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Abstract

Citywalk, as an increasingly popular form of urban tourism, emphasizes immersive,

diverse, and personalized exploration over conventional sightseeing. These features

evolving tourist expectations pose new challenges for intelligent itinerary planning,

particularly in capturing the rich experiential attributes of visitor attractions and

aligning them with ambiguous and underspecified natural language queries. This

thesis proposes UGuideRAG (User-Generated Content-Guided Retrieval-Augmented

Generation), a modular framework that leverages user-generated content to con-

struct a comprehensive attraction database, employs large language models for

intent-enhanced retrieval and recommendation, and incorporates spatial optimiza-

tion to ensure coherent itinerary planning. By bridging the gap between par-

tially expressed user goals and the multi-dimensional nature of urban experiences,

UGuideRAG enables more insightful and personalized trip recommendations. For

walk-centric route planning, UGuideRAG further constructs a scenic pathway database

by fusing POI data with geotagged photos to estimate segment-level scenicness using

photo density and street interactivity, and integrates this score into a multi-objective

route generator that links the candidate attractions while balancing distance, spa-

tial compactness, and accumulated scenic value. Experiments on real-world datasets

demonstrate that the proposed framework consistently surpasses existing methods

in producing contextually relevant, user-centered, and spatially optimized urban

tourism itineraries.
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1 Introduction

This master’s thesis builds upon and extends the author’s paper accepted for publi-

cation in ACM SIGSPATIAL 2025.

Figure 1.1: “Where can I enjoy a panoramic view of Paris?” This figure illustrates
how user-generated content can reveal hidden scenic viewpoints that are
beyond guidebooks and 2D maps.1

With the rapid development of the Internet and communication technologies, social

media and user-generated content (UGC) are reshaping the tourism industry (Xiang

and Gretzel, 2010). UGC has become a crucial source of information for tourists,

supporting activities such as travel planning, destination image construction, and

1 Photo sources: https://maps.app.goo.gl/fMibardwj3SBE1uM8, https://maps.app.goo.gl/
4i48B3rnDuAXVXQf6.

1
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Chapter 1 Introduction

decision-making. Recent statistics show that over 80% of consumers now rely on the

internet for travel information, and this percentage continues to grow (Zhang et al.,

2019). Compared to marketer-generated content (MGC), UGC is widely perceived

by travelers as more reliable, credible, and up-to-date (Li et al., 2023).

Unlike o”cial descriptions, UGC o!ers authenticity, emotional nuance, and local-

ized insights that help uncover hidden or underrepresented aspects of destinations

(Mak, 2017; Marine-Roig and Clavé, 2015; Antonio et al., 2020). As illustrated in

Figure 1.1, UGC can reveal detailed and hidden aspects of visitor attractions (VAs)

that are often missing from o”cial descriptions or curated travel guides. For in-

stance, while Le Centre Pompidou is widely known for its modern art exhibitions,

UGC highlights an alternative facet — its rooftop being appreciated as a scenic view-

point. At the same time, user reviews surface lesser-known places such as Square

Nadar, which o!ers panoramic views but rarely appears in conventional itineraries.

These examples demonstrate how UGC helps uncover both the subtle characteristics

of well-known attractions and lesser-known spots in the city.

Building on the rich UGC associated with visitor attractions, tourists can now choose

destinations that align more closely with their individual interests and preferences.

This accessibility to more detailed VA information has further fueled the demand for

personalized travel experiences (Ana and Istudor, 2019). Responding to this grow-

ing trend, Citywalk has emerged as a popular form of urban tourism, defined as “a

recreational activity including strolling across metropolitan regions to acquire cer-

tain experiences while engaging in behaviors that seek diversity” (Wang et al., 2025).

Originally developed from the “London Walk” concept, which began as guided tours

along predetermined routes aimed at showcasing a city’s history, culture, and land-

scape, Citywalk has gradually evolved into a more flexible form of urban travel (Wu,

2024). This evolution towards immersive urban exploration finds a deeper historical

and philosophical antecedent in the 19th-century concept of flânerie. The flâneur,

or the urban stroller, was famously analyzed by Walter Benjamin as a quintessential

figure of modernity—a “passionate spectator” who wandered aimlessly through the

arcades and streets of Paris, observing the transient tapestry of city life (Benjamin,

2006). Unlike the structured nature of guided tours, flânerie emphasizes an un-

planned, subjective, and aesthetic engagement with the urban environment, where

the act of walking itself becomes a way of reading the city (Tester, 1994).

While the classic flâneur was a solitary, almost artistic figure, the modern Citywalk

transforms this spirit into a more accessible recreational activity. Unlike traditional

travel which often prioritizes visiting well-known landmarks and attractions, City-

walk allows travelers to immerse themselves in the streets and alleys, providing

2



Chapter 1 Introduction

travelers with a deeper connection with the city’s history, culture, landscape, and

everyday life (Germano, 2023). In addition to Citywalk tourists preferring more per-

sonalized travel experiences, Freytag, in his study of repeat visitors to Paris, found

that repeat visitors ”often neglect or even avoid the iconic sights of mass tourism”

and focus on ”trying to take part in the everyday life of the local population” (Frey-

tag, 2010a).

As a personalized form of travel, Citywalk allows tourists to explore the city based

on personal interests, meaning that itinerary planning is heavily influenced by in-

dividual preferences. Unlike traditional itinerary planning, Citywalk tourists focus

more on local culture, scenery, architecture, and urban life. VA recommendation

not only requires considering popular landmarks but also the specific preferences

and activities related to each VA. However, traditional personalized itinerary plan-

ning algorithms face challenges in meeting users’ diverse needs in real-time. One

common approach involves user interaction-based recommendation systems (Savir

et al., 2013; Meehan et al., 2013; Lu et al., 2010; Yahi et al., 2015), which catego-

rize and recommend attractions based on VA types—such as museums, landmarks,

or natural sites often overlook content di!erences within the same VA type. As a

result, these recommendations often fail to meet the personalized needs of tourists

e!ectively.

Another widely used approach involves location-based social networks (LBSNs)-

based systems, which rely on historical user data to suggest VAs based on patterns

of similar user behavior (Majid et al., 2015; Chang et al., 2021; Ding and Chen,

2018). While these systems are popular for their ability to identify trends, they

are hindered by the cold start problem, where recommendations for new users are

limited due to insu”cient historical data. Additionally, such systems often produce

static recommendations, making it challenging to adapt to real-time changes in user

preferences or situational needs.

While user interaction-based (Savir et al., 2013; Meehan et al., 2013; Lu et al., 2010;

Yahi et al., 2015) and LBSN-based (Majid et al., 2015; Chang et al., 2021; Ding and

Chen, 2018) recommendation systems have gained traction in travel applications,

they are fundamentally limited in their ability to leverage the semantic richness

embedded in UGC. These systems typically rely on structured input, high-level

attraction categories, or behavioral patterns, and often ignore nuanced descriptions,

contextual clues, and experiential dimensions conveyed in user narratives.

In response, a line of UGC-based recommendation approaches has emerged to ex-

tract attraction features directly from user reviews and digital content. However,

earlier UGC-based methods primarily relied on shallow text-mining techniques such

3
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as Latent Dirichlet Allocation (LDA) and other statistical approaches, which extract

only salient keywords while ignoring contextual and perceptual depth (Liang et al.,

2024; Missaoui et al., 2019). As a result, these methods struggle to represent attrac-

tion features comprehensively and fail to align with the multifaceted and detailed

preferences of travelers.

Recent advances in large language models (LLMs) have introduced new opportuni-

ties to overcome these limitations. By processing natural language input, LLMs can

bridge the gap between loosely expressed user preferences and semantically rich at-

traction features derived from UGC. For instance, systems such as ITINERA (Tang

et al., 2024) leverage LLMs to parse natural language queries into structured sub-

requirements and retrieve relevant VAs through semantic matching. While these

systems represent a major step forward, they still face challenges in handling user

inputs that are often ambiguous, incomplete, and highly faceted (Kostric et al., 2024;

Keyvan and Huang, 2022; Huang et al., 2025). As a result, the alignment between

partially expressed user intent and the complex, multi-dimensional features of VAs

remains limited.

Additionally, Citywalk, as a walking-centered travel approach, o!ers tourists an

immersive experience that extends beyond simply visiting VAs. The walking paths

connecting these VAs play a crucial role in shaping tourists’ overall perception of the

city (Chen et al., 2017). However, traditional itinerary planning often prioritizes the

shortest routes, neglecting the scenic and experiential quality of these paths (Rah-

mani et al., 2020; Benouaret and Lenne, 2016; Ding and Chen, 2018). For Citywalk

tourists, the journey between attractions is as meaningful as the destinations them-

selves. While some research has started to address multi-sensory or experiential

aspects of urban routes (e.g., recommending beautiful, quiet, or olfactorily pleasant

paths (Quercia et al., 2015)), incorporating the scenic route planning connecting

di!erent VAs into recommendation systems remains an unresolved problem in many

studies.

To address these challenges, this research proposes UGuideRAG (User-Generated

Content-Guided Retrieval-Augmented Generation), a modular recommendation frame-

work designed for personalized and fine-grained urban tourism. UGuideRAG con-

sists of five components: (1) UGC-based Attraction Database Construction (UADC),

which aggregates and structures UGC to enrich VAs with descriptive, experiential,

and contextual information that goes beyond o”cial categorizations; (2) Scenic

Pathway Database Construction (SPDC), which integrates geotagged photos and

point of interest (POI) data to quantify the scenic value of each pathway. (3)

Intent-Enhanced Retriever (IER), which decomposes user queries into structured in-

4
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tents across experiential dimensions using LLMs and retrieves semantically relevant

content; (4) LLM-based Reranker (LRR), which scores retrieved candidates based

on their semantic relevance to the user query; and (5) Cluster-aware Spatial Opti-

mization (CSO), which constructs personalized and spatially coherent itineraries for

urban travel.

My overall contributions are as follows:

1. Grounded in tourism research, this research defines a set of perception-aligned

attraction features comprising landscape and content, activities, and atmo-

sphere, and employ LLMs to extract these structured features from unstruc-

tured user-generated content, providing the data foundation for personalized

recommendations.

2. This research proposes an intent-enhanced RAG architecture, in which the

retrieval module is guided by LLM-based decomposition of user queries into

structured intents across multiple experiential dimensions. Retrieved candi-

dates are then re-ranked using an LLM based on their alignment with the user

query, enhancing semantic precision while supporting more personalized and

diverse itinerary generation.

3. To enhance the experiential quality of travel routes, the proposed system incor-

porates a scenic pathway database that leverages geo-tagged photos and POI

data to estimate the scenic value of urban pathways, enabling route planning

that prioritizes visually and experientially rich walking segments.

4. This research conducts extensive experiments across multiple cities, demon-

strating that UGuideRAG generates personalized and spatially coherent itineraries

that outperform existing baselines in urban travel recommendations.

5



2 Related Work

2.1 Visitor Attractions (VAs) and Core Experience

Dimensions

According to Pearce’s definition, an attraction is a “named site with a specific human

or natural feature which is the focus of visitor and management attention” (Pearce,

1991). In previous research, VAs have been classified into seven main categories

(Leask, 2010):

Table 2.1: Categories of Visitor Attractions

VA Categories Subcategories

Theme Parks/Amusement
Parks

Water parks, amusements, themed attractions

Museums & Galleries Art, cultural, historical, collection-based, virtual, open-
air museums

Natural Gardens, national parks, forests
Animal Safaris, farms, zoos, aquariums
Visitor Centres Cultural, industrial, transport-focused
Religious Sites Religious sites, historical religious buildings
Heritage Castles, forts, historic houses, visitor centers, monu-

ments, industrial, dark, archaeological, military, music

When visiting a destination, various destination attributes or features contribute to

tourists’ travel experiences. These attributes, often referred to as pull factors, draw

people to a destination (Khoo-Lattimore and Ekiz, 2014; Klenosky, 2002). Within

the context of VAs, key pull factors can be categorized into three main groups

(Faerber et al., 2021):

• Physical Environment: This encompasses the infrastructure and quality of

goods and tangibles provided by the VA, largely controllable by VA manage-

ment (Kouthouris and Alexandris, 2005).

