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Abstract

In geographic information science, it is common to use gridded digital elevation models (DEMs)
to derive various topographic attributes, hydrological parameters and compound indices. Usually,
DEMs are assumed to be accurate representations of the real-world terrain surfaces. But, as the
name "model" indicates, a DEM is only an approximation of the real terrain surface. The quality of
DEMs suffers from systematic and random errors, caused by the tasks commonly involved in digital
terrain modeling. When DEMs are used in digital terrain analysis, the errors of the model influence
the analysis results in a negative manner. The investigation of this phenomena is known as error
propagation analysis. The results of this analysis have a direct influence on any decision-making
process based on applications and interpretations of digital terrain analysis.

Since the mid 1990’s, light detection and ranging (LiDAR), also known as laser scanning, has al-
lowed to collect highly accurate elevation data in a rapid and cost effective way. This thesis focuses
on such micro-scale DEMs derived from LiDAR data, but even with highly accurate measurement
techniques such as LiDAR, the resulting DEMs still contain uncertainty. The LiDAR derived DEM
used in this thesis has a spatial resolution of 2 m and an average error (RMSE) in horizontal and
vertical direction of 0.5 m.

This thesis provides an uncertainty analysis approach for investigating error propagation in high
resolution DEM based terrain analysis. All algorithms are implemented with C++ using a multi-
processing approach based on MPI allowing an efficient error propagation analysis of high resolution
DEMs. The implemented algorithms cover common hydrological models. The proposed approach
includes four different flow routing algorithms (D8, D∞, MD8 and MD∞) to compute the ups-
lope area and the compound indices TWI, SPI and STI, and supports watershed and stream network
extraction. Appropriate methods were implemented to investigate the statistical and spatial char-
acteristics of uncertainty. Uncertainty is visualized by error maps showing the relative or absolute
standard deviations, probabilities or the error H. In addition, various results can be written on text-
files allowing further analysis in statistical software suits. Sample points in the DEMs extent which
could then be analyzed more detailed in the uncertainty analysis can be defined . This can be used
for example to investigate the convergence of different hydrological models in an error propagation
analysis.

The uncertainty model is based on the Monte Carlo simulation approach and utilizes the process
convolution method to generate the error surfaces. Additional knowledge about the spatial structure
of error in LiDAR derived DEMs has made it possible to improve the uncertainty model accord-
ingly.

Besides the programming task and the proposed frame-work for investigating error propagation, this
thesis also provides various uncertainty assessments and an analysis of the spatial pattern of uncer-
tainty for common hydrological models. Furthermore, the impact of uncertainty model parameters
and coarser resolution DEMs on the uncertainty analysis results are investigated. In addition, con-
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vergence tests for different hydrological models are run. Finally, this thesis provides an evaluation
of the sensitivity of the four different flow routing algorithms and evaluates the performance of the
provided uncertainty analysis approach.

The results show that the applied parallelization approach can speed up an error propagation analy-
sis considerably depending on the number of processes used. The execution time could be reduced
in most cases by up to a factor of three by using four processes instead of one. The uncertainty
assessment shows that multiple flow direction algorithms are less sensitive than the single flow di-
rection algorithm D8. Errors observed are up to three times higher when using the D8 instead of
the MD∞ flow routing algorithm. This conclusion is also valid for the convergence tests. The D8
based TWI appears to converge substantially later (400 to 200 simulation runs). In general, all flow
routing algorithms show very unstable analysis results below 100 simulation runs. In contrast, the
extraction of watersheds appears to be more stable. In our case, the area of the watershed already
converges after 150 simulation runs. Regarding the spatial pattern of uncertainty, the results show
that high errors can be observed in all cases mostly in very flat and rough terrain. The results also
show that the spatial resolution of the DEM has a minor impact on the analysis results. These depend
largely on the uncertainty model parameters. For example, as shown in this thesis, a high spatial au-
tocorrelation range applied to the error surface can reduce the observed error substantially and vice
versa. This shows that the process convolution method is reaching its limits. Better methods must
be implemented to produce more accurate error surfaces.

The methodology and its application presented in this thesis to assess uncertainty in hydrological
models demonstrate that it is also usable and worth investigating in error propagation analysis when
working with high resolution DEMs. Especially anthropogenic features such as roads and bridges
cause a high amount of uncertainty in such high resolution DEMs.
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Zusammenfassung

In den geographischen Informationswissenschaften ist es üblich digitale Höhenmodelle (DHMs)
zur Gewinnung von verschiedenen topografischen Attributen, hydrologischen Parametern und In-
dizes zu verwenden. Normalerweise werden DHMs als korrekte Abbilder der Geländeoberfläche
wahrgenommen. Aber wie die Bezeichnung "Modell" impliziert, ist ein DHM nur eine Annäherung
an die reale Geländeoberfläche. Die Qualität der DHMs leidet unter systematischen und zufälligen
Fehlern, welche durch in der digitalen Geländemodellierung häufig vorkommenden Anwendungen
verursacht werden können. Wenn DHMs in der digitalen Geländeanalyse verwendet werden, wirken
sich die Fehler des Models negativ auf die daraus abgeleiteten Resultate aus. Die Untersuchung
dieses Phänomens wird als Fehlerfortpflanzungsanalyse bezeichnet. Die Resultate dieser Analyse
haben einen direkten Einfluss auf jeglichen Entscheidungsprozess der auf Anwendungen und Inter-
pretationen von digitalen Geländeanalysen beruht.

Ab Mitte der 1990er, Light Detection And Ranging (LiDAR), auch bekannt als Laserscanning, hat
das Erfassen von hochpräzisen Höheninformationen auf eine schnelle und gleichzeitig kostenef-
fiziente Weise ermöglicht. Diese Arbeit fokussiert auf solche micro-scale DHMs, welche aus LiDAR
Daten erstellt wurden, weil auch mit hochpräzisen Messverfahren wie LiDAR, die daraus erstellten
DHMs noch Unsicherheiten enthalten. Das in dieser Arbeit verwendete LiDAR basierte DHM weist
eine räumliche Auflösung von 2 m und einen durchschnittlichen Fehler in horizontaler und vertikaler
Richtung von 0.5 m auf.

Diese Arbeit stellt eine Unsicherheitsanalysenmethodik zur Untersuchung der Fehlerfortpflanzung in
Geländeanalysen basierend auf hochauflösenden DHMs vor. Sämtliche Algorithmen sind mit C++
unter der Nutzung eines Multiprozessierungsansatzes basierend auf MPI implementiert, um eine
effiziente Fehlerfortpflanzungsanalyse von hochauflösenden DHMs zu ermöglichen. Die implemen-
tierten Algorithmen decken die gebräuchlichsten hydrologischen Modelle ab. Die vorgeschlagene
Methode beinhaltet vier verschiedene Fliessrichtungsalgorithmen (D8, D∞, MD8 und MD∞) zur
Berechnung der akkumulierten Fläche und der topografischen Indizes TWI, SPI und STI, und er-
möglicht die Extraktion von Einzugsgebieten und Flussnetzwerken. Zur Untersuchung der statis-
tischen und räumlichen Eigenschaften der Unsicherheiten wurden entsprechende Methoden imple-
mentiert. Unsicherheiten werden mit Fehlerkarten visualisiert, welche die absolute oder relative
Standardabweichung, Wahrscheinlichkeiten oder den Fehler H aufzeigen. Zusätzlich können ver-
schiedenste Resultate in Textfiles geschrieben werden, welche für weitere Analysen in entsprechend
Statistik-Programmen genutzt werden können. Stichproben können innerhalb des DHMs definiert
werden, welche dann in der Unsicherheitsanalyse genauer untersucht werden können. Dies kommt
zum Beispiel bei der Analyse der Konvergenz verschiedener hydrologischer Modelle in einer Fehler-
fortpflanzungsanalyse zum Einsatz.

Das Unsicherheitsmodell basiert auf der Monte-Carlo-Simulation und nutzt den Process Convolution
Ansatz zur Erzeugen von sogenannten Fehleroberflächen. Zusätzliches Wissen über die räumliche
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Struktur des Fehlers in LiDAR basierten DHMs ermöglichte eine entsprechende Verbesserung des
Unsicherheitsmodells.

Neben der Programmierung und des vorgeschlagenen Rahmenkonzeptes zur Untersuchung der Fehler-
fortpflanzung, liefert diese Arbeit auch verschiedene Unsicherheitsassessments und Analysen zur
räumlichen Struktur der Unsicherheiten von gebräuchlichen hydrologischen Modellen. Des Weit-
eren werden die Einflüsse verschiedener Parameter des Unsicherheitsmodells und schlechter aufgelösten
DHMs auf die Resultate der Unsicherheitsanalyse ausgewertet. Zusätzlich werden Konvergenztests
für verschiedene hydrologische Modelle durchgeführt. Schliesslich präsentiert diese Arbeit eine
Evaluation der Sensitivität der vier verschiedenen Fliessrichtungsalgorithmen und evaluiert die Leis-
tung der vorgeschlagenen Unsicherheitsanalysenmethode.

Die Resultate zeigen, dass der angewandte Parallelisierungsansatz Fehlerfortpflanzungsanalysen
in Abhängigkeit der Anzahl an verwendeten Prozessen deutlich beschleunigen kann. Die Aus-
führungszeit kann durch die Nutzung von vier statt einem Prozess um bis zu einen Faktor von drei
reduziert werden. Die Unsicherheitsassessments zeigen, dass Multiple Flow Direction Algorithmen
weniger sensitiv sind im Vergleich zum single flow direction Algorithmus D8. Die beobachteten
Fehler liegen bis zu dreimal höher, wenn der D8 an Stelle des MD∞ Fliessrichtungsalgorithmus
benutzt wird. Diese Erkenntnis trifft ebenfalls auf die Konvergenztests zu. Der D8 basierte TWI
konvergiert deutlich später (400 zu 200 Simulationsdurchläufe). Generell zeigen alle Fliessrich-
tungsalgorithmen sehr instabile Werte unter 100 Simulationsdurchläufen. Im Gegenzug erscheint
die Extraktion von Einzugsgebieten stabiler. In diesem Fall konvergierte die Fläche des Einzugsge-
bietes schon nach 150 Simulationsdurchgängen. Bezüglich der räumlichen Struktur der Unsicher-
heiten zeigen die Resultate, dass hohe Fehler hauptsächlich in flachen und rauen Geländeoberflächen
vorkommen. Die Resultate zeigen ebenfalls, dass die räumliche Auflösung des DHMs einen weniger
bedeutenden Einfluss auf die Analyseergebnisse hat. Diese hängen jedoch stark von den gewählten
Parametern des Unsicherheitsmodells ab. Zum Beispiel wird in dieser Arbeit gezeigt, dass eine hohe
räumliche Autokorrelationsdistanz die erhaltenen Fehler deutlich reduzieren kann und umgekehrt.
Das zeigt, dass der Process Convolution Ansatz an seine Grenzen stösst. Bessere Methoden müssen
implementiert werden um genauere Fehleroberflächen erzeugen zu können.

Die in dieser Arbeit präsentierte Methodik und ihre Anwendung zur Bewertung der Unsicherheiten
in hydrologischen Modellen zeigen auf, dass es möglich und sinnvoll ist die Fehlerfortpflanzung zu
untersuchen, wenn man mit hochaufgelösten DHMs arbeitet. Gerade anthropogene Erscheinungen
wie Strassen und Brücken führen zu hohen Unsicherheiten in hochaufgelösten DHMs.
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1 Introduction

1.1 Context

Gridded digital elevation models (DEMs) play an important role in geographic information science
due to their wide range of uses and applications. DEMs are often assumed to be accurate repre-
sentations of the real-world terrain surfaces. But, as the name "model" already indicates, a DEM is
only an approximation of the true terrain surface. The accuracy of DEMs suffers from systematic
and random errors, caused by the tasks commonly involved in digital terrain modeling. These tasks
can range from elevation data acquisition to geospatial applications (Oksanen, 2006). The sources
of uncertainty are defined by Li et al. (2005) as follows:

• Gross, systematic and random errors

• Accuracy loss due to lattice representation of terrain

Oksanen (2006) described the sources of errors in DEMs more extensively (Figure 1.1). Errors in
phase 1 (Figure 1.1) cover random and human error in data acquisition including errors caused by
measurement equipment. There could also be errors due to cloud and forest cover, Earth’s curva-
ture, instable remote sensing equipment, atmospheric refraction, image processing, global position-
ing system (GPS) and inertial navigation system (INS), cartographic generalizations, and geometric
transformations (Florinsky, 1998b; Oksanen, 2006). The selected method for digital surface repre-
sentation, the method of DEM approximation, and the level of detail are sources of error in phase 2
(Figure 1.1) (Oksanen, 2006). In phase 3 (Figure 1.1) uncertainty is caused by the algorithms used
to derive topographic attributes (Zhou and Liu, 2004; Oksanen, 2006). Finally, in phase 4 (Figure
1.1), uncertainty may be caused by misinterpretations (Oksanen, 2006).
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Figure 1.1: The 4 phases of digital terrain modeling which may cause uncertainty (Oksanen, 2006).
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Since the mid 1990’s, light detection and ranging (LiDAR), also known as laser scanning, has al-
lowed to collect highly accurate elevation data in a rapid and still very cost effective way (Fowler,
2001). This thesis focuses on such micro-scale DEMs retrieved from LiDAR data. But even with
highly accurate measurement techniques such as LiDAR, the resulting DEMs still contain a certain
amount of uncertainty (Evans and Hudak, 2007; Bater and Coops, 2009). This uncertainty is caused
by the unknown spatial distribution and magnitude of errors, inherent in any DEM. These errors
describe the deviation of measurements from the true values (Hebeler and Purves, 2008). In this
context, uncertainty is used for values which are expected to deviate from its real value with an un-
known deviation extent and error is considered as a measurable part of uncertainty. When DEMs
are used in terrain analysis, the errors inherent in any DEM will affect the results and the extent of
deviations can only be approximated by using uncertainty models (Holmes et al., 2000). The inves-
tigation of this phenomena is known as error propagation analysis (Heuvelink, 1998). The results of
these analyses have a direct influence on any decision-making process based on interpretations and
applications of terrain analysis (Oksanen, 2006).

Error propagation analysis is computationally very demanding and time intensive even on coarse
resolution DEMs (e.g. Oksanen, 2006; Hengl et al., 2010). Therefore, error propagation analysis us-
ing high resolution DEMs is a challenge. New methods are needed to facilitate such analysis when
working with LiDAR based DEMs. Tesfa et al. (2011) proposed highly efficient and parallelized al-
gorithms to compute various hydrological models. This parallelization approach may also be applied
to an error propagation analysis approach allowing such analysis to be completed in appropriate time
frames even when working with LiDAR data.

1.2 Review

Uncertainty has been an important topic in geographical information science for over two decades.
As a result of this, researchers recommend two outputs for spatial analysis: a map representing
the result of the analysis and some assessment of uncertainty for this map (Atkinson and Foody,
2006). The error propagation approach was first used by Burrough (1986). At that time, computers
were too slow to run stochastic simulations in an appropriate time frame. Since then, algorithms have
improved significantly and computers are more powerful. A goal of the research in DEM uncertainty
analysis has been to develop a general purpose "error button" for geographic information systems
(GIS) (Openshaw et al., 1991). The functionality of the "error button" is seen as user-dependent
which offers the possibility to adjust the error model according to the level of knowledge of the
user (Heuvelink, 2006). But as of today, we are still far away from an uncertainty button in any
GIS. Researchers are questioning themselves why users have overlooked the importance of error
propagation analysis, making such tools an exception rather than a rule (Oksanen, 2006). Too many
limitations still remain in recently proposed uncertainty analysis approaches (e.g. Hengl et al., 2010;
Achour et al., 2012). An often mentioned problem is the performance, even though computers
are getting faster, these tools are often limited to DEMs containing a few thousand cells due to
inefficient algorithms. But there are other critical issues, like open questions about the uncertainty
model itself. Besides the selection of an appropriate uncertainty model approach, many parameters
of the uncertainty model can vary in a certain range and thus have a direct influence on the result
of the uncertainty analysis. Defining these parameters for an uncertainty analysis is a very difficult
task and one of the main reasons why uncertainty analysis still attracts little attention (Heuvelink,
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2006).

DEM error propagation analysis was introduced in the early 1990’s. Heuvelink et al. (1989) used
Monte Carlo simulations and Taylor series approximations in their pioneering work for error prop-
agation analysis of slope and aspect calculations. The standard deviations (std) were higher than
expected and the sensitivity of run-off and erosion models was recognized. Since then, the as-
sumption has raised that a spatially uncorrelated error can be used for a worst case scenario (e.g.
Heuvelink, 1998; Wechsler, 2007). Wechsler (2007) proposed a practical implementation of error
propagation analysis for commercial GIS software using the Monte Carlo approach. Besides the
programming task, the focus was on the effects of uncertainty on topographic parameters and com-
pound indices. Uncalibrated moving spatial averages were used, leading to a lack of control on the
standard deviation and spatial autocorrelation range for the generation of the error surfaces. Only a
few Monte Carlo based studies have paid attention to the convergence of error propagation analysis
results (Veregin, 1997; Nackaerts et al., 1999; Aerts et al., 2003; Oksanen, 2006). Oksanen (2006)
showed that the extraction of drainage basins appeared to converge after 500 simulation runs. Such
studies using high numbers of simulation runs are rare. The most studies performed Monte Carlo
simulations with 100 or less runs (e.g. Temme et al., 2009; Hengl et al., 2010). The problem is that
convergence analysis is always case-specific. The results depend on the terrain, uncertainty model
parameters, and the terrain analysis task. Hebeler and Purves (2009) provided a methodology for
calculating an error surface using the process convolution approach with calibrated parameters and
applying such error surfaces in developing uncertainty models. They showed that for two larger wa-
tersheds, hypsometric curves, elevation, catchment area, and slope have considerable uncertainty as
a function of uncertainty in elevation. Hebeler and Purves (2008) used the same uncertainty model
approach for ice sheet model uncertainty assessments. They came to the conclusion that DEM uncer-
tainty has some impact on the ice sheet modeling processes, but that additional uncertain parameters
such as the temperature are needed to relate the impact of DEM uncertainty. Hengl et al. (2010) pro-
posed a Monte Carlo based error propagation analysis approach to evaluate the sensitivity of stream
network extraction. They showed that streams are difficult to map in low relief areas and on slightly
convex terrain shapes. As of today, error propagation in hydrological modeling using high resolution
DEMs such as LiDAR derived DEMs was rarely investigated (e.g. Ulmer, 2007).

1.3 Motivation and Objectives

This thesis covers three larger research fields: GIScience, hydrology and computer science. Each
field provides solutions and articulates demands. In general, the sensitivity of hydrological algo-
rithms is of interest (e.g. Kenward et al., 2000; Wechsler, 2007; Hengl et al., 2010; Achour et al.,
2012). In hydrology, multiple algorithms exist to calculate the upslope area and it is of interest to
know if there are any algorithms more robust than others in uncertainty analysis. It is also possi-
ble that the uncertainty of hydrological models depends on the spatial structure of the terrain and
changes its behavior on different scales. This additional information can help to improve hydro-
logical applications which use results of geomorphometric analysis as input data. In GIScience,
questions are raised about the parameters of the uncertainty model itself (Heuvelink, 2006; Hengl
et al., 2010). If a Monte Carlo simulation approach is used, users have to know how many simulation
runs are sufficient for an adequate and valid result. As of today, such information is scantily available
in literature (e.g. Oksanen, 2006). If control points (true elevations) are available, correlograms or
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(semi)variograms can be fitted and a sequential Gaussian simulation (SGS) can be used to generate
appropriate error surfaces (e.g. Hengl et al., 2010). Typically control points are not available, but
an uncertainty assessment is still required. The process convolution approach is a possible solution
for this case (e.g. Oksanen and Sarjakoski, 2005a; Hebeler and Purves, 2008). Users are commonly
provided only by a global uncertainty estimator such as the RMSE (Root Mean Square Error) and the
spatial autocorrelation of the error must be estimated. However, a slightly different spatial autocor-
relation range can already affect the derived results. Analyzing the impact of different uncertainty
model parameters in process convolution approaches could also help to improve such uncertainty
analysis models. As already mentioned, the performance is a huge limitation in uncertainty analy-
sis. Recently, computer science researchers provided new computation approaches for established
geomorphometric algorithms (e.g. Tesfa et al., 2011; Zhan and Qin, 2011). A famous word in this
context is "parallelization". By exploiting the computation power of multi-processing systems, al-
gorithms can be accelerated significantly. These approaches can be very useful in compute intensive
tasks such as Monte Carlo simulations. Shortening the time needed for such analyses would proba-
bly make this optional step of an uncertainty assessment more attractive for hydrological users. Very
large LiDAR data DEMs may be processed in an appropriate time frame or more simulation runs
may be completed in the same time leading to more stable and thus more reliable results.

Based on the above described issues concerning the analysis of uncertainty and its impact on hydro-
logical models, I thought about a way to analyze the impact of DEM uncertainty on hydrological
models efficiently with as few limitations as possible and to analyze the influence of different uncer-
tainty model parameters. The first and main objective of this study is to provide a solution to how
an uncertainty model could be implemented to fit the requirements of a hydrological user working
with high resolution DEMs. Secondly, the implementation of the uncertainty model should con-
sider the spatial pattern of uncertainty in LiDAR data and make use of recently provided computing
approaches. Thirdly, the study should provide some uncertainty assessments of common hydro-
logical models and investigate the impact of different uncertainty model parameters, coarser spatial
resolution DEMs, and the terrain characteristics on the uncertainty analysis.

1.4 Research Questions and Hypotheses

Regarding the above mentioned objectives, the following key questions will be answered by the end
of this thesis:

Research question 1: Can the time needed for uncertainty analysis be reduced considerably with
parallelized algorithms?

Working hypothesis 1: Considerably lower execution times with an increasing number of parallel
processes will be expected.

Research question 2: How many realizations in a Monte Carlo simulation are sufficient for common
hydrological algorithms? How well do they converge with an increasing number of runs?

Working hypothesis 2: The results will vary spatially depending on the terrain characteristics.

Research question 3: How sensitively do the different hydrological algorithms behave in uncer-
tainty analysis?
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Working hypothesis 3: Multiple flow direction algorithms will be less sensitive than the single
flow direction algorithm and the hydrological algorithms will show the highest errors in flat ter-
rain.

Research question 4: What are the impacts of the input parameters of the uncertainty model on the
uncertainty analysis results?

Working hypothesis 4: Input parameters changing the error surface in the expected sensitive flat
areas will have an influence on the derived uncertainty assessments.

Research question 5: Do coarser spatial resolutions of DEMs change the findings of the above
asked research questions?

Working hypothesis 5: Major differences will not be expected.

1.5 Thesis Structure

The structure of the thesis reflects the conducted work. After the introduction, Chapter 2 describes
the related work and provides the necessary theoretical background for this thesis. Chapter 3 presents
the methodology. Besides the study area and related data, the integration of the uncertainty analysis
is presented. A short performance evaluation of the proposed uncertainty analysis approach is pre-
sented in Chapter 4. The results of the uncertainty analysis are evaluated and discussed in Chapter 5.
The following Chapter 6 discusses the acquired results in the context of recent research and answers
the research questions. Finally, the concluding remarks are given in Chapter 7, describing what this
study has achieved, providing the insights and giving an outlook for future work.
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2 Background

This chapter describes the relevant areas of research and explains the most important terminology
for this study. It includes eight sections starting with a general introduction to digital elevation mod-
els and a more detailed explanation of the elevation measurement technique LiDAR. Section 2.2
describes the current state of the art for DEM uncertainty analysis and provides detailed informa-
tion of the Monte Carlo simulation approach and some insights to geostatistics and random fields.
The next three sections are about various models derived from DEMs. Section 2.3 describes the
topographic attributes slope and convexity, whereas Section 2.4 introduces the hydrological algo-
rithms to compute flow directions, watersheds and stream networks. Section 4.2 characterizes the
compound indices and Section 2.6 gives an introduction to parallel computation focusing on the
multi-processing approach. The following Section 2.7 outlines some common applications in hy-
drology and finally, Section 2.8 introduces and illustrates the study area used for the analysis in this
thesis.

2.1 Digital Elevation Models

In geographic information science, land-surfaces are commonly presented as DEMs, which are rep-
resentations of the continuous surface (Hengl and Evans, 2009). This means that the elevation can
be calculated at any point of interest in the representation. DEMs can be classified into two types:
raster-based or vector-based DEMs (Weibel and Heller, 1991). In this thesis gridded DEMs are used,
because they have a very simple structure and thus are more suited for implementing geomorphome-
tric algorithms. A raster-based DEM consists of a rectangular matrix of heights, which means that
each cell can be represented by a x, y, z-triple. The x and y variables define the coordinate, whereas
the z variable contains the height information.

