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Abstract
Spring habitats are among the most threatened aquatic ecosystems in Switzerland. Effective
protection requires assessing their ecological value (e.g., structural and faunistic condition), yet
the existing FOEN method is resource-intensive and expensive. A modelling approach could
simplify this assessment, thereby facilitating protection efforts. Previous research has largely
focused on modelling spring occurrence and its predictors, rather than ecological value. This
highlights the need for a new approach to modelling the ecological quality of springs. The aim
was to determine whether structural parameters from the FOEN method can predict faunistic
quality, and whether landscape and topographic variables can predict the structural and faunis-
tic quality of springs.
An exploratory data analysis was performed on more than 750 Swiss springs structurally and
faunistically assessed using the FOEN method. Additional potential predictor variables were
generated in QGIS from publicly available landscape and topographic datasets. Various Ran-
dom Forest regression and classification models were implemented in R. Faunistic results
were modelled using respective structural data, while both structural and faunistic results were
modelled using landscape and topographic variables. Key predictors were identified through
permutation-based variable importance measures.
When modelling faunistic results using structure data, regression models showed similar per-
formance, with R² values never exceeding 0.25, indicating only weak predictive tendencies.
Classification models reached a maximum accuracy of 0.43 with lower balanced accuracy,
reflecting poor prediction of the lowest fauna classes. Therefore, accurate prediction of the fau-
nistic condition from the structural condition was not possible. Modelling structural and faunistic
results with landscape and topographic data yielded better results for structural conditions, with
the best regression model achieving an R² of 0.25, while the faunistic modelling did not exceed
0.15. Classification accuracy was substantially higher for structural modelling than for faunistic
modelling, though balanced accuracy was similar. Overall, accurate prediction of ecologically
valuable spring occurrence from landscape and topographic variables was not feasible. Across
datasets, key predictor variables included Elevation, Number of Structures, Land Use, and
Lithology, among others.
This study demonstrates the application of Random Forest models with field-derived data to
assess spring habitats. The findings indicate that successful modelling of the faunistic quality
requires additional structural parameters not currently included in the FOEN method, highlight-
ing the need for a methodological expansion. Limitations include imbalanced class distributions
dominated by highly rated springs. Future research should identify critical structural predictors
that define the ecological value of springs and explore alternative modelling approaches, such
as hybrid models or neural networks, to improve predictive performance.
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1. Introduction

1.1 Definition and Characteristics of Springs
Springs are discrete points of groundwater discharge at the surface of the Earth (BAFU 2021,
Kamp 1995) and often occur where an impermeable layer intersects the surface (Stucki et al.
2015). Springs as groundwater emergence sites are locally limited and must at least temporar-
ily lead to discharge (DIN4049-3 as cited in Küry et al. (2019)). Springs are the only locations
in the landscape where groundwater flows without mixing with surface water (Cantonati et al.
2022). The point where groundwater emerges at the surface and the areas influenced by this
water form the spring habitat. Thus, springs are groundwater-dependent ecotones that connect
surface and underground water bodies (BAFU 2021, Cantonati & Ortler 1998).

Springs are characterised by three different zones: the groundwater reservoir, the eucrenon
(i.e., the spring area) and the hypocrenon (i.e., spring brooks running down from the outlet) (Il-
lies & Botosaneanu 1963 as cited in Fernández-Martínez et al. (2024)). The eucrenon stretches
from the groundwater exit point to the beginning of the spring stream. Since the spring stream
has similar characteristics, it is also considered part of the spring habitat. Endorheic springs do
not form a longer spring brook but rather seep away after a relatively short distance (Küry et al.
2019, BAFU 2021).

Spring ecosystems are usually small in size and differ significantly from streams, rivers, ponds
and lakes in terms of water quality, substrate composition, adjacent terrain, bedrock geology,
vegetation, and climatic conditions. Due to the interplay of hydrogeology, groundwater, soils,
climatology, hydrology, water chemistry, biology, and possible human impacts, spring ecosys-
tems can be considered complex systems (Fernández-Martínez et al. 2024, Cantonati et al.
2022).

If several outlets of the same type are found at one location, this is referred to as a spring
system. If a spring consists of multiple types that create a common outflow, it is called a spring
complex (Stucki et al. 2015). In addition, wandering springs are defined as those whose outlet
migrates upward or downward, depending on the groundwater supply (Imesch & Küry 2024).
Furthermore, a spring outlet can be artificial due to human alterations (Küry et al. 2019).

1.1.1 Spring Classification

Springs can be classified in different ways. The first spring classification system distinguished
three main types according to hydromorphological criteria (Steinmann et al. 1915 & Thiene-
mann 1926 as cited in Fernández-Martínez et al. (2024)): (1) rheocrenes or flowing springs
with water feeding small streams; (2) limnocrenes or pool springs with lentic habitats; and (3)
helocrenes or seepages with shallow or soggy wet zones. A clear distinction of these three
main spring types is not always possible, leading to multiple mixed forms. The original typology

1



1.1. Definition and Characteristics of Springs

by Steinmann et al., 1915 & Thienemann 1926 is still applied in Switzerland today, although
in some parts of Switzerland it is divided more finely on a regional basis (Zollhöfer 1997 as
cited in Küry et al. (2019)). In other countries, some extensions have been introduced, such
as distinguishing springs according to geology, hydrology, water chemistry, water temperature,
ecology, and human use (Fernández-Martínez et al. 2024).

Another approach is to subdivide springs according to their subterranean water pathways. This
allows for differentiation between joint springs, karst springs, and loose rock springs (Hölting &
Coldeway 2013 as cited in Küry et al. (2019)). Springs can also be classified according to the
vegetation that occurs, which in turn depends on the geological substrate. Thus, warm-loving
spring vegetation can be distinguished (Adiantion), spring habitats with hard, calcareous wa-
ter (Cratoneurion), those with soft, low-calcium water (Cardamino-Montion), floodplain springs
(Giessen), and the type known as "surplus-irrigated surfaces, springs without vegetation" (De-
larze et al. 2016). For springs in the Alps, there is a supplementary typology also based on
phytosociological surveys (Geissler 1976).

1.1.2 Spring Hydrology

Hydrologically, springs are characterised by stable temperatures, more or less constant cold-
water discharge, and low oxygen saturation. The temperature of a spring is usually the same as
that of groundwater and is roughly equivalent to the average annual temperature (or recharge
temperature) of the respective location. Springs are therefore cool in summer and warm in
winter (Stucki et al. 2015). The chemistry of spring water is determined by aquifer lithology,
climate characteristics, vegetation, and soil properties. The concentration of ions in the water
depends on the solubility of bedrock minerals and the residence time in the aquifer. With higher
water temperatures, reactivity and weathering increase, influencing spring water chemistry.
Precipitation amounts also affect water chemistry, although accelerated chemical reactions and
dilution ultimately balance each other out with increased precipitation (Fernández-Martínez
et al. 2024).

The vegetation and soil properties in the catchment area influence spring water chemistry by
affecting infiltration, organic matter enrichment, and buffering (Fernández-Martínez et al. 2024).
Spring water is often low in oxygen because, as groundwater, it remains underground for ex-
tended periods (Stucki et al. 2015). The climate, hydrogeology, and lithology of the aquifers de-
termine whether a spring has permanent or intermittent flow (Cantonati et al. 2020a). Depend-
ing on temporal behaviour, springs that only flow intermittently are referred to as «Hungerquellen»
(Stucki et al. 2015). The discharge of permanent springs varies significantly in different litholo-
gies, for instance with larger drainage flows in karst systems compared to granite systems
(Fernández-Martínez et al. 2024).

2
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1.1.3 Flora and Fauna of Springs

The spring habitat is an ecotone at the interface between groundwater and surface water (Can-
tonati & Ortler 1998). The springs contain closely interconnected communities of groundwa-
ter, surface waters, and moist zones (the hygropetric zone) (BAFU 2021). The springs offer
favourable conditions for highly specialised species due to their low temporal variability of envi-
ronmental conditions and their particularly structure rich habitat (Peterka et al. 2023).

Organisms living in the actual source of spring water are called crenobionts. These highly
specialised spring dwelling organisms have adapted to spring habitats to survive and complete
their life cycles (Fernández-Martínez et al. 2024). A large number of crenobiont species are
national priority species (BAFU 2021). Species associated with a spring during certain phases
of their life cycles are referred to as crenophiles. Crenoxens may also routinely benefit from
functions provided by springs but are not dependent on them. Stygobionts are classified as
inhabitants of the groundwater ecosystem, while stygophiles mainly inhabit the spring sink.
Rheophiles inhabit the spring downstream waters. During drought or flood periods, this water
continuum from aquifer to stream may be interrupted (Fernández-Martínez et al. 2024). Typical
spring inhabitants, such as certain species of stoneflies, caddisflies, and mayflies, are highly
specialised and therefore sensitive to disturbances of their habitats (Stucki et al. 2015).

Aquatic spring species are cold-water specialists and gradually vanish downstream as water
temperatures increase. Among these are glacial relicts that have survived only in Scandinavia
and the Alps since the last ice age. Depending on the type of spring, different groups or
species dominate. In karst springs, typical spring species regularly occur alongside groundwa-
ter species. In hillside fens and spring brooks, one may find damselfly larvae, various stonefly
genera, and caddisfly larvae. In calcareaous sinter springs, amphipods often dominate, as well
as stoneflies and sometimes fire salamander larvae. In seepage springs, one may find, among
others, the caddisfly larva Crunoecia irrorata (Stucki et al. 2015).

The spring and its springbrook habitat are called the krenal, and its community is called the
krenon (Stucki et al. 2015). The biodiversity of spring ecosystems is very high due to the
convergence of species of various origins and is strongly related to the hydrogeological char-
acteristics of the aquifer (Cantonati et al. 2020b). Spring habitats with similar environmental
conditions often have very different species compositions, particularly in the mountains (Can-
tonati et al. 2006). However, the species richness of springs that occasionally dry out is always
lower. They are occupied by specialist species that can withstand desiccation or bridge it with
resistant stages (Stucki et al. 2015).

Springs can act as refuges for biodiversity during drought periods when the fluvial network is
dry (Fernández-Martínez et al. 2024), or they can serve as refuges for relict species (Cantonati
et al. 2012, Taxböck et al. 2017). Even minor disturbances can result in complete loss of
habitat. Spring habitats that have developed over millennia can scarcely be restored once lost.
Approximately 500 species in Europe rely on spring habitats (LfU 2023).
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1.2 Ecological Importance and Decline of Springs
Spring habitats are considered hotspots of species diversity. Many animal species are highly
adapted to spring habitats and occur only there. The springs therefore contain a high proportion
of threatened species (Imesch & Küry 2024, BAFU 2021). Especially in the Alps, springs make
a significant contribution to regional biodiversity (Seiler et al. 2021).

1.2.1 Decline of Spring Habitats in Switzerland

In Switzerland, the density of springs in the water-poor Jura was less than two springs per
square kilometre in the near-natural state. In contrast, there were about 20 springs per square
kilometre in the water-rich Central Plateau. In some parts of the Alps, this figure was even
higher (BAFU 2021). However, spring habitats have declined dramatically in the past 200 years
(Küry et al. 2019). Already in 1880, more than half of the springs in the Central Plateau were
tapped, and the spring density there halved between 1880 and 1997 (Zollhöfer 1997 as cited in
Lubini-Ferlin et al. (2014)). The decrease was most pronounced in settlement areas, followed
by intensively used agricultural land at lower elevations (Küry et al. 2019, BAFU 2021). Seiler
et al. (2021) assumed that by 1999, 95% of the springs in the Central Plateau had been tapped
or otherwise impaired. Alluvial springs in floodplains and endorheic springs have also declined
significantly (Stucki et al. 2015).

Spring habitats are among the most threatened aquatic ecosystems and should be considered
worthy of protection, requiring preservation and, where necessary, enhancement (Cantonati
et al. 2006, BAFU 2021). Today, most near-natural springs are located in forests, but they
are often small and have only a modest discharge (Küry 2009, Stucki et al. 2015, Imesch
& Küry 2024). Most of the untapped springs in open areas lie in grazing pastures (BAFU
2021). Springs in open landscapes can still be found frequently in the hills, as well as in the
higher elevations of the Alps (BAFU 2021, Imesch & Küry 2024). Springs in open landscapes,
especially pool springs and marshy or seepage springs, are currently valued highest in the
Central Plateau.

1.2.2 Explanations for the Decline of Spring Habitats

The reasons for the decline in spring habitats are varied and, in some cases, multilayered. For
some springs, one factor may be a sufficient explanation, while for others, it is the interplay
of different factors that contribute to impairment or disappearance. An important factor in the
decline of springs is the use of springs for drinking water, especially near settlements, but also
in forests (BAFU 2021, LfU 2023). Even today, many areas of Switzerland and particularly
the Alps see new springs being tapped for the supply of drinking water (Stucki et al. 2015).
Currently, around 40% of Switzerland’s drinking water comes from springs (Lubini-Ferlin et al.
2014, BAFU 2021, Stucki et al. 2015). When a spring tap is decommissioned, the structures
are often not removed but left to decay (LfU 2023, Stucki et al. 2015).
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The intensification of agriculture since the late nineteenth century has also contributed signif-
icantly to the loss of spring habitats. On the one hand, this can be explained by the intensi-
fication of the use of meadowlands and the drainage of seepage springs and flowing springs,
as well as the drainage of entire wetlands and meadow landscapes (BAFU 2021, Lubini-Ferlin
et al. 2014, Stucki et al. 2015, LfU 2023). On the other hand, runoff from agricultural land con-
taining nutrients and pesticides into spring areas plays a major role in the destruction of spring
habitats (BAFU 2021, Fernández-Martínez et al. 2024, LfU 2023). In overfertilised springs,
plants grow exceptionally strongly and quickly cover the water surface, thereby restricting com-
petitors in their development and preventing insects from reaching the water surface (Stucki
et al. 2015). In addition, damage to springs in open landscapes from trampling is widespread.
Livestock on pastures use springs as a watering place, significantly affecting spring habitats
through the physical impact of their hooves and the addition of excrements as fertiliser (BAFU
2021, Stucki et al. 2015, Imesch & Küry 2024). Intensive recreational use can also locally
damage spring habitats through trampling (BAFU 2021).

During the construction of infrastructure such as roads, particularly in forests, springs have
been and still are being tapped, diverted, or channelled (BAFU 2021, Stucki et al. 2015). The
same is the case for springs in open areas that were destroyed by expansion of settlement
areas and developments (BAFU 2021). Various types of forest management have also con-
tributed to the decline in spring habitats. Springs are very sensitive to the deposition of mown
material or woody debris in wild dumps (Stucki et al. 2015). Moreover, spruce trees planted
in locations where they do not naturally belong affect forest springs due to their dense crowns
that provide shade and acidification caused by needle litter (LfU 2023). The list of factors im-
pacting spring habitats also includes the tapping of springs for energy generation through small
power plants, for cooling, irrigation, snowmaking systems, Kneipp pools, livestock watering,
etc. (BAFU 2021, Lubini-Ferlin et al. 2014). Because spring organisms are so closely bound
to low and constant temperatures, climate change poses a major overarching threat to spring
communities (BAFU 2021, Stucki et al. 2015).

1.2.3 Effects of the Loss of Spring Habitats

Because of habitat loss, spring specialists are particularly under threat (BAFU 2021). In
Switzerland alone, among molluscs, mayflies, stoneflies, caddisflies, and dragonflies, 96 species
with a strong dependence on spring habitats have been found, 40% of which are classified as
endangered, while many others are considered potentially endangered (BAFU 2021, Stucki
et al. 2015). Not only is numerical reduction in habitats having a negative impact; the frag-
mentation of the remaining spring habitats also exerts a negative influence (Lubini-Ferlin et al.
2014). If the density of springs in a landscape area decreases, habitat connectivity is lost and
species isolation increases (Imesch & Küry 2024, Lubini-Ferlin et al. 2014). Moreover, the role
of spring habitats as refuges for Ice Age relicts is jeopardised by the loss of springs (Imesch &
Küry 2024).
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1.3 Protection of Spring Habitats in Switzerland

1.3.1 Legal Basis in Switzerland

Springs are considered bodies of water under the Federal Water Protection Act, and the protec-
tion provisions within this legislation apply to springs and spring habitats, regardless of whether
the spring is public or private. In terms of water quality, as with other bodies of water, it is
prohibited to contaminate springs, and the general duty of care applies here as well (Imesch &
Küry 2024). With regard to the quantity of water, the springs are indirectly protected through
provisions that ensure adequate residual flow (Lubini-Ferlin et al. 2014). However, there is
no formal protective status for spring habitats in Switzerland. As a result, habitat protection
is provided through the intervention regime of the Nature and Cultural Heritage Act, but only
on the condition that the spring and its surroundings constitute a habitat worthy of protection
(BAFU 2021). Various criteria are used to determine whether a habitat is worthy of protection:
on the one hand, the presence of bankside areas or bogs; on the other, the occurrence of cer-
tain types of habitat, which are almost without exception assigned to nationally priority habitats
(Küry et al. 2019). Another criterion for being worthy of protection is the presence of Red-List
species, or nationally priority species (BAFU 2021).

The Nature and Cultural Heritage Act additionally contains a general clause enabling the des-
ignation of other sites that are particularly worthy of protection. However, to satisfy this clause,
certain requirements regarding size and ecological quality must be met. Thus, an ecological
assessment of the spring habitat is necessary for each individual case to assess whether it is
worthy of protection (Lubini-Ferlin et al. 2014).

1.3.2 FOEN Method for Spring Habitat Assessment

The Federal Office for the Environment (FOEN) mandated the development of a method for a
standardised survey and assessment of spring habitats. This was carried out in the work by
Lubini-Ferlin et al. (2014). The assessment is based on structure (impairments, vegetation,
and structural diversity) and the ecological dependence of the fauna on the springs. Following
the procedure in the "Modulstufenkonzept", five status classes are distinguished. The springs
in classes 1 and 2 of the structural assessment are considered significant spring habitats and
are selected for faunistic assessment (Küry et al. 2019). A significant spring habitat is charac-
terised by the following properties: type-specific expression of spring structures and vegetation,
absence of major anthropogenic influences, characteristic biodiversity for the respective type
of spring outlet, a spring-specific composition of the invertebrate fauna with a high proportion
of spring-dependent species, and the presence of Red-List Species and Priority Species (Küry
et al. 2019).

The FOEN field worksheets used to evaluate the springs in this thesis dataset are available
in Appendices A1 Spring Protocol Structure and A2 Spring Protocol Fauna. These two com-
plementary methods for the faunistic-ecological assessment of springs were originally devel-
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oped in Germany, then tested in Switzerland, and slightly adapted for high-alpine areas. Both
methods are intended to be carried out in parallel, as structurally impaired springs can also
be inhabited by a remnant biocenosis (Lubini-Ferlin et al. 2014). The structural assessment
consists of mapping habitat structures and impairments, based on the procedure by Schindler
2004 as cited in Küry et al. (2019). With relatively little effort, the structural survey presented
in Lubini-Ferlin et al. (2014) provides a fairly precise picture of the state of each spring by eval-
uating its visible conditions. The header data at the top of the structural assessment protocol
have no influence on the assessment of the spring. Assessment Part A on the left side of
the protocol deals with impairments and yields Value A (impairment). Value A corresponds to
the highest value of all observed parameters. Assessment part B on the right side addresses
vegetation-use-structure and yields Value B. If a high number of substrates, number of flow
types, and number of structures is found, a bonus (b) of 0.4 is automatically subtracted from
the final assessment value. The overall result of the structural assessment is consequently
derived from:

Final Result =
A+B

2
− b

The lower the resulting value, the better the structural condition of the surveyed spring. Based
on this value, the spring is placed into one of five structure categories: natural, conditionally
natural, moderately impaired, damaged, and strongly damaged.

The faunistic assessment presented in Lubini-Ferlin et al. (2014) consists of a faunistic sam-
pling procedure following Schindler (2004). The animals are collected using a net or a sieve,
sieved out and transferred to a white lab tray. Sampling is stopped only when no new taxon has
been found for approximately 10 minutes. After identifying the animals in the laboratory, prefer-
ably at species level, the assessment procedure by Fischer (1996) is applied. It is based on the
spring dependence of an organism, i.e., the stenotypy of the taxon in relation to the habitat and
its frequency. The more strongly a species depends on springs, the higher its ecological score
(ÖWZ). The final result of the faunistic survey is calculated by multiplying the ÖWZ of a taxon
found by its abundance level, depending on the total number of taxa found:

Ecological Value Sum (ÖWS) =
∑

(ÖWZ · Abundance)
Number of Taxa

The higher the resulting value, the better the faunistic condition of the surveyed spring. Based
on this value, the spring is then placed in one of five faunistic assessment categories: spring-
typical, conditionally spring-typical, spring-compliant, non-spring, and very non-spring. Unlike
the structural assessment that can be done by anyone who is motivated and has basic knowl-
edge of natural habitats, the faunistic assessment, especially the identification of the animals,
can only be done accurately by experts.
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1.3.3 Implementation of Spring Habitat Protection

Küry et al. (2019) explain how the significance of nature conservation (with respect to the Na-
ture and Heritage Protection Act) can be determined from the surveys conducted according to
the FOEN method: First, the number of status classes for the structural assessment is reduced
from five to three categories A, B, and C according to the result of the main criterion of the
structural assessment, which is the final result of the structural assessment. The faunistic as-
sessment is likewise reduced to three categories A, B, and C, although here the result of the
faunistic assessment is not the only main criterion. The number of taxa found, the number of
species with an ecological score greater than 8, and the number of Red-List species are also
included as main criteria for classification into categories A, B, and C. After this initial categori-
sation based on the main criteria, it is checked whether additional criteria are met that allow
an upgrade to the next higher category. Secondary criteria for the structure categories are a
large spring area (≥ 100m²), a large discharge (≥ 100l/s), a high degree of connectivity (spring
complex/system with at least five spring outlets), the spring as a visually significant element in
the landscape (scenic, historical or archaeological importance) and a diverse structure (bonus
points in the overall structural assessment (yes/no)). If at least three of these secondary crite-
ria are met, the spring is upgraded to the next higher structure category. Secondary criteria for
the fauna categories are taxa with national priority (at least one species with priority 1 or ≥ 2
species with priority 2), as well as the number of endemic species (≥ 2 endemic species). After
a possible upgrade, the category according to the Nature and Cultural Heritage Act (national,
regional, or local) for the spring habitat is determined using a simple matrix of categories A, B,
or C for structure and fauna.

