 20% of nearest neighbours are reached 
within approximately 25m of distance. Furthermore, 50% are reached within approxi-
mately 75m and 80% within 150m. The black line representing the observed data are con-
sistently situated above the red reference line of a theoretical distribution in both plots. 

 

Figure 35: G-function of tuberculosis fatalities 

Moran’s I for both the tuberculosis cases and fatalities at district level is negative, as indi-
cated by the negative slopes of the fitted lines (figures 36 and 37). The value of Moran’s I 
for tuberculosis cases is -0.289, and for tuberculosis fatalities it is -0.366. 

 

Figure 36: Moran's I of tuberculosis cases   Figure 37: Moran's I of tuberculosis fatalities 
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The results of local G* of the social class of tuberculosis cases (figure 38) demonstrate a 
cluster of blue points, representing the lower-class, in the west of Zurich, corresponding 
to the working-class districts 3 and 4, which are known for the low socioeconomic status 
of the inhabitants. Conversely, two distinct clusters of red points, representing the upper-
class, are observed in the south-east and north-east of the city, corresponding to parts of 
the districts 6, 7 and 8. The southern cluster, located in the districts 7 and 8, is likely to 
encompasses aƯluent neighbourhoods. However, the northern cluster, situated in the 
Oberstrass and Unterstrass neighbourhoods of district 6, is less likely to encompass such 
aƯluent neighbourhoods. Additionally, there are some less clustered red points found in 
parts of districts 1 and 2, which are also regarded as aƯluent. The white points are not 
significant and are not part of any cluster. 

 

Figure 38: local G* cluster map of social class in tuberculosis data  



52 

Regarding the tuberculosis fatalities (figure 39), the clusters which were detected in the 
cases appear to be relatively constant, albeit on a smaller scale, as they still occupy 
roughly the same locations. The blue dots, indicating the lower-class, is still present in 
parts of districts 3 and 4. The two red clusters in the southeast and northeast have con-
siderably shrunk, and now only count a handful of fatalities. The cluster in districts 1 and 
2 has completely vanished. 

 

Figure 39: local G* cluster map of social class in tuberculosis fatalities 

  



53 

Regression analysis of all tuberculosis cases, with death as the dependent variable and 
gender, age, hospital admission, and social class as independent variables has revealed 
that all but gender to have positive values. Gender was the only negative value identified, 
while age, hospital admission and aƯiliation to higher social classes all had positive val-
ues. The R-squared value is 0.053, and the adjusted R-squared is 0.05 with a p-value of < 
2.2e-16. 

The geographically weighted regression is executed analogously, with death designated 
as the dependent variable and gender, age, hospital admission and social class as the 
independent variables. GWR attests spatially varying influences on all four investigated 
attributes (see table 6). The only negative median concerns the hospital admission varia-
ble, while all other variables had positive medians. The R-squared value increases from 
0.063 to 0.358, while the adjusted R-squared is 0.061 in both cases. The residual sum of 
squares (RSS) decreases from 255 to 175 when compared to global regression. The Akaike 
information criterion (AIC) also decreases from 1610 to 1368. 

Table 6: Comparison of regression results of tuberculosis 

 Global regression Geographically weighted regression 
   
Variable CoeƯicient CoeƯicient (median) 
Gender -0.015 0.002 
Hospital -0.014 -0.032 
Age 0.006*** 0.007 
Social class 0.021* 0.015 
   
Observations 1747 1747 
   
Multiple R2 0.063 0.358 
Adjusted R2 0.061 0.061 
RSS 255 175 
AIC 1610 1368 
F-statistic 29.35  

(4 & 1742 DF)*** 
 

Note:  *p<0.05; **p<0.01; ***p<0.001 
 

The precise results are documented in the appendix, within the R code section. 
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The maps below (figure 40) depict the spatial variance of the influence of the age and so-
cial class attributes in the tuberculosis case data. While the influence of age on the out-
come is positive, as indicated by the almost homogenously spread red values in most ar-
eas, the influence of social class is much more heterogeneously spread and subjected to 
more variance over shorter distances. Here, red indicates higher risk in higher social clas-
ses, while blue indicates higher risk in lower social classes. Nonetheless, some similarity 
with the local G* clusters can be observed, such as the northern cluster in district 6, 
which repeats itself here, as well as the southern cluster in districts 7 and 8, which repeats 
itself too. A certain resemblance of the blue cluster in districts 3 and 4 is also evident. 

 

Figure 40: Spatial distribution of age and social class influences on tuberculosis mortality 
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The majority of tuberculosis cases each year have been documented during the late win-
ter months, specifically in February and March, with a maximum of approximately 
monthly 50 cases. The minima are observed in late 1932 and 1933 with as few as 20 
cases. The data reveal a wave-like pattern, with fluctuations occurring each year, reaching 
a maximum in late winter to early spring, thereby indicating seasonality. 

 

Figure 41: Tuberculosis case graph 

 

Figure 42: Tuberculosis case histogram  
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The tuberculosis case heatmaps for each year shown below (figure 43) exhibit minimal 
interannual variation. A substantial and consistent hotspot is observable in the working-
class districts 3 and 4 across all four years, even extending into district 5. Meanwhile, a 
smaller, but similarly dense hotspot is evident in district 1 from 1932 to 1934, with a sub-
sequent weakening observed in 1935. Two additional areas of interest are evident in dis-
tricts 6 and 8, where medium density values were consistently recorded throughout the 
observed period. Conversely, districts 2 and 7 appear to have been relatively unimpacted 
by tuberculosis during the investigated period. A similar picture is shown by the animated 
map and the GIF created from monthly heatmaps. The clusters in district 1 (Niederdörfli) 
and districts 3 and 4 are remarkably stable throughout the four years, being present in 
most months of each year. 

 
Figure 43: Temporal tuberculosis incidence  
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5.2  Diphtheria 
The following diagram (figure 44) illustrates the age groups, and their respective number 
of diphtheria cases. The highest number of cases by far is observed in the youngest age 
group from 0 to 9 years, with 373 cases, constituting over half (58.5%) of the total regis-
tered cases. The next-older age group of 10-19-year-olds demonstrates a significant num-
ber of cases as well, with 138 cases (21.6%). Older age groups exhibit a decline in the 
number of cases, with the 60+ age group having no recorded cases. The total number of 
diphtheria fatalities is 19, which corresponds to a mortality rate of just 2.8%. Of the 19 
fatalities, 12 (70.6%) were in the youngest age group. The three age groups up to 39 years 
of age have each one or two fatalities, while the age groups above 40 years of age have no 
fatalities. 

 

Figure 44: Diphtheria age distribution 

The distribution of cases among the three social classes (figure 45) is an intriguing phe-
nomenon, with the upper-class reporting the highest number of cases at 247. This figure 
is considerably higher than the relatively similar values observed for the lower- and mid-
dle-class, which registered 192 cases and 183 cases, respectively. Notably, 48 cases 
could not be allocated to any specific social class. The upper-class also exhibited the 
highest number of fatalities, with 8 deaths, closely followed by the middle-class with 7 
deaths. The lower-class demonstrated the lowest number of fatalities, with a mere 4. 
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Figure 45: Diphtheria social class distribution 

The following diagram (figure 46) presents the distribution of diphtheria cases and fatali-
ties by district. As with the data on tuberculosis, the location of the mapped cases is the 
principal source of information used. However, due to the unavailability of addresses for 
approximately 200 cases, the missing entries will also be considered, following the de-
scription of the cases extracted from the geolocated addresses. The district with the high-
est number of cases is district 6, with 90 cases (13.5%), followed by districts 7 and 8, with 
69 cases each (10.3%). District 5 has 64 registered cases. The remaining districts (1 
through 4) all have fewer than 60 cases, with the lowest number found in district 2 at just 
28 cases (4.2%). Of the 19 fatalities, 5 (or approximately one-third) occurred in district 8, 
2 in district 4, and 1 in every other district, except district 3, where no fatalities were rec-
orded. The distribution of cases across districts, as indicated in the district column of the 
original data, is broadly reflected in the current data. However, it is important to note that 
the distribution of fatalities is not consistent with the distribution of cases. In district 8, 
for example, 6 deaths were reported, while in district 4, 4 deaths were reported. In districts 
6 and 3, 3 and 2 fatalities were reported, respectively, and a single fatality in every remain-
ing district. 
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Figure 46: Diphtheria district distribution  
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The distribution of diphtheria cases in figure 47, represented as green dots, appears to 
demonstrate an even distribution at first glance. However, upon closer inspection, it be-
comes evident that the number of cases in district 2 is minimal. In addition, a relatively 
high density of cases has been observed in several locations, including district 8. This 
higher density is also present in the Niederdörlfi neighbourhood of district 1 on the east 
side of the Limmat river, as well as in district 5 between the railyards to the south and the 
Limmat river to the north. Medium case densities are found in district 6, district 7, and 
districts 3 and 4 west of the Sihl river. 

 

Figure 47: Diphtheria case map  
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The distribution of diphtheria fatalities (figure 48), symbolised as red dots, demonstrates 
a minimal number of fatalities in all districts, as previously mentioned. The only exception 
to this is district 8 on the eastern lakeshore, where approximately half of all fatalities are 
mapped. The remaining fatalities are dispersed throughout the city, extending from dis-
trict 6 in the north to district 2 in the south and from district 4 in the west to district 7 in 
the east. 

 

Figure 48: Diphtheria mortality map  
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The cartograms below (figures 49 and 50) oƯer a visual representation of the district-level 
diphtheria morbidity and mortality rates per 1’000 and 100’000 inhabitants, respectively. 
The districts with the highest morbidity rates are districts 5 and 8, followed by districts 1 
and 7 with above-average morbidity rates, which are symbolised by the dark blue and blue 
colour hues, respectively. District 6, shown in light blue, has a below-average morbidity 
rate. Finally, districts 2, 3 and 4 exhibit the lowest morbidity rates, represented by a white 
colour hue. Diphtheria morbidity rates appear similar to the diphtheria morbidity rates. 
The districts with the highest mortality rates are districts 5 and 8, symbolised by their dark 
red colour hue, consistent with the morbidity rates. These are followed by districts 1 and 
4, which exhibit above-average mortality rates and are represented by red colour hues. 
The districts 2 and 7 exhibit below-average mortality rates, indicated by the light red col-
our hues. Finally, districts 3 and 6 exhibit the lowest mortality rates, symbolised through 
white colour hues. However, it should be noted that due to the very low number of deaths, 
the cartogram may not be significant. Both maps are distorted by the number of cases 
and fatalities, respectively, and the mortality cartogram is exaggerated. 

 

Figure 49: Diphtheria morbidity cartogram   Figure 50: Diphtheria mortality cartogram 
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The results of the HDBSCAN clustering for diphtheria cases are presented below (figure 
51). The points have been coloured according to their assigned cluster, and those points 
assigned to no cluster remain white. As was the case for tuberculosis, the districts are 
roughly delineated by the clusters, although there are only six total clusters here. The 
green cluster encompasses the majority of districts 7 and 8. The orange cluster covers 
district 1 and the rest of district 7. The lavender-purple cluster primarily corresponds to 
district 6. The yellow, pink and blue clusters, in turn, approximately cover districts 5, 4, 
and 3, respectively. Meanwhile, no cluster is present in district 2. 

 
Figure 51: HDBSCAN clusters of diphtheria cases 
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When the HDBSCAN clustering is adapted to include the social class, a new pattern 
emerges (see figure 52). The cases belonging to the upper- and middle-classes coalesce 
into a single cluster per class, which is designated as red or orange, respectively. Mean-
while, the lower-class clusters are subdivided into three distinct clusters, designated dark 
blue, blue and light blue colour, respectively. The dark blue cluster, labelled “Lower-class 
3”, contains points in districts 3, 4, 5 and 6, i.e. the north and north-west of Zurich. The 
light blue cluster, labelled “Lower-class 1”, encompasses cases in the southern districts 
7 and 8, while the blue “Lower-class 2” cluster contains cases in district 1. Cases that 
could not be assigned to a cluster, are marked in grey and labelled “Not clustered”. 

 

Figure 52: HDBSCAN clusters of diphtheria cases by social class  
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The social class distribution of diphtheria cases (figure 53) exhibits a complex pattern of 
social classes diversity throughout the city, with certain social classes seemingly pre-
dominant in specific districts. Nevertheless, high heterogeneity is the predominant fea-
ture, with red points, denoting the upper-class, being the most prominent. District 2 is 
mostly dominated by those red dots, indicating the upper-class, as are districts 7 and 8, 
all of which are characteristically aƯluent areas. For the remaining districts, the hetero-
geneity is so high that any statements are challenging to make. 

 

Figure 53: Social class map of diphtheria cases  
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The subsequent map (figure 54) illustrates the schools, along with their respective catch-
ment areas, which have been calculated as Voronoi polygons, superimposed on the den-
sity distribution. It appears that the catchment areas of some schools in the districts 6, 5, 
1 and 8 correlate with the major hotspots of diphtheria cases. Additionally, smaller yet 
potentially significant hotspots, which also correlate with school catchment areas, have 
been identified in districts 3, 4 and 7. 

 

Figure 54: Diphtheria incidences overlayed with school catchment areas  
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The NNI of the diphtheria cases is 0.534. The z-score is -19.3, with a p-value that is almost 
equal to 0. The nearest neighbour distances range from 0 to 775m, with a median of 33m 
and a mean of 65m. The distribution, as illustrated below (figure 55), is predominantly 
concentrated at the shortest nearest neighbour distances, with the majority falling below 
200m. Notably, a considerable proportion of approximately 200 nearest neighbour pairs 
are situated at the very shortest distance. The NNI of the diphtheria fatalities was not cal-
culated due to the low number of fatalities and the resulting low significance of such a 
value. 

