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Abstract

In recent years, the Web has seen a steadily growing pile of voluntarily geo-

tagged content on social media, such as georeferenced Tweets or photos. Such

content is often made publicly available and has thus sparked interest in the

marketing and research community alike. From a GIScience perspective, geo-

tagged content can be looked at as a form of Volunteered Geographic Infor-

mation (VGI) which may be used to answer all sorts of (geo-)analytical ques-

tions. The research community has thus been very enthusiastic about the un-

precedented insights into the spatiotemporal behavior of people, as well as the

opportunities offered by such data to study human mobility, e.g., the dynamic

flows of people between neighborhoods of a city over the course of a day.

Unfortunately, as diverse and promising the new possibilities are, so are

the dangers of misinterpreting these data. For instance, socio-demographic rep-

resentativeness can not be assumed; contrarily, social media are predominantly

used by a certain cohort in the Western world. Secondly, not only is geotagged

content produced by a still very small percentage of all social media users, it also

suffers from the same “participation insequality” phenomenon detected in other

types of social media content; meaning that the most prolific users produce an

overproportionally large share of content. As this thesis shows, most research

efforts in the field of human mobility ignore these issues altogether. Particu-

larly, geotagged content is often used “as is”, i.e., conclusions are drawn based

on mere spatial aggregations of individually unreferenced, decoupled content.

That is, the individual properties of the users behind that content are seldom

considered explicitly. Additionally, even though the techniques employed to de-

rive information from this kind of VGI are often innovative, the results of such

analyses are rarely compared and validated with authoritative data.

In this work, millions of geotagged Twitter messages are collected and an-

alyzed in order to derive insights about the spatiotemporal behavior of Twitter

users. Through a sophisticated exploratory analysis, it is first verified that the

collected users actually live within a specified study area and that their data

satisfy certain criteria. After that, a rule-based heuristic is used to extract so-
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called semantic places, such as “home” and “work”, of each user. Based on

these and with the help of high-quality authoritative, (geo-)demographic data,

it is assessed whether the Twitter data are spatially and socio-demographically

representative. As a use case for the study of human mobility, commuter bal-

ances are extracted from the semantic places of individual users, and compared

with authoritative data.

The results show that a very large majority of the collected data does not

satisfy the requirements of being used in a representative survey based on indi-

vidual users. Moreover, it is found that most geotagged Twitter messages are in-

deed produced by a rather small minority, which is likely to bias any inferences

made from the messages themselves. The results further show that there are

stark inequalities not only in terms of demographic factors such as age, but also

in terms of the spatial representation of the population. In other words, some

linguistic and socio-economic regions seem to be significantly stronger repre-

sented on Twitter than others. Together, these findings hint at a socially, cultur-

ally, and economically unequally represented population, which raises concerns

about the validity of inferences made with such data.

As this thesis shows, though, geotagged Twitter messages can still be looked

at as a potential data source for studying human mobility. In fact, the evaluation

with official data shows that the inferred commuter balances are a reasonably

good indicator for actual flows of people; however, it appears that such infer-

ences are only valid in areas where enough geotagged content is available. This

leads to the following conclusions: Firstly, while inferences made from individ-

ual spatiotemporal behavior are likely to be more accurate than such made from

the decoupled content itself, the data needed for the former are very sparse. Sec-

ondly, even though the data are clearly not representative of the general popu-

lation, they still appear to contain valid indicators of human mobility.

Geotagged content from sources such as Twitter might thus serve as a po-

tential data source for studying mobility, but the data need careful preprocessing

and validation in order to be suitable for such an endeavor. The work at hand

is among the first to demonstrate this by using an innovative, user-centric ap-

proach to spatial knowledge discovery from social media data.

Keywords: VGI, Geotagging, Twitter, Human Mobility, Spatial Data Analysis,

Geographical Knowledge Discovery in Databases.
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1. Introduction

Since Tim O’Reilly (2005) coined the term Web 2.0 eight years ago, the Internet

has seen a tremendous rise of social platforms and networks (generally referred

to as social media). With Facebook1 recently crossing the one-billion-user-line

(Schroeder, 2012) and Twitter2 growing faster than ever (Fiegerman, 2012), a

constant stream of User-Generated Content (UGC) is produced. So-called Appli-

cation Programming Interfaces (APIs) allow third parties to programmatically

access and download partial or full datasets. This has sparked interest in many

researchers to analyze the data; for instance, to discover social structures (Ugan-

der et al., 2011; Kumar et al., 2010; Mislove et al., 2007), reveal privacy leaks

(Mislove et al., 2010; Lindamood et al., 2009), and infer moods and sentiments

from textual data (Bollen et al., 2011; Diakopoulos & Shamma, 2010).

1.1. Context and Review

A special group of social networks, Location-based Social Networks (LBSNs),

such as Foursquare3 or the now offline Gowalla4, have introduced the possibil-

ity to share a user’s geographical position with his or her social network, usu-

ally through checking into a particular venue or by geotagging a status message or

some media. The growing popularity of some of these LBSNs has forced well-

established social networks such as Facebook to add similar features, which

allow people to annotate their updates with explicit geographical references.

Therefore, researchers can nowadays access and analyze a steadily growing pile

of geographical data from these networks.

1http://www.facebook.com
2http://www.twitter.com
3http://www.foursquare.com
4https://en.wikipedia.org/wiki/Gowalla
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1.1.1. Location Data and Movement Analysis

In literature, there exists a wide variety of studies with location data, but most

of them use data collected in experimental setups, for instance, through Global

Positioning System (GPS) loggings (Hofmann-Wellenhof et al., 1993). Such con-

ventional sources of data often yield sufficiently accurate, regular, and frequent

measurements of position. They are therefore suited for the study of movement

and its physical properties such as speed and direction, an area where the last

decade has seen a wealth of methodological research (Laube et al., 2005; An-

dersson et al., 2008; Dodge et al., 2008; Z. Li et al., 2010). Using these as well

as other approaches, e.g., techniques from machine learning, researchers have

tried to make inferences about the spatiotemporal behavior of humans. For in-

stance, Phithakkitnukoon et al. (2010) infer individual activity patterns from mo-

bile telephony cell information. Monreale et al. (2009) cluster many individual

trajectories and predict the next location of an individual. Another application

is the learning and inference of transportation modes based on raw data from a

wearable GPS logger (Liao et al., 2007b).

If a user repeatedly and reasonably frequently updates his or her location

on a social media site, one can also derive a trajectory trough space and time.

However, in contrast to conventional data sources, the regularity and frequency

of such updates may greatly vary from one user to another, trajectories are diffi-

cult to model, and in many cases one cannot derive movement parameters such

as speed and direction. The latter two points are mainly due to the fact that

location updates from social media are very sparse and temporally fragmented

(Ferrari et al., 2011; N. Andrienko et al., 2012). Thus, only very few studies

exist which explicitly make use of individual trajectories derived from location

updates, for example the prediction of someone’s location based on the last lo-

cation of his or her Twitter friends (Sadilek et al., 2012).

Therefore, while the widespread dissemination of location sensing tech-

nology has made possible to thoroughly study movement, the same kind of

research with location updates from social media is still in its infancy. This is

not only because such data are a rather new phenomenon but also because they

exhibit the above mentioned deficiencies, which will be discussed in more detail

in Section 1.1.3.

1.1.2. Studying Human Mobility Through VGI

From a Geographic Information Science (GIScience) perspective, location up-

dates can be looked at as some form of Volunteered Geographic Information

2
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(VGI) and placed in the egocentric, geosocial domain, as outlined by Elwood et

al. (2012). In fact, some studies in GIScience have already made use of such

locational information (both textual and explicitly referenced), for example, to

quickly detect and locate disasters (De Longueville et al., 2009; Sakaki et al.,

2010; Schade et al., 2013).

A promising potential for egocentric, geosocial VGI is the study of human

mobility. Given the justified assumption that individual spatiotemporal activity

follows a certain routine (Song et al., 2010), trajectories built from a reasonable

number of location updates could be aggregated and used to model intra- and

interregional mobility, i.e., the spatial and temporal patterns of people moving

within and between regions. Location updates from social media are a “natu-

ral” form of location disclosure in the sense that users voluntarily share their

positions and do not participate in some sort of experiment — a sort of “activity

diary” as envisioned in time geography (Hägerstraand, 1970). Although recog-

nizing the sparse and noisy nature of such data, Ferrari et al. (2011, p. 9) for

instance, consider them as “live traces describing, (...), the way in which people

live and interact ...”. These data could therefore complement or even replace au-

thoritative data on human mobility and fill gaps in spatial data infrastructure,

as proposed by Sui and Goodchild (2011, p. 1742). These scholars see the fusion

of Geographic Information Systems (GISs) with social media as an

“... unprecedented opportunity to have a better understanding of

the spatial dynamics of human behavior and societal transformation,

(...).”

Research with VGI in the area of human mobility has so far almost exclusively

focused on coarse measurements of travel and simple, distance-based models

of mobility (Noulas et al., 2012; Z. Cheng et al., 2011), as well as socio-spatial

relationships (Leetaru et al., 2013; Allamanis et al., 2012; Takhteyev et al., 2012;

Scellato et al., 2011; Cho et al., 2011). The former try to find new, generalizable

rules about human mobility or aim to validate existing mobility theories. For

example, Noulas et al. (2012) analyze a very large Foursquare dataset and find

that the average distance traveled by people is a function of place density5 and

varies only slightly across different cities. The latter kind of studies look for

relationships between someone’s social network and the geographical distances

in this network. Cho et al. (2011) use data from two LBSNs to study the influence

of social connections on mobility, and come to the conclusion that short-range

travel is less impacted by social network structure than long-range travel. Even

5A “place” is a Foursquare venue one can check into.
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though these studies are often able to fit plausible models, their approach of

finding universalities in data from social media has several shortcomings which

are illustrated in the next section.

1.1.3. Challenges of VGI

The assessment of VGI as a data source for spatial analysis tasks is an ongoing

research challenge in GIScience (Purves, 2011; Sui & Goodchild, 2011; Flanagin

& Metzger, 2008). Especially for applications in the social sciences, accuracy,

validity, and representativeness of the data need to be considered and assessed

when statements about society as a whole are to be made.

The reasons why VGI from social media can lead to false conclusions are

manifold. First of all, socio-demographic representativeness of the data is hardly

ever given. Contrarily, social media are predominantly used by a certain cohort

of the overall population in the Western world, which is, again, only a fraction of

the global population (L. Li et al., 2013; Graham, 2012). Secondly, data from so-

cial media are often biased towards outliers, a small fraction of prolific users who

contribute an overproportional amount of data (Haklay, 2012). This holds true

especially for geotagged data, because only a small percentage of users actually

employs these features, as will be seen later. Lastly, geographic information on

social media is not only produced by humans but a variety of non-humanoid ac-

tors such as automatic broadcasting bots and spammers. In a very recent paper,

Crampton et al. (2013, p. 132) address these problems and argue that

“... there is little that can be said definitively about society-at-large

using only these kinds of user-generated data, as such data generally

skews toward a more wealthy, more educated, more Western, more

white and more male demographic.”

The above mentioned studies, while often claiming to infer universal rules,

almost never take into account these issues. Additionally, their results cannot be

used to quantify mobility patterns between regions inhabited by a few thousand

people, but are rather coarse generalizations over very large areas.

1.2. Motivation and Goal

“... The quality and credibility of [spatiotemporal data from social

media] for scientific research and decision-making still need further

investigation. We need to explore new ways in which the fusion of
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GIS with social media can be deployed to promote the human-as-

sensor paradigm ... in spatial-data generation.”

Given this call for a better understanding of spatiotemporal data from social

media by Sui and Goodchild (2011, p. 1742), the current state of research, and

the intricacies of egocentric, geosocial VGI outlined above, the motivation for

this work is twofold:

1. To the author’s knowledge, no research exists which assesses the suitabil-

ity of egocentric, geosocial VGI to complement or replace data from au-

thoritative sources in the domain of human mobility. In particular, no

case study exists which actually validates findings gained from egocentric,

geosocial VGI by comparing them with data from authoritative sources.

2. Approaches which use egocentric, geosocial VGI as data source for the

study of human mobility often neglect the accompanying issues of i) socio-

demographic bias, as well as of ii) outliers and non-humanoid actors.

Therefore, this thesis has the goal to assess the representativeness and validity of

egocentric, geosocial VGI for quantifying small-scale, regional human mobility in a pre-

defined study area. This is done by applying a user-centric approach, i.e., by collect-

ing location updates and inferring travel routines on a per-user basis. As data

source, the public Twitter API is used. With the help of statistical indicators,

outliers and non-humanoid actors are identified and removed from the dataset.

So-called individual spatiotemporal routines are then computed, and semantic places

such as “home” and “work” are extracted. These routines are assigned to suit-

ably aggregated, regional units, so that both socio-demographic representative-

ness and intra- and interregional flows of people can be evaluated.

1.3. Research Questions

To extract meaningful patterns of human mobility from VGI, a set of coherent

and robust methods is required. These methods should both be suited to data

from social media Dvgi and produce results which match the structure and for-

mat of the reference, i.e., data from authoritative sources Das. Furthermore, a

confined region defines the study area A within which data are collected and

analyzed. Together, these three components — methods, data, and study area

— form a methodological framework which is used to answer the research ques-

tions outlined below.

5
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It is important to consider that, given the uncertain nature of the data at

hand, a different framework would possibly yield different answers, but, be-

cause of practical reasons, only one possible framework is assumed and used

throughout this thesis. Thus, given a particular methodological framework, this

thesis aims to answer the following research questions:

RQ1 How representative is the spatial and socio-demographic distribution of users

found in Dvgi of the overall population as measured in Das?

First and foremost, the term representativeness needs to be clearly defined. It

is used here in the sense of how well the socio-demographic properties of a

society as described through Das are reflected in a sample of Dvgi that stems

from the same geographical study area. Socio-demographic properties may be

operationalized through many indicators such as language, culture, age, gender,

economic status, and education. While some of these are hard to measure with

the data at hand, others, such as age, gender and language, might be obtained

more easily. As to a certain degree, socio-demographic properties are spatially

auto-correlated (Cliff & Ord, 1970; O’Sullivan & Unwin, 2003), it makes sense to

consider the (residential) location of users as an important component in the

evaluation of representativeness. Namely, the spatial distribution of users may

act as a proxy for certain socio-demographic factors, although these factors are

hard to operationalize. For instance, it is known that people living in cities have

a different lifestyle, and possibly, a different socio-economic background, from

people living in rural areas, which is often manifested in political orientation

and voting preferences (Lipset & Rokkan, 1967).

RQ2 How do patterns of intra- and interregional mobility as inferred from Dvgi com-

pare to mobility quantifications found in Das?

In other words, how are intra- and interregional flows of people reflected in Dvgi

and are they similar to the ones in Das? The answer to this question should not

only help to assess the quality and validity of egocentric, geosocial VGI in this

domain. It should also provide first insights about the feasibility of complement-

ing or replacing authoritative sources with VGI.

RQ3 How does spatial and socio-demographic representativeness as measured in RQ1

influence the results of RQ2?

In other words, can potential deviations in human mobility in Dvgi from those in

Das be explained with unequally represented regions in Dvgi? If this is the case,

6
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it does not only mean that spatial and, possibly, socio-demographic representa-

tiveness is not given in Dvgi, but also that this significantly affects higher-level

analyses of the data. As part of this question, one can ask whether it is possible

to incorporate knowledge about spatial representativeness of Dvgi to calibrate

such analyses.

Given these research questions, the overall aim of this thesis is thus i) a fea-

sibility study which assesses the comparability of VGI to existing, authoritative

data, and ii) a thorough analysis of the representativeness of those data.

1.4. Thesis Outline

• In the following Chapter 2, the necessary theoretical background in the

field of geodemography and spatiotemporal analysis is provided, and the

concept and process of geotagging is explained. At the same time, related

work is highlighted.

• Chapter 3 introduces the study area and the various kinds of data sources

used throughout this thesis.

• Chapter 4 explains the methodological process from the data collection to

the eventual comparison of egocentric, geosocial VGI to authoritative data.

• Chapter 5 presents the results with regard to the representativeness and

validity of egocentric, geosocial VGI for quantifying human mobility.

• In Chapter 6, the results are questioned with regard to the robustness of

the applied methodological framework, and the research questions are ad-

dressed.

• Chapter 7 summarizes the findings of this work and makes recommenda-

tions for current and future research with egocentric, geosocial VGI.

7





2. Background

This chapter provides the necessary theoretical background, from the mecha-

nisms of geotagging to the concept of spatiotemporal routine, which is heavily

made use of in the methodology of this thesis. At the same time, it presents

academic work which is related to this thesis in terms of the type of data used

or the type of analytical questions asked. Specifically, applications of egocentric,

geosocial VGI in the fields of geodemography and human mobility are highlighted

since these constitute the validation background and the concrete use case of

this thesis, respectively.

2.1. Geotagging

Geotagging, in this context, refers to the addition of explicit geographical informa-

tion to digital content such as photos, videos, weblogs, as well as social media

status updates, by the user who produces that content (Goodchild, 2007). In

many of such systems, geographical information can take a multitude of forms

such as place names or geographical coordinates. Moreover, geographical in-

formation can be described using different levels of spatial granularity, from the

country level down to particular street addresses, which again implies different

levels of precision (Worboys, 1998).

For clarity, one must distinguish between geotagging from explicitly dis-

closing a geographical position (for the sake of it). In the latter case, many ap-

plications, so-called Location-based Services (LBSs), exist (Schiller & Voisard,

2004). These provide users with location-based information or reward them

with coupons or discounts for checking into a particular shop or restaurant (see

for example Rao, 2012). As a special case of LBSs, LBSNs, such as Foursquare,

combine aspects of social networks with explicit disclosure of geographical in-

formation (see Cramer et al., 2011 for a good introduction to the mechanics of

Foursquare). This was described by some as “social-driven location sharing”

(Lindqvist et al., 2011), and the underlying motivations for participating in such

a network might be different from those involved in geotagging (Section 2.1.3).

9
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In this thesis, data from LBSs and LBSNs play a minor, but still not negligible

role in that some of their location data are automatically pushed to Twitter ac-

counts (Section 3.3.5).

The following section gives an overview of geotagging functionality and a

brief look at the underlying technology. It also examines what motivates people

to geotag their content. In the end, the implications and dangers for personal

privacy are discussed.

2.1.1. Examples of Geotagging Functionality

Many social platforms and networks have incorporated geotagging features into

their user interfaces. In general, users can either directly specify a place name

or choose from a list of suggestions nearby the current location. Based on the

privacy settings of a particular user, his or her location updates are visible to dif-

ferent audiences, from only close friends to the whole world (Tang et al., 2010).

Facebook allows its users to annotate any status message or uploaded me-

dia with geographical metadata (Figure 2.1). Apart from cities, users can also

choose other granularities such as countries and neighborhoods. If a particular

venue, such as a restaurant, is registered on Facebook, users can also directly

check into this venue without having to write a status message (Facebook Help

Center, 2014).

On Flickr1, a popular image and video hosting website, users can manu-

ally annotate uploaded content with geographical locations — if the image or

video has not already been georeferenced by the GPS sensor of the camera. A

map interface allows the user to choose an appropriate level of detail for the

place description (Figure 2.2). For example, a set of images could either be

bulk-tagged with “Zürich, Switzerland”, or specific images could receive fine-

grained neighborhood information such as “Oberstrass, Zürich, Switzerland”

(Hollenstein & Purves, 2010). In either case, location is not only represented by

place names but also by unambiguous geographical coordinates. Apart from

this feature, users can also annotate their pictures with so-called tags, i.e., short

textual descriptions which usually consist of only one or two keywords (Flickr

Help FAQ, 2014). Since many of these tags contain implicit geographical infor-

mation (e.g. “beach”, “mountain”), they can be used in conjunction with the

corresponding geographical coordinates to infer popular descriptions of places

(Purves et al., 2011).

Twitter began incorporating geolocation features into their API in late 2009

1http://www.flickr.com
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Figure 2.1: Facebook

geotagging function-

ality. When writing

a status message or

posting a photo or video,

the user can type in

his or her location or

choose from a list of

suggestions.

Figure 2.2: Flickr geo-

tagging functionality.

By navigating and

panning on a map, the

user can place an image

or video and specify the

desired level of spatial

granularity.
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and made geotagging functionality available from early 2010 (Sarver, 2009).

Similar to Facebook, users can annotate their Tweets2 with place names from

a list or let their mobile device sense their current GPS position. The mecha-

nisms of the Twitter geotagging functionality are covered in more detail in Sec-

tion 3.3.2.

In conclusion, systems and features for sharing and recording users’ ge-

ographical positions are becoming increasingly popular, not only in the form

of altogether new applications but also on established social media. Some ac-

tually argue that location data are the new “currency of the web” and that an

actual “location revolution” is happening right now, with the market for LBSs

becoming a multi-billion-dollar one (McLaren & Kennedy, 2013).

2.1.2. Technology

For geotagging to be possible, the client, that is, the device of the user, needs

to somehow communicate its current position to the server. Even though it is

often unclear how this is specifically implemented in different applications, the

underlying technologies are likely one or a combination of the following.

Since most personal computers do not have an integrated GPS module or

cellular antenna, location is often inferred from their current Internet Protocol

(IP) address. This can be done with different lookup techniques (Padmanabhan

& Subramanian, 2001), but the precision of the resulting location may be very

limited (Gueye et al., 2007).

Most social platforms offer corresponding apps, i.e., simple applications

which were developed for a particular mobile operating system and have a lim-

ited set of functionality when compared to desktop applications. These apps

make use of the various location APIs which are exposed by the mobile device.

This ranges from access to the GPS module over mobile telephony cell location

to WiFi access point IDs (Adams et al., 2003). The accuracy and precision of

the resulting geographical information can range from a few meters up to many

kilometers; it depends on multiple factors, among which are the type of the sen-

sor, completeness of reference databases (e.g. for WiFi access points), and quality

of reverse-geocoding of coordinates into places (Spirito, 2001; Y.-C. Cheng et al.,

2005).

To summarize, many technologies for sensing someone’s location exist,

and it is often not clear how exactly they are made use of in different applica-

tions. Positional accuracy, for instance, may range from a few meters to a few

2On Twitter, a status message is typically called “Tweet”, see Section 3.3.
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kilometers, and assumptions need to be made because content providers do not

reveal the details of their systems. This poses a challenge for researchers dealing

with geotagged content; they need to rely on potentially unreliable meta data.

2.1.3. Motivations for Geotagging

In order to enable geotagging functionality, users normally have to opt-in, i.e.,

they have to explicitly agree to disclose their location and share it with a partic-

ular audience. This and other reasons might be responsible for the still relatively

small amount of geotagged content on the Web. In fact, its share of all content

often lies below 10%. On Flickr, for instance, only 3–5% of all photos are geo-

tagged (Friedland & Sommer, 2010; Catt, 2009). Several studies found figures

of the same magnitude for Twitter, from 0.4% over 0.6% to a very recent 2% (Z.

Cheng et al. (2010), Takahashi et al. (2011), Leetaru et al. (2013), respectively). Of

course, these figures depend on the kind of data analyzed and the mechanisms

which were used to collect the Tweets. The last of the mentioned surveys ac-

tually comes to the conclusion that geotagging behavior varies greatly among

different regions and cities, e.g. 4.6% for New York and only 1% for Istanbul

(Leetaru et al., 2013). From the temporal order of these sources, one can observe

a slight increase in geotagged content over the years, but overall adoption stays

very low.

For people who choose to use geotagging, however, motivations to do so

are manifold. Geotagging photos, for instance, might be useful for the later

compilation of a personal travel diary or just for quickly locating and filtering

them, as Friedland and Sommer (2010) argue. In a lab experiment conducted

by Wagner et al. (2010), a number of students were presented with fictional sce-

narios where they had to decide whether or not to disclose their location on a

social networking application, and in what detail. The results show that will-

ingness and motivation to do so are highly dependent on the kind of location to

be broadcast and on the recipients. For instance, participants were rather reluc-

tant to let their bosses know they were at home, whereas this posed no problem

when they were at work. Participants also stated that they would only share

their location when there is a specific need and purpose, but certainly not con-

stantly. In another study, Barkhuus et al. (2008) claim that location sharing is not

only done for communication and coordination purposes, but also for portray-

ing a certain lifestyle and for self-representation. Using similar arguments, Tang

et al. (2010) distinguish between purpose-driven and social-driven location sharing,

where the former happens for mainly pragmatic reasons and the latter for pro-
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moting and sustaining social capital within a network. While purpose-driven

sharing mainly applies to one-to-one communication, social-driven makes most

sense in the domain of social networks with one-to-many communication. Af-

ter conducting interviews and a small survey, the authors conclude that social-

driven sharing is often used to attract attention and boost self-representation.