Based on spring assessment data derived from the FOEN method, it is therefore possible
to assess which spring habitats need special protection, and the competent authorities can
use these data as a scientific basis for decisions and protective measures relating to spring
habitats. Currently, there is no national inventory of protected spring habitats. Hence, cantons
and municipalities are responsible for the protection and enhancement measures for spring
habitats. Even a spring habitat of national importance does not automatically receive protection;
instead, it must be actively protected, like habitats of regional or local importance. Protection
is enforced using the legal instruments and procedures specified by the relevant canton or
municipality (Küry et al. 2019).
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1.4 Structural Characteristics Influencing Spring Fauna
Various studies have shown that spring biodiversity is strongly dependent on spring types,
since different spring types support different communities (Cantonati et al. 2012). An often
underestimated factor for the occurrence of certain species is connectivity (the presence of a
spring brook) (Ilmonen et al. 2009). Surrounding vegetation can also have a major influence
on fauna composition, particularly in forest springs. For example, acidification is an important
factor in the composition of taxa in springs and is of particular relevance in conifer forest springs.
Some taxa that are under-represented in deciduous forest springs become quantitatively more
relevant in conifer forest springs. Species richness and the total number of individuals are
higher in deciduous forest springs than in conifer forest springs (Reiss & Chifflard 2018). On
a medium- to large-scale perspective, factors influencing the occurrence of species, potential
productivity, and hospitability of the spring include the location, altitude, and aspect of the
spring, the geomorphology and variation in the soil and geology, and the regional climate, as
well as the microclimate (Cantonati et al. 2020c, Kubíková et al. 2012).

1.4.1 Hydrological Factors

An important hydrological factor that influences spring fauna is flow velocity or flow rate (Canto-
nati et al. 2012, Kubíková et al. 2012). Bonettini & Cantonati (1996) and Fumetti & Nagel (2012)
have shown that macroinvertebrate diversity is highest in springs with low flow and lowest in
springs with high flow variability. Associated with spring discharge is the presence of mois-
ture gradients in spring habitats. Staudacher & Füreder (2007) and Gerecke et al. (2011) have
shown that in helocrenes, large changes in fauna composition can occur if a gradient is present
from aquatic to semi-terrestrial moist areas. Other important factors for the fauna in springs
include the temperature and depth of the water. Diurnal water temperature variability depends
on sunlight, which warms the water, and on water depth. Annual temperature variability also
has a major influence on the composition of the species community (Pešić et al. 2019).

Geochemistry (mineral richness, pH, and conductivity) regulates the composition and diversity
of the biotic assemblage in springs (Peterka et al. 2023, Cantonati et al. 2012). Kubíková et al.
(2012) found that the benthic assemblage is only influenced by water chemistry in areas with
diverse geological bedrock or significant anthropogenic influence. Because springs are fed by
groundwater, not only are temperatures stable, but the physical and chemical characteristics
are also fairly stable (Cantonati et al. 2020c).

1.4.2 Influence of Substrate Characteristics and Microhabitats

Substrate type was found to be one of the main discriminating characteristics affecting inver-
tebrate density in springs (Dumnicka et al. 2007). Species composition also depends on the
substrate composition (Cantonati et al. 2012). Kubíková et al. (2012) demonstrated that sub-
strate heterogeneity may be more important than substrate type. Substrate heterogeneity posi-
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tively affects the occurrence of numerous species and may even override the influence of other
environmental characteristics (Lindegaard et al. 1998 as cited in Kubíková et al. (2012)).

Spring ecosystems are characterised by a mosaic of highly heterogeneous microhabitats on
a very small scale, each defined by size, water dynamics, and type of substrate (Fernández-
Martínez et al. 2024, LfU 2023, Stucki et al. 2015). Laterally from the spring outlet, following
the moisture gradient, there are various subhabitats, clearly indicated by characteristic plants,
such as mosses or marsh plants. The boundaries between these sub-habitats are blurry and
can shift depending on precipitation and spring discharge (Stucki et al. 2015). These strong
ecological gradients and the spatial heterogeneity of microhabitat structures in small areas lead
to high species richness (Seiler et al. 2021, Blattner et al. 2022). In spring ecosystems, multiple
microhabitats can occur in close proximity and can contain distinct assemblages of organisms
that may or may not interact with those in other microhabitats. Spring microhabitats include
cave mouths, channels, whitewater flow, terraces, pools, spray zones, hyporheic habitats, pe-
ripheral riparian zones, wet or dry bedrock walls, and others. Each spring is a unique mosaic
of microhabitats, each of which contributes to the biodiversity of the ecosystem (Stevens et al.
2021). Weigand (1998) found that the number of invertebrate taxa was significantly higher in
springs with a high diversity of suitable microhabitats, and Staudacher & Füreder (2007) further
specified that species diversity was primarily related to habitat complexity.

1.4.3 Influence of Stability and Disturbances

Ecosystem persistence is an evolutionarily important characteristic of springs (Nekola 1999,
Cartwright et al. 2020). Long-term persistent springs function as paleorefugia on ecological
and evolutionary timescales (Stevens et al. 2021). The flatworm Crenobia alpina, a classic
glacial relict, lives in headwaters because it cannot tolerate warm temperatures, whereas the
caddisfly Rhyacophila laevis, a tertiary relict, inhabits springs because it cannot tolerate low
winter temperatures (Cantonati et al. 2012). However, recently emerging or developed springs
serve as neorefugia, supporting the recent arrival of colonists (Stevens et al. 2021). Gerecke
et al. (2009) also found that the high diversity of emerging insects reflects low long-term habitat
stability, and vice versa.

Stability is not only important on evolutionary timescales, but can also matter for individual
taxa over shorter periods. Some invertebrates are indicators of flow permanence in springs,
particularly taxa with limited recolonisation capacity and sensitivity to drought (Scarsbrook et al.
2007, Gerecke et al. 2009). Temporary springs, on the contrary, are characterised by a high
proportion of drought-resistant taxa or taxa with strong dispersal and recolonisation capacities
(Cantonati et al. 2012). Disturbances caused by human activities, such as forest management
and drainage, can affect bryophyte and macroinvertebrate taxa, as shown by Ilmonen et al.
(2012). Local flooding events also significantly influence crenobiotic taxa in springs (Pešić
et al. 2019).
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1.5 Modelling the Occurrence of Springs

1.5.1 Models Used in the Past

A wide range of methods and techniques have been proposed and tested to study the potential
of groundwater, and therefore also the occurrence of springs at a given point in the landscape.
These methods include numerical/statistical methods, GIS-based methods, machine learning
methods, as well as hybrid and ensemble methods.

Numerical methods, which employ mathematical equations, can provide precise predictions for
groundwater assessment but require extensive and accurate input data (Sashikkumar & Colins
2017). If the necessary hydrogeological, groundwater, hydraulic conductivity, and precipitation
data are limited or unreliable, this can impede the precision and reliability of numerical meth-
ods of groundwater potential (Nhu et al. 2023). Bivariate and multivariate statistical methods
have shown promising outcomes in certain scenarios (Jaafarzadeh et al. 2021), but these ap-
proaches cannot account for complex nonlinear relationships and interdependencies between
variables in groundwater systems (Nhu et al. 2023).

Various types of GIS-based models have been used for groundwater modelling, including fre-
quency ratio, weights of evidence modelling, Dempster-Shafer theory, multi-criteria decision
analysis, logistic regression, evidential belief function, certainty factor, and index of entropy
(Rahmati et al. 2018).

In recent years, machine learning techniques have begun to replace conventional prediction
methods due to their powerful capabilities for groundwater modelling (Tao et al. 2022). Ma-
chine learning methods can capture complex relationships, handle large and diverse datasets,
adapt to changing conditions, integrate multiple geospatial data, and quantify uncertainties
(Nhu et al. 2023). These advantages contribute to a more accurate and comprehensive mod-
elling, enabling a better understanding and management of groundwater resources (Zaresefat
& Derakhshani 2023). Among the many machine learning methods are classification and re-
gression tree (CART), artificial neural network (ANN), naive Bayes (NB), k-nearest neighbour
(KNN), boosted regression tree, mixture discriminant analysis, maximum entropy, generalised
additive model, and aquifer sustainability factor (Chen et al. 2020, Naghibi et al. 2020, Nhu
et al. 2023, Al-Fugara et al. 2020, Rahmati et al. 2018). Further machine learning tools such as
multivariate adaptive regression spline (MARS), boosted regression tree (BRT), support vector
machine (SVM), mixture discriminant analysis (MDA), and random forest (RF) offer key ben-
efits. They facilitate the inclusion of numerous predictive variables and are robust in dealing
with missing values (Al-Fugara et al. 2020). These approaches can also capture latent interac-
tions among predictors (Friedman & Meulman 2003). A potential drawback of machine learning
methods is their susceptibility to data overfitting, thereby producing unstable regression coeffi-
cients (Guisan & Thuiller 2005).
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Very recently, new hybrid and ensemble methods have been introduced in which different mod-
els are integrated into a single model. In most cases, hybrid models show improved perfor-
mance and produce more accurate groundwater potential models (Chen et al. 2020). The
random forest modelling approach used in this work produced very good results in predicting
the distribution of springs in Iran based on hydrological, geological and physiographical data
(Naghibi et al. 2016, Naghibi & Pourghasemi 2015, Zabihi et al. 2016). In various studies, ran-
dom forest models have shown better performance compared to other single machine learning
tools (Naghibi et al. 2017, Knoll et al. 2019, Kumar & Pati 2022, Chen et al. 2020, Kumari et al.
2023).

1.5.2 Variables Predicting the Occurrence of Springs

Various explanatory variables have been shown to be useful in predicting the occurrence of
springs. Slope degree (and consequently slope position and slope length) has a direct influence
on runoff, erosion, and sediment transport, with gentle slopes generating less runoff, which im-
plies that more precipitation is infiltrated or evaporated (Naghibi et al. 2020). Slope aspect is
an important variable, as each aspect receives a certain amount of sunshine that determines
snow melt rates, biomass production, vegetation cover, and thus the soil condition for infiltration
(Naghibi et al. 2020, Zapata-Rios et al. 2016). Elevation indirectly influences spring occurrence
because the development of drainage systems is significantly related to altitude, and generally
at higher elevations, steeper slopes lead to lower infiltration rates (Rahmati et al. 2018). Terrain
roughness promotes the presence of springs, as water discharge can occur when the topog-
raphy intersects the water table (Fernández-Martínez et al. 2024). Consequently, convergence
and plan curvature can also influence the occurrence of springs. Negative convergence refers
to concavities (valleys), while positive convergence indicates convex features (ridges), which
have a clear impact on water availability (Conoscenti et al. 2015). Plan curvature shows cur-
vature along the direction opposite to the highest slope degree, also affecting water availability
(Ayalew et al. 2004). Faults produce underground conduits that allow groundwater to flow,
making distance to faults and fault density important variables for the occurrence of springs
(Fernández-Martínez et al. 2024). Other variables that affect water availability and the occur-
rence of springs include stream density, topographic wetness, profile curvature, NDVI, soil,
lithology, land use, distance to rivers, and distance to streets (Chen et al. 2018, Naghibi et al.
2016, Naghibi & Pourghasemi 2015, Rahmati et al. 2018, Zabihi et al. 2016). In statistical mod-
els, these explanatory variables serve as independent variables, whereas the occurrence of
springs represents the dependent variable.
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1.6 This Thesis: Motivations, Objectives, and Research Questions
Springs are small but important habitats for many highly specialised animal species. The de-
cline of these biodiversity hotspots has led many of these species to be threatened. In addition
to the loss of habitats, the increasing isolation of the remaining habitats exacerbates the situa-
tion. The spring habitats most at risk, and thus in greatest need of protection, are often located
in places where conflicts of use, for example with agriculture, are most significant. However,
all springs in good condition must be protected, also in forests or mountain areas where near-
natural springs are still more common, since springs continue to be tapped even today. Due to
climate change with altered frequency and intensity of precipitation, this situation is unlikely to
improve. Moreover, alpine springs are already refuges for relict species, and in order to main-
tain this function and offer new refuges for species displaced by climate change, as many intact
habitats as possible are required. Spring habitats are among the most endangered ecosys-
tems, so springs that remain in a natural state must be protected at all costs.

However, for a long time, the Confederation and the cantons had only a very limited overview
of the occurrence and condition of spring habitats (Küry et al. 2019). Following the Action Plan
of the Swiss Biodiversity Strategy (BAFU 2017), the FOEN launched the 2019 pilot project
“Tracing the Value of Water – Spring Habitat”. This project focusses on surveying, protecting,
and enhancing spring habitats. In the context of the pilot project, the Confederation, together
with the cantons, seeks to improve knowledge about these threatened and little-noticed spring
habitats. One of the tasks is to compile an inventory of spring habitats in Switzerland (BAFU
2021). Küry et al. (2019) explain that the cantons are responsible for ensuring that the number
and location of near-natural spring habitats worthy of protection and the composition of their
communities are known. They must ensure that spring habitats are identified, recorded, and
assessed in a transparent way. Because assessing the fauna using the FOEN method requires
a great deal of time and resources, it is not possible to inventory and evaluate the fauna at
every potential site. Küry et al. (2019) clarify that a multistage procedure is therefore needed,
which varies in each canton but essentially involves the following steps: First, the location of
springs or potential spring sites must be identified. Next, a field survey is conducted to record
and assess the structural characteristics of the site. After a selection process, the fauna and
possibly the vegetation of the most significant spring habitats are investigated. Finally, springs
that meet the protection criteria are placed under protection, employing suitable measures.

The aim of this thesis is to provide an additional tool for this spring inventory process. The
Random Forest model will be used to help select which springs should undergo more detailed
analyses. The spring inventory process should be simplified and made more efficient to obtain
better results faster. Since the FOEN method is directly decisive whether a spring habitat will be
protected, it is beneficial to apply methods or models that build on the FOEN approach already
during the inventory phase. Moreover, since an ecological assessment is always required in
Switzerland to determine whether a spring is worthy of protection, simplifying this process
would make it easier and faster to place spring habitats under protection.
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The research questions in this thesis pursue two objectives. An objective is to determine
whether the structural parameters in the dataset can be used to predict the faunistic quality
of spring habitats. The second objective is to investigate whether broader variables, such as
those introduced in subsection 1.5.2, can also be used to predict the ecological value of springs.
Hence, this thesis aims, on the one hand, to model the ecological value of spring habitats at
known points in the landscape. On the other hand, it seeks to explore whether it is possible to
make predictions about where in the landscape ecologically valuable springs are more likely to
occur. From a scientific perspective, the goal of this work is to expand or adapt existing spring
modelling approaches for the probability of occurrence to a modelling of the ecological value
of springs. Answering the first research question should clarify whether it is possible to predict
the faunistic status of a spring based on its structural assessment following the FOEN method.
The second research question seeks to determine whether additional variables, as discussed
in subsection 1.5.2, allow statements about the location of ecologically valuable springs. The
third research question aims to identify the most important parameters of the models for re-
search questions 1 and 2. Based on these objectives, the following research questions were
formulated:

• Can the faunistic condition of a spring be predicted on the basis of its surveyed structural
condition?

• Can the occurrence of an ecologically valuable spring be predicted using landscape &
topographic variables?

• Which variables of the structural condition, along with the landscape & topographic vari-
ables, are the most important predictors?
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2. Data & Methods

2.1 Swiss Springs Dataset

2.1.1 Description of the Dataset

The spring dataset used in this thesis contains data from spring surveys conducted using the
FOEN method. For every spring listed, the dataset contains all the information collected in
the field according to the Spring Protocol Structure and the Spring Protocol Fauna. Data from
surveys conducted with this standardised FOEN method are collected in the MIDAT Sources
information system. The excerpt provided from the MIDAT data portal originally included 787
springs (as of 26.8.2024). The springs were assessed as part of various projects, initiated by
different clients, and carried out by different contractors. The data is owned by the respective
cantons in which the springs are located. The cantons were informed about the use of the
data in consultation with the national data and information centre on Swiss fauna ’info fauna’.
The first entry in the dataset is dated 25.4.2002, and the most recent spring was assessed on
31.7.2023. During that span of more than 20 years, a total of 51 different evaluators assessed
787 springs in the field. As shown in Figure 1a, only a few springs were evaluated using the
FOEN method in the early years, and there are no entries at all from 2008 and 2009. More
than half of the springs were surveyed between 2019 and 2023.

Figure 1: Histogram plots of the assessed springs per calendar year (a) and of the springs per 100m
elevation bins (b). Note that the ranges of the y-axes are different in the plots.

The investigated springs are distributed throughout Switzerland, although certain regions or lo-
calities may show a higher number of entries depending on the project framework under which
they were surveyed. There are only a few cantons with no entries at all, namely Appenzell
Ausserrhoden, Geneva, Nidwalden, and Zug. As shown in Figure 1b, about 40% of the inves-
tigated springs lie below 1000 m.a.s.l., while the majority can be found in mountainous areas
above 1000 m.a.s.l. The highest surveyed springs are located above 2700 m.a.s.l. Figure 2
illustrates the distribution of the surveyed springs from an overall Swiss perspective.
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Figure 2: Map of Switzerland showing the location of the assessed springs in the dataset. Note that not
all springs are visible due to overlaying datapoints (map background: swisstopo).

2.1.2 Dataset Processing

In the provided dataset, certain adjustments and additions were needed to enable further pro-
cessing. German column headings were translated into English as faithfully as possible to
present the results in this thesis. The linguistic standardisation of entries that were a mix of
French and German, as well as indexing the springs with clear unique numbers, ensured the
continued usability of the data. Certain variables were recalculated because the existing ones
occasionally contained errors (Number of infrastructures and Number of taxa found). For cat-
egorical data, empty fields were replaced with ’none’, as blank fields can cause problems in
statistical analyses. It was confirmed that no empty values appear where none are expected.
Missing ÖWZ values were added to the dataset using a recent list (provided by D. Küry), and
some entries (Limnephilidae and Goeridae) were removed from the dataset because there is
no ÖWZ classification at the family level for these.

Some variables/columns were removed from the original dataset for further processing. This
includes the columns Spring discharge (time), Distance to spring discharge, Spring destroyed,
and No outflow because all or almost all entries in these columns were identical or the fields
were empty. The following columns were removed from the dataset as each had only very few
entries, making statistical analysis impossible: three types of capture (150 captures in total),
two types of relocation (80 relocations in total), three types of water damming (< 50 water
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dammings in total), six types of protection (< 100 protections in total), and five types of deposits
(54 deposits in total). The columns Artificial substrates (19) and Filamentous algae (51) were
also removed from the dataset due to the small number of values. The columns Revitalisation
object (assessment) & Personal overall impression (as comparison for evaluation) were also
removed because there were many empty fields and the existing entries were very subjective,
making them unsuitable for statistical analysis. Certain springs had to be excluded from the
dataset because the data contained errors or important variables such as Connectivity or Result
structural assessment had no entries.

In the following columns, the data in the original dataset were presented as comma-separated
lists: Infrastructure, Vegetation/Usage, Flow Diversity, and Special Structures. In order to anal-
yse these data, these columns were converted into binary matrices and appended to the spring
dataset. After data processing, 752 of the 787 springs remained in the dataset. In terms of
structural assessment, the dataset contains 479 natural, 159 conditionally natural, 81 moder-
ately impaired, 29 damaged, and 4 strongly damaged springs. Regarding the faunistic assess-
ment, there are 199 spring-typical, 234 conditionally spring-typical, 239 spring-compliant, 73
non-spring, and 7 very non-spring springs in the dataset.

2.1.3 Dataset Analysis Methods

Before developing a Random Forest model, the dataset was analysed using various statistical
methods. This exploratory statistical analysis served both to gain a better understanding of the
dataset and to prepare for the Random Forest modelling. Identifying variables that are strongly
correlated is important for creating a Random Forest model. Furthermore, the correlations
found in the statistical analysis can help to better understand the results of the Random Forest
model and place its conclusions in context.

Kruskal-Wallis-Tests
For all quantitative variables in the dataset, Kruskal-Wallis tests were carried out. Based on the
results of the spring assessment (Result structural assessment and Result faunistic assess-
ment), each spring was placed in one of five structure classes and one of five fauna classes. In
the Kruskal-Wallis test, the test variable was defined as the dependent variable and the struc-
ture or fauna classification was defined as the independent variable. Using the p-value, it was
then determined if there was a significant difference in the values of a variable between the dif-
ferent categories of structures or fauna, applying a significance level of 0.95. For the variables
Water Temperature [°C], Discharge [l/s], Conductivity, Distance to next spring [m], and Number
of outflows, empty fields had to be replaced with ’NA’ before the Kruskal-Wallis test could be
performed. The Kruskal-Wallis test enables to draw conclusions about whether the values of
quantitative variables differ significantly among the various structure and fauna categories.
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IQR-Median Heatmap
After assigning the springs to the five structure and fauna classes, the IQR and median value
were calculated for all data points within these classes. To make IQR values comparable be-
tween different variables, a relative IQR (r_IQR) was calculated by dividing the IQR values of
each category by the overall median value of the corresponding variable. The relative IQR
values are presented in a heatmap, and the median values of each variable per category
are shown numerically. Since some relative IQR values are extremely high due to the very
small number of data points in certain variable-category combinations, these r_IQR values are
coloured separately to maintain the comparability of the remaining data. Ultimately, this results
in two heatmaps (one for the structure categories and one for the fauna categories), from which
information on the variation of all quantitative variables within the dataset can be derived.

