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Christoph Rohner Summary

Summary

As seasonal snow is an important parameter in the hydrological cycle of mountainous regions,

information about snow cover distribution and the snow’s state can be used for flood forecasting

and the management of lakes and reservoirs. To determine the spatially highly variable snow

covered area, a high spatial and temporal resolution is required, for which remote sensing

offers an ideal tool. With several studies showing the feasibility of wet snow detection using

C-band Synthetic Aperture Radar (SAR) and swath widths of about 400 km, Envisat ASAR

and RADARSAT-2 offer the possibility to image all of Switzerland in a single scene with high

temporal and spatial resolutions. This thesis aims to investigate the accuracy of the wet snow

detection in mountainous terrain using a local resolution weighting method as well as analyze

the sensitivity of the SAR backscatter on the melting process.

The thesis was based on a total of 330 co-polarized Envisat ASAR C-band (5.331 GHz) images

between 2007 and 2012 with a pixel spacing of 100 m and four co-/cross-polarized RADARSAT-2

C-band (5.405 GHz) scenes from 2010 and 2012, respectively, with a pixel spacing of 25 m.

Based on the radiometrically terrain corrected scenes from both sensors, composite images were

calculated using the local resolution weighting (LRW) approach to improve the local resolution

in areas with foreshortening, shadowing, or layover. By applying a wet snow detection algorithm

based on the backscatter differences between dry and wet snow conditions, it was possible to

determine the areas covered by wet snow. These results were compared with ground reference

data provided by the WSL Institute for Snow and Avalanche Research SLF, consisting of hourly

measured/modeled snow and meteorological parameters for 114 stations of the Intercantonal

Measurement and Information System (IMIS), distributed throughout the Swiss Alps as well as

snow cover products from optical sensors.

The correspondence between the optical snow cover extent data sets and the SAR LRW com-

posites was carried out on a pixel-by-pixel basis and showed high user’s accuracy values. This

thesis highlights the importance of a small temporal lag between the SAR scenes included in an

LRW composite and demonstrates the additional gain in accuracy when integrating different

orbit configurations. The classification results were further assessed regarding the influence

of external factors on the accuracy of the wet snow detection. Furthermore, the sensitivity of

the SAR backscatter on the melting process was analyzed using layered liquid water volume

information calculated for IMIS station locations. The statistical analysis showed a negative –

albeit moderate – correlation for all different integration depths of wet snow layers investigated,

indicating a small sensitivity for the total liquid water volume of the snow pack.
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Christoph Rohner 1 Introduction

1. Introduction

As snow constitutes an important part of the hydrological cycle in mountainous regions, know-

ledge of the distribution, state, and water content of seasonal snow cover is not only of importance

for avalanche warning, but also for flood forecasting and the management of lakes and reservoirs.

As a result of the spatial variability of snow, information with a high spatial and temporal reso-

lution are required. In Switzerland, the WSL Institute for Snow and Avalanche Research (SLF)

operates the Intercantonal Measurement and Information System (IMIS), consisting of more

than 100 automated measurement stations throughout the Swiss Alps providing information

regarding meteorological as well as snow parameters (Jonas, 2012; Lehning et al., 1999). The data

from these measurement stations is used for avalanche and flood forecasting by SLF’s avalanche

warning service and Operational Snow-hydrological Service (OSHD) (Jonas, 2012; Swiss Fede-

ral Institute for Forest, Snow and Landscape Research, 2013). These point measurements are not

able to fully represent the spatial distribution and properties of snow. Remotely sensed data –

from both optical and SAR systems – offer improved robustness and opens up new applications

(Bernier, 1991). A relatively small number of SAR systems were active as in July 2014. The

SAR approach offers all-weather and day/night imaging capabilities (Curlander & McDonough,

1991). In addition, the incident electromagnetic waves of SAR systems penetrate into the surface

and interact with the subsurface snow, primarily governed by the radar wavelength and the

snow’s properties (Stiles & Ulaby, 1981). It is therefore of interest for flood forecasting and

water management to know more about the usability of remotely sensed data as a source of

information regarding the distribution, state, and water content of seasonal snow cover.

As SAR is highly responsive to liquid water within the snow pack, scientific investigations

regarding its potential for wet snow cover monitoring date back as far as 1980 (Rees, 2006) and

has since been described by a variety of authors (e.g. Mätzler, 1987; Bernier, 1991; Fily et al.,

1995). But while wet snow cover monitoring works well for flat terrain such as Québec (Canada)

(Bernier, 1991; Baghdadi et al., 1997), geometric distortions such as foreshortening and layover

proved to be a challenge using SAR for snow cover monitoring in mountainous areas, until the

introduction of a new radiometric correction algorithm by Small et al. (2010).