 

Figure 55:NN-distances of diphtheria cases 

The G-function of the diphtheria cases (figure 56) exhibits a marked increase in the initial 
metres, where the cumulative distances rapidly approach 40% of the nearest neighbour 
pairs. Thereafter, on the graph line continuously rises to reach 80% at approximately 
125m and crosses the 50% mark at approximately 40m. The black line representing the 
observed data consistently lies above the red reference line of a theoretical distribution 
throughout the entire graph. Again, I deemed it inappropriate to calculate the G-function 
for the diphtheria fatalities, due to the extremely limited data available, which would limit 
the significance of any result. 
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Figure 56: G-function of diphtheria cases 

The result of Moran’s I of diphtheria cases on district level is positive, as indicated by the 
positive slope of the graph (figures 57 and 58), with a value of 0.349. Conversely, the value 
of the index of diphtheria fatalities is negative at a value of -0.133. 

 

Figure 57: Moran's I of diphtheria cases   Figure 58: Moran's I of diphtheria fatalities 
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The result of local G* for social class of diphtheria data (figure 59) demonstrates the pres-
ence of two distinct clusters: one in red, which corresponds to the upper-class demo-
graphic, and the other in blue, which corresponds to the lower-class demographic. The 
upper-class cluster is primarily located in district 8, with a small number of red points that 
are also located in districts 2 and district 6. Meanwhile, the lower-class cluster is predom-
inantly situated in the working-class districts 4, 5 and 6, where only the neighbourhood of 
Wipkingen is aƯected. The remaining white points are of negligible significance and are 
not part of any cluster. 

 

Figure 59: local G* cluster map of social class in diphtheria data  
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The regression analysis of all diphtheria cases revealed that the attributes gender and age 
had a negative value, while the attributes hospital admission and belonging to higher so-
cial classes had positive values. The R-squared value is 0.009 and the adjusted R-squared 
is 0.001with a p-value of 0.366. 

The geographically weighted regression attests to spatially varying influences on all four 
investigated attributes (see table 7). The only positive median concerns the social class 
attribute, while all others have negative medians. In comparison to global regression, R-
squared is increased from 0.006 to 0.325, while the adjusted R-squared increases from -
0.006 to 0.024. The residual sum of squares (RSS) has been reduced from 11 to 7 and the 
Akaike information criterion (AIC) is -180 and smaller for GWR at -239. The results of the 
visualised coeƯicients are comparable, although reversed, when compared to the local 
G*. 

Table 7:Comparison of regression results for diphtheria 

 Global regression Geographically weighted regression 
   
Variable CoeƯicient CoeƯicient (median) 
Gender ~0 -0.025 
Hospital ~0 -0.023 
Age ~0 -0.0003 
Social class ~0 0.006 
   
Observations 326 326 
   
Multiple R2 0.006 0.325 
Adjusted R2 -0.006 0.024 
RSS ~11 ~7 
AIC -180 -239 
F-statistic 0.49 (4 & 321 DF)  
Note:  *p<0.05; **p<0.01; ***p<0.001 

 

More detailed results of the calculated regressions can be found in the appendix. 
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The influence of age in the case of diphtheria is either overwhelmingly negative or neutral, 
as indicated by the blue and white colours. However, a notable exception is observed in 
district 8, where a cluster of slightly red points is evident. Conversely, the influence of so-
cial class is predominantly positive, as indicated by the red points, or neutral, as indicated 
by the white points, although there are some blue points clustered in districts 2 and 8. The 
red points are also observed to be clustered in districts 4, 5 and 8 (see figure 60). 

 

Figure 60: Spatial distribution of age and social class influences on diphtheria mortality  
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The temporal progression of diphtheria cases over time (figures 61 and 62) reveals two 
peaks rising from a baseline of approximately 10 to 20 monthly cases. The initial peak, 
which occurred around the turn of the year 1927 to 1928, reached approximately 25 
monthly cases. From mid-1928 onwards, the baseline increases to approximately 20 
cases per month, peaking in the winter of 1929 /1930 at over 40 cases per month. 

 

Figure 61: Diphtheria case graph 

 

Figure 62: Diphtheria case histogram  
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The yearly diphtheria incidence (figure 63) varies considerably in both extent and density. 
Nevertheless, some general trends are still identifiable. These include high-density 
hotspots in the districts 1, 5, 6 and 8 throughout at least three of the four years in question, 
as for 1928 very little data was available. A medium-density hotspot has been observed 
in districts 3 and 4 in all years except 1928, where data is limited. The distribution of diph-
theria displays greater variability than that observed for tuberculosis, manifesting as a 
greater degree of fluctuation in the individual hotspot locations across the city of Zurich. 
However, it is evident that districts 2 and 7, to a lesser extent, were predominantly unaf-
fected by diphtheria cases. The animated map and GIF of monthly diphtheria heatmaps 
corresponds to the findings mentioned before. They are characterised by high variability 
in the hotspot locations and sizes. This underlines the temporal instability of the diphthe-
ria case pattern. 

 

Figure 63: Temporal diphtheria incidence  
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6 Discussion 
A key factor to consider in disease analysis is the population at risk. A comparison of the 
population at risk with the reported disease cases can facilitate the identification of 
where an unexpectedly high or low number of cases has occurred, indicating either an 
excess or a shortfall of infections. However, in order to formulate expectations, references 
are required to compile what disease numbers are to be expected. Numerous risk factors 
influence this number, such as age, sex, occupation, social class and socioeconomic sta-
tus. As previously mentioned, higher infection numbers could be expected in neighbour-
hoods and districts with a low socioeconomic status, where the majority of the popula-
tion is likely working-class (Coleman, 2018; Holloway et al., 2014, 2013; Kistemann et al., 
2002; Müller et al., 2024). Furthermore, younger adults, predominantly those in their 20s 
and 30s, and males in general are more susceptible to tuberculosis infection due to a 
greater number of work-related social contacts (Horton et al., 2020; Humayun et al., 
2022; Miller et al., 2021; Peer et al., 2023) and higher personal risks, often linked to un-
healthy habits which are mainly perceived to be typical for males, e.g. smoking and drink-
ing (Humayun et al., 2022; Nhamoyebonde and Leslie, 2014; Peer et al., 2023). School-
age children represent the age group with the highest risk of diphtheria infection, due to 
their comparatively weaker immune systems and lack of natural immunisation (Byard, 
2013; Truelove et al., 2020). 

6.1  Tuberculosis 
As indicated by the literature, the incidence of tuberculosis over the observed 4-year pe-
riod is higher among males with 982 cases (53%) compared to 870 cases (47%) among 
females. This phenomenon is all the more noteworthy given that the city’s population is 
majority female at 53.8%, or roughly 131’000 out of 244’000 inhabitants. It can be at-
tributed to a number of factors including higher behavioural and physiological risks 
among men (Humayun et al., 2022; Nhamoyebonde and Leslie, 2014; Peer et al., 2023), 
or heightened exposure through social contacts and work (Horton et al., 2020; Humayun 
et al., 2022; Miller et al., 2021; Peer et al., 2023). 

The relatively low mean and median ages of 31 and 30 years, respectively, indicate a prev-
alence of the disease among younger age groups. The age distribution of tuberculosis 
cases indicates excessive case numbers, especially among individuals aged 20-29, and 
less pronounced among those aged 30-39, mirroring the average and median age of in-
fected persons discussed previously. The 20–29 age group accounts for a third (33.5%) of 
all tuberculosis cases, despite comprising less than a quarter (23.6%) of the overall pop-
ulation. In the 30–39 age group, the proportion of cases experienced by this age group was 
almost a quarter (23.2%), despite their population proportion being less than a fifth 
(18.6%). This finding suggests that these two age groups exhibit what can be termed ex-
cess morbidity, i.e. a higher proportion of tuberculosis cases than would be expected 
based on their relative share of the total population, if the disease distribution was ran-
dom and did not exhibit clustering. The dominant explanation for this distribution is the 
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high number of social contacts this population group has due to work and social behav-
iour, making them more exposed and therefore more susceptible to infection (Chirenda 
et al., 2020; Corti, 2012; Gubéran, 1980; Shaweno et al., 2018). The age distribution of 
tuberculosis fatalities demonstrates that the proportion of the population younger than 
20 years is negligible at just 3%. In older age groups the proportion of tuberculosis fatali-
ties align with population shares but simultaneously increase with age. The mapped co-
eƯicients of the influence of age indicate that increasing age is associated with a height-
ened risk of fatal tuberculosis infection across most regions of the city. This phenomenon 
can be rationalised by the established correlation between age-related frailty and dimin-
ished resistance to infectious diseases, which in turn increases the probability of death. 
Notable exceptions to this pattern include Enge in district 2 and two spots in district 6, 
where the data suggest a decrease in mortality with increasing age 

The case-fatality ratio displays a marked increase with age, as older age groups demon-
strate excess mortality when contrasted with their population shares. The most aƯected 
age group is the over-60s, as people become more susceptible with age. The highest 
case-fatality ratios are observed among the oldest age group, with approximately 50% of 
cases. This observation could be indicative of heightened resistance due to peak fitness 
in younger age groups or, alternatively, it could be attributed to more generally improved 
living conditions. The suggested trend of mortality risk increasing with advancing age may 
be attributed to the well-documented increase in susceptibility to disease with increasing 
age. 

The total of over 2000 registered cases is reasonably close to the expectations based on 
other data published in this context, as it amounts to approximately 500 cases per year in 
a population of 250’000 or roughly 200 per 100’000. For context, publications concerning 
nationwide, cantonal and city-level figures have estimated the tuberculosis mortality rate 
at 124,5 per 100’000 in 1930 and at 82,4 per 100’000 in 1938. The canton of Zurich has 
proudly been commended for its eƯective tuberculosis countermeasures (Ritzmann, 
1998, pp. 36–37) and has reported a rate of 91,2 per 100’000 between 1930 and 1934, 
which corresponds to the timeframe under consideration, and 9,7 per 10’000 between 
1926 and 1935. Consequently, the expected order of magnitude would be approximately 
100 per 100’000 or 1 per 1000. In the 1930s, the canton of Zurich registered approximately 
5000 tuberculosis fatalities per decade, or a yearly death rate of 8 per 10’000 living (80 per 
100’000). On average, approximately 260 people died from tuberculosis in the city of Zur-
ich alone each year (Kruker and Senti, 1932; Senti and Pfister, 1946). The mortality rate 
calculated from the dataset under consideration ranges from less than 30 to 50 per 
100’000 inhabitants. This figure is lower than the reference suggests. A similar discrep-
ancy was observed in the total number of fatalities, which, according to the available 
data, amounted to approximately 380 over a period of four years. This discrepancy can be 
partially attributed to missing entries of potentially undetected cases, which could not be 
located and thus were not integrated into the maps. However, this does not fully account 
for the observed inconsistency, which is likely attributable to undetected cases. 
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Multiple methods, including NNI, G-function, Moran’s I and HDBSCAN indicate the pres-
ence of clustering in the data by their outcomes. The dot maps reveal a higher density of 
cases and fatalities in districts 1, 3, 4, 5 and 6, which represent the traditionally working-
class districts. Clustering in the data is identified by the NNI and Moran’s I, which are 
within the thresholds that indicate clustering and are significant. The G-function also in-
dicates clustering, as the data graph consistently exceeds the red reference line of a ran-
dom distribution. Furthermore, the degree of clustering is more pronounced in the cases, 
as their indicators point towards stronger clustering by means of a lower NNI and shorter 
nearest neighbour distances. However, Moran’s I contradicts this, as the smaller value for 
cases suggests higher clustering in fatalities on district-level. HDBSCAN shows a strong 
resemblance between the data clusters and the districts themselves, suggesting a poten-
tial correlation between low socioeconomic status and tuberculosis incidence in work-
ing-class districts (Ritzmann, 2010a, 1998, pp. 36–37). Furthermore, the upper class ex-
hibited the lowest number of cases, while tuberculosis appeared to be more prevalent 
among the middle and lower classes. However, the clusters also align with the areas of 
highest population density. A comparison of the number of cases per district to the dis-
trict’s population share of the city demonstrates that districts 1, 3 and 4 still exhibit above-
average values. Conversely, in the aƯluent districts 2, 7 and 8 the case numbers were gen-
erally lower. These findings suggest that in densely populated working-class districts, the 
spread of disease may be facilitated due to the lower socioeconomic status of the inhab-
itants, which is supported by literature and includes bad working and living conditions 
(Chirenda et al., 2020; Gubéran, 1980; Hermans et al., 2015; Kanturk, 2007; Liu et al., 
2012; Setiawan et al., 2021; Shaweno et al., 2018; Sun et al., 2015; Tiwari et al., 2006; 
Vaughan, 2018). 

The distribution of tuberculosis cases and fatalities by social class is not immediately ap-
parent, as it is characterised by a high degree of heterogeneity in the dot maps. This chal-
lenges the notion of socially homogeneous districts, which are inhabited by one single, 
dominant social class. However, when including social class into clustering methods 
such as HDBSCAN, local G*, and regression coeƯicients, socioeconomically motivated 
clusters become discernible. HDBSCAN unveiled a greater number of lower-class clus-
ters for cases and fatalities, compared to only one cluster for the middle- and upper-clas-
ses, suggesting higher spatial case density and more local variability in the lower-class. 
The location of multiple clusters per working-class district supports this interpretation. 
This hypothesis appears feasible due to the existence of distinct working-class districts 
and neighbourhoods and given that the lower-class population is significantly aƯected by 
tuberculosis. However, the middle class is aƯected even more strongly. The findings 
could also indicate greater spatial dispersion in higher social classes. It is important to 
note that with minor adjustments of the input parameters, the middle-class clusters 
could also have been subdivided into two or more clusters, suggesting a similar, albeit 
weaker eƯect than in the working-class. Local G* also clearly uncovered a lower-class 
cluster in much of districts 3 and 4, while simultaneously exhibiting upper-class clusters 
in parts of the districts 1, 2, 6, 7 and 8. The regression coeƯicient of social class is very 
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similarly distributed to the results of local G*, supporting this finding. However, the ob-
served variability of the influence of social class may suggest a reduced significance, in 
comparison to age. 

The morbidity and mortality rates by districts represented in cartograms exhibit higher 
morbidity and mortality rates in most districts with a significant working-class population 
(i.e. 1, 3, 4, 5 and 6), with some exceptions. For example, district 5 has a comparatively 
low morbidity rate, but has one of the highest mortality rates, while district 8 has one of 
the highest mortality rates, while having a comparatively low morbidity rate. This indicates 
that working-class demographics are more susceptible to tuberculosis infection. Moran’s 
I indicated the presence of weak negative spatial autocorrelation, which indicates the 
presence of high-incidence and high-mortality districts next to such with low numbers, as 
can also be seen from the cartograms. This phenomenon is partially attributable to the 
geographic location of the upper-class districts, which are adjacent to one or more work-
ing-class districts. 