Boxplots
For selected quantitative variables, boxplots are created. The results of the Kruskal-Wallis tests
were used as the criterion for determining which boxplots should be analysed in more detail.
Where there are statistically significant differences between the fauna or structure categories,
it makes sense to break down the point distribution in a boxplot more precisely. The data
points for a given variable are distributed across the individual categories, with the structure
categories on the left and the fauna categories on the right. Data points are explicitly displayed
in the box plot of each category to illustrate how many data points fall into each structure or
fauna category and to show the distribution of data points within each category. For certain
variables, the y-axes had to be adjusted for the visibility of the remaining data, which means
that a few extreme outliers are no longer visible in the plots.

Correlation Matrix
For all quantitative variables in the dataset, Spearman correlations were calculated. This makes
it possible to determine the strength and direction of a monotonic relationship between two
variables. Unlike Pearson’s correlation, Spearman’s correlation does not assume a normal
distribution or a linear relationship of the data, which makes it robust against outliers or asym-
metrically distributed data, as is the case in the present dataset. Since not all variables have
data for every spring, only observations without missing values are taken into account when
calculating correlations. As a result, the sample size may vary from one correlation to an-
other. The correlations were calculated not only for the individual test variables, but also for
the results of the spring assessments, that is, Value A: Impairment (highest value), Value B:
Vegetation-use-structure, Result structural assessment, and Result faunistic assessment. This
allows correlations between individual variables and the results of the spring assessments to
be quickly identified.

Scatterplot Matrix
For 16 of the 17 quantitative variables in the dataset, scatterplots were generated, illustrating
the relationships with Result structural assessment and Result faunistic assessment. The vari-
able Spring area was not included because its values strongly correlate with those of Spring
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size and therefore would not yield any new insights. In certain variables, the axes had to be
adjusted for the visibility of the remaining data, meaning that a few extreme outliers are no
longer visible in the plots. Scatterplots help identify patterns in distributions, clusters, or trends
that may suggest potential correlations between two variables. Moreover, their straightforward
graphical representation makes it easy to quickly derive connections which can then be pursued
and verified in hypothesis formation or during the creation of the Random Forest model.

t-SNE
Categorical variables in the dataset were analysed using dimensionality-reducing visualisa-
tions (t-SNE). Such categorical variables are only found in the structural assessment part of
the dataset. The t-SNE analysis was divided into one section for the Value A data and another
for the Value B data (see structural assessment sheet). The categorical variables of the Value A
data are divided into two types: the first type is two-level columns where there are only two pos-
sible answers, “yes” or “no” (this includes the columns Capture, Relocation, Water damming,
Sole shoring, Deposits, Infrastructure, as well as the six different types of infrastructure). For
each of these columns, a dummy variable is generated that takes the value 1 for “yes” and 0
for “no.” The second type of categorical variables consists of variables with several possible
answer levels (this includes the columns Water extraction, Artificial drop, Trampling damage,
and Discharges, each with 3 to 5 different levels). For each possible variable-level combination,
a separate dummy column is generated, which can take values of 0 or 1. The Value B data also
contain these two types of categorical variables. The two-level columns include the 16 vegeta-
tion / use types with 4-5 levels, the 12 different special structures, and the eight different types
of flow diversity. Multi-level columns of the Value B data are the variable Summer shading (with
5 different levels) and Water-land interlocking (with 3 different levels). The dummy columns of
both data types (two-level columns & multi-level columns) were merged, and a minimal jitter, i.e.
a very small random deviation, had to be added to the entries 0 and 1. The jitter distinguishes
identical values and prevents the creation of duplicates, to which the t-SNE analysis is very
sensitive. Without the minimal jitter in the dummy dataset, only about a quarter of all springs
would be included in the analysis.

Subsequently, the R package for t-SNE performs a non-linear, two-dimensional embedding of
the dummy-coded data. The settings (perplexity = 30, eta = 200, max_iter = 5000, theta =
0.1) were selected through repeated tests and produce the most meaningful graphical results
among the possible configurations. The results of the t-SNE analysis are then displayed in scat-
terplots. The data points are coloured according to the faunistic and structural assessments,
revealing potential clusters in these evaluations as well. In general, t-SNE analyses allow com-
plex categorical information to be represented in a two-dimensional space, visually highlighting
potential clusters, patterns, or relationships among variables. However, it is important to note
that the t-SNE axes in the plots do not permit a definitive interpretation because they do not
share comparable coordinates. In fact, small distances on a t-SNE plot can be equated with
similar data. However, it cannot be discerned how truly similar or dissimilar data points from
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different clusters are from t-SNE plots due to the absence of definitive coordinates. Moreover,
because t-SNE is a stochastic procedure, each run produces slightly different results, limiting
reproducibility.

Taxa Histograms
Faunistic surveys of the species found and their abundances are analysed using the Shan-
non Index and the Simpson Index. Both indices are widely used to quantify biodiversity in
an ecosystem, such as a spring. From the TAXA columns in the dataset, a species matrix is
constructed that lists the number of individuals for each taxon in each spring. Then these two
indices are calculated from that matrix. The Shannon Index is calculated as follows:

H ′ = −
∑

(pk · ln(pk))

Here, pk is the proportion of individuals of species k in the total number of individuals (that
is, pk = nk

N ), where nk is the number of individuals of species k and N is the total number of
individuals in the sample). The Shannon Index measures diversity by considering both species
richness and the evenness of individuals across those species. Its values range from 0 to
3, where higher values reflect a greater number of species and a more balanced distribution,
indicating greater diversity.

The Simpson Index is calculated as follows:

D =
∑

p2k

where pk is again the relative proportion of species k. The Simpson Index represents the
probability that two randomly selected individuals in a sample belong to the same species. Its
values range from 0 to 1, where higher values indicate lower diversity, as fewer species are
more dominant. While the Shannon Index is particularly sensitive to rare species, the Simpson
Index places greater emphasis on the dominance of the most common species.
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2.2 Landscape & Topographic Variables

2.2.1 Selection and Compilation of Variables

Answering the second research question requires data that are not collected using the FOEN
method. Firstly, possible modelling variables from those presented in Subsection 1.5.2 were
identified that have been used in previous studies to model the occurrence of springs. Secondly,
all other freely available data collected by Swisstopo were analysed to assess their relevance.
The criteria for meaningful variables were simple availability, relatively straightforward calcula-
tion, and potential significance for the ecological value of a spring. Table 1 lists all landscape
& topographic variables that are included in the Random Forest modelling in this thesis. The
variables Slope degree, Slope aspect, Slope length, Plan curvature, Profile curvature, Terrain
roughness index (TRI), Topographic wetness index (TWI), and Convergence index were all
calculated using DEM data. DEM data (SwissALTI3D with a resolution of 2m) were publicly
available and downloaded within a radius of 1km around each spring. A resolution of 0.5m was
also available, but was not used due to calculation time and the fact that the required analyses
were sufficiently accurate at 2m. The variables Soil type, Soil depth, Water permeability, Water
storage capacity, Waterlogging, and Soil skeleton content are all part of the soil suitability map
of Switzerland and can be derived from it. The map, published in 1980, provides an overview
of soil conditions from a large-scale perspective at a scale of 1:200’000. One of the geological
variables is Lithology, which stands for the main lithological group extracted from the Lithol-
ogy500 dataset. The lithological map of Switzerland which includes the Lithology500 dataset,
provides an overview of the subsurface classified according to lithological-petrographic criteria
at a scale of 1:500’000. Another geological variable is Distance to faults, which could be de-
rived from the GeoCover dataset. The 2D geological models in the GeoCover dataset depict
the near-surface area of the geological subsurface. The predominant Land use in the spring lo-
cation was obtained from Switzerland’s Land Use Statistics collected by the Federal Statistical
Office. Other proximity variables include Distance to streets, Distance to lakes, and Distance to
rivers calculated from the Swiss TLM dataset, a vector dataset of the large-scale topographic
landscape model of Switzerland.

Various variables that have been successfully used to model the occurrence of springs were
not selected as landscape & topographic variables. Stream Density and Fault Density were
not selected as the closest distances to these features already serve as variables. The stream
power index, sediment transport index, and NDVI influence the occurrence of springs, but their
influence on ecological value appears to be very minor, which is why these variables were not
selected. Solar radiation was not calculated, despite its potential importance, as it can only be
calculated for a specific day, which offers no added value. Relative slope position and Drainage
Density could not be calculated using the GIS application, but similar variables (Slope length
and TWI) were calculated.
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Table 1: Overview and short explanation of landscape & topographic variables derived from various
geospatial data sources.
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2.2.2 Variable Processing and GIS Workflow

The raw DEM data, covering a radius of one kilometre around each spring, were loaded into
QGIS in TIF format. Digital elevation models often contain artefacts or depressions that are
not real, resulting in apparent local minima or plateaus where runoff can be blocked or is un-
defined. Using a GRASS algorithm, hydrologically consistent DEMs were created from the TIF
files, ensuring that water could theoretically run off everywhere (see Appendix A3 for the QGIS
Python code). All subsequent work steps are based exclusively on these filled DEMs to avoid
calculation errors.

When calculating the DEM variables, which are explained in the following, calculations were
often carried out at different scales. In a preliminary Baseline RF the modelling results of the
variable replicates were then compared, and the most important replicate was selected as the
final modelling variable. In most cases, replicates were calculated on three different scales. For
a DEM resolution of 2 metres, a window size of 3 means that the calculation was performed on
a 3x3 pixel window (i.e. 6x6 metres). With window = 13 or window = 25, the surrounding area
is significantly larger, which means that the calculated variable is smoothed and interpreted on
a larger scale.

Slope Degree (see Appendix A4 and A6 for the QGIS Python code):
The slope was calculated as an angle based on the local height differences in the x and y
directions. The values are statistically averaged slopes over the selected scales based on a
convex quadratic surface adjustment within the selected windows: 3x3 (36m²), 13x13 (676m²)
and 25x25 (2’500m²).

Slope Aspect (see Appendix A4 and A6 for the QGIS Python code):
The slope direction was added to the Slope degree calculations in the 3x3, 13x13 and 25x25
windows.

Slope Length (see Appendix A7 for the QGIS Python code):
In the 2000 m², 40’000 m² and 320’000 m² windows around the springs, the length in metres
was calculated up to the next local low point or discharge path. This makes it possible to
describe how far water flows across the terrain until it enters a channel or body of water.

Plan Curvature (see Appendix A5 and A6 for the QGIS Python code):
In the selected 7x7, 13x13 and 25x25 windows, a parabolic surface was adapted. Based on
the height values of this terrain analysis, the curvature can be calculated in different directions.
For the Plan curvature, the curvature was extracted perpendicular to the fall line, i.e. along the
contour lines.

Profile Curvature (see Appendix A5 and A6 for the QGIS Python code):
The curvature along the drop line, in the direction of the maximum slope, was extracted from
previous calculations.
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Terrain Roughness Index (TRI) (see Appendix A7 for the QGIS Python code):
The standard deviation of the elevation values in the selected square windows around the
spring grid cell (3x3, 13x13, and 25x25) corresponds to the TRI.

Topographic Wetness Index (TWI) (see Appendix A8 for the QGIS Python code):
The TWI was calculated in the selected windows (2000 m², 40,000 m² and 320,000 m²) around
the springs by combining information on the specific catchment area (i.e. how much upstream
area is receiving water) and the slope gradient.

Convergence Index (see Appendix A9 for the QGIS Python code):
As a full flow path modelling approach could not be used due to technical limitations, a proxy
for hydrological convergence was calculated. This proxy calculates how strongly the terrain
collects or scatters water based solely on topography in the 3x3, 13x13, and 25x25 windows.

For the variables Slope degree and Slope aspect, the decision on which replica variable to use
was based on a visual assessment on a map (map.geo.admin). Approximately 20 springs were
consulted to select replicas that corresponded the most closely to reality, which in each case
corresponded to the 3x3 window replicas. For TWI and Slope length replicates, the values
were the same at all scales, so the smallest window was selected as the final variable. The
other DEM variable replicates (Plan curvature, Profile curvature, TWI and Convergence index)
were tested in Random Forest models where Result faunistic assessment was predicted. The
replica of the variable with the highest predictive power was selected as the final variable. The
7x7 replicate was selected for Plan curvature, the 13x13 replicate for Convergence index, and
the 25x25 replicate for Profile curvature and TRI.

All variables derived from the Soil Suitability Map of Switzerland and the Lithological Map of
Switzerland (i.e. Soil type, Soil depth, Water permeability, Water storage capacity, Waterlog-
ging, Soil skeleton content, and Lithology) could be assigned to the springs via a simple spatial
join because they are polygon features. To calculate the distance variables (Distance to faults,
Distance to streets, Distance to lakes, and Distance to rivers), the polyline features closest to
the springs were identified, and the distance between the spring and feature was calculated.
The predominant Land use identified at a spring location corresponds to the land use point
feature (100 m grid) closest to the spring location.
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2.3 Random Forest Modelling
Random Forests consist of an ensemble of classification or regression trees, each constructed
using bootstrap samples of the training data and random selection of features in each split. The
final prediction is obtained by aggregating the predictions of all trees in the ensemble (Svetnik
et al. 2003). The results of the spring investigations according to the FOEN method (Result
faunistic assessment and Result structural assessment) correspond to numerical values that
can be categorised into five fauna or structure classes (see subsection 1.3.2). In the following
explanations of the Random Forest modelling methods, two different types of models are used.
If the aim is to model membership of a fauna or structure class, a Classification Random Forest
is used where each tree casts a unique vote for the most popular class (Breiman 2001). If
structural or faunistic values are to be modelled, Regression Random Forests are used, where
tree predictors take on numerical values as opposed to class labels (Breiman 2001).

2.3.1 Datasets Used for Random Forest Modelling

For the use of the Swiss Springs dataset in Random Forest models, the adjustments explained
in subsection 2.1.2 were made first. Some additional changes were made to the dataset before
the Random Forest application. The original four columns describing the Type of capture of the
springs were converted into a simple yes/no column, as only very few springs are captured at
all, and even fewer springs apply to the subcategories. The three columns of Relocation, the
four columns of Water damming, the seven columns of Sole shoring, and the six columns of
Deposits were turned into yes/no columns for the same reason.

No further adjustments had to be made to the dataset for the landscape & topographic vari-
ables prior to Random Forest implementation, as the generation process, as described in sub-
section 2.2.2, was designed for direct Random Forest use.

2.3.2 Random Forest Model Variants

After the creation of an initial Baseline Random Forest model, several hyperparameter tuning
approaches were applied to explore potential improvements for future models. The following
analyses were carried out: First, it was tested whether increasing the number of trees improves
model performance. In addition, the optimal number of variables to consider at each split and
the optimal node size (minimum number of observations in each leaf node) were calculated.
The effect of specifying maxnodes (maximum number of leaf nodes) in the model was also
examined. Furthermore, cross-validation was checked to see whether it would improve model
performance. Another analysis investigated whether removing the variables with IncMSE ≤ 0

would lead to improvements. In addition, it was tested whether transforming or standardis-
ing the data would have a positive effect on the results. None of these analyses led to any
improvement, as the approach and packages used in R automatically perform a type of hyper-
parameter tuning, thereby automatically checking and optimising these parameters. For this
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reason, hyperparameter tuning was omitted in all subsequent Random Forest modelling steps.

Subsequently, various approaches within the Random Forest spectrum were tested to improve
the model performance. Some approaches could be used for the Regression Random Forest
models as well as for the Classification Random Forest models. Some approaches have been
tested specifically for one or the other variant.

For the following approaches, a model was generated for both the Classification and Regression
models, and the results were subsequently compared with the results of the Baseline model:

Regularized random forest (RRF) is a tree ensemble method that adds a regularisation
penalty when selecting new features for node splits. At each split, a new feature is only
chosen if it provides substantially more predictive information (measured by information
gain) than features already used, controlled by a penalty coefficient. Compared to Base-
line RF, RRF typically yields more compact and less redundant feature sets, improving
efficiency without significant loss of predictive power (Deng & Runger 2012).

Conditional inference forest (CIF) is a method that builds multiple decision trees where
variable selection and split point selection are separated, using statistical tests to identify
associations between predictors and the target variable. This approach avoids the selec-
tion bias of standard Random Forests, which tend to favour variables with many categories
or continuous values due to the use of Gini impurity. Compared to Baseline RF, CIF pro-
vides more reliable variable importance and unbiased selection by employing permutation
tests and separating variable selection from the splitting process (Das et al. 2009).

Quantile regression forest (QRF) is an extension of the standard Random Forest that
estimates the conditional distribution of the target variable for each observation, rather
than only the mean prediction. This allows for a quantification of the prediction uncer-
tainty. Compared to standard Random Forests, QRF provides robust confidence intervals
for predictions by modelling the uncertainty associated with each estimate (Yang 2025).

Cost-sensitive random forest (CSRF) incorporates misclassification costs into the train-
ing by assigning higher weights to errors in minority classes. Each tree is evaluated and
weighted according to its ability to minimise cost, rather than simple accuracy, and the final
prediction is based on a weighted aggregation of tree output. Compared to a standard
Random Forest, CSRF directly addresses imbalanced data and unequal class error costs,
improving minority class detection by penalising misclassifications (Devi et al. 2019).

Extremely randomized trees (ERT) is an ensemble learning method that builds multiple
unpruned decision trees, where the attribute and the split point at each node are selected
completely at random. Unlike standard Random Forests, ERT does not use bootstrap
samples and applies a higher degree of randomisation, in order to reduce variance more
strongly while improving computational efficiency. This extreme randomisation leads to
more robust models while typically maintaining predictive accuracy (Geurts et al. 2006).
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For the following approach, a code was created for each Regression Random Forest model
and the results were subsequently compared with the results of the Baseline RF model:

Stratified sampling (SSRF) (or Regressand Stratification) refers to the partitioning of re-
gression data into cross-validation folds such that the distribution of the target variable is
preserved across both training and test sets. By creating folds with similar output dis-
tributions, using stratification into multiple strata, this approach minimises the target shift
introduced by standard k-fold cross-validation, leading to more reliable and less biased
performance estimates (Sáez & Romero-Béjar 2022).

For the following approaches, a code was created for each Classification Random Forest model
and the results were then compared with the results of the Baseline RF model:

Class weighting (CWRF) in Random Forests assigns different weights to classes during
model training. This approach modifies the standard majority voting by introducing class-
specific weights for each tree, thereby improving the classifier’s ability to correctly identify
minority classes in imbalanced datasets. In contrast to Baseline RF, Class weighting di-
rectly addresses class imbalance without altering the data distribution, leading to more
balanced predictive performance (Zhu et al. 2018).

Dynamic weighting (DWRF) refers to assigning performance-based weights to individ-
ual decision trees during ensemble aggregation, rather than using fixed weights. These
weights are dynamically determined so that trees contributing more to prediction quality
have greater influence on the final outcome. Compared to standard Random Forests Dy-
namic Weighting leverages diversity and individual strengths of trees, leading to improved
predictive performance, especially on imbalanced datasets (Shahhosseini & Hu 2020).

Threshold adjustment (TARF) using ROC Analysis (Receiver Operating Characteristic)
is an approach for evaluating and improving the performance of classifiers by analysing
how the true positive rate and the false positive rate change across all possible decision
thresholds. Instead of relying on a fixed threshold, ROC analysis enables the identification
of an optimal cut-off that can maximise metrics such as sensitivity and specificity, making
model evaluation and threshold selection more robust (Carrington et al. 2023).

Weighted tree voting (WTV) in Random Forests assigns a specific weight to each tree
in the ensemble, based on its individual out-of-bag (OOB) classification accuracy. During
prediction, the final class label is determined by aggregating the class probabilities from all
trees, each multiplied by its corresponding weight, rather than using simple majority voting.
This adaptive weighting leads to more robust and accurate predictions, as trees with better
generalisation performance have a stronger influence on the outcome (Paul et al. 2018).

Up-/downsampling (UDRF) (or Oversampling) is a sampling technique used to address
class imbalance by increasing the number of minority class instances in the training data
until both classes are equally represented. This approach aims to improve the model’s
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ability to correctly classify minority class samples and to reduce bias toward the majority
class. The ensemble structure improves noise robustness, and results in a more reliable
classification performance on unbalanced datasets (More & Rana 2017).

2.3.3 Modelling Faunistic Condition Based on Spring Structure Data

The Random Forest approach to answer the first research question attempts to model the
values of Result faunistic assessment or the fauna class affiliation using the extensive data
of the structural assessments within the FOEN method. As Random Forest models are very
susceptible to gaps in the data set, two different variants of the model had to be tested. In
one variant, the variables Temperature, Discharge, Conductivity, Distance to next spring, and
Number of outflows were removed from the model as they showed data gaps for some springs.
The advantage of this variant is that all 752 springs are still included in the model. In the other
variant, only Conductivity was excluded as a variable, meaning that only 449 springs would
still be included in the model. Furthermore, it was tested whether the binary coding of the
vegetation/usage data has an influence on the model quality. In one variant, binary coding
with more than 50 columns was used; in another variant, a simplification was made using only
one column for each of the 16 vegetation types, which indicates whether this vegetation type
occurs anywhere in the spring area or not. These four dataset variants were subsequently
tested in simple Baseline RF models for predicting Result faunistic assessment or fauna class
affiliation. It was found that there are no major performance differences between the different
dataset variants. For the sake of completeness, but also for clarity, it was decided to use the
dataset variant with all variables (except Conductivity), but with only 449 springs and with only
16 vegetation/usage columns. All subsequent modelling steps for the modelling with spring
structure data were performed with this dataset variant.