In general, there are three sources of DEM data: Ground survey techniques, topographic maps, and
remote sensing (Nelson et al., 2009). Three different remote sensing methods exist to derive DEMs:
stereo photogrammetry, radar interferometry, and laser altimetry. Traditionally, stereo pairs of aerial
photographs are used to derive DEMs at spatial resolutions between 15 and 100 m (Creed and Sass,
2011). The vertical error of this type of DEMs is in the range of 1-8 m. Radar interferometric tech-
niques using satellite platforms are able to provide global coverage of DEMs at 25-100 m spatial
resolution with vertical errors varying between 10 and 20 m (Creed and Sass, 2011). The latest ap-
proach to collect elevation data is laser altimetry, also known as light detection and ranging. LiDAR
provides sub-meter spatial resolution with a vertical accuracy of usually less than 50 cm, even in
dense vegetation areas (Andersen et al., 2005). The vertical error of LiDAR-derived DEMs under
various conditions has been studied extensively in literature (e.g. Andersen et al., 2005; Hodgson
et al., 2005; Joerg et al., 2012).
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Figure 2.1: The airborne laser scanning principle (Beraldin et al., 2010).

2.1.1 LiDAR

In the early 1990’s, the first commercial topographic mapping systems using LiDAR appeared (Nel-
son et al., 2009). According to Beraldin et al. (2010), an airborne laser scanner is based on six
principle components:

• Scanner assembly

• Airborne GPS antenna

• Inertial measurement unit (IMU)

• Control and data recording unit

• Operator laptop

• Flight management system

The LiDAR system is completed by a GPS ground station (Figure 2.1). The active sensor of the
LiDAR system transmits a signal towards the ground and records its reflection. The time delay
between the sending and recording of the signal can be used to measure the distance from the sensor
to the reflection point on the ground. A signal can be first reflected by the canopy, but still continue
downwards reflecting all objects it hits until it may finally reflect on the ground (Figure 2.2). It
is possible to record these multiple reflections of a signal, thus allowing to extract a digital terrain
model (DTM) and a digital surface model (DSM) from the collected point cloud of a LiDAR mission
using various interpolation methods. The last echoes are used for the DTM extraction, whereas the
first echoes are used for the DSM extraction (Beraldin et al., 2010).

2.1.2 Uncertainty in DEMs

As already mentioned, DEMs can be produced in different ways. All these methods are subject to
uncertainties. Measurement errors, interpolations of point data and digitization errors will affect the
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Figure 2.2: LiDAR based elevation measurements can produce multiple echoes: (a) discrete pulse;
(b) waveform; (c) digitized waveform (Beraldin et al., 2010).

accuracy of the DEM (Temme et al., 2009). According to Wise (2000) and Reuter et al. (2009), the
errors in DEMs can be classified into three groups:

• Artifacts, blunders or gross errors

• Systematic errors

• Random errors or noise

Artifacts can have a huge impact on the derived land-surface parameters. They can often be seen in
the data as unrealistic or missing values. It is important to be aware of them to avoid misinterpretation
of the derived results.
Systematic errors are caused by the collection method, e.g. LiDAR. They are almost not detectable in
a single DEM, but they can often be shown by comparing different DEM data of the same area (e.g.
from two different LiDAR missions). We have to rely on the people responsible for the generation
of DEMs correcting most of the systematic errors.
Random errors are inherent in any DEM and are caused by the measurement itself, i.e. signal noise.
The difference between the estimated and true value is often available for final DEM products and
indicated by the root mean square error of elevation (RMSE) (Wise, 2000):

RMSE =

√∑n
i=1[z(si)− zREF (si)]2

n
(2.1)

where z(si) refers to the ith interpolated elevation, zREF (si) refers to the ith known or measured
elevation and n is the number of samples.

These errors will propagate to the derived topographic parameters and hydrological models. The
impact is not easily predictable, small errors can have a huge impact, whereas large errors may cancel
out in other cases. DEMs with a high spatial resolution are often interpreted as less uncertain. This
assumption is wrong, even though DEMs with higher spatial resolution are better able to describe
small-scale landscape variations than low resolution DEMs, the potential to describe the landscape
mainly depends on the accuracy of the attribute value (Temme et al., 2009). There are numerous
studies which have analyzed the uncertainty of hydrological models derived from DEMs at different
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Figure 2.3: Geometrical measurement situation. In this case the elevation is systematically overes-
timated and the error depends on the angle of incidence (α) and the beam width (Joerg
et al., 2012).

scales, but only a few used LiDAR data. For example, Vaze et al. (2010) have resampled a 1 m
LiDAR based DEM to different coarser spatial resolutions and have compared the results. In their
conclusion, they propose to use high resolution DEMs or resampled DEMs over contour derived
DEMs to achieve more accurate results.

Spatial Structure of Error in DEMs derived from LiDAR Data

Schaer et al. (2007) showed that the scanning geometry has a large impact on the vertical accuracy.
Figure 2.3 illustrates the error occurring in steeper slopes. The larger the incident angle and the
higher the slope, the stronger the vertical accuracy degradation (Lichti and Skaloud, 2010). In ad-
dition to the slope, the canopy also has an impact on the accuracy of the derived DEM. At large
incident angles or in dense canopy areas, the signal reflects at the canopy without hitting the ground.
The penetration ability of a signal also directly depends on the footprint size; smaller footprints are
able to hit the ground more often in dense vegetation areas. This results in a higher uncertainty in
dense vegetation areas and steep slopes compared to flat and vegetation free terrain (Joerg et al.,
2012).

2.2 Modeling Uncertainty

In geomorphometry, geostatistical modeling is used to analyze the propagation of DEM errors. The
following theoretical background has been discussed by Oksanen (2006); Temme et al. (2009). Con-
sidering a DEM with the spatial domain of interest D:

z∗ = (z∗(s) | s ∈ D) (2.2)
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The true elevation Z is uncertain. The regionalized variable theory can be applied to express the
error (Burrough and McDonnell, 1998). The true elevation Z is defined as a sum of the structural
components with a constant trend z∗(s), a random but spatially correlated component ε′(s) and a
spatially uncorrelated random noise term ε′′:

Z(s) = z∗(s) + ε′(s) + ε′′ (2.3)

The true error ε is unknown and can only be quantified by a probability distribution. This is the
reason why a probabilistic approach is used. We assume that ε is normally distributed and that the
DEM is free of systematic errors or that the systematic error is constant over the spatial domain.
Thus, the normal distribution parameter mean µε is defined as zero. The parameter standard devia-
tion δε represents the random error in z∗(s). As discussed in Section 2.1, the error can vary spatially.
Therefore, the spatial domain can be divided into subregions with different values for δε (Temme
et al., 2009).

The errors in DEMs are spatially autocorrelated. If an elevation at some location is underestimated,
all of its neighbors are usually underestimated too. This is a result of how DEMs are produced.
Correlograms ρε(|h|) or (semi)variograms γε(|h|) can be used to characterize the degree of spatial
correlation between ε(s) and ε(s + h) if it only depends on the distance of vector h between the
locations. This means that the correlation is independent of the direction of vector h (i.e. isotropy)
(Temme et al., 2009). There are many methods in geostatistics for the estimation of correlograms
or (semi)variograms for point datasets (Goovaerts, 1997). One method for obtaining the spatial
autocorrelation range D is through analysis of the sill of a (semi)variogram of DEM error (Temme
et al., 2009). The problem is that data about the spatial structure of error is often not available.
Without extensive ground truth, the spatial autocorrelation of the error can be subjective and cannot
be determined according to Wechsler (2007).

In GIS operations, the errors in the input data will propagate to the output of the analysis. Users
may rarely pay attention to this problem, although they may be aware of it. To assess the quality
of the analysis, uncertainties have to be defined and explored through an uncertainty propagation
analysis. The common practice in uncertainty analysis has been to use the Monte Carlo method
or the analytical approach (e.g. Heuvelink et al., 1989; Florinsky, 1998a; Kyriakidis et al., 1999;
Wise, 2000). The Monte Carlo approach is seen as more versatile than the analytical approach for
solving real world problems of uncertainty (Zhang and Goodchild, 2002). For example, Raaflaub and
Collins (2006) have stated that the analytical method is unsuitable for local derivatives such as the
D8 flow routing algorithm. For more information about the analytical method, readers are referred
to Schneider (2000). The next section will describe how error propagation in spatial modeling can
be computed using the Monte Carlo simulation approach.

2.2.1 Monte Carlo Simulation

The Monte Carlo method is the most often used error propagation method because it is flexible,
generic and intuitively appealing (Temme et al., 2009). In a Monte Carlo simulation, the original
DEM is recognized as only one possible realization of the real-world topography. With a Monte
Carlo simulation multiple realizations are generated and used to quantify DEM uncertainty with

11



Chapter 2 | Background

statistical evaluations (e.g. Oksanen and Sarjakoski, 2005b,a; Oksanen, 2006; Wechsler, 2007). After
Heuvelink (1998), the error propagation problem can be formulated as follows:

U = g(A1, ..., An) (2.4)

where U is the output of a GIS operation g on n different inputs Ai. The objective of the uncertainty
analysis is to determine the uncertainty in the output U , given the operation g and the uncertain
inputs Ai. The operation g could be a slope algorithm, whereas the input Ai could be a DEM. In
error propagation analysis of digital terrain analysis usually only the DEM is taken as an uncertain
input (e.g. Oksanen, 2006; Wechsler, 2007; Hengl et al., 2010). The Monte Carlo method computes
U multiple times with inputs ai which are randomly sampled from their joint probability distribution
of Ai. According to Temme et al. (2009), the Monte Carlo simulation consists of the following
steps:

(1) repeat N times:

(a) generate a random realization ai from the joint probability distribution of each Ai

(b) for each ai, compute and store the output u = g(ai, ..., an)

(2) compute and store sample statistics from the N outputs u

To generate a random sample ai ofAi, a pseudo random number generator is used (e.g. Van Niel and
Laffan, 2003). Because of the joint probability distribution, higher numbers of realizations N will
lead to more stable results. How large the number of realizations should be depends on the accuracy
requirements of the obtained result. According to Brown and Heuvelink (2006), the accuracy of
the Monte Carlo approach is proportional to the square root of the number of runs N . This means
that any degree of accuracy can be reached with a large enough number of realizations N , but also
that the computation time of an uncertainty analysis quadruples if we want to double the accuracy.
Heuvelink (1998) came to the conclusion that in most cases, N should be at least 100 and that less
then 20 simulations are insufficient. These numbers were proposed a long time ago on limiting
computers and coarse resolution DEMs. A more recent study by Oksanen (2006) investigated the
convergence of watersheds, coming to the conclusion that in these cases, the analysis appeared to
converge after 500 simulation runs.

2.2.2 Geostatistics and Random Fields

The operations g usually involve spatial interactions. This requires that the spatially distributed
uncertain inputs are generated spatially autocorrelated. Two common methods exist for stochas-
tic spatial simulation. One is the sequential Gaussian simulation which is based on simple kriging
(Goovaerts, 1997). The other one, known as process convolution, is based on spatial moving av-
erages. The idea is to increase the amount of spatial autocorrelation in the random field of an
uncorrelated noise by applying a low-pass filter (Cressie and Pavlicová, 2002). A random field is
illustrated in Figure 2.4. A selection of various moving window average approaches has been dis-
cussed by Wechsler (2007). SGS is more complex and computationally more demanding and needs
control points to fit a correlogram or (semi)variogram. Recently, Hengl et al. (2010) proposed a
solution for stream network uncertainty analysis based on SGS. Figure 2.5 illustrates their approach.
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Figure 2.4: A 200x200 random field generated with an exponential correlogram (mean = 0, variance
= 1, correlation range = 50 cells) (Ravalec et al., 2000).

Because of the lack of control points in most cases, an appropriate (semi)variogram cannot be fitted
and a process convolution approach is the only way to produce appropriate error surfaces. Process
convolution is a special case of moving window averages, where the spatial structure of the random
field is controlled by a correlogram. The process convolution’s objective is to filter an uncorrelated
Gaussian noise using a unimodal and symmetric kernel k that produces a match between the a pri-
ori defined correlogram and the correlogram of the resulting correlated random field (Kern, 2000).
Random fields have been discussed extensively in literature (e.g. Abrahamsen, 1997; Ravalec et al.,
2000; Higdon, 2002) and were used successfully in DEM uncertainty studies (e.g. Oksanen and
Sarjakoski, 2005a; Oksanen, 2006; Wechsler, 2007; Hebeler and Purves, 2008).
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Figure 2.5: Analyzing the uncertainty of stream networks with SGS: (a) the DEM uncertainty is not
considered, (b) considering the DEM uncertainty with a Monte Carlo simulation using
the SGS approach (Hengl et al., 2010).

2.3 Topographic Attributes

This section gives a short overview over the basic land-surface parameters used in this thesis.
These parameters can be derived directly from a DEM without further knowledge of the repre-
sented area. Various topographic attributes are required for hydrological modeling (e.g. Callow
et al., 2007).

2.3.1 Slope

The slope is derived from the first partial derivatives of its surface and thus belongs to the functions of
first derivatives. Usually GIS software provides a slope function based on the average neighborhood
approach (ANS). With the ANS method the slope is estimated by calculating the rate of change in
elevation over the distance from the central cell to its eight neighbors using an average maximum
approach (Burrough and McDonnell, 1998). A 3x3 window is created to determine the average rate
of change in elevation along lateral directions (δZ/δY ) and the horizontal direction (δZ/δX) from
the central cell (Irfan et al., 2012):

ANS(e) = arctan

√( δZ
δX

)2

+

(
δZ

δY

)2
 (2.5)

with:
δZ

δX
=

(Zc + 2∆Zf + Zi)− (Za + 2∆Zd + Zg)

8∆x
(2.6)

δZ

δY
=

(Zg + 2∆Zh + Zi)− (Za + 2∆Zb + Zc)

8∆y
(2.7)
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Figure 2.6: A 3x3 window used to calculate the slope for the central cell e (Irfan et al., 2012).

Zj=a...i,6=e represents the eight neighboring cells and ∆x and ∆y specify the cell dimensions and
are usually equal (Figure 2.6).

According to Irfan et al. (2012), the downhill slope method (DHS) should be preferred over the
ANS method if a hydrological analysis is performed on high-resolution LiDAR data. The ANS
method generally overestimates the slope in areas with low steepness and underestimates areas with
high steepness. In addition, the differences between the two methods increase especially in high-
resolution DEMs. Hence, the DHS is usually the standard slope method used by flow routing al-
gorithms such as the D8 to determine the flow directions. The DHS method calculates the slope
in one of eight directions from the central cell with the maximum elevation drop (Zhang et al.,
1999):

DHS(e) = arctan

[
max

(
Ze − Zj
Lj

)]
(2.8)

Ze ist the central cell while Zj specifies the neighboring cell with the maximum drop. Lj is ∆x in
b, d, f and h direction and

√
2∆x in a, c, g and i direction (Figure 2.6).

All hydrological models extracted from a DEM depend directly on the local or the incorporated
influence of the upslope slopes (e.g. in flow accumulation calculations). Hence uncertainty in slope
will affect the derived hydrological models (e.g. Oksanen and Sarjakoski, 2005b; Wechsler, 2007).
Unless otherwise noted, the DHS method was used for the calculation of slope in our study.

2.3.2 Concavity and Convexity

The parameter describing the concavity and convexity of a surface is also often called curvature. To
calculate the curvature, usually second derivatives are involved. Olaya (2009) provides a discussion
of various curvature algorithms. In this thesis the convexity is not used for hydrological modeling,
instead it is only needed for statistical evaluations of uncertainty. Thus, a simple approximation of
the convexity as it was used by Hengl et al. (2010) is sufficient. This approach is based on a 5x5
neighborhood, where the mean value of the 5x5 neighborhood is subtracted from the value of the
center cell e. DEM cells located in a convex relief have values larger than zero and DEM cells
located in a concave relief have values smaller than zero. The convexity can also have an influence
on the accuracy of hydrological parameters derived from DEMs. For example, Hengl et al. (2010)
showed that stream extraction is slightly more uncertain in convex areas.
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2.3.3 Roughness

Roughness, which is defined by both relief (Z) and spacing (X,Y ), can be represented by such
measures of spatial intricacy as drainage density and changes in sign of slope aspect or curvature per
unit area (Iwahashi and Pike, 2007). It is also known as texture to emphasize its fine versus coarse
expression of topographic spacing. There are different ways to calculate the roughness of a surface.
The formula used to calculate the roughness in this thesis is the same as used by Iwahashi and Pike
(2007). In this approach, roughness is computed by extracting grid cells that outline the distribution
of valleys and ridges in the DEM. Differences between an original DEM and a second DEM derived
by filtering the original DEM with a median filter can be used to identify these cells. More details
can be found in the publication of Iwahashi and Pike (2007). So far, the impact of terrain roughness
on DEM derived parameters has not yet been extensively analyzed in literature.

2.4 Hydrological Algorithms

In hydrology, the movement, quality and distribution of water are the main objectives of studies.
Primarily, the flow of water is driven by the gravity and to some degree by the material it flows
through. The effect of gravity can easily be modeled with DEMs, the effect of the materials is rather
difficult to include in hydrological models (Gruber and Peckham, 2009). This section introduces the
hydrological algorithms used for the uncertainty analysis in this thesis, starting with the flow routing
algorithms, followed by a description of watersheds and stream networks.

2.4.1 Flow Routing Algorithms

To compute common hydrological models on a gridded DEM, the following two steps are usually
necessary:

• Determination of flow direction for each cell in the gridded DEM

• Computation of the flow distribution from each cell to its neighboring cells

The flow routing algorithms can be classified into two generic approaches (Figure 2.7):

• Single Flow Direction (SFD) algorithms, where the total amount of accumulated area, also
called upslope area of a cell, is distributed to only one neighboring cell (O’Callaghan and
Mark, 1984).

• Multi Flow Direction (MFD) algorithms, where the total amount of accumulated area of a cell
can be distributed to multiple neighbors according to a predefined rule (Quinn et al., 1991;
Freeman, 1991; Tarboton, 1997).

A critical issue is the assignment of flow directions over flat areas and depressions in the DEMs.
Many methods exist to handle this issue. Most of them are removing depressions by increasing the
elevation of the cells located in a depression until the sink is filled and then they are routing the flow
over the flat area to the next lower cell (e.g. O’Callaghan and Mark, 1984; Tarboton, 1997; Planchon
and Darboux, 2002; Wang and Liu, 2006). Other methods, after filling the sinks, create a gradient
in the flat areas to allow flow routing (e.g. Grimaldi et al., 2007; Santini et al., 2009). Recently,
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Figure 2.7: Classification of the most common flow routing algorithms. Reprinted from Zhou and
Liu (2002).

Figure 2.8: Computation steps of the D8 flow routing algorithm.

Magalhães et al. (2012) proposed a new approach which surrounds the terrain with water and then
raises the water step by step, filling the depressions when the water reaches their boundary. This
approach is significantly faster than previously provided methods.

D8

The D8 flow routing algorithm was introduced in the late 1980’s by O’Callaghan and Mark (1984).
Since then, the development and use of hydrological land-surface parameters has gained importance.
The D8 flow routing algorithm is the most basic one (Gruber and Peckham, 2009). The flow is
always passed to the one of the eight neighboring cells with the steepest downslope gradient (Figure
2.8). Hence, the D8 algorithm provides one flow in one of the eight directions and belongs to
the single flow direction algorithms. The D8 algorithm is suitable to model convergent flow but
will fail to model divergent flow. The D8 algorithm also often tends to produce parallel flow (e.g.
Freeman, 1991). However, despite its limitations, the D8 algorithm is useful for many hydrological
applications such as extracting stream networks and is implemented in most GIS software packages
(Gruber and Peckham, 2009). Because the D8 algorithm assigns only one direction, it should behave
very sensitive to DEM uncertainties.
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Figure 2.9: 3x3 neighborhood with the middle point m and the triangular facets to its neighboring
cells midpoints pi (Seibert and McGlynn, 2007).

D∞

Tarboton (1997) proposed a multiple flow direction approach where one flow direction is assigned
to the cell of interest. In a 3x3 neighborhood, an infinite number of directions varying between 0
and 2π are possible. Eight planar triangular facets are constructed around the middle point M of
the center cell (Figure 2.9). The flow direction is defined as the steepest downward slope on planar
triangular facets. For each triangular facet the direction and steepest gradient is computed. The
normal vector of a triangular facet is defined as (Seibert and McGlynn, 2007):

n =



nx

ny

nz


=



(z1y2 − z2y1)

(z1x2 − z2x1)

(y1x2 − y2x1)


(2.9)

where zi defines the elevation difference between the midpoint m of the 3x3 neighborhood and the
neighboring cells midpoints pi, and xi respectively yi denote the difference in x and y distance.
Based on these directions, the divergent flow proportions d1 and d2 can be computed as follows
(Gruber and Peckham, 2009):

d1 =
4 · α2

π
(2.10)

d2 =
4 · α1

π
(2.11)

The angles α are measured on a horizontal planar surface between the flow direction vector and the
vectors from the center cell to the two neighboring cells of the flow direction vector (Figure 2.10).
This approach allows to model disperse flow in some way (up to two cells which are neighbors) and
should be more robust according to DEM uncertainties compared to the D8 flow routing algorithm,
but it cannot model disperse flow of complete different directions (e.g. to cell 6 and 3, see Figure
2.10).
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Figure 2.10: The concept of D∞. A 3x3 neighborhood is given and numbered from 1 to 8. The
centers are black points and connected. The arrow specifies the flow direction along
with its apportioned angles α1 and α2. In this case, the flow is distributed between the
two cells 2 and 3 (Tarboton, 1997).

MD8

In multiple flow direction algorithms, the cell with the steepest drop, among all neighboring cells,
will receive more flow. Quinn et al. (1991) proposed the following equation to model the flow
partition:

di =
(tanβi)

p · Li
8∑
j=1

(tanβj)p · Lj
(2.12)

The fraction of flow into the ith neighboring cell is defined by di. The slope gradient is specified by
tanβi. The flow partition exponent is p and Li is the effective contour length. Quinn et al. (1991)
proposed that Li is 0.5 for cells in cardinal directions and 0.354 for cells in diagonal directions.
The parameter p determines the amount of divergence. Thus the larger p is, the more similar the
MD8 is to a single flow direction approach. This partition exponent p was fixed in analysis over an
entire study area. But a fixed partition exponent approach cannot effectively model the impact of
local terrain conditions on the dispersion of local flow. Qin et al. (2007) improved this method, by
allowing the exponent to adapt to the local terrain conditions. The proposed equation to calculate
the partition exponent is as follows:

f(e) = 8.9 ·min(e, 1) + 1.1 (2.13)

where e defines the maximum slope between all neighbors and the center cell. The new MD8
algorithm equation is then expressed as:

di =
(tanβi)

f(e) · Li
8∑
j=1

(tanβj)f(e) · Lj
(2.14)

where f(e) is computed from Equation 2.13.
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MD∞

Seibert and McGlynn (2007) proposed a new triangular multiple flow direction algorithm which
combines the advantages of the multiple flow direction algorithm MD8 (Quinn et al., 1991) with the
triangular facets approach as used in the D∞ algorithm (Tarboton, 1997). First, the determination of
the flow directions is needed to compute the portion of accumulated area that is distributed to each of
the neighboring cells. This is done with the triangular facets approach proposed by Tarboton (1997).
Eight planar triangular facets are constructed and for each triangular facet the direction and steepest
gradient is computed (see Tarboton, 1997). The direction d and slope s of the triangular facet can
then be computed as follows (Seibert and McGlynn, 2007):

d =



0, nx = 0, ny ≥ 0

π, nx = 0, ny < 0

π
2 − arctan

(
ny

nx

)
, nx > 0

3π
2 − arctan

(
ny

nx

)
, nx < 0

(2.15)

s = −tan

arccos
 nz√

n2x + n2y + n2z

 (2.16)

The accumulated area of the center cell can now be distributed downslope on the basis of the gradi-
ents. As Quinn et al. (1995) have proposed, a flow partition exponent can be defined to adjust the
weights of steeper slopes.