The findings of the regression analyses suggest that age is the sole highly significant factor 
influencing tuberculosis mortality. The estimated likelihood of death rises by 0.006 by 
year of age at high confidence (p-value approximately 0) and by 0.02 to 0.05 by social 
class at relatively lower confidence (p-value approximately 0.027). The social class is also 
a significant factor, with membership of higher social classes paradoxically increasing the 
likelihood of death. The findings reveal that hospital admission and gender do not exert a 
significant influence on the outcome. However, being male and being admitted to a hos-
pital increases the likelihood of death. Consequently, the findings suggest that advanced 
age and elevated social class are significant contributor to the fatality rate in cases of tu-
berculosis. While the influence is very limited in normal regression at just 5 to 6% variance 
explained (due to an R-squared value of 0.05 and a p-value of approximately 0 in the linear 
model and an R-squared value of 0.063 and a p-value of approximately 0 in the global 
regression, respectively), it rises to 35% with space included in the regression (and an R-
squared value of 0.358). Additionally, the reduced RSS and AIC further supports the better 
match of the GWR. The models are all significant, as evidenced by the significance thresh-
olds of 0.05 and 0.01 being underbid by the very small p-values. Nevertheless, this still 
leaves 65% of the variance unexplained, indicating, that not all of the relevant factors 
have been included in the analysis. Conversely, the majority of influences appear to have 
remained undetected, resulting in a significant number of research gaps that require fur-
ther exploration in future studies. The paradoxical eƯect of social class may be attributed 
to members of higher social classes living longer and therefore being more exposed to 
diseases at older age. This assumption is, however, not supported by evidence. Another 
possibility is that there is simply a higher number of cases in the middle- and upper-clas-
ses combined, which could potentially mask the influence of social class on mortality. 

The temporal analysis is limited in its ability to draw meaningful conclusion due to the 
short time span of only four years. However, the monthly and even yearly patterns of 
citywide distribution of cases do appear to indicate a persistent hotspot of tuberculosis 
cases in the districts 3 and 4, as well as a less clear one in district 1. These districts also 
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happen to be the most densely populated working-class districts, thereby underscoring 
a correlation between socioeconomic status and tuberculosis infections. The heatmap 
of yearly tuberculosis incidence demonstrates remarkable persistence in the individual 
clusters, particularly concerning the hotspots in the working-class districts 3 through 6 
and the Niederdörfli neighbourhood of district 1. Conversely, the coldspots, situated in 
the aƯluent districts 2 and 7, also demonstrate a remarkable persistence of low case den-
sities. 

These density heatmaps and animated maps (see storymap at https://arcg.is/0CzKDP) 
provide clear evidence that there is a significantly higher tuberculosis incidence density 
in the working-class districts, which largely coincide with local hotspots. Meanwhile, the 
aƯluent districts 2 and 7 exhibit a contrasting pattern of persisting low tuberculosis inci-
dence density. The pattern is remarkably stable over time, indicating a continued correla-
tion between socioeconomic status and tuberculosis incidence. While population den-
sity, which is typically higher in lower-class neighbourhoods, probably exerts some influ-
ence on the distribution, the distribution arguably extends beyond this influencing factor, 
as demonstrated through comparison with district populations. This phenomenon was 
previously highlighted through a comparison of population shares with incidence shares, 
which revealed that incidence rates amplify existing disparities in population. 

6.2  Diphtheria 
The approximately 20 addresses referring to hospitals could indicate that a greater num-
ber of infected patients are either admitted to or registered by the hospitals. A comparison 
of the hospital admission rates for tuberculosis and diphtheria reveals that while 77% of 
tuberculosis patients were admitted to hospitals, only 63% of diphtheria patients were. 
Consequently, the assertion that diphtheria patients are more likely to be hospitalised 
cannot be sustained. 

The results of the analysis of diphtheria cases have shown that, in agreement with the 
literature (Byard, 2013; Truelove et al., 2020), the main victims of diphtheria were children, 
with over 80% of cases occurring in individuals of to 19 years of age. The mean age of 
diphtheria cases is just 12 years, with the median even lower at 8 years, which confirms 
the young ages of the victims. The proportion of the very youngest age group is even higher 
in fatalities than in cases. This observation, when considered in conjunction with the ele-
vated numbers of both diphtheria cases and fatalities within the youngest age group, 
serves to reinforce the prevailing concept of diphtheria as a childhood disease. 

The mortality rates for diphtheria are comparatively low, indicating a lower severity of 
diphtheria, as has been previously discussed in the literature (Brunner and Senti, 1937; 
Byard, 2013). This phenomenon may be attributable to the early development of medical 
interventions (Gubéran, 1980; Kaba, 2010; Müller et al., 2024; Ritzmann, 2015). Further-
more, the mortality rate for diphtheria remains consistently below 5%, in comparison to 
over 10% for tuberculosis, with only one exception. The mean mortality rate across all age 
groups is 2.7% of all recorded cases, compared to approximately 20% for tuberculosis. 
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These findings underscore two noticeable points. Firstly, diphtheria is characterised by a 
lower severity than tuberculosis. Secondly, diphtheria exhibits a lower mortality rate than 
tuberculosis. Unfortunately, precise numbers for diphtheria, akin to those available for 
tuberculosis, could not be sourced. 

The presence of clustering is indicated by the results of dot maps, NNI, Moran’s I and 
HDBSCAN. The dot maps show clustering in districts 1, 5, 7 and 8, but these are only in 
part working-class districts. The working-class districts 3 and 4 are not strongly aƯected 
by diphtheria, contrary to expectations. The low incidence in districts 3 and 4 suggests a 
potentially less robust association between diphtheria and low socioeconomic status. 
The NNI and G-function lend further support to the presence of clustering in the data, by 
their respective threshold values. The degree of clustering is, according to the NNI similar 
to the degree of clustering observed in tuberculosis. The HDBSCAN clusters do reflect the 
shape and location of the administrative districts. This alignment suggests a potential cor-
relation between social classes and the districts they characterise with the diphtheria 
clusters (Ritzmann, 1998, pp. 36–37). The distribution pattern which is not restricted to 
working-class districts may be attributable to the spread of diphtheria, which occurs 
mainly between school-age children. Children may exhibit reduced mobility and social 
contact in comparison to adults, which potentially reduces the influence of social class. 
Consequently, the probability of infection is likely to occur within the school environment 
or in close proximity to their place of residence, which are often situated in close proximity 
to children’s homes. 

The distribution of cases in relation to social class exhibits a high degree of heterogeneity. 
However, if social class is included in HDBSCAN multiple lower-class clusters can be ob-
served, located in districts 1, 4, 5 and 6. The three clusters for the lower-class are likely 
due to the same reason as in the tuberculosis data: higher spatial case density and more 
local variability. Local G* findings suggest the presence of a lower-class cluster in districts 
4, 5 and 6, while upper-class clusters are situated mainly in districts 7 and 8. Regression 
coeƯicients cluster similarly to local G*, although they are not statistically significant and 
should thus not be overestimated. The clustering in correlation with socioeconomic sta-
tus appears to be weaker when compared with tuberculosis cases. Furthermore, the high 
proportion of upper-class individuals among the infected does support the finding of 
weaker correlation with socioeconomic status. However, the three clusters found within 
the lower-class could either indicate that a greater proportion of these cases were con-
centrated in distinct neighbourhoods or that greater spatial dispersion of cases exists in 
higher social classes, hindering the creating of multiple clusters. 

The cartograms have shown that high morbidity and mortality rates are not confined to 
the traditional working-class districts, as districts 3 and 4 exhibit low rates, while districts 
1, 5, 7 and 8 exhibit high rates. However, the mortality cartogram may be of limited signif-
icance due to the low number of recorded fatalities. Given the expected correlation be-
tween social class and high diphtheria incidence, these findings are intriguing. They sug-
gest a weak correlation of diphtheria incidence with socioeconomic status, as was 
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mentioned previously. Moran’s I of diphtheria cases suggests weak positive spatial auto-
correlation, as districts with high morbidity rates are located together, while those with 
low morbidity are also situated close to each other, as the city is split into two halves of 
high and low morbidity. Moran’s I for the diphtheria fatalities indicates very weak negative 
spatial autocorrelation, possibly due to the low number of fatalities, which makes analy-
sis more diƯicult. 

The regression analyses have demonstrated that there are no significant influences on 
death rates. The most influential variable, albeit not significant, is gender. The remaining 
independent variables have negligible influence on mortality, as their values are well be-
low any threshold of significance. The model, too, was found to be non-significant, as ev-
idenced by its p-value of 0.366, irrespective of its very low R-squared value of 0.001. How-
ever, due to the limited number of fatalities, it is challenging to draw definitive conclusions 
from these forms of analysis. The GWR did enhance the model’s fit, explaining approxi-
mately 32% of the variability (R-squared of 0.325), while the RSS decreased together with 
the reduced AIC, potentially attributable to the limited number of fatalities, which renders 
estimation challenging. 

Concerning the temporal evolution of the diphtheria incidence during the four years on 
record, the trend of increasing case numbers towards 1930 are indicative of a diphtheria 
wave hitting Zurich around the beginning of the 1930s, bringing with it higher infection 
rates. The density pattern on a yearly basis is more in flux than for tuberculosis, indicating 
more fluctuations here. Nevertheless, the presence of persistent hotspots in districts 1, 
5, 6 and 8 is evident, with these areas displaying notable and clearly distinguishable con-
centrations of cases throughout the observed period. A less clearly defined hotspot of 
lower intensity is visible in the districts 3 and 4. Conversely, the upper-class districts 2 
and 7 have largely been spared, as evidenced by the absence of reported cases, excluding 
cases reported at the children’s hospital and minimal influence form district 8. Conse-
quently, these districts can be designated as coldspots. 

In an analogous manner to the tuberculosis heatmaps and animated maps (see storymap 
at https://arcg.is/0CzKDP), it can be speculated that a discernible influence of social 
class on the geographical distribution of diphtheria case hotspots exists, though this in-
fluence is comparatively less pronounced than that observed for tuberculosis. The tem-
poral stability of the heatmaps over time is low, as the hotspots regularly change location 
and few of them are stable over time. This phenomenon may be attributed to the fact that 
diphtheria primarily spreads among children who attend diƯerent schools within their re-
spective districts, and therefore, are possibly less segregated in terms of social class 
compared to adults. The previously discussed schools as possible locations of infection, 
i.e. transmission hotspots, have been shown to remain as such over the years and are 
aƯiliated with either the lower- or middle-class. Meanwhile, aƯluent districts 2 and 7 have 
exhibited minimal incidence of diphtheria cases. The observed variations in the number 
of individual hotspots may be indicative of a less chronic nature of diphtheria, as sug-
gested by literature, in comparison to tuberculosis. The role of population diƯerences in 



81 

this context is also a salient consideration; however, in contrast to tuberculosis, where 
disparities in case shares are more pronounced than diƯerences in population, the dis-
parities observed in diphtheria are comparatively less significant. 

6.3  Synthesis 
Returning to the original research question and its subquestions, I am now in a position 
to provide answers. In the interest of summarizing the key points, a brief repetition of the 
research question and subquestions will be oƯered, prior to providing a response based 
on my findings. The original research question was as follows: 

How did socioeconomic factors influence the spatial patterns of tuberculosis and diph-
theria cases in Zurich in the late 1920s and early 1930s, and where were the hotspots 

and coldspots of these two diseases, respectively? 

 How did tuberculosis and diphtheria cases spread spatially and temporally in Zur-
ich during the late 1920s and early 1930s? 

The city of Zurich experienced widespread tuberculosis, a chronic disease, and its preva-
lence was attributed to its inherent characteristics. However, the districts that were typi-
cally considered to be working-class or lower-class exhibited higher morbidity and mor-
tality rates than the middle- and upper-class districts. These hotspots remained con-
sistent over time, displaying remarkable stability. Similarly, the coldspots also demon-
strated remarkable stability over time. These were situated in aƯluent districts, such as 
districts 2 and 7, and exhibited low morbidity and mortality rates. 

The temporal stability of diphtheria is weak, as evidenced by the shifting of clusters over 
time, with infrequent persistence in a given location over multiple years. A notable in-
crease in cases was observed during the late 1920s, which may be attributed to the intro-
duction of a new wave of the disease. However, even within this context, a discernible 
pattern emerges, albeit one that encompasses districts beyond those classified as work-
ing-class, extending to more aƯluent districts as well. Districts 5 and 6, as well as 1 and 
8, are examples of this phenomenon. Conversely, districts 3 and 4 have been observed to 
demonstrate a notable absence of high morbidity and mortality. The coldspots demon-
strate some stability district 2. However, a notable concentration of cases is observed in 
districts 7 and 8, a phenomenon that is potentially influenced by the site of the children’s 
hospital in district 7 and the Balgrist clinic in district 8. In comparison with tuberculosis, 
diphtheria demonstrates a less pronounced spatial pattern and exerts a lesser influence 
on mortality. However, these findings are diƯicult to ascertain due to the limited sample 
size of only 12, respectively 19, fatalities. 
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 Where are hotspots and coldspots of tuberculosis and diphtheria cases in Zurich, 
and how did disease prevalence vary across the city? 

The distribution of hotspots reveals notable disparities, with concentrations observed in 
the traditionally working-class districts 3 and 4, 5 and the Niederdörfli neighbourhood of 
district 1. Conversely, the coldspots are located in districts 2 and 7, which are traditionally 
aƯluent. 

The distribution of diphtheria cases is concentrated in districts 1, 5, 6, 7 and 8, similar to 
an axis, running north to south. The potential correlation with specific schools, which 
have potentially been identified as sources of infection, warrants further investigation. 
Districts 2, 3 and 4 have been identified as coldspots. 

 What was the relationship between socioeconomic status and social class and 
the spatial distribution of tuberculosis and diphtheria cases? 