6
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• Service Quality: Key dimensions include queuing and crowding (Houston

et al., 1998), employees’ service quality (Alexandris et al., 2006), general in-

formation provided by the VA (Booth, 1998), and the perceived cost-benefit

ratio (Matzler et al., 2007; Tomas et al., 2002).

• VA Core Experience: This includes VA content and presentation (Faer-

ber et al., 2021), entertainment, fun and emotions, atmosphere (Geissler and

Rucks, 2011), novelty (Poulsson and Kale, 2004), and authenticity (Moscardo

and Pearce, 1986), all of which define the fundamental visitor experience.

While all three categories of pull factors play a significant role in shaping visitor

experiences, this study focuses primarily on the VA core experience, as it directly

attracts visitors and influences their travel outcomes. To capture the core features

of VAs, this research selects three dimensions of the VA core experience: landscape

and content, suitable activities, and atmosphere. These dimensions are designed to

encapsulate the essential elements of VA core features and serve as a foundation for

evaluating and enhancing visitor attractions.

2.2 Tourism-Related User-Generated Content (UGC)

Tourism-related user-generated content, considered by travelers as a more trustwor-

thy source of information, has significantly transformed how consumers search for

and evaluate travel information (Akehurst, 2009). With the advancement of commu-

nication technologies, the impact and significance of UGC cannot be overlooked, as

”digital platforms are revolutionizing the traditional processes of researching, pur-

chasing, selling, experiencing, and sharing travel” (World Bank, 2018). Beyond its

critical role in information search and travel planning, UGC also plays an irreplace-

able role in shaping the image of tourist destinations and transforming marketing

strategies (Cox et al., 2009).

The rapid growth of tourism-related UGC, particularly online travel reviews (OTRs),

has dramatically influenced how tourists access travel information. For instance,

TripAdvisor stored 10 million OTRs in 2007 (Gretzel and Yoo, 2008), and this

figure has since surpassed 1 billion, with 26 million reviews submitted in 2020 alone,

covering more than 8 million tourist resources worldwide.2 According to a survey

conducted by the European Union, 51% of Europeans rely on traditional word-of-

mouth (WoM) and 34% on electronic word-of-mouth (eWoM) when making travel

decisions (European Commission, Directorate-General for Enterprise and Industry

2 https://www.tripadvisor.com/powerofreviews.pdf

7
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and TNS Political & Social, 2014). Similarly, in the UK, 40% of international

visitors identified WoM and 30% eWoM as key influences (VisitBritain, 2019). In

the U.S., a survey of more than 2,000 leisure travelers revealed that eWoM (58.2%)

had a greater impact on decision-making compared to WoM (45.6%) (Destination

Analysts, 2019).

The rise of tourism websites, social media platforms, and online travel agencies

(OTAs) has generated massive amounts of data, including feedback, destination re-

views, and traveler experiences (Lim and Rasul, 2022). These data enable travelers

to make more personalized decisions about their destinations, meeting the growing

demand for customized travel experiences (Yang et al., 2024). However, the sheer

volume of UGC poses a significant challenge for manual processing (Abbasi-Moud

et al., 2021). Therefore, developing recommendation systems based on UGC can

better uncover the features of each VA and accurately align them with travelers’

preferences, thereby enhancing the personalization and precision of tourism recom-

mendations.

2.3 VA Features Extraction Based on UGC

UGC plays a key role in describing tourist attractions, providing rich perceptual

information for tourists (Munar and Jacobsen, 2013). By mining VA features from

UGC, more interest-aligned recommendations can be provided from the perspective

of tourists. This approach not only reveals the uniqueness and atmosphere of the

attractions but also highlights deficiencies and possible activities, o!ering tourists a

more comprehensive and authentic experience.

Currently, feature extraction of attractions is mostly based on word frequency statis-

tics methods. Term Frequency-Inverse Document Frequency (TF-IDF) is a common

statistical method used to measure the importance of terms in a document. The

weight of a term increases with its frequency in the document, but decreases as

its frequency across the entire corpus increases. Burtch et al. quantified the nov-

elty of reviews by calculating the cosine distance of consumer reviews using the

TF-IDF model (Burtch et al., 2022). Mishra et al. used TF-IDF to extract key-

words from hotel reviews and used cosine similarity to recommend similar hotels

(Mishra and Gupta, 2019). Peng and Huang studied tourist hotspots and attrac-

tion features in Beijing by analyzing geotagged photos and tourist-generated tags

(Peng and Huang, 2017). In addition to using the TF-IDF method, Abbasi-Moud

et al. directly extracted the top five most frequently repeated words from the visitor

attraction (Abbasi-Moud et al., 2021).

8
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However, word frequency statistics-based methods have limitations. They cannot

understand the deeper semantics and context of words, leading to inaccurate descrip-

tions of POI features and potential misunderstandings. Word frequency methods

cannot distinguish between synonyms or handle polysemy and are not e!ective in

highlighting important but infrequent keywords. Additionally, subtle di!erences be-

tween similar VAs are di”cult to distinguish using word frequency methods, limiting

the e!ectiveness of personalized recommendations.

2.4 Personalized Recommendation Systems

Current personalized travel itinerary recommendation systems mainly include three

research directions:

2.4.1 POI Recommendations Based on User Interactions

Lu et al. developed the Photo2Trip system, which identifies popular tourist areas

by collecting geographic photos and recommends POIs based on visit time, travel

purpose, and style (Lu et al., 2010). Gavalas et al. designed the Scenic Athens sys-

tem, which allows users to set preferences for di!erent attractions and recommends

POIs combined with walking routes (Gavalas et al., 2017). Yahi et al. developed

the Aurigo system, which scores POIs based on popularity, distance, and user pref-

erences, allowing users to iteratively build itineraries by selecting POIs (Yahi et al.,

2015). Pantano et al. developed a tourism recommender system using 18 user profile

themes and a Support Vector Machine (SVM) model to predict destination ratings,

integrating contextual factors like time and weather, and demonstrated improved

accuracy and personalization in supporting tourist decision-making (Pantano et al.,

2019).

However, user interaction-based recommendation systems tend to broadly catego-

rize attractions and users into generalized groups, which often results in a lack of

personalization. This limitation underscores the need for more refined recommenda-

tion approaches that can better capture individual user preferences and o!er truly

customized travel experiences.

9
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2.4.2 POI Recommendations Based on Location-Based Social
Networks (LBSNs)

LBSNs allow users to share check-in data at real-world locations, enabling collab-

orative filtering algorithms to recommend POIs that users might be interested in.

Majid et al. proposed a system that combines temporal and spatial context factors

to recommend tourist attractions and routes by mining geotagged photos from so-

cial media (Majid et al., 2015). Chang et al. designed the MANC multi-attention

network model, which improves POI recommendation accuracy by combining users’

social relationships and POI features (Chang et al., 2021). Ding & Chen’s RecNet

system integrates co-visitation, geographic, and category influences in LBSNs to

learn user behavior patterns for POI recommendations (Ding and Chen, 2018).

Compared to user interaction-based recommendation systems, LBSN-based systems

o!er a better prediction of POIs that users may be interested in by leveraging

contextual and spatial data. However, they are limited to providing static recom-

mendations based on users’ historical data and lack the flexibility to address users’

dynamic and evolving preferences in real-time. This highlights the need for more

adaptive recommendation systems that can account for changing user demands and

contexts.

2.4.3 POI Recommendations Based on Language Models (LMs)

Abbasi-Moud et al. developed a system that extracts tourists’ preferences from

reviews on tourism social networks and identifies each attraction’s features based

on user-generated comments (Abbasi-Moud et al., 2021). The system semantically

compares users’ preferences with the features of attractions to suggest the most

matching POIs to the users. Chen et al. developed the TravelAgent system, which

recommends personalized itineraries by analyzing user preferences and historical

data (Chen et al., 2024). Tang et al. proposed the ITINERA system, which combines

LLMs with spatial optimization techniques to generate personalized urban itineraries

by parsing user needs through natural language (Tang et al., 2024).

However, the main limitation of existing systems lies in their reliance on simple

keyword matching to align user queries with attractions, which may lead to unstable

and imprecise matching results. By decomposing attractions and user queries into

reasonable feature components, the stability and rationality of the system can be

improved, enhancing the overall quality of recommendations.
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2.5 RAG in Recommendation Systems

In recent years, LLMs have shown advancement in understanding and processing

natural language. However, challenges such as hallucinations (Yao et al., 2023) and

ine”ciencies in fine-tuning (Du et al., 2023) continue to a!ect their reliability in

real-world applications. One promising solution is Retrieval-Augmented Generation

(RAG), which combines external information retrieval with generative modeling to

enrich input representations and improve the quality of generated content (Lewis

et al., 2020).

RAG has been widely adopted for its strong ability to interpret user needs expressed

in natural language (Zhang et al., 2025), and it has demonstrated great potential in

modeling user preferences and delivering personalized recommendations (Di Palma,

2023; Fan, 2024; Lu et al., 2021; Yu et al., 2025). For example, Di Palma proposed

a simple RAG-based recommendation model that leverages structured knowledge

from movie and book datasets to enhance recommendation relevance (Di Palma,

2023). Yu et al. introduced Spatial-RAG, an extension of the RAG framework that

integrates both semantic and spatial retrieval to support spatial reasoning tasks,

enabling LLMs to generate geographically grounded and contextually relevant re-

sponses based on user preferences and real-world spatial constraints (Yu et al., 2025).

The RAG framework typically adopts a dual-module architecture consisting of a

retrieval module and a reader module, which jointly improve the relevance and

informativeness of generated outputs. However, the e!ectiveness of the retrieval

component is often hindered by ambiguous or underspecified user queries, leading

to suboptimal retrieval results and degraded overall performance. Recent research

has shown that rewriting and expanding user intent representations within input

prompts can significantly enhance RAG’s performance by improving retrieval quality

and alignment with user needs (Shi et al., 2024; Ma et al., 2023).

This issue is particularly pronounced in tourism recommendation scenarios, where

user demands extend beyond simple keywords to include nuanced expectations

for experiences, emotional responses, and environmental contexts (Terkenli, 2021).

While previous e!orts, such as Tang’s method of extracting positive and negative

query components and computing embedding similarities for POI recommendation,

have shown initial success, they often fall short in capturing the full breadth of user

expectations (Tang et al., 2024). This results in imprecise POI retrieval and limited

recommendation diversity. These challenges highlight the importance of developing

methods that better capture and represent implicit user intent to support personal-

ized recommendations in complex, experience-driven domains such as tourism.

11
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2.6 Scenic Route Planning in Urban Tourism

For urban tourism, walkable places are fundamental, as most tourist activities in

destinations occur while walking. If a street’s walkability is high, tourists can enjoy

positive walking experiences (Lo and Lee, 2011). Walkable tourism areas provide

comfortable and meaningful experiences by allowing direct interaction with the sur-

roundings. Even in cases where pedestrian pathways lack connectivity or quality,

the presence of engaging street activities can still make a place appealing (Ujang

and Zakariya, 2015). Freytag’s survey of visitors to Heidelberg, Germany, revealed

that walking and strolling are key activities, particularly for those spending most

of their time in the old town (Freytag, 2010b). Similarly, Shoval et al. analyzed

GPS data from tourists in Hong Kong and found that tourists staying in city-center

hotels are more inclined to walk to attractions (Shoval et al., 2011). This aligns

with the arguments of Bieri and Anton Clavé, who suggest that walkability is not

only central to tourist activities but has also become an ideal spatial form in capital-

ist urban planning. Walkable environments foster tourism consumption and social

interaction, creating new economic opportunities (Bieri, 2017; Anton Clavé, 2018).

Previous research on street walkability has primarily focused on residents’ daily

commutes, measuring walkability through dimensions such as street connectivity,

residential dwelling density, land-use mix, safety, convenience, and comfort (Leão

and Urbano, 2020; Hajna et al., 2015; Villaveces et al., 2012). However, the factors

influencing tourists’ walkability experiences may di!er. Ujang & Muslim’s study

of tourism areas in Kuala Lumpur, Malaysia, found that the image of a place in-

fluences visitors’ walking experiences more than the actual quality of pathways or

comfort. Enhancing the attractiveness of buildings and spaces for visual enjoyment

and providing cultural, commercial, and recreational activities can e!ectively im-

prove tourists’ experiences (Ujang and Zakariya, 2015). Therefore, the scenic value

of streets and their interactive engagement with tourists are critical factors a!ecting

the walking experience.