In contrast to the wet snow cover detection, retrieval of snow parameters such as Liquid Water

Content (LWC) or Snow Water Equivalent (SWE) are a bigger challenge. They would have

even greater utility to snow-hydrological applications. Early work was carried out by Shi et al.

(1993) using airborne C-band SAR with two polarizations (VV/HH) to retrieve the LWC of the

snow pack, while later works combined dual-polarization C-band SAR data with a meteorolog-

ical model (Longépé et al., 2009). But since these techniques cannot be trivially applied on a

large scale as they need a-priori information, passive microwave radiometry remains the only

spaceborne technique with proven ability to extract SWE data, although at a coarse resolution

of 25 km (Rees, 2006; König et al., 2001; Rott et al., 2010, 2011; Luojus et al., 2009). In recent
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years, a new approach using multi-frequency and multi-polarization SAR sensors such as the

Cold Regions Hydrology High-resolution Observatory (CoReH2O) was proposed, using the

differences in signal attenuation between the X- and Ku-band as well as between polarizations

(Rott et al., 2010, 2012b). However, as the CoReH2O mission was not selected by European Space

Agency (ESA), the lack of large scale information regarding operational SWE products with

both, high spatial and temporal resolution, remains.

1.1. Aim

This thesis aims to answer questions regarding the sensitivity as well as the accuracy of wet

snow retrieval using C-band SAR data sets from Envisat’s Advanced Synthetic Aperture Radar

(ASAR) as well as RADARSAT-2 (RS-2) in combination with measured and modeled parameters

at IMIS stations located throughout the Swiss Alps. In addition, the influence of the snow melt

process on the retrieved SAR backscatter values is investigated.

The thesis’ research questions are as follows:

1. What different ways of retrieving snow wetness information from satellite radar data are

there and how do they differ

a) in terms of accuracy?

b) in terms of complexity?

c) in terms of inputs?

2. Which parameters influence the SAR based wet snow retrieval and what is the relative

sensitivity to each?

3. Is it possible to retrieve information about the sensitivity of the SAR backscatter to snow

pack based information on the locally known depth of the melting process?

1.2. Structure of the thesis

The concepts of SAR, the necessary image processing steps, and the physical properties of snow

are introduced in section 2, before the different data sets and the software packages used are

described in section 3. The workflow is presented in section 4. The findings of the methods used

in the thesis are described in section 5. In section 6, the findings are discussed, followed by a

presentation of conclusions and an outlook in sections 7 and 8.
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2. Theory

This chapter provides an overview of physical properties of radar remote sensing in general

and SAR in particular, followed by a description of the necessary image processing steps. The

chapter concludes with a description of the physical properties of snow and its interaction with

electromagnetic radiation.

2.1. Physical properties of Radar Remote Sensing

While passive optical imaging systems rely on the availability of sunlight, in Radar Remote

Sensing, radars emit short bursts (pulses) of electromagnetic radiation with wavelengths between

1 mm and 1 m, which then interact with the illuminated targets and are (partly) scattered

back towards the illuminating system. By measuring the echoes from the illuminated targets,

information regarding the target’s position and its properties can be retrieved.

2.1.1. Electromagnetic radiation

Electromagnetic radiation can be considered as the "means by which information is transmitted

from an object to a sensor" (Elachi & van Zyl, 2006). It consists of oscillating magnetic and

electric force field that are perpendicular to one another. The electromagnetic waves propagate

at the speed of light c (299 792 458 m/s) at varying frequencies (f) and wavelengths (λ), following

equation 2.1

c = λ · f (2.1)

The electromagnetic spectrum is divided into different types of radiation (see figure 2.1). While

the electromagnetic waves with wavelengths of less than 1 cm can be affected strongly by

absorption or scattering caused by atmospheric constituents, wavelengths above 1 cm can

penetrate the atmosphere almost without any disturbance (Elachi & van Zyl, 2006). As a result of

the absence of atmospheric absorption features in the microwave region, radar imaging systems

have an all-weather imaging capability, otherwise often a limiting factor in remote sensing. The

microwave spectrum is further subdivided into the bands shown in table 2.1 on the following

page (Reddy, 2008).
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Figure 2.1: Electromagnetic spectrum with atmospheric transmission percentage (Curlander &
McDonough, 1991)

Table 2.1: Definition of radar bands (Reddy, 2008)

Band Frequency [GHz] Wavelength [cm]