The distribution of tuberculosis cases is significantly influenced by socioeconomic sta-
tus, with cases clustered in densely populated working-class districts that are character-
ised by a poorer hygienic situation and where the inhabitants are of lower social classes 
and socioeconomic status. Contrarily, aƯluent, middle- and upper-class districts have 
been observed to exhibit a correlation with coldspots. 

The correlation between socioeconomic status and diphtheria cases appears to be rela-
tively weak, as no definitive influence could be observed at the district level. The findings 
indicate that socioeconomic status does not appear to exert a substantial influence on 
diphtheria cases, as no significant disparities in case numbers were observed between 
typically working-class districts and other areas. While a definitive correlation between 
hotspots and social class, including socioeconomic status, remains elusive, the potential 
influence of schools on disease patterns is noted. 

 To what extent did socioeconomic disparities correlate with the spatial distribution 
of tuberculosis and diphtheria cases in Zurich, and how do disease patterns reflect 
socioeconomic inequalities in the city? 

The correlation between hotspots and social class, including socioeconomic status, is 
relatively clear. A greater number of cases, higher morbidity and mortality rates were reg-
istered in the typically working-class districts of the city of Zurich. The morbidity and mor-
tality rates are generally higher in working-class districts than in middle- and upper-class 
districts. This finding is consistent with other studies that have identified tuberculosis 
hotspots in typically working-class districts of Zurich characterised by low socioeco-
nomic status (Ritzmann, 1998, pp. 36–37). 

The correlation between socioeconomic status and social class with the spatial distribu-
tion of diphtheria cases and fatalities is found to be relatively weak. The analysis revealed 
that not all typical working-class districts exhibited high morbidity and mortality rates. 
Consequently, it can be posited that diphtheria exhibits a comparatively weak correlation 
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between socioeconomic status and incidence, especially in comparison with tuberculo-
sis. 

This study suggests that spatial clustering of disease is not a uniform phenomenon but is 
rather conditioned by a complex interdependence of socioeconomic factors, demo-
graphic vulnerability, and disease type. This perspective has the potential to inform future 
GIS-based epidemiological modelling. Table 8 oƯers a systematic comparison of the 
most important points found in the analysis. It highlights that tuberculosis is significantly 
influenced stronger by socioeconomic diƯerences, a phenomenon that may be attributed 
to the specific age group under consideration, as evidenced by the less pronounced dis-
parities observed in the population group including children, which were mainly aƯected 
by diphtheria. 

Table 8: Comparative synthesis of tuberculosis and diphtheria data analysis 

Dimension Tuberculosis  Diphtheria Interpretation 
Age group (Young) work-

ing-age adults 
Children Socioeconomic vs. 

school-based spread 
Spatial clustering Yes  Yes Linked to socioeconomic 

status / social class 
Socioeconomic link Strong Medium-weak Class-based vs. universal 

exposure 
Mortality distribution Socioeconomi-

cally shaped 
More uniformly 
shaped 

Class-based vs. universal 
exposure 

 

Answering the original research question, I can state that the spatial distribution of tuber-
culosis cases in Zurich during the late 1920s and early 1930s was closely intertwined with 
socioeconomic conditions. The geographical distribution of tuberculosis exhibited a 
marked prevalence in densely populated, working-class districts, including districts 3, 4, 
5, and the Niederdörfli neighbourhood of district 1. These areas were distinguished by low 
socioeconomic status and low social class negatively impacting living and hygienic con-
ditions. Conversely, districts 2 and 7, which were aƯluent and exhibited low morbidity and 
mortality rates throughout the study period, were identified as coldspots. This was 
demonstrated by the findings of various analytical methods employed. The findings high-
light a clear and persistent correlation between social inequality and disease burden, with 
the spatial patterns of tuberculosis reflecting broader socioeconomic disparities within 
the urban fabric of Zurich, as described in health geography literature (Moon, 2020; 
Shaweno et al., 2018). 

The influence of socioeconomic factors on the spatial pattern of diphtheria is much less 
clearly visible and less significant, than for tuberculosis. Nevertheless, the influence of 
social class is discernible to a certain extent, possibly in connection with specific schools 
that may have functioned as transmission hotspots. While districts 5 and 6, in conjunc-
tion with the Niederdörfli neighbourhood of district 1 and district 8, were identified as 
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hotspots, districts 2, and notably 3 and 4 exhibited low incidence and therefore only a 
weak correlation with socioeconomic status and social class. While tuberculosis dis-
played comparatively stronger and more stable spatial patterns aligned with socioeco-
nomic disparities, diphtheria was more spatially variable and less clearly associated with 
socioeconomic status. Instead, they may be associated with the presence of other fac-
tors, such as the location of schools or hospitals, including the children's hospital. Con-
versely, the coldspots, particularly in district 2, demonstrated relative stability. 

Appropriate measures and health interventions should have been implemented on a 
grand scale to provide greater protection from tuberculosis to the lower-class demo-
graphic, given the knowledge at the time that they exhibited higher risk and vulnerability 
to tuberculosis. An example for such a measure is the Zürichberg forest school, but it only 
oƯered limited capacity. For diphtheria, protection measures to inhibit the spread at 
schools could have been taken. The implementation of targeted health interventions 
could have resulted in the preservation of numerous lives, in addition to the mitigation of 
the economic impact of tuberculosis on the working-age population and the increased 
childhood mortality from diphtheria. This applies even today, when resources are 
stretched thin by rapid population growth, especially in developing countries, where tu-
berculosis and diphtheria are a persistent health issue. It is important to acknowledge the 
significance of these demographics in the future development of any nation and to invest 
in its health and wellbeing, as their contributions are in turn likely to be substantial and 
long-lasting. 

6.4  Limitations 
Limitations concerning the datasets utilised, epidemiological constraints, methodologi-
cal constraints and specific challenges to the scale and aggregation of spatial data, 
namely the modifiable areal unit problem (MAUP), must be considered. 

Initially, it is conceivable that some original data was misread, given that the records were 
created manually, and the handwriting is at times not clearly legible. Furthermore, it is 
entirely possible that any attribute entry may be missing or be unreadable. Due to the na-
ture of the data, which was collected almost 100 years ago, it is impossible to determine 
its completeness. While the literature mentions both the national obligations of the 
cause-of-death statistics and the cantonal obligation to report tuberculosis cases, the 
ability and willingness of the reporting physicians is the greatest unknown influencing fac-
tor (Ritzmann, 2010b, 1998, pp. 24–27). Despite the potential incompleteness of the data, 
it nevertheless oƯers valuable insights into the past and is the sole source available for 
this study. 

While both datasets exhibit instances of missing addresses, the impact of this variation 
in size is discernible. As in the diphtheria data, approximately 200 addresses are missing, 
this has a greater impact, as the dataset only has 670 entries. The missing addresses ap-
pear to be all from 1928, which reduces the accuracy of data concerning this year. Mean-
while, the tuberculosis data also includes approximately 200 missing addresses, yet this 
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is mitigated by the fact that, of the roughly 2000 addresses, 1800 are still available for 
analysis. Similarly, the limited number of diphtheria fatalities poses a significant chal-
lenge to the accurate representation of mortality rates and mortality-based findings, 
which should be interpreted cautiously. 

A number of addresses refer to three diƯerent hospitals in the city of Zurich. The old site 
of the children’s hospital (Kinderspital) in the neighbourhood of Hottingen in district 7 was 
registered 15 times, the cantonal hospital (Kantonsspital), which today is the university 
hospital (Universitätsspital) in district 1, was registered twice and the Balgrist clinic in dis-
trict 8 was registered 5 times. The conspicuous concentration of diphtheria cases in just 
these few hospitals could potentially skew the spatial distribution and introduce bias into 
the analysis. This is particularly likely to be the case for the children’s hospital, where 15 
cases were reported, which may have influenced the distribution pattern of the 468 lo-
cated addresses, given that there are relatively few other cases in the surrounding area. 

As indicated by literature, an increased share of people went to get treated but also 
passed away in sanatoria by the 1930s (Corti, 2012; Holloway et al., 2013; Kruker and 
Senti, 1932; Rucker and Kearny, 1913; Senti and Pfister, 1946; Silberschmidt, 1930). It is 
reasonable to assume that these individuals would tend to be of a higher socioeconomic 
status and higher social class, as the treatment would prevent them from working and 
could also be quite expensive. The subsequent loss of income and additional costs could 
have deterred working-class people from seeking treatment in sanatoria. Consequently, 
a bias may have emerged, influenced by individual financial resources, which are closely 
associated with socioeconomic status and social class. However, the legal framework 
stipulating universal access to treatment (Holloway et al., 2013, p. 81) has the potential 
to mitigate the impact of this bias by ensuring equitable access to treatment irrespective 
of financial circumstances. Nevertheless, the quality and eƯectiveness of treatment at 
the cantonal sanatorium in Wald might have fallen short of that achieved in the high-end, 
privately run sanatoria in the Swiss Alps, as evidenced by the persistent disparities in the 
quality of treatment between public and private health institutions that persist to this day. 

Another point that could be questioned, is the accuracy and relevance of the HISCO clas-
sification. However, given the scope of the project, it encompasses a wide variety of oc-
cupations across multiple languages, giving it a solid foundation (van Leeuwen et al., 
2002), thereby ensuring its implementation is firmly grounded. While HISCO was origi-
nally developed for slightly earlier time periods, it nevertheless retains a reasonable de-
gree of relevance to the data under consideration. 

The complex structure of social class, according to the HISCO classification, challenges 
the assumption of clearly defined correlations between social classes and districts. The 
high heterogeneity displayed in maps of social classes may indicate that social classes 
were intermingling by the late 1920s and early 1930s. This lacking crispness of the spatial 
distribution of social classes may impede analyses based on that presumption. 
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The two datasets utilised in this thesis are, although temporally close, not equal, as the 
diphtheria data ranges from 1927 to 1930 while the tuberculosis data ranges from 1932 to 
1935. While the disparity of two years may appear negligible, it is imperative to 
acknowledge the potential for subtle alterations that may have occurred during this pe-
riod. 

The registration of asymptomatic patients, by definition, was not possible; however, this 
is a problem that still exists today and cannot really be dealt with. The question that arises 
is whether a bias has been created through the underreporting of certain population 
groups. 

A further, albeit largely inconsequential, challenge is presented by the second city unifi-
cation of 1934, wherein the City of Zurich was expanded to include several neighbouring 
communities, including what would subsequently become district 9 (Albisrieden and Alt-
stetten), Höngg, the future districts 11 and 12 (Seebach, Oerlikon, Schwamendingen) and 
Witikon. However, from 1934 onwards the reports incorporated the new neighbourhoods 
and districts, which thereafter had to be filtered out, to ensure they would not influence 
the analysis. 

Colours designed to be compatible with colour-blindness were not available for all in-
tended use cases. This was the case for the HDBSCAN maps, which relied on distinctly 
diƯerent colours, drawn from ColorBrewer2 (Brewer et al., 2013). 

Due to temporal constraints and the necessity to maintain the scope and length of the 
thesis, choices regarding the methods employed had to be made, and some potentially 
interesting methods were excluded (e.g. SaTScan). It is important to note that each 
method possesses its own advantages and disadvantages, thus enabling only a specific 
set of conclusions to be drawn, as no method is universally applicable. The focus was 
thus directed towards methods that I considered both interesting and up-to-date accord-
ing to the latest research. It is also crucial to emphasize that the selection of methods hat 
to align with the analytical scope, specifically to investigate clustering and the influence 
of social class. 

The capacity of HDBSCAN to manage varying densities, as in the data at hand, renders it 
well-suited for this analysis. However, it focuses on high-density areas, potentially over-
looking clusters in less densely populated regions, as the underlying population at risk is 
not taken into account. While nearest neighbour analysis is a relatively simple method, it 
does help to determine the presence and degree of clustering in the data, which also 
makes it a valuable addition to this study. Moran’s I, despite its limited applicability to data 
aggregated to specified areas and on a global scale, such as administrative districts, can 
assist in determining clustering and autocorrelation. LISA would have been a valuable ad-
dition, providing a deeper insight. The combination of methods employed in this study 
was well-suited to exploratory spatial analysis of disease data, as contemporary research 
suggests. However, all methods are subject to inherent limitations, which must be con-
sidered when interpreting the results. 



87 

Several limitations of the methodologies utilised during the course of this thesis apply. Of 
particular note is the MAUP (modifiable areal unit problem), which invariably arises when 
dealing with data that has been aggregated to artificial boundaries. Had the level of anal-
ysis been changed to the neighbourhoods that constitute the districts, it is reasonable to 
hypothesis that the analysis would have returned an entirely diƯerent result, as diƯerent 
district borders would have. However, given that socioeconomic data was only available 
at the district level, conducting a neighbourhood-level analysis would have been unfeasi-
ble and thus was not pursued. Fortunately, the districts of Zurich largely coincide with the 
inner homogeneity of populations (Ritzmann, 1998, pp. 36–37), thereby eliminating the 
necessity for more detailed neighbourhood-level analysis. 

A critique on district level analysis, despite the availability of point-level data, is war-
ranted. It may not have been necessary at all to aggregate the data at the district level, as 
the data was available as individual points, which could have rendered district-level anal-
ysis superfluous. However, I decided to do so anyway, because some of the methods I 
intended to apply were not designed for point data, and because relevant socioeconomic 
data was only available at this level. 

As previously mentioned, it is not possible to ascertain the precise location of an infec-
tion; only the place of residence is known (Shaweno et al., 2018). This limitation must be 
borne in mind. Despite these limitations, I believe that the situation is not as dire, given 
the constrained mobility that characterised the era. 
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7 Conclusions and future work 
Considering the research objectives, the geographical locations of oƯicial tuberculosis 
and diphtheria case data from the late 1920s and early 1930s have been geolocated from 
address data. Utilising the coordinates extracted from the geolocation process, the dis-
ease data were visualised in distinct methods, thereby highlighting the spatial distribution 
and hotspots. The influence of socioeconomic status and social class on the occurrence 
of both tuberculosis and diphtheria was analysed. While a significant correlation was es-
tablished between socioeconomic patterns of social class and tuberculosis, a similar 
correlation was found for diphtheria cases, albeit comparatively weaker and not statisti-
cally significant. 