With the selected dataset, a Baseline Regression Random Forest and a Baseline Classification
Random Forest model were each implemented, along with one model for the six Regression
Random Forest variants and the ten Classification Random Forest variants (see subsection
2.3.2). In every R script, the corresponding classification or regression metrics are calculated
(for further details on performance metrics see Appendix A10). A Baseline Regression Random
Forest code is shown in Appendix A11. In the first part, the Random Forest model is created
and trained, and in the second part the comparison metrics are calculated. Appendix A12
shows a Baseline Classification Random Forest code. All other model variants are structured
in the same style with model-specific adjustments in the first part of the code.

2.3.4 Modelling Ecological Value Based on Landscape & Topographic Variables

The Random Forest approach to answer the second research question attempts to model the
ecological value of springs (Result faunistic assessment & Result structural assessment or the
respective class affiliation) using landscape & topographic variables (see section 2.2). Here,
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too, a classical Baseline Regression Random Forest and a Baseline Classification Random
Forest model were implemented, along with one model for the six Regression Random Forest
variants and the ten Classification Random Forest variants. In every Random Forest model,
the corresponding classification or regression metrics are calculated.

2.3.5 Modelling Ecological Value Based on Mixed Spring Structure and Land-
scape & Topographic Variables

To determine whether model performance improves when using a combination of the two
datasets previously used separately, both datasets were merged and used together to model
Result faunistic assessment or the respective class affiliation. Here, too, a classical Base-
line Regression Random Forest and a Classification Random Forest model were implemented,
along with one model for the six Regression Random Forest variants and the ten Classification
Random Forest variants. In every script, the corresponding metrics are calculated.

In total, this results in eight model groups: four regression model groups and four classifica-
tion model groups. These include one group for modelling the faunistic assessment based
on structural data, two groups for modelling the ecological value based on landscape & topo-
graphic variables, and one group for modelling the faunistic assessment using the mixed data.
Within each model group, modelling is conducted using seven Regression Random Forest vari-
ants and eleven Classification Random Forest variants, respectively. This amounts to a total of
72 Random Forest models that were trained and evaluated in the context of this thesis.

2.3.6 Most Important Modelling Variables

Before identifying the most important modelling variables, it was necessary to determine the
best Random Forest variant within each model group, that is, the variant with the best model
performance metrics. Based on this information, the ten most important predictor variables for
the selected Random Forest variant were then identified for the specific modelling case (for ex-
ample modelling Result faunistic assessment using spring structure data). This was achieved
by permuting all predictor variables in the model. For each predictor variable, a copy of the test
dataset was created in which only that variable was randomly shuffled, i.e., permuted. Predic-
tions were then generated using this modified dataset, and this process was repeated for each
predictor variable. Comparing the model performance metrics for these permuted datasets
with those from the original dataset provided information on how much model performance
deteriorates without a variable, thereby indicating the importance of each individual variable.
To assess whether the ten most important predictor variables of the selected model variant
are also important in all other model variants, permutation of these ten selected variables was
also applied to the other model variants. Ideally, the other model variants confirm the key vari-
ables identified by the best model. The calculation of the permutation weights of the predictor
variables can be seen in the third part of the codes in Appendix A11 and Appendix A12.
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3. Results

3.1 Dataset Analysis
The results of the dataset analysis, whose methods are explained in subsection 2.1.3, are pre-
sented in the following three subsections. All quantitative variables from the header section
of the structural assessment sheet, from the Value A and Value B sections of the structural
assessment sheet, and from the faunistic assessment sheet were analysed together, and their
results are shown in subsection 3.1.1. The categorical variables from the Value A and Value
B sections of the structural assessment sheet are introduced in subsection 3.1.2. Lastly, the
results of the analysis of the faunistic assessments of the springs are presented in subsec-
tion 3.1.3.

3.1.1 Numerical Data

The results of the Kruskal-Wallis test for the numerical data variables in Table 2 indicate which
variables show significantly different values among the structure and fauna categories. For a
large proportion of the variables, there are in fact significant differences in values for both clas-
sifications, meaning for both the different structure classes and the fauna classes. This is the
case for Elevation, Spring area, Number of flow types, Number of structures, Number of in-
frastructures, Number of red list species, Number of priority species, Number of species found,
Number of outflows, and Water temperature. Some variables show significant differences for
one classification but not for the other; this applies to Spring size, Number of substrates, and
Conductivity. For four variables, neither classification reveals significant differences among the
various categories. For the variables Spring stream length, Discharge, and Distance to next
spring, this is likely due in large part to the fact that these are very difficult to estimate accu-
rately with the available methods in the field. In addition, it is probable that not all 51 observers
employed exactly the same strategy when evaluating these variables, which has resulted in
a wide spread of the data and consequently no significant differences. Number of endemic
species also does not show significant differences for either classification. This is largely be-
cause more than 700 of the 752 springs did not contain endemic species. Table 2 shows in the
column “Data available” which variables provide data for all springs and which variables were
recorded and added to the dataset only for some of the springs.
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Table 2: Results of the Kruskal-Wallis test determining statistically significant differences of datapoints
among the five structure categories and among the five fauna categories (α = 0.05). Two separate
Kruskal-Wallis tests were carried out per variable, one for structure categories and one for fauna cate-
gories. P-values in green correspond to p < 0.05 (statistically significant differences among the cate-
gories), p-values in red correspond to p ≥ 0.05 (no statistically significant differences among the cate-
gories).

Data available Structure Classes Fauna Classes
Elevation [m.a.s.l] 752 / 752 < 0.005 < 0.005
Spring Size [m2] 752 / 752 < 0.005 0.16
Spring Area [m2] 752 / 752 < 0.005 0.01
Spring Stream Length [m] 752 / 752 0.76 0.11
Number of Substrates 752 / 752 < 0.005 0.54
Number of Flow Types 752 / 752 < 0.005 < 0.005
Number of Structures 752 / 752 < 0.005 < 0.005
Number of Infrastructures 752 / 752 < 0.005 0.01
Number of Red List Species 752 / 752 < 0.005 < 0.005
Number of Priority Species 752 / 752 < 0.005 < 0.005
Number of Endemic Species 752 / 752 0.26 0.08
Number of Species Found 752 / 752 0.02 < 0.005
Water Temperature [◦C] 665 / 752 < 0.005 < 0.005
Discharge [l/s] 736 / 752 0.79 0.37
Conductivity [µS/cm] 372 / 752 0.38 < 0.005
Distance to Next Spring [m] 555 / 752 0.38 0.45
Number of Outflows 607 / 752 < 0.005 < 0.005

In Figure 3, the heatmap of the relative IQR values is shown for all numerical variables per
structure category. IQR values allow statements about the variation of a variable’s data points
within a category. Dividing by the median of the corresponding variable ensures comparable
scale sizes of the r_IQR values between different variables. High relative IQR values indicate
extensive variation of the data points within a category and compared to the median of the
variable, while low relative IQR values reflect low variation of the data points. Many variables
show relatively low relative IQR values that do not change significantly between the different
categories of structures. These variables include Elevation, Water temperature, Conductivity,
Number of outflows, Number of infrastructures, Number of substrates, Number of flow types,
Number of structures, Number of species found, Number of red list species, and Number of
endemic species. Although the median of some of these variables changes considerably in the
different categories (Elevation, Water temperature, Conductivity, Number of outflows & Number
of structures), the variation in the IQR does not appear to be influenced by these alterations
in the data structure. Other variables such as Spring size, Spring area, Spring stream length,
Discharge, and Distance to next spring have relatively high relative IQR values, sometimes with
large differences between individual categories. For example, in the highest structure category
natural, there is a very high variation in Spring size and Spring area, whereas in the lowest
structure classes damaged and strongly damaged, these variables show little variation. The
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median values of these two variables also differ substantially across the categories, in contrast
to Discharge, whose median values remain relatively constant in the various categories, even
though the relative IQR values reveal varying degrees of data variation. It is important to note
that the category damaged contains only 30 springs and strongly damaged only 4. Depending
on the variable, this number may be even smaller due to gaps in the data.

Figure 3: Structural assessment categories with median values of the individual variables and the
relationship between the IQR and the median value of a variable highlighted in color according to the
color scheme on the right (rIQR =

IQRper category
Medianoverall

).

In Figure 4, the heatmap of the relative IQR values is shown for all numerical variables per fauna
category. The heatmap is remarkably similar to that for the structure classes. Variables with low
relative IQR values and minimal changes in categories are the same as in the structure classes.
In contrast, the median values of Elevation, Conductivity, and Number of outflows show fewer
marked differences among the fauna categories. The variables with high relative IQR values are
likewise the same, with the only distinction that Distance to next spring tends to display lower
values and less variability across the categories. Unlike in the structure categories, Spring
size, Spring area, and Discharge show comparatively high relative IQR values in every fauna
category, indicating substantial variation in these variables in all fauna categories. It should
also be noted that the lowest-rated fauna category (very non-spring) contains only 10 springs,
and this number can be even smaller for certain variables due to data gaps.
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Figure 4: Faunistic assessment categories with median values of the individual variables and the rela-
tionship between the IQR and the median value of a variable highlighted in color according to the color
scheme on the right (rIQR =

IQRper category
Medianoverall

).

Figure 5 shows boxplots for four different variables, broken down by the structure categories
on the left and the fauna categories on the right. In the boxplots for Elevation, one can clearly
see that the median values increase with better-rated structure and fauna categories. Basically,
the higher the spring is located, the better it is rated overall. However, the boxplots for each
category also reveal a large spread in the data, even though the median values suggest a
clear trend. The distribution of the data points appears very similar between the structural
and faunistic assessments, with the biggest difference being the median value in the yellow
categories, which differs by nearly 500 metres. In the plots for Number of substrates, no such
strong trend is evident. In the structure categories, the two highest rated categories have the
highest median value, but the same cannot be observed in the fauna categories. Here too,
there is substantial data dispersion in each category. For Number of flow types, there is again
a fairly clearer trend, with higher values found in higher-rated structure and fauna categories.
Hence, the more flow types that can be identified in a spring, the better its overall rating. A
nearly identical pattern emerges for Number of structures, where the higher the number of
different structures, the better the springs are rated. Unlike Number of flow types, however, the
values for Number of structures can reach higher levels, yet the median values remain almost
the same in the two variables across nearly all categories.
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Figure 5: Boxplots of four spring variables grouped by structure (left) and fauna (right) classes. Gray
dots show individual data points, randomly jittered in the x-direction and slightly in the y-direction to
improve visibility.
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Figure 6 also presents boxplots for four different variables. In the Number of outflows plots,
numerous outliers stand out, some of which can reach very high values. Apart from these out-
liers, the median values for the Number of outflows likewise show the anticipated increase in
better-rated springs, in both the structural assessment and the faunistic assessment. For Num-
ber of species found, fairly surprisingly, no trend emerges showing more species in springs with
higher ratings. The median values in the two top categories are in fact lower than those of the
two green and yellow categories. Thus, the number of springs found does not appear to be a
determining factor for the quality of a spring. Regarding the Number of red list species, a clear
trend towards higher values in better-rated categories can be observed, particularly in the fau-
nistic assessment. A similar but less pronounced trend appears in the structural assessments
as well. However, as with all boxplots, there is considerable data dispersion within each cate-
gory. In the case of the Number of priority species, the fauna categories show a trend similar
to that of Number of red list species, with higher numbers in better-rated springs. However, the
median values in all 10 boxplots for this variable are very low, with outliers reaching values of
up to 10.
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Figure 6: Boxplots of four spring variables grouped by structure (left) and fauna (right) classes. Gray
dots show individual data points, randomly jittered in the x-direction and slightly in the y-direction to
improve visibility. Note that the y-axes of the Number of outflows plots are truncated to highlight the
main data range, resulting in three outliers falling outside the plotted area.
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In Figure 7, a Spearman correlation matrix is shown, clearly representing the strength and
direction of the monotonic relationship between all pairs of numerical variables and the results
of the structural and faunistic assessments. The highest correlation value among all variable
combinations occurs between Number of red list species and Number of priority species, with a
Spearman correlation of 0.81. This is not surprising, as Red List Species are often also Priority
Species and vice versa. A similarly high correlation value (0.80) is found between Spring area
and Spring size. This likewise makes a great deal of sense, since on the one hand it is often
very difficult to distinguish these two measures in the field, and on the other hand a larger Spring
size automatically implies a larger Spring area. The highest negative correlation between two
variables is that between Elevation and Water temperature (-0.76). With increasing elevation,

Figure 7: Spearman correlation matrix of all numerical variables in the dataset. Blue cells indicate posi-
tive correlations, red cells indicate negative correlations, and color intensity corresponds to the absolute
correlation strength. Note that some variables do not have data available for all springs, sample size can
therefore vary among different correlations. Variables highlighted in yellow belong to Result Faunistic
Assessment, those in green to Result Structural Assessment, and those in white represent header data.
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the average annual temperature decreases, which, as expected, is reflected in the water tem-
peratures of the springs. One other correlation lies above the threshold of 0.70, while all re-
maining 132 correlations fall below it. The correlation between Number of flow structures and
Number of flow types (0.71) is likewise unsurprising, as it seems logical that a large number of
different flow structures in a spring area would lead to a large number of different flow types,
and vice versa.

Table 3: Overview of the average ab-
solute Spearman correlations between
the numerical variables in the dataset.

Average Absolute Correlations

Number of Structures 0.340

Number of Flow Types 0.316

Number of Priority Species 0.305

Elevation [m.a.s.l] 0.285

Discharge [l/s] 0.283

Number of Red List Species 0.277

Spring Area [m2] 0.276

Water Temperature [°C] 0.272

Spring Size [m2] 0.254

Conductivity [µS/cm] 0.243

Number of Outflows 0.232

Number of Species Found 0.219

Number of Endemic Species 0.151

Spring Stream Length [m] 0.133

Number of Substrates 0.127

Distance to Next Spring [m] 0.070

Number of Infrastructures 0.067

Table 3 shows a descending list of the largest mean
absolute Spearman correlations (excluding the re-
sults of Value A, Value B, as well as the structural and
faunistic assessments). It can be seen that the two
Value B variables Number of structures and Num-
ber of flow types exhibit the highest absolute corre-
lations. Thus, these two variables either exert a very
strong influence on other variables or are strongly in-
fluenced by others (or both). Interestingly, the third
numerical Value B variable, Number of substrates,
has one of the lowest absolute correlation values, in-
dicating that it is barely influenced by or barely in-
fluences other variables. The two variables Number
of priority species and Number of red list species,
which themselves correlate strongly, also show high
absolute correlation values. In contrast, Number of
species found appears to be only fairly influenced by
other variables. Particularly low absolute correlation
values are observed in Distance to next spring and
Number of infrastructures. These variables seem to
exert very little influence on other variables and, in
turn, are hardly influenced by them.

It can also be clearly observed in Figure 7 that certain variables display very similar correlation
values to others. For example, Spring area and Spring size often exhibit similar correlation
values with the remaining variables. The same applies to Water temperature and Conductivity,
which show a comparable behaviour in relation to other variables. Among Number of structures,
Discharge, and Number of outflows, there is even a group of three variables that present similar
correlation values with the rest of the variables.

Below the correlation matrix of the numerical variables, the matrix continues with the results
of the structural and faunistic assessments. In the correlations with the variable Value A, it
is noticeable that only one correlation exceeds 0.3, namely the correlation with Number of in-
frastructures (0.51). This is understandable insofar as Number of infrastructures is the sole
numerical value derived from the calculation of Value A. In the correlations with the Value B
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variable, the highest correlations occur with those variables that are taken into account when
calculating Value B: Number of structures (-0.45), Number of flow types (-0.44), and Number of
substrates (-0.41). All other correlations with Value B are below 0.3. The overall Result struc-
tural assessment does not show any correlation above 0.4, while the highest correlation with
Result faunistic assessment is 0.33. The correlation between Result faunistic assessment and
Result structural assessment is -0.25. Consequently, better faunistic conditions (higher fauna
values) tend to coincide with better structural conditions (lower structure values). However, this
relationship is not particularly strong.

In Figure 8, a scatterplot matrix is shown, illustrating the relationships of all numerical vari-
ables except Spring area with Result structural assessment. The first two rows of eight plots
(Elevation, Spring size, Spring stream length, Water temperature, Discharge, Conductivity, Dis-
tance to next spring and Number of outflows) depict the numerical header data of the structural
assessment sheet. These are therefore the numerical variables that do not factor into the as-
sessment calculation but are always recorded in the field. None of the eight plots exhibit very
clear patterns, clusters, or trends suggesting clear correlations between two variables. In par-
ticular, Elevation and Water temperature show no discernible trend at all. In plots b, c, e, f, and
g, a large share of the data has very small values on the x-axis, with only a few data points
reaching higher values, which hinders or at least complicates the visibility of potential trends.
In plots h and b, it can be seen that larger values on the respective x-axis occur only at low
structural assessment values, that is, in well-rated springs. However, even in these two plots, a
low structural assessment does not automatically mean larger values on the x-axis. The third
row in the scatterplot matrix consists of four plots (Number of infrastructures, Number of sub-
strates, Number of flow types, and Number of structures) and represents the numerical Value
A and Value B data from the structural assessment sheet. Again, no clear clusters or distribu-
tions are discernible in these four plots. Only a few weak trends are observable. In plots j, k,
and l, no very low structural assessments occur when the values on the x-axis are very low. In
contrast, at very high values on the x-axis, which means a large number of different substrates,
flow types, or structures, very high structural values are not observed. The fourth row in the
scatterplot matrix comprises four plots (Number of species found, Number of red list species,
Number of priority species, and Number of endemic species), which represent the numerical
variables of the faunistic assessment sheet. In plot m, Number of species found, no trend can
be identified at all. In plots n, o, and p, only a weak trend is evident, namely that very high
x-axis values (many Red List, Priority, or Endemic Species) are not associated with very high
structural assessments. A large number of different Red List, Priority, or Endemic Species are
therefore found almost exclusively in springs that are rated very highly in structural terms.
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Figure 8: Scatterplot matrix of 16 numerical variables on the x-axes plotted against Result structural
assessment on the y-axes. Plots a-h show the header data of the structural assessment sheet. Plots i-l
show Value A and Value B data of the structural assessment sheet. Plots m-p show numerical values
of the faunistic assessment sheet. Note that some axes are truncated to highlight the main data range,
resulting in a few outliers falling outside the plotted area (2 outliers in plot b, 1 in plot c, 3 in plot e and 1
in plot h).

In Figure 9, a scatterplot matrix is shown, illustrating the relationships of all numerical variables
except Spring area with the Result faunistic assessment. Plots a through g closely resemble
the corresponding plots in Figure 8. Again, no clear clusters or trends are evident. Unlike plot h
in Figure 8, plot h here does not show any weak tendency toward higher or lower values of the
y-axis with a larger Number of outflows. In plot i, a very slight trend can be observed toward a
lower faunistic assessment at higher values of Number of infrastructures. An equally slight
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trend appears in plot k, where a higher Number of flow types tends to lead to a better faunistic
assessment. No trends can be identified in the plots j and l. The plots m and p also reveal no
apparent dependencies. In plot n, there is a slight tendency toward a higher faunistic assess-
ment with a greater Number of red list species, and a similar but even weaker trend can be
seen in plot o.

Figure 9: Scatterplot matrix of 16 numerical variables on the x-axes plotted against Result faunistic
assessment on the y-axes. Plots a-h show the header data of the structural assessment sheet. Plots i-l
show Value A and Value B data of the structural assessment sheet. Plots m-p show numerical values
of the faunistic assessment sheet. Note that some axes are truncated to highlight the main data range,
resulting in a few outliers falling outside the plotted area (2 outliers in plot b, 1 in plot c, 3 in plot e and 1
in plot h).
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3.1.2 Categorical Data

In Figure 10, two scatterplots are shown, which illustrate the results of the t-SNE analysis for the
categorical data in the Value A section of the structural assessment sheet. In the left scatterplot,
the data points are coloured according to the results of the structural assessment, while in the
right scatterplot they are coloured according to the results of the faunistic assessments. Note
that the colour scheme here does not follow the standard pattern, as the aim was to highlight
the differences among the points more clearly. In the scatterplot, two clear clusters can be
identified: one dense cluster on the right and another fairly less dense cluster on the top left.
A third possible cluster is located in the lower middle-left area. The points in individual clusters
share similar characteristics. It can also be seen that the clusters on the right and at the top left
are clearly separated from each other, meaning these groups of data points are unambiguously
different. Whether or not the broad cluster on the lower middle left overlaps with the one on
the middle left is not entirely clear. An overlap would mean strong similarities between the two
clusters. Meanwhile, the distance between individual clusters is meaningless. It is therefore
not possible to say whether the cluster at the top left differs more from the cluster on the right
than from the cluster in the middle, even if the distance to the right is greater. Because identical
point characteristics are plotted at the same location, statements can also be made about the
data distribution within a cluster. In the cluster on the right, the data points are closely grouped,
suggesting strong correlations among them. The trend is similar, though weaker, in the top-
left cluster, whereas in the middle cluster there are fewer strong relationships among the data
points. In the left plot, which shows the results of the structural assessment, a clear distinction
can be seen in the colouring of the data points between the different clusters. The top-left
cluster contains the lowest scores, and there are only very few data points with a rating greater
than 2. The middle cluster has the highest ratings, although it also includes many

Figure 10: t-SNE scatterplots for the categorical variables of structural assessment part A: impairment.
Both scatterplots show the same datapoints, but colored according to the results of the structural as-
sessment (plot a) and the results of the faunistic assessment (plot b). Note that the axes represent the
two-dimensional embedding obtained by the t-SNE analysis, with no real-world units for direct interpre-
tation.
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medium ratings and some relatively low ratings around 1. In the right cluster, the mix is again
relatively large, with an overall slightly lower rating than in the middle cluster. In the right
plot, which shows the results of the faunistic assessment, there is no clear distinction in the
colouring of the data points among the different clusters. All clusters contain very low and very
high ratings. The separation between the middle cluster and the top-left cluster is also less
pronounced here because, unlike the structural assessment, the ratings do not clearly diverge.

