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Abstract 
Sustainable agricultural management plays a key role in maintaining soil health and associated 

ecosystem functions. This thesis investigates how long-term agricultural practices influence 

two major soil health indicators: earthworm biomass and soil organic carbon (SOC). Data from 

four Swiss long-term field experiments (LTEs) were harmonized using the open-source R 

package SoilManageR, which standardized management records into comparable indicators 

such as carbon inputs, soil cover duration, tillage intensity, nitrogen input, and pesticide use. 

Linear mixed-effects models that account for random effects between the sites were applied 

to evaluate the effects of management, soil texture, and climate. Earthworm biomass 

responded strongly to management, with prolonged soil cover and higher carbon inputs 

increasing abundance, while intensive tillage reduced it. In contrast, SOC levels were mainly 

governed by inherent soil properties, especially clay content, while management indicators 

contributed modestly. An alternative SOC-to-clay ratio model revealed additional, though 

limited, management effects, with carbon input and tillage intensity as the main management 

drivers of SOC over clay. These findings demonstrate that biological indicators like earthworm 

biomass are highly sensitive to management and provide early insights into soil health 

changes, whereas chemical indicators like SOC respond more slowly. The results highlight the 

importance of harmonized data and standardized indicators when comparing multi-site long-

term experiments and emphasize the potential of sustainable management strategies that 

maintain soil cover, reduce disturbance, and enhance organic inputs. 
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1. Introduction and Background 
Soils are at the core of sustainable agriculture, providing essential ecosystem services such 

as nutrient cycling, water regulation, food security, and carbon storage. Management practices 

play a major role in sustaining or improving these ecosystem services (Powlson et al., 2011; 

Power, 2010). Agricultural intensification, including frequent tillage, monocultures, and high 

external inputs, have contributed to extensive and unsustainable soil degradation, pushing 

ecosystems toward collapse and threatening the long-term habitability of our planet. (Kopittke 

et al., 2019). At the same time, there are several studies that highlight the potential of different 

soil management practices such as continuous soil cover using cover crops, reduced 

disturbance, and organic matter inputs to support soil health (Tully & McAskill, 2020). 

Understanding how these management practices shape biological and chemical indicators of 

soil quality is therefore essential. 

 

A valuable source of information to disentangle these relationships are long-term trials or field 

experiments (LTEs) (Bai et al., 2018). Agroscope, the Swiss center of excellence for 

agricultural research, maintains or has maintained several long-term agricultural trials in 

Switzerland to study gradual changes in soil quality and related functions (Agroscope, 2021b). 

These trials, running over decades, capture processes that cannot be observed in shorter 

experiments. By applying different management practices such as crop rotation, fertilization, 

tillage, and farming systems, these trials allow to assess how agriculture influences soil health 

and ecosystem interactions. LTEs capture the cumulative impact of agricultural practices 

across multiple rotations, environmental conditions and different sites. They offer repeated 

measurements of biological and chemical indicators while documenting detailed management 

histories. 

 

This thesis aims to investigate the relationship between the management of agricultural fields 

and soil health. The term soil health however is very broad. Maikhuri and Rao (2012) describe 

it “as the capacity of soil to function as a vital living system within land use boundaries”. Soil 

health and soil quality are often used interchangeably to describe how well soils perform their 

above mentioned functions. This thesis will be using two different indicators as a representation 

of soil health. The first one is the abundance of earthworms, which forms an important 

biological indicator for soil health. Earthworms are “ecosystem engineers”: their burrowing and 

casting builds macropores, stabilizes aggregates, and speeds up organic-matter breakdown 

and nutrient cycling processes that improve infiltration, aeration, and root growth (Fründ et al., 

2010). Because of this tight link to soil functioning, we can use total earthworm 

abundance/biomass as a practical measure of overall biological activity.  

 

The second indicator analyzed in this thesis is soil organic carbon (SOC). SOC is a central 

component of soil quality, functionality and health (Lal, 2016). SOC is tightly connected to 

aggregation, water holding capacity, and the stabilization of nutrients (Mustafa et al., 2020). Its 

dynamics, however, are shaped by both inherent soil properties, especially texture, and the 

management of the soil, which can have a significant impact depending on the soil type (Payen 

et al., 2021; Johannes et al., 2017). Clay content, in particular, strongly governs SOC levels by 

providing physical and chemical protection of organic matter. While management practices 

such as increasing carbon inputs and reducing soil disturbance can promote SOC 

accumulation, these effects often emerge only over longer timescales (Komatsuzaki & Ohta, 

2007).  

 

The present study uses data from four LTEs in Switzerland to investigate the relationships 

between long-term management practices and the two indicators earthworm biomass and soil 

organic carbon. LTEs provide valuable insights into the effects of specific management 

practices, they are often analyzed individually, which limits the generalizability of findings 



 

2 
 

across sites and conditions. In this study, I aim to harmonize the management of each trial, to 

be able to perform meaningful analytics.  

 

Agricultural management influences earthworms and SOC through a variety of well-known 

dynamics. These assumptions are used to develop a solid foundation for analyzing and 

explaining our soil health indicators. Carbon inputs from crop residues and organic 

amendments directly contribute to the formation and stabilization of soil organic matter, thereby 

supporting SOC accumulation and providing food resources for earthworms (Kong et al., 2005; 

Marinissen & De Ruiter, 1993). Another factor contributing to soil health is maintaining 

continuous soil cover through cover crops and optimized crop rotations. Increased soil cover 

helps regulate soil moisture and temperature, protects against erosion, and creates favorable 

habitat conditions for soil fauna (Koudahe et al., 2022). Conversely, high soil disturbance 

through intensive tillage can negatively affect both earthworm biomass and SOC by disrupting 

soil structure, accelerating decomposition, and increasing carbon losses (Haddaway et al., 

2017). The effect on earthworm abundance can have different magnitudes depending on soil 

types and species (Chan, 2001). Soil texture, particularly clay content, plays a central role in 

SOC stabilization and can also buffer the effects of management practices (Komatsuzaki & 

Ohta, 2007). For earthworm populations, climatic factors such as precipitation and temperature 

additionally influence activity, survival, and reproduction, which is why environmental variability 

is accounted for alongside management indicators (Singh et al., 2019).  

1.1 Research question 

My thesis aims to answer the following research question: 

 

How do long-term agricultural management practices affect the soil health indicators 

earthworm abundance and SOC content across long-term field experiments located in 

Switzerland? 

 

Specifically, the analysis aims to identify which management, and environmental factors drive 

earthworm populations across sites and years and determine how SOC levels are shaped by 

both soil texture and long-term management. To achieve this, not only is the management data 

considered, but climate data and soil parameters like texture are being used for analyzing 

earthworm abundance and SOC. Table 1 summarizes the hypotheses tested in this study 

together with the corresponding variables used for testing. Random effects are used to account 

for disparity of data, that cannot be explained through the management or climate indicators, 

such as different soil types at the sites.  

 
Table 1: Hypotheses and corresponding variables 

Hypothesis: 

Improved soil management 

increases: 

Response 

Variable 

Explanatory Variables Random 

Effects 

Earthworm abundance and 

biomass 

Earthworm 

biomass 

Tillage intensity, C inputs, 

Soil cover, Soil texture, 

Temperature, Precipitation 

LTE conditions, 

sampling date 

Soil organic carbon content Soil organic 

carbon 

(C_org/SOC) 

C inputs, Soil cover, Tillage 

intensity, Temperature, 

Precipitation, Soil texture, 

Pesticide usage 

LTE conditions 
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1.2 Study Design and Approach 

The first step is to have a look at the 4 LTEs. What are the goals of each experiment? What 

data was gathered and what are characteristics of each site, including soil type and climatic 

conditions? This data needs to be compiled and transformed into a useful format, which 

enables developing models that can explain both soil health indicators used in this thesis.  

The model used is a linear mixed-effects model that can account for random effects between 

the different sites. Results will show the models using graphs and tables to investigate model 

performance and the impact of the given indicators on the response variables. Using the 

results, I will answer the research question in the context of previous research, highlighting the 

implications for sustainable soil management and the strengths and limitations of the study. 

The overall goal of this thesis is to contribute to a better understanding of how sustainable 

management practices can be evaluated and compared. In doing so, it highlights both the 

potential and the limitations of using long-term experimental data to inform strategies for 

improving soil health in temperate agro-ecosystems. 
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2. Study Sites and Data Sources 
The data used in this thesis comes from four different Lont-Term Experiments (LTEs) all 

conducted under the supervision of Agroscope Switzerland. These LTEs are dedicated to 

studying long term effects of different practices on agricultural systems. Having datasets that 

stretch over longer periods is crucial to detect changes in soil health und functionality. Some 

of the experiments started in the 80s and 90s and have already been finished by now. Others 

are still running in 2025. They all hold valuable information that has not been fully analyzed 

under different lenses. To properly use the large amounts of data gathered during all these 

years, most of it must be transformed into a format that allows it to compare the management 

of each LTE. Here is an overview of the LTEs that were analyzed during this thesis.  

2.1 FAST Site Description 

The FAST (Farming System and Tillage) trial, established in 2009 by Agroscope in Rümlang 

(Canton of Zürich, Switzerland) on a calcaric Cambisol, is a long-term field experiment 

designed to evaluate the agronomic, ecological, and environmental impacts of different farming 

systems and tillage practices. As a multi-factorial LTE, FAST systematically investigates how 

conventional and organic farming systems, in combination with plough-based and reduced 

tillage, influence a wide range of parameters related to soil health, crop productivity, 

biodiversity, and ecosystem services (Agroscope, 2021a). 
 

The trial employs a split-plot design with two main factors: farming system (conventional vs. 

organic), and tillage method (ploughing vs. reduced tillage). Each treatment is further 

subdivided into plots receiving one of three intercropping treatments: no cover crop (fallow), 

legume cover crops and non-legume cover crops. The rotation spans six years and includes 

crops in the following order: winter wheat, maize, legumes, winter wheat and a two-year 

temporary ley. The design includes four replications per treatment and is implemented across 

two independently managed blocks (FAST I and FAST II) that are shifted by one year, which 

allows temporal replicates. 