The findings of the analyses conducted indicate that both diseases, tuberculosis and 
diphtheria, were distributed throughout the entirety of the city of Zurich in the respective 
time periods. However, this distribution was not uniform but rather varied across diƯerent 
geographical areas and clearly exhibited clustering behaviour. This variation was ex-
pected and can be attributed to Tobler’s first law (Miller, 2004; Tobler, 1970; Waters, 2017). 
The distribution of tuberculosis cases exhibited a stronger correlation with socioeco-
nomic status and social class, while the correlation for diphtheria cases was weaker and 
its total case numbers were lower. Tuberculosis, being a chronic disease, exhibited a con-
sistent prevalence throughout the study period (1932-1935), with no significant fluctua-
tions. In contrast, diphtheria demonstrated an increase in cases between 1927 and 1930, 
suggesting a possible disease outbreak. 

Concerning the distribution of tuberculosis in space, and with reference to the observed 
hotspots and their relation to social class, I can state that there is a clearly observable 
hotspot of tuberculosis cases located in the characteristically working-class districts 3 
and 4, but also in the Niederdörfli neighbourhood of district 1. Conversely, the working-
class district 5 exhibited the highest mortality rate of the entire city, closely followed by 
districts 3 and 1, as expected from the literature (Ritzmann, 1998, pp. 36–37). With regard 
to the social class and closely related socioeconomic status, a clearly observable corre-
lation was found between the shares of high case numbers and high fatalities and the so-
cioeconomic characteristics of districts influenced by the working-class. The results of 
HDBSCAN and local G* indicated the presence of clusters of diƯerent social classes in 
districts associated with said social classes. Specifically, working-class clusters were 
identified in districts 3, 4 and even 5, while upper-class clusters were located in districts 
7 and 8, as would have been anticipated. Intriguingly, a notable presence of upper-class 
clusters was also observed in district 6, despite this district’s historical association with 
the working-class. Contrarily, districts characterised by the upper-class have exhibited a 
reduced incidence of tuberculosis, both in terms of infections and fatalities. These find-
ings are consistent with research suggesting that males are at higher risk of contracting a 
tuberculosis infection and that young adults, who are the economically most active age 
group, are at higher risk of infection too (Gwitira et al., 2021; Horton et al., 2020, 2016; 
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Humayun et al., 2022; Nhamoyebonde and Leslie, 2014; Peer et al., 2023). Consequently, 
the present study oƯers a compelling response to the research questions posed, aƯirm-
ing the negative impact of low socioeconomic status on health outcomes concerning tu-
berculosis. 

The examination of the distribution of diphtheria reveals divergent patterns when com-
pared to those observed for tuberculosis. The districts 1, 5, 6, 7 and 8 were identified as 
hotspots of diphtheria, and these areas were less evidently associated with low socioec-
onomic status and social class. While districts 5 and 6, and the Niederdörfli neighbour-
hood of district 1 exhibit characteristics indicative of working-class areas, the aƯluent 
districts 7 and 8 also demonstrated high incidence. However, the analysis may be influ-
enced by the presence of a children’s hospital in district 7, which could introduce bias. 
The highest morbidity and mortality rates, although generally lower than for tuberculosis, 
were observed in districts 5 and 8, while districts 1 and 4 exhibited high mortality rates 
only. However, the findings are only of limited significance due to the limited number of 
fatalities, rendering the analysis vulnerable to outliers. The findings of HDBSCAN and lo-
cal G* demonstrate clusters of social classes in diƯerent districts, which, as previously 
mentioned, are not always clearly correlating with low socioeconomic status. While af-
fluent districts 7 and 8 are aƯected by diphtheria, district 2 is not, thus marking it as a 
coldspot, together with district 3, which, as a working-class district, would not have been 
expected to be a coldspot. The findings align with the established knowledge that diph-
theria primarily aƯects children (Byard, 2013; Truelove et al., 2020). Consequently, the 
present study provides no evidence to support the hypothesis that socioeconomic status 
exerts significant influence on health outcomes concerning diphtheria. While the ob-
served trends indicate a slight negative tendency, the findings must be interpreted with 
caution due to the lack of conclusive evidence. 

In conclusion, this master’s thesis explored the distribution of tuberculosis and diphthe-
ria cases in the City of Zurich in the late 1920s and early 1930s in depth and oƯered a 
geographical perspective of the events. It contributes to the field of health geography by 
applying spatial clustering methods to historical disease data, oƯering insights into how 
socioeconomic patterns influenced disease distribution. Unlike previous studies, which 
focused on other cities or diseases, this thesis oƯers a novel spatial and temporal per-
spective on Zurich’s fight against tuberculosis and diphtheria in the late 1920s and early 
1930s in relation to socioeconomic indicators. It aims to oƯer new insights into its course, 
which could be central to understanding further developments in health policy and health 
geography of Zurich, with implications for modern health geographic and policy. Recog-
nizing how historical disease patterns disproportionately aƯected socioeconomically 
disadvantaged demographics highlights the continued need for targeted public health 
strategies and interventions that address spatial inequality and socioeconomic status in 
contemporary cities. 

It is evident that further research is required, particularly in the context of diphtheria, 
which has received comparatively less research attention due to its lower prevalence. 
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Future research could concentrate on this aspect. Additionally, it would be worthwhile to 
direct future research towards the identification of the remaining factors that influence 
the distribution of both diseases. Ultimately, these findings provide not only historical in-
sights but also a foundation for understanding how spatial inequalities continue to shape 
urban health outcomes today.  
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Appendix 

Figure sources references 
Figure 14 

Dreamstime.com, illustration of a street sign by Sidip Farhutochman, image 
ID349584828, 2025. URL: “https://www.dreamstime.com/street-sign-street-name-
sign-icon-illustration-logo-vector-image349584828”, accessed on April 10. 

The Noun Project, Geocoding icon by ProSymbols, ID 3467401, licensed under Cre-
ative Commons Attribution 4.0, 2025. URL: “https://thenounproject.com/icon/ge-
ocoding-3467401/”, accessed on April 10. 

Vecteezy: Vecteezy, Data Visualization icon by Freepik, licensed under Freepik Li-
cense, URL: “https://www.vecteezy.com/vector-art/23752910-data-visualization-
icon-in-vector-illustration”, accessed on April 10, 2025. 

Flaticon: Flaticon, Analyse icon by Freepik, licensed under Flaticon License, URL: 
“https://www.flaticon.com/de/kostenloses-icon/analyse_1006585”, accessed on 
April 10, 2025. 

Geocoding methodology 
The geocoding of the residential addresses commenced with the linkage of street names, 
the suƯix “strasse” (German for street), house numbers and the addition of the city name 
“Zürich” in a Microsoft Excel spreadsheet. This was achieved by employing the &-operator 
which facilitates the concatenation of individual cells and text entered in quotation 
marks. The formula is expressed as follows: 

= 𝐻4 & "𝑠𝑡𝑟𝑎𝑠𝑠𝑒 " & 𝐼4 & ", 𝑍ü𝑟𝑖𝑐ℎ" 

where the H and I columns correspond to the street and house number columns, respec-
tively. The result for the first entry is therefore “Lubsstrasse 39, Zürich” for the entries 
“Lubs” and “39”. However, it should be noted that there are numerous exceptions to this 
rather elementary implementation, as in some cases the street name was entered al-
ready complete without having to add the “strasse”. Consequently, it is necessary to de-
fine exceptions to the aforementioned formula. The IF-function fulfils this requirement, in 
conjunction with the ISNUMBER- and FIND-functions. By utilising these functions in suc-
cession, exceptions can be delineated where the “strasse” element can be omitted, as 
demonstrated below. 

= 𝐼𝐹(𝐼𝑆𝑁𝑈𝑀𝐵𝐸𝑅(𝐹𝐼𝑁𝐷("𝑠𝑡𝑟𝑎𝑠𝑠𝑒";  𝐻4));  𝐻4 & " " & 𝐼4 & ", 𝑍ü𝑟𝑖𝑐ℎ";  𝐻4 & "𝑠𝑡𝑟𝑎𝑠𝑠𝑒 "  

& 𝐼4 & ", 𝑍ü𝑟𝑖𝑐ℎ") 

It is necessary to add all the exceptions where the street name does not contain the ele-
ment “strasse”, for which the OR-function is required. This includes a multitude of streets 
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and squares whose names contain “hof” (yard, e.g. Münsterhof), “markt” (market, e.g. 
Rindermarkt), “gasse” (alley), “quai” (quay), “graben” (ditch, e.g. Hirschengraben), “platz” 
(square) and some more peculiarities of German street names which lack a direct trans-
lation (“steig”, “rain”) and are at times case sensitive. Other intentionally included street 
names contain “im” (in, e.g. Im Sydefädeli), “lände” (lands, e.g. SchiƯlände), “Schipfe” 
and [Am] “Wasser”. Combined with a check for entries where the street name could not 
be deciphered and was entered as “???”, “?” “-” or void (“”), the first and second IF-state-
ments could be formulated and create an empty result if the street name could not be 
read (first line) or does not add the “strasse” element if any of the exceptions applies re-
spectively. The final IF-statement is employed to verify exceptions to the aforementioned 
exceptions as the “WaƯenplatzstrasse” would be reduced to “WaƯenplatz” due to the 
second IF-statement. The same principle applies to the “Bahnhofstrasse” and “Farbhof-
strasse”. 

= 𝐼𝐹(𝑂𝑅(𝐻4 =  ???;  𝐻4 = "? ";  𝐻4 =  " − ";  H4 =  "");  "";  𝐻4 & 

  𝐼𝐹(𝑂𝑅( 

    𝐼𝑆𝑁𝑈𝑀𝐵𝐸𝑅(𝐹𝐼𝑁𝐷("ℎ𝑜𝑓";  𝐻4)); 

    𝐼𝑆𝑁𝑈𝑀𝐵𝐸𝑅(𝐹𝐼𝑁𝐷("𝑚𝑎𝑟𝑘𝑡";  𝐻4)); 

    𝐼𝑆𝑁𝑈𝑀𝐵𝐸𝑅(𝐹𝐼𝑁𝐷("𝑔𝑎𝑠𝑠𝑒";  𝐻4)); 

    𝐼𝑆𝑁𝑈𝑀𝐵𝐸𝑅(𝐹𝐼𝑁𝐷("𝐺𝑎𝑠𝑠𝑒";  𝐻4)); 

    𝐼𝑆𝑁𝑈𝑀𝐵𝐸𝑅(𝐹𝐼𝑁𝐷("𝑤𝑒𝑔";  𝐻4)); 

    𝐼𝑆𝑁𝑈𝑀𝐵𝐸𝑅(𝐹𝐼𝑁𝐷("𝑞𝑢𝑎𝑖";  𝐻4)); 

    𝐼𝑆𝑁𝑈𝑀𝐵𝐸𝑅(𝐹𝐼𝑁𝐷("𝐼𝑚";  𝐻4)); 

    𝐼𝑆𝑁𝑈𝑀𝐵𝐸𝑅(𝐹𝐼𝑁𝐷("𝑖𝑚";  𝐻4)); 

    𝐼𝑆𝑁𝑈𝑀𝐵𝐸𝑅(𝐹𝐼𝑁𝐷("𝑔𝑟𝑎𝑏𝑒𝑛";  𝐻4)); 

    𝐼𝑆𝑁𝑈𝑀𝐵𝐸𝑅(𝐹𝐼𝑁𝐷("𝑠𝑡𝑒𝑖𝑔";  𝐻4)); 

    𝐼𝑆𝑁𝑈𝑀𝐵𝐸𝑅(𝐹𝐼𝑁𝐷("𝑠𝑡𝑟𝑎𝑠𝑠𝑒";  𝐻4)); 

    𝐼𝑆𝑁𝑈𝑀𝐵𝐸𝑅(𝐹𝐼𝑁𝐷("𝑠𝑡𝑟. ";  𝐻4)); 

    𝐼𝑆𝑁𝑈𝑀𝐵𝐸𝑅(𝐹𝐼𝑁𝐷("𝑔. ";  𝐻4)); 

    𝐼𝑆𝑁𝑈𝑀𝐵𝐸𝑅(𝐹𝐼𝑁𝐷("𝑙ä𝑛𝑑𝑒";  𝐻4)); 

    𝐼𝑆𝑁𝑈𝑀𝐵𝐸𝑅(𝐹𝐼𝑁𝐷("𝑆𝑡𝑟𝑎𝑠𝑠𝑒";  𝐻4)); 

    𝐼𝑆𝑁𝑈𝑀𝐵𝐸𝑅(𝐹𝐼𝑁𝐷("𝑆𝑐ℎ𝑖𝑝𝑓𝑒";  𝐻4)); 

    𝐼𝑆𝑁𝑈𝑀𝐵𝐸𝑅(𝐹𝐼𝑁𝐷("𝑊𝑎𝑠𝑠𝑒𝑟";  𝐻4)); 

    𝐼𝑆𝑁𝑈𝑀𝐵𝐸𝑅൫𝐹𝐼𝑁𝐷(platz;  𝐻4)൯;  
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𝐼𝑆𝑁𝑈𝑀𝐵𝐸𝑅(𝐹𝐼𝑁𝐷("𝑟𝑎𝑖𝑛";  𝐻4)); 

  ); 

  𝐼𝐹(𝑂𝑅(𝐻4 =  "𝑊𝑎𝑓𝑓𝑒𝑛𝑝𝑙𝑎𝑡𝑧";  𝐻4 =  "𝐵𝑎ℎ𝑛ℎ𝑜𝑓";  𝐻4 =  "𝐹𝑎𝑟𝑏ℎ𝑜𝑓");  "𝑠𝑡𝑟𝑎𝑠𝑠𝑒";  ""); 

  "𝑠𝑡𝑟𝑎𝑠𝑠𝑒") & " " & 𝐼4 & ", 𝑍ü𝑟𝑖𝑐ℎ")  

 

GeoDa options 
For the HDBSCAN clustering of tuberculosis cases a MINCLUSTERSIZE of 50 and MIN-
POINTS of 5 were utilised. For clustering including social class the MINCLUSTERSIZE was 
adapted to 20 and the MINPOINTS to 3 

For the HDBSCAN clustering of tuberculosis fatalities a MINCLUSTERSIZE of 15 and MIN-
POINTS of 5 were utilised. For clustering including social class a MINCLUSTERSIZE of 12 
and a MINPOINTS of 5 were utilised. 

