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Abstract

Citywalk, as an increasingly popular form of urban tourism, emphasizes immersive,
diverse, and personalized exploration over conventional sightseeing. These features
evolving tourist expectations pose new challenges for intelligent itinerary planning,
particularly in capturing the rich experiential attributes of visitor attractions and
aligning them with ambiguous and underspecified natural language queries. This
thesis proposes UGuideRAG (User-Generated Content-Guided Retrieval-Augmented
Generation), a modular framework that leverages user-generated content to con-
struct a comprehensive attraction database, employs large language models for
intent-enhanced retrieval and recommendation, and incorporates spatial optimiza-
tion to ensure coherent itinerary planning. By bridging the gap between par-
tially expressed user goals and the multi-dimensional nature of urban experiences,
UGuideRAG enables more insightful and personalized trip recommendations. For
walk-centric route planning, UGuideRAG further constructs a scenic pathway database
by fusing POI data with geotagged photos to estimate segment-level scenicness using
photo density and street interactivity, and integrates this score into a multi-objective
route generator that links the candidate attractions while balancing distance, spa-
tial compactness, and accumulated scenic value. Experiments on real-world datasets
demonstrate that the proposed framework consistently surpasses existing methods
in producing contextually relevant, user-centered, and spatially optimized urban

tourism itineraries.
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1 Introduction

This master’s thesis builds upon and extends the author’s paper accepted for publi-

cation in ACM SIGSPATIAL 2025.

Square Nadar

“Stop here to admire the

£4
panorama of the city with the k i
Eiffel Tower. Wait for the Q
sunset. Enjoy the moment!”

Le Centre Pompidou

&4 “the 6th floor offers awesome
ﬁ " views of the city, and it's a
v great place for where to enjoy
the sunset ”

“ Where can | enjoy a panoramic

view of Paris? ™ ]

Figure 1.1: “Where can I enjoy a panoramic view of Paris?” This figure illustrates

how user-generated content can reveal hidden scenic viewpoints that are
beyond guidebooks and 2D maps.!

With the rapid development of the Internet and communication technologies, social

media and user-generated content (UGC) are reshaping the tourism industry (Xiang
and Gretzel, 2010). UGC has become a crucial source of information for tourists,

supporting activities such as travel planning, destination image construction, and

! Photo sources: ‘https://maps.app.goo.gl/fMibarde3SBE1uM8, ‘https://maps.app.goo.gl/
‘ 4i48B3rnDuAXVXQf6.
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decision-making. Recent statistics show that over 80% of consumers now rely on the
internet for travel information, and this percentage continues to grow (Zhang et al.,
2019). Compared to marketer-generated content (MGC), UGC is widely perceived
by travelers as more reliable, credible, and up-to-date (Li et al., 2023).

Unlike official descriptions, UGC offers authenticity, emotional nuance, and local-
ized insights that help uncover hidden or underrepresented aspects of destinations
(Mak, 2017; Marine-Roig and Clavé, 2015; Antonio et al., 2020). As illustrated in
Figure 1.1, UGC can reveal detailed and hidden aspects of visitor attractions (VAs)

that are often missing from official descriptions or curated travel guides. For in-
stance, while Le Centre Pompidou is widely known for its modern art exhibitions,
UGC highlights an alternative facet — its rooftop being appreciated as a scenic view-
point. At the same time, user reviews surface lesser-known places such as Square
Nadar, which offers panoramic views but rarely appears in conventional itineraries.
These examples demonstrate how UGC helps uncover both the subtle characteristics

of well-known attractions and lesser-known spots in the city.

Building on the rich UGC associated with visitor attractions, tourists can now choose
destinations that align more closely with their individual interests and preferences.

This accessibility to more detailed VA information has further fueled the demand for

personalized travel experiences (Ana and Istudor, 2019). Responding to this grow-

ing trend, Citywalk has emerged as a popular form of urban tourism, defined as “a

recreational activity including strolling across metropolitan regions to acquire cer-

tain experiences while engaging in behaviors that seek diversity” QWang et al., \2025).
Originally developed from the “London Walk” concept, which began as guided tours
along predetermined routes aimed at showcasing a city’s history, culture, and land-
scape, Citywalk has gradually evolved into a more flexible form of urban travel @,
2024). This evolution towards immersive urban exploration finds a deeper historical
and philosophical antecedent in the 19th-century concept of flanerie. The flaneur,
or the urban stroller, was famously analyzed by Walter Benjamin as a quintessential
figure of modernity—a “passionate spectator” who wandered aimlessly through the
arcades and streets of Paris, observing the transient tapestry of city life m,
2006). Unlike the structured nature of guided tours, flinerie emphasizes an un-
planned, subjective, and aesthetic engagement with the urban environment, where
the act of walking itself becomes a way of reading the city qm, M)

While the classic flaneur was a solitary, almost artistic figure, the modern Citywalk
transforms this spirit into a more accessible recreational activity. Unlike traditional
travel which often prioritizes visiting well-known landmarks and attractions, City-

walk allows travelers to immerse themselves in the streets and alleys, providing
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travelers with a deeper connection with the city’s history, culture, landscape, and

everyday life (Germano, 2023). In addition to Citywalk tourists preferring more per-

sonalized travel experiences, Freytag, in his study of repeat visitors to Paris, found
that repeat visitors ”often neglect or even avoid the iconic sights of mass tourism”

and focus on "trying to take part in the everyday life of the local population” (Frey-
tag, 2010a).

As a personalized form of travel, Citywalk allows tourists to explore the city based
on personal interests, meaning that itinerary planning is heavily influenced by in-
dividual preferences. Unlike traditional itinerary planning, Citywalk tourists focus
more on local culture, scenery, architecture, and urban life. VA recommendation
not only requires considering popular landmarks but also the specific preferences
and activities related to each VA. However, traditional personalized itinerary plan-
ning algorithms face challenges in meeting users’ diverse needs in real-time. One
common approach involves user interaction-based recommendation systems W
‘et al., ‘2013; ‘Meehan et al., ‘2013; \Lu et al., ‘2010; ‘Yahi et al., ‘2015), which catego-

rize and recommend attractions based on VA types—such as museums, landmarks,

or natural sites often overlook content differences within the same VA type. As a
result, these recommendations often fail to meet the personalized needs of tourists

effectively.

Another widely used approach involves location-based social networks (LBSNs)-
based systems, which rely on historical user data to suggest VAs based on patterns
of similar user behavior (Majid et al., 2015; Chang et al., 2021; Ding and Chen,
2018). While these systems are popular for their ability to identify trends, they

are hindered by the cold start problem, where recommendations for new users are
limited due to insufficient historical data. Additionally, such systems often produce
static recommendations, making it challenging to adapt to real-time changes in user

preferences or situational needs.

While user interaction-based (Savir et al., 2013; Meehan et al., 2013; Lu et al., 2010;
Yahi et al., 2015) and LBSN-based (Majid et al., 2015; Chang et al., 2021; Ding and
Chen, 2018) recommendation systems have gained traction in travel applications,

they are fundamentally limited in their ability to leverage the semantic richness

embedded in UGC. These systems typically rely on structured input, high-level
attraction categories, or behavioral patterns, and often ignore nuanced descriptions,

contextual clues, and experiential dimensions conveyed in user narratives.

In response, a line of UGC-based recommendation approaches has emerged to ex-
tract attraction features directly from user reviews and digital content. However,

earlier UGC-based methods primarily relied on shallow text-mining techniques such
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as Latent Dirichlet Allocation (LDA) and other statistical approaches, which extract
only salient keywords while ignoring contextual and perceptual depth (Liang et al.,
\2024; \Missaoui et al., \2019). As a result, these methods struggle to represent attrac-

tion features comprehensively and fail to align with the multifaceted and detailed

preferences of travelers.

Recent advances in large language models (LLMs) have introduced new opportuni-
ties to overcome these limitations. By processing natural language input, LLMs can
bridge the gap between loosely expressed user preferences and semantically rich at-
traction features derived from UGC. For instance, systems such as ITINERA m
\Lal., @) leverage LLMs to parse natural language queries into structured sub-
requirements and retrieve relevant VAs through semantic matching. While these
systems represent a major step forward, they still face challenges in handling user

inputs that are often ambiguous, incomplete, and highly faceted QKostric et al., \2024;

\Keyvan and Huang, \2022; \Huang et al., \2025). As a result, the alignment between
partially expressed user intent and the complex, multi-dimensional features of VAs

remains limited.

Additionally, Citywalk, as a walking-centered travel approach, offers tourists an
immersive experience that extends beyond simply visiting VAs. The walking paths

connecting these VAs play a crucial role in shaping tourists’ overall perception of the

city (Chen et al., 2017). However, traditional itinerary planning often prioritizes the
shortest routes, neglecting the scenic and experiential quality of these paths (Rah-
mani et al., 2020; Benouaret and Lenne, 2016; Ding and Chen, 2018). For Citywalk

tourists, the journey between attractions is as meaningful as the destinations them-

selves. While some research has started to address multi-sensory or experiential

aspects of urban routes (e.g., recommending beautiful, quiet, or olfactorily pleasant

paths QQuercia et al., \2015)), incorporating the scenic route planning connecting
different VAs into recommendation systems remains an unresolved problem in many

studies.

To address these challenges, this research proposes UGuideRAG (User-Generated
Content-Guided Retrieval-Augmented Generation), a modular recommendation frame-
work designed for personalized and fine-grained urban tourism. UGuideRAG con-
sists of five components: (1) UGC-based Attraction Database Construction (UADC),
which aggregates and structures UGC to enrich VAs with descriptive, experiential,
and contextual information that goes beyond official categorizations; (2) Scenic
Pathway Database Construction (SPDC), which integrates geotagged photos and
point of interest (POI) data to quantify the scenic value of each pathway. (3)

Intent-Enhanced Retriever (IER), which decomposes user queries into structured in-
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tents across experiential dimensions using LLMs and retrieves semantically relevant
content; (4) LLM-based Reranker (LRR), which scores retrieved candidates based
on their semantic relevance to the user query; and (5) Cluster-aware Spatial Opti-
mization (CSO), which constructs personalized and spatially coherent itineraries for

urban travel.

My overall contributions are as follows:

1. Grounded in tourism research, this research defines a set of perception-aligned
attraction features comprising landscape and content, activities, and atmo-
sphere, and employ LLMs to extract these structured features from unstruc-
tured user-generated content, providing the data foundation for personalized

recommendations.

2. This research proposes an intent-enhanced RAG architecture, in which the
retrieval module is guided by LLM-based decomposition of user queries into
structured intents across multiple experiential dimensions. Retrieved candi-
dates are then re-ranked using an LLM based on their alignment with the user
query, enhancing semantic precision while supporting more personalized and

diverse itinerary generation.

3. To enhance the experiential quality of travel routes, the proposed system incor-
porates a scenic pathway database that leverages geo-tagged photos and POI
data to estimate the scenic value of urban pathways, enabling route planning

that prioritizes visually and experientially rich walking segments.

4. This research conducts extensive experiments across multiple cities, demon-
strating that UGuideRAG generates personalized and spatially coherent itineraries

that outperform existing baselines in urban travel recommendations.



2 Related Work

2.1 Visitor Attractions (VAs) and Core Experience

Dimensions

According to Pearce’s definition, an attraction is a “named site with a specific human

or natural feature which is the focus of visitor and management attention” (Pearce,

1991). In previous research, VAs have been classified into seven main categories

(Leask, 2010):

Table 2.1: Categories of Visitor Attractions

VA Categories

Subcategories

Theme Parks/Amusement
Parks
Museums & Galleries

Natural
Animal

Visitor Centres
Religious Sites
Heritage

Water parks, amusements, themed attractions

Art, cultural, historical, collection-based, virtual, open-
air museums

Gardens, national parks, forests

Safaris, farms, zoos, aquariums

Cultural, industrial, transport-focused

Religious sites, historical religious buildings

Castles, forts, historic houses, visitor centers, monu-
ments, industrial, dark, archaeological, military, music

When visiting a destination, various destination attributes or features contribute to

tourists’ travel experiences. These attributes, often referred to as pull factors, draw
people to a destination QKhoo—Lattimore and Ekiz, \2014; \Klenosky, \2002). Within

the context of VAs, key pull factors can be categorized into three main groups

(Faerber et al., 2021):

e Physical Environment: This encompasses the infrastructure and quality of

goods and tangibles provided by the VA, largely controllable by VA manage-

ment (Kouthouris and Alexandris, 2005).
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e Service Quality: Key dimensions include queuing and crowding qm
\Lal., 1998), employees’ service quality QAIexandris et al., \2006), general in-
formation provided by the VA dm, M), and the perceived cost-benefit
ratio (Matzler et al., 2007; Tomas et al., 2002).

e VA Core Experience: This includes VA content and presentation (Faer-
ber et al., 2021), entertainment, fun and emotions, atmosphere (Geissler and
Rucks, 2011), novelty (Poulsson and Kale, 2004), and authenticity (Moscardo

‘and Pearce, ‘1986), all of which define the fundamental visitor experience.