The authors also point out that one-to-many sharing, as it is the case on Twitter,

involves more complex reasoning than one-to-one or one-to-few sharing, where

location is broadcast to a small audience only. Lastly, Cramer et al. (2011) con-

ducted several interviews with and a survey on users of Foursquare. Beyond

the categories of purpose- and social-driven sharing, they discover motivations

endemic to LBSNs (see Section 2.1.1), such as check-ins for discounts, discov-

ering new venues, and getting to know new people, as well as pure curiosity

about who else is checked into a particular place at the moment. Concerning the

ability to push check-ins to Twitter and Facebook, and thus to a larger audience,

the results show that participants normally do this with only a small fraction of

their check-ins. According to the participants, the main reason for this behav-

ior are not privacy considerations but fear of “annoying” the larger Twitter or

Facebook audience with irrelevant “spam”.

From these findings one can deduct that those locations which are actu-

ally shared are often highly selective. They are the result of a complex decision

making process, involving factors such as the type (and size) of audience, the

type of place to be shared, external or monetary benefits, gain of social capital,

and privacy considerations.

2.1.4. Privacy

After a series of incidents, such as the proliferation of an application which al-

lowed to locate and identify women nearby one’s current position by accessing

publicly accessible Facebook profiles and location updates (Brownlee, 2012), as

well as other demonstrations of possible abuses (Perez, 2012; Pot, 2011), users

have become aware of the possible threats associated with repeatedly broadcast-

ing their whereabouts.

Apart from possible abuses, e.g., stalking, the automatic inference of move-

ment profiles or the re-identification of supposedly anonymous users poses an-

other, possibly even more severe threat to privacy. In recent years, academic

research has started to focus on geoprivacy and a wealth of studies has been pub-

lished. Krumm (2007), for example, evaluates various techniques for inferring

somebody’s residential address, based on a set of GPS positions. In an early at-
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tempt to show the vulnerability of location samples to re-identification, Gruteser

and Hoh (2005) achieve to extract sequences of fully anonymized GPS positions3

which belong to the same user. These tracks could be used to re-identify the

user based on his or her frequently visited places. Using a semi-automatic ap-

proach including interactive visualizations, Jedrzejczyk et al. (2009) analyze the

paths of several individuals with the help of geographical and textual informa-

tion gained from an LBSN. Afterwards, they confront the respective individuals

with these findings and report on their reactions, which range from indifference

to outrage. In a follow-up article, the authors question focus groups and con-

duct interviews in order to evaluate the impact of real-time feedback on location

sharing practices (Jedrzejczyk et al., 2010). They find that people tend to restrict

access to their location traces or stop posting locations altogether as soon as they

become aware that somebody else is observing them.

One can conclude that, even though LBSs and LBSNs are becoming in-

creasingly popular, the fear of privacy invasions is certainly among the main

reasons for people not to share their geographical positions. This was also indi-

cated by the research insights presented in Section 2.1.3. It remains to be seen

whether and how this problem will be dealt with, and what role, in general,

privacy will play in the future.

2.2. Spatiotemporal Routine

In the scientific community, individual, spatiotemporal movement of people

and other objects has been researched for many decades. From Hägerstraand’s

prominent time geography (1970), where space and time are viewed as insepara-

ble concepts, to Hornsby and Egenhofer’s geospatial lifelines which are modeled

over multiple granularities (2002), many concepts have been defined, discussed,

and applied to real-world data. In this section, fundamental concepts of move-

ment data, and the process of inferring individual travel routines from them,

will be highlighted.

2.2.1. Concepts of Movement Data

As the three components which form a spatiotemporal trajectory, i.e., a series

of visited locations ordered by time, N. Andrienko et al. (2008) introduce space,

time, and population. The former two can only be described through a certain

reference system, for example, space can be referenced by coordinates but also by

3Each position was anonymized so that one could not tell which track it belongs to.
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dividing it into certain areas. Just as space, time can be structured into areas or

temporal periods, for instance, all events happening between 15:00 and 16:00.

Moreover, it can be referenced by the standard Gregorian calendar or in nested,

cyclical systems, e.g., day of the week or week of the year. Which reference

system is chosen depends on the particular problem, the data at hand, and the

analytical questions to be answered. The third component, population, consists

of the set of moving objects or entities which occupy different spaces at different

times.

The main contribution of the authors, though, is the establishment of a tax-

onomy of analytical questions relevant to movement data. In their framework,

both time and population form the reference system, that is, the independent vari-

ables which determine the current position of a moving object. On top of that,

they distinguish between so-called elementary and synoptic questions. The for-

mer deal with moments in time and single entities — a possible question could

be “Where was entity i at time t?”. The latter deal with groups of entities and

behavior over temporal intervals, so a possible question could be “Did group i

of moving objects spatially converge with group j during interval δt?”. Synoptic

questions often seek to detect behavior of collective or single moving entities over

time, e.g., “What are the typical trajectories of bees of a certain hive?”. Another

important concept mentioned by the authors is therefore pattern, which is the

representation of behavior in some language, e.g., a graphical, mathematical, or

textual description.

Findings patterns in movement data of humans, animals, or other moving

objects has been one of the most vividly discussed research topics in the last few

years. Gudmundsson et al. (2012) give a compact overview over common tasks

and problems encountered when analyzing movement traces and list possible

fields of applications. These range from behavioral ecology over mobility and

transportation to movement in abstract spaces4. Methodological research in the

field of GIScience can take many forms. For instance, Dodge et al. (2008) call for

a general agreement on the relevant types of movement patterns. Having such

a taxonomy would greatly facilitate the development of pattern recognition al-

gorithms that are efficient, effective, and — most importantly — generically ap-

plicable. The authors therefore establish a classification which distinguishes,

for instance, generic patterns, such as “concentration” and “divergence”, from

behavioral patterns, such as “fighting” or “flocking”. Special attention is also

directed to the interaction of both the spatial and temporal dimension of move-

4See Cöltekin et al. (2009) for a usability study which analyzes eye movements.
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ment. Laube and Purves (2011) focus on the scale-dependency of analyses with

movement data. Using GPS positions of grazing cows, they show that the choice

of a particular temporal scale (e.g., an aggregation of all GPS readings during

one minute) may influence the outcome just as strongly as the choice of the spa-

tial aggregation. The authors thus stress the importance of cross-scale sensitiv-

ity analyses if movement parameters such as speed, turning angle, or sinuosity

are to be estimated. Often, traditional (spatial) data mining techniques are also

combined with visual analytics to leverage the human brain’s capacity for visual

thinking (G. Andrienko et al., 2010).

In summary, finding and formulating patterns is a means of reducing com-

plexity and achieving a high-level description and interpretation of the spa-

tiotemporal behavior found in data, and this particular notion of pattern will be

used throughout the thesis. Although the above mentioned studies also strive

to find and describe patterns, they usually rely on near-continuous, frequently

sampled location data — a kind of data that is thoroughly different from geo-

tagged social media content, which will be illustrated further below.

2.2.2. Spatiotemporal Routine

While a particular location can be looked at from a physical perspective (e.g. us-

ing coordinates or colloquial descriptions), it can also be annotated with domain-

or subject-specific semantics. This leads to the notion of place, which “relates ge-

ography to human existence, experiences and interaction” (Tuan, 1977, as cited

in Edwardes and Purves, 2007, p. 109). For an individual, a place might have a

significant meaning, for instance, it might be someone’s home. Indeed, places

frequently visited by individuals usually fulfill specific functions or activities,

e.g., living, working, leisure, social interaction, et cetera — in other words, they

afford a certain action or meaning (Jordan et al., 1998). This leads to the simple

definition of place used throughout this thesis: A confined region which affords

a particular function for someone, such as housing or working.

At the same time, human life and thus human movement typically follows

a certain routine, which means that the same, few places are repeatedly and reg-

ularly visited over time. Specifically, these places are usually visited or occupied

during certain, cyclically ordered times, i.e., only during certain times of a day

or days of a week, or even only during certain seasons. Although rather intu-

itive, this was also detected by a range of seminal papers using different types of

individual movement data (Song et al., 2010; Gonzalez et al., 2008; Brockmann

et al., 2006). Here it is assumed that such routines can be detected in egocentric,
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geosocial VGI as well, and described as patterns. The notion of spatiotemporal

routine with regard to an individual object

SRo = {l(t)| f req(l(t)) ≥ α} (2.1)

is thus defined as a set of repeatedly visited places l1(t), l2(t), ..., ln(t) at spe-

cific times t, where f req(l(t)) denotes an appropriate function to measure the

frequency of each li(t) in relation to the remaining l(t) and α is an appropri-

ate threshold for this frequency. Note that the temporal ordering of the visited

places is irrelevant. On the other hand, each li(t) is associated with a particu-

lar function, as described above. This semantic place annotation is thus directly

dependent on the time t at which li(t) is frequently visited. For instance, if a

place is frequently occupied during evening or night time, its possible semantic

annotation could be “home” or “leisure” — given that knowledge about typical

human behavior is provided. Using this and similar concepts, several research

papers have striven to extract and label semantic places from a variety of data

sources such as activity diaries (Krumm & Rouhana, 2013; Partridge & Golle,

2008), mobile phone logs (Wang et al., 2012), LBSN check-ins (Ye et al., 2011)

and GPS data (Liao et al., 2007a; Zhou et al., 2007). They usually applied rule-

based methods or machine learning techniques and verified their results with

dedicated test datasets.

A spatiotemporal routine can thus be looked at as a simple pattern for

the description of an object’s routine. Even though it stays very general, the

definition is sufficient for the purposes of this thesis. It will be applied and

further explained in Section 4.4.3.

2.2.3. Regularity in Spatiotemporal Routines

In order to justify the search for spatiotemporal routines and — in the best case

— be able to detect them, the movements of an object must be regular to a cer-

tain degree. A simple but effective approach for quantifying such regularity

is proposed by Cranshaw et al. (2010). In their work, each location observation

e ∈ Eo, i.e., each spatiotemporal event of a particular object o, is represented

by a vector containing the components visited location L, day of the week D,

and hour of the day H. To study regularity, they restrict this vector to different

combinations of each component R ⊂ {L, H, D}, e.g., {L} , {L, D} or {L, H}.
Given R = {L, D}, for example, the observations e(R) would be all actually ob-

served configurations of locations and days of week for a particular object. The
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probability for a particular configuration r is defined as

p(r) =
| {e ∈ Eo : e(R) = r} |

|Eo|
(2.2)

All observed configurations of R thus give a probability distribution P(R), which

can be used to compute the so-called entropy, a well-known concept from in-

formation theory (Shannon, 1948). Entropy can be colloquially described as a

measure for disorder (or randomness) in a system. The more unpredictable a

system behaves, the higher is its entropy and the more information is needed to

encode such behavior. Cranshaw et al. (2010) use this concept as a description of

regularity in someone’s spatiotemporal routine — a routine with high regularity

is easily predictable and thus associated with low entropy. Entropy is formally

defined as:

Entropy(Eo, R) = − ∑
r∈Eo(R)

P(r) log P(r) (2.3)

Using the simple case of R = {L} and assuming that a user visits three dif-

ferent locations of which one is visited very frequently and the other two only

marginally, this results in a low entropy. From another perspective, this time

using R = {L, H}, a low entropy means that an object only visits one or very

few locations for a given hour of the day or that a particular location is only

visited during a very restricted temporal interval. Therefore, a low entropy cor-

responds with a high regularity for a given restriction R. Even though it is rather

simple, this measure is well suited to get a preliminary impression of a possible

manifestation of a spatiotemporal routine. In other words, for a spatiotemporal

routine as defined above to be recognizable, at least some restrictions of R need

to have a sufficiently low entropy. The concept will thus be used as a precursor

for the computation of spatiotemporal routines in Section 4.4.2.

2.2.4. From Continuous Trajectories to Episodic Movement Data

As could be seen from the examples in the introduction, the growing dissemina-

tion of location sensing technology allows researchers to study individual and

collective movement behavior based on real-world, near-continuous location

data. These data are often so densely sampled that actual movement parameters

such as speed, direction, and other second- and third-order characteristics can

be inferred and fed to sophisticated pattern detection algorithms. Such move-

ment data is time-based, i.e., sampled at a specified, relatively short rate, whereas

the type of data used in this thesis is event-based, which means that position and

time are only recorded whenever a certain event occurs — in this case, when a

user decides to broadcast a geotagged Tweet.
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N. Andrienko et al. (2012, p. 241) call this type of movement data episodic

— “data about spatial positions of moving objects where the time intervals be-

tween the measurements may be quite large and therefore the intermediate posi-

tions cannot be reliably reconstructed ...” — and acknowledge the lack of meth-

ods for and experience with this kind of data, although some studies combin-

ing data from fixed, location-based sensors with visual analytics are mentioned

(Stange et al., 2011; Wood et al., 2011). Whereas continuous movement data

may fully reflect the spatiotemporal routine of an object, episodic movement

data can be looked at as an irregular, infrequent sample thereof, which brings

with itself a range of uncertainties (see next section).

In literature, there exist only a few studies so far which use episodic move-

ment data for inference of individual movement regularities or spatiotemporal

routines. For example, Williams et al. (2012) use three different data sources,

namely a metropolitan transport system, a university campus WiFi system, and

Foursquare, to study patterns in visiting regularity. All of the three datasets

have in common that users have to voluntarily check into a particular location

(electronic payment gates, WiFi hotspots, and Foursquare venues, respectively).

As a regularity measure the authors employ an approach from neurophysiology

(see Kreuz et al., 2009) which compares sequences of visits to a particular loca-

tion between multiple weeks. According to that measure, the more similar such

sequences are, the more regularly visited is a location. The study finds that,

while most users visit not more than one or two locations at all, actually only

a small fraction of users visits one or more locations regularly, with the highest

proportion found in the transport system data. This is somewhat astounding

when compared to the findings of the studies presented in Section 2.2.2, but

could have several reasons. Either the threshold for a location to be deemed

as regularly visited was set too high, or the data were indeed too sparse. An-

other reason for the apparently irregular behavior of users could be the focus

on weekly visiting patterns and not on intraday regularities, which might have

yielded significantly different results5.

Indeed, and as will be seen in Section 2.3, most research using episodic

data focuses on the collective behavior of multiple users, bypassing the compu-

tation of individual routines. Even though such approaches are often pragmatic

and easy to apply, they have several limitations, some of which were already

mentioned in Section 1.1.3.

5Also see the Modifiable Temporal Unit Problem (MTUP) as defined by Cöltekin et al. (2011).
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2.2.5. Uncertainties of Episodic Movement Data

The irregularity and sparsity of episodic movement data result in a range of

uncertainties mentioned by N. Andrienko et al. (2012):

1. A lack of information about the spatial positions of objects between recorded

positions (continuity).

2. A lack of precision concerning the recorded positions due to imprecise sen-

sors (accuracy).

3. A lack of precision concerning the number of recorded objects at a partic-

ular sensor (coverage).

Note that the second uncertainty is actually not necessarily inherent and re-

stricted to episodic movement data as one could also regularly and frequently

sense an imprecise location, e.g. through mobile telephony cell information. At

the same time, episodic data may also be recorded with reasonably precise sen-

sors, as it is the case with the data used in this thesis. The third uncertainty does

not apply to the kind of data used in this thesis, as it assumes fixed sensors such

as Bluetooth signal detectors.

In the case of egocentric, geosocial VGI, the sample is, on the other hand,

directly determined by the user himself. This means that the researcher cannot

control the mechanisms of data production and publication, which results in

additional, specific uncertainties:

4. A lack of understanding of the exact mechanisms of the data provider, in

this case, the Twitter API. Although the features that are made use of in

this thesis are reasonably well documented, it is not guaranteed that the

system behaves as advertised (also see Section 3.3.3).

5. A lack of knowledge about the sampling motivation of a user. This means,

for instance, that it cannot be known whether a user prefers to only sample

his or her location whenever he or she stays at a particular place, e.g., at

home, or whether this user actually spends most of his or her time there

(also see Section 2.1.3).

6. A lack of assurance that a user tells the truth. LBSN do generally not im-

plement mechanisms which verify the authenticity of geotagged content.

7. A lack of assurance that a user fulfills certain criteria in order to be suited

for the task at hand. It is, for instance, not fully known whether a user is
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human, whether he or she actually resides in the study area, et cetera (also

see Section 4.3).

While some of these points can somehow be handled with appropriate data pro-

cessing steps, others must be taken as given and assumptions about the data

must be made. In the remainder of this thesis, especially during the compu-

tation of individual spatiotemporal routines, these uncertainties are therefore

explicitly taken into consideration.

2.3. Geodemography

Besides the concepts related to episodic movement data and spatiotemporal

routine, two others are of vital importance for this thesis. The first, geodemog-

raphy, is often used as a framework for putting geotagged social media into

socio-demographic context. It is the “science of profiling people based on where

they live”, according to one definition (rda research, 2013), and involves gath-

ering and inferring demographic statistics about a particular region’s popula-

tion (Harris et al., 2005). The underlying assumption is that different socio-

demographic groups are not equally distributed in space and that character-

istics of residents are (positively) spatially auto-correlated (Cliff & Ord, 1970),

with segregation being the extreme manifestation of this phenomenon (Gregory

et al., 2009).

Although the purpose of collecting and analyzing such data is often tar-

geted advertising, governmental statistical offices make use of the concept for

the purpose of regional, socio-demographic and socio-economic comparison.

They also use indicators to derive typologies of space such as the ones presented

in Section 3.2, and this often involves statistical classification of political entities,

such as municipalities.

In the context of this thesis, the geodemographic typologies introduced

later on will mainly be used to assess the representativeness of the collected

Twitter data. As the next sections will show, there also exist other usage contexts

in literature.

2.3.1. Geodemographics as a Framework

Geodemographics of certain regions, usually defined by statistical offices, are

sometimes used in literature as a framework or benchmark for evaluating the

socio-demographic properties of egocentric, geosocial VGI. This section criti-

cally examines some of the research conducted in this field.
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L. Li et al. (2013) analyze the background of Twitter and Flickr users by

comparing the number of geotagged Tweets and photos, respectively, to socio-

economic properties of Californian counties. In this “ecological correlation” ap-

proach, the counties thus act as reference units for comparing social media data

with census data. The authors first employ a simple heuristic to determine local

residents and exclude the rest, which are deemed to be visitors. Interestingly,

not this number of local residents per county, but the Tweet density, normalized

by county population, is used as a dependent variable in their model. Through

Principal Component Analysis (PCA), the socio-economic factors which explain

most of the variance in the dependent variable are found. This research has sev-

eral shortcomings, of which the fact that the spatial distribution of Tweets and

not users is taken as dependent variable, is the most severe. In doing so, outliers,

i.e., heavily contributing users, are likely to bias the result. Therefore, while be-

ing an innovative approach for studying socio-economic properties of users, it

certainly needs more careful consideration of the manifold noise in the data.

Kent and Capello (2013) use a similar approach for identifying demo-

graphics of VGI-contributing users, but with a different motivation. They ar-

gue that emergency response centers who use VGI as additional data source for

gaining situational awareness of disastrous events need to know how consistent

and reliable those data are. The authors see their study as a preliminary explo-

ration of how this could be evaluated. In a first step, they collect geotagged

messages and images from Twitter, Flickr and Instagram6, which were broad-

cast during a wildfire event and classify them into event-related and event-

unrelated groups. By using different spatial analytical techniques, they find

that event-related UGC follows a different spatial pattern than other content,

thus it is indeed determined not only by non-spatial but also spatial factors.

In order to detect these factors and compare the spatial distribution of UGC

with demographic properties, the authors aggregate the event-related content

on the level of census blocks. Through applying Geographically Weighted Re-

gression (GWR), they find demographic and spatial variables which explain a

great deal of the frequency of wildfire-related content. While this research suc-

ceeds in linking VGI with authoritative, real-world data, the authors themselves

acknowledge its limitations. For example, the configuration of census blocks is,

in this case, highly heterogeneous and large, less densely populated areas might

be less representative than smaller ones. This is related to the so-called Modifi-

able Areal Unit Problem (MAUP) (Openshaw, 1983), that is, the outcome of such

6A social photo upload service, http://instagram.com
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analyses depends on the particular choice of spatial boundaries, a fact which is

not accounted for in this study.

These examples have in common that already existing, census-block-level

statistics are used to characterize users who produce geotagged social media

content. While quantitative benchmarking as shown above is a certainly desir-

able development, comparing regional statistics with mere quantities of event

data has its pitfalls, among whose is the already mentioned user contribution

bias or “participation inequality” phenomenon (J. Nielsen, 2006; Ochoa & Du-

val, 2008; Haklay, 2012), which will be further explored in Section 4.3.2.

2.3.2. Geodemographics as a Result

Another type of research that can be found in the literature is concerned with in-

ferring socio-demographic and cultural properties of regions through egocentric,

geosocial VGI. Studies in this field often have the goal to characterize or distin-

guish areas based on how and, especially, when people in these areas use social

media. The underlying assumption is that certain activities, or functions, are

only conducted at certain times. Looking at the volume of the constant stream

of social media activity at various times could thus give each region an inherent

signature, which could in turn be used to derive clusters of regions with similar

signatures and activities. Thus, in this type of studies, geodemographics do not

act as a benchmark or reference but are rather the product of the data analysis.

For instance, Cranshaw et al. (2012) try to characterize urban neighbor-

hoods according to information found in an LBSN. In particular, they collect

Foursquare check-ins at venues spread over Pittsburgh, PA, and cluster these

venues based on geographical and social distance. The latter is calculated by

computing a vector of all users for each venue, where each component of the

vector is the number of times the respective user has checked into this venue.

Thus, venues with a lot of users in common are considered more similar. The

resulting clusters are called livehoods, “a dynamic, almost live view of the social

flows of people throughout the different parts of a city” (p. 64). This can indeed

be looked at as a valid conceptualization of a neighborhood as opposed to the

strict definition set by planning officials. The resulting livehoods are then eval-

uated qualitatively by interviewing both local residents and domain experts,

and the evaluation shows that most of the resulting neighborhoods make sense

in terms of culture and demography. While in this case, heavily contributing

users and outliers might not be biasing the result because every user is equally

weighted, demographic bias definitely plays a role, since some groups simply
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lack any representation in the data. However, the authors correctly interpret the

very absence of Foursquare data in particular neighborhoods as livehoods which

are being inhabited by low income, predominantly African-American residents.

Also using Foursquare data, Rösler and Liebig (2013) compute vectors of

check-in frequencies for each of about 1,000 Foursquare venues in the Cologne,

Germany, area. Each 24-dimensional vector contains the overall number of check-

ins per hour at this venue, again not accounting for distinct users.Using these

vectors and their spatial position as distance metrics, temporally and spatially

similar venues are then clustered. Since each Foursquare venue is already cate-

gorized according to one of about 10 different activity types (for instance “shop

& service”), clusters can be characterized by the activity types of the venues

found in them, resulting in specific activity profiles for each cluster. Using these

profiles, the authors manage to separate clusters related to nightlife from clus-

ters related to workplaces. In the end, the authors derive spatially contiguous

clusters, which serves the goal of having a complete, activity-based classification

of the urban region of Cologne. This, in turn, could be used as additional input

in town development planning processes, so the authors argue.

Wakamiya et al. (2011) try to extract crowd behavior patterns, i.e., spatiotem-

poral differences in population activity, from Twitter. They first partition the

study area (Japan) into irregularly sized regions, based on a spatial clustering

of geotagged Tweets. For each of these extracted regions, they then count i)

the number of Tweets, ii) the number of tweeting users, and iii) the number of

tweeting users who post from different locations, during specified time intervals

(morning, afternoon, evening, night). Crowd behavior patterns are defined as

typical, frequently occurring changes in these numbers between different time

intervals, and the authors are able to extract four of them, which leads them to

four types of distinct regions (“bedroom town [sic]”, “office town”, “nightlife

town”, “multifunctional town”). For example, a region where all three above

mentioned indicators steadily rise from morning to evening and reach a maxi-

mum in the evening is designated a “nightlife town”. Evaluation is done qual-

itatively based on regional knowledge and satellite images. Unfortunately, it

is not very clear whether the approach actually produces interpretable results,

especially because the semantic extraction of four significant patterns based on

three indicators seems to be somewhat arbitrary. As it is often the case with the

other research presented here, this work suffers from the fact that it tries to infer

knowledge about the mobility of a population without looking at the representa-

tiveness of the sample dataset. In this case, the authors aim to enhance the study

of urban characteristics with a novel method, yet they forget that an urban area
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also houses socio-demographic cohorts which are unlikely to be represented on

Twitter.