For the HDBSCAN clustering of diphtheria cases a MINCLUSTERSIZE of 20 and MIN-
POINTS of 5 were utilised. For clustering including social class the MINCLUSTERSIZE was 
adapted to 10 and the MINPOINTS to 5. 

R code 

TB analysis 

Fabio Schilling 

2024-04-08 

Setup libraries 

Data loading & preparation 
# Read in TB case location data & keep only ID & coordinate columns 
TB_case <- read.csv("../Data/TB_locations_old_ZH.csv", header = TRUE, sep = ",") %>% select
(ID, N, E, lon, lat) 
 
# Read in TB mortality location data 
TB_death <- read.csv("../Data/TB_mortality_old_ZH.csv", header = TRUE, sep = ",") %>% selec
t(ID, N, E, lon, lat) 
 
# Read in general TB data & drop unnecessary columns 
TB <- read.csv("../Data/Tuberculosis_V2_old-ZH.csv", header = TRUE, sep = ";") #%>% select(
-c(16:20))  
 
# Remove the rows with NA values for ID from the data set 
TB <- TB[!is.na(TB$ID), ] 

Geometries 
# Read geometries of Zurich 
ZH_city <- read_sf("../Data/Stadtkreise Zürich Rekonstruktion/ganze Stadt bis 1934.shp") %>
% select(geometry) 
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# Read geometries of Zurich's districts 
ZH_districts <- read_sf("../Data/Stadtkreise Zürich Rekonstruktion/Stadtkreise bis 1934_ohn
e See_Korrektur.shp") 
 
# Read in counts shapefile 
TB_counts <- st_read("../Data/Results/TB_morbidity_old-ZH_counts_in_polygon.shp") 

Prepare data for spatial analysis 
# Join the two dataframes of locations and further detail 
TB_case_all <- left_join(TB_case, TB, by = "ID") 
 
# Convert coordinates to numeric 
TB_case_all$N <- as.numeric(TB_case_all$N) 
TB_case_all$E <- as.numeric(TB_case_all$E) 
TB_case_all$lon <- as.numeric(TB_case_all$lon) 
TB_case_all$lat <- as.numeric(TB_case_all$lat) 
 
# Join the two dataframes of locations and further detail 
TB_death_all <- left_join(TB_death, TB, by = "ID") 
 
# Convert coordinates to numeric 
TB_death_all$N <- as.numeric((TB_death_all$N)) 
TB_death_all$E <- as.numeric((TB_death_all$E)) 
TB_death_all$lon <- as.numeric((TB_death_all$lon)) 
TB_death_all$lat <- as.numeric((TB_death_all$lat)) 

# Define the spatial window (study area) using min and max coordinates 
min_x <- min(TB_case_all$E) 
max_x <- max(TB_case_all$E) 
min_y <- min(TB_case_all$N) 
max_y <- max(TB_case_all$N) 
 
study_window <- owin(xrange = c(min_x, max_x), yrange = c(min_y, max_y)) 
 
# Convert to point pattern object (ppp) 
TB_case_ppp <- ppp(x = TB_case_all$E, y = TB_case_all$N, window = study_window) 

TB_death_ppp <- ppp(x = TB_death_all$E, y = TB_death_all$N, window = study_window) 

NN function (G-function) (TB) 
# Calculate nearest neighbor distances 
nn_distances <- nndist(TB_case_ppp) 
 
# Summary statistics of the distances 
summary(nn_distances) 

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##    0.00   10.92   28.69   38.68   49.66  615.13 

# Histogram of nearest neighbor distances 
hist(nn_distances, breaks=40, main="Nearest Neighbor Distances of tuberculosis cases", cex.
main = 2, cex.lab = 1.5, cex.axis = 1.5, col = "lightblue", xlab = "NN-distance [m]") 

 

# Estimate the G-function 
G <- Gest(TB_case_ppp, correction = "border") 
 
# Plot the G-function 
plot(G, main="G-function of tuberculosis cases", cex.main = 2, cex.lab = 1.5, cex.axis = 1.
5, xlab = "distance [m]") 
abline(h = 0.5, lty = 3, col = "blue") 
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# Calculate nearest neighbor distances 
nn_distances_rip <- nndist(TB_death_ppp) 
 
# Summary statistics of the distances 
summary(nn_distances_rip) 

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##    0.00   43.01   78.36  110.14  143.20  789.35 

# Histogram of nearest neighbor distances 
hist(nn_distances_rip, breaks=32, main="Nearest Neighbor Distances of tuberculosis fataliti
es", cex.main = 2, cex.lab = 1.5, cex.axis = 1.5, col = "lightblue", xlab = "NN-distance [m
]") 

 

# Estimate the G-function 
G_rip <- Gest(TB_death_ppp, correction = "border") 
 
## Plot the G-function 
plot(G_rip, main="G-function of tuberculosis fatalities", cex.main = 2, cex.lab = 1.5, cex.
axis = 1.5, xlab = "distance [m]") 
abline(h = 0.5, lty = 3, col = "blue") 

 

Nearest Neighbour Analysis (TB) 
# Convert to sf object 
TB_case_sf <- st_as_sf(TB_case_all, coords = c("E", "N"), crs = 2056) 
 
# Add distances back to the original sf object 
TB_case_sf$nearest_neighbor_distance <- nn_distances 
 
# Convert to sf object 
TB_death_sf <- st_as_sf(TB_death_all, coords = c("E", "N"), crs = 2056) 
 
# Add distances back to the original sf object 
TB_death_sf$nearest_neighbor_distance <- nn_distances_rip 
 
# Summary statistics for nearest neighbor distances 
summary_stats <- TB_case_sf %>% 
  summarize( 
    mean_distance = mean(nearest_neighbor_distance), 
    sd_distance = sd(nearest_neighbor_distance), 
    min_distance = min(nearest_neighbor_distance), 
    max_distance = max(nearest_neighbor_distance) 
  ) 
 
print(summary_stats) 

## Simple feature collection with 1 feature and 4 fields 
## Geometry type: MULTIPOINT 
## Dimension:     XY 
## Bounding box:  xmin: 2679922 ymin: 1242638 xmax: 2686560 ymax: 1251158 
## Projected CRS: CH1903+ / LV95 
##   mean_distance sd_distance min_distance max_distance 
## 1      38.68136    48.80465            0     615.1324 
##                         geometry 
## 1 MULTIPOINT ((2679922 124978... 
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Nearest Neighbour Index (NNI) (TB) 
# Calculate NNI (easier & robuster) 
NNI_case <- nni(TB_case_sf) 

# Interpret result of NNI 
print(paste("The NNI is:", round(NNI_case$NNI, 3))) 

## [1] "The NNI is: 0.518" 

print(paste("The z score is:", round(NNI_case$z.score, 2))) 

## [1] "The z score is: -38.72" 

print(paste("The p value is:", round(NNI_case$p, 3))) 

## [1] "The p value is: 0" 

# Calculate NNI (easier & robuster) 
NNI_death <- nni(TB_death_sf) 

## Warning: data contain duplicated points 

# Interpret result of NNI 
print(paste("The NNI is:", round(NNI_death$NNI, 3))) 

## [1] "The NNI is: 0.735" 

print(paste("The z score is:", round(NNI_death$z.score, 2))) 

## [1] "The z score is: -9.3" 

print(paste("The p value is:", round(NNI_death$p))) 

## [1] "The p value is: 0" 

# NNI per social class 
lower_class <- TB_case_sf %>% filter(Social.class == "1") 
middle_class <- TB_case_sf %>% filter(Social.class == "2") 
upper_class <- TB_case_sf %>% filter(Social.class == "3") 
 
NNI_lower <- nni(lower_class) 

NNI_middle <- nni(middle_class) 

NNI_upper <- nni(upper_class) 

# Interpret result of NNI 
print(paste("The NNI of the lower class is:", round(NNI_lower$NNI, 3))) 

## [1] "The NNI of the lower class is: 0.61" 

print(paste("The z score is:", round(NNI_lower$z.score, 2))) 

## [1] "The z score is: -17" 

print(paste("The p value is:", round(NNI_lower$p, 3))) 

## [1] "The p value is: 0" 

print(paste("The NNI of the middle class is:", round(NNI_middle$NNI, 3))) 

## [1] "The NNI of the middle class is: 0.615" 

print(paste("The z score is:", round(NNI_middle$z.score, 2))) 

## [1] "The z score is: -17.69" 
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print(paste("The p value is:", round(NNI_middle$p, 3))) 

## [1] "The p value is: 0" 

print(paste("The NNI of the upper class is:", round(NNI_upper$NNI, 3))) 

## [1] "The NNI of the upper class is: 0.716" 

print(paste("The z score is:", round(NNI_upper$z.score, 2))) 

## [1] "The z score is: -11.51" 

print(paste("The p value is:", round(NNI_upper$p, 3))) 

## [1] "The p value is: 0" 

Logistic regression (TB) 
# Convert 'Gestorben' column to binary 
TB$Gestorben_binary <- ifelse(TB$Gestorben == "ja", 1, 0) 
 
# Drop the outdated "Alter" column 
TB <- TB %>% select(-Alter) 
 
# Rename the recalculated "Alter" column 
TB <- TB %>% rename_with(~ "Alter", .cols = 4) 
 
# Format age as continuous variable 
TB$Alter <- as.numeric(TB$Alter) 

## Warning: NAs durch Umwandlung erzeugt 

# Format gender as factor variable 
TB$Geschlecht <- factor(TB$Geschlecht, levels = c("m", "w")) 
 
# Format hospital admission as variable 
TB$Spital <- ifelse(TB$Spital == 1, 1, 0) 
 
# Format social class as variable 
TB$Social.class <- factor(TB$Social.class, levels = c("1", "2", "3")) 

# Simple regression 
model <- lm(Gestorben_binary ~ Geschlecht + Alter + Spital + Social.class, data = TB) 
summary(model) 

##  
## Call: 
## lm(formula = Gestorben_binary ~ Geschlecht + Alter + Spital +  
##     Social.class, data = TB) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.48549 -0.22392 -0.15770 -0.08053  1.03587  
##  
## Coefficients: 
##                 Estimate Std. Error t value Pr(>|t|)     
## (Intercept)   -0.0539917  0.0376792  -1.433   0.1521     
## Geschlechtw   -0.0046086  0.0200232  -0.230   0.8180     
## Alter          0.0060490  0.0007038   8.595   <2e-16 *** 
## Spital         0.0166807  0.0231933   0.719   0.4721     
## Social.class2  0.0541677  0.0235751   2.298   0.0217 *   
## Social.class3  0.0555638  0.0249996   2.223   0.0264 *   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.3938 on 1597 degrees of freedom 
##   (249 Beobachtungen als fehlend gelöscht) 
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## Multiple R-squared:  0.05066,    Adjusted R-squared:  0.04769  
## F-statistic: 17.04 on 5 and 1597 DF,  p-value: < 2.2e-16 

# Global regression 
global_model <- glm(Gestorben_binary ~ Geschlecht + Alter + Spital + Social.class, data = T
B, family = binomial) 
summary(global_model) 

##  
## Call: 
## glm(formula = Gestorben_binary ~ Geschlecht + Alter + Spital +  
##     Social.class, family = binomial, data = TB) 
##  
## Coefficients: 
##                Estimate Std. Error z value Pr(>|z|)     
## (Intercept)   -2.985350   0.255962 -11.663  < 2e-16 *** 
## Geschlechtw   -0.048864   0.130331  -0.375   0.7077     
## Alter          0.035430   0.004353   8.140 3.95e-16 *** 
## Spital         0.112941   0.151535   0.745   0.4561     
## Social.class2  0.357028   0.155678   2.293   0.0218 *   
## Social.class3  0.375074   0.166080   2.258   0.0239 *   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for binomial family taken to be 1) 
##  
##     Null deviance: 1624.6  on 1602  degrees of freedom 
## Residual deviance: 1546.0  on 1597  degrees of freedom 
##   (249 Beobachtungen als fehlend gelöscht) 
## AIC: 1558 
##  
## Number of Fisher Scoring iterations: 4 

exp(coef(global_model)) 

##   (Intercept)   Geschlechtw         Alter        Spital Social.class2  
##    0.05052182    0.95231087    1.03606527    1.11956642    1.42907605  
## Social.class3  
##    1.45509901 

GWR 
# Drop the outdated "Alter" column 
TB_case_sf <- TB_case_sf %>% select(-Alter) 
 
# Rename the recalculated "Alter" column 
TB_case_sf <- TB_case_sf %>% rename_with(~ "Alter", .cols = 6) 
 
# Format age as continuous variable 
TB_case_sf$Alter <- as.numeric(TB_case_sf$Alter) 

## Warning: NAs durch Umwandlung erzeugt 

TB_case_sf$died_binary <- ifelse(TB_case_sf$Gestorben == "ja", 1, 0) 
TB_case_sf$hospital <- as.numeric(TB_case_sf$Spital) 

## Warning: NAs durch Umwandlung erzeugt 

TB_case_sf$Social.class <- as.numeric(TB_case_sf$Social.class) 
 
TB_case_sf <- TB_case_sf[!is.na(TB_case_sf$hospital), ] 
TB_case_sf <- TB_case_sf[!is.na(TB_case_sf$Alter), ] 
TB_case_sf <- TB_case_sf[!is.na(TB_case_sf$Social.class), ] 

# Run GWR 
TB_gwr <- gwr.basic(died_binary ~ Geschlecht + hospital + Alter + Social.class,  
                        data = TB_case_sf,  
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                        bw = 50, # bandwidth 
                        adaptive = TRUE) 
 