While all three categories of pull factors play a significant role in shaping visitor
experiences, this study focuses primarily on the VA core experience, as it directly
attracts visitors and influences their travel outcomes. To capture the core features
of VAs, this research selects three dimensions of the VA core experience: landscape
and content, suitable activities, and atmosphere. These dimensions are designed to
encapsulate the essential elements of VA core features and serve as a foundation for

evaluating and enhancing visitor attractions.

2.2 Tourism-Related User-Generated Content (UGC)

Tourism-related user-generated content, considered by travelers as a more trustwor-

thy source of information, has significantly transformed how consumers search for

and evaluate travel information (Akehurst, 2009). With the advancement of commu-

nication technologies, the impact and significance of UGC cannot be overlooked, as
"digital platforms are revolutionizing the traditional processes of researching, pur-

chasing, selling, experiencing, and sharing travel” (World Bank, 2018). Beyond its

critical role in information search and travel planning, UGC also plays an irreplace-
able role in shaping the image of tourist destinations and transforming marketing
strategies (Cox et al., 2009).

The rapid growth of tourism-related UGC, particularly online travel reviews (OTRs),
has dramatically influenced how tourists access travel information. For instance,
TripAdvisor stored 10 million OTRs in 2007 QGretzel and Yoo, ‘2008), and this

figure has since surpassed 1 billion, with 26 million reviews submitted in 2020 alone,

covering more than 8 million tourist resources worldwide.? According to a survey
conducted by the European Union, 51% of Europeans rely on traditional word-of-
mouth (WoM) and 34% on electronic word-of-mouth (eWoM) when making travel

decisions QEuropean Commission, Directorate-General for Enterprise and Industry

‘ 2 ‘https: / /www.tripadvisor.com/powerofreviews.pdf
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and TNS Political & Social, 2014). Similarly, in the UK, 40% of international
visitors identified WoM and 30% eWoM as key influences (VisitBritain, 2019). In
the U.S., a survey of more than 2,000 leisure travelers revealed that eWoM (58.2%)
had a greater impact on decision-making compared to WoM (45.6%) (Destination
Analysts, 2019).

The rise of tourism websites, social media platforms, and online travel agencies

(OTAs) has generated massive amounts of data, including feedback, destination re-

views, and traveler experiences QLim and Rasul, ‘2022). These data enable travelers
to make more personalized decisions about their destinations, meeting the growing
demand for customized travel experiences QYang et al., \2024). However, the sheer
volume of UGC poses a significant challenge for manual processing qm
’H’ W) Therefore, developing recommendation systems based on UGC can

better uncover the features of each VA and accurately align them with travelers’

preferences, thereby enhancing the personalization and precision of tourism recom-

mendations.

2.3 VA Features Extraction Based on UGC

UGC plays a key role in describing tourist attractions, providing rich perceptual

information for tourists (Munar and Jacobsen, \2013). By mining VA features from

UGC, more interest-aligned recommendations can be provided from the perspective
of tourists. This approach not only reveals the uniqueness and atmosphere of the
attractions but also highlights deficiencies and possible activities, offering tourists a

more comprehensive and authentic experience.

Currently, feature extraction of attractions is mostly based on word frequency statis-
tics methods. Term Frequency-Inverse Document Frequency (TF-IDF) is a common
statistical method used to measure the importance of terms in a document. The
weight of a term increases with its frequency in the document, but decreases as
its frequency across the entire corpus increases. Burtch et al. quantified the nov-
elty of reviews by calculating the cosine distance of consumer reviews using the
TF-IDF model (Burtch et al., 2022). Mishra et al. used TF-IDF to extract key-

words from hotel reviews and used cosine similarity to recommend similar hotels

(Mishra and Gupta, 2019). Peng and Huang studied tourist hotspots and attrac-
tion features in Beijing by analyzing geotagged photos and tourist-generated tags
(Peng and Huang, 2017). In addition to using the TF-IDF method, Abbasi-Moud
et al. directly extracted the top five most frequently repeated words from the visitor
attraction (Abbasi-Moud et al., 2021).
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However, word frequency statistics-based methods have limitations. They cannot
understand the deeper semantics and context of words, leading to inaccurate descrip-
tions of POI features and potential misunderstandings. Word frequency methods
cannot distinguish between synonyms or handle polysemy and are not effective in
highlighting important but infrequent keywords. Additionally, subtle differences be-
tween similar VAs are difficult to distinguish using word frequency methods, limiting

the effectiveness of personalized recommendations.

2.4 Personalized Recommendation Systems

Current personalized travel itinerary recommendation systems mainly include three

research directions:

2.4.1 POl Recommendations Based on User Interactions

Lu et al. developed the Photo2Trip system, which identifies popular tourist areas
by collecting geographic photos and recommends POIs based on visit time, travel

purpose, and style (Lu et al., 2010). Gavalas et al. designed the Scenic Athens sys-

tem, which allows users to set preferences for different attractions and recommends
POIs combined with walking routes (Gavalas et al., 2017). Yahi et al. developed
the Aurigo system, which scores POIs based on popularity, distance, and user pref-
erences, allowing users to iteratively build itineraries by selecting POIs dm )

2015). Pantano et al. developed a tourism recommender system using 18 user profile

themes and a Support Vector Machine (SVM) model to predict destination ratings,

integrating contextual factors like time and weather, and demonstrated improved

accuracy and personalization in supporting tourist decision-making QPantano et al.,
2019).

However, user interaction-based recommendation systems tend to broadly catego-
rize attractions and users into generalized groups, which often results in a lack of
personalization. This limitation underscores the need for more refined recommenda-
tion approaches that can better capture individual user preferences and offer truly

customized travel experiences.
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2.4.2 POl Recommendations Based on Location-Based Social
Networks (LBSNs)

LBSNs allow users to share check-in data at real-world locations, enabling collab-
orative filtering algorithms to recommend POIs that users might be interested in.
Majid et al. proposed a system that combines temporal and spatial context factors
to recommend tourist attractions and routes by mining geotagged photos from so-
cial media (Majid et al., 2015). Chang et al. designed the MANC multi-attention
network model, which improves POI recommendation accuracy by combining users’
social relationships and POI features QChang et al., ‘2021). Ding & Chen’s RecNet

system integrates co-visitation, geographic, and category influences in LBSNs to

learn user behavior patterns for POI recommendations QDing and Chen, \2018).

Compared to user interaction-based recommendation systems, LBSN-based systems
offer a better prediction of POIs that users may be interested in by leveraging
contextual and spatial data. However, they are limited to providing static recom-
mendations based on users’ historical data and lack the flexibility to address users’
dynamic and evolving preferences in real-time. This highlights the need for more
adaptive recommendation systems that can account for changing user demands and

contexts.

2.4.3 POl Recommendations Based on Language Models (LMs)

Abbasi-Moud et al. developed a system that extracts tourists’ preferences from

reviews on tourism social networks and identifies each attraction’s features based

on user-generated comments QAbbasi—Moud et al., \2021). The system semantically
compares users’ preferences with the features of attractions to suggest the most
matching POIs to the users. Chen et al. developed the TravelAgent system, which
recommends personalized itineraries by analyzing user preferences and historical
data QChen et al., ‘2024). Tang et al. proposed the ITINERA system, which combines

LLMs with spatial optimization techniques to generate personalized urban itineraries

by parsing user needs through natural language (Tang et al., 2024).

However, the main limitation of existing systems lies in their reliance on simple
keyword matching to align user queries with attractions, which may lead to unstable
and imprecise matching results. By decomposing attractions and user queries into
reasonable feature components, the stability and rationality of the system can be

improved, enhancing the overall quality of recommendations.

10
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2.5 RAG in Recommendation Systems

In recent years, LLMs have shown advancement in understanding and processing

natural language. However, challenges such as hallucinations (Yao et al., 2023) and

inefficiencies in fine-tuning QDu et al., \2023) continue to affect their reliability in
real-world applications. One promising solution is Retrieval-Augmented Generation
(RAG), which combines external information retrieval with generative modeling to

enrich input representations and improve the quality of generated content (Lewis
et al., 2020).

RAG has been widely adopted for its strong ability to interpret user needs expressed

in natural language QZhang et al., ‘2025), and it has demonstrated great potential in
modeling user preferences and delivering personalized recommendations (Di Palma,
2023; Fan, 2024; Lu et al., 2021; Yu et al., 2025). For example, Di Palma proposed

a simple RAG-based recommendation model that leverages structured knowledge

from movie and book datasets to enhance recommendation relevance @,
2023). Yu et al. introduced Spatial-RAG, an extension of the RAG framework that
integrates both semantic and spatial retrieval to support spatial reasoning tasks,
enabling LLMs to generate geographically grounded and contextually relevant re-

sponses based on user preferences and real-world spatial constraints QYu et al., \2025).

The RAG framework typically adopts a dual-module architecture consisting of a
retrieval module and a reader module, which jointly improve the relevance and
informativeness of generated outputs. However, the effectiveness of the retrieval
component is often hindered by ambiguous or underspecified user queries, leading
to suboptimal retrieval results and degraded overall performance. Recent research
has shown that rewriting and expanding user intent representations within input
prompts can significantly enhance RAG’s performance by improving retrieval quality
and alignment with user needs (Shi et al., 2024; Ma et al., 2023).

This issue is particularly pronounced in tourism recommendation scenarios, where

user demands extend beyond simple keywords to include nuanced expectations

for experiences, emotional responses, and environmental contexts QTerkenli, ‘2021).
While previous efforts, such as Tang’s method of extracting positive and negative
query components and computing embedding similarities for POI recommendation,

have shown initial success, they often fall short in capturing the full breadth of user

expectations (Tang et al., 2024). This results in imprecise POI retrieval and limited
recommendation diversity. These challenges highlight the importance of developing
methods that better capture and represent implicit user intent to support personal-

ized recommendations in complex, experience-driven domains such as tourism.
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2.6 Scenic Route Planning in Urban Tourism

For urban tourism, walkable places are fundamental, as most tourist activities in

destinations occur while walking. If a street’s walkability is high, tourists can enjoy

positive walking experiences QLO and Lee, \2011). Walkable tourism areas provide
comfortable and meaningful experiences by allowing direct interaction with the sur-
roundings. Even in cases where pedestrian pathways lack connectivity or quality,

the presence of engaging street activities can still make a place appealing (Ujang

‘and Zakariya, ‘2015). Freytag’s survey of visitors to Heidelberg, Germany, revealed
that walking and strolling are key activities, particularly for those spending most

of their time in the old town (Freytag, 2010b). Similarly, Shoval et al. analyzed

GPS data from tourists in Hong Kong and found that tourists staying in city-center

hotels are more inclined to walk to attractions (Shoval et al., 2011). This aligns
with the arguments of Bieri and Anton Clavé, who suggest that walkability is not
only central to tourist activities but has also become an ideal spatial form in capital-
ist urban planning. Walkable environments foster tourism consumption and social

interaction, creating new economic opportunities QBieri, \2017; \Anton Clavé, \2018).

Previous research on street walkability has primarily focused on residents’ daily
commutes, measuring walkability through dimensions such as street connectivity,
residential dwelling density, land-use mix, safety, convenience, and comfort m
and Urbano, 2020; Hajna et al., 2015; Villaveces et al., 2012). However, the factors

influencing tourists’ walkability experiences may differ. Ujang & Muslim’s study

of tourism areas in Kuala Lumpur, Malaysia, found that the image of a place in-
fluences visitors” walking experiences more than the actual quality of pathways or
comfort. Enhancing the attractiveness of buildings and spaces for visual enjoyment

and providing cultural, commercial, and recreational activities can effectively im-

prove tourists’ experiences QUjang and Zakariya, ‘2015). Therefore, the scenic value
of streets and their interactive engagement with tourists are critical factors affecting

the walking experience.

The scenic quality of routes significantly influences tourists’ travel experiences. Re-
search by Eby and Molnar demonstrated that scenic routes play a vital role in route
selection (Eby and Molnar, 2002)]. Gavalas et al. designed the Scenic Athens tour

planner, which integrates user preferences for scenery, nature, waterfronts, market

districts, and architecture when navigating between POlIs QGavalas et al., \2017).

Zheng et al. developed the GPSView system, which utilizes geo-tagged photos from
Flickr to calculate street visibility values and determine the scenic appeal of road

segments QZheng et al., \2013). Runge applied Google Street View data and convolu-

12
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tional neural networks (CNNs) to classify scenic types along roads and incorporate

these into scenic route planning QRunge et al., \2016). Scenic quality is particularly

essential for Citywalk route planning, as walking not only allows tourists to enjoy
urban scenery but also to explore the city’s history and culture in depth. These
elements collectively form core travel experiences. Improving the scenic quality of

routes is thus crucial to enhancing the overall Citywalk experience.

