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Abstract

Remote sensing is an important instrument in land cover classification and precision
agriculture. The considerable progresses in imaging spectroscopy during the past years
now allow spectral mixture analysis at the subpixel level. This enables to determine the
adequate distribution of different crop types in a single field.

A main problem in mixture analysis is the spectral and spatial variation of vegetation
signatures. This fact is often neglected in conventional approaches based on linear
spectral analysis. To account for the spatial relationship, a new method is proposed
that uses the variogram and determines the abundances based on Bayes’ theorem. The
method is applied on a reduced imaging spectroscopy data set acquired by the airborne
prism experiment (APEX) instrument on May 14th, 2013. A agricultural test site of
10 km? near Lyss (BE) in the Swiss midlands is used to determine the abundances of
ten crop types and to calculate a classification based on the highest abundances. The
classification of the proposed method reaches an overall accuracy of 54.45% and a kappa
coefficient of 0.08.

The results are compared to a conventional approach based on pixel purity index
derived endmembers and linear spectral unmixing. The conventional approach reaches
an overall accuracy of 23.4% for the classification with the highest abundances. There is
a mean R? of 0.045 for the abundances of the crop types between the proposed method
and conventional approach.

There are several reasons for these low values with the new method and the conven-
tional approach of the accuracy indicators. First of all, it is difficult to differentiate
agricultural plants in this early stage of development. Furthermore, the results of the
conventional approach have restricted validity, since there are linear dependencies for
endmembers and therefore no unique linear spectral unmixing is possible. The pro-
posed method calculates small abundances for the majority of the pixels for each of the
ten crop types. Consequently it is more appropriate to use this method to express a
membership of crop type at a pixel level rather than to calculate exact fractions at the
pixel area.
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Zusammenfassung

Fernerkundung ist ein wichtiges Instrument fiir Landnutzungsklassifikationen und /oder
Precision Farming. In den vergangenen Jahrzehnten wurden betréchtliche Fortschritte
im Bereich der abbildenden Spektroskopie gemacht, die es ermoglichen, die spektrale
Mischung im Subpixelbereich zu analysieren. Dies erlaubt die addquate Verteilung von
verschiedenen Feldfriichten in einem Feld zu bestimmen.

Ein Hauptproblem in der Analyse von gemischten Pixeln ist die spektrale und rdumli-
che Variabilitdt von Pflanzensignaturen. Diese Tatsache wird in den herkémmlichen, auf
linearen Spektralanalysen basierenden Ansitzen oft vernachlissigt. Um die rdumlichen
Zusammenhéngen zu beriicksichtigen, wird eine neue Methode vorgeschlagen, welche
mittels Variogramberechnungen und basierend auf dem Theorem von Bayes die Anteile
eines Feldtyps in einem Pixel ermittelt. Die Methode wird auf reduzierte abbildende
Spektroskopiedaten, die vom «airborne prism experiment» (APEX) Instrument am 14.
May 2013 aufgenommen wurden, angewendet. Im 10 km? grossen Testgebiet in der Nihe
von Lyss (BE) im schweizerischen Mittelland werden die Anteile von zehn verschiedenen
Feldfriichten bestimmt und anhand der héchsten Anteile an einem Pixel klassiert. Mit
der vorgeschlagenen Methode wird eine Gesamtgenauigkeit von 54.45% und ein Kappa
Koeffizient von 0.08 erreicht.

Die Resultate werden mit einem herkdmmlichen Ansatz verglichen, der die Pixelsigna-
turen mittels «pixel purity index» bestimmter «endmember» linear entmischt. Dieser
Ansatz erreicht eine Gesamtgenauigkeit von 23.4% fiir die Klassifikation der hichsten
Anteile. Der durchschnittliche R?-Wert zwischen der vorgeschlagenen Methode und dem
herkémmlichen Ansatz fiir die zehn Feldtypen betriagt 0.045.

Es gibt verschiedene Griinde fiir die tiefen Genauigkeitsindikatoren der vorgeschla-
genen Methode und dem herkdmmlichen Ansatz. Zuerst muss erwihnt werden, dass
eine Unterscheidung von Feldfriichten in diesem frithen Entwicklungsstadium schwierig
ist. Ausserdem haben die Resultate des herkémmlichen Ansatzes nur beschrinkte Giil-
tigkeit, da die «endmembery» linear abhingig sind und daher keine eindeutige lineare
Entmischung méglich ist. Die vorgeschlagene Methode berechnet fiir die Mehrheit der
Pixel kleine Anteile fiir alle zehn Feldtypen. Folglich ist es eher angemessen, die Re-
sultate als Zugehorigkeit zu einem Pixel aufzufassen denn als exakte Flichenanteile an
einem Pixel.
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1. Introduction

1.1. Motivation

Remote sensing is an important tool in land cover or land use classification and in
precision agriculture (Villa et al., 2011). Information on agricultural land use is often
available only on administrative units or statistics on regional or national scales (De
Wit and Clevers, 2004). However, there are many agro-environmental applications that
need information on the field level, i.e. assessment of flood damage or water quality
(Foerster et al., 2012). Remote sensing data are further relevant in precision farming
(Mulla, 2013), an important step forward in agricultural controlling and monitoring
(Crookston, 2006).

Multispectral satellite imagery has been used for land use classifications since the
1970s. In Midwestern US agricultural landscapes have been classified in corn and soy-
bean fields with an overall accuracy (OA) of 83% (Bauer and Cipra, 1973). With several
data sets from various recording times cereal crops, field crops, grassland and forest land
have been classified with an OA of 88% in East Anglia, UK (Jewell, 1989) and rice and
potato cropping systems with an OA of 95% in India (Panigrahy and Chakraborty,
1998).

Considerable progress has been made in imaging spectroscopy (IS) technology for
remote sensing applications in the last decades (Keshava and Mustard, 2002). A high
spatial and spectral resolution can be achieved at the same data acquisition (Bioucas-
Dias et al., 2013; Keshava and Mustard, 2002). IS data sets have the advantage that it
contain information on the fractional composition of a single pixel, whereas multispectral
data can be used for classification of the whole pixel. Information of an image is
spectrally smooth, i.e. there is a high correlation between neighboring spectral bands,
and they are spatially piecewise smooth (Bioucas-Dias et al., 2013). Neighboring pixels
often have the same content until they capture another surface phenomenon. A good
example is grass, which is spectrally and spatially smooth (at the spatial resolution of
common airborne instruments). The content of a pixel changes only at the border to
a building (Figure 1.1). Nevertheless, a spatial pixel often represents a combination of
different land cover types (Villa et al., 2011).

To account for this fact, soft classification approaches are used: They do not assign
a single class to a pixel, but calculate the membership of a pixel to a class (Nachtegael
et al., 2007). This membership corresponds not necessarily to surface fractions only
(Villa et al., 2011). Linear spectral mixture analysis (SMA) addresses this problem:
Classes are called endmembers, the membership is called abundance. Only few and
clearly distinguishable classes like soil, grass and bedrock (Mustard, 1993) or green veg-
etation, shade and soil (Roberts et al., 1993) are typically used. Wang et al. (2007)
unmixed four highly mixed plant types and soil in salt marshes. SMA is used in agri-
culture for crop residue determination (Bannari et al., 2006; Pacheco and McNairn,
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Pure pixel:
100% grass

Mix ixel:
70% metal sheet
30% grass

Figure 1.1.: Mixture between different land cover types (Villa et al., 2011).

2010) or improved biophysical parameters estimation (Peddle and Smith, 2005). For
the validation of the results, they use R? or root-mean-square error (RMSE) between
unmixing results and ground truth.

A main problem of linear SMA is the spatial and spectral variation of an endmember
(Somers et al., 2011). The algorithms used for the works mentioned above do not entirely
use the spatial relation between the observed spectra and neglect the spectral variability
of an endmember. To get these two sources of information into the mixture model, a
variogram based method is proposed in this thesis. The mixture is then calculated
based on Bayes’ theorem.

1.2. Objectives and Outline

The underlying objective of this thesis is to answer the following main research question:

Is it possible to capture the endmember variation of crop plants in an early stage of
development for a mizture analysis by the proposed method?

In other words, the possibility to distinguish between different crop types in a data set
of an agricultural field scene will be analyzed. A single data set of May 2013 and ground
truth data of June 2013 are used. Since no additional data for validation is available, an
accuracy assessment with a hard classification will be done and the abundance results
will be compared to a linear spectral unmixing (LSU) with pixel purity index (PPI)
derived endmembers.

Derived from the main objective above, this thesis treats the following subordinate
research questions:

1. Are there spectral differences between crop plants in an early stage of develop-
ment?

2. Can the chosen proposed method explain the mixture in a pixel?
3. Is the proposed method more suitable for classification?

4. How does the proposed method perform compared to a conventional approach
based on PPI and LSU?



1.2. Objectives and Outline

This thesis is structured into six main chapters. After this introduction follows the
description of the study site in the second chapter. The methods used for the spectral
spatial approach and the PPI are described in the third chapter. The results of these
two methods are described and discussed in the fourth and fifth chapter. The synthesis
and an outlook are discussed in the final chapter.






2. Data

2.1. Test site

The test site is located near Lyss in the Bernese Lakeland in the Swiss midland (Figure
2.1a) at 585 267 to 587 795 N and 212 200 to 216 230 E (Swiss coordinate system,
CH1903) 460-477 m above sea level (a.s.l.). This agricultural area is split up in small
fields from 150 m? to 55000 m? and crossed by farm tracks and streets which connect
small surrounding towns (Figure 2.1b).

i
o

“‘
W
S

.

Figure 2.1.: (a) Location of the test site in Switzerland and APEX flight stripe (red
circle). (b) Subset of the test site over map. (Source: Bundesamt fiir
Landestopografie)

2.2. Imaging Spectrometer Data

IS data of the airborne prism experiment (APEX) instrument is used for this thesis,
recorded on May 14th 2013. The spectral range of the visible and near-infrared (VNIR)
and short-wavelength infrared (SWIR) detectors ranges from 375 to 2500 nm and offers
up to 532 spectrally continuous bands. The spectral bands have been resampled in
pre-processing to 299 channels. Ground pixel sizes of 1.5-2.5 m result at typical flight
altitudes of 3000-5000 m above ground with a field of view of 28° (Hueni et al., 2013).
The flying altitude of the data used in this thesis was 3500 m above ground with a
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resulting ground pixel size of 2 m after atmospheric and geometric (nearest neighbor)
correction.

Detailed ground truth was acquired in the test area on June 26th 2013. 299 agricul-
tural fields have been classified in 10 classes. All classes and the number of fields for
each class can be found in Table 2.1. A region of interest (ROI) was manually built for
each field to receive training and control data. The boundary pixels of each field and
disturbing objects such as power line or bare soil patches were excluded if possible to
avoid mixed pixels (Figure 2.2).

Due to the time gap between the APEX overflight and ground truth data acquisition,
not all the crop plants mapped on June 26th could be traced back to the May 14th
APEX scene. E.g. fields with corn in June have been planted on fields that were bare
soil or meadow in May. It appears that there are two different types of meadow fields,
probably perennials (Figure 2.3a) and annual (Figure 2.3b). The perennials have been
classified as meadow, the annuals as meadow young based on visual criteria. Most of the
meadow young fields had been planted with corn between May and June. Because there
is only one sugar pea field in the study site, this field is divided up in a two-third and
one-third part for training and control. Some misclassifications are possible, caused by
the time-lag. Two classes were defined for bare soil: Some bare soil fields in the scene are
obviously brighter than others, probably caused by a number of factors such as water
content, time of plowing or composition of organic material. Although the reason for
this difference is unclear, two classes (bare soil and bare soil bright) have been defined
due to optical appearance.

