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Abstract

In the face of the continued threat of global warming, better understanding and modeling
the climate is becoming more urgent. A major concern is the global carbon cycle, as
the largest single source of uncertainty in the global carbon budget lies in the terrestrial
ecosystem. The world’s forests act as a major carbon sink and therefore play an important
role in the terrestrial carbon cycle. In order to improve global climate models, accurate
and repeated estimates of the distribution and changes in forest biomass are needed.
Most promising methods to meet this requirement are found in remote sensing with
Airborne Laser Scanning (ALS) and Synthetic Aperture Radar (SAR) measurement
techniques. In this thesis, the biomass estimation capability of fully polarimetric air-
and spaceborne L-Band SAR data over heterogenous, temperate forests in north-eastern
Switzerland is analyzed. Multiple techniques are evaluated, including use of backscatter
and Polarimetric Interferometric SAR (PolInSAR). SAR data were available from ALOS
PALSAR and DLR’s airborne E-SAR instruments, both operated in fully polarimetric
mode. As a biomass reference, forestry field measurements as well as ALS derived
biomass estimates were available. The results showed that no single polarization, neither
from space nor from airborne backscatter data, had sufficient sensitivity to biomass in
order to accurately estimate biomass for the selected study sites. Only by combining
backscatter data from the full set of polarimetric channels and focusing on the stand-
level, more accurate biomass estimates were possible with an R? of 0.4 and an RMSE
of 74.3 t ha—! when using airborne SAR data. The weak performance of backscatter
based approaches in estimating biomass could be related to the high noise level and
the saturation of the L-band backscatter values already at relatively low biomass levels.
The high biomass regime found in the analyzed study sites therefore hindered an
accurate biomass estimation from backscatter data. Yet, it was shown that geometric and
radiometric normalizations using high resolved Digital Elevation Models (DEMs) can
improve biomass estimation performance. It was shown that forest height and biomass
estimation at the stand level from PolInNSAR measurements taken from the airborne
E-SAR instrument were less limited by saturation. The biomass estimates from PolInSAR
showed high uncertainties with a relative RMSE of over 100% of the observed average
stand biomass. The low coherence due to temporal decorrelation found in the ALOS
PALSAR acquisitions over the analyzed study sites hindered forest height inversion
using the available spaceborne polarimetric SAR data. The results achieved in this thesis
suggest that for accurate biomass estimation in the high biomass regime, alternatives
are called for to improve upon common approaches based on fully polarimetric L-Band
backscatter and PolInSAR techniques.






Zusammenfassung

Angesichts der stetigen Bedrohung durch die globale Erwdrmung wird ein besseres
Verstdndnis und eine bessere Modellierung des Klimas immer wichtiger. Ein Hauptau-
genmerk ist auf den globalen Kohlenstoffkreislauf gerichtet, da die grosste Einzelquelle an
Unsicherheit im globalen Kohlenstoff-Budget im terrestrischen Okosystem zu finden ist.
Die globale Waldfldche, als eine Hauptsenke fiir Kohlenstoff, nimmt eine besondere Rolle
im terrestrischen Kohlenstoffkreislauf ein. Um globale Klimamodelle zu verbessern, sind
genaue und repetitive Schiatzungen zur Verteilung und Verdnderung der Waldbiomasse
von Noten. Vielversprechende Ansitze, um diesen Anforderungen geniige zu leisten,
konnen in der Fernerkundung mit den Messtechniken des Airborne Laser Scannings (ALS)
und Synthetic Aperture Radar (SAR) gefunden werden. In dieser Masterarbeit wird die
Fahigkeit zur Waldbiomassenabschitzung von voll polarimetrischen L-Band SAR Daten
(flugzeug- und satellitengestiitzt) {iber heterogenem, temperiertem Wald in der Nord-Ost
Schweiz analysiert. Dabei wurden sowohl Riickstreuungs- als auch polarimetrisch-
interferometrisches SAR (PolInSAR) basierte Techniken verwendet. Satellitengesttitzte
ALOS PALSAR und flugzeuggestiitzte E-SAR Daten der DLR standen zur Verfiigung,
beide in voll polarimetrischem Aufnahmemodus. Als Biomassen-Referenz konnten
Feldmessungen sowie LiDAR basierte Biomassenabschidtzungen beigezogen werden. Die
erhaltenen Resultate zeigten, dass kein einzelner Polarisationskanal eine ausreichende
Sensitivitdt gegentiber Waldbiomasse aufwies, um diese akkurat abzuschétzen, weder
von satelliten- noch von flugzeuggestiitzten Riickstreuungsdaten. Nur wenn die Riick-
streuungswerte des vollen Satzes der polarimetrischen Kanéle kombiniert wurden und
die Messskala auf einen ganzen Waldbestand erweitert wurde, war es moglich, die Wald-
biomasse mit 40% Genauigkeit gegentiiber der Referenzbiomassenmessung und einem
RMSE von 74.3 t ha™! zu erreichen. Jedoch nur, wenn flugzeuggestiitzte Daten analysiert
wurden. Die schlechte Biomassenabschédtzung der riickstreuungsbasierten Methoden
konnen durch das hohe Rauschen und die Saturierung der L-Band Riickstreuungswerte
bei relativ niedriger Biomasse erkldrt werden. Die hohen Biomassenwerte, welche in den
analysierten Testgebieten zu finden sind, verhindern somit eine akkurate Abschitzung
der Biomasse. Es wurde aber gezeigt, dass geometrische sowie radiometrische Nor-
malisierungen bei Verwendung hochaufgeloster Digitaler Hohen-Modellen (DHMs) die
Biomassenabschédtzung verbessern konnen.

Es hat sich erwiesen, dass flugzeuggestiitzte Waldhohen- und Biomassenabschédtzungen
auf Waldbestandesebene basierend auf PolInSAR Techniken weniger von Sattigungsef-
fekten beeinflusst waren. Die Biomassen-Abschétzungen durch PolInSAR wiesen jedoch
hohe Unsicherheiten auf, mit einem relativen RMSE von tiber 100% der mittleren Ref-
erenzbiomasse. Die niedrige Kohdrenz aufgrund temporaler Dekorrelation in den ALOS
PALSAR Daten iiber den Studiengebieten verunmoglichten eine Waldhéhen-Abschitzung
mit diesen satellitengestiitzten Daten.

Die in dieser Arbeit erhaltenen Resultate zeigten auf, dass es nétig ist, Alterna-
tiven zu den oft verwendeten Techniken basierend auf voll polarimetrischen L-Band
Riickstreuungs- und PolInSAR-Techniken zu entwickeln, um eine akkurate Biomassenab-

schatzung in Gebieten mit hohem Biomassenvorkommen zu erhalten.
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1 INTRODUCTION

1. Introduction

Forest biomass estimation on regional and global scales is attracting more and more attention (Koch,
2010; Saatchi & Moghaddam, 2000). The world’s total forest area in 2010 was estimated to be just
over 4 billion hectares, corresponding to 31 percent of total land area (FAO, 2010). The world’s forests
store - with over 650 billion tonnes - more carbon than the entire atmosphere and are therefore
a major carbon sink in the terrestrial carbon cycle (FAO, 2010; Koch, 2010). Yet for the world as
a whole, carbon stocks in forest biomass decreased by an estimated 0.5 Gt annually during the
period 2005-2010, mainly due to a reduction in the global forest area (FAO, 2010). Global and
regional forest monitoring has become essential and is gaining in importance, as the greatest source
of uncertainty in the global carbon cycle lies in terrestrial ecosystems (IPCC, 2007; Sandberg et al.,
2011). In order to overcome these uncertainties and to improve global climate models, more accurate
biomass estimation approaches are needed at global and regional scales.

In more regional applications, biomass estimation is essential for forest fuel load quantification in
fire management (Saatchi et al., 2007a). Furthermore, the rising market demand for wood products
and especially for wood-based bioenergy grants economic importance to biomass estimation. The
economic importance of accurate biomass estimation and repeated monitoring also at global scales
arose with the introduction of emission trading through articles 4 and 12 of the Kyoto Protocol to the
United Nations Framework Convention on Climate Change (UNFCCC) (Rosenqvist et al., 2003).

Remote sensing technologies play an important role in the estimation of global and local biomass
levels. With remote sensing, we are able to estimate biomass in a repetitive manner, allowing for
multi-temporal analysis and monitoring applications, at steadily increasing resolution and quality.
While the high costs associated with in situ measurements, the scarcity of resources, and the large
extent of the areas to be mapped hinder an accurate and complete inventory of forest resources with
frequent updates (Santoro et al., 2011; Saatchi et al., 2007b), remote sensing approaches are clearly a
viable alternative. Koch (2010) identified imaging radar and Light Detection and Ranging (LiDAR)
as essential data sets for biomass mapping, where low-frequency Synthetic Aperture Radar (SAR),
polarimetric SAR and profiling LiDAR are the most requested future systems for vegetation canopy
characterization and biomass estimation.

In remote sensing approaches, biomass is normally defined as the above-ground phytobiomass
(organic mass of plants) (Koch, 2010). Biomass level estimation through remote sensing can be
divided into direct and indirect methods. While in direct approaches, a relationship between the
signal response registered by the sensor and the biomass is determined using mostly statistical
approaches, indirect methods are based on measuring a biomass proxy first (e.g. tree height, crown
closure etc.) which is then used as an input to estimate wood volume, biomass or other forest
structural variables (Koch, 2010). In this thesis, both approaches are investigated using LiDAR and
SAR sensors.

1.1. Biomass estimation through LiDAR

There are numerous approaches reported in literature that use LIDAR metrics to retrieve biomass

information mostly at the regional level.



1.1 Biomass estimation through LiDAR 1 INTRODUCTION

Nelson et al. (1988) published one of the pioneering studies where mean canopy height was
linked to above-ground biomass at a plot level. They were able to explain 53-65% of the variability
noted in ground measurements of forest biomass. In later studies, mean canopy height as well as
canopy vertical structure measures, such as height percentiles, were used to predict biomass through
regression analysis (Lefsky et al., 1999; Lefsky & Cohen, 2002; Lim & Treitz, 2004). Lefsky & Cohen
(2002) were able to explain 84% of the observed variance in above-ground biomass at different sites
in the temperate deciduous, temperate coniferous, and boreal coniferous biomes. Lim & Treitz (2004)
were able to explain over 80% of the observed variance in above-ground biomass with regressional
models from different height percentile measurements.

Most of the more recent studies focus on indirect approaches, trying to detect single trees from
LiDAR products and measure their height and crown dimensions to infer biomass information at the
single tree level. Popescu et al. (2003) introduced an algorithm that is able to detect single trees and
their crown diameters from a Canopy Height Model (CHM) over deciduous, coniferous, and mixed
stands in the southeastern United States. They identified the tree location using a local maximum
filter. The crown dimensions were then derived by fitting a fourth degree polynomial over two
profiles of the CHM around the detected tree. Popescu et al. (2003) achieved with this algorithm a
standard error of estimate for the crown diameter of 1.36-1.41 m for dominant trees. Difficulties were
identified where the crowns of several trees overlapped.

In a later study over the same study site as in Popescu et al. (2003), Popescu (2007) used the
LiDAR software TreeVaW to detect single pine trees and retrieve their heights and crown dimensions
from a CHM. He established a regression model that relates the derived tree heights and crown
diameters with the Diameter At Breast Height (DBH) measured in the field. Even though DBH is a
tree dimension that is not directly visible on CHMs derived from Airborne Laser Scanning (ALS)
data, several studies reported that LIDAR metrics correlated well with the DBH (Popescu, 2007;
Persson et al., 2002). With the derived DBH, Popescu (2007) was able to estimate the biomass of 43
pine trees via allometric equations with an RMSE of 169 kg. The estimated biomass explained 87%
of the variance associated with the field-measured Above Ground Biomass (AGB) of all 43 trees.

A slightly different approach, still using the CHM, is to apply a watershed algorithm to delineate
the crown dimensions (Pyysalo & Hyyppd, 2002; Pitkdnen & Maltamo, 2004; Kaartinen et al., 2012).
This kind of approach reported good results in an international comparison of several tree detection
algorithms conducted by the Finnish Geodetic Institute (FGI) (Kaartinen et al., 2012).

Approaches using point cloud data instead of the CHM to detect single trees and delineate the
crown diameter are also found in the literature. Morsdorf et al. (2004) detected tree locations in a
boreal like forest in the Swiss National Park with a local maximum search algorithm. The detected
tree locations were then used as a seed-point for clustering analysis of the point cloud data. The
height of the highest laser point of each cluster was defined as the tree height and the crown diameter
could be derived considering the shape of the cluster. With this approach, Morsdorf et al. (2004)
achieved an R? of 0.92 for the linear regression between estimated and field measured tree heights.
The performance of the crown diameter estimation with an R? of just 0.2 was not as good.

Although good results are reported from using LiDAR metrics to derive biomass information at
different scales, hardly any investigations exist on temperate, dry or tropical forests. Most studies
are focused on sub-boreal forest systems such as Scandinavian forest types dominated by spruce and
pine (Koch, 2010). Nevertheless, LIDAR turned out to be one of the most applicable remote sensing
techniques for forest monitoring (Hyyppa et al., 2009) due to the information that can be obtained
on the vertical structure of the forest canopy (Koch, 2010).
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1.2. Biomass estimation through SAR

Biomass estimation with SAR instruments are of particular interest, especially due to their relative
robustness in diverse weather conditions (Koch, 2010). There are three basic approaches based on
SAR data used for biomass estimations: backscatter, coherence and phase-based approaches.

For backscatter approaches, low frequency instruments (L- and P-band) are typically used. Nu-
merous studies have been published on the relationship of single polarization backscatter data to
biomass (Dobson et al., 1992; Le Toan et al., 1992; Baker & Luckman, 1999; Mitchard et al., 2009,
2011; Sandberg et al., 2011; He et al., 2012; Kasischke et al., 1995; Peregon & Yamagata, 2013; Rah-
man & Tetuko Sri Sumantyo, 2013). In all of these studies, the cross-polarized channels (HV-, and
VH-polarization) have been found to be most sensitive to biomass. The co-polarized channels (HH-,
and VV-polarization) also showed some correlation with biomass, yet less consistent. Mitchard et al.
(2009) reported that once the HV backscatter had been taken into account, no further improvement
in the models were observed when adding data from the HH-polarization channel. The studies
agree that P-band backscatter is more sensitive to biomass than backscatter at L-band. Models have
been developed that incorporate the combination of HH-, HV-, and VV-polarization to estimate
biomass at different biomes and with different frequencies (Saatchi & Moghaddam, 2000; Saatchi
et al., 2007a, 2011). Saatchi & Moghaddam (2000) were able to explain 87% of the variance in field
measured biomass for boreal forests with L-band. Even better performance were reported if P-band
or a combination of P-, L- and C-band (up to 91% accuracy for biomass estimation) were taken.
Saatchi et al. (2011) were also able to find a strong relationship between backscatter at L- and P-band
in tropical forests. Furthermore, polarization decompositions (Pauli, Yamaguchi) have been reported
to be sensitive to biomass, with best results showing in the volume scattering part followed by the
double bounce (ground-trunk interaction) scattering part (Chowdhury et al., 2013). Yet, estimation
approaches based on simple backscatter information exhibit clear limitations, especially for areas
with higher biomass levels, as L- and P-band backscatter tend to saturate with increasing biomass.
L-band reaches its saturation level already at 60-100 t ha~!, depending upon the species type and
biota (Dobson et al., 1992). Some studies also report sensitivities of L-band to backscatter up to 150
to 200 t ha~! (Mitchard et al., 2009). P-band tends to reach its saturation limit at higher biomass
levels (Sandberg et al., 2011). Further limitation in backscatter based approaches are to be found
in more rugged terrain, as topography-induced distortions (such as shadow, foreshortening and
layover effects) impact on backscatter information, making a robust and reliable biomass estimation
in terrains with varying topography very difficult (Small et al., 2008).

Coherence based approaches are based on estimation of the complex correlation coefficient between
two SAR acquisitions (Balzter et al., 2007). In several studies, coherence is reported to decrease with
increasing biomass levels due to higher volume decorrelation in denser forest areas (Thiel et al., 2009;
Cartus et al., 2011; Askne et al., 2013; Chen et al., 2008). It has also been reported that coherence
images acquired under winter conditions tend to estimate biomass level with higher accuracy than
under summer conditions (Thiel et al., 2009). Yet, biomass retrieval based on coherence is also limited
by saturation effects and by the influence of weather at different data acquisition times (Zhou et al.,
2008).

An alternative to overcome the aforementioned limitation due to saturation of the backscatter
and coherence based approaches is found in phase-based approaches. Phase-based interferometric
SAR techniques exploit the interference patterns (so-called fringes) of two electromagnetic waves to
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estimate the topographic height of the scattering phase center (Balzter et al., 2007). The scattering
phase centre location depends on vegetation structure, scattering mechanisms and sensor charac-
teristics. The part of the forest that interacts most strongly with the radar wave depends on the
wavelength, the polarization, incident angle and of course on the vegetation itself, like thickness and
density of the crown area (Koch, 2010). Interferometric techniques can be used to estimate forest
canopy height, as the interferometric phase relates to the scattering phase center, which at suitable
wavelengths and polarizations is dependent on the terrain and vegetation canopy heights (Balzter,
2001). Height is one of the important input variables when estimating biomass through indirect
approaches. Methods that provide the extraction of heights from Earth observation data are therefore
of high interest. In one of the first studies that used Interferometric SAR (InSAR) techniques to
infer forest heights, Treuhaft et al. (1996) found an average agreement of INSAR derived vegetation
layer depth with ground data of 5 m, with the error being related to stand height. In a later study,
Treuhaft & Siqueira (2000) combined information from interferometry and polarimetry to retrieve
vegetation height with an accuracy of better than 4.2 m. Such techniques using both information from
interferometry and polarimetry are called Polarimetric Interferometric SAR (PolInSAR) techniques
(Cloude & Papathanassiou, 1997). The accuracy of repeat-pass PolInSAR techniques is limited by
temporal decorrelation caused by temperature, orientation angle and moisture changes between
the two SAR acquisitions and depends on the wavelength used (Hagberg et al., 1995; Balzter, 2001;
Zebker & Villasenor, 1992). Temporal decorrelation in interferometric SAR, especially in forestry
applications, is of increasing scientific importance (Papathanassiou & Cloude, 2003; Zhou et al.,
2008; Lee et al., 2009). Lee et al. (2009) reported that temporal decorrelation even within one day
can lead to high overestimations of forest height. To reduce the noise level in the height extraction,
many approaches found in the literature are based on stand level estimates. Kellndorfer et al. (2004)
suggested that a minimum mapping unit of approximately 1.8 ha is needed to achieve acceptable
estimates under repeat-pass conditions.

To infer PolInSAR data to canopy height, several models exist. The most well-known model is the
Random Volume over Ground (RVoG) model (Koch, 2010), which is a two-layer model composed of
a vegetation layer and a ground component (Cloude, 2005; Chen et al., 2008).

Mette et al. (2004) and Mette & Papathanassiou (2004) used the PolInSAR technique combined
with the RVoG model to retrieve forest heights that were later related to biomass through allometric
equations in heterogenous forest stands. Mette & Papathanassiou (2004) reported good agreement
of PolInSAR derived forest height with forest height indices often used in forestry (mid height of
stands, or height of the 100 trees with largest DBH in the stand) and showed that common allometric
equations can be used to infer biomass at the stand level from PolInSAR derived height estimates.

A recent approach to extract forest height and stand structure from radar data is the use of radar
tomography methods (Tebaldini, 2010; Tebaldini & Rocca, 2012). With this approach, a real 3D image,
similar to LiDAR derived point cloud datasets, of the scene is obtained by creating an additional
synthetic aperture in elevation, using a coherent combination of images acquired from multiple
parallel flight tracks (Koch, 2010).

Most recent investigations of phase-based extraction of forest height used experimental airborne
data, avoiding problems with temporal and atmospheric decorrelation (Balzter, 2001; Koch, 2010).
Only few investigations exist for space borne data (e.g. for ALOS PALSAR data in Li & Guo, 2012).
This could change with the increasing availability of TanDEM-X data (Koch, 2010), which could
further improve forest height and biomass estimation due to its (unique to date) single-pass data

acquisition mode.
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Multi-temporal analysis reported good results in biomass estimation as well, using phase-based
but also coherency and backscatter based approaches. Askne et al. (2013) were able to derive biomass
from model-based forest height estimates using TanDEM-X data at the stand level over boreal forest
with an RMSE of 16% with an R? of 0.93. Santoro et al. (2011) estimated growing stock volume with
hyper-temporal backscatter data from the C-band ENVISAT ASAR instrument in ScanSAR mode
over boreal forests with an RMSE of less than 25%. Interestingly they did not find any saturation
effects in the backscatter information up to 300 m3/ha, even though C-band backscatter data is
known to suffer from low sensitivity to biomass or growing stock volume. Santoro et al. (2011)
reported that the key for this successful biomass estimation lies in the combination and weighted
averaging over multiple ASAR acquisitions with varying incident angles over the same area. They
found that a stack of at least 20 ASAR images is needed to get a robust biomass estimate.

1.3. Research Questions

As illustrated above, numerous studies have investigated biomass estimation in forests with SAR
based approaches. Yet most studies, especially for backscatter based approaches, were based in
boreal or tropical forests, typically consisting of just a few dominating tree species (spruce, beech
etc.). Only very few studies analyzed the backscatter behavior of polarimetric SAR in temperate
forests (e.g. Dobson et al., 1992; Garestier et al., 2009; Ghasemi et al., 2013; Le Toan et al., 1992). Yet
these studies were usually undertaken in monoculture forests (e.g. pine forests) or forests dominated
by just one tree species. This was typically not the case for studies using PolInSAR techniques, where
already numerous studies of temperate forests exist, e.g. at the DLR (German Aerospace Center)
Oberpfaffenhofen study site (e.g. Mette et al., 2004; Papathanassiou & Cloude, 2001).

Studies concerning biomass estimation in areas with highly variable topography are not that
common. Most of the mentioned studies were undertaken in rather flat areas, to reduce the known
effects due to geometric and radiometric distortions in more rugged terrain. Yet, with radiometric
normalization using a Digital Elevation Model (DEM) instead of an ellipsoid model as proposed in
Small et al. (2009) or Small (2011), such topographic effects could be largely corrected, allowing for
land cover analysis and classification in hilly areas as found for example in Switzerland.

This thesis assesses the feasibility of using fully polarimetric SAR data over heterogenous, tem-
perate mixed-forests in northeastern Switzerland using different approaches (backscatter, coherence
and phase based approaches). Differences between airborne vs. spaceborne SAR data are analysed.
For the airborne case, fully polarimetric SAR data acquired by the Experimental SAR (E-SAR)
system operated by the German Aerospace Center (DLR) over Hinwil was investigated. For the
spaceborne case, fully polarimetric ALOS PALSAR acquisitions covering the whole north-eastern
part of Switzerland in the time period between 2006 and 2009 were available. In the course of this
thesis, the following research questions were evaluated and assessed:

1 How sensitive are airborne and spaceborne fully polarimetric L-band SAR backscatter and Pauli
decomposition data to biomass in heterogenous temperate mixed-forests found in the Swiss north-eastern
midlands?

2 How do different SAR backscatter terrain normalization products impact on biomass estimation ap-
proaches?
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3 Does the more complex approach of forest structure retrieval from PolInSAR measurements deliver more
reliable biomass estimation in heterogenous temperate forests compared to backscatter based approaches?

4 How can LiDAR derived products improve biomass retrieval from SAR data?

To answer these research questions, this thesis is structured as following: First, a short theoretical
background is given in Section 2. Afterwards, the analyzed study sites and the used datasets are
introduced in Section 3. In Section 4, the methodological approach for answering the earlier stated
research questions is outlined. The results of the different methods are shown in Section 5. In Section
6, the obtained results and the methodological approach used in this thesis are discussed. Finally, a
conclusion and an outlook are given in Sections 7 and 8.
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2. Theoretical Background

2.1. Normalization of SAR Backscatter Data

Variability in terrain height within a SAR image causes several geometric and radiometric distortions
within most slant or ground range image products (Small et al., 2008). These distortions mainly stem
from fore-shortening, layover or shadowing effects within the SAR image. For accurate retrieval
of information from SAR images, e.g. biophysical properties such as biomass, a normalization to
reduce such distortions is necessary, especially in rugged terrain that can be found in Switzerland.
Such normalization products are explained in the subsequent subsections. To fully understand these
kinds of normalization, we first need to go back to radar basics with the radar equation.

2.1.1. Radar equation

The radar equation explains the relationship between the power of the transmitted pulse P; and the
average received power P;:

2 20
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where A is the radar wavelength, G? the two-way antenna gain, R the slant range, and ¢° the
backscattering coefficient (Ulaby et al., 1982).

There are three well-known conventions used for the backscattering coefficient in Equation 2.1:
B, ¢, and 0. They differ in their choice of definition of a standard reference area A in the radar
equation (Small et al., 2009, refer also to Figure 2.1). The % convention provides the natural radar
observable (Raney & Freeman, 1994) and is simply normalized by the areal sample interval in the
slant range plane (Ag). For the ¢ convention, the conventional «flat Earth» reference area A is
defined to be in the plane built up by the local ellipsoidal Earth normal vector. For the 7" convention,
the normalizing area A, is defined to be in the projection in the plane perpendicular to the slant
range direction (Small et al., 2009). For radiometric correction of SAR images, either an ellipsoid or a
Digital Elevation Model (DEM) can be utilized, resulting in either Geometric Terrain Corrected (GTC)
or Radiometric Terrain Corrected (RTC) SAR image products respectively (refer also to Table 2.1).