In Figure 11, two scatterplots are shown, illustrating the t-SNE analysis results for the categor-
ical data in the Value B section of the structural assessment sheet. In the left scatterplot, the
data points are once again coloured according to the results of the structural assessment, while
in the right scatterplot they are coloured according to the results of the faunistic assessments.
Unlike in the scatterplot of the Value A data, no clear clusters can be identified here. Thus, no
groups of data points can be found that are unambiguously different, and as a result there are
no strong correlations between the features and the data points. In the middle-right area of the
scatterplot, some data points appear closely clustered, indicating a strong correlation among
those points, although this does not constitute a distinct cluster. With respect to the colouring
of the points, scarcely any trend can be discerned. On the left side, where the structural as-
sessment results are displayed, it is evident that medium and high values occur throughout the
entire data range, while the lowest values appear only in the middle to left portion of the plotted
area. In the right plot, which shows the results of the faunistic assessment, there is also no
discernible trend in the coloring. Low, medium, and high assessments occur everywhere in the
plotted area.

Figure 11: t-SNE scatterplots for the categorical variables of structural assessment part B: vegetation /
use - structure. Both scatterplots show the same datapoints, but colored according to the results of the
structural assessment (plot a) and the results of the faunistic assessment (plot b). Note that the axes
represent the two-dimensional embedding obtained by the t-SNE analysis, with no real-world units for
direct interpretation.
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3.1.3 Fauna Data

In Figure 12, four histograms are shown, illustrating the results of the faunistic surveys in the
dataset. The number of springs within a certain index value range is summed and plotted on
the y axis, while the x axis displays the corresponding index ranges. The first row shows the
plots for the Shannon Index, and the second row presents the Simpson Index. On the left, the
bars are coloured according to the respective fauna categories, and on the right, according to
the respective structure categories.

In the Shannon Index plots, it can be observed that most of the springs reach relatively high
values. The frequency distribution is not fully normal but rather slightly skewed to the right,
towards greater diversity. More than two-thirds of the springs have a Shannon Index of 1.5 or
higher, while fewer than one-third register a Shannon Index below 1.5. Since higher values
reflect a larger number of species and a more balanced distribution, it can be concluded that
most of the springs exhibit high Shannon diversity. Only a few springs display very low diversity
and similarly few show very high diversity. It is important to note that the Shannon Index is
sensitive to rare species, suggesting that at least one rare species was found in many of these
springs.

In plot b, it can be seen that, contrary to expectations, there is no trend towards a higher
proportion of well-rated springs (blue) at higher Shannon Index values. The share of each fauna
category in the total number of springs for a given Shannon value hardly changes between
different index ranges. This suggests that the faunistic assessment based on the FOEN method
produces results that are scarcely comparable to the indices used here. Particularly striking is
that among the highest Shannon ratings (>2.4), meaning the springs with the greatest diversity,
only about one sixth fall into the blue fauna category. In plot a, there is also no discernible trend
towards higher or lower structural assessments at higher Shannon Index values. Here, too, the
proportion of each structure category in the total number of springs changes very little across
the different index ranges. However, in contrast to plot b, it is noticeable that a large majority
(approximately 75%) of the springs with the highest Shannon ratings (>2.4) also fall into the
highest structural assessment category.

In the Simpson Index plots, it can be seen that a large proportion of the springs reach high
values. More than half of the springs exhibit a Simpson Index above 0.75, whereas only about
10% have a Simpson Index below 0.5. Since higher values indicate that fewer species are
strongly dominant, and therefore diversity is lower, it must be noted that a substantial share of
the springs shows low Simpson diversity. Although only a few springs have very high values
(>0.9), there are also only around 30 springs with a Simpson value below 0.25. It is important
to remember that the Simpson Index emphasises the dominance of the most common species.
Consequently, in many springs, there is a relatively high probability that two randomly selected
individuals from a sample belong to the same species.
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In plot d, too, there is no discernible trend towards a higher proportion of well-rated springs
(blue) at lower Simpson values. Here, also, the shares of each fauna category in the total
number of springs for a given Simpson value remain largely constant throughout most of the
index range. Only about one third of the approximately 30 springs with a Simpson value below
0.25 fall into the blue fauna category. This further supports the assumption that the faunistic
assessment according to the FOEN method produces results that are barely comparable to
the Shannon and Simpson indices. In plot c, no trend in the structural assessments at higher
Simpson Index values can be identified either. However, more than half of the roughly 30
springs with a Simpson value below 0.25 fall into the blue structure category.

Structure Categories Fauna Categories

Figure 12: Histogram plots showing the total count of springs with certain Shannon or Simpson index
values. The Shannon index values are shown in the first row, while the Simpson index values are shown
in the second row. The structural classes are shown on the left, while the fauna classes are shown on
the right.
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3.2 Modelling Faunistic Condition Based on Spring Structure Data

3.2.1 Regression Random Forest: Modelling Faunistic Assessment Values

The results of the different Regression Random Forest variants used to answer the first re-
search question are shown in Figure 13. In these models, data from the structural survey ac-
cording to the FOEN method were used to model Result faunistic assessment. The observed
faunistic assessment values are shown on the x-axis and the faunistic assessment values pre-
dicted by the models are shown on the y-axis. This results in a diagonal 1:1 line on which the
data points would lie in the ideal case of a perfect model. The median of the observed faunistic
assessment values is 16.0, the mean is 16.5. For each Random Forest variant, the values of
RMSE (root mean squared error), R2 (coefficient of determination), MAE (mean absolute error)
and MedAE (median absolute error) are given in the figure in order to be able to compare the
model quality with each other.

The xy-plot of Baseline RF in Figure 13 shows that the model always overestimates the low
observed faunistic assessment values. The opposite is true for high observed faunistic assess-
ment values: here the model underestimates the real values. This results in a relatively flat
fitted line of the predicted fauna values. A slight tendency towards correct predictions can be
recognised. The data are relatively heavily scattered around the fitted line. Baseline Random
Forest has an RMSE value of 5.30. The average deviation of the predictions from the true value
is therefore greater than the interval of a fauna class (5.00). The R2 value of 0.24 indicates that
the model can only explain approximately 24% of the variance of the target values. The MAE
value of 4.01 indicates that the prediction is on average 4 units off the true value. This value
is slightly lower than the RMSE value, which means that there are some outliers that worsen
the RMSE result. The MedAE value of 3.51 indicates that in at least 50% of the cases the
prediction error is no more than 3.5 units.

The data distribution of Regularized RF shows a very similar picture to Baseline RF with a
similarly strong scattering of the data around the very similarly inclined fitted line. The RMSE
and R2 values of Regularized RF are almost identical to those of Baseline RF, but the values
of MAE and MedAE are marginally lower and therefore better. In Conditional inference forest,
the data points are less scattered than in Baseline RF, but the fitted line is still fairly flatter.
As a result, almost all metrics show a worse performance than Baseline RF, with Conditional
inference forest only matching the Baseline model in the MedAE value. Extremely randomized
trees shows a very similar picture to Conditional inference forest with less scatter and a flatter
fitted line than the Baseline model. Here, too, the metrics are all worse than in the Baseline
model, except for MedAE (3.37), which shows a small improvement. With Quantile regression
forest, the picture of less scatter, flatter fitted line and worse metrics is repeated, except for
MedAE (3.50). In Stratified sampling RF, the data are similarly strongly scattered around the
similarly inclined fitted line as in Baseline RF. The metrics are also very comparable to Baseline
RF. The data distribution of Cost-sensitive RF is again similarly scattered as in Baseline RF,
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although the metrics show a slightly poorer performance.

In general, it can be concluded that the vast majority of predicted data points fall within the range
of 12 to 22, whereas the observed values range from below 5 to more than 30. Identifying the
best model variant is not straightforward, as no single model variant clearly exhibits superior
metrics. Regularized RF is selected as the best model variant within this model group for
further analysis in this thesis, primarily because relatively large differences in the metrics MAE
and MedAE can be observed compared to other well-performing models like Baseline RF or
Stratified sampling RF.

Figure 13: Scatterplots for various random forest regression model variants predicting Result faunistic
assessment based on spring structure data. The dashed red line represents the 1:1 line (perfect pre-
diction), and the solid red line is a linear regression fit to the observed data points. Each panel reports
RMSE, R2 , MAE, and MedAE as performance metrics.

3.2.2 Classification Random Forest: Modelling Faunistic Assessment Values

The results of the different Classification Random Forest variants used to answer the first re-
search question are shown in Figure 14. In these models, data from the structural survey
according to the FOEN method were used to model classification into faunistic assessment
classes. The Baseline Random Forest model has an accuracy of 0.43. This means that 43%
of the instances were correctly classified in all classes, which is the best value of all model
variants. The balanced accuracy of Baseline RF is 0.29, which is the tied second-best value of
all models. This means that if all classes, regardless of their frequency, are included equally in
the calculation of the average, only 29% of all instances are correctly classified. The F1-score
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for the classes very non-spring (1 spring) and non-spring (13 springs) is non-existent for the
Baseline RF model, as none of these springs were assigned to the correct class by the Base-
line model (see Appendix A13 for confusion matrices). The F1-score of the spring-compliant
class (43 springs) for the Baseline model is 0.44, which is the second-best value of all classes.
In the conditionally spring-typical class with 38 springs, the F1-score for the Baseline model
is also 0.44, which is the tied second-best value of all models. In the spring-typical class with
40 springs a F1-score of 0.50 is identified, which is the third highest values of all models. In
addition to the metrics in Figure 14, additional metrics (precision per class, recall per class) are
listed in Appendix A14 for the different model variants.

Figure 14: Performance metrics table for various random forest classification model variants predicting
fauna categories based on spring structural data. For each metric, the top three values are highlighted
in dark green, green, and light green.

The results of Regularized RF are quite similar to the Baseline model across all metrics, but
always slightly worse. Regularized RF also does not recognise any of the springs in the non-
spring and very non-spring classes. Conditional inference forest has the tied third best accu-
racy value of all model variants (0.41). Here too, the two worst fauna classes are not recog-
nised, while all the other F1-scores are slightly worse than for the Baseline model. Extremely
randomized trees also achieves the third-best accuracy value (0.41). All other metrics are
also lower than the Baseline model, except for the F1-score of the conditionally spring-typical
class, which is tied with the Baseline model value (0.44). Quantile regression forest shows very
similar results to the Baseline model for accuracy and balanced accuracy. The F1-scores of
the spring-compliant and the conditionally spring-typical class are the highest of all models,
while the F1-score of the spring-typical class is very low (0.29) compared to Baseline RF. Cost-
sensitive Random Forest shows slightly worse results than Baseline RF in all metrics except
for the F1-score of the spring-typical class. Class weighting has the third best of all accuracy
values at 0.41 and also shows a good balanced accuracy value (0.28). The F1-scores are only
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slightly worse than the scores of Baseline RF. With Dynamic weighting, all metrics show slightly
worse model performance compared to the Baseline model. The Weighted tree voting model
only recognises very few springs in the spring-typical and conditionally spring-typical classes,
which leads to very poor accuracy. As comparatively good F1-score values can be determined
in the two classes non-spring and spring-compliant, this results in the highest balanced accu-
racy value of all model variants. The Threshold adjustment model is not able to identify any
springs in the spring-typical class, which leads to a low accuracy value. The F1-score of the
spring-compliant class is tied second best for all models, but the balanced accuracy value is
still comparatively low. Up/downsampling has a slightly worse performance than the Baseline
model for all metrics except for the F1-score of the non-spring class where one of the 13 springs
was correctly classified. Baseline RF is selected as the best model variant within this model
group for further analysis in this thesis.

3.3 Modelling Ecological Value Based on Landscape & Topographic
Variables

3.3.1 Regression Random Forest: Structural Assessment Values

The results of the different Regression Random Forest variants used to answer the first part of
the second research question are shown in Figure 15. In these models, the landscape & topo-
graphic variables were used to model Result structural assessment. The observed structural
assessment values are shown on the x-axis and the structural assessment values predicted by
the models are shown on the y-axis. The median of the observed structural assessment values
is 1.49, and the mean is 1.72.

It can be observed that all model variants exhibit more or less widely scattered point clouds,
which, according to the fitted line, show a slight tendency toward accurate predictions but do not
suggest particularly strong results. The vast majority of predicted data points lie between 1 and
2.5, whereas the observed values range from below 1 to over 4. Identifying the best model is
relatively straightforward in this case, as Stratified sampling RF achieves the best result across
all metrics. However, even this model explains only about 25% of the variance, and the mean
absolute error is 0.55. With class intervals of 0.8, a mean absolute error of 0.55 means that
predictions are often off by more than half a class. As a result, there is a high chance that a
spring will be placed in the wrong class, possibly even more often than in the correct class.
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Figure 15: Scatterplots for various random forest regression model variants predicting Result structural
assessment based on landscape & topographic variables. The dashed red line represents the 1:1 line
(perfect prediction), and the solid red line is a linear regression fit to the observed data points. Each
panel reports RMSE, R2 , MAE, and MedAE as performance metrics.

3.3.2 Regression Random Forest: Faunistic Assessment Values

The results of the different Regression Random Forest variants used to answer the second part
of the second research question are shown in Figure 16. In these models, the landscape &
topographic variables were used to model Result faunistic assessment. The observed faunistic
assessment values are shown on the x-axis and the faunistic assessment values predicted by
the models are shown on the y-axis.

In this model group, also all model variants show, according to the fitted line, a slight tendency
toward accurate predictions. However, none of the model variants demonstrates truly strong
results in predicting Result faunistic assessment. Similarly to Figure 13, the vast majority of
predicted data points lie between 12 and 25, whereas the observed values range from below
5 to over 30. Identifying the best model is again relatively straightforward in this case, as
Regularized RF achieves the best metric results for R2 , MAE, and MedAE, as well as the
second-best RMSE value among all model variants. However, even this model explains only
about 15% of the variance, and the mean absolute error is 4.33. With class intervals of 5, a
mean absolute error of 4.33 means that predictions are often off by more than half a class. As
a result, there is a very high chance that a spring will be placed in the wrong class, likely even
more often than in the correct class.

50



3.3. Modelling Ecological Value Based on Landscape & Topographic Variables

Figure 16: Scatterplots for various random forest regression model variants predicting Result faunistic
assessment based on landscape & topographic variables. The dashed red line represents the 1:1 line
(perfect prediction), and the solid red line is a linear regression fit to the observed data points. Each
panel reports RMSE, R2 , MAE, and MedAE as performance metrics.

3.3.3 Classification Random Forest: Structural Assessment Values

The results of the different Classification Random Forest variants used to answer the first part
of the second research question are shown in Figure 17. In these models, landscape & topo-
graphic variables were used to model the classification into structural assessment classes.

A comparison of the accuracy values for the different model variants shows that many models
achieve similarly high values, with Quantile regression forest reaching the highest value (0.65).
Some models, such as Class weighting or Dynamic weighting, are only able to correctly classify
a very small number of springs and therefore show low accuracy values. Regarding balanced
accuracy, models that are able to correctly assign all four classes (at least partially), such
as Threshold adjustment and Up/downsampling, achieve good values. All other models are
able to correctly assign at most three classes, leading to lower balanced accuracy values (see
Appendix A15 for confusion matrices). Identifying the best model variant within this group is
not entirely straightforward. While Up/downsampling achieves the highest balanced accuracy
and a relatively good accuracy value, the F1-score for the largest class natural (0.69) is clearly
lower than that of Quantile regression forest (0.80). In addition to having the highest accuracy,
Quantile regression forest also achieves the third-best balanced accuracy value. For these
reasons, this model variant is used as the best model within this model group in the remainder
of this thesis. In addition to the metrics in Figure 17, additional metrics (precision per class,
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recall per class) are listed in Appendix A16 for the different model variants.

Figure 17: Performance metrics table for various random forest classification model variants predicting
structure categories based on landscape & topographic variables. For each metric, the top three values
are highlighted in dark green, green, and light green.

3.3.4 Classification Random Forest: Faunistic Assessment Values

The results of the different Classification Random Forest variants used to answer the second
part of the second research question are shown in Figure 18. In these models, landscape &
topographic variables were used to model the classification into faunistic assessment classes.

The accuracy values of all model variants fall within a relatively narrow range of 0.08. Condi-
tional inference forest and Extremely randomized trees have the highest accuracy, both with a
value of 0.40. For balanced accuracy, the values of the different model variants fall within an
even narrower range of just 0.05. Looking at the F1-scores for the different classes, it is notice-
able that very different model variants achieve good results in different classes, and there is not
a single model variant that consistently produces strong values across the board (see Appendix
A17 for confusion matrices). Identifying the best model variant within this group is again not en-
tirely straightforward as the accuracy and balanced accuracy vary only slightly between model
variants. The best model variant is considered to be Conditional inference forest. Although this
model variant is only able to partially classify three out of five fauna classes correctly, the best
accuracy value and the second-best balanced accuracy value speak in favour of this model. In
addition to the metrics in Figure 18, additional metrics (precision per class, recall per class) are
listed in Appendix A18 for the different model variants.
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Figure 18: Performance metrics table for various random forest classification model variants predicting
fauna categories based on landscape & topographic variables. For each metric, the top three values are
highlighted in dark green, green, and light green.

3.4 Combining Swiss Springs Data and Landscape & Topographic
Variables

3.4.1 Regression Random Forest: Faunistic Assessment Values

The results of the different Regression Random Forest variants used to model Result faunis-
tic assessment using mixed spring structure and landscape & topographic variables data are
shown in Figure 19. The observed faunistic assessment values are shown on the x-axis and
the faunistic assessment values predicted by the models are shown on the y-axis.

Even when the two datasets from research question 1 and research question 2 are combined,
Figure 19 shows a very similar pattern to Figures 13 and 16. Here, too, the vast majority of
predicted data points lie between 12 and 23, whereas the observed values range from below
5 to over 30, with no model variant showing more than a slight tendency toward accurate
predictions. The best model variant in this model group is Cost-sensitive RF, mainly due to
the lowest MAE values, the highest R2 values, and the second lowest RMSE value among all
model variants. While the best model variant in this group still has relatively poor RMSE and R2

values compared to the other faunistic regression model groups, Cost-sensitive RF does show
some of the best results for MAE and MedAE.
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Figure 19: Scatterplots for various random forest regression model variants predicting Result faunistic
assessment based on mixed spring structure and landscape & topographic variables data. The dashed
red line represents the 1:1 line (perfect prediction), and the solid red line is a linear regression fit to the
observed data points. Each panel reports RMSE, R2 , MAE, and MedAE as performance metrics.

3.4.2 Classification Random Forest: Faunistic Assessment Values

The results of the different Classification Random Forest variants used to model Result faunis-
tic assessment using mixed spring structure and landscape & topographic variables data are
shown in Figure 20.

The accuracy values of all model variants fall within a relatively narrow range of 0.10, while
for balanced accuracy, the range is larger at 0.26. Only one model variant is able to partially
classify more than three fauna classes correctly, namely Threshold adjustment (see Appendix
A19 for confusion matrices). The best model variant within this group is Class weighting, as
this variant achieves both the highest accuracy and the highest balanced accuracy of all model
variants. These strong results are due to the fact that Class weighting also achieves the highest
F1-scores for the conditionally spring-typical and spring-typical classes, and additionally shows
a comparatively good F1-score for the spring-compliant class. In addition to the metrics in
Figure 20, additional metrics (precision per class, recall per class) are listed in Appendix A20
for the different model variants.
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Figure 20: Performance metrics table for various random forest classification model variants predicting
fauna categories based on mixed spring structure and landscape & topographic variables data. For each
metric, the top three values are highlighted in dark green, green, and light green.

3.5 Most Important Modelling Variables
The results of the permutation of the most important variables for each regression model group,
which were used to answer the third research question, are shown in Figure 21. Plot a) within
Figure 21 shows, on the x-axis, the increase in RMSE that occurs when only the respective
variable is permuted. On the y-axis, the ten most important predictor variables of the best
model variant (RRF) for modelling Result faunistic assessment using spring structure data are
displayed and are highlighted in yellow on the plot. At the top is always the most important
variable, the variable for which permutation results in the largest deterioration of the RMSE
value. In the case of plot a), the most important predictor variable is Elevation, as permuting
this variable increases the RMSE value of 5.32 by more than 0.5. Water temperature, Number
of structures, and Discharge also show increases in RMSE of more than 0.05. All other pre-
dictor variables, such as Average Flow Velocity, Shrubs, etc., show only a very small increase
in RMSE for RRF. All additional predictor variables that are not listed among these top ten pre-
dictors have even smaller increases in RMSE, or in some cases, even lead to a decrease in
RMSE, a slight improvement of the model. This clearly demonstrates that only very few predic-
tor variables have a quantifiable influence on the model. It is evident that Elevation is not only
the most important predictor variable for RRF but also for all other model variants. However, for
the remaining predictor variables, greater differences between the model variants become ap-
parent, indicating that the top ten predictor variables and their ranking vary between the model
variants.