The scenic quality of routes significantly influences tourists’ travel experiences. Re-

search by Eby and Molnar demonstrated that scenic routes play a vital role in route

selection (Eby and Molnar, 2002)]. Gavalas et al. designed the Scenic Athens tour

planner, which integrates user preferences for scenery, nature, waterfronts, market

districts, and architecture when navigating between POIs (Gavalas et al., 2017).

Zheng et al. developed the GPSView system, which utilizes geo-tagged photos from

Flickr to calculate street visibility values and determine the scenic appeal of road

segments (Zheng et al., 2013). Runge applied Google Street View data and convolu-

12
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tional neural networks (CNNs) to classify scenic types along roads and incorporate

these into scenic route planning (Runge et al., 2016). Scenic quality is particularly

essential for Citywalk route planning, as walking not only allows tourists to enjoy

urban scenery but also to explore the city’s history and culture in depth. These

elements collectively form core travel experiences. Improving the scenic quality of

routes is thus crucial to enhancing the overall Citywalk experience.

In addition to scenic quality, the interactive engagement between streets and tourists

is equally important. Milias et al. surveyed 403 participants in Frankfurt, Germany,

and found that the attractiveness of streets is significantly influenced by houses,

architecture, and shops (Milias et al., 2023). Chang et al. analyzed tourist mobil-

ity data and examined how various POI types a!ect the walkability of streets in

Daejeon, South Korea. The study revealed that beyond cultural heritage sites and

parks, POIs such as local markets, bakeries, cafes, restaurants, bookstores, flower

shops, and spas showed the highest connectivity strength in the network, indicating

their popularity and high visitor numbers (Chang et al., 2023). Anton Clavé intro-

duced two attractiveness indicators in the Washington metropolitan area WalkUP

analysis: the Sightseeing Density Index (measuring the concentration of museums,

memorials, gardens, and historical sites) and the Entertainment Density Index (mea-

suring the density of amusement attractions, sports arenas, performing arts venues,

and top restaurants). These indices were used to observe the di!erences in tourism

characteristics and dynamics across WalkUPs (Anton Clavé, 2016).

While tourism recommendation systems have traditionally focused on selecting at-

tractions, they often overlook the planning of routes between these sites. Since

walking constitutes a vital element of tourists’ travel experiences, integrating street

attractiveness into route planning and balancing factors such as the shortest distance

and high attractiveness can significantly enhance the overall travel experience.

13



3 Problem Formulation

We define the personalized urban itinerary recommendation task as a two-stage

problem that integrates semantic relevance, spatial coherence, and experiential en-

richment.

Let V = {v1, v2, . . . , vN} denote the set of all available VAs in a given city. Each

attraction vi → V is associated with experiential features primarily derived from

UGC, such as reviews and photos.

Given a natural language user query q, the first objective is to generate a personalized

and spatially coherent one-day itinerary:

Vorder = [vo1 , vo2 , . . . , voM ]

where voi → V , and M ↑ nmin ensures the itinerary is su”ciently informative for a

full-day urban experience. This sequence is optimized to align with the semantics

of q while maintaining reasonable travel e”ciency and clustering.

The second objective is to construct a scenic-aware walking route P that connects

the selected attractions in Vorder through pedestrian-friendly paths that maximize

scenic value:

R = {ω1, ω2, . . . , ωK}, ωk → L

where L denotes the set of walkable road segments in the street network. Each

segment ωk is assigned a scenic score SS(ωk) based on the density and orientation of

geotagged photos and proximity to experiential POIs.

The final goal is to generate a walking itinerary that:

• selects and orders attractions that are semantically aligned with q,

• ensures spatial walkability and clustering, and

• connects these attractions via routes that maximize the overall scenic experi-

ence without excessive distance overhead.

This composite task introduces several research questions:

14
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RQ1: How can we extract structured, perception-aligned features from noisy, un-

structured UGC for each vi → V?

RQ2: Given a free-form user query q, how can we retrieve and rank a candidate

subset Vtop-k ↓ V that best matches the user’s intent?

RQ3: How can we select and order a final subset Vorder that is both semantically

relevant and spatially coherent?

RQ4: How can we plan a scenic-aware walking route R through the selected attrac-

tions that enriches the overall experiential quality?

15



4 Data and Methods

4.1 Research Area

To evaluate the proposed framework in realistic settings, this study focuses on Paris

and Rome–Vatican. As two of the world’s most visited cities—the Paris Île-de-

France region welcomed 44 million tourists in 2022 (Comité Régional du Tourisme

Paris Île-de-France, 2023), while Rome recorded over 35 million tourist presences

in 2023 (Comune di Roma, 2024)—they generate a massive volume of the user-

generated content essential for the proposed data-driven approach. Furthermore,

these cities are representative of high-density, heritage-rich tourism environments

that pose both experiential and spatial challenges for personalized trip planning.

Figure 4.1: Research Area in Paris

Paris, the capital of France, welcomed approximately 37 million visitors in 2023,

ranking first globally in international tourist arrivals3. Known as the “City of Light,”

3 https://parisjetaime.com/eng/convention/article/tourism-in-paris-key-figures-a1749
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Paris o!ers an extraordinary mix of iconic landmarks (such as the Ei!el Tower,

Louvre Museum, and Notre-Dame Cathedral), scenic urban landscapes along the

Seine River, and a vibrant cultural life. Its well-preserved historic core, abundance

of museums, and walkable neighborhoods make it an ideal testbed for modeling

diverse visitor experiences and optimizing itineraries within a dense urban fabric.

Figure 4.2: Research Area in Rome-Vatican

Rome–Vatican, the capital of Italy and the seat of the Catholic Church, attracted

around 35 million visitors in 2023,4 including nearly 6.8 million visitors to the Vati-

can Museums,5 and both the Historic Centre of Rome (with Properties of the Holy

See) and Vatican City are inscribed on the UNESCO World Heritage List.6 The

compact layout of historical attractions, coupled with high visitor volume and lay-

ered cultural significance, makes the Rome–Vatican area a highly representative case

for evaluating semantic retrieval and walkable route optimization.

Together, these two cities provide complementary contexts for testing the proposed

system: both are globally recognized cultural capitals with complex attraction net-

works, rich user-generated content, and significant practical demand for intelligent,

intent-aware tourism planning tools.

4 ANSA, “Turismo: a Roma record di presenze, 35 milioni di pernottamenti,” Nov. 30, 2023.
5 The Art Newspaper, “The 100 most popular art museums in the world—2023,” Mar. 26, 2024.
6 UNESCO WHC, “Historic Centre of Rome . . . ” (List 91); “Vatican City” (List 286).
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4.2 Data Source

Our framework integrates multiple real-world urban data sources to support attrac-

tion representation, spatial reasoning, and experiential evaluation. These datasets

span user-generated content, spatial infrastructure, and open geoinformation layers,

covering two cities: Paris and the Rome–Vatican region.

(1) Attraction Data and User Reviews Visitor attractions were aggregated from

three widely used platforms: Google Maps7, TripAdvisor8, and OpenStreetMap

(OSM)9. This multi-source approach ensured broad coverage of both popular and

lesser-known sites.

User-generated reviews for each VA were collected exclusively from Google Maps

using Selenium10, with reviews sorted by relevance to prioritize informative and

detailed content. These reviews contain user ratings, narratives, and emotional

expressions, o!ering valuable insights into tourist perceptions, satisfaction levels,

and site-specific experiential features. The extracted textual content was further

processed to construct a semantically rich attraction database for personalized rec-

ommendation.

(2) Points of Interest (POIs) To model the walkability and experiential richness of

urban routes, this study collected pedestrian-relevant POIs from OSM. Each POI

includes location, type to enable interactive scenic score computation.

(3) Geotagged Photos This study utilized geotagged photos from Flickr 11, one of

the largest crowd-sourced photo-sharing platforms, to capture public visual percep-

tion of urban environments. Flickr provides rich metadata for each photo, including

precise GPS coordinates, timestamps, and user ID, making it a valuable resource for

studying spatial and temporal patterns of tourist activity. The platform is particu-

larly well-suited for tourism-related analyses, as it attracts users who often document

visits to scenic or culturally significant places. In this work, geotagged photos serve

as a proxy for perceived scenic interest, enabling us to estimate visual appeal at a

fine-grained urban scale.

7 https://www.google.com/maps
8 https://www.tripadvisor.com/
9 https://www.openstreetmap.org/

10 https://www.selenium.dev/
11 https://www.flickr.com/
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(4) Street Network Data Pedestrian-accessible street network data was extracted

from OSM using the OSMnx library12. This includes street geometry, topology, and

walkable connectivity. The network structure was used for routing with integrating

spatial indicators such as geotagged photos and POI counts.

In line with the framework illustrated in Figure 4.3, these datasets serve two primary

functions. The attraction data and user reviews are the core inputs for the UGC-

based Attraction Database Construction (UADC) module. This process creates a

semantically rich knowledge base of VAs, enabling the system to match attractions

with user query. The remaining datasets—POIs, geotagged photos, and the street

network—are integrated within the Scenic Pathway Database Construction (SPDC)

module. This component builds a comprehensive routing graph where each street

segment is enriched with a scenic score, facilitating the generation of spatially co-

herent and experientially pleasant itineraries.

4.3 Methods
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Figure 4.3: Illustration of the proposed UGuideRAG framework

12 https://osmnx.readthedocs.io/en/stable/
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4.3.1 UGC-based Attraction Database Construction

To support personalized recommendations, the first step of proposed framework

is to construct a structured database that captures the nuanced characteristics of

each visitor attraction. This database serves as the foundational knowledge base for

all downstream modules, including semantic retrieval, re-ranking, and itinerary con-

struction. Following the experiential framework introduced in Section 2.1, this study

extracts these characteristics from user-generated Google Maps reviews, focusing on

three key facets: landscape and content, activities, and atmosphere.

Table 4.1: Selected Google Map Reviews for Pont Neuf with Ratings

Rating Review

5.0 “Pont Neuf is a beautiful destination to visit in the evening, o!ering stun-
ning views of the city and the Seine River. As the sun begins to set, the
lights of the city come to life, casting a romantic and picturesque ambiance
on the bridge. At night, Pont Neuf is illuminated, providing a beautiful
backdrop for a romantic stroll or a relaxing evening walk.”

5.0 “Walking around Paris is one of the best activities one can do when there.
This is an amazing sunset spot by the Seine river. Very close to both Notre
Dame and Louvre museum. Highly recommend walking around the area and
soaking in Paris. Also a great picnic spot near the river.”

4.0 “Built in 1607 and still look great and solid and probably the most pic-
turesque of all the Parisian bridges. It is made of two spans due to small
island in between. This is also where you can go for a boat cruise near the
very top of the island. Nice to get views on both sides of the Seine.”

Table 4.2: LLM-Extracted Experiential Features for Pont Neuf

Dimension Extracted Feature Description

Landscape
& Con-
tent

Oldest stone bridge in Paris with iconic Seine River views, nearby
parks, and historic features like the Henri IV statue. Features scenic
vistas of landmarks like Notre Dame and Ei!el Tower.

Activities Walking, river cruises, photography, sunset viewing, sightseeing land-
marks, and boarding Vedettes tour boats.

Atmosphere Historic yet vibrant, blending romantic charm with lively crowds. Of-
fers peaceful spots for relaxation amid bustling artistic and cultural
energy.

For each VA vi, this study prompts LLMs 13 to analyze its collected reviews Ri, ex-

13 This study utilized the LLM via the Volcano Engine API, specifically using the
deepseek-r1-250120 model endpoint. This version, indicating a release from January 20, 2025,
was the one available during the experiments. The model is multilingual, and all prompts were
conducted in English. Access was subject to the platform’s standard API usage costs.
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tracting structured textual features across the three experiential dimensions: land-

scape and content f lan
i , activities f act

i , and atmosphere f atm
i , along with a general

summary di describing the overall character of the site.

To illustrate this process, this study presents an example for the Pont Neuf in

Paris. Table 4.1 shows selected user reviews, which reflect visitor attention to scenic

views, nearby landmarks, and atmospheric qualities. Based on these reviews, LLMs

extract structured experiential features summarized in Table 4.2, revealing landscape

attributes (e.g., river vistas and historical architecture), common activities (e.g.,

walking, sunset watching, river cruises), and perceptual atmosphere (e.g., romantic).