2.1.2. Geometric Terrain Correction

For Geometric Terrain Corrected (GTC) products, a DEM is used to geometrically transform the SAR
image into a 2D map geometry. Yet, even though the geometry is terrain corrected in a GTC product,
the radiometry of the ¢® and 7 backscatter contents remains ellipsoid-model-based. We therefore
append the subscript E to the ellipsoid-model based backscatter conventions (Small et al., 2009, see
also Table 2.1)
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Figure 2.1: Backscatter convention reference areas (Small, 2011).

2.1.3. Radiometric Terrain Correction

Since the launch of the Environmental Satellite (ENVISAT) there is an increased availability of highly
accurate information describing the acquisition geometry of spaceborne SAR imagery, enabling
tie-point free orthorectification. Together with a high precision DEM, a robust radiometric calibration
standard is possible (Small et al., 2009). One approach to incorporate a DEM for normalization is to
use the local rather than ellipsoidal incident angle 6 leading to the backscattering convention ¢ with
the normalization referred to as <NORLIM» in Table 2.1. Yet this angle-based normalization fails to
account for many important properties of radar backscatter in regions with significant topographic
variation, such as foreshortening, layover and shadowing effects (Small, 2011).

Small (2011) introduces a more complex, yet more robust approach to flatten out such radiometric
effects caused by topography. In this approach, the local illuminated area for each raster pixel is
integrated using the raster timing information and an accurate DEM of the imaged area. The SAR
image can then be normalized with this local illuminated area map (Small, 2011). The resulting
product is referred to as Radiometric Terrain Corrected (RTC) with the backscattering convention
7%, where the subscript T stands for terrain and signals that a DEM was used for the radiometric
normalization.

With the use of RTC products, the comparability of SAR images from different sensors or also
from different tracks (ascending and descending) is possible, allowing for multi-temporal analysis
with short temporal baselines useful for change detection (Small, 2011). Land-cover classification in
rugged terrain is improved, as landcover affected by topography induced SAR acquisition effects is
normalized, becoming more comparable to landcovers not affected by such effects (Small et al., 2008).

In Figure 2.2, the two normalization products GTC (2.2a) and RTC (2.2¢c) for a PALSAR PLR frame
at HV polarization are shown. In this scene, the Swiss mid-lands, part of lake Zurich (north) as well
as the pre-alps (south) are shown. The normalization area A, is shown in Figure 2.2b. It was used
to radiometrically normalize the SAR image for topographic effects. In the rather flat area in the
north, GTC and RTC images are similar because the different radiometric normalizations have less
effect on the normalized products. Yet in the more rugged terrain of the pre-alps (in the south of this
scene), topographic effects on SAR images are apparent. While topographic effects dominate in the
GTC product, the RTC image appears to be relatively flat and therefore successfully radiometrically
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Table 2.1: SAR backscatter normalization conventions (Small, 2011).

Convention 1 2 3 4 5
Symbol ﬁo (Tg 'y% (7% 'y(%
Earth Model | None Ellipsoid Terrain
Reference Area Ag A, AW As Ay
- B 0,4 | go, Ap 0, A 0 Ap
Normalization A B * a, B * A B * a, B * m

Map-geometry
product (when GTC NORLIM RTC

terrain-geocoded)

corrected. Also note the black patches in the RTC image. These are areas of radar shadow, where
there was no useable backscatter information. Such areas are uniquely masked. In the GTC product,
such areas contain backscatter values determined by the radar system'’s noise floor.

2.1.4. Polarization Angle Orientation Correction

Several studies have reported that the polarization orientation angle of the scattering media affects
the polarimetric radar signatures and that such orientation angle shifts induced by terrain azimuth
slope variations should be compensated (Lee et al., 2000, 2002; Lee & Ainsworth, 2011). Lee et al.
(2000) used orientation angles for polarimetric SAR data compensation, to ensure accurate estimation
of geophysical parameters in rugged terrain. To successfully compensate for these effects, it is
important to accurately estimate shifts in orientation angles induced by the azimuth slope variations.

The polarization orientation angle is the angle of rotation about the Line Of Sight (LOS). For flat
areas, the orientation angle is zero, but when the terrain becomes rugged, the orientation angle is
shifted from zero. The polarization orientation angle shifts are induced by surfaces with non-zero
azimuth slopes, and by man-made targets such as buildings that are not aligned in the along-track
direction and bridges with tilted linear structures (Lee et al., 2000, 2002; Schuler et al., 2000). Lee &
Ainsworth (2011) reported that the orientation angle is less sensitive to the surface slopes the higher

the radar frequency is.

In order to estimate the Polarization Orientation Angle (POA) from fully polarimetric SAR data,
the four complex valued SAR images (SLCs for HH, HV, VH, and VV polarization) need to be
converted into the coherency matrix [T]. The coherency matrix [T] is defined as the cross-product of
the Pauli scattering vector (Lee & Ainsworth, 2011):

(ISuH + Syv|?) ((SuH +Svv)(Sue — Svv)*)  2((SuH + Svv)Sty)
[T] = | ((Sun — Svv)(SuH + Svv)*) (ISap — Svv[?) 2((SeH — Svv)Siy) (2.2)
2(Syv (Suu + Svv)*) 2(Suv(SHH — Svv)*) 4(|Spv|?)

where S;, are the elements of the scattering matrix [S] and the subscripts t and r stand for the

transmitting and receiving polarization (either H for horizontal or V for vertical) respectively.
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Figure 2.2: PALSAR PLR image products at HV-Polarisation. Subset of frame 940 of track 640 at
off-nadir angle 23.1°, image acquisition on gth of May 2009 over the Swiss pre-alps around
Rapperswil. (a) GTC, (b) simulated Area for radiometric normalization and (c) RTC.
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Note that the diagonal elements of the coherency matrix denote the scattering powers of the
three decomposition bases in the Pauli decomposition (refer also to Section 2.2). The polarization
orientation angle 6 can then be calculated with the following equation (Lee & Ainsworth, 2011):

_ —4Re({((SHH — Svv)SHv))
=1 [t <_<|SHH_SVV|2>+4<|SHV2>> +n}

In Equation 2.3, Re(A) denotes the real part of A and the factor of 4 limits the range of 6 to

(2.3)

[—%, &]. Tt should be noted, that the orientation angle is phase wrapped just like the interferometry
wrapped phase, but unlike interferometry, no fringes exist to aid phase unwrapping. To extract
useful information out of this orientation angle, the phase has to be unwrapped by adding 7 (Lee &
Ainsworth, 2011). In order to compensate for the estimated orientation shifts, the coherency matrix
[T] has to be rotated by the orientation angle 6:

1 0 0
[T(6)] = [U)[T][U] !, with[U] = |0 cos20 sin20 (2.4)
0 —sin20 cos26

where [T] and [T(6)] are the coherency matrices before and after rotation by the orientation angle 6,
and [U] is the unitary LOS rotation matrix (Lee & Ainsworth, 2011; Chowdhury et al., 2013). After
rotation, the coherency matrix elements should be compensated for orientation angle shifts induced
by the azimuth slope variations due to rugged terrain.

2.2. Polarimetric Target Decomposition

Polarimetric target decompositions were developed to separate polarimetric radar measurements into
basic scattering mechanisms for the purpose of geophysical parameter inversion, terrain and target
classification etc. (Lee & Ainsworth, 2011). The principle behind polarimetric target decomposition
techniques is that a polarimetric response can be characterized by a combination of idealized
scatterers (Woodhouse, 2006b). One of the frequently used polarimetric target decompositions used
in remote sensing is the coherent Pauli decomposition. As opposed to the incoherent decomposition
theorems such as the entropy, alpha and anisotropy decomposition introduced by Cloude & Pottier
(1996) or the Yamaguchi decomposition introduced by Yamaguchi et al. (2005), the coherent Pauli
decomposition preserves the amplitude and phase of the complex SAR data. A comprehensive
overview of decomposition theorems is given in Cloude & Pottier (1996).

The Pauli decomposition consists of three decomposition basis, each relating to one of the three
major scattering mechanisms found in SAR images: surface scattering (odd bounce), double bounce

(even bounce) and volume scattering.

Surface Scattering: In this scattering mechanism, the backscatter in HH and VV polarizations is
approximately equal and a rotation in polarization (such as in HV and VH) does not exist. It
is applicable for spherical objects or an exposed flat surface. It is also called the odd bounce
scattering mechanism, as it includes single reflections off tree trunks (or vertical objects in
general), or multiple but odd numbered reflections, such as surface-trunk-surface reflections.
Mathematically expressed it has the form Sy + Syvy.

11
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Figure 2.3: Pauli decomposition image over the Hinwil E-SAR test site. Red = HH - VV (-39 to -3
dB), Green = HV + VH (-46 to -5 dB) and Blue = HH + VV (-31 to 1 dB). Channels were
autoscaled.

Double Bounce: This scattering mechanism is characterized by double reflections, usually between
a horizontal and a vertical plane. The backscatter in HH and VV polarization are approximately
equal, but the phase angle is shifted by 180°. Such a scattering mechanism is typically found in
forests (surface-trunk interaction) or urban areas (surface-building interaction). Mathematically
expressed it has the form Sy — Syv.

Volume Scattering: In this scattering mechanism, only cross-polar backscatter is present. The
scattering in this mechanism stems from randomly oriented dipole elements, typically found

in the canopy of forests (tree crowns). The mathematical term for this scattering base is

Syv + Svy-

Note that these three terms Sy + Syv, Syy — Syv and Syy + Syp are the diagonal elements of
the coherency matrix shown in Equation 2.2, which is why this coherency matrix is also known as
the Pauli-based covariance matrix (Yamaguchi et al., 2005).

These three scattering mechanism terms provide a useful means for generating an RGB color
composite for visualizing the data, as shown in Figure 2.3. In this RGB composite, each scattering
mechanism is assigned a color. In our case, blue for surface scattering, red for double bounce
scattering and green for volume scattering. We can clearly see that the surface scattering part is
mainly visible in flat agricultural areas. Also visible is red double bounce scattering in the urban
areas and green volumetric scattering, dominating in forest areas. Note that some urban structures
show significant volume scattering terms. This is due to the alignment of the buildings relative to
the SAR instrument LOS (Zuberbiihler, 2012; Cloude & Pottier, 1996).

2.3. SAR Interferometry

Most indirect approaches to estimate biomass are based on retrieval of the canopy height. While this
height retrieval is relatively simple for LiDAR acquired data, it can be a challenge in the SAR case.
Height retrieval from a single SAR image is not possible. Only if we take two or more complex SAR
images into account, it is possible to retrieve height information from SAR data using a technique
called interferometry. While we focus just on the wave amplitude in the backscatter approaches,
the major concern in interferometry lies on the phase of the transmitted and received wave. The

12
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phase of a wave can be a sensitive measure of path length. A single measure of phase is not
usually very useful as the exact number of absolute wave cycles is rarely known, but a comparison
between two or more phase measurements can provide a measure of path length difference to within
a fraction of wavelength (Woodhouse, 2006b). This superposition of two or multiple waves is called
interference and gives us the phase difference between the two image acquisitions. This phase
difference measured between the two images at a given look angle is related to the two-way (for
repeat-pass interferometry) path length difference AR (Bamler & Hartl, 1998):

op = ZHAA—R = kAR (2.5)
where J¢ is the phase difference in radians, A is the wavelength and k is the wavenumber. The SAR
interferogram is generated by cross-multiplying, pixel by pixel, the first SAR image with the complex
conjugate of the second (Bamler & Hartl, 1998), giving the phase difference of the two complex SAR
images at each pixel. This interferogram can be used to generate a DEM. A combination of two SAR
images, to retrieve further information not retrievable from a single SAR image (such as a DEM),
is only possible if at least one imaging parameter is different compared with the first image. This
parameter can either be the flight path, acquisition time or wavelength (Bamler & Hartl, 1998). This
thesis is concerned with single baseline repeat-pass interferometry. The flight tracks between the two
image acquisitions differ in time and in flight path, giving a temporal as well as spatial baseline.

One limitation of INSAR DEMs is that they have a vegetation bias, meaning that they represent a
ground-plus-canopy surface and not the ground surface alone. This can be used to our advantage, as
it means that InNSAR may provide information on the vegetation height (Woodhouse, 2006b). This
vegetation bias is highly dependent on the wavelength. While shorter wavelengths show a higher
vegetation bias, larger wavelengths are less influenced by the vegetation, as they can penetrate into
the canopy.

Unfortunately, not every phase difference measured gives us meaningful information about the
topography. Interferograms are often affected by noise, for example in areas influenced by radar
shadow. Therefore, a measure of the meaningfulness of the phase information is needed. This is
found in the so called coherence, which is the complex correlation between the phase information
of the two complex SAR images. The coherence tells us, how well a single phase value correlates
with the neighboring phase values and gives us therefore a prediction of how consistent a phase
difference in the interferogram is. This complex coherence v is calculated in the following way:

Z pips
y= N (2.6)

/%Im?%\ﬁz\z

where p; and p; are the Single Look Complex (SLC) pixel values and N is the number of pixels in

the N-sample window used to estimate the coherence. Note that < is a complex number, where the
phase angle of 7y corresponds to the phase difference, and the amplitude || gives a measure of the
meaningfulness of the measurement. The denominator normalizes the magnitude of 7 so that it
ranges from o to 1. If the pattern of complex values over the N pixels are completely correlated then
they are fully coherent and |y| = 1. If || = 0 then the patterns are uncorrelated and are said to be
incoherent (Bamler & Hartl, 1998; Woodhouse, 2006b).
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3. Data

3.1. Study Sites

The study area of this thesis is located in the north-eastern part of Switzerland. Two locations were
chosen as the primary study sites. The study site selection was based on the availability of ground
truth and airborne laser scanning data. The two test sites are located on the Lagern (red rectangle
in Figure 3.1) and in the greater Hinwil area (yellow rectangle in Figure 3.1). In the following
subsections, each study site is characterized in depth.

As these two test sites are rather close together and both located in the Mittelland, the climatic
conditions at each test site are very similar and can be characterized as temperate, with a mean
annual temperature around 9° C and a mean annual precipitation of 1000 to 1500 mm (MeteoSwiss,
2014a,b).
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Figure 3.1: Study sites: Lagern (red) and Hinwil (yellow). Image taken from a SPOT mosaic provided
by swisstopo (Swisstopo, 2006).

3.1.1. Lagern Study Site

The Lédgern is a mostly forested, long and narrow hill located in the cantons of Aargau and Zurich.

The altitude above sea-level ranges between 450 and 870 meters, therefore showing some topography
with steep slopes on the northern and southern hill face. The dominating forest type is mixed
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deciduous forest (see Table 3.1 )(Swiss Federal Statistical Office, 2004) (see Section 3.6 for further
explanation of the occurring forest types). The test site covers an area of 2100 by 6000 meters (1260
ha) and is highlighted in Figure 3.2.

Table 3.1: Forest Types at the Lagern Test-Site (data according to Waldmischungsgrad 92 dataset, Swiss
Federal Statistical Office, 2004).

Forest Type Relative Occurence [%]

Coniferous 124
Mixed-Coniferous 19.2
Decidiuous 33.1
Mixed-Deciduous 35.4

N
(o2}
o

259 [

Northing [km]

258
257 &

256

255 55 - 2 ) S Vg R : \ ¢ g
666 668 670 672 674 676 678 680

Easting [km)]

Figure 3.2: The Lagern test site (highlighted in red). Data taken from SPOT mosaic provided by
swisstopo (Swisstopo, 2006).

3.1.2. Hinwil Study Site

As opposed to the Lagern test site, the Hinwil study site is not a large connected forest, but shows
several smaller forest stands interspersed with agricultural areas and some villages. The western
part of the test site is rather low and shows only moderate topographic variability, except for some
drumlins built during the last ice-age. This changes rapidly in the eastern part of the study site,
where we find some topographic features with rather steep hill faces. This study site therefore shows
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the biggest topographic variability of both test-sites, with an altitude above sea-level between 520
and 1330 meters.

The extent of the study site differs depending on the methodology used for the biomass estimation
and the available reference data (see Figure 3.3). The smallest extent applies to biomass estimation
approaches using DLR E-SAR data (blue rectangle in Figure 3.3); it covers an area of about 3000 ha.
This subset of the whole test-site extent covers the rather flat part of the Hinwil test-site. The
available plot level ground truth data from the Kantonales Stichproben Inventar (KSP), covers the
area highlighted with the yellow rectangle in Figure 3.3. When comparing ALOS PALSAR data to
airborne laser scanning data, the extent shown in red in Figure 3.3 was studied, with an area of
nearly 6000 ha. This extent also shows some topographic changes especially in the eastern part.

The dominating forest type for the E-SAR and the ALS data extent is mixed-coniferous forest (see
Table 3.2). Thanks to the extensive forest plot data available from the KSP dataset (refer to Section
3.2), we also have a more detailed summary of the tree species occurring at the Hinwil study site.
The most common tree species at the Hinwil study site are beech (fagus silvatica) and spruce (picea
albies), followed by fir (albies magnifica) and ash (fraxinus excelsior), as shown in Table 3.2.
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Figure 3.3: The Hinwil test site (yellow rectangle: KSP data bounding box, blue rectangle: ESAR
data extent, red rectangle: ALS data extent). Data taken from SPOT mosaic provided by
swisstopo (Swisstopo, 2006).

3.2. Forest Plot Survey Data

The building department of the canton of Zurich conducts extensive ground surveys (Kantonales
Stichproben Inventar (KSP)) covering selected forested areas in the canton. In the survey available,
forest plot samples were measured in a predefined grid of 8o x 300 meters in west-east (8o m) and
south-north (300 m) orientation respectively. For selected areas, a denser sampling was undertaken
with a grid size of 80 x 150 meters. Each sample plot comprises an area of 3 ares (horizontal radius
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Table 3.2: Relative occurrences of forest types and tree species in the two Hinwil study site extent
for E-SAR and ALS analysis according to the KSP dataset (see Section 3.2 for further
explanation about KSP data).

Occurences [%]
Forest-Type E-SAR Extent ALS Extent

Coniferous 36.2 14.9
Mixed-Coniferous 449 44.1
Mixed-Deciduous 13.1 34.6

Deciduous 5.8 6.4

Tree Species

Beech (fagus silvatica) 15.2 28.1
Spruce (picea albies) 52.4 31.3
Fir (albies magnifica) 20.7 17.7

Ash (fraxinus excelsior) 4.4 9.2
Maple (acer) 2.2 5.9
Rest 5.1 7.8

of 9.77 m). Inside this area, every tree was individually assessed and measured. The assessed
parameters used in this thesis are listed in Table B.1.

Inside of the three ares plot, all trees and shrubs with a diameter at breast height (DBH) larger or
equal to 12 cm were measured. The breast height is defined as 1.3 meters above ground level. Dead
and broken trees were measured, if they were at least 1.3 meters high. The position of each tree
was surveyed in polar coordinates (azimuth and radius) relative to its center plot coordinate. Trees
that lay inside of the sample plot, but have the center of the tree outside of the sample plot were
not measured. Parameters describing the general neighborhood at and around the sample plot (e.g.
forest mixing factor or canopy closure) were assessed in a 50x50 m? area centered at the sample plot
center (Building Department Canton of Zurich, 2009).

3.3. Airborne Laser Scanning Data

For the two study sites Lagern and Hinwil ALS data were available. The ALS instrument measures
with a laser beam the distance between the instrument and the surface. Together with exact
information about the location and bearing of the airplane (Global Positioning System (GPS) and
Inertial Navigation System (INS) measurements), high resolution 3D point-coordinates of the reflected
ground targets can be calculated (Albertz, 2007).

Both data acquisitions were undertaken by the company TopoSys. For both test sites, raw point
cloud data as well as processed and rasterized Digital Surface Model (DSM) and Digital Terrain
Model (DTM) were available. Raw point cloud data includes the X-,Y- and Z-coordinates of each
laser return. The DSM is a high resolution surface model that includes all visible landscape elements
such as bare ground, crops, forests, buildings and infrastructure buildings such as towers, bridges
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and power lines. The DTM models the bare ground topography, where surface structures such as
forests, buildings, etc. are filtered out (Swisstopo, 2007).

Details of the datasets for the two study sites are listed in the following subsections. A comparison
between the datasets is outlined in Table 3.3.

Table 3.3: Comparison between the Hinwil and Lagern ALS datasets. Information according to
(TopoSys, 2003, 2010ab).

ALS dataset over Hinwil ~ALS dataset over Lagern

Acquisition date leaf-off 01.04.2003 10.04.2010
18.04.2003

Acquisition date leaf-on - 01.08.2010

Datasets DSM, DTM, Point Cloud DSM, DTM, Point Cloud

Flight Altitude [m.a.g.1.] 1400 500

Raster resolution [m] 1 0.5

Reference Coordinate System LVo3 (CH1903) LVg5(CH1903+)

Positional Accuracy [m] < 0.5 < +0.5

Vertical Accuracy [m] < #+0.15 < #+0.15

Laser Mode First-Echo / Last-Echo Full-Waveform

Average Point density [hits/m?] 12 50

3.3.1. Hinwil Study Site

The ALS data over the Hinwil study site was acquired on the 1st and 18th of April 2003 when the
vegetation was still in its leaf-off state. The flight altitude was at about 1400 meters above ground.
The system was in Last-Echo and First-Echo Mode, classifying the laser returns either to last-echo or
first-echo according to the amount of energy returned to the system. A full wave-form model of the
laser return from the 2003 survey is therefore not available (TopoSys, 2003).

The raw point cloud data is stored flight-strip wise in an ASCII-format and contains all measured
laser returns. No previous data filtering was done by TopoSys, the data therefore still contains noise
such as swarm of birds or multiple reflections. The DSM and DTM were already pre-processed
(filtered) and interpolated into a 1 meter resolved raster dataset. For the DSM, laser points classified
as first-echo were mainly used, while for the DTM mainly last-echo points were used. Raster cells
with missing data points were not filled. The reference coordinate system of the dataset was the
swiss coordinate system LVo3 (CH1903). The positional accuracy of the dataset is less than 0.5 meters
and the height accuracy is less than o.15 meters (TopoSys, 2003). The mean point density over the

whole study site is about 12 hits per m?.

3.3.2. Lagern Study Site
The ALS measurements covering the Lagern study site were acquired on the 10th of April 2010 and

on the 1st of August 2010. For this study site, we have measurements of the leaf-off as well as the
leaf-on stage of the vegetation. The flight altitude of both acquisitions was about 500 meters above
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ground. The ALS system used for this dataset was in full-waveform mode, therefore delivering
multiple points for each X-Y-Coordinate. For this dataset, the point cloud data containing the X-,
Y- and Z-Coordinates of each echo was available in the LAS format. As for the Hinwil dataset, the
DSM and DTM were filtered and interpolated into a raster with 0.5 meter pixel spacing. Pixels with
missing data were not filled during this process. The reference coordinate system of the dataset was
the swiss coordinate system LVg5 (CH1903+). The positional accuracy of the dataset is less than 0.5
meters and the height accuracy less than o.15 meters (TopoSys, 2010a,b). The mean point density

over the whole study site was about 50 hits per m?.

3.4. ALOS PALSAR Data

The Advanced Land Observing Satellite (ALOS) was launched with an H-IIA rocket from the Japanese
Space Exploration Agency (JAXA) Tanegashima Space Center on January 24, 2006. ALOS carried
three remote-sensing instruments: the along-track 2.5m resolution Panchromatic Remote-sensing
Instrument for Stereo Mapping (PRISM), the 10om resolution Advanced Visible and Near-Infrared
Radiometer type 2 (AVNIR-2), and the variable resolution polarimetric Phased Array L-band Synthetic
Aperture Radar (PALSAR) (Rosenqvist et al., 2007; Shimada et al., 2009). ALOS orbited the earth
in a sun-synchronous orbit at 691 km, passing the equator at about 10:30 and 22:30 local time in
descending and ascending orbits respectively. ALOS circled the earth 14.6 times a day and needed
671 revolutions for a global coverage. ALOS therefore had a repeat cycle of 46 days (Rosenqvist et al.,
2007).

For this thesis, data acquired by the Phased Array L-Band Synthetic Aperture Radar (PALSAR)
were analyzed. PALSAR was an enhanced version of the JERS-1 SAR, developed jointly by JAXA
and the Ministry of Economy, Trade and Industry (METI). It was a fully polarimetric instrument,
operating at L-band with a 1270 MHz (23.6 cm) center frequency. PALSAR was operated in five
different observation modes: Fine Beam Single polarization (FBS), Fine Beam Dual polarization
(FBD), Polarimetric mode (POL or PLR), ScanSAR wide beam (WB) mode, and Direct Transmission
(DT) mode (see Figure 3.4). In FBS mode, PALSAR was operated with either HH or VV polarization,
in FBD mode the polarization options were HH/HV or VV/VH. The viewing angle was variable
between 9.9° and 50.8° off-nadir. The fine beam modes yielded a swath width of 70 km and a ground
resolution of 10 x 10 and 10 x 20 m in FBS and FBD modes respectively (Rosenqvist et al., 2007).

In this thesis, focus lies on the fully polarimetric mode (PLR) (also known as POL mode), providing
full quad-pol (HH, HV, VH, VV) data with a bandwidth of 14 MHz. The default off-nadir angle for
polarimetric acquisitions was 21.5°, this yielded a swath width of 30 km and a ground resolution of
30 x 10 m. The incident angle range lay between 22.8° and 25.2° from near to far range (Rosenqvist
et al., 2007). A more detailed list of PALSAR characteristics is provided in Table A.1 in Appendix A.