 

The site is located at 485 m. a.s.l with an annual precipitation of 1050 mm and an average 

temperature of 9.4 °C. The soil type is a calcaric Cambisol with a sandy loam (23% clay, 34% 

silt, 43% sand, 1.4% org. C). The trial measured physical (density, texture, pore volume), 

chemical (carbon, nitrogen, available nutrients, nitrous oxide emissions, nitrogen leaching) and 

biological (earthworms, mycorrhiza, microbial diversity and biomass) soil parameters at regular 

intervals but not every year. Yields and properties of the crops are measured annually. The 

experiment is still running in 2025, providing new data every year (Agroscope, 2021). 

 

2.2 Oberacker Site Description 

The Oberacker LTE, established in 1994 at Inforama Rütti in Zollikofen (Canton of Bern, 

Switzerland), is a long-term field experiment designed to compare the long-term agronomic 

and soil-related effects of conventional versus conservation tillage systems under Swiss arable 

conditions. Managed collaboratively by Agroscope, HAFL (School of Agricultural, Forest and 

Food Sciences), and the Bern Cantonal Soil Agency (LANAT), the trial provides large datasets 

regarding soil management in a Swiss climate (Agroscope, 2024) 

 

The trial compares two main tillage systems, conventional ploughing and no-tillage.  

The experiment comprises six main plots, each managed continuously under one of the two 

tillage systems since its inception. The experiment has a six-year crop rotation: Peas, winter 

wheat, faba beans, winter barley, sugar beet, and silage maize. This design enables yearly 

data collection for each crop under both tillage systems. In 2009, the trial was expanded to 

include a fertilization subplot treatment within each tillage regime, comparing a standard 



 

5 
 

fertilization practice (GRUD/PRIF), and the alternative Kinsey method, which emphasizes base 

saturation balancing of soil nutrients. 

 

The experiment measures yields and nutrient contents annually and soil properties, like soil 

PH, SOC, and biological soil properties every 2 years. The site is located at 555 m a.s.l on an 

eutric Cambisol with sandy loam (18% clay, 23% silt, 59% sand, 1.7% org. C). Annual 

precipitation and mean Temperature are 1060 mm and 8.8 °C (Agroscope, 2024). 

 

2.3 Chaiblen Site Description 

The Chaiblen Long-Term Field Trial (LTE) was conducted at the Agroscope Tänikon research 

station near Ettenhausen (Canton Thurgau, Switzerland) from 1989 to 2000. The experiment 

systematically compared three contrasting crop rotation strategies in arable agriculture: a 

diversified rotation (vielfältig), a wheat-dominant rotation (weizenbetont), and a maize-

dominant rotation (maisbetont). For every crop rotation, two different treatments in the form of 

an integrated (IP) and an intensive approach have been analyzed.  

 

Diversified Wheat-dominant Maize-dominant 

Maize, silage Maize, silage Maize, silage 

Wheat, winter Wheat, winter Wheat, winter 

Ley, temporary Barley, winter Ley, temporary 

Ley, temporary Rapeseed, winter Maize, silage 

Potato, Rapeseed Wheat, winter Maize, silage 

 

The site is located at 538 m a.s.l and has an annual Precipitation and temperature of 1189 mm 

and 8.7 °C. The site is located on a gleyic calcaric cambisol (41% clay, 37% silt, 22% sand, 

2.6% org. C). Measurements regarding yields and nutrient content were done annually. 

Biological soil properties in the form of earthworms were measured every year but only for the 

last 5 years. Physical and chemical properties were measured twice, in the beginning and at 

the end of the experimental period.  

 

2.4 Burgrain Site Description 

The Burgrain LTE, conducted from 1991 to 2008 near Alberswil (Canton of Lucerne, 

Switzerland), was a long-term field experiment designed to compare the agronomic, 

ecological, and environmental performance of three contrasting cropping systems under 

central Swiss conditions. Managed by Agroscope Reckenholz-Tänikon, the trial aimed to 

assess the sustainability of organic and integrated farming systems in terms of yield, soil 

quality, environmental impact, and economic viability (Zihlmann et al., 2010). 

 

The trial compared three main cropping systems: an organic system (Bio), an integrated 

extensive system (IPe), and an integrated intensive system (IPi). The experiment was laid out 

in a six-field strip plot design (~4 ha total) with each system applied across replicated strips. 

The rotation from 1991 to 2002 included potato, maize, winter wheat, summer barley, and 

temporary leys. From 2003 onward, the crop sequence was adjusted to include winter barley 

and rapeseed, reflecting regional practice. All treatments used mechanical tillage, with the IPe 

system adopting reduced tillage from 2003 onward. The extensive system saw less amounts 

of fertilizers and pesticide usage, but still significantly more than the organic approach. The 

organic system did without any mineral fertilizers while the others used a combination of 

mineral and organic in the form of manure and slurry.  

 

The site is located at 580 m a.s.l. on a Cambisol derived from glacial till with loamy texture 

(approx. 22% clay, 47% silt, 31% sand, 2.0% org. C). Mean annual precipitation and 

temperature are 1110 mm and 9.4 °C, respectively. The experiment recorded annual crop 
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yields and nutrient contents, while soil physical and biological parameters—such as soil 

organic carbon (SOC), pH, nutrient levels, compaction, microbial biomass, mycorrhizal 

colonization, and earthworm populations—were measured at regular intervals. Environmental 
indicators including nitrate leaching (soil nitrate profiles) and greenhouse gas emissions (N₂O, 

CO₂, CH₄) were also monitored. Economic performance and eco-efficiency were evaluated 

through farm-level analyses. 

 

2.5 Overview of LTE Characteristics 

  
Table 2: Overview of the 4 LTEs used in the study 

LTE 

years 

Location Soil type 

(%clay/ silt/ sand) 

Crop rotations and treatments 

Chaiblen 

1989-2000 

Tänikon TG 

538 m.ü.M 

8.7 ºC, 1’189 

mm 

Gleyic,calcaric 

cambisol 

(41/37/22) 

3 five-year crop rotations, 2 treatments 

Versatile + integriert/intensiv (Vip, Vis) 

Cereal focussed + integriert/intensiv (Gip, Gis) 

Corn focussed + integriert/intensiv (Mip, Mis) 

Burgrain 

1991-2008 

Alberswil LU 

530 m.ü.M 

9.0 ºC, 1'026 

mm 

Gleyic 

cambisol 

(29/19/52) 

2 Six-year crop rotation, 3 treatments 

Arable focused and forage focused 

IP intensiv, IP extensiv/notill, organic 

Oberacker 

1994- today 

Zollikofen BE 

555 m.ü.M 

9.0 ºC, 1'043 

mm 

Eutric 

Cambisol 

sandy loam 

(18/22/60) 

1 Six-year crop rotation (without temporary 

lay), 

2 treatments (tillage, no tillage), 

2 fertilizer systems (GRUD/Kinsey) 

FAST I + II 

(Farming 

System + 

Tillage 

Experiment) 

2009- today 

Rümlang ZH 

485 m.ü.M 

9.4 ºC, 1'059 

mm 

Calcaric 

Cambisol 

sandy loam 

(22/34/44) 

1 Six-year crop rotation (with temporary lay), 

4 cropping systems (conventional+(no)tillage 

and organic+(reduced)tillage) 

2 sub treatments (with/without cover crop + 

norm/half Ninput) 

 

Given that each of the four LTEs described above was designed with a distinct focus, ranging 

from tillage practices (e.g., FAST and Oberacker) to crop rotation strategies (Chaiblen) and 

input intensities (Burgrain), it is essential to develop a common data framework for comparative 

analysis. While these trials share core measurement themes such as yield performance, soil 

chemistry, and biological indicators, the timing, frequency, and units of measurements vary 

considerably. Additionally, management practices differ not only between LTEs but also within 

treatments of the same LTE (e.g., organic vs. integrated, plough vs. no-till), making direct 

comparison challenging without systematic data transformation. 

 

To address this, all available management information, such as tillage type, fertilization levels, 

cover cropping, and crop sequence was compiled and standardized into a single, unified 

format. This harmonized management datasheet ensures that key factors are consistently 

defined across LTEs, allowing for structured filtering and stratification during analysis. 

Simultaneously, all measured variables (e.g., SOC, N_min, crop yield, microbial biomass) were 

consolidated into a single dataset with common variable names, units, and metadata 

descriptors. This integrated dataset forms the basis for subsequent statistical and multivariate 

analyses and enables more robust interpretation of long-term trends and cross-experimental 

interactions. My part in this compiling of data was to clean up and properly transform the 

management data of the LTE Burgrain while other members from Agroscope focused on the 

other 3 LTEs.  
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3. Methods 

3.1 SoilManageR Framework 

Understanding the effects of agricultural management on soil health requires consistent, 

comparable metrics across different sites and time periods. However, management practices 

vary widely, not only between countries but also within regions such as Switzerland, where 

differences in management practices make comparisons challenging. Even classifications like 

“organic” or “no-till” include a great deal of variability in how practices are implemented (Heller 

et al., 2025). SoilManageR addresses this challenge by providing a standardized framework 

to record and process detailed management data and derive numerical indicators that capture 

key aspects of soil management. Developed as an open-source R package, it offers a pre-

defined data structure and templates for documenting management activities such as tillage, 

fertilization, sowing, and crop harvesting. Based on these inputs, the package calculates 

comparable indicators, including carbon inputs, soil tillage intensity (STIR), soil cover duration, 

nitrogen inputs, and pesticide use. They can be calculated for a specified period, normally per 

year or crop. Here is how each indicator is calculated. 

 

3.1.1 Carbon Input 

The carbon (C) input indicator in the SoilManageR R package quantifies the amount of organic 
carbon added to the soil per hectare and year (Mg C ha⁻¹ year⁻¹). It integrates carbon 

contributions from three primary sources: 

- Main crops and crop residues 

- Cover crops 

- Organic amendments (e.g., manure, slurry, compost) 

 

Here's a breakdown of how each component is calculated, including the formulas used in the 

package as described in Heller et al. (2025). 

 

The first source of C input is computed using allometric relationships from Bolinder et al. (2007, 

2015): 

 
𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑚𝑎𝑖𝑛 + 𝐶𝑟𝑒𝑠𝑖𝑑𝑢𝑒 + 𝐶𝑟𝑜𝑜𝑡 + 𝐶𝑒𝑥𝑢𝑑𝑎𝑡𝑒𝑠 

 

Where the components start from the left, the carbon in the harvested crop biomass, in above-

ground residue (e.g., straw), in the roots and from the plant exudates. Each parameter is 

calculated using the dry matter yield and different, crop specific parameters derived from 

various literature (Bolinder et al., 2007/2015; Keel et al., 2017; Wüst-Galley et al., 2020). 