All textual features are encoded using an embedding model ε(·), producing the

following embeddings:

elani = ε(f lan
i ), eacti = ε(f act

i ),

eatmi = ε(f atm
i ), edesi = ε(di)

(4.1)

These dimension-specific representations are stored as part of the attraction embed-

ding database:

V =
{(

elani , eacti , eatmi , edesi

)}N

i=1
(4.2)

Figure 4.4: Prompt for VA Feature Extraction
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4.3.2 Scenic Pathway Database Construction

To generate itineraries that are not only e”cient but also experientially rich, the

proposed framework requires a detailed understanding of the urban environment

between VAs. This section details the construction of a scenic pathway database,

which is designed to evaluate and score individual road segments based on their

visual appeal and interactive potential. This database enables the final routing

module to connect visitor attractions and other points of interest using pathways

that are both walkable and aesthetically pleasing. The construction process involves

two main stages: cleaning the raw road network and calculating a scenic score for

each segment.

4.3.2.1 Road Network Cleaning

Road networks extracted from OpenStreetMap often contain disconnected compo-

nents due to incomplete mapping, topological noise, or data fragmentation. As a

result, the raw graph may consist of multiple disconnected subgraphs that do not

represent a single cohesive transport network.

However, for most downstream tasks such as routing, accessibility analysis, or urban

planning, this study requires a fully connected road network—i.e., a graph in which

any node is reachable from any other node.

To identify such connectivity, this study applys a standard depth-first search (DFS)

traversal on the road graph to detect all connected components. The DFS procedure

is defined in Algorithm 1, and is used as a subroutine to recursively explore all nodes

belonging to the same component. After identifying all connected components, only

the largest one is retained. This ensures that the resulting road network is a fully

connected subgraph suitable for spatial analysis.

Algorithm 1 Depth-First Search (DFS) for Graph Traversal

Require: Graph G = (V,E), starting node v, empty set component
Ensure: Set component containing all nodes reachable from v
1: mark v as visited
2: add v to component
3: for all neighbors u of v in G do
4: if u not visited then
5: DFS(G, u, component) {Recursively visit unvisited neighbors}
6: end if
7: end for=0
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4.3.2.2 Scenic Score Calculation

The number of photos distributed along roads can indicate scenic quality (Zheng

et al., 2013). However, high photo density does not necessarily equate to beauti-

ful scenery. To accurately evaluate road scenic value, this study utilizes tourist-

uploaded geotagged data and applies Principal Component Analysis (PCA) to com-

pute a scenic score.

(1) Selecting Tourist Photos Tourist-uploaded photos serve as a basis for evaluat-

ing scenic quality, but it’s essential to distinguish them from photos taken by local

residents. Tourists typically focus on capturing scenic views, whereas locals more

often upload daily-life content.

To identify tourist photos, the temporal distribution of photos uploaded by a single

user is analyzed. If the timespan of a user’s photo uploads is less than one month, the

photos are classified as tourist photos; otherwise, they are considered local photos.

(2) Scenic Value Calculation While the number of photos along a road (Npho
i ) is

a key indicator, relying solely on this metric is insu”cient due to biases like the

popularity of landmark buildings. Hence, the geographic distribution direction of

the photos is also considered.

For each road segment, photos within a distance ϑ are associated with that segment.

Let the coordinates matrix of geotagged photos for point of interest Ci be Mi, with

mean ī = E(Mi). The covariance matrix is defined as:

# = E
{
(Mi ↔ ī)(Mi ↔ ī)T

}

Let ϖ1,ϖ2 be the eigenvalues and d1, d2 the corresponding eigenvectors of #. The

eigenvector d corresponding to the largest eigenvalue ϖ1 is chosen as the principal

component. The angle ϱ between d and the road segment direction vector dr is

calculated. The scenic value Si for the road segment is computed as:

SVi = Npho
i · (cos(ϱ) · ϖ1 + sin(ϱ) · ϖ2)

(3) Interactive Value Calculation Using the OSMnx library, all POI data in Paris

is retrieved and filtered for types a!ecting tourists’ walking experience (as defined
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Road B
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Figure 4.5: Examples of POIs on the roadside. (a) shows a POI visible from a nearby
road, with photo distribution aligned along the road. (b) shows a POI
with poor visibility, and its photo distribution does not align well with
the road. (Source: adapted from Zheng et al. (2013))

in Section 2.6): local markets, bakeries, cafes, restaurants, bookstores, flower shops,

and gift shops.

If a POI is within 30 meters of a road segment, it is associated with that segment.

The number of POIs on each segment is denoted as Npoi
i . The final scenic score SSi

for each road segment is calculated by a weighted sum of the scenic value and POI

count:

SSi = w1SVi + w2N
poi
i

where w1 and w2 are the weights assigned to the scenic value and interactive value,

respectively.

4.3.3 Intent-Enhanced Retriever

To e!ectively retrieve personalized recommendations, unstructured natural language

queries must first be translated into a structured, machine-processible format. This

transformation is crucial, as tourist queries are often ambiguous, incomplete, or

composed of multiple semantic facets. To address this fundamental challenge, my

proposed retrieval module performs intent decomposition and structured semantic

alignment to systematically deconstruct and understand the user’s underlying needs.

Leveraging the reasoning capabilities of LLMs, each user query q is parsed into

three intent components corresponding to core dimensions of attraction experience:
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expected landscape and content (rlan), activities (ract), and atmosphere (ratm).

Figure 4.6: Prompt for Intent-Enhanced Retriever

Each intent component rd → {rlan, ract, ratm} is then projected into the embed-

ding space using the same embedding model ε(·) employed for VA feature rep-

resentation, yielding separate query embeddings for each experiential dimension

ςd = ε(rd). Correspondingly, each VA vi → V is represented by a tuple of embed-

dings {elani , eacti , eatmi }, which encode its semantic profile across the three experiential

dimensions.

This study computes the cosine similarity for each dimension d as:

cos(ςd, edi ) =
ςd · edi

↗ςd↗ · ↗edi ↗
(4.3)

Using this, the composite relevance score for each candidate VA is defined as:
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Scorei = wlan · cos(ςlan, elani )

+ wact · cos(ςact, eacti )

+ watm · cos(ςatm, eatmi ) (4.4)

Here, wlan, wact, watm → [0, 1] control the relative contribution of each experiential

dimension.

By performing this dimension-aware matching, the retriever is able to more robustly

align user intent with semantically rich and structurally organized attraction pro-

files—thereby improving recall for nuanced or under-specified queries. The final

ranked list is obtained by computing Scorei for all i → {1, . . . , N}, and selecting the

top-k candidates:

Vtop-k = Top-k
(
{Scorei}Ni=1

)
(4.5)

The resulting set Vtop-k ↓ V serves as the input to the subsequent re-ranking stage,

where contextual reasoning is applied via LLMs to refine semantic alignment and

preference fit.

4.3.4 LLM-based Re-ranking of Retrieved VAs

While embedding-based retrieval provides a coarse-grained semantic alignment be-

tween structured user intent and candidate attractions, it lacks the capacity to

perform fine-grained contextual reasoning. To address this, this study introduces a

second-stage re-ranking module that leverages the inference capabilities of LLMs to

evaluate each retrieved candidate in the full context of the original query.

Given the Top-k retrieved VAs Vtop-k, this study constructs a natural language

prompt for each candidate vi → Vtop-k that integrates: (1) the user’s original query q;

and (2) the structured attribute descriptions of vi, including its landscape and con-

tent features f lan
i , activities f act

i , and atmosphere f atm
i . These prompts are passed to

the LLM, which performs context-aware semantic matching between the user query

and each candidate’s experiential attributes.

Formally, the LLM outputs a contextual alignment score sLLMi → [0, 10], representing

the degree to which the candidate satisfies the user’s latent preferences as expressed

in natural language. This re-scoring process enables reasoning over implicit user
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goals, complex lexical variations, and nuanced feature combinations that are often

poorly represented in fixed vector spaces.

The re-ranked list Vrerank is obtained by sorting the candidates in descending order of

sLLMi . This re-ranking stage enhances the semantic fidelity and personalization of the

final recommendation results, bridging the gap between discrete feature embeddings

and holistic user intent understanding.

Figure 4.7: Prompt for LLM-based Reranker

4.3.5 Cluster-Aware Spatial Optimization

To ensure that the recommended VAs form a spatially coherent and walkable itinerary,

this study introduces a two-step cluster-aware optimization process. The first step

selects geographically compact VA groups via spatial clustering, while the second
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step optimizes the visiting order of selected VAs using a genetic algorithm to mini-

mize travel distance.

Algorithm 2 Spatial Clustering for VA Selection

Require: Sorted list of VAs Vrerank = {v1, v2, . . . , vk} by LLM score, distance thresh-
old φ , minimum total VAs nmin, minimum cluster size ncmin

Ensure: Candidate VAs list Vc

1: C ↘ [ ] {Initialize empty list of clusters}
2: Vrerank ↘ ≃
3: for i = 1 to k do
4: v ↘ vi
5: assigned ↘ false
6: for all Cj → C do
7: if ⇐v→ → Cj such that dist(v, v→) < φ then
8: Cj ↘ Cj ⇒ {v}; assigned ↘ true
9: break
10: end if
11: end for
12: if not assigned then
13: C ↘ C ⇒ {{v}} {Create new cluster}
14: end if
15: Vc ↘

⋃
{C → C : |C| ↑ ncmin}

16: if |Vc| ↑ nmin then
17: break
18: end if
19: end for
20: return Vc =0

Step 1: Spatial Clustering for VA Selection. Given the Top-k candidate attrac-

tions ranked by semantic relevance, this study applys an incremental clustering

algorithm that evaluates each VA based on its proximity to existing clusters. A

new VA is assigned to a cluster if it lies within a specified distance threshold φ

of any member in that cluster; otherwise, a new cluster is created. Clusters with

fewer than ncmin members are discarded. The process continues until the number

of VAs in valid clusters exceeds a minimum threshold nmin. This approach ensures

that only su”ciently dense and spatially compact clusters are retained, supporting

walk-friendly itineraries. The clustering procedure is outlined in Algorithm 1.

Step 2: Genetic Algorithm for VA Ordering. To determine an optimal visiting or-

der among the selected candidate VAs, this study employs a genetic algorithm that

minimizes the path length between locations. The population is initialized with

random permutations of the VA list. In each generation, individuals are evaluated
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Algorithm 3 Genetic Algorithm for VA Ordering

Require: Candidate VAs Vc, distance matrix D
Ensure: Ordered list of candidate VAs Vorder

1: P ↘ {P1, P2, . . . , Pg} {Initialize population}
2: t ↘ 0 {Initialize the generation count}
3: while t < tmax do
4: for i = 1 to g do
5: fitness(P ) {Calculate the fitness score for each Pi in P}
6: end for
7: for j = 1 to g

2 do
8: Pa, Pb ↘ selection() {Select two parent routes Pa, Pb based on their fitness}

9: Ca, Cb ↘ crossover(Pa, Pb) {Crossover between parents to generate chil-
dren}

10: Ca, Cb ↘ mutation(Ca, Cb) {Apply mutation to children to introduce vari-
ability}

11: Pnew ↘ add(Ca, Cb) {Add Ca, Cb to a new population Pnew}
12: end for
13: t ↘ t+ 1 {Increment generation count}
14: end while
15: Vorder ↘ Pbest {Return the best route Pbest based on the highest fitness score}

=0

using a fitness function based on the total distance traveled. Selection, crossover,

and mutation operations are applied iteratively to evolve better route candidates.

The algorithm terminates after a fixed number of generations, and the best indi-

vidual is returned as the optimized sequence. The complete procedure is shown in

Algorithm 2.

Step 3: A* Algorithm with Scenic-Aware Cost Function. To generate walking

routes that are both e”cient and visually pleasant, this study extends the A* search

algorithm by incorporating road segment scenic scores into the cost function. Each

edge cost is adjusted based on the visual attractiveness of the path, encouraging the

algorithm to favor scenic routes without excessively increasing total distance.