Plot b) shows the permutation importance of the most important predictor variables of the best
model variant (RRF) for modelling Result faunistic assessment using landscape & topographic
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data. Land use, followed by Lithology, Soil type, and Water permeability, are the most im-
portant predictors, each with an increase in RMSE of more than 0.1. From Slope and Soil
skeleton content onwards, the increases in RMSE are again very close to zero, indicating that
these variables are of little importance to the model. The most important predictor of the RRF
model variant is also among the most important predictors in most of the other model variants.
However, for example, Lithology is the most important predictor in Stratified sampling RF, while
Water permeability is most important in Cost-sensitive RF.

Plot c) shows the permutation importance of the most important predictor variables of the best
model variant (SSRF) for modelling Result structural assessment using landscape & topo-
graphic data. In this case, the x-axis had to be adjusted, as the scales of the faunistic and
structural assessments are not directly comparable. Land use and Lithology, as in plot b), are
also the most important predictors here. Other important variables include Distance to streets,
Agricultural suitability, Slope, Soil type, and others. It is clearly evident that Stratified sampling
RF found the largest increase in RMSE for nearly all predictor variables. Only in a few cases
such as RRF for Distance to streets or CSRF for Plan curvature did other model variants assign
a higher increase in RMSE to a given variable.

Plot d) shows the permutation importance of the most important predictor variables of the best
model variant (CSRF) for modelling the Result faunistic assessment using mixed spring struc-
ture and data from landscape & topographic variables. As in plot a), Elevation is the most
important predictor, with an increase in RMSE of more than 0.1. Other key predictor vari-
ables include Terrain roughness index, Water temperature, Spring stream length, and others.
In general, the increases in RMSE are lower here than in plots a) and b). The heterogeneity
of the increase in RMSE values between the different model variants is relatively high for all
predictors. While Elevation is the most important predictor variable in most model variants, the
permutation importances of the remaining variables vary considerably between models.

Comparing the most important fauna predictor variables of the mixed dataset in plot d) with the
variables of the separate datasets in plots a) and b) reveals several interesting observations.
The seven most important predictor variables from plot d) are also present in plots a) and b).
However, it is notable that not only the most important predictor variables from plots a) and b)
reappear in plot d). Moreover, the order of importance does not always match; for example,
Lithology ranks ahead of Terrain roughness index in plot b), whereas the order is reversed in
plot d).
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Figure 21: Permutation importances of the top ten predictor variables in different regression model
variants. Panels a) and b) show results for predicting faunistic assessment values using either spring
structure data (a) or landscape & topographic variables (b). Panel c) displays the top predictors for
structural assessment values based on landscape & topographic variables. Panel d) presents results
for predicting faunistic assessment values using mixed spring structure and landscape & topographic
variables data. Yellow highlights indicate the best model variant in each group. Note that the x-axis in c)
is scaled differently. Positive values indicate an increase in RMSE (greater importance).
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The results of the permutation of the most important variables for each classification model
group, which were used to answer the third research question, are shown in Figure 22. Plot a)
within Figure 22 displays, on the x-axis, the decrease in balanced accuracy observed when only
the respective variable is permuted. On the y-axis, the ten most important predictor variables
of the best model variant (Baseline RF) for modelling fauna class membership using spring
structure data are shown and highlighted in yellow in the plot. In plot a), Flow direction is the
most important predictor variable, followed by Elevation, Sand, Terrain Gradient, and others.
It is evident that Baseline RF found the largest decrease in balanced accuracy for almost all
predictor variables. Only in one case (QRF for Elevation) did another model variant assign a
higher decrease in balanced accuracy to a variable. Notably, Flow direction is not the most im-
portant predictor variable in all model variants; in some model variants, an increase in balanced
accuracy is even observed when the variable is permuted.

Plot b) shows the permutation importance of the most important predictor variables of the best
model variant (QRF) for modelling the classification into fauna classes using landscape & topo-
graphic variables data. Distance to streets, Terrain roughness index, and Soil skeleton content
are the most important predictors. The lowest-ranking predictors within the top ten, Lithology,
Slope, and Distance to lakes, show only very minor decreases in balanced accuracy values,
indicating that they are of little importance for the prediction. Interestingly, in a surprisingly large
number of cases, permuting the predictor variables in model variants other than QRF leads to
an increase in balanced accuracy, i.e., an improvement of the model.

Plot c) shows the permutation importance of the most important predictor variables of the best
model variant (CIF) for modelling the classification into structure classes using landscape &
topographic data. Water permeability, Land use, and Slope are the most important predictors,
while all other predictors are already very close to zero and have little influence on the model.
In plot c), even the Random parameter, which was included in every Random Forest modelling
as a control, appears among the top ten predictors.

Plot d) shows the permutation importance of the most important predictor variables of the best
model variant (CWRF) for modelling the classification into fauna classes using mixed spring
structure and landscape & topographic variables data. Here, the most important variables are
Discharge, Trampling damage, and Distance to lakes. The decreases in balanced accuracy are
lower here than in plot a), which was already observed in Figure 21. In particular, the lower-
ranking variables within the top ten do not approach 0 but rather -0.01, suggesting that more
variables have a quantifiable influence on the model compared to plot b or c.

Comparing the most important fauna predictor variables of the mixed dataset from plot d) with
the variables of the separate datasets from plots a) and b) again reveals several interesting
observations. In plot d), only two of the twenty predictor variables from plots a) and b), namely
Distance to lakes and Distance to streets, reappear. All other top ten predictors in plot d) are
not among the top ten in plots a) or b).
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Figure 22: Permutation importances of the top ten predictor variables in different classification model
variants. Panels a) and b) show results for predicting fauna classes using either spring structure data (a)
or landscape & topographic variables (b). Panel c) displays the top predictors for structure class affiliation
based on landscape & topographic variables. Panel d) presents results for predicting fauna classes
using mixed spring structure and landscape & topographic variables data. Yellow highlights indicate the
best model variant in each group. Negative values indicate a decrease in Balanced Accuracy (greater
importance). 59



4. Discussion

4.1 Modelling Faunistic Condition Based on Spring Structure Data
(RQ1)

A central question in this study was whether the faunistic condition of a spring can be modelled
based on the results of structural assessments using the FOEN method (research question 1).
The results of the different regression model variants all demonstrate that the Random Forest
approach does not succeed in predicting the faunistic assessment based on structural spring
investigations (see Figure 13). The predicted faunistic assessment values tend to cluster more
strongly around the median or mean of the observed values for all model variants, rather than
reflecting the observed distribution. As a result, the fit in all cases is very flat, with the models
rarely predicting either low or high faunistic assessment values. A flat distribution of points,
as observed in Figure 13, would not necessarily be problematic if models were able to correct
for this, provided the points are relatively tightly grouped. Unfortunately, however, for all model
variants, the data points are also relatively widely scattered, in some cases more so than in
others. This scatter makes it impossible for the models to consistently assign lower predicted
values to springs with lower observed faunistic assessment values, or higher predicted values
to those with higher observed values. This scattered distribution results in high RMSE and MAE
values, indicating large average prediction errors, along with a low R2 value, meaning that only
a small portion of the total variance is explained. On a positive note, there is at least a slight
tendency towards correct predictions. This suggests that the predictions are not purely random
but that certain parameters do exhibit a positive predictive effect, even if the results are not as
clear as hoped.

A comparison with other Regression Random Forest studies provides insight into how the re-
sults of this thesis relate to modelling outcomes achieved in comparable ecological contexts.
In the study by Olaya-Marín et al. (2013), data from 90 sampling sites in three Mediterranean
rivers in Spain were used to model the diversity of native fish species using random forests. The
models were based on a wide range of environmental variables, which are fairly comparable
to the structural data used in this thesis, including physicochemical, hydromorphological, and
biological parameters. The achieved model performances for their Random Forest approach
showed a coefficient of determination of R2 = 0.68. In another comparable study by Derot et al.
(2020), long-term Lake Geneva data was used to model the intensity of cyanobacterial blooms
with Random Forests. The data base consisted of more than 30 years of regular measurements
of physicochemical parameters and cyanobacterial concentrations, thus representing a similar
data structure to that used in the present thesis. Their best models reached a regression coef-
ficient of R2 =0.61. Comparisons with the results of the studies Olaya-Marín et al. (2013) and
Derot et al. (2020) demonstrate that relatively high model quality could be achieved in these
cases. By comparison, the results of the present thesis suggest that considerably lower model
performance can be expected. In summary, it should be noted that, in regression models, the
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faunistic condition of a spring cannot be predicted using structural characteristics.

The results of the different classification model variants all show that the Random Forest ap-
proach does not succeed in predicting fauna class affiliation based on structural spring investi-
gations (see Figure 14). All model variants share the observation that Random Forest appears
to be unable to predict all five fauna classes simultaneously. None of the model variants man-
aged to correctly classify at least one spring in the five fauna classes. This is, of course, strongly
related to the fact that there is only one spring in the very non-spring class. Only Weighted tree
voting, Threshold adjustment, and Up-/downsampling manage to correctly classify at least one
spring in four out of five classes. However, it appears that for these model variants, there
is a trade-off when predicting the very non-spring or non-spring classes. In these models,
the prediction performance for the higher fauna classes drops sharply, as the models have to
concentrate their predictive power on the lower fauna classes. In all other models, correct pre-
dictions are only observed in the top three fauna classes. As these upper fauna classes contain
the majority of the springs, the model variants that concentrate on predicting the upper three
classes show the highest accuracy values. However, the accuracy values alone are not very
meaningful due to the differing number of springs in each class, as classes with few springs are
under-represented. The balanced accuracy values, which are intended to correct exactly this
problem of unequal class sizes, are themselves highly dependent on whether the two lowest
fauna classes can be predicted or not. The results for balanced accuracy are thus skewed by
the very few springs in the very non-spring and non-spring classes. This is particularly evident
in Weighted tree voting, as this model variant achieves the highest balanced accuracy value,
even though only very few springs in the two largest upper classes are correctly classified. One
possibility would have been to merge the non-spring and very non-spring classes in order to
harmonise the class sizes, but this was not done due to lack of comparability with the data
analysis and incompatibility with the FOEN method.

The following comparison with other Classification Random Forest studies in comparable eco-
logical settings provides additional perspective to interpret the performance of the models used
in this thesis. In the study by Cheng et al. (2012), data from six shallow lakes in the middle
Yangtze Basin in China were used to model fish communities and their diversity using Random
Forests. The basis was 117 datasets with a wide range of biotic and abiotic environmental
variables, which makes the dataset comparable to the structural data used in this thesis. The
achieved model performance for site assignment to fish communities had a mean accuracy of
0.74 for the Random Forest approach. These values indicate that a higher model quality was
achieved in the mentioned study than in the present thesis. Thus, as already observed with
the regression models, the challenges of transferring ecological modelling approaches to other
ecological research questions or habitats become evident. In summary, it must be stated that,
in classification models, the fauna classes cannot be predicted using structural characteristics.
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4.2 Modelling Ecological Value Based on Landscape & Topographic
Variables (RQ2)

Another central question in this study was whether the ecological condition (e.g. structural and
faunistic condition) of a spring can be modelled based on landscape & topographic variables
not addressed in the FOEN method (research question 2). The results of the different regres-
sion model variants all demonstrate that the Random Forest approach does not succeed in
predicting the structural and faunistic assessment values based on landscape & topographic
variables as the existing variation in the data cannot be captured by the models (see Figure 15
& Figure 16). The predicted structural and faunistic assessment values tend to cluster more
strongly around the median or mean of the observed values for all model variants, rather than
reflecting the observed distribution. All model variants that model structural assessment show
a relatively sharp lower boundary in the predicted values, especially in contrast to the predic-
tions of the faunistic assessment (see Figure 15 & Figure 16). This lower boundary is found, for
all variants, somewhere between 1 and 1.2, with only a few predicted values falling below this
range. However, towards higher values, there is no such distinct boundary. The results of the
structural assessment data are also widely scattered, reflected in a low R2 value. Although a
slight tendency towards correct predictions can be observed, meaning the predictions are not
entirely random.

The results of the modelling of the faunistic assessment with landscape & topographic vari-
ables (see Figure 16) and the modelling of the faunistic assessment with structural data (see
Figure 13) are very similar. Here as well, many predicted values are close to the median of
the observed values, and only a slight tendency toward correct predictions can be observed
amidst widely scattered data. Interestingly, there are relatively large differences in the model
performance between the two groups of models. For example, the RMSE values in the models
using landscape & topographic variables are notably worse than in the models using structural
assessment data, higher by between 0.5 and 0.8 points. The same pattern appears for the
R2 values, which are between 0.03 and 0.12 lower in the landscape & topographic variables
models than in the structural assessment models, and for the MAE values, which are higher
by between 0.34 and 0.50. Surprisingly, this pattern does not continue for MedAE. Almost all
MedAE values are considerably lower in the landscape & topographic variables models than in
the structural assessment models, indicating that as model performance decreases, predicted
values are increasingly concentrated around the median of the observed values, thus reducing
the median absolute error.

A comparison with other Regression Random Forest studies provides insight into how the re-
sults of this thesis relate to modelling outcomes achieved with comparable ecological data. In
the study by Cabezas et al. (2016), data from 44 sampling plots in a Chilean wetland were used
to model the diversity of vascular plants using Random Forests. The predictors were textural
variables derived from Landsat satellite data, which are therefore quite comparable to the land-
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scape & topographic variables used in this thesis. The final model achieved a prediction quality
of R2 = 0.60. These results show that with texture-based predictors from remote sensing data,
relatively high model performance could be achieved in the studied wetland, whereas the re-
sults of the present thesis indicate lower model quality. In summary, it should be noted that, in
regression models, the affiliation of springs to structure and fauna classes cannot be predicted
using landscape & topographic variables.

The results of the different classification model variants all show that the Random Forest ap-
proach does not succeed in predicting structure and fauna class assignment based on land-
scape & topographic variables (see Figure 17 & Figure 18). None of the different Classification
Random Forest approaches using landscape & topographic variables is able to correctly clas-
sify at least one spring in all five classes. It appears that, for the Random Forest models, there
is once again a trade-off between poor results in the upper structure classes and the ability to
predict springs in the lower structure classes. Only Threshold adjustment and up/downsam-
pling manage to correctly classify at least one spring in four classes, while for all other model
variants, this is the case for a maximum of three classes. For Class weighting and Dynamic
weighting, it is noticeable that although three different classes were at least partially classified
correctly, the class with by far the most springs (natural) was not predicted at all. The accuracy
values are generally higher than for the modelling of the fauna classes in Figures 14 and 18;
this is because, for the structure classes, an even higher proportion of springs are found in the
highest classes compared to the fauna classes. For the model, it is essentially easier to pro-
duce good results when the focus is on the class with the most springs (natural). The balanced
accuracy values are lower than in the modelling of the fauna classes, since this data imbalance
makes the correct assignment to the various classes even more difficult.

The results of the modelling of fauna class affiliation with landscape & topographic variables
(see Figure 18) and the modelling of fauna class affiliation with structural data (see Figure 14)
are quite similar. When using the landscape & topographic variables, it appears that more
model variants are able to at least partially correctly classify four out of five classes than was
possible when using the structuralsimilarly data. In terms of accuracy, the best models differ
only slightly between the two data approaches; overall, across all model variants, the accuracy
values are slightly higher when using structural data. The same pattern is seen for balanced
accuracy . Although when using landscape & topographic variables, many model variants could
partially correctly classify four classes, the balanced accuracy values are lower than in the
models using structural data. This is again due to trade-off, where the reduction in prediction
quality for the higher fauna classes is necessary to at least partially correctly classify the non-
spring class.

The following comparison with other Classification Random Forest studies using comparable
ecological data provides additional perspective to interpret the performance of the models used
in this thesis. In the study by Tian et al. (2025), Random Forests were used to investigate the
selection of the Grey Heron colony site during the breeding season at 100 colony sites in China.
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The predictors were detailed land use variables (such as water bodies, croplands, forests, and
impervious surfaces), which are comparable to the landscape & topographic variables used in
this thesis. The models achieved an average classification accuracy of 0.82. The results show
that high model quality can be achieved to predict colony site selection when extensive and
differentiated environmental data are available. In the study by Martínez-Santos et al. (2021),
the occurrence of aquatic ecosystems in the western catchment of the Cauca River in Colombia
was mapped using Random Forests. The data base consisted of 350 sampling points, for which
various DEM-derived variables and other environmental variables were calculated, making the
approach comparable to that used in this thesis. For the Random Forest model, a very high
prediction quality was achieved, with an accuracy of 0.93. Comparisons with the results of the
studies Olaya-Marín et al. (2013) and Derot et al. (2020) demonstrate that in both studies the
quality of the model was significantly higher than in the present thesis. This confirms that good
results in ecological modelling can only be achieved when well-adapted predictors are available
and that it is not trivial to transfer such approaches to other research questions. In summary,
it should be noted that, in classification models, the affiliation of springs to structure and fauna
classes cannot be predicted using landscape & topographic variables.

4.3 Most Important Modelling Variables (RQ3)

4.3.1 Random Forest Variable Importance

The first two research questions lead to the question of which variables are most important for
identifying ecologically valuable springs (research question 3). It is important to note that the
selection of the most important predictor variables for the regression models (see Figure 21)
is highly dependent on which model variants the predictor variables are shown for. It is very
likely that each model variant would identify a different set of the most important predictor
variables. Some model variants appear to be able to extract more information from the variables
for certain research questions than others. This can be clearly seen in the data points for
SSRF in plot c) of Figure 21, where SSRF consistently shows the highest permutation changes
in RMSE for almost all predictor variables. However, it remains unclear where the boundary
lies between predictors with a certain quantifiable importance and those that have ended up
in the top ten more or less by chance. This can be observed very well in plots a), b), and d)
of Figure 21, where many of the lower-ranking variables trigger almost no change in RMSE
upon permutation, yet still make it into the top ten of the respective variable groups. This is also
the case in plot c), but due to the changed scale resulting from the structural assessment, the
differences simply appear larger than they actually are in comparison. Thus, it remains unclear
whether the models are only operating with information from very few top predictors, or whether
the moderate model results arise from the combined information of many predictor variables,
each with only a very small influence. Where the line is drawn between truly important and
negligible predictor variables cannot be answered. Nevertheless, there are some predictor
variables that very likely have a real influence on the model results. Elevation is certainly
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among them, as the change in RMSE in Figure 21 plot a) is very large compared to the other
predictor variables, and nearly as large in all other model variants. In addition, Elevation is
by far the most important predictor variable when modelling faunistic values with the mixed
data in plot d). Other predictor variables that appear in the top ten both in plot a) (modelling
faunistic values with structural data) and in plot d) (modelling faunistic values with mixed data)
include Water temperature, Discharge, and Spring Stream Length. In plots b) and c), where
landscape & spring variables were used for modelling structure and faunistic values, Land use
and Lithology must be mentioned, as they are the most and second most important predictor
variables, respectively. Additional variables that appear in the top ten in both model groups
are Distance to streets, Soil type, Agricultural suitability, Terrain roughness index, and Slope.
Predictor variables from the landscape & topographic variables group that also appear in the
top ten in plot d) with the mixed data are Lithology, Agricultural suitability, and Terrain roughness
index. It is interesting to note that Land use does not appear in the top ten in plot d) with the
mixed data, and Lithology is ranked much further behind and seems to have less influence in
this model variant than expected.

The most important predictor variables of the structural data classification model are Flow di-
rection and Elevation (see Figure 22a), as the change in balanced accuracy compared to all
other predictor variables in the top ten is very large. Spring area is the only predictor variable
from the structural data that appears in the top ten both in plot a) (modelling fauna classes
with structural data) and in plot d) (modelling fauna classes with mixed data). In plots b) and c),
where environmental and spring variables were used for modelling structure and fauna classes,
Terrain roughness index, Soil skeleton content, Distance to streets, Plan curvature, Slope, and
Lithology appear in the top ten most important predictor variables for both model groups. Dis-
tance to streets is also the only predictor variable from the landscape & topographic variables
that, in addition to plots b) and c), also appears in the top ten in plot d) with the mixed data. It
is particularly interesting to observe that in plot c), the random parameter, which was included
as a control variable in all model variants, is listed among the ten most important predictor
variables. This means that at least the remaining 14 landscape & topographic variables do
not provide any information value to the model. However, since other variables show similarly
low changes in balanced accuracy as the random parameter, it must be assumed that, for this
model variant, the model performance depends primarily on just a few top predictors.

In conclusion, it can be stated that the identification of the most important predictor variables
is not trivial and varies considerably between model variants and depending on the research
question. A non-exhaustive list of the most important predictor variables from the structural data
includes Elevation, Water temperature, Discharge, Spring stream length, Flow direction, and
Spring area. A non-exhaustive list of the most important predictor variables from the landscape
& topographic variables includes Land use, Lithology, Agricultural suitability, Distance to streets,
and Terrain roughness index.
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4.3.2 Comparison to Dataset Analysis

The data analysis in section 3.1 was performed to familiarise with the dataset, to identify depen-
dencies between individual variables, and ultimately to allow a comparison between the most
important predictor variables determined by the random forest models and the information that
can be drawn from the exploratory data analysis.

For the predictor variables Elevation, Number of structures, and Water temperature, the Kruskal-
Wallis tests revealed significantly different values between the fauna classes (see Table 2). As
expected, these three variables are also among the most important predictors for modelling
faunistic values using structural assessment data (see Figure 21a), as well as among the most
important predictors for modelling fauna classes using structural assessment data (see Fig-
ure 22a). For these variables, it can be confirmed that significant differences between the
different classes provide the model with the ability to correctly classify the springs. However, for
the variables Spring stream length, Distance to next spring, and Discharge, no significant dif-
ferences between the fauna classes were identified in the Kruskal-Wallis test. However, these
variables are still found to be among the top ten most important predictors of the modelling of
faunistic value using structural assessment data. This is surprising, as one would expect that
significant differences between classes are necessary for a variable to have predictive value;
however, this is obviously not always the case, and certain model variants are able to extract
relevant information from the data regardless.