The PALSAR data used in this thesis was provided as raw data from the European Space Agency.
Five PALSAR tracks comprising three frames each at two off-nadir angles (21.5° and 23.1°) were
available covering most of the north-eastern part of Switzerland and therefore covering all study sites
for this thesis. For several frames, multiple acquisition dates were available, enabling the possibility
of time series or interferometric studies. Overall, a total of 22 frames were available. All frames are
listed in Table A.2 in the Appendix A.

Unfortunately, ALOS stopped communicating with Earth on April 22, 2011, ending its mission
after five years of operation (Clark, 2011).
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ScanSAR Mode

Polarimetic Mode (FB#1~#5)
Fine Beam (single/dual) Mode (FB#1~#18)

Figure 3.4: PALSAR observation modes (Rosenqvist et al., 2007).

3.5. DLR E-SAR Data

For the Hinwil study site, also airborne SAR data was available. The data was acquired with the
E-SAR instrument operated by the German Aerospace Center (DLR) on the morning of the 12th
of September 2006 over a narrow strip over the Hinwil study site (see blue rectangle in Figure 3.3
in Section 3.1.2). On this date, a total of 17 tracks were flown with different horizontal baselines,
allowing for interferometric as well as tomographic studies. The sensor was configured to acquire
fully polarimetric L-Band SAR data. A summary description of the sensor characteristics is provided
in Table 3.4. As it is an experimental system, also different system setups are available in X-, C-, and
P-band (DLR, 2000).

The E-SAR raw data was processed and focused to SLC products by the DLR with their internal
processing facilities, whereby they already co-registered each SLC to the master-track. Further
processing steps were then undertaken in the course of this thesis. They differed slightly depending
on whether the data was used for backscatter sensitivity or PolInSAR analysis.These processing steps
are further explained in Sections 4.1.2 and 4.1.5.

For the backscatter sensitivity analysis, the track labeled as master track by the DLR was used.
A second flight track (slave) was chosen for the PolInSAR study. Its selection was based on its
suitability for the later retrieval of forest height. Several studies used a short horizontal baseline (e.g.
5 m in Chen et al., 2008 or 8-10 m in Mette & Papathanassiou, 2004) paired with a short temporal
baseline of a few minutes. Only two of the tracks available had a similar horizontal baseline and
were therefore considered for this study. Unfortunately, these two tracks had a temporal baseline of
several hours and temporal decorrelation could not be neglected. Of the two remaining candidates
for the slave track the one with the straightest flight track was chosen. Further specification of the
two tracks is provided in Table 3.5.
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Table 3.4: DLR E-SAR instrument specification for the Hinwil L-Band mission.
DLR E-SAR Instrument

Frequency [GHz] 1.3 (L-Band)

Wavelength [m] 0.23

PRF [1/s] 400

Chirp Bandwidth [MHz] 94

Sensor Mode  Fully Polarimetric

(HH,HV,VH,VV)

Look Direction Left

Pixel Spacing Azimuth (SLC) [m] 0.455
Pixel Spacing Range (SLC) [m] 1.499
Incidence Angle [deg] 25 - 60

Table 3.5: Master and slave track specifications for PolInSAR study. The Ahy,; calculation is referenced
to a pixel in the middle of the scene.

obswisaro3zosx1 (Master) obswisaro207x1 (Slave)
Acquisition date 12/09/2006 12/09/2006
Acquisition time 10:39:27 7:43:26

Temporal Baseline [h]
Horizontal Baseline [m] -10
Perpendicular Baseline [m] -2.5
Ahyy [m] +140
Wind speed [m/s]
]
]

Temperature [°C

1.0 1.2
19.2 16.3

Precipitation [mm
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The vertical wavenumber (kz) data used for later forest height retrieval was provided for this
master-slave track combination by DLR. For height retrievals, the height of ambiguity (h,) is
of importance. The height of ambiguity is defined as the altitude difference that generates an
interferometric phase change of 27t after interferogram flattening (Ferretti et al., 2007). If the Ahy,
is somewhere in the range of possible canopy heights (o to around 35 meters), ambiguities in the
height retrieval become common, especially in the case of larger perpendicular baselines (B;). The
height of ambiguity can be estimated with Equation 3.1 (Ferretti et al., 2007)

Ahyy = % * Rxsin(6) *1531:(9) (3.1)
where R is the range distance, A the wavelength,  the incident angle and B, the perpendicular
baseline. For the chosen master-slave combination, Ahy,; was around £ 140 meters and should
therefore not influence the canopy height retrieval.

The weather conditions at the time of the E-SAR campaign are listed in Table 3.5. Weather
conditions such as wind and temperature can induce further decorrelation and could therefore
influence the forest height retrieval negatively. The weather information was taken from the climap
database managed by the Federal Office of Meteorology and Climatology MeteoSwiss (MeteoSwiss,
2010). The data were measured at two separate stations close to the Hinwil study site. The wind
speed measurements stem from the station at Schmerikon (Coordinates: 713720 m Easting, 231500 m
Northing in Swiss LVo3), about 12 km south-east of the Hinwil study site. The station lies at 408 m
above sea level (a.s.l.), slightly lower than the Hinwil area, but the wind conditions should not differ
much between these two locations. The temperature and precipitation measurements were taken at
the meteo station at Wadenswil (Coordinates: 693770 m Easting, 230780 m Northing in Swiss LVo3),
about 13 km south-west of the Hinwil study site. The station is at 463 m a.s.l.. The precipitation
value refers to the whole day, i.e. no rain occurred there on this day.

3.6. Forest Mixture Data (Waldmischungsgrad, WMGo9z2)

For forest, non-forest masking purposes and for specific forest type analysis, the forest mixture
dataset Waldmischungsgrad 1992 (WMGoz2) provided by the Swiss Federal Statistical Office (BfS) was
used. This dataset is available for the whole of Switzerland at 25 meter pixel resolution, where each
pixel is classified with the corresponding forest mixture. The six classes found in the dataset are
listed in Table 3.6.

Table 3.6: Forest type classification in WMGg2 dataset.

Class Description

o} Non-Forest

1 Coniferous Forest (more than 9go% coniferous forest)
2 Mixed-Coniferous Forest (50 - 90% coniferous forest)
3 Mixed-Deciduous Forest (10 - 50% coniferous forest)
4 Deciduous Forest (less than 10 % coniferous forest)
9 No classification available
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For the data basis of the WMGo2 dataset, 11 Landsat-5 TM-Scenes from the years 1990 to 1992,
with acquisition dates between July and September, were used. First the Landsat images were
geometrically and radiometrically corrected before the two classification steps leading to the final
product were undertaken. The first classification step classified the whole of Switzerland into
forest and non-forest areas with the help of parallelpiped and maximum-likelihood algorithms.
The forest, non-forest classification reached an accuracy of 91.8% (Swiss Federal Statistical Office,
2004). Afterwards, the forest pixels were classified into forest mixture classes corresponding to the
descriptions given in Table 3.6. This classification was also carried out with a parallelepiped- and
maximum-likelihood-algorithm. Compared to the reference information taken from the Swiss Forest
Inventory (LFI1), this classification achieved an overall accuracy of 59.8%. The coordinates were
based on the Swiss LVo3 (CH1903) coordinate reference system (Swiss Federal Statistical Office,
2004).

3.7. Forest Mask from swisstopo PK25 dataset

For a few applications in this thesis where the forest mask from the WMGg2 dataset with 25 meters
resolution was too coarse, the pixel map PK25 (Pixel Karte 25) provided by the Federal Office of
Topography swisstopo with a pixel resolution of 1.25 meters was used. The PK25 raster maps are
the official digital national maps of Switzerland and are based on the printed national topographic
maps with scale 1:25’000. The reference coordinate system is LVo3 (CH1903). The dataset consists
of several layers. One of these layers is the forest area layer (so-called wton layer). This layer was
used to mask out non-forest areas in combination with highly resolved data (i.e. ALS or E-SAR data).
As this dataset covers the whole of Switzerland, the dataset was separated into several sub-parts
(corresponding to the printed map sheets provided by swisstopo) with different release dates. The
sub-parts of the wton layer used in this thesis were based on the 2007 and 2008 data acquisitions for
the Swiss topographic maps provided by swisstopo (Swisstopo, 2012).
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4. Methodology

In this section, the methodologies used in this thesis are outlined and the different approaches to
extract biomass information are described. In general the workflow followed this scheme:

1. Pre-processing of the SAR-datasets
2. Establishing biomass reference information from forest inventory and ALS measurement
3. Processing and employment of auxiliary datasets for forest masking and stand retrieval

4. Establishing a backscatter and decomposition power vs. biomass relation using regressional
models

5. Inverting the retrieved backscatter vs. biomass models to directly predict biomass from
backscatter values

6. Retrieving forest height from PolInSAR measurements and comparing them to ALS retrieved
canopy height at the stand level and using transect analysis

7. Relating PolInSAR derived canopy height to biomass via regressional analysis
8. For illustrative purposes, several mosaics of the PALSAR dataset are generated and visualized

In order to retrieve the model parameters, a free Matlab curve fitting toolbox ezyfit (Moisy, 2014)
was used when just one independent variable was present. For multiple independent variables, the
function polyfitn (D’Errico, 2006) was used. Polyfitn fits a general polynomial regression model in #
dimensions.

In the following sections, the processing steps outlined above are further described.

4.1. SAR data pre-processing

In Figure 4.1, the scheme for pre-processing the SAR data is outlined. The processing chain differs
slightly depending on the SAR data (PALSAR or E-SAR) and the methodology (backscatter or
PolInSAR).

4.1.1. PALSAR pre-processing

In order to receive focused SLC images of the raw PALSAR PLR images, the PALSAR Instrument
Processing Facility (IPF) version 2.0 was used as described in Schubert & Small (2012). One difference
between IPF and JAXA processed PALSAR raw data is that the IPF processor focuses the raw data
to an azimuth timing convention based on zero Doppler, whereas the JAXA level 1.1 products are
processed using the estimated Doppler centroid (Schubert & Small, 2012). In a later step, the focused
SLCs were multi-looked (1 look in range and 6 or 5 looks in azimuth for PLR images acquired at
21.5° or 23.1° off-nadir angle respectively) and converted to detected p° intensity products using the
software imop2rs! developed by David Small.
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Figure 4.1: Workflow diagram of the processing of raw SAR data for later backscatter, polarimetric
decomposition and PolInSAR analysis. Processes highlighted in red are performed in
Matlab version R2013a, processes highlighted in blue are performed in PolSARPro v4.2,
and processes highlighted in green are performed with scripts and software provided by
the RSL (developed by David Small).
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4.1.2. E-SAR pre-processing for Backscatter Analysis

In order to be able to use the RSL processing scripts to convert the SLC products to multi-look
detected images, the SLC products delivered by DLR had to be converted into an RSL-compatible
SLC format. The conversion step included a translation of the information found in the DLR headers
into an RSL-formatted header.

The converted SLC products for each polarization were then multi looked (6 looks in azimuth
and 2 looks in range) and converted to f° values. The multi-looking reduces the noise in the data
and delivers a more reliable estimate of the backscatter value. The pixel spacing of the multi-looked
image is 3 meters in range and in azimuth in slant-range geometry. To get calibrated g° values in dB,
a calibration factor of -60 dB was applied according to the DLR image processing report (Horn et al.,
2007). The equation to get f° values from E-SAR SLC products are:

B°[dB] = 10 % log10({(I* + Q?))) — 60dB (4.1)
P+ Q)
B’ = 1500000 4-2)

Where I and Q are the real and imaginary part of the complex value respectively and the () brackets
denote a spatial averaging, performed with the 6x2 multi-looking.

In order to receive GTC products in the 7% backscatter convention, the B° values had to be
converted to 7% values first. This was done with the following equation (Small, 2011)

72 = p° * tan O (4.3)

where 0 is the local incident angle on the ellipsoid.

4.1.3. Establish Polarimetric Decomposition Datasets

In this thesis, the well known coherent Pauli decomposition is used as a polarimetric target decompo-
sition dataset. As described in Section 2.1.4 and seen in Equation (2.2), the three Pauli bases surface
scattering (HH + VV), double bounce (HH - VV) and volume scattering (HV + VH or 2xHYV if
HV==VH) can be retrieved from the T; coherency matrix. The T3 coherency matrix can be retrieved
from SLCs by applying Equation (2.2) with the four polarization channels HH, HV, VH, and VV as
input. This is processed with the help of the Matlab function chan2T written by Lukas Zuberbiihler
(RSL). This function writes each matrix element (Ty1,T12, ..., T32, T33) into a complex float raster file.
The three Pauli bases are then retrieved from the absolute values of the diagonal matrix elements
T11, T2z, and T3z and written into separate float raster files that are compatible with the RSL scripts
used for further processing. Also note that with the established T3 coherency matrix, the calculation
of POA can be performed and the coherency matrix can be rotated along the LOS as described in
Section 2.1.4. The rotated Pauli bases can then also be written into separate floating point raster files
for further processing.
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4.1.4. GTC and RTC Generation

The multilook detected slant range products were transformed into map geometry using the software
gc¢ (see Figure 4.1). Using a DEM and the exact state vector informations, gc maps each DEM pixel to
a SAR image pixel and retrieves the local backscatter measurement. The resulting GTC product has
now the same reference coordinate system as the input DEM.

To generate RTC products, the SAR image had to be radiometrically normalized in the Range-
Doppler geometry first, before the image was finally transferred into map geometry. In this step, a
SAR image was simulated using the state-vectors of the SAR instrument and a DEM. The simulated
image was then used to radiometrically normalize the SAR backscatter image. The radiometrically
normalized SAR image could then be transferred into map geometry in the same way as in the GTC
case.

For the PALSAR case, the DHM25 DEM with a 25 meter pixel resolution, provided by the Swiss
Federal Office of Topography swisstopo (Swisstopo, 2005), was used to geocode and normalize the
SAR images. For the E-SAR case, the ALS derived DSM and DTM with a 1 meter pixel resolution
described in Section 3.3.1 was used.

4.1.5. E-SAR pre-processing for PolInSAR Analysis

The pre-processing steps for the forest height retrieval approach was performed in ESA’s open
source toolbox PolSARPro version 4.2 (ESA, 2011), capable of reading E-SAR SLC data directly. As
the two SLC images were already co-registered, no co-registration had to be done before further
processing. As described in Chen et al. (2008) and as done with the backscatter images, the SLCs were
multi-looked to 6 looks in azimuth and 2 looks in range. In order to receive the interferogram phase
and coherence information, the complex coherence was estimated using a 7x7 estimation window,
corresponding to the window size chosen in Chen et al. (2008). Yet, the background phase variation
in the raw interferogram had to be removed first. As the DLR did not deliver a flat earth phase vector
for the used master-slave combination, the background phase first had to be simulated using the RSL
software syngram. This software uses a DEM and a header file containing all necessary information
about the master and slave data acquisition geometries to generate a synthetic interferogram. The
software syngram is able to use the DEM information directly resulting in the phase variation caused
by the actual topography or to simulate the phase variation assuming a flat-earth (ellipsoid with a
given reference height). By using the first case, we generate a DEM-flattened interferogram without
the typical topography induced fringe pattern (see Figure 4.2a). By using the second case, we create
an ellipsoid-flattened interferogram with the typical topography induced fringe pattern (see Figure
4.2b). The effects of choosing one or the other technique for forest height retrievals is analyzed in the
course of this thesis. For the DEM used in the synthetic interferogram generation, the ALS derived
DSM as well as the DTM described in Section 3.3.1 were used. In Figure 4.2¢c, the coherence image of
the DSM flattened interferogram at HV polarization is shown. The forests are clearly visible due to
their lower coherence caused by volume decorrelation.
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Figure 4.2: Interferograms and coherence image for HV-Polarisation. (a) DSM-flattened interfero-
gram, (b) ellipsoid flattened Interferogram, (c) coherence magnitude |7y| image of the
DSM flattened interferogram.

4.2. Mosaic generation

As all study sites treated in this thesis were usually covered by only a single PALSAR PLR frame, no
mosaic had to be generated in order to analyze the data. Yet for illustrative purposes, the available
frames were combined to mosaics for each polarization, showing the whole data extent of the PLR
data available. As these mosaics have only illustrative purposes, more complex approaches to
combine several frames (also from two off-nadir angles) such as the Local Resolution Weighting
(LRW) approach used in e.g. Small et al. (2004) or the algorithm proposed by Shimada & Ohtaki
(2010) for combining PALSAR frames were not considered. Instead, a simple combination approach
was chosen, where overlapping pixels were averaged by the number of frames covering that specific
pixel. The conceptual work order for the mosaic generation is shown in Figure 4.3.

First, the three GTC or RTC frames (already geocoded to the LVo3 coordinate system) correspond-
ing to one track were combined together. Only frames acquired in the same overpass were combined
to reduce multi temporal effects when combining frames of different acquisition dates. For the
combination of the three frames, information about the coordinate of the upper-left pixel taken from

an annotation header was needed. With this information and knowledge of the pixel spacing (25
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Figure 4.3: Conceptual work order of the mosaic generation. Three frames of one track are combined
together. Afterwards all 5 tracks are combined to the resulting mosaic. Shown are RTC
products at HV polarization.

meters) we know exactly the geometric location of the single frames in the tracks and ultimately also
in the mosaic. To generate the whole mosaic, a total of five tracks was needed: three tracks at an
off-nadir angle of 21.5° (tracks acquired on the 5th of May 2009 (T638), 17th of April 2007 (T639) and
24th of March 2009(T640)) and two tracks at an off-nadir angle of 23.1° (tracks acquired on the 7th
of June 2009 (T639) and 9th of May 2009 (T640)). The generated tracks were then combined in the
resulting mosaic. For this, an empty geo-referenced raster was generated first with the extent of the
desired mosaic, as a place-holder for the tracks. Again using the information of the upper-left pixel
of the tracks, each track was placed exactly into the mosaic. As an auxiliary output, a coverage file
was generated that counted the number of frames covering each pixel (see Figure E.1 in Appendix E).
For pixels covered multiple times, the backscatter values were summed up. By dividing the output
mosaic by the auxiliary coverage dataset, the average backscatter of each pixel was calculated.

For the generation of the Pauli mosaics, a mosaic for each Pauli base was generated first, before
combining them into an RGB composite. In order to receive an RGB composite with sufficient
contrast between the three channels, the dynamic range of each channel was set individually. This
was done based on the program poldecomp written by Lukas Zuberbiihler. All final mosaic products

are shown in Appendix E.

4.3. Establishing Biomass Reference Information

4.3.1. Biomass Reference from Field Measurements

Most accurate biomass estimation can be achieved from field measurements. Such field measurements
were available for the Hinwil study site. As shown in Section 3.2, no direct measure of biomass
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was given by the KSP, yet a biomass proxy was provided with the diameter at breast height (DBH)
measurement. Several studies reported that DBH is the best proxy for estimating bole volume and
biomass (Kaufmann, 2001; Popescu, 2007). Kaufmann (2001) estimated bole volume from DBH
with the help of tariff functions in the course of the second assessment of the Swiss National Forest
Inventory (NFI). The following basic form of an exponential model for the bole volume Y; of a single
tree was developed by Hoffmann (1982) for employment in Swiss enterprise inventories:

Y; = exp(bo + by * In(dy ;) + b2 x In*(dy 3)) (4-4)

Where the subscript i stands for the individual tree, d; 3; stands for the DBH and the parameters
by, by and b, are the model coefficients. These coefficients are species specific and are also listed in
Kaufmann (2001). With the application of tariff functions, the rather high inaccuracies of bole volume
estimation by just using the DBH, were reduced. With the use of the above model, the standard
deviation of the residuals amounts to 26.3% of the mean bole volume (Kaufmann, 2001). An even
better estimation of the bole volume could be established if further explanatory variables were used,
such as the tree height or the diameter at 7 meters above ground. Yet these measurements were
not provided by the KSP, and the bole volume estimation was therefore based on the above stated
Equation (4.4).

With the estimated bole volume, biomass can be inferred. Thiirig & Schmid (2008) calculated the
wood mass by multiplying the bole volume by the tree type specific wood density. Afterwards they
multiplied the wood mass by the biomass expansion factor (BEF) to obtain biomass values of each
tree:

Biomass = Y; ¥ p * BEF (4.5)

Where Y; is the bole volume, p is the tree type specific wood density and BEF is the tree type specific
biomass expansion factor. The specific values for p and BEF are listed in Table 4.1. To retrieve
the total biomass in tonnes for each plot, the biomass of each tree inside the plot is summed up.
To calculate a relative measure in tonnes per hectare, this sum is divided by 3, as each KSP plot
represents an area of 3 ares, and multiplied by 100.

Table 4.1: Wood density and Biomass Expansion Factor for the two tree types (BEF values from
Thiirig & Schmid (2008), density values in tonnes dry matter/m? from Penman et al.
(2000)).

Deciduous Trees Coniferous Trees

p[t/m?] 0.54 0.44
BEF[—] 1.55 1.47

4.3.2. Biomass Reference from ALS Measurements

As one KSP plot covers a circular area of three ares (circle with 10 meter radius), roughly the
same as a square with border length of 18 meters, the biomass information from KSP plots has a
different spatial scale than the ALOS PALSAR PLR backscatter data with pixel spacing of 25 meters.
The comparison of ALOS PALSAR data to KSP plots was difficult, further hampered by unlucky
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Figure 4.4: Relative location of KSP plots compared to geocoded PLR pixels. The red crosses denote
the KSP plot center, the green circle the corresponding measured trees and the red circle
the assessed plot area.

placement of the KSP plots relative to the geocoded PALSAR pixels (see Figure 4.4). Here it is
shown that the plot center lies exactly on the border between two pixels and the whole plot area
includes information from up to four pixels. Unfortunately, as the KSP plot locations were assigned
systematically in a fixed, pre-defined grid, the relative positions of the plots compared to the PLR
pixels was consistent throughout the whole KSP dataset. Furthermore, there are too few KSP plots
available for each forest stand to have a reliable biomass estimation at the stand level. For these
reasons, an alternative biomass reference was needed. As shown in the introduction, LIDAR metrics
have proven useful in delivering biomass information at reasonable accuracy.

Even though the estimation of AGB at single-tree level showed promising results (Popescu, 2007),
a single-tree detection based biomass reference generation was not performed due to the following
reasons: i) A single tree detection from the point cloud data as described in Morsdorf et al. (2004)
was not possible due to some corrupt raw point cloud datasets and the rather low point density of
just 12 points per m?. ii) For the estimation of DBH from the tree height and crown dimensions as
described in Popescu (2007), an exact matching of detected and field measured trees is important.
Yet, due to missing tree height information in the inventory data, an accurate matching was difficult,
leading to high inaccuracies for the later biomass estimation. iii) The analyzed heterogenous and
mostly dense forests could hinder an accurate detection of trees, leading to further inaccuracies.

For these reasons, a simpler prediction of AGB based on plot level mean canopy height proposed
by Nelson et al. (1988) was used in the course of this thesis. Nelson et al. (1988) predicted biomass in

his pioneer study using the following model:

In(TTGW) =m = (LHT) +n=* (In(LHT) + b) (4.6)
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where TTGW is the total tree green weight, LHT is the laser height and the model parameters m,
n and b were derived by a regression analysis of the mean height of each plot against the AGB
measured inside the plot. Lim & Treitz (2004) used a similar approach to relate laser height quartiles
to AGB but used a slightly different model. It was used successfully by others to model various
forest biophysical properties (e.g. Means et al., 1999, Naesset, 2002 or Lim et al., 2003):

In(M) = In(Bo) + 1 * In(L) (4.7)

where M is the forest metric of interest (i.e. in our case AGB), L is the laser height and By and p; are
model coefficients derived from regression analysis. Both models were analyzed before choosing one
of these models for generating a reference biomass map.

For the regression analysis, the procedure proposed by Nelson et al. (1988) was followed. The
outline of this is shown in Figure 4.5. First, a CHM was calculated. This was done by simply
subtracting the LIDAR DTM from the DSM (refer to Figure 4.6).

In the generated CHM, objects not related to forest or vegetation in general were still visible, such
as buildings or power lines. The CHM was therefore filtered first with a forest mask. As the WMGog2
dataset with 25 meter resolution was too coarse for use in filtering a 1 meter resolved CHM, the
forest mask found in the Pixelkarte 1:25’°000 (PK25) dataset with a pixel spacing of 1.25 meters was
used. In order to simply apply this forest mask, the PK25 forest mask was first clipped to the extent
of the study site and then resampled to fit on top of the 1 meter resolved CHM using the software
ArcGIS version 10.2 and a nearest-neighborhood resampling algorithm. To mask out non-forested
areas, the CHM was then multiplied by the previously generated forest mask.

As we had field measured biomass information for the Hinwil study site at hand, a relation
between mean canopy height and AGB was established for this study site. Some KSP plots were
filtered out of the dataset, as they were outside of the ALS scene. Additionally, to assess the trained
model, all KSP plots inside the ALS scene were split into training and validation sets. One third
of all plots were randomly assigned to the validation dataset, while the rest were used to train the
model and retrieve the model parameters.

To retrieve the mean height over each plot, the mean of all pixel values inside this plot was taken.
Therefore, also pixels that have no laser returns from vegetation were taken into account. By doing
so, the vegetation density is implicitly considered for the biomass estimation (Nelson et al., 1988).

With the mean canopy height retrieved for each KSP plot, a scatter plot of mean canopy height
versus the AGB information of the KSP dataset was drawn, and a function according to the two
models described in Equations (4.6) and (4.7) was fitted to the data.