In an earlier study, Fujisaka et al. (2010) collect geotagged Tweets over a

one-week period in Japan and spatially cluster them to delineate discrete re-

gions. They then look at individual users and check whether they enter (i.e. the

user has never sent a geotagged Tweet from this region before) or leave a re-

gion (i.e. the user did not send a geotagged Tweet from this region afterwards).

Doing so, they are able to calculate so-called measures of aggregation and dis-

persion, respectively. Unfortunately, the presented approach makes many as-

sumptions which are hard to validate. For instance, people could still stay in a

certain region but stop broadcasting location updates, yet they are considered

to be leaving the region, a problem that is also discussed by G. Andrienko et al.

(2013b).

Lastly, in a very recent article, Fuchs et al. (2013) use textual analysis of

Tweets to infer semantics of frequently visited places. Using a dataset of several

thousand geotagged Tweets, they are able to categorize their textual contents

into a set of predefined topics such as “family”, “work” or “health”. By ag-

gregating Tweets of the same topic and visualizing them in two-dimensional,

temporal histograms (days of week versus times of days), it becomes apparent

that some of these topics have distinct temporal patterns, e.g., increased activity

on evenings and weekends for the topic “sports”. In order to relate topics to ge-

ographical places, the authors then apply a clustering algorithm to each user’s

trajectory and extract significant places. These are in turn aggregated over the

whole user base and for each cluster of significant places, frequently occurring

topics are determined. By doing this, the authors are able to relate geographical

regions with certain types of activities. Although this approach is innovative in

that it tries to infer semantics of places by looking not only at the coordinates of a

Tweet but also at its textual content, it is hard to tell whether it produces mean-

ingful results. First of all, the authors define an almost too large of a number

of topics, thus it is possible that Tweets are arbitrarily categorized into a non-

expressive topic. Secondly, the results of the method are not evaluated, neither

with ground truth about, for example, socio-economic urban characteristics, nor

by manually looking at individual Tweet content. Nonetheless, one has to bear

in mind that the focus of this work lies more on exploratory, geovisual analysis

rather than inference, and that it is able to provide interesting findings about

distinct temporal patterns of activities.

To conclude, although the approaches presented above are often innova-

tive in terms of methodology and data sources, they suffer from a series of short-
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comings, of which the lack of assessment of demographic representativeness is

the most striking. It is particularly problematic that the demographics of the

user base are seldom explicitly addressed, and possible mitigations are lacking

altogether in literature. Additionally, prolific users are seldom addressed and

may often distort the results when content per se is aggregated. Another problem

is the frequent absence of quantitative comparison to existing geodemographic

data, although this might be due to the different spatial configurations resulting

from aggregation of the data. Since this thesis uses authoritative data as a quan-

titative reference, new spatial configurations, even if they inherently existed in

the data, cannot be depicted. This might not fully reflect the structure of VGI,

but is an inevitable compromise when validating such data.

2.4. Human Mobility

Another promising field of application for egocentric, geosocial VGI is the com-

putation and modeling of human mobility. In this context, human mobility is

defined simply as the varying spatial distribution of a population at different

times, a phenomenon that is often researched under the term population dynamics

(Bhaduri et al., 2007). This also comprises the quantification of flows of people

between spatial entities. Studies concerning human mobility can thus involve

anything from visualizing the usual paths of people moving through an airport

(Jochem et al., 2012), over estimating daytime and nighttime population dis-

tributions in cities (McPherson & Brown, 2003; Freire et al., 2011), to studying

daily commuter flows between parts of a city or between whole regions (T. A. S.

Nielsen & Hovgesen, 2008).

Traditionally, gaining fine-grained population distribution data involved

building models based on data from various static sources such as census data,

transport hub locations, distribution and size of companies, et cetera, and ap-

plying sophisticated techniques such as dasymetric mapping (Bhaduri et al., 2007;

Mennis & Hultgren, 2006). In the last few years, technical innovation and the

wide dissemination and ubiquitous use of mobile devices have attracted a lot

of interest from the research community, authorities, and mobile telephony op-

erators, because detailed and continuous datasets are increasingly being made

available by the latter. Locations of network usage allow an unprecedented in-

sight into the distribution of network participants at different times, and there-

fore quite a few studies use mobile phone data to quantify the distribution and

flows of people in urban areas (Loibl & Peters-Anders, 2012; Sevtsuk & Ratti,

2010; Mohan et al., 2008; Ratti et al., 2006).
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Recently, the increasing amount of VGI has encouraged researchers to ex-

periment with this new kind of data, and thus some studies are presented in the

next section. In this thesis, the computation of intra- and interregional commuter

flows will serve as a case study in the field of human mobility for comparing

egocentric, geosocial VGI to authoritative data.

2.4.1. Human Mobility Through Egocentric, Geosocial VGI

With the goal of computing flows of people for disaster management, Aubrecht

et al. (2011) propose an approach to compare the number of people checked into

particular Foursquare venues at particular times to working population density

census data. They collect check-ins which were posted during normal work-

days and tessellate them into a regular grid in order to fit the format of the

census data. Unfortunately, no details about the statistical comparison or re-

sults are presented. Also, and as the authors themselves reflect, neither socio-

demographic properties of Foursquare users are assessed nor outliers are explic-

itly considered.

In order to extract temporal patterns of people’s whereabouts in New

York, Ferrari et al. (2011) analyze a dataset of geotagged Tweets. They collect

all Tweets posted in Manhattan during a certain interval and categorize them

into equidistant time slots. For each time slot, they then compute spatial clus-

ters of high Tweet abundance and assign each cluster to a zip-code defined area.

Using probabilistic topic models, they are able to infer patterns of daily rou-

tine, i.e., which areas are frequently visited in which temporal order. Socio-

demographic properties of the contributing users are not considered, and the

distribution of Tweets is not compared to population density. As in many other

examples, not individual behavior but rather the temporal variation in spatial

hotspots of Tweet activity is modeled.

In an attempt to study tourist behavior in Rome, Girardin et al. (2008) uti-

lize a large dataset of geotagged photos from Flickr and foreign mobile phone

call records to find areas of high tourist abundance. In particular, they divide

the data into a regular grid of 250x250m cells and compute the temporal varia-

tions in the presence of visiting photographers and foreign mobile phone users.

In addition to that, they chronologically order the photos of each photographer

to reconstruct his or her movement through the city. In an aggregated form,

these movements and visited places reveal information about tourists’ most fa-

vorite places and popular travel routes. The authors recognize the importance

of proper validation for these sources of data, and attempt to compare their find-
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ings with ticket sales at popular sightseeing spots. While they find a correlation

between the sales and mobile phone usage, they are not reflected in UGC from

Flickr. The authors conclude that such analyses are only meant to complement

conventional data sources, but alternate strategies for validation with real-world

datasets are to be found.

2.5. Summary and Research Gaps

This chapter started with introducing the properties and intricacies of egocen-

tric, geosocial VGI as opposed to conventional data sources such as GPS. It then

presented the scientific field of movement pattern analysis and showed that this

kind of research normally relies on near-continuous, frequently sampled loca-

tion data. It further formulated the concept of spatiotemporal routine, which

is of vital importance for the case study in this thesis, and made the shift from

conventional movement data to episodic movement data, towards which ego-

centric, geosocial VGI may be counted.

In the second part of this chapter, various research, which explicitly uses

episodic movement data from social media to make inferences about spatiotem-

poral behavior of people, was presented. One can generally conclude that stud-

ies using egocentric, geosocial VGI are still very sparse. This might be due to the

novelty of this data source, but also because working with episodic data has its

difficulties. Indeed, several reoccurring problems can be identified; they confirm

the need for more, fundamental research in this area. In particular, the following

research gaps need to be addressed:

1. Properties and, especially, the representativeness of the analyzed users are

seldom inquired. This has implications for spatial analyses, especially

when the population is not equally represented in space. As universal

statements about users on social media can likely not be made, a basic as-

sessment of representativeness should precede any analysis working with

such data.

2. The user base is often looked at as “given”, meaning that outliers and non-

humanoid actors are rarely taken into consideration. Methods for defin-

ing, identifying, and quantifying these less desired groups of users are

thus needed. Furthermore, their impact on the outcome of analyses needs

to be assessed.

3. Human mobility and other geographical phenomena are often modeled in
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a crowd-centric way — conclusions are usually drawn based on absolute

amounts of UGC and not on individual behavior. This may be problem-

atic, because the “participation inequality” bias detected in other kinds of

UGC (Ochoa & Duval, 2008) has to be assumed for geotagged content, too

(see Section 4.3.2 for references). This has two implications for the research

community: Firstly, the impact of such a bias on the outcome of analyses

needs to be studied, and secondly, new methods for working with individ-

ual, episodic data are needed. As these data are profoundly different from

conventional movement data, well-established methods of movement pat-

tern analysis are not suited to fill this gap, but may possibly be adapted.

4. Lastly, while some authors call for evaluation and validation with author-

itative data sources, this is almost never explicitly done. New kinds of

authoritative data and new fields of applications, where both sources of

data can be compared, need to be found.
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3. Study Area and Data Sources

3.1. Study Area

As the confined study area for which the data are collected and compared, the

country of Switzerland was chosen. This choice has several reasons, among

which the relatively small area and population, the local knowledge of the au-

thor, and the quality and abundance of authoritative data are just a few. Be-

ing small and very densely populated, Switzerland is particularly interesting in

terms of its cultural-linguistic and socio-economic heterogeneity. This setting

provides a good basis for comparing the properties of the collected Twitter data

according to their geographical and thus socio-demographic origin. Table 3.1

shows key figures for Switzerland (BFS, 2013b, 2013c, 2012c, 2010). The defini-

tion of permanent residency encompasses Swiss citizens with residency in Switzer-

land and foreign nationals with a residency or settlement permit for more than

12 months.

3.1.1. Political Organization

Switzerland is hierarchically organized into 26 federal cantons, 147 districts, and

approximately 2,500 municipalities (Figure 3.1). While the cantons and munic-

ipalities enjoy a high degree of political autonomy, the districts are not actual

political institutions but mere organizational units. They are often utilized to

coordinate collaborations between neighboring municipalities and do normally

not act as legal entities. In fact, every canton is free to decide how to organize

itself in terms of districts, and some cantons do not even know this level — from

a statistical viewpoint, these cantons themselves are looked at as districts. Dis-

tricts are often used for statistical analyses on the federal level, because they

can act as suitable aggregations of the underlying municipal samples, which are

in many cases not representative. One needs to consider, though, that districts

themselves vary greatly in terms of population size, from a mere 2,108 inhabi-

tants in the smallest district to over 450,000 in the largest, in 2011 (BFS, 2012c).
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Table 3.1: Key figures

for Switzerland.
Switzerland

Area 41,280 km2

Permanent residents (2011) 7.95 m

Increase in permanent residents (2000–

2011)

10%

Population density (2011) 192.7 per km2

Real GDP (2011) 587 bn Swiss Francs

Increase in real GDP (2000–2011) 21%

Largest cities (2011) Zürich (379,915 inhabitants), Genf (194,458), Basel

(172,091), Lausanne (130,421), BERN (127,515)

Official languages (2010) German (65.6% total population share), French

(22.8%), Italian (8.4%), Romansh (0.6%)

Percentage of people above age 14 reg-

ularly using the Internet (2011)

~79%

Figure 3.1: The 147 dis-

tricts and 26 cantons

of Switzerland, 2011.

Source: Swiss Federal

Statistical Office (FSO).
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3.1.2. Employment and Commuter Mobility in Switzerland

In 2011, about 78% of the permanent residents of Switzerland, aged 15–64, be-

longed to the working population (BFS, 2013e). This definition encompasses all

persons aged above 15 who work at least an hour per week, i.e., whose work

can be counted towards the GDP. There is no upper age bound in this defini-

tion, but the retirement age in Switzerland currently lies at 65 years for men and

64 years for women. About 3% were officially registered as unemployed and

looking for a job (SECO, 2012).

Approximately 13% of the working population worked part-time (50%

and less), about 19% worked 50–90% of the time, and the majority, 66%, worked

full-time (90–100%). The average work week for people working full-time en-

compassed 41.4 hours (BFS, 2013a, 2012d).

Approximately 9 in 10 people belonging to the working population used

to leave their home to go to work1 (defined here as mobile working population),

and about 7 in 10 commuted to a place outside their home municipality, includ-

ing places abroad. On average, the mobile working population’s daily com-

mute required 14 kilometers, and 30 minutes were needed for this. Roughly 0.8

million people were categorized as being in education (school kids, students,

apprentices) and leaving their home to go to school (defined here as mobile pop-

ulation in education) (BFS, 2013e).

There does not exist any data on the “typical” day of such people, but one

can guess from Figure 3.2 that most people leave home around 07:00–08:00 and

return around 17:00–18:00, with some going home for lunch.

3.2. Authoritative Data

On the federal level, statistical surveys on a wide array of topics are usually car-

ried out or commissioned by the Swiss Federal Statistical Office (FSO) (“Bunde-

samt für Statistik (BFS)”). While the last full census dates back to 2000, smaller,

so-called structural surveys, which cover many themes such as households, reli-

gion and employment, are carried out since 2010. Usually, around 200,000 per-

sons2 are questioned by means of written questionnaires or Internet forms. From

their answers, regionally comparable statistics are then extrapolated (BFS, 2008).

1People without a usual workplace, e.g. travelling salesmen, are exempt from this definition.
2Aged 15 or more, only permanent residents, approximately 3% of the population.
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Figure 3.2: Peak hours

for commuters, 2010.

The light green line

shows the relative

volume of work-related

traffic by time of day,

while the dark green line

shows the volume of

education-related traffic.

Source: BFS (2013e).

3.2.1. Structural Survey on Mobility and Transport 2011

The last structural survey concerning mobility and transport was conducted in

20113 and published in the summer of 2013 (BFS, 2013e). Approximately 330,000

permanent residents of Switzerland above age 15 were randomly sampled4 and

questioned about the origin and destination of their work place or school, means

of getting there, and time and distance needed. Out of this sample, about 280’000

responded with valid data, although some of them did not provide enough data

to be used in the procedure explained below. The data of people belonging to the

mobile working population and the mobile population in education, as defined

above, were used to compute so-called origin-destination-matrices, which tell how

many people commute from each district to any other. These, in turn, were

transformed to tables giving the number of staying5, outgoing, and incoming

commuters for each district (the so-called commuter balance), as data on the level

of municipalities are often not significant.

Although the FSO had not yet officially published these figures at the time

of writing, the author was provided with two datasets, one for work and one for

education. Both of these do not only include the extrapolated numbers, but also

the count of actual observations, as well as corresponding confidence intervals.

As some districts have quite a small population, many of the extrapolations on

the district level are still quite uncertain, with confidence intervals sometimes

3This is the reason why most of the above key figures are presented for 2011.
4Including additional samples financed by cantonal authorities.
5In this case, the place of work or education and the starting point of the commute lie in the

same district.
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amounting to over 50% of the extrapolated value, especially for data on people

in education, where the population is considerably smaller (K. Freire of the FSO,

personal email communication, June 18th, 2013).

Extrapolation from counted observations followed a three-step procedure.

First, a sample, stratified by so-called drawing zones6, was drawn, with every

person in the sample having a certain drawing probability, whose inverse gave

the basic weight for each person. Secondly, these weights were adjusted in order

to correct for people who had not answered the survey, using data from similar,

previous studies. Lastly, the weights were calibrated so that certain, known

totals for each drawing zone were reached. The weights were then multiplied

with the count of actual observations, which gave the final, extrapolated values

(C. Freymond of the FSO, personal email communication, October 17th, 2013).

It should be noted that the commuter balances do not have an explicit

temporal dimension, as it does not matter how many days per week a person

goes to work or school in order for him or her to be included. Still, although

one cannot say that they represent “daily” amounts, they probably are a good

estimation thereof, since, as was shown above, a large majority of people works

full-time.

3.2.2. Geodata, Spatial Divisions and Demographic Data

In terms of geodata, municipal boundaries of late 2011 were used to be in ac-

cordance with the thematic data available (BFS, 2012b). Those are available as

geometric shapefiles in three different generalization levels, of which the most

detailed was taken. For each municipality, a unique identifier and the identifier

of the enclosing district are also provided.

In order to statistically compare different regions and geographical areas

and, for instance, to make recommendations as to which municipalities might

receive federal subsidies, the FSO defines and maintains a series of spatial divi-

sions, which can be categorized into regional-political, analytical, and typological

divisions (BFS, 2011). Table 3.2 gives an overview of the divisions which are

of relevance for this thesis. Spatial divisions are based on the political entities

of municipalities, i.e., once one possesses data on the level of municipalities,

one can aggregate those according to the municipalities’ membership to certain

spatial divisions. In the context of this thesis, the spatial divisions and espe-

cially the municipal typologies can be used to infer, at least coarsely, the socio-

6Usually, cantons are used as drawing zones, although for a few cantons, the major cities are

considered separately.
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Table 3.2: Spatial divi-

sions of Switzerland as

defined by the FSO.

Category Division Description

Analytical

Greater

regions

The seven greater regions are the only division based on

cantons instead of municipalities, and were created in ac-

cordance with the statistical system of the European Union

(“NUTS 2”). They are defined as relatively coherent polit-

ical, economic and societal units.

Linguistic

regions

The four linguistic regions categorize municipalities ac-

cording to the dominant language spoken and act as one

of the most important divisions, since they reflect the pub-

licly perceived, cultural “parts” of the country.

Urban / rural This division distinguishes core cities of agglomerations

from suburban (agglomerations) and rural municipalities,

as well as so-called isolated cities. Agglomerations are con-

tiguous regions of multiple municipalities, which together

amount to at least 20,000 inhabitants. Core cities are de-

fined as municipalities with more than 10,000 inhabitants

and which are part of an agglomeration, while isolated

cities are not part of an agglomeration.

Metropolitan

regions

A division built on top of agglomerations, which distin-

guishes the 5 biggest metropolitan regions from the re-

maining urban and rural municipalities (Figure E.1).

Typological Municipality

types

In this system, each municipality is classified into 22 types

according to various indicators, ranging from employment

factors (including commuter balances) and tax volume to

density of buildings and tourism activity.

demographic properties of Twitter users classified as residing in these munici-

palities.

Besides geographical boundaries, basic demographic facts of municipal-

ities are also available from the FSO, namely from “Statatlas”, the interactive

statistical atlas. There, 2011 register data about population count, population

density and further attributes can be downloaded (demographic data).

3.3. Twitter

Twitter was founded in 2006 by Twitter Inc., a San Francisco, CA, based com-

pany, and became publicly available in July of the same year. Twitter is a social

network with so-called microblogging at its core, as it enables its users to write

and broadcast up to 140 character long messages (“Tweets”). Twitter experi-

enced rapid growth over the years, recently arriving at 200 million active users

and over 400 million Tweets sent out each day (Wickre, 2013), compared to 5,000
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Tweets per day in 2007 (Beaumont, 2010).

Social interaction on Twitter is relatively straightforward: users can have

followers, i.e., other, following users who subscribe to their Tweets. Tweets can be

retweeted, meaning that the same content is broadcast again by the retweeting

user to his or her followers. This enables multiplication of reach and thus possi-

bly fast spread of information. Tweets can also be favorited and replied to, with a

reply being just a Tweet directed at a specific user.

Tweets can contain so-called entities, among which are mentions (denoted

by an @, e.g., “Hey @jack!”), and hashtags (denoted by an #, e.g., “I like #geogra-

phy”). Mentions are useful for social interaction because the mentioned user is

immediately notified. Hashtags help to associate Tweets with particular subjects

or events (e.g., “On my way to #gisconference2013”).

Even though users can restrict the visibility of their Tweets to their fol-

lowers, most accounts are public and thus visible to everyone, including non-

registered users.

3.3.1. Demographics

Aside from the academic efforts to gain more understanding about Twitter user

demographics (see Section 2.3.1), there also have been non-academic attempts

which harvested large numbers of profiles and Tweets via the Twitter API (see

Section 3.3.3). Such surveys are usually conducted by marketing and analytics

companies who have access to the full Twitter stream and are seldom published.

While the few ones that are published often present striking figures, the results

have to be interpreted with care because, often, their methodology is not made

transparent.

A study conducted by Sysomos Inc., based on 11.5 million profiles, comes

to the conclusion that 53% of users are female, 66% of users are aged 15–24 and

21% are aged 25–34, based on self-disclosed age information (A. Cheng et al.,

2009). Since the study was made in Twitter’s early days, the results are biased

towards users from the United States (65%) and other Western countries. Ac-

cording to a more recent survey which looked at 36 million profiles, still 51% of

users are from the United States and 17% from the United Kingdom (Beevolve,

2012). Average gender distribution coincides with the results of the above study,

but varies by geographical region. The study also looked at self-disclosed age

information and found that a large majority (74%) is between 15 and 25 years

old, followed by 15% of between 26 and 35 year old people. Another study by

Smith and Brenner (2012) interviewed 1,729 American adults, aged 18 or older,
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who use the Internet, and found that 15% of them were actively using Twitter,

of which 40% are aged 18–29, 35% are aged 30–49 and the rest is aged above

49. The survey also found that 40% of users are living in urban, 50% in subur-

ban and 10% in rural areas. Other sources claim that, when Twitter started in

the United States, the age distribution was skewed towards people in their late

twenties and thirties, but teenagers caught up as Twitter became more and more

mainstream (Lipsman, 2009). One could expect that this process also occurs in

other countries and regions, as soon as Twitter is becoming more popular.

From these few examples it becomes clear that (socio-)demographic anal-

yses of the Twitter user base are hard to obtain as well as difficult to interpret

and compare. One fact which one can extract from these studies, tough, is that

demographics may vary significantly between geographical regions, especially

between the Global North and South.

3.3.2. Geotagging

On Twitter, there basically exist two explicit geotagging use cases. Once a user

has opted-in, i.e., explicitly requested the activation of the geotagging feature,

he or she can annotate Tweets with either his or her precise location or with a

place (Twitter Help Center, 2013). The former uses device location (see Section

2.1.2) in order to attach precise — but not necessarily accurate — geographical

coordinates to the Tweet. The latter must be chosen from a list of suggestions,

which means that one cannot specify a non-existing or not yet cataloged place

name (Figure 3.3). While the former use case is common for third-party apps

on mobile devices, the latter is primarily used on personal computers without

location sensors. According to Twitter Help Center (2013), precise coordinates

are also stored in the latter case, in order to “improve the accuracy of [Twitter’s]

geolocation systems (for example, the way [Twitter] defines neighborhoods and

places)”.

Places can be specified using different levels of granularity, which are in-

ternally denoted as “admin”, “country”, “city”, “neighborhood” and “poi” (see

Section 3.3.5 and 4.3.1). When looked at from the user’s perspective, this means

that he or she can choose something like “Switzerland” (“country”) but also

“Twitter 3rd Floor Lunch Room” (“poi”). For some geographical regions, how-

ever, not all types are available. For instance, “neighborhood” is generally only

available in large cities.

Even when opted-in, a user can choose not to geotag a particular Tweet

but, by default, this feature is enabled, therefore making it likely that people
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Figure 3.3: Annotating

a Tweet with a place. The

user is presented with a

list of suggestions but

can also search for a par-

ticular place in the cata-

log.

continuously share their location. After having opted-out, users have the possi-

bility to delete all their past geographical metadata at once (Twitter Help Center,

2013).

3.3.3. Twitter API

Twitter offers developers a comprehensive interface to most of its public data,

the so-called Twitter API. It consists of the Streaming API, which allows access

to a constant flow of Tweets filtered according to some criterion, and of the Rep-

resentational State Transfer (REST) API7 (Twitter Developers, 2013d). Only the

latter is used for the purposes of this thesis and is therefore examined in more

detail below.

The Twitter REST API is an implementation of the RESTful API as de-

fined by Fielding (2000). This means that it accepts Hypertext Transfer Proto-

col (HTTP) requests (GET, POST, et cetera.) and returns responses in various

formats, among which is Javascript Object Notation (JSON) (Crockford, 2006).

JSON is a human-readable format for data storage that can be parsed by a mul-

titude of programming languages. It defines a simple key-value storage format,

as shown in the example in listing 3.1.

The Twitter API exposes a set of endpoints, called resources, in the form

7By the time of writing, the current version was 1.1.
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of Uniform Resource Locators (URLs), which take mandatory or optional argu-

ments and return specific kinds of data. For example, http://api.twitter.com/1.

1/statuses/user_timeline.json?screen_name=xyz?count=5 returns the five most

recent Tweets of user “xyz”. In order to be able to receive data, the request needs

a valid authentification token, i.e., it needs to be made on behalf of a registered

application which is, in turn, owned by an authenticated user. Among other rea-

sons, this is used to enforce limits on the number of requests that can be issued

in a particular time window (see next section). Listing A.1 and A.2 Appendix A

show an example GET request and the corresponding response from the server.