SoilManageR has a set of standardized dry yield matter for crops and leys in a central 

European climate. Even if no measurements are available as data input, the package can 

calculate numerical indicators. This is especially useful if in a dataset, some values are 

missing, and the user wants a continuous set of indicators per year. 

 

The second source of carbon comes from cover crops. It uses a similar calculation as the main 

crop, but instead of the actual yield, which is rarely measured in agricultural systems, it uses 

the time the cover crop is growing (Seitz et al., 2022). There is a minimum and maximum 

amount of carbon derived from cover crops ranging from a growing period of less than 280 

days to more than 240 days. The specific numbers proposed by Seitz et al., (2022) are 1253 

kg C/ha as minimum and 1916 kg C/ha for the maximum, with a linear interpolation between 

the two values.  

 

The last input of carbon comes from organic amendments like manure, compost or slurry.  

 
𝐶𝐴𝑚𝑒𝑛𝑑𝑚𝑒𝑛𝑡𝑠 = 𝐴𝑚𝑜𝑢𝑛𝑡 × 𝐷𝑀𝐶 × 𝐶𝐶 
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The amount of amendment is multiplied by the dry matter content of it times the carbon content 

of the dry matter. While SoilManageR provides some default values derived from the Swiss 

fertilizer recommendations (Sinaj et al., 2017), the calculation increases in accuracy if the user 

delivers the measured values of the parameters if available.  

 

3.1.2 Tillage Intensity 

SoilManageR uses the soil tillage intensity rating STIR developed by the RUSLE2 framework 

(USDA-NRCS 2023). The calculation of the STIR value uses the speed, area of disturbance, 

depth, and type of tilling machine as factors. The latter uses different values for the type of 

disturbance happening to the soil. Some examples would include a factor of 1 for heavy duty 

tilling (inversion), 0.7 for mixing operations, and 0.15 for compressions using rollers (Heller et 

al., 2025).  

 

3.1.3 Soil Cover Duration 

The soil cover duration indicator in SoilManageR quantifies the number of days per year that 

the soil is covered by either living plants or plant residues, helping to assess erosion risk and 

soil protection. Soil cover by different plants is estimated using crop-specific growth curves 

based on sowing dates and development stages (Mosimann & Rüttimann, 2006), while residue 

cover is calculated using the decay function of Steiner et al. (2000), which considers mass loss 

over time and burial from tillage. A minimum threshold of 30% cover is used to count a day as 

“covered,” following Büchi et al. (2016). The model integrates both plant growth dynamics and 

residue decomposition to provide an annual total of soil cover days (Heller et al., 2025). The 

package does not account for natural revegetation of bare soils which is hard to capture 

correctly.  

 

3.1.4 Nitrogen Input 

The nitrogen input (kg N/ha) accounts for both the organic and mineral fertilizer applications. 

While mineral fertilizers have specified amounts of N, the N content of organic amendments is 

calculated in similar fashion to the carbon contents, by either using standardized values for the 

different types of organic amendments or using exact, measured values. The nitrogen input 

into an agricultural system is crucial as it greatly affects yields, soil health and environmental 

impacts.  

 

3.1.5 Pesticide Usage 

The last indicator is the use of pesticides. It is newly developed without much finesse. It 

calculates the number of times a pesticide (fungicide, herbicide or insecticide) is applied on 

the field. Even though the indicator lacks the dosage and types of pesticides used, it still 

provides a meaningful estimate of chemical input intensity. Frequency of application reflects 

not only the type of management but also indirectly captures system dependency on chemical 

pest control. This makes it a useful comparative metric for assessing system intensity across 

farming strategies (e.g., conventional vs. organic, intensive vs. extensive) and for identifying 

patterns associated with potential environmental risks.  
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3.2 Management Indicators 

Having the proper framework, we can now look at both the distribution and the structure of our 

data. Evaluating the management data in detail, including examining the correlation structure 

among indicators, is essential for several reasons. Agricultural long-term experiments often 

record highly interrelated management practices — for example, tillage intensity will have a 

significant impact of soil cover. Without explicitly assessing these relationships, models may 

suffer from multicollinearity, leading to biased or unstable estimates of effects. Using 

SoilManageR to structure and explore the management data ensures that these relationships 

are made transparent prior to modeling. Understanding these associations helps identifying 

redundant or highly collinear variables that might need to be combined, removed, or carefully 

interpreted in the final models. Exploring the data supports the selection of an appropriate 

modeling strategy. As a first step, we will be looking at the number of data points as well as 

typical values.  

 

3.2.1 Burgrain Indicators 

For the Burgrain, we have a total of 234 entries with a unique set of identifiers, being year 

(1996-2008), block (1-7), and treatment (IPi, IPe, Bio). Burgrain shows a notably high 
maximum nitrogen input of 703 kg N ha⁻¹ yr⁻¹, which is consistent with the intensive integrated 

(IPi) treatment that combined manure and mineral fertilizers in high doses. In contrast, the 
median nitrogen input of only 131 kg ha⁻¹ yr⁻¹ demonstrates that the other treatments, 

especially the organic system, operated at much lower nitrogen levels. Similarly, Burgrain’s 

carbon inputs show a broad range from 814 to over 10,000 kg C ha⁻¹ yr⁻¹, reflecting a mixture 

of high-residue, manure-rich phases in some treatments, and more modest organic inputs in 

others. However, since Carbon inputs are highly dependent on the harvested crops, the 

difference can be accounted to crop rotations. Certain years will have more than one harvest 

event increasing the Carbon inputs per year a lot. Soil cover days remain consistently high 

across treatments, with a median of 314 days, suggesting all systems maintained good ground 

cover regardless of input intensity. This is mainly due to good crop rotation with leys as cover 

crops in between longer periods. The STIR values range widely from 0 to 300, reflecting that 

while the organic system often used shallower or less frequent tillage, the integrated intensive 

system relied on conventional ploughing. Again, the high variance can be contributed to crops. 

A temporary ley that stands for 2 years will have years with no Tillage events while a year with 

Maize during summer and grain during the winter will have very high STIR values. Pesticide 

applications have a maximum of 11 but a median of zero, confirming that most treatments, 

especially organic, applied pesticides rarely, with only the most intensive systems showing high 

application frequencies. 

 
Table 3: Indicator values for Burgrain 

Burgrain C_input N_input Soil_cover_days STIR Pesticide 

Min Value 814 0 159 0 0 

Max Value 10759 703 366 300 11 

Mean 4080 166 300 78 1.6 

Median 3450 131 314 64 0 

 

3.2.2 Chaiblen Indicators 
Chaiblens data consists of 288 entries with the identifiers year (1989-2000), block (1-4), crop 

rotation (diversified, wheat dominant, maize dominant), and treatment (intensive, integrated). 

Chaiblens nitrogen input maximum of 314 kg ha⁻¹ yr⁻¹ can be attributed to its intensive wheat- 

or maize-dominant rotations, while the median of 139 kg ha⁻¹ yr⁻¹ shows that many treatments, 

particularly diversified systems, and the temporary leys operated at lower nitrogen levels. 

Carbon inputs vary considerably, from a minimum of 877 to a maximum exceeding 6,000 
kg C ha⁻¹ yr⁻¹, which again is mainly due to different crop rotations and treatments, with 
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intensive fields having increased yields and subsequently higher C inputs. Soil cover is lower 

on average (median 248 days) compared to Burgrain, which fits a cereal- and maize-dominant 

focus with more frequent bare-soil periods. Chaiblens STIR median of 98 suggests moderate 

to high tillage across many plots, particularly the maize rotations. The pesticide indicator 

median of 2, with a maximum of 8, suggests that no fully organic trial has been carried out 

which leads to a higher median number of pesticide uses. 

 
Table 4: Indicator values for Chaiblen 

Chaiblen C_input N_input Soil_cover_days STIR Pesticide 

Min Value 877 0 107 0 0 

Max Value 6052 314 366 220 8 

Mean 2649 155 238 99 2.0 

Median 2320 139 248 98 2 

 

3.2.3 FAST Indicators 

FAST is by far the largest dataset. It has 1672 entries with the identifiers year (2009-2023), 

block (A-D), tillage (conventional vs no-till/ reduced tillage), farming system (conventional vs. 

organic), and intercropping treatments (fallow, legume cover crops, non-legume cover crops). 
FAST shows a relatively low mean nitrogen input (96 kg ha⁻¹ yr⁻¹) and a maximum of 232, 

because half the plots receive limited fertilizers because of the organic farming system. The 

nitrogen inputs are lower compared to the other LTE’s, which can be attributed to a change in 

standard amounts of nitrogen fertilizer usage in the last decades, showing a trend of reducing 

the amounts of Nitrogen added to arable lands (Harder & Liebisch, 2025) Its carbon input 
ranges widely (468–8899 kg ha⁻¹ yr⁻¹), capturing high-residue legume or cover-crop years in 

organic treatments, as well as mineral-fertilized conventional rotations. Median soil cover of 

272 days is neither very high nor low, mainly because the conventional ploughing and no-till 

treatment groups are split evenly. The biggest differences compared to the other LTE’s can be 

seen in the STIR value. A median of 23 and maximum of 232 strongly reflect the contrast 

between reduced tillage and ploughing treatments. The low pesticide application median of 

zero (and maximum 7) highlights that organic plots did not use pesticides at all, while 

conventional plots applied them only as needed.  

 
Table 5: Indicator values for FAST 

FAST C_input N_input Soil_cover_days STIR Pesticide 

Min Value 468 0 102 0 0 

Max Value 8899 232 366 232 7 

Mean 2989 96 261 48 1.0 

Median 2250 111 272 23 0 

 

3.2.4 Oberacker Indicators 

Oberacker is the second largest dataset with 672 entries with the identifiers being years (1995-

2022), block (1-6), tillage system (no-till vs conventional) and fertilization practice (GRUD vs 
Kinsey). Oberacker shows a relatively low mean nitrogen input (76 kg ha⁻¹ yr⁻¹) but with values 

reaching up to 254 kg ha⁻¹ yr⁻¹ in conventional treatments, showing that fertilizer was more 

modest overall than in other LTEs but still varied by treatment. Carbon input is high (median 
4025 kg ha⁻¹ yr⁻¹) because of consistent crop residue retention and possible cover-crop inputs, 

especially in the no-tillage systems. Soil cover days are very high (median 332 days), 

highlighting the trial’s emphasis on no-till systems. The STIR median of 31, ranging up to 322, 

demonstrates a strong difference between the no-tillage and conventional plough treatments, 

as expected. Pesticide use shows a median of 3 and a high maximum of 17. No-till systems 
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usually have to rely on herbicide usage to control weeds. The experiment didn’t include an 

organic treatment that would have lowered pesticide use as well.  