A further filtering of the KSP dataset was performed before training the model, to exclude obvious
outliers caused by the big time gap between the ALS and KSP data acquisitions. There are three
plots that showed no AGB levels, but had a mean canopy height of more than five meters. These
plots were not included in the fit as a plot with mean canopy height of five meters should clearly
have some AGB present. The two other plots not included in the fit showed a largely closed canopy
in the CHM, but had only one tree inside the plot (see also Figure 4.7). This suggested that a logging
or storm event had changed the canopy structure of these plots between the ALS and the KSP data
acquisitions.

With the models trained, they can be inverted to finally generate an estimate of the biomass at plot
level. For the model introduced by Nelson et al. (1988), the inverted model was described as:
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and Légern study sites.
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Figure 4.6: (a) DSM, (b) DTM and (c) CHM at Ladgern study site with 1 meter pixel resolution. The
laser data was acquired in spring 2010. The CHM therefore represents the leaf-off stage of

the vegetation.
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AGB =exp(mx (H) +nx* (In(H) + b)) (4.8)

where AGB is the biomass in tonnes per hectare, H is the mean canopy height and the model
parameters m, n and b are derived from the earlier regression analysis.
For the model described in Lim & Treitz (2004), the inverted model is described as:

AGB = exp(log(a) + b log(H)) (4-9)

where AGB is the biomass in tonnes per hectare, H the mean canopy height and the model parameters
a and b are again derived from regression analysis. The performance of each model is shown and
discussed in section 5.3 on page 59. As the model by Lim & Treitz (2004) showed better performance,
all biomass maps were generated using this model.

To generate an AGB map of the study sites, the resolution of the CHM had to be changed first,
before applying the chosen model to infer biomass levels from mean canopy height. The resolution
of the CHM was changed to 18 meters, as this was closest to the three ares of the KSP plots. The
mean value of 18x18 pixels from the CHM was calculated and assigned to the new 18x18 meter
pixel. Afterwards, the biomass of each pixel could be calculated with the previously established and
chosen model. The generated biomass map for the Hinwil study site as well as the generated CHM
at 1 and 18 meters resolution is shown in Figure 4.8.

For establishing a biomass reference map to use with the ALOS PALSAR data, a slightly different
approach was chosen. As the PALSAR data has a pixel spacing of 25 meters, a biomass reference
map at 25 meters was generated first. This was done with the same method as before, but instead
of resampling the CHM to 18 meters pixel size, the resolution was changed to 25 meters. During
this step, it was ensured that the new pixels lay exactly on top of the PALSAR pixels (i.e. have
the same pixel center coordinates). The AGB was calculated with the same model as established
before. Although the model was calibrated to the Hinwil study site, the same model was used to
establish the biomass reference map at the Lagern test site, as no field measurements were available
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Figure 4.8: (a) Canopy Height Model (CHM) at 1 m resolution, (b) CHM at 18 m resolution and
(c) Biomass map at 18 m resolution over Hinwil study site. Note that these images just
represent a subset of the whole ALS dataset of Hinwil for illustrative purposes. Also note
that non-forest areas are masked out in the biomass map.
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Figure 4.9: (a) Canopy Height Model (CHM) at 25 m resolution, (b) Biomass map at 25 m resolution
over Lagern study site. Also refer to the 1 m resolved CHM for the Ligern study site
shown in Figure 4.6c.

for the Lagern study site. The CHM and the derived biomass map at the Lagern test site is shown in
Figure 4.9.

4.4. Forest stand retrieval for stand-level analysis

For the stand-level analysis, single stands had to be identified and extracted first. A forest stand is
defined as a group of trees occupying a given area that is sufficiently uniform in species composition,
structure, site quality and condition (He et al., 2012). As most of these descriptors were not available, a
stand was redefined here as a connected forest area with the same forest type (coniferous, deciduous,
mixed-deciduous or -coniferous). The requisite information was retrieved from the WMGogz2 dataset.
For the stand-level analysis with E-SAR products, a combination of WMGg2 and PK25 datasets was
used to reduce errors due to differing spatial resolution and data acquisition time. The 25 m resolved
WMGo2 dataset was first resampled (nearest-neighborhood) to 1 meter pixel spacing, matching the
extent of the E-SAR image. The resampled WMGg2 dataset was then multiplied by the previously
generated PK25 binary forest mask(refer to Section 4.3.2). Before multiplying the two datasets, the
PK25 forest mask was eroded with a 10 meter buffer. This was done to ensure that the forest borders
were not considered in the subsequent analysis, as these were known to have significant border
effects in the SAR data (shadowing and high backscatter intensities at forest borders facing the
sensor). As the PK25 dataset is more up-to date, forest areas that disappeared over the years were
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masked out. As the forest mixture is less affected by rapid changes, the mixture information is
assumed to be accurate.

The forest stand extraction algorithm searches for connected areas (areas with same pixel values)
in a 8-pixel neighborhood and assigns a unique label to all pixels identified as connected. Each stand
was then extracted by retrieving all pixels with the same label from the raster image. As the forest
stands were later used to extract forest information from the 18 m resolved AGB map, the resolution
of the forest stand dataset was also changed to 18 m.

In the case of stand-level analysis with PALSAR data, the original WMGo2 dataset with 25 meter
pixel spacing was used and no further processing with PK25 dataset was carried out. Instead of a
10 meter buffer around the forest borders, a 3x3 erosion was used to eliminate forest border effects
before the forest stand extraction.

4.5. Biomass estimation using SAR Backscatter data

In this section, the methodologies to investigate the biomass sensitivity of airborne and spaceborne
backscatter data and the biomass estimation performance using different model approaches are
outlined. The general workflow for this backscatter approach is shown in Figure 4.10.
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Figure 4.10: Workflow diagram for biomass estimation from backscatter data.
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4.5.1. Single polarization Approach

As previously introduced in Section 1.2, many studies exist that relate L-band backscatter values
at single polarization with biomass. In all of these studies, HV-polarization proved to be most
sensitive to biomass (e.g. Dobson et al., 1992; Le Toan et al., 1992; Mitchard et al., 2009). One model
often used in literature to relate backscatter values to biomass information is described in Mitchard
et al. (2009). They modeled the backscatter behavior according to AGB derived at four different
African landscapes for PALSAR Fine Beam Dual-Polarization (FBD) backscatter data (HH- and
HV-polarization) at plot level. The following model was used:

Y0 =a+b*In(AGB) + ¢ * (In(AGB))? (4.10)

where 7" is the mean backscatter value in the plot in decibel, AGB is the biomass information
retrieved from ground surveys and 4, b and c are the model coefficients determined using regressions
between the measured backscatter and the established AGB reference values. Note that Mitchard et al.
(2009) actually used the backscatter convention ¢¥ rather than 7 as used in this study. Also note that
the regression coefficients a, b and c are dependent on polarization and have to be determined for
each polarization separately. They are also highly site specific, implying that new model parameters
are estimated for each study site separately.

In order to retrieve AGB information from backscatter data at single polarization channels, the
model described in Equation 4.10 needed to be inverted, using the previously established model
parameters a, b and c. This was simply done by solving the quadratic Equation 4.10 to AGB. The
inverted model is:

b2 —4c(a + ’yo)> (4.11)

AGB = exp <_

This inverted model was used in this thesis to relate backscatter data at single polarization to AGB,
either retrieved from the KSP inventory or, in the case of PLR data or for stand level analysis,
retrieved from ALS measurements. Also note that the mean backscatter either at the plot level or
over a whole stand was calculated in the power domain. Thus, the arithmetic, not geometric, means
were used as described in Mitchard et al. (2009). Only after the average is calculated, can the decibel
values of the backscatter be calculated and later related to AGB.

4.5.2. Multiple polarization Approach

Saatchi et al. (2007a) used a general statistical regression model that relates different biomass
components (total, stem and crown biomass) to backscatter measurements at HH-, HV- and VV-
polarization. This model has a quadratic form to approximately mimic the loss of sensitivity of radar

backscatter at higher biomass values. The general form of the regression model can be written as

In(W) = ag + a9y + a2(0%y)? + biodyy + ba(ohy)? + c1o0y + ca(o)y)? (4.12)

where W is the total aboveground biomass or its components (stem, branch, and foliage), and
(TIQIV' (T%H, and (T‘O/V, respectively, represent the radar backscatter measurements at three transmit
and receive polarization configurations in decibels. Equation 4.12 can be considered a parametric

equation including all scattering mechanisms represented by the radar polarimetric measurements
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(Saatchi et al., 2007a). Saatchi et al. (2007a) actually related backscatter values to different biomass
components in the forest (trunk, branches, foliage). As we only have total biomass reference values
available in this thesis, the focus lies here on predicting the total biomass without distinguishing
between the different components.

To retrieve the model parameters (ag 1 2, b1 2, and c; ) a regression analysis between the measured
backscatter data and the reference biomass information (KSP or ALS derived) was established. The
detailed methodology on establishing a plot or stand level relation is given in Section 4.5.4 and 4.5.5
respectively. With the model parameters defined, the model can be inverted and used to directly
predict biomass from the backscatter data at HH-, HV-, and VV-polarizations.

4.5.3. Polarimetric Target Decomposition Approach

Supplementing simple use of backscatter data at different polarizations to predict biomass, po-
larimetric target decomposition parameters can be used instead. As opposed to using just one
polarization or a combination of multiple polarization channels, the different bases of a polarimetric
target decomposition relate to actual scattering mechanisms (i.e. surface scattering, volume scattering
or double bounce). In this thesis, the well-known Pauli decomposition was analyzed (also refer to
Section 2.2). To establish a biomass versus decomposition-power relation, an approach described in
Chowdhury et al. (2013) was applied. Although Chowdhury et al. (2013) used the four component
Yamaguchi decomposition, which distinguishes between surface-, double-bounce, volume-, and
helix-scattering, this approach can also be used with Pauli decomposition, as Chowdhury et al. (2013)
discarded the use of the helix-scattering part (this scattering mechanism is normally not found in
forests). They therefore only analyzed the volume-, double-bounce-, and surface-scattering portion
of the Yamaguchi decomposition.

To fit a regression line between the measured decomposition powers of all three scattering
mechanisms and the reference biomass, the same model used previously in the single polarization
approach (see Section 4.5.1) was used. For the decomposition power datasets, geometrically and
radiometrically corrected decomposition powers (GTC and RTC) were used. The influence of POA
correction on the three decomposition bases was also investigated.

Chowdhury et al. (2013) investigated several study sites in Siberia, finding that both volume and
double-bounce scattering power have positive correlations and surface scattering has a negative
correlation with growing stock volume at the stand level. With that background, a model could be
established that describes biomass (or growing stock volume) as a function of all three scattering
mechanisms, as shown in Equation 4.13

s (%52)

s

(4.13)

where AGB is the total above ground biomass, Py, P,, and Ps are the double-bounce, volume and
surface scattering powers respectively. This behavior can be explained as follows. If we have a
dense forest with high biomass levels, the volume and double-bounce scattering return should be
high, while the surface scattering part should be low, resulting in a large numerator and a small
denominator in Equation 4.13. This behavior reverses if instead we have sparse forest with low
biomass levels, where the surface scattering part should be dominant. The applicability of this
function to predict biomass is investigated later in this thesis.
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4.5.4. Establishing Plot Level Relations

As shown in the last three subsections, some biomass reference information is needed in order to
extract the model parameters to describe the backscatter behavior with increasing biomass. For the
relation of backscatter response to biomass at plot level for the E-SAR dataset, the KSP reference
values described in Section 3.2 were used. Yet the whole KSP dataset includes many plots outside
the E-SAR scene. Therefore an initial filtering of the dataset was performed to match the E-SAR
data extent. A further filtering was performed to exclude forest borders and clear cut plots, as these
plots were most likely affected by forest border effects in the SAR backscatter image. After this
filtering, only 70 plots remained of the 378 available KSP plots. In a next step, the remaining dataset
was divided into a training and validation dataset. All plots were first divided into 20 t ha! bins
according to their total biomass information. Afterwards, 2/3 of the plots in each 20 t ha~! bin were
randomly assigned to the training dataset and the rest was assigned to the validation dataset. By
doing so, we ensured that we have plots of the whole biomass range in the training dataset as well
as the validation dataset. If there were fewer than three points in a 20 t ha~! bin, all points were
assigned to the training dataset. As described in Saatchi et al. (2007a) and Askne et al. (2003), two
further plots not included in the KSP dataset, representing low biomass references (near 0 t ha™!
biomass), were included in the training and validation datasets. In Figure 4.11, the locations of the
training (red crosses) and validation (green crosses) plots are shown. In Figure 4.12, histograms for
the number of plots per 20 t ha~! bins for training and verification plots are shown, to ensure that
the whole range of biomass was covered by the training and validation dataset.

With the training and validation plots established, backscatter sensitivity studies can be performed
via the methods explained earlier. First of all, the mean backscatter or decomposition power over
each plot was extracted from the backscatter image. Note that no forest masking was performed
in this plot level analysis, as the plot locations explicitly represent forest areas (except for the two
manually added low biomass reference plots). The retrieved mean backscatter could then be plotted
against the total biomass in the respective plots. Afterwards, the above mentioned models could be
fitted to the data points, retrieving the required model parameters. The coefficient of determination
R? was calculated to give a measure of how well the model fitted the data. To validate the retrieved
model, the function based on the retrieved model parameters was plotted against the validation
points to see if the retrieved model accurately explained the validation points. In a further validation
step, the retrieved model was inverted to estimate biomass directly from the backscatter data. The
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Figure 4.11: KSP plot locations inside the E-SAR data extent. Red crosses denote training plots and
green crosses denote validation plots for the backscatter to biomass relation analysis.
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Figure 4.12: Histogram of number of plots per 20 t ha~! bin in the training (blue bars) and validation
datasets (red bars).

estimated biomass for the validation points were plotted against the reference information to assess
the performance of the biomass estimation.

In case of plot level analysis using PALSAR data, a slightly different approach was applied. A
simple pixel-by-pixel comparison between PALSAR backscatter and the biomass reference map
derived from ALS (see Section 4.3.2) was performed. In order to reduce forest border effects, the
PALSAR data was masked with the 3x3 pixel eroded WMGoz2 forest mask at 25 m pixel resolution.
The statistical evaluation of backscatter behavior against biomass is then performed in the same way
as described for the E-SAR dataset. In order to reduce the noise in the PALSAR data, an analysis
with 100 m resolved PALSAR backscatter data was performed. For this, the mean backscatter values
of 4x4 pixels was calculated. New pixels were discarded from analysis if more than half of the 25 m
pixels inside the 100 m pixel were either in the radar shadow or had been previously masked. The
other datasets (biomass reference from ALS and WMGg2 dataset) had to be resampled to the new
pixel size as well.

4.5.5. Establishing Stand Level Relation

For the stand level analysis, the biomass reference values retrieved from ALS measurements were
taken, as there were too few KSP plots inside the stands, and not all stands were represented by the
KSP plots. As the ALS biomass reference map had a pixel spacing of 18 m, the 1 m resolved SAR
datasets needed to be resampled to 18 m resolution as well. To retrieve the single stand values, the
established stand dataset was taken (see Section 4.4). By retrieving a binary mask for each stand,
the stand could be extracted from the SAR and biomass reference dataset by simply multiplying
the mask with the datasets. Afterwards, the average of the stand’s biomass and backscatter values
was calculated. The previously described models could be fitted to the data to retrieve the model
parameters. This was done in the same way as described in Section 4.5.4. Note also in this case:
the stand datasets were divided into separate training and validation datasets. All stands were first
divided into several bins according to their size (bins for stands below 0.25, between 0.25 and o.5,
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between 0.5 and 0.75, between 0.75 and 1, and above 1ha). Next, 1/3 of the stands in each bin were
randomly assigned to the validation dataset, the rest to the training dataset. By doing so, we assured
that the whole range of stand sizes was represented in the training stand dataset as well as the
validation stand dataset. For the analysis of backscatter behavior at different minimum stand sizes,
the training and validation datasets could now be filtered according to stand size.

For the 25 meter resolved PALSAR data, a similar approach was taken. Yet, as only a sensitivity
analysis was performed in the PALSAR case, no separation between training and validation stands
was performed. Instead, all available stands were analyzed.

4.6. Biomass estimation using PolInSAR techniques

In this section, we compare and contrast several different algorithms to retrieve a CHM from
PolInSAR measurements and finally try to infer biomass information from these height estimates.
The general workflow for the PolInSAR approach is outlined in Figure 4.13.

As is described in the introduction Section 1.2, the principle of PolInSAR derived forest height
estimates relies on the separation of the scattering phase centers of different polarizations or scattering
mechanisms (Pauli bases). For example, the scattering phase center of volume scattering (e.g. at
HV-Polarization or from the 3rd Pauli base HV+VH) is assumed to be somewhere between half the
canopy height and the top of canopy, while the surface scattering or double-bounce scattering is
assumed to be close to the surface (Cloude, 2005; Saatchi et al., 2007a). This is illustrated in Figure
4.14. This assumes there is sufficient separation between the two scattering mechanisms in order to
retrieve forest heights. However, this separation is not always given, causing such approaches to
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Figure 4.13: Workflow diagram for forest height and biomass retrieval from PolInSAR. Processes
highlighted in red and blue were performed in Matlab version R2013a or PolSARPro
v4.2 respectively. The geocoding process was performed with the gc program developed
by David Small.
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Figure 4.14: Polarimetric and interferometric SAR measurements of a typical forest in a flat land-
scape, with dominant polarizations contributing to crown and stem-surface scattering
mechanisms, and interferometric measurements of the height of the scattering phase
center as the height of an equivalent scatterer representing the collection of scatterers
within a pixel (Saatchi et al., 2007a).

often be noisy (Cloude, 2005). This is one reason why most studies (Chen et al., 2008; Mette et al.,
2004; Mette & Papathanassiou, 2004; Papathanassiou & Cloude, 2001) using PolInSAR to retrieve
forest heights focus on stand-level estimates, rather than the plot-level or even single tree detection.
Hence, the focus in this thesis lies on forest height and later biomass retrieval at the stand-level.

The algorithms used to retrieve forest heights are described in the following subsections. These
algorithms are all implemented in the ESA’s PolSARPro software package version 4.2 (ESA, 2011). The
resulting CHMs from the different algorithms were geo-referenced with the gc program introduced
in Section 4.1.4 using the 1 m resolved ALS DSM described in Section 3.3.1.

Please note that due to the large temporal baseline of 46 days of ALOS PALSAR, no meaningful
PolInSAR analysis with PALSAR data could be performed. The temporal decorrelation in forested
areas due to this large temporal baseline was too high to retrieve forest height at sufficient accuracy.
Therefore the PolInSAR study was based on the E-SAR dataset with a temporal baseline of 3 hours.

4.6.1. Forest Height retrieval using DEM-Differencing

The simplest algorithm used to retrieve canopy heights via PolInSAR is known as the DEM-
differencing (DEM-Diff) approach. Assuming that the scattering phase center of the volume
dominated interferogram was separated from that of the surface-dominated interferogram, the
canopy height 1, can be extracted simply from Equation 4.14 (Cloude, 2005; Chen et al., 2008).

45



4.6 Biomass estimation using PolInSAR techniques 4 METHODOLOGY

hy — arg(m)k— arg(Tw,) (4.14)
z
where w, is a user selected polarization assumed to be located at the top of the vegetation, v, is its
complex coherence, w; is a user selected polarization assumed to be located near the ground surface
under the vegetation canopy, and 1, is its complex coherence. In this thesis, HV-polarization is
chosen as the the volume dominated channel w, and HH - VV (the second Pauli base) is chosen to
be the surface dominated channel w,. The arg(...) function calculates the phase from the complex
coherence value 7. k; is the vertical wave number, which can be estimated from the interferometric
geometry using Equation 4.15 (Bamler & Hartl, 1998).

_ 47nAe __ 4nBy (4.15)
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where A is the radar wavelength, 6 is the SAR incident angle corresponding to the master track and

A8 is the incident angle difference between the master and slave tracks, B; is the perpendicular
baseline length, and R is the slant range distance from the master to the target. As the vertical
wavenumber information was delivered by the DLR for each master-slave pair, k, needed not to be
calculated individually.

4.6.2. Forest Height retrieval using RVoG Phase Height

(RPI-Inversion)

The approach described in Section 4.6.1 can be very noisy and results in negative height values,
when the scattering centre of the chosen volume dominated channel is lower than the scattering centre
of the chosen surface dominated channel. In the DEM-Differencing approach we assumed the second
Pauli base (HH-VV) to be closest to the actual surface, with the highest ground-to-volume scattering
ratio. Therefore we used this channel as an estimate for the ground phase ¢. Yet extensive analysis of
L- and P-band data sets have shown that in general there is no single polarization channel that yields
an unbiased estimate of the ground phase (Cloude, 2005). Therefore, other types of algorithms have
been developed that try to remove the residual bias. Using the well-known Random Volume over
Ground (RVoG) model, one employs a pair of complex coherence values (Cloude, 2005) as outlined
in the following.

One simple algorithm employs a linear fit to a pair of coherence values in the complex plane at
polarizations w, and w,,, where the latter is volume dominated and the former surface dominated.
The intersection of this line with the unit circle of the complex coherence plane yields two candidate
points for the ground phase. In Figure 4.15, the complex coherence plane is shown with the
previously mentioned linear fit between the pair of coherence values. The intersection point Q of
the fitted line with the unit circle in Figure 4.15 provides an estimate of the phase of the underlying
topography. The other intersection is a false solution and must be rejected by the inversion process.
With the assumption that the surface dominated channel w; is closer to the real ground phase (point
Q in Figure 4.15) and that the ground-to-volume scattering ratio u for the volume dominated channel
w, is zero, the ground phase ¢ can be calculated with a quadratic equation as shown in 4.16 (Cloude,
2005; Chen et al., 2008; Cloude & Papathanassiou, 2003).
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Figure 4.15: Linear model used to estimate ground phase ¢ from two complex coherence value pairs
in the complex coherence plane (Cloude & Papathanassiou, 2003).

¢ = arg (7w, — 7w,(1 — Lw,)) where 0 < Ly, <1
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With the established estimate of the ground phase ¢, the next step is the estimation of the scattering
height. The height can be estimated using the following equation:

py = 280 =9 (4.17)
z
where 7y, is the complex coherence of the user selected volume dominated channel, ¢ is the
previously estimated ground phase, and k; is the vertical wavenumber (see Equation 4.15).

As previously stated, the phase center of the volume dominated channel can lie anywhere between
half the tree height and the top of the canopy itself. Apart from the system’s wavelength, the exact
location depends on two properties of the vegetation, namely the mean wave extinction and vertical
canopy structure variation. For trees with a high thin canopy, the extinction is small but the phase
centre is high due to the structure. If the canopy extends over the full tree height, the phase centre
can be at half the true height for low density (small extinction) through to the top of the canopy for
dense vegetation (high extinction) (Cloude, 2005). These vegetation structural influences need to be
corrected in order to achieve more accurate height estimates. This outlined algorithm is referenced
as Random Volume over Ground Phase Inversion (RPI) in the following.
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4.6.3. Forest Height retrieval using Coherence Amplitude

Inversion (SINC-Inversion)

Another possibility to retrieve canopy height would be to ignore the phase of the coherence com-
pletely, accounting only for the coherence amplitude. This approach remains sensitive to density
and vertical structure variations. To overcome this limitation, a commonly applied approach is to
set the wave extinction to zero, obtaining the simple «sinc» coherence model (Cloude, 2005). This
model assumes that the canopy height h, is closely related to the coherence amplitude of the volume
dominated channel (HV-polarization) and follows a truncated sinc function, as shown in Figure
4.16. This assumption is based on the reasoning that larger trees show more volume decorrelation,
decreasing the coherence amplitude. Therefore the lower the coherence, the higher the canopy.
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Figure 4.16: Example for height estimation from coherence amplitude only.

If we know the volumetric coherence 7, , the forest height can be estimated following Cloude
(2005)

2% sinc™!
h— *smck (Iva, 1) (4.18)
z

where |7y, | is the coherence amplitude of the volume dominated channel (HV-polarization) and k;
is again the vertical wavenumber. Note that the inverse sinc function is used to match the coherence
amplitude to the simple zero extinction «sinc» model. This is done via a 1-D look-up-table.

As this approach ignores the phase and remains sensitive to extinction and structure variations, it
is the least robust of the algorithms, but can serve as a back-up algorithm if the other phase-based
approaches fail (Cloude, 2005).
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4.6.4. Forest Height retrieval using RVoG Phase and Coherence

Inversion (PCI-Inversion)

By combining the RVoG phase inversion (Section 4.6.2) and the coherence amplitude inversion
(Section 4.6.3) one can build an inversion algorithm that is robust to variations in extinction or
vertical structure. Although it is based on assumptions (user selected polarizations for volume
dominated and surface dominated channels, ground-to-volume scattering ratio set to zero for volume
dominated channel etc.), this algorithm is expected to give height estimates within 10% accuracy,
matching the bounds achievable with current air and space borne sensors (Cloude, 2005). Moreover,
it is faster and easier to implement than the three stage full model inversion proposed by Cloude &
Papathanassiou (2003).

The Phase and Coherence Inversion (PCI) algorithm requires a user selection of two interferograms,
one for a surface dominated channel w, and the second for a volume dominated channel w,. The
canopy height can then be calculated using

(1) ¢ 2sinc (17, )

hy = k. € . (4.19)

The height is retrieved as a sum of two components. The first is the height retrieved from the RVoG
phase inversion (Section 4.6.2). To repeat, the chosen volume dominated channel does not have to be
on top of the canopy due to vertical structure variations and wave extinction. To compensate for
these effects, the RVoG phase inversion is augmented by the second coherence amplitude term (see
Section 4.6.3). The factor € weighs the two components and should be chosen to provide robustness
in the face of extinction variations. In the zero extinction case, € should be set to 0.5, in which case
Equation 4.19 gives the exact result for height, regardless of canopy offset structure. But in the more
general non-zero extinction case € should be reduced. In the extreme case of infinite extinction,
€ tends to zero and the phase centre term tends to the true height (Cloude, 2005). Cloude (2005)
reported that practical extinction levels at L-band and below are less than 1 dB/m, and that therefore
the best choice for € would be 0.4. This is why € = 0.4 was chosen when applying this forest height
inversion procedure in this thesis.