In addition to scenic quality, the interactive engagement between streets and tourists
is equally important. Milias et al. surveyed 403 participants in Frankfurt, Germany,
and found that the attractiveness of streets is significantly influenced by houses,

architecture, and shops QMilias et al., \2023). Chang et al. analyzed tourist mobil-

ity data and examined how various POI types affect the walkability of streets in
Daejeon, South Korea. The study revealed that beyond cultural heritage sites and
parks, POIs such as local markets, bakeries, cafes, restaurants, bookstores, flower

shops, and spas showed the highest connectivity strength in the network, indicating

their popularity and high visitor numbers QChang et al., ‘2023). Anton Clavé intro-
duced two attractiveness indicators in the Washington metropolitan area WalkUP
analysis: the Sightseeing Density Index (measuring the concentration of museums,
memorials, gardens, and historical sites) and the Entertainment Density Index (mea-
suring the density of amusement attractions, sports arenas, performing arts venues,

and top restaurants). These indices were used to observe the differences in tourism

characteristics and dynamics across WalkUPs (Anton Clavé, 2016).

While tourism recommendation systems have traditionally focused on selecting at-
tractions, they often overlook the planning of routes between these sites. Since
walking constitutes a vital element of tourists’ travel experiences, integrating street
attractiveness into route planning and balancing factors such as the shortest distance

and high attractiveness can significantly enhance the overall travel experience.

13



3 Problem Formulation

We define the personalized urban itinerary recommendation task as a two-stage
problem that integrates semantic relevance, spatial coherence, and experiential en-

richment.

Let V = {v1,vs,...,vn} denote the set of all available VAs in a given city. Each
attraction v; € V is associated with experiential features primarily derived from

UGC, such as reviews and photos.
Given a natural language user query ¢, the first objective is to generate a personalized

and spatially coherent one-day itinerary:

Vorder - [U017 Vogy+ -+, UOM]

where v,, € V, and M > n,;, ensures the itinerary is sufficiently informative for a
full-day urban experience. This sequence is optimized to align with the semantics

of ¢ while maintaining reasonable travel efficiency and clustering.

The second objective is to construct a scenic-aware walking route P that connects
the selected attractions in Vy.4e through pedestrian-friendly paths that maximize

scenic value:

R={li,ly,... . lx}, (el

where £ denotes the set of walkable road segments in the street network. Each
segment /; is assigned a scenic score SS(¢;) based on the density and orientation of

geotagged photos and proximity to experiential POls.

The final goal is to generate a walking itinerary that:
e selects and orders attractions that are semantically aligned with ¢,
e cnsures spatial walkability and clustering, and

e connects these attractions via routes that maximize the overall scenic experi-

ence without excessive distance overhead.

This composite task introduces several research questions:

14
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RQ1: How can we extract structured, perception-aligned features from noisy, un-
structured UGC for each v; € V?

RQ2: Given a free-form user query ¢, how can we retrieve and rank a candidate
subset Viop-x C V that best matches the user’s intent?

RQ3: How can we select and order a final subset Vi.qer that is both semantically

relevant and spatially coherent?

RQ4: How can we plan a scenic-aware walking route R through the selected attrac-

tions that enriches the overall experiential quality?

15



4 Data and Methods

4.1 Research Area

To evaluate the proposed framework in realistic settings, this study focuses on Paris
and Rome-Vatican. As two of the world’s most visited cities—the Paris Ile-de-

France region welcomed 44 million tourists in 2022 (Comité Régional du Tourisme

‘Paris fle—de—France, 2023), while Rome recorded over 35 million tourist presences

in 2023 QComune di Roma, ‘2024)—they generate a massive volume of the user-
generated content essential for the proposed data-driven approach. Furthermore,
these cities are representative of high-density, heritage-rich tourism environments

that pose both experiential and spatial challenges for personalized trip planning.

>z

0 o5 2 3 4 SKM

Figure 4.1: Research Area in Paris

Paris, the capital of France, welcomed approximately 37 million visitors in 2023,

ranking first globally in international tourist arrivals®. Known as the “City of Light,”

3 ‘https: //parisjetaime.com/eng/convention/article/tourism-in-paris-key-figures-a1749
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Paris offers an extraordinary mix of iconic landmarks (such as the Eiffel Tower,
Louvre Museum, and Notre-Dame Cathedral), scenic urban landscapes along the
Seine River, and a vibrant cultural life. Its well-preserved historic core, abundance
of museums, and walkable neighborhoods make it an ideal testbed for modeling

diverse visitor experiences and optimizing itineraries within a dense urban fabric.

N
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Figure 4.2: Research Area in Rome-Vatican

Rome—Vatican, the capital of Italy and the seat of the Catholic Church, attracted
around 35 million visitors in 2023,* including nearly 6.8 million visitors to the Vati-
can Museums,® and both the Historic Centre of Rome (with Properties of the Holy
See) and Vatican City are inscribed on the UNESCO World Heritage List.5 The
compact layout of historical attractions, coupled with high visitor volume and lay-
ered cultural significance, makes the Rome—Vatican area a highly representative case

for evaluating semantic retrieval and walkable route optimization.

Together, these two cities provide complementary contexts for testing the proposed
system: both are globally recognized cultural capitals with complex attraction net-
works, rich user-generated content, and significant practical demand for intelligent,

intent-aware tourism planning tools.

'

ANSA, “Turismo: a Roma record di presenze, 35 milioni di pernottamenti,” Nov. 30, 2023.
The Art Newspaper, “The 100 most popular art museums in the world—2023,” Mar. 26, 2024.
UNESCO WHC, “Historic Centre of Rome ...” (List 91); “Vatican City” (List 286).

ot

[}
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4.2 Data Source

Our framework integrates multiple real-world urban data sources to support attrac-
tion representation, spatial reasoning, and experiential evaluation. These datasets
span user-generated content, spatial infrastructure, and open geoinformation layers,

covering two cities: Paris and the Rome—Vatican region.

(1) Attraction Data and User Reviews Visitor attractions were aggregated from
three widely used platforms: Google Maps’, TripAdvisor®, and OpenStreetMap
(OSM)?. This multi-source approach ensured broad coverage of both popular and

lesser-known sites.

User-generated reviews for each VA were collected exclusively from Google Maps

10 with reviews sorted by relevance to prioritize informative and

using Selenium
detailed content. These reviews contain user ratings, narratives, and emotional
expressions, offering valuable insights into tourist perceptions, satisfaction levels,
and site-specific experiential features. The extracted textual content was further
processed to construct a semantically rich attraction database for personalized rec-

ommendation.

(2) Points of Interest (POIs) To model the walkability and experiential richness of
urban routes, this study collected pedestrian-relevant POIs from OSM. Each POI

includes location, type to enable interactive scenic score computation.

(3) Geotagged Photos This study utilized geotagged photos from Flickr !, one of
the largest crowd-sourced photo-sharing platforms, to capture public visual percep-
tion of urban environments. Flickr provides rich metadata for each photo, including
precise GPS coordinates, timestamps, and user ID, making it a valuable resource for
studying spatial and temporal patterns of tourist activity. The platform is particu-
larly well-suited for tourism-related analyses, as it attracts users who often document
visits to scenic or culturally significant places. In this work, geotagged photos serve
as a proxy for perceived scenic interest, enabling us to estimate visual appeal at a

fine-grained urban scale.

-

https://www.google.com /maps

o}

https://www.tripadvisor.com/

©

https://www.openstreetmap.org/

1

[}

https://www.selenium.dev/
1 https://www.flickr.com/

18


https://www.google.com/maps
https://www.tripadvisor.com/
https://www.openstreetmap.org/
https://www.selenium.dev/
https://www.flickr.com/
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(4) Street Network Data Pedestrian-accessible street network data was extracted
from OSM using the OSMnx library'2. This includes street geometry, topology, and
walkable connectivity. The network structure was used for routing with integrating

spatial indicators such as geotagged photos and POI counts.

In line with the framework illustrated in Figure 4.3, these datasets serve two primary
functions. The attraction data and user reviews are the core inputs for the UGC-
based Attraction Database Construction (UADC) module. This process creates a
semantically rich knowledge base of VAs, enabling the system to match attractions
with user query. The remaining datasets—POls, geotagged photos, and the street
network—are integrated within the Scenic Pathway Database Construction (SPDC)
module. This component builds a comprehensive routing graph where each street
segment is enriched with a scenic score, facilitating the generation of spatially co-

herent and experientially pleasant itineraries.

4.3 Methods

2&* "'m looking for a romantic setting
to spend time with my partner."

Cluster-aware Spatial
LLM-based Reranker (LRR, S
Intent-Enhanced User Rquubest 5 Optimization (CSO)
’LLMs

Retriever (IER)

Attraction Scoring:

{

1. Tour Eiffel (Score: 9.2)
2. Jardin des Tuileries
(Score: 9.0)

3. Av. des Champs-
Elysées (Score: 9.0)
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and Content Activities Atmosphere

Embedding Model
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e > Attractions \
e ,e ,6e (VAs) Q
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Number of POls on

POIs from OSM each road Interactive value of Scenic score \
each road of each road %\g@
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Figure 4.3: Ilustration of the proposed UGuideRAG framework

12 https: //osmnx.readthedocs.io/en/stable/
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4.3.1 UGC-based Attraction Database Construction

To support personalized recommendations, the first step of proposed framework

is to construct a structured database that captures the nuanced characteristics of

each visitor attraction. This database serves as the foundational knowledge base for

all downstream modules, including semantic retrieval, re-ranking, and itinerary con-

struction. Following the experiential framework introduced in Section 2.1, this study

extracts these characteristics from user-generated Google Maps reviews, focusing on

three key facets: landscape and content, activities, and atmosphere.

Table 4.1: Selected Google Map Reviews for Pont Neuf with Ratings

Rating

Review

5.0

5.0

4.0

“Pont Neuf is a beautiful destination to visit in the evening, offering stun-
ning views of the city and the Seine River. As the sun begins to set, the
lights of the city come to life, casting a romantic and picturesque ambiance
on the bridge. At night, Pont Neuf is illuminated, providing a beautiful
backdrop for a romantic stroll or a relaxing evening walk.”

“Walking around Paris is one of the best activities one can do when there.
This is an amazing sunset spot by the Seine river. Very close to both Notre
Dame and Louvre museum. Highly recommend walking around the area and
soaking in Paris. Also a great picnic spot near the river.”

“Built wn 1607 and still look great and solid and probably the most pic-
turesque of all the Parisian bridges. It is made of two spans due to small
island in between. This is also where you can go for a boat cruise near the
very top of the island. Nice to get views on both sides of the Seine.”

Table 4.2: LLM-Extracted Experiential Features for Pont Neuf

Dimension  Extracted Feature Description

Landscape
& Con-

tent

Activities

Oldest stone bridge in Paris with iconic Seine River views, nearby
parks, and historic features like the Henri IV statue. Features scenic
vistas of landmarks like Notre Dame and Eiffel Tower.

Walking, river cruises, photography, sunset viewing, sightseeing land-
marks, and boarding Vedettes tour boats.

Atmosphere Historic yet vibrant, blending romantic charm with lively crowds. Of-

fers peaceful spots for relaxation amid bustling artistic and cultural
energy.

For each VA wv;, this study prompts LLMs ? to analyze its collected reviews R;, ex-

13 This study wutilized the LLM via the Volcano Engine API, specifically using the
deepseek-r1-250120 model endpoint. This version, indicating a release from January 20, 2025,
was the one available during the experiments. The model is multilingual, and all prompts were
conducted in English. Access was subject to the platform’s standard API usage costs.
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tracting structured textual features across the three experiential dimensions: land-
scape and content f}*" activities £, and atmosphere f&™ along with a general

summary d; describing the overall character of the site.

To illustrate this process, this study presents an example for the Pont Neuf in
Paris. Table 4.1 shows selected user reviews, which reflect visitor attention to scenic
views, nearby landmarks, and atmospheric qualities. Based on these reviews, LLMs
extract structured experiential features summarized in Table 4.2, revealing landscape
attributes (e.g., river vistas and historical architecture), common activities (e.g.,

walking, sunset watching, river cruises), and perceptual atmosphere (e.g., romantic).

All textual features are encoded using an embedding model v(-), producing the

following embeddings:

e}ian — ¢<filan)’ e?ct _ w(fiact), (4 1)
e?tm — 1/}<fiatm)7 6?68 — w(dz)
These dimension-specific representations are stored as part of the attraction embed-
ding database:
Y= {(el-an, €2t eatm. e‘-ies) }N (4.2)

7 % % % i=1

[ Prompt for VA Feature Extraction

You are an Al travel planning assistant specializing in {city}.