Table 2.1.: Crop types, their scientific name and corresponding number of training and
control fields

number of fields

crop type scientific name total training control
alfalfa Medicago sativa L. 3 2 1
bare soil - 56 38 18
bare soil bright - 20 33 17
meadow - 50 33 17
meadow young - 26 16 7
rapeseed Brassica napus L. 16 11 )
spring barley Hordeum vulgare L. 21 14 7
sugar pea Pisum sativum L. convar. axiphium Alef. 1 2/3 1/3
winter barley Hordeum vulgare L. 17 12 5
winter wheat Triticum L. 62 41 21

As the measurement and the ground truth did not take place on the same date, the
phenological stage of the plant can only be estimated. Spring 2013 was colder and
the vegetation was developing later than usual (MeteoSchweiz, 2013a). The warmest
temperatures were measured at the beginning of May. The middle third of May was
cool and had a low sunshine duration and on 21 May the winter returned. The very
cool and wet weather held up partially until 26 May. The vegetation development was
locally different and varied depending on plant type plus or minus one week to the
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meadow young
rapeseed
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1 2km

Figure 2.2.: Ground truth and infrastructure on true color image of the APEX scene.

average of 1980 to 2010. Due to the fact that May was comparably cold and wet, the
vegetation in the lowlands showed a rather late development (MeteoSchweiz, 2013b).

For the description of the growth stage of crops and weed the «Biologische Bunde-
sanstalt, Bundessortenamt und Chemische Industries (BBCH) scale (Lancashire et al.,
1991) can be used. This is used in a remote sensing topic for example by Torres-Sanchez
et al. (2014). The best information about the phenological stage can be found for rape-
seed, which is mostly in a stage of flowering (stage 6). However, there are still some
green parts which are inflorescence emergence (stage 5) in the classification of BBCH
(Figure 2.4). For other crop types, a classification was not possible afterward. It seems
that the fields were sometimes very wet and some winter barley and wheat fields were
partially sown in another time (Figure 2.5).

In this early stage of the plant growth, the different types are spectrally very similar.
This could already be seen in the mean spectra of the different crop types (Figure 2.6a).
For improved comparability, the continuum removed values are calculated (Clark and
Roush, 1984). The similarity of the spectra of bare soil, bare soil bright and sugar pea
is already noticeable in the mean spectra and clearly in the continuum removed spectra
(Figure 2.6b). The signature of these curves is partially congruent. Only sugar pea has
some bigger differences in the blue and red part of the spectrum. It seems that the
sugar pea cover is very small in May and most of the reflectance originates from the
ground. The signatures of the other crop types show the typical vegetation signature.
The three crop types and two meadow types have a similar spectral signature. Only
meadow young and rapeseed could be distinguished from the other vegetation spectra
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(a) )

Figure 2.3.: Pictures of the two meadow types meadow (perennials meadow) (a) and
meadow young (annual meadow) (b) (recording from June 26th, 2013).

Figure 2.4.: Rapeseed field in BBCH stage 5 (green) and 6 (yellow) at acquisition on
May 14th, 2013. The black polygon marks the ROI which is divided into
two parts by the exclusion of the power line. The field is locatet in the
north of the test site at (585 970/216 000).

in the green part of the spectrum.
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2.2. Imaging Spectrometer Data

Figure 2.5.: A spring wheat stripe that is sown later in a winter wheat field (recording
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Figure 2.6.: Mean spectra of the ROIs of each crop type (a) and continuum removed

mean spectra (b).
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3. Methods

This chapter is structured into two parts. The theoretical background is explained first,
the proposed method and the conventional approach based on PPI and LSU is presented
in the second part.

3.1. Theoretical Background

3.1.1. Spectral Mixture Analysis

Mixed pixels always occur in remote sensing data sets, as mentioned in the introduc-
tion. There are two reasons for mixed pixels: the spatial resolution of the sensor is
not high enough or the land cover consists of a homogeneous (intimate) mixture of
different materials (Keshava and Mustard, 2002). The former is caused by the given
sensor resolution and the flying altitude of the sensor system over ground. The latter is
independent of sensor parameters and caused by light interacts with multiple materials
(Plaza et al., 2004).

Spectral unmixing is a process of splitting the spectrum of a mixed pixel into its
constituent spectra or spectral signatures, called endmembers (Keshava and Mustard,
2002; Bioucas-Dias et al., 2012). Each endmember has its own fraction or abundance,
describing its percentage within the respective pixel. An endmember represents the
pure material which occurs in the data set such as soil, vegetation or forest. Spectral
unmixing is an inverse problem which is ill-posed when not all endmembers are known
(Bioucas-Dias et al., 2012).

The main problem of the definitions of endmember and abundance is the ambiguity
of a pure endmember (Bioucas-Dias et al., 2012). It is a question of the objectives of an
application. For example, if simple discrimination between vegetation, soil and water
is necessary, the whole vegetation can be treated as a single endmember. Vegetation
however consists not only of one ingredient. It is a community of diverse plants such as
trees and herbage. One can further differentiate between families, subfamilies and so
on. Another differentiation into leafs, trunk, flowers, and so on is possible. On the other
hand, the meaning of abundances is also ambiguous (Bioucas-Dias et al., 2012). The
assumption that the abundance corresponds to the area covered by an endmember in a
pixel holds true only in the linear case. For nonlinear settings, laboratory experiments
have shown that it is not necessary true (Bioucas-Dias et al., 2012). The percentage of
the reflectance is no longer a linear function of the area involved, but rather a volume of
an object or a small, highly reflective object can dominate a dark object in a reflected
spectrum of a pixel.

As mentioned above, there are two kinds of mixture: linear or nonlinear (Figure 3.1).
Linear mixture occurs in checkerboard scenes where the endmembers occur in spatially
separated patterns (Keshava and Mustard, 2002). Hence there is no interaction between
endmembers and only one material interacts with the incoming light. The linear mixing
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3. Methods

is therefore on a macroscopic scale and is a consequence of the large spatial resolution
(Keshava and Mustard, 2002; Bioucas-Dias et al., 2013). The mixture happens therefore
in the sensor itself (Bioucas-Dias et al., 2012).

Figure 3.1.: Hlustration of the two basic kinds of mixture: linear mixing of a checker-
board surface (a) and nonlinear mixing of multiple scattering (b) (Keshava
and Mustard, 2002).

The other kind of mixture model is nonlinear and a physical consequence of the
interaction between two (or more) endmembers. There are two types of nonlinear
mixture (Figure 3.2). In the first type, the mixture occurs at a microscopic or intimate
scale (Figure 3.2a), in which photons are emitted by a molecule of one substance, and are
absorbed by another and vice versa (Bioucas-Dias et al., 2012; Keshava and Mustard,
2002). In the second type, the mixture can occur by multiple scattering between two
or more layers (Figure 3.2b). This is typically the case in vegetation scenes where the
incoming light is reflected by ground to canopy, canopy to ground, canopy to canopy,
etc. and in the end to the sensor. It is easy to imagine that there are a lot of possible
reflections, especially for more than two layers, i.e. at leaf level. Both nonlinear mixture
processes occur outside the sensor in contrast to the linear case (Bioucas-Dias et al.,
2013).

3.1.2. Linear Mixing Model

Due to its simplicity, the linear mixing model (LMM) has been frequently used in the
last decades. Two further reasons are the acceptable approximation and the fact that
it is a well-posed inverse problem under suitable conditions (Bioucas-Dias et al., 2013).
The inversion of a LMM is called LSU and is used in the conventional approach. The
measured vector is y := [y1,...,ys]T where y; is the data value in band i and n is the
number of bands in the data cube. The resulting vector can be expressed as a linear
combination of endmembers m;:

P
Y= Zaimi (3.1)
i=1
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3.1. Theoretical Background

00T mEE e

(a) (b)

Figure 3.2.: Illustration of the two kinds of nonlinear mixture: intimate mixture (a) and
multilayer mixture (b), here two layer of canopies and ground (Bioucas-Dias
et al., 2012)

where «; is the abundance of the endmember m; with p endmembers (Adams et al.,
1986). A visual illustration with three endmembers can be found in Figure 3.3.

There are two physically based constraints for the abundances «; (Somers et al.,
2011). Due to the fact that an endmember m; can occur or not, negative values for
the corresponding fraction «; make no sense. This is the abundance nonnegativity
constraint (ANC)

for i = 1,...,p. The second constraint, the full additive condition or abundance sum-
to-one constraint (ASC), proposes that the whole pixel value can be explained by end-
members and therefore holds

D ai=1 (3.3)

Due to the fact that there is some variability in the spectra of an endmember, especially
in vegetation scenes, the ASC can rarely be fulfilled in real applications. Given that «;
is positive (ANC holds), the ASC can be fulfilled with a simple rescaling (Bioucas-Dias
et al., 2013).

For model mismatches or additive noise, an additive vector w can be added to (3.1)
and the equation can be written as

y=Ma+w (3.4)
where M := [m1,...,mp] is the mixing matrix and o := [ov,. .., ap]Tis the abundance
vector. The observed spectral vectors y can be considered as points in a n-dimensional

space. This point cloud can be enveloped by a convex hull C' = conv{M}, the so called
simplex (Figure 3.4) (Nascimento and Bioucas-Dias, 2005).
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Figure 3.3.: Measured pixel value y as linear mixture of three endmembers (Bioucas-
Dias and Plaza, 2010).

ms C' = conv{M}
Simplex

Figure 3.4.: Two dimensional simplex for three endmembers. The green points symbol-
ize observed vectors. Red points symbolize the vertex and correspond in
this case to endmembers (Bioucas-Dias and Plaza, 2010).

3.1.3. Unmixing imaging spectroscopy data

The processing chain for an unmixing task contains several steps (Figure 3.5). In a first
step, the radiance data from the IS data sensor have to be adjusted atmospherically and,
if needed, geometrically. The atmospheric correction removes scattering effects of the
atmosphere (Bioucas-Dias and Plaza, 2010). The resulting reflectance values describe
inherent properties of the surface and are independent of illumination characteristics
(Bioucas-Dias and Plaza, 2010). The LMM can be applied with radiance data as well
(Keshava and Mustard, 2002). A geometric correction is required if a comparison with
independent geo-located data like a ground truth is part of the application. Since large
parts of the information in reflectance (or radiance) data are redundant, a dimension
reduction decreases the computational effort (Bioucas-Dias and Plaza, 2010). This is
again not a necessary step for an unmixing task. In a last step the unmixing itself can be
realized. This can be done by endmember determination and the inversion of the LMM,
sparse coding (Olshausen and Field, 1996) or sparse regression (Iordache et al., 2011).
An inversion has the ambition to minimize the error term (Van der Meer, 1999). The
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3.1. Theoretical Background

main problem of the inversion algorithms is to fulfill the ASC and ANC. The majority
of the algorithms try to minimize the least squared error (Keshava and Mustard, 2002).
The error image explains parts of missing or incorrect endmembers.

Radiance Reflectance Reduced
Data cube Data cube Data cube
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& Atmospheric T
7 o A 4 : o A {J
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End ber Signat X1

y ndmember Signatures ( Unm1x1ng \
Endmember

=|| )

Determination

Reflectance
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Figure 3.5.: Processing chain of unmixing for IS data (Bioucas-Dias and Plaza, 2010).

Wavelength

3.1.3.1. Dimension reduction

The objective of the dimension reduction is the generation of a data set without redun-
dant information. This decreases the computation time and complexity and increase the
signal-to-noise-ratio (SNR) (Bioucas-Dias and Plaza, 2010). Minimized storage space
is an appreciated side effect. A first step is the selection of bands. This allows to use
a subset of original data with the advantage of preserving original information (Chang
and Wang, 2006).

Several algorithms exist that search for new projections to reduce the dimensions in a
data space. Principal component analysis (PCA) searches for new orthogonal axis in the
data space with maximum variance. This is achieved by an eigendecomposition (Jolliffe,
2005). The minimum noise fraction (MNF) transformation works similar to the PCA|
but takes also the SNR into account (Green et al., 1988). The MNF is a mathematical
equivalent with the noise adjusted principle components (NAPC) (Lee et al., 1990).
PCA is the best algorithm in least square sense for the data and MNF /NAPC is optimal
for the ratio of noise power to signal power (Bioucas-Dias and Plaza, 2010). In addition
to these two frequently used concepts, there exists a third one based on singular value
decomposition (SVD) (Scharf, 1991), which completes the collection with the most
efficient algorithm in maximum power sense (Bioucas-Dias and Plaza, 2010).
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3.1.3.2. Endmember Selection

Endmember selection can be divided into three types of methods: pure pixel based,
non-pure pixel based, and statistical algorithms (Bioucas-Dias et al., 2013). Pure pixel
based algorithms assume that at least one pure pixel per endmember can be found in
the data. An endmember corresponds then to a vertex of the simplex (Figure 3.4). This
is a strong constraint that is not fulfilled for many data sets. PPI (Boardman, 1993)
or N-FINDER (Winter, 1999) are two representatives of this group. If there are no
pure pixels in the data a minimum volume (MV) approach can be chosen. With such
an algorithm endmembers are constructed spanning a MV around the data simplex.
The vertex of this volume is chosen as endmember (Craig, 1994). Highly mixed data
sets do not contain pure pixels and the MV approach fails as well. However, statistical
algorithms can deal with this problem. These algorithms are usually based on Bayes’
theorem and the mixing matrix is calculated with Markov chain Monte Carlo algorithms
(Bioucas-Dias et al., 2013).