 
Table 6: Indicator values for Oberacker 

Oberacker C_input N_input Soil_cover_days STIR Pesticide 

Min Value 863 0 148 0 0 

Max Value 9106 254 366 322 17 

Mean 4202 76 318 57 3.6 

Median 4025 77 332 31 3 

 

3.3 Measured Variables 

In comparison to the management data and its corresponding indicators, which are continuous 

for the whole period, the response variables are measured a lot less frequently. Figure 1 shows 

how often measurements were taken in each LTE. Because each site had a different scientific 

focus, the measurements not only differed in topic, but in frequency as well. Earthworm 

measurements were done on a regular basis in all the sites, which is part of the reasoning on 

focusing on earthworms as a main topic of this thesis, besides their relevance as a biological 

indicator for soil health. It is important to mention that usually, not every plot in an LTE was 

analyzed for every measurement incident. Earthworm populations is a variable that changes 

rather fast and therefore more recent management events should have a higher impact on EW 

biomass. I therefore decided to implement a new calculation for each indicator, where more 

recent events have a higher importance. I implemented a half-life time for every indicator, 

meaning that for a HL time of 365 days will consider events from a year ago only half. Because 

this HL time of one year is only a speculation, I calculated each indicator for HL times of 180, 

365 and 730 days. The indicators were calculated for the date at which each EW measurement 

was taken. In the end, 318 different EW measurements were used together with their 

corresponding management indicators. 

 

 
Figure 1: Frequency of measurements taken in each LTE 

Soil chemistry and texture were not the focus during data collection, as reflected in the number 

of measurements taken, but both were fortunately measured at least once per LTE site. For 

soil texture, the limited number of measurements meant that I calculated averages per plot to 
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provide a representative value, assuming no major changes during the years. Soil chemistry 

includes several variables, but SOC was the only one consistently measured across all LTEs. 

It was always measured for every plot and treatment. 

3.3.1 Earthworm Data Distribution 

 
Figure 2: Earthworm biomass sorted by site and treatment 

 

Earthworm biomass varied strongly both between LTE sites and among treatments within sites 

(figure 2). At some sites, such as Burgrain, median biomass levels exceeded 200 g per 

sampling unit in the Bio and IPe treatments. FAST showed a wider range of intermediate 

values, with clear differences between crop rotation and tillage combinations, while Oberacker 

exhibited some of the highest biomasses, particularly under the No-till treatment, which 

reached well above 250 g in some samples. In contrast, certain treatments at the same site 

showed substantially lower values, highlighting strong treatment effects even within a single 

LTE. One example would be several Chaiblen treatments (e.g., GIP, GIS, MIP), were recorded 

medians are closer to 50 g. It should be noted that not all EW measurements were taken during 

the same seasons. While most measurements were taken during fall after harvesting, Chaiblen 

measured them during spring. This leads to a naturally lower biomass. This seasonality must 

be considered when modelling the EW biomass, to accurately reflect impact of treatments. 

Across all sites, variability within treatments was considerable, with some outliers indicating 

unusually high or low earthworm biomass for given conditions. This heterogeneity reflects both 

inherent environmental differences between LTEs such as soil type and climate and 

management-induced variation within sites such as tillage intensity and input levels.  
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3.3.2 SOC Data Distribution 

 

 
Figure 3: SOC values in percent per site and treatment 

 

SOC content showed distinct differences between LTE sites and small differences among 

treatments within sites (figure 3). At Burgrain, SOC values were relatively high and consistent, 

with medians around 2% across the Bio, IPe, and IPi treatments, and only minor variation 

between treatments. Chaiblen displayed the biggest range of SOC, with medians spanning 

from about 2.5% to above 3% depending on the treatment, indicating treatment-specific 

differences in organic carbon levels. FAST had the lowest SOC values overall, with medians 

close to 1% across all treatments and very limited between-treatment variation. In Oberacker, 

SOC levels were intermediate, with medians near 2% for both No-till and Plough treatments, 

and only small differences between the GRUD and Kinsey management variants. Within most 

treatments, variability was moderate, but still visible enough to be explained through different 

management. Figure 3 shows three very clear outliers in FAST and Chaiblen. Given the rest 

of the measurements were very consistent, I assumed the outliers to be measurement errors 

and did not include them in the final analysis.  
 

3.3.3 Climate Data 
The next set of data needed to perform analysis is climate data. Climate data for the analysis 

is obtained by combining gridded meteorological datasets with the geographic coordinates of 

the LTE sites. Daily meteorological variables, air temperature, precipitation, and relative 

sunshine duration, were taken from MeteoSwiss gridded data (Meteoswiss, 2025). It should 

be noted that the dataset is an unofficial product and contains occasional gaps, which were 

interpolated. The data should therefore be interpreted with caution. Daily records were 

assigned to calendar years and seasons (winter, spring, summer, fall), and meteorological data 

merged to produce a complete daily dataset per LTE. From this, annual and seasonal climate 

summaries are calculated, including mean temperature and total precipitation. This is a 

tradeoff, because in a perfect world, I would have the aggregated data preceding a 

measurement event (e.g EW measurement) or even daily data. However, working with such 

huge datasets is not feasible for this type of work. Consequently, I calculated data per year, 



 

14 
 

but also per season to get some seasonal variability still. These aggregated datasets provided 

climate indicators for subsequent modelling.  

 

3.3.4 Covariance of Indicators 

Another important factor to consider when deciding on how to analyze our data is the 

covariance between indicators. Before looking at actual data, we already expect that certain 

indicators, like soil cover and STIR are dependent while others like STIR and N_input should 

be independent of each other. The question is by what degree and how the covariance can be 

explained and ultimately if it is suitable to use all the indicators when explaining our response 

variables. First, we will look at correlations between all our data to get a better understanding 

of each indicator, before looking directly at data used in explaining EW and SOC and look for 

differences.  

 

 
Figure 4: Correlation matrix of entire dataset 

The first notable correlation is between soil cover and STIR, as expected being a negative 

correlation. The effect however is not very drastic, because heavy duty tilling before a sowing 

event does not decrease soil cover very much and may even promote faster sprouting and 

earlier growth. Soil cover shows significant positive correlations with both N and C input. Higher 

fertilization rates indicate better growth and a higher soil cover. On the other hand, cover 

cropping not only increases soil cover drastically, but it also increases C inputs. We can also 

see that pesticide usage has no strong correlations, indicating the indicator to be somewhat 

independent of the others.  

 

3.3.5 Earthworm Indicators 
Now we will have a look at the indicators used to explain the Earthworms present in agricultural 

soil. The main thing to look out for is whether certain indicators have a very high correlation 

and should therefore not both be used to try and explain the earthworm biomass. We can see 

the biggest correlation between C input and soil cover of 0.48. This is not problematic when 

developing a model to estimate the EW biomass.  
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Figure 5: Correlation matrix of indicators that are relevant for the earthworm analysis 

3.3.6 SOC Indicators 

The correlations between the indicators used for explaining SOC levels are shown in the 

following matrix. We can see that we have higher correlations than before, especially between 

soil cover and carbon input. This is likely due to cover crops that have a large impact on both 

variables. The value of 0.64 could be concerning regarding modelling, but it is not critically 

high. When modeling, we must consider this correlation and check whether it opposes 

struggles in the end.  

 

 

Figure 6: Correlation matrix of indicators used to analyze SOC 
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3.4 Model Selection 

Having prepared the management and climate indicators and assessed their relationships for 

potential collinearity, the next step is to determine the most suitable statistical framework for 

analyzing the data. The structure of the dataset is hierarchical and unbalanced, with repeated 

measurements taken within plots, plots nested within blocks, and blocks within LTE sites. In 

addition, the sampling frequency of the response variables is substantially lower than that of 

the management indicators, which are available continuously over the entire experimental 

period. The question is to use a linear model or something else. Since the goal of this thesis is 

not only to predict our response variables, but to understand the influence of each predictor, 

linear models offer an improved interpretability. Given the limited sample size, especially with 

the SOC measurement, more complex models run the risk overfitting. This combination of 

nested design, unbalanced sampling, and smaller sample size makes linear mixed-effects 

models (LMMs) particularly appropriate.  

The main advantage of using a linear mixed-effects model in this study is that it fits both the 

structure of the data and the goals of the analysis. In a linear model, each coefficient tells us 

how much the response variable changes, on average, when a predictor changes by one unit, 

while keeping the other predictors constant. This makes the results easy to interpret and to 

communicate, which is important in this thesis where the focus is on explaining relationships 

rather than only predicting outcomes. 

Mixed-effects models are especially useful here because the data are hierarchical: repeated 

measurements are taken within plots, plots are grouped in blocks, and blocks are part of 

different LTE sites. This means that measurements from the same plot or site are more similar 

to each other than to those from other plots or sites. The model handles this by adding random 

effects, which allow each group (e.g. each site or plot) to have its own baseline level. This is 

where partial pooling comes in. Plots or sites with few measurements “borrow strength” from 

those with more data, so their estimates are more stable than if they were modelled completely 

separately, but still distinct enough to reflect their own data (Bolker, 2015).  

Another big benefit is that mixed-effects models can use all the data, even if the number of 

observations is not the same for every plot or year, which is the case here. Many other 

approaches would either require perfectly balanced datasets or drop incomplete cases, leading 

to a loss of valuable information. Linear models also make it easier to check whether the model 

assumptions are met, such as whether the relationships are roughly straight-line (linear) and 

whether the residuals are normally distributed. While other modelling approaches, like more 

flexible non-linear models or machine learning methods might capture complex patterns, they 

often require much larger datasets, make it harder to interpret the role of each variable, and 

do not naturally handle the kind of grouped, unevenly sampled data used here. In short, a 

linear mixed-effects model is a good match because it can deal with the data structure, make 

full use of the available information, and produce clear, interpretable results that are directly 

linked to the scientific questions.  

Choosing the right random effects is very important when developing the model. A random 

effect that is obvious and should always be present is the site. Different types of soil 

characteristics or past management history could largely influence both earthworms and SOC. 