### Task Overview
Your task is to extract the key characteristics of a Paris attraction based **only on visitor reviews**.

For the attraction named "{va_name}", analyze the following reviews: {va_reviews}.
Break down the visitor experience into the following four dimensions:

1. **Landscape and Content**: Describe the physical, cultural, architectural, historical, or informational features of
the attraction as mentioned by visitors.

2. **Suitable Activities**: Identify the main actions or experiences visitors engage in or reccommend.

3. **Atmosphere**: Summarize the mood, vibe, or emotional experience reflected in the reviews.

4. **Qverall Description**: Provide a concise summary of the overall visitor impression in one paragraph.

Each dimension must be concise (50 words) and strictly based on the provided reviews.
The **overall description** must be no more than **100 words**, also based only on the reviews.

### Output Format:
Return your analysis in the following JSON format only:

{
"landscape and content": "...",
"suitable activities": "...",
"atmosphere": "...",
"overall description": "..."

B

Figure 4.4: Prompt for VA Feature Extraction
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4.3.2 Scenic Pathway Database Construction

To generate itineraries that are not only efficient but also experientially rich, the
proposed framework requires a detailed understanding of the urban environment
between VAs. This section details the construction of a scenic pathway database,
which is designed to evaluate and score individual road segments based on their
visual appeal and interactive potential. This database enables the final routing
module to connect visitor attractions and other points of interest using pathways
that are both walkable and aesthetically pleasing. The construction process involves
two main stages: cleaning the raw road network and calculating a scenic score for

each segment.

4.3.2.1 Road Network Cleaning

Road networks extracted from OpenStreetMap often contain disconnected compo-
nents due to incomplete mapping, topological noise, or data fragmentation. As a
result, the raw graph may consist of multiple disconnected subgraphs that do not

represent a single cohesive transport network.

However, for most downstream tasks such as routing, accessibility analysis, or urban
planning, this study requires a fully connected road network—i.e., a graph in which

any node is reachable from any other node.

To identify such connectivity, this study applys a standard depth-first search (DFS)
traversal on the road graph to detect all connected components. The DFS procedure
is defined in Algorithm 1, and is used as a subroutine to recursively explore all nodes
belonging to the same component. After identifying all connected components, only
the largest one is retained. This ensures that the resulting road network is a fully

connected subgraph suitable for spatial analysis.

Algorithm 1 Depth-First Search (DFS) for Graph Traversal

Require: Graph G = (V, F), starting node v, empty set component
Ensure: Set component containing all nodes reachable from v
mark v as visited
add v to component
: for all neighbors u of v in G do
if u not visited then
DFS(G, u, component) {Recursively visit unvisited neighbors}
end if
end for=0

e gy
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4.3.2.2 Scenic Score Calculation

The number of photos distributed along roads can indicate scenic quality QTeng
m, m) However, high photo density does not necessarily equate to beauti-
ful scenery. To accurately evaluate road scenic value, this study utilizes tourist-
uploaded geotagged data and applies Principal Component Analysis (PCA) to com-

pute a scenic score.

(1) Selecting Tourist Photos Tourist-uploaded photos serve as a basis for evaluat-
ing scenic quality, but it’s essential to distinguish them from photos taken by local
residents. Tourists typically focus on capturing scenic views, whereas locals more

often upload daily-life content.

To identify tourist photos, the temporal distribution of photos uploaded by a single
user is analyzed. If the timespan of a user’s photo uploads is less than one month, the

photos are classified as tourist photos; otherwise, they are considered local photos.

(2) Scenic Value Calculation While the number of photos along a road (NP") is
a key indicator, relying solely on this metric is insufficient due to biases like the
popularity of landmark buildings. Hence, the geographic distribution direction of

the photos is also considered.

For each road segment, photos within a distance 0 are associated with that segment.
Let the coordinates matrix of geotagged photos for point of interest C; be M;, with

mean ¢ = E(M;). The covariance matrix is defined as:

Y =FE{(M—9)(M;—10)"}
Let A1, As be the eigenvalues and di, dy the corresponding eigenvectors of . The
eigenvector d corresponding to the largest eigenvalue A; is chosen as the principal

component. The angle o between d and the road segment direction vector d, is

calculated. The scenic value S; for the road segment is computed as:

SV; = NP" . (cos(a) - Ay + sin(a) - Ay)

(3) Interactive Value Calculation Using the OSMnx library, all POI data in Paris

is retrieved and filtered for types affecting tourists’ walking experience (as defined
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\— Principle

Principle
component Road B component
Principle
component
o
O O
O Photo Op0O O Photo
(a) (b)

Figure 4.5: Examples of POIs on the roadside. (a) shows a POI visible from a nearby
road, with photo distribution aligned along the road. (b) shows a POI
with poor visibility, and its photo distribution does not align well with
the road. (Source: adapted from‘Zheng et al. 42013))

in Section 2.6): local markets, bakeries, cafes, restaurants, bookstores, flower shops,

and gift shops.

If a POI is within 30 meters of a road segment, it is associated with that segment.
The number of POIs on each segment is denoted as NP®'. The final scenic score S.S;
for each road segment is calculated by a weighted sum of the scenic value and POI

count:

SSZ = wlsl/; + wg.]\fipoi

where w; and wy are the weights assigned to the scenic value and interactive value,

respectively.

4.3.3 Intent-Enhanced Retriever

To effectively retrieve personalized recommendations, unstructured natural language
queries must first be translated into a structured, machine-processible format. This
transformation is crucial, as tourist queries are often ambiguous, incomplete, or
composed of multiple semantic facets. To address this fundamental challenge, my
proposed retrieval module performs intent decomposition and structured semantic
alignment to systematically deconstruct and understand the user’s underlying needs.
Leveraging the reasoning capabilities of LLMs, each user query ¢ is parsed into

three intent components corresponding to core dimensions of attraction experience:
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act) atm) .

expected landscape and content (r'®%), activities (r*"), and atmosphere (r

\
[ Prompt for Intent-Enhanced Retriever J N

Hello, you are now a travel analysis expert specializing in {city}. Your task is to decompose the user's travel query into
multiple independent experiential requirements based on the following three dimensions:

1. **Landscape and Content**: Includes tangible and intangible visual, physical, natural, man-made, and
informational elements that define the attraction's environment. This can include natural scenery (e.g., mountains,
rivers, beaches), architectural features, cultural or historical elements, artworks, and designed spaces.

2. **Activities**: Refers to specific actions or engagements the user intends to undertake, such as walking,
sightseeing, dining, learning, photography, or attending events.

3. **Atmosphere**: Refers to the mood, tone, or emotional/sensory experience the user is seeking, such as
romantic, peaceful, lively, historic, or adventurous.

### Output Format:

You should return a list where each item is a dictionary representing an **independent requirement**, with the
following key-value pairs:
- **expected landscape and content**: Describe what kind of natural or built environments, scenery, or
informational features the user wants to experience. If relevant, include people or cultural references.
- **expected activities**: Describe what specific actions or experiences the user wants to engage in. Include any
associated people or contexts if mentioned.
- **expected atmosphere**: Describe the mood, tone, or emotional quality the user is looking for.
**Do not include any explanations or code. Only return the list.**
The format should be exactly like this:
[
{
"expected landscape and content": "...",
"expected activities": "...",
"expected atmosphere": "..."

3
1

### User Input
{user_input}
#i## Task Overview
Your goal is to analyze and break down the **user input** into multiple independent experiential requirements along
the three dimensions defined above. Be precise, grounded, and consistent with the definitions.
\ Now return your output in the required format.

Figure 4.6: Prompt for Intent-Enhanced Retriever

Each intent component r? € {rlan pact patml js then projected into the embed-
ding space using the same embedding model 1 (-) employed for VA feature rep-
resentation, yielding separate query embeddings for each experiential dimension
©? = 4 (r?). Correspondingly, each VA v; € V is represented by a tuple of embed-
dings {el, e2t e2m1 which encode its semantic profile across the three experiential

)

dimensions.

This study computes the cosine similarity for each dimension d as:

d d

d d w e
) Y i 4.3
os(¢" €)= o] (43

Using this, the composite relevance score for each candidate VA is defined as:
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Score; = Way - cos(p'™, eia“)

act act
+ Wiy - cO8(™, €7)

+ Wagm - cOS(P™™, 2M) (4.4)

Here, wWian, Wact, Watm € [0, 1] control the relative contribution of each experiential

dimension.

By performing this dimension-aware matching, the retriever is able to more robustly
align user intent with semantically rich and structurally organized attraction pro-
files—thereby improving recall for nuanced or under-specified queries. The final
ranked list is obtained by computing Score; for all ¢ € {1,..., N}, and selecting the
top-k candidates:

Viop-k = Top-k ({Score; };L,) (4.5)

The resulting set Viopr C V serves as the input to the subsequent re-ranking stage,
where contextual reasoning is applied via LLMs to refine semantic alignment and

preference fit.

4.3.4 LLM-based Re-ranking of Retrieved VAs

While embedding-based retrieval provides a coarse-grained semantic alignment be-
tween structured user intent and candidate attractions, it lacks the capacity to
perform fine-grained contextual reasoning. To address this, this study introduces a
second-stage re-ranking module that leverages the inference capabilities of LLMs to

evaluate each retrieved candidate in the full context of the original query.

Given the Top-k retrieved VAs Vio,k, this study constructs a natural language
prompt for each candidate v; € Viop that integrates: (1) the user’s original query ¢;
and (2) the structured attribute descriptions of v;, including its landscape and con-
tent features f}a", activities f2*, and atmosphere f#™. These prompts are passed to
the LLM, which performs context-aware semantic matching between the user query

and each candidate’s experiential attributes.

Formally, the LLM outputs a contextual alignment score si™ € [0, 10], representing
the degree to which the candidate satisfies the user’s latent preferences as expressed

in natural language. This re-scoring process enables reasoning over implicit user
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goals, complex lexical variations, and nuanced feature combinations that are often

poorly represented in fixed vector spaces.

The re-ranked list V,erank is obtained by sorting the candidates in descending order of

sIM - This re-ranking stage enhances the semantic fidelity and personalization of the

final recommendation results, bridging the gap between discrete feature embeddings

and holistic user intent understanding.

\
[ Prompt for LLM-based Reranker J

You are an Al travel planning assistant specializing in {city}.
Your task is to assign a **suitability score** (from 0 to 10) to each of the candidate attractions based on the user's
query.
### Scoring Guidelines
For each attraction, evaluate and assign a **total score** between 0 and 10, considering:
1. **Content Relevance (0-10)**: How well the attraction matches the user's desired themes, activities, and
atmosphere.
2. **Negative Filtering**: Strongly penalize attractions containing user-prohibited or mismatched elements.
3. **Do NOT consider coordinates or spatial information.**
### Input Data
[User Query]
{user_input}
[Ccandidate Attractions]
Each attraction is represented as a dictionary with the following fields:

"id": "1,
"name": "Attraction Name",
"landscape and content": "Description of physical landscape and cultural/historical content",
"activities": "Available or typical activities for visitors",
"atmosphere": "General vibe, ambiance, or emotional tone of the place"
}
All candidate attractions are included in the following list:
{attractions_list}
### Output Format
Return a **JSON object** where each key is an attraction ID and the value is a float score between 0 and 10
(inclusive). For example:
{
"1":8.5,
"2": 3.0,
"3":0.0
B

### Output Requirements

- Only return the JSON object.

- Do NOT explain your reasoning.

- Do NOT include rankings, coordinates, or any formatting other than valid JSON.
- Scores must be float numbers between 0 and 10 (inclusive).

Begin scoring now.

Figure 4.7: Prompt for LLM-based Reranker

4.3.5 Cluster-Aware Spatial Optimization

To ensure that the recommended VAs form a spatially coherent and walkable itinerary,

this study introduces a two-step cluster-aware optimization process. The first step

selects geographically compact VA groups via spatial clustering, while the second
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step optimizes the visiting order of selected VAs using a genetic algorithm to mini-

mize travel distance.