Substantial differences in the data distribution between the structure and fauna classes can be
observed for both Elevation and Number of structures in the boxplots of Figure 5. As expected,
these two predictor variables are also found among the top ten in their respective model variants
using structural assesssment data (see Figure 21a & Figure 22a). However, for Number of
substrates, however, the differences in data distribution between the different classes are not
very pronounced according to the boxplots, yet this predictor variable still ranks among the
top ten most important predictors in the regression model using structural assessment data.
Number of flow types exhibits differences in the boxplots comparable to those of Elevation and
Number of structures, but this variable does not appear in any of the top ten predictor lists of
the Random Forest model variants.

In the correlation matrix (see Figure 7), none of the top ten variables listed in Figure 21a &
Figure 22a exhibited particularly high correlation values with Result faunistic assessment. The
highest correlation values were found for Elevation, Water temperature, and Number of struc-
tures, which also represent the top three most important predictor variables in the regression
model using structural assessment data. For the remaining numerical structural variables in
Figure 21a (Discharge, Distance to next spring, and Spring stream length) only very low corre-
lation values with Result faunistic assessment were observed in the correlation matrix. Thus,
the results of the permutation importance analyses largely confirm the patterns already appar-
ent from the correlation matrix with remarkable accuracy. Therefore, correlation with the target
variable appears to be a very good indicator to identify the most important predictor variables.
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The t-SNE plot with Result faunistic assessment (see Figure 10) indicates the clustering of
variables in part A of the structural assessment, but according to the colour scale, there does
not appear to be a clear correlation with Result faunistic assessment. For the t-SNE plot of
part B of the structural data, no clusters could be detected in the data. Therefore, it is even
more remarkable that several variables from part B of the structural assessment are among the
ten most important predictor variables in Figure 21a and Figure 22a, while no variable in part A
appears in these top ten lists. This clearly demonstrates that, in heterogeneous datasets, t-SNE
plots alone cannot reliably predict which groups of variables will ultimately be more important
than others.

In general, it can be concluded that the data analysis and the Random Forest models identified
only partially overlapping sets of predictor variables. Although there is a notable correspon-
dence for certain variables, particularly those showing significant differences between classes
and high correlation with the target variable, the Random Forest models also highlight predic-
tors whose relevance was not apparent from exploratory analyses alone. This discrepancy
underscores the added value of machine learning approaches in uncovering complex, multidi-
mensional relationships that may not be detected through classical statistical methods. At the
same time, the observed overlaps help confirm which predictors are truly important, as shown
by both the data analysis and the models. Ultimately, a combination of both approaches pro-
vides the most comprehensive understanding of the drivers of faunistic and structural conditions
in springs.

4.4 Methodological Reflection & Data Basis

4.4.1 Reliability and Robustness of RF Models

All Random Forest model variants used in this study worked reliably and could be applied to
the dataset without major problems. The robustness of the results across the different model
variants was also high, as all variants produced very similar results. For most model types,
the computation time during model runs was very low (a few seconds), while, for example,
Conditional inference forest required much more time to run (several minutes). In larger projects
with multiple model runs, this could be an important criterion when selecting the model variant.
Surprisingly, the Baseline Random Forest often did not produce clearly worse results than the
other model variants. Despite the methodological improvements or adjustments introduced by
the other variants, Baseline RF was sometimes even the best-performing model. This clearly
shows that the choice of Random Forest model variant cannot be the main reason for the
moderately successful modelling outcomes. If refined methods do not provide improvements
over the simplest Random Forest model, the limitation is likely due to the input data used rather
than the modelling approach itself.
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4.4.2 Alternative Model Variants Not Used

In this study, various Random Forest model variants were applied; however, other variants or
approaches could certainly have been used as well. Feature engineering is a widely used
technique to unlock hidden potential in a dataset. The model results are likely to be improved
by feature engineering, but this approach was not implemented in this study. Since feature
engineering leads to changes in the data and variable structure, identifying the most important
predictor variables would have been more difficult - an important part of the research question
in this thesis. With a standard Random Forest approach, it is clear and traceable how variables
and data are handled, whereas feature engineering alters the data, which should be avoided
due to the importance of maintaining transparency in data origin and generation according to
the FOEN method.

Other Random Forest model variants that might have produced promising results, since they
extend or go beyond the approaches used in this thesis, include Totally randomized trees (such
as in Geurts et al. (2006)), Tree weighting based on error for minority classes (as in Devi
et al. (2019)), as well as global refinement and global pruning approaches (as in Ren et al.
(2015)). Furthermore, methods such as Iterative joint feature pruning, tree number optimisation
((Paul et al. 2018)), Stacking-based weighted Random Forest ((Shahhosseini & Hu 2020)), or
Modified balanced random forest ((Agusta & Adiwijaya 2019)) could have provided valuable
new insights, but were not applied due to time constraints. Furthermore, an entirely different
methodological approach outside the Random Forest spectrum, such as hybrid models or other
approaches introduced in subsection 1.5.1, could have yielded better results than the Random
Forest approach used in this thesis.

4.4.3 Reflection on the Data Used

The structural data from the Swiss springs dataset were predefined, with only a few adjustments
made before the implementation of the Random Forest models. For the modifications carried
out, such as the removal of a few variables due to insufficient entries and the aggregation of
vegetation data to 16 instead of 52 columns, care was always taken to ensure an improvement
or at least no deterioration in the predictive performance of the Random Forest models. This
was consistently verified using simple baseline models.

The landscape & topographic variables were generated within the framework of this study, with
selection criteria being simple availability, relatively straightforward calculation, and potential
significance for the ecological value of a spring. Thus, the data to be used had to be publicly
available and should not exceed a reasonable data volume. Furthermore, calculations were
intended to be relatively simple in QGIS, since this was not intended to be the main method-
ological focus of the thesis. If more time had been available for the calculation and generation of
landscape & topographic variables, more variables and different approaches could have been
tested, which might have been beneficial. Consequently, the focus was placed on the most im-
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portant and potentially meaningful variables. The potential significance for ecological value of
a spring is, of course, fairly vague and subjective; nevertheless, boundaries were set for which
variables should or should not be considered. In the studies by Chen et al. (2018), Naghibi
et al. (2016), Naghibi & Pourghasemi (2015), Rahmati et al. (2018), Zabihi et al. (2016) vari-
ables such as stream density, NDVI, solar radiation, sediment transport index, stream power
index, and relative slope position were used, together with other variables, to model the oc-
currence of springs in the landscape. Due to their lack of clear relevance for modelling the
ecological value of a spring, these variables were not included in this thesis. In addition, some
similar variables are already part of the predictor variables set. For the generation of DEM-
derived variables, DEM data with a resolution of 2 metres were used. DEM data would also
have been available in finer or coarser resolutions, which could have affected the predictor
variable and thus the model performance. With a stronger focus on landscape & topographic
variables, it would have been possible to calculate variables from different DEM resolutions
and compare their predictive performance in the Random Forest models. For certain variables
that, for example, strongly depend on very local flow paths, such as the TWI or Convergence
index, differences in predictive quality might have emerged. Consequently, the extent to which
DEM resolution influences the predictive power of the variables in the applied models remains
unresolved.

4.5 Limitations and Future Work

4.5.1 Data and Sampling Limitations

Although the Swiss springs dataset is very extensive in terms of the number of variables in-
cluded, the distribution of the springs between the structure and fauna classes represents a
major limitation for this study. The investigated springs are predominantly restricted to those
with good faunistic and very good structural conditions. Data were not collected exclusively
for research purposes; many springs were surveyed due to the potential for subsequent pro-
tection. As a result, spring habitats considered ecologically valuable were investigated more
frequently than springs that, due to poor structure and fauna assessments, would not be eligible
for protection. This leads to a strong bias in the dataset, making it very difficult for the Ran-
dom Forest models to predict poorly rated springs, simply because there is insufficient training
data for such cases. Although the sample size in the Swiss springs dataset is generally large,
with more than 750 springs, a substantial number of springs are located in alpine elevations,
while only a few are from intermediate elevation ranges (see Figure 1). This imbalance makes
it difficult to interpret the model results, especially for Elevation, since not all elevation ranges
are equally represented in the dataset and therefore in the models. Moreover, the spring sur-
veys on which the data are based were conducted over more than 20 years and by more than
50 different individuals, suggesting some variation in methodology and introduces a degree of
subjective uncertainty, further limiting data comparability.
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For the Random Forest modelling, the dataset had to be reduced to 442 springs, as only these
had complete data for all variables. The alternative would have been to exclude variables with
missing data from the models, which would have allowed the use of the entire dataset of more
than 750 springs. It is possible that the larger training dataset, even with fewer predictor vari-
ables, might have led to better model results. Another limitation of the dataset arises from the
FOEN methodology itself, which, by its nature, cannot cover all the variables that are important
for the ecology of springs. For example, there are no data on the connectivity between springs,
the prevailing microclimate, the age of the spring, or on flow variability and flow permanence.

4.5.2 Future Research and Practice

One of the objectives of this study was to determine whether the structural parameters of the
dataset can be used to predict the faunistic quality of spring habitats. Although this goal could
not be satisfactorily achieved, the results show that, given optimal conditions regarding both
methods and data, it should be possible to generate some promising modelling outcomes.
Another objective was to assess whether additional landscape & topographic variables could
be used to predict the quality of spring habitats, i.e., to model the ecological value of spring
habitats at known points in the landscape. This goal was clearly not met; however, the study
did demonstrate that certain variables, which are not part of the official FOEN method, may
still provide indications for the presence of ecologically valuable springs. Unfortunately, the
applied conservation goal of this work to provide an additional tool for spring inventory that
would simplify and make the process more efficient was not achieved. The scientific goal,
namely to expand or adapt existing spring modelling approaches for probability of occurrence
to instead model the ecological value of springs, was implemented in principle, but the main
finding was that it remains challenging to model the ecological value of spring habitats using
the available and newly generated data.

Although the ecological requirements of spring-dwelling species, their habitat needs, and many
of their interactions are relatively well known, it currently does not seem possible to predict
their occurrence, and, by extension, the ecological value of springs, based solely on structural
information about their habitat. Future studies may help identify the most important predictor
variables and the most effective modelling approaches for conservation purposes. To make
this possible, it will be necessary to include more springs with poor structure and fauna results
in the dataset in order to better train the models. It will also be important to ensure a more
balanced dataset with respect to elevation, land use categories, and other relevant factors to
enable more robust and transferable modelling.

Despite these suggestions for improvement, it should also be acknowledged that it may simply
not be possible to model ecological value in the way required by Swiss legislation. Since
springs are highly complex habitats with highly specialized and often isolated inhabitants, it is
possible that natural processes of this complexity and at this scale may simply not be suitable
for modelling.
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This thesis has addressed the critical decline of spring habitats across Switzerland, highlight-
ing that these habitats are among the most threatened aquatic ecosystems. To protect spring
habitats effectively, an ecological assessment of their value is necessary. However, the exist-
ing evaluation procedure, the FOEN method, is resource-intensive and costly. Simplifying or
even partially substituting this evaluation with a modelling approach could facilitate the protec-
tion process significantly. Previous research has mainly focused on modelling the occurrence of
springs and identifying variables predicting their occurrence, rather than on modelling their eco-
logical value (e.g., structural and faunistic conditions). Therefore, a new approach to modelling
the ecological quality of springs is required.

The aim of this study was to determine whether structural parameters from the FOEN method
can predict the faunistic quality of spring habitats and to identify the most important predictors
involved. Hence, this thesis sought to model the ecological value of known spring habitats.
The second objective was to investigate if landscape and topographic variables could predict
the ecological value of springs and to identify the key predictors. Consequently, this study
aimed to explore whether ecological value predictions can be made about spring occurrences
within the landscape. Ultimately, the goal of this work was to expand existing spring modelling
methods, traditionally focused on occurrence probabilities, to include the ecological value of
springs, thereby providing an additional tool for spring inventory in Switzerland.

Seven regression and eleven classification Random Forest model variants were applied to
model structural and faunistic assessment values according to the FOEN method and to clas-
sify springs into corresponding structure and fauna categories. The most significant predictor
variables were identified using permutation importance within Random Forest models and were
compared with key predictors identified in the dataset analysis. However, neither structural pa-
rameters from the FOEN method nor landscape and topographic variables yielded strong mod-
elling results for predicting ecological values or class affiliations. All model variants produced
similar outcomes, unable to surpass merely indicating correct predictive tendencies. Conse-
quently, identifying the most influential predictors proved challenging, although some variables
with relatively high predictive quality were still successfully identified.

Despite these limitations, this study successfully demonstrated the application of Random For-
est models using data derived from the FOEN method to assess spring habitats. Although
overall model results were not fully satisfactory, specific predictors with clear relevance for indi-
cating ecological value were identified. Additionally, the findings suggest that successful mod-
elling of the faunistic quality of springs requires additional, yet unknown, structural parameters,
indicating the need for an expansion or adaptation of the current FOEN methodology. Sev-
eral limitations should be noted, including challenges posed by imbalanced class distributions,
dominated by many highly-rated springs, fewer poorly-rated springs, and a high number of
springs located in alpine regions. Furthermore, the dataset contained missing values and was
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collected over 20 years by more than 50 different individuals. While existing spring modelling
approaches were successfully expanded to incorporate ecological values, the unsatisfactory
modelling outcomes prevented the creation of a practical additional tool for spring inventory in
Switzerland. Thus, structural parameters from the FOEN method could not reliably predict the
faunistic condition of springs, and similarly, landscape and topographic variables failed to model
their ecological values accurately.

For practical implications, it is recommended that the data basis be expanded to include springs
across all elevations, land-use categories, and notably lower-rated springs. Furthermore, inte-
grating additional ecological structure factors or enhanced landscape and topographic variables
may improve model performance. Future research should focus on identifying critical structural
predictor variables that define the ecological value of spring habitats. Investigating and applying
alternative modelling approaches, such as hybrid models or neural networks, could potentially
enhance predictive accuracy. Finally, assessing the robustness and generalizability of these
models across different regions or related ecosystems would be worthwhile.
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Appendix

A1 Spring Protocol Structure

Spring Protocol Structure copied from Lubini-Ferlin et al. (2014)

I



A2 Spring Protocol Fauna

Spring Protocol Fauna copied from Lubini-Ferlin et al. (2014)
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A3 QGIS Python Code: Filled DEMs
import os
import processing
from qgis.core import QgsProcessingFeedback

input_folder = r"your\input\folder"
output_folder = os.path.join(input_folder, "filled_outputs")
os.makedirs(output_folder, exist_ok=True)

raster_list = [f for f in os.listdir(input_folder) if f.endswith(".tif")]

feedback = QgsProcessingFeedback()

for raster_name in raster_list:
raster_path = os.path.join(input_folder, raster_name)
id = os.path.splitext(raster_name)[0].split("_")[-1]

filled_raster_path = os.path.join(output_folder, f"dem_filled_{id}.tif")
direction_raster_path = os.path.join(output_folder, f"flowdir_tmp_{id}.tif")

print(f"Processing {raster_name}...")

params = {
’input’: raster_path,
’areas’: ’None’,
’output’: filled_raster_path,
’direction’: direction_raster_path,
’format’: 0,
’overwrite’: True

}

processing.run("grass7:r.fill.dir", params, feedback=feedback)
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A4 QGIS Python Code: slope and aspect 3x3
import os
import processing
from qgis.core import QgsProcessingFeedback

input_folder = r"your\input\folder"
output_folder = os.path.join(input_folder, "slopeandaspect")
os.makedirs(output_folder, exist_ok=True)

raster_list = [f for f in os.listdir(input_folder) if f.startswith("dem_filled_") and
f.endswith(".tif")]

feedback = QgsProcessingFeedback()

for raster_name in raster_list:
raster_path = os.path.join(input_folder, raster_name)
id = raster_name.replace("dem_filled_", "").replace(".tif", "")

slope_out = os.path.join(output_folder, f"slope_{id}.tif")
aspect_out = os.path.join(output_folder, f"aspect_{id}.tif")

print(f"Processing slope and aspect for: {raster_name}")

params = {
’elevation’: raster_path,
’slope’: slope_out,
’aspect’: aspect_out,
’format’: 0,
’overwrite’: True

}

processing.run("grass7:r.slope.aspect", params, feedback=feedback)
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A5 QGIS Python Code: plan curvature and profile curvature 3x3
import os
import processing
from qgis.core import QgsProcessingFeedback

input_folder = r"your\input\folder"
output_folder = os.path.join(input_folder, "morphometrie_rparam")
os.makedirs(output_folder, exist_ok=True)

raster_list = [f for f in os.listdir(input_folder) if f.startswith("dem_filled_") and
f.endswith(".tif")]

feedback = QgsProcessingFeedback()

for raster_name in raster_list:
id = raster_name.replace("dem_filled_", "").replace(".tif", "")
raster_path = os.path.join(input_folder, raster_name)

pcurv_out = os.path.join(output_folder, f"pcurv_{id}.tif")
tcurv_out = os.path.join(output_folder, f"tcurv_{id}.tif")

print(f"profile curvature for: {raster_name}")
processing.run("grass7:r.param.scale", {

’input’: raster_path,
’output’: pcurv_out,
’method’: 6, # profile curvature
’size’: 7,
’format’: 0,
’overwrite’: True

}, feedback=feedback)

print(f"plan curvature for: {raster_name}")
processing.run("grass7:r.param.scale", {

’input’: raster_path,
’output’: tcurv_out,
’method’: 7, # plan curvature
’size’: 7,
’format’: 0,
’overwrite’: True

}, feedback=feedback)
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A6 QGIS Python Code: Slope, Aspect, Plan and Profile Curvature
13x13 & 25x25
import os
import processing
from qgis.core import QgsProcessingFeedback

input_folder = r"your\input\folder"
slope_aspect_folder = os.path.join(input_folder, "slopeandaspect")
curvatures_folder = os.path.join(input_folder, "morphometrie_rparam")
os.makedirs(slope_aspect_folder, exist_ok=True)
os.makedirs(curvatures_folder, exist_ok=True)

raster_list = [f for f in os.listdir(input_folder) if f.startswith("dem_filled_") and
f.endswith(".tif")]

window_sizes = {
"26m": 13,
"50m": 25

}

feedback = QgsProcessingFeedback()

for raster_name in raster_list:
id = raster_name.replace("dem_filled_", "").replace(".tif", "")
raster_path = os.path.join(input_folder, raster_name)

for label, size in window_sizes.items():
print(f"{raster_name} | Skala: {label} (size={size})")

# SLOPE
slope_out = os.path.join(slope_aspect_folder, f"slope_{label}_{id}.tif")
processing.run("grass7:r.param.scale", {

’input’: raster_path,
’output’: slope_out,
’method’: 1, # slope
’size’: size,
’format’: 0,
’overwrite’: True

}, feedback=feedback)

# ASPECT
aspect_out = os.path.join(slope_aspect_folder, f"aspect_{label}_{id}.tif")
processing.run("grass7:r.param.scale", {

’input’: raster_path,
’output’: aspect_out,
’method’: 0, # aspect
’size’: size,
’format’: 0,
’overwrite’: True

}, feedback=feedback)

# PROFILE CURVATURE
pcurv_out = os.path.join(curvatures_folder, f"pcurv_{label}_{id}.tif")
processing.run("grass7:r.param.scale", {

’input’: raster_path,
’output’: pcurv_out,
’method’: 6, # profile curvature
’size’: size,
’format’: 0,

VI



’overwrite’: True
}, feedback=feedback)

# PLAN CURVATURE
tcurv_out = os.path.join(curvatures_folder, f"tcurv_{label}_{id}.tif")
processing.run("grass7:r.param.scale", {

’input’: raster_path,
’output’: tcurv_out,
’method’: 7, # plan curvature
’size’: size,
’format’: 0,
’overwrite’: True