3.3.4. Limits

Twitter imposes several limits on the amount of data that can be fetched via its

API. Each endpoint is subject to a limit regarding the number of results it returns

per 15 minutes (Twitter Developers, 2013c). On top of that, particular resources

such as GET search/tweets (see Section 4.2.1) only return a small fraction of the

overall data volume. It is not fully clear to what extent content is filtered, but for

the Streaming API, numbers such as only 1% of the full volume exist (Twitter

Developers, 2012b).

3.3.5. Geographical Data Format

Whenever a Tweet is geotagged in some form, a combination of the JSON keys

“geo”, “coordinates” and “place” is populated with values (see lines 62–64 in

Listing A.2).

The “geo” field contains World Geodetic System 84 (WGS 84) latitude and

longitude coordinates of a single point (Listing 3.1).

Listing 3.1: Contents of the “geo” field

1 "geo":{

2 "type ":" Point",

3 "coordinates ":[

4 47.20609337 ,

5 8.57881543

6 ]

7 }

The “coordinates” field is identical, except that coordinates are displayed in re-

versed order. Finally, the “place” field contains geographical metadata for a

particular place (as introduced in Section 3.3.2), including the name, a Mini-

mum Bounding Rectangle (MBR), the country it belongs to, the particular place
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type, and a unique place ID (Listing 3.2).

Listing 3.2: Contents of the “place” field

1 "place ":{

2 "full_name ":" Neuheim , Zug",

3 "url":" https ://api.twitter.com /1.1/ geo/id/acc076bb4ce682f7.json",

4 "country ":" Switzerland",

5 "place_type ":" city",

6 "bounding_box ":{

7 "type ":" Polygon",

8 "coordinates ":[

9 [

10 ...

11 ]

12 ]

13 },

14 "country_code ":"CH",

15 "attributes ":{

16

17 },

18 "id":" acc076bb4ce682f7",

19 "name ":" Neuheim"

20 }

Based on the particular existence and combination of these three values, the type

of geotagging can be inferred, and thus it is decided whether the Tweet is suited

for futher processing (see Section 4.3.1).

As previously mentioned, some third-party apps, such as Foursquare, al-

low users to push their status updates to other social networks, such as Twitter

and Facebook. At least in the case of Foursquare — which is arguably the largest

contributing third party app8 —, the format of the geographical data does not

remarkably change. Since third-party status updates only constitute a small mi-

nority of all Tweets9, and expose the same geographical data format as native

Tweets, they are not treated differently in this thesis.

8In the study of Z. Cheng et al. (2011), for instance, more than 50% of all geotagged Tweets

coming from third-party apps are Foursquare check-ins.
9Mahmud et al. (2012) found the proportion to be 6.6%.
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As can be seen from Figure 4.1, the methodological procedure is mainly divided

into three different subprocesses: data collection (Section 4.2), preprocessing and

data cleansing (Section 4.3), and comparison with authoritative data (Section

4.4). These subprocesses, in turn, consist of several small, successively executed

steps, which are explained in detail in the following sections.

4.1. Software and Scripting

With a few exceptions, the processing steps in the remainder of this chapter were

scripted with the Python1 language. The rich abundance of third party pack-

ages for Python allowed to incorporate additional software, such as Database

Management Systems (DBMSs) and the statistical environment R2. Table B.1 in

Appendix B gives an overview of the applied software.

Due to Python’s possibilities for modular programming, all the subpro-

cesses involved, even the production of plots, could be chained together and

data could be seamlessly transferred from one step to the next. This means that,

during the whole data collection process, all the processes implemented so far

could be executed fully automatically and the interim results could be used to

implement the next steps or alter the already existing ones.

Figure 4.1 presents two different types of databases. The first, SQLite, was

used for storing the “raw” geographical information, i.e., the geographical de-

scriptions in JSON, as described in Section 3.3.5. Later on, the data was trans-

formed to a “standardized” format, meaning that the punctual coordinates of

geotagged Tweets were explicitly stored as spatial points in a SpatiaLite geo-

database (see Section 4.3.1). This had the advantage that spatial operations

such as the point-in-polygon analysis used to discretize geotagged Tweets (Sec-

tion 4.3.5) could be conducted directly using already implemented DBMS func-

tionality and the intuitive Structured Query Language (SQL).

1http://python.org
2http://r-project.org
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Figure 4.1:
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work. Data processing
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4.2. Data Collection

The data collection process consisted of two concurrently running scripts, where

one searched for (geo-)active users (Section 4.2.1) and the other repeatedly har-

vested new geotagged Tweets from these users (Section 4.2.2). Except for mi-

nor interruptions due to technical problems, these scripts were running con-

tinuously on a netbook with Linux Ubuntu 12.04LTS3 installed. The collection

process lasted from January 2nd, 20134 until November 12th, 2013, and gath-

ered 12,069,967 geotagged Tweets from 24,733 distinct users. The data collection

process will be described in detail in the following sections.

4.2.1. Detection of (Geo-)Active Users in the Study Area

Since the work of this thesis focuses on a particular study area, only Twitter users

who dwell in this area are of interest. While users can specify a home location

in their profile, this can be anything from precise coordinates to non-existent

fantasy places, and many users ignore it altogether (Hecht et al., 2011; Z. Cheng

et al., 2010). Therefore, it was neither realistically possible nor sensible to search

for users based on this piece of information. Instead, a heuristic consisting of

several steps was employed, of which some are explained here and others in

Section 4.3.

One particular Twitter resource allows to search for geotagged Tweets by

passing it a place ID, as mentioned in Section 3.3.5, as search term (Twitter De-

velopers, 2013a). It returns the 100 most recent Tweets located within the poly-

gon that delineates the place5. Every 15 minutes, a query was made to this

endpoint, passing it the place ID of Switzerland, which returned up to 100 geo-

tagged Tweets. This time window is due to rate limits and it must be assumed

that not all geotagged Tweets which were written during such an interval could

be captured6. However, it can be assumed that reasonably active users were

discovered sooner or later, anyway (see further below in this section).

3http://www.ubuntu.com/desktop
4Detection of (geo-)active users started a bit earlier, namely on December 27th, 2012.
5It is not exhaustively clear whether the corresponding polygon or the MBR is used in this case,

because using this particular endpoint with a place ID is a rudimentarily documented feature

(Twitter Developers, 2012a). It is assumed that the former is the case, but the MBR denoted by

5.95 ◦ E / 45.82 ◦ N (lower left) and 10.49 ◦ E / 47.81 ◦ N (upper right), approximates Switzer-

land pretty well, too. Whatever is the case, Tweets outside the study area were filtered out in

a later phase, anyway (see Section 4.3).
6Each 15 minutes, about 84 Tweets were returned on average (standard deviation: 29), and about

half of all the queries returned 100 Tweets, meaning that, possibly, more were actually written.
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The distinct authors of these geotagged Tweets were then looked up us-

ing another resource (Twitter Developers, 2013b), which returned the 200 most

recent Tweets per user. Those were checked against a set of criteria to decide

whether to start tracking the user:

1. Overall number of Tweets. If a user had posted less than 50 Tweets, includ-

ing those without geographical metadata, he or she was discarded. This

criterion was applied in order to preventively filter out users who were

very new to Twitter or hardly ever active.

2. Age of the 5th oldest Tweet. If a user’s 5th oldest Tweet, including those

without geographical metadata, was older than a week, he or she was dis-

carded. This criterion was applied as an additional measure to avoid pas-

sive or barely active users.

3. Percentage of geotagged Tweets. If a user had posted less than 25% of

geotagged Tweets, he or she was discarded7. This criterion was applied

in order to gain users who were reasonably frequently geotagging their

Tweets.

As will be seen in Section 4.3, another set of filters had to be applied in

order to remove the manifold noise in the set of collected users. Some of these

filters could have also been applied in this stage, but because of the continuous

inflow of users and Tweets, the data collection had to be kept as minimal and

performant as possible.

Since (geo-)active users, by definition, repeatedly posted within the study

area, their probability of eventually being discovered by the search routine was

very high. In fact, as Figure 4.2 shows, the rate of collected users per day con-

verged to a relatively stable level after just a few days. This phenomenon could

have several reasons: it either means that the search routine was able to quickly

identify the majority of (geo-)active Twitter users in Switzerland, and later addi-

tions to the database were either new adopters of Twitter, users who had moved

to Switzerland, or users who were temporarily visiting Switzerland. On the

other hand, it could be that in the beginning, most of the prolific users (see

Section 4.3.2) were collected at once. Later on, the routine successively iden-

tified users who rarely geotag their Tweets, because their chance of appearing in

search results is lower. Whatever is the case, the intricacies of this process did

likely not influence the later analysis.

7In the first few weeks, the threshold was set to 50%, but later relaxed (also see Figure 4.2).
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4.2.2. Collection of Geotagged Tweets

Concurrently to the process described above, users in the database were queried

for geotagged Tweets. Each 15 minutes, the 1808 users who had been checked

least recently (or never before) were fetched from the database and subsequently,

their 200 most recent Tweets9 since the time of the last check, including those

without geographical metadata, were traversed using another API endpoint

(Twitter Developers, 2013b). In order for a Tweet to be deemed as geotagged

and thus be stored, at least one of the fields “geo” and “coordinates” had to

be non-empty (see Section 3.3.5). It was only in the first few weeks when also

Tweets were collected which only had contents in the “place” field, namely for

computing statistics on the nature of geotagged Tweets (Section 4.3.1). The JSON

content of these fields was then stored directly as text in the SQLite database.

Even though the mentioned endpoint is only capable of returning 200 Tweets

per request, this turned out to be sufficient to recover most if not all Tweets,

since users were checked as frequently as every two or three days, on average.

In the rare cases of very prolific users (Section 4.3.2), it is thinkable that some

Tweets could not be captured; however, they can certainly be neglected, as the

spatiotemporal routines computed from these Tweets usually become stable af-

ter a certain support of data has been reached (see Section 4.4.3).

8Again, this number is due to rate limits.
9Retweets were excluded because they contain the location of the user of the original Tweet.
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It has to be noted that, at this stage, no geographical filter was applied,

therefore Tweets outside of Switzerland were stored in the database, too. This

was particularly the case for people who only posted a few geotagged Tweets

within Switzerland when they were detected, and then left the country, while

still being tracked. Additionally, during the course of the collection process,

some users either deleted their account or restricted public access to it — these

were not queried anymore, but remained in the database.

One might ask why it was not tried to retrospectively fetch all Tweets dat-

ing back to a certain date, e.g., December 2012, so that each sample would cover

the same timespan. By using the above mentioned endpoint (Twitter Develop-

ers, 2013b), it would theoretically be possible to fetch up to the 3,200 most recent

Tweets for a given user; however, this is complicated and resource-intensive, as

only 200 Tweets can be fetched at a time (Twitter Developers, 2014). Another

problem that could have occurred with such an approach are the large volumes

of Tweets posted by prolific users. For instance, if a user had been discovered in

July 2013, his or her 3,200 most recent Tweets would possibly have dated back

only to February 2013, and not to December 2012. Apart from these technical

problems, the methodological process simply did not require the samples to be

of the same length or covering the same period — rather, the preprocessing stage

ensured that the samples were reasonably dense and Tweets were coming from

at least 30 different days (Section 4.3.3).

4.3. Preprocessing

The goal of the preprocessing phase was to extract the users who are ultimately

desirable for the analysis: users who live in Switzerland and whose geotagged

Tweets appropriately reflect their true spatiotemporal routines (Section 2.2). In

fact, the properties of the collected data were highly irregular and a lot of unde-

sired side effects, resulting from the applied collection methodology, prevailed.

Firstly, the collection routine did not check for the actual residence of the users

it decided to start tracking. Secondly, once a user was being tracked, the routine

also collected events occurring outside of the study area. Thirdly, no measure

of automatically telling whether a user appeared to be a so-called non-humanoid

actor10 had been implemented. Lastly, the data was in a raw format which re-

quired appropriate standardization and pruning before being usable in a spatial

10A non-humanoid actor, or bot, is defined here as a service or institution which automatically

sends out geotagged Tweets based on occurrences of real-life events or other criteria, for ex-

ample, a service which notifies followers about free parking spots in a city.
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analysis (Section 4.3.1).

In order to detect and discard undesirable users, basic statistics about each

user were computed (Section 4.3.2). These were heuristically used as decision

criteria to preliminarily discard non-humanoid actors, stationary users11, and

users who are likely to reside outside of Switzerland (Section 4.3.3). To vali-

date this removal procedure, a subset of the remaining users were randomly

sampled and their profiles manually inspected. After that, profile information

was no longer needed and users could be anonymized (Section 4.3.4).

To summarize, the primary objective of the preprocessing phase was the

removal of undesirable users. At the same time, as much data as possible had to

be retained in order for the analysis to produce reasonably significant findings.

The challenge of preprocessing was thus to strike a balance between assuring

data quality and retaining data quantity.

4.3.1. Migration and Standardization

After the data collection process had been finished, the SQLite database file

was migrated to a SpatiaLite database. Before migration, the SpatiaLite database

was manually created and populated with two tables containing the FSO data.

The first table consisted of multi-polygon geometries, the district membership,

the categorization according to any relevant spatial division system, as well as

demographic data of 2,515 Swiss municipalities (“FSO 2011 Geodata, Spatial

Divisions and Demographic Data” in Figure 4.1). The second contained esti-

mated numbers of staying, outgoing and incoming commuters for each of the

147 districts, including confidence intervals and the counts of actual observa-

tions (“FSO 2011 District Commuter Balances”).

The migration procedure basically converted the “raw” geographical in-

formation contained in geotagged Tweets into point geometries with WGS 84 co-

ordinates, and also made sure that the dates and times of posting were correctly

stored12. Apart from that, the type of each Tweet was inferred based on how ge-

ographical information was stored in the JSON content (see Section 3.3.5). Table

4.1 shows how the three, mutually exclusive types were defined and to what

percentage they amounted13.

Since Tweets of type C do not contain geographical coordinates and geocod-

11Users always tweeting from the exact same place.
12All dates were originally collected in Coordinated Universal Time (UTC) format but now con-

verted to the local timezone (UTC+1 or UTC+2, depending on Swiss daylight savings time).
13Based on a preliminary analysis conducted after roughly four weeks of collection, involving

643,323 Tweets.
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Table 4.1: Different

types of geotagged

Tweets and their

relative occurrence

(N=643,323).

Type Description Percentage

A Tweets which contain data in all location-specific fields “geo”, “coordi-

nates”, and “place”. These are most likely Tweets where the user spec-

ified his or her precise location which in turn was reverse geocoded to

a particular place name. The vast majority (75.1% of all Tweets) had the

“city” place type.

79.7%

B Tweets for which only the fields “geo” and “coordinates” are specified,

i.e., which do not contain a particular place name. These are most likely

Tweets where the user specified his or her precise location, which could

not be reverse geocoded.

4.7%

C Tweets for which only the field “place” is specified, i.e., which do not

contain a precise geographical location. These are most likely Tweets

where the user chose a predefined place name from a list, without ex-

posing his or her precise location.

15.6%

ing them would have been a tedious and error-prone task, they were discarded

(except for the sake of calculating the just presented statistical figures). More-

over, they only amounted to a minor percentage of all geotagged Tweets. It was

verified that Tweets of type A and B contained precise — but not necessarily

accurate — geographical coordinates, no matter the type of spatial granularity,

and were thus retained for the following analysis.

In order to drastically reduce the computation cost of the following steps,

users were ordered according to the number of Tweets they had posted, and

the 20 most prolific users were removed from the dataset. This led to a signifi-

cant speed up of computation time, because their share of data to be processed

was overproportionally high (also see Section 4.3.2). Lastly, users without any

Tweets of type A or B were discarded. After migration, the database eventually

contained 10,599,669 Tweets (corresponding to a retention of 87.5% of the “raw”

data) of 24,349 distinct users (98.5% retention).

In the process of migration, users were renamed to objects and Tweets to

events, a terminology which will be used from now on.
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Indicator Explanatory remarks

no Number of events

do Distance travelled [km] The sum of distances between each subsequent event.

sdo Standard distance [km] The standard deviation from the mean location (the

“center”). It is a measure for spatial dispersion of a

point cloud. A high standard distance corresponds to

a large spatial dispersion (e.g. travel to many different,

distant places), whereas a low standard distance corre-

sponds to a small spatial dispersion.

tpo Temporal period [min] The mean of the timespans between subsequent events.

A low period corresponds to more frequent events.

so Average speed [km/h]

peo Percentage of events inside

study area

pao Percentage of active periods See further below.

sao Spread of active periods See further below.

Table 4.2: Object statis-

tics. For each object, a

range of statistical indi-

cators were computed.

4.3.2. Calculation and Sighting of Object Statistics

For each object, a range of different statistics was calculated based on the spatial

and temporal properties of its corresponding events (Table 4.2). These indicators

allowed first, exploratory insights about the spatiotemporal behavior of objects

and served as decision criteria for discarding or keeping them. Because some of

the indicators had to be log-transformed to be properly displayed in the follow-

ing figures, only objects where no, do, sdo, so, and tpo > 0 are displayed below

(N=24,019, N=10,556,128 events).

As can be inferred from Figure 4.3, the distribution of number of events

per object is heavily long-tailed. Figure 4.4 illuminates this from another per-

spective. It can be seen that a small minority of very prolific users contributes a

large amount of the (geotagged) data on Twitter. The distribution conforms to

Pareto’s Principle very well, since about 80% of the data are produced by 20% of

all users (Hardy, 2010). This has been described by J. Nielsen (2006) as the “par-

ticipation inequality” phenomenon and has also been observed in Flickr data

(Purves et al., 2011) and in other Twitter usage contexts (e.g., Blau and Neuthal,

2012; Ross et al., 2011).

Interestingly, the same long-tailed distribution can also be found for dis-

tance traveled, average speed, standard distance, and temporal period. One

could therefore assume that this is because these variables are correlated with

the number of events per object, but that is not the case (Figure 4.5). The rela-

tively high correlation with temporal period (Figure 4.5d) can be explained by
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Figure 4.3: Number of

events per object before

filtering (a) and its loga-

rithm to the base of 10 (b)

(N=24,019 objects).
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Figure 4.5: Relationship

between the number of

events and distance trav-

eled (a), average speed

(b), standard distance (c)

and temporal period (d)

per object before filter-

ing (N=24,019 objects).

Axes show the logarithm

to the base of 10. r2

shows the strength of

a linear correlation be-

tween two variables un-

der the assumption that

they are approximately

normally distributed.

the physical boundary that is caused by the limited observation duration.

One can conclude that the perceived travel behavior of an object, expressed

in terms of travel distance, speed, and spatial dispersion, as well as the posting

behavior, expressed in terms of posting frequency (temporal period), is not cor-

related with the number of events. In other words, it does not depend on the

amount of information collected or known about this object, which is intuitive

and desirable.

As previously mentioned, objects which do not reside in the study area

were possibly tracked, too. A simple measure to detect these is to compute

the relative share of events in Switzerland peo. As Figure 4.6 illuminates, there

seems to be a divide between objects: most of them either posted nearly all of

their events inside Switzerland; or they posted only a few or none at all. Clearly,

the latter is the large majority, which shows that the data collection process

tracked a lot of foreign users (peo = 0) and gathered a lot of temporary visi-

tors or, possibly, non-humanoid actors (Section 4.2.1). It has to be assumed that

the prevalence of many objects with peo = 0 are due to the fact that the initial

spatial query for geotagged Tweets within Switzerland indeed uses a MBR, and

not the exact boundaries of the country (Section 4.2.1). This may have resulted

in the discovery of many objects who dwell in the close vicinity of Switzerland,

53



Chapter 4 |Methods

Figure 4.6: Percentage

of events inside study

area before filtering

(N=24,019 objects).
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e.g., in Southern Germany or in Eastern France.

This prevalence of a significant number of objects which are not desirable

must be dealt with during preprocessing. However, simply setting a threshold

on the percentage of events inside the study area is not sufficient. Namely, it

is not an actual indicator of time spent in Switzerland, because single events

are just points in time and one does not know what happens in between them.

Given an object has a value of 90% percent for this measure, it does not mean

that the object spent 90% of its time in Switzerland. Contrarily, it could be that

the corresponding user preferred to broadcast geotagged Tweets from within

Switzerland, but refused or was not able to do so abroad, even though he or she

spent considerable time outside of Switzerland. It could also be that people are

only geotagging their Tweets when they are visiting a certain part of the world,

e.g., for reasons of self representation (see Section 2.1.3).

Residing in a certain country implies continuity. For instance, it is unlikely

that somebody switches his or her residential country on a daily basis. This

principle was made use of to compute another indicator variable, the percentage

of so-called active periods pao. An active period is defined as a time frame in

which the object created sufficiently enough or dense events within the study

area, i.e., a timespan without longer interruptions. Per definition, an object is

considered to be active as long as there are not k consecutive inactive days14. The

14Actually, in order for a day to be deemed as active, all the events posted during this day need to
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day is taken as temporal aggregation level because it is neither too coarse nor

too fine. The percentage of active periods is simply the overall length of active

periods in relation to the timespan from the object’s first event until the end of

data collection.

The computation of active periods can be regarded as a density compu-

tation, i.e., it is calculated how densely active days occur. Therefore, the well-

known Kernel Density Estimation (KDE) method (Wand & Jones, 1995) is suited

for this kind of problem. Colloquially speaking, the method works by applying

a kernel distribution with a certain bandwidth b to each point in a dataset (active

days in this case) and summing up the values of the distribution. This results in

a continuous, dimensionless density value defined on the whole input domain.

For the purpose of the task at hand, sections, where the density reaches 0, are

considered to be interruptions of active periods, and a uniform kernel function

is used. Instead of k, b must be specified, but k can be deducted from b. Figure

4.7 gives an example of an object where peo = 52%, whereas the percentage of

active periods pao, computed with the density calculation, is just 13% (Figure

4.7a) and 10% (Figure 4.7b), depending on the chosen bandwith. The choice of

b obviously affects the outcome of pao and should thus be made carefully. To

illustrate this, a sensitivity analysis was conducted (Figure 4.8)15. pao was com-

puted for different values of b, with a reference of b = 14. The resulting set of

objects satisfying the threshold pao ≥ 25% was then compared to the reference

set, both in terms of set size and set overlap. The latter is defined by the Jaccard

index

J(A, B) =
|A ∩ B|
|A ∪ B| (4.1)

where A and B are two different sets. An index of 1 signifies total similarity,

whereas one of 0.3, for instance, signifies 30% overlap. From Figure 4.8, it can

be seen that the choice of b = 14 makes sense since the deviations in set length

and Jaccard index when using slightly different values of b are marginal. Con-

trarily, setting b too low results in a significant reduction of objects passing the

pao threshold. Interestingly, at b = 15.75, the number of objects which still fulfill

the criteria drops slightly, but continues to rise afterwards.

While pao reflects the amount of time for which it can be assumed that

be within the study area. This is because certain bots create so many events that, even though

most events are outside of Switzerland, there would still be an event within Switzerland per

day — without applying this criterion, these bots would qualify as normal users with very

long active periods. The measure is thus also a technique to detect and remove bots.
15Based on a dataset of roughly 8 months of collection, involving 6,226,295 events from 17,224

distinct objects.
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Figure 4.7: Active peri-

ods of an object with dif-

ferent bandwidths b = 14

(a) and b = 7 (b). The

light gray curve is the

density surface calculated

using a uniform kernel.

The red lines mark active

periods.
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Figure 4.8: Sensitivity

analysis for the choice

of the bandwidth. The

upper chart shows the

number of objects which

would be retained if a

certain b would be cho-

sen, given pao ≥ 25%.

The lower chart shows

the relative set over-

lap between the resulting

and the reference set of b

= 14 (red dashed line) (N

= 17,224 objects).
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Figure 4.9: Spread of ac-

tive periods for different

objects. sao = 8.8, pao =

0.26 (a); sao = 15.6,

pao = 0.26 (b); sao =

31.5, pao = 0.43 (c);

sao = 39.8, pao = 0.64

(d).

object spent in Switzerland pretty well, it cannot tell when active periods hap-

pened and how they were spread over the time of data collection. For instance,

the object in Figure 4.9a has an overall pao of 26%, spanning two full months.