The MD∞ is an extension of the D∞ approach proposed by Tarboton (1997). Results often only
differ in situations where there is more than one locally steepest downslope direction (e.g. on di-
vergent hillslopes). However, the advantage of the MD∞ algorithm is that unrealistic dispersion
on planar or concave hillslopes is avoided, whereas multiple flow directions are allowed on convex
hillslopes (Seibert and McGlynn, 2007). Thus, Seibert and McGlynn (2007) have come to the con-
clusion that the MD∞ algorithm is more appropriate for a range of hydrological applications. Due
to its calculation it should also behave more robust according to DEM uncertainties compared to the
D∞ method.

2.4.2 Watersheds and Stream Networks

Watersheds are also known as catchment areas or drainage basins and describe an extent of land-
surface where water from rain, melting snow or other sources converges to a single point, often
called outlet or pour point. The watershed contains many streams that convey the water within the
area covered by the basin and channels them to the pour point. Watersheds are separated from adja-
cent basins by a geographical barrier such as a ridge, hill or mountain. A watershed can be further
divided into multiple sub-watersheds. Each link of a stream network channels the water of a spe-
cific area to its pour point (the end of the link) and thus defines its sub-watershed (DeBarry, 2004).
Stream networks and watersheds can be extracted from a DEM after the D8 flow routing algorithm
has been performed. If a cell reaches a certain threshold of accumulated area, it is defined as a part
of the stream network and all cells draining to the same pour point belong to the same watershed.
Stream networks can also be divided into segments which are hierarchically ordered (Strahler order)
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(Strahler, 1952). Each time two streams come together, the order is increased by one. Recently,
some Monte Carlo based methods were proposed to analyze the uncertainty of stream network ex-
traction (e.g. Hengl et al., 2010; Achour et al., 2012). They showed that stream networks can vary
spatially due to uncertainties in DEMs. Errors were mainly observed in convex areas and for low
Strahler orders. The uncertainty of watersheds has also been investigated; Hebeler and Purves (2009)
showed that the derivation of watersheds and related statistics vary as a result of uncertainty, whereas
Oksanen and Sarjakoski (2005b) stated that the variation of the derived watersheds depends less on
the uncertainty model parameters such as the degree of spatial autocorrelation than on constrained
derivatives such as slope and aspect.

2.5 Compound Indices

Compound indices use elements derived directly from the DEM (e.g. slope) to generate some phys-
ically meaningful property which varies in space (Goodchild et al., 1996). The compound indices
discussed in this thesis are the topographic wetness index (TWI), the stream power index (SPI) and
the sediment transport index (STI). Many other indices using accumulated flow and related to soil
erosion and landslide initiation are proposed and discussed in literature (e.g. Moore and Burch, 1986;
Montgomery and W.E., 1994). Moore et al. (1991) and Wilson and Gallant (2000) further provide
an overview and a more detailed discussion. All compound indices depend on the accumulated
flow and the local slope. The impact of DEM uncertainty on compound indices was investigated.
Wechsler (2007) and Temme et al. (2009), for example, provided uncertainty assessments for TWI
computations.

2.5.1 Topographic Wetness Index

The TWI was first introduced by Beven and Kirkby (1979). It is a widely used compound index
applied in precision agriculture (Qin et al., 2011). The TWI is designed for modeling the spatial
distribution of soil moisture and surface saturation and to quantify the effect of local topography
on hydrological processes. This index describes the tendency of a cell to accumulate water (Gruber
and Peckham, 2009). Areas having similar TWI values are assumed to have a similar hydrological
response to rainfall if other environmental conditions are the same (Qin et al., 2011). The TWI is
defined as follows:

TWI = ln

(
Ac
tanβ

)
(2.17)

whereAc defines the upslope area per unit contour length, also called specific catchment area (SCA)
and tanβ specifies the local slope angle. The TWI is based on a mass-balance consideration where
the two parameters local slope angle and drainage contour length describe the tendency to evacuate
water, whereas the total flow accumulation is a parameter of the tendency to receive water. The
index is scaled to a more condensed and linear range by the natural algorithm (Gruber and Peckham,
2009).
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2.5.2 Stream Power Index

The SPI is a measure for the erosive power of overland flow and related landscape processes. As
specific catchment area and slope steepness increase, the amount of water contributed by upslope
areas and the velocity of water flow increase. Hence stream power index and erosion risk increase.
Stream power index controls potential erosive power of overland flows, thickness of soil horizons,
organic matter, pH, silt and sand content, and plant cover distribution (Moore et al., 1993). The SPI
is defined as follows:

SPI = Ac · tanβ (2.18)

where Ac defines the upslope area per unit contour length and tanβ specifies the local slope gradi-
ent.

2.5.3 Sediment Transport Index

The sediment transport index characterizes the process of erosion and deposition (see Burrough and
McDonnell, 1998). The two-dimensional catchment area is used instead of the one-dimensional
slope length factor as in the Universal Soil Loss Equation (USLE). The STI equation is given by
Burrough and McDonnell (1998):

STI =

(
Ac

22.13

)0.6

·
(
sinβ

0.0896

)1.3

(2.19)

where Ac defines the upslope area per unit contour length and sinβ specifies the local slope gradi-
ent.

2.6 Parallel Computation

As a result of improved DEM production techniques such as LiDAR, availability of large high reso-
lution DEMs is increasing rapidly. Vaze et al. (2010) have analyzed the impact of different resolu-
tion DEMs on hydrological models and the loss of accuracy and reliability of results as one moves
to coarser resolution DEMs, suggesting the use of high resolution DEMs for hydrological model-
ing. But high resolution DEMs increase the computation time of hydrological models dramatically
compared to coarse resolution DEMs. In addition, the Monte Carlo approach used for uncertainty
analysis is also very computationally intensive.

The recent development in computer technology and the wide availability of multi-core computers
allow to use parallel processing to analyze large DEMs and Monte Carlo based uncertainty analysis
in an appropriate time frame. Tesfa et al. (2011) proposed a multi-processing approach to extract
hydrological parameters from DEMs using the Messaging Passing Interface (MPI) for the paral-
lelization of the algorithms. MPI is a common approach in scientific applications to distribute the
execution of a program over many processors and even computers in high performance computing
(HPC) environments. A program’s execution task is divided into different parts and each part is
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assigned to a separate processor or processor core. Messages are periodically sent between the pro-
cesses to coordinate the processing task. This allows an efficient and fast completion of the task
(Kumar, 2001).

Besides the multi processing approach, the recently emerged application of the graphics processing
units (GPUs) for geocomputation algorithms provides a possibility to parallelize the demanding
algorithms. The proposed methods (e.g. Ortega and Rueda, 2010; Zhan and Qin, 2011) are based on
compute unified device architecture (CUDA) developed by NVIDIA1 and supported by their graphic
cards. In general-purpose computing on graphics processing units (GPGPU) based applications,
the GPU computes the task instead of the CPU. In this thesis we stick with the multi-processing
approach. For more details about GPGPU readers are referred to Hwu (2011).

2.7 Applications in Hydrology

Many hydrological applications using digital terrain analysis exist. A review of some applications
of DEMs in hydrology was provided by Hengl and MacMillan (2009). Unfortunately, it would
go beyond the scope of this section to cover every application. Thus, one particular example of a
hydropedological application is discussed in more detail.

Seibert et al. (2007) investigated the topographic influence on soil properties in boreal forests. Ac-
cording to them, topography is a major factor controlling hydrological and soil processes at the
landscape scale. The relationship between topography and soil characteristics can be measured
quantitatively using DEMs and topographic indices computed from these DEMs. To facilitate this,
Seibert et al. (2007) used 4000 sample plots distributed over their study site and for each sample
plot, they computed the TWI. They found several significant correlations between the TWI and
some soil properties. After Seibert et al. (2007), these correlations confirmed the importance of to-
pographic influences on soil properties although they observed a considerable scatter in their data
which they attributed to the heterogeneity in the large dataset and the coarse resolution of the DEM
(50 m). However, this scatter could also be a result of DEM uncertainty which was not noted in this
study.

2.8 Alpthal - The Study Area

The WSL institute2 (Swiss Federal Institute for Forest, Snow and Landscape Research) has been
studying the forest hydrology in Alpthal (Switzerland, Canton Schwyz) since 1968, when Hans
Keller initiated the research with the construction of the first hydrological and climatic measurement
station. Since then, hydrological input and output data has been continuously collected in this rel-
atively small catchment area. In the beginning, researchers tried to determine the balance between
rainfall and runoff in forested watersheds. Later on, the water quality of groundwater, runoff and
rainfall were also measured. The study of the transport of sediments in mountain torrents started in
the Alpthal in the 1980’s. As of today, such long-term studies are very important for the study of
qualitative, quantitative and biochemical changes in hydrological systems (Burch, 1994). For more
details about the WSL institute, readers are referred to Hegg et al. (2006).

1http://www.nvidia.com/object/cuda_home_new.html
2http://www.wsl.ch/
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Figure 2.11: LiDAR hillshade of the Alpthal (2 m resolution). The focus of this thesis lies on the
study area Zwackentobel marked with a red boundary.

2.8.1 Topography and Climate

The hydrological study areas are located in the southern part of the Alpthal (Figure 2.11). The valley
bottom of the averaging 3 to 4 km wide valley lies between 900 and 1100 m a.s.l.. While the valley
is well-defined by ridges in the western and eastern part, the Grosse Mythen and the Kleine Mythen
build a barrier in the southern and southwestern part and the valley is open to the north. In general the
valley is very steep and the ground very wet, leading to strong erosion processes (Burch, 1994). The
annual precipitation of 2000 mm is significantly higher than the average observed in Switzerland.
This is a result of the location in a basin with a high tendency of heavy rainfall events at the bottom
of the Mythen.

2.8.2 The Specific Study Area

The physical geography H2K3 unit of the University of Zurich has some ongoing monitoring projects
in the Zwackentobel of the Alpthal (Figures 2.12 and 2.13). They measure the water throughput
and biochemical properties of the water. These measurements are used for research of catchment
hydrology and climate impacts on the water cycle.

3http://www.geo.uzh.ch/en/units/h2k
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Figure 2.12: Orthophoto of the study area Zwackentobel of the Alpthal (2 m resolution).
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Figure 2.13: Hillshade of the study area Zwackentobel of the Alpthal (2 m resolution).
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3 Integrating Uncertainty Analysis in

TauDEM

This chapter describes the methods to analyze the uncertainty propagation in digital terrain analy-
sis. Section 3.1 presents the software tools used to achieve the results of this thesis. Section 3.2
introduces TauDEM (terrain analysis using digital elevation models), which provides the basis for
the proposed uncertainty analysis approach. TauDEM is a suite of digital terrain analysis tools for
the extraction and analysis of hydrological information from topography as represented by a DEM.
Section 3.3 provides a detailed report about the DEMs used in this study. Section 3.4 summarizes
the requirements which the proposed approach should meet. Section 3.5 presents the approach used
to visualize and evaluate the results of the error propagation analysis. The following Section 3.6
provides detailed information about the uncertainty analysis approach with TauDEM. The focus lies
on the description of the uncertainty model matching the particular characteristics of LiDAR derived
DEMs and the implementation of the most important algorithms.

The method of analysis error propagation is based on the flow chart shown in Figure 3.1. First,
the input data is generated in a classical GIS. Then, the uncertainty model produces appropriate
error surfaces which are applied to the original input DEM in each Monte Carlo simulation run.
On the produced simulated DEMs, various hydrological models can be applied. Each Monte Carlo
simulation run results in one realization representing a hydrological product (e.g. TWI). The sum
of the realizations can be used to derive several statistical estimators such as the standard deviation
describing the uncertainty of the computed product.
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Figure 3.1: Design-overview of the error propagation analysis using the Monte Carlo simulation
approach.
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3.1 Software Tools

In this thesis a combination of programming, statistical computing, remote sensing, and GIS soft-
ware is used to assess the DEM uncertainty and its impact on the derived hydrological models. The
implementation is based on the programming language C++, because it is a very powerful language
when it comes to the implementation of efficient and parallelized applications. Moreover, TauDEM
is already written in C++. The programming software used is Microsofts Visual Studio 2010 Pre-
mium1. As a starting point, the hydrological algorithm suite TauDEM 5.0 with the multi processing
interface MPI was used, which are both described in more detail in the following Section 3.2. R is
the command-based environment for statistical computing and freely available (Team, 2009). R is
used for plots and histograms of the data and the results of the study. ArcGIS2 is a commercial GIS
software by ESRI. ArcGIS 10 is used to manage and visualize the raster data. Also, the commercial
remote sensing software package ERDAS IMAGINE3 from Intergraph is used to extract a canopy
mask for the study site from a multispectral dataset.

3.2 TauDEM - The Starting Point

Developing an uncertainty analysis method for hydrological products from scratch would have con-
sumed too much time. There already are very efficient algorithms related to this topic (e.g. Tesfa
et al., 2011). Realizing the uncertainty analysis with common GIS software seemed to be too ineffi-
cient. Many provided approaches suffer from performance issues or do not provide the functionality
to answer the research questions. The uncertainty analysis approach based on SAGA4/RSAGA5

proposed by Hengl et al. (2010), for example, is limited to very small DEMs and thus less suitable
for error propagation with LiDAR data. Although the performance issues may also be related to the
SGS approach used for geostatistical simulations. Hence, TauDEM was selected as the basis for the
uncertainty analysis approach, because it provides efficient algorithms combined with a powerful
parallelization approach. The source code of TauDEM was freely available6.

TauDEM exploits the power of multi-core processors and multi-processing systems with a MPI
based parallelization approach proposed by Tesfa et al. (2011). According to Tesfa et al. (2011),
hydrological parameters are initially extracted from DEMs using recursive serial algorithms which
are computationally demanding. Especially with large DEM datasets, recursive algorithms can be
very memory intensive. Stack overflows may occur rendering the computation of large datasets
impossible, because the entire DEM is held in RAM (random-access memory) and the function state
is saved on the stack at each recursive iteration. To overcome this limitation, Tesfa et al. (2011)
proposed MPI parallel algorithms which are available in the TauDEM suite. This approach divides
the spatial domain of the DEM into separate partitions running in separate processes on potentially
separate processors. To avoid recursion, a queue based approach is used to compute the grid cells in
the appropriate order. TauDEM provides the following features7:

1http://www.microsoft.com/visualstudio/en-gb/products/2010-editions/premium
2http://www.esri.com/software/arcgis
3http://geospatial.intergraph.com/products/ERDASIMAGINE/ERDASIMAGINE/Details.aspx
4http://www.saga-gis.org/en/index.html
5http://cran.r-project.org/web/packages/RSAGA/index.html
6http://hydrology.usu.edu/taudem/taudem5.0/downloads.html
7http://hydrology.usu.edu/taudem/taudem5.0/
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• Development of hydrologically correct (pit removed) DEMs using the flooding approach

• Calculation of flow paths (directions) and slopes

• Calculation of contributing area using single and multiple flow direction methods

• Multiple methods for the delineation of stream networks including topographic form-based
methods sensitive to spatially variable drainage density

• Objective methods for determination of the channel network delineation threshold based on
stream drops

• Delineation of watersheds and subwatersheds draining to each stream segment and association
between watershed and segment attributes to set up hydrological models

• Some specialized functions for terrain analysis

The TauDEM suite runs under Windows and Unix systems (32/64 bit) and is command line based.
In order for TauDEM to work properly, the Argonne National Laboratory’s MPICH2 library8 must
be installed on the system. This is needed for the MPI based algorithms and is also freely available.
In addition, TauDEM works only with the uncompressed GeoTIFF9 raster format.

3.3 Data

The study area Alpthal has already been introduced in Section 2.8. This section explores the DEM
data itself of the study area used in this thesis (Zwackentobel, Figure 2.13). The DEM is generated
from LiDAR data and available from Swisstopo10. The so called swissALTI3D dataset was last up-
dated in March 2012. It has a 2 m spatial resolution and covers the whole of Switzerland (Swisstopo,
2012). Below 2000 m a.s.l., the vertical accuracy is ± 0.5 m 1σ and above 2000 m a.s.l. ± 3 to 8
m 1σ, because above 2000 m a.s.l. the swissALTI3D dataset uses the DHM25 DEM (25 m spatial
resolution) which was resampled to a 2 m spatial resolution. The DHM25 was derived from topo-
graphic maps in the 1990’s. The perimeter for this thesis covers the Zwackentobel, which is in the
southern part of the Alpthal. The raster information is given in Table 3.1 and various topographic
attributes of the Zwackentobel are shown in Figure B.1.

The elevation of the study site ranges between 1076 and 1656 m with an average and standard
deviation of 1380 respectively 130 m. The study area covers an area of approximately 7.9 km2.
Because the elevation does not exceed 2000 m a.s.l., the vertical accuracy indicated by Swisstopo
(2012) remains the same for all grid cells ( ± 0.5 m 1σ).

To improve the uncertainty model according to Section 2.1, a canopy mask of the study site is
needed. There are multiple ways to get such a mask. Either such data is available, we manually
digitize it from an orthophoto in a GIS or we classify the canopy automatically with a remote sens-
ing software from a multispectral dataset. The last approach was used, because a 25 m resolution
multispectral Landsat11 dataset is freely available for the whole of Switzerland from Swisstopo12.
A quick unsupervised classification of the dataset is adequate enough for a sufficient classification

8http://www.mcs.anl.gov/research/projects/mpich2/
9http://trac.osgeo.org/geotiff/

10http://www.swisstopo.admin.ch/
11http://www.landsat.org/
12http://www.swisstopo.admin.ch/internet/swisstopo/de/home/products/images/ortho/landsat.html
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Property Value

Columns and Rows 1282, 1540

Cellsize (X, Y) 2, 2

Compression None

Uncompressed Size 7.53 MB

Format TIFF

Pixel Type floating point

Spatial Reference CH1903+_LV95

Table 3.1: Raster information of the Zwackentobel terrain (Figure 2.13).

of forested areas in the study site (Figure 3.2). Approximately 55% of the study site is covered by
forest.

Figure 3.2: Forested areas of the Zwackentobel terrain achieved by a unsupervised classification of
a multispectral dataset.
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Some histograms and plots of the study site’s topographic characteristics are outlined in Figures 3.3
and 3.4. These may help to analyze and interpret the achieved results of this thesis. Figure 3.3(a)
shows that the Zwackentobel is relatively steep; approximately 50% of the cells are steeper than
20◦ and some outliers almost reach the 80◦ mark. The convexity is centered around zero which
means that most grid cells are neither convex nor concave and are located in planar reliefs (Figure
3.3(b)). The roughness of the DEM is approximately normally distributed (Figure 3.3(c)), whereas
the elevation shows a typical distribution of an alpine region (Figure 3.3(d)). There are the mountains
in the southern, western and eastern part, which are high and steep and the outgoing of the valley
in the north, where the terrain is low and flat. This is also illustrated in Figure 3.4(a). Figure 3.4(c)
shows that lower areas are rougher, whereas the convexity (Figure 3.4(b)) does not correlate with
the elevation. Because roughness and slope seem to be related to the elevation, they could also be
related to each other. Figure 3.4(f) shows that flat areas are rougher than steep regions. The forest
seems not to be correlated with slope (Figure 3.4(e)), but forest can be found more often in higher
terrains (Figure 3.4(d)).
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(a) (b)

(c) (d)

Figure 3.3: Data analysis of the study area Zwackentobel (Figure 2.13) with histograms. Distribution
of (a) slope, (b) convexity, (c) roughness and (d) elevation of the Zwackentobel DEM.
Statistical measurements are given in Table 3.2.

Topographic Attribute Mean STD Min Max

Slope (◦) 19.4 8.9 0 77.5

Convexity 0 0.2 -5.6 6.3

Roughness 0.4 0.1 0 0.9

Elevation (m) 1380 130 1076 1657

Table 3.2: Statistical measurements of the topographic attribute histograms (Figure 3.3).

33



Chapter 3 | Integrating Uncertainty Analysis in TauDEM

(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Data analysis of the study area Zwackentobel (Figure 2.13) with box plots: (a) Elevation
plotted against slope, (b) elevation plotted against convexity, (c) elevation plotted against
roughness, (d) forest plotted against elevation, (e) forest plotted against slope and (f)
roughness plotted against slope.
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3.4 Requirements

The requirements were evaluated in cooperation with the hydrologists of the H2K unit of the Uni-
versity of Zurich. First of all, we decided that the following hydrological models are needed for the
proposed uncertainty analysis approach:

• D8 flow routing

• D∞ flow routing

• MD8 flow routing

• MD∞ flow routing

• Watershed

• Stream network

• TWI

• SPI

• STI

Like TauDEM, the proposed method should also be able to be run easily from the console of the
operating system. But unlike TauDEM, all the separate algorithms are stringed together to facilitate
Monte Carlo simulations. TauDEM makes use of many arguments for its algorithms. Because that
would extend the parameter list to an unpractical size, they are trimmed down to the most important
arguments. For example, TauDEM provides the possibility to use weighting raster (e.g. for the
flow routing algorithms), but the proposed uncertainty analysis approach does not support weighting
rasters anymore. But if such functionality should be necessary in the future, it could easily be
reintegrated.

As already mentioned, the Monte Carlo simulation was preferred over an analytical approach for the
proposed uncertainty analysis approach (see Section 2.2). Thus, an argument defining the numbers
of realizations is needed, which should be computed in a Monte Carlo simulation. To model the
error surfaces, the process convolution approach is used. The SGS approach needs control points
to fit an appropriate (semi)variogram, is more complex to implement, and is computationally more
demanding (see Section 2.2). The process convolution approach in uncertainty analysis of DEM
derived parameters was also successfully used in literature (e.g. Oksanen, 2006; Wechsler, 2007;
Hebeler and Purves, 2009). To model the spatially distributed error of DEMs and especially LiDAR-
derived DEMs, additional inputs are necessary. The measurement of DEM error, usually the RMSE
or standard deviation is required. In addition, a spatial autocorrelation range to model the spatial
autocorrelation of the DEM error and an optional forest mask, which can be used to improve the
spatial structure of error according to LiDAR data error characteristics, are needed (see Section 2.1).
The individual results of the Monte Carlo simulations are saved in a separate folder and numbered
accordingly. These results can be used for example for animations or other analyses. Due to the
fact that saving all intermediate results of a Monte Carlo simulation for the statistical evaluation
would use way too much memory, the uncertainty estimator statistics are computed iteratively. To
analyze the convergence of the hydrological models in the uncertainty analysis, the tool can be used
to load text files containing the coordinates of specific grid cells. These coordinates can be read in
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the spatial reference format. The method also provides an option to generate exactly the same error
surfaces in the same order in different Monte Carlo simulations to allow reasonable comparisons
between the different Monte Carlo simulation results. The study analyses the performance of the
implementation by measuring the execution time of the algorithms and the Monte Carlo simulation.
To enable such evaluations, the implementation is complemented by timestamps allowing to measure
execution times for each separate algorithm. Finally, the method provides the user with statistical
grids, representing different uncertainty estimator statistics. In addition to the grids, statistics are
provided by text files, allowing users to easily analyze the uncertainty assessment from a different
perspective. The following Table 3.3 lists all the arguments and their description of the proposed
uncertainty assessment approach.
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Argument Description Optional

-dem The name of the DEM input file

-std The standard deviation given as
float

-range The spatial autocorrelation range
given in meters

-vegetationLayer The name of the canopy mask file x

-flowDir ID of the flow routing algorithm

-product ID of the product (e.g. of the TWI)

-runs The number of runs in the Monte
Carlo simulation

-outlet The name of the pour point shape
file for the productswatershed and
stream network

-writeDems Boolean if the DEMs of each run
should be saved or not (standard:
false)

x

-coordFile The name of the text file containing
coordinates

x

-fix Boolean if the error surfaces should
be reproducible (standard: false)

x

-slope ID of the slope method (ANS/DHS)
(standard: ANS)

x

-drop A fix value for the drop threshold in
watershed and stream network
computation (standard: automatic)

x

-spatial Boolean if the slope has an impact
on the error surface generation or
not (standard: true)

x

-writeR Boolean if the intermediate re-
sults of the Monte Carlo simulation
should be saved to disk (standard:
true)

x

Table 3.3: Argument list of the proposed uncertainty analysis approach.
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3.5 Visualizing the Uncertainty

At the end of the Monte Carlo simulation, a map showing the uncertainty for the derived parameters
in an adequate way is desired. The uncertainty of the continuous parameters are measured by the rel-
ative and absolute standard deviation of each raster cell. The relative standard deviation (percentage
difference) is useful to describe the variation of error, especially for products having a high value
range (e.g. flow accumulation), so that uncertainties are also identified in areas having low mean
values. However, if the mean values are close to zero, then even a small uncertainty may lead to an
extremely large relative standard deviation. This is a disadvantage when using the relative standard
deviation to visualize uncertainty. Besides the raster representations, all statistics retrieved by the
error propagation analysis are written into text files. Although statistics tools like R13 offer the pos-
sibility to read raster files, this approach allows further investigations of the data in many statistics
tools without any restrictions. The statistics written to text files and rasters are presented in Table
3.4. The input text file containing coordinates provides further options to analyze the error propaga-
tion. The results of these grid cells are successively written to a separate text file. In addition, the
mean is successively calculated for each grid cell given in the coordinate text file. This information
allows to analyze the distribution of the estimator statistics for each of these cells and to investigate
how the derived parameters converge with an increasing number of simulation runs.