This study define the scenic-aware traversal cost between two connected nodes u

and v as:

cost(u, v) =
length(u, v)

scenic score(u, v)ω + ↼
(4.6)

where:

• length(u, v) is the physical distance (e.g., in meters) of the road segment,
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• scenic score(u, v) → [1, 5] is the rescaled visual quality score of the segment,

• ϱ is a tunable parameter controlling scenic influence (ϱ > 0),

• ↼ > 0 is a small constant to prevent division by zero.

This function allows the algorithm to prioritize scenic paths by reducing the e!ective

cost of high-quality segments, while preserving route realism. Setting ϱ = 0 recovers

standard shortest-path routing, while increasing ϱ emphasizes scenic preference.

Algorithm 4 Scenic-Aware A* Algorithm

Require: Graph G = (V,E) with scenic score ss(e) on edges, start s, goal g
Ensure: Path from s to g minimizing scenic-adjusted cost
1: open set ↘ {s}
2: came from[v] ↘ None for all v → V
3: g score[v] ↘ ⇑, g score[s] ↘ 0
4: f score[v] ↘ ⇑, f score[s] ↘ h(s, g)
5: while open set ⇓= ≃ do
6: current ↘ node in open set with lowest f score
7: if current = g then
8: return reconstruct path(came from, current)
9: end if

10: Remove current from open set
11: for each neighbor n of current do
12: L ↘ length(current, n)
13: ss ↘ scenic score(current, n)

14: w ↘ L

scω + ↼
{scenic-adjusted edge cost}

15: tentative g ↘ g score[current] + w
16: if tentative g < g score[n] then
17: came from[n] ↘ current
18: g score[n] ↘ tentative g
19: f score[n] ↘ g score[n] + h(n, g)
20: if n /→ open set then
21: Add n to open set
22: end if
23: end if
24: end for
25: end while
26: return failure =0

This extension enables flexible multi-objective routing, balancing distance e”ciency

with user-perceived route quality. When applied to urban tourism, it encourages

walkable paths that pass through scenic streets, riversides, or landmark-dense ar-

eas—enhancing the experiential value of itineraries while maintaining route practi-

cality.
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5 Experiments and Results

5.1 Experiments Setting

5.1.1 VA Distribution in Experimental Cities

To evaluate the spatial characteristics of curated datasets, this study analyze the

distributions of VAs in the two experimental cities. For each city, this study col-

lected a set of geolocated VAs—981 in Paris and 867 in Rome–Vatican. These VAs

were augmented with user-generated reviews to extract descriptive and perceptual

features, forming the foundation of semantic attraction database.

Figure 5.1: Spatial distribution of visitor attractions in Paris.
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Figure 5.1 illustrates the spatial distribution of VAs in Paris. As observed, the

highest density of attractions is located in central Paris, particularly around the 1st

to 6th arrondissements. This includes well-known neighborhoods such as Le Marais,

Île de la Cité, and Saint-Germain-des-Prés. Notably, density also extends westward

along the Seine and eastward toward Bastille and Nation, suggesting a walkable

cultural corridor. Peripheral areas such as Boulogne-Billancourt or Montreuil exhibit

sparse coverage, highlighting the centralization of tourist interest zones.

Figure 5.2: Spatial distribution of visitor attractions in Rome–Vatican.

Figure 5.2 presents the spatial distribution of VAs in Rome–Vatican. Similar to

Paris, Rome’s visitor attractions are densely concentrated in the historical city cen-

ter, with prominent clusters around the Colosseum, Roman Forum, Trevi Fountain,

and Vatican City. The overall spatial spread appears more compact than that of

Paris, with a pronounced density drop beyond the central districts.

While both cities exhibit strong central clustering, Paris demonstrates a broader

east–west distribution aligned with the Seine River, facilitating attraction connec-

tivity across a larger urban span. In contrast, Rome’s denser and more compact clus-

tering emphasizes its ancient core, suggesting a more spatially constrained tourist

experience. These distinctions reflect di!erences in historical development, urban

form, and the spatial logic underlying cultural accessibility in each city.
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5.1.2 User Queries Generation

Figure 5.3: An overview of query generation based on tourists’ motivation types,
travel companions, and urban characteristics. Two generation pathways
are illustrated: (a) experience-based typology and (b) cultural tourist
typology. These factors are composed into LLM prompts to simulate
diverse queries.

To simulate diverse user intentions grounded in psychological, cultural, and social

motivations, this study adopt a multidimensional framework for generating natural

language queries. This framework supports two complementary generation strate-

gies, each rooted in established tourism typologies and contextualized through travel

companionship and urban cultural profiles.

First, this study draw upon Elands and Lengkeek’s refinement of Cohen’s tourist

experience theory (Elands and Lengkeek, 2000; Cohen, 1979). Their work provides

a detailed typology of modes of experience in tourism, outlining a spectrum of mo-

tivations—Amusement, Change, Interest, Rapture, and Dedication—that represent

distinct experiential orientations. The Table 5.1 shows a more detailed breakdown

and examples of these types. These motivational profiles were systematically paired

with travel companion contexts (e.g., alone, with a partner, with young or older chil-

dren, or with friends without children) and grounded in the cultural and experiential

characteristics of real-world cities to simulate general leisure and meaning-seeking

user queries in urban environments.

Table 5.1: Modes of Experience (Elands and Lengkeek, 2000)

Mode of Ex-

perience

Underlying Char-

acteristics

Items

Amusement

Fun
For me, having a nice time on vacation means

drinking co!ee or a beer with the neighbors.

I like to go to places that attract many

tourists and are nice and busy.

Centre-values
I like to eat Dutch food on vacation.
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Mode of Ex-

perience

Underlying Char-

acteristics

Items (continued)

I like to hear Dutch spoken when I’m on va-

cation.

Temporality I like to go on vacation, but I also like it to

go home again.

Change Escape
I go on vacation to get out of the daily grind.

I have such a stressful job that I need to es-

cape once in a while / because of the pressure

of my daily activities, I have to go out once

in a while.

Relaxation

Rest The most important thing in my vacation is

relaxation / I go on vacation for a good rest

and relaxation.

Idleness To me, vacation means being idle, sun-

bathing and doing nothing.

Recover

I need vacation to recharge my batteries.

I have to go on vacation at least once a year

to recover.

It takes me the first days of a vacation to un-

wind and forget about my job or housework.

Context matters I don’t care where I go on vacation, I just

have to get away.

Interest

Search for interesting

vistas and stories

I always visit a church, castle or historic city

centre when I’m on vacation.

On vacation I don’t feel like visiting a church,

castle or historic city centre (-).

Cultural activities I like to go to local cultural activities.

Stimulation of

imagination

I always read the information boards at

tourist sites.

I always take a travel guide and a map of the

area with me on vacation.

When I’m on vacation, I go first to the local

tourist o”ce for specific information about

the area.

Variation
On vacation I want to see new and various

things all the time.
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Mode of Ex-

perience

Underlying Char-

acteristics

Items (continued)

I like to choose a di!erent vacation destina-

tion each year.

Rapture

Self-discovery
When I’m on vacation I like to be alone in

the great outdoors for hours on end.

During my vacation I finally find time for

myself.

Crossing borders

On vacation I like sporty challenges and sur-

prises.

I have no objections to primitive conditions

when I’m on vacation.

I like active vacations doing strenuous things

such as long treks and cycle tours.

Unexpected
On vacation I like it the most when, before-

hand, I have no idea where I will go.

On vacation I like to be confronted with new

experiences and surprises.

Dedication

Quest for authenticity

Once an area starts getting touristy I don’t

go back.

My first choice is exotic vacation destina-

tions.

On vacation I search for wilderness and orig-

inal landscapes where I won’t meet anybody.

Merge
I am not satisfied with just seeing local cul-

tures and their habits. I would rather be part

of it.

For me vacation means totally immersing

myself in other cultures / on vacation I im-

merse myself totally in another culture.

Appropriation and

devotion

I rather go to the same area because I feel

bonded to it.

The area where I always go on vacation, I

really consider as my place.

I visit .... (fill in name destination) because

... plays an important role in my life.

Timeless I would like to live in ... / If I could I would

like to live in my vacation place.
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Second, recognizing that cultural tourism constitutes a significant subset of urban

tourism, this study incorporate McKercher ’s typology of cultural tourists, seeing

Table 5.2 (McKercher and Du Cros, 2003). This model distinguishes five types

of cultural tourists—Purposeful, Serendipitous, Sightseeing, Casual, and inciden-

tal—based on the centrality of cultural motivations and the depth of cultural en-

gagement. These types were similarly paired with travel companion profiles and

enriched with city-specific cultural images to guide LLMs in simulating user queries

reflecting diverse forms of culturally oriented intent.

Table 5.2: Types of Cultural Tourism (McKercher and Du Cros, 2003)
Types Description
Purposeful
Cultural
Tourist

The purposeful cultural tourist (high centrality / deep ex-
perience). Learning about the other’s culture or heritage
is a major reason for visiting a destination, and this type
of cultural tourist has a deep cultural experience.

Serendipitous
Cultural
Tourist

The serendipitous cultural tourist (low centrality / deep
experience). Cultural tourism plays little or no role in the
decision to visit a destination, but while there, this tourist
visits cultural attractions and ends up having a deep expe-
rience.

Sightseeing
Cultural
Tourist

The sightseeing cultural tourist (high centrality / shallow
experience). Learning about the other’s culture or heritage
is a major reason for visiting a destination, but this type
of tourist has a more shallow, entertainment-oriented ex-
perience.

Casual Cul-
tural Tourist

The casual cultural tourist (modest centrality / shallow
experience). Cultural tourism reasons play a limited role in
the decision to visit a destination and this type of cultural
tourist engages the destination in a shallow manner.

Incidental
Cultural
Tourist

The incidental cultural tourist (low centrality / shallow ex-
perience). Cultural tourism plays no meaningful role in the
destination decision-making process. However, while at the
destination, the person will participate in cultural tourism
activities, having a shallow experience. Incidental cultural
tourists prefer visiting easy-to-consume, low-involvement,
well-known, entertainment-oriented, mass tourism cultural
attractions.

The user query generation process is illustrated in Figure 5.3, which summarizes

how motivational typologies, cultural intent categories, travel context, and cultural

and experiential characteristics of cities were combined to construct a semantically

diverse and realistic set of user queries. In generated queries, 35.3% of the Paris

queries and 36.1% of the Rome-Vantican queries were derived from the cultural

tourist typology, with the remainder grounded in the mode of experience framework.
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5.2 Evaluation Metrics

this study adopt a combination of semantic and spatial metrics to evaluate the

relevance, e”ciency, and spatial coherence of each generated itinerary. Let Vorder =

{v1, v2, . . . , vN} denote the ordered set of selected attractions in a given itinerary,

and let q denote the user query. The Euclidean distance between two attractions vi

and vj is denoted by d(vi, vj).

Hit Rate (HR) Hit Rate measures the proportion of attractions in the itinerary that

are semantically relevant to the user query q:

HR =
1

|Vorder|
∑

v↑Vorder

I
[
Relevant(v,q) = 1

]
, (5.1)

where I[·] is the indicator function. Relevance is assessed via LLM judgement and

verified through human annotation.

Average Margin (AM) Average Margin measures the di!erence in total Euclidean

distance between the generated itinerary and the optimal Traveling Salesman Prob-

lem (TSP) solution over the same set of attractions:

AM = D(Vorder)↔D↓(Vorder), (5.2)

where D(·) denotes the total distance of the visiting order, and D↓(·) is the optimal

TSP distance over the same set.

Travel Distance (TD) Travel Distance is the total Euclidean distance incurred when

visiting attractions in the recommended order:

TD =
N↔1∑

i=1

d(vi, vi+1). (5.3)

Spatial Tightness (ST) Spatial Tightness measures how spatially clustered the

selected attractions are, regardless of their visiting order:

ST =
1

N

N∑

i=1

min
j ↗=i

d(vi, vj). (5.4)
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Scenic Route Gain Ratio (SGR) Scenic Route Gain Ratio quantifies the scenic

value gained per unit of walking distance, o!ering a normalized measure of experi-

ential enrichment in route planning. Let Sroute denote the total scenic score accu-

mulated along the generated route, and Droute the corresponding walking distance.