# Visualize local coefficients 
print(TB_gwr) 

##    *********************************************************************** 
##    *                       Package   GWmodel                             * 
##    *********************************************************************** 
##    Program starts at: 2025-04-08 20:58:03.233143  
##    Call: 
##    gwr.basic(formula = died_binary ~ Geschlecht + hospital + Alter +  
##     Social.class, data = TB_case_sf, bw = 50, adaptive = TRUE) 
##  
##    Dependent (y) variable:  died_binary 
##    Independent variables:  Geschlecht hospital Alter Social.class 
##    Number of data points: 1747 
##    *********************************************************************** 
##    *                    Results of Global Regression                     * 
##    *********************************************************************** 
##  
##    Call: 
##     lm(formula = formula, data = data) 
##  
##    Residuals: 
##     Min      1Q  Median      3Q     Max  
## -0.4962 -0.2145 -0.1505 -0.0355  1.0344  
##  
##    Coefficients: 
##                   Estimate Std. Error t value Pr(>|t|)     
##    (Intercept)  -0.0183123  0.0372099  -0.492   0.6227     
##    Geschlechtw  -0.0150181  0.0185001  -0.812   0.4170     
##    hospital     -0.0140598  0.0217716  -0.646   0.5185     
##    Alter         0.0059946  0.0006052   9.906   <2e-16 *** 
##    Social.class  0.0210293  0.0095104   2.211   0.0272 *   
##  
##    ---Significance stars 
##    Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
##    Residual standard error: 0.3829 on 1742 degrees of freedom 
##    Multiple R-squared: 0.06314 
##    Adjusted R-squared: 0.06099  
##    F-statistic: 29.35 on 4 and 1742 DF,  p-value: < 2.2e-16  
##    ***Extra Diagnostic information 
##    Residual sum of squares: 255.3937 
##    Sigma(hat): 0.3825669 
##    AIC:  1610.554 
##    AICc:  1610.602 
##    BIC:  -58.8582 
##    *********************************************************************** 
##    *          Results of Geographically Weighted Regression              * 
##    *********************************************************************** 
##  
##    *********************Model calibration information********************* 
##    Kernel function: bisquare  
##    Adaptive bandwidth: 50 (number of nearest neighbours) 
##    Regression points: the same locations as observations are used. 
##    Distance metric: Euclidean distance metric is used. 
##  
##    ****************Summary of GWR coefficient estimates:****************** 
##                       Min.    1st Qu.     Median    3rd Qu.   Max. 
##    Intercept    -0.7530304 -0.1917156 -0.0262222  0.1324224 1.1872 
##    Geschlechtw  -0.4715119 -0.1009327  0.0022413  0.0978906 0.4192 
##    hospital     -0.6420763 -0.1377262 -0.0320757  0.0744382 0.6727 
##    Alter        -0.0150123  0.0025209  0.0067505  0.0098991 0.0261 
##    Social.class -0.3323870 -0.0344568  0.0149660  0.0617136 0.2388 
##    ************************Diagnostic information************************* 
##    Number of data points: 1747  
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##    Effective number of parameters (2trace(S) - trace(S'S)): 551.6668  
##    Effective degrees of freedom (n-2trace(S) + trace(S'S)): 1195.333  
##    AICc (GWR book, Fotheringham, et al. 2002, p. 61, eq 2.33): 2083.54  
##    AIC (GWR book, Fotheringham, et al. 2002,GWR p. 96, eq. 4.22): 1368.754  
##    BIC (GWR book, Fotheringham, et al. 2002,GWR p. 61, eq. 2.34): 2400.974  
##    Residual sum of squares: 175.076  
##    R-square value:  0.3577683  
##    Adjusted R-square value:  0.06111924  
##  
##    *********************************************************************** 
##    Program stops at: 2025-04-08 20:58:04.070608 

# GWR-Modell bereits berechnet (Ergebnis = gwr_model) 
# Die Koeffizienten extrahieren 
gwr_results_TB <- as.data.frame(TB_gwr$SDF)  # Spatial Data Frame aus GWR 
gwr_results_TB$geometry <- TB_case_sf$geometry  # Geometrie hinzufügen 
gwr_TB_sf <- st_as_sf(gwr_results_TB)  # In sf-Objekt umwandeln 
 
# Funktion zum Erstellen einer Karte für einen bestimmten Prädiktor 
plot_gwr_coeff <- function(var_name, title) { 
  ggplot() + 
    geom_sf(data = ZH_districts$geometry, color = "gray80") +  # Hintergrund für Kontext 
    geom_sf(data = gwr_TB_sf, aes(color = .data[[var_name]]), size = 1) +  
    #scale_color_distiller(palette = "RdBu", direction = -1) +  
    scale_color_gradient2(low = "blue", mid = "white", high = "red", midpoint = 0) + 
    labs(title = title, fill = "Koeffizient") + 
    xlab("Longitude") + 
    ylab("Latitude") + 
    theme_minimal() 
} 
 
# Karten für die Variablen erstellen 
plot_gwr_coeff("Geschlechtw", "Influence of gender") 

plot_gwr_coeff("Alter", "Influence of age") 

plot_gwr_coeff("Social.class", "Influence of social class") 

 

DT analysis 

Fabio Schilling 

2025-04-08 

Setup libraries 

Data loading & preparation 
# Read in TB case location data & keep only ID & coordinate columns 
DT_case <- read.csv("../Data/DT_locations_old_ZH.csv", header = TRUE, sep = ",") %>% select
(ID, N, E, lon, lat) 
 
# Read in TB mortality location data 
DT_death <- read.csv("../Data/DT_mortality_old_ZH.csv", header = TRUE, sep = ",") %>% selec
t(ID, N, E, lon, lat) 
 
# Read in general TB data & drop unnecessary columns 
DT <- read.csv("../Data/Diphtheria_old-ZH.csv", header = TRUE, sep = ";") %>% select(-c(20)
)  
 
# Remove the rows with NA values for ID from the data set 
DT <- DT[!is.na(DT$ID), ] 
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Geometries 
# Read geometries of Zurich 
ZH_city <- read_sf("../Data/Stadtkreise Zürich Rekonstruktion/ganze Stadt bis 1934.shp") %>
% select(geometry) 
 
# Read geometries of Zurich's districts 
ZH_districts <- read_sf("../Data/Stadtkreise Zürich Rekonstruktion/Stadtkreise bis 1934_ohn
e See_Korrektur.shp") 
 
# Read in counts shapefile 
DT_counts <- st_read("../Data/Results/DT_morbidity_old-ZH_counts_in_polygon.shp") 

Prepare data for spatial analysis 
# Join the two dataframes of locations and further detail 
DT_case_all <- left_join(DT_case, DT, by = "ID") 
 
# Convert coordinates to numeric 
DT_case_all$N <- as.numeric(DT_case_all$N) 
DT_case_all$E <- as.numeric(DT_case_all$E) 
DT_case_all$lon <- as.numeric(DT_case_all$lon) 
DT_case_all$lat <- as.numeric(DT_case_all$lat) 
 
# Join the two dataframes of locations and further detail 
DT_death_all <- left_join(DT_death, DT, by = "ID") 
 
# Convert coordinates to numeric 
DT_death_all$N <- as.numeric((DT_death_all$N)) 
DT_death_all$E <- as.numeric((DT_death_all$E)) 
DT_death_all$lon <- as.numeric((DT_death_all$lon)) 
DT_death_all$lat <- as.numeric((DT_death_all$lat)) 

# Define the spatial window (study area) using min and max coordinates 
min_x <- min(DT_case_all$E) 
max_x <- max(DT_case_all$E) 
min_y <- min(DT_case_all$N) 
max_y <- max(DT_case_all$N) 
 
study_window <- owin(xrange = c(min_x, max_x), yrange = c(min_y, max_y)) 
 
# Convert to point pattern object (ppp) 
DT_case_ppp <- ppp(x = DT_case_all$E, y = DT_case_all$N, window = study_window) 

DT_death_ppp <- ppp(x = DT_death_all$E, y = DT_death_all$N, window = study_window) 

NN function (G-function) (TB) 
# Calculate nearest neighbor distances 
nn_distances_DT <- nndist(DT_case_ppp) 
 
# Summary statistics of the distances 
summary(nn_distances_DT) 

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##    0.00    0.00   33.29   65.98   97.11  775.74 

# Histogram of nearest neighbor distances 
hist(nn_distances_DT, breaks=40, main="Nearest Neighbor Distances of diphtheria cases", cex
.main = 2, cex.lab = 1.5, cex.axis = 1.5, col = "lightblue", xlab = "NN-distance [m]") 

 

# Estimate the G-function 
G <- Gest(DT_case_ppp, correction = "border") 
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# Plot the G-function 
plot(G, main="G-function of diphtheria cases", cex.main = 2, cex.lab = 1.5, cex.axis = 1.5, 
xlab = "distance [m]") 
abline(h = 0.5, lty = 3, col = "blue") 

 

Nearest Neighbour Analysis (DT) 
# Convert to sf object 
DT_case_sf <- st_as_sf(DT_case_all, coords = c("E", "N"), crs = 2056) 
 
# Add distances back to the original sf object 
DT_case_sf$nearest_neighbor_distance <- nn_distances_DT 
 
# Summary statistics for nearest neighbor distances 
summary_stats <- DT_case_sf %>% 
  summarize( 
    mean_distance = mean(nearest_neighbor_distance), 
    sd_distance = sd(nearest_neighbor_distance), 
    min_distance = min(nearest_neighbor_distance), 
    max_distance = max(nearest_neighbor_distance) 
  ) 
 
print(summary_stats) 

## Simple feature collection with 1 feature and 4 fields 
## Geometry type: MULTIPOINT 
## Dimension:     XY 
## Bounding box:  xmin: 2680686 ymin: 1242199 xmax: 2686207 ymax: 1250321 
## Projected CRS: CH1903+ / LV95 
##   mean_distance sd_distance min_distance max_distance 
## 1      65.97979    98.01249            0     775.7378 
##                         geometry 
## 1 MULTIPOINT ((2680686 124982... 

Nearest Neighbour Index (NNI) (DT) 
# Calculate NNI (easier & robuster) 
NNI_case_DT <- nni(DT_case_sf) 

## Warning: data contain duplicated points 

# Interpret result of NNI 
print(paste("The NNI is:", round(NNI_case_DT$NNI, 3))) 

## [1] "The NNI is: 0.534" 

print(paste("The z score is:", round(NNI_case_DT$z.score, 2))) 

## [1] "The z score is: -19.3" 

print(paste("The p value is:", round(NNI_case_DT$p, 3))) 

## [1] "The p value is: 0" 

# NNI per social class 
lower_class <- DT_case_sf %>% filter(Social.class == "1") 
middle_class <- DT_case_sf %>% filter(Social.class == "2") 
upper_class <- DT_case_sf %>% filter(Social.class == "3") 
 
NNI_lower <- nni(lower_class) 

## Warning: data contain duplicated points 
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NNI_middle <- nni(middle_class) 

## Warning: data contain duplicated points 

NNI_upper <- nni(upper_class) 

## Warning: data contain duplicated points 

# Interpret result of NNI 
print(paste("The NNI of the lower class is:", round(NNI_lower$NNI, 3))) 

## [1] "The NNI of the lower class is: 0.776" 

print(paste("The z score is:", round(NNI_lower$z.score, 2))) 

## [1] "The z score is: -4.94" 

print(paste("The p value is:", round(NNI_lower$p, 3))) 

## [1] "The p value is: 0" 

print(paste("The NNI of the middle class is:", round(NNI_middle$NNI, 3))) 

## [1] "The NNI of the middle class is: 0.575" 

print(paste("The z score is:", round(NNI_middle$z.score, 2))) 

## [1] "The z score is: -9.65" 

print(paste("The p value is:", round(NNI_middle$p, 3))) 

## [1] "The p value is: 0" 

print(paste("The NNI of the upper class is:", round(NNI_upper$NNI, 3))) 

## [1] "The NNI of the upper class is: 0.652" 

print(paste("The z score is:", round(NNI_upper$z.score, 2))) 

## [1] "The z score is: -8.52" 

print(paste("The p value is:", round(NNI_upper$p, 3))) 

## [1] "The p value is: 0" 

Logistic regression (DT) 
# Convert 'Gestorben' column to binary 
DT$Gestorben_binary <- ifelse(DT$Tod == "ja", 1, 0) 
 
# Format age as continuous variable 
DT$Alter <- as.numeric(DT$Alter) 

## Warning: NAs durch Umwandlung erzeugt 

# Format gender as factor variable 
DT$Geschlecht <- factor(DT$Geschlecht, levels = c("m", "w")) 
 
# Format gender as factor variable 
DT$Spital <- ifelse(DT$Spital == 1, 1, 0) 
 
# Format social class as variable 
DT$Social.class <- factor(DT$Social.class, levels = c("1", "2", "3")) 

model_DT <- lm(Gestorben_binary ~ Geschlecht + Alter + Spital + Social.class, data = DT) 
summary(model_DT) 
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##  
## Call: 
## lm(formula = Gestorben_binary ~ Geschlecht + Alter + Spital +  
##     Social.class, data = DT) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.05660 -0.04115 -0.02397 -0.01659  0.98622  
##  
## Coefficients: 
##                 Estimate Std. Error t value Pr(>|t|)   
## (Intercept)    0.0242063  0.0164229   1.474   0.1410   
## Geschlechtw   -0.0235305  0.0141192  -1.667   0.0961 . 
## Alter         -0.0001164  0.0006783  -0.172   0.8638   
## Spital         0.0136890  0.0142947   0.958   0.3386   
## Social.class2  0.0176459  0.0176263   1.001   0.3172   
## Social.class3  0.0188187  0.0165878   1.134   0.2571   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.167 on 587 degrees of freedom 
##   (75 Beobachtungen als fehlend gelöscht) 
## Multiple R-squared:  0.009174,   Adjusted R-squared:  0.0007346  
## F-statistic: 1.087 on 5 and 587 DF,  p-value: 0.3663 

# Global regression 
global_model_DT <- glm(Gestorben_binary ~ Geschlecht + Alter + Spital + Social.class, data 
= DT, family = binomial) 
summary(global_model_DT) 