For the boolean parameters watershed and stream network (e.g. a cell is a stream or not), the repre-
sentation of uncertainty is adjusted. To use the standard deviation as an indicator of uncertainty does
not make sense any more with boolean parameters. Instead the attribute probability is used to show
with what uncertainty a cell belongs to a watershed or a stream. The probability Pr is nothing else
than the mean value. To visualize the uncertainty, the Shannon entropy information as proposed by
Hengl et al. (2010) is used for stream networks. This approach transforms the probability value Pr
into a new dimension H , representing the uncertainty (Figure 3.5). A cell with a probability of 50%
(value = 0.5) to represent a stream will, for example, get the new value 1 which is the maximum
error in the dimension H . As for the continuous parameters, all statistics are also written to a text
file for further analyses.

The further analyses are done in R. The text files are read into vectors and these are plotted against
each other. To evaluate the impact of the topographic properties on the uncertainty, uncertainty
estimator statistics are plotted against the topographic parameters slope, convexity and roughness. In
addition to these parameters, the DEM is classified with the terrain classification algorithm proposed
by Iwahashi and Pike (2007). This algorithm classifies the topography in up to 16 different classes.
These nominal classes are built by the parameters slope, convexity and texture (roughness) and can
also be used to discover patterns in uncertainty analysis.

13http://www.r-project.org/
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Figure 3.5: Describing the uncertainty of boolean parameters using the information entropy (H) of
a Bernoulli trial (Hengl et al., 2010).

Estimator Formula

Mean Mean =
∑n

i=1 zi
n

Standard Deviation (std) STD =

√∑n
i=1[zi−z̄]2

n

Relative Standard Deviation (rstd) RSTD = | STDMean |

Shannon Entropy H(s) = −p(s) · log(p(s))− [1− p(s)] · log(1− p(s))

Table 3.4: Uncertainty estimator statistics to quantify the uncertainty of hydrological models, where
n is the number of simulation runs, zi refers to the estimator of parameter z and z̄ is the
average of the n zi values. Shannon entropy is used for boolean hydrological models
where p is the probability of a grid cell being part of the boolean model estimated by the
number of times the model sees the cell as a part of the result, divided by n.
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3.6 Implementation

This section presents a detailed insight into the implementation of the uncertainty analysis method
proposed in this thesis. The first part of the method is the implementation of a proper uncertainty
model. The decisions are based on the fact that the input data is a high resolution LiDAR-derived
DEM without any additional information about the error besides the global uncertainty estimator
RMSE indicated by the company who has produced the DEM. The uncertainty model is improved
by minor tweaks such as the per grid cell adjustment of error depending on the local terrain charac-
teristics. Then, a process convolution approach is used to apply the spatial autocorrelation onto the
error surface which is added to the original DEM afterwards. The complete process is illustrated in
Figure 3.6. Finally, this section also describes some implemented algorithms in more detail with a
closer look at the parallelization approach.

Figure 3.6: Design-overview of the uncertainty model.
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3.6.1 Developing an Uncertainty Model

The circumstance that control points are often not available makes a determination of the spatial
structure of error very difficult. In this thesis, only one global uncertainty estimator (RMSE) was
provided, describing the error of the DEM. Wechsler (2007) even suggested that the RMSE provided
to users is not an accurate assessment of how well a cell in the DEM corresponds to its true elevation;
it only provides an assessment of how well the DEM represents the data from which it was generated.
This error includes artifacts, a random and a systematic error part (see Section 2.1). This approach
does not include artifacts, they must be removed before any processing takes place. The same applies
to systematic errors; random error fields have a mean of zero. Including a systematic error in the
model would change the mean to a positive or negative value and all realizations would show the
same trend. But some systematic errors can be transformed into random errors. We know that there
are spatially dependent systematic errors in DEMs which may be corrected in the DEM generation
process. If these have been corrected or how well the correction has worked is unknown and thus
is a form of uncertainty. This information can be used to model some spatial structure of error. To
model them, the process convolution process is used. The process convolution method only needs
two input parameters:

• RMSE or std - usually available for DEMs

• Spatial autocorrelation range - usually not available for DEMs

Usually information about the spatial autocorrelation of the DEM error is missing. We only know
that errors are spatially correlated (see Section 2.2). Unfortunately, this parameter can have signif-
icant impact on the results of the uncertainty analysis (see Oksanen and Sarjakoski, 2005b). The
spatial autocorrelation range R basically defines the size of the kernel used in the process convo-
lution process. The larger R, the smoother the resulting error surface, which leads to less spatial
variation in elevation in the resulting DEM. Due to this, the uncertainty assessed will be lower with
an increasing R.

Spatial Structure of Error

In this study, a DEM derived from LiDAR data was used. This allows the assumption of some
spatial structures of the error in the DEM. As discussed in Section 2.1, the vertical error in LiDAR
based DEMs depends on the slope and the canopy density and height. Figure 3.7 illustrates how the
vertical error increases with higher incident angles (θ). The impact of slope (θ) on the vertical error
e can be formulated as follows:

e = tan(θ) ·Horizontal Displacement (3.1)

For a constant error in the horizontal location of an observation, the elevation error will increase as
the slope of the surface increases. The horizontal displacement is equal to the vertical error in the
Swisstopo dataset. In Monte Carlo simulations, errors are assumed to be distributed according to
the joint probability distribution of the uncertain inputs. In this case, the horizontal error is assumed
to be normally distributed and thus, the vertical error will be calculated with an averaged horizontal
error. The mean of the horizontal displacement is Horizontal Displacement/2. The equation is
adjusted as follows:
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Figure 3.7: Geometrical situation for the slope related source of vertical error in LiDAR data (Hodg-
son et al., 2005).

e = tan(θ) ·Horizontal Displacement/2 (3.2)

With a horizontal displacement of 0.5 m, e can range from 0 m for θ = 0◦ to 14 m for θ = 89◦.
Beyond 85◦, the error increases significantly and reaches very high values. When comparing these
results to studies investigating the vertical accuracy of LiDAR derived DEMs (e.g. Bater and Coops,
2009; Andersen et al., 2005; Su and Bork, 2006; Tinkham et al., 2012), this formula appears to be
appropriate for estimating the vertical error caused by slopes. Usually DEMs have slopes lower
than 80◦ as it is the case for the DEM used in this thesis. Nevertheless, if slopes should be higher
than 80◦, extreme elevation variations are the result in these steep areas. However, Bater and Coops
(2009) showed that errors can indeed reach up to 7.5 m with a RMSE of 0.25 m. The approach
proposed in this thesis is similar to the one proposed by Ulmer (2007). He used the footprint size
instead of the horizontal displacement. Because the footprint size and the horizontal displacement
are related to each other, the results basically remain the same. However, information about the size
of the footprint is often missing and very difficult to guess.

To estimate the error in areas covered by dense canopy, control points could be used. But for this
thesis, they were not available. Thus, the additional error occurring in areas covered by dense canopy
must be estimated. First of all, the surface is classified only into one canopy class, the forest. Other-
wise, the classification gets very time-consuming, even with an automatic classification, and on the
other hand, information about the uncertainty for every canopy class would be needed. In literature,
it was found that the accuracy of elevation in LiDAR based DEMs depends on the land cover type
(e.g. Kraus and Pfeifer, 1998; Adams and Chandler, 2002; Andersen et al., 2005; Hodgson and Bres-
nahan, 2004; Hodgson et al., 2005). It is to be expected that in dense vegetation the laser does often
not reach the ground anymore and that therefore elevations are generally overestimated. This would
be a systematic error, that cannot be modeled. But studies showed that the elevation in canopy areas
can be overestimated (Kraus and Pfeifer, 1998; Andersen et al., 2005) or underestimated (Adams and
Chandler, 2002; Hodgson and Bresnahan, 2004; Hodgson et al., 2005). According to these studies,
reasons for these biases could have been characteristics of the datasets used or vertical errors in the
GPS or INS of the LiDAR system. In general, absolute errors reported remain relatively small even
in dense canopy, but significantly higher than in canopy free areas. Figure 3.8 shows the distribution
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Figure 3.8: Distribution of errors in forested terrain representing the LiDAR accuracy assessment
study from Andersen et al. (2005).

of errors obtained in the study of Andersen et al. (2005) using terrain data with various canopy cover
types. According to the errors reported in the mentioned literature, the modeled error on grid cells
located in forested areas is increased by 50%.

Error Surface

With the informations about the spatial structure of the error an improved uncertainty model can be
built. In a first step the random field is generated. This is easily done by visiting each cell of the grid
and generating a normally distributed pseudo random number for these cells. Only the random errors
are modeled, thus the mean of the normal distribution is zero and the standard deviation is given by
the RMSE. The normally distributed pseudo random numbers are generated using the polar method
(Marsaglia and Bray, 1964). The value v of a cell for the random field is defined as follows:

v = a1 ·
√
−2 · log(q)/q · std (3.3)

with:

a1 = 2 · randomFloat1− 1 (3.4)

a2 = 2 · randomFloat2− 1 (3.5)

q = a1 · a1 + a2 · a2 (3.6)

where randomFloati are pseudo random numbers generated from a typically pseudo random gen-
erator and std is the standard deviation (or RMSE). To include the spatial structure of error, the v
value is adjusted. In the case of slope, a certain amount of additional vertical error is added to the
std depending on the local slope and the horizontal displacement (Equation 3.2):

vcanopy=false = a1 ·
√
−2 · log(q)/q · (std+ tan(θ) ·Horizontal Displacement) (3.7)
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And if the grid cell represents a forested area (this is checked with the canopy mask), the total error
is increased by a factor of 1.5, adding the additional error in forested areas:

vcanopy=true = a1 ·
√
−2 · log(q)/q · (std+ tan(θ) ·Horizontal Displacement) · 1.5 (3.8)

Process Convolution

The spatial autocorrelation could be omitted for a worst case scenario. The error surface is very
rough because the error is not spatially autocorrelated, resulting in a very rough topography of the
DEM used to compute the hydrological models. But usually errors are spatially autocorrelated (see
Section 2.1). The process convolution approach is used to apply the spatial autocorrelation to the
error surfaces. Until now, a random field with Gaussian noise was produced. This random field
can be spatially autocorrelated with various filters. An overview of different spatial moving average
filters was given by Wechsler (2007). An exponential correlation function was chosen to define the
weights of the filter according to Abrahamsen (1997):

ρexp(τ ;R, v) = e−3(τ/R)v (3.9)

where τ is the lag (distance from center cell) and R the correlation range. The scaling factor −3

is chosen so that the correlation at the correlation length is e−3 ≈ 0.05. This equation was also
successfully used by Oksanen and Sarjakoski (2005a) in the process convolution based uncertainty
analysis of drainage basin delineations. With v = 2 , the function is a Gaussian correlation function.
The spatial moving average window visits every cell and has to compute as many operations as the
moving average window contains cells. With a correlation range R of 40 cells, the moving average
windows size is 80x80 and thus 1600 operations must be computed to spatially autocorrelate one
grid cell. This must be done for all cells of the grid and is computationally intensive. But with
a Gaussian correlation function, this two-dimensional filter can be split into two one-dimensional
filters, reducing the time needed for the spatial autocorrelation computation significantly. With a
correlation range R of 40 cells, the one-dimensional filter only contains 80 cells, thus per grid
cell only 80 operations are needed. The error surface has to be filtered two times, one pass with
the moving average window in horizontal and one in vertical direction, resulting in a total of 160
operations to spatially autocorrelate one cell. This leads to the exact same result as with a two-
dimensional Gaussian filter, but with a runtime of O(R) instead of O(R2). This is the reason why
Gaussian correlation function was chosen.

Now, the error varies over space and because of its positive adjustments in steeper and forested areas,
the standard deviation of the error surface is no longer 0.5 m, which was indicated by Swisstopo for
the dataset used in this thesis. This can easily be corrected by applying a factor to all error values
of the error surface. First, the new standard deviation of the error map is calculated. Second, the
old standard deviation is divided by the new one and finally, all error values are multiplied by the
resulting factor. With this step, the standard deviation of the error surface is once again 0.5 m.
Whereas the error is higher in steeper and forested areas and lower in flat and canopy free areas, the
mean always remains at 0 m for the error surfaces. Figure 3.9 shows a histogram of an error surface
generated by this approach.
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Figure 3.9: Histogram of an error surface (std = 0.5 m, mean = 0 m, spatial autocorrelation range =
40 m).

The spatial autocorrelation range R may have significant influence on the uncertainty analysis (see
Oksanen and Sarjakoski, 2005a). Because no information about the spatial autocorrelation range of
the error in the dataset is available, it has to be estimated. As mentioned previously, the impact of
various parameters on the results of the uncertainty analysis is analyzed too, hence the analysis is
performed with different ranges (20 m, 40 m and 80 m) with the 2 m spatial resolution datasets. The
chosen ranges are partially based on literature and on own observations; Joerg et al. (2012) found
a spatial autocorrelation of the error up to 60 m with a cell size of 1 m (LiDAR), Ulmer (2007)
used a guessed range of 80 m with a spatial resolution of 2 m (LiDAR) and Wechsler (2007) used
a literature based range of 270 m with a cell size of 30 m (USGS14 DEM). Oksanen and Sarjakoski
(2005a) chose a range parameter of 20 m, which was justified by the assumption that the range
should be evidently smaller than the size of the details of the DEM (10 m spatial resolution). They
also stated that an increase of the spatial autocorrelation range from 20 to 50 m has only a minor
influence on the analysis results. The surface of the DEM gets visually significantly rougher if a
range of 20 m and below is used compared to the original DEM (Figure 3.11). Figures 3.10 and 3.11
illustrate some examples of error surfaces and the resulting DEM surfaces with different values for
R.

In the final part, the computed error surface is added to the true DEM. The resulting DEM is then
used as input data for all following algorithms until the realization is completed in the Monte Carlo
simulation.

14http://www.usgs.gov/
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(a) (b)

(c) (d)

(e)

Figure 3.10: Error surfaces: (a) R = 0 m, (b) R = 10 m, (c) R = 20 m, (d) R = 40 m, (e) R = 80 m.
Mean and standard deviation are 0 respectively 0.5 m.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11: Hillshadings of simulated DEMs after the error surfaces generated with different spatial
autocorrelation ranges R have been applied to the original DEM: (a) original DEM, (b)
R = 0 m, (c) R = 10 m, (d) R = 20 m, (e) R = 40 m, (f) R = 80 m.
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Figure 3.12: Parallelization approach: The DEM is sliced into equal sized horizontal parts and each
part is assigned to a separate process. In this example 4 processes are used. The pro-
cesses share data with row based buffers at the borders of the partitions.

3.6.2 Implemented Algorithms

The basic idea of the proposed uncertainty analysis method is to extend the TauDEM suite by an
uncertainty analysis component. All algorithms provided by TauDEM are already parallelized. Due
to this fact, all algorithms implemented to enable an uncertainty analysis have to be parallelized too.
This approach allows to run a Monte Carlo simulation in parallel with only one dataset in RAM at
a time, saving a lot of memory space. Distributing complete realizations along separate processes
is less efficient regarding the memory usage. In this case, all processes would have to keep the
complete dataset in memory. In addition, this approach also allows to run only one realization in
parallel if an uncertainty analysis is not requested.

Like TauDEM, all implemented algorithms use MPI and the distributed memory paradigm for the
parallelization. The input DEM is split into n row oriented slices (partitions), where n represents
the number of processes (Figure 3.12). Actually, there is no limit on how many processes the al-
gorithms can run. Each process only has to compute the algorithms for the part of the DEM it has
been assigned. For many algorithms neighborhood information is required. To facilitate a fast and
simple communication basis between neighboring processes, each process includes one buffer row
on either side. The buffers include the grid information of the neighboring processes. The spatial
autocorrelation algorithm (Gaussian convolution) needs more than only the adjacent neighbors of
the center cell. Depending on the spatial autocorrelation range, the buffer can be extended to as
many rows as needed.

The generation of the error surface is simple. Each grid cell is visited once and the error is calculated
depending on slope, canopy cover and the RMSE value. The parallelization is also very simple; each
process calculates the error values for each cell in its partition. The data used is a slope, canopy and
error partition (slope, vegPartition, errorPartition). The optional canopy partition is a boolean
grid; a grid cell represents forest (value 6= Null) or not (value = Null). For each grid cell, the slope
partition holds the slope. The error partition is a empty partition, where the results are saved. The
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implementation with C++ (pseudo code) is illustrated in Code 3.1. The final error e of a grid cell
can be simplified and formulated as follows:

e = error(slope) + error(canopy) + random noise error (3.10)

Code 3.1: Error surface algorithm.

1 sd is defined by the RMSE given by the user

2 for each second cell c in the partition {

3 //generate two normally distributed random numbers

4 do{

5 randomFloat1=rand()/RAND_MAX

6 randomFloat2=rand()/RAND_MAX

7 number1=2.0*randomFloat1-1.0

8 number2=2.0*randomFloat2-1.0

9 q=number1*number1+number2*number2

10 } while (q<=0.0 || q>1.0)

11 p=sqrt(-2.0*log(q)/q)

12 //increase error according to slope

13 if error should be increased according to slope {

14 slope->getData(c,angle)

15 error1=number1*p*(sd+tanf(angle)*sd/2.0)

16 slope->getData(c+1,angle)

17 error2=number2*p*(sd+tanf(angle)*sd/2.0)

18 } else {

19 error1=number1*p*sd

20 error2=number2*p*sd

21 }

22 //increase error if cell is covered by forest

23 if forest mask is available {

24 if(!vegPartition->isNodata(c)){

25 error1*=1.5

26 }

27 if(!vegPartition->isNodata(c+1)){

28 error2*=1.5

29 }

30 }

31 errorPartition->setData(c, error1)

32 errorPartition->setData(c+1, error2)

33 }

34 }
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0.05 0.18 0.47 0.82 1 0.82 0.47 0.18 0.05

Table 3.5: Gaussian convolution kernel with a spatial autocorrelation range of 4 grid cells.

The process convolution is realized with a one-dimensional Gaussian kernel. The size of kernel
depends on the spatial autocorrelation range (range). For each cell in the kernel the lag h (distance
to the center cell) is computed to define the resulting weight according to Equation 3.9. By the end,
the kernel is a one-dimensional array containing weights which are mirrored at the center cell of the
array. An example of a kernel is illustrated in Table 3.5 and the pseudo code for the kernel is given
in Code 3.2.

Code 3.2: Gaussian convolution kernel algorithm.

1 range is the spatial autocorrelation range given by the user

2 int resolution=demPartition->getdx()

3 int middlePoint=range/resolution

4 float *kernel=new float[middlePoint*2+1]

5 float weight, h

6 float sumWeights=0

7 for(int i=0;i<middlePoint*2+1;i++){

8 h=abs(i-middlePoint)*resolution

9 weight=exp(-3.0*(h*h)/(range*range))

10 kernel[i]=weight

11 sumWeights+=weight

12 }

The error surface is filtered by this kernel. This is done in two passes. The first pass filters the error
surface partition (demPartition) in horizontal direction. Each cell is visited once and the kernel
is applied to this location which means that the values of the neighbors in horizontal direction are
multiplied by the weights contained in the kernel and summed up. Dividing this sum (sum) by the
sum of all weights (sumWeights or tempW ) contained in the kernel results in the new and filtered
value for the center cell. These values are saved in a new partition (tempPartition). This is repeated
in the second pass, but with the kernel rotated by 90◦ and the new partition (tempPartition) as input
data. In this case information of the error surface of the neighboring processes is needed. This is
possible, because the buffers of the processes whose size depends on the autocorrelation range have
been filled with this information after the first pass (tempPartition− > share()). The spatially
autocorrelated error surface is written to the partition (acPartition) holding the result, a spatially
autocorrelated error surface. This process is outlined as pseudo code in Code 3.3.

Code 3.3: Process convolution algorithm.

1 tempPartition //for saving the results from pass 1

2 acPartition //for saving the results from pass 2

3 float demValue, kernelValue

4 float sum=0

5 float tempW=sumWeights

6 int kernelLength=middlePoint*2+1

7 // pass 1

8 for each cell c (x,y) in the partition

9 if kernel exceeds left/right partition borders {

10 for(int k=0;k<kernelLength;k++){
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11 if(demPartition->isNodata(x-middlePoint+k,y)){

12 tempW-=kernel[k]

13 } else {

14 demPartition->getData(x-middlePoint+k,y,demValue)

15 kernelValue=kernel[k]

16 sum+=demValue*kernelValue

17 }

18 }

19 tempPartition->setData(c, sum/tempW)

20 tempW=sumWeights

21 } else {

22 for(int k=0;k<kernelLength;k++){

23 demPartition->getData(x-middlePoint+k,y,demValue)

24 kernelValue=kernel[k]

25 sum+=demValue*kernelValue

26 }

27 tempPartition->setData(c, sum/sumWeights)

28 }

29 sum=0

30 }

31 }

32 //share results from pass 1 with the neighboring processes

33 tempPartition->share();

34 // pass 2

35 for each cell c (x,y) in the partition

36 if kernel exceeds top/bottom partition borders {

37 for(int k=0;k<kernelLength;k++){

38 if(tempPartition->isNodata(x,y-middlePoint+k)){

39 tempW-=kernel[k]

40 } else {

41 tempPartition->getData(i,j-middlePoint+k,demValue)

42 kernelValue=kernel[k]

43 sum+=demValue*kernelValue

44 }

45 }

46 acPartition->setData(c, sum/tempW)

47 tempW=sumWeights

48 } else {

49 for(int k=0;k<kernelLength;k++){

50 tempPartition->getData(x,y-middlePoint+k,demValue)

51 kernelValue=kernel[k]

52 sum+=demValue*kernelValue

53 }

54 acPartition->setData(c, sum/sumWeights)

55 }

56 sum=0

57 }

58 }

Besides the uncertainty model, the implementation and parallelization of the two additional flow
routing algorithms MD8 and MD∞ are of interest. The MD8 have been implemented on the infor-
mation provided by Qin et al. (2007). For the implementation of the MD∞ algorithm (Seibert and
McGlynn, 2007), the source code was provided by the H2K unit. The MD∞ algorithm is signif-
icantly more complex compared to the MD8 due to the inclusion of the triangular facets approach
provided by the D∞ algorithm. Both algorithms need a fully processed DEM which means that
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flats and pits must be removed. Pits are removed by an algorithm provided by TauDEM. TauDEM
resolves flats on the fly with the determination of the flow directions. It was not possible to apply this
approach to the two additional flow routing algorithms, because of its complexity and the different
computation sequence. A solution has been found with a simple preprocessing algorithm, which
increments the elevation of cells located in flats until the flats are removed. However, this approach
is not so efficient.

The starting sequence of both algorithms is identical. The algorithms determine the number of
neighboring cells draining to the cell for each grid cell of the input DEM (Code A.1). This is
easily calculated by comparing the elevation of the center cell with the neighboring cells elevations.
The idea is that a cell’s accumulated area can only be computed when all cells which drain to the
particular cell are already computed. A new grid is created containing the numbers of draining
neighboring cells. The grid containing the flow accumulation is initialized to 1 for each cell. All
cells which have no draining neighbors are pushed into the queue. The queue always only contains
cells which actually can be computed and each process has its own queue.