Then:

SGR =
Sroute

Droute + ↼
(5.5)

where ↼ is a small constant to avoid division by zero. A higher SGR reflects a more

scenic route per unit of e!ort, balancing scenic richness with walking cost. This

formulation allows for clear comparison in ablation studies, even when scenic-aware

planning is disabled, and avoids the scale mismatch between score and distance in

di!erence-based metrics.

5.3 Results

5.3.1 Scenic Score Visualization over Road Network

To ensure topological consistency in scenic scoring pipeline, this study first apply

DFS to extract the largest connected component from the OSM road network in each

city. This step is critical for enabling shortest-path calculations and ensuring every

node is reachable from any other, as required for subsequent route-based analysis.

Figure 5.4, Figure 5.5, Figure 5.6 and Figure 5.7 show the road networks of Paris

and Rome before and after cleaning. In both cities, this study observe that the

raw networks contain fragmented road segments or small disconnected subgraphs,

especially at the periphery or in suburban areas. After applying DFS-based filtering,

only the largest connected subgraph is retained, resulting in a continuous, navigable

network suitable for scenic evaluation.

Based on the cleaned networks, this study visualize the computed scenic scores at

the segment level for both cities. As shown in Figure 5.8 and Figure 5.9, each road

segment is assigned a score based on photo density, alignment of photo distribution

with road geometry, and proximity to interactive POIs. The scores are mapped

using a continuous color gradient from blue (low scenic value) to red (high scenic

value).

In Paris, the spatial distribution of scenic scores is strongly center-weighted. The
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Figure 5.4: Raw road network of Paris before connectivity cleaning.

Figure 5.5: Cleaned connected road network of Paris after DFS-based filtering.
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Figure 5.6: Raw road network of Rome before connectivity cleaning.

Figure 5.7: Cleaned connected road network of Rome after DFS-based filtering.
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Figure 5.8: Scenic Score Distribution in Paris.

Figure 5.9: Scenic Score Distribution in Rome-Vatican.
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highest-value segments cluster in the historic core—the 1st to 8th arrondissements

— including the Louvre–Tuileries–Palais-Royal axis, Île de la Cité / Île Saint-Louis,

Opéra–Madeleine–Saint-Honoré, Saint-Germain–Musée d’Orsay, Invalides, and the

Champs-Élysées–Concorde corridor. A secondary hotspot occurs on and around

Montmartre, where elevated viewpoints and dense heritage streets (e.g., around

Sacré-Cœur and Place du Tertre) yield consistently high scores.

In addition, the Seine riverfront emerges as a continuous “scenic ribbon”: quays on

both banks and bridge approaches exhibit above-average values, reflecting water-

front vistas and landmark density. Scores decline toward peripheral districts, where

residential grids dominate, producing a clear center-to-edge gradient. These pat-

terns suggest that scenic-aware routing will naturally favor riverfront corridors and

central heritage streets, with optional detours to Montmartre when elevation and

viewpoints are desired.

In Rome–Vatican, the spatial pattern of scenic scores is highly concentrated. The

highest values cluster tightly in the historic core and within Vatican City, and a

continuous ribbon of elevated scores runs along the Tiber riverfront. Outside these

hotspots, scores drop o! quickly: most streets in the broader urban area register

low scenic values—not because they are inherently unwalkable, but because they

o!er fewer landmarks, viewpoints, and cultural cues that attract tourists. This

produces a pronounced core–periphery gradient in which a relatively small central

zone accounts for most high-scenic segments. For routing, scenic-aware paths will

naturally remain in the historic center or track the river, while excursions into outer

districts tend to yield limited scenic gain.

This spatial di!erentiation highlights the ability of the scenic score framework to

capture not only aesthetic and experiential quality but also the underlying spatial

structure of tourism intensity.

5.3.2 Overall Results

Table 5.3: Comparison between UGuideRAG and ITINERA on the Paris and
Rome–Vatican datasets.

City Method HR (%)↑ AM (m)↓ TD (m)↓ ST (m)↓ SGR ↑

w/o SP with SP

Paris
ITINERA 42.3 455.8 5816.3 441.4 4.3 4.5
UGuideRAG 78.5 651.2 6781.4 301.8 5.0 5.2

Rome–Vatican
ITINERA 33.8 446.0 5367.3 413.5 4.6 4.7
UGuideRAG 72.7 582.4 5227.1 231.8 4.8 5.0
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this study evaluate the full UGuideRAG framework against ITINERA14 (Tang et al.,

2024), a recent LLM-based itinerary recommender whose spatial stage relies on a

density-based spatial clustering method. Table 5.3 presents a comparison of the two

systems in the Paris and Rome-Vatican datasets.

In terms of semantic alignment, UGuideRAG achieves significantly higher HR in

both cities—78.5% in Paris and 72.7% in Rome-Vatican—compared to ITINERA

(42.3% and 33.8%, respectively). These results indicate a stronger match between

user query and the recommended VAs.

For spatial metrics, both systems achieve nearly identical AM values, suggesting

comparable e”ciency in visiting order relative to the optimal TSP baseline. De-

spite variations across cities, UGuideRAG maintains TD values around 6000 meters,

which translates to a feasible walking distance for a day itinerary, ensuring practical

usability for urban tourists. Additionally, UGuideRAG consistently achieves low ST

values across both cities, indicating that the recommended attractions are geograph-

ically well-clustered and exhibit strong walkable connectivity. Notably, enabling

scenic route planning (SP) consistently improves scenic gain for both methods: the

SGR with SP exceeds its counterpart without SP for each method, while the actual

route distance does not noticeably increase.

Taken together, these findings demonstrate that UGuideRAG delivers substantially

improved semantic relevance while maintaining competitive spatial performance.

This highlights its potential to improve user satisfaction through context-aware

itinerary recommendations without imposing additional travel burden.

5.4 Ablation Study

To assess the individual contributions of each module in the UGuideRAG frame-

work, this study conduct an ablation study on both the Paris and Rome-Vatican

datasets (Table 5.4). this study examine four ablated variants: (1) without in-

tent decomposition and UGC-derived VA features (w/o Intent Decomposition &

UGC), (2) without intent decomposition (w/o Intent Decomposition), (3) without

the LLM-based reranker (w/o LRR), and (4) without cluster-aware spatial opti-

mization (w/o CSO), keeping all other components intact. In addition, this study

also compare against two modified variants of the ITINERA. Since ITINERA’s orig-

inal density-based clustering is not well-suited for high-density VA regions such as

Paris and Rome-Vatican, this study re-implement ITINERA using UGuideRAG’s

14 Results are obtained using the authors’ original implementation.
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clustering strategy: (5)ITINERA with UGuideRAG’s CSO only, and (6)ITINERA

with UGuideRAG’s CSO and LRR.

Table 5.4: Performance comparison across di!erent ablation settings on Paris and
Rome–Vatican datasets.

City Method HR↑ (%) AM↓ (m) TD↓ (m) ST↓ (m) SGR (%)↑

w/o SP with SP

Paris

UGuideRAG (Full) 78.5 651.2 6781.4 301.8 5.0 5.2

w/o Intent Decomposition & UGC 52.0 805.7 6752.1 358.5 5.1 5.3
w/o Intent Decomposition 66.9 539.2 6370.7 329.3 5.5 5.7
w/o LRR 66.4 658.9 6249.9 310.7 4.8 4.9
w/o CSO 80.1 16424.4 36592.7 1535.7 7.2 7.7
ITINERA (w/ UGuideRAG’s CSO, w/o LRR) 59.0 651.4 6001.1 310.2 5.1 5.3
ITINERA (w/ UGuideRAG’s CSO and LRR) 72.6 627.0 6423.6 312.0 5.4 5.7

Rome–Vatican

UGuideRAG (Full) 72.7 582.4 5227.1 231.8 4.8 5.0

w/o Intent Decomposition & UGC 52.7 369.6 3990.1 231.0 5.0 5.0
w/o Intent Decomposition 64.0 668.3 5476.3 255.5 5.0 5.3
w/o LRR 63.4 563.3 4736.5 242.9 5.3 5.5
w/o CSO 72.1 12035.4 21998.2 815.6 5.7 6.2
ITINERA (w/ UGuideRAG’s CSO, w/o LRR) 56.7 512.6 5702.8 267.5 5.2 5.4
ITINERA (w/ UGuideRAG’s CSO and LRR) 65.5 669.8 5064.2 259.2 5.1 5.2

The w/o Intent Decomposition & UGC variant relies on each VA’s Wikipedia 15

summary for attraction matching, without leveraging structured user intent and

UGC-derived VA features. It operates on a reduced attraction pool due to the

limited availability of Wikipedia descriptions (454 VAs for Paris and 467 for Rome).

This setting yields the lowest HR across both cities, with a notable performance drop

compared to the w/o Intent Decomposition variant. These results further highlight

the foundational importance of extracting rich experiential VA features from UGC

for personalized, fine-grained recommendations.

When the LLM-based reranker module is removed, the system experiences a no-

ticeable drop in recommendation performance, highlighting the importance of fine-

grained contextual ranking. While intent decomposition ensures that retrieval broadly

aligns with user intent, removing the LLM-based reranker limits the system’s ability

to distinguish fine-grained semantics beyond what embeddings can represent.

Removing the intent decomposition module leads to a significant drop in HR, as the

system fails to infer user intent from multi-faceted, ambiguous, or implicit queries.

This degrades retrieval quality and limits the e!ectiveness of downstream LLM-

based reranking.

Although HR remains high, removing the CSO module results in severe degrada-

tion of spatial metrics. In particular, AM increases by over 25×, while TD and

ST increase by approximately 5×. This indicates that although the selected attrac-

tions are semantically relevant, they are spatially scattered and ine”ciently ordered.

15 https://en.wikipedia.org/

44

https://en.wikipedia.org/


Chapter 5 Experiments and Results

Therefore, CSO is essential for producing spatially coherent and walkable itineraries.

5.5 Case Study

To further demonstrate the e!ectiveness of proposed framework, this study present

two case studies: one comparing recommendation results across methods for a

themed query, and another showcasing UGC-based detection of semantic spatial

features such as panoramic viewpoints.

5.5.1 Performance Comparison under a Cultural Theme Scenario

(a) UGuideRAG (Full) (b) UGuideRAG w/o Cluster-aware Spatial Op-

timization

(c) UGuideRAG w/o LLM-based Reranker (d) ITINERA

Figure 5.10: Case study comparison of recommended attractions across methods for
the query “I’m interested in French literature”.

To further demonstrate the e!ectiveness of the framework, this study present a

case study based on the user query: ”I’m interested in French literature. What

places do you recommend?” this study compare the outputs of four systems previ-

ously introduced in the ablation study: the full UGuideRAG, its variants w/o
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Cluster-aware Spatial Optimization and w/o LLM Reranker, and the base-

line ITINERA.

Figure 5.10 shows the recommended itineraries generated by each method. The

selected VAs are labeled alphabetically (A–K), with names listed in each subfigure’s

legend. Detailed descriptions of all VAs will be included in the supplementary

materials.

The full UGuideRAG framework produces the most semantically aligned and di-

verse itinerary. It identifies a rich mix of attractions closely related to the theme of

French literature, including iconic author residences such as Maison de Victor Hugo

and Lauzun Hotel (associated with Baudelaire), as well as sculptures and monuments

dedicated to French playwrights, including Fontaine Molière and the Statue de Beau-

marchais. The itinerary also features cultural landmarks like the Musée de la BnF,

the Institut de France, and the historic literary theater Comédie Française, along

with experiential VAs such as the riverside secondhand book market Les bouquin-

istes de la Seine and the renowned bookstore Shakespeare and Company. These

results highlight UGuideRAG’s strength in identifying attractions related to French

literary culture, including historic author residences, public monuments, national

literary institutions, and reader-focused VAs such as secondhand book markets and

independent bookstores. The resulting itinerary combines well-established land-

marks with immersive experiences, o!ering a coherent and multifaceted exploration

of the literary landscape of the city.

Removing the CSO module does not significantly alter the set of selected attractions

but results in a disorganized and spatially scattered itinerary. The absence of spatial

coherence highlights CSO’s essential role in optimizing the visit order and improving

overall travel feasibility without sacrificing semantic alignment.