Image-derived endmembers have the advantage of being retrieved under the similar
atmospheric conditions as the image data itself (Van der Meer, 1999). They have a
physical meaning, because they exist in the real world. However, they are often mix-
tures of other materials and as a consequence, the resulting abundances do not always
fulfill the ANC, even if satisfying the ASC (Keshava and Mustard, 2002). For multitem-
poral studies or data with different illumination conditions a library of endmember is
required. This library could be collected under laboratory conditions as well (Keshava
and Mustard, 2002).

All the algorithms mentioned above do not use the spatial relation between the ob-
served spectra and neglect the spectral variability of an endmember. To combine these
two sources of information into the mixture model a variogram based approach is used
in this thesis. The optimal mixture is then calculated based on Bayes’ theorem.

3.1.4. Variogram

Variogram® determination includes two steps. In a first step the variogram is calculated,
in a second step a theoretical model is fitted to this variogram (Chilés and Delfiner,
2012).

The variogram is defined as half the variance between a measurement at two samples
or points with a certain distance, called lag. In case of optical remote sensing, the lag
distance h is the interval between two points on a transect through the image pixels
(Figure 3.7) and can be considered as vector with a distance and direction (Curran
and Atkinson, 1998). There are multiple point pairs with a certain lag distance in
remote sensing data sets. A pixel is usually used for the sample size, called support in
variogram theory. Thus the lag distance corresponds to the spatial resolution of the
data set. Analysis of half of the squared difference between measurement of point pairs
with lag distance h apart from each other leads to the variogram cloud (Figure 3.6). The
variogram cloud shows the lag distance along the horizontal axis and the half squared

'There are several terms for variogram: theoretical, experimental, sample or semi- variogram. The
abbreviation and simple term «variogramy» seems to become established (Atkinson and Lewis, 2000;
Chilés and Delfiner, 2012). In this thesis the term variogram will be used.
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3.1. Theoretical Background

increment along the vertical axis 2[2(z;) — z(w;14)]?, where z(z;) is the measurement

at position x;, z(z;1n) at x4+, (Chilés and Delfiner, 2012).

26408

semivariance [(%™100)*2]

1e+08 |

distance [m]

Figure 3.6.: Variogram cloud of a meadow young field. Pixel pairs (blue circle) are more
similar for low semivariance values.

From the variogram cloud the variogram is given as the mean value of the half squared
increment and as function of the lag distance h(Chilés and Delfiner, 2012). Therefore,
the definition of a variogram (h) is given by

R
1) = 37y 2 (o) = e (3.5)

where N(h) is the number of point pairs separated by the lag distance h. Under
conditions of isotropic phenomenon propagation, the variation is the same in all lag
directions, whereas under anisotropic conditions? this is not the case (Van der Meer,
2012). The variogram expresses the dissimilarity between spatially separated pixels in
a useful manner (Jupp et al., 1988). Tt is essential for further geostatistics to fit a
mathematical model to the variogram function (Woodcock et al., 1988).

Several terms exist that describe a variogram model (Figure 3.8 and Table 3.1). Range
and sill are linked in the fashion that the range corresponds to the (lag) distance at
which the sill is reached, or vice versa. At distances longer than the range, point pairs
are not correlated anymore. The nugget? describes the behavior near the origin and is
called nugget effect, if it is nonzero due to a discontinuity (Chiles and Delfiner, 2012).
As mentioned above, the support is the sample size and shape. It is only important if
it is not alike for all samples (Chilés and Delfiner, 2012).

For the fitting of a model to a variogram, the three parameters nugget, range and
sill are important (Van der Meer, 2012). In remote sensing the exponential (Exp) and

2For example, a meadow spreads in all directions equally, so it is isotropic, whereas potatoes are
planted in rows with soil in between. This results in an anisotropic propagation.

3The concept comes from the gold nugget, which are smaller than the support (Chilés and Delfiner,
2012).
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Figure 3.7.: Pixels of a transect with lag distance 1, 2 and 3 (Curran and Atkinson,
1998).
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Figure 3.8.: Variogram with fitted model (Curran and Atkinson, 1998).

spherical models (Sph) are popular (Garrigues et al., 2008b). The Sph achieves a well-
defined sill (Figure 3.9a), whereas the Exp reaches the sill only asymptotically (Figure
3.9b). Therefore the so called practical range is used. This is usually the distance at
which 95% of the sill is reached (Chilés and Delfiner, 2012). The normalized variogram
model formula describes the structural variance (Table 3.2).

In remote sensing, the variogram is mostly used for estimations of a single value with
Kriging algorithms, e.g. soil moisture or biomass (Curran and Atkinson, 1998). In this
thesis, the structure of ten different agricultural crop types will be analyzed with a
geostatistical mixture approach. Therefore the variance at the range will be used for
the conditional probability per class. In the present work the range of the variogram
model is used to describe the variation of the endmembers.
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3.2. Proposed Method

Table 3.1.: Terms of variogram description (Curran and Atkinson, 1998; Van der Meer,

2012).
Term Symbol  Definition
Support y Shape and size of a sample
Lag h Interval between two points (vector with distance and
direction)
Sill s Maximum value of the fitted variogram model where
the range is reached
Range a Distance where the sill is reached
Nugget variance Co non-zero y-intercept (short term nugget)
Structured variance c¢ Sill minus nugget variance
14 14
11 1
Spherical Exponential
0 I r 0 1 2 3 4 5 r

(a) (b)

Figure 3.9.: Normalized variogram models of spherical (a) and exponential model (b).

3.2. Proposed Method

To calculate the abundance map of each crop type the following work flow was chosen.
In a first step the data was reduced by a PCA. The data set was split up by crop
type and a variogram model was fitted to the data of each crop type and PCA band.
These models were used to define a threshold value and together with the mean value
of each crop type to calculate the abundance with a Bayesian based approach. Finally
a classification was made. The following sections describe the method in more detail.

3.2.1. Data Reduction

The data was transformed by a PCA (Richards and Xiuping, 1999) to reduce the com-
putational load. The forward transformation was calculated based on the covariance
matrix, the commonly used MNF showed some unexplainable stripes with increased
values in the first spectral bands. The same problem was present with the PCA, but
not already in the first bands. To overcome this problem two strategies were chosen. In
a first step the spectral range was reduced. It seems that the SWIR part of the spectrum
somehow caused this pattern. The removal of the first 3 bands which contain almost
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3. Methods

Table 3.2.: Normalized spherical and exponential variogram model with lag distance h
and range a in case of Sph, practical range in case of Exp respectively.

Model Formula

3h | 1h® .
— + % fh<a
Spherical (Sph c= 2a " 243 =
g (e {O ifa>nh

Exponential (Exp) exp(—%)

no information (all values are near zero in the scene) and the last 10 noisy bands led to
improved PCA results. A further reduction improved the result as well, the reasons for
which are unclear. A spectral range of 413.6-2201.8 nm (APEX band 4-253) was chosen
in the end. With the reduced spectral range, the arbitrary pattern is visible from band
6 and very obvious from band 8 on.

In a second step the number of PCA bands was selected. Usually the sharp bend in
the eigenvalue curve is used. In the present case the bend was located at band 3. The
eigenvalue for band 4 was larger than 1%, for band 7 0.1% and for band 13 0.01% of the
eigenvalue of band 1 (Table 3.3). Because there are spatial patterns visible from band
8 on, a selection of 13 bands could potentially lead to a problem. A second selection
criterion was the error defined as the difference between the original and the inverse
transformed subset of the inverse transformed signal (based on the covariance matrix
again). This is less than 2% compared to the original one for all subsets, which is in the
uncertainty range of atmospheric correction and APEX labor calibration (Schaepman
et al., submitted). To have as much information as possible in the reduced data set,
a subset with 7 PCA bands was selected. With 7 bands, the error of the inverse
transformed signal is less than 1.5% and the total computational load was reduced by
97.7% (for more details see Appendix A).

3.2.2. Threshold Value

As shown in Table 2.1, two-thirds of the fields in each class were selected as training
and one-third as control data. The PCA data was split up by ROI in training and
control fields of each class. The variogram for each crop type and PCA band was
calculated and a Sph was fitted in R with the gstat package (Pebesma, 2004). At
large distance variogram values do not have an objective physical meaning (Chilés and
Delfiner, 2012), therefore variograms are calculated at a maximum distance of two-third
(Garrigues et al., 2008a) or the half (Garrigues et al., 2008b) of the extent of the data
set. Since there is no clear value in the literature, the default cutoff value by the R-
function of one-third of the diagonal distance of the minimum bounding box was chosen
for this thesis (Figure 3.10). For a faster calculation of the variogram, the point pairs
within the cutoff distance were concentrated in 40 groups. The number of groups is an
empirical value and a trade-off between precision and computational load. The model
fitting was done by minimizing the ordinary least-squares residuals (Pebesma, 2004).
The sill of the variogram model was used as a threshold value. Since the Sph results
in a unique value, this model was selected. There is no nugget effect because the land
surface does not change at subpixel level and the crop plants have a more or less regular
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Table 3.3.: PCA band and corresponding eigenvalue for the selection by probability

criteria.
PCA band Eigenvalue %
1 2317432157 100.000
2 141050158.4 60.865
3 6364576.847 2.746
4 3719287.829 1.605
) 1727576.371 0.745
6 406742.2688 0.176
7 947950 4748 0.107
8 181544.1512 0.078
9 103066.8846 0.044
10 60669.52203 0.026
11 43574.15783 0.019
12 32754.32074 0.014
19 24786.24244  0.011
14 19825.9807 0.009

distribution in the field itself (Garrigues et al., 2008b; Chilés and Delfiner, 2012).

Since the sill is a variance value that defines a spectral distance between two points,
an initial value for each band was needed. SMA offers the endmember as purest point.
In our case the most representing point is required. Selecting the most similar point
in the variogram led to excessive computational load. Therefore the mean value was
selected as initial value, as suggested by Atkinson and Lewis (2000). The difference
between the mean of all points and the mean value of the most similar points in the
variogram cloud was calculated for the alfalfa fields and was negligible*. The resulting
threshold values are shown in Figure 3.11.

3.2.3. Abundance

The abundance p(c| z) of a crop type ¢ in a pixel with PCA value z was calculated with
a Bayesian based approach:

p(z|c)

. (3.6)
TZ:flp(Z |7)

plelz) =

where p(z|c) is the conditional probability of z given ¢ and all ten crop types r
(Atkinson and Lewis, 2000). The conditional probabilities on the right site of the
Equation 3.6 were replaced by a band wise univariate distribution. If the pixel value
lies within the threshold around the mean value of a crop type, the probability of having
this type in the pixel is 1, otherwise 0 for a PCA band. Mathematically this corresponds

4That is not surprising since the ROTs of the crops are designed to contain only similar values.
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Figure 3.10.: Spherical model fit of the variogram of alfalfa in PCA band 4.
to a uniform distribution with the following probability density function

1 for tmzn S T S tmaa:
fl@) = { 3.7)

0 otherwise

where t,,:, = mean — thresholdvalue and t,,,, = mean + threshold value. The prob-
ability density function was calculated for all PCA bands and crop types.
p(c|z) is a measure of similarity of a crop type to a pixel and corresponds to the
abundance. Through the calculation with (3.6) this value satisfies the ANC and ASC,
holding true
p(z|c) > 0Ve (3.8)

and "
> p(slz) =1 (3.9)
s=1

where s are the ten crop types. (3.8) proves the ANC, since the term under the fraction
stroke of (3.6) is positive, too. The same denominator effects a normalization to one,
therefore holds (3.9) and the ASC. It follows that there is no need for an error image
as in the in the LSU.