The general approach to compute the accumulated area is in both cases the same. The first cell in the
queue is taken and computed which means that the distribution coefficients for the neighboring cells
are calculated and the flow accumulation of this cell is propagated downwards to these particular
neighboring cells. All cells receiving flow accumulation have their value in the other partition, which
contains the information of draining cells, reduced by one. If such a cell arrives at 0, it is pushed into
the queue for processing and the value is set to -1, meaning that this cell has been processed. This
is done until the queues of all processes are empty. If this is the case, the borders of the processes
are shared by the buffers for both partitions, the one containing the flow accumulation and the one
containing the number of draining neighbors. All processes now scan their borders for cells having
the number of draining neighbors equal to zero and push them into their queue. The process starts
from the beginning. If all processes have empty queues and the borders have no more cells with a
value equal to 0, the computation of the upslope area is finished. The part defining the distribution
of the flow accumulation to the neighboring cells differs for these two flow routing approaches. The
implementation of the MD8 flow routing algorithm is presented in Code A.2 and the implementation
of the MD∞ flow routing algorithm is given in Code A.3
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4 Experimental Performance Analysis

This chapter presents the evaluation of the proposed uncertainty analysis approach in terms of per-
formance. Section 4.1 provides information about the test system and the used input DEMs. This
section further presents the run time of different algorithms in tables and charts. Section 4.2 outlines
some issues occurred in the evaluation process and provides ideas how to avoid them if possible or
how they could be fixed in future implementation improvements.

4.1 Performance Tests

The proposed algorithm for uncertainty analysis was evaluated comparing its execution time for
different numbers of processes. The algorithm was implemented using C++ and compiled by the
Microsoft Visual Studio 2010 compiler. Several tests were done to evaluate the performance in-
crease with increasing number of processes. The tests were executed using a Windows 7 64 bit
Operating System based on a Core i7 3770K CPU (4 physical and 8 logical cores) running with 4.2
GHz and 8 GB of RAM. The DEMs used are the one introduced in Section 3.3 with 1282x1540 cells
and a different one with larger dimensions (4774x5646) representing the complete Alpthal instead
of only the Zwackentobel. The Monte Carlo simulation tests were done with 500 runs and a spatial
autocorrelation range of 40 m to get approximately stable results. The error surfaces generated in
different simulations were always identical to guarantee comparability. The processing time always
included computation time and the disk I/O (input/output) time, but I/O time was reduced to a min-
imum for this test (no writing of the intermediate results) and the solid state disk (flash based hard
disk) of the system used reduced I/O time to a negligible amount.

Table 4.1 and charts in Figure 4.1 illustrate the processing time on the two DEMs. As expected,
the more processes are used the lower the execution time is. However, the scaling is not linear, it
decreases exponentially with additional processes. Notice that the MD∞ and MD8 algorithm suffer
from the inefficient flat removing algorithm. In the Alpthal DEM, the flat removing algorithms
processing time explodes, leading to completion times of the uncertainty analysis beyond 100’000
seconds for 500 runs. However, this study approves that parallelization can increase the performance
of algorithms significantly and allows uncertainty analysis to be done in a relatively short amount
of time or with significantly more runs than before in the same time. Notice that the benefit of this
parallelization approach depends on the available CPU cores of the system. The best performance is
achieved when the algorithm runs on as many processes as the system provides.
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Processing time (sec)

Terrain Algorithm Number of Processes:

1 2 3 4

D8 994 542 410 347

Zwackentobel
D∞ 1421 757 548 480

(1282x1540)
MD∞ 2858 2264 2046 1762

MD8 2276 1849 1499 1259

D8 22273 12615 9255 8485

Alpthal
D∞ 27781 16599 12106 9411

(4774x5646)
MD∞ - - - -

MD8 - - - -

Table 4.1: Processing time for different upslope area algorithms, terrain sizes and processes. Time
represents the complete uncertainty analysis with 500 simulation runs and a spatial auto-
correlation range of 40 m.
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(a) (b)

Figure 4.1: Processing graphs for different flow accumulation algorithms in (a) Zwackentobel / (b)
Alpthal terrain showing the time needed to execute the complete uncertainty analysis
with 500 simulation runs using a spatial autocorrelation range of 40 m.

(a) (b)

Figure 4.2: (a) Processing graphs for different topographic algorithms in Zwackentobel terrain show-
ing the time needed to execute the complete uncertainty analysis with 250 runs. TWI
uses the D8 flow accumulation algorithm. (b) Processing graphs for the D8 upslope area
computation in the Alpthal terrain showing the time needed to execute the algorithm
once.
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Figure 4.2(a) shows the performance between different topographic algorithms provided by the pro-
posed uncertainty analysis approach in the Zwackentobel terrain. This time, the processing time was
measured for 250 Monte Carlo simulation runs. The processing time varies as expected consider-
ably between the different algorithms, but the scaling with the number of processes is in all cases
almost the same. In general the algorithms are up to three times faster running on four processes,
which is not a bad result. Figure 4.2(b) compares the execution time of the D8 flow accumulation
algorithm against the widely used commercial GIS software ArcGIS. As expected, the queue based
MPI approach of TauDEM is dramatically faster than the serial recursive algorithm implemented in
ArcGIS. Even without the uncertainty model algorithms, the execution time for 500 simulation runs
in a Monte Carlo simulation would exceed 140’000 seconds and would be significantly slower than
TauDEM running on only one process ( 22’000 seconds).

Multiple algorithms are needed to compute one realization of the uncertainty analysis. A closer
look at the processing time of the various algorithms of one realization computing the MD∞ flow
accumulation is given in Table 4.2. These tests were done with four processes and the larger Alpthal
DEM. The generation of the error surface without spatial autocorrelation is computationally less de-
manding. The Gaussian convolution processing time depends on the spatial autocorrelation range,
but scales linearly with the range and with the size of the terrain. Overall, the uncertainty mod-
eling part is very fast, even with high values for the spatial autocorrelation range. The algorithms
implemented for the uncertainty modeling part scale very well with additional processes. The next
step is the DEM filling algorithm using the flooding approach proposed by Planchon and Darboux
(2002) which is provided by TauDEM. This approach is also very efficient. The MD8 and MD∞
flow routing algorithms request a fully processed DEM which means that no flats should be existent
in the DEM. The implemented algorithm to achieve this is only viable for small DEMs with only a
few flats, otherwise the processing time increases dramatically as shown in Table 4.2. The reasons
therefore can be found in the brute force approach searching flats and increasing them by a small
elevation value until all flats are removed. In addition, this approach can lead to distorted DEMs
having a significant impact on the derivation of topographic parameters. The flow routing algorithm
MD∞ itself consumes the second most time and is significantly slower than the uncertainty model-
ing algorithms. However, the flat removing algorithm is definitely the bottleneck in the MD∞ flow
routing computation when the DEM is large or contains many flats.
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Processing time (sec)

Algorithm Number of Processes:

1 4

Error surface 1.1 0.3

Spatial autocorrelation 6.9 1.8

Filling sinks 4.1 2.1

Removing flats 331 147

MD∞ flow accumulation 29.1 13.8

Total time 390 172

Table 4.2: Processing time for the MD∞ flow accumulation computation (1 run) using the Alpthal
DEM.

4.2 Computing Issues

Unfortunately, an issue arose in the evaluation: the stream network & watershed algorithm crashes
reproducibly at run 254 independent of the DEM used. It seems to be a memory based issue which is
not surprising because TauDEM has not been optimized regarding to memory management. Dozens
of memory leaks had to be fixed, but some must still remain. That is the reason why the results based
on this algorithm are computed with a maximum of 250 runs.

Secondly, the drop analysis for the stream network extraction provided by TauDEM can lead to
the value of -1.0. This value determines the possible minimum length of a stream link. A very
large number of links are generated with this value, slowing down the computation significantly and
leading to inappropriate results. This threshold value can be set manually by a parameter in the
proposed tool to avoid this issue.

Thirdly, the computation of stream networks and watersheds requires outlets (shape files). TauDEM
computes stream networks always in combination with the watershed, thus the stream network also
needs an outlet. Usually outlets are placed on a stream. In the proposed uncertainty analysis it can
happen that outlets are not located on streams in some realizations. The result of such realizations is
basically empty (no watershed or streams). This issue could be fixed by letting outlets snap, but this
is not trivial. How do we decide where the outlet should snap? The nearest cell with the highest value
must not be the most appropriate in all cases. In addition, it may be necessary that the outlet has to
correspond to specific locations in the real-world. If we want to compute the catchment area and its
uncertainty of a sampling site, for example, to investigate the relationship between the quality of the
water at this specific location and the size of the catchment area, the results would be unsuitable for
cases in which the snap distances would have been to far. Because of this issue, snapping outlets
were omitted. In return, the outlet should be set on a very certain point, so that in most cases an
upslope area can be computed. A preanalysis with the D8 flow accumulation algorithm can help to
determine adequate locations for outlets. The quality of the uncertainty analysis is evaluated in a
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separate raster, containing the information how often a cell received no value (NULL). If this raster
contains too high numbers of NULL values, the uncertainty analysis is most likely not valid and the
outlet should be relocated.
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5 Analyzing the Impact of Uncertainty

This chapter presents results of the impact of uncertainty on various hydrological models at different
scales and an analysis of multiple input parameters of the proposed uncertainty analysis approach.
Section 5.1 analyses the convergence of some hydrological models in a Monte Carlo simulation
with up to 1000 runs. The following Section 5.2 presents the uncertainty assessment of various
hydrological models. Section 5.3 evaluates the impact of the uncertainty model input parameters
on the uncertainty assessment. Section 5.4 analyses how the results of an uncertainty assessment
change if coarser resolution DEMs are used. Finally, Section 5.5 demonstrates a possible application
of the results in recent hydrological research investigated by the H2K unit of the University of
Zurich.

5.1 Convergence Tests

Analyzing the uncertainty with a Monte Carlo simulation approach requires the determination of the
number of runs. In principle, the more runs a Monte Carlo simulation incorporates the more stable is
the final result. The convergence of the hydrological algorithms may depend on the properties of the
algorithm itself, the DEM terrain characteristics and the uncertainty model parameters. However,
it is important to do such a convergence test in order that the achieved results of the Monte Carlo
simulation are reliable.

Convergence tests can be done in multiple ways. At the end, at least one statistical parameter is
required which is tested against a user defined threshold to evaluate if the Monte Carlo simulation
delivers sufficiently stable results. In the proposed approach, the DEM is sampled by a few points.
First, the DEM was classified into 16 terrain classes according to the terrain classification approach
proposed by Iwahashi and Pike (2007) (Figure 5.1(a)). This should guarantee that the sample points
are spatially distributed over different terrain characteristics. Then, for each class a random sample
was selected. In addition, so that we do not rely completely on randomness, a cell, which was
evaluated as very uncertain in a stream network uncertainty analysis, was selected too. This results
in a total of 17 sample points (Figure 5.1(a)) and for each sample, the intermediate results of the
Monte Carlo simulation are saved and used to calculate the current mean value. This provides us
with the statistical parameter needed to evaluate the convergence of the hydrological algorithms. As
soon as the mean stabilizes, the result of this sample point has converged.
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(a)

(b)

Figure 5.1: (a) The Zwackentobel classified into 16 terrain classes according to the approach pro-
posed by Iwahashi and Pike (2007) and 17 sampling points. The number of the sam-
ple points matches the number of the terrain classes except for sample point 17, which
represents an uncertain location evaluated in a stream network uncertainty assessment
(belongs to the terrain class 7). (b) Legend for the terrain classification reprinted from
Iwahashi and Pike (2007). 16 classes are partitioned according to their terrain character-
istics slope, roughness/texture and convexity.
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(a) (b)

(c) (d)

Figure 5.2: Convergence graphs of the TWI based on the D8 (a,b) and MD∞ (c,d) flow routing
algorithms for the 17 sample points located in different terrain classes (see Figure 5.1).

The analysis was done with 1000 Monte Carlo simulation runs except for the watershed analysis
where only 250 runs were possible due to some implementation issues (see Section 4.2). The pa-
rameters of the uncertainty model were 0.5 m for the RMSE and 40 m for the spatial autocorrelation
range. In addition, the canopy mask was used to improve the uncertainty model regarding to the
spatial structure of error in LiDAR based DEMs. Figure 5.2 illustrates the convergence of the D8
respectively the MD∞ based TWI. The TWI was chosen because it is a very popular index used in
hydrological investigations.

The results show that the TWI calculation based on the D8 flow routing algorithm appears to con-
verge after approximately 400 simulation runs. At some locations, e.g. point 3 which is located in
a steep, fine texture and concave area, even less than 100 runs already lead to very stable results
whereas other sample points, e.g. point 12 (rather gentle, low convexity and coarse texture), show
a trend beyond 800 runs. The terrain classes seem to be related to the convergence test results. The
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(a) (b)

Figure 5.3: (a) Erlenbach watershed. (b) Convergence graph for the watershed area calculation.

most sample points show a very high variation below 100 runs leading to the conclusion that less
than 100 runs are definitely too few for a reliable uncertainty assessment. As expected, the TWI
based on the MD∞ flow routing algorithm appears to converge considerably earlier than the D8
based TWI. The MD∞ based TWI seems to be stable after 200 simulation runs. However, below
100 runs the MD∞ based TWI also appears very noisy.

The second hydrological model analyzed was the watershed of the Erlenbach in the Zwackentobel
(Figure 5.3(a)). The mean area of the watershed was calculated after each run and these results are
illustrated in Figure 5.3(b). The watershed area appears to converge already after 150 simulation runs
and the uncertainty analysis seems to be very unstable below 50 simulation runs. The reason for the
relatively early convergence could be that watersheds rely on larger terrain forms instead of the local
relief. Because the terrain is very steep in the Zwackentobel, the watersheds remain mostly stable in
the uncertainty analysis. However, the results may differ in different terrain conditions.

5.2 Sensitivity Analysis

For each flow routing algorithm and compound index, statistical rasters representing the absolute
standard deviation, relative standard deviation and mean value were computed for the Zwackentobel
DEM. In addition, these errors were plotted against the terrain characteristics slope, roughness,
convexity and the terrain classes proposed by Iwahashi and Pike (2007). This allowed analysis of
the spatial structure of uncertainty for the different flow routing algorithms and compound indices.
However, only the most important and interesting results are outlined to keep the section clear. The
uncertainty model parameters are the same as outlined in Section 5.1. The number of simulation
runs is defined according to the findings in the previous Section 5.1, where 400 simulation runs
led to stable results for all evaluated hydrological models. For the watershed and stream network
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analysis 250 simulation runs were used. The statistical grids for the watershed and stream network
uncertainty assessment represent the probability of a cell belonging to the watershed respectively
to the stream network and the error (H) (Figure 3.5). The spatial structure of error for the stream
network computation is analyzed using the error (H) and the probability.

5.2.1 Flow Routing Algorithms

Figure 5.4 illustrates the grid based result of the uncertainty assessment for four different flow ac-
cumulation computations. The associated histograms are given in Figure 5.5. The D8 flow routing
algorithm provides a very sensitive result (mean error ±119%). The grid looks very noisy with a
lot of linear features which is typical for the D8 algorithm. The other three flow routing algorithms
show a significantly smoother result, with an overall lower average uncertainty. The error also seems
to be more spatially autocorrelated. The MD8 and MD∞ flow routing algorithm deliver the most
robust results which are almost identical (mean error ±45%). The mean error is almost three times
lower compared to the D8 flow routing algorithm. However, the maximum error is in all four cases
the same with±1990% (Table 5.1). In general, these very high errors can be observed in the top-left
corner where the terrain is extremely flat and rough.
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(a) (b)

(c) (d)

(e)

Figure 5.4: Grids (Zwackentobel) illustrating the relative standard deviation of the different flow ac-
cumulation algorithms: (a) D8, (b) D∞. (c) MD8 and (d) MD∞ flow routing algorithm.
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(a) (b)

(c) (d)

Figure 5.5: Histograms showing the distribution of errors for the grids illustrated in Figure 5.4. Sta-
tistical measurements are shown in Table 5.1.

Flow routing algorithm #Runs Mean STD Min Max

D8 400 1.19 1.83 0 19.9

D∞ 400 0.57 0.95 0 19.9

MD8 400 0.46 0.76 0 19.9

MD∞ 400 0.44 0.74 0 19.9

Table 5.1: Statistical measurements of the flow accumulation histograms (Figure 5.5) based on dif-
ferent flow routing algorithms.
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Figures 5.6, 5.7, 5.8 and 5.9 present the spatial structure of uncertainty for the four different flow
routing algorithms used to compute the flow accumulation. As expected, the single flow direction
algorithm D8 shows the highest errors in all cases. The reason can be found in the fact that the
D8 algorithm does not weight the flow distributed downwards, instead the determination of the
direction highly depends on the elevations of the 3x3 neighborhood. The D∞ already shows a
more robust behavior in this uncertainty assessment. Due to the fact that water can be propagated
downwards up to two neighboring cells, the algorithm reacts less sensitive to elevation changes in
the 3x3 neighborhood. The most robust flow routing algorithms are the MD8 and MD∞, both show
mostly equal results. The difference to the D∞ flow routing algorithm is small but existent.

Errors are in all cases higher in flat areas (Figure 5.6). Errors also seem to occur mainly in non
convex/concave reliefs with some outliers in highly concave reliefs. The D8 flow routing algorithm
is again more sensitive than the multiple flow direction algorithms (Figure 5.7). Errors also increase
when the roughness of the terrain increases (Figure 5.8). The D8 surprisingly shows a very stable
and high error in less rough terrain. In contrast, the multiple flow direction approaches show an
exponential increase in error with increasing roughness. However, in this study, the MD8 and MD∞
show an unexpected high error in highly rough terrain compared to the other two algorithms which
cannot be explained. The box plots using the terrain classes as proposed by Iwahashi and Pike (2007)
support the findings that slope and roughness of the terrain have the largest impact on the uncertainty
in the flow accumulation computation (Figure 5.9).
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(a) (b)

(c) (d)

Figure 5.6: Box plots showing the relationship between the relative standard deviation of the flow
accumulation and the local slope: (a) D8, (b) D∞, (c) MD8 and (d) MD∞ flow accu-
mulation algorithm.
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(a) (b)

(c) (d)

Figure 5.7: Box plots showing the relationship between the relative standard deviation of the flow
accumulation and the local convexity: (a) D8, (b) D∞, (c) MD8 and (d) MD∞ flow
accumulation algorithm.
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(a) (b)

(c) (d)

Figure 5.8: Box plots showing the relationship between the relative standard deviation of the flow
accumulation and the local roughness: (a) D8, (b) D∞, (c) MD8 and (d) MD∞ flow
routing algorithm.
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(a) (b)

(c) (d)

Figure 5.9: Box plots showing the relationship between the relative standard deviation of the flow
accumulation and the local terrain classes: (a) D8, (b) D∞, (c) MD8 and (d) MD∞
flow routing algorithm. The terrain classes as proposed by Iwahashi and Pike (2007)
incorporate roughness, convexity and slope. The legend is shown in Figure 5.1(b).
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(a) (b)

(c)

Figure 5.10: Grids (Zwackentobel) illustrating the absolute standard deviation of the two different
TWI computations: (a) D8 and (b) MD∞ based TWI maps. The associated histograms
are presented in Figure 5.11.

5.2.2 Compound Indices

Previous analysis have shown that the most differences can be found between the D8 and MD∞ flow
routing algorithm, thus these two approaches were used to analyze the impact of DEM uncertainty on
the TWI calculation. Figure 5.10 illustrates the absolute standard deviation of the TWI calculation
with the D8 and the MD∞ flow routing algorithm. Because TWI values are very often near zero
or lower than one, the absolute standard deviation was chosen to prevent extreme outliers which
occurred when using the relative standard deviation. The results look very similar to the results of
the flow accumulation calculation. This is not surprising as the TWI is computed from the flow
accumulation area and the local slope. The MD∞ based TWI (mean error ±0.35) is a considerable
improvement regarding the robustness compared to the D8 based TWI (mean error±0.65) algorithm.
In this case, the mean error is almost twice as high when using the D8 flow routing algorithm to
compute the TWI (Table 5.2). In general, high errors can be found once again in the top-left corner
of the DEM where the terrain is low, rough and very flat.
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(a) (b)

Figure 5.11: Histograms showing the distribution of errors for the grids illustrated in Figure 5.10.
Statistical measurements are shown in Table 5.2.

Flow routing algorithm #Runs Mean STD

D8 400 0.65 0.59

MD∞ 400 0.35 0.35

Table 5.2: Statistical measurements of the TWI histograms (Figure 5.11) based on different flow
routing algorithms.
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(a) (b)

(c)

Figure 5.12: Histograms showing the distribution of the TWI computations using the D8 flow routing
algorithm for different locations in the Zwackentobel DEM (see Figure 5.1(a)). (a)
Sample point 14, (b) sample point 16 and (c) sample point 17.

For a more detailed analysis, three samples from the sample points shown in Figure 5.1(a) were cho-
sen and for each sample the distribution of the TWI computation results are illustrated in histograms
(Figure 5.12). These histograms show that the computed values must not be normally distributed. In
sample 16 (Figure 5.12(b), gentle, coarse texture, low convexity), the TWI calculations are normally
distributed, but in sample 14 (Figure 5.12(a), gentle, coarse texture, high convexity) and sample 17
(Figure 5.12(c), rather steep, fine texture, low convexity), the histogram shows that the distribution
is skewed to the left respectively to the right. This means that if we ignore uncertainty analysis or we
execute too few simulation runs, the results can be heavily over- or underestimated at some points,
leading to inappropriate decisions or considerable impacts on models using digital terrain analysis
results as input data.
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(a) (b)

Figure 5.13: Box plots showing the relationship between the relative standard deviation of the TWI
and the local slope: (a) D8 and (b) MD∞ based TWI.

The same applies to the spatial structure of error. Figures 5.13, 5.14, 5.15 and 5.16 present the spatial
structure of uncertainty for the two TWI computations using two different flow routing algorithms.
In all cases, the results are similar to the one from the flow accumulation computation. Errors are
higher in flat areas and the MD∞ based TWI is slightly more robust than the D8 based TWI (Figure
5.13). Errors seem to occur in non convex/concave or slightly concave reliefs (Figure 5.14). The
D8 based TWI is again slightly more sensitive. Figure 5.15 shows that errors increase when the
roughness of the terrain increases. The D8 based TWI shows a from roughness almost independent
error overall. The multiple flow direction approaches show an exponential increase in error with
increasing roughness, but have a negotiable error in very flat reliefs. However, the MD∞ shows
again a higher error in highly rough terrain than the D8 based TWI. The box plots in Figure 5.16
show that slope and roughness of the terrain have the largest impact on uncertainty in the TWI
computation and that the multiple flow direction based TWI shows a considerable smaller error
overall.

One might question if the uncertainty of the flow accumulation area or the local slope has a larger
impact on the TWI uncertainty. Figure 5.17 presents the result of this analysis by plotting the TWI
error against the slope and flow accumulation error. In all cases the error is represented by the stan-
dard deviation. The flow accumulation error has a considerably higher impact on the TWI certainty
than the local slope. This can be explained by the huge differences in the value ranges. The standard
deviation of the flow accumulation can reach up to 550’000, whereas the standard deviation of the
local slope only reaches up to 0.04. The local slope must vary significantly more widely to have a
larger impact on the TWI error (Equation 2.17).
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(a) (b)

Figure 5.14: Box plots showing the relationship between the relative standard deviation of the TWI
and the local convexity: (a) D8 and (b) MD∞ based TWI.

(a) (b)

Figure 5.15: Box plots showing the relationship between the relative standard deviation in TWI and
the local roughness: (a) D8 and (b) MD∞ based TWI.
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(a) (b)

Figure 5.16: Box plots showing the relationship between the relative standard deviation of the TWI
and the local terrain class: (a) D8 and (b) MD∞ based TWI. The terrain classes as
proposed by Iwahashi and Pike (2007) incorporate roughness, convexity and slope. The
legend is shown in Figure 5.1(b).

(a) (b)

Figure 5.17: Box plots showing the relationship between the TWI error and (a) the flow accumulation
area error and (b) the local slope error.
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5.2.3 Stream Networks and Watersheds

For the stream network analysis, an outlet near the entrance of the Zwackentobel valley was chosen.
The calculation of the stream network was done with a fix minimum stream length parameter of 300.
Figures 5.18 and 5.19 illustrate the results of the uncertainty analysis. In some areas, streams are very
isolated and have a very high probability (blue color) to be mapped by the uncertainty analysis. This
is occurring mainly in channels, where we already expect streams just by a visual evaluation of the
DEM. In other areas, streams are widely distributed with a low probability (red color), highlighting
areas where stream mapping is very uncertain. These areas do not show significant features just
by inspecting the hillshade of the Zwackentobel. After estimating the propagated uncertainty of
extracting stream networks from the DEM, we can analyze the uncertainty and its relation to the
geomorphology of the terrain.