Algorithm 2 Spatial Clustering for VA Selection

Require: Sorted list of VAS Vierank = {v1, 09, . .., U } by LLM score, distance thresh-
old 7, minimum total VAS n,,;,, minimum cluster size Nemin
Ensure: Candidate VAs list V.
1: C < [ ] {Initialize empty list of clusters}
2: Vrerank < @
3: fori=1to k do
V4 U;
assigned < false
for all C; € C do
if 3v" € C; such that dist(v,v’) < 7 then
C; < C; U{v}; assigned < true
break
10: end if
11:  end for
12:  if not assigned then
13: C + CU{{v}} {Create new cluster}
14:  end if
15 Ve U{C eC:|C| > nemin}
16:  if |Ve| > npin then

17: break
18:  end if
19: end for

20: return V., =0

Step 1: Spatial Clustering for VA Selection. Given the Top-k candidate attrac-
tions ranked by semantic relevance, this study applys an incremental clustering
algorithm that evaluates each VA based on its proximity to existing clusters. A
new VA is assigned to a cluster if it lies within a specified distance threshold 7
of any member in that cluster; otherwise, a new cluster is created. Clusters with
fewer than n.,,;, members are discarded. The process continues until the number
of VAs in valid clusters exceeds a minimum threshold n,,;,. This approach ensures
that only sufficiently dense and spatially compact clusters are retained, supporting

walk-friendly itineraries. The clustering procedure is outlined in Algorithm 1.

Step 2: Genetic Algorithm for VA Ordering. To determine an optimal visiting or-
der among the selected candidate VAs, this study employs a genetic algorithm that
minimizes the path length between locations. The population is initialized with

random permutations of the VA list. In each generation, individuals are evaluated
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Algorithm 3 Genetic Algorithm for VA Ordering

Require: Candidate VAs V., distance matrix D
Ensure: Ordered list of candidate VAS Verder
1. P« {P,Ps,...,P,} {Initialize population}
2: t < 0 {Initialize the generation count}
3: while t < .« do

4: fori=1togdo

5: fitness(P) {Calculate the fitness score for each P; in P}

6: end for

7. for j=1to { do

8: P,, B, < selection() {Select two parent routes P,, P, based on their fitness}

9: Co, Cy < crossover(P,, B,) {Crossover between parents to generate chil-
dren}

10: Ca, Cp < mutation(C,, Cp) {Apply mutation to children to introduce vari-
ability}

11: Poew < add(C,, Cp) {Add C,, Cy to a new population Ppey}

12:  end for

13:  t <+ t+ 1 {Increment generation count}

14: end while

15: Vorder < Phest {Return the best route Phegy based on the highest fitness score}
=0

using a fitness function based on the total distance traveled. Selection, crossover,
and mutation operations are applied iteratively to evolve better route candidates.
The algorithm terminates after a fixed number of generations, and the best indi-
vidual is returned as the optimized sequence. The complete procedure is shown in
Algorithm 2.

Step 3: A* Algorithm with Scenic-Aware Cost Function. To generate walking
routes that are both efficient and visually pleasant, this study extends the A* search
algorithm by incorporating road segment scenic scores into the cost function. Each
edge cost is adjusted based on the visual attractiveness of the path, encouraging the

algorithm to favor scenic routes without excessively increasing total distance.

This study define the scenic-aware traversal cost between two connected nodes u

and v as:

length(u, v)

(4.6)

cost =
S (u, U> scenic,score(u, U)a te

where:

e length(u,v) is the physical distance (e.g., in meters) of the road segment,
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e scenic_score(u, v) € [1,5] is the rescaled visual quality score of the segment,
e « is a tunable parameter controlling scenic influence (o > 0),
e ¢ > ( is a small constant to prevent division by zero.

This function allows the algorithm to prioritize scenic paths by reducing the effective
cost of high-quality segments, while preserving route realism. Setting v = 0 recovers

standard shortest-path routing, while increasing v emphasizes scenic preference.

Algorithm 4 Scenic-Aware A* Algorithm

Require: Graph G = (V, F) with scenic score ss(e) on edges, start s, goal g
Ensure: Path from s to g minimizing scenic-adjusted cost
1: open_set < {s}
2: came_from[v] < None for all v € V'
3: g_scorelv] < oo, g_scorels| < 0
4: f_score|v] < oo, f_score[s] < h(s,g)
5: while open_set # () do
current <— node in open_set with lowest f_score
if current = g then
return reconstruct_path(came_from, current)
end if
10:  Remove current from open_set
11:  for each neighbor n of current do

6
7
8:
9

12: L «+ length(current,n)

13: s$ ¢ scenic_score(current, n)

14: W 4= — {scenic-adjusted edge cost}
SC* + €

15: tentative_g < g_score[current] + w

16: if tentative_g < g_score[n] then

17: came_from|n| < current

18: g-score|n| « tentative_g

19: f-score[n] < g_score[n] + h(n, g)

20: if n ¢ open_set then

21: Add n to open_set

22: end if

23: end if

24: end for
25: end while
26: return failure =0

This extension enables flexible multi-objective routing, balancing distance efficiency
with user-perceived route quality. When applied to urban tourism, it encourages
walkable paths that pass through scenic streets, riversides, or landmark-dense ar-
eas—enhancing the experiential value of itineraries while maintaining route practi-

cality.
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5.1 Experiments Setting

5.1.1 VA Distribution in Experimental Cities

To evaluate the spatial characteristics of curated datasets, this study analyze the
distributions of VAs in the two experimental cities. For each city, this study col-
lected a set of geolocated VAs—981 in Paris and 867 in Rome—Vatican. These VAs
were augmented with user-generated reviews to extract descriptive and perceptual

features, forming the foundation of semantic attraction database.

0 0.5 1 2 3 4 5KM
Visitor Attraction . . I ; | 3

Figure 5.1: Spatial distribution of visitor attractions in Paris.
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Figure 5.1 illustrates the spatial distribution of VAs in Paris. As observed, the
highest density of attractions is located in central Paris, particularly around the 1st
to 6th arrondissements. This includes well-known neighborhoods such as Le Marais,
Ile de la Cité, and Saint-Germain-des-Prés. Notably, density also extends westward
along the Seine and eastward toward Bastille and Nation, suggesting a walkable
cultural corridor. Peripheral areas such as Boulogne-Billancourt or Montreuil exhibit

sparse coverage, highlighting the centralization of tourist interest zones.

A

[ Visitor Attraction ] LR P e i

Figure 5.2: Spatial distribution of visitor attractions in Rome-Vatican.

Figure 5.2 presents the spatial distribution of VAs in Rome—Vatican. Similar to
Paris, Rome’s visitor attractions are densely concentrated in the historical city cen-
ter, with prominent clusters around the Colosseum, Roman Forum, Trevi Fountain,
and Vatican City. The overall spatial spread appears more compact than that of

Paris, with a pronounced density drop beyond the central districts.

While both cities exhibit strong central clustering, Paris demonstrates a broader
east—west distribution aligned with the Seine River, facilitating attraction connec-
tivity across a larger urban span. In contrast, Rome’s denser and more compact clus-
tering emphasizes its ancient core, suggesting a more spatially constrained tourist
experience. These distinctions reflect differences in historical development, urban

form, and the spatial logic underlying cultural accessibility in each city.
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5.1.2 User Queries Generation

(3) Query generation based on
tourists’ mode of experience

{,Instru:tion:
1 You are a tourist motivated by Interest, traveling alone,

Amusement 4 ! interested in local life in Paris. Generate a query accordingly.

Interest

, Youare a casual cultural tourist, traveling with friends, keen on
the Fashion culture of Paris. Generate a query accordingly.

Change = Rapture B \ T T T T T T mm——-———--— - ~ | Generated Query:

Dedication ® STt heritane \ 1 Can you recommend some interesting local experiences in
|{ L Alone ¥ partner _ ‘ v 9 | \ Paris for solo travelers? P
| i Friends W Architecture |, || ~ TooTo oo o o oo o oo s s s s s s s s

- (=4
(b) Query generation based on | & With young children artebiuseums \ Sttt ittt ~
cultural tourist typology | & with older children 4 Fashion culture 1 Instruction:

" 1
1

Purposeful L4 Cultural and experiential !

\
1
1
1
1
1
1

& 7 Travel Companion - . ’
Serendipitous gl ® T characteristics of cities , | Generated Query:
) . Incidental Mt | My friends and | want to explore Parisian fashion history and
Sightseeing =i \ visit some local ateliers. Any suggestions? ,

Figure 5.3: An overview of query generation based on tourists’ motivation types,
travel companions, and urban characteristics. Two generation pathways
are illustrated: (a) experience-based typology and (b) cultural tourist
typology. These factors are composed into LLM prompts to simulate
diverse queries.

To simulate diverse user intentions grounded in psychological, cultural, and social
motivations, this study adopt a multidimensional framework for generating natural
language queries. This framework supports two complementary generation strate-
gies, each rooted in established tourism typologies and contextualized through travel

companionship and urban cultural profiles.

First, this study draw upon Elands and Lengkeek’s refinement of Cohen’s tourist
experience theory QElands and Lengkeek, ‘2000; \Cohen, ‘1979). Their work provides

a detailed typology of modes of experience in tourism, outlining a spectrum of mo-

tivations—Amusement, Change, Interest, Rapture, and Dedication—that represent
distinct experiential orientations. The Table 5.1 shows a more detailed breakdown
and examples of these types. These motivational profiles were systematically paired
with travel companion contexts (e.g., alone, with a partner, with young or older chil-
dren, or with friends without children) and grounded in the cultural and experiential
characteristics of real-world cities to simulate general leisure and meaning-seeking

user queries in urban environments.

Table 5.1: Modes of Experience dElands and Lengkeek,

2000)

Mode of Ex- Underlying Char- Items

perience acteristics
Fun For me, having a nice time on vacation means
drinking coffee or a beer with the neighbors.
Amusement I like to go to places that attract many
tourists and are nice and busy.
e I like to eat Dutch food on vacation.
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Mode of Ex-

perience

Underlying Char-

acteristics

Items (continued)

I like to hear Dutch spoken when I'm on va-

cation.

Temporality

I like to go on vacation, but I also like it to

go home again.

Change

Escape

I go on vacation to get out of the daily grind.

I have such a stressful job that I need to es-
cape once in a while / because of the pressure
of my daily activities, I have to go out once

in a while.

Relaxation

Rest

The most important thing in my vacation is
relaxation / I go on vacation for a good rest

and relaxation.

Idleness

To me, vacation means being idle, sun-

bathing and doing nothing.

Recover

I need vacation to recharge my batteries.

I have to go on vacation at least once a year

to recover.

It takes me the first days of a vacation to un-

wind and forget about my job or housework.

Context matters

I don’t care where I go on vacation, I just

have to get away.

Interest

Search for interesting

vistas and stories

I always visit a church, castle or historic city

centre when I’'m on vacation.

On vacation I don’t feel like visiting a church,

castle or historic city centre (-).

Cultural activities

I like to go to local cultural activities.

Stimulation of

imagination

I always read the information boards at

tourist sites.

I always take a travel guide and a map of the

area with me on vacation.

When I'm on vacation, I go first to the local
tourist office for specific information about

the area.

Variation

On vacation I want to see new and various

things all the time.
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Mode of Ex- Underlying Char- Items (continued)
perience acteristics
I like to choose a different vacation destina-
tion each year.
] When I'm on vacation I like to be alone in
Self-discovery
the great outdoors for hours on end.
During my vacation I finally find time for
Rapture myself.
On vacation I like sporty challenges and sur-
Crossing borders prises.
I have no objections to primitive conditions
when I'm on vacation.
I like active vacations doing strenuous things
such as long treks and cycle tours.
On vacation I like it the most when, before-
Unexpected ] ,
hand, I have no idea where I will go.
On vacation I like to be confronted with new
experiences and surprises.
Once an area starts getting touristy I don’t
Quest for authenticity go back.
My first choice is exotic vacation destina-
tions.
Dedication On vacation I search for wilderness and orig-

inal landscapes where I won’t meet anybody.

Merge

I am not satisfied with just seeing local cul-
tures and their habits. I would rather be part
of it.

For me vacation means totally immersing
myself in other cultures / on vacation I im-

merse myself totally in another culture.

Appropriation and

I rather go to the same area because I feel
bonded to it.

devotion '
The area where I always go on vacation, I
really consider as my place.
I visit .... (fill in name destination) because
... plays an important role in my life.
Timeless I would like to live in ... / If I could I would

like to live in my vacation place.
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Second, recognizing that cultural tourism constitutes a significant subset of urban
tourism, this study incorporate McKercher ’s typology of cultural tourists, seeing
Table 5.2 @McKercher and Du Cros, \2003). This model distinguishes five types

of cultural tourists—Purposeful, Serendipitous, Sightseeing, Casual, and inciden-

tal—based on the centrality of cultural motivations and the depth of cultural en-
gagement. These types were similarly paired with travel companion profiles and
enriched with city-specific cultural images to guide LLMs in simulating user queries

reflecting diverse forms of culturally oriented intent.

Table 5.2: Types of Cultural Tourism QMCKercher and Du Cros,
Types Description
Purposeful The purposeful cultural tourist (high centrality / deep ex-
Cultural perience). Learning about the other’s culture or heritage
Tourist is a major reason for visiting a destination, and this type
of cultural tourist has a deep cultural experience.
Serendipitous The serendipitous cultural tourist (low centrality / deep

2003)

Cultural experience). Cultural tourism plays little or no role in the

Tourist decision to visit a destination, but while there, this tourist
visits cultural attractions and ends up having a deep expe-
rience.