3.2.4. Classification

The crop type with the highest abundance was selected for the classification, as sug-
gested by Atkinson and Lewis (2000). There are pixels with more than one crop type
with the same highest abundance, which offers selection options. A simple method is
to select one of the crop types randomly. This is the default behavior of the applied R
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Figure 3.11.: Threshold values of the crop types at the 7 PCA bands.

functions. A more advanced method is to set these pixels to «NA», the «not applicable
(NA)» value in R. This makes it possible that no choice has to been made.

In a second step a modal filter was used to smooth the classification result. Especially
in the case of the second method this was essential to fill the «holes» with NA in the
classification image. In both cases the results is smoothed afterward. For the modal
filter different window sizes from 3 up to 29 pixels were used. A window size of 3 pixels
takes only the direct 8 neighbors into account. A window size of 29 pixels® is larger
than the width of the smallest fields in the test site.

3.3. Conventional Approach

The conventional approach involves two steps: First the endmember were determined
with a method based on PPI and second these endmembers were unmixed with LSU
approach.

The PPI was calculated according to Boardman et al. (1995). In this method, a pixel
is defined as pure when it is at the end of a unit vector. At the end of the vector a
threshold factor of 3 PCA band unity was used, in the sense that each pixel value within
this range was counted as pure. There were 10,000 iterations. The PPT algorithm could
not find a pure pixel for each crop type, when it was calculated on the whole scene.
Instead, the pure pixels for each crop type were determined in a subset containing only
the training data of the corresponding crop type. For the endmember selection of each
crop type the mean value of the corresponding pure pixel values was calculated.

The LSU was done by SVD of the PPI derived endmembers (Boardman, 1989). It
was calculated once with a unit to sum constraint of 1 (ASC holds true) and once
without any constraints. An abundance map for each endmember and a root-mean-
square (RMS) error image for unexplainable parts of the data set were calculated. Since

529 pixels correspond to 58 m, since the spatial resolution of the IS data is 2 m.
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the calculations are done on the PCA reduced data set with only 7 bands, there is no
unique solution for the ten crop type endmembers (Bioucas-Dias et al., 2013; Keshava
and Mustard, 2002). This circumstance must be taken into account in the analysis of
the results.

To have the possibility to compare the two methods, the LSU results were classified
in a similar manner as the advanced classification of the proposed method.
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4. Results

There are two main results for the proposed method and the conventional approach.
On the one hand there are abundance maps of each crop type and on the other hand
classification maps are generated. Since the classification is based on the abundances,
the latter is shown first. However, both depend on the threshold values (Figure 3.11). It
is conspicuous that there are a lot of overlapping ranges, but there are some differences
as well, like meadow young and rapeseed in PCA band 3. There are some groups which
have always overlapping threshold values or at least close together. One of these groups,
further called SOIL, contains bare soil, bare soil bright and sugar pea. These types are
separated in PCA band 2 from all the other crop types. The overlapping part of the
threshold values of bare soil and bare soil bright becomes larger with higher PCA band
number. In the first 2 bands they touch each other with a small overlapping part. They
become larger in band 3 and 4. In the last 3 bands, the overlapping part is much bigger
than the other.

Another group of crop types that belong together are the three crop types spring
barley, winter barley and winter wheat and therefore called crROP. In PCA band 2
and 5 the range of the winter crops is totally captured by the range of spring barley.
Additionally, the threshold values of winter barley are captured by those of spring barley
in PCA band 1. Only in band 3 there is no overlapping between these two crop types.
The values for winter barley and winter wheat overlap in every band. In band 3 is the
smallest intersection, in band 7 winter wheat is captured by winter barley and in band
5 they are almost comparable.

There is a last group of similar threshold values, called MEADOW, with alfalfa, meadow
and meadow young. Here the threshold values of alfalfa are always part of those of
meadow. Since all pixels with values in the threshold range of alfalfa are in the meadow
range as well, in each case results an abundance of (at maximum) 50% for alfalfa.
Meadow young is part of this group, because the differentiation from meadow is done
based on visual impressions. Only in the first and the last two PCA bands there are
overlaps from the threshold values of meadow young with those of meadow.

The threshold values of rapeseed have also overlaps with those of other crop types,
but not always with the same crop type. In band 3 it is clearly delineated. Hence it
forms its own group called RAPESEED.
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Figure 4.1.: Abundance maps of all crop types calculated by the proposed method. High
abundances are plotted in green, low abundances in white and beige.
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4.1. Proposed Method

4.1.1. Abundance

An abundance map is calculated for each crop type (Figure 4.1). The map shows high
abundances of a crop type in green and low in beige. Pixels with abundance of zero
or in case of no data being available (outside the flight strip in the north western and
south eastern edges) are white. Overall there are only few pixels with high abundances.
In all the maps the field structure of the scene can be seen. Some of the plots show
obvious differences like meadow young, rapeseed, and sugar pea. For the rapeseed and
sugar pea fields the higher abundances correspond well with the ground truth data. For
the meadow young fields this effect is not visible. There are some crops with higher
abundances, but they are not necessary of this type in the ground truth. There are also
some high rapeseed abundances in meadow young fields.

Figure 4.2 shows the mean abundance in all ROIs of a certain crop type. For all
cases except bare soil, meadow, and spring barley, the crop type with the highest mean
value is the same as the corresponding ROL. In the other cases it is the second highest
abundance. In spring barley fields, the abundance values of the three crop types winter
barley (17.68% abundance), spring barley (17.30%), and winter wheat (17.28%) lay close
together.

The abundance map for sugar pea shows the only sugar pea field in the test site with
distinguishable higher values than other regions (Figure 4.1). In the northwest, the field
adjoins bare soil bright and in the southeast bare soil (Figure 4.3a). However, there are
two other crop types with higher values (Figure 4.3b) and some white patches with even
highest abundances. Often there are exactly the same abundances for meadow and bare
soil in these pixels. As it can be seen in the box plots of the abundances of the ten
different crop types in the sugar pea field (Figure 4.4), winter wheat has as well rather
high abundances. However, there are no pixels where winter wheat has the highest
value. The higher values lay especially in the southern part of the field, where larger
white areas can be found with similar abundances.

In the RGB image (Figure 4.3c), areas can be identified with unclear main member-
ship in shades of brown, if all three crop types have similar abundances, or in shades
of cyan, if meadow and bare soil have similar abundances and sugar pea a lower abun-
dance. However, there is more area with sugar pea than expected in the classification
with highest abundances. Most of the area with bare soil is colored in purple tones,
therefore sugar pea is present there as well. Obvious are the lower abundances of sugar
pea in the adjacent fields (Figure B.1).

All pixels have abundances greater than zero for bare soil, meadow and spring barley
(Figure 4.4) and all these abundances are smaller than 30%. Most of the pixels have
an abundance around 20% for bare soil, 15% for meadow and winter wheat, and 11%
for bare soil bright, spring barley and sugar pea. The sugar pea type has the greatest
variance and no outliers. Meadow young and rapeseed are the only two crop types with
an abundance of 0% for most of the pixels.
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Figure 4.3.: Images of the sugar pea field as true color (a), classification with high-
est abundances (b) and RGB image with abundances of sugar pea (red),
meadow (green) and bare soil (blue) (c¢). The black polygon is the contour
of the sugar pea field ROL

4.1.2. Classification

There are several classification results with different modal filter window sizes from 1
to 29 and methods (simple or advanced). In the classification image for a window size
of 1, there are many patches with NA values as can be seen in Figure 4.5 showing the
advanced classification. As mentioned above, these NA patches occur when multiple
crop types have the same value of highest abundance. These patches are classified
randomly in the simple method with one of the classes with highest value. NA values
in the advanced classification method are treated as unclassified. The OA is 39.66% for
the advanced classification method and 47.90% for the simple method for a window size
of 1. That corresponds to no filtering and therefore to the maximum pixel value of the
mixture analysis. Detailed confidence matrices can be found in the Appendix B.2.

For both methods the OA increases for larger extents of the modal filter (Figure
4.6a and Table B.1 and B.2). The OA reaches a stable value around 54% already
for small window sizes and 53.49% for a window size of 7 with the advanced method,
which is less than 2% under the maximum value of 54.45%, reached by a window size
of 19 (Figure 4.6a). For a window size of 11 the OA is 54.07% which corresponds to
less than 1% under the maximum. For the simple method results are slightly different
(Figure 4.6a). The slope is less extreme than with the advanced method and reaches
the maximum of 54.24% with a window size of 23. An OA of 53.28% by a filter size
of 13 is less than 2% under the maximum and 53.40% by a filter size of 15 is less than
1%. The kappa coefficients, calculated with a method after Cohen (1960) and Hudson
and Ramm (1987), are between 0.06 and 0.085 and therefore almost 0. In both cases
the classification map for maximum OA is very smooth and shows only few patches of
other crop types in a field (Figure 4.7).

The user accuracy (UA) and producer accuracy (PA) show for both methods similar
behaviors (Figure 4.6b and 4.6¢). They increase rapidly within the window sizes of 1 to
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Figure 4.4.: Box plots of the abundances in the sugar pea field.
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Figure 4.5.: Advanced classification with modal filter window size 1 of the proposed
method.

5 and then rise only slightly to the maximum around the window size of the maximum
OA. Afterward there is a small decrease. The producer accuracies of spring barley, sugar
pea and winter wheat have their maximum in the first window sizes. The UA shows
a decrease from window size 1 to 3 in case of the advanced method, but otherwise a
similar behavior as the UA. The UA for sugar pea has a strange curve progression. It
falls from 100% at a window size of 11 to 0% at a window size of 13. The PA falls
from a level below 10% at window size 3 down to 0% at window size 13. In case of
crop type alfalfa the PAs of both methods are 0% and the UAs 0% or NA. NA values
result because no pixels are classified as the corresponding crop type and thereby a
division by zero occurs. Therefore NA could be also interpreted as 100%. In the group
of unclassified pixels in the advanced classification, the PA is always NA, because there
are no pixels unclassified in the control data. Therefore the PA is always 0%.

There are only small differences between the two methods for the UA and PA. Obvious
is the difference between UA and PA itself. Rapeseed shows for both methods an UA
around 100% and a PA between about 60% and 80%. Meadow young has a PA around
100%, but the UA is around 60%. Spring barley and winter barley have both an UA
around 20%. The PA is higher with a maximum of around 45% for summer and 75%
for winter type. Winter wheat shows an inverted behavior with a PA around 20% and
an UA around 70%. For the other crop types the differences between UA and PA are
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smaller, but show the same inverted behavior between the two accuracies.

There are crop types that are difficult to discriminate from each other. The types’
bare soil and bare soil bright have an obvious difference, but there is no clear boundary
value between these two classes. The same is true for meadow and meadow young field
types. On the other hand there are different crop fields with barley and wheat and in
case of barley spring and winter species. They count all to the same order (poales),
family (poaceae), subfamily (pooideae), and tribe (triticeae) and differ only in the genus
(triticum or hordeum, respectively).

These difficult distinguishable crop types are merged to the already mentioned groups’
CROP, MEADOW, RAPESEED and SOIL, but the two crop types with few training data
(alfalfa and sugar pea) are left out. With these restrictions the OA increases (Figure
B.2). As with all ten crop types, the simple method shows with small window sizes (1
and 3) a higher OA than the advanced method. The highest OA which can be reached
is 79.12% for a window size of 19 for the advanced method and 78.68% for a window
size of 23 for the simple method. The best kappa coefficients are reached at the same
window sizes and are 0.283 for the advanced method and 0.281 for the simple method.
Both values are slightly better for the advanced method.

4.2. Conventional Approach

4.2.1. Abundance

For the PPI derived endmembers a certain number of pure pixels depending on crop
type have been investigated (Table 4.1). The mean values in the first two PCA bands
are different (Figure 4.8). With higher band numbers they become more similar, except
rapeseed which has different values in PCA band 3 and 4. Overall, they show a similar
grouping effect with the same four groups like the threshold values of the proposed
method.