Depending on the site, there will be similar differences between blocks and even different plots, 

for example if a block is located on a slope. To account for this, the models will include random 

effects for LTE site, block (nested within site), and plot (nested within block and site). This 

structure allows each set of random effects to have its own baseline response while still 

estimating the overall effects of the explanatory variables. In R, the contribution of random 

effects can be evaluated by inspecting the variance components or by comparing marginal and 

conditional R^2 values. This helps to assess the influence of the random effects on the 
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response variable and to decide whether the chosen random structure is appropriate or can 

be simplified.  

3.4.1 Backwards Selection 
To arrive at a concise and interpretable model, I will use a backwards (step-down) selection 

procedure for the fixed effects. This begins with a full model containing all candidate predictors 

justified by our hypothesis, ensuring that potentially important variables are not excluded 

prematurely. Predictors are then removed sequentially, starting with the least contributive, and 

the fit of the reduced model is compared to the previous one using the Akaike Information 

Criterion (AIC). The process continues until no further removal leads to an improvement in AIC, 

resulting in a final model that retains only those variables with the strongest support from the 

data (Zhang, 2016). This approach has the advantage of starting from a comprehensive model 

and reducing it systematically, thereby providing a clear, reproducible selection pathway. 

Compared with automated systems, this approach helps discuss why certain explanatory 

variables fail to predict the response variable. It also allows for targeted refinement of the 

temporal weighting of retained management indicators using half-life (HL) tuning, which can 

be done after the main variable selection without introducing an unmanageable number of 

model combinations. Nevertheless, backwards selection is not without drawbacks: the final 

model may depend on the starting set of variables and the sequence of removals, and repeated 

testing can inflate Type I error rates. Furthermore, small changes in AIC may not be practically 

meaningful, so model simplification will be guided by both statistical and ecological 

considerations. By using linear mixed-effects models together with a clear, step-by-step 

backwards selection process, the analysis aims to remain relevant and easy to interpret, while 

still being complex enough to capture the key relationships between long-term management, 

climate conditions, and the biological and soil chemical indicators in this study. 

3.4.2 Earthworm Model 

For the Earthworm model, I log-transformed earthworm biomass before fitting linear models 

because biomass values are strictly positive and, in our data, were right-skewed with variability 

increasing as the mean increased. Taking logs compresses large values, stabilizes the 

variance, and makes the residuals closer to normal (Changyong, 2014). It also reflects the 

ecology of the system, where many drivers act multiplicatively (e.g., moisture × organic matter), 

so a log scale linearizes these relationships. The initial model uses all the explanatory variables 

defined in the hypothesis (i.e soil cover, C_input, STIR, clay, Precip, Temp). Using backwards 

selection, the goal is to achieve a model that can explain earthworm biomass with significant 

predictors. 

 

The random-effects structure in the earthworm biomass model was chosen to reflect both the 

spatial and temporal dependencies in the data. This means that all plots measured in the same 

site during the same year share a common baseline, reflecting environmental influences such 

as local weather conditions, background soil status, and other site-specific factors in that year. 

Although climate variables such as annual precipitation and mean temperature are included 

as fixed effects in the model, it is still important to account for site–year as a random effect. 

The measured climate indicators capture broad, continuous drivers, but they cannot fully 

describe all the conditions that differ between years at a given site, like short-term weather 

extremes, soil moisture dynamics, or site-specific events that are not captured in the averaged 

climate variables. Treating site–year as a random effect therefore controls for these 

unmeasured sources of variation that affect all plots within the same site in a given year. This 

prevents the unexplained year-to-year differences from inflating the residual error or biasing 

the estimated effects of the fixed predictors. In other words, the fixed climate variables model 

the general influence of temperature and precipitation, while the random site–year effect 

absorbs the remaining annual fluctuations that are specific to each site but not explicitly 

measured. It is important to note that the model tries to explain the biomass first by using the 
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explanatory variables and afterwards accounts for random effects. Using this random effects 

structure ensures that the model does not think each year at a given site behaves the same.  

 

The second random effect used specifies a random intercept for blocks nested within LTE 

treatments. This accounts for systematic differences between blocks, such as subtle variations 

in topography, soil texture, or drainage, that could influence earthworm biomass independently 

of the measured management indicators. Together, these random effects account for 

similarities between measurements taken in the same site and year, as well as within the same 

treatment blocks. This avoids treating dependent observations as independent and makes the 

fixed effect estimates more reliable. 

 

3.4.3 SOC Model 

For the SOC model, I decided to use the last measurement taken in each plot and describe it 

with the management indicators leading to the point of measurement. Because SOC is a slowly 

changing soil property, it primarily reflects the cumulative impact of management practices over 

many years. The continuous management indicators available for the entire period capture 

long-term patterns in the management, making them well suited for explaining variation in 

SOC. For the model, the yearly averages for every indicator were used as explanatory 

variables. 

 

Taking the most recent SOC measurement as a response variable ensures comparability 

across sites. Earlier measurements could be influenced by historic management or prior land 

use, which might not be relevant to the long-term management regimes applied during the 

LTEs. The most recent measurements, by contrast, represent the accumulated influence of 

experimental treatments and are less affected by these initial conditions. The only problem is 

the different running times for each LTE, ranging from 11 to 28 years. These differences should 

in theory be explained through the random effects of the model. Since the time corresponds to 

the LTE itself, using LTE as a random effect is sufficient to explain the variance. From a 

practical perspective, using a single, latest measurement avoids over-representing sites with 

more frequent sampling and simplifies the statistical analysis, while still retaining the essential 

long-term signal needed for modelling. 

 

While climate factors can contribute to SOC, our approach will result in only 4 distinct values 

for both Precipitation and temperature, each corresponding to an LTE. Because the LTEs are 

all located in relatively similar climatic regions, these values are very close to one another and 

are therefore unlikely to explain much of the variation in SOC. Furthermore, any site-level 

climatic differences will already be accounted for through the random effect of LTE in the 

model.  
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4. Results 

4.1 Earthworm Model Results 

The modelling began with a full specification including soil cover days, C input, STIR, soil 

texture (clay), seasonal precipitation, and mean seasonal temperature, with random intercepts 

for site–year and treatment–block combinations. Stepwise removal of predictors showed that 

both temperature and clay content contributed little to explaining earthworm biomass. Annual 

precipitation also had only a weak effect and was dropped (p ≈ 0.20). This selection was based 

on the p-levels of each predictor, by always removing the predictor with the worst significance 

level. The AIC of the model only increased slightly when removing each predictor, but more 

importantly it did not worsen the model. C input was found to be only marginally significant (p 

≈ 0.055) and its exclusion did not improve model fit. Based on this and an ecological reasoning 

of being a food source for soil organisms, it was retained in the final model. This model now 

includes STIR, soil cover and C input.  

 

Next, I checked if changing the half-life time for every predictor used in the compiled model 

would result in an improved model accuracy. Soil cover with a 365-day half-life performed best, 

while both shorter (180 days) and longer (730 days) half-life worsened the fit. The same applied 

when changing the half-life time of STIR. For C input, HL180 and HL365 produced similar 

results with a slight edge towards HL365. HL730 led to a clear decline in model performance. 

The final model therefore included soil cover (HL365), C input (HL365), and STIR (HL365) as 

fixed effects, alongside the random effects of site–year and treatment–block.  

 

 
Table 7: Residuals of earthworm model 

 

 

 

 

 

 

 
Table 8: Statistics for the fixed effects of the EW model 

Fixed effect Estimate Std. Error df t value p-value 

Intercept 1.456 0.123 222 11.85 < 0.001 

Soil cover days (HL365) 0.00144 0.00023 279 6.17 < 0.001 

C input (HL365) 0.000016 0.000008 252 1.93 0.055 

STIR (HL365) –0.00085 0.00021 305 –3.97 < 0.001  

 
Table 9: Statistics for the random effects of the EW model 

 

 

 

 

 
Table 10: R² values for EW model 

Metric Value 

Marginal R² (fixed) 0.24 

Conditional R² (full) 0.79 

 

Residual Distribution Value 

Minimum –2.96 

1st Quantile (Q1) –0.54 

Median 0.06 

3rd Quantile (Q3) 0.58 

Maximum 2.14 

Group (random intercept) Variance Std. Dev. 

Block within treatment 0.0108 0.104 

Site–year 0.0289 0.170 

Residual 0.0156 0.125 
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Table 11: Unique contribution of each predictor to the final EW model 

Predictor Unique 
contribution 

Average 
shared 

Individual % of total 

HL365 soil cover days 0.1173 0.0556 0.1729 72.4 % 

HL365 C input 0.0313 –0.0149 0.0164 6.9 % 

HL365 STIR –0.0024 0.0518 0.0494 20.7 % 

 

The final mixed-effects model provided a good fit to the data, with a low AIC (–229.8) and 

residual variance smaller than the variance explained by site–year and block effects. The full 

model has an R^2 value of 0.79. Only using the fixed effects would result in a value much lower 

of 0.24. Soil cover shows a strong positive effect, STIR a strong negative effect, and C input a 

marginal positive trend. Soil cover is the strongest contributor to the model accounting for 72.4 

percent. Having a look at the correlation of the fixed effects, the highest is between STIR and 

soil cover (0.539). The inclusion of site–year and block random intercepts effectively reduced 

unexplained variance and ensuring that fixed-effect estimates were not biased. Residual 

diagnostics indicated no major deviations from model assumptions, supporting the relevance 

of the model. Figure 7 shows how well the model predicts the biomass compared to the 

observed values. As a comparison, figure 8 shows the same predicted values but without the 

correction for the random effects which clearly worsens the fit.  

 

 
Figure 7: Comparison between model predictions and actual values 
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Figure 8: Comparison between predicted and observed EW values, without the correction for random effects 

 

The effect plots illustrate the partial relationships between each explanatory variable included 

in the final model and earthworm biomass. Each figure shows the fitted regression line (blue) 

with a 95% confidence band (shaded area). The yellow dots represent the predicted values 

plus the residuals (i.e., the observed values corrected for the other variables in the model. This 

visualization isolates the effect of each predictor on earthworm biomass while holding other 

predictors constant. 