Sightseeing The sightseeing cultural tourist (high centrality / shallow

Cultural experience). Learning about the other’s culture or heritage

Tourist is a major reason for visiting a destination, but this type
of tourist has a more shallow, entertainment-oriented ex-
perience.

Casual Cul- The casual cultural tourist (modest centrality / shallow

tural Tourist  experience). Cultural tourism reasons play a limited role in
the decision to visit a destination and this type of cultural
tourist engages the destination in a shallow manner.

Incidental The incidental cultural tourist (low centrality / shallow ex-
Cultural perience). Cultural tourism plays no meaningful role in the
Tourist destination decision-making process. However, while at the

destination, the person will participate in cultural tourism
activities, having a shallow experience. Incidental cultural
tourists prefer visiting easy-to-consume, low-involvement,
well-known, entertainment-oriented, mass tourism cultural
attractions.

The user query generation process is illustrated in Figure 5.3, which summarizes
how motivational typologies, cultural intent categories, travel context, and cultural
and experiential characteristics of cities were combined to construct a semantically
diverse and realistic set of user queries. In generated queries, 35.3% of the Paris
queries and 36.1% of the Rome-Vantican queries were derived from the cultural

tourist typology, with the remainder grounded in the mode of experience framework.
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5.2 Evaluation Metrics

this study adopt a combination of semantic and spatial metrics to evaluate the
relevance, efficiency, and spatial coherence of each generated itinerary. Let Voiger =
{v1,v9,...,vn} denote the ordered set of selected attractions in a given itinerary,
and let q denote the user query. The Euclidean distance between two attractions v;

and v; is denoted by d(v;, v;).

Hit Rate (HR) Hit Rate measures the proportion of attractions in the itinerary that

are semantically relevant to the user query q:

B 1
|V0rder |

HR I[Relevant(v, q) = 1], (5.1)

UEVorder

where [[-] is the indicator function. Relevance is assessed via LLM judgement and

verified through human annotation.

Average Margin (AM) Average Margin measures the difference in total Euclidean
distance between the generated itinerary and the optimal Traveling Salesman Prob-

lem (TSP) solution over the same set of attractions:
AM = D<Vorder) - D (Vorder)a (52)

where D(-) denotes the total distance of the visiting order, and D*(+) is the optimal

TSP distance over the same set.

Travel Distance (TD) Travel Distance is the total Euclidean distance incurred when

visiting attractions in the recommended order:

N-1

TD = ) d(vi, vi41). (5.3)

i=1

Spatial Tightness (ST) Spatial Tightness measures how spatially clustered the

selected attractions are, regardless of their visiting order:

1 N

ST = — Y mind(v;, v;). 5.4
Nﬁﬁ%(vw (5:4)
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Scenic Route Gain Ratio (SGR) Scenic Route Gain Ratio quantifies the scenic
value gained per unit of walking distance, offering a normalized measure of experi-
ential enrichment in route planning. Let S..ue denote the total scenic score accu-
mulated along the generated route, and D, the corresponding walking distance.
Then:

SGR = —roe (5.5)

Droute + €
where € is a small constant to avoid division by zero. A higher SGR reflects a more
scenic route per unit of effort, balancing scenic richness with walking cost. This
formulation allows for clear comparison in ablation studies, even when scenic-aware
planning is disabled, and avoids the scale mismatch between score and distance in

difference-based metrics.

5.3 Results

5.3.1 Scenic Score Visualization over Road Network

To ensure topological consistency in scenic scoring pipeline, this study first apply
DFS to extract the largest connected component from the OSM road network in each
city. This step is critical for enabling shortest-path calculations and ensuring every

node is reachable from any other, as required for subsequent route-based analysis.

Figure 5.4, Figure 5.5, Figure 5.6 and Figure 5.7 show the road networks of Paris
and Rome before and after cleaning. In both cities, this study observe that the
raw networks contain fragmented road segments or small disconnected subgraphs,
especially at the periphery or in suburban areas. After applying DFS-based filtering,
only the largest connected subgraph is retained, resulting in a continuous, navigable

network suitable for scenic evaluation.

Based on the cleaned networks, this study visualize the computed scenic scores at
the segment level for both cities. As shown in Figure 5.8 and Figure 5.9, each road
segment is assigned a score based on photo density, alignment of photo distribution
with road geometry, and proximity to interactive POIs. The scores are mapped
using a continuous color gradient from blue (low scenic value) to red (high scenic

value).

In Paris, the spatial distribution of scenic scores is strongly center-weighted. The
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Figure 5.4: Raw road network of Paris before connectivity cleaning.
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Figure 5.5: Cleaned connected road network of Paris after DFS-based filtering.
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Figure 5.7: Cleaned connected road network of Rome after DFS-based filtering.
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Figure 5.9: Scenic Score Distribution in Rome-Vatican.
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highest-value segments cluster in the historic core—the 1st to 8th arrondissements
— including the Louvre—Tuileries—Palais-Royal axis, lle de la Cité / Ile Saint-Louzs,
Opéra—Madeleine—Saint-Honoré, Saint-Germain—Musée d’Orsay, Invalides, and the
Champs—Elyséestoncorde corridor. A secondary hotspot occurs on and around
Montmartre, where elevated viewpoints and dense heritage streets (e.g., around

Sacré-Ceur and Place du Tertre) yield consistently high scores.

In addition, the Seine riverfront emerges as a continuous “scenic ribbon”: quays on
both banks and bridge approaches exhibit above-average values, reflecting water-
front vistas and landmark density. Scores decline toward peripheral districts, where
residential grids dominate, producing a clear center-to-edge gradient. These pat-
terns suggest that scenic-aware routing will naturally favor riverfront corridors and
central heritage streets, with optional detours to Montmartre when elevation and

viewpoints are desired.

In Rome—Vatican, the spatial pattern of scenic scores is highly concentrated. The
highest values cluster tightly in the historic core and within Vatican City, and a
continuous ribbon of elevated scores runs along the Tuber riverfront. Outside these
hotspots, scores drop off quickly: most streets in the broader urban area register
low scenic values—not because they are inherently unwalkable, but because they
offer fewer landmarks, viewpoints, and cultural cues that attract tourists. This
produces a pronounced core—periphery gradient in which a relatively small central
zone accounts for most high-scenic segments. For routing, scenic-aware paths will
naturally remain in the historic center or track the river, while excursions into outer

districts tend to yield limited scenic gain.

This spatial differentiation highlights the ability of the scenic score framework to
capture not only aesthetic and experiential quality but also the underlying spatial

structure of tourism intensity.

5.3.2 Overall Results

Table 5.3: Comparison between UGuideRAG and ITINERA on the Paris and
Rome—Vatican datasets.

City Method HR (%)t AM (m)] TD (m)l ST (m)l SGR 7
w/o SP  with SP
Paris ITINERA 42.3 455.8  5816.3 4414 4.3 45
ans UGuideRAG  78.5 651.2 67814  301.8 5.0 5.2
Rome Vaticay  1TINERA 33.8 446.0 5367.3 413.5 4.6 47
OMETVAlCAl  GuideRAG  72.7 582.4 5227.1  231.8 4.8 5.0
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this study evaluate the full UGuideRAG framework against ITINERA!* (Tang et al.,
2024), a recent LLM-based itinerary recommender whose spatial stage relies on a
density-based spatial clustering method. Table 5.3 presents a comparison of the two

systems in the Paris and Rome-Vatican datasets.

In terms of semantic alignment, UGuideRAG achieves significantly higher HR in
both cities—78.5% in Paris and 72.7% in Rome-Vatican—compared to ITINERA
(42.3% and 33.8%, respectively). These results indicate a stronger match between

user query and the recommended VAs.

For spatial metrics, both systems achieve nearly identical AM values, suggesting
comparable efficiency in visiting order relative to the optimal TSP baseline. De-
spite variations across cities, UGuideRAG maintains TD values around 6000 meters,
which translates to a feasible walking distance for a day itinerary, ensuring practical
usability for urban tourists. Additionally, UGuideRAG consistently achieves low ST
values across both cities, indicating that the recommended attractions are geograph-
ically well-clustered and exhibit strong walkable connectivity. Notably, enabling
scenic route planning (SP) consistently improves scenic gain for both methods: the
SGR with SP exceeds its counterpart without SP for each method, while the actual

route distance does not noticeably increase.

Taken together, these findings demonstrate that UGuideRAG delivers substantially
improved semantic relevance while maintaining competitive spatial performance.
This highlights its potential to improve user satisfaction through context-aware

itinerary recommendations without imposing additional travel burden.

5.4 Ablation Study

To assess the individual contributions of each module in the UGuideRAG frame-
work, this study conduct an ablation study on both the Paris and Rome-Vatican
datasets (Table 5.4). this study examine four ablated variants: (1) without in-
tent decomposition and UGC-derived VA features (w/o Intent Decomposition &
UGC), (2) without intent decomposition (w/o Intent Decomposition), (3) without
the LLM-based reranker (w/o LRR), and (4) without cluster-aware spatial opti-
mization (w/o CSO), keeping all other components intact. In addition, this study
also compare against two modified variants of the ITINERA. Since ITINERA’s orig-
inal density-based clustering is not well-suited for high-density VA regions such as
Paris and Rome-Vatican, this study re-implement ITINERA using UGuideRAG’s

14 Results are obtained using the authors’ original implementation.
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clustering strategy: (5)ITINERA with UGuideRAG’s CSO only, and (6)ITINERA
with UGuideRAG’s CSO and LRR.

Table 5.4: Performance comparison across different ablation settings on Paris and
Rome—Vatican datasets.

City ‘ Method ‘ HRT (%) AM| (m) TDJ| (m) ST| (m) SGR (%)

| | w/o SP | with SP

| UGuideRAG (Full) | 785 651.2 6781.4  301.8 50 | 52

_ w/o Intent Decomposition & UGC 52.0 805.7 6752.1 358.5 5.1 5.3

Paris w/o Intent Decomposition 66.9 539.2 6370.7 329.3 5.5 5.7

w/o LRR 66.4 658.9 6249.9 3107 4.8 4.9

w/o CSO 80.1 16424.4  36592.7  1535.7 7.2 7.7

ITINERA (w/ UGuideRAG’s CSO, w/o LRR) 59.0 651.4 6001.1 310.2 5.1 5.3

ITINERA (w/ UGuideRAG’s CSO and LRR) 72.6 627.0 6423.6 3120 5.4 5.7

| UGuideRAG (Full) | 727 582.4 5227.1 231.8 4.8 5.0

. w/o Intent Decomposition & UGC 52.7 369.6 3990.1 231.0 5.0 5.0

Rome-Vatican | o/ Intent Decomposition 64.0 6683 54763  255.5 5.0 5.3

w/o LRR 63.4 563.3 4736.5  242.9 5.3 5.5

w/o CSO 72.1 12035.4  21998.2  815.6 5.7 6.2

ITINERA (w/ UGuideRAG’s CSO, w/o LRR) |  56.7 512.6 5702.8  267.5 5.2 5.4

ITINERA (w/ UGuideRAG’s CSO and LRR) 65.5 669.8 5064.2 259.2 5.1 5.2

The w/o Intent Decomposition & UGC variant relies on each VA’s Wikipedia
summary for attraction matching, without leveraging structured user intent and
UGC-derived VA features. It operates on a reduced attraction pool due to the
limited availability of Wikipedia descriptions (454 VAs for Paris and 467 for Rome).
This setting yields the lowest HR across both cities, with a notable performance drop
compared to the w/o Intent Decomposition variant. These results further highlight
the foundational importance of extracting rich experiential VA features from UGC

for personalized, fine-grained recommendations.

When the LLM-based reranker module is removed, the system experiences a no-
ticeable drop in recommendation performance, highlighting the importance of fine-
grained contextual ranking. While intent decomposition ensures that retrieval broadly
aligns with user intent, removing the LLM-based reranker limits the system’s ability

to distinguish fine-grained semantics beyond what embeddings can represent.

Removing the intent decomposition module leads to a significant drop in HR, as the
system fails to infer user intent from multi-faceted, ambiguous, or implicit queries.
This degrades retrieval quality and limits the effectiveness of downstream LLM-

based reranking.

Although HR remains high, removing the CSO module results in severe degrada-
tion of spatial metrics. In particular, AM increases by over 25x, while TD and
ST increase by approximately 5x. This indicates that although the selected attrac-

tions are semantically relevant, they are spatially scattered and inefficiently ordered.

15 ‘https://en.wikipedia.org/
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Therefore, CSO is essential for producing spatially coherent and walkable itineraries.