Note that this approach is simplified in comparison to the two layer RVoG full model inversion
as introduced by Treuhaft et al. (1996) and Treuhaft & Siqueira (2000) and adapted by Cloude
& Papathanassiou (2003). It strongly depends on the user’s selection of the volume and surface
dominated interferogram. Depending on the selection of the channel, the height inversion may be
noisy and a full model inversion as described in Cloude & Papathanassiou (2003) would probably
lead to higher accuracy and lower noise levels. Yet, as the full model is not implemented in
PolSARPro version 4.2 (ESA, 2011), and the implementation of such a model would be beyond the
scope of this thesis, the simplified model inversion was used. To overcome the noisiness of the
ground phase estimation due to density variations in the canopy, a simple tweak was implemented
in the software. To filter the phase jumps in the estimated ground phase (see Figure 4.17a) a strong
21x21 pixel median filter was applied, reducing the high frequency phase changes and providing a
new, more robust estimate of the true ground phase. Figure 4.17 shows the effect of applying such
a strong median filter on the retrieved ground phase estimate. One can see that the high frequent
phase changes caused by vegetation density changes are eliminated.
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Figure 4.17: Ground phase estimate over vegetated area from RVoG model. a) shows the ground
phase estimate without any further filtering and therefore still some vegetation induced
phase changes. b) ground phase estimate with 11x11 pixel median filter, c) ground
phase estimate with 21x21 pixel median filter.

4.6.5. PolInSAR Transect Analysis

To determine whether PolInSAR derived CHMs are capable of estimating canopy height at very small
scales (up to single tree level) a transect analysis was performed. Several transects in North-South
(corresponding closely to the across flight track direction of the E-SAR instrument) and East-West
(corresponding closely to the along flight track direction) orientation from ALS and PolInSAR
retrieved CHMs were retrieved and analyzed. Further analysis of how well PolInSAR derived
CHMs fit the ALS measured canopy height was performed in the course of biomass estimation from
PolInSAR canopy heights as described in the next section.

4.6.6. Relating PolInSAR Heights to Biomass

Due to the previously discussed close relationship between tree height and biomass, we can now
establish a model that estimates biomass levels from the canopy heights estimated via PolInSAR.
Mette & Papathanassiou (2004) proposed a simple allometric equation that estimates forest biomass
from derived canopy height measurements:

Biomass forest = a * height* (4.20)

where a and c are model parameters estimated from regression analysis between PolInSAR derived
canopy height (height) and reference biomass information (Biomass foest)-

As previously stated, the height estimation and later biomass retrieval from PolInSAR approaches
were conducted at the stand level. Before simply applying the allometric equation stated in (4.20),
one should analyze how well the estimated canopy heights correspond to actual canopy heights. As a
reference, the ALS-derived CHM was used. To compare these two measurements, the mean height of
each stand in each PolInSAR CHM product was calculated and compared to the mean height derived

from the ALS measurement. As a statistical measure of how well the estimated heights correspond
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to the ALS derived measurements, the squared correlation coefficient R? (the square of the Pearson
correlation coefficient) between the reference height values (ALS data) and the estimated height
values (from PolInSAR) was calculated. The Root Mean Square Error (RMSE) was also calculated as
a measure of the error in the forest height prediction from PolInSAR measurements.

The relation between PolInSAR heights and biomass at the stand level was then analyzed. The
PolInSAR derived CHM was compared to the ALS derived biomass reference map (see Section 4.3.2).
To do this, the PolInSAR CHM with 1 meter pixel spacing was first resampled to the 18 meter pixel
spacing of the biomass reference map, by taking the mean height of each 18x18 pixels. The mean
canopy height of each stand was then plotted against the mean biomass. The allometric equation
shown in (4.20) was then fitted to the data points, retrieving the model parameters a2 and c. As a
measure of how well the model fits the data, the coefficient of determination R? was calculated
together with the RMSE. Unfortunately, due to the small number of stands available that were big
enough for PolInSAR analysis, no partition into training and validation stands was possible. There
was no evaluation of how well the retrieved model estimated biomass in that case.

With the methodologies established for the backscatter as well as the PolInSAR approaches, we
will now look at the retrieved results in the next section.
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5. Results

5.1. Processing of E-SAR data

The processing of the E-SAR datasets was not trivial and it was the first time that RSL’s software
packages for radiometric and geometric normalization (see Section 4.1) were used with airborne SAR
data, the results of these processing steps are described in a separate results section.

5.1.1. Geocoding of E-SAR data

A relatively simple way to determine the locational accuracy of the geocoded E-SAR products is by
overlaying a DEM on top of the geocoded SAR backscatter image. An example of the product of
such an overlay is shown in Figure 5.1, where the ALS DSM is overlaid as a color cycle on top of the
geocoded E-SAR backscatter intensity image (HH-polarisation and 7% backscatter convention). Each
cycle of the RGB color spectrum denotes a height change of 50 meters, visualising small changes in
surface heights. Even though we see that the topographic changes visualized with the colored DSM
matches the backscatter behavior quite well (lower backscatter intensities in steep hill-slopes away
from the sensor), a close-up view is needed to give a better evaluation of the geolocation accuracy.
Two such close-up images are shown in Figure 5.2. In Figure 5.2a we can clearly see the increase in
backscatter intensity with an increase in surface height at the borders of the forest. Also in Figure
5.2b we see a relation between rapid height changes due to buildings with the characteristic increase
in backscatter due to the vertical building face. A more quantitative assessment of the geolocation
accuracy of the geocoded products was performed using tie-points distributed over the whole scene.
This analysis showed, that the geometric accuracy of the geocoded products was around one pixel
and should therefore be adequate for further analysis. Yet, some residual bias could still be present
in the geocoded products.
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Figure 5.1: DSM overlaid on geocoded Backscatter image at HH-polarisation. Each cycle of color
denotes a height change of 50 meters. Backscatter scaled between -30 (black) and o dB
(white). The left-looking E-SAR Sensor flew north of the scene.
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Figure 5.2: Two close ups from Figure 5.1. Backscatter changes clearly correlate with height changes,
(a) at forest borders and (b) due to buildings.

5.1.2. Radiometric normalization of E-SAR data

As stated in the methodology section, both a DTM and a DSM from ALS measurements were
available and used for radiometric normalization of the backscatter datasets. Until now, most
radiometric normalizations are generated using a DTM, correcting for topographic effects of the
terrain. Yet, depending on the wavelength used, also vegetation with significant heights, as found in
forests, can affect the backscatter intensities to some extent due to shadowing, fore-shortening and
layover effects. Therefore it would be also useful to normalize backscatter data for such vegetation
influences. The effect of using the DSM or DTM for radiometric normalization is shown in Figure
5.3 for a small subset of the whole E-SAR scene at HV-polarization. The obvious change in these two
products can be found inside the forests. During the DSM-based normalization, many shadow pixels
were estimated inside the forest. A much higher variability in backscatter intensity inside the forest is
visible due to the height variation of the canopy. The biggest problem here is that the normalization
algorithm interprets the input DEM as a solid surface, impenetrable by the radar waves. While this is
broadly true for solid objects such as buildings, this is not actually the case for forests or vegetation
in general. Depending on the wavelength, the radar waves will penetrate through the canopy to a
significant extent. Therefore, an assumption of an impenetrable canopy for the normalization using
a DSM leads to an overcompensation of the canopy topography, causing many shadow pixels and
overestimated backscatter around trees that are higher than their neighborhood. This is especially
observable at forest borders or at forest clearings. Furthermore, as the ALS measurements were
made in the year 2003 and the SAR images were acquired in the year 2006, the forest canopy had
changed during the intervening time period. This could lead to further normalization errors in
DSM-normalized RTC products.

Due to these observations, the decision was made that the DSM normalized images were not to
be further used for biomass estimation, as the effects described above would most probably affect
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Figure 5.3: Radiometric normalization with DTM vs. DSM at HV polarization. (a) DTM normalized.
(b) DSM normalized.

the biomass estimation accuracy. Due to the higher number of shadow pixels inside the forest, the
number of available KSP inventory plots where one can retrieve realistic backscatter data decreased
drastically, reducing the inventory dataset to such an extent that statistical analysis became infeasible.

5.1.3. E-SAR GTC vs RTC products

As the RTC product should correct for many of the distortions in more rugged terrain, there should
be nearly no difference in the backscatter intensities between the GTC and RTC products in flat
terrain. We already saw this in the theory section concerning radiometric normalizations in Figure
2.2. Yet, this is unfortunately not the case for the processed E-SAR GTC and RTC products as
seen in Figure 5.4. Here we see that the GTC product in Figure 5.4a appears darker than the RTC
product in Figure 5.4¢c, even in very flat terrain. This is also observable in the backscatter histogram
shown in Figure 5.5. Here we see that in HV and HH polarization, the peaks of the GTC product
(blue lines in histogram) are shifted by up to -5 dB from the RTC peak. Note that for the GTC
products, the radiometric normalization is ellipsoid based, and no terrain information is used for
the normalization. For the GTC product shown in Figure 5.4a, the reference height of the ellipsoid
was set to o m a.s.l.. To create a better calibrated GTC product, the reference ellipsoid height was
set closer to the reference elevation of the scene, i.e. 550 m a.s.l. This was done by performing a
radiometric normalization using a new ellipsoid with reference height 550 m a.s.l.. The resulting
GTC product (shown in Figure 5.4b) shows backscatter values more similar to the RTC product. This
can also be seen in the histogram with green lines shown in Figure 5.5. The peaks are now close
to those from the RTC product for HV- as well as HH-polarizations. Based on these observations,
the E-SAR GTC product with 550 m a.s.l. reference height was used for further backscatter analysis
unless otherwise noted. Yet, note that some differences still exist in backscatter intensity values
between RTC and GTC with 550 m a.s.l. reference ellipsoid height over flat terrain (GTC image still
appears darker in flat terrain located more to the east of the scene). This could be accounted to the
terrain elevation changes inside the scene. The reference ellipsoid height of 550 m a.s.l. is located
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at the far west of the scene. The terrain heights increase steadily from east to west (see also Figure
5.1), leading in higher differences to the ellipsoid reference height to the west. Together with the
low flying altitude of the airborne SAR instrument, this could lead to highly different backscatter

intensities at flat areas from different elevations.
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Figure 5.4: Processed E-SAR HV-polarization products. (a) GTC product with reference ellipsoid
height of o m a.s.l,, (b) GTC product with reference ellipsoid height of 550 m a.s.l. (c)
RTC product.
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Figure 5.5: Backscatter Histogram of RTC products in red, GTC product with reference ellipsoid
height of o m a.s.l. in blue and GTC product with reference ellipsoid height of 550 m in
green. HV-polarization shown with solid lines; HH-polarization with dashed-lines.

5.2. POA estimation and Coherence matrix rotation

In Figure 5.6, the polarization orientation angle map retrieved from the fully polarimetric E-SAR ac-
quisition using Equation (2.3) is shown. For comparison, the DTM retrieved from ALS measurements
is shown. By comparing the DTM and POA, we see that there are some similarities in the images.
Especially flat surfaces not covered by vegetation are clearly distinguishable. Also visible is that the
hill side facing to the east shows clearly lower POA values than the hill side facing to the west. This
is also visible if we zoom into the image as shown in Figure 5.7. Here we see the clear outline of
the ridge of the hill, close to the middle of the scene, with low POA values to the east and higher
POA values to the west. Further to the west, the POA values decrease again with increasing terrain
height. Some topographic features are therefore clearly distinguishable in the POA map retrieved
from E-SAR data. However, there is considerable noise in the image, especially where terrain was
covered by forest. This is accountable to the wavelength of the SAR sensor. As the L-band sensor
cannot penetrate through the denser canopy, other issues contaminate the POA signal.

Also for ALOS PALSAR data such POA images were calculated as shown in Figure 5.6c. Here a
subset of the POA map taken from the frame PLR231-T640F940 acquired on the gth of May 2009
over the Hinwil study site is shown. Note that while the E-SAR instrument looked roughly to the
south, the PALSAR instrument was looking roughly to the E-NE. As the POA is affected by azimuth
slopes relative to the sensor, the POA maps acquired from the different sensors are not expected to be
the same. Compared to the DTM shown in Figure 5.6b not many correspondences can be found. The
PALSAR POA map was far noisier, only some flat terrain can be identified. The effects of rotating
the coherency matrix T3 on the backscatter intensities of the three Pauli bases surface scattering,
double bounce and volume scattering is shown in Figure 5.8. Here we see the three histograms of the
difference between rotated and unrotated Pauli bases taken from the slant range E-SAR 7% product,
where the rotated backscatter values were subtracted from the unrotated backscatter values. As
expected from the coherency matrix rotation formula shown in Equation (2.4), the surface scattering
channel is invariant to rotation along LOS. But the double bounce scattering channel showed a clear
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Figure 5.6: POA estimation over Hinwil study site. (a) POA map estimated from fully polarimetric
E-SAR L-Band data. The left-looking SAR instrument flew north of the shown scene. (b)
ALS measured DTM over the same extent for comparison. (c) POA map derived from
PALSAR PLR data over roughly the same extent as shown in (a) and (b). The ALOS orbit
was ascending and right-looking; the sensor was to the west of the scene.
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Figure 5.7: Close-up of Figure 5.6. (a) POA image, (b) DTM image of the same extent.

increase in backscatter, and the volume scattering channel showed a clear decrease in backscatter
values due to rotation. This agrees with results published in the literature (e.g. Lee & Ainsworth,

2011).

5.3. Biomass reference establishment from ALS

In Figure 5.9, the scatter-plots between mean canopy heights and the logarithm of biomass are shown
with the fitted models after Nelson et al. (1988) in Figure 5.9a and after Lim & Treitz (2004) in Figure
5.9b. The red crosses in the scatter plots are the obvious outliers mentioned in the methodology
Section 4.3.2 and were not considered in the model fit. The model described by Nelson et al. (1988)
explains the data points slightly better with an R? of 0.7, in comparison to the fitted model as
described in Lim & Treitz (2004) with an R? of 0.66. In the model after Nelson et al. (1988), a clear
saturation at about 15 m mean canopy height is visible. The model described in Lim & Treitz (2004)
does not show such a strong saturation with increasing mean canopy height. The retrieved model
parameters for each model and their respective performances (R?) are listed in Table 5.1.
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Figure 5.8: Histogram of the differences between unrotated minus rotated Pauli bases taken from the
whole E-SAR 'y% scene.
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Table 5.1: ALS model fit performance for mean canopy height vs. logarithm of AGB relation with

models after Nelson et al. (1988) and Lim & Treitz (2004).

Model Function Parameters R?
Nelson et al. (1988) [n(AGB) =mxh+n(In(h)+b) m=-0073 n=1878 b=0676 0.709
Lim & Treitz (2004) [n(AGB) = In(a) + b« In(h) a=4.287 b=1.317 0.658

log(Biomass) [t ha™"]

logBiom(h)=m"h.+n*(log(h)+b)
m=-0.073
n=1878
b=0676
h = Mean Canopy Height
R?=0.709
N=126

L
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1 20
Mean Canopy Height [m]

L
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log(Biomass) [t ha™"]

logBiom(h)=log(a)+b*log(h)
a=4.287

b=1317

h = Mean Canopy Height
R?=0.658

N=126
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(b)
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Figure 5.9: ALS mean canopy height vs. plot level AGB(logarithmic scale) with fitted model. (a)

Fitted model after Nelson et al. (1988). (b) Fitted model after Lim & Treitz (2004).
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Figure 5.10: ALS estimated AGB from ALS mean canopy height versus field measured AGB. (a) AGB
estimation with model by Nelson et al. (1988), (b) AGB estimation with model by Lim &

Treitz (2004).

The performance of each retrieved model can be analyzed by using the independent validation
plots. The model performance in estimating biomass for the models described in Nelson et al. (1988)
and Lim & Treitz (2004) are shown in Figures 5.10a and 5.10b respectively. Here we see again the
saturation effect for the Nelson et al. (1988) model. While the model registers the increase in biomass

up to 100 t ha™!, a further increase in biomass was not recognized at higher biomass levels. This
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was not the case for the model as described in Lim & Treitz (2004). The model was able to estimate
increases in biomass over the whole biomass range without any saturation. This is also represented
with the model’s statistical performance. While the model after Nelson et al. (1988) achieved an R2
of 0.375 with an RMSE of 122.2 t ha~!, the model after Lim & Treitz (2004) achieved an R? of 0.5
with an RMSE of 83.5 t ha~!. The retrieved model after Lim & Treitz (2004) was therefore selected as
the reference model to predict biomass from ALS measured mean canopy height.

5.4. Geocoding and normalization effects on

backscatter biomass sensitivity

In this section, the influence of employing a DSM or DTM for geocoding SAR products is outlined,
followed by demonstrations of the consequences of using a GTC or RTC product on biomass
sensitivity of airborne SAR backscatter data. PALSAR data was not analyzed in this section, as only
the DHM25 DEM was used for processing and we therefore could not analyze the consequences of
using a DSM or DTM for SAR processing and later biomass estimation.

5.4.1. Geocoding with DTM or DSM

As we had ALS derived DSM and DTM data available, the effect of using one or the other for
geocoding on retrieving biomass information was analyzed. In Figure 5.11, the 7 backscatter
sensitivity at HV-polarization to biomass on a plot level using the E-SAR scene is shown. We see that
sensitivity to biomass increased slightly when using the DSM instead of the DTM for geocoding the
SAR image. This is consistent in all image products for all polarizations as well as Pauli bases (GTC
and RTC). Due to this finding, all subsequent results from airborne SAR data were based on DSM
geocoded products.
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ﬁ(AGB):am*logu\eB)+c’(|og(AGB)f */;(AGB)=a+b*log(AGB)+c’(log(AGB)f
a=-7.988 a=-10.254

b = 0.659 b=0.928

c=-0.092 | ¢ =-0.040

R?=0.417 R?=0.447

N=55 N=55

-20

_25 L L L L L L L L L L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500

AGB [tha™] AGB [tha™]

(@) (b)

Figure 5.11: Backscatter sensitivity to biomass for DTM vs. DSM georeferenced E-SAR 7% backscatter
products at HV-polarization. (a) DTM geocoded 7%, (b) DSM geocoded /9.
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5.4.2. GTC vs. RTC products

In Figure 5.12, the difference in backscatter sensitivity for the E-SAR HV GTC (Figure 5.12a) and
the E-SAR HV RTC product (Figure 5.12b) is shown. Here we can distinguish a clear increase in
sensitivity to biomass in the RTC product. The R? increased from 0.45 to 0.54. The saturation point
also occured at higher biomass levels in comparison to the GTC product. The better performance of

RTC over GTC images was consistent in all analyzed polarizations as well as Pauli bases.
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Figure 5.12: E-SAR HV- polarization backscatter sensitivity to biomass at plot level for GTC (a) and
RTC (b) product. Both products were geocoded using the DSM.

5.5. Biomass estimation based on airborne SAR
backscatter data

In this section, three approaches to biomass estimation using backscatter data outlined in the
methodology section are analyzed. First the single polarization backscatter-based approach is
analyzed, where the sensitivity of the different polarizations to biomass is assessed. Afterwards,
results from using multiple polarizations for estimating biomass are outlined. In the last part, the
applicability of using polarimetric decompositions are assessed. As outlined in Section 5.4, only
DSM geocoded RTC products are analyzed herein, as these products showed higher sensitivities to
biomass compared to DTM geocoded and GTC products. An exception was made for the multiple
polarization approach, where also GTC products were analyzed, as this approach behaved slightly
differently to single polarization or polarimetric decomposition approaches. For all cases, first the
results of the model training are outlined and afterwards the retrieved model is validated, and the
performance in estimating biomass is assessed.
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5.5.1. Single polarization approach

In Figure 5.13, the sensitivity of E-SAR RTC products to biomass at the plot level is shown for all
four polarizations. The model was first fit to the KSP training plots. In this figure, it is clearly visible
that the cross-polarized channels showed the highest sensitivity to biomass (R? = 0.54) followed by
VV-polarization (R? = 0.46) and HH-polarization(R? = 0.41). Yet in all four channels a quite high
noise level was apparent, and the saturation occured already at very low biomass levels (below
50 t ha™1).

As the cross-polarized channels showed the highest sensitivity to biomass, the HV-polarization
channel was chosen for further use in direct biomass estimation. First, the retrieved model was tested
against the validation points, to see if the model also described the validation points accordingly.
Results are shown in Figure 5.14a. Here we see that the model fit the validation points quite well,
with even a higher R? value of 0.75. Unfortunately, the performance of estimating biomass from the
single HV-polarization channel based model was poor, with an R? of just 0.017 and an RMSE of
130 t ha~! as shown in Figure 5.14b.

As the plot level results were not satisfying, we moved on to assessing the backscatter sensitivity
at the stand level. The stand level DSM geocoded 7Y backscatter sensitivity to biomass at HV-
polarization is shown in Figure 5.15a. At the first glimpse it seems that at least at very low biomass
levels, the backscatter intensity shows some sensitivity to biomass. Yet, if we look closer into the
biomass range between o and 25 t ha™!, this sensitivity is less pronounced, showing nearly no
increase in backscatter intensity with increasing biomass as shown in Figure 5.15b.

In order to reduce the high noise level, also a stand size based filtering was analyzed. Figure 5.16
shows the backscatter intensity to biomass at stand level for four different minimum stand sizes.
Minimum stand sizes of 0.25 ha (5.16a), 0.5 ha (5.16b), 0.75 ha (5.16c), and 1 ha (5.16d) were analyzed.
We see that by filtering the stand dataset, the noise level could be significantly reduced. Yet many
stands were lost in the course of that, especially in the lower biomass range. Initially 641 training
stands were reduced to 165, 95, 55, and 41 training stands with minimum stand sizes of 0.25, 0.5,
0.75, and 1 ha respectively. For the 1 ha case, we therefore had less than 10% from the initial number
of training stands available. By filtering out the smaller stands, the data points converged to a nearly
horizontal line, describing no increase in backscatter with increasing biomass. This made a reliable
biomass estimate from backscatter data also at stand level impossible, as illustrated clearly in Figure
5.17. For both cases shown in Figure 5.17, no clear correlation between estimated and reference
biomass was visible.

The influence of different forest types (coniferous, mixed-coniferous, mixed-deciduous, and
deciduous) on backscatter sensitivity was also analyzed. Results are shown in Figure 5.18 for
HV-polarized 7% backscatter data. This result showed that an individual analysis for each forest type
did not lead to improved results, as no clear forest type specific backscatter behavior was visible in
the plot. Interestingly though, mixed coniferous forest stands showed a much higher variability in
backscatter, compared to the other forest types. This could be due to the number of stands in this
forest type, as the mixed-coniferous class is the dominant forest type at the Hinwil study site. They
also seem to be rather small stands, as many of the outliers labeled as mixed-coniferous shown in

Figure 5.18 disappear when we increased the minimal stand size, as shown in Figure 5.16.
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Figure 5.13: E-SAR RTC backscatter sensitivity to biomass for all four polarization channels at plot

level. (a) HH, (b) HV, (c) VH, (d) VV.
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Figure 5.14: Model validation and biomass prediction from E-SAR 7Y backscatter data at HV-
polarisation at plot level. (a) Validation of retrieved backscatter-biomass model. (b)
performance of model to estimate biomass of the KSP validation plots.
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Figure 5.15: E-SAR RTC stand level backscatter sensitivity to biomass at HV-polarization; (a) for the
full biomass range and (b) for biomass levels below 25 t ha—1.
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Figure 5.16: Relation between E-SAR DSM geocoded RTC HV backscatter and biomass at stand level
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Figure 5.17: Estimated AGB from stand level HV RTC backscatter data vs. ALS reference biomass at
stand level. (a) for all stands, (b) for stands with minimum size of 0.5 ha.
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Figure 5.18: HV 7). backscatter sensitivity to biomass assessed for four forest types. Forest type
information was taken from the WMGo2 dataset.
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5.5.2. Multiple polarization approach

Also for the multiple polarization approach, the model training was assessed first before using the
retrieved model to assess the biomass estimation performance. As three independent backscatter
values (HH-, VV-, and HV- channel) were available and one dependent (AGB) variable in this
polynomial model, visualizing the model training results was difficult. The model training results are
shown in tabular form in Table 5.2, where all model parameters as well as the model performance,
declared with the R? are shown, for all analyzed backscatter products.

Table 5.2: Multi polarization approach training results at plot level for each processed E-SAR product
(GTC DTM and DSM geocoded and RTC DTM normalized and DSM, DTM geocoded).
Geoc = Geocoded, Norm = Normalized. Number of plots for model training = 55.

SAR product Parameters Performance

ao a1 az b1 b2 c1 c2 R?

GTC DIM Geoc  0.634 -1.401 -0.120 0.081 -0.002 -0.047  0.093 0.721

GTC DSM Geoc  3.339 -0.637 -0.064 0.030 0.024 -0.286 -0.019 0.735

RTC DSM Geoc DTM Norm  1.847 -1.117 -0.095 0.271 0.088 -0.242 -0.040 0.760
RTC DTM Geoc DTM Norm -0.376 -1.551 -0.111 0.066 0.014 0.107  0.053 0.630

Here we see that the DSM geocoded products performed slightly better compared to the DTM
geocoded products. The DSM geocoded RTC product performed also slightly better compared to the
DSM geocoded GTC product.