##  
## Call: 
## glm(formula = Gestorben_binary ~ Geschlecht + Alter + Spital +  
##     Social.class, family = binomial, data = DT) 
##  
## Coefficients: 
##               Estimate Std. Error z value Pr(>|z|)     
## (Intercept)   -3.88716    0.69484  -5.594 2.21e-08 *** 
## Geschlechtw   -0.88875    0.55490  -1.602    0.109     
## Alter         -0.00484    0.02714  -0.178    0.858     
## Spital         0.46418    0.50055   0.927    0.354     
## Social.class2  0.72975    0.71781   1.017    0.309     
## Social.class3  0.78913    0.68988   1.144    0.253     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for binomial family taken to be 1) 
##  
##     Null deviance: 154.28  on 592  degrees of freedom 
## Residual deviance: 148.66  on 587  degrees of freedom 
##   (75 Beobachtungen als fehlend gelöscht) 
## AIC: 160.66 
##  
## Number of Fisher Scoring iterations: 7 

GWR 
# Format age as continuous variable 
DT_case_sf$Alter <- as.numeric(DT_case_sf$Alter) 

## Warning: NAs durch Umwandlung erzeugt 

DT_case_sf$died_binary <- ifelse(DT_case_sf$Tod == "ja", 1, 0) 
DT_case_sf$hospital <- as.numeric(DT_case_sf$Spital) 

## Warning: NAs durch Umwandlung erzeugt 
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DT_case_sf$Social.class <- as.numeric(DT_case_sf$Social.class) 
 
DT_case_sf <- DT_case_sf[!is.na(DT_case_sf$hospital), ] 
DT_case_sf <- DT_case_sf[!is.na(DT_case_sf$Alter), ] 
DT_case_sf <- DT_case_sf[!is.na(DT_case_sf$Social.class), ] 

# Run GWR 
DT_gwr <- gwr.basic(died_binary ~ Geschlecht + hospital + Alter + Social.class,  
                        data = DT_case_sf,  
                        bw = 50, # bandwidth 
                        adaptive = TRUE) 
 
# Visualize local coefficients 
print(DT_gwr) 

##    *********************************************************************** 
##    *                       Package   GWmodel                             * 
##    *********************************************************************** 
##    Program starts at: 2025-04-08 20:53:42.780645  
##    Call: 
##    gwr.basic(formula = died_binary ~ Geschlecht + hospital + Alter +  
##     Social.class, data = DT_case_sf, bw = 50, adaptive = TRUE) 
##  
##    Dependent (y) variable:  died_binary 
##    Independent variables:  Geschlecht hospital Alter Social.class 
##    Number of data points: 326 
##    *********************************************************************** 
##    *                    Results of Global Regression                     * 
##    *********************************************************************** 
##  
##    Call: 
##     lm(formula = formula, data = data) 
##  
##    Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.05874 -0.04309 -0.03251 -0.02399  0.98082  
##  
##    Coefficients: 
##                   Estimate Std. Error t value Pr(>|t|) 
##    (Intercept)   3.437e-02  3.718e-02   0.925    0.356 
##    Geschlechtw  -6.359e-03  2.074e-02  -0.307    0.759 
##    hospital     -1.725e-02  2.096e-02  -0.823    0.411 
##    Alter         9.706e-05  9.673e-04   0.100    0.920 
##    Social.class  1.274e-02  1.086e-02   1.174    0.241 
##  
##    ---Significance stars 
##    Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
##    Residual standard error: 0.1814 on 321 degrees of freedom 
##    Multiple R-squared: 0.00612 
##    Adjusted R-squared: -0.006265  
##    F-statistic: 0.4941 on 4 and 321 DF,  p-value: 0.7401  
##    ***Extra Diagnostic information 
##    Residual sum of squares: 10.56379 
##    Sigma(hat): 0.1805666 
##    AIC:  -180.8579 
##    AICc:  -180.5945 
##    BIC:  -449.4151 
##    *********************************************************************** 
##    *          Results of Geographically Weighted Regression              * 
##    *********************************************************************** 
##  
##    *********************Model calibration information********************* 
##    Kernel function: bisquare  
##    Adaptive bandwidth: 50 (number of nearest neighbours) 
##    Regression points: the same locations as observations are used. 
##    Distance metric: Euclidean distance metric is used. 
##  
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##    ****************Summary of GWR coefficient estimates:****************** 
##                        Min.     1st Qu.      Median     3rd Qu.   Max. 
##    Intercept    -0.41696548 -0.06687345  0.00000000  0.10863437 0.5689 
##    Geschlechtw  -0.23961963 -0.07893113 -0.02498960  0.04076336 0.5033 
##    hospital     -0.21839262 -0.06267230 -0.02332865  0.05765624 0.2766 
##    Alter        -0.01711387 -0.00143124 -0.00025983  0.00063420 0.0044 
##    Social.class -0.05047057 -0.00014591  0.00632893  0.02345894 0.1120 
##    ************************Diagnostic information************************* 
##    Number of data points: 326  
##    Effective number of parameters (2trace(S) - trace(S'S)): 100.38  
##    Effective degrees of freedom (n-2trace(S) + trace(S'S)): 225.62  
##    AICc (GWR book, Fotheringham, et al. 2002, p. 61, eq 2.33): -105.5815  
##    AIC (GWR book, Fotheringham, et al. 2002,GWR p. 96, eq. 4.22): -239.9132  
##    BIC (GWR book, Fotheringham, et al. 2002,GWR p. 61, eq. 2.34): -186.9285  
##    Residual sum of squares: 7.172351  
##    R-square value:  0.3251988  
##    Adjusted R-square value:  0.02363813  
##  
##    *********************************************************************** 
##    Program stops at: 2025-04-08 20:53:42.810344 

# GWR-Modell bereits berechnet (Ergebnis = gwr_model) 
# Die Koeffizienten extrahieren 
gwr_results_DT <- as.data.frame(DT_gwr$SDF)  # Spatial Data Frame aus GWR 
gwr_results_DT$geometry <- DT_case_sf$geometry  # Geometrie hinzufügen 
gwr_DT_sf <- st_as_sf(gwr_results_DT)  # In sf-Objekt umwandeln 
 
# Funktion zum Erstellen einer Karte für einen bestimmten Prädiktor 
plot_gwr_coeff <- function(var_name, title) { 
  ggplot() + 
    geom_sf(data = ZH_districts$geometry, color = "gray80") +  # Hintergrund für Kontext 
    geom_sf(data = gwr_DT_sf, aes(color = .data[[var_name]]), size = 1) +  
    #scale_color_distiller(palette = "RdBu", direction = -1) +  
    scale_color_gradient2(low = "blue", mid = "white", high = "red", midpoint = 0) + 
    labs(title = title, fill = "Koeffizient") + 
    xlab("Longitude") + 
    ylab("Latitude") + 
    theme_minimal() 
} 
 
# Karten für die Variablen erstellen 
plot_gwr_coeff("Alter", "Influence of age") 

plot_gwr_coeff("Social.class", "Influence of social class") 

 

Python code 

Analysis for MSc thesis 
Setup 
import pandas as pd 
import numpy as np 
import geopandas as gpd 
import libpysal as ps 
import matplotlib.pyplot as plt 
from matplotlib.ticker import MaxNLocator 

Read in data from excel files 
# Load data 
TB = pd.read_excel('Tuberculosis_V2_old-ZH.xlsx', header = 1) 
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# Drop first row 
TB = TB.drop(0) 
 
# Drop all unnamed and unneeded columns 
TB = TB.drop(columns = ['Unnamed: 0', 'Alter', 'Unnamed: 16', 'Unnamed: 17', 'Foto', 
'Adresse', 
       'Unnamed: 20', 'Unnamed: 21', 'Unnamed: 22', 'Statistics', 
       'Unnamed: 24', 'Unnamed: 25', 'Unnamed: 26', 
       'Unnamed: 27', 'Unnamed: 28', 'Unnamed: 29', 'Unnamed: 30']) 
# Basic statistics 
TB["Anzeigedatum"] = pd.to_datetime(TB["Anzeigedatum"], errors='coerce') 
TB["Anzeigedatum"] = TB["Anzeigedatum"].dt.date 
TB["Alter"] = TB["Alter neu"].astype("Int64") 
C:\Users\Fabio\AppData\Local\Temp\ipykernel_5776\121820076.py:2: UserWarning: Pars-
ing dates in DD/MM/YYYY format when dayfirst=False (the default) was specified. This 
may lead to inconsistently parsed dates! Specify a format to ensure consistent 
parsing. 
  TB["Anzeigedatum"] = pd.to_datetime(TB["Anzeigedatum"], errors='coerce') 
# Load data 
DT = pd.read_excel('Diphtheria_old-ZH.xlsx', header = 1) 
 
# Drop first row 
DT = DT.drop(0) 
# Drop all unnamed and unneeded columns 
DT = DT.drop(columns = ['Krankheitsbeginn', 'Foto', 'Adresse', 'Unnamed: 20', 'Un-
named: 21', 'Unnamed: 22', 
       'Unnamed: 23', 'Unnamed: 24', 'Unnamed: 25', 'Unnamed: 26', 
       'Unnamed: 27', 'Unnamed: 28']) 
# Basic statistics 
DT["Anzeigedatum"] = pd.to_datetime(DT["Anzeigedatum"], errors='coerce') 
DT["Anzeigedatum"] = DT["Anzeigedatum"].dt.date 
#DT["Alter"] = DT["Alter"].astype("Int64") 

Histograms 
# Drop rows with NaT values 
TB_hist = TB.dropna(subset=['Anzeigedatum']) 
TB_hist['Anzeigedatum'] = pd.to_datetime(TB_hist['Anzeigedatum'], errors='coerce') 
 
# Check for any NaT values after conversion 
if TB_hist['Anzeigedatum'].isna().any(): 
    print("Warning: Some dates could not be converted to datetime and are set as 
NaT.") 
C:\Users\Fabio\AppData\Local\Temp\ipykernel_5776\966915518.py:3: SettingWithCopy-
Warning:  
A value is trying to be set on a copy of a slice from a DataFrame. 
Try using .loc[row_indexer,col_indexer] = value instead 
 
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/sta-
ble/user_guide/indexing.html#returning-a-view-versus-a-copy 
  TB_hist['Anzeigedatum'] = pd.to_datetime(TB_hist['Anzeigedatum'], errors='coer-
ce') 
# Set the 'date' column as the DataFrame index (useful for resampling) 
TB_hist.set_index('Anzeigedatum', inplace=True) 
 
# Resample by month and count occurrences 
monthly_counts = TB_hist.resample('M').size() 
 
# Remove entries for the year 1931 (first 2 rows) 
monthly_counts = monthly_counts.iloc[321:] 
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# Format the index to display only Year-Month 
monthly_counts.index = monthly_counts.index.strftime('%Y-%m') 
# Plotting the monthly histogram 
monthly_counts.plot(kind='bar', figsize=(10, 6), color='skyblue', edgecolor='grey') 
plt.title('Monthly Tuberculosis Cases', fontsize=16) 
plt.xlabel('Year-Month') 
plt.xticks(ticks=range(len(monthly_counts)), labels=[label if i % 2 == 0 else '' 
for i, label in enumerate(monthly_counts.index)],  rotation=45) # Skip every second 
tick 
plt.ylabel('Number of Cases') 
#plt.xlim(319, 367) 
plt.show() 
 

# Plotting the monthly histogram 
monthly_counts.plot(kind='line', figsize=(10, 6), color='skyblue') 
plt.title('Monthly Tuberculosis Cases', fontsize=16) 
plt.xlabel('Year-Month') 
plt.xticks(ticks=range(len(monthly_counts)), labels=[label if i % 2 == 0 else '' 
for i, label in enumerate(monthly_counts.index)],  rotation=45) # Skip every second 
tick 
plt.ylabel('Number of Cases') 
#plt.xlim(319, 367) 
plt.show() 
 

# Drop rows with NaT values 
DT_hist = DT.dropna(subset=['Anzeigedatum']) 
DT_hist['Anzeigedatum'] = pd.to_datetime(DT_hist['Anzeigedatum'], errors='coerce') 
 
# Check for any NaT values after conversion 
if DT_hist['Anzeigedatum'].isna().any(): 
    print("Warning: Some dates could not be converted to datetime and are set as 
NaT.") 
C:\Users\Fabio\AppData\Local\Temp\ipykernel_5776\92631.py:3: SettingWithCopyWarn-
ing:  
A value is trying to be set on a copy of a slice from a DataFrame. 
Try using .loc[row_indexer,col_indexer] = value instead 
 
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/sta-
ble/user_guide/indexing.html#returning-a-view-versus-a-copy 
  DT_hist['Anzeigedatum'] = pd.to_datetime(DT_hist['Anzeigedatum'], errors='coer-
ce') 
# Set the 'date' column as the DataFrame index (useful for resampling) 
DT_hist.set_index('Anzeigedatum', inplace=True) 
 
# Resample by month and count occurrences 
monthly_counts_DT = DT_hist.resample('M').size() 
 
# Remove entries for the year 1931 (first 2 rows) 
#monthly_counts_DT = monthly_counts_DT.iloc[321:] 
 
# Format the index to display only Year-Month 
monthly_counts_DT.index = monthly_counts_DT.index.strftime('%Y-%m') 
# Plotting the monthly histogram 
monthly_counts_DT.plot(kind='bar', figsize=(10, 6), color='skyblue', 
edgecolor='grey') 
plt.title('Monthly Diphtheria Cases', fontsize=16) 
plt.xlabel('Year-Month') 
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plt.xticks(ticks=range(len(monthly_counts_DT)), labels=[label if i % 2 == 0 else '' 
for i, label in enumerate(monthly_counts_DT.index)],  rotation=45) # Skip every 
second tick 
plt.ylabel('Number of Cases') 
#plt.xlim(319, 367) 
plt.show() 
 

# Plotting the monthly histogram 
monthly_counts_DT.plot(kind='line', figsize=(10, 6), color='skyblue') 
plt.title('Monthly Diphtheria Cases', fontsize=16) 
plt.xlabel('Year-Month') 
plt.xticks(ticks=range(len(monthly_counts_DT)), labels=[label if i % 2 == 0 else '' 
for i, label in enumerate(monthly_counts_DT.index)],  rotation=45) # Skip every 
second tick 
plt.ylabel('Number of Cases') 
#plt.xlim(319, 367) 
plt.show() 
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