Table 4.1.: Number of pure pixels for each PPI endmember.

crop type number of pure pixel
alfalfa 170
bare soil 177
bare soil bright 171
meadow 247
meadow young 216
rapeseed 194
spring barley 230
sugar pea 207
winter barley 225
winter wheat 239

The LSU is calculated with two different methods: once with a sum to one con-
straint (or ASC of 1) and once without any constraints. The constrained version shows
abundance maps with a field pattern as can be expected based on the test site (Figure
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4.9). High values are plotted in green, low values in white and beige. The abundances
are stretched for each map individually and therefore green values correspond to abun-
dances around 200 in case of spring barley and abundances around 40 in case of alfalfa.
There are very high values around 200 and very low values around -150. However, high
abundance values correspond not always with the crop type. An example is the end-
member for rapeseed which has lower abundance fractions in rapeseed fields than in the
fields with highest abundance fractions. Conspicuous are the stripes in the southeast
with higher values for spring barley or rapeseed and lower values for winter barley or
meadow younyg.

The abundance maps of the unconstrained version show less distinct fields and are
more noisy, except for rapeseed (Figure 4.10). The values are much smaller for the
unconstrained version than for the constrained version. Only the abundance map of
rapeseed shows higher abundances in the corresponding fields.

The error image shows higher abundances for both versions for field borders, streets,
water and in urban regions. The fields are either homogenous or noisy.

4.2.2. Classification

The classification is done according to the proposed method with the advanced classifi-
cation method. Both methods show less noisy classification maps (Figure 4.11). For the
constrained version there are no unclassified pixels, for the unconstrained version there
are only 41 or 0.0138% unclassified pixels in winter wheat fields. The detailed confidence
matrices for the highest OA can be found in Table B.7 and B.8 in the Appendix.

In the classification of the constrained LSU most pixels are classified as sugar pea,
followed by spring barley and winter barley. Conspicuous is the spring barley stripe
in the southeast. The crop type meadow is the only type showing a distinct pattern,
unfortunately 79.4% of the pixels are rapeseed, whereas the most distinct classified
rapeseed field in the southeast is meadow. The OA is 5.93%, the kappa coefficient is
0.00827. Both decrease with modal filtering. Winter wheat has a PA of 15.6% and a
UA of 60.9%, meadow young has a PA of 23.8% and a UA of 28.2%. For all other crop
types the PA and UA are below 5%.

The classification of the unconstrained LSU shows more distinct fields and the same
stripe effect in the southeast. Again, most pixels are classified as sugar pea, followed by
spring barley. Third are pixels classified as winter barley. In contrast to the classification
of the constrained LSU, in the unconstrained version rapeseed is classified correctly. The
PA is 80.2% and the UA 98.5%. Sugar pea has a PA of 90.3%, but a UA of only 1.34%.
For winter wheat the contrary effect is true and the PA is only 8.57% whereas the
UA is 90.4%. All the other accuracies are below 75%, partly even in the single digit
range. Therefore the OA is only 22.9% and the kappa coefficient 0.0355 for a modal
filter window size of 1. These values slightly increase for a modal window size of 5 to
an OA of 23.4% and a kappa coefficient of 0.0363. For larger window sizes these values
decrease.
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4.3. Comparison of Abundances

To compare the abundances of the proposed method and the conventional approach, the
R? values between the proposed method and each of the two conventional approaches
are calculated (Table 4.2). The highest congruity can be found for the constrained
(R? = 0.167) and unconstrained (R? = 0.186) version for rapeseed. The R? values are
greater than (.12 for meadow young in case of the constrained and winter barley in the
unconstrained version. For all others crop types the values are below 0.1, for spring
barley and alfalfa in the constrained version very low (smaller than 0.0001). The mean
R? value for the constrained version is 0.0447 and 0.0458 for the unconstrained version.

Table 4.2.: R? between the proposed method and the two conventional approaches.

crop type constrained unconstrained
alfalfa 0.00003 0.03000
bare soil 0.00031 0.02359
bare soil bright 0.04127 0.02423
meadow 0.02742 0.00068
meadow young 0.12647 0.04952
rapeseed 0.16665 0.18558
spring barley  0.00006 0.00587
sugar pea 0.03325 0.00129
winter barley — 0.03845 0.13339
winter wheat  0.01303 0.00344
mean 0.04469 0.04576
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Figure 4.9.: Abundance maps and error image of LSU with PPI derived endmembers
and a sum constraint of 1. Green are high abundances, white and brown
low abundances.
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5. Discussion

This chapter is divided into four parts. In a first section the spectral behavior of
agricultural crops recorded in May is discussed. Further the data reduction method is
discussed since both applied methods use the reduced data. The following two parts
address the proposed method and the conventional approach. The last section focuses
on a comparison of the proposed method with the conventional approach.

5.1. Spectral Behavior

5.1.1. Crop Plants in an Early Stage

The distinction of different crop types in the present IS data is difficult due to the early
stage of plant development. As mentioned above, some crop types are spectrally rather
similar (Figure 2.6) and therefore affect the threshold values in the proposed method
and the PPI derived endmembers in the conventional approach. A study about winter
wheat in early plant development (stage 1 and 2 in BBCH scale in the November)
shows very low vegetation coverage rates (Torres-Sanchez et al., 2014). Therefore a lot
of bare soil information is contained in a pixel of plants that are sown in narrow crop
rows (Torres-Sanchez et al., 2014; Hengl, 2006). Due to missing ground truth at the
image recording time the exact stage of the plants can only be estimated. Consequently,
the vegetation coverage and soil fraction in the fields is unclear. Rapeseed is present
in two stages (flowering and before flowering). Therefore, the non-flowering parts of
rapeseed fields have higher abundances for meadow than for rapeseed and are classified
accordingly.

Foerster et al. (2012) uses normalized difference vegetation index (NDVI) values of
four phenological useful IS data sets for his study of agricultural crops. They found plant
groups for winter crops, summer crops and perennial field grass and fallow (Foerster
et al., 2012). The groups are slightly different from the groups found in this work, which
can be explained by the analysis of multiple stages by Foerster et al. (2012). Rapeseed
is part of the winter crops, and these can be distinguished from the summer crops. The
NDVT of grass becomes larger with increasing growth state and is clearly different from
fallow. Cut grass fields have a similar NDVI as fallow and they are therefore grouped
together. A differentiation of these crop types based on the NDVI of a single acquisition
in May seems difficult.

5.1.2. Data Reduction

The reduced data set with only seven bands proved to be sufficient for successful appli-
cation of the proposed method, but it does not contain enough spectral information for
the conventional approach based on PPI and LSU. For a conventional LSU of 10 end-
members at least 10 bands would be required (Bioucas-Dias and Plaza, 2010). Hence,
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the stripe effect in the PCA bands reinforces with further bands, a proper LSU is not
possible on the reduced data set. Nevertheless, the conventional approach was followed
with the same data set, because of comparability reasons.

In the proposed method threshold values are calculated to distinguish between the
crop types. This threshold values sometimes have large overlaps and some are totally
captured by others. Therefore clear differences between the threshold values would be
preferred. A calculation of the PCA transformation statistics based on a spatial subset
to agricultural fields and a following application to the whole data set would possibly
lead to a better result that shows more distinguishable values for crop types. Under the
aspect of computational load and data volume a data reduction is mandatory for the
proposed method and at least desirable for the conventional approach.

5.2. Proposed Method

The original idea was to use the variogram cloud for the endmember determination. As
mentioned already in the methods, the variogram is a measure of spectral dissimilarity
(Jupp et al., 1988) and therefore the most similar pixels can be extracted from the
variogram cloud. In case of alfalfa the computational load is acceptable. The most
spectrally similar pixels are neither distributed over the whole field nor clustered (Figure
5.1). Since the computational load increases as a quadratic function of the number of
pixels, an application to other crop types requires weeks and memory of more than 6
GB. The quadratic increase is based on the fact that each pixel value is compared to
each other pixel value and therefore the number of comparisons equals 1/2 % n * (n — 1),
where n is the number of pixels.

The ambition to incorporate spatial information in the unmixing model can only
partially be filled by the variogram. The variogram is defined for 2 or 3 dimensions
(Chiles and Delfiner, 2012). Therefore the variogram in remote sensing is used for 2
spatial and one z-dimension in combination with kriging (Atkinson and Lewis, 2000) or
Monte Carlo methods (Bioucas-Dias et al., 2013). This surface phenomenon could be
represented by the NDVI (Garrigues et al., 2008a), the leaf area index (Garrigues et al.,
2008b) or other indexes.

In the proposed method the variogram is used for threshold estimation to provide a
probability density function. There are alternative statistical parameters for a thresh-
old value that are computationally less complex like the standard deviation or quantile.
Perhaps the upper and lower quartile is an alternative to the variogram approach (Ap-
pendix B.3), since the difference between quartiles (end of box) and the threshold value
(red points) based on the variogram is small. Further, Atkinson and Lewis (2000) pro-
pose to use variance and covariance between wavebands for an improved probability
distribution.

Due to the overlapping threshold values most of the pixels have abundances greater
than 0% for almost all crop types. In case of the sugar pea field all abundances are
smaller than 30%, as mentioned in the results. Therefore the calculated abundances do
not represent the real fractions of the pixel but can be interpreted as membership of a
crop type in a pixel (Schowengerdt, 1996; Villa et al., 2011). The membership comes
closer to the truth than a hard classification, as can be seen also at the sugar pea field.
In the classification only few pixels are classified as sugar pea (Figure 4.3b), but there is
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Figure 5.1.: Most spectrally similar pixels in the alfalfe training fields calculated with
the variogram cloud based approach.
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much more of sugar pea as expected due to the classification as the RGB-image shows
(Figure 4.3c).

5.3. Conventional Approach

A proper linear unmixing is possible only, if the number of endmembers is at most
as large as the number of data bands (spectral, PCA, etc.) plus one. Otherwise the
endmembers are not linearly independent and unmixing leads to results that are not
unique (Keshava and Mustard, 2002; Bioucas-Dias et al., 2013). In this work a data set
with seven PCA bands was used for the unmixing of ten endmembers and consequently
the endmembers must be linear dependent. The endmembers show the same grouping
effects in the mean spectra of the crop type ROIs, the endmember spectra and the
threshold values of the proposed method.

Therefore the results of the conventional approach are not unique and show arbitrarily
high abundances. Especially the abundances are too large for the constraint version.
Abundances greater than 1 or less than 0 do not have a physical meaning and indicate
usually a bad model fit and endmember determination (Plaza et al., 2004). Normally,
values less than 0 are set to 0 and such over 1 to 1, but in the present case this seems
to be unreliable as it violates the ASC.

Maybe this is a problem of the pureness of the image derived endmember. Tt is
possible that for some crop types even the purest pixels have a larger fraction of soil
in it. It is possible that early vegetation growth took place in bare soil and bare soil
bright fields already. As the ground truth took place months later, this question cannot
be answered conclusively.

5.4. Validation of chosen methods

Validation of SMA results is a general problem when ground truth is not available
(Keshava and Mustard, 2002). A detailed knowledge of the content of a pixel is nec-
essary for a proper validation. In the validation of unmixing results of satellite data
it is a widely applied approach to use finer resolution satellite data (Xie et al., 2008).
For the validation of an algorithm synthetic data can be used, because the mixture of
each pixel or the distribution of a certain phenomenon is exactly known, as Woodcock
et al. (1988) applies. In the unmixing of crop residues Bannari et al. (2006) use pho-
tographs of different directions, Peddle and Smith (2005) use video data in their study
and Torres-Sanchez et al. (2014) acquire data with an unmanned aerial vehicle (UAV)
in the visible region of the spectrum with ultra-high spatial resolution (1-2 cm). It
must be taken into account that this high-resolution data must be interpreted as well,
which can potentially lead to errors (Defries and Townshend, 1999). Since no addi-
tional information is available for the test site, the proposed method was compared to
a conventional approach and validated with a classification of the unmixing results.

5.4.1. Unmixing Results

The ANC and ASC are fulfilled for the proposed method. In case of the conventional
approach the ASC is only fulfilled for the constrained version of the LSU. This leads to
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very different data ranges for the resulting abundances. The fields in the present test
site can be seen as checkerboard and abundances correspond to the part of surface in
a pixel covered by the corresponding endmember. Therefore only abundances between
0 and 1 are reliable. Ag mentioned above, this requirement cannot be fulfilled for
the conventional approach. Since the abundances of the proposed method and the
conventional approach have different data ranges the R? values are calculated, under
the assumption that there is a linear relationship between the two scales. The reason
is that this measure is tolerant towards different scales. In particular the smallest
abundance value in the proposed method is 0 and in the conventional approach it is
always negative. Therefore, both have the meaning of total absence of the crop type.
The same assumption is made for the highest values.