In Figure 5.19, the performance of estimating biomass using the above retrieved models and the
validation KSP plots are shown. We can clearly see, that the DTM geocoded products (Figures
5.19a and 5.19c) are not able to estimate biomass with an R? of 0.004 and 0.044 and an RMSE of
235.5 and 114.6 t ha~! for the GTC and RTC products respectively. The performance of the DSM
geocoded products (Figures 5.19b and 5.19d) was much higher with an R? of 0.227 and 0.16 and
an RMSE of 87.8 and 94.3 t ha™! for the GTC and RTC products respectively. Interestingly, the
DSM geocoded RTC product showed less biomass estimation capability than the DSM geocoded
GTC product. Although the estimation appears noisy, a clear increase in estimated biomass with
increasing reference biomass is visible, especially in Figures 5.19b and 5.19d. It would be interesting
to analyze this behavior with a larger number of validation plots to see if the behavior is consistent
with more data points.

With the multiple polarization approach a stand level analysis was also carried out. The model
training performance with the retrieved model parameters for the four analyzed E-SAR products is
outlined in Table 5.3. Here we see that the model training performance was much weaker compared
to the plot level training. The best performance was delivered by the DSM geocoded RTC product
with an R? of 0.265. Note that no stand size filtering was applied here.

In Figure 5.20, a comparison of estimated and reference biomass from the stand level analysis
is outlined for the two DSM geocoded products. While the DSM geocoded GTC product showed
nearly no increase in estimated biomass given increasing reference biomass, the DSM geocoded RTC
product registered at least small increases in estimated biomass given increasing reference biomass.
Yet the noise level in the DSM geocoded RTC product appeared much higher compared to the DSM
geocoded GTC product.

67



5.5 Biomass estimation based on airborne SAR backscatter data 5 RESULTS

R? =0.004 R? =0.227
RMSE = 235.495 4501 | RMSE = 87.846
6001 N=17 4 N=17

Estimated AGB [t ha™"]
Estimated AGB [t ha™"]
8
g

L L X L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500 0 50 100

. . . . . . .
150 200 250 300 350 400 450 500
Reference AGB [t ha™"]

Reference AGB [t ha™"]

(a) (b)

500

T T T T T T T T T T T T
R? =0.044 R? =0.160

450| | RMSE = 114.562 R 450} | RMSE = 94.265
N=17 N=17

4001

Estimated AGB [t ha™"]
8
g
Estimated AGB [t ha™"]
8
g

0 50 100 150 200 250 300 350 400 450 500 0 50 100

150 200 250 300 350 400 450 500
Reference AGB [t ha™']

Reference AGB [t ha™']

() (d)

Figure 5.19: Reference AGB vs. estimated AGB for the multiple polarization approach and for the

four different E-SAR products: (a) DTM geocoded GTC, (b) DSM geocoded GTC, (c)
DTM geocoded RTC, and (d) DSM geocoded RTC.

Due to the high noise levels in the estimated vs. reference AGB at stand level shown in Figure
5.20b, the effect of filtering out smaller stands was analyzed. For this, the minimum stand size was
set to 0.25, 0.5, 0.75 and 1 ha. The performance of the model training for the four different minimum
stand sizes is shown in Table 5.4 and the estimated vs. reference AGB plots also for the four different
minimum stand sizes are shown in Figure 5.21. The results for the model training were already
significantly better when focusing only on stands larger than 0.25 ha (increase in R? from 0.265
to 0.31). The best model performance was achieved with 1 ha minimum stand size and an R? of
0.56. Also for the comparison between estimated and reference biomass (Figure 5.21), an increase in
performance when only larger stands are analyzed was observed. The main cause was likely the
reduced noise in the data, due to averaging over larger areas. The best result was achieved with a
minimum stand size of 0.5 ha (R? 0.41 and RMSE of 74.3 t ha~!) followed by the 1 ha minimum stand
size (R? of 0.37 and RMSE of 77.4 t ha™1). Interestingly, the model used for the 0.5 ha minimum
stand size actually performed worst in the model training, compared to the other minimum stand

size datasets. Note that after 150 t ha~! saturation, and therefore more noise, was observed in all
analyzed minimum stand size datasets.
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Table 5.3: Multi polarization approach training results at stand level for each processed E-SAR
product (GTC DTM and DSM geocoded and RTC DTM normalized and DSM, DTM

geocoded).
Geoc = Geocoded, Norm = Normalized. Number of stands for model training = 654.
SAR product Parameters Performance
ao a1 az b1 b2 c1 c2 R?
GTC DITM Geoc  4.482 -0.194 -0.028 0.03 0.011 0.008 0.023 0.067
GTC DSM Geoc 3.666 -0.514 -0.056 0.007 0.017 0.084 0.038 0.145
RTC DSM Geoc DTM Norm 4.861 -0.218 -0.041 0.018 0.011 -0.003 0.013 0.265
RTC DTM Geoc DTM Norm 3.974 -0.373 -0.043 -0.007 0.01 0.068 0.03 0.117
500 T 500 T
R? =0.013 R? =0.052
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Figure 5.20: Reference AGB vs. estimated AGB for the multiple polarization approach at the stand

level and for the two different E-SAR products: (a) DSM geocoded GTC, and (b) DSM
geocoded RTC.

Table 5.4: Multiple polarization approach model training results at the stand level for DSM geocoded
RTC E-SAR product with different minimum stand sizes. The number of stands analyzed
in model training is declared in the last column labeled as N.

Minimum
Stand Size [ha] Parameters Performance
ao a1 a2 b1 b2 c1 c2 RZ N
0.25 5.073 -0.044 -0.005 -0.036 0.014 0.172 -0.020 0.31 167
0.5 5.2 -0.028 -0.004 0.012 -0.011 0.112 -0.019 0.245 97
0.75 3.368 -0.555 -0.036 -0.068 -0.099 0.275  0.037 0.287 55
1 1.848 -0.923 -0.043 0.577 0.135 -0.209  -0.18 0.565 41
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Figure 5.21: Reference AGB vs. estimated AGB for the multiple polarization approach at different
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minimum stand sizes using the DSM geocoded RTC E-SAR product. (a) minimum stand
size of 0.25 ha, (b) minimum stand size of 0.5 ha, (c) minimum stand size of 0.75 ha and
(d) minimum stand size of 1 ha.
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5.5.3. Polarimetric decomposition approach

In Figure 5.22, the sensitivity of the three Pauli scattering mechanisms surface, double bounce and
volume scattering vs. biomass is shown at the plot level. Only the results taken from the DSM
geocoded RTC products are shown, as they showed the highest sensitivity to biomass. The third
Pauli base, i.e. the volume scattering part (HV + VH) showed the highest sensitivity to biomass with
an R? of 0.54, followed by the double bounce scattering (HH-VV with R? of 0.49) and the surface
scattering (HH+VV with R? of 0.42). The model validation showed that the validation points could
also be explained with the retrieved model (see Figure C.1 in Appendix C). In Figure 5.23a, the
(HH-VV)«(HV4+VH) 14 biomass at plot level for the DSM

(HH+VV)
geocoded RTC product is shown. This ratio showed a slight increase in biomass sensitivity (R? of

sensitivity of the scattering mechanism ratio

0.55) compared to the single volume scattering channel (R? of 0.54). Yet also here, the saturation
effect was apparent already at very low biomass levels, leading to difficulties in retrieving biomass
information from this polarimetric decomposition data at the plot level, as seen in Figure 5.23. Here
we see that, similar to the single polarization approach, the third pauli base and the scattering
mechanism ratio are not capable of accurately estimating biomass at the plot level. Also the rotation
of the Pauli scattering mechanisms as discussed in Section 2.1.4 did not improve this behavior as
seen in Table 5.5. Here we see again that the first Pauli base is invariant to rotation. The performance
was therefore the same as with unrotated data. For the double bounce scattering mechanism, the
model training performance increased slightly and for the volume scattering mechanism, the model
training performed even worse with the rotated data than with the unrotated. Only very small
differences were found in model training for the rotated and unrotated Pauli scattering mechanism
ratio. Yet the performance in estimating biomass at plot level, using the model fitted to the rotated
data, increased slightly from an R? of 0.07 to 0.115 with a decrease in RMSE from 120.4 t ha~! in the
unrotated case to 114.4 t ha~! in the rotated case. Yet still, the sensitivity and biomass estimation
performance using polarimetric decompositions at plot level was very low, calling into question the
applicability of this approach at least at this study site with the SAR data used.

Also at the stand level, the sensitivity of the scattering mechanisms to biomass was low as shown
in Figure 5.24 for the unrotated and rotated volume scattering and Pauli scattering ratios taken from
the DSM geocoded RTC Pauli products. The sensitivity of these two products was quite similar to the
stand level sensitivity of the cross-polarized backscatter channel seen in Figure 5.15. As the increase

Table 5.5: Results from model training, validation and biomass estimation performance analysis with
rotated E-SAR Pauli scattering mechanisms at the plot level. The model as described in
single polarization approach was used to fit the data: 7}(AGB) = a + b * log(AGB) + ¢ *

(log(AGB))2.
Performance
Model Parameters Training Validation Prediction

a b ¢ | R*(N=55) R? (N=17) | R? (N=17) RMSE [tha]

(HH+VV)(0)  -6.423 0.907 0.0032 0.417 0.702 0.001 110.22
(HH-VV)(6) 719  1.03  0.022 0.52 0.726 0.044 121.483
(HV+VH)(0) -12.129 1.01 0.0025 0.505 0.751 0.022 114.262
P2(0)*P3(0)/P1(6) -11.736  1.12 0.01 0.55 0.775 0.115 114.383
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Figure 5.22: Pauli decomposition power sensitivity to biomass at plot level for fully polarimetric
E-SAR data. (a) Model training for surface scattering term (HH+VV), (b) model training
for double bounce scattering term (HH-VV), (c) model training for volume scattering
term (HV+VH), and (c) model training for Pauli ratio P; * P,/ Ps.
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Figure 5.23: Biomass estimation at the plot level with DSM geocoded RTC Pauli products; (a) from
volume scattering, (b) from the Pauli ratio P; * P,/ Ps.
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in minimum stand size did not result in much better correlation in the single polarization approach
and due to the similarity of the unfiltered stand-level relation between the single polarization and
polarimetric decomposition approach, no further analysis regarding different minimum stand sizes

was performed here.
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Figure 5.24: Unrotated and rotated volume scattering and Pauli ratio sensitivity to biomass at the
stand level. (a) unrotated volume scattering, (b) rotated volume scattering, (c) unrotated
Pauli ratio, (d) rotated Pauli ratio.

5.6. Biomass sensitivity of ALOS PALSAR
backscattering data

At the beginning of this thesis, only spaceborne SAR data acquired by the ALOS PALSAR instrument
had been available, and the initial goal was to estimate biomass only from this dataset covering
most of the north-eastern part of Switzerland. Yet, already quite early in the process of this thesis it
became apparent that the fully polarimetric ALOS PALSAR data showed only very weak sensitivity
to biomass over the analysed heterogenous mixed forests at the two selected study sites at Hinwil
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and Ladgern. Due to this, the focus was then placed on the higher resolved fully polarimetric airborne
SAR data acquired by the E-SAR instrument over the Hinwil study site. Nevertheless, some of the
results of the analysis with ALOS PALSAR PLR data over the two study sites Hinwil and Lagern
are shown here. As the PLR data showed weak correlation to biomass, only a sensitivity analysis
without a later biomass estimation attempt was performed. Focus was placed on the cross-polarized
channel in the single polarization approach and on the volume scattering channel as well as the
Pauli ratio channel (see Equation 4.13) for the polarimetric decomposition approach, as these three
channels showed the highest sensitivity to biomass in the analysis with E-SAR data. In several
studies employing ALOS PALSAR data (mainly using the FBD mode) the cross polarized channel
(e.g. in Mitchard et al., 2009) and the volume scattering mechanism (eg. in Chowdhury et al., 2013)
showed the highest sensitivity to biomass or growing stock volume.

5.6.1. PLR sensitivity to biomass at Hinwil test site

In Figure 5.25, the relation between GTC (Figure 5.25a), RTC (Figure 5.25b) backscatter intensities
and ALS retrieved biomass information at pixel scale (25 m pixel spacing) is shown for the PLR
frame acquired on the gth of May 2009 at an off-nadir angle of 23.1°. We see that neither the GTC
nor the RTC backscatter values showed any correlation to biomass. The observed backscatter values
showed a large variability stretching over 10 dB. This was probably accountable to the high noise
level of the PLR dataset at 25 m pixel spacing. In order to reduce the noise in the data, both the
PLR and ALS derived biomass maps were rescaled to 100 m pixel spacing. The result is shown in
Figure 5.26. Due to the averaging over a larger area, the high variability in the backscatter values
was successfully reduced. Yet, the correlation between backscatter intensity and biomass was not
increased, neither in the GTC nor in the RTC case. Note that due to the large averaging window of
100 m, the number of samples in the lower biomass range (below 100 t ha~!) decreased drastically.
This hindered the potential of estimating biomass from the backscatter data, considering that L-band
SAR is most sensitive to biomass variations below 100 t ha~!. Not shown here are the backscatter

@(AGB)=a+b-|og(AsB)+c~(|og(AsB)F 1}(AGB)=a+b*log(AGB)+c*(log(AGE)f
a=-7.658, b=0233, c=-0.002 a=-11.224, b=0.020, c=0.003
R%=0.007 (N =10354) R%=0.000 (N =10390)
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Figure 5.25: GTC vs. RTC of PLR231 HV-polarization backscatter data acquired on gth of May 2009
vs. biomass at 25 m pixel spacing over Hinwil study site. (a) GTC product, (b) RTC
product.
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Figure 5.26: GTC vs. RTC of PLR231 HV-polarization backscatter data acquired on gth of May 2009
against biomass at 100 m pixel spacing over Hinwil study site. (a) GTC product, (b) RTC
product.

response to biomass from the available PLR frames at an off-nadir angle of 21.5°. Those frames also
showed no correlation between backscatter and biomass (shown in Figure D.2 in Appendix D).

Similar to the results achieved with E-SAR data, polarimetric decomposition powers derived from
the PALSAR data did not show any better correlation to biomass (see Figure D.4 in Appendix D).
Also rotation of the coherency matrix did not improve the correlation.

The stand-level analysis showed that the noise could be reduced due to averaging of the backscatter
and biomass data over a whole stand as shown in Figure 5.27. Nevertheless no correlation between
biomass and backscatter was observable. Also considering the different forest types, no obvious
relation between backscatter and biomass was visible.

As the backscatter intensity at all four polarizations was insensitive to biomass, no multiple polar-
ization analysis was performed here (backscatter vs. AGB scatter plots for all four radiometrically
normalized polarizations at 100 m resolution are shown in Figure D.1 in Appendix D).

301 A Coniferous forest yg(AGB)=a+b"log(AGB)+c‘(log(AGB))2
h Mixed Coniferous forest a=-10.701, b=0.127, c=-0.027
Mixed Deciduous forest R? = 0.001 (N = 1674)
Deci forest
T

_35 - T T L T T T T )
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Figure 5.27: Stand level sensitivity of HV 'y(% backscatter vs. biomass based on PLR231 frame acquired
on the gth of May 2009 over Hinwil. The stands are labeled according to their respective
forest type.
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5.6.2. PLR sensitivity to biomass at Lagern test site

Also at the Lagern study site, no sensitivity of the backscatter signal to biomass for the PALSAR PLR
data was observed. In Figure 5.28 the 7% backscatter sensitivity at HV-polarization at pixel (25 m and
100 m resolution) as well as stand level is shown. The backscatter and biomass values were further
averaged into 10 t ha~! bins as shown in Figure 5.28b. Due to the averaging, the very low correlation
between biomass and backscatter was even more pronounced, as the line fitted through the averaged
data points was largely a straight horizontal line. At a pixel spacing of 100 m, the noise in the data
could be reduced significantly again, yet a lot of information was lost in the lower biomass range as
we see in Figure 5.28c. Also at the stand level, no correlation between backscatter and biomass was
observable, even when analyzing individual forest types as shown in Figure 5.28d.

The analysis of Pauli decomposition powers relation to biomass did not result in any better results.
As expected, also the compensation for polarization orientation angle shifts did not improve the
relation between corrected decomposition powers and biomass (for some results see Figure D.5 in
Appendix D).

Interestingly though, the sensitivity to biomass increased significantly if we did not mask out
non-forest areas as shown in Figure 5.29. Due to this tactic more low biomass reference pixels were
incorporated into the analysis. At least for the Lagern test site, most non-forest areas were related to
agricultural land-cover; only very few were related to built-up areas (this is different from the Hinwil
study site, where several larger villages were present), these low-biomass reference pixels exhibited
lower backscatter values, increasing the correlation between biomass and backscatter significantly.
Yet, this approach is not very useful for this study, as the goal is to estimate the biomass stored in
the (a priory) known forests. There the relation between biomass and backscatter was still weak as
shown in Figure 5.28.
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Figure 5.28: Sensitivity of PLR215 HV 'y(% backscatter to biomass over the Lagern study site. (a)
Sensitivity at pixel-level with 25 m resolution, (b) Sensitivity at pixel-level with 25 m
resolution, where the backscatter and biomass data was averaged in 10 t ha~! bins.
The blue crosses denote the mean backscatter and biomass values, the black line is the
function fit through these points, and the red and green lines denote the 75th and 25th
percentile of each 10 t ha~! bin. (c) Sensitivity at 100 m sample-level. (d) Sensitivity at
stand level regarding the different forest types. PLR frame was acquired at an off-nadir
angle of 21.5°, the image was acquired on the 24th of March 2009 over the Ligern test
site.
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Figure 5.29: Sensitivity of PLR215 HV 7 backscatter to biomass over the Lagern study site when
the non-forest areas were not masked out. PLR frame was acquired at an off-nadir
angle of 21.5° acquired on the 24th of March 2009. (a) backscatter vs. biomass relation
at 25 m pixel spacing, (b) backscatter vs. biomass relation at 25 m pixel spacing and
averaged over 10 t ha~! bins, (c) backscatter vs. biomass relation at 100 m pixel spacing,
(d) backscatter vs. biomass relation at 100 m pixel spacing and averaged over 10 t ha~!
bins. In (b) and (d): The solid black line denotes the curve fit through the averaged
backscatter points; the red and green lines denote the 75th and 25th percentile of the
respective bins.
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5.7. Biomass estimation through PolInSAR

Focus lies in this section on the performance of the different PolInSAR methodologies to estimate
canopy height and biomass. First, the performance of estimating canopy height of the four different
approaches outlined in the methodology section is assessed. The performance of estimating biomass
from the retrieved canopy heights is then outlined.

5.7.1. Canopy height estimation with PolInSAR

In Figure 5.30, the CHMs derived from the PolInSAR forest height retrieval algorithms introduced
in Sections 4.6.1 to 4.6.4 are shown. For comparison, the ALS CHM over the same region is
shown in Figure 5.31. The CHMs derived from PolInSAR were produced by using DSM-flattened
interferograms at HV-polarization for the volume dominated channel and HH-VV (double-bounce)
polarization for the surface dominated channel. We see that most of the CHMs were able to depict
the outlines of the forests. Yet in all products, a clear near-range to far-range effect was visible,
resulting in tendencies to lower forest height estimates at near-range and higher height estimates at
far range. The DEMDiff and RPI CHM mostly underestimated the canopy height when compared to
the ALS CHM. The number of negative height estimates was highest for these two products. The
CHM derived from coherence amplitude only (SINC inversion) showed a clear overestimation of the
canopy height, especially at far range. On bare surfaces, the height was usually overestimated. As
the PCI CHM shown in Figure 5.30d is a combination of the RPI and SINC inversion, it shows also
a combination of effects seen in these two CHMSs. The surface height over bare surfaces was often
overestimated, yet not as much as in the SINC inversion case. Inside the forest, the heights seemed
to be underestimated and several patches with negative height estimates were visible, yet not as
dominant as with the RPI inversion. Due to these findings, we dismissed the CHMs derived from
DEM differencing and RPI inversion for further analysis, as these two products would most probably
lead to unsatisfying results for the subsequent biomass estimation. We therefore concentrated on
the two CHMs derived from the SINC and PCI inversions. First, the two estimated CHMs were
more closely compared to the ALS derived CHM by calculating the difference between the PolInSAR
estimated CHM and the ALS derived CHM as shown in Figure 5.32. Here we see again that the
CHM derived from the SINC inversion significantly overestimated the canopy height over forest as
well as over bare ground. While the PCI CHM also slightly overestimated the canopy height over
bare surface, it mainly underestimated the canopy height over forested areas. Also note that the
forests located in the more topographic region in the east of the scene were underestimated in both
PolInSAR derived CHMs. This suggests that these two PolInSAR procedures are highly affected by
topography, leading to significantly underestimated canopy heights.

For a closer look into the two estimated canopy height products, an analysis over several transects
covering a forested area was performed. In Figure 5.33, a subset of the ALS CHM is shown with the
three transects highlighted. Transects were chosen to lie in the along track direction (transect 3) or the
across track direction (transects 1 and 2) to analyze the effects of image acquisition geometry on the
retrieved canopy height. In Figure 5.34, transects of the PCI and SINC inversion results compared to
the ALS CHM transect are shown. Here we see that the two PolInSAR derived CHMSs do not closely
match the ALS derived CHM. Almost no features found in the ALS CHM could be distinguished in
the two PolInSAR transects. We see that the SINC inversion usually overestimated the canopy height.
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Figure 5.33: Subset of Hinwil ALS CHM over the forest Buelholz near Hinwil with highlighted
transect locations for transect analysis with PolInSAR derived CHMs.

The SINC inversion was also not able to depict forest clearings e.g. in transect 1 at around 238700 m
Northing. The PCI derived CHM transect showed at least a decrease in estimated forest height at this
location. Yet the PCI derived CHM clearly showed a very high noise level, where high canopy height
estimates were often followed by very small, or even negative height estimates. Also interesting is
that for the north-south oriented transects (transects 1 and 2) derived from the PCI inversion, some
clear forest border effects are visible. At the north end of the transects (at the right hand side of
Figures 5.34b and 5.34d) large height estimates are derived already before the actual forest begins,
enlarging the forest stand in the PolInSAR derived CHM estimate. At the south end, a clear drop in
height estimate before the actual end of the forest is observed, after which the height estimates peak
again approximately on the forest border. Such effects are not so distinct in the transect oriented
east-west (along the flight track). On bare surfaces behind the forest borders, both PolInSAR derived
CHMSs overestimated the canopy height. This analysis shows that a height estimation from PolInSAR
at very small scales did not produce satisfying results. At greater scales, averaging the estimated
heights over a larger area, the PolInSAR derived height estimates could lead to acceptable results.
This was shown in the average height over the analysed transects especially for the PCI derived
CHM. While the SINC inversion derived CHM highly overestimated the mean transects height by
up to 20 meters (for transect 1), the PCI derived mean transect heights only underestimated the ALS
derived mean transect height by a maximum of 4 meters. Due to this observation, the subsequent
PolInSAR analysis were based on the stand level, the most common scale for PolInSAR studies
found in the literature (e.g. Chen et al., 2008 or Mette et al., 2004). Also note that the study site
is further reduced to a smaller subset located at the western part of the scene in order to reduce
the topographic effects found in the eastern part of the scene as discussed earlier and illustrated in
Figure 5.32. The northernmost part was excluded from the analysis to minimize near range effects.
The final study site size for the PolInSAR study was therefore roughly 2x4 km in the south-western
corner of the E-SAR scene (Easting coordinates between 703 and 707 km, Northing coordinates
between 238 and 240 km).

In Table 5.6, the performance of the PCI and SINC inversion to estimate forest height at the stand
level for different minimum stand sizes and different interferogram flattening procedures are shown.
The SINC inversion was clearly not able to predict forest height accurately even at the stand level.
Only at a minimum stand size of 2 ha was the SINC inversion able to achieve an R? of over 0.1, even
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Figure 5.34: Transect analysis of SINC inversion derive

——— ALS CHM transect (Mean Height: 15.0 m)
—— PCl transect (Mean Height: 11.1 m)

(f) PCI Transect 3

d CHM (left column) and of PCI inversion

derived CHM (right column) compared to the ALS derived CHM. For the PolInSAR
CHM estimation DSM flattened interferograms at HV-polarization for the volume
dominated channel and HH-VV polarization for the surface dominated channel were
used. ALS data was acquired April 2003 and E-SAR data was acquired in September
2006 (see Sections 3.3 and 3.5).
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then with an RMSE of up to 15 m in the DSM flattened case, which is more than 100% of the mean
ALS measured stand canopy height (12 m at 2 ha minimum stand size). The PCI inversion performed
much better, especially when increasing the minimum stand size to at least approximately 1 ha.
Better results were achieved when DSM flattened interferograms were employed than when DTM
or ellipsoid flattened interferograms were used. The best results were achieved with a minimum
stand size of 2 ha with an R? of 0.49 and an RMSE of 5.3 m. The mean ALS measured stand heights
at 2 ha minimum stand size was about 12.3 m, resulting in relative errors in height estimates from
the PCI inversion of 43% of the reference mean stand height. In Figure 5.35, ALS-measured and
PolInSAR-derived mean canopy heights from the SINC and PCI inversions at the stand level are
compared for the minimum stand size case of 2 ha. We see here again that while the PCI inversion
detected the increase in canopy height, the SINC inversion failed across the line. The PCI inversion
mainly underestimated the canopy height, while the SINC inversion significantly overestimated the
canopy height.