5.5 Case Study

To further demonstrate the effectiveness of proposed framework, this study present
two case studies: one comparing recommendation results across methods for a
themed query, and another showcasing UGC-based detection of semantic spatial

features such as panoramic viewpoints.

5.5.1 Performance Comparison under a Cultural Theme Scenario

Visitor attraction list: Visitor attraction list:

A: Statue de Pierre-Augustin

> . Statue de Pierre-Augustin
Caron de Beaumarchais A

" Caron de Beaumarchais
B: Paris-Sorbonne University
C: Panthéon
D: Maison de la Po€sie
E: Institut de France
F: Comédie Francaise
G: Maison de Victor Hugo
H: Les bouquinistes de la Seine
I: Shakespeare and Company
J: Musée de la BnF

B: Maison de Victor Hugo

C: Historical Library of the
City of Paris

D: Mus€e de la BnF

E: Fontaine Moliére

F: Comédie Francaise

G: Institut de France

H: Montaigne - Paul Landowski
|: Shakespeare and Company
J: Les bouquinistes de la Seine
K: Lauzun Hotel

O Relevant 9 Irrelevant

() Relevant o Irrelevant

(a) UGuideRAG (Full) (b) UGuideRAG w/o Cluster-aware Spatial Op-
timization

Visitor attraction list: Visitor attraction list:

A: Musée de la BnF
B: Musée du Barreau de Paris
C: Musée Carnavalet

D: Soc Des Amis Musée
Carnavalet

A: Maison de la Poésie

B: Remains of the Bastille

C: Statue de Corneille

D: Musée Rodin

E: Square Samuel Rousseau

F: Institut de France

G: Louvre Pyramid

H: Domaine National du
Palais-Royal

I: Palais Garnier

J: Musée Banksy - Paris

E: Maison de Victor Hugo

F: Wall of Philippe Il Augustus
G: Statue de Corneille

H: Shakespeare and Company |
I: Comédie Francaise
J: Fontaine Moliere

) Relevant 9 Irrelevant ‘{\»j‘ Relevant 9 Irrelevant

(C) UGuideRAG w/o LLM-based Reranker (d) ITINERA

Figure 5.10: Case study comparison of recommended attractions across methods for
the query “I’'m interested in French literature”.

To further demonstrate the effectiveness of the framework, this study present a
case study based on the user query: “I'm interested in French literature. What
places do you recommend?” this study compare the outputs of four systems previ-
ously introduced in the ablation study: the full UGuideRAG, its variants w/o
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Cluster-aware Spatial Optimization and w/o LLM Reranker, and the base-
line ITINERA.

Figure 5.10 shows the recommended itineraries generated by each method. The
selected VAs are labeled alphabetically (A-K), with names listed in each subfigure’s
legend. Detailed descriptions of all VAs will be included in the supplementary

materials.

The full UGuideRAG framework produces the most semantically aligned and di-
verse itinerary. It identifies a rich mix of attractions closely related to the theme of
French literature, including iconic author residences such as Maison de Victor Hugo
and Lauzun Hotel (associated with Baudelaire), as well as sculptures and monuments
dedicated to French playwrights, including Fontaine Moliére and the Statue de Beau-
marchais. The itinerary also features cultural landmarks like the Musée de la BnF,
the Institut de France, and the historic literary theater Comédie Francaise, along
with experiential VAs such as the riverside secondhand book market Les bouquin-
istes de la Seine and the renowned bookstore Shakespeare and Company. These
results highlight UGuideRAG’s strength in identifying attractions related to French
literary culture, including historic author residences, public monuments, national
literary institutions, and reader-focused VAs such as secondhand book markets and
independent bookstores. The resulting itinerary combines well-established land-
marks with immersive experiences, offering a coherent and multifaceted exploration

of the literary landscape of the city.

Removing the CSO module does not significantly alter the set of selected attractions
but results in a disorganized and spatially scattered itinerary. The absence of spatial
coherence highlights CSO’s essential role in optimizing the visit order and improving

overall travel feasibility without sacrificing semantic alignment.

The variant without the LRR still benefits from intent decomposition and success-
fully retrieves many relevant sites, including Victor Hugo’s house, Shakespeare and
Company, Fontaine Moliére, Statue de Corneille, Comédie Francaise, and the Musée
de la BnF. However, it also includes more marginally relevant or thematically am-
biguous places such as the Musée du Barreau de Paris and the Musée Carnavalet,
reflecting a lack of contextual nuance. Despite this, its output is notably more on-
topic and diverse than [tiNera, suggesting that even in the absence of reranking,

structured intent modeling significantly improves semantic relevance in retrieval.

ITINERA, which extracts sub-requirements directly from the user query without
explicit intent reasoning, yields the least thematically aligned list. It does include

clearly literary venues—such as Maison de la Poésie, Statue de Corneille, Institut de
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France, and Palais Garnier—but many recommendations are only weakly related
to literature or off-theme, including Remains of the Batille, Musée Rodin, Square
Samuel Rousseau, Louvre Pyramid, Domaine National du Palais-Royal, Musée Banksy
— Paris. This outcome highlights a limitation of direct query parsing: despite a
clearly stated literary intent, the system often returns attractions that are superfi-

cially relevant but thematically misaligned.

This case illustrates the importance of UGuideRAG’s intent decomposition strategy
as a key enabling component. By structuring user queries into experiential dimen-
sions—landscape and content, activities, and atmosphere—the system establishes
a meaningful foundation for subsequent semantic alignment. However, this poten-
tial is fully realized through the addition of the LLM-based reranker module, which
enables deep contextual understanding and nuanced evaluation of candidate attrac-
tions based on the user’s full intent. Together, these components allow UGuideRAG
to generate personalized itineraries that are semantically aligned, experientially co-
herent, and spatially optimized. This results in a more interpretable, engaging and

meaningful travel experience.

5.5.2 Panoramic View Recognition through UGC

In contrast to traditional spatial modeling that relies on elevation data or visibility
analysis, this approach leverages UGC to detect panoramic viewpoints based on how
visitors describe their experiences. UGC supplies attraction-level semantics that 2D
maps do not encode, revealing where unique views are actually experienced and

which landmarks are inter-visible from a given vantage.

Figure 5.11 shows a set of VAs identified through UGC as offering “panoramic
views.” These include well-known elevated landmarks such as Fiffel Tower, Mont-
martre, and Arc de riomphe, as well as lesser-known overlooks like Square Nadar
that emerge in reviews as quiet spots suitable for full-city vistas. In the lower image
of Figure 5.11, an author photograph from Montmartre clearly shows three visu-
ally prominent landmarks predicted by the UGC signals— Tour Saint-Jacques'©,
Panthéon'”, and Centre Pompidou—thereby validating that UGC recovers view-
point attributes beyond what 2D cartography alone provides.

Importantly, the UGC signal also reveals opportunities invisible to elevation-based

heuristics. For example, Parc André Citroén lies on flat terrain yet is repeatedly

16 https: / /maps.app.goo.gl/ciqUykjPBS4ikPTn8
17 https: //maps.app.goo.gl/UTu8ed FuUBoUbt E99
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tagged with “aerial views” because its tethered helium balloon provides sweeping
citywide vistas. By mining natural-language cues in reviews and descriptions—such
as “wide views,” “city skyline,” or “great lookout point”—this framework surfaces
landscape-level semantics, captures how users perceive and interact with space, and

enables more human-centered, viewpoint-aware retrieval and recommendation.

Parc Marcel Bleustein Blanchet

a dit Parc de la Turlure
Basilique du Sacré-Coeur
de Montmartre f

[ Square Nadar
Square Louise Michel Q
Parc des Buttes-Chaumont
Q Q Jardin Bergeyre
Arc de Triomphe
Belleville Park
I Centre Pompidou
Eiffel Tower Q 4 Tour Saint-Jacques
Observatory of the Sorbonne Arab World Institute

Le Corbusier studio apartment——Q) 9 Panthéon
Parc André Citroén
Tour Montparnasse N

Centre Pompidou

Tour Saint-Jacques

Figure 5.11: UGC-surfaced panoramic viewpoints in Paris. Top: VAs whose re-
views explicitly mention panoramic-view cues; the shaded sector marks
the approximate viewing direction and field of view from the indi-
cated camera location (used to illustrate inter-visibility). Bottom:
author photograph from Montmartre in which three predicted land-
marks—Panthéon, Tour Saint-Jacques, and Centre Pompidou—are
clearly visible.
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6 Discussion

6.1 Interpretation of Overall Results

The effectiveness of UGuideRAG demonstrates a valuable approach for addressing
the persistent challenges that have limited traditional tourism recommendation sys-
tems. Prior methodologies, while valuable, have struggled to meet the nuanced
demands of modern travelers, particularly those engaging in immersive urban ex-

ploration like Citywalks. For instance, user interaction-based systems that rely on

broad categories fail to deliver truly personalized suggestions QSavir et al., 2013; \Mee—
han et al., 2013; Lu et al., 2010; Yahi et al., 2015), while LBSN-based approaches
are constrained by the cold-start problem and an inability to adapt to real-time
needs (Majid et al., 2015; Chang et al., 2021; Ding and Chen, 2018). Even early

UGC-based methods using shallow text-mining could only capture surface-level key-

words, failing to grasp the deep contextual and perceptual depth that defines a travel

experience (Liang et al., 2024; Missaoui et al., 2019).

UGuideRAG’s success stems from its core contribution: the integration of deep se-
mantic relevance with critical spatial feasibility. The overall experimental results
confirm the power of this synthesis. In a direct comparison, UGuideRAG not only
achieves a far superior semantic alignment than the ITINERA baseline—with a Hit
Rate of 78.5% to 42.3% in Paris and 72.7% to 33.8% in Rome-Vatican—but also
produces itineraries with significantly greater geographical coherence, evidenced by
its much lower Spatial Tightness scores. This dual success is crucial, as superior
semantic matching alone is insufficient for creating an effective travel plan. By con-

fronting the inherent “aspatial” nature of many conventional recommenders, which

deliver disconnected “interest islands” QBao et al., \2012) and can exacerbate “popu-
larity bias” (Nguyen and Tong, 2022), UGuideRAG provides a solution that is both

highly relevant and realistically executable.

This human-centric design is actualized through a powerful, two-layered spatial
strategy that prioritizes the quality of the travel experience. At the macro-level,

spatial clustering transforms a mere list of destinations into a holistic proposal for
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regional exploration. This fosters the continuous narrative and immersion neces-

sary for developing a true “sense of place,” allowing the traveler to engage deeply

with the urban fabric rather than simply collecting sights (Freytag, 2010b; Shoval
et al., 2011; Cohen, 1979). This regional focus is then refined at the micro-level by

scenic-aware routing, which optimizes for experiential quality over mere efficiency.

By guiding users along paths rich in aesthetic and sensory input, the journey itself
is transformed into an act of discovery, a key determinant of a positive walking ex-
perience QMehta, \2008; \Ewing and Clemente, \2005). Ultimately, this dual strategy

of clustering and scenic routing creates itineraries that are not just semantically

and logistically sound, but are fundamentally designed to foster an immersive and

meaningful connection with the city (Gavalas et al., 2014).

6.2 Interpretation of Ablation Study

The ablation study provides a granular and insightful deconstruction of the architec-
ture responsible for UGuideRAG’s superior semantic matching. The results reveal
that its success is not attributable to a single monolithic component, but rather to
the powerful synergy of three critical, sequential modules: an LLM-powered engine
for extracting deep, multi-faceted attraction features; an intent-enhanced retriever
for high-precision recall; and an LLM-based reranker for final, nuanced contextual
refinement. At the feature extraction layer, the deployment of LLMs constitutes a
paradigmatic shift from the lexical-level “keyword matching” of traditional models
to a more profound “conceptual alignment.” While foundational methods like TF-
IDF can identify salient nouns, they are fundamentally limited by their bag-of-words
assumption, rendering them incapable of understanding the syntax, context, and nu-
ance that are abundant in UGC (Jurafsky and Martin, 2023; Xiang et al., 2017). In

contrast, LLMs leverage their vast pre-training to parse UGC for underlying con-

cepts, emotions, and implied contexts, distilling unstructured collective intelligence
into rich, structured profiles for each attraction. The foundational importance of
this deep feature extraction is illustrated by the results: removing this component
(w/o Intent Decomposition & UGC) led to a catastrophic decline in performance,
causing the Hit Rate to plummet to the lowest recorded levels of 52.0% in Paris
and 52.7% in Rome-Vatican, a drop of over 25 and 20 percentage points respectively

from the full model.

Following feature extraction, the quality of the retrieval stage proves to be the pri-
mary determinant of the overall performance of the RAG system. This study’s

findings robustly confirm the “garbage in, garbage out” principle in this context:
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if the retrieved context is irrelevant or poorly aligned with user intent, the down-

stream modules, no matter how powerful, are set up for failure QShi et al., \2023).