There is only a weak relationship between the abundances of the proposed method and
the conventional approach, since all R? values are below 0.2. First of all, this could be
an effect of the linear dependence between derived endmembers and the therefore faulty
results of the conventional approach. It is obvious that the highest R? values appear
for rapeseed. The field structure for this crop type is easily recognizable in all three
abundance maps already. The same is true for meadow young with the second highest
R? value in the constrained conventional approach. For the unconstrained conventional
approach the field structure is not easily recognizable anyway.

Another reason for low R? is the absence of an error part in the proposed method in
contrast to the conventional approach. The ambition of the LSU in the conventional
approach is to explain the values of a pixel as much as possible by linear combinations
of the PPI derived endmember spectral library. Since this is not always possible, an
error term is left. For example there are no endmembers for man-made structures in
the spectral library, like buildings or streets. This leads to higher values in the error
image for pixels that cover streets and consequently to low or in the best case to no
abundance for a crop endmember. For the proposed method the unmixing of such pixels
is a problem. Since there are only threshold values for crop types included, the mixture
of a pixel that covers a street is explained by crop types. Due to the fact that the ASC
always holds true, the abundances of crop types of a certain pixel can get high. In the
present test site there are almost always meadow stripes between the farm tracks and
the actual used field. Consequently these pixels have high abundances for meadow as
can be seen in Figure 4.3c!. Since there are comparatively few man-made structures
this explains only a small part of the low R? values. The larger portion is caused by the
poor unmixing of the conventional approach as the accuracy of the classification shows.
This is discussed in the following paragraph.

5.4.2. Classification

The OA of the classification of the highest abundances for the conventional approaches
are poor. In the best case the OA is 5.93% for the constrained and 23.4% for the
unconstrained version. The kappa coefficient is near zero, i.e. there is a slight strength of
agreement (Landis and Koch, 1977). The modal filter does not improve the classification
of the constrained version and has a small influence on the OA of the unconstrained
version (22.9% without filtering and 23.4% with a modal filter window of size 5). This

'Field tracks are visualized with very bright colors in the true color image (Figure 4.3a).
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leads to the conclusion that highest abundances in a certain field are stable and do not
change pixel by pixel.

In the proposed method the modal filter influences the OA and leads to an increase
of 6.34% for the simple classification and 14.79% for the advanced classification. The
best OA is 54.24% for the simple classification by a modal filter window of size 23. Tt is
slightly better for the advanced classification by a modal filter window of size 19 with
54.45%. In other words, a bigger window size is required to rectify the misclassified
pixels in the simple classification. If no filter is used the simple classification method is
reliable, because it does not select from all crop types but only from the (usually two to
three) crop types with the highest abundance. The PA and UA are very similar (4+2.4%)
for the best (highest OA) classifications. Although the OA is much better than for the
conventional approaches, the kappa coefficient is still very low, which means that there
is also only a slight strength of agreement.

The disadvantage of the median filter can be seen in the classification of sugar pea.
With a filter of window size 11 applied, the crop type of the neighboring field gets a
higher influence on a pixel in the sugar pea field, which leads to misclassification. This
effect is supported by the few properly classified pixels (Figure 4.3b).

Since the best simple and advanced classifications are very similar, in the following
the classification of the proposed method denotes the best modal filtered advanced
classification (window of size 19).

There is no reference data for man-made objects, therefore they have no influence on
the accuracy of the classification compared to R?. The largest accordance or highest R?
in the abundances can be found for rapeseed. This is also evident in the classification
for the proposed method and the unconstrained conventional approach. Both have high
values for UA and PA (Table 4.7b and Table B.8). In the constrained version the R?
for rapeseed is the highest as well, but the UA and PA are 0%, because the majority of
rapeseed pixels are classified as meadow. There are two other values that are remarkable.
The PA for sugar pea is 100%, because 38.1% of all pixels are classified as sugar pea.
The UA is therefore only 1.77%. The other high value is the UA for winter wheat (UA
= 61%), but the PA is only 15.57%. This relativizes the higher values. The other PA
and UA values are all fewer than 30%. In the unconstrained version there are also high
values for UA and low values for PA or vice versa for spring barley, sugar pea and winter
wheat. Only meadow young and winter barley have UA and PA values over 55%, beside
rapeseed. For the proposed method there are three crop types (bare soil, bare soil bright
and meadow young) beside rapeseed with UA and PA over 55%. It can be concluded
that the constrained conventional approach has no PA and UA over 55% for the same
crop type, whereas for the unconstrained version this is true for meadow young, rapeseed
and winter barley. In the case of the proposed method both the UA and PA are over
55% for bare soil, bare soil bright, meadow young and rapeseed. The proposed method
has UA and PA fewer than 50% at the same time only for spring barley, beside alfalfa
and sugar pea for which no pixel has been classified. For the unconstrained version of
the conventional approach there are at least some pixels correctly classified for all crop
types. However, there are four crop types with both UA and PA fewer than 50%.

High UA and low PA or vice versa seem to be a problem in a classification of ten
or more crop types, since Foerster et al. (2012) report similar results. They completely
failed in the classification of meadow, meadow young and partially spring barley (they

48



5.4. Validation of chosen methods

proposed a single class for all summer grains). For winter barley and winter wheat they
have a better UA and PA and for bare soil and bare soil bright they have s slightly better
UA and PA than in the classification of the proposed method. For rapeseed they have
the higher PA with 93.3%, but only a UA of 49.2%, whereas the proposed method has a
PA of 81.41% and an UA of 99%. Overall the proposed method classifies rapeseed and
meadow young better and Foerster et al. (2012) has better accuracies for winter barley,
winter wheat and bare soil and bare soil bright. The better OA (65.7%) of Foerster et al.
(2012) can be explained by the fact that they used four data sets at different times of
the year.
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Crop mixture by intercropping on the same field is an important measure in agriculture
because it can reduce the use of fertilizers or increase the yield of a field (Li et al., 2013).
Timely available information about crop plants is useful for a variety of applications.
Remote sensing offers this opportunity and IS data allows furthermore to do analysis at
subpixel level. Conventional approaches show severe difficulties to capture the variation
in vegetation-dominated scenes.

This thesis aims to distinguish ten different crop types on a subpixel level. The
IS data acquired in May 2013 show a rural landscape, typical for the Swiss midland.
To capture the spectral variability of the crop types a new method was proposed. The
spectral variability is thereby captured with a variogram based approach that calculates
the similarity between pixels of the same crop type. Threshold values are derived from
this similarity values and transformed to density functions that allow the subsequent
unmixing based on Bayes’ theorem. The following conclusions are drawn by answering
the four subordinate research questions and re-thinking the main objective posed at the
beginning.

1. Are there spectral differences between crop plants in an early stage of development?
There are partially spectral differences between the different crop types and in the
present scenario they can be grouped into SOIL, CROPS, MEADOW and RAPESEED.
This is due to the early stage of plant development, and because plants are very
similar, i.e. meadow and meadow young. The two meadow types and bare soil
and bare soil bright are separated manually based on visual differences. Alfalfa
is not distinguishable from meadow due to complete overlapping of the threshold
values. The three crop types are of the same tribe and summer and winter types
are very hard to discriminate in June as well.

2. Can the chosen proposed method explain the mizture in a pizel?

Due to the partially large overlaps of the threshold values, the unmixing in the
proposed method produces abundances for the most crop types in the majority of
the pixels. Therefore, each crop type has at least very small abundances for the
majority of all pixels, which cannot be true. Hence, it is only possible to make
a statement about the membership and not about the fractional composition
of a pixel. Due to missing data for validation and the fail of the conventional
approach (see subordinate research question 4) this question cannot be answered
conclusively.

3. Is the proposed method more suitable for classification?
There is an OA of 54.45% for a modal filtered classification of the main member-
ship at a pixel and a kappa of (.08 that corresponds only to a slight strength of
agreement. Therefore, the proposed method is not suitable for a classification of
all ten crop types. There are better classification results for rapeseed (both the
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PA and UA are over 80%) and for bare soil, bare soil bright and meadow young
(both the PA and UA are over 55%).

4. How does the proposed method perform compared to a conventional approach based
on PPI and LSU?
It is not possible to quantify the mixture reliably with the conventional approach.
This is caused mainly by the spectral similarity of the crop types, the fact that
the PPI does not find pure pixels for all crop types, when it is executed on the
whole IS data set, and that there are a lower number of bands in the reduced
data set than number of crop types. This leads to linear dependent endmember
spectra and consequently to strange abundances for the crop type endmembers
that allow only a very limited comparison with the abundances of the proposed
method.
The classification with the highest abundance in a pixel ends up in an OA of
23.4% in the best case. Only rapeseed has good (over 90%) and meadow young
and winter barley a trend to better (over 55%) PA and UA at once.

The main research question is:

Is it possible to capture the endmember variation of crop plants in an early stage of
development for a mizture analysis by the proposed method?

This question can be answered based on the subordinate research questions with par-
tially yes’. The spectral variation of rapeseed and at least a fraction of the spectral
variation of bare soil, bare soil bright and meadow young can be captured. It is not pos-
sible to reliably distinguish alfalfa from meadow. For meadow, spring barley, sugar pea,
winter barley and winter wheat a classification is only partially possible and therefore
an exhaustive statement to the spectral differences to the other crop types cannot be
made.

Exact abundances cannot be achieved by an analysis of the mixture with the proposed
method, but it allows a statement about the membership of a crop type in a pixel. Due
to missing data for validation this statement bases more upon assumptions and evidence
in the literature (Atkinson and Lewis, 2000; Villa et al., 2011).

6.1. Outlook

A main problem of this thesis is the time gap between IS data acquisition and ground
truth that complicates the assignment of the right crop type. Therefore, fieldwork and
data acquisition at the same time would increase the reliability of the analysis. Espe-
cially for a spectral endmember library of vegetation signatures, which is necessary for
a LSU, with an imaging spectrometer a synchronous measurement with the acquisition
of IS data is required (Xie et al., 2008).

A further issue in this thesis and generally for SMA is the validation of the results
(Keshava and Mustard, 2002). UAV are a possibility to get images with higher spatial
resolution than the IS data, which allows to determine the mixture of a pixel more
accurate for a validation. This need not be necessarily IS data for classification by
hand; a true color image would be adequate.

There are several possibilities to improve the proposed method:
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e Here the mean of the ROIs is used for the determination of the representative
spectrum for each crop type, which requires adequate training data. One pos-
sibility to get a more representative spectrum is the application of the initially
proposed method with the variogram cloud.

e The calculation of the threshold values based on the variogram is complex. The
other approach already mentioned is to use statistical parameters for which stan-
dardized functions are available.

e To test the robustness of the proposed method the application to another test site
would be interesting.

53






Appendix

55






Bibliography

Adams, J. B., Smith, M. O., Johnson, P. E., 1986. Spectral mixture modeling: A new
analysis of rock and soil types at the Viking Lander 1 Site. Journal of Geophysical
Research: Solid Earth 91 (BS8), 8098 8112.

Atkinson, P. M., Lewis, P., 2000. Geostatistical classification for remote sensing: an
introduction. Computers & Geosciences 26 (4), 361-371.

Bannari, A., Pacheco, A., Staenz, K., McNairn, H., Omari, K., 2006. Estimating and
mapping crop residues cover on agricultural lands using hyperspectral and IKONOS
data. Remote Sensing of Environment 104 (4), 447 459.

Bauer, M. E., Cipra, J. E., 1973. Identification of Agricultural Crops by Computer
Processing of ERTS MSS Data. LARS Technical Reports Paper 20.
URL http://docs.1lib.purdue.edu/larstech/20

Bioucas-Dias, J. M., Plaza, A., 2010. Hyperspectral Unmixing: Geometrical, Statistical,
and Sparse Regression-Based Approaches. Image and Signal Processing for Remote
Sensing XVTI 5, 354-379.