Thus, this object is likely to qualify for further analysis. Still, it might be that it

left Switzerland after March or even stopped using Twitter altogether. For this

reason, an additional statistic, spread of active periods sao, was computed. It is

defined as

sao = σado ∗ pao (4.2)

where σado is the standard deviation of active days — in other words, of the time

that has passed from the first active day to every other. This value is multiplied

with pao in order to also value objects which have a generally frequent posting

behavior (compare Figure 4.9d with Figure 4.9c, whose sao would be similar if

not corrected for pao). Figure 4.9 shows that, even though the resulting value

cannot be as easily interpreted as pao, it is a good measure of temporal spread of

active periods. For instance, Figure 4.9a has the same pao as 4.9b, but a consid-

erably lower sao.

In conclusion, this section showed that the properties of the collected ob-

jects and their events vary heavily. Extreme values in the data, such as very long

travel distance, high standard distance, and unrealistically high average speed,

indicate the prevalence of non-humanoid actors, errors, or purposefully faked

data. On the other hand, low values of percentage of active periods and of stan-

dard distance might hint to non-active and stationary users, respectively. While
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no indicator can exclusively deal with a certain type of unwanted objects, to-

gether they are likely able to clean the data from the majority of those. This will

be the subject of the next section.

4.3.3. Filtering and Validation

Before the applied filtering criteria are examined in detail, the properties of ob-

jects worth to retain are summarized once more. Where possible, corresponding

indicator variables are highlighted.

1. A desirable object should have a reasonable number of events, so that spa-

tiotemporal routines can be discovered.

2. It should not be stationary, meaning that it should not send Tweets from

always exactly the same position, which also hints at a non-humanoid or

immobile object. Such objects can be excluded by setting a minimal stan-

dard distance or by setting a minimal distance traveled.

3. It should permanently reside in Switzerland or spend at least a long enough

time in Switzerland. A very high standard distance, for example, could

mean that the object travels frequently abroad, effectively resides at an-

other place, and visited Switzerland only once. Another indicator that can

be used is percentage of events in Switzerland, although its flaws have

been shown above. Thus, a minimal required percentage of active periods

and a minimal spread of active periods might be most suited. As could be

seen in Section 3.2, only permanent residents are included in the commuter

statistics, and this requires at least twelve months of residence. This crite-

rion is relaxed here because of the temporally constrained data collection

process.

4. There should exist a continuous, ongoing, and temporally spread sample

of the object’s whereabouts. For this, the spread of active periods and

percentage of active periods indicators can be used.

5. It should be humanoid. For example, unusually high average speeds and

standard distances hint to frequently changing locations, which could, for

instance, be produced by a service which notifies people of events hap-

pening at these locations. At the same time, stationary objects, as defined

above, are often non-humanoid, too.

To filter for objects who fulfill these criteria, a set of logically conjunct in-

dicator thresholds were applied. In order to study the effects of possible combi-
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no ≥ sdo ≥ sdo < so < peo ≥ dao ≥ sao ≥ Objects Remarks

0 0 ∞ ∞ 0 0 0 100% Reference set

A 100 0.1 10000 10 0.5 60 30 3.8% Most desirable

B ... ... ... ... ... 30 20 6.1% Lower minimal dao,

lower minimal sao

C 50 ... ... ... ... ... ... 7.9% Lower minimal no

D 100 ... ... ... ... ... 10 9.3% Higher minimal no,

lower minimal sao

E 75 ... ... ... ... ... ... 10.6% Lower minimal no

F 50 ... ... ... ... ... ... 12.5% Lower minimal no

G ... ... ... ... 0.25 ... ... 13.1% Lower minimal peo

Table 4.3: Effects of fil-

tering criteria on the

number of retained ob-

jects. Read from top

to bottom, ... signifies

repetition of the previ-

ous value (N=17,224 ob-

jects).

nations of threshold values on the number of retained objects, a small sensitivity

analysis16, which is presented in Table 4.3, was conducted. For the purpose of

better interpretability, not pao, but its multiplication with days since first event

(dsao), dao = pao ∗ dsao, is displayed. This makes it possible to specify a thresh-

old which is independent of the actual duration of the data collection process.

One particularly striking result of this analysis is that only very few objects

fulfill the desirable criteria. Apparently, the most desirable scenarios A and B

cannot be used because too many objects would be rejected. When successively

adjusting different indicator values, the percentage of retained objects slowly

rises, but stays generally low. The strong influence of no on the percentage of

retained objects is interesting, too, as can be seen in the change from scenario

B to C and from scenario D to F. One would expect that the number of events

an object posted is already incorporated into pao and sao, but the data shows

that there must be quite a lot of objects with sparse but well-spread events. To

achieve a certain compromise between a loss of too many objects and a reason-

able quality of the data, scenario E was chosen. This eventually resulted in the

retention of 2,380 objects (corresponding to a retention of 9.8% of the previously

retained objects) having 2,052,913 events (19.4% retention).

After that, a subset of N = 298 objects17 was randomly sampled from the

resulting set of scenario E. The Twitter profiles of those were then manually

looked at, and the following criteria were checked:

• Is the account humanoid? If not, what kind of non-humanoid actor is it?

• Does the account holder reside in Switzerland? This can be guessed based

16Based on a dataset of roughly 8 months of collection, involving 6,226,295 events from 17,224

distinct objects.
17Originally, 300 were sampled, but 2 had deleted their account in the meantime.
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Table 4.4: Prevalence

of non-humanoid actors

in the filtered sample

(N=298).

Humanoid Non-humanoid, company account Non-humanoid, non-stationary

99.0%± 1.1% 0.3%± 0.7% 0.7%± 0.9%

Table 4.5: Residence

distribution in the

filtered sample (N=298).

Inside study area Outside study area Unknown

97.0%± 1.9% 1.0%± 1.1% 2.0%± 1.6%

on information found in the profile, particularly self-declared location in-

formation and language as well as topics used in Tweets.

• What is the approximate age of the account holder? This can be guessed

based on information found in the profile, e.g., description, profile picture,

and uploaded images. Although such an estimation is subject to high un-

certainty, an overall picture can still be established. In order to compare

the obtained results with previous findings as presented in Section 3.3.1,

approximately the same age ranges were used.

• What is the gender of the account holder? The same procedure and con-

cerns as for age estimation apply.

Tables 4.4,4.5,4.7 and 4.6 show the results for the respective estimates. Intervals

are based on 95% confidence and assumption of normal distribution for the er-

rors. Clearly, the goal of having only humanoid actors residing in Switzerland

is almost fully met and the few exceptions are negligible. There was one profile

in the sample which acts as an account for a company and two profiles which

automatically broadcast certain events. One regularly publishes temperatures

for various positions of the Bodensee lake and the other notifies people about

nightlife events happening in the city of Zürich. These were most likely not dis-

carded because they both operate in a rather small region. There were also two

humanoid profiles of people who clearly reside in another country than Switzer-

land, and several where this could not be determined with high certainty.

The gender distribution shows an equal share of males and females when

taking into account the sample error (Table 4.6). Regarding age distribution,

one can say that teenagers amount to a very large share of overall users, while

people in their twenties and thirties are common too (Table 4.7). Apparently,

older people only amount to a very marginal share. Overall, the figures are in

good accordance with demographic statistics presented in Section 3.3.1.

In terms of qualitative findings, an interesting difference regarding age

and social background of users across the two major language regions was ob-
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Female Male Unknown

50.3%± 5.7% 45.0%± 5.6% 4.7%± 2.4%

Table 4.6: Gender dis-

tribution in the filtered

sample (N=298).

< 20 20–40 > 40 Unknown

53.4%± 5.7% 36.6%± 5.5% 3.0%± 1.9% 7.0%± 2.9%

Table 4.7: Age distribu-

tion in the filtered sample

(N=298).

served. In the French-speaking part, Twitter seems to be considerably more pop-

ular among young users (aged below 20), and the service is often used like a

chat or messaging application rather than a pure one-to-many broadcasting tool,

which often results in a high number of events per object. It also appears that

quite a large part of the examined profiles of French-speaking people belong

to young immigrants in the Geneva (Genf) region. On the other hand, in the

German-speaking part, Twitter seems to be most popular among professionals

in the field of media, public relations, design and computer science — a mostly

well-educated, high-income and male cohort. Even though these observations

cannot be backed by statistical evidence, they should be kept in mind when in-

terpreting the results of this thesis — they certainly hint at a very heterogeneous

Twitter landscape in Switzerland.

In addition to this validation, indicator variables were compared to those

before filtering. A quick visual overview shows that most distributions of and

relationships between variables stayed similar. As Figure 4.10a shows, the num-

ber of events per object did not follow a log-normal distribution anymore due

to the truncation at no = 75, but was still skewed. In fact, still 9% of all objects

contributed 50% of all events, as compared to the 7% before the filtering. The

distribution of peo shows that about 75% of all remaining objects had 85% or

more of their events inside the study area, which is also desirable (Figure 4.10b).
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Figure 4.10: Number of

events (a) and percent-

age of events inside study

area (b) per object after fil-

tering (N=2,380 objects).
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To conclude, even though only about 10% of users could be retained, the

validation justified these measures. It could now be assumed that the data was

in a state of quality sufficient for further analysis.

4.3.4. Anonymization

In order to preserve the privacy of the collected and tracked users and to pre-

vent possible inference attacks on their exact whereabouts, the only two links to

their Twitter profiles — unique Twitter user ID and screen name — were fully

removed. Thus, from this moment on, all objects in the SpatiaLite database were

just (pseudonymized) sequences of locations without any connection to the ac-

tual Twitter profiles.

It has to be noted that previous versions of the SpatiaLite database or the

preceding SQLite database still contained the mentioned links, and could have

been used to reestablish a connection to Twitter profiles. The author hereby

declares that this was not the case and reasonable measures (i.e., encryption) to

protect the data were taken.

4.3.5. Discretization

In order to prepare the data for further analysis, the remaining events had to

be enhanced with additional information. First, all remaining events outside of

the study area were removed. Then, the table holding the municipalities data

(see Section 4.3.1) was geometrically intersected with each event, resulting in a

direct mapping of that event to a municipality and thus to its spatial division

and socio-demographic properties (Section 3.2.2).

In addition to these spatial semantics, the time and the day of each Tweet

was discretized into hourly intervals from 0 to 23 and weekdays from 0 to 6,

respectively, with 0 signifying 00:00–01:00 and Sunday, respectively. An event ei

belonging to object o is thus defined as a tuple

ei = 〈oi, mi, hi, di〉 (4.3)

where oi ∈ O is the object identifier, mi one of a limited set of municipalities M,

hi ∈ H the hour of the day and di ∈ D the day of the week.

At the end of the discretization process, the database still consisted of 2,380

objects having 1,913,512 events (93.2% retention). Due to the removal of events

outside of Switzerland and the threshold of peo ≥ 50%, some objects lost up to

50% of their events.
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4.4. Comparison with Authoritative Data

4.4.1. Analysis of Temporal Patterns

One would assume that the volume of events follows a certain daily or weekly

pattern, and such patterns may help to find universalities that may be used in

the extraction of spatiotemporal routines (Section 4.4.3).

Summarizing events was straightforward — for each day which was ever

collected (and week, respectively), all the hourly (and daily, respectively) events

were counted, e.g., the number of events during the time slot of 05:00–06:00

for each day. These amounts were then averaged over all days (and weeks,

respectively). Each time slot can thus be looked at as a sample that grew bigger

with every day data was being collected. One has to keep in mind, though, that

the number of events was considerably smaller at the beginning of the collection

process because fewer objects were in the database.

However, the mere number of events per time slot is not representative of

the actual number of people broadcasting their whereabouts because of partici-

pation inequality (Section 4.3.2). Therefore, in order to know how many different

people were “active” during a certain slot, the number of distinct objects per slot

was also summarized. This assures that an object is only counted once per hour

or per day, no matter how many events it posted during that slot. This approach

has disadvantages in itself, for instance, regional figures as presented below do

not precisely sum up to the figures for the whole study area, but it is closer to

the notion of “present” or “active” population.

4.4.2. Entropy Calculation

After discretization, the data was ready to be used for the calculation of

Entropy(Eo, R) values for each object o as introduced in Section 2.2.3. Partic-

ularly, entropies for R = {M}, R = {M, H}, R = {M, D} and R = {H, D}
were computed (see Section 4.3.5 for an explanation of the symbols). Since

there might be many more distinct observations in Eo(R = {M, H}) than in

Eo(R = {M, D}), for example, the respective entropies are hardly comparable.

Thus, the normalized entropy

Entropynorm(Eo, R) =
Entropy(Eo, R)

Entropymax(Eo, R)
=

Entropy(Eo, R)
log |Eo(R)| (4.4)

was calculated. |Eo(R)| signifies the number of distinct observations in Eo(R) —

the so-called schedule size18.
18Note that |Eo| = no.
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In addition to these entropy values, the percentages of the n-most visited

locations were computed, for instance, the share of the two most visited loca-

tions of all visited locations. These figures are yet another indicator for regu-

larity in visiting patterns because they tell whether an object mostly returns to

the same few locations or not. Together, these statistics help — at least to a cer-

tain degree — to judge whether the data about an object is sufficient to derive a

spatiotemporal routine from it, and whether the dataset as a whole is suited for

the extraction of spatiotemporal routines. The findings, which are presented in

Section 5.2, generally reaffirm that this is the case.

4.4.3. Extraction of Spatiotemporal Routines

In order to assess the representativeness of the collected VGI and to compare

commuter balances as found in Twitter with official ones, the municipality of

both residence and work or school (from now on referred to as occupation) had to

be determined for every object. Even though authoritative commuter balances

are only available on the district level, semantic places had to be extracted on

the level of municipalities, because the spatial divisions as presented in Section

3.2.2 are based on municipalities and not on districts.

Using the above definition of SRo, the goal of this processing step was to

find municipalities which are regularly and reasonably frequently visited at a

particular time, and thus afford a certain function or bear a certain meaning. Or,

in the sense of Section 2.2.2, municipalities had to be labeled with the semantic

annotations “home” and “occupation”. Taking into account the fact that most

people in Switzerland are likely to be occupied from Monday to Friday and dur-

ing 08:00 and 17:00 (Section 3.1.2), it seemed legitimate to partition t, expressed

through H and D, into non-occupational and occupational time, with the delimita-

tion being the same for each object. Occupational time thus encompasses each

weekday from 08:00 to 17:00, while the rest is considered to be non-occupational

time. This allows to classify municipalities based on their occurrence, or preva-

lence, in each of those two types and incorporates SRo’s notion of temporal de-

pendence.

The first step in finding a decent methodology for labeling municipali-

ties was to explore common types of behavior found in the event data. Thus,

a so-called carpet plot, which shows the spatiotemporal distribution of events

at one glance, was constructed for each object. The axes show both temporal

dimensions, and the spatial dimension M, i.e., the visited municipalities, is de-

picted as colored tiles. In order to enhance readability, always the same color
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Figure 4.11: Type A spa-

tiotemporal pattern (a)

and spatial distribution

of corresponding events

(b). Municipality bound-

aries are depicted as gray

lines. Base map source:

http://openstreetmap.org.

scale is used — the overall most visited municipality is depicted in red, the sec-

ond most visited in brown, et cetera. Since several different municipalities might

have been visited during a certain slot, only the most visited is depicted, but its

share among all municipalities visited during this slot is conveyed with opac-

ity, thus allowing to assess its relative prevalence. On the other hand, prevalent

municipalities become relatively significant only when they have been visited

more than just a few times, which is depicted with a rhombus symbol. Together

these visual clues help to assess the existence and form of patterns, and thus

allow to judge whether an object’s data as a whole are suited for the detection

of function-bearing municipalities. In order to get an overview of the different

types of patterns found in objects’ data, a few dozens of objects were randomly

sampled and visually examined. From this preliminary examination it appeared

that objects can generally be divided into four types.

Type A concerns objects whose events seem not to follow a pattern at all

and exhibit generally high entropy values (Figure 4.11a), which is often due to a

lack of a sufficient number of events. In other words, there might actually exist

a pattern but, with the data at hand, it does not become apparent. In such cases,

there is usually not even a clearly predominant municipality, which could be

heuristically classified as residential municipality.

Type B concerns objects where the most visited municipality is likely to be

the place of both residence and occupation. This is reflected in the significant

spread of the same municipality over both occupational and non-occupational

time (Figure 4.12a). Since it is assumed that the spatiotemporal behavior on

Twitter reflects someone’s true routine and that all objects have an occupation,

one must conclude that, in this case, the place of occupation lies in the same

65



Chapter 4 |Methods

Figure 4.12: Type B

spatiotemporal pattern

(a) and spatial distri-

bution of corresponding

events (b). Possible

places of residence are

denoted with “1”, places

of occupation with “2”.

Municipality boundaries

are depicted as gray

lines. Base map source:

http://openstreetmap.org.
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Figure 4.13: Type C

spatiotemporal pattern

(a) and spatial distri-

bution of corresponding

events (b). Possible

places of residence are

denoted with “1”, places

of occupation with “2”.

Municipality boundaries

are depicted as gray

lines. Base map source:

http://openstreetmap.org.
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Figure 4.14: Type D

spatiotemporal pattern

(a) and spatial distri-

bution of corresponding

events (b). Possible

places of residence are

denoted with “1”. Mu-

nicipality boundaries

are depicted as gray

lines. Base map source:

http://openstreetmap.org.
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municipality.

Type C objects show a clear spatiotemporal pattern in terms of separability

of non-occupational and occupational time, i.e., each subset of events is domi-

nated by a single, distinct municipality (Figure 4.13a). This means that both the

place of residence and occupation could be extracted just by looking for the most

dominant municipality in each subset.

Type D concerns objects which are, to some degree, a combination of type

A and C. The municipalities visited during non-occupational time usually ex-

hibit a clear pattern, i.e., non-occupational time is dominated by a single munic-

ipality, which is most likely the place of residence. On the other hand, occupa-

tional time does not show an explicit predominance of a particular municipality,

or there is just not enough data, as it is the case in Figure 4.14a. Sometimes,

occupational time is dominated by two or more different municipalities, which

might be due to the fact that a person is occupied at different places, for instance,

a person who usually goes to work in the beginning and end of the week and

to school on Wednesday (Figure 4.15a), or in the morning and in the afternoon,

respectively (Figure 4.15c). The opposite case, where the municipality of oc-

cupation is clearly recognizable and the municipality of residence is somewhat

unclear, was only rarely detected, neither in the exploratory sighting nor during

the manual classification described below.

Although the goal of this step was to extract locations on the rather coarse-

granular level of municipalities, it is helpful to take a look at the actual spatial

distribution of events in order to further understand spatiotemporal routines.

Therefore, the events of the object were plotted on top of a map of municipal

boundaries and colored according to whether they were posted during occu-

pational or non-occupational time. To make frequently visited places easily

detectable, the events were plotted as transparent dots. Intuitively, function-

bearing places should appear as dense clusters of chromatic homogeneity. For

type A, events are spread over multiple municipalities and no such clusters can

be visually detected (Figure 4.11b), whereas in Figure 4.12b, the same munici-

pality is visited in a lot of different places, but one can still recognize at least

two such clusters. Even though the events, in this case, are spread over many

different places, one can conclude that the municipality of residence and of oc-

cupation are very likely the same. For the object belonging to type C, it is clear

that one municipality is usually visited during occupational time and the other

during non-occupational time, although some events were also posted in other

municipalities (Figure 4.13b). Lastly, while one can recognize a manifestation

of a residential cluster in Figure 4.14b, it is impossible to tell where the object
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Figure 4.15: Type D spa-

tiotemporal patterns (a,c)

and spatial distribution

of corresponding events

(b,d). Possible places of

residence are denoted

with “1”’, “2” and “3”.

Municipality boundaries

are depicted as gray

lines. Base map source:

http://openstreetmap.org.
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Type A Type B Type C Type D

15%± 3.5% 28.8%± 4.4% 22.8%± 4.1% 33.5%± 4.6%

Table 4.8: Distribution

of spatiotemporal rou-

tine types among objects

(N=400). Intervals are

based on 95% confidence

and assumption of nor-

mal distribution of the

errors.

stays during occupational time. When looking at the special cases of type D, the

two places of occupation of the object depicted in Figure 4.15a are recognizable

(Figure 4.15b). Although one can find two temporally separated occupational

municipalities for the object depicted in Figure 4.15d, the spatial distribution of

events does not clearly convey this. Possible places of occupation are part of

one large cluster that spans two different municipalities — judging from this,

it is hard to tell whether the object is actually occupied at two different places.

This is still likely, though, because, as can be seen from the carpet plot, the ob-

ject seems to go to one municipality in the morning, returns home for lunch —

which explains the blue dots in the residential municipality — and then goes to

another municipality in the afternoon.

To conclude, the actual spatial distribution of events generally reaffirms

the insights gained from the carpet plots. It becomes particularly clear that,

given enough events are available, distinct clusters of residence or occupation

emerge and that these could probably be used to extract function-bearing mu-

nicipalities, too, e.g., by conducting a cluster analysis. In some cases, the spa-

tial distribution also reveals uncertainties and peculiarities that are hardly de-

tectable by just looking at the carpet plots. Nonetheless, the approach taken here

is more simple and thus preferred, as it essentially reduces a spatial problem to

a non-spatial pattern detection task, which will be described in the following

paragraphs.

In order to quantify the relative share of each type, N=400 objects were

randomly sampled and manually labeled by looking at their carpet plots. As it

was the case with the validation of the filtered results in Section 4.3.3, this clas-

sification suffers from some degree of uncertainty, since types could not always

be clearly separated from each other. Nonetheless, it is assumed that misclassi-

fications average out and that it is sufficient to have a rough estimate of the true

distribution, which is shown in Table 4.8.

According to these figures, over 80% of the individual routines seem to

be suited for the extraction of function-bearing municipalities (type B–D). Be-
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Table 4.9: Classification

confusion matrix of deci-

sion tree for identifying

type-A-objects (N=400).

classified as→ A B Total

A 41 19 60

B–D 11 329 340

Total 52 348

fore that, the objects exhibiting type-A-behavior needed to be detected and dis-

carded. This likely could not achieved by only filtering for a simple threshold,

for instance a minimum number of events no. Instead, a binary classifier which

takes into account not only one but several attributes of an object seemed more

appropriate. The 400 manually classified objects, together with their respective

entropy values and other descriptive figures, were thus used to train a C4.5 deci-

sion tree (Quinlan, 1993), an algorithm commonly employed in machine learn-

ing. Beside its simplicity in implementation and relatively good performance,

it also has the advantage of outputting a comprehensible classification model.

Using the Weka data mining toolkit (Hall et al., 2009), such a tree was trained

and its performance was assessed by means of 10-fold cross validation19.

The learner eventually identified both attributes Entropynorm(Eo, R = {M})
and percentage of the most visited municipality as decision criteria, achieving

an overall accuracy of 92.5% correctly classified instances. Namely, objects are

classified as belonging to type A whenever their Entropynorm(Eo, R = {M}) ex-

ceeds 0.68 and the overall most visited municipality amounts to less than 50.7%.

While this learner performs very well in terms of true positive rate for objects of

type B–D (objects of type B–D correctly classified as such) and false positive rate

for objects of type A (objects of type B–D wrongly classified as type A), the false

positive rate of objects of type B–D is relatively high20 (Table 4.9). When applied

to the full dataset, the decision tree classified 185 of 2,380 objects as showing

type-A-behavior (7.8%), leaving 2,195 objects for further analysis.

With only — or mostly — objects of type B–D remaining in the dataset, an

extraction algorithm which acknowledges the various types of patterns needed

to be found. Instead of examining the particular properties of such types in

further detail, a rule-based heuristic, based on already computed indicators, was

chosen.

In order to extract the residential municipality, denoted as mres
o , it was

19The original dataset was partitioned into 10 parts of equal size and each part served as test set

in each iteration, while the rest was used to train the decision tree.
20This means that objects of type A may sometimes be wrongly classified as B–D, however, most

of those wrongly classified objects were likely to be discarded anyway because of the rules

described in the next paragraph.
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checked whether a certain minimal number of events happened during non-

occupational time (|Eo,t=non−occupational | ≥ 30) and whether these events did hap-

pen across several different time slots (|Eo,t=non−occupational(R = {H, D})| ≥ 15).

If this was the case, the most visited municipality during non-occupational time

was classified as residential, if not, mres
o was labeled as “unknown”.

The procedure for the extraction of occupational municipalities was slightly

more complicated, mainly due to two reasons: occupational time generally ex-

hibits higher entropy in terms of R = {M} than non-occupational time, as will

be seen below (Section 5.2). Secondly, in the survey upon which authoritative

commuter balances are based, it is possible for participants to specify not only

one but two different addresses of occupation — one for work and one for edu-

cation, if this applies. This can possibly result in two different occupational mu-

nicipalities, denoted as mocc
o,1 and mocc

o,2 , a fact for which the algorithm should ac-

count. The first part of the algorithm is the same as for mres
o : if not enough events

happened during occupational time or if the schedule size for R = {H, D} is to

small, both mocc
o,i are deemed “unknown”, using the same thresholds as above.