 

These plots are included to provide a visual representation of how the model translates the 

explanatory variables into estimated changes in earthworm biomass. This visual 

representation helps interpret the results and see if outliers occur, like it is the case with high 

STIR and both high and low C input values. These values should be interpreted with caution, 

as neither the x-axis nor the y-axis represents directly comparable real-world quantities. The 

EW biomass is log-transformed, and the predictors are changed through the implementation 

of half-life times.  
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Figure 9: Partial effects of soil cover in EW model 

 
Figure 10: Partial effects of carbon input in EW model 
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Figure 11: Partial effect of tillage intensity in EW model 

4.2 SOC Model Results 

 
The initial model for SOC included the management indicators STIR, carbon input, soil cover, 

nitrogen input, and pesticide use, alongside soil texture (clay content) as a fixed effect, and 

LTE as a random effect to account for site-level variation. As explained in the model selection, 

climate factors were not included in this approach. During backwards model selection, nitrogen 

input was removed first due to its non-significant effect, followed by soil cover, which showed 

no explanatory power for SOC (p > 0.6). STIR was then dropped as the next weakest predictor, 

leaving a final model that retained carbon input, clay content, and pesticide use as fixed effects. 

The inclusion of LTE as a random effect ensured that differences between sites, including 

variance in temperature and precipitation, were accounted for, rather than being absorbed by 

the fixed predictors. The final model had the following attributes shown in tables 12 to 16. 

Table 12: Statistics of each predictor for the SOC model 

Predictor Estimate Std. Error df t value p-value 

Intercept –0.117 0.180 29.7 –0.65 0.520 

Avg. C input 0.000173 0.000032 50.7 5.46 1.5e–06 

Clay 0.0472 0.00383 30.4 12.33 2.3e–13 

Avg. pesticide 0.0670 0.0165 67.0 4.05 1.3e–04 

 

Table 13: Unique contribution for fixed effects of SOC model 

Predictor Unique contribution Average shared Individual % of total 

Avg. C input 0.2313 –0.1418 0.0895 14.6 % 

Clay 0.6017 –0.1431 0.4586 74.9 % 

Avg. pesticide 0.1868 –0.1226 0.0642 10.5 % 

 

Table 14: Statistics of random effect of SOC model 

Group Effect Variance Std. Dev. 

LTE : Block Intercept 0.01895 0.138 

Residual — 0.05143 0.227 
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Table 15: Residual distribution of SOC model 

Statistic Value 

Minimum –5.29 

Q1 –0.52 

Median –0.03 

Q3 0.53 

Maximum 2.95 

 

Table 16: R² values for the SOC model 

Metric Value 

Marginal R² (fixed) 0.61 

Conditional R² (full) 0.72 

 

The final model for soil organic carbon (SOC) retained carbon input, clay content, and pesticide 

use as fixed effects, with LTE and block structure included as random effects. Residuals were 

approximately centered around zero, with most values between –0.5 and 0.5, though a few 

larger deviations were observed (table 15). The random structure indicated modest variability 

at the block-within-LTE level, while residual variation remained the largest source of 

unexplained variance (table 14). Figures 12 to 14 show the partial effects on SOC of each 

predictor. 

 

Figure 12: Partial effect of carbon input on SOC 
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Figure 13: Partial effect of clay on SOC 

 

Figure 14: Partial effect of pesticied use on SOC 

Among the fixed effects, clay emerged as the dominant predictor of SOC, showing a highly 

significant positive relationship and explaining the majority of the final model (table 13). Carbon 

input also showed a positive effect, with a smaller but still meaningful contribution, while 

pesticide use had a moderate positive association. Taken together, these predictors explained 

61% of the variance in SOC through fixed effects alone, and 72% when including the random 

structure (table 16). Hierarchical partitioning confirmed the dominance of clay (≈75% of 

explained variance), with additional contributions from carbon input (≈15%) and pesticide use 

(≈10%). Because clay is such a dominant predictor of SOC, I tried a different approach to 

capture more of the indicator effect. The approach was to use SOC/clay as a dependent 

variable.  
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4.3 SOC to Clay Ratio Model 

With the new approach, we are left with soil cover, STIR, pesticide, N input, and C input. 

Backwards selection removed pesticide (p=0.70), soil cover (p=0.79), and N input (p=0.57) as 

explanatory indicators in that order. The final model therefore explains SOC/clay with STIR 

and C input. Quantiles are distributed evenly around 0 as seen in table 20. The model shows 

clear negative correlations between STIR and SOC/clay and significant positive correlation 

between C input. The model shows no problematic correlation between the two predictors, and 

both have similar unique contribution to the fixed effects with STIR having a slight edge (56.1% 

vs 43.9%). The random effect of LTE explained a substantial share of the variance, while the 

fixed effects together accounted for a modest proportion (marginal R² ≈ 0.06; conditional R² ≈ 

0.65; table 21).  

 
Table 17: Statistics of each predictor in the SOC/ clay model 

Predictor Estimate Std. Error df t value p-value 

Intercept 0.0643 0.00743 10.7 8.65 3.7e–06 

Avg. STIR –9.5e–05 2.35e–05 183.7 –4.04 7.9e–05 

Avg. C input 4.39e–06 1.47e–06 184.3 2.99 0.00318 

 

Table 18: Unique contribution of each predictor in the SOC/clay model 

Predictor Unique contribution Average shared Individual % of total 

Avg. STIR 0.0518 –0.0161 0.0357 56.1 % 

Avg. C input 0.0439 –0.0160 0.0279 43.9 % 

 

Table 19: Random effects of the SOC/clay model 

Group Effect Variance Std. Dev. 

LTE Intercept 0.000158 0.0126 

Residual — 0.000095 0.00975 

 

Table 20: Residuals of the SOC/clay model 

Statistic Value 

Minimum –3.96 

Q1 –0.53 

Median –0.12 

Q3 0.57 

Maximum 3.47 

 

Table 21: R² values of the SOC/clay model 

Metric Value 

Marginal R² (fixed) 0.064 

Conditional R² (full) 0.648 
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Figure 15: Partial effects of the two predictors STIR and C input of the SOC/clay model 

Table 22 shows a summary for all the predictors of each model, how much they contribute and 

to what extent they explain the variables, as seen by the R² values. 

 

 
Table 22: Summary of all the models and their predictors 

Model Significant 

Predictors 

Estimate Unique 

Contribution 

(%) 

R² 

Marginal 

R² 

Conditional 

Earthworm 

Biomass 

Soil cover 

(HL365) 

+0.00144 72.4% 0.24 0.79 

 
C input 

(HL365) 

+0.000016 6.9% 
  

 
STIR (HL365) –0.00085 20.7% 

  

SOC Clay +0.0472 74.9% 0.61 0.72  
C input +0.000173 14.6% 

  

 
Pesticide +0.0670 10.5% 

  

SOC/clay STIR –9.5e–05 56.1% 0.064 0.65  
C input +4.39e–06 43.9% 
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5. Discussion 
This study investigated how long-term agricultural management practices influence two key 

soil health indicators earthworm biomass and SOC, using data from four Swiss long-term field 

experiments (LTEs). SoilManageR allowed the data to be harmonized across all sites which 

resulted in consistent comparison of the management. The results demonstrate that 

management practices significantly affect earthworm biomass. Higher carbon inputs from crop 

residues and organic amendments, as well as prolonged soil cover, were associated with 

increased earthworm abundance, whereas greater soil disturbance had a strong negative 

effect. Climatic variables, such as precipitation and temperature, contributed little to explaining 

variability. For SOC, the analysis revealed that soil texture, particularly clay content, was the 

strongest predictor of variation across sites. However, management still had an impact on 

carbon content. Using SOC over clay as response variable isolated the effects of management, 

which were only marginal. This discussion will explain why certain parameters had to be 

excluded from the final model and what the main drivers of EW and SOC are. 

 

5.1 Earthworm Predictors 

The results show that soil cover has the strongest impact of earthworm abundance. 

Earthworms are sensitive to soil moisture and temperature (Johnstone et al., 2024). 

Continuous soil cover can help reduce evaporation and buffer temperature extremes by 

shading the soil. Earthworms thrive under a stabile habitat (Chauhan, 2014). Having more 

continuous soil cover greatly contributes to this habitat stability. Uncoincidentally, the second 

strongest predictor, STIR, greatly relates to this stability. Soil disturbance can physically harm 

individuals and destroy egg cocoons and expose individuals to predators like birds (Crittenden 

et al., 2014). Apart from this direct impact, indirect mechanisms like disrupting burrows, altering 

pore connectivity, and exposing organic matter to rapid decomposition decrease earthworm 

abundance on a longer timeframe. Carbon inputs is the last predictor used in my model. While 

less significant, it still showed that providing a food source in different forms, either through 

plant material, exudates or other organic compounds positively influenced earthworm biomass.  

 

While these indicators are all correlated, like STIR and soil cover or carbon inputs and soil 

cover through higher cover crop residues, the correlation between them is not statistically 

problematic. They all have a unique contribution explained above. However, some predictors 

that were expected to influence earthworms did not have a significant effect. Even though 

earthworms are sensitive to changes in temperatures and soil moisture (Johnstone et al., 

2014), both the temperature and the precipitation indicators were dropped during model 

selection. Averaging both variables over a period of three months drastically excludes weather 

extremes, such as dry periods, heavy rainfall or high temperatures. Using the random effect 

structure of year within LTE captured site-specific and temporal differences in weather 

conditions better than using the climate variables. Defining the climate variables in a way that 

can account for these extreme weather situations is challenging. One approach would be to 

count the number of days with temperature or precipitation extremes defined by a 90th 

percentile for the norm of the given day/month. With precipitation, this does not fully capture 

soil moisture as previous days should be considered. Therefore, a metric for soil moisture must 

be included. Frost is another factor not respected in the data, especially frost and thaw cycles 

can influence earthworms significantly (Patricio Silva et al., 2014). Conclusively, there would 

be ways to implement climate data differently, but each with its challenges. Regarding the 

scope of the thesis and the emphasis on management, the approach chosen can be justified.  

 

Soil texture did not contribute to the final model, likely because it is too simple to fully describe 

habitat conditions preferred by the earthworms. Random effects did a much better job in 
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capturing these complex differences compared to soil texture. Keeping the half-life time at 365 

days gave the best model, which could be a consequence of the backwards model selection 

which already started with the indicators HL365. Given the high p-values of the indicators that 

failed to be included and the high correlation between the same indicators of different half-life 

times, the results likely stayed the same.  

 

5.2 SOC Predictors 

The model for SOC revealed that soil texture, particularly clay content, was the strongest 

predictor of SOC levels across the four LTEs. This finding is consistent with well-established 

mechanisms showing that clay-rich soils provide both physical protection of organic matter 

within aggregates and chemical stabilization through interactions with mineral surfaces (Cai et 

al., 2016; Six et al., 2002; Johannes et al., 2017). Sites with higher clay content therefore have 

an inherently greater potential to accumulate and retain SOC, which explains why a substantial 

portion of the variability in SOC across LTEs could be attributed to clay content. 