P 0.3 – 1 30 – 100

L 1 – 2 15 – 30

S 2 – 4 7.5 – 15

C 4 – 8 3.75 – 7.5
X 8 – 12 2.5 – 3.75

Ku 12 – 18 1.667 – 2.5
K 18 – 27 1.111 – 1.667

Ka 27 – 40 0.75 – 1.111

2.1.2. Dielectric properties

In addition to the all-weather and day/night imaging capability, the interaction of the electro-

magnetic waves with the target is one of the key features of radar systems. This interaction

is influenced by the target medium’s complex dielectric constant that can be described as a

4



Christoph Rohner 2 Theory

material’s ability to store the electric potential under the influence of an electric field. It is

defined as

εr = ε′ + iε′′ (2.2)

where ε′ describes the permittivity and ε′′ the loss factor (Elachi & van Zyl, 2006; Linlor,

1980; Bernier, 1991). With respect to snow, εr is quite low for dry snow conditions, while the

volumetric liquid water content of the snow pack (Vw) causes an increase in εr due to a higher

dielectric constant of water compared to ice (Stiles & Ulaby, 1981). In addition to Vw, grain size,

temperature, and frequency influence εr as well.

2.1.3. Penetration and polarization of microwaves

Interaction with the target leads to a penetration of the wave into the medium, with the

penetration depth being governed by the dielectric properties of the medium. The penetration

depth is defined as the depth at which the refracted portion of the wave is attenuated by 1/e

(∼37%), following equation 2.3 given by Ulaby et al. (1986)

Lp ≈
λ
√

ε′

(2πε′′)
(2.3)

insofar as ε′′/ε′ < 0.1. Accordingly, longer wavelengths (and thus lower frequencies) penetrate

deeper into the medium (Curlander & McDonough, 1991), while higher moisture content tends

to decrease the penetration depth (see figure 2.2).
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(a) (b)

Figure 2.2: Dependence of dielectric constant on (a) soil moisture at L-Band and (b) Radar
wavelength (Ulaby et al., 1982)

As a result of the transverse nature of electromagnetic waves, the orientation in which the

oscillations take place can be controlled. This property is known as polarization (Woodhouse,

2006). Depending on the orientation of the electric field’s oscillations, an electromagnetic wave is

said to be horizontally polarized if the displacement takes place parallel to the Earth’s surface,

or vertically polarized if the plane is perpendicular to the Earth’s surface. Depending on the

their polarizability, structures respond differently to polarized waves, returning information in

addition to the standard backscatter measurements of a radar (Woodhouse, 2006).

2.1.4. Scattering mechanisms

Interaction of the electromagnetic wave and the target can be described using different scattering

mechanisms. These can be divided into surface and volume scattering. After Curlander &

McDonough (1991), surface scattering is the scattering mechanism from the interface between

two different media, while volume scattering results from particles within a non-homogeneous

medium.

Surface scattering: Three types of surface scattering mechanisms are distinguished, namely Fresnel
and Bragg scattering as well as double bounce (see figure 2.3a). The first two scattering mechanisms
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are controlled by the surface roughness. A surface is defined as smooth by the Fraunhofer

criterion proposed by Ulaby et al. (1982) if

h <
λ

32 cos θ
(2.4)

where

h = standard deviation of the surface roughness

λ = wavelength

θ = local incident angle

Fresnel scattering applies to smooth surfaces that reflect waves almost entirely (appearing dark in

the scene) with incident angles other than zero, the second one applies to slightly rough surfaces

with a root mean square of less than λ/8 (Curlander & McDonough, 1991). Due to the roughness

of a surface with Bragg scattering, the waves are scattered into a number of different directions,

of which a part of the incoming electromagnetic radiation is reflected back towards the sensor,

leading to brighter pixels in the radar image compared to the Fresnel scattering case (Woodhouse,

2006). The third mechanism called double bounce describes a case where the incoming wave is not

only reflected by a smooth horizontal surface (e.g. the grass or water), but then hits a vertical

object (e.g. a wall or tree trunk), resulting in a large return signal towards the source and thus

leading to distinctive, very bright signatures in the radar image that can be used for calibration

purposes or ground control points (Woodhouse, 2006).

Volume scattering: Many natural objects have an inhomogeneous nature, whose scattering

mechanism cannot be described by surface scattering alone, but needs the addition of the volume

scattering mechanism. In this case, the incoming radiation penetrates the uppermost surface

of the medium (e.g. leafs or snow), before being scattered and/or reflected off the embedded

inhomogeneities.

2.2. SAR image processing

When receiving the return signals scattered by the mechanisms described in section 2.1.4, the

uncompressed raw data consisting of the amplitude (A) and phase (ϕ) information needs to be

processed to generate a SAR image. This process chain is generally known as SAR focusing

and consists