Table 5.6: Performance of the PCI and SINC inversion in estimating forest heights at the stand level
for different minimum stand sizes and different interferogram flattening procedures. For
the volume dominated channel, the interferogram at HV-polarization was used and for the
surface dominated channel, the interferogram at HH-VV polarization was used.  denotes
the mean ALS measured canopy height.

PCI Inversion

unfiltered (N=336) 0.5 ha (N=55) 1 ha (N=28) 1.5 ha (N=17) 2 ha (N=14)
I =8.9m I = 10.4m h=113m h =12.4m h=123m
R?> RMSE [m] R?> RMSE [m] R?> RMSE [m] R?  RMSE [m] R? RMSE [m]
DSM flattened  0.047 6.8 0.022 5.3 0.325 4.8 0476 5.5 0.491 5.3
DTM flattened 0.088 6.9 0.05 5.2 0.096 5.2  0.177 5.2 0.227 4.8
Ellipsoid flattened 0.043 7.4 0.023 6.3 0.095 5.2  0.22 5.14 0.265 4.8
SINC Inversion
unfiltered (N=336) 0.5 ha (N=55) 1 ha (N=28) 1.5 ha (N=17) 2 ha (N=14)
I =8.9m I = 10.4m h=113m h =12.4m h=123m
R?> RMSE [m] R?> RMSE [m] R?> RMSE [m] R? RMSE [m] R? RMSE [m]
DSM flattened  0.039 17.9 0.036 16.1  0.057 14.8 0.076 14.2  0.172 15.2
DTM flattened o 15.8 0.008 13 0.03 11.6  0.092 10.8 0.188 11.6
Ellipsoid flattened o 15.8 0.009 13.1  0.025 11.7 0.087 10.8 0.182 11.6

5.7.2. Biomass estimation from PolInSAR-derived mean canopy
height

With the canopy height estimate from PolInSAR established, the performance of the later biomass
estimation can be assessed. As the PCI inversion with the DSM flattened interferograms achieved the
best results in predicting canopy height, we focused on this dataset to assess the biomass estimation
performance. In Figure 5.36, a scatterplot of PCI derived mean canopy height and the reference
biomass derived from the ALS measurements is shown with the power law model fitted to the data
points. Stand-wise comparisons for minimum stand sizes of 1 ha, 1.5 ha and 2 ha are shown. Note
that due to the few stands that were large enough for this analysis, no separation of training and

model validation stands could be performed. A model validation was therefore unfortunately not
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Figure 5.35: ALS derived mean canopy height vs. PolInSAR derived mean canopy height at stand
level with minimum stand size of 2 ha. Interferograms are DSM flattened. Volume
dominated interferogram: HV, surface dominated interferogram: HH-VV. (a) ALS vs
SINC mean canopy height, (b) ALS vs PCI mean canopy height.

possible in this case. Yet, we were still able to see that an increase in reference biomass is clearly

accompanied with in increase in PCI derived mean stand height. Increasing the minimum stand size

resulted in an increase in R? from 0.37 for the 1 ha minimum stand size case up to 0.56 for the 2

ha minimum stand size case. Yet the RMSE increased with increasing minimum stand sizes from

117.9 t ha~! for the 1 ha case up to 133.5 t ha~! for the 2 ha case. This is notably roughly 100% of the

average ALS predicted reference AGB, as shown in Table 5.7.

Table 5.7: Model fitting performance between PCI derived mean stand canopy height and ALS
derived reference AGB.

Parameters Performance
minimum rel. RMSE mean
Stand Size a b R?> RMSE [tha] [% of mean AGB] ALS AGB
1ha 20.956 0.831 0.366 117.9 102.3 115.2
1.5ha 15.538  1.02 0.525 133.2 102.2 130.3
2ha 11.595 1.139 0.564 133.5 103.2 129.4

In this section it was shown that all analyzed approaches to estimate biomass clearly showed

some limitations and uncertainties. In the next section, these limitations and uncertainty sources are
discussed and an attempt is made to explain why these approaches show difficulties in accurately

estimating biomass for the analyzed study sites.
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6. Discussion

In this section, the results of the different biomass estimation approaches outlined in the previous
section are discussed and compared to results found in the literature. An attempt is made to explain
the reasons for the shown limitations of the different biomass estimation approaches. Finally, several
sources of uncertainties are listed and discussed.

6.1. Comparison of the different biomass estimation

approaches

As shown in the results section, none of the introduced approaches using fully polarimetric SAR
data was able to estimate biomass accurately at a plot level. The best result at the plot level was
achieved with the multiple polarization approach where the model was able to explain roughly
22% of the variability found in the reference biomass taken from the KSP plots with an RMSE of
88 t ha~!. Both single polarization and polarimetric decomposition approaches were able to explain
less than 10% of the variability found in the reference biomass at the plot level. Only when looking
at the stand level, and filtering out smaller stands, it became possible to estimate biomass with
better accuracies. Yet the estimation accuracy was still quite limited. For the single and multiple
polarization approach a minimum stand size of 0.5 ha was needed to achieve the best results. Even
larger minimum stand sizes did not result in better biomass estimation accuracies. Note that no
minimum stand size analysis was performed using the polarimetric decomposition approach, as
results based on this approach were very similar to those based on the single polarization approach.
While the single polarization approach using the HV-polarization was able to explain roughly 27%
of the variability in the reference biomass with an RMSE of 99 t ha~!, the multiple polarization
approach employing HH-,HV- as well as VV-polarization was able to explain roughly 41% of the
variability in the reference biomass with an RMSE of 74 t ha~!. The average stand-level biomass
for the validation stands with stand sizes larger than 0.5 ha was 169 t ha~!. The relative RMSE for
the single and multiple polarization approach was therefore roughly 59% and 43% of the mean
stand-level biomass in the validation stands.

The PolInSAR approach using phase as well as coherence information delivered the best results of
all the analyzed PolInSAR approaches. Yet the minimum stand size required here was at least 1 ha.
Best results were achieved with a minimum stand size of 2 ha. With a minimum stand size of 2 ha,
the retrieved model relating PCI retrieved stand-level canopy height to biomass was able to explain
roughly 56% of the variability found in the reference biomass with a RMSE of 133.5 t ha~!. This is
notably over 103% of the average stand-level biomass of all analyzed stands with at least 2 ha size
(129 t ha™!). Note that due to the very low number of suitable stands in the PolInSAR case study
the retrieved model could not be independently validated, as was done in the backscatter approach.
The stand dataset analyzed herein was therefore also different than the stand dataset analyzed in
the backscatter approaches which limited the inter-comparability of the results from the different
approaches.

Compared to these results, the very simple approach of estimating biomass from ALS, simply
relating the mean canopy height to biomass, performed much better. The retrieved model was able
to explain roughly 50% of the variability found in the reference biomass derived from the KSP field
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Figure 6.1: Histograms from reference AGB over Hinwil, (a) plot level KSP reference AGB, (b) stand
level AGB reference retrieved from ALS measurements (0.5 ha minimum stand size).

measurements with an RMSE of 83.5 t ha~!. The average biomass over all validation plots used for
the model evaluation was 183 t ha™!, resulting in a relative RMSE of 45%. Note that this performance
is related at the plot level. The performance of the ALS based biomass estimation at the plot level
was in the same range as the biomass estimation at the stand level using the multiple polarization
approach. With a very simple approach based on ALS measurements it was possible to receive more
accurate biomass estimations than the analyzed SAR based methodologies even at smaller scales.

Due to the small stands and the very low sensitivity of the ALOS PALSAR backscatter data, no
biomass estimation was performed using the ALOS PALSAR data. A comparison of the biomass
estimation performance using E-SAR vs. PALSAR data was therefore not performed.

6.2. Biomass estimation from fully polarimetric SAR
backscatter data

The results have shown that no single polarization channel nor Pauli decomposition base from
airborne or spaceborne measurement was sufficiently sensitive to biomass in order to accurately
estimate forest biomass, neither at plot nor stand levels. Although there were a few plots and stands
available for this study that covered the lower biomass range, a distinct increase in backscatter with
increasing biomass at the lower biomass range was not observed (see also Figure 6.1 for E-SAR study
site at Hinwil for plot and stand level AGB histograms, and Figure 6.2 for the Hinwil and Ligern
AGB histograms of the study site extents analyzed by PALSAR PLR data at 25 and 100m resolution).
This is somehow contradictory to the common findings reported in literature where especially the
HYV channel is reported to have high sensitivity to biomass changes in the lower biomass spectrum
at L-band for airborne as well as spaceborne SAR instruments (typically ALOS PALSAR FBD data)
(e.g. Mitchard et al., 2009, 2011; Saatchi et al., 2007a). This could be due to the different forest types
analyzed in these studies compared to the forests analyzed in this study. Most studies reporting a

high sensitivity of L-band HV-polarization to biomass were conducted in boreal or tropical forests
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Figure 6.2: Histograms of AGB reference retrieved from ALS measurements for PALSAR analysis
over Hinwil and Lédgern study site. (a) AGB histogram over Hinwil study site at 25m
resolution, (b) AGB histogram over Hinwil study site at 10om resolution, (c) AGB
histogram over Lagern study site at 25m resolution, (d) AGB histogram over Lagern
study site at 10om resolution.

(often in transition zones between savanna and tropical forests where many low biomass plots
are found, e.g. in Mitchard et al., 2009), and where forest stands are usually characterized by a
few dominant tree species and typically cover larger areas. The forests analyzed in this thesis are
characterized as mixed-coniferous forests, covering a large variety of tree species. Furthermore, the
forests are often highly managed, leading in a high variability in stand density. Ackermann et al.
(2010) came to a similar conclusion that L-band SAR backscatter data at HV-polarization showed
only very weak sensitivity to biomass in a study concerning ALOS PALSAR FBD data over the
Thuringian forest in Germany.

Only by adding further low biomass plots to the regression analysis, was a higher correlation
between reference biomass and measured backscatter intensity found. This is a common tactic also
employed by Saatchi et al. (2007a). Yet, note that it does actually not fit one goal of this study which
was to estimate the biomass stored in forests. As the biomass spectrum found in the analyzed forests
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lays typically at 100 t ha~—! and above, this tactic did not improve the biomass estimation capability
inside the forests, as we were already usually in the saturated area of the model (also see Figure 6.3).

In Figure 6.3, a comparison between the AGB-backscatter model retrieved from E-SAR 79 data at
HV-polarization at plot level, from PALSAR 79 data at HV-polarization with 100m resolution over
Lédgern study site, as well as two models established by Mitchard et al. (2009) and by Saatchi et al.
(2007a), also at plot level, is shown. Note that while we employed 'y% backscatter data, Mitchard et al.
(2009) used 0¥ backscatter values, not compensated for terrain effects (yet, the study site did not
show significant topography, Mitchard et al., 2009), and Saatchi et al. (2007a) used oY backscatter
values compensated for local incident angle effects. While Mitchard et al. (2009) used ALOS PALSAR
FBD data over several African landscapes, Saatchi et al. (2007a) used airborne L-band SAR data
from the AIRSAR instrument over the Yellowstone National Park in the United States to retrieve the
models. The models shown do not differ extremely from each other. The R? values for the listed
models are broadly similar. Interestingly though, the backscatter intensities from the E-SAR 79 case
were several decibels higher than all other models. This could be evidence for erroneous radiometric
calibration of the E-SAR dataset. Note that for both models established in this thesis, the saturation
point was lower in comparison to the models established by Mitchard et al. (2009) and Saatchi et al.
(2007a). This could be accountable to differences in site characteristics. The backscatter model taken
from the PALSAR PLR data over the Lagern study site included also non-forest areas as low biomass
reference data. When only forested areas were analyzed with ALOS PALSAR data, no correlation
between biomass and backscatter was observed. The reference biomass for the PALSAR Légern study
site was taken from ALS canopy height measurements. When no forest masking was performed,
also structures not related to vegetation (such as buildings) can be included in the biomass reference
data as these structures also have a height value in the CHM. To overcome this problem, another
filtering and masking approach should be used to filter out areas not related to vegetation. Yet, as
the focus of this thesis lies on estimating biomass inside forests, no further efforts were undertaken
to analyze this behavior.

The observed saturation in backscatter intensities with increasing biomass at L-band has been
reported and discussed in literature at length. It limits the utility of L-band SAR data for estimating
biomass at large scales and for different forest types. An attempt to explain this saturation effect
was made by Woodhouse (2006a) and in Zuberbiihler (2014) where the saturation of the backscatter
intensities at higher biomass levels was explained with a thinning effect. With the growth of the
forest over time, more dominant trees gain in size at the cost of fewer smaller trees, leading to fewer
trees in a stand. Zuberbiihler (2014) was able to relate the saturation to this thinning effect with
fully-polarimetric E-SAR P-band SAR data and could therefore compensate the saturation effect
by employing a correction factor based on the stand density. Yet, such an approach requires either
extensive forestry record keeping on the stand density or high resolved LiDAR measurements from
which the stand density could be derived via a single tree detection approach. Unfortunately, for
most areas in the world, such data is not available and a robust estimation of the thinning factor
requires further research. Although both reference datasets in order to estimate the stand density
would have been available for this study (KSP field measurements and ALS measurements), no
analysis of this thinning effect is performed here, as it would have gone beyond the scope of this
thesis.

Several studies have shown that the average backscatter intensity shows better correlation to
biomass at the stand level than at the plot level (e.g. Chowdhury et al., 2013; He et al., 2012; Saatchi
et al., 2007a etc.). Also in this thesis it was found that the relation of backscatter intensities to biomass
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Figure 6.3: Comparison between models derived from E-SAR and PALSAR HV polarization against
biomass over Hinwil and Lagern study site and the models retrieved by Mitchard et al.
(2009) and Saatchi et al. (2007a). The model by Mitchard et al. (2009) was retrieved from
PALSAR FBD data over 4 African low-biomass tropical woody vegetation. No radiometric
normalization was performed. The model by Saatchi et al. (2007a) was retrieved over
boreal forests in the Yellowstone National Park with airborne L-Band AIRSAR data.
Radiometric normalization based on incident angle correction was applied. All shown
models relate to plot level (or pixel level for PALSAR Lagern model). The R? values
for the Mitchard et al. (2009) and Saatchi et al. (2007a) models were retrieved from the
declared literature.

slightly increased when looking at larger stands of at least 0.5 ha. For smaller stands, noise in
the SAR data often limited the sensitivity to biomass. The noise level was successfully reduced by
averaging over larger stands. Yet, the backscatter values for the different stands tended to converge
to a very small backscatter range, lacking any sensitivity to changes in biomass. Furthermore, due
to averaging of larger stands, the number of stands in the lower biomass spectrum (lower than
100 t ha™!) decreased significantly.

The best results from backscatter data was achieved when employing a combination of HH-, HV-
and VV-polarization as introduced by Saatchi et al. (2007a). This could be partly accounted to the
reduced noise when integrating data from several channels. The biomass estimation performance
using this multiple polarization approach increased with increasing stand size, with best results
found at 0.5 ha. Saatchi et al. (2011) came to a similar conclusion in their study on the influence of the
spatial variability of tropical forest structure on radar estimation of AGB, where they also employed
a combination of the three polarization channels at several stand sizes. Saatchi et al. (2011) concluded
that the accuracy was optimal at 1 ha scale with a RMSE of 23.8 t ha~! for AGB<150 t ha~!. The
higher RMSE error found in this thesis can be accounted to the higher biomass range found in the

91



6.2 Biomass estimation from fully polarimetric SAR backscatter data 6 DISCUSSION

analyzed forests, as well as to the fact, that while Saatchi et al. (2011) only analyzed the biomass range
up to 150 t ha~!, the whole biomass range was analyzed in this thesis. Due to the good performance
of the multiple polarization approach, this model became a reference model for predicting biomass,
especially also with P-band SAR focusing on the upcoming ESA BIOMASS mission (Sandberg et al.,
2011; Le Toan et al., 2011).

In the following subsections the benefits of the different normalization techniques are discussed as
well as some further points specific to E-SAR and PALSAR data.

6.2.1. The use of different backscatter normalization procedures

Radiometrically normalized products were shown to typically exhibit higher sensitivity to biomass
and perform better in estimating biomass than GTC products. This is accountable to the normalized
radiometric distortions such as foreshortening and layover in the RTC products. Such topographic
induced effects were present in both analyzed study sites. Especially in the E-SAR case, the RTC
products performed better than the GTC products. In the PALSAR case, the high noise level in the
data and the very low sensitivity to biomass inside the forests did not allow such a clear statement.
Yet, it has to be mentioned that with 25 m resolution a rather poorly resolved Digital Height Model
(DHM) was used to normalize the PALSAR product as compared to the 1 m resolved ALS derived
DHM used to normalize the E-SAR products. To allow a better grounded conclusion concerning the
difference between GTC and RTC products of ALOS PALSAR data, an analysis over larger areas
with more topography should be performed as the two study sites used in this thesis did not show
many radiometric distortions in the ALOS PALSAR data. Efforts towards reducing the high noise
level in the PALSAR data would be needed, e.g. with a kind of speckle filter.

The employment of radiometric normalization of the SAR backscatter data for later biomass
estimation procedures has not often been used in the published literature. He et al. (2012) reported
that the employed PALSAR data showed higher sensitivity to biomass after correction for topography-
induced distortion effects. Yet, often the study sites are selected to be flat and uncorrected ¢
backscatter values were used (e.g. in Mitchard et al., 2009) or a local incident angle based correction
approach when using airborne SAR data was performed (e.g. in Saatchi et al., 2007a). Especially for
large scale and multi-temporal analysis an accurate radiometric normalization of the SAR data is
important to ensure a robust backscatter vs. biomass relation.

In the E-SAR case also a radiometric normalization using the ALS derived DSM was performed,
in order to compensate for radiometric distortions induced by the canopy topography inside the
forests. It was found that such a normalization induced more noise and was therefore not feasible
for forestry applications. This is mainly due to the very complex structure of the canopy with steep
height changes. As the radiometric normalization software treats the passed DHM as a solid surface,
impenetrable by the radar waves, the canopy surface was highly overcorrected, resulting in many
shadow pixels where the radar was actually still able to retrieve reliable backscatter information. In
order to correct for such canopy induced radiometric distortions a different procedure should be
developed that treats the DSM not as an impenetrable surface, but employs a wavelength-dependent
correction factor. Perhaps the use of a LIDAR derived point cloud dataset could lead to better
corrections of such vegetation induced radiometric distortions, as vegetation density information
from different canopy height levels could be retrievable from such laser measurements. Such an
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analysis of radiometric normalization inside forested terrain using point cloud LiDAR metrics could
be interesting for further studies.

Also a correction for terrain induced azimuth slope effects or polarization orientation angle
correction was performed herein. Yet, contrary to the findings reported in Chowdhury et al. (2013),
where a POA correction was applied to ALOS PALSAR data, the volume scattering channel or the
scattering mechanism ratio P; * P,/ Ps did not show higher sensitivity to biomass when such an
azimuth slope correction was applied. This was consistent when using PALSAR or E-SAR data.
This was most probably due to the high noise level in the POA estimate over forested terrain. By
rotation with the estimated POA around the LOS, further noise was likely added to the backscatter
vs. biomass relation, leading to even worse biomass sensitivity or estimation performance. This was
a more considerable problem with PALSAR data, as no robust estimate of the POA was possible due
to the high noise level (see Figure 5.6c). Such an azimuth slope correction would be more feasible at
longer wavelengths, such as P-band, where the radar waves are less affected by vegetation.

6.2.2. Geocoding using a DTM vs. DSM

As both an ALS-derived DTM and DSM were available for the Hinwil study site, the difference
between geocoding with a DTM or a DSM was analyzed for the backscatter data from the E-SAR
instrument. The results showed that the backscatter products geocoded with the DSM consistently
had higher sensitivities to biomass than the products geocoded with DTM. This can be explained
with the scattering phase center location. Several studies (e.g. Saatchi et al., 2007a; Cloude, 2005)
reported that the scattering phase center height of the HV-polarization lies somewhere between the
middle of canopy and the top of canopy. When geocoding with the DSM, the backscatter value is
therefore mapped closer to the actual scattering location than when using the DTM. This should also
be true for the co-polarized channels at L-band, as these channels will also not penetrate through
the whole canopy and will therefore have their scattering phase center somewhere in the middle of
the canopy. A more extensive analysis of where the actual backscatter information comes from is
still missing in literature and should be the subject of future studies. The information received from

LiDAR metrics, such as height percentiles, could be of benefit to such studies.

6.2.3. E-SAR vs. PALSAR backscatter sensitivity to biomass

It was shown that while E-SAR backscatter data showed some sensitivity to biomass, ALOS PALSAR
backscatter data exhibited nearly no sensitivity to biomass. This can be accounted to some extent
to the higher noise level in the PALSAR acquisitions. This is shown in Figure 6.4a, with a small
subset over forested terrain taken from a PALSAR +Y frame at HV-polarization at the Hinwil study
site. While the outlines of the forest can be made out due to increased backscatter compared to the
surrounding non-forested areas, variability inside the forest caused by different biomass levels was
not observable, mainly due to the high noise level. Compare also to the biomass map over the same
area taken from ALS measurements shown in Figure 6.4e. After reducing the noise level with a 3x3
median filter, as shown in Figure 6.4b, no clear variability in the backscatter data was observed. The
forest is mostly represented by a homogenous area with nearly the same backscatter intensities. The
E-SAR backscatter 7% image at HV-polarization over the same area shows much higher variability

in the forest, which can be related to biomass differences. This is of course also accountable to the
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Figure 6.4: PALSAR vs. E-SAR HV 'y(% over forested area (Sennwald) in Hinwil test site. (a) PALSAR
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AGB map over same area derived from ALS height measurements. E-SAR data acquisition
was on the 12th of September 2006. PALSAR frame showed here was acquired on the gth
of May 2009 at an off-nadir angle of 23.1°.
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much higher resolution. Yet, if the resolution of the E-SAR image is reduced to 25 m, matching the
resolution of the PALSAR data as shown in Figure 6.4d, variations in the backscatter levels inside the
forest remain visible and a much lower noise level is observed.

6.3. Forest height and biomass estimation from
PolInSAR

Prerequisites for robust height inversions from PolInSAR measurements are a sufficient scattering
phase center separation between the surface dominated and volume dominated interferograms
and a low temporal decorrelation. The latter can decrease the coherence substantially, leading to a
significant overestimation of forest heights, as was observed in the results from the height inversion
using coherence amplitude only. As shown in Figure 6.5, both of these prerequisites were not given
in our case. The coherence in both channels was low, with the peak between 0.1 and 0.2. In most
studies reporting good results in forest height inversions, significantly higher coherence values were
reported (e.g. in Cloude & Papathanassiou, 1998; Cloude, 2005). Yet these high coherence values
often stem from simulated data without any temporal decorrelation. Cloude & Papathanassiou
(1998) proposed a coherence optimization approach that increases the coherence also over forested
terrain, allowing also for better scattering phase center separation. Also in Chen et al. (2008) such
a coherence optimization was performed and a better height estimation performance using the
optimized channels is reported. Yet, the problem with such coherence optimizations is that the actual
scattering phase center is not known, it can stem from surface or the volume above it (Chen et al.,
2008). Therefore, no analysis regarding coherence optimization was performed in the course of this
thesis. The low coherence found in the E-SAR data may have been due to temporal decorrelation, as
the two images were acquired 3 hours apart. A thorough analysis of the source of the low coherence
was not performed here.

The second prerequisite concerning the separation of the scattering phase centers was also not
sufficiently filled. In Figure 6.5d, the histogram of the volume-dominated and surface-dominated
phases over the same highlighted forested area is shown. No large difference between the observed
phases in the two channels is visible. This is mostly due to the fact that no polarization at L-band is
unbiased from vegetation. A model-based ground phase estimate is required using the RVoG model
(Cloude, 2005). The result of such a ground phase estimate is shown in Figure 6.5d (blue histogram),
where a clear separation between the volume-dominated HV channel and the ground phase estimate
is visible.

In comparison to the results published by Chen et al. (2008), where forest heights at a pre-alpine
landscape in southeast Bavaria were estimated using similar algorithms, the results attained in the
course of this thesis are similar. Yet, Chen et al. (2008) reported that the highest correlation between
estimated and reference stand height were found using the coherence amplitude inversion (SINC
inversion) with an R? of 0.78. But they also reported a high RMSE for this inversion with 13.76 m. For
the phase and coherence inversion (PCI), the results reported in this thesis (R? = 0.49, RMSE = 5.3 m
at minimum stand size of 2 ha) were even better then those reported in Chen et al. (2008) (R? = 0.15,
RMSE = 7.99 m, stand sizes between 1 and 23 ha, dominated by spruce).

As the algorithms used for forest height inversions are based on several assumptions that simplify
the height inversions, there is still high potential for improvement. For example, a full model
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Figure 6.5: Coherence and phase over forested terrain in HV and HH-VV channels. (a) and (b) subset
of coherence image over forested terrain at HV and HH-VV channels respectively.

(c) coherence histogram for HV and HH-VV channel for the area highlighted in (a) and
(b). (d) phase histogram for HV and HH-VV channel and the estimated ground phase
over the same highlighted area. Coherence and phase measurements were taken from
the DSM flattened interferograms. Horizontal baseline B, = 10 m. Perpendicular baseline
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inversion, employing more than just two interferograms, where for each pixel it is determined which
channel is volume- and which is surface-dominated, as proposed by Cloude & Papathanassiou (2003),
could lead to greatly improved height estimates, as was also found by Chen et al. (2008).