If this if not the case and if the second most visited location during occupational

time differed by a share of more than 30% from the most visited location, both

were extracted as mocc
o,i , if not, only the most visited location was. For instance, if

the most visited location amounted to 65% of all locations during occupational

time, and the first- and second-most visited together to 96%, 31% are due to the

second-most visited location and both places are thus extracted as mocc
o,i .

In conclusion, applying this algorithm thus resulted in a SRo described

through possibly none, one or two mocc
o,i , and none or one mres

o for each object.

Objects where mres
o is unknown could not be used in the evaluation of spatial

representativeness, presented in the following section, whereas objects where

both mocc
o,i are unknown could be used for the evaluation of representativeness

but not for the calculation of commuter balances as presented in Section 4.4.5.

4.4.4. Evaluation of Representativeness

Having a reasonably certain indication of the place of residence for most of the

objects allows to summarize the number of Twitter users residing in each munic-

ipality. This figure, in turn, can be evaluated with regards to official population

count data, thus indicating whether a municipality is likely over- or underrep-

resented in geosocial, egocentric VGI. Since findings in Section 3.3.1 and 4.3.3

suggest that most of the users on Twitter are either young adults or teenagers,

and that people aged above 60 are barely present, it was decided to use the pop-
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ulation of people aged between 15 and 64 as reference. Not only does this def-

inition increase comparability, it is also in accordance with the one of working

population (see Section 3.1.2).

As the actually usable data from VGI is very sparse, directly compar-

ing data on the level of municipalities does not lead to very expressive results.

Therefore, population counts of municipalities were also aggregated according

to their membership to types of certain spatial divisions (Section 3.2.2). By doing

so, not only can more significant findings be derived. One can also try to make

statements about certain socio-demographic properties of Twitter users, since

those are encoded in some of the spatial divisions (see Section 2.3.1 for similar

approaches). In order to visualize the disparities between the data from Twitter

and actual population counts, the remaining 2,178 objects with known residen-

tial municipality were distributed over the respective groups of municipalities

according to the actual population in these groups, which yielded the expected

population. This figure could then be directly compared to the observed number

of Twitter users per type.

4.4.5. Calculation and Comparison of Commuter Balances

In accordance with the system defined by the structural survey on mobility and

transport by the FSO (Section 3.2.1), commuter balances of districts are described

as tuples

di = 〈ni, stayi, outi, ini, cbi〉 (4.5)

where di ∈ D signifies one of the 147 districts of Switzerland, ni the number of

objects where mres
o is defined and part of di, stayi the number of objects where

mres
o is defined and part of di and where at least one of mocc

o,i is defined and also

part of di, outi the number of objects where mres
o is defined and part of di and

where at least one of mocc
o,i is defined and part of dj,j 6=i and, lastly, ini the number

of objects where mres
o is defined and part of dj,j 6=i and where at least one of mocc

o,i is

defined and part of di. The actual commuter balance, expressed through a single

number, is defined as cbi = (ini − outi)/ni. A positive cbi signifies a surplus of

commuters, i.e., the district “attracts” commuters, while a negative cbi signifies

a deficit, i.e., the district “provides” commuters. Note that this statistic does

not account for the number of commuters that are occupied in the same district

(stayi).

As was mentioned in Section 3.2.1, official commuter balances are avail-

able separately for the mobile working population and the mobile population

in education (see Section 3.1.2 for definitions). On average, people in education
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Figure 4.16: Districts

used in the comparative

analysis (shown in yel-

low). Also shown are

the ten biggest cities of

Switzerland.

amounted to only 16.4% (standard deviation: 2.6%) of all residential commuters

per district. Since this distinction can not be made for the Twitter data, both offi-

cial datasets were added together and used as a common reference. It should be

noted that, theoretically, a person could work and go to school and thus appear

twice in the resulting sum, but this could also be the case with Twitter users, as,

possibly, two different occupational municipalities could have been detected.

Another aspect worth to consider are the partially very large confidence

intervals for the estimations in the official data. As was mentioned previously,

this primarily concerns the data about people in education (Figure D.1 in Ap-

pendix D). In order to have trustworthy reference figures, districts with two-

sided 95%-confidence intervals amounting to over 25% and 50% of the estimated

values were excluded from the analysis (mobile working population and mo-

bile population in education, respectively), which resulted in the retention of

90 districts. As can be seen from Figure 4.16, the retained districts are pretty

well spread over the study area. While the districts of all major cities are rep-

resented, rural districts in the mountainous south-east and south-west as well

as some relatively sparsely populated areas in the rest of Switzerland were ex-

cluded. One can assume that such districts also have a very small number of

residential Twitter users (compare with the findings in Section 5.3.1).

In addition to the quantitative comparison between individual districts,

commuter balances in VGI were re-calculated on the level of cantons. Here, a
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quantitative comparison could not be conducted per se, because official figures

were not available on this level and summing up values on the level of districts

does not lead to the same results. For instance, somebody could be an outgo-

ing commuter on the level of districts but still be a staying commuter on the

level of cantons, and a mere aggregation would, in this case, lead to an overes-

timation of outgoing commuters. Nonetheless, a qualitative, side-by-side com-

parison with official data was possible because the FSO had published a graph

showing the balances for all cantons (BFS, 2013e). The same publication also

contains an origin-destination matrix which shows the relative share of people

commuting from a municipality in a specific spatial type to a municipality in

another type. For instance, the matrix shows which share of people commuted

from a core city to a rural municipality or from a suburban municipality to an-

other suburban municipality, et cetera. Since such type-specific balances could

be easily computed for the Twitter data as well, they were also compared with

each other. Lastly, a map showing the numbers of staying, outgoing and incom-

ing commuters in each of the agglomerations in 2010 was published by the FSO

(BFS, 2013d). Even though the data stems from 2010, it is likely that the map

accurately reflects commuter balances of 2011, at least for the biggest agglomer-

ations. Therefore, commuter balances as found on Twitter were re-calculated for

the ten biggest agglomerations and once more compared.
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5. Results

5.1. Temporal Patterns

5.1.1. Daily Patterns

Concerning daily patterns, the overall distinct object volume shows significant

variations over time (Figure 5.1), and the volume of events is similarly dis-

tributed (Figure C.1 in Appendix C). During an average day, object volume has

its first maximum around 07:00–08:00, when most people go to their occupation

(compare with Section 3.1.2). It then continually rises until noon, when most

people take a break from their occupation. Interestingly, the large majority of

objects are active during the evening hours, with a global maximum at around

22:00, when most people are at home.

If the volume of objects is categorized according to certain spatial divi-

sions (Section 3.2.2), several things become apparent (Figure 5.2 and 5.3). First

of all, there exists a striking imbalance between volumes of the French- and the

German-speaking region. Municipalities in the French-speaking region seem to

have a considerably higher share of active objects at any time of the day, with

amounts sometimes more than twice as large. Nonetheless, all linguistic parts of

Switzerland seem to show mostly similar daily patterns, although regions with

more absolute volume appear to have more pronounced, extreme patterns. This

is most likely due to a smoothing effect, i.e., less active objects in absolute terms

make it harder to perceive actual patterns. The patterns for the volume of events

are again very similar, although it seems that, in regions with many active ob-

jects, overproportionally more events are broadcast, which may hint at a more

prolific behavior in these regions (Figure C.2 and C.3 in Appendix C, respec-

tively). When looking at the volumes according to the division between urban

and rural municipalities, the rather minuscule share of rural municipalities be-

comes apparent. However, also here, all types show a very similar daily pattern,

even though the evening peak is less pronounced in core cities than in agglomer-

ation municipalities. This might be a sign of people subsequently leaving work
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Figure 5.1: Hourly

volume of distinct

objects (whole study

area) (N=2,380 ob-

jects). Error bars

signify 95%-confidence

intervals. ●
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Figure 5.2: Hourly vol-

ume of distinct objects

grouped by linguistic re-

gion (N=2,380 objects).

Error bars signify 95%-

confidence intervals.
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or school in the core city and going home to the suburbs.

5.1.2. Weekly Patterns

While daily patterns are quite characteristic, there are no significant weekly pat-

terns (Figure C.4 and C.5 in Appendix C), with a few exceptions. For instance,

there seems to be a barely noticeable but still significant rise in distinct objects

during the weekend in rural municipalities (Figure 5.4), which might be due to

touristic activity or because of people who live in the city during the week and

outside of the city during the weekends (e.g., students). At the same time, ac-

tivity in core cities seems to reach a global minimum during Sundays, but this

might just be a random effect. As mentioned above, object activity in individual
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Figure 5.3: Hourly

volume of distinct

objects grouped by

urban and rural mu-

nicipalities (N=2,380

objects). Error bars

signify 95%-confidence

intervals.
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Figure 5.4: Daily

volume of distinct

objects grouped by

urban and rural mu-

nicipalities (N=2,380

objects). Error bars

signify 95%-confidence

intervals.

regions does not sum up because of the way it is computed.

To conclude, even though such daily and weekly patterns cannot be di-

rectly used to evaluate representativeness because they are not based on where

objects actually live, they still hint at a regionally non-representative distribu-

tion of Twitter users. Furthermore, they show that event volume is more or less

steady during the week, which allows to gain information from weekends, too.

As could be seen, most objects are active during noon and in the evening, which

certainly helps to extract spatiotemporal routines, as both of these daytimes lie

in occupational and non-occupational time, respectively.
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Figure 5.5: Entropies

and schedule sizes for

different R. Schedule

sizes of R = {M}
(logarithm to the base

of 10) (a), entropies of

R = {M} (b), entropies

of R = {M, H} (c)

and schedule sizes of

R = {H} (d) (N=2,380

objects).
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5.2. Regularity in Spatiotemporal Routines

5.2.1. Entropies and Schedule Sizes

Only about 2–3% of all objects visited only one municipality throughout the

collection process, and about 5% visited only two or less municipalities (Fig-

ure 5.5a). Since the entropy for visited municipalities is often below 0.5, one can

guess that a few municipalities are visited very often while the majority is visited

only sparsely (Figure 5.5b). Contrarily, the entropy for municipality-hour-pairs

is generally high1 (Figure 5.5c), which could mean that different locations are

visited multiple times a day or vice versa and that there are no strict visiting pat-

terns, although this might be due to the high temporal resolution. In fact, more

than 50% percent of all objects were active during at least 20 different hours of

the day, and no object was active during less than 6 different hours (Figure 5.5d).

Another interesting aspect that can be found is the non-existing relationship be-

tween entropy and schedule size for municipalities (Figure 5.6). In other words,

entropy does not increase for objects who visited more municipalities, which is

ultimately desirable.

1The distribution of entropies for R = {M, D} is similar to the one for R = {M, H}, and is thus

not shown here.
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Figure 5.6: Relationship

between schedule sizes

and entropies for R =

{M} (N=2,380 objects).
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Figure 5.7: Entropies

for R = {M} in

occupational (a) and

non-occupational time

(b) (N=2,380 objects).

Moreover, when Entropynorm(Eo, R = {M}) is calculated separately for

events happening in occupational and non-occupational time, it appears that

occupational time generally exhibits a higher entropy, with a median of 0.51

(Figure 5.7a). The median entropy value for non-occupational time is with 0.33

considerably lower (Figure 5.7b). However, a significant number of objects only

visited one municipality during occupational time, resulting in an entropy value

of 0. A visual inspection showed that these mostly belong to pattern type B (Sec-

tion 4.4.3). If one excludes these exceptional cases, the median of entropy values

during occupational time amounts to a even higher value (0.55), reaffirming that

the distributions are indeed different.
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Figure 5.8: Frequency

of most visited locations

per object. Most vis-

ited location (a) and two

most visited locations (b)

(N=2,380 objects).
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5.2.2. Most Visited Locations

Concerning the frequency of the n-most visited location, the data show that 75%

of all objects visited their most frequent location in about 60% (or more) of their

events (Figure 5.8a). The second- and first-most visited locations together even

amount to approximately 80% (or more) for 75% of all objects (Figure 5.8b).

Together, these findings reveal that there is a certain regularity or continu-

ity concerning visited locations — most objects tend to visit the same municipal-

ities over and over again. The properties of the data therefore generally justify

the steps taken to extract spatiotemporal routines, as detailed in Section 4.4.3.

5.3. Evaluation of Representativeness

5.3.1. Representation of Individual Municipalities

For about 80% of the 2,515 Swiss municipalities, no residents were found in the

Twitter data (referred to as residential Twitter users from now on), and for over

95%, less than 10 residents were found (Figure 5.9a). Contrarily, the majority of

municipalities of Switzerland are home to around 1,000 people, and the distri-

bution appears to be log-normal, or rank-sized (Figure 5.9b), as it is often the

case for cities of a country (Berry, 1961).

However, if the municipalities without any residential Twitter users are ex-

cluded from the dataset, one can observe a moderate correlation with the actual

population aged 15–64 (Figure 5.10). This is expressed through a coefficient of

determination, r2, of 0.38, which signifies that about 40% of the variation in one

variable can be explained by the other variable (Nagelkerke, 1991). While this

correlation is rather weak, it still helps to assure that the method of extracting

residential municipalities did not produce completely random results and that

municipalities are indeed, at least roughly, represented according to their pop-
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Figure 5.9: Distribution

of population count

across municipalities

(logarithm to the base

of 10). As inferred

from Twitter (a) and

actual population aged

15–64 (b) (N=2,515

municipalities, N=2,178

objects).
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Figure 5.10:

Relationship between

actual population aged

15–64 and the number of

residential Twitter users

per municipality. Only

municipalities with at

least one residential

Twitter user are included

(N=515 municipalities,

N=2,178 objects). Axes

show the logarithm to

the base of 10.

ulation count. Moreover, the rather low r2 is mostly due to the high variance

of municipalities for which only very few Twitter users (< 3) were classified as

residents. Such municipalities, associated with a high degree of uncertainty, con-

stitute the majority, which poses a challenge for directly comparing the Twitter

data to fine-grained authoritative data. In fact, there even exist 5 municipalities

with more than 10,000 inhabitants but only one residential Twitter user, and all

of them are core cities or municipalities of agglomerations.

A broad look at the geographical density of residential Twitter users (Fig-

ure 5.11) reveals a basic similarity with the actual population density (Figure

5.12). As one would expect, all major cities seem to be relatively densely inhab-

ited by Twitter users and the rural and mountainous regions are only sparsely

populated, although the countryside appears to be spotted by patches of seem-

ingly random occurrences of Twitter users. If one computes the expected num-

ber of residential Twitter users per municipality, as it was done for spatial divi-

sions (Section 4.4.4), and subtracts this figure from the count of actually observed
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Figure 5.11: Residential

Twitter users per km2.

Also shown are the ten

biggest cities of Switzer-

land. “No data” cor-

responds to municipali-

ties having no residential

Twitter users.

users, one can visualize in which regions municipalities are over- or underrep-

resented. On the map in Figure 5.13, municipalities which are underrepresented

on Twitter therefore have negative density values; those which are overrepre-

sented have positive values. As can be seen, most of the ten largest cities are

slightly or highly overrepresented, with the exception of Winterthur and St.

Gallen, which are slightly underrepresented, as well as Basel and Luzern, which

are correctly represented. It also appears that the French-speaking region in the

western part of Switzerland contains a higher share of overrepresented munic-

ipalities than the rest of the country. Without conducting an extensive analysis,

one might also suspect that patterns of under- and overrepresentation are spa-

tially auto-correlated (O’Sullivan & Unwin, 2003). This is probably related to the

fact that over- or underrepresented regions occur where the population density

is reasonably high, which, itself, is auto-correlated.

5.3.2. Representation of Municipalities Aggregated According to

Spatial Divisions

While individual municipalities are barely comparable due to sparse data, the

comparison of municipalities aggregated according to various spatial divisions

gives more insights about the socio-demographic representativeness of the Twit-

ter data (see Section 3.2.2 for an overview of the spatial divisions used in this

thesis). One of the first, striking examples of unequal representation of the ac-
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Figure 5.12: Population

aged 15–64 per km2,

2011. Also shown are

the ten biggest cities

of Switzerland. Class

boundaries are scaled ac-

cording to those in Fig-

ure 5.11.

Figure 5.13: Difference

between actually ob-

served and expected

residential Twitter users

per km2. Also shown are

the ten biggest cities of

Switzerland.
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Figure 5.14: Expected

and observed number of

residential Twitter users

grouped by linguistic re-

gions (N=2,178 objects).
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tual population on Twitter is the strongly overrepresented French-speaking part

(Figure 5.14). French-speaking Twitter users are considerably more numerous

than German-speaking users, even though the actual population living in the

French-speaking part only amounts to approximately a third of that living in the

German-speaking part. The seven greater regions can be used to further exam-

ine this inequality (Figure 5.15). Clearly, all greater regions except the “Region

Lémanique” (Lake Geneva region), which encompasses the French-speaking

cantons of Genf and Waadt as well as the bilingual canton of Wallis, seem to

be more or less underrepresented. It is likely that the majority of Twitter users

of the Lake Geneva region resides in the city of Genf and to some degree in the

canton of Waadt. The canton of Wallis, situated in the very south-western part of

the country, is probably underrepresented, too, as it mainly consists of rural and

touristic municipalities, which are generally underrepresented (see below). An

even more detailed picture of the situation is given by the distribution according

to the five main metropolitan regions (Figure E.1). It becomes apparent that the

Genf-Lausanne (“Genève-Lausanne”) region is likely solely responsible for the

overall strong overrepresentation of the French-speaking part of Switzerland, as

its population is almost three times overrepresented on Twitter (Figure 5.16).

A second dimension along which the unequal representation of different

types of municipalities becomes visible, is the division between urban and ru-

ral areas (Figure 5.17). In general, core cities of agglomerations, which together
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Figure 5.15: Expected

and observed number of

residential Twitter users

grouped by greater re-

gions (N=2,178 objects).
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Figure 5.16: Expected

and observed number of

residential Twitter users

grouped by metropoli-

tan regions (N=2,178

objects).
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Figure 5.17: Expected

and observed number of

residential Twitter users

grouped by urban and

rural municipalities be-

fore correcting for lin-

guistic regions (N=2,178

objects).
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housed about 2.2 million inhabitants in 2011, are strongly overrepresented on

Twitter. This surplus in observed residential Twitter users is mostly at the ex-

pense of rural municipalities, which together housed about 2.1 million people.

Nonetheless, also suburban municipalities and isolated cities seem to be slightly

underrepresented on Twitter, even though this cannot be stated with a lot of

confidence.

In order to further examine the stark divide between core cities and rural

municipalities, the imbalance caused by linguistic differences (Figure 5.14) was

corrected for. Namely, the observed number of residential Twitter users of each

municipality was adjusted to the expected number of users if linguistic regions

were correctly represented. Interestingly, after this calibration, the inequality

between core cities and the rest is even more pronounced (Figure 5.18).

Therefore, one can assume that the unequal representation of urban and

rural areas is largely independent from the unequal representation of French-

and German-speaking regions. For instance, it can be ruled out that the strong

overrepresentation of urban areas is only due to the overrepresentation of the

Genf-Lausanne region (Figure 5.16).

Lastly, one can compare municipalities based on their type as defined by

Joye et al. (1988) on behalf of the FSO. This typology is based on a hierarchi-

cal center-periphery model, which takes into account several dozens of indi-

cators, such as population count or the percentage of outgoing commuters, as
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Figure 5.18: Expected

and observed number of

residential Twitter users

grouped by urban and

rural municipalities af-

ter correcting for lin-

guistic regions (N=2,178

objects).

well as existing classifications. For instance, a municipality belongs to the type

CG (large center) if it is a core city (as defined elsewhere) and has more than

30,000 inhabitants. Over the years, these thresholds were only slightly adjusted

(Schuler & Joye, 2005) and classifications are still made on a yearly basis. While

Figure 5.19 shows expected and observed values for all 22 types, only a few will

be explicitly considered and explained here. The reasons for this are twofold.

First, the typology itself is quite complex and often too detailed for the purposes

of this thesis, and second, many types probably lack statistical significance be-

cause of the low volume of residential Twitter users found in those.

First and foremost, the highly overrepresented large centers (CG) attract

attention, especially because middle centers (CM, core city and more than 14,000

inhabitants) are a lot less overrepresented, and small and peripheral centers (CP

and CPE, respectively) are even underrepresented. So-called workplace munici-

palities, which afford a high share of work opportunities and where a lot of peo-

ple commute to, seem to be overrepresented slightly, but only if they are part

of a metropolitan area (ME). If they are not part of a metropolitan area (NE),

the opposite is the case. Other significantly underrepresented municipalities are

those belonging to the type of MP and NP, which are periurban municipalities of

metropolitan and non-metropolitan areas, respectively. The definition of peri-

urban encompasses municipalities which i) are part of an agglomeration, ii) do

not belong to the definition of suburban municipalities, which, in turn, encom-
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Figure 5.19: Expected

and observed number of

residential Twitter users

grouped by 22 munic-

ipality types (N=2,178

objects).
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passes municipalities with a relatively high share of apartment buildings, iii) do

not belong to the above definition of workplance municipalities, and iv) are not

classified as high income municipalities (RE). Lastly, municipalities outside of ag-

glomerations with a high share of outgoing commuters (NAL, NAU) as well as

industrial (SI) and agrarian (SAT, SAI) municipalities seem to be significantly

underrepresented.
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5.4. Comparison of Commuter Balances

5.4.1. Comparison of Individual Districts

Although residential Twitter users of districts (denoted with ni in Section 4.4.5)

are almost log-normally distributed (Figure 5.20), this is not the case for incom-

ing and outgoing Twitter commuters (ini and outi, respectively) (Figure 5.21a

and 5.21c, respectively). While only 3 of the analyzed 90 districts have no resi-

dential Twitter users, about 30 districts have either no incoming or no outgoing

commuters, and 13 have neither. In the authoritative data, both ini and outi

seem to come from a different distribution. ini appears to be heavily skewed

with many districts having only a small number of incoming commuters and a

few having a lot of them (Figure 5.21b), while outi is more evenly distributed

(Figure 5.21d). In other words, the majority of districts is the origin for several

1,000 to 10,000 commuters, while the destination of these commuters lies in only

a few districts, which provide work and education opportunities for hundred

thousands of people. This is also reflected in the distribution of cbi in the author-

itative data, as the large majority of districts has a negative commuter balance

(Figure 5.22b). This can not be said for the distribution of cbi for Twitter users,

where most districts are centered around 0, i.e., have neither a clearly positive

nor a negative balance (Figure 5.22a). Concerning staying commuters (stayi in

Section 4.4.5), the distribution for Twitter data (Figure 5.23a) is similar to the one

of outi (Figure 5.21c), and only 6 districts do not have any staying commuters.

In contrast, the authoritative data (Figure 5.23b) show a rather log-normal dis-

tribution similar to the one of ini (Figure 5.21b).
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Figure 5.21: Distribu-

tion of ini and outi per

district for Twitter (a,c)

and authoritative data

(b,d). Axes for Twitter

data show the logarithm

to the base of 10.
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Figure 5.22: Distribu-

tion of cbi per district

for both Twitter (a) and

authoritative data (b)

(N=90 districts).
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Figure 5.23: Distribu-

tion of stayi per dis-

trict for both Twitter (a)

and authoritative data (b)

(N=90 districts). Axis

for Twitter data shows the

logarithm to the base of

10.