Bioucas-Dias, J. M., Plaza, A., Camps-Valls, G., Scheunders, P., Nasrabadi, N., Chanus-
sot, J., 2013. Hyperspectral Remote Sensing Data Analysis and Future Challenges.
Geoscience and Remote Sensing Magazine, IEEE 1 (2), 6 36.

Bioucas-Dias, J. M., Plaza, A., Dobigeon, N., Parente, M., Du, Q., Gader, P., Chanus-
sot, J., 2012. Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse
Regression-Based Approaches. IEEE Journal of Selected Topics in Applied Earth Ob-
servations and Remote Sensing 5 (2), 354-379.

Boardman, J., Kruse, F., Green, R., 1995. Mapping target signatures via partial unmix-
ing of AVIRIS data. Summaries, Fifth JPL Airborne Earth Science Workshop JPL
Public, 23 26.

Boardman, J. W., 1989. Inversion Of Imaging Spectrometry Data Using Singular Value
Decomposition. In: Geoscience and Remote Sensing Symposium, 1989. IGARSS’89.
Vol. 4. pp. 2069-2072.

Boardman, J. W., 1993. Automating spectral unmixing of AVIRIS data using convex
geometry concepts. Summaries of the Fourth Annual JPL Airborne Geoscience Work-

shop, JPL Pub. 93-26, AVIRIS Workshop. 1, 11-14.

Chang, C.-1., Wang, S., 2006. Constrained band selection for hyperspectral imagery.
IEEE Transactions on Geoscience and Remote Sensing 44 (6), 1575-1585.

o7



Bibliography

Chilés, J.-P., Delfiner, P., 2012. Geostatistics: modeling spatial uncertainty, 2nd Edi-
tion. Hoboken: Wiley.

Clark, R. N., Roush, T. L., 1984. Reflectance spectroscopy: Quantitative analysis tech-
niques for remote sensing applications. Journal of Geophysical Research: Solid Earth
89 (BT), 6329 6340.

Cohen, J., 1960. A Coefficient of Agreement for Nominal Scales. Educational and Psy-
chological Measurement 20 (1), 37-46.

Craig, M. D.; 1994. Minimum-volume transforms for remotely sensed data. IEEE Trans-
actions on Geoscience and Remote Sensing 32 (3), 542-552.

Crookston, R. K., 2006. A Top 10 List of Developments and Issues Impacting Crop
Management and Ecology During the Past 50 Years. Crop Science 46, 2253 2262.

Curran, P. J., Atkinson, P. M., 1998. Geostatistics and remote sensing. Progress in
Physical Geography 22 (1), 61-78.

De Wit, a. J. W., Clevers, J. G. P. W., 2004. Efficiency and accuracy of per-field
classification for operational crop mapping. International Journal of Remote Sensing
25 (20), 4091 4112.

Defries, R. S., Townshend, J. R. G., 1999. Global land cover characterization from
satellite data: from research to operational implementation? Global Ecology and
Biogeography 8 (5), 367-379.

Foerster, S., Kaden, K., Foerster, M., Itzerott, S., 2012. Crop type mapping using
spectral-temporal profiles and phenological information. Computers and Electronics
in Agriculture 89, 30-40.

Garrigues, S., Allard, D., Baret, F., 2008a. Modeling temporal changes in surface spatial
heterogeneity over an agricultural site. Remote Sensing of Environment 112 (2), 588
602.

Garrigues, S., Allard, D., Baret, F., Morisette, J., 2008b. Multivariate quantification of
landscape spatial heterogeneity using variogram models. Remote Sensing of Environ-
ment 112 (1), 216-230.

Green, A. A., Berman, M., Switzer, P., Craig, M. D., 1988. A transformation for ordering
multispectral data in terms of image quality with implications for noise removal. IEEE
Transactions on Geoscience and Remote Sensing 26 (1), 65 74.

Hengl, T., 2006. Finding the right pixel size. Computers & Geosciences 32 (9), 1283
1298.

Hudson, W. D., Ramm, C. W., 1987. Correct formulation of the kappa-coefficient of
agreement. Photogrammetric engineering and remote sensing 53 (4), 421.

Hueni, A., Lenhard, K., Baumgartner, A., Schaepman, M. E.; 2013. Airborne Prism
Experiment Calibration Information System. IEEE Transactions on Geoscience and
Remote Sensing 51 (11), 5169-5180.

o8



Bibliography

Tordache, M.-d. M.-D., Bioucas-dias, J. M., Plaza, A., Member, S., 2011. Sparse Un-
mixing of Hyperspectral Data. IEEE Transactions on Geoscience and Remote Sensing
49 (6), 2014-2039.

Jewell, N., 1989. An evaluation of multi-date SPOT data for agriculture and land use
mapping in the United Kingdom. International Journal of Remote Sensing 10 (6),
939-951.

Jolliffe, 1., 2005. Principal component analysis. Encyclopedia of Statistics in Behavioral
Science 3, 1580 1584.

Jupp, D. L. B., Strahler, A. H., Woodcock, C. E., 1988. Autocorrelation and regulariza-
tion in digital images. 1. Basic theory. IEEE Transactions on Geoscience and Remote
Sensing 26 (4), 463-473.

Keshava, N., Mustard, J. F., 2002. Spectral unmixing. IEEE Signal Processing Magazine
19 (1), 44-57.

Lancashire, P. D., Bleiholder, H., van der Boom, T., Langeliiddeke, P., Stauss, R.,
Weber, E., Witzenberger, A.; 1991. A uniform decimal code for growth stages of
crops and weeds. Annals of Applied Biology 119 (3), 561-601.

Landis, J. R., Koch, G. G., 1977. The Measurement of Observer Agreement for Cate-
gorical Data. Biometrics 33 (1), 159-174.

Lee, J. B., Woodyatt, A. S., Berman, M., 1990. Enhancement of high spectral resolu-
tion remote-sensing data by a noise-adjusted principal components transform. IEEE
Transactions on Geoscience and Remote Sensing 28 (3), 295-304.

Li, L., Zhang, L., Zhang, F.. 2013. Crop Mixtures and the Mechanisms of Overyielding.
Encyclopedia of Biodiversity, 382-395.

MeteoSchweiz, 2013a. Klimabulletin Friihling 2013. Tech. rep., Ziirich, Schweiz.
MeteoSchweiz, 2013b. Klimabulletin Mai 2013. Tech. rep., Ziirich, Schweiz.

Mulla, D. J., 2013. Twenty five years of remote sensing in precision agriculture: Key
advances and remaining knowledge gaps. Biosystems Engineering 114 (4), 358 371.

Mustard, J. F., 1993. Relationships of soil, grass, and bedrock over the kaweah serpen-
tinite melange through spectral mixture analysis of AVIRIS data. Remote Sensing of
Environment 44 (2-3), 293-308.

Nachtegael, M., Van der Weken, D., Kerre, E. E., Philips, W. (Eds.), 2007. Soft Com-
puting in Image Processing. Springer, Berlin Heidelberg.

Nascimento, J. M. P., Bioucas-Dias, J. M., 2005. Vertex component analysis: A fast
algorithm to unmix hyperspectral data. IEEE Transactions on Geoscience and Remote
Sensing 43 (4), 898-910.

Olshausen, B. A., Field, D. J., 1996. Emergence of simple-cell receptive field properties
by learning a sparse code for natural images. Nature 381, 607-609.

59



Bibliography

Pacheco, A., McNairn, H., 2010. Evaluating multispectral remote sensing and spectral
unmixing analysis for crop residue mapping. Remote Sensing of Environment 114 (10),
2219-2228.

Panigrahy, S., Chakraborty, M., 1998. An integrated approach for potato crop intensi-
fication using temporal remote sensing data. ISPRS Journal of Photogrammetry and
Remote Sensing 53 (1), 54-60.

Pebesma, E. J., 2004. Multivariable geostatistics in S: the gstat package. Computers &
Geosciences 30, 683 691.

Peddle, D. R., Smith, A. M., 2005. Spectral mixture analysis of agricultural crops: KEnd-
member validation and biophysical estimation in potato plots. International Journal
of Remote Sensing 26 (22), 4959-4979.

Plaza, A., Martinez, P., Perez, R., Plaza, J., 2004. A quantitative and comparative anal-
ysis of endmember extraction algorithms from hyperspectral data. IEEE Transactions
on Geoscience and Remote Sensing 42 (3), 650-663.

Richards, J. A., Xiuping, J., 1999. Remote Sensing Digital Image Analysis: An Intro-
duction. Springer-Verlag, Berlin, Germany.

Roberts, D., Smith, M., Adams, J., 1993. Green vegetation, nonphotosynthetic vegeta-
tion, and soils in AVIRIS data. Remote Sensing of Environment 44 (2-3), 255 269.

Schaepman, M. E.; Jehle, M., Hueni, A., D’Odorico, P., Damm, A., Weyermann, J.,
Schneier, F. D., Laurent, V., Popp, C., Seidel, F. C.; Lenhard, K., Gege, P., Kiich-
ler, C., Brazile, J., Kohler, P., de Vos, L., Meulemann, K., Meynart, R., Schldpfer,
D., Itten, K. I., submitted. Advanced radiometry measurements and Earth science
applications with the Airborne Prism Experiment (APEX). Remote Sensing of Envi-
ronment.

Scharf, L. L., 1991. The SVD and reduced rank signal processing. Signal Processing
25 (2), 113-133.

Schowengerdt, R., 1996. On the estimation of spatial-spectral mixing with classifier
likelihood functions. Pattern Recognition Letters 17 (13), 1379-1387.

Somers, B., Asner, G. P., Tits, L., Coppin, P., 2011. Endmember variability in Spectral
Mixture Analysis: A review. Remote Sensing of Environment 115 (7), 1603 1616.

Torres-Sanchez, J., Pefia, J., de Castro, A., Lopez-Granados, F., 2014. Multi-temporal
mapping of the vegetation fraction in early-season wheat fields using images from
UAV. Computers and Electronics in Agriculture 103, 104 113.

Van der Meer, F., 1999. Iterative spectral unmixing (ISU). International Journal of
Remote Sensing 20 (17), 3431-3436.

Van der Meer, F., 2012. Remote-sensing image analysis and geostatistics. International
Journal of Remote Sensing 33 (18), 5644-5676.

60



Bibliography

Villa, A., Chanussot, J., Benediktsson, J. A., Jutten, C., 2011. Spectral Unmixing
for the Classification of Hyperspectral Images at a Finer Spatial Resolution. IEEE
Journal of Selected Topics in Signal Processing 5 (3), 521-533.

Wang, C., Menenti, M., Stoll, M.-P., Belluco, E., Marani, M., 2007. Mapping mixed
vegetation communities in salt marshes using airborne spectral data. Remote Sensing

of Environment 107 (4), 559-570.

Winter, M. E.; 1999. N-FINDR: an algorithm for fast autonomous spectral end-member
determination in hyperspectral data. In: Imaging Spectrometry V. Vol. 3753. Proc.
SPIE, pp. 266-275.

Woodcock, C. K., Strahler, A. H., Jupp, D. L. B., 1988. The use of variograms in remote
sensing: I. Scene models and simulated images. Remote Sensing of Environment
25 (3), 323-348.

Xie, Y., Sha, Z., Yu, M., 2008. Remote sensing imagery in vegetation mapping: a review.
Journal of Plant Ecology 1 (1), 9-23.