Figures 5.20 and 5.21 show the relations between the error respectively the probability of the stream
network and the terrain characteristics convexity, slope, roughness, the different terrain classes and
the MD∞ based TWI. The slope does not seem to have any significant impact on the stream extrac-
tion error (H) or probability (Figures 5.20(b) and 5.21(b)). The probability of streams is considerably
higher in concave than in convex areas, but the uncertainty is relatively high in concave reliefs (Fig-
ures 5.20(a) and 5.21(a)). This can be explained by streams located in channels, but below roads.
As seen in Figure 5.18(a), channels where we would expect a high probability of streams are in-
stead marked red meaning that in 50% of the simulations water is flowing down the street instead of
passing it. In reality there are bridges, allowing the water to flow underneath it. Such anthropogenic
features cause a lot of uncertainty in high resolution DEMs. This is an issue caused by the two-
or two-and-a-half-dimensional representation of the terrain surface. The DEM only contains one
elevation information per cell. The slope and terrain classes box plots do not show any significant
relations (Figures 5.20(d) and 5.21(d)). However, the roughness plot (Figure 5.20(c)) shows that
rough terrain increases the uncertainty of the derived stream networks. The TWI also shows a strong
correlation (Figure 5.20(e)). Cells having high TWI errors in the uncertainty analysis also have a
higher probability to belong to a stream, but are also more uncertain (probability near 50%). By
knowing this, users can delineate the most problematic areas and collect more accurate elevation
data for these areas or correcting the DEM manually (e.g. removing anthropogenic features such as
bridges).
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(a)

(b)

Figure 5.18: Statistical rasters showing the results of the stream network uncertainty analysis for the
Zwackentobel valley. (a) Showing the stream extraction error (H) (see Figure 3.5). (b)
Showing the probability of a cell belonging to a stream.
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(a)

Figure 5.19: Grid showing all realizations of the stream network uncertainty analysis for the Zwack-
entobel valley.

79



Chapter 5 | Analyzing the Impact of Uncertainty

(a) (b)

(c) (d)

(e)

Figure 5.20: Box plots showing the relationship between the stream error (H) and the terrain charac-
teristics (a) convexity, (b) slope, (c) roughness, (d) the different terrain classes and (e)
the MD∞ based TWI.
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(a) (b)

(c) (d)

(e)

Figure 5.21: Box plots showing the relationship between the probability of a cell belonging to a
stream and the terrain characteristics (a) convexity, (b) slope, (c) roughness, (d) the
different terrain classes and (e) the MD∞ based TWI.
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Figure 5.22: This critical region at the zw04 watershed border leads to substantial overestimations
in some Monte Carlo simulation runs. There are multiple locations where streams enter
the catchment area zw04 during the simulation, but the probability of these streams
entering the catchment area is relatively low.

The uncertainty assessment of watersheds was done for three different catchment areas located in
the Zwackentobel. The results are shown in Figure 5.23 and as we can see, the size of the area can
vary substantially (up to±20%) depending on the study site. However, larger variations in size have
a very low probability. The distribution of the intermediate results of the Monte Carlo simulation are
shown in Figure 5.24. The corresponding statistical measurements such as the mean size of the area
are outlined in Table 5.3. The study area zw04 shows few outliers representing substantially larger
area sizes, whereas the study area zw07 shows few outliers representing substantial lower area sizes.
This shows how small elevation errors may have a significant impact on watershed computations.
Typically for watersheds, the uncertain regions can be found at the borders of the watersheds. The
uncertainty basically depends on streams near the borders of the watershed. If a stream flows into
the watershed and contributes to the flow accumulation of the outlet, the watershed is extended by
the upslope area of this stream. If a stream leaves the watershed and does not contribute anymore
to the specified outlet, the upslope area of this stream does not belong to the calculated watershed
anymore. An example of such an uncertain region in the zw04 watershed calculation is illustrated
in Figure 5.22.
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(a) (b)

(c) (d)

Figure 5.23: Statistical rasters showing the probability of a cell belonging to a watershed. These
catchment areas are named as (a) zw04, (b) zw07 and (c) zw11. The outlets are marked
as black points.
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(a) (b)

(c)

Figure 5.24: Histograms showing the distribution of the Monte Carlo simulation results for 250 sim-
ulation runs. (a) zw04, (b) zw07 and (c) zw11. The statistical measurements are shown
in Table 5.3.

Watershed #Runs Mean [m2] STD [m2] RSTD Min [m2] Max [m2]

zw04 250 736989 17735 0.02 709800 858700

zw07 250 186236 38208 0.20 53770 227700

zw11 250 114291 21810 0.19 31820 163100

Table 5.3: Statistical measurements of the watershed histograms (Figure 5.24).
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5.3 Impact of Different Uncertainty Model Parameters

The adjustments regarding the LiDAR measurements errors in steep terrain and dense canopy areas
and the spatial autocorrelation range used to apply the autocorrelated part of error to the error sur-
faces have been analyzed. All these parameters control the spatial structure of error and modify the
error surface applied to the original DEM in each simulation run. It is of interest to know if and how
strong the influence of these parameters is on the derived results of an uncertainty analysis. Espe-
cially, the impact of the chosen spatial autocorrelation range which had to be estimated should be
analyzed in more detail because it may directly determine the degree of uncertainty in an uncertainty
assessment.

5.3.1 LiDAR based Uncertainty Model Parameters Slope and
Canopy

The analysis was done calculating the TWI based on the D8 flow routing algorithm with 400 sim-
ulation runs. The spatial autocorrelation range was set to 40 m. The TWI was chosen because it
is commonly used in hydrological applications and incorporates the uncertainty of the local slope
and the flow accumulation area. The D8 flow routing algorithm was the most sensitive in previous
analysis and thus was chosen for this analysis.

The results of the uncertainty analysis using no error surface adjustments in steep terrain respectively
in dense canopy areas are illustrated in Figure 5.25. Differences can almost not be seen in both cases.
In order to better visualize the differences, the differences to the original analysis shown in Figure
5.10(a) were computed (original minus adjusted result) for both cases and are presented in Figure
5.26. The results show that if the uncertainty model does not adjust the error according to the
steepness, flat areas show a higher uncertainty in the TWI calculations, whereas steep terrains show
a smaller uncertainty. Similar behavior can be seen in the case where the error was not increased
in forested areas. Here, the uncertainty increased in non-forested areas and decreased in forested
areas. The changes can indeed be significant. In the uncertainty analysis without the error surface
adjustments according to steepness, the TWI error can differ up to 3.6 (std). In the case where the
error is not increased in forested terrain, the differences can reach up to 4.6 which is huge compared
to the maximum TWI calculated in this study area which is just below 8.

This behavior can be explained by the way the uncertainty model works. Because the standard
deviation of the error surface is always 0.5 m in this study, the error surface is rescaled after the
error increments in steep and forested terrain due to the fact that these adjustments lead to a higher
standard deviation than 0.5 m. This rescaling process also reduces the error for cells located in
non-forested and flat terrain. Previous analyses have shown that especially flat areas are subject to
pronounced uncertainties. If these spatial structures of error are not applied, the standard deviation
of the error in such terrain remains at 0.5 m and hence increases uncertainty. The terrain in the top-
left corner of the study area is flat and not forested, thus in both cases the most significant changes
in the TWI uncertainty analysis can be observed in this area. However, no changes can be observed
globally due to fact that the standard deviation remains at 0.5 m. Figures 5.25(a), 5.10(a) and 5.25(b)
show very similar results. The mean error in all three cases is around 0.66. Plots neither show any
significant changes. Hence, one might conclude that these parameters have indeed an impact on the
DEM derived results, but the effect is spatially depending; some areas show higher, whereas others
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show lower uncertainty in the TWI calculation. The results would probably be slightly different
showing lower differences when using multiple flow direction algorithms. However this assumption
must still be verified.
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(a)

(b)

Figure 5.25: Statistical rasters showing the error (standard deviation) of the TWI using the D8 flow
routing algorithm. The uncertainty model parameters regarding the slope of the terrain
and the canopy for the error surface generation were changed: (a) The error was not
increased according to the slope. (b) The error was not increased in forested areas.
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(a)

(b)

Figure 5.26: Statistical rasters showing the differences from the original uncertainty analysis of the
D8 based TWI calculation and the D8 based TWI calculation representing the absolute
standard deviation. The uncertainty model parameters regarding the slope of the terrain
and the canopy for the error surface generation were changed: (a) The error was not
increased according to the slope. (b) The error was not increased in forested areas.
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5.3.2 Spatial Autocorrelation Range

These analyses were done calculating the TWI based on the D8 flow routing algorithm with 400
simulation runs. A worst case scenario, in which the spatial autocorrelation range was set to 0 m
and a more conservative scenario with a range of 80 m were chosen. Figure 5.27 shows the result of
the D8 based TWI uncertainty analysis (absolute standard deviation). As expected the uncertainty
increases dramatically with a spatial autocorrelation range of 0 m (mean error ±2.7), whereas a
range of 80 m reduces the derived uncertainty (mean error ±0.44) only slightly compared to the
results using a range of 40 m (mean error ±0.65). The histograms of these two results are illustrated
in Figure 5.28 with the statistical parameters outlined in Table 5.4.
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(a)

(b)

Figure 5.27: Statistical rasters showing the error (standard deviation) of the TWI using the D8
flow routing algorithm. The spatial autocorrelation used in the uncertainty model was
changed to (a) 0 m and (b) 80 m.
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(a) (b)

Figure 5.28: Histograms showing the error (standard deviation) of the TWI using the D8 flow routing
algorithm. The spatial autocorrelation used in the uncertainty model was changed to (a)
0 m. (b) 80 m. Statistical measurements are given in Table 5.4.

Range [m] #Runs Mean STD

0 400 2.7 0.8

40 400 0.65 0.59

80 400 0.44 0.52

Table 5.4: Statistical measurements of the TWI histograms (Figures 5.28 and 5.11(a)) with different
spatial autocorrelation ranges.

91



Chapter 5 | Analyzing the Impact of Uncertainty

(a) (b)

Figure 5.29: Graphs showing the convergence of different sample locations (Figure 5.1(a)) on the
DEM in the D8 based TWI calculation uncertainty analysis. The spatial autocorrelation
used in the uncertainty model was changed to 0 m.

In Section 5.1, the convergence for the TWI using the D8 flow routing algorithm was tested with the
result that the TWI computation converged after approximately 400 simulation runs. It is more than
obvious that this result depends on the uncertainty of the DEM. So, how does the TWI calculation
converge with a spatial autocorrelation range of 0 m where the DEM’s surfaces are very rough? The
results are illustrated in Figure 5.29. The computation of the TWI converges considerably later, even
after 1000 simulation runs, some sample points still do not provide a 100% stable result. Out of
these findings, it can be expected that higher spatial autocorrelation ranges will decrease the number
of runs needed to get stable results.
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(a) (b)

(c)

Figure 5.30: Grids showing the mean TWI calculation of 400 simulation runs with different flow
routing algorithms and spatial autocorrelation ranges: (a) D8 with a range of 40 m, (b)
D8 with a range of 0 m and (c) MD∞ with a range of 40 m.

The final result of the TWI calculation was achieved by computing the mean of all realizations. The
TWI results based on the D8 flow routing algorithm with a spatial autocorrelation range of 0 and
40 m and based on the MD∞ flow routing algorithm with a spatial autocorrelation range of 40 m
are given in Figure 5.30. The D8 based TWI with a spatial autocorrelation range of 40 m shows
the classical linear features of D8 flow routing based computations. But, with an autocorrelation
range of 0 m, the D8 flow directions start to vary so considerably in the uncertainty analysis that
the D8 flow routing algorithm mutates to a multiple flow direction algorithm showing a very smooth
TWI surface. However, the TWI values reported are lower compared to the MD∞ based flow
routing algorithm. However, the determination of the most realistic TWI is not the scope of this
thesis.
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5.4 Using Coarser DEM Resolutions

This section evaluates if a coarser spatial resolution DEM will change the results of an uncertainty
analysis compared to the high resolution DEM used previously. Several possibilities exist to produce
a DEM with a coarser spatial resolution. A DEM with a native coarser resolution could be used or the
LiDAR derived DEM could be resampled. For the resample approach, ArcGIS provides different
methods: e.g. nearest neighbor or bilinear interpolation. A native DEM provided by Swisstopo
(DHM251) with a 25 m spatial resolution and resampled LiDAR derived DEMs (25 m) using the
nearest neighbor and bilinear interpolation methods were used. Both resampled DEMs only differ
slightly, differences in elevation up to 1.4 m could be observed which can be mainly found in steep
areas. The native DEM provided by Swisstopo differs considerably from both resampled DEMs.
Differences up to 19 m could be observed in steep areas, which is not surprisingly due to the fact
that this dataset uses a completely different elevation data source (contour derived).

The RMSE of the LiDAR derived DEM is 0.5 m according to Swisstopo. The accuracy of the el-
evation data is lower in coarser resolution DEMs. For the native 25 m DEM, Swisstopo indicates
a RMSE value of up to 8 m in alpine terrain. The resampled DEMs altered the original data and
therefore caused additional uncertainty (Montgomery, 2001). An estimation of the elevation error
can be done by comparing coarse resolution DEMs to DEMs with a higher spatial resolution. Com-
puting the differences between the resampled DEMs and the LiDAR DEM results in error surfaces
which can be used to extract the mean errors. Both resampled DEMs have a mean error of 4.3 m. The
native DEM (DHM25) has a higher mean error of 6.5 m which is near the 8 m RMSE stated by Swis-
stopo. The acquired mean error can be used as new RMSE input value for the uncertainty model.
In addition to the RMSE, the spatial autocorrelation range for the uncertainty analysis method is
needed.

The DEM resampled with the nearest neighbor method was selected for the analysis in this section.
The spatial autocorrelation range was estimated at up to 500 m or 20 cells. The simulated DEMs
look realistic with that range and a range of 20 cells was also used for the analysis of the 2 m
DEM. However, this range was chosen without any further justifications. Because previous analysis
(Section 5.3) showed that the spatial autocorrelation range has an impact on the derived results, also
a spatial autocorrelation range of 125 m was used in order to justify this finding.

Due to the resampling, the DEM only has an extent of 103x123. This makes computations dramat-
ically faster compared to the 2 m resolution DEM covering the same area. 1000 simulation runs
computing the TWI based on the D8 flow routing algorithm were done in 20 seconds using four pro-
cesses and the same system as described in Chapter 4. With the 2 m DEM, already 250 simulation
runs need more than 200 seconds to complete (see Figure 4.2(a)). The results of this uncertainty
assessment are illustrated in Figure 5.31 with the corresponding histograms and statistical measure-
ments shown in Figure 5.32 respectively Table 5.5. The spatial structure of error is given in Figure
5.33. The uncertainty in this case seems to be relatively independent from the spatial resolution of
the DEM. The mean error (std) is slightly higher with 0.8 (125 m range) and substantially lower
with 0.33 (500 m range) compared to the 0.65 of the original LiDAR derived DEM (Table 5.2). The
histograms (Figure 5.32 and 5.11(a)) also show a very similar distribution of error. Differences can
be observed in the spatial structure of error. Due to the resampling the terrain became flatter; the
steepest slope is now 54◦. TWI values derived in flat areas still have a higher uncertainty but the

1http://www.swisstopo.admin.ch/internet/swisstopo/de/home/products/height/dhm25.html
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lowest error can be observed around 35◦ when using a spatial autocorrelation range of 125 m (Figure
5.33(a)). The influence of slope decreases when a range of 500 m is used (Figure 5.33(c)). The error
also considerably decreases in convex terrain when using a range of 125 m (Figure 5.33(b)). With a
range of 500 m, errors are only slightly higher in concave compared to convex reliefs while errors
are highest neither in convex nor in concave terrain (Figure 5.33(d)).

95



Chapter 5 | Analyzing the Impact of Uncertainty

(a)

(b)

Figure 5.31: Grids showing the absolute standard deviation of the D8 flow routing algorithm based
TWI uncertainty analysis using 400 simulation runs, a spatial resolution of 25 m, a
RMSE of 4.3 m and a spatial autocorrelation range of (a) 125 m and (b) 500 m. The
black cells represent no data. TauDEM does not compute the flow accumulation for
contaminated cells because their flow accumulation is affected by cells which are not
part of the DEM.

96



5.4 | Using Coarser DEM Resolutions

(a) (b)

Figure 5.32: Histograms showing the distribution of errors of the TWI computation based on the D8
flow routing algorithm. The uncertainty analysis was done with 400 simulation runs, a
spatial resolution of 25 m, a RMSE of 4.3 m and a spatial autocorrelation range of (a)
125 m and (b) 500 m.

Resolution [m] Range [m] #Runs Mean STD

25 125 400 0.8 0.53

25 500 400 0.33 0.38

2 40 400 0.65 0.59

Table 5.5: Statistical measurements of the TWI histograms (Figures 5.32 and 5.11(a)).
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(a) (b)

(c) (d)

Figure 5.33: Box plots showing the spatial structure of error of the TWI computation based on the
D8 flow routing algorithm. The uncertainty analysis was done with 400 simulation
runs, a spatial resolution of 25 m, a RMSE of 4.3 m and a spatial autocorrelation range
of (a,b) 125 m and (c,d) 500 m.
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(a) (b)

(c) (d)

Figure 5.34: Graphs showing the convergence of the D8 based TWI calculation using the 25 m DEM
with a spatial autocorrelation range of (a,b) 125 m and (c,d) 500 m.

The convergence test was performed once again with the 25 m DEM. The results are shown in Figure
5.34. The graphs highlight that the TWI computation appears to converge after 600 runs using a
spatial autocorrelation range of 125 m. However, some sample points are still not 100% stable. In
this case, significantly more runs are needed compared to the 2 m DEM where the average TWI
appeared to converge after 400 simulation runs (Figure 5.2) to achieve an appropriate uncertainty
assessment. When using a spatial autocorrelation range of 500 m the number of runs needed to
achieve stable results decreases and the result appears to converge already after 400 simulation runs
which is equal to the result obtained by using the high resolution DEM.
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The stream network for the Zwackentobel and the watershed for the Erlenbach (zw04) were ex-
tracted using the 25 m DEM and a spatial autocorrelation range of 500 m. The uncertainty maps of
the stream network and watershed are illustrated in Figure 5.35. In general, the results are mostly
similar to the one obtained by using the 2 m DEM (Section 5.2). Figure 5.36(a) shows the conver-
gence test for the watershed extraction. The watershed calculation appears to converge once again
at around 150 simulation runs. However, the results are very unstable below 100 runs which is con-
siderably higher compared to the result using the 2 m DEM (50 runs) (Figure 5.3). The distribution
shown in Figure 5.36(b) is also very similar. The outliers are mostly upwards, overestimating the
area of the watershed. Interesting is that the average size of the area is almost the same after 250
simulation runs (Tables 5.6 and 5.3). The differences are negligible with 736989 (2 m DEM) to
737797 m2 (25 m DEM). However, the error is substantially higher (±6% to ±2%), explaining the
differences in the convergence graphs. The spatial pattern of uncertainty for the stream network
extraction is illustrated in Figure 5.37. The slope does not appear to have an influence on the un-
certainty of stream extraction. This result is similar to the one obtained for the 2 m DEM (Figure
5.20(b)). In contrast to the 2 m DEM result (Figure 5.20(a)), the error of mapping streams increases
with higher convexity of the terrain.
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(a)

(b)

Figure 5.35: Grids showing the extracted stream network for the Zwackentobel (a) and the watershed
for the Erlenbach (b) using the 25 m DEM (RMSE = 4.3, range = 500 m).
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(a) (b)

Figure 5.36: (a) Graph showing the convergence of the watershed extraction. (b) Histogram illus-
trating the distribution of the calculated watershed areas. Statistical measurements are
shown in Table 5.6 along with the 2 m resolution results.

Resolution [m] Range [m] #Runs Mean (m2) STD (m2) RSTD Min (m2) Max (m2)

25 500 250 737797 47129 0.06 523100 901900

2 40 250 736989 17735 0.02 709800 858700

Table 5.6: Statistical measurements of the watershed histograms (Figures 5.36(b) and 5.24(a)).

Finally, one might conclude that the uncertainty of derived products in coarser resolution DEMs is
very similar to the uncertainty observed when using high resolution DEMs. The analysis showed
that the spatial autocorrelation range has such a large impact on the uncertainty assessment so that
the spatial resolution of the DEM plays a minor role. However, this conclusion could be very case-
specific and may change using different model inputs such as the RMSE or DEM.
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(a) (b)

Figure 5.37: Box plots showing the spatial structure of error of the stream network extraction. They
show the relationship between the stream error (H) and (a) slope and (b) convexity.

5.5 Possible Application in Recent Hydrological

Research

Benjamin Fischer from the H2K unit of the University of Zurich investigates the relationship between
DEM derived indices and field measurements such as the quality of water. He, for example, uses
the TWI as a topographic index and the amount of 18O in the water, both measured at multiple
sampling sites. His analysis showed that there is no significant relation between the TWI and the
amount of 18O in the water (personal communication, January 7, 2013). However, it might be
that uncertainties in the data may have affected the results and lead to an incorrect conclusion. The
proposed uncertainty approach allows to at least improve the quality of the TWI data. It is possible to
show how considerably a TWI value varies and it is possible to provide, for example, a final averaged
TWI value for each particular sampling site. Using this data may lead to a different conclusion in
his investigation (Figure 5.38). In this case, the uncertainty analysis using the mean value did not
reveal any significant under- or overestimated TWI values. The plots look almost exactly the same
(Figures 5.38(a) and 5.38(c)). Hence, the conclusion remains the same so far. However, the TWI
varies substantially at some sample points (Figure 5.38(b)). Removing such uncertain sampling
points from the correlation analysis probably leads to a different result (Figure 5.38(d)). But even
this method does not change the conclusion that there is no significant correlation between 18O and
the TWI. However, this example shows that results of digital terrain analysis are uncertain and that
these uncertainties may affect investigations building on digital terrains analysis.
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(a) (b)

(c) (d)

Figure 5.38: Plots showing the relationship between the TWI (MD∞) and the amount of 18O in
the water using 24 sampling sites: (a) No uncertainty analysis. Uncertainty analy-
sis (#Runs=400, RMSE=0.5, R=40) illustrating (b) all calculated TWI values for each
sampling ponit, (c) the mean TWI for each sampling point and (d) the mean TWI for
each sampling point having a standard deviation lower than 0.5. In addition, regression
lines were added to the plots.
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6 Discussion

This chapter discusses the achieved results of this thesis. First, the proposed uncertainty analysis
approach based on TauDEM is evaluated and suggestions for improvements are made (Section 6.1).
Section 6.2 discusses the findings for hydrological applications. In the following Section 6.3 the
research questions given as the aims of this study are answered.

6.1 Proposed Uncertainty Analysis Approach

The programming task was one of the main focuses of this thesis. The goal was to provide an
uncertainty analysis approach with highly efficient algorithms to evaluate various hydrological mod-
els regarding their uncertainty in digital terrain modeling using high resolution DEMs. With this
approach we are getting closer to the final goal of having an "uncertainty button" in a GIS (see
Heuvelink, 2006). Compared to other uncertainty analysis approaches in digital terrain analysis
(e.g. Wechsler, 2007; Hengl et al., 2010) the approach proposed in this thesis provides the user with
a suite of efficient hydrological algorithms paired with numerous statistical evaluation options en-
abling error propagation analysis for large datasets independent of a GIS software suite. Tesfa et al.
(2011) showed that the execution time of the algorithms provided by TauDEM is considerably lower
for common hydrological algorithms compared to commercial GIS software suites such as ArcGIS
which is confirmed by the performance evaluation in Chapter 4. In addition to the efficiency, the par-
allelization can improve the execution time of error propagation analysis even further. With the test
system described in Chapter 4, an acceleration of up to a factor of three was achieved by running the
algorithms in parallel on four processing cores. This is very crucial for uncertainty analysis in digi-
tal terrain modeling using the computationally very demanding Monte Carlo simulation approach in
combination with large datasets such as LiDAR derived DEMs. The time needed for such analysis
is seen as one of the main reasons why error propagation analysis receive little attention, especially
when working with complex LiDAR data. With the proposed approach, this aspect should become
less important.