0.0

2.5

5.0

7.5

10.0

12.5

1 3.2 10 31.6 100 316.2

Staying commuters (VGI)

N
um

be
r 

of
 d

is
tr

ic
ts

(a)

0

10

20

0 50000 100000 150000 200000

Staying work and school commuters (authoritative)

N
um

be
r 

of
 d

is
tr

ic
ts

(b)

90



5.4 | Comparison of Commuter Balances

●

●

●
●●

●● ●●
● ● ● ● ●● ●● ●● ●● ●●● ●●● ●●● ●● ● ●● ●●● ●● ●● ●●● ●●●● ●● ● ●●● ●

● ● ●●● ●● ●●● ● ●● ● ● ● ●●●
● ●●

● ● ● ●●●
●●

● ●

●

●−1.0

−0.5

0.0

0.5

1.0

−0.5 0.0 0.5 1.0

Balance for both work and school commuters (authoritative)

B
al

an
ce

 (
V

G
I)

 r2 = 0.041 , p ≤ 0.1

(a)

●

● ●●

●

● ●

●
●●

●● ●●● ●●● ●● ● ●

●

●
● ●●

●
●●

●● ●
● ●●●

●

●

●
●

−0.2

0.0

0.2

−0.5 0.0 0.5 1.0

Balance for both work and school commuters (authoritative)

B
al

an
ce

 (
V

G
I)

 r2 = 0.39 , p ≤ 0.0001

(b)

●

● ●●

● ●

●
●

● ●●● ●●● ●● ●

●

●

●
●

● ●
● ●

●

●

−0.2

0.0

0.2

−0.5 0.0 0.5 1.0

Balance for both work and school commuters (authoritative)

B
al

an
ce

 (
V

G
I)

 r2 = 0.53 , p ≤ 0.0001

(c)

●

●●

● ●

●
●

●● ●●● ●●

●

●

●

●
● ●

●

−0.2

0.0

0.2

0.0 0.5 1.0

Balance for both work and school commuters (authoritative)

B
al

an
ce

 (
V

G
I)

 r2 = 0.62 , p ≤ 0.0001

(d)

Figure 5.24: Compari-

son of cbi per district be-

tween authoritative and

Twitter data. For all

districts (a) (N=90 dis-

tricts), for districts with

ni,vgi ≥ 10 (b) (N=41),

for districts with ni,vgi ≥
15 (c) (N=28) and for dis-

tricts with ni,vgi ≥ 20 (d)

(N=21).

If the commuter balances of both authoritative data and VGI are actually

compared for each of the 90 districts, no similarity or correlation can be detected

at first (Figure 5.24a). It seems that, especially for districts which neither have a

positive nor a negative cbi on Twitter, the variance of the authoritative cbi is quite

high. Moreover, many districts exist which have a positive balance on Twitter,

but a negative one in the authoritative data. These two phenomena are mainly

responsible for the low correlation.

In Section 5.3.1, one could observe that municipalities with a low number

of residential Twitter users could not be used to infer actual population values

with high certainty, either. Therefore, it makes sense to look at the correlation

between districts which have a certain minimal support of ni on Twitter, as these

are likely to be more significant in terms of cbi. In fact, as one raises the threshold

for inclusion of districts from at least 10 residential Twitter users (Figure 5.24b)

over at least 15 users (Figure 5.24c) to at least 20 users (Figure 5.24d), the appar-

ently linear correlation successively becomes stronger, while still being highly

significant even when only 21 districts remain. Districts where both authori-

tative and Twitter commuter balances do not have the same algebraic sign are

becoming more and more sparse, too. It also appears that balances are generally

less pronounced on Twitter, and extreme cases (|cbi| ≥ 0.5) begin to disappear

as soon as one raises the minimal support.

For the sake of completeness, and because commuter balances are not nor-

mally distributed, as one could see in the plots above, Spearman’s ρ, which mea-
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Table 5.1: Association

of cbi between authorita-

tive and Twitter data as

measured through Spear-

man’s ρ and Pearson’s

correlation coefficient.

ni ≥ N ρ r

−∞ 90 0.41 0.2

10 41 0.65 0.62

15 28 0.76 0.73

20 21 0.84 0.79

sures the association between the ranks of two variables, was computed. A ρ of±1

signifies a perfect monotonical relation between the two variables, i.e., as one in-

creases or decreases one variable, the other is always increased or decreased too

(or vice versa in the case of ρ = −1). The resulting values for both ρ and the pre-

viously plotted Pearson’s correlation coefficient r =
√

r2 are displayed in Table

5.1. Clearly, the association between the ranked variables, as measured through

ρ, is always higher than the correlation, as measured through r, although only

slightly. As it is the case with the correlation coefficient, the higher the sup-

port, the closer the association between variables. Furthermore, the difference

between ρ and r is most visible for the case where all 90 districts are included

— even though no or only a very weak linear correlation can be detected, the

variables are at least moderately associated in terms of their ranks.

5.4.2. Comparison of Districts Aggregated According to Spatial

Divisions

As was mentioned in Section 4.4.5, the FSO also published cantonal commuter

balances for 2011 (Figure 5.25a), but the underlying data are not available, and

it is not ultimately clear whether the data only concerns the mobile working

population or also the mobile population in education (see Section 3.1.2 for defi-

nitions). As it is the case with individual districts, most cantons have a negative

balance, while only six have a positive one. On Twitter, this ratio is more even, as

almost the same number of cantons have positive and negative balances (Figure

5.25b). Again, the balances are generally less pronounced on Twitter, and most

fall within ±10%. To more accurately reflect the real balances, the values should

thus probably be stretched by a factor of 2. If one only looks at cantons with

a support higher than 50 residential Twitter users, the distribution looks quite

similar to the one in the authoritative data. For instance, all cantons which have

a positive balance in the authoritative data also have more incoming commuters

on Twitter. Still, there are some cantons which have a rather large support but

are not correctly represented, such as the canton of Wallis, which has a negative

balance in the authoritative data, or the canton of Tessin, which does not have a
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Figure 5.25: Commuter

balances per canton

for authoritative (BFS,

2013e) (a) and Twitter

data (b). In Figure (b),

the support signifies the

number of residential

Twitter users per canton

(ni).
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Figure 5.26: Commuter

flows between and

within urban and rural

areas. The y-axis shows

the percentage of people

commuting from a

specific spatial type to

another. Flows extracted

from Twitter are shown

in red, those from

authoritative sources

(BFS, 2013e) in blue.

Authoritative data only

consider the mobile

working population.

Core cities include

isolated cities.
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negative balance in the authoritative data. Freiburg, even though having quite

a large support (not visible in the plot), is not correctly represented as well. If

one considers cantons with a support lower than 50 residential Twitter users,

some cantons strongly deviate from their authoritative counterparts, such as the

cantons of Obwalden, Solothurn and Graubünden. As for individual districts,

Spearman’s ρ was calculated for the association between the order of the can-

tons. A high positive value means that cantons are in more or less the same

order, while a high negative value signifies that cantons are in opposite order.

If all cantons are included, ρ amounts to 0.62. If only those having a support

of ni ≥ 25 are considered, ρ = 0.72. Interestingly, ρ decreases slightly to 0.71

if only those having a support of ni ≥ 50 are included. However, one can cer-

tainly conclude that, in terms of commuter balance, the order of cantons as seen

on Twitter is relatively congruent with the order seen in the authoritative data,

and that this congruence is more strong for cantons with a minimal support of

residential Twitter users.

Another comparison can be made for commuter movements between and

within urban and rural municipalities (Section 3.2.2). The figures published by

the FSO (BFS, 2013e) suggest that most people commute from agglomeration

municipalities to core cities (including isolated cities) or to other agglomeration

municipalities, and comparatively few people travel within core cities and from

core cities to rural municipalities. People who have the origin of their commute
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in rural municipalities together amount to almost 30% of all commuters (Fig-

ure 5.26). On Twitter, some clear deviations from these figures can be observed.

Movements within core cities and from agglomerations to core cities are strongly

overestimated, while those originating from rural municipalities are mostly un-

derestimated. Apart from these disparities, the magnitudes of flows are more or

less correctly represented on Twitter. It should be noted that the authoritative

data do, in this case, only consider the mobile working population, while the

data from Twitter is assumed to also contain people in education (see Section

4.4.5).

Lastly, commuter figures for the biggest agglomerations as inferred from

Twitter (Figure 5.28) can be qualitatively compared to official data from 2010

(Figure 5.27), which, again, only consider the mobile working population. Be-

cause of the problem of low support on Twitter, only the figures for the ten

biggest agglomerations were computed. If one compares the mere balance, i.e.,

whether an agglomeration has a surplus or a deficit of commuters, most agglom-

erations coincide with the official data. The only exception is Luzern, where the

official data show a slightly positive balance compared to the negative balance

on Twitter. Except for Luzern and Winterthur, the ratio between incoming and

outgoing commuters seems to be more or less correct, too. A clear deviation

from the official data can only be detected for staying commuters, who seem to

be tendentially — and, in some cases, heavily — overestimated. This is espe-

cially the case for agglomerations where ni is very large: Genf (Genève), Zürich,

Basel and Bern. For this reason, it is difficult to compare the ratio of incom-

ing/outgoing and staying commuters between both Twitter and authoritative

data.
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Figure 5.27: Work

commuters of agglom-

erations, 2010. Staying

commuters are denoted

as vertical, green arrows.

Incoming and outgoing

commuters are denoted

as horizontal blue

and orange arrows,

respectively. 1mm of

width of an arrow stands

for 30,000 commuters.

Source: BFS (2013d).
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Figure 5.28:

Commuters of the

ten biggest agglom-

erations as inferred

from Twitter. Colors
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in Figure 5.27. Note

that the value of stayi

for Genf (Genève) is

truncated.
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6. Discussion

In the last chapter it was shown that it is possible to detect spatial and temporal

patterns which are comparable to official data and which are plausible in the

sense that they do not deviate too strongly from what is considered to be “real-

ity”. In other words, it can be said with high certainty that the figures computed

and the patterns detected are not random.

On the other hand, every sufficiently specialized methodological process

produces results which are not random, and it must be asked whether such a

process accurately reflects the structure within the data at hand, in this case,

the “real” spatiotemporal behavior of people. Although the apparent similar-

ity with “reality” is an indicator for this, it can not definitely be ruled out that

another methodological framework would lead to a different outcome. It is not

the goal of this work to optimize such a framework so that it reflects “reality”

as close as possible. However, the sensitivity of the data mining process as a

whole can and must still be assessed, because it could be that seemingly minor

parameter adjustments lead to significantly different results. Therefore, before

putting the results into the context of the research questions, their robustness is

critically examined.

6.1. Uncertainties of the Methodological Framework

While some aspects of the methodological framework, such as the uncertain-

ties inherent to type of data used, as illustrated in Section 2.2.5, are given and

can not be circumvented, others can be more deeply investigated. In particular,

the following stages and decisions might have influenced the outcome of the

methodological process:

1. The criteria for searching and tracking Twitter users during data collection.

2. The preprocessing stage, particularly the choice of variables and thresh-

olds for detecting and removing non-desirable users.
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3. The spatial and temporal discretization of the collected Tweets.

4. The extraction of semantic places as spatiotemporal routines, namely, the

parameters of the rule-based heuristic and the particular delimitation of

occupational and non-occupational time.

5. The choice of aggregation levels on which the results were compared with

the authoritative data, and the uncertainties associated with the authorita-

tive data themselves. These have already been discussed in Section 4.4.5.

6.1.1. Data Collection and Preprocessing

Even though the data collection process could not have been implemented in

a very different fashion, the filtering criteria for tracking users could have been

stricter or more relaxed (Section 4.2.1). However, even if more (or less) users had

been tracked and collected in the first place, they would eventually have been

removed (or kept) during the preprocessing stage. That stage was indeed sub-

ject to some ambiguity — as Table 4.3 showed, adjusting the indicator thresholds

resulted in a successively shrinking (or growing) user base, and it was tried to re-

tain a high quality while keeping as much of the data as possible (Section 4.3.3).

As the subsequent, manual validation showed, this was achieved, even though

the large majority of the data needed to be discarded. It can be assumed that

slightly different parameter thresholds would not have significantly affected the

final analysis, as marginal adjustments only led to minor changes in the number

of retained objects.

The parameters used in the preprocessing stage are thus assumed to have

only marginally affected the qualitative aspects of the comparison with author-

itative data. Nonetheless, it could be that Twitter users in different parts of the

country show different usage patterns and were therefore selectively filtered dur-

ing the preprocessing stage. However, this biased selection is likely to stay sim-

ilar if the filtering criteria are only slightly adjusted. For instance, during the

visual inspection of profiles in Section 4.3.3 it was detected that users in the

French-speaking part of Switzerland, especially in the metropolitan region of

Genf-Lausanne, appear to be more prolific, and thus have a higher chance of

being included in the analysis than users who only seldom broadcast Tweets.

However, slightly adjusting the threshold for the minimal number of events per

object would not really have changed this imbalance. Either way, any analysis

working with such data and trying to infer patterns only from users fulfilling

certain criteria is prone to that sort of uncertainty and, possibly, bias.
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6.1.2. Spatial and Temporal Discretization of Tweets

Another type of uncertainty arises from the discretization of the continuous,

physical properties associated with each Tweet into semantic, not explicitly spa-

tial information (Section 4.3.5). Firstly, a different aggregation, both spatially

and temporally, would have led to different entropy values and thus to poten-

tially different — and possibly valid — classifications of types of spatiotemporal

patterns. This phenomenon can again be summarized under the name of the

previously introduced MAUP and MTUP, respectively (Openshaw, 1983; Cöl-

tekin et al., 2011). Namely, a more coarse discretization, e.g., into districts in-

stead of municipalities or into 4-hour-blocks, respectively, would have smoothened

the patterns and might have led to the discovery of regularities where there are

actually none. Contrarily, a more fine-grained discretization would have made

it more difficult to distinguish signal from noise.

Secondly, imposing a predefined spatial configuration onto a continuous

phenomenon might not accurately reflect the structure of the underlying data.

A semantic place in the sense of Section 2.2.2 might span multiple municipal-

ities (see for example Figure 4.15d), or might not be clearly attributable to one

municipality due to uncertainties in the data, e.g., stemming from inaccurate

GPS readings. However, as the data needed to be spatially and temporally dis-

cretized in order to be compared with official sources, and as those uncertainties

are assumed to play a minor role only, they were not explicitly addressed.

Another approach would be to use a regular grid to spatially discretize

Tweets, as proposed by Morzy (2007) for conventional location data. This would

have the advantage that all spatial entities would have exactly the same size;

however, the Tweets could not be analyzed with regards to socio-demographic

data, as such data is normally only available on the level of political entities.

6.1.3. Sensitivity of Extracting Spatiotemporal Routines

The procedure of finding semantic places of users through a rule-based heuristic

(Section 4.4.3) is the main data processing step of this thesis, and the uncertain-

ties associated with it probably affected the outcome of the analysis more pro-

foundly than any other, previously mentioned points. The results of the entropy

analysis generally showed that an underlying regularity can be found in the data

of most Twitter users (Section 5.2). This is in accordance with findings gained

with other kinds of (episodic) movement data (Gonzalez et al., 2008; Song et al.,

2010; Cranshaw et al., 2010). Moreover, the visual inspection of spatiotemporal

bevahior reaffirmed that the routines of the large majority of users have more
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or less the same structure. Therefore, it made sense to use a simple, rule-based

heuristic to extract frequently visited, function-bearing municipalities, and to

use regularity measures in the form of entropy values and schedule sizes as

attributes for these rules. In fact, a study concerned with mobile phone logs

used a very similar rule-based method to classify “home” and “work” places,

and achieved a high classification accuracy1 (Wang et al., 2012). The authors

also found that sophisticated machine learning techniques, which took into ac-

count individual properties of users, were not able to surpass the accuracy of

the rule-based method. Other plausible approaches to extract semantic places

from georeferenced Tweets have been recently discussed in literature, but are

not fully automatic like the approach proposed here as they incorporate visual

analytics (G. Andrienko et al., 2013a, 2013b).

On the other hand, there exists no way of actually verifying the results of

this process without taking a lot of effort, for instance, through textual analysis

of Tweets, or by conducting interviews with users. Without such measures, it is

almost impossible to judge which configurations of rules or thresholds most ac-

curately reflect the “real” spatiotemporal behavior of users. Thus, the thresholds

for the rules used in the heuristic are uncertain in the sense that they were man-

ually and rather arbitrarily chosen. Table 6.1 redefines the thresholds used in the

heuristic and also explains other symbols for clarity. Table 6.2 shows the differ-

ent scenarios that will be compared below (A is the actually applied scenario).

As was mentioned in Section 4.4.3, no residential or occupational municipalities

were defined for objects who did not fulfill the thresholds in non-occupational

or occupational time, respectively.

Setting these values too low or too high could significantly affect the ex-

traction of municipalities. For example, if the schedule sizes |Eo,t=non−occ.,occ.(R =

{...})| were set too low, municipalities that are not significant or meaningful

would be qualified as residential or occupational (false positives). On the other

hand, if they were set too high, a large number of residential and occupational

municipalities would not be recognized as such (false negatives). Furthermore,

the choice of the threshold for detecting a second occupational municipality,

mocc
o,2 , might severely affect the results — if set too low, randomly visited loca-

tions (noise) might be classified as mocc
o,2 , if set too high, actual places of occupa-

tion might be wrongly discarded.

A second dimension of uncertainty is associated with the delimitation of

both non-occupational and occupational time. As not all people have the same

1The authors were in possession of a test set which allowed them to validate their results.
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Formal definition or symbol Abbreviation Definition

|Eo,t=non−occ.| α Total number of events posted during non-

occupational time.

|Eo,t=non−occ.(R = {H, D})| β Number of events posted during different

hour-day-combinations (non-occupational

time).

|Eo,t=occ.| δ Total number of events posted during occu-

pational time.

|Eo,t=occ.(R = {H, D})| ε Number of events posted during different

hour-day-combinations (occupational time).

γ If the second most visited location during oc-

cupational time differed by a share of more

than γ from the most visited location (i.e.,

the most visited location amounted to 70%

of all locations, and the second most visited

location to less than 70− γ%), it was also ex-

tracted as occupational municipality (mocc
o,2 ).

mocc
o,1 First occupational municipality, as detected

by the heuristic.

mocc
o,2 Second occupational municipality, as de-

tected by the heuristic.

mres
o Residential (non-occupational) municipality,

as detected by the heuristic.

Table 6.1: Redefinition

of thresholds and sym-

bols used in the extrac-

tion of spatiotemporal

routines (compare with

Section 4.4.3).

A B C D E

α ≥ 30 1 80 30 30

β ≥ 15 1 40 15 15

δ ≥ 30 1 60 30 30

ε ≥ 15 1 30 15 15

γ 30% 10% 50% 30% 30%

Definition of

occupational

time

Weekdays

from 08:00

to 17:00

Weekdays

from 08:00

to 17:00

Weekdays

from 08:00

to 17:00

Weekdays

from 09:00

to 16:00

Weekdays

from 07:00

to 18:00

Remarks Actually

applied

scenario

Very relaxed Very strict Smaller

frame for

occupa-

tional time

Larger

frame for

occupa-

tional time

Table 6.2: Different sce-

narios for extracting spa-

tiotemporal routines. In

order for a residential

municipality to be ex-

tracted, thresholds α and

β need to be reached. In

order for at least one oc-

cupational municipality

to be extracted, thresh-

olds δ and ε need to be

reached.
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Table 6.3: Effects of dif-

ferent scenarios for ex-

tracting spatiotemporal

routines on the number

of detected municipali-

ties. The figures show

the number of objects (in

percent of all objects) for

which certain types of

municipalities were de-

tected (N=2,195 objects).

Scenario mres
o detected mocc

o,1 detected mocc
o,2 detected

A 2,178 (99.2%) 1,665 (75.9%) 242 (11.0%)

B 2,195 (100.0%) 2,193 (99.9%) 1235 (56.3%)

C 1,645 (74.9%) 927 (42.2%) 0 (0.0%)

D 2,178 (99.2%) 1,665 (75.9%) 242 (11.0%)

E 2,178 (99.2%) 1,665 (75.9%) 242 (11.0%)

working hours, it must be asked how different temporal delimitations would af-

fect the results. There is actual evidence about when most people usually work,

given through Figure 3.2 and other information in Section 3.1.2. Therefore, a

slightly shorter (scenario D) and a slightly longer (scenario E) work day were

considered, too (Table 6.2). People working during the weekend or in night

shifts are not accounted for by the heuristic, as they constitute a small minority2.

In summary, based on how these thresholds are chosen, different numbers

of non-occupational and occupational municipalities are detected (Table 6.3). In

the applied scenario A, an mres
o is detected for almost all objects, and an mocc

o,1 for

most, while an mocc
o,2 is only detected for very few objects. This is more or less

in accordance with the fact that only a small minority of people work and go

to school or work at two different places. Objects without an mres
o could not be

used for the evaluation of representativeness and those without a known mocc
o,i

could not be used for the calculation and comparison of commuter balances. If

the criteria were heavily relaxed (scenario B), all three kinds of municipalities

would be detected for the majority of the objects, whereas if the criteria were

considerably stricter (scenario C), an occupational municipality would be found

for less than half of the objects. Thus, if this scenario were applied, both the eval-

uation of representativeness and the comparison of commuter balances would

be more difficult because of less support. Different frames for occupational time

would not influence the detection of semantic places, as it seems, at least not

quantitatively, which confirms the robustness of the chosen delimitation.

If different scenarios were applied to the evaluation of representativeness

as presented in Section 5.3, only minor differences could be observed. For exam-

ple, the correlation between population aged 15–64 and residential Twitter users

of municipalities would barely be different (Table 6.4). The only notable differ-

25.5% of the permanent residents normally work in night shifts, and 8.3% do this only from time

to time (BFS, 2012a).
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A B C D E

N municipalities 515 515 430 515 515

r2 0.38 0.38 0.33 0.38 0.38

Table 6.4: Effects of dif-

ferent scenarios for ex-

tracting spatiotemporal

routines on the relation-

ship between actual pop-

ulation aged 15–64 and

the number of residential

Twitter users per munic-

ipality. Compare with

Figure 5.10.

ence lies in scenario C, where the correlation would be slightly weaker (Figure

F.1 in Appendix F). This can be attributed to the fact that an mres
o would be de-

tected for fewer objects, which, in turn, would result in more municipalities

having fewer or no residential Twitter users and thus more variance in terms

of actual population, as was discussed with the help of Figure 5.10. Regard-

ing municipalities aggregated according to spatial divisions (Section 5.3.2), the

qualitative comparison between scenarios A and B as well as between scenarios

A and D/E does not reveal significant or even perceivable differences. Again,

only between scenarios A and C some uncommonalities could be detected for

linguistic regions and metropolitan areas, although these would likely not be

statistically significant (Figure F.2 in Appendix F).

Additionally, the five different scenarios were applied to the actual use

case of the thesis, the comparison of commuter balances, cbi, on the individ-

ual district level (Section 5.4.1, for a definition of cbi see Section 4.4.5). Table

6.5 shows the values of indicators for the association between authoritative and

Twitter data for all scenarios (compare with Figure 5.24 and Table 5.1). First of

all, the robustness of the time frame for occupational time can definitely be con-

firmed, as slightly larger or smaller work days would not affect the qualitative

outcome of the comparison at all. Secondly, the same relationship between ni

and r as well as ρ could be observed in all scenarios, i.e., as one raises ni, r and

ρ are increased monotonically. Thirdly, both scenarios B and C would result in

slightly lower values for r and ρ, but the differences would likely lie within sta-

tistical error. The difference would be stronger in scenario B, and a glance at

the distribution of cbi per district as seen on Twitter reveals that there would be

quite a few districts with extremely positive values (Figure F.3 in Appendix F).

The reason for this might be the unrealistically frequent extraction of mocc
o,2 . These

additional occupational municipalities would likely distort the computation of

commuter balances and allow for such outliers. One can thus assume that the
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Table 6.5: Effects of

different scenarios for

extracting spatiotem-

poral routines on the

association of commuter

balances, cbi, between

authoritative and Twit-

ter data, as measured

through Spearman’s ρ

and Pearson’s corre-

lation coefficient. ni

denotes the number of

residential Twitter users

per district. Compare

with Figure 5.24 and

Table 5.1.

ni ≥ Scenario N districts ρ r

−∞

A 90 0.41 0.20

B 90 0.35 0.13

C 90 0.44 0.36

D / E 90 0.41 0.20

10

A 41 0.65 0.62

B 41 0.50 0.39

C 29 0.64 0.60

D / E 41 0.65 0.62

15

A 28 0.76 0.73

B 28 0.68 0.52

C 19 0.78 0.69

D / E 28 0.76 0.73

20

A 21 0.84 0.79

B 21 0.87 0.77

C 16 0.93 0.77

D / E 90 0.84 0.79

more relaxed rule for detecting the second occupational municipality (Table 6.2)

would be responsible for this deviation from A. Namely, the second-most vis-

ited municipality would often be automatically declared as mocc
o,2 for objects who

have visited more than one municipality during occupational time.

In conclusion, it appears that the extraction of spatiotemporal routines

produces mostly robust results under the variation of rule thresholds. The par-

ticular choice of thresholds for the actually applied scenario A proved to be ap-

propriate in that not too many second occupational municipalities, which could

have distorted the computation of commuter balances, were extracted. As al-

ready mentioned, the goal of this process was not to find an optimized configu-

ration of parameters which approximates the authoritative data as close as pos-

sible. Rather, it was shown that, even though extracted semantic places could

not be directly validated, a simple heuristic achieved to find an underlying, spa-

tiotemporal structure in geotagged Tweets — a structure which persists even

when the parameters are brought to their extremes.
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6.2. Reflections on the Research Questions

In this section, the research questions asked in Section 1.3 are put into the context

of the results and the state of the art. It becomes apparent that, while RQ1 and

RQ2 can be fully answered and discussed with the obtained results, RQ3 would

require a more sophisticated analysis and, particularly, a greater data support in

order to be exhaustively answered.