61






Nomenclature

ANC Abundance Nonnegativity Constraint
APEX Airborne Prism EXperiment

ASC Abundance Sum-to-one Constraint
BBCH Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie
Exp  Exponential model

1S Imaging Spectroscopy

LMM Linear Mixing Model

LSU Linear Spectral Unmixing

MNF Minimum Noise Fraction

MV  Minimum Volume

NA  Not Applicable value in R

NAPC Noise Adjusted Principle Components
NDVI Normalized Difference Vegetation Index
OA  Overall Accuracy

PA  Producer Accuracy

PCA  Principal Component Analysis

PPI  Pixel Purity Index

RMS Root-Mean-Square

RMSE Root-Mean-Square Error

ROT  Region Of Interest

SMA Spectral Mixture Analysis

SNR Signal-to-Noise-Ratio

Sph  Spherical model

SVD  Singular Value Decomposition
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Nomenclature

SWIR Short-Wavelength InfraRed
UA  User Accuracy

UAV  Unmanned Aerial Vehicles
VNIR Visible and Near-InfraRed

64



A. PCA Band Selection

10 fields are randomly selected (Figure A.1). APEX bands 1-3 and 254-299 are left
out, because they created problems in MNF-transformation. Therefore a spectral range
from 413.6 nm to 2201.8 nm is used (Figure A.2). Based on the eigenvalue criterion (see
section 3.2.1) PCA band subsets are formed. Differences between the APEX spectrum
and the transformed and inverse transformed PCA band subsets can be seen in Figure
A.3. The differences are all smaller than 2% for the mean over all 10 fields. For the
selected PCA band subset (band 1-7) the largest difference between the mean of the
original spectra and inverse transformed PCA spectra can be found in a pixel of a
meadow field (Figure A.4). The largest deviations in the spectra can be found in the
steep parts of the curve.
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A. PCA Band Selection

crop type color
bare soil red
bare soil green
bare soil blue
bare soil bright yellow
bare soil bright cyan
meadow magenta
meadow maroon

spring barley  sea green
spring barley purple
winter barley coral

Figure A.1.: Randomly selected fields for validation of the principal component analysis
transformation.
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(e) PCA band 5 (f) PCA band 6 (g) PCA band 7 (h) PCA band 8

Figure A.2.: PCA transformed APEX bands 4-253.
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A. PCA Band Selection
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Figure A.3.: Comparison IS data (original APEX data) with transformed and inverse
transformed PCA band subsets. Difference between the mean of the origi-
nal and PCA band subset.
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Figure A.4.: Pixel with biggest difference between APEX spectra and inverse trans-
formed PCA spectra: spectra (a) and difference (b).
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B. Additional Results

B.1. Proposed Method

B.1.1. Abundance
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Figure B.1.: Box plots of the abundances of the two neighboring fields of the sugar pea
field. Bare soil bright field in the northwest (a) and bare soil field in the

southeast (b).

B.1.2. Classification
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B. Additional Results

Table B.1.: Producer accuracy (PA) and user accuracy (UA) for modal filtered simple classifications of first four window sizes and
window size of maximum overall accuracy. NA values occur where no pixels are classified as the corresponding crop type.

1 3 5) 7 23
dal filter si:
rrodat HAe slae PA (%] UA [%] PA[%| UA|[%| PA[%] UA[%] PA|[%] UA [%] PA[%] UA [%]
alfalfa 0.00 0.00 0.00 0.00 0.00 NA 0.00 NA 0.00 NA
bare soil 51.37 81.76 53.73 84.89 54.97 86.22  55.74 86.97  57.31 88.35
bare soil bright 55.14 64.50 58.53 67.08 60.50 68.75  61.84 69.57 67.31 73.16
meadow 54.90 39.25 99.29 42.85 61.18 44 .80 62.07 45.86 66.32 47.66
meadow young 96.27 55.80 98.40 56.29 99.27 57.02  99.42 57.56  99.69 59.82
rapeseed 62.15 97.62 68.56 99.01 72.09 99.23  73.58 99.34  79.88 100.00
spring barley 35.16 17.64 39.88 19.87 43.08 21.15 44.93 21.91 44.10 21.70
sugar pea 6.68 64.11 5.99 88.89 4.69 100.00 2.39 100.00 0.00 NA
winter barley 52.10 13.44 58.56 14.64 62.16 15.26 64.75 15.62 74.36 17.34
winter wheat 22.53 53.69 22.18 60.74 21.50 64.42  20.80 66.63 16.22 69.10
overall accuracy |%)] 47.90 50.62 51.98 52.69 54.24
kappa 0.07374 0.07815 0.08036 0.08151 0.08404
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B.1. Proposed Method
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B. Additional Results
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Figure B.2.: Overall accuracy for merged crop types and modal filter window size.

B.2. Confidence matrices
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B.2. Confidence matrices
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B. Additional Results

Table B.4.: Confidence matrix of advanced classification of proposed method and modal filter window of size 23. Overall accuracy =
54.24%, kappa = 0.08404

reference data

_ g =
= =i + >
mo w .my M % o} 2
~ > = < b= = ) =
= = = g o S E b= g
@) o E E @ < o8 n o]
& 7 7 .@ ..m & MO o g 8 = — “
= o o & & < B= o = = IS < =
= 8| 8| g g | 22|22 |%| % g
< el Q S g jar 0 n 3 = =] - =]
alfalfa 0 0 0 0 0 0 0 0 0 0 0 0 NA
bare soil 0 41573 | 4123 11 0 8 0 1263 74 5 0 47057 88.35
bare soil bright 0 12974 | 37858 0 0 12 0 0 762 138 0 51744 73.16
meadow 1495 | 12189 579 23175 0 1050 3048 742 741 5610 0 48629 47.66
.m meadow young 0 290 0 2712 | 17906 | 1879 | 6070 0 17 1061 0 29935 59.82
cﬁum rapeseed 0 0 0 0 0 12200 0 0 0 0 0 12200 | 100.00
'z spring barley 0 2713 2925 6738 49 124 10434 0 872 24217 0 48072 21.70
= sugar pea 0 0 0 0 0 0 0 0 0 0 0 0 NA
winter barley 0 249 9061 2051 6 0 3760 0 7585 | 21033 0 43745 17.34
winter wheat 0 2553 1697 259 0 0 0 0 0 10081 0 14590 69.10
unclassified 0 0 0 0 0 0 350 0 149 0 0 499 0.00
total 1495 | 72541 | 56243 | 34946 | 17961 | 15273 | 23662 | 2005 | 10200 | 62145 0 296471
producer accuracy |%]| | 0.00 | 57.31 | 67.31 | 66.32 | 99.69 | 79.88 | 44.10 | 0.00 | 74.36 | 16.22 | NA
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B.2. Confidence matrices
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B. Additional Results

Table B.6.: Confidence matrix of advanced classification of proposed method and modal filter window of size 19. Overall accuracy =

54.45%, kappa = 0.08437

reference data

_ g =
= g - =
mo w .my M % o} 2
- . s | 2| £ | & -
= = = = .m o) g o = b= nnu
& 7 7 .@ ..m & MO o g 8 = — <
= 2 u s s & is % k= = g < g
& = = o) o) n@. = o = .2 & 5 <
< el Q S g jar 0 n Z = =} = =
alfalfa 0 0 0 0 0 0 0 0 0 0 0 0 NA
bare soil 0 43294 | 4583 18 0 8 0 1250 74 77 0 49304 | 87.81
bare soil bright 0 13195 | 37078 1 0 6 0 0 672 174 0 51126 | 72.52
meadow 1495 | 10937 474 22750 0 1028 3001 755 792 5699 0 46931 | 48.48
.m meadow young 0 889 15 2856 | 17960 | 1777 | 6249 0 23 1222 0 30991 | 57.95
nm rapeseed 0 125 0 0 0 12433 0 0 0 0 0 12558 | 99.00
'z spring barley 0 1283 3046 6566 1 21 10138 0 871 23110 0 45036 | 22.51
= sugar pea 0 0 0 0 0 0 0 0 0 0 0 0 NA
winter barley 0 499 9111 2498 0 0 3993 0 7665 | 21745 0 45511 | 16.84
winter wheat 0 2319 1936 257 0 0 0 0 0 10118 0 14630 | 69.16
unclassified 0 0 0 0 0 0 281 0 103 0 0 384 0.00
total 1495 | 72541 | 56243 | 34946 | 17961 | 15273 | 23662 | 2005 | 10200 | 62145 0 296471
producer accuracy |%]| | 0.00 | 59.68 | 65.92 | 65.10 | 99.99 | 81.41 | 42.85 | 0.00 | 75.15 | 16.28 | NA
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B.2. Confidence matrices
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B. Additional Results

Table B.8.: Confidence matrix of advanced classification of unconstrained conventional approach and modal filter window of size 5.

Overall accuracy = 23.4%, kappa = 0.0363

reference data

) . =
=g

B : oy LW E o W

NG) 2, = < = & < =

= = = S < Rl E b= g

o &) W W 5] < o w0 (&)

< R R o ] ) 20 = S [75] <

= o © 3 = & = g £ £ = = .

&£ 5 5 < S 2 E o E E = =2 g

= a S g g £ & z B B 3 2 2
alfalfa 452 0 0 11896 0 0 509 0 652 4104 0 17613 2.57
bare soil 0 4604 409 5387 322 0 0 0 0 789 0 11511 | 40.00
bare soil bright 0 15130 | 11650 0 0 0 0 94 0 0 0 26874 | 43.35
meadow 0 0 0 512 0 0 530 0 2 557 0 1601 31.98
.m meadow young 0 7 0 1992 9977 0 15 0 0 1110 0 13101 76.15
n_nuca rapeseed 0 0 1 0 0 14077 0 0 0 19 0 14097 | 99.86
'z spring barley 0 6870 4209 8548 4170 946 15656 0 978 13946 0 55323 | 28.30
.m sugar pea 1043 | 45930 | 39974 | 6457 3492 250 6689 1911 2598 | 33720 0 142064 1.35
winter barley 0 0 0 1 0 0 167 0 5964 3399 0 9531 62.57
winter wheat 0 0 0 153 0 0 46 0 0 4501 0 4700 95.77
unclassified 0 0 0 0 0 0 50 0 6 0 0 56 0.00

total 1495 | 72541 | 56243 | 34946 | 17961 | 15273 | 23662 | 2005 | 10200 | 62145 0 296471
producer accuracy |%] | 30.23 | 6.35 | 20.71 | 1.47 | 55.55 | 92.17 | 66.17 | 95.31 | 58.47 | 7.24 | NA
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B.3. Box Plot of the PCA Bands

B.3. Box Plot of the PCA Bands
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Figure B.3.: Box plot of the training data in PCA band 1. Whiskers are at 1.5 of the

interquartile range and the outliers are marked with circles.

Blue dots

indicate the mean of crop type, red dots upper and lower threshold value.

81
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Figure B.4.:
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Box plot of the training data in PCA band 2. Whiskers are at 1.5 of the
interquartile range and the outliers are marked with circles. Blue dots
indicate the mean of crop type, red dots upper and lower threshold value.



B.3. Box Plot of the PCA Bands
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Figure B.5.: Box plot of the training data in PCA band 3. Whiskers are at 1.5 of the
interquartile range and the outliers are marked with circles. Blue dots
indicate the mean of crop type, red dots upper and lower threshold value.
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Figure B.6.: Box plot of the training data in PCA band 4. Whiskers are at 1.5 of the
interquartile range and the outliers are marked with circles. Blue dots
indicate the mean of crop type, red dots upper and lower threshold value.
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B.3. Box Plot of the PCA Bands
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Figure B.7.: Box plot of the training data in PCA band 5. Whiskers are at 1.5 of the
interquartile range and the outliers are marked with circles. Blue dots
indicate the mean of crop type, red dots upper and lower threshold value.
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Figure B.8.: Box plot of the training data in PCA band 6. Whiskers are at 1.5 of the
interquartile range and the outliers are marked with circles. Blue dots
indicate the mean of crop type, red dots upper and lower threshold value.
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B.4. Classification results of Foerster et al. (2012)
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Figure B.9.: Box plot of the training data in PCA band 7. Whiskers are at 1.5 of the

interquartile range and the outliers are marked with circles.

Blue dots

indicate the mean of crop type, red dots upper and lower threshold value.

B.4. Classification results of Foerster et al. (2012)
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B. Additional Results

Table B.9.: UA and PA of 7 crop classes in the study of Foerster et al. (2012) that correspond to used crop types in the proposed

method (modal filtered advanced classification with window of size 19).

study of Foerster et al. (2012)

proposed method

labels PA |%] UA |%] crop type PA |%] UA |%|

fallow 76.6 83.6 bare soil and bare soil bright  62.80 80.17
perennial field grass 0 0 meadow 65.10 48.48
winter wheat 91.7 76.8 winter wheat 16.28 69.16
winter barley 76.9 88.7 winter barley 75.15 16.84
oilseed rape 93.3 49.2 rapeseed 81.41 99.00
summer grain 0 0 partially spring barley 42.85 2251
first year field grass 0 0 meadow young 99.99 57.95
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