}, feedback=feedback)
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A7 QGIS Python Code: Terrain Roughness Index TRI
import os
import numpy as np
from osgeo import gdal

def compute_tri(in_path, out_path, window_size):
ds = gdal.Open(in_path)
band = ds.GetRasterBand(1)
arr = band.ReadAsArray().astype(np.float32)

pad = window_size // 2
arr_padded = np.pad(arr, pad_width=pad, mode=’reflect’)

try:
from numpy.lib.stride_tricks import sliding_window_view
windows = sliding_window_view(arr_padded, (window_size,

window_size))
std = np.std(windows, axis=(2,3))

except ImportError:
nrows, ncols = arr.shape
std = np.zeros_like(arr, dtype=np.float32)
for i in range(nrows):

for j in range(ncols):
win = arr_padded[i:i+window_size, j:j+window_size]
std[i, j] = np.std(win)

driver = gdal.GetDriverByName(’GTiff’)
out_ds = driver.Create(

out_path, ds.RasterXSize, ds.RasterYSize, 1, gdal.GDT_Float32
)

out_ds.SetGeoTransform(ds.GetGeoTransform())
out_ds.SetProjection(ds.GetProjection())
out_band = out_ds.GetRasterBand(1)
out_band.WriteArray(std)
out_band.GetStatistics(True, True)
out_ds = None
ds = None

input_folder = r"your\input\folder"
output_folder = os.path.join(input_folder, "tri_numpy")
os.makedirs(output_folder, exist_ok=True)

tri_scales = {
"6m": 3,
"26m": 13,
"50m": 25

}

for fname in os.listdir(input_folder):
if not (fname.startswith("dem_filled_") and fname.endswith(".tif")):

continue
dem_id = fname.replace("dem_filled_", "").replace(".tif", "")
in_path = os.path.join(input_folder, fname)

for label, window in tri_scales.items():
out_path = os.path.join(output_folder, f"tri_numpy_{label}_{

dem_id}.tif")
print(f"Computing TRI {label} for {fname} (window {window}x{

window})...")
compute_tri(in_path, out_path, window)
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A8 QGIS Python Code: Slope Length & TWI
import os
import processing
from qgis.core import QgsProcessingFeedback

input_folder = r"your\input\folder"
output_folder = os.path.join(input_folder, "watershed_outputs")
os.makedirs(output_folder, exist_ok=True)

raster_list = [f for f in os.listdir(input_folder) if f.startswith("dem_filled_") and
f.endswith(".tif")]

thresholds = {
"500": 500,
"10000": 10000,
"80000": 80000

}

feedback = QgsProcessingFeedback()

for raster_name in raster_list:
id = raster_name.replace("dem_filled_", "").replace(".tif", "")
raster_path = os.path.join(input_folder, raster_name)

for label, threshold in thresholds.items():
print(f"Watershed {label} | {raster_name}")

twi_out = os.path.join(output_folder, f"twi_{label}_{id}.tif")
slopelen_out = os.path.join(output_folder, f"slopelen_{label}_{id}.tif")

processing.run("grass7:r.watershed", {
’elevation’: raster_path,
’accumulation’: None,
’drainage’: None,
’basin’: None,
’stream’: None,
’tci’: twi_out,
’spi’: None,
’length_slope’: slopelen_out,
’blocking’: None,
’depression’: None,
’threshold’: threshold,
’convergence’: 5,
’memory’: 300,
’flags’: ’’,
’GRASS_REGION_PARAMETER’: None,
’GRASS_RASTER_FORMAT_OPT’: ’’,
’GRASS_RASTER_FORMAT_META’: ’’,
’GRASS_OUTPUT_TYPE_PARAMETER’: 0,

}, feedback=feedback)
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A9 QGIS Python Code: Convergence Index Proxy
import os
import processing
from qgis.core import QgsProcessingFeedback

input_folder = r"your\input\folder"
output_folder = os.path.join(input_folder, "convergence_proxy")
os.makedirs(output_folder, exist_ok=True)

raster_list = [f for f in os.listdir(input_folder) if f.startswith("dem_filled_") and
f.endswith(".tif")]

window_sizes = {
"6m": 3,
"26m": 13,
"50m": 25

}

feedback = QgsProcessingFeedback()

for raster_name in raster_list:
id = raster_name.replace("dem_filled_", "").replace(".tif", "")
raster_path = os.path.join(input_folder, raster_name)

for label, size in window_sizes.items():
conv_out = os.path.join(output_folder, f"conv_{label}_{id}.tif")
print(f"Convergence (Proxy) {label} for: {raster_name}")

processing.run("grass7:r.param.scale", {
’input’: raster_path,
’output’: conv_out,
’method’: 5,
’size’: size,
’format’: 0,
’overwrite’: True

}, feedback=feedback)
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A10 Calculation of Performance Metrics
RMSE (Root Mean Squared Error)

RMSE =

√√√√ 1

n

n∑
i=1

(
yi − ŷi

)2
Here, yi is the true target value for observation i, ŷi is the corresponding model prediction, and
n is the total number of observations. RMSE measures the average deviation of the predictions
from the true values, with errors squared to weigh larger deviations more heavily. The lower the
RMSE, the better the predictive accuracy of the model. RMSE is expressed in the same units
as the target variable y. Due to squaring, RMSE is sensitive to outliers: a single large error can
substantially increase its value.

R2 (Coefficient of Determination)

R2 = 1 −

n∑
i=1

(
yi − ŷi

)2
n∑

i=1

(
yi − ȳ

)2
Here, yi is the true target value for observation i, ŷi the corresponding model prediction, ȳ

the average of all target values in the dataset, and n the total number of observations. R2

measures the proportion of variance in the target variable that is explained by the model. It is
dimensionless: values closer to 1 indicate a better fit (with R2 = 1 corresponding to a perfect
prediction). Although R2 can be compared across different datasets, its interpretation can be
misleading for nonlinear relationships or highly heterogeneous data.

MAE (Mean Absolute Error)

MAE =
1

n

n∑
i=1

|yi − ŷi|

MAE measures the average absolute error in the same units as the target variable y. Each error
contributes linearly; large outliers are not squared and therefore are less heavily penalized than
in RMSE.

MedAE (Median Absolute Error)

MedAE = median
(
{|yi − ŷi|}ni=1

)
The median of the absolute errors indicates the threshold below which 50% of the absolute
errors fall, providing a robust measure of typical error magnitude without being skewed by a
few large prediction errors. It ignores the distribution above the 50th percentile and does not
convey information about the size of the largest errors.
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Accuracy
Accuracy measures the proportion of instances that the model classified correctly. It is most
meaningful when the classes are roughly balanced and the cost of errors in each class is
similar.

Balanced Accuracy
Balanced Accuracy computes the average of the per-class recall scores. By weighting each
class equally, it gives a more robust assessment than plain Accuracy on imbalanced datasets.

F1-Score
The F1-Score is the harmonic mean of Precision and Recall and provides a single metric that
balances the trade-off between the two. It is defined as

F1− Score = 2 · Precision · Recall
Precision + Recall

with Precision = TP
TP+FP and Recall = TP

TP+FN , where TP denotes true positives, FP false
positives, and FN false negatives. The F1-Score ranges from 0 to 1, with 1 representing
perfect Precision and Recall. It is particularly useful in situations with imbalanced datasets or
when both false positives and false negatives carry significant consequences. Unlike Accuracy,
the F1 Score remains informative even if class distributions are skewed.
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A11 R Code Baseline Regression Random Forest: Predicting
Faunistic Assessment Values Using Spring Structure Data
# Baseline Regression Random Forest predicting ...
# ... Faunistic Assessment Values using spring structure data)

library(tidyverse)
library(randomForest)
library(ggplot2)

structure_file <- "your\\file\\path.csv"
fauna_file <- "your\\file\\path.csv"

structure_data <- read_delim(structure_file, delim = ";", col_types = cols())
fauna_data <- read_delim(fauna_file, delim = ";", col_types = cols())

# select only certain columns
fauna_subset <- fauna_data %>%
select(Numbering, ‘Result Faunistic Assessment‘)

# Merge both datasets
merged_data <- inner_join(structure_data, fauna_subset, by = "Numbering")

# Rename target variable and convert to numeric
merged_data <- merged_data %>%
rename(FaunisticAssessment = ‘Result Faunistic Assessment‘) %>%
mutate(FaunisticAssessment = as.numeric(as.character(FaunisticAssessment)))

# Remove unwanted predictors
cols_to_exclude <- c("Conductivity", "Distance to Spring Outflow [m]",

"Value A: Impairment (Highest Value)",
"Value B: Vegetation-Use-Structure",
"Bonus b -0.4 Points for Good Structure -> Upgrade",
"Result Structural Assessment")

model_data <- merged_data %>% select(-one_of(cols_to_exclude))

# Remove rows with missing data
model_data <- model_data[complete.cases(model_data), ]

# Convert all character columns to factors
model_data <- model_data %>% mutate(across(where(is.character), as.factor))

# Aggregate vegetation variables:
veg_types <- c("Site-Specific.Vegetation", "Non-Native.Vegetation", "Moss.Communities"

,
"Dwarf.Shrub.Heaths", "Tall.Herbaceous.Vegetation", "Deciduous.Forest",
"Mixed.Forest", "Shrubland", "Site-Specific.Conifer.Forest", "Non-Native.

Conifer.Forest",
"Extensively.Used.Open.Land", "Intensively.Used.Open.Land", "Farmland.

Special.Crops",
"Unpaved.Path", "Paved.Path.Road", "Artificial.Vegetation-Free.Settlement

")

aggregated_veg <- sapply(veg_types, function(vt) {
vt_cols <- grep(paste0("^", vt), names(model_data), value = TRUE)
if (length(vt_cols) == 0) {
return(rep(0, nrow(model_data)))

} else {
mat <- model_data[, vt_cols, drop = FALSE]
mat <- as.data.frame(lapply(mat, function(x) as.numeric(as.character(x))))
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apply(mat, 1, function(row) ifelse(sum(row, na.rm = TRUE) > 0, 1, 0))
}

})
aggregated_veg <- as.data.frame(aggregated_veg)
names(aggregated_veg) <- veg_types

# Remove original vegetation columns and add aggregated ones
veg_pattern <- paste(veg_types, collapse = "|")
model_data <- model_data[, !grepl(veg_pattern, names(model_data))]
model_data <- bind_cols(model_data, aggregated_veg)
model_data <- model_data %>% select(-Numbering)
names(model_data) <- make.names(names(model_data))

# Split according to the saved indices
test_index <- read.csv("your/file/path.csv")$x
test_data <- model_data[test_index, ]
train_data <- model_data[-test_index, ]

# Create Random Forest regression model
rf_model <- randomForest(FaunisticAssessment ~ ., data = train_data, importance = TRUE

)
print(rf_model)

# Make predictions on the test dataset
predictions <- predict(rf_model, newdata = test_data)

################################################################################
# Calculate comparative metrics for all models
MedAE <- function(obs, pred) median(abs(obs - pred))
MBE <- function(obs, pred) mean(pred - obs)
rRMSE <- function(obs, pred) sqrt(mean((obs - pred)^2)) / mean(obs)
NRMSE <- function(obs, pred) sqrt(mean((obs - pred)^2)) / (max(obs) - min(obs))
MAPE <- function(obs, pred) mean(abs((obs - pred) / obs)) * 100
sMAPE <- function(obs, pred) mean(2 * abs(pred - obs) / (abs(obs) + abs(pred))) * 100
MedSE <- function(obs, pred) median((obs - pred)^2)
CCC <- function(obs, pred) {
mean_obs <- mean(obs)
mean_pred <- mean(pred)
s_obs <- var(obs)
s_pred <- var(pred)
covar <- mean((obs - mean_obs) * (pred - mean_pred))
2 * covar / (s_obs + s_pred + (mean_obs - mean_pred)^2)

}

obs <- test_data$FaunisticAssessment
pred <- predictions

metrics <- data.frame(
model = "Baseline RF",
MSE = mean((obs - pred)^2),
Percent_Var_Explained = 100 * (1 - sum((obs - pred)^2) / sum((obs - mean(obs))^2)),
RMSE = sqrt(mean((obs - pred)^2)),
R2 = 1 - sum((obs - pred)^2) / sum((obs - mean(obs))^2),
MAE = mean(abs(obs - pred)),
MedAE = MedAE(obs, pred),
MBE = MBE(obs, pred),
rRMSE = rRMSE(obs, pred),
NRMSE = NRMSE(obs, pred),
MAPE = MAPE(obs, pred),
sMAPE = sMAPE(obs, pred),
MedSE = MedSE(obs, pred),
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CCC = CCC(obs, pred),
LinsCCC = CCC(obs, pred)

)

results_df <- data.frame(
observed = obs,
predicted = pred,
model = "Baseline RF"

)

# Export results
results_dir <- "your/directory/path"
dir.create(results_dir, showWarnings = FALSE)
write.csv2(results_df, file = file.path(results_dir, "rf_baseline_results.csv"), row.

names = FALSE)
write.csv2(metrics, file = file.path(results_dir, "rf_baseline_metrics.csv"), row.

names = FALSE)

################################################################################
# Calculate permutation importance for all predictors
library(dplyr)
library(stringr)

# List of all predictor variables
predictor_vars <- setdiff(names(test_data), "FaunisticAssessment")

get_metrics <- function(obs, pred) {
data.frame(
RMSE = sqrt(mean((obs - pred)^2)),
R2 = 1 - sum((obs - pred)^2) / sum((obs - mean(obs))^2),
MAE = mean(abs(obs - pred)),
MedAE = median(abs(obs - pred))

)
}

obs <- test_data$FaunisticAssessment
pred_original <- predict(rf_model, newdata = test_data)
metrics_original <- get_metrics(obs, pred_original)
metrics_original$variable <- "ALL"
metrics_original$type <- "original"

# Permute each variable
results <- lapply(predictor_vars, function(var) {
td_perm <- test_data
td_perm[[var]] <- sample(td_perm[[var]])
pred <- predict(rf_model, newdata = td_perm)
m <- get_metrics(obs, pred)
m$variable <- var
m$type <- "permuted"
m

})

results_df <- do.call(rbind, results)
results_df <- rbind(metrics_original, results_df)
results_df$model_name <- "Baseline RF"
results_df$target_variable <- "FaunisticAssessment"

# Group binary-coded variables
results_df$base_variable <- case_when(
str_starts(results_df$variable, "Special.Structures_") ~ "Special.Structures",
str_starts(results_df$variable, "Infrastructure_") ~ "Infrastructure",
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str_starts(results_df$variable, "Flow.Diversity_") ~ "Flow.Diversity",
TRUE ~ results_df$variable

)

results_grouped <- results_df %>%
group_by(model_name, target_variable, type, base_variable) %>%
summarize(
RMSE = mean(RMSE, na.rm = TRUE),
R2 = mean(R2, na.rm = TRUE),
MAE = mean(MAE, na.rm = TRUE),
MedAE = mean(MedAE,na.rm = TRUE),
.groups = "drop"

) %>%
select(model_name, target_variable, type, base_variable, RMSE, R2, MAE, MedAE)

# Export grouped metrics
write.csv2(
results_grouped,
file = file.path(results_dir, "rf_per_variable_metrics_Grouped.csv"),
row.names = FALSE,
quote = FALSE

)
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A12 R Code Baseline Classification Random Forest: Predicting
Fauna Classes Using Spring Structure Data
# Baseline Classification Random Forest predicting ...
# ... fauna classes using spring structure data)

library(tidyverse)
library(randomForest)
library(ggplot2)

structure_file <- "your\\file\\path.csv"
fauna_file <- "your\\file\\path.csv"

structure_data <- read_delim(structure_file, delim = ";", col_types = cols())
fauna_data <- read_delim(fauna_file, delim = ";", col_types = cols())

# select only certain columns
fauna_subset <- fauna_data %>%
select(Numbering, ‘Result Faunistic Assessment‘)

# Merge both datasets
merged_data <- inner_join(structure_data, fauna_subset, by = "Numbering")

# Rename target variable, convert to numeric, and categorize into classes
merged_data <- merged_data %>%
rename(FaunisticAssessment = ‘Result Faunistic Assessment‘) %>%
mutate(FaunisticAssessment = as.numeric(as.character(FaunisticAssessment)),

FaunisticClass = cut(FaunisticAssessment,
breaks = c(-Inf, 5, 10, 15, 20, Inf),
labels = c("very non spring", "non-spring",

"spring-compliant", "conditionally spring-typical
",

"spring-typical"),
right = FALSE))

# Remove unwanted predictors
cols_to_exclude <- c("Conductivity",

"Value A: Impairment (Highest Value)",
"Value B: Vegetation-Use-Structure",
"Bonus b -0.4 Points for Good Structure -> Upgrade",
"Result Structural Assessment")

model_data <- merged_data %>% select(-one_of(cols_to_exclude))

# Remove rows with missing data
model_data <- model_data[complete.cases(model_data), ]

# Convert all character columns to factors
model_data <- model_data %>% mutate(across(where(is.character), as.factor))

# Aggregate vegetation variables
veg_types <- c("Site-Specific.Vegetation", "Non-Native.Vegetation", "Moss.Communities"

,
"Dwarf.Shrub.Heaths", "Tall.Herbaceous.Vegetation", "Deciduous.Forest",
"Mixed.Forest", "Shrubland", "Site-Specific.Conifer.Forest", "Non-Native.

Conifer.Forest",
"Extensively.Used.Open.Land", "Intensively.Used.Open.Land", "Farmland.

Special.Crops",
"Unpaved.Path", "Paved.Path.Road", "Artificial.Vegetation-Free.Settlement

")
aggregated_veg <- sapply(veg_types, function(vt) {
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vt_cols <- grep(paste0("^", vt), names(model_data), value = TRUE)
if (length(vt_cols) == 0) {
rep(0, nrow(model_data))

} else {
mat <- as.data.frame(lapply(model_data[, vt_cols, drop = FALSE],

function(x) as.numeric(as.character(x))))
apply(mat, 1, function(row) ifelse(sum(row, na.rm = TRUE) > 0, 1, 0))

}
})
aggregated_veg <- as.data.frame(aggregated_veg)
names(aggregated_veg) <- veg_types

# Remove original vegetation columns and add aggregated ones
veg_pattern <- paste(veg_types, collapse = "|")
model_data <- model_data[, !grepl(veg_pattern, names(model_data))]
model_data <- bind_cols(model_data, aggregated_veg)
model_data <- model_data %>% select(-Numbering, -FaunisticAssessment)
names(model_data) <- make.names(names(model_data))

# Split according to the saved indices
test_index <- read.csv("your/file/path.csv")[,1]
all_idx <- seq_len(nrow(model_data))
train_idx <- setdiff(all_idx, test_index)
train_data <- model_data[train_idx, ]
test_data <- model_data[test_index, ]

# Train Random Forest classification model
rf_model <- randomForest(FaunisticClass ~ ., data = train_data, importance = TRUE)
print(rf_model)
predictions <- predict(rf_model, newdata = test_data)

################################################################################
# Calculate comparative metrics for all models
conf_matrix <- table(test_data$FaunisticClass, predictions)
accuracy <- sum(diag(conf_matrix)) / sum(conf_matrix)
recall_per_class <- diag(conf_matrix) / rowSums(conf_matrix)
precision_per_class <- diag(conf_matrix) / colSums(conf_matrix)
f1_per_class <- 2 * recall_per_class * precision_per_class /

(recall_per_class + precision_per_class)
balanced_accuracy <- mean(recall_per_class, na.rm = TRUE)
calc_kappa <- function(conf) {
total <- sum(conf)
p0 <- sum(diag(conf)) / total
pe <- sum(rowSums(conf) * colSums(conf)) / (total^2)
(p0 - pe) / (1 - pe)

}
kappa <- calc_kappa(conf_matrix)

metrics_df <- data.frame(
Metric = c("Accuracy", "Balanced Accuracy", "Kappa",

paste0("Recall_", names(recall_per_class)),
paste0("Precision_", names(precision_per_class)),
paste0("F1_", names(f1_per_class))),

Value = c(mean(test_data$FaunisticClass == predictions),
balanced_accuracy, kappa,
as.numeric(recall_per_class),
as.numeric(precision_per_class),
as.numeric(f1_per_class)),

Model = "Baseline RF"
)
write.table(metrics_df, file="baseline_rf_metrics.csv", sep=";", dec=",",
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row.names=FALSE, quote=FALSE)

results_out <- data.frame(observed=test_data$FaunisticClass,
predicted=predictions, Model="Baseline RF")

write.table(results_out, file="baseline_rf_observed_predicted.csv",
sep=";", dec=",", row.names=FALSE, quote=FALSE)

################################################################################
# Calculate permutation importance for all predictors
library(dplyr); library(stringr); library(tidyr); library(purrr)

# List of all predictor variables
predictor_vars <- setdiff(names(test_data), "FaunisticClass")
all_classes <- levels(test_data$FaunisticClass)

accuracy_fun <- function(obs,pred) mean(obs==pred)
balanced_fun <- function(obs,pred) {
cm <- table(obs,pred); mean(diag(cm)/rowSums(cm), na.rm=TRUE)

}
recall_fun <- function(obs,pred) { cm<-table(obs,pred); diag(cm)/rowSums(cm) }
precision_fun<- function(obs,pred) { cm<-table(obs,pred); diag(cm)/colSums(cm) }
f1_fun <- function(obs,pred) { r<-recall_fun(obs,pred); p<-precision_fun(obs,pred);

2*r*p/(r+p) }

get_row <- function(obs,pred,model,type,base) {
tibble(model_name=model, target_variable="FaunisticClass", type=type,

base_variable=base, Accuracy=accuracy_fun(obs,pred),
Balanced_Accuracy=balanced_fun(obs,pred),
!!!set_names(as.list(recall_fun(obs,pred)), paste0("Recall_", all_classes)),
!!!set_names(as.list(precision_fun(obs,pred)),paste0("Precision_", all_classes

)),
!!!set_names(as.list(f1_fun(obs,pred)), paste0("F1_", all_classes)))

}

obs <- test_data$FaunisticClass
pred_original <- predictions
metrics_list <- list(get_row(obs,pred_original,"Baseline RF","original","ALL"))

for(var in predictor_vars) {
td_perm <- test_data; td_perm[[var]] <- sample(td_perm[[var]])
pred <- predict(rf_model, newdata=td_perm)
metrics_list[[length(metrics_list)+1]] <- get_row(obs,pred,"Baseline RF","permuted",

var)
}
metrics_df <- bind_rows(metrics_list)
metrics_df$base_variable <- case_when(
str_starts(metrics_df$base_variable,"Special.Structures_")~"Special.Structures",
str_starts(metrics_df$base_variable,"Infrastructure_") ~"Infrastructure",
str_starts(metrics_df$base_variable,"Flow.Diversity_") ~"Flow.Diversity",
TRUE ~metrics_df$base_variable

)
metrics_df_grouped <- metrics_df %>%
group_by(model_name, target_variable, type, base_variable) %>%
summarize(across(where(is.numeric), ~mean(.x, na.rm = TRUE)), .groups = "drop")

# Export grouped metrics
write.csv2(metrics_grouped, file="rf_per_variable_metrics_GROUPED.csv", row.names=

FALSE, quote=FALSE)
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A13 Confusion Matrices of Random Forest Models Predicting
Result Faunistic Assessment Values Based on Spring Structure
Data
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