 

Nevertheless, management practices still contributed to SOC variation, albeit to a lesser 

degree than for earthworm biomass. Higher carbon inputs from crop residues and organic 

amendments were associated with increased SOC stocks, which aligns with previous findings 

showing that organic inputs are a key driver of SOC build-up (Lal, 2016; Powlson et al., 2011). 

In contrast, pesticide usage showed a negative effect on SOC levels in the final model. There 

is increasing evidence that repeated pesticide applications can indirectly affect SOC by altering 

microbial activity and decomposition dynamics (Sim et al., 2022). These effects may 

accumulate over time, particularly in LTEs with continuous pesticide exposure. However, more 

plausible is the explanation that pesticide usage is a good indicator for the type of agricultural 

management system. Conventional systems often use more mineral fertilizers compared to 

manuring and they do heavier tillage. These mechanisms are known to influence SOC stocks 

to a significant degree (Sheoran et al., 2019) and pesticide usage summarizes these practices 

to a certain degree.  

 

The management indicators soil cover and soil disturbance were excluded from the final model 

during backward selection, suggesting that their direct effects on SOC are less significant, or 

that they are better summarized through the other indicators (e.g pesticide usage). This seems 

surprising, given that a high tillage intensity is normally associated with a decrease in SOC 

(Haddaway et al., 2017). Another reason could be that measurable shifts in SOC stocks 

emerge only after decades of consistent management and our timeframe of a dozen years 

was still too short (Johnston et al., 2009). Unfortunately, we don’t know the history before the 

experimental setups started and whether SOC levels are settled in or still undergoing bigger 

changes.  

5.3 SOC to Clay Ratio Model 

SOC is highly correlated to the soil texture, in particular clay. This is seen in literature 

(Johannes et al., 2017) and based on the previous model. Using SOC/clay as a response 

variable gave a better insight into the management’s effects. While this alternative approach 

increased the relative importance of carbon inputs and STIR, the total explained variance 

decreased considerably compared to the original model (R²m ≈ 0.06 vs. R²m ≈ 0.61). SOC/clay 

Is a different indicator of soil health than just organic carbon. It gives more information about 

the structure of soils (Rabot et al.,2024). A good soil structure requires a SOC:clay ratio of > 

0.1 and less than 0.075 is considered a bad soil structure (Johannes et al., 2017). Looking at 

the results and in particular figure 15, the median of the modelled data ranges from 0.8 to 0.7, 

decreasing with higher STIR and increasing with larger C inputs. These relations make sense 

ecologically, but they do not capture the full picture, hence the low explained variance for the 

fixed effects. There are still a lot of variables which are not accounted for in my model such as 

microbial activity, chemical properties like pH and mineral composition and soil types in 
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general. Furthermore, SOC/clay as an indicator inherently integrates measurement uncertainty 

from both SOC and clay values. Together, these factors create variability in SOC/clay that is 

not explained by the fixed effects of management alone, highlighting the complexity of SOC 

dynamics even under well-controlled experimental conditions. 

 

5.4 Evaluation of SoilManageR 

A key strength of this study lies in the use of the SoilManageR R package, which enabled the 

harmonization of the detailed management histories across the four LTEs into standardized 

indicators. This approach allowed us to combine data from sites with different management 

systems, machinery used, compositions of organic fertilizers, rotations, and measurement 

frequencies into a consistent framework, making cross-site comparisons possible. Without this 

harmonization, the multi-site analysis conducted here would not have been feasible. The way 

each indicator is set up works great for sites located in a Swiss or central European climate.  

 

However, the use of SoilManageR also introduces some limitations that should be considered 

when interpreting the results. First, the package derives management indicators from available 

records, which may vary in detail and accuracy between LTEs, leading to potential 

inconsistencies in calculated variables. Second, SoilManageR simplifies highly complex 

management systems into aggregated metrics such as total carbon input or cumulative soil 

disturbance, which inevitably reduces information about timing, interactions, and short-term 

effects. For example, differences in the quality of organic inputs (e.g., compost vs. slurry vs. 

crop residues) or the seasonality of soil cover are not taken into consideration. Finally, 

SoilManageR depends on consistent assumptions when converting management data into 

numerical indicators, and while this improves comparability across sites, it reduces nuanced 

dynamics thar are specific to site or management practices.  

Overall, SoilManageR provides a powerful tool for integrating and analyzing management data 

across long-term experiments, but the step from complex practices to simple management 

indicators provides a source of uncertainty.   
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6. Conclusion 
This thesis investigated how long-term agricultural management practices influence two key 

indicators of soil health: earthworm biomass and SOC, using data from four Swiss long-term 

field experiments. By harmonizing detailed management histories through the SoilManageR R 

package, this study integrated data from sites with contrasting soils and farming systems into 

a single analytical framework. Linear mixed-effects models were then applied to analyze the 

effects of management, inherent soil properties, and environmental conditions on earthworms 

and SOC. 

 

Earthworm biomass was shown to be strongly influenced by management indicators. 

Increased carbon inputs and extended soil cover promoted larger earthworm populations, 

while higher soil disturbance had a negative effect. These findings highlight the importance of 

management strategies that maintain soil quality by providing good conditions for soil 

macrofauna. In contrast, SOC levels were dominated by inherent soil properties, particularly 

clay content, which explained a large portion of the variation across LTEs. Carbon inputs 

positively affected SOC accumulation and pesticide use had a negative impact which is 

explained through the correlation between organic farming systems and lower pesticide usage. 

The alternative SOC/clay model showed a more ecologically meaningful result, with carbon 

inputs (positively correlated) and STIR (negatively correlated) as relevant indicators. However, 

these fixed effects only explained roughly 6% in the final model. This highlights the complexity 

of carbon stabilization processes and the role of unmeasured biological and chemical drivers 

not considered in the model.  

 

Taken together, these results demonstrate that biological indicators such as earthworm 

biomass are highly responsive to management and provide early insights into the effects of 

farming practices, whereas chemical indicators like SOC are less susceptible to management 

and need longer timeframes and further information to show effects. This highlights the value 

of combining biological and chemical perspectives when assessing soil health. The findings 

also illustrate the potential and limitations of integrating multi-site datasets using harmonized 

management indicators. While SoilManageR enabled a comprehensive cross-site analysis, 

uncertainties remain due to simplifications of complex practices, historical legacies, and 

incomplete measurements. Future studies should integrate additional biological and chemical 

indicators, account for extreme climatic events, and expand analyses to more diverse sites 

and management systems. 

 

Overall, this thesis demonstrates that long-term management strategies emphasizing 

continuous soil cover, reduced disturbance, and sufficient organic inputs can simultaneously 

enhance soil biological activity and promote sustainable carbon storage, thereby contributing 

to improved soil health and resilience.  

 

 



 

32 
 

 

7. References: 
Agroscope. (2021a). Farming System and Tillage Experiment – FAST Going Full Speed 

 Ahead. Admin.ch. 

 https://www.agroscope.admin.ch/agroscope/en/home/topics/environment-

 resources/monitoring-analytics/long-term-trials/fast.html 

 

Agroscope. (2021b). Long-Term Trials – What We Can Read Between the Lines. Admin.ch. 

 https://www.agroscope.admin.ch/agroscope/en/home/topics/environment-

 resources/monitoring-analytics/long-term-trials/fast.html 

 

Agroscope. (2024). The Oberacker Long-Term Field Trial – Where Two Worlds Meet. Admin.ch. 

 https://www.agroscope.admin.ch/agroscope/en/home/topics/environment- 

 resources/monitoring-analytics/long-term-trials/oberacker.html  

 

Bai, Z., Caspari, T., Gonzalez, M. R., Batjes, N. H., Mäder, P., Bünemann, E. K., ... & Tóth, Z. 

 (2018). Effects of agricultural management practices on soil quality: A review of long-term 

 experiments for Europe and China. Agriculture, Ecosystems & Environment, 265, 1-7. 

 

Bolinder, M. A., Janzen, H. H., Gregorich, E. G., Angers, D. A., & VandenBygaart, A. J.  (2007). An 

 approach for estimating net primary productivity and annual carbon inputs to soil for common 

 agricultural crops in Canada. Agriculture, Ecosystems & Environment, 118(1-4), 29-42. 

 

Bolinder, M. A., Kätterer, T., Poeplau, C., Börjesson, G., & Parent, L. E. (2015). Net primary 

 productivity and below-ground crop residue inputs for root crops: Potato (Solanum 

 tuberosum L.) and sugar beet (Beta vulgaris L.). Canadian Journal of Soil 

 Science, 95(2), 87-93. 

 

Bolker, B. M. (2015). Linear and generalized linear mixed models. Ecological statistics: contemporary 

 theory and application, 2015, 309-333. 

 

Büchi, L., Valsangiacomo, A., Burel, E., & Charles, R. (2016). Integrating simulation data from a crop 

 model in the development of an agri-environmental indicator for soil cover in 

 Switzerland. European Journal of Agronomy, 76, 149-159. 

 

Cai, A., Feng, W., Zhang, W., & Xu, M. (2016). Climate, soil texture, and soil types affect the 

 contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses 

 across China. Journal of Environmental Management, 172, 2-9. 

 

Chan, K. Y. (2001). An overview of some tillage impacts on earthworm population abundance and 

 diversity—implications for functioning in soils. Soil and Tillage Research, 57(4), 179-191. 

 

Changyong, F. E. N. G., Hongyue, W. A. N. G., Naiji, L. U., Tian, C. H. E. N., Hua, H. E., Ying, L. U., & 

 Xin, M. T. (2014). Log-transformation and its implications for data analysis. Shanghai archives 

 of psychiatry, 26(2), 105. 

 

Chauhan, R. P. (2014). Role of earthworms in soil fertility and factors affecting their population 

 dynamics: a review. International Journal of Research, 1(6), 642-649. 

 

Crittenden, S. J., Eswaramurthy, T., De Goede, R. G. M., Brussaard, L., & Pulleman, M. M. (2014). 

 Effect of tillage on earthworms over short-and medium-term in conventional and organic 

 farming. Applied Soil Ecology, 83, 140-148. 