Due to the still quite high inaccuracies in the forest height estimation, also the subsequent biomass
estimation was affected by high noise levels and large uncertainties. Although the model fit the
PolInSAR height vs. biomass data points quite well with a R? of 0.56 at 2 ha stand size, the error in
biomass estimation was very high at 133.5 t ha~! which is notably over 100% of the average biomass
stored in the analyzed stands. Yet, compared to the results of the backscatter based approaches, no
obvious saturation effect was observed, making biomass estimation from PolInSAR forest height
retrievals at sites with biomass levels beyond the saturation point of L-band SAR backscatter data
(mainly below 100 t ha~!) a viable option. Yet as shown in this thesis, topography can significantly
affect the forest height estimation performance from PolInSAR. Due to those considerations, a smaller
subset of the whole E-SAR scene was taken for the PolInSAR analysis. A correction for such effects
in interferograms is therefore needed in order to retrieve robust forest height estimates in more

rugged terrain.

6.4. Possible sources of uncertainties

There are numerous sources of uncertainties in the different biomass estimation procedures discussed
in this thesis. Three major sources of uncertainties are discussed in the following: uncertainties in
biomass reference information, uncertainties due to co-registration and geocorrection, as well as
uncertainties due to erroneous radiometric calibration of the SAR backscatter data.

6.4.1. Uncertainties in biomass reference

An accurate biomass reference is crucial to the establishment of regressional models for biomass
estimation from SAR or LiDAR signals. The most accurate biomass reference used in this thesis
was the one retrieved from the KSP field measurements. As explained in Section 3.2, only the DBH
is reported in the KSP field measurements as a proxy for biomass. The biomass reference had to
be calculated first from this DBH measurement, using tree species-specific tariff functions and a
biomass expansion factor (BEF) as described in Kaufmann (2001) and Thiirig & Schmid (2008). Yet,
this calculation of biomass from DBH only has a significant level of uncertainty. Kaufmann (2001)
reported that by using these tariff functions, the standard deviation of the residuals still amounts to
26.3% of the mean bole volume. Furthermore, the KSP measurements can incorporate some amount
of systematic and/or stochastic measurement errors, leading to an even higher inaccuracy in the
biomass reference. Yet, inaccuracy in field-measured biomass is a common problem. Saatchi &
Moghaddam (2000) compared biomass measurements of two individual field campaigns conducted
by Forestry Canada and BOREAS (Boreal Ecosystem Atmospheric Study) in the same homogenous
boreal forest stands in Canada. They reported differences in the two field-measured biomass
references at the stand level of up to 9o t ha~! at a maximum biomass level of 200 t ha=!.

These inaccuracies in biomass reference information taken from field measured DBH and allometry
also propagate to the biomass reference derived from ALS measurements of mean canopy height
at the plot level. A further source of inaccuracy in establishing a biomass reference map from
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the ALS data is the large time gap between the ALS data acquisition over Hinwil in 2003 and the
KSP field measurement campaign conducted in 2008. In these five years much can change inside
the highly managed forests found in the Swiss midlands, leading to difficulties in retrieving a
simple mean canopy height vs. biomass relation. This could also explain the large RMSE in the
retrieved reference model with 83.5 t ha~!. The retrieved model was able to explain roughly 50%
in the variation found in the KSP biomass reference dataset. Also Nelson et al. (1988) reported
that the average canopy height in a plot can only explain 53-65% of the variability in biomass,
which puts the model retrieved in this thesis into the same order of magnitude, even though the
study by Nelson et al. (1988) was conducted in a purely coniferous forest, whereas heterogenous
mixed forests were analyzed in this thesis. More sophisticated biomass references based on ALS
measurements is therefore needed. Approaches using single tree detection with tree height and
crown dimension estimates show promising results (Popescu et al., 2003; Popescu, 2007). Yet, most of
these studies were undertaken in homogenous coniferous forests, typically consisting of one single
tree species. Applying such methods in more heterogenous mixed forests is more challenging and
not yet common. Unfortunately, due to the rather low point density in the ALS dataset over Hinwil,
as well as difficulties in matching the detected trees with the trees found in the KSP dataset, such an
approach was not investigated in more depth. Over the Lagern study site such an approach would
have been feasible due to the full-waveform system flown at very low altitude, yet the low resolution
and high noise level of the PALSAR data over this study site would have made the cost-benefit ratio
unfeasible for this approach. Unfortunately, no high resolution airborne SAR datasets exist yet over
the Lagern test site.

6.4.2. Co-registration errors

As several datasets acquired by different measurement systems (SAR, LiDAR, field measurements
etc.) were compared, an accurate co-registration of these datasets is of high importance. Yet, a perfect
co-registration between all analyzed products cannot be assumed. Biases lead to uncertainties in
the regression models retrieved later and the estimated biomass. The comparison of datasets at
different resolutions also lead to inaccuracies as several datasets had to be resampled to lower or
higher resolutions.

Mapping the SAR backscatter and derived PolInSAR height pixels to geocoded pixels using a
DEM and the state-vectors of the satellite or airplane can lead to significant uncertainties. In the
E-SAR case, the accurate geocoding proved to be a larger challenge and a small mis-registration of
the SAR pixels could remain.

6.4.3. Inaccurate radiometric calibration

While the radiometric calibration of the PALSAR backscatter data used most probably shows high
accuracies, this is not entirely certain in the E-SAR case. As shown in the methodology and
results section, the generation of accurately radiometric calibrated GTC and RTC products was not
trivial. The software applied had been originally developed for use with spaceborne sensors. Some
inaccuracies in the backscatter data derived from E-SAR measurements could remain, leading to
further inaccuracies in the later established statistical models for biomass estimation.
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7. Conclusion

In this thesis, several approaches for estimating above ground biomass of heterogenous, temperate
mixed forests with fully polarimetric airborne and spaceborne L-band SAR data were analyzed.
The focus lay on approaches based on backscatter and PolInSAR data. In this section, the research
questions stated in the introduction are answered.

1 How sensitive are airborne and spaceborne fully polarimetric L-band SAR backscatter and Pauli
decomposition data to biomass in heterogenous temperate mixed forests found in the Swiss north-eastern
midlands?

The backscatter at HV-polarization as well as the volume scattering term of the Pauli decomposition
showed the highest sensitivity to biomass. Yet, it was shown that the sensitivity of the SAR backscatter
data using a single polarization or Pauli decomposition term to biomass was limited to a very low
biomass range below 50 t ha~! and was often not present at all. This reduces the applicability of
backscatter based approaches for biomass estimation in the heterogenous, temperate forests found
in the Swiss midlands, as the biomass levels are typically above 100 t ha~!. The performance of
backscatter-based biomass estimation was further limited by high noise levels in the data. This was
successfully reduced by employing multiple polarizations in a regression analysis and by focusing
on the stand level. It was found that a minimum stand size of 0.5 ha is needed to get more reliable
biomass estimates from backscatter data.

While the backscatter information from the airborne E-SAR system showed some sensitivity to
biomass, the spaceborne PALSAR PLR backscatter data proved nearly insensitive. This contradicts
many findings in literature that report a high sensitivity to biomass of PALSAR backscatter data at
HV-polarization up to 100 and 150 t ha~!. The insensitivity of PALSAR PLR data to biomass found
in this work is mainly accountable to the high noise level found at a resolution of 25 m. This noise
could be reduced when resampling to 100 m resolution. Yet the number of low biomass pixels was
reduced drastically by this resampling attempt. This is further evidence that the biomass levels in the
two selected study sites are too high for accurate biomass estimation from L-band backscatter data.

2 How do different SAR backscatter terrain normalization products impact on biomass estimation ap-
proaches?

It was shown that the backscatter sensitivity to biomass increased when backscatter signals were
corrected for topography-induced distortions. This shows the necessity of accurate radiometric
normalizations when using backscatter data for forest structural studies, and gives the opportunity
to move beyond the flat study sites often found in literature and focus also on more rugged terrain.
The correction for orientation angle shifts due to azimuth slopes relative to the acquisition geometry
proved not to be useful for the available L-band SAR data, as the derived Polarization Orientation
Angle (POA) data over forested terrain was too noisy. Longer wavelengths are required to get useful
POA estimates over forested terrain.

3 Does the more complex approach of forest structure retrieval from PollnSAR measurements deliver more
reliable biomass estimation in heterogenous temperate forests compared to backscatter based approaches?

The limitation of backscatter based approaches due to saturation at already low biomass levels
could be successfully overcome by inferring forest heights using PolInSAR methodologies. Yet the
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estimation of forest heights at high resolution is very noisy. Only when analyzing stand level forest
heights with a minimum size of 1 ha, could the errors in the height estimates be reduced to about
5 m. The retrieved PolInSAR forest heights could afterwards be related to stand level biomass, where
a distinct increase in estimated forest height with increasing biomass could be observed. Yet, the
errors in biomass estimation using such an approach are still too high, with relative RMSE of around
100% of the average biomass found in the analyzed stands. Also this PolInSAR based approach
is highly influenced by topography which made estimation of forest height and biomass in more
rugged terrain impossible. Methods to compensate for topography in interferometric measurements

should therefore be investigated.
4 How can LiDAR derived products improve biomass retrieval from SAR data?

Due to the available high resolved ALS data also the effect of geocoding with a DTM or a DSM was
contrasted. It was shown that sensitivity to biomass increased when geocoding with a DSM. This
can be explained by the fact that the backscatter pixel is mapped closer to the actual scattering center.
For L-band the scattering center of the HV-polarization is assumed to be somewhere between the
middle and top of canopy. Yet a thorough investigation of where in the canopy the actual backscat-
ter information comes from is still missing in the literature and should be part of future investigations.

In order to allow for accurate biomass estimation also in regions with high biomass levels mainly
above 100-150 t ha~!, alternative approaches are needed. P-band SAR backscatter data proved to
be sensitive to biomass up to 200 t ha~! and could therefore be more appropriate for estimating
biomass in high biomass regions. Yet, until now no spaceborne P-band SAR has been available. This
will change with the forthcoming ESA BIOMASS mission, specifically designed for global biomass
estimation using backscatter as well as PolInSAR and SAR tomography measurements (see Section 8).
Also a multi-sensoral approach is highly recommended for accurate biomass estimations in regions
with high biomass and significant topography. Especially synergies from LiDAR and SAR already
proved highly effective (see Section 8.1) and should be further assessed to overcome the limitations

of the SAR only approaches.
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8. Outlook

This section should give an outlook to several promising biomass estimation approaches and

upcoming satellite missions with a focus on forest monitoring and biomass quantification.

8.1. Some promising biomass estimation approaches

More and more promising approaches are being reported in the literature, that try to overcome the
stated limitations of the approaches based on L-Band SAR data discussed in this thesis. Saatchi
et al. (2007b) used multiple remote sensing products from different instruments (Normalized
Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) from the Moderate Resolution
Imaging Spectroradiometer (MODIS), SAR backscatter data from the Japanese Earth Resources
Satellite 1 (JERS-1) and data from the Shuttle Radar Topography Mission (SRTM) DEM to estimate
above ground biomass in the Amazon basin using a decision-tree approach with an accuracy of
over 80%. Santoro et al. (2011) estimated growing stock volume over large areas in boreal forests
using hyper-temporal series of ENVISAT Advanced Synthetic Aperture Radar (ASAR) backscatter
measurements without the estimation of prior in-situ measurements. Even though Santoro et al.
(2011) employed even shorter wavelengths with the C-band ASAR instrument, the retrieved growing
stock volume showed no saturation up to 300 m3/ha. This sensitivity of C-band also at high biomass
levels can be accounted to the combination and weighted averaging over multiple ASAR acquisitions
with varying incident angles over the same area. The use of P-band backscatter data would also
counteract the apparent limitation of backscatter saturation in high biomass regions. Yet also P-band
saturates at biomass levels around 150 to 200 t ha~! and is therefore also not able to give reliable
biomass estimates over the whole biomass range found in the two study sites discussed in this thesis.
Indirect approaches using interferometric and polarimetric SAR data to retrieve forest heights can
lead to biomass estimations without any apparent saturation. Yet, the methodology used in this
thesis showed that also these PolInSAR approaches have obvious limitations and high noise levels
and are therefore only applicable to large scale analysis.

Persson & Fransson (2014) proposed an approach that used a DSM extracted from TerraSAR-X
stereo synthetic aperture radar images at X-band and a reference ALS DTM to calculate tree heights
and biomass in boreal forests. Tree height estimation at the stand level showed a relative RMSE of just
9.4% and biomass estimation just 22.9%. Yet, also in that study, strong influences due to topography
were reported where already 4 degrees in mean slope over a whole stand can significantly effect the
DSM extraction. Promising results in forest height and stand structure extraction are reported from
SAR-tomography (Tebaldini, 2010; Tebaldini & Rocca, 2012). With this approach, a real 3D image
of the scene is obtained by creating an additional synthetic aperture in elevation, using a coherent
combination of images acquired from multiple parallel flight tracks (Koch, 2010). This approach
delivers highly resolved information about the three-dimensional forest structure, similar to the point
cloud data derived from LiDAR measurements. Yet, until now mainly airborne tomography studies
exist. This will change with the tomography mission phase of the upcoming BIOMASS mission (see
Section 8.2) which will deliver spaceborne tomography measurements at P-band over selected study
sites. Yet, the costs and time consumption as well as the small coverage of such tomography missions
are a clear limitation of this technique.
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8.2. New and future spaceborne missions for global

biomass estimation

On the 24th of May 2014, the Advanced Land Observing Satellite-2 (ALOS-2) was successfully
launched by JAXA on a H-IIA rocket from the Tanegashima Space Center (Japan Aerospace Ex-
ploration Agency (JAXA), 2014). ALOS-2 aimes to continue the successful land-observing mission
carried out by ALOS. Compared to ALOS PALSAR, the L-band SAR instrument onboard ALOS-2
has the following improvements: higher resolution, lower Noise Equivalent Sigma Zero (NESZ), and
higher signal to ambiguity ratio, as well as right- and left-looking capabilities. With a repeat-pass
orbit of just 14 days, higher coherence needed for INSAR and PolInSAR studies (such as forest
height inversions) will be achievable (Kankaku et al., 2009). The main mission aims of ALOS-2 are
global land and disaster monitoring. The observation of global forest cover and deforestation is an
important mission objective (Suzuki et al., 2009).

An ambitious satellite mission combining a L-band SAR with a LiDAR instrument was introduced
with the mission proposal of the Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynlI)
satellite by National Aeronautics and Space Administration (NASA). The focus of this mission would
have been the measurement of forest height and structure, changes in carbon storage capabilities
of vegetation, ice-shield deformation, as well as changes in Earth surface and volcanic magma flow
(Freeman et al., 2009). Yet, although the launch of DESDynl was slated between 2010 and 2013,
the outcome and actual launch of this satellite mission is still unclear. Due to the high cost of this
ambitious mission and a budget cut ordered by the White House, NASA was told to come up with a
more affordable approach to the mission (Turner, 2011). A recent idea was to launch only a radar
instrument at L- and S-band, in a joint venture with the Indian Space Research Organisation (ISRO)
(Thakur, 2014).

Tandem-L is a proposal for an interferometric and polarimetric SAR mission for global forest height
and biomass inventories, large scale measurements of millimetric displacements due to tectonic
shifts, and systematic observations of glacier movements. In this mission, two identical satellites
would fly in close proximity to each other, allowing for single-pass interferometric measurements,
reducing the limiting effects of temporal decorrelation on forest height estimation (Krieger et al.,
2009).

A similar approach is pursued with the TanDEM-X (TerraSAR-X add-on for Digital Elevation
Measurements) spaceborne radar interferometer that is based on two TerraSAR-X radar satellites
flying in close formation. Launched on the 21st of June 2010, TanDEM-X delivers highly resolved
elevation measurements of the Earth’s surface in X-band (Krieger et al., 2007). Together with a highly
resolved Digital Terrain Model (DTM), the TanDEM-X acquisitions can deliver highly accurate forest
height estimates, allowing for biomass estimation on global scale.

ESA’s highly anticipated forthcoming BIOMASS mission is going to be the first spaceborne P-
band SAR instrument with launch planned in 2020. The BIOMASS satellite was chosen to be
ESA’s 7th Earth Explorer satellite as part of the Living Planet program in 2013 (ESA, 2013). The
polarimetric P-band SAR mounted on BIOMASS will provide measurements of the full range of
the world’s above-ground biomass by combining backscatter as well as InNSAR, PolInSAR and
tomographic measurement techniques. Over the proposed five-year mission lifetime a unique archive
of information about the world’s forest and their dynamics will be built up (Le Toan et al., 2011).
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8§ OUTLOOK 8.2 New and future spaceborne missions for global biomass estimation

The launch of the second generation of NASA's Ice, Cloud and Land Elevation Satellite (ICESat) is
highly anticipated. Continuing the pioneering - though compromised - capabilities demonstrated by
its predecessor, ICESat-2 will deliver precise, global laser surface height measurements. Although
focused on the study of ice sheets and sea ice, the higher resolution of ICESat-2 compared to its
predecessor will deliver new capabilities for large scale (1 km spatial resolution) vegetation height
and biomass estimation (Abdalati et al., 2010). The launch of ICESat-2 is currently slated for launch
in 2017 (NASA, 2014).
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A ALOS PALSAR SPECIFICATIONS

A. ALOS PALSAR specifications

Table A.1: ALOS PALSAR Instrument Characteristics (after Rosenqvist et al., 2007).

Antenna size

8gmx31im

Center frequency

1270 MHz /23.6 cm

Chirp band width

28 MHz (FBS, ScanSAR long burst)
14 MHz (FBD, POL, ScanSAR short burst)

Transmission peak power

2 kW

Pulse Repetition Frequency

1500 - 2500 Hz (discrete stepping

Image modes
Fine beam mode (FBS, FBD)

Polarimetric mode (POL)
ScanSAR mode

Direct Transmission mode (DT)

Single polarization (HH or VV)

Dual polarization (HH/HV or VV/VH)
Quad-pol. (HH,HV,VH,VV)

Single polarization (HH or VV)

No. sub-beam: 3, 4 or 5

Short (14 MHz) or long (28 MHz) burst

FB single pol (14 MHz)

ScanSAR (14 MHz)
Bit quantisation 5 bits
Swath width 70 km (FBS, FBD @ 34.3°)

30 km (POL @ 21.5°)

360 km (ScanSAR 5-beam)
Off-nadir angle Variable: FBS/FBD: 9.9° - 50.8°

POL: 9.7°-26.2°

Fixed: ScanSAR: 20.1° - 36.5° (beam 1-5)

Look direction

Right

Ground resolution

10 m x 10 m (FBS @ 34.3°)

Rg (1 look) x Az (2 looks)

20m x 10 m (FBD @ 34.3°)
31 m x 10 m (POL @ 21.5°)
71-157 m (4 look) x 100 m
(2 look) (ScanSAR 5-beam)

Yaw steering

near-zero Doppler
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A ALOS PALSAR SPECIFICATIONS

Table A.z: Frame listing of ALOS PALSAR data in fully polarimetric mode (PLR) at two off-nadir
angle (21.5° and 23.1°). If interferometric processing is possible, the corresponding
baseline (perpendicular) for the two frames are listed (only combination with temporal
baselines of 46 days are considered).

PLR215
Track Frame Acquisition Date  Baseline [m] Contained Study Sites
Fo30 5. April 2009
T638 Fo40 5. April 2009
16. November 2007
Foso 5. April 2009
Fg30 17. April 2007 Hinwil, Eschenberg (partial)
15. Octobre 2006 408,274 Hinwil, Eschenberg (partial)
30. November 2006 Hinwil, Eschenberg (partial)
T639 foto 17. April 2007 480.517 Hinwil, Eschenberg (partial)
2. June 2007 Hinwil, Eschenberg (partial)
3. December 2007 Hinwil, Eschenberg (partial)
15. October 2006 Eschenberg (partial)
Fos0 410.695 :
30. November 2006 Eschenberg (partial)
17. April 2007 Eschenberg (partial)
Fg30 24. March 2009
To40 Fogo 24. March 2009 Lagern
Foso0 24. March 2009 Lagern
PLR231
Track Frame Acquisition Date  Baseline [m] Contained Study Sites
Foso 7. June 2009
T639 Fogo0 7. June 2009
Fogs0 7. June 2009
Foso 9. May 2009
To40 Fogo0 9. May 2009 Hinwil, Eschenberg
Fogs0 9. May 2009 Eschenberg
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B FIELD SURVEY DATA INFORMATION

B. Field survey data information

Table B.1: Parameters stored in the KSP dataset that were used for analyzation purposes in this

thesis.
Parameters describing each KSP sample plot

Parameter Further Description Example
Sample plot number Identification of the plot 702426
Easting coordinate of plot center [m] Swiss LVo3 Coordinates 703200
Northing coordinate of plot center [m] Swiss LVo3 Coordiantes 238250
Survey date in DDMMYY format 251108
Forest Mixing Factor 1 = pure coniferous forest 1

(91 - 100 % coniferous trees)

2 = mixed coniferous forest

(51 - 90 % coniferous trees)

3 = mixed deciduous forest

(11 - 50 % coniferous trees)

4 = pure deciduous forest

(0 - 10 % coniferous trees)

Parameters describing each tree in a KSP sample plot

Parameter Further Description Example
Sample plot number Key for assignment of tree to corresponding plot 702426
Azimuth angle [gon] Angle between tree and plot center 88
Radius [m] Distance to plot center 5.55
Tree species Character code for tree species TA = fir
Diameter at breast height (DBH) [cm]  Diameter at 1.3 meters above ground 17
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C ADDITIONAL PLOTS TO POLARIMETRIC DECOMPOSITION APPROACH FOR E-SAR DATA

C. Additional plots to polarimetric

decomposition approach for E-SAR data

y?(AGB)=a+b‘Iog(AGB)+c‘(Iog(AGB))2
a=-6423

b =0.907

©=0.032

-20 2
R®=0.702
N=17

. . . . . . . . .
0 50 100 150 200 250 300 350 400 450 500
AGB [tha™"]

(a)

y:(AGB)=a+b'log(AGB)+c‘(log(AGB)f
a=-9.742

b=1.070

c=0.021

R?=0.754

N=17

. . . . . . . . .
0 50 100 150 200 250 300 350 400 450 500
AGB [tha™"]

(c)

HH-VV 1,° [dB]

-20

y?(AGB):aq.b‘log(AGB)+c‘(log(AGB))2
a=-8.356

b =0.991

c¢=0.024

R?=0.690

N=17

e 0
Pd PV/Ps Y [dB]

L
100

L
150

L
200

. . . . .
250 300 350 400 450 500
AGB [tha™"]

(b)

ﬁ(AsB)=a+b'|og(AsB)+c’(|og(AsB)f
a=-10.790

b=1.141

¢=0.010

R?=0.768

N=17

L
100

L
150

L
200

. . . . .
250 300 350 400 450 500
AGB [tha™]

(d)

Figure C.1: Model validation for the Pauli decomposetion approach using E-SAR derived DSM
geocoded ’y‘% Pauli scattering powers. (a) Model validation for 1st Pauli base (HH+VV),
(b) Model validation for 2nd Pauli base (HH-VV), (c) Model validation for third Pauli
base (HV+VH), and (c) Model validation for Pauli ratio P; * P,/ Ps.
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D ALOS PALSAR BACKSCATTER SENSITIVITY TO BIOMASS ADDITIONAL PLOTS

D. ALOS PALSAR backscatter sensitivity to

biomass additional plots
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Figure D.1: Backscatter sensitivity to AGB of the radiometrically normalized 7} backscatter channels
at HH-, HV-, VH-, and VV-polarization over Hinwil. PLR frame was acquired at an

off-nadir angle of 23.1° and the image was taken on the gth of May 2009. (a) HH, (b) HV,
(c) VH, (d) VV.
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Figure D.2: PLR215 RTC backscatter at HV-polarization acquired at the 15th of October 2006 over
Hinwil against biomass at 25m resolution (top row) and at 100 m resolution (bottom
row). Right column: averaged backscatter in 10 t ha~! bins with outlined 75th (red line)

and 25th percentile (green line).
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Figure D.3: PLR215 RTC backscatter at HV-polarization vs. AGB at stand-level over the Hinwil study
site. SAR image was acquired on the 15th of October 2006.
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Figure D.4: Volume scattering and Pauli ratio ((HH_(‘I/{QT‘I/{‘Y)JWH)

biomass at 100 m resolution over Hinwil study site. (a) Volume scattering, (b) Pauli
ratio, (c) rotated volume scattering, (d) rotated Pauli ratio. Data taken from frame
PLR231-T640F940, image acquisition on the gth of May 2009.

) radiometrically normalized vs.
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Figure D.5: Sensitivity of PLR215 Pauli volume scattering and Pauli ratio ( against
g 5: Sens V0 5 olume scattering o( (HHTVV) ) agains

biomass at 100 m pixel spacing over the Ligern study site. (a) unrotated volume
scattering vs. AGB, (b) unrotated Pauli ratio vs. AGB, (c) rotated volume scattering vs.
AGB, (d) rotated Pauli ratio vs. AGB. Pauli channels are all radiometrically normalized.
PLR frame was acquired at an off-nadir angle of 21.5° and the image was taken on the
24th of March 2009.
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E ALOS PALSAR MOSAICS

E. ALOS PALSAR Mosaics
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Figure E.1: Frame coverage of the mosaic. The number of frames covering each pixel in the mosaic
(maximum 2).
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Figure E.2: PLR GTC mosaic at HH polarization.
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Figure E.3: PLR GTC mosaic at HV polarization.
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Figure E.4: PLR GTC mosaic at VV polarization.
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Figure E.5: PLR RTC mosaic at HH polarization.
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Figure E.6: PLR RTC mosaic at HV polarization.
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Figure E.7: PLR RTC mosaic at VV polarization.
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Figure E.8: PLR Pauli GTC mosaic.
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Figure E.g: PLR Pauli RTC mosaic.
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