However, the uncertainty analysis approach proposed by this thesis is also not the perfect and desired
"uncertainty button". Building a geostatistical model for building error surfaces representing the
DEM error includes a number of parameters affecting the results of the error propagation analysis.
Often there are no control points available to evaluate the spatial structure of error in a detailed
way. Usually, users are only provided with a statistical estimator such as the RMSE describing
the error in the DEM. Hence, the generation of accurate error surfaces is a challenge. Without
knowledge of the spatial structure of error, it is not possible to fit a correlogram or (semi)variogram
like it is used in SGS approaches as demonstrated in some recent studies (e.g. Hengl et al., 2010).
Therefore a process convolution approach (e.g. Oksanen and Sarjakoski, 2005b; Oksanen, 2006;
Wechsler, 2007; Hebeler and Purves, 2008) using an uncalibrated correlation function should be
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used. Because the study mainly focuses on high resolution DEMs derived from LiDAR data, the
geostatistical model could be improved by considering knowledge of spatial structure of error in
LiDAR derived DEMs. This approach is based on the method proposed by Ulmer (2007) with slight
modifications to some parameters. However, because of the lack of control points, a validation if
the resulting error surfaces including the spatial structure of LiDAR derived DEM error are more
realistic could not be carried out. The results only show that such adjustments in the geostatistical
model have some impact on the error propagation analysis (Chapter 5). Besides the issues in the
methodology, there also exist technical problems which are outlined in Chapter 4. Memory leaks in
the watershed and stream network computation limit the maximum amount of possible simulation
runs and an inefficient algorithm to remove flats on DEMs slows down both of the implemented
multiple flow direction routing algorithms MD8 and MD∞.

The proposed uncertainty analysis approach could be improved by a validation of the implemented
spatial structure of error concept. Actually, all parameters used in this process were based on lit-
erature and were not verified by own evaluations. The proposed approach could also be extended
by a SGS method, in case that control points would be available. This may lead to more realistic
error surfaces improving the quality of uncertainty analysis. A comparison between the SGS and
the process convolution approach could also be interesting. In addition, the previously mentioned
technical issues should be resolved for a fully functional uncertainty analysis.

6.2 Advantages in Hydrological Applications

In Section 5.5, some results showing the application of uncertainty analysis in recent hydrological
research are presented. As shown by Seibert et al. (2007), it is indeed quite frequent that scatter
can be observed in the data affecting topographic correlation analysis. This scatter may also be a
result of DEM uncertainty affecting the computed topographic indices such as the TWI. Benjamin
Fischer from the H2K unit of the University of Zurich provided me with some data (18O and TWI
for multiple sample sites) which do not reveal any correlations. Recomputing the TWI values with
the proposed uncertainty analysis approach allowed to determine all uncertain sample sites and re-
moving them from the data. The removal of uncertain sample sites may reduce the scatter. However,
in this example it does not change the conclusion that there is no correlation between 18O and the
TWI. However, the approach used seems to be suitable to improve such correlation analysis.

6.3 Research Questions

After the results have been obtained and interpreted, the research questions can be answered and
discussed and responses can be given to the hypotheses formulated in the beginning of this the-
sis.

Research question 1: Can the time needed for uncertainty analysis be reduced considerably with

parallelized algorithms?

Performance tests are done and discussed in Chapter 4. The results show that most algorithms used
in the uncertainty analysis approach are very efficient and scale pretty well with additional processes.
Some algorithms such as the D8 flow routing algorithm run up to three times faster when using four
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processes instead of only one. However, the execution time does not scale linearly with the number
of processes. The performance increases less considerably with each additional process. One reason
can be found in Amdahl’s law (Amdahl, 1967), saying that parallel code will effectively be bottle-
necked by the slowest serial parts of the code. If there is infinite parallel computing power, the code
runs as fast as the serial portions of the code. For example, writing and reading data is a serial part
of this code. Another point are the communication costs between the processes. The processes can
not run all algorithms independently from each other. But the results are in line with the findings of
Tesfa et al. (2011) which is not surprising given the fact that the same parallelization approach and
some identical algorithms were used. Due to the limits of the test system, performance tests using
more than four processes could not be performed although the proposed analysis approach would
support significantly more processes. But it can be expected that the results would correspond with
those presented by Tesfa et al. (2011) meaning that the performance gain will slightly decrease with
additional processes. Finally, it can be said that parallelization accelerates common hydrological
algorithms and the proposed error propagation approach considerably. Compared to other uncer-
tainty analysis studies (e.g. Hengl et al., 2010), the proposed approach does in most instances not
suffer from performance issues, thus enabling users to assess the uncertainty of their hydrological
products even on LiDAR based DEMs. However, the flat removing algorithm used in the MD8 and
MD∞ flow routing algorithm computations causes some performance issues if the DEM is very
large or contains many flats. More efficient algorithms exist to solve this issue (e.g. Magalhães et al.,
2012), but have not been implemented due to the lack of time. However, the proposed uncertainty
analysis approach was produced in a modular way easily allowing an extension with more efficient
algorithms.

Working hypothesis 1: Considerably lower execution times with an increasing number of parallel

processes will be expected.

This hypothesis can be partially verified according to the results outlined in Chapter 4. Digital terrain
analysis algorithms are very suitable for parallelization approaches due to the lattice representation
and the neighborhood operations (see Tesfa et al., 2011). In many algorithms, the result of a cell can
be computed independently of the results of other cells which makes the parallelization relatively
easy and efficient. However, the execution time does not decrease linearly with the number of
processes used.

Research question 2: How many realizations in a Monte Carlo simulation are sufficient for common

hydrological algorithms? How well do they converge with an increasing number of runs?

The convergence of different hydrological models was analyzed in Section 5.1. The tests were done
using up to 1000 simulation runs. The classification of the topography with the method proposed by
Iwahashi and Pike (2007) has proven to be very useful to analyze the convergence of hydrological
products in combination with sampling points located in the different terrain classes. In this case
(Zwackentobel DEM, RMSE = 0.5 m, R = 40 m, spatial resolution 2 m), the TWI based on the D8
flow routing algorithm appears to converge after 400 simulation runs. The results also show that
this number can vary considerably in space. In convergence tests, the behavior of the sample points
appears to be related to the terrain classes proposed by Iwahashi and Pike (2007). In some sample
points, usually located in flat and rough terrain, the result still does not appear to converge after 1000
simulation runs. This shows that more simulation runs always lead to a more stable and thus more
reliable uncertainty analysis results, especially in flat and rough terrains. But users do not have time
to run 1000 simulation runs to achieve very stable results, hence a threshold is needed at which the
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quality of the results is adequate enough which also depends on the users view. What can definitely
be said is that less than 100 simulation runs lead to inappropriate results, even when using high
resolution DEMs. The evaluated values are too noisy below 100 simulation runs. This confirms the
results of other studies which indicated that in most cases the number of simulation runs should be
at least 100 (e.g. Heuvelink, 1998).

The same analysis was performed using the TWI based on the MD∞ flow routing algorithm. In
this case, the calculations appear to converge already after 200 simulation runs. Also, not that
many outliers can be observed as before, all sample points reach very stable results before the 1000
simulation runs mark. However, below 100 runs the results are once again very noisy. So even with
multiple flow direction algorithms more than 100 simulation runs are absolutely necessary for a valid
uncertainty assessment. But as Oksanen (2006) mentioned, convergence analysis is always case-
specific because it depends on the used terrain analysis algorithm, the parameters of the uncertainty
model and the topography of the used DEM. But such analysis can deliver a rough guideline for users
if they do not want to perform an own convergence test for their specific case. However, the proposed
method using sample points has proven to be a suitable method to investigate the convergence of the
TWI in error propagation analysis.

In addition, a convergence test for the watershed computation was done. Instead of using sample
points as Oksanen (2006) did, the convergence of the watershed area size was investigated. In this
case, the area already appears to converge after 150 simulation runs. The area sizes are very noisy
below 50 simulation runs. A lower threshold can be observed compared to the previously mentioned
TWI calculations and the results provided by Oksanen (2006) (500 simulation runs for watersheds).
This result may be based on the fact that the Zwackentobel is very steep. The watershed computation
relies more on the global relief than on the local neighborhood conditions, so that the watershed area
is very stable in the study site. Because this result could be completely different for other DEMs or
watershed locations, more research is needed to give a final conclusion.

Working hypothesis 2: The results will vary spatially depending on the terrain characteristics.

It can indeed be verified that the point at which a result converges differs in different terrain classes
(Iwahashi and Pike, 2007). Basically the results prove that sample points showing a high uncertainty
also exhibit noisier convergence graphs and that they appear to converge considerably later. Such
sample points are often located in terrain classes describing rough and flat terrain. However, because
only one sample point was chosen for each terrain class (Iwahashi and Pike, 2007), not enough data
is available to conclude that there is a direct relation between the terrain classes (Iwahashi and Pike,
2007) and the convergence of sample points located in these classes. This has to be clarified in
further investigations.

Research question 3: How sensitively do the different hydrological algorithms behave in uncertainty

analysis?

This analysis was done in Section 5.2. First, the sensitivity of the flow routing algorithm was an-
alyzed using the relative standard deviation as the statistical uncertainty estimator. The relative
standard deviation is useful to describe uncertainty because it shows the percentage deviation of
an uncertain value (e.g. Temme et al., 2009). As expected, the D8 flow routing algorithm shows
the highest errors. The uncertainty map of the D8 flow accumulation (Figure 5.4(a)) looks very
noisy and shows the typical linear features of the D8 flow routing algorithm. This behavior can
be explained by how the D8 flow routing algorithm works compared to the multiple flow direction
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algorithms (see Seibert and McGlynn, 2007). They basically show a very similar map looking con-
siderably smoother. Between the MD8 and the MD∞ flow routing algorithm almost no differences
can be observed (Figure 5.4). The highest errors can be observed for all flow routing algorithms in
the upper-left corner of the DEM. This is due to the fact that errors are typically larger in flat and
rough areas (Figures 5.6 and 5.8) and the upper-left corner is such a flat and rough area (Figures
B.1(b) and B.1(c)). The results show that very flat areas are usually also very rough as shown in
Figure 3.4(f). The errors reach up to ±1990% in this area. Such high errors are not surprising.
When the variation in the flow accumulation computation is very high but the mean value is still
very low, such high errors may occur. Similarly high relative standard deviations were also observed
by Temme et al. (2009) for soil redistribution (up to 1000%) and Wechsler (2007) for the D8 based
upslope area computations (up to 2170% on average depending on the random field method used).
The results also show that errors are not directly related to the convexity of the terrain, except for the
D8 flow accumulation, where errors tend to increase in highly concave reliefs (Figure 5.7). Inter-
esting is the fact that the multiple flow direction algorithms are extremely sensitive to the roughness
of the terrain. If the terrain is very rough, the multiple flow direction algorithms produce a high
amount of errors, even higher than the usually more sensitive single flow routing algorithm D8. This
behavior cannot be explained and may be a case-specific exception. When the terrain is classified
according to Iwahashi and Pike (2007), the average error of the D8 flow routing algorithm is gen-
erally more than twice as high across all classes compared to the multiple flow direction algorithms
(Figure 5.9). In literature, different flow routing algorithms were often investigated regarding their
accuracy to model flow in a realistic way (e.g. Zhou and Liu, 2002). These studies showed that
multiple flow direction algorithms have many advantages. On the other hand, this thesis analyzed
the behavior of different flow routing algorithms regarding their sensitivity in uncertain DEMs with
the conclusion that the D8 is the most sensitive flow routing algorithm followed by the D∞ which
is already considerably more robust. The MD8 and MD∞ flow routing algorithms which behaved
almost the same way in the uncertainty analysis, are the most robust in the uncertainty analysis and
thus are more suitable for extracting hydrological parameters from uncertain DEMs (see Seibert and
McGlynn, 2007).

The same analysis was done calculating the TWI based on the D8 and MD∞ flow routing algorithm.
These analyses incorporate the uncertainty of flow accumulation and local slope. The standard
deviation was used to describe the uncertainty. The relative standard deviation tends to produce
extreme values and may adversely affect statistical analysis. The observed average error for the
D8 based TWI is 0.65 (Table 5.2). This result corresponds with the results of Wechsler (2007)
who found an average error of 0.4 to 0.6 depending on the random field method used. Once again,
low slopes lead to higher errors and the D8 based TWI is more sensitive to elevation uncertainties
(Figure 5.13). The convexity has a similar impact on the uncertainty as shown before in the flow
accumulation calculations (Figure 5.14). Errors are slightly higher in concave reliefs in both cases.
The MD∞ based TWI reacts very sensitively to the roughness of the terrain, whereas in this case,
the D8 based TWI behaves very robustly, but shows a relative constant and high error (Figure 5.15).
When we take a look at Figure 5.16, we can see once again that in almost all terrain classes the
error of the D8 based TWI is approximately twice as high compared to the MD∞ based TWI.
Because the TWI is calculated from the slope and the flow accumulation, it is of interest to analyze
if the uncertainty of the final TWI map is influenced more strongly by the slope or by the flow
accumulation error. Figure 5.17 shows that the uncertainty of the TWI calculation mainly depends on
the flow accumulation uncertainty. There cannot be seen a direct correlation between slope error and
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TWI error. The flow accumulation errors are too huge and thus have the strongest impact on the TWI
uncertainty assessment result. The calculated TWI values are not always normally distributed and
can vary over a large range (Figure 5.12). Thus, results of hydrological models can be considerably
over- or underestimated if DEM uncertainty is ignored.

In addition, the sensitivity of watersheds and stream networks was analyzed. To evaluate the im-
pact of DEM uncertainty on watersheds, the probability of a cell belonging to the watershed was
computed. The same approach was also used by Oksanen and Sarjakoski (2005b). This results in
a map showing the watershed in a continuous form which allows to identify uncertain regions (Fig-
ure 5.23). Apparently, uncertain regions can always be found near the boundaries of the watershed.
These uncertainties can lead to huge changes of the watershed size depending on the study site.
Whereas the spatial extent of watershed zw04 varies by 20%, the spatial extent of watershed zw11

varies by over 519% between their smallest and largest extents (Table 5.3). Similar results were
achieved by Hebeler and Purves (2009) who observed variations of up to 320% in their study site.
Cells located in the center of the watershed usually always have almost a 100% chance to belong to
the estimated watershed. This is also the reason why analyzing the spatial structure of error in this
case does not make any sense. The watershed uncertainty is directly related to the stream errors. If a
stream changes its direction in a realization and enters the watershed, the watershed is extended by
the catchment area of this stream and whether a stream changes its direction or not depends on the
local terrain characteristics. Usually very flat terrain leads to uncertain stream extractions (Figure
6.1). If a watershed is located in a flat relief the errors may be considerably higher than observed
in this case, where the relief is very steep. As illustrated in Figures 5.20 and 5.21, it is difficult
to find any spatial patterns of stream error. The problem is that one uncertain location (small cell
neighborhood) can change the direction of a stream completely. Now, the topographic properties of
all the following cells which belong to the stream do not necessarily have an impact on the stream
uncertainty anymore but are classified by the model that way and thus influence the plots of spatial
structure making them less meaningful. For example, if a stream reaches a road which happens in
the performed analysis (Figure 6.1), the chance is 50% that the stream flows down the road instead
of flowing straight through it (in reality the stream flows below the road). Obviously the flat road
is the reason for the uncertain extraction of the stream network. However, all cells belonging to
this stream which are located downwards the road and below the road are also modeled as very un-
certain (probability = 50%, error (H) = 1) disregarding the topographic characteristics. This issue
is also related to high resolution DEMs. Coarse resolution DEMs are not affected by such anthro-
pogenic features which cause a lot of uncertainty because they are not detectable in this data. In
addition, streams in concave reliefs have in general a high probability, whereas streams extracted in
non convex or slightly convex areas show a small probability to be mapped (Figure 5.21). These
results are in line with the findings of other studies conducted (e.g. Hengl et al., 2010). The results
also identified that streams with lower Strahler stream orders show lower probabilities and can vary
considerably in space (Figure 5.18(b)) (see Hengl et al., 2010). In addition, the probability map
was transformed into the error space H (Figure 5.18(a)) as it was also done by Hengl et al. (2010).
With this representation, locations which are highly uncertain in the stream extraction process are
discovered. In contrast to the results provided by Hengl et al. (2010), it could not be confirmed
that errors are higher in slightly convex reliefs. In this study, errors are slightly higher in concave
reliefs, potentially due to the higher spatial resolution or different terrain characteristics of the study
area. But the results show that errors are higher in terrain with high TWI errors and rough landforms
(Figure 5.21).
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Some locations in the field which were evaluated as very uncertain regions were also investigated.
Figure 6.2 shows such an area. Due to the wet soil and the steep terrain, such plateaus can occur
in erosive processes. In these cases the stream is distributed over the plateau and flows in small
channels and accumulates again at some point to continue flowing downwards as one stream. These
small channels cannot be detected by the LiDAR system and thus the modeling of flow is very
uncertain in such locations. However, the uncertainty analysis shows that in this case the stream is
modeled correctly with a probability of over 80% after the plateau. Without an uncertainty analysis,
the possibility that a stream is mapped correctly in such areas and beyond may be very low.
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Figure 6.1: Map showing the stream network probability. (1) The location where the stream crosses
the road. (2) A very flat plateau introducing high uncertainty in the stream network
extraction process (see Figure 6.2).

Figure 6.2: A photo of a location which leads to high uncertainty in all evaluated hydrological algo-
rithms. The location is marked in Figure 6.1 at position 2. This area is almost perfectly
flat and the water flows in many small channels across it.
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Working hypothesis 3: Multiple flow direction algorithms will be less sensitive than the single

flow direction algorithm and the hydrological algorithms will show the highest errors in flat ter-

rain.

It could be verified that the multiple flow direction algorithms are more robust than the single flow
direction algorithms which was implied by Seibert and McGlynn (2007). Almost a twice as high
mean error (std) can be observed in the hydrological models when using a single flow direction
algorithm. Also, the multiple flow direction algorithms are very robust in different topographic
conditions as long as these conditions are not too extreme. A very good example is the roughness;
whereas errors are almost zero in less rough terrain, the error extremely increases in highly rough
terrain when using multiple flow direction algorithms. The single flow algorithm still shows a similar
trend, but it already has a considerable error in less rough terrain and does increase at a lower rate
in rougher terrain. The second part of this hypothesis can also be verified. The results presented in
Section 5.2 show that the uncertainty assessments of all hydrological algorithms do highly depend
on the steepness of the terrain with highest errors occurring in the flattest areas.

Research question 4: What are the impacts of the input parameters of the uncertainty model on the

uncertainty analysis results?

Oksanen and Sarjakoski (2005b) already showed that the uncertainty model parameters spatial au-

tocorrelation range and vertical error have an impact on the results of an uncertainty assessment
of constrained derivatives (slope, aspect) using the process convolution approach. They also stated
that the appropriate shape of the spatial autocorrelation model, either exponential or Gaussian, was
not as important as the other uncertainty model parameters. These conclusions were extended by
analyzing additional hydrological models using a high resolution DEM with an uncertainty model
exploiting the spatial structure of LiDAR elevation errors.

The spatial structure of error in LiDAR derived DEMs as it was implemented in the proposed ap-
proach leads to differences in the derived results (Figures 5.25, 5.26). However, the problem in this
study is that control points are not available to validate whether this approach leads to more accurate
error surfaces or not. Therefore, further studies are needed to validate this approach. The second
parameter analyzed was the spatial autocorrelation range (Figures 5.27, 5.28). The results are in
line with the study from Oksanen and Sarjakoski (2005b). A range of 0 m dramatically increases the
uncertainty in all hydrological algorithms, whereas a higher range smooths the error surface and thus
reduces the uncertainty of the hydrological algorithms. The spatial autocorrelation range also has a
direct influence on the convergence test. The higher the range the less simulation runs are needed
to reach stable results. A too low spatial autocorrelation range could not only lead to overestimated
errors, it also needs more simulation runs if stable results should be achieved. On the other hand, too
high spatial autocorrelation ranges can underestimate the uncertainty. An interesting observation is
that the single flow direction algorithm D8 with a spatial autocorrelation range of 0 m starts to vary
so considerably that it approximates a multiple flow direction algorithm when the mean of the TWI
realizations is computed. As illustrated in Figure 5.30(b), the TWI shows a very smooth surface
which is literally uncharacteristic of the D8 flow routing algorithm. This might be an alternative
method to compute the TWI.

Finally, it can be said that the election of the uncertainty model parameters is crucial. It can lead
to over- or underestimated uncertainty assessments and influence the results of convergence tests.
The main issue of the process convolution based uncertainty analysis remains the determination of
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these parameters. Only studies can deliver rough guidelines for non- expert users allowing them to
execute appropriate and valid uncertainty analysis.

Working hypothesis 4: Input parameters changing the error surface in the expected sensitive flat

areas will have an influence on the derived uncertainty assessments.

This hypothesis could be verified too. Especially the spatial autocorrelation range has a considerable
impact on the uncertainty analysis results. As already shown by Oksanen and Sarjakoski (2005b), the
spatial autocorrelation range is the dominating parameter of a process convolution based uncertainty
model. Input parameters regarding the spatial structure of LiDAR DEM error play a minor but not
necessarily an insignificant role.

Research question 5: Do coarser spatial resolutions of DEMs change the findings of the above

asked research questions?

Using coarse resolution DEMs has some benefits. First, the computation time of the algorithms
is reduced considerably compared to high resolution DEMs. Resampling the 2 m DEM to 25 m
increases the performance in this study approximately by a factor of 40 in the D8 flow routing al-
gorithm based TWI calculation. Second, coarse resolution DEMs often have a significantly lower
cost compared to high resolution LiDAR data and are more available. The third advantage found
in this study is that resampling a high resolution DEM to a coarser spatial resolution provides the
possibility to estimate an error surface. The statistical uncertainty estimator RMSE can be derived
from this map and can be used to calibrate the uncertainty model appropriately. However, for the
proposed method, the spatial autocorrelation range still has to be estimated. Using this methodology
to calibrate the uncertainty model, slightly higher uncertainties are observed with a spatial autocor-
relation range of 125 m in the hydrological models compared to the analysis using the 2 m DEM.
In contrast, when using a spatial autocorrelation range of 500 m, the errors observed are, at least for
the TWI calculation, considerably lower. The results of the convergence tests also highly depended
on the spatial autocorrelation range. For the extraction of watersheds and stream networks similar
results can be observed as for the 2 m DEM, except that the error of mapping streams is this time
larger in convex instead of concave terrain. In this case, the results are in line with the result obtained
by Hengl et al. (2010) who also stated that mapping streams in slightly convex areas is slightly more
uncertain using a 30 m DEM. Finally, the conclusion is that the uncertainty in hydrological models
highly depends on the uncertainty model, its parameters, and the quality of the DEM. The spatial
resolution of the DEM plays a minor role in an uncertainty assessment. But at least some spatial
structures of error appear to change at different scales.

Working hypothesis 5: Major differences will not be expected.

The differences observed vary. The mean error observed in the uncertainty assessment appears to be
independent from the spatial resolution of the DEM. However, some spatial structures of uncertainty
are different. For example, observed errors in mapping streams are larger using a coarse resolution
DEM (see also Hengl et al., 2010), whereas the errors are smaller using a high resolution DEM in
convex reliefs. As of now, this hypotheses can be neither verified nor falsified. More research is
needed to obtain enough ground data to make a final decision.
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High resolution DEMs, such as LiDAR derived DEMs, are also not free of errors. As of today, this
fact is commonly ignored in geomorphological studies because users often assume the DEM as the
true surface rather than a model as its name implies and because too few methods exist to address
the impact of the DEM error. In this case, the errors contain a significant stochastic component
allowing to use the Monte Carlo simulation approach to investigate the implications of uncertainty
in elevation on the derivation of hydrological models. The process convolution approach allows to
model error surfaces in a very efficient way without requiring control points. This approach allows
error propagation analysis when only little information such as the RMSE indicated by the DEM
provider regarding the elevation error is available. The downside is that it uses an uncalibrated
correlation function to produce the error surfaces.

Previous studies rarely used high resolution DEMs derived from LiDAR data. This study provides
an uncertainty assessment of various hydrological models derived from a high resolution LiDAR
DEM using an uncertainty model which was optimized according to the spatial structure of error
in LiDAR based DEMs. The methodology and its application presented in this thesis to assess
DEM errors demonstrated that it is possible and also worth investigating in error propagation when
working with high resolution DEMs.

Numerous hydrological applications utilize DEMs and DEM derived hydrological parameters as in-
put data. The purpose of the proposed uncertainty analysis approach is to provide hydrological users
with a methodology of how to evaluate the impact of DEM uncertainty on the derived hydrological
models and improve the quality of more advanced hydrological models.

7.1 Achievements

The following points outline what has been achieved with this study:

• An uncertainty model was implemented with the following characteristics:

– The uncertainty model is based on the Monte Carlo simulation approach and uses the
process convolution approach for the spatial autocorrelation of the produced error sur-
faces. Due to performance reasons, a Gaussian convolution kernel was implemented.