The ablation experiments quantitatively demonstrate this critical dependency. By
disabling only the intent decomposition module (w/o Intent Decomposition), which
forces the retriever to work with raw, ambiguous queries, the Hit Rate experienced
a drastic decline from 78.5% to 66.9% in Paris and from 72.7% to 64.0% in Rome-
Vatican. This highlights that an intent reasoning step is not a luxury but a necessity.
UGuideRAG’s intent decomposition module acts as a crucial pre-retrieval reasoning
engine, deconstructing a vague user request into a set of clear, actionable sub-queries.

This process aligns with best practices in information retrieval that aim to maxi-

mize query specificity before database interaction QMa et al., \2023), underscoring the

critical insight that the system’s bottleneck often lies not in the final generation or
ranking, but in the intelligence of the retriever and its ability to accurately decipher
true user intent (Yu et al., 2022).

Finally, acting as a fine-grained arbiter of relevance, the LLM-based reranker pro-
vides the crucial last step of contextual refinement. This two-stage retrieval-and-

ranking architecture is a well-established and highly effective paradigm in modern

search and recommendation systems QCOVington et al., ‘2016). While the retriever’s
job is to efficiently sift through a massive database to recall a broad set of po-
tentially relevant candidates (optimizing for recall), the reranker performs a more
computationally expensive but far more sophisticated analysis on this smaller set
(optimizing for precision). It leverages the full contextual reasoning power of an
LLM to perform a holistic evaluation, assessing the nuanced interplay between all
facets of the user’s query and the detailed profile of each candidate attraction. Un-
like the geometric logic of embedding similarity, the reranker can adjudicate complex
trade-offs and correctly identify "near miss” candidates that might be thematically
close but experientially wrong. The importance of this stage is confirmed by the
experiments, where removing the reranker (w/o LRR) caused a significant drop in
Hit Rate to 66.4% in Paris and 63.4% in Rome-Vatican. This demonstrates that for
the complex, multi-faceted queries typical of travel planning, a LLM-based rerank-
ing mechanism is essential for polishing the candidate set and achieving the highest

degree of semantic alignment.

The analysis of the ITINERA variants further illustrates these dynamics. By replac-
ing ITINERA’s original CSO method with that of UGuideRAG, ITINERA achieves
clear improvements in the semantic relevance of recommended attractions, along
with reduced spatial tightness values. This indicates that UGuideRAG’s spatial op-
timization strategy is particularly effective in attraction-dense urban settings such

as Paris and Rome-Vatican, as it preserves walking feasibility while ensuring closer
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semantic alignment between the recommended VAs and the user query.

At the same time, the ablation results reveal that without the LRR module, UGuideRAG
consistently outperforms ITINERA in retrieval accuracy, with Hit Rates of 66.4%
and 63.4% in Paris and Rome-Vatican, compared to 59.0% and 56.7% for ITINERA.
This demonstrates the importance of decomposing user queries into multiple dimen-
sions and performing intent modeling, which substantially enhances retrieval pre-
cision. When the LRR module is introduced, both ITINERA (with UGuideRAG’s
CSO and LRR) and UGuideRAG experience significant gains in Hit Rate relative
to their w/o-LRR counterparts—72.6% vs. 59.0% in Paris and 65.5% vs. 56.7% in
Rome-Vatican for ITINERA, and 78.5% vs. 66.4% in Paris and 72.7% vs. 63.4% in
Rome-Vatican for UGuideRAG. However, the relative performance gap between the
two methods remains comparable to that observed without reranking, indicating
that while the LRR module delivers a major absolute boost, UGuideRAG’s core

advantage originates from its intent reasoning at the retrieval stage.

Together, these results demonstrate that the effectiveness of UGuideRAG arises from
the complementary contributions of all its modules. UGC-derived VA features pro-
vide rich semantic signals, intent decomposition ensures accurate retrieval, and the
LLM-based reranker refines results with fine-grained contextual reasoning. Mean-
while, the CSO module achieves a balance between semantic relevance and travel
burden, producing coherent and walkable itineraries. Each component is indispens-
able, and only their integration delivers recommendations that are both semantically

aligned and practically feasible.

6.3 Implications

The findings of this study offer several key implications for the design and application
of intelligent systems in the travel domain. Firstly, for the field of Recommender
Systems, this work signals the necessity of evolving from recommending discrete
items to architecting complete, holistic experiences. The results demonstrate that a
model’s success in a complex domain like tourism depends on its ability to synthesize
semantic relevance with spatial coherence and experiential quality. This suggests a
new design paradigm where logistical and experiential factors are treated as integral
components of the core optimization process, not as secondary filters. This provides
a clear path for moving beyond the limitations of “aspatial” and popularity-biased
models towards systems that deliver genuinely practical and enriching “experience

packages.”
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Secondly, for the field of applied NLP and RAG systems, this study has a critical
methodological implication: the primacy of intent modeling. The detailed analysis
of the system’s components reveals that while every module is important, the effec-
tiveness of powerful downstream components, such as the LLM-based reranker, is
fundamentally capped by the quality of the initial retrieval. The most significant
performance gains were unlocked by the intent-enhanced retriever. This implies
that future research and development in RAG-based recommenders should place a
emphasis on robust query rewriting and decomposition techniques, as this is the

foundational stage that enables the full potential of the entire architecture.

Finally, the capabilities demonstrated by UGuideRAG have direct implications for
the tourism industry. The ability to process ambiguous, natural-language queries
and match them with deep, experiential features extracted from UGC enables a
new level of personalization. This allows travel platforms and destination market-
ing organizations to cater to the long tail of niche travel interests, moving beyond
generic suggestions. By generating practical, walkable, and scenic itineraries, this
technology provides a powerful tool to directly enhance the quality of the on-the-
ground travel experience. It offers a new modality for promoting destinations, not
as static lists of attractions, but as dynamic, interconnected experiences that can

be customized to each traveler’s unique desires.

6.4 Limitations

Despite its promising results, this study is subject to several limitations that war-
rant careful consideration and frame the agenda for future research. The system’s
performance is intrinsically and heavily tied to the capabilities and potential flaws of
the underlying LLM. This dependency introduces a series of risks. First, the issue of
factual hallucination is particularly pernicious in a travel context, as a fabricated de-
tail can directly lead to a negative real-world user experience and damage trust m
\Lal., @) Second, the “black box” nature of these models presents a significant
challenge for interpretability, a field where Explainable Al is becoming increasingly
critical for user adoption QZhang and Chen, ‘2020). Third, LLMs are trained on vast

internet corpora that often reflect and amplify existing societal biases, which could

lead to the underrepresentation of non-dominant cultures or viewpoints (Bender
et al., 2021).

Beyond the model-centric limitations, the data pipeline of this study introduces a
significant ethical dimension concerning the use of public UGC. While user reviews

from platforms like Google Maps are publicly accessible, they are not explicitly
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anonymized and can contain personally identifiable information, whether directly
(e.g., usernames) or indirectly through the content of the review itself. A critical
ethical question arises regarding consent. Users who post reviews consent to a plat-
form’s terms of service, which typically involves sharing their opinion with other
travelers on that platform. It is highly questionable whether this implicit consent
extends to their data being systematically scraped, aggregated, and used as input
for a third-party LLM for an entirely different purpose, a practice known as sec-

ondary data use QZimmer, \2010). This lack of explicit consent for a new processing

purpose presents a notable ethical and legal challenge, particularly in jurisdictions
with strong data protection laws like the GDPR!®. Furthermore, the process of
feeding this data into a commercial black-box LLM API raises additional concerns
about data privacy, ownership, and security, as the ultimate storage and potential

secondary use of this data by the LLM provider are often opaque.

Another major constraint is that the current framework operates on a static rep-
resentation of the urban environment. It does not yet incorporate the dynamic,
real-time variables that are critical for robust, real-world itinerary planning. Key
factors such as the typical duration of stay at each attraction, current and forecasted
weather conditions, and seasonal changes—Ilike reduced daylight in winter or holiday
crowds—are not considered. Furthermore, the model omits other crucial logistics,

such as attraction opening hours or public transit delays QChen et al., \2017). This

gap between a theoretically optimal plan and a practically executable one can lead

to user frustration.

6.5 Future Work

Building on the foundation of this research, several promising and crucial avenues
for future work emerge to address the aforementioned limitations and advance the
field of intelligent travel planning. A primary objective should be to enhance the
system’s robustness and trustworthiness. To counter LLM hallucinations and static
data limitations, future iterations should integrate the RAG framework with ver-
ified, dynamic knowledge sources. This could involve cross-referencing generated
outputs with structured knowledge graphs or real-time APIs (e.g., Google Maps
API for live opening hours and transit data), creating a fact-checking layer within

the recommendation pipeline.

A second critical direction is to evolve the system towards a truly dynamic, context-

18 ‘https://gdpr—info.eu/
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aware recommendation engine. This involves moving beyond static planning to a
model that can ingest real-time data streams from various sources (weather, traffic,
social media events). By framing the task as a dynamic, multi-objective optimization
problem, such a system could offer truly adaptive and resilient recommendations,

capable of re-planning an itinerary on the fly in response to unforeseen events, like

a sudden rainstorm or a user’s change of mood (Adomavicius and Tuzhilin, 2011).

Another key direction is the incorporation of multimodal feature extraction. User
preferences and destination attributes are conveyed powerfully through visual me-
dia. Future systems should leverage joint text-image embedding models (e.g., CLIP)
to analyze photos and videos from UGC, deriving richer features such as a location’s

PR3

“scenic beauty,” “architectural style,” or “vibrancy.” This would enable more holis-
tic understanding and novel interaction modalities, such as visual query systems

(“find me places that look like this”) (Zhang et al., 2019).

Furthermore, a key direction for practical improvement is expanding the system’s
planning horizon from a single-day itinerary to multi-day itineraries. This expan-
sion introduces significant new challenges, including the need to optimize routes
over multiple days, incorporate accommodation planning, model user fatigue, and
maintain thematic consistency. Therefore, an advanced system would need to intel-
ligently sequence attractions, create a balanced schedule of activities and rest, and

operate effectively over a longer planning timeframe.

Finally, future research must prioritize the development of responsible, fair, and
transparent recommendation algorithms. To mitigate overtourism and popularity
bias, this involves designing systems that explicitly incorporate metrics for fair-
ness and diversity into the optimization process. Techniques such as re-ranking for
fairness, where an initial relevance-based list is adjusted to boost the visibility of

high-quality but less-popular options, can be employed QCeliS et al., \2017). This

could evolve the system into a tool for sustainable tourism management, where it
collaborates with city planners to help distribute tourist flow more equitably. This
vision of a responsible recommender system, combined with advancements in dy-
namic adaptation and interpretability, charts a course toward the next generation
of intelligent guides: systems that are not just more accurate, but are also more
trustworthy, responsive, and conscientious partners in our exploration of the urban

world.
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7 Conclusion

In an era where urban tourism is increasingly shaped by the demand for authen-
tic, personalized, and immersive experiences, conventional recommendation systems
have struggled to keep pace. Most remain locked in the paradigm of item-based sug-
gestions, offering users little more than static lists of attractions. Yet today’s digital
traveler expects far more: not only a catalog of places to visit, but a coherent and
meaningful narrative—an itinerary that resonates with their unique interests and
fosters a deeper connection with the cultural and spatial fabric of the city. The cen-
tral challenge, and the motivation for this thesis, lies in bridging the gap between
the nuanced, expressive language of human travel desires and the rigid, categorical

logic that dominates existing recommendation engines.

This thesis addresses that gap by proposing and validating UGuideRAG, a frame-
work that shifts the focus from isolated point recommendations to holistic itinerary
design. By linking user narratives with spatial and experiential constraints, UGuideRAG
demonstrates that it is possible to generate itineraries that are aligned with user in-
tent, spatially coherent, and experientially rich. The approach shows that true
personalization requires drawing upon the collective intelligence embedded in user-
generated content, where diverse experiences provide signals beyond what curated
databases can offer. Advanced RAG techniques serve as the bridge, translating un-
structured expressions of travel desires into structured, actionable plans faithful to

both user preferences and urban realities.

Ultimately, the contribution of this thesis extends beyond a new algorithm. It
presents a blueprint for intelligent travel guides that act as companions in urban ex-
ploration. The principles established here, emphasizing intent decomposition, spa-
tial coherence, and experiential quality, form a foundation for systems that are more
accurate, adaptive, and responsive to travelers’ needs. Future work may integrate
dynamic, real-time data and multimodal signals to create even more context-aware
systems. What this thesis demonstrates is a clear shift: technology can move beyond
presenting information to curating a dialogue between traveler and city, enriching

the journey and deepening our connection to the places we visit.
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