The variant without the LRR still benefits from intent decomposition and success-

fully retrieves many relevant sites, including Victor Hugo’s house, Shakespeare and

Company, Fontaine Molière, Statue de Corneille, Comédie Française, and theMusée

de la BnF. However, it also includes more marginally relevant or thematically am-

biguous places such as the Musée du Barreau de Paris and the Musée Carnavalet,

reflecting a lack of contextual nuance. Despite this, its output is notably more on-

topic and diverse than ItiNera, suggesting that even in the absence of reranking,

structured intent modeling significantly improves semantic relevance in retrieval.

ITINERA, which extracts sub-requirements directly from the user query without

explicit intent reasoning, yields the least thematically aligned list. It does include

clearly literary venues—such as Maison de la Poésie, Statue de Corneille, Institut de
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France, and Palais Garnier—but many recommendations are only weakly related

to literature or o!-theme, including Remains of the Batille, Musée Rodin, Square

Samuel Rousseau, Louvre Pyramid, Domaine National du Palais-Royal,Musée Banksy

– Paris. This outcome highlights a limitation of direct query parsing: despite a

clearly stated literary intent, the system often returns attractions that are superfi-

cially relevant but thematically misaligned.

This case illustrates the importance of UGuideRAG’s intent decomposition strategy

as a key enabling component. By structuring user queries into experiential dimen-

sions—landscape and content, activities, and atmosphere—the system establishes

a meaningful foundation for subsequent semantic alignment. However, this poten-

tial is fully realized through the addition of the LLM-based reranker module, which

enables deep contextual understanding and nuanced evaluation of candidate attrac-

tions based on the user’s full intent. Together, these components allow UGuideRAG

to generate personalized itineraries that are semantically aligned, experientially co-

herent, and spatially optimized. This results in a more interpretable, engaging and

meaningful travel experience.

5.5.2 Panoramic View Recognition through UGC

In contrast to traditional spatial modeling that relies on elevation data or visibility

analysis, this approach leverages UGC to detect panoramic viewpoints based on how

visitors describe their experiences. UGC supplies attraction-level semantics that 2D

maps do not encode, revealing where unique views are actually experienced and

which landmarks are inter-visible from a given vantage.

Figure 5.11 shows a set of VAs identified through UGC as o!ering “panoramic

views.” These include well-known elevated landmarks such as Ei!el Tower, Mont-

martre, and Arc de riomphe, as well as lesser-known overlooks like Square Nadar

that emerge in reviews as quiet spots suitable for full-city vistas. In the lower image

of Figure 5.11, an author photograph from Montmartre clearly shows three visu-

ally prominent landmarks predicted by the UGC signals—Tour Saint-Jacques16,

Panthéon17, and Centre Pompidou—thereby validating that UGC recovers view-

point attributes beyond what 2D cartography alone provides.

Importantly, the UGC signal also reveals opportunities invisible to elevation-based

heuristics. For example, Parc André Citroën lies on flat terrain yet is repeatedly

16 https://maps.app.goo.gl/ciqUykjPBS4ikPTn8
17 https://maps.app.goo.gl/UTu8edFuUBoUbtE99
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tagged with “aerial views” because its tethered helium balloon provides sweeping

citywide vistas. By mining natural-language cues in reviews and descriptions—such

as “wide views,” “city skyline,” or “great lookout point”—this framework surfaces

landscape-level semantics, captures how users perceive and interact with space, and

enables more human-centered, viewpoint-aware retrieval and recommendation.

Figure 5.11: UGC-surfaced panoramic viewpoints in Paris. Top: VAs whose re-
views explicitly mention panoramic-view cues; the shaded sector marks
the approximate viewing direction and field of view from the indi-
cated camera location (used to illustrate inter-visibility). Bottom:
author photograph from Montmartre in which three predicted land-
marks—Panthéon, Tour Saint-Jacques, and Centre Pompidou—are
clearly visible.
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6 Discussion

6.1 Interpretation of Overall Results

The e!ectiveness of UGuideRAG demonstrates a valuable approach for addressing

the persistent challenges that have limited traditional tourism recommendation sys-

tems. Prior methodologies, while valuable, have struggled to meet the nuanced

demands of modern travelers, particularly those engaging in immersive urban ex-

ploration like Citywalks. For instance, user interaction-based systems that rely on

broad categories fail to deliver truly personalized suggestions (Savir et al., 2013; Mee-

han et al., 2013; Lu et al., 2010; Yahi et al., 2015), while LBSN-based approaches

are constrained by the cold-start problem and an inability to adapt to real-time

needs (Majid et al., 2015; Chang et al., 2021; Ding and Chen, 2018). Even early

UGC-based methods using shallow text-mining could only capture surface-level key-

words, failing to grasp the deep contextual and perceptual depth that defines a travel

experience (Liang et al., 2024; Missaoui et al., 2019).

UGuideRAG’s success stems from its core contribution: the integration of deep se-

mantic relevance with critical spatial feasibility. The overall experimental results

confirm the power of this synthesis. In a direct comparison, UGuideRAG not only

achieves a far superior semantic alignment than the ITINERA baseline—with a Hit

Rate of 78.5% to 42.3% in Paris and 72.7% to 33.8% in Rome-Vatican—but also

produces itineraries with significantly greater geographical coherence, evidenced by

its much lower Spatial Tightness scores. This dual success is crucial, as superior

semantic matching alone is insu”cient for creating an e!ective travel plan. By con-

fronting the inherent “aspatial” nature of many conventional recommenders, which

deliver disconnected “interest islands” (Bao et al., 2012) and can exacerbate “popu-

larity bias” (Nguyen and Tong, 2022), UGuideRAG provides a solution that is both

highly relevant and realistically executable.

This human-centric design is actualized through a powerful, two-layered spatial

strategy that prioritizes the quality of the travel experience. At the macro-level,

spatial clustering transforms a mere list of destinations into a holistic proposal for
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regional exploration. This fosters the continuous narrative and immersion neces-

sary for developing a true “sense of place,” allowing the traveler to engage deeply

with the urban fabric rather than simply collecting sights (Freytag, 2010b; Shoval

et al., 2011; Cohen, 1979). This regional focus is then refined at the micro-level by

scenic-aware routing, which optimizes for experiential quality over mere e”ciency.

By guiding users along paths rich in aesthetic and sensory input, the journey itself

is transformed into an act of discovery, a key determinant of a positive walking ex-

perience (Mehta, 2008; Ewing and Clemente, 2005). Ultimately, this dual strategy

of clustering and scenic routing creates itineraries that are not just semantically

and logistically sound, but are fundamentally designed to foster an immersive and

meaningful connection with the city (Gavalas et al., 2014).

6.2 Interpretation of Ablation Study

The ablation study provides a granular and insightful deconstruction of the architec-

ture responsible for UGuideRAG’s superior semantic matching. The results reveal

that its success is not attributable to a single monolithic component, but rather to

the powerful synergy of three critical, sequential modules: an LLM-powered engine

for extracting deep, multi-faceted attraction features; an intent-enhanced retriever

for high-precision recall; and an LLM-based reranker for final, nuanced contextual

refinement. At the feature extraction layer, the deployment of LLMs constitutes a

paradigmatic shift from the lexical-level “keyword matching” of traditional models

to a more profound “conceptual alignment.” While foundational methods like TF-

IDF can identify salient nouns, they are fundamentally limited by their bag-of-words

assumption, rendering them incapable of understanding the syntax, context, and nu-

ance that are abundant in UGC (Jurafsky and Martin, 2023; Xiang et al., 2017). In

contrast, LLMs leverage their vast pre-training to parse UGC for underlying con-

cepts, emotions, and implied contexts, distilling unstructured collective intelligence

into rich, structured profiles for each attraction. The foundational importance of

this deep feature extraction is illustrated by the results: removing this component

(w/o Intent Decomposition & UGC) led to a catastrophic decline in performance,

causing the Hit Rate to plummet to the lowest recorded levels of 52.0% in Paris

and 52.7% in Rome-Vatican, a drop of over 25 and 20 percentage points respectively

from the full model.

Following feature extraction, the quality of the retrieval stage proves to be the pri-

mary determinant of the overall performance of the RAG system. This study’s

findings robustly confirm the “garbage in, garbage out” principle in this context:
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if the retrieved context is irrelevant or poorly aligned with user intent, the down-

stream modules, no matter how powerful, are set up for failure (Shi et al., 2023).

The ablation experiments quantitatively demonstrate this critical dependency. By

disabling only the intent decomposition module (w/o Intent Decomposition), which

forces the retriever to work with raw, ambiguous queries, the Hit Rate experienced

a drastic decline from 78.5% to 66.9% in Paris and from 72.7% to 64.0% in Rome-

Vatican. This highlights that an intent reasoning step is not a luxury but a necessity.

UGuideRAG’s intent decomposition module acts as a crucial pre-retrieval reasoning

engine, deconstructing a vague user request into a set of clear, actionable sub-queries.

This process aligns with best practices in information retrieval that aim to maxi-

mize query specificity before database interaction (Ma et al., 2023), underscoring the

critical insight that the system’s bottleneck often lies not in the final generation or

ranking, but in the intelligence of the retriever and its ability to accurately decipher

true user intent (Yu et al., 2022).

Finally, acting as a fine-grained arbiter of relevance, the LLM-based reranker pro-

vides the crucial last step of contextual refinement. This two-stage retrieval-and-

ranking architecture is a well-established and highly e!ective paradigm in modern

search and recommendation systems (Covington et al., 2016). While the retriever’s

job is to e”ciently sift through a massive database to recall a broad set of po-

tentially relevant candidates (optimizing for recall), the reranker performs a more

computationally expensive but far more sophisticated analysis on this smaller set

(optimizing for precision). It leverages the full contextual reasoning power of an

LLM to perform a holistic evaluation, assessing the nuanced interplay between all

facets of the user’s query and the detailed profile of each candidate attraction. Un-

like the geometric logic of embedding similarity, the reranker can adjudicate complex

trade-o!s and correctly identify ”near miss” candidates that might be thematically

close but experientially wrong. The importance of this stage is confirmed by the

experiments, where removing the reranker (w/o LRR) caused a significant drop in

Hit Rate to 66.4% in Paris and 63.4% in Rome-Vatican. This demonstrates that for

the complex, multi-faceted queries typical of travel planning, a LLM-based rerank-

ing mechanism is essential for polishing the candidate set and achieving the highest

degree of semantic alignment.

The analysis of the ITINERA variants further illustrates these dynamics. By replac-

ing ITINERA’s original CSO method with that of UGuideRAG, ITINERA achieves

clear improvements in the semantic relevance of recommended attractions, along

with reduced spatial tightness values. This indicates that UGuideRAG’s spatial op-

timization strategy is particularly e!ective in attraction-dense urban settings such

as Paris and Rome-Vatican, as it preserves walking feasibility while ensuring closer
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semantic alignment between the recommended VAs and the user query.

At the same time, the ablation results reveal that without the LRRmodule, UGuideRAG

consistently outperforms ITINERA in retrieval accuracy, with Hit Rates of 66.4%

and 63.4% in Paris and Rome-Vatican, compared to 59.0% and 56.7% for ITINERA.

This demonstrates the importance of decomposing user queries into multiple dimen-

sions and performing intent modeling, which substantially enhances retrieval pre-

cision. When the LRR module is introduced, both ITINERA (with UGuideRAG’s

CSO and LRR) and UGuideRAG experience significant gains in Hit Rate relative

to their w/o-LRR counterparts—72.6% vs. 59.0% in Paris and 65.5% vs. 56.7% in

Rome-Vatican for ITINERA, and 78.5% vs. 66.4% in Paris and 72.7% vs. 63.4% in

Rome-Vatican for UGuideRAG. However, the relative performance gap between the

two methods remains comparable to that observed without reranking, indicating

that while the LRR module delivers a major absolute boost, UGuideRAG’s core

advantage originates from its intent reasoning at the retrieval stage.

Together, these results demonstrate that the e!ectiveness of UGuideRAG arises from

the complementary contributions of all its modules. UGC-derived VA features pro-

vide rich semantic signals, intent decomposition ensures accurate retrieval, and the

LLM-based reranker refines results with fine-grained contextual reasoning. Mean-

while, the CSO module achieves a balance between semantic relevance and travel

burden, producing coherent and walkable itineraries. Each component is indispens-

able, and only their integration delivers recommendations that are both semantically

aligned and practically feasible.