6.2.1. Spatial and Socio-Demographic Representativeness

The inference of socio-demographic properties based on the membership to a

certain type of municipality naturally suffers from a range of statistical biases

and uncertainties. First of all, inferences about the nature of individuals based

on inferences about the group these individuals belong to are subject to ecolog-

ical fallacy (Piantadosi et al., 1988). In other words, one cannot strictly assume

that the properties of the group (of municipalities) account for each and every

individual, not even for the majority of individuals. Secondly, spatially aggre-

gated statistical properties are always subject to the MAUP as introduced in

Section 2.3. As an example in the context of this thesis, one can think of a mu-

nicipality belonging to the type “high income”, while its neighboring munici-

pality was classified as “agrarian”. Nonetheless it is possible that, for instance,

a rich neighborhood stretches across both municipalities. It is therefore difficult

to directly derive socio-demographic properties from the spatial distribution of

Twitter users, nonetheless, the results allow to gain a coarse impression thereof

and help to answer the first research question:

RQ1 How representative is the spatial and socio-demographic distribution of users

found in Dvgi of the overall population as measured in Das?

From the results presented in Section 5.3, it can clearly be stated that users

of Twitter who frequently geotag their Tweets are not regionally representative

of the actual population. Contrarily, one could describe a “typical”, geoactive

Twitter user as having an overproportionally high probability of living in the

French-speaking part of Switzerland, living in an urban area, namely in a large

or medium-sized center, and living in a municipality of a metropolitan area.

On the other hand, it is less likely to detect a user who dwells in the German-

speaking region or lives in the rural, namely in the industrial and agrarian, part

of Switzerland. It was also found that, while the population is equally repre-

sented in terms of gender, young people (aged 15–30) strongly prevail, although
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there are regional differences. As was mentioned in the introduction, other

socio-demographic dimensions such as education, economic status, and culture

cannot be directly inferred from the Twitter data. On the other hand, differences

in terms of those between urban and rural areas as well as between linguistic

regions of Switzerland are a reality (Büchi, 2003; Leuthold et al., 2007; Brüg-

ger et al., 2009). Therefore, the spatially unequal distribution of Twitter users

certainly indicates that the population is also unequally represented in terms of

those dimensions.

Moreover, it has to be assumed that, in Switzerland, Twitter is still only at

the brink of leaving its early adopter phase. As a very recently published study

with N=1,114 subjects shows, only 18% of Swiss Internet users have an account,

of whom roughly a third actively uses it, as compared to the 58% who participate

in other social networks (Latzer et al., 2013). The early adopter phase of a new

technology is usually dominated by a mostly urban, well-educated, tech-savvy

and male cohort (Lipsman, 2009), and the visual inspection of profiles in Section

4.3.3 partially confirmed this. On the other hand, it was also found that, in the

French-speaking part of Switzerland, users are often in their teens and appear to

be very prolific, which could be a reason for the Genève-Lausanne metropolitan

region being so highly overrepresented.

In summary, the willingness to geotag content or, possibly, to participate

on Twitter at all seems to vary from one type of region to another. This can

be explained through socio-demographic and thus spatial disparities, since that

motivation is certainly determined by someone’s social, cultural and economic

background (Section 2.1.3). With regards to the state of the art, it was confirmed

that authoritative, demographic data may be used as a framework for assessing

the properties of content producers, as it was done by L. Li et al. (2013) and Kent

and Capello (2013). However, as “participation inequality” (J. Nielsen, 2006;

Ochoa & Duval, 2008; Haklay, 2012) is now a proven fact for geotagged content,

too, the above presented approaches of aggregating mere content are subject to

severe bias caused by prolific users.

Although the claims of Crampton et al. (2013), saying that user-generated

data is produced by a wealthy, more educated, and more male demographic,

could not be directly replicated, it can certainly be stated that there are certain

tendencies in terms of the socio-economic and cultural background of users.

However, making statements about society may still be possible, as the vali-

dation of the inferred commuter balances showed (see next section).
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6.2.2. The Inference of Commuter Balances as a Use Case for VGI

RQ2 How do patterns of intra- and interregional mobility as inferred from Dvgi com-

pare to mobility quantifications found in Das?

The results of the comparison of individual districts show a moderately

strong and significant linear correlation with official data, but only if the sup-

port of VGI is high enough (r2 = 0.39 for districts with more than 10 residential

Twitter users, r2 = 0.62 for districts with more than 20 residential Twitter users).

In particular, the more Twitter users are found to reside in a district, the more the

commuter balance of this district is likely to be correlated with its authoritative

counterpart. This phenomenon can possibly be explained from two perspec-

tives. It may mean that the correlation is biased towards districts with a high

population count (as these intuitively have more users in Dvgi) and that it is

not existent in other districts, independent of the number of residential Twitter

users found in them. Or, it may mean that the correlation between Dvgi and Das

is valid for all districts, i.e., for the whole study area, but can only be detected

for districts with enough support.

Even though a definite answer can not be given to this question, the strength

of the correlation is still remarkable if one considers that the commuter balances

were extracted through a simple, unvalidated heuristic. This certainly shows

that working with episodic movement is indeed possible (N. Andrienko et al.,

2012), but more research is needed in terms of how the ultimate results of such

methods can be validated. Moreover, it has to be recounted that the demograph-

ics of Twitter are shifted towards a younger cohort than that of the majority of

the working population in Switzerland (Section 3.3.1 and 4.3.3). If authoritative

commuter balances were available exclusively for people aged 20–40, one could

investigate whether the correlation would be even stronger. However, one can

not directly derive actual commuter balances from those found in Dvgi, because

those are generally less strongly pronounced than the authoritative balances and

sometimes have the wrong algebraic sign. Thus, in order to estimate actual bal-

ances from those seen in Dvgi, a linear model could be learned from the data.

By doing so, one could — with the given data — vaguely estimate the actual

commuter balances of about 40, densely populated districts. It was also shown

that, when districts are aggregated to cantons, the approximate balance and the

rank of most cantons can be estimated, although here, too, cantons with a low

support in Dvgi should be excluded from the estimation.

A closer look at the biggest agglomerations showed that, while balances

are generally in accordance with those found in Das, staying commuters are
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strongly overrepresented. It is assumed that this is due to the way the heuris-

tic for the extraction of semantic places was implemented. Namely, the actual

residential municipality was often also declared as first or second occupational

municipality, even though the user does not have an occupation there. This may

happen because people stay at home during occupational time, for instance be-

cause they are on sick leave or have holidays, or, for instance, because people

return early from work and post Tweets which are then still classified as having

been sent during occupational time. Either way, it would require a more so-

phisticated extraction algorithm to account for such cases. Not only are staying

commuters overrepresented, incoming and outgoing commuters are underrep-

resented when compared to the number of residential Twitter users, ni. Since

ni is used as the denominator for computing balances, its relative overestima-

tion explains the generally smaller range of commuter balances as compared to

official figures. To compensate for this, one could either equally increase the

number of both incoming and outgoing commuters or decrease the number of

residential Twitter users per district. In doing so, the resulting commuter bal-

ances would be stretched and thus be closer to authoritative figures, although

the strength of the correlation would not change.

In literature, attempts to use egocentric, geosocial VGI to quantify human

mobility are still very sparse, and their results are rarely evaluated with an au-

thoritative benchmark (Girardin et al., 2008; Ferrari et al., 2011; Aubrecht et al.,

2011). The results obtained here clearly show that an evaluation with the help

of official sources is indeed possible. In this vein, the findings gained here are a

step towards a better understanding of the merits and pitfalls of VGI from social

media, as requested by Purves (2011) as well as Sui and Goodchild (2011).

RQ3 How does spatial and socio-demographic representativeness as measured in RQ1

influence the results of RQ2?

While the first two research questions can mostly be answered with the ob-

tained results, the third would require another analysis if taken literally. In order

to measure whether equally represented spatial regions actually led to an even

stronger correlation between Dvgi and Das in terms of commuter balances, one

would have to construct a model that corrects for unequal representation. Such

a model would be quite complex, since various dimensions of representative-

ness would have to be incorporated. Another approach would be to compare

commuter balances separately for different spatial divisions, e.g., it could be an-

alyzed whether urban districts are more strongly correlated with official data
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than rural districts. Since the data are already too sparse to compare districts

globally, however, such an endeavor would need considerably more data.

The direct influence of the unequal regional representativeness on the ex-

tracted commuter balances is thus difficult to grasp, however, evidence thereof

could still be detected. For example, in Figure 5.28 it could be seen that the ag-

glomeration of Genève has an unnaturally high number of staying commuters,

a fact which can definitely be attributed to the general strong overrepresentation

of this region. Secondly, the comparison of commuter flows between and within

urban and rural areas showed that flows originating or ending in core cities are

overrepresented, while such originating and ending in rural areas are under-

represented. The reason for this might quite possibly be the generally unequal

representation of these types of settlements.

In conclusion, it can probably be assumed that the unequal representa-

tion of different types of regions influences the correct inference of commuter

balances in some way. However, restrictions of the available data, both qualita-

tively and quantitatively, render such an analysis very difficult. A higher prior-

ity, anyway, should be to have a more definite answer on RQ2 before starting to

inquire RQ3.

109





7. Conclusion

This work set out to explore how georeferenced data in the form of egocen-

tric, geosocial VGI can be used to complement or even replace authoritative

data. The study of human mobility, in this case expressed through commuter

balances, is an interesting and promising application for such analyses. While

the research community has been very enthusiastic about exploring use cases

for VGI, studies often take such data “as is” and do not question it with re-

gards to representativeness. Even more importantly, most, if not all, studies that

were reviewed in this thesis focus on the geotagged content itself but ignore

the producers of the content, whose power to bias the results of any analysis is

often underestimated. The motivation behind this thesis was thus not to pro-

mote yet another way of merely aggregating chunks of geotagged content, but

to thoroughly investigate the properties, limitations, and pitfalls of such data as

a potential source of input to geographical analyses.

7.1. Achievements

The following list gives a detailed overview of what was achieved in this work:

• An extensive literature review was conducted in order to identify the short-

comings of studies working with egocentric, geosocial VGI, and the main

research gaps were outlined.

• Through a simple, yet effective data collection procedure, almost 25,000

(geo-)active Twitter users and over 12 million geotagged Tweets were gath-

ered over the course of a year. To the author’s knowledge, only very few

studies in this field of research exist which continuously tracked producers

of VGI over such an extended timespan and gathered so much individu-

ally referenceable data.

• A detailed exploratory analysis was conducted to investigate the prop-

erties of the collected data, and particularly, of the tracked users. In or-
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der to assure that these users were indeed humans and originated from

the study area, desirability criteria were formulated and operationalized

through spatial and temporal indicator variables.

• The desirability criteria were together used as rules to detect and dis-

card undesirable users. The visual inspection of a representative sample

showed that the remaining users conformed with the formulated criteria.

• The participation inequality phenomenon commonly found in social me-

dia could be confirmed for geotagged content on Twitter.

• Based on a visual inspection, it was confirmed that a specific spatiotempo-

ral pattern can be found in the Tweet history of most users. With the help

of the concept of information entropy, it was also shown that the large ma-

jority of users visits the same few places with high regularity.

• This thesis is among the first studies to make inferences from individual

producers of content and not from the apparently biased content itself.

Namely, through a rule-based heuristic, residential and occupational mu-

nicipalities of each user were detected and extracted.

• Having obtained residential municipalities of Twitter users allowed to com-

pare the data with official population data, both on the individual munic-

ipal level and aggregated according to geodemographic divisions. The

latter was used to assess which regions are over- and underrepresented

among geoactive Twitter users. To the author’s knowledge, this is the first

study to look at small-scale regional representativeness of geosocial, ego-

centric VGI.

• Knowledge about residential and occupational municipalities was used

to compute commuter balances, which were compared with authoritative

data, both on the individual district level and in aggregated form. The

results confirmed that commuter balances, as a use case for the study of

human mobility, can be extracted from VGI in a format so that they can

be compared with authoritative data. To the author’s knowledge, such a

thorough, quantitative evaluation of an analysis done with VGI has not

been conducted before.
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7.2. Insights

Twitter as a provider of egocentric, geosocial VGI is a complex source of data

associated with many uncertainties. For instance, the data is likely to be biased

towards very prolific users, and the envisaged origin and authenticity of content

producers cannot be taken for granted, as it can be in traditional surveys. In this

vein, it was shown that the localization of users through geotagged Tweets is

only possible if a lot of information has been gathered — merely searching for

Tweets posted within a specified area does not automatically return users who

also dwell in this area. In order to derive meaningful insights from egocentric,

geosocial VGI, the data must thus be carefully preprocessed, which is likely to

result in the retention of only a small fraction of what was initially gathered. As

geotagging is still not very popular amongst users of social media, most, if not

all, analyses seeking to make inferences from it are thus prone to data sparsity,

even though the enthusiastic research community often claims the opposite.

Another problem associated with egocentric, geosocial VGI is representa-

tiveness. While it is quite intuitive that demographic, e.g., age-related, represen-

tativeness is not given, this thesis has shown that, also in terms of geographical

regions, the population is highly unequally represented. Even for a relatively

small, densely populated country like Switzerland, it must be assumed that peo-

ple living in different geodemographic regions are not equally willing to geotag

content, or to produce content at all. Certainly, it has to be admitted that the

overrepresentation of urban areas, especially of center cities, is not so much of a

surprise. The fact that there are stark differences in terms of linguistic and thus,

to a certain degree, cultural representation, is quite striking, however. Moreover,

the analyzed data indicates that in different linguistic regions, VGI is produced

by different socio-demographic groups. This implies that, depending of how

the data is preprocessed and filtered, different socio-demographic groups may

be more or less prominently represented. This may also have biased the analy-

sis conducted here, but must be accepted as an inevitable characteristic of such

data. Hereby it should also be noted that the findings in terms of representative-

ness may or may not be generalized to Twitter users in general, as only geoactive

users were the subject of this study. It is quite possible that geotagging is an even

more unequally represented phenomenon than general Twitter usage, especially

in terms of cultural differences.

While the finding that different regions and socio-demographic cohorts

are unequally represented most certainly holds true in the rest of the world,

it should be noted that these imbalances probably differ from place to place.
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For instance, while in Switzerland, large centers are grossly overrepresented,

this may not be the case in the United States, where Twitter is generally more

popular. A major insight of this work is therefore that Twitter and likely any

other provider of egocentric, geosocial VGI, is used in a different fashion and

by different socio-demographic groups in different geographical spaces. Every

geographical analysis should thus start with a thorough assessment of small-

scale representativeness and incorporate these findings into the interpretation

of the obtained results.

The second major insight of this thesis is that, if high-quality authorita-

tive data are available, they can and should be used to validate inferences made

from VGI. In this case, they were used to show that, in theory, reasonable indica-

tors for human mobility can be inferred from Twitter data, even though spatial

and socio-demographic representativeness can not be assumed. For some use

cases, such as the inference of commuter balances, one may not even need socio-

demographically representative data to gain a coarse impression of reality, and

certain dimensions of representativeness might be more important than others.

However, as the inferred results cannot be used to directly replace authoritative

data — at least not at this stage— the value of VGI for such analyses should not

be overestimated. The main problem appears to be data sparsity, and it might

be possible that, with more data, significant correlations could have been found

for the whole study area. More importantly, more data would allow to better in-

vestigate the influence of unequally represented regions on the outcome of the

comparison.

In conclusion, while egocentric, geosocial VGI seems to be an interesting

data source for all kinds of geographical analyses, it needs to be treated with

a lot of care when representative conclusions are to be drawn. Even when au-

thoritative data are available as reference, analyses are likely to suffer from data

sparsity and uncertainties which can not ultimately be avoided but must be han-

dled with appropriate measures.

7.3. Future Work

Possible future research can be divided into three main categories. First of all,

more research is needed to address the questions that could not be answered

in this thesis. For instance, in order to better understand regionally different

usage contexts and motivations for geotagging, one could take regional sam-

ples — made possible through the inference of residential municipalities — and

try to infer more information about socio-demographic properties, e.g., through
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inspection of Twitter profiles or through (semi-)automatic analysis of textual

Tweet content. In general, it should be more deeply investigated how exactly

spatial and socio-demographic representativeness influences results of (geograph-

ical) analyses. At the same time, other applications than the study of human

mobility should be considered, too.

Secondly, it should be assessed whether the results obtained here can be

reproduced in other usage contexts, i.e., in other regions and with other sources

of VGI. Most importantly, it should be tried to run the same or a slightly differ-

ent analysis with a higher support of data, e.g., through more sophisticated data

collection methods or by looking at a region or country where Twitter is more

popular. It could also be tried to enhance the Twitter data with such from other

social networks such as Facebook or Foursquare, although this would likely

complicate the analysis.

Lastly, episodic movement data, towards which egocentric, geosocial VGI

can be counted, are associated with a range of additional uncertainties that

greatly limit the possibilities of certain types of analysis. More research is thus

also needed in terms of new, privacy-preserving techniques for analyzing such

data, so that future studies can resort to established methods. On the other hand,

it should have become clear by now that analyzing VGI from sources such as

Twitter always requires highly specialized procedures, and that the results of

such analyses are thus difficult to compare with each other. The establishment of

generalizable research frameworks and “best practices” for working with such

data would therefore certainly benefit further endeavors.
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A. Code

As can be seen, in this case, the JSON response consists of structured and hierar-

chical information about each Tweet (from line 43), including the time when the

Tweet was sent in UTC (field “created_at” on line 45), and information about the

user (line 56–61).

Listing A.1: An example GET request to the Twitter REST API, requesting the most recent Tweet of Justin

Bieber (Retweets excluded).

1 GET /1.1/ statuses/user_timeline.json?count =1& include_rts=false&

screen_name=justinbieber HTTP /1.1

2 X-HostCommonName:

3 api.twitter.com

4 Authorization:

5 OAuth oauth_consumer_key ="..." , oauth_signature_method ="HMAC -

SHA1",oauth_timestamp ="1374664745" , oauth_nonce

="1635874679" , oauth_version ="1.0" , oauth_token ="..." ,

oauth_signature =" q8kravuAKfKEZXMKtY2Q \%2 Bsxdgew \%3D\"

6 Host:

7 api.twitter.com

8 X-Target -URI:

9 https ://api.twitter.com

10 Connection:

11 Keep -Alive

Listing A.2: The REST API response to the above GET request.

1 HTTP /1.1 200 OK

2

3 content -type:

4 application/json;charset=utf -8

5 x-frame -options:

6 SAMEORIGIN

7 x-rate -limit -remaining:

8 177

9 last -modified:

10 Wed , 24 Jul 2013 11:25:53 GMT

11 status:

12 200 OK
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13 date:

14 Wed , 24 Jul 2013 11:25:53 GMT

15 x-transaction:

16 d363cce1f87c5964

17 pragma:

18 no-cache

19 cache -control:

20 no-cache , no-store , must -revalidate , pre -check=0, post -check=0

21 x-xss -protection:

22 1; mode=block

23 x-rate -limit -limit:

24 180

25 expires:

26 Tue , 31 Mar 1981 05:00:00 GMT

27 set -cookie:

28 lang=en

29 set -cookie:

30 guest_id=v1%3 A137466515325033936; Domain =. twitter.com; Path =/;

Expires=Fri , 24-Jul -2015 11:25:53 UTC

31 content -length:

32 2635

33 x-rate -limit -reset:

34 1374665645

35 server:

36 tfe

37 strict -transport -security:

38 max -age =631138519

39 x-access -level:

40 read -write -directmessages

41

42

43 [

44 {

45 "created_at ": "Tue Jul 23 21:16:05 +0000 2013",

46 "id": 359784004611870700 ,

47 "id_str ": "359784004611870723" ,

48 "text": "@YeshuaTheGudwin we just work hard. making music.

being creative. #art",

49 "source ": "web",

50 "truncated ": false ,

51 "in_reply_to_status_id ": 359768073793830900 ,

52 "in_reply_to_status_id_str ": "359768073793830912" ,

53 "in_reply_to_user_id ": 241760469 ,

54 "in_reply_to_user_id_str ": "241760469" ,

55 "in_reply_to_screen_name ": "YeshuaTheGudwin",

56 "user": {
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57 "id": 27260086 ,

58 "id_str ": "27260086" ,

59 "name": "Justin Bieber",

60 ...

61 },

62 "geo": null ,

63 "coordinates ": null ,

64 "place": null ,

65 "contributors ": null ,

66 "retweet_count ": 21629,

67 "favorite_count ": 15789,

68 "entities ": {

69 "hashtags ": [

70 ...

71 ],

72 "symbols ": [],

73 "urls": [],

74 "user_mentions ": [

75 ...

76 ]

77 },

78 "favorited ": false ,

79 "retweeted ": false ,

80 "lang": "en"

81 }

82 ]
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B. Software

Software Description, area of application

R 2.15.3 An open source programming language and software environment

for statistical analysis and visualization (http://r-project.org); used

here primarily for exploratory data analysis

Quantum GIS 1.8.0 An open source GIS with a wide array of functionality for spatial

analysis and geovisualization; used here primarily for validating re-

sults of the various data processing steps and for geovisualization

(http://qgis.org)

SQLite 3.7.10 A DBMS for managing simple, lightweight, and file-based databases

(http://sqlite.org); used here for the storage of “raw” geographical

information

SpatiaLite 3.0.1 A spatial extension to SQLite, implements standards of the OGC and

provides advanced spatial operations, data structures, and projec-

tions; used here for the storage and spatial analysis of “standardized”

geographical information (http://www.gaia-gis.it/gaia-sins)

Weka 3.7.10 A data mining and machine learning toolkit with a graphical user in-

terface

Eclipse “Juno” with

PyDev 2.7.0

An open source Integrated Development Environment for executing

and debugging Python scripts

Python 2.7.4 The actual Python interpreter (http://python.org)

rpy2 2.3.6 Python wrapper for the R package, allows inclusion of R code in

Python scripts

numpy 1.5.1 Python package for mathematics and statistics

sqlite3 2.6.0 Python interface to the SQLite 3 DBMS

pyspatialite 2.3.1 Python interface to the SQLite 3 and SpatiaLite DBMS

fiona 0.10 Python package for reading from and writing to shapefiles; used here

for scripted imports of shapefiles into the database

Table B.1: Used soft-

ware and database sys-

tems.
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C. Additional Temporal Patterns
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Figure C.1: Hourly

volume of events

(whole study area)

(N=1,913,512 events).

Error bars signify 95%-

confidence intervals.
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Figure C.2: Hourly

volume of events

grouped by linguistic

region (N=1,913,512

events). Error bars

signify 95%-confidence

intervals.
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Figure C.3: Hourly vol-

ume of events grouped by

urban and rural munic-

ipalities (N=1,913,512

events). Error bars

signify 95%-confidence

intervals.
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Figure C.4: Daily

volume of distinct

objects (whole study

area) (N=1,913,512

events). Error bars

signify 95%-confidence

intervals.
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D. Confidence Intervals of Authoritative

Commuter Balance Estimations

141



Chapter D | Confidence Intervals of Authoritative Commuter Balance Estimations

Figure D.1: Relative

share of two-sided 95%-

confidence intervals of

estimated values for

commuter balances per

district (authoritative

data). ni for the mobile

working population

(a), outi for the mobile

working population

(b), ini for the mobile

working population (c)

and ni for the mobile

population in education

(d).
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E. Metropolitan Regions of Switzerland
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Chapter E |Metropolitan Regions of Switzerland

Figure E.1: The five

metropolitan regions

of Switzerland, 2000,

denoted in turquoise.

Source: FSO.
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F. Results Obtained Through Other

Extraction Scenarios
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Figure F.1:

Relationship be-

tween actual population

aged 15–64 and residen-

tial Twitter users per

municipality as inferred

through scenario C.

Only municipalities

with at least one resi-

dential Twitter user are

included (N=430 mu-

nicipalities, N=1,645

objects). Axes show the

logarithm to the base

of 10. Compare with

Figure 5.10.
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Figure F.2: Expected

and observed number

of residential Twitter

users grouped by lin-

guistic regions (a) and

metropolitan regions

(b) as inferred trough

scenario C (N=1,645

objects). Compare with

Figure 5.14 and Figure

5.16, respectively.
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Figure F.3: Distribution

of cbi for Twitter data (a)

and comparison of cbi be-

tween authoritative and

Twitter data (b) as in-

ferred through scenario

B. Compare with Figure

5.22a and Figure 5.24b,

respectively.
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