– The uncertainty model only needs two input parameters: the RMSE and the spatial au-
tocorrelation range describing the error of the DEM.

– Specific information about the spatial structure of error of LiDAR based DEMs can be
used to produce more realistic error surfaces. The error can be adjusted according to the
local slope. In addition, the uncertainty model can utilize a canopy mask, adjusting the
error at locations covered by dense canopy.
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• A complete uncertainty analysis approach was proposed and has the following characteristics:

– Uncertainty assessments are offered for the digital terrain analysis products slope, ups-
lope area, TWI, STI, SPI, stream network and watershed.

– The upslope area and compound indices can be calculated with different flow routing
algorithms. The D8, D∞, MD8 and MD∞ flow routing algorithms were implemented.

– The uncertainty assessment is possible even for very large datasets such as LiDAR de-
rived DEMs. The implementation uses mostly very efficient algorithms reducing mem-
ory usage and computation time considerably.

– The computation time of uncertainty analysis was reduced dramatically by fully paral-
lelizing all involved algorithms. The proposed uncertainty analysis can utilize as many
processes as a system can provide. It can even exploit the power of computer clusters
used in HPC environments as a result of the used MPI programming approach.

– Coordinates can be read from text files allowing to save the intermediate results of the
Monte Carlo simulations for specific locations. These results allow additional analysis
such as convergence tests or histogram analyses.

– The uncertainty assessment provides maps describing the uncertainty by different statis-
tical uncertainty estimators (mean, std, rstd, probability and error (H)). In addition, text
files are provided giving the users the possibility to evaluate the uncertainty regarding
their spatial structure. The spatial structure of error can be analyzed with the terrain
characteristics slope, convexity, canopy cover and elevation. The additional terrain char-
acteristics used in this thesis (roughness and the topography classification according to
Iwahashi and Pike (2007)) were done externally and are not directly implemented in the
proposed uncertainty analysis approach.

• Numerous uncertainty assessments with different hydrological models for the Zwackentobel
study site using a high resolution LiDAR DEM were done and analyzed according to the
sensitivity of the algorithms and the spatial structure of error. These analyses revealed that the
multiple flow direction algorithms are less sensitive than the single flow direction algorithm.
The errors were up to three times as high when using the single flow direction algorithm D8.
The errors were in general larger in flat and rough terrain. The analysis of watersheds showed
that the area can be considerably over- or underestimated even due to small elevation errors.
Stream networks showed high errors especially for Strahler order one or two without revealing
any patterns in the spatial structure of error.

• Convergence tests were done for the TWI and the watershed extraction, using multiple sam-
pling points respectively the calculated area size. The points were sampled in different terrain
classes (Iwahashi and Pike, 2007). The tests demonstrated differences between the sample
points, the used flow routing algorithms and the two hydrological products. Hydrological
models using multiple flow direction algorithms converge considerably earlier allowing users
to perform fewer simulation runs. Also, watershed computations need fewer simulation runs
for stable results mainly due to the fact that watersheds in general depend on large scale topo-
graphic features. The differences between the sample points could most likely be explained
by their local terrain characteristics.

116



7.2 | Insights

• The analyses show that the uncertainty model parameters canopy, slope and spatial autocor-
relation range have an impact on the result of the uncertainty assessment. A high spatial
autocorrelation range reduces the observed error considerably and vice versa. The slope ad-
justment mainly reduces errors in flat areas whereas the canopy mask increases the error in
forested areas and reduces the error in forest free locations.

• The proposed uncertainty analysis approach can also be used with coarse resolution DEMs. A
LiDAR DEM (2 m) was resampled to a spatial resolution of 25 m using the nearest neighbor
method. The results of the uncertainty assessments were not clear. The analyses show that
the uncertainty analysis results mainly depend on the selected spatial autocorrelation range
instead of the spatial resolution.

7.2 Insights

The parallelization of common digital terrain analysis algorithms has proven to be an efficient pro-
gramming technique to accelerate uncertainty analysis using the Monte Carlo simulation approach.
High resolution DEMs can be processed in an appropriate time frame allowing hydrological users
to analyze their computed products regarding their uncertainty in a valid way (using sufficient sim-
ulation runs). The study also showed that the algorithms itself must follow an efficient approach,
otherwise even the parallelization cannot compensate for the performance loss caused by inefficient
algorithms.

The determination of the uncertainty model parameters is not an easy task. As demonstrated in
literature, the error occurring in terrain covered by dense canopy when using LiDAR measurement
technique is very case-specific. First, the errors depend on the factors of the LiDAR system itself
(foot print size, calibration of the LiDAR system components) and second, on the canopy type.
Classifying the canopy cover of a terrain in multiple classes is a very time demanding task and thus
we can expect that most users will not utilize such a feature. Hence, the implemented approach
only utilizes one class. The error adjustment for canopy covered terrain was evaluated by literature
without any additional justification. The determination of the spatial autocorrelation range is also
not trivial. Without any hard data such as control points, the range must be estimated. The issue
here is that the spatial autocorrelation range cannot be verified, which is also seen as one of the
biggest drawbacks of the process convolution approach. The range can be determined by expert
knowledge, data from literature or by an evaluation of an own exploratory study. This process
is rather critical because the results show that different spatial autocorrelation ranges have a huge
impact on the obtained uncertainty assessment results. Obviously higher ranges reduce the observed
error in the results. If the proposed method and the estimated spatial autocorrelation range produces
valid error surfaces could not be carried out. It may be useful to resample the DEM to a slightly
coarser resolution and using the high resolution DEM as reference data. Another possibility is taht
the point cloud of a LiDAR mission could be used as reference data. Reference data would allow to
improve the uncertainty model (e.g. with a SGS approach).

The uncertainty analysis highlighted that even with high resolution DEMs derived from LiDAR data
hydrological products can be influenced considerably by elevation uncertainty. The spatial pattern of
uncertainty appeared to be very similar to studies using coarse resolution DEMs. However, LiDAR
derived DEMs show a noisier uncertainty map when using the D8 flow routing algorithm. The micro-
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scale features of high resolution DEMs have a considerable impact on the very sensitive D8 flow
routing algorithm. As evaluated in this study, the multiple flow direction algorithms are more robust
and are more suitable for calculating hydrological products using flow routing algorithms in high
resolution DEMs. However, anthropogenic features detectable in LiDAR datasets such as bridges
cause a lot of uncertainty regardless of the flow routing algorithm used. Resampling the DEM to a
coarser resolution in which these features disappear would solve this issue. This solution would also
support the conclusion to resample the high resolution DEM to a coarser spatial resolution.

The convergence tests revealed that the point at which the result begins to converge varies in number.
Hence, setting a global threshold at which the result is seen as stable and thus as a valid uncertainty
analysis is not an easy task. The more sample points are used for the convergence test the more
reliable is the obtained threshold. However, the determination of the threshold depends on the users
view. If values are needed only for single cells, the proposed approach allows a very easy determi-
nation of the number of simulation runs needed for an adequate uncertainty assessment.

The spatial pattern of uncertainty is mostly influenced by slope and roughness. The highest errors
are observed in steep and rough terrain, whereas the errors decrease approximately exponential when
slope and roughness decrease. Notice that flat areas are also rough, whereas steep terrain shows a
lower degree of roughness. The convexity did not seem to have that large an impact. However,
errors observed were slightly larger in concave terrain when using the high resolution DEM. This
was not expected, because Hengl et al. (2010) observed slightly larger errors for mapping streams in
convex reliefs. Thus, this spatial pattern appears to be case-specific. A reason could be that a high
resolution DEM was used compared to the 30 m DEM used by Hengl et al. (2010). This assumption
is supported by the results obtained using the resampled DEM (25 m) which also show larger errors
for mapping streams in convex terrains.

The proposed uncertainty analysis approach seems to be suitable to improve topographic correlation
analysis in recent hydrological research (see Seibert et al., 2007). By computing the mean value of
the DEM derived parameters or by completely removing the uncertain sample sites from the data,
the scatter observed in correlation analysis could be reduced. This method may improve the quality
of such correlation analysis.

7.3 Future Work

The uncertainty was visualized with statistical estimators found in literature without any real justi-
fication. Possibly better methods exist or could be developed to measure and visualize uncertainty
in a more appropriate way. Ehlschlaeger et al. (1997), for example, proposed a method to visualize
uncertainty using animations. This could lead to new findings or simplify the interpretation of the
results by hydrological users. Further, the proposed uncertainty analysis could be extended by ad-
ditional hydrological algorithms such as the maximum stream length calculation. The uncertainty
assessments for these algorithms may differ from the algorithms analyzed in this thesis.

There are other methods to parallelize hydrological algorithms (e.g. Zhan and Qin, 2011). It is of
interest to find the most efficient approach to accelerate hydrological algorithms. There is always a
need for more performance to either process very large and high resolution DEMs or execute as many
Monte Carlo simulation runs as possible to achieve very stable results for uncertainty assessments.
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As a next step, the implementation of the SGS approach (e.g. Hengl et al., 2010) would be logical
because the process convolution method reached its limits. If control point data is available, the SGS
approach could lead to more realistic error surfaces due to the use of calibrated correlation functions.
The estimation of the very critical uncertainty model parameters such as the spatial autocorrelation
range would not be necessary anymore.

Another open question is how much of the uncertainty analysis should be automated? To achieve the
goal of an "uncertainty button" in a GIS, the process must be automated. Many parameters must be
defined in the background without the user’s awareness, otherwise only experts are able to execute
an uncertainty analysis. But the question is if such a black-box approach really leads to reasonable
uncertainty assessments or if it leads to more misinterpretations because of unsuitable parameters
automatically chosen by the model. This question is very crucial and a big issue of the current
state of uncertainty analysis. Studies are needed to investigate this issue and providing software
developers with a framework defining and describing the grade of automation.
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A Code

Code A.1: Flow routing algorithm: Determining the number of draining neighbors.

1 for (long j = 0; j < ny; j++) {

2 for (long i = 0; i < nx; i++) {

3 if(dem->isNodata(i,j)){

4 output->setToNodata(i,j);

5 } else {

6 neighbors=0;

7 dem->getData(i,j,height);

8 for(int k=0;k<8;k++){

9 X=i+DX[k];

10 Y=j+DY[k];

11 dem->getData(X,Y,height2);

12 if(!dem->isNodata(X,Y) && height<height2){

13 neighbors++;

14 }

15 }

16 output->setData(i,j,1.f);

17 neighbor->setData(i,j,neighbors);

18 }

19 change2->setData(i,j,short(0));

20 change->setData(i,j,0.f);

21 }

22 }

23

24 //fill que with cells having 0 neighbors

25 for (long j = 0; j < ny; j++) {

26 for (long i = 0; i < nx; i++) {

27 if(!dem->isNodata(i,j)){

28 if(neighbor->getData(i,j,tempShort)==0){

29 temp.x=i;

30 temp.y=j;

31 que.push(temp);

32 }

33 }

34 }

35 }

Code A.2: MD8 flow routing algorithm.

1 while(!finished) {

2 while(!que.empty())

3 {

4 //Takes next node with no contributing neighbors

5 temp = que.front();

6 que.pop();

7 col = temp.x;
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8 row = temp.y;

9 sum=0;

10 maxSlope = 0;

11

12 //initialize vars

13 dem->getData(col,row,p);

14 output->getData(col,row,FlowAccumVal);

15 neighbor->setData(col,row,short(-1));

16 for(int i=0;i<8;i++){

17 s[i]=na;

18 d[i]=na;

19 }

20 // FLOW ALGEBRA EXPRESSION EVALUATION

21 if(dem->isInPartition(col,row)){

22

23 //slope

24 for(int i=0;i<8;i++){

25 if(!dem->isNodata(col+xd[i],row+yd[i])){

26 dem->getData(col+xd[i],row+yd[i],p1);

27 s[i]=(p-p1)/dd[i];

28 if(s[i]>maxSlope){

29 maxSlope=s[i];

30 }

31 }

32 }

33 //exponent

34 exp=8.9*min(maxSlope,1)+1.1;

35 //dispersion

36 for(int i=0;i<8;i++){

37 if(!dem->isNodata(col+xd[i],row+yd[i])){

38 if(s[i]>0){

39 //formula

40 d[i]=pow(s[i],exp)*L[i];

41 }

42 }

43 }

44 for(int i=0;i<8;i++){

45 if(!dem->isNodata(col+xd[i],row+yd[i])){

46 if(s[i]>0){

47 sum+=d[i];

48 }

49 }

50 }

51 for(int i=0;i<8;i++){

52 if(!dem->isNodata(col+xd[i],row+yd[i])){

53 if(s[i]>0){

54 d[i]/=sum;

55 }

56 }

57 }

58 //apply flowaccum to neighbors

59 for(int i=0;i<8;i++){

60 if (d[i] > 0 ){

61 a = col + xd[i];

62 b = row + yd[i];

63 if (!output->isNodata(a,b) ){

64 output->addToData(a,b,(FlowAccumVal * d[i]));
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65 neighbor->addToData(a,b,(short)-1);

66 if(b==-1 || b==ny){

67 change->addToData(a,b,(FlowAccumVal * d[i]));

68 change2->addToData(a,b,(short)-1);

69 }

70 if(neighbor->getData(a, b, tempShort) == 0){

71 temp.x=a;

72 temp.y=b;

73 que.push(temp);

74 }

75 }

76 }

77 }

78 }

79 }

80 if(size>1){

81 //Pass information output

82 change->addBorders();

83

84 for(int x=0;x<nx;x++){

85 if(rank==0){

86 output->addToData(x,ny-1,change->getData(x,ny-1,temp_));

87 change->setData(x,ny-1,0.f);

88 change->setData(x,ny,0.f);

89 } else if (rank==size-1){

90 output->addToData(x,0,change->getData(x,0,temp_));

91 change->setData(x,0,0.f);

92 change->setData(x,-1,0.f);

93 } else {

94 output->addToData(x,0,change->getData(x,0,temp_));

95 change->setData(x,0,0.f);

96 change->setData(x,-1,0.f);

97 output->addToData(x,ny-1,change->getData(x,ny-1,temp_));

98 change->setData(x,ny-1,0.f);

99 change->setData(x,ny,0.f);

100 }

101 }

102 output->share();

103

104 //Pass information neighbour

105 change2->addBorders();

106 for(int x=0;x<nx;x++){

107 if(rank==0){

108 neighbor->addToData(x,ny-1,change2->getData(x,ny-1,stemp_));

109 change2->setData(x,ny-1,short(0));

110 change2->setData(x,ny,short(0));

111 } else if(rank==size-1){

112 neighbor->addToData(x,0,change2->getData(x,0,stemp_));

113 change2->setData(x,0,short(0));

114 change2->setData(x,-1,short(0));

115 }else{

116 neighbor->addToData(x,ny-1,change2->getData(x,ny-1,stemp_));

117 change2->setData(x,ny-1,short(0));

118 change2->setData(x,ny,short(0));

119 neighbor->addToData(x,0,change2->getData(x,0,stemp_));

120 change2->setData(x,0,short(0));

121 change2->setData(x,-1,short(0));
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122 }

123 }

124 neighbor->share();

125

126 //If this created a cell with no contributing neighbors, put it on the

queue

127 for(int i=0; i<nx; i++){

128 if(neighbor->getData(i, 0, tempShort)==0){

129 temp.x = i;

130 temp.y = 0;

131 que.push(temp);

132 }

133 if(neighbor->getData(i, ny-1, tempShort)==0){

134 temp.x = i;

135 temp.y = ny-1;

136 que.push(temp);

137 }

138 }

139 }

140 //Check if done

141 finished = que.empty();

142 finished = output->ringTerm(finished);

143 }

Code A.3: MD∞ flow routing algorithm.

1 while(!finished) {

2 while(!que.empty())

3 {

4 //Takes next node with no contributing neighbors

5 temp = que.front();

6 que.pop();

7 col = temp.x;

8 row = temp.y;

9

10 //initialize vars

11 valleySum=0;

12 valleyMax=0;

13 iMax=0;

14 hr=0;

15 hs=0;

16 for(int x = 0; x < 8; x++){

17 r_facet[x]=noData;

18 s_facet[x]=noData;

19 valley[x]=0;

20 portion[x]=0;

21 }

22 dem->getData(col,row,p);

23 output->getData(col,row,FlowAccumVal);

24 neighbor->setData(col,row,short(-1));

25

26 // FLOW ALGEBRA EXPRESSION EVALUATION

27 if(dem->isInPartition(col,row)){

28 for(int c=0;c<8;c++){

29 i=c;

30 ii=(i+1)%8;

31 dem->getData(col + xd[i], row + yd[i],p1);
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32 dem->getData(col + xd[ii], row + yd[ii],p2);

33 if(!dem->isNodata(col + xd[i], row + yd[i]) && !dem->isNodata(col +

xd[ii], row + yd[ii])){

34

35 //Calculate the elevation difference between the centerpoint and

the points p1 and p2

36 z1 = p1 - p;

37 z2 = p2 - p;

38

39 //Calculate the coordinates of the normal to the triangular facet

40 nx_ = (yd[i] * z2 - yd[ii] * z1) * gridsize;

41 ny_ = (xd[ii] * z1 - xd[i] * z2) * gridsize;

42 nz_ = (xd[i] * yd[ii] - xd[ii] * yd[i]) * gridsize * gridsize;

43

44 //Calculate the downslope direction of the triangular facet

45 if (nx_ == 0){

46 if (ny_ >= 0){

47 hr = 0;

48 } else {

49 hr = M_PI;

50 }

51 } else {

52 if (nx_ >= 0) {

53 hr = M_PI / 2 - atanf(ny_ / nx_);

54 } else {

55 hr = 3 * M_PI / 2 - atanf(ny_ / nx_);

56 }

57 }

58

59 //Calculate the slope of the triangular facet

60 hs = -tanf(acosf(nz_ / (sqrt(nx_ * nx_ + ny_ * ny_ + nz_ * nz_))));

61

62 //If the downslope direction is outside the triangular facet, then

use the direction of p1 or p2

63 if( hr < i * M_PI / 4 || hr > (i + 1) * M_PI / 4 ){

64 if (p1 < p2) {

65 hr = i * M_PI / 4;

66 hs = (p - p1) / (dd[i] * gridsize);

67 } else {

68 hr = ii * M_PI / 4;

69 hs = (p - p2) / (dd[ii] * gridsize);

70 }

71 }

72

73 r_facet[c] = hr;

74 s_facet[c] = hs;

75

76 } else {

77 if (!dem->isNodata(col + xd[i], row + yd[i]) && p1 < p){

78 hr = i / 4 * M_PI;

79 hs = (p - p1) / (dd[ii] * gridsize);

80 }

81 }

82 }

83 //Compute the total area of the triangular facets where water is

flowing to

84 for (int c = 0; c<8;c++){
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85 i = c;

86 ii = (i + 1) % 8;

87

88 if(s_facet[i] > 0 ){ //If the slope is

downhill

89 if (r_facet[i] > (i * M_PI / 4) && r_facet[i] < ((i + 1) * M_PI /

4)){ //If the downslope direction is inside the 45 degrees

of the triangular facet

90 valley[i] = s_facet[i];

91 } else if ( r_facet[i] == r_facet[ii]){ //If two

adjacent triangular facets have the same downslope direction

92 valley[i] = s_facet[i];

93 } else if (s_facet[ii] == noData && r_facet[i] == ((i + 1) * M_PI /

4)){ //If the downslope direction is on the border of the

current triangular facet, and the corresponding neigbour’s

downslope is NoData

94 valley[i] = s_facet[i];

95 } else {

96 ii = (i + 7) % 8;

97 if (s_facet[ii] == noData && r_facet[i] == (i * M_PI / 4) ){

//If the downslope direction is on the other border of the

current triangular facet, and the corresponding neigbour’s

downslope is NoData

98 valley[i] = s_facet[i];

99 }

100 }

101 }

102

103 valleySum += pow(valley[i],MDInfPower);

104 if( valleyMax < valley[i]){

105 iMax = i;

106 valleyMax = valley[i];

107 }

108 }

109

110 //Compute the proportional contribution for each of the triangular

facets

111 if( valleySum > 0 ){

112 if (MDInfPower < 10 ){

113 for(i=0;i<8;i++){

114 valley[i] = pow(valley[i],MDInfPower) / valleySum;

115 portion[i] = 0;

116 }

117 } else {

118 for(i=0;i<8;i++){

119 if ( i != iMax){

120 valley[i] = 0;

121 } else {

122 valley[i] = 1;

123 }

124 portion[i] = 0;

125 }

126 }

127

128 if( r_facet[7] == 0 ){

129 r_facet[7] = 2 * M_PI;

130 }
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131 //Compute the contribution to each of the neighbouring gridcells

132 for(int c=0;c<8;c++){

133 i = c;

134 ii = (i + 1) % 8;

135 if (valley[i] > 0){

136 portion[i] += valley[i] * ((i + 1) * M_PI / 4 - r_facet[i]) / (

M_PI / 4);

137 portion[ii] += valley[i] * (r_facet[i] - (i) * M_PI / 4) / (M_PI

/ 4);

138 }

139 }

140

141 //Apply the flow accumulation to each of the neighbouring gridcells

142 for(int c=0;c<8;c++){

143 if (portion[c] > 0 ){

144 a = col + xd[c];

145 b = row + yd[c];

146 if (!output->isNodata(a,b) ){

147 output->addToData(a,b,(FlowAccumVal * portion[c]));

148 if(b==-1 || b==ny){

149 change->addToData(a,b,(FlowAccumVal * portion[c]));

150 }

151 }

152 }

153 }

154 }

155 for(int c=0;c<8;c++){

156 a = col + xd[c];

157 b = row + yd[c];

158 dem->getData(a,b,z1);

159 if (p > z1 && !dem->isNodata(a,b)){

160 neighbor->addToData(a,b,(short)-1);

161 if(b==-1 || b==ny){

162 change2->addToData(a,b,(short)-1);

163 }

164 if(neighbor->getData(a, b, tempShort) == 0){

165 temp.x=a;

166 temp.y=b;

167 que.push(temp);

168 }

169 }

170 }

171 }

172 }

173

174 if(size>1){

175 //Pass information output

176 change->addBorders();

177

178 for(int x=0;x<nx;x++){

179 if(rank==0){

180 output->addToData(x,ny-1,change->getData(x,ny-1,temp_));

181 change->setData(x,ny-1,0.f);

182 change->setData(x,ny,0.f);

183 } else if (rank==size-1){

184 output->addToData(x,0,change->getData(x,0,temp_));

185 change->setData(x,0,0.f);
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186 change->setData(x,-1,0.f);

187 } else {

188 output->addToData(x,0,change->getData(x,0,temp_));

189 change->setData(x,0,0.f);

190 change->setData(x,-1,0.f);

191 output->addToData(x,ny-1,change->getData(x,ny-1,temp_));

192 change->setData(x,ny-1,0.f);

193 change->setData(x,ny,0.f);

194 }

195 }

196 output->share();

197

198 //Pass information neighbour

199 change2->addBorders();

200 for(int x=0;x<nx;x++){

201 if(rank==0){

202 neighbor->addToData(x,ny-1,change2->getData(x,ny-1,stemp_));

203 change2->setData(x,ny-1,short(0));

204 change2->setData(x,ny,short(0));

205 } else if(rank==size-1){

206 neighbor->addToData(x,0,change2->getData(x,0,stemp_));

207 change2->setData(x,0,short(0));

208 change2->setData(x,-1,short(0));

209 }else{

210 neighbor->addToData(x,ny-1,change2->getData(x,ny-1,stemp_));

211 change2->setData(x,ny-1,short(0));

212 change2->setData(x,ny,short(0));

213 neighbor->addToData(x,0,change2->getData(x,0,stemp_));

214 change2->setData(x,0,short(0));

215 change2->setData(x,-1,short(0));

216 }

217 }

218 neighbor->share();

219

220 //If this created a cell with no contributing neighbors, put it on the

queue

221 for(i=0; i<nx; i++){

222 if(neighbor->getData(i, 0, tempShort)==0){

223 temp.x = i;

224 temp.y = 0;

225 que.push(temp);

226 }

227 if(neighbor->getData(i, ny-1, tempShort)==0){

228 temp.x = i;

229 temp.y = ny-1;

230 que.push(temp);

231 }

232 }

233 }

234 //Check if done

235 finished = que.empty();

236 finished = output->ringTerm(finished);

237 }
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(a) (b)

(c) (d)

Figure B.1: Grids showing different topographic attributes of the Zwackentobel: (a) Elevation, (b)
slope, (c) roughness and (d) convexity.
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