6.3 Implications

The findings of this study o!er several key implications for the design and application

of intelligent systems in the travel domain. Firstly, for the field of Recommender

Systems, this work signals the necessity of evolving from recommending discrete

items to architecting complete, holistic experiences. The results demonstrate that a

model’s success in a complex domain like tourism depends on its ability to synthesize

semantic relevance with spatial coherence and experiential quality. This suggests a

new design paradigm where logistical and experiential factors are treated as integral

components of the core optimization process, not as secondary filters. This provides

a clear path for moving beyond the limitations of “aspatial” and popularity-biased

models towards systems that deliver genuinely practical and enriching “experience

packages.”
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Secondly, for the field of applied NLP and RAG systems, this study has a critical

methodological implication: the primacy of intent modeling. The detailed analysis

of the system’s components reveals that while every module is important, the e!ec-

tiveness of powerful downstream components, such as the LLM-based reranker, is

fundamentally capped by the quality of the initial retrieval. The most significant

performance gains were unlocked by the intent-enhanced retriever. This implies

that future research and development in RAG-based recommenders should place a

emphasis on robust query rewriting and decomposition techniques, as this is the

foundational stage that enables the full potential of the entire architecture.

Finally, the capabilities demonstrated by UGuideRAG have direct implications for

the tourism industry. The ability to process ambiguous, natural-language queries

and match them with deep, experiential features extracted from UGC enables a

new level of personalization. This allows travel platforms and destination market-

ing organizations to cater to the long tail of niche travel interests, moving beyond

generic suggestions. By generating practical, walkable, and scenic itineraries, this

technology provides a powerful tool to directly enhance the quality of the on-the-

ground travel experience. It o!ers a new modality for promoting destinations, not

as static lists of attractions, but as dynamic, interconnected experiences that can

be customized to each traveler’s unique desires.

6.4 Limitations

Despite its promising results, this study is subject to several limitations that war-

rant careful consideration and frame the agenda for future research. The system’s

performance is intrinsically and heavily tied to the capabilities and potential flaws of

the underlying LLM. This dependency introduces a series of risks. First, the issue of

factual hallucination is particularly pernicious in a travel context, as a fabricated de-

tail can directly lead to a negative real-world user experience and damage trust (Yao

et al., 2023). Second, the “black box” nature of these models presents a significant

challenge for interpretability, a field where Explainable AI is becoming increasingly

critical for user adoption (Zhang and Chen, 2020). Third, LLMs are trained on vast

internet corpora that often reflect and amplify existing societal biases, which could

lead to the underrepresentation of non-dominant cultures or viewpoints (Bender

et al., 2021).

Beyond the model-centric limitations, the data pipeline of this study introduces a

significant ethical dimension concerning the use of public UGC. While user reviews

from platforms like Google Maps are publicly accessible, they are not explicitly
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anonymized and can contain personally identifiable information, whether directly

(e.g., usernames) or indirectly through the content of the review itself. A critical

ethical question arises regarding consent. Users who post reviews consent to a plat-

form’s terms of service, which typically involves sharing their opinion with other

travelers on that platform. It is highly questionable whether this implicit consent

extends to their data being systematically scraped, aggregated, and used as input

for a third-party LLM for an entirely di!erent purpose, a practice known as sec-

ondary data use (Zimmer, 2010). This lack of explicit consent for a new processing

purpose presents a notable ethical and legal challenge, particularly in jurisdictions

with strong data protection laws like the GDPR18. Furthermore, the process of

feeding this data into a commercial black-box LLM API raises additional concerns

about data privacy, ownership, and security, as the ultimate storage and potential

secondary use of this data by the LLM provider are often opaque.

Another major constraint is that the current framework operates on a static rep-

resentation of the urban environment. It does not yet incorporate the dynamic,

real-time variables that are critical for robust, real-world itinerary planning. Key

factors such as the typical duration of stay at each attraction, current and forecasted

weather conditions, and seasonal changes—like reduced daylight in winter or holiday

crowds—are not considered. Furthermore, the model omits other crucial logistics,

such as attraction opening hours or public transit delays (Chen et al., 2017). This

gap between a theoretically optimal plan and a practically executable one can lead

to user frustration.

6.5 Future Work

Building on the foundation of this research, several promising and crucial avenues

for future work emerge to address the aforementioned limitations and advance the

field of intelligent travel planning. A primary objective should be to enhance the

system’s robustness and trustworthiness. To counter LLM hallucinations and static

data limitations, future iterations should integrate the RAG framework with ver-

ified, dynamic knowledge sources. This could involve cross-referencing generated

outputs with structured knowledge graphs or real-time APIs (e.g., Google Maps

API for live opening hours and transit data), creating a fact-checking layer within

the recommendation pipeline.

A second critical direction is to evolve the system towards a truly dynamic, context-

18 https://gdpr-info.eu/
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aware recommendation engine. This involves moving beyond static planning to a

model that can ingest real-time data streams from various sources (weather, tra”c,

social media events). By framing the task as a dynamic, multi-objective optimization

problem, such a system could o!er truly adaptive and resilient recommendations,

capable of re-planning an itinerary on the fly in response to unforeseen events, like

a sudden rainstorm or a user’s change of mood (Adomavicius and Tuzhilin, 2011).

Another key direction is the incorporation of multimodal feature extraction. User

preferences and destination attributes are conveyed powerfully through visual me-

dia. Future systems should leverage joint text-image embedding models (e.g., CLIP)

to analyze photos and videos from UGC, deriving richer features such as a location’s

“scenic beauty,” “architectural style,” or “vibrancy.” This would enable more holis-

tic understanding and novel interaction modalities, such as visual query systems

(“find me places that look like this”) (Zhang et al., 2019).

Furthermore, a key direction for practical improvement is expanding the system’s

planning horizon from a single-day itinerary to multi-day itineraries. This expan-

sion introduces significant new challenges, including the need to optimize routes

over multiple days, incorporate accommodation planning, model user fatigue, and

maintain thematic consistency. Therefore, an advanced system would need to intel-

ligently sequence attractions, create a balanced schedule of activities and rest, and

operate e!ectively over a longer planning timeframe.

Finally, future research must prioritize the development of responsible, fair, and

transparent recommendation algorithms. To mitigate overtourism and popularity

bias, this involves designing systems that explicitly incorporate metrics for fair-

ness and diversity into the optimization process. Techniques such as re-ranking for

fairness, where an initial relevance-based list is adjusted to boost the visibility of

high-quality but less-popular options, can be employed (Celis et al., 2017). This

could evolve the system into a tool for sustainable tourism management, where it

collaborates with city planners to help distribute tourist flow more equitably. This

vision of a responsible recommender system, combined with advancements in dy-

namic adaptation and interpretability, charts a course toward the next generation

of intelligent guides: systems that are not just more accurate, but are also more

trustworthy, responsive, and conscientious partners in our exploration of the urban

world.
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7 Conclusion

In an era where urban tourism is increasingly shaped by the demand for authen-

tic, personalized, and immersive experiences, conventional recommendation systems

have struggled to keep pace. Most remain locked in the paradigm of item-based sug-

gestions, o!ering users little more than static lists of attractions. Yet today’s digital

traveler expects far more: not only a catalog of places to visit, but a coherent and

meaningful narrative—an itinerary that resonates with their unique interests and

fosters a deeper connection with the cultural and spatial fabric of the city. The cen-

tral challenge, and the motivation for this thesis, lies in bridging the gap between

the nuanced, expressive language of human travel desires and the rigid, categorical

logic that dominates existing recommendation engines.

This thesis addresses that gap by proposing and validating UGuideRAG, a frame-

work that shifts the focus from isolated point recommendations to holistic itinerary

design. By linking user narratives with spatial and experiential constraints, UGuideRAG

demonstrates that it is possible to generate itineraries that are aligned with user in-

tent, spatially coherent, and experientially rich. The approach shows that true

personalization requires drawing upon the collective intelligence embedded in user-

generated content, where diverse experiences provide signals beyond what curated

databases can o!er. Advanced RAG techniques serve as the bridge, translating un-

structured expressions of travel desires into structured, actionable plans faithful to

both user preferences and urban realities.

Ultimately, the contribution of this thesis extends beyond a new algorithm. It

presents a blueprint for intelligent travel guides that act as companions in urban ex-

ploration. The principles established here, emphasizing intent decomposition, spa-

tial coherence, and experiential quality, form a foundation for systems that are more

accurate, adaptive, and responsive to travelers’ needs. Future work may integrate

dynamic, real-time data and multimodal signals to create even more context-aware

systems. What this thesis demonstrates is a clear shift: technology can move beyond

presenting information to curating a dialogue between traveler and city, enriching

the journey and deepening our connection to the places we visit.
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Salvador Anton Clavé. 2018. Urban tourism and walkability. In The future of

tourism: Innovation and sustainability, pages 195–211. Springer.

Nuno Antonio, Marisol B Correia, and Filipa Perdigão Ribeiro. 2020. Exploring

user-generated content for improving destination knowledge: The case of two

world heritage cities. Sustainability, 12(22):9654.

Jie Bao, Yu Zheng, and Mohamed F. Mokbel. 2012. Location-based and

preference-aware recommendation using sparse geo-social networking data. In

57

https://doi.org/10.1108/09596110610673547
https://doi.org/10.1108/09596110610673547
https://sites.warnercnr.colostate.edu/tourism-conference/videos/
https://sites.warnercnr.colostate.edu/tourism-conference/videos/


Chapter 7 Conclusion

Proceedings of the 20th International Conference on Advances in Geographic

Information Systems (GIS ’12), pages 199–208. ACM.

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret

Shmitchell. 2021. On the dangers of stochastic parrots: Can language models be

too big? In Proceedings of the 2021 ACM Conference on Fairness,

Accountability, and Transparency, FAccT ’21, pages 610–623. Association for

Computing Machinery.

Walter Benjamin. 2006. The Writer of Modern Life: Essays on Charles

Baudelaire. Harvard University Press, Cambridge, MA.

I. Benouaret and D. Lenne. 2016. A composite recommendation system for

planning tourist visits. In 2016 IEEE/WIC/ACM International Conference on

Web Intelligence (WI), pages 626–631.

Anja Hälg Bieri. 2017. Walking in the capitalist city: On the socio-economic

origins of walkable urbanism. In The Routledge international handbook of

walking, pages 27–36. Routledge.

Bruce Booth. 1998. Information for visitors to cultural attractions. Journal of

Information Science, 24(5):291–303.

Gordon Burtch, Qinglai He, Yili Hong, and Dokyun Lee. 2022. How do peer

awards motivate creative content? experimental evidence from reddit.

Management Science, 68(5):3488–3506.

L. Elisa Celis, Anay Mehrotra, and Nisheeth K. Vishnoi. 2017. Ranking with

fairness constraints. In Proceedings of the 34th International Conference on

Machine Learning, volume 70 of ICML’17, pages 703–711. PMLR.

L. Chang, W. Chen, J. Huang, C. Bin, and W. Wang. 2021. Exploiting

multi-attention network with contextual influence for point-of-interest

recommendation. Applied Intelligence, 51(4):1904–1917.

Mi Chang, Gi-bbeum Lee, and Ji-Hyun Lee. 2023. Analysis of urban visitor

walkability based on mobile data: The case of daejeon, korea. Cities, 143:104564.

Aili Chen, Xuyang Ge, Ziquan Fu, Yanghua Xiao, and Jiangjie Chen. 2024.

Travelagent: An ai assistant for personalized travel planning. arXiv preprint

arXiv:2409.08069.

C. Chen, X. Chen, Z. Wang, Y. Wang, and D. Zhang. 2017. Scenicplanner:

Planning scenic travel routes leveraging heterogeneous user-generated digital

footprints. Frontiers of Computer Science, 11(1):61–74.

58

https://doi.org/10.1109/WI.2016.0110
https://doi.org/10.1109/WI.2016.0110
https://doi.org/10.1177/016555159802400503
https://doi.org/10.1007/s10489-020-01868-0
https://doi.org/10.1007/s10489-020-01868-0
https://doi.org/10.1007/s10489-020-01868-0
https://doi.org/10.1007/s11704-016-5550-2
https://doi.org/10.1007/s11704-016-5550-2
https://doi.org/10.1007/s11704-016-5550-2


Chapter 7 Conclusion

Erik Cohen. 1979. A phenomenology of tourist experiences. Sociology,

13(2):179–201.
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