 

https://www.agroscope.admin.ch/agroscope/en/home/topics/environment-resources/monitoring-analytics/long-term-trials/fast.html
https://www.agroscope.admin.ch/agroscope/en/home/topics/environment-resources/monitoring-analytics/long-term-trials/fast.html
https://www.agroscope.admin.ch/agroscope/en/home/topics/environment-resources/monitoring-analytics/long-term-trials/fast.html
https://www.agroscope.admin.ch/agroscope/en/home/topics/environment-resources/monitoring-analytics/long-term-trials/fast.html
https://www.agroscope.admin.ch/agroscope/en/home/topics/environment-resources/monitoring-analytics/long-term-trials/oberacker.html
https://www.agroscope.admin.ch/agroscope/en/home/topics/environment-resources/monitoring-analytics/long-term-trials/oberacker.html


 

33 
 

Fründ, H. C., Graefe, U., & Tischer, S. (2010). Earthworms as bioindicators of soil quality. In C. A. 

 Edwards (Ed.), Biology of earthworms (pp. 261–278). Springer. 

 

Haddaway, N. R., Hedlund, K., Jackson, L. E., Kätterer, T., Lugato, E., Thomsen, I. K., ... & Isberg, P. 

 E. (2017). How does tillage intensity affect soil organic carbon? A systematic 

 review. Environmental Evidence, 6(1), 30. 

 

Harder, R., & Liebisch, F. (2025). Exploring the strategic potential for Switzerland to reduce nitrogen 

 and phosphorus surplus in agriculture. Resources, Conservation and Recycling, 218, 108239. 

 

Heller, O., Chervet, A., Durand‐Maniclas, F., Guillaume, T., Häfner, F., Müller, M., ... & Keller, T. (2025). 

 SoilManageR—An R Package for Deriving Soil Management Indicators to Harmonise 

 Agricultural Practice Assessments. European Journal of Soil Science, 76(2), e70102. 

 

Johannes, A., Matter, A., Schulin, R., Weisskopf, P., Baveye, P. C., & Boivin, P. (2017). Optimal organic 

 carbon values for soil structure quality of arable soils. Does clay content 

 matter?. Geoderma, 302, 14-21. 

 

Johnston, A. S., Holmstrup, M., Hodson, M. E., Thorbek, P., Alvarez, T., & Sibly, R. M. (2014). 

 Earthworm distribution and abundance predicted by a process-based model. Applied Soil 

 Ecology, 84, 112-123. 

 

Keel, S. G., Leifeld, J., Mayer, J., Taghizadeh‐Toosi, A., & Olesen, J. E. (2017). Large uncertainty in 

 soil carbon modelling related to method of calculation of plant carbon input in agricultural 

 systems. European Journal of Soil Science, 68(6), 953-963. 

 

Komatsuzaki, M., & Ohta, H. (2007). Soil management practices for sustainable agro-

 ecosystems. Sustainability Science, 2(1), 103-120. 

 

Kong, A. Y., Six, J., Bryant, D. C., Denison, R. F., & Van Kessel, C. (2005). The relationship between 

 carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping 

 systems. Soil science society of America journal, 69(4), 1078-1085. 

 

Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A., & Lombi, E. (2019). Soil and the 

 intensification of agriculture for global food security. Environment international, 132, 105078. 

 

Koudahe, K., Allen, S. C., & Djaman, K. (2022). Critical review of the impact of cover crops on soil 

 properties. International Soil and Water Conservation Research, 10(3), 343-354. 

 

Lal, R. (2016). Soil health and carbon management. Food and energy security, 5(4), 212-222. 

 

Maikhuri, R. K., & Rao, K. S. (2012). Soil quality and soil health: A review. Int. J. Ecol. Environ. 

 Sci, 38(1), 19-37. 

 

Marinissen, J. C. Y., & De Ruiter, P. C. (1993). Contribution of earthworms to carbon and nitrogen 

 cycling in agro-ecosystems. Agriculture, ecosystems & environment, 47(1), 59-74. 

 

Meteoswiss. (2025). Ground-based spatial climate data – Precipitation, temperature, sunshine | Open 

 Data Documentation. Meteoswiss.ch. https://opendatadocs.meteoswiss.ch/c-climate-data/c3-

 ground-based-climate-data#data-format  

 

Mosimann, T., & Rüttimann, M. (2006). Berechnungsgrundlagen zum Fruchtfolgefaktor Zentrales 

 Mittelland 2005 im Modell ErosionCH (V2.02) (p. 30). Terragon. https://uwe.lu.ch/-

https://opendatadocs.meteoswiss.ch/c-climate-data/c3-ground-based-climate-data#data-format
https://opendatadocs.meteoswiss.ch/c-climate-data/c3-ground-based-climate-data#data-format
https://uwe.lu.ch/-/media/UWE/Dokumente/Themen/Bodenschutz/Bodenschutz_Landwirtschaft/dokumentationbodenerosionsschluessel_terragon2006.pdf


 

34 
 

 /media/UWE/Dokumente/Themen/Bodenschutz/Bodenschutz_Landwirtschaft/dokumentationb

 odenerosionsschluessel_terragon2006.pdf 

 

Mustafa, A., Minggang, X., Shah, S. A. A., Abrar, M. M., Nan, S., Baoren, W., ... & Núñez-Delgado, A. 

 (2020). Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen 

 storage in a red soil of southern China. Journal of Environmental Management, 270, 110894. 

 

Patricio Silva, A. L., Enggrob, K., Slotsbo, S., Amorim, M. J., & Holmstrup, M. (2014). Importance of 

 freeze–thaw events in low temperature ecotoxicology of cold tolerant 

 enchytraeids. Environmental Science & Technology, 48(16), 9790-9796. 

 

Payen, F. T., Sykes, A., Aitkenhead, M., Alexander, P., Moran, D., & MacLeod, M. (2021). Soil organic 

 carbon sequestration rates in vineyard agroecosystems under different soil management 

 practices: A meta-analysis. Journal of Cleaner Production, 290, 125736. 

 

Power, A. G. (2010). Ecosystem services and agriculture: tradeoffs and synergies. Philosophical 

 transactions of the royal society B: biological sciences, 365(1554), 2959-2971. 

 

Powlson, D. S., Gregory, P. J., Whalley, W. R., Quinton, J. N., Hopkins, D. W., Whitmore, A. P., ... & 

 Goulding, K. W. (2011). Soil management in relation to sustainable agriculture and ecosystem 

 services. Food policy, 36, S72-S87. 

 

Rabot, E., Saby, N. P., Martin, M. P., Barré, P., Chenu, C., Cousin, I., ... & Bispo, A. (2024). Relevance 

 of the organic carbon to clay ratio as a national soil health indicator. Geoderma, 443, 116829. 

 

Seitz, D., Fischer, L. M., Dechow, R., Wiesmeier, M., & Don, A. (2023). The potential of cover crops to 

 increase soil organic carbon storage in German croplands. Plant and soil, 488(1), 157-173. 

 

Sheoran, H. S., Kakar, R., & Kumar, N. (2019). Impact of organic and conventional farming practices 

 on soil quality: A global review. Applied Ecology & Environmental Research, 17(1). 

 

Sim, J. X., Drigo, B., Doolette, C. L., Vasileiadis, S., Karpouzas, D. G., & Lombi, E. (2022). Impact of 

 twenty pesticides on soil carbon microbial functions and community 

 composition. Chemosphere, 307, 135820. 

 

Singh, J., Schädler, M., Demetrio, W., Brown, G. G., & Eisenhauer, N. (2019). Climate change effects 

 on earthworms-a review. Soil organisms, 91(3), 114. 

 

Six, J., Callewaert, P., Lenders, S., De Gryze, S., Morris, S. J., Gregorich, E. G., ... & Paustian, K. 

 (2002). Measuring and understanding carbon storage in afforested soils by physical 

 fractionation. Soil science society of America journal, 66(6), 1981-1987. 

 

Steiner, J. L., Schomberg, H. H., Unger, P. W., & Cresap, J. (2000). Biomass and residue cover 

 relationships of fresh and decomposing small grain residue. Soil Science Society of America 

 Journal, 64(6), 2109-2114. 

 

Tully, K. L., & McAskill, C. (2020). Promoting soil health in organically managed systems: A 

 review. Organic Agriculture, 10(3), 339-358. 

 

USDA-NRCS. (2023). Revised Universal Soil Loss Equation, Version 2 (RUSLE2), official NRCS 

 RUSLE2 program and database (V 2023-02-24). United States Department of Agriculture – 

 Natural Resources Conservation Service. 

 https://fargo.nserl.purdue.edu/rusle2_dataweb/RUSLE2_Index.htm 

 

https://uwe.lu.ch/-/media/UWE/Dokumente/Themen/Bodenschutz/Bodenschutz_Landwirtschaft/dokumentationbodenerosionsschluessel_terragon2006.pdf
https://uwe.lu.ch/-/media/UWE/Dokumente/Themen/Bodenschutz/Bodenschutz_Landwirtschaft/dokumentationbodenerosionsschluessel_terragon2006.pdf
https://fargo.nserl.purdue.edu/rusle2_dataweb/RUSLE2_Index.htm


 

35 
 

Wüst-Galley, C., Keel, S. G., & Leifeld, J. (2020). A model based carbon inventory for Switzerland’s 

 mineral agricultural soils using RothC. Agroscope Science, 105, 1-110. 

 

Zihlmann, U., Jossi, W., Scherrer, C., Krebs, H., Oberholzer, H.-R., Albisser Vögeli, G., Nemecek, T., 

 Richner, W., Brack, E., Gunst, L., Hiltbrunner, J., van der Heijden, M., Weisskopf, P., Dubois, 

 D., Oehl, F., Tschachtli, R., & Nussbaumer, A. (2010). Integrierter und biologischer Anbau im 

 Vergleich: Resultate aus dem Anbausystemversuch Burgrain 1991 bis 2008 (ART-Bericht Nr. 

 722). Agroscope Reckenholz-Tänikon ART 

 

Zhang, Z. (2016). Variable selection with stepwise and best subset approaches. Annals of 

 Translational Medicine, 4(7), 136. 



 

36 
 

Personal Written Decleration 
 

I hereby declare that the submitted thesis is the result of my own, independent work. All 

external sources are explicitly acknowledged in the thesis. Portions of the text and assistance 

in phrasing were supported by OpenAI’s ChatGPT, a language model, but all interpretations, 

conclusions, and final edits are my own. 

 

 

 

 

 

        27.08.2025 Zurich 

Signature       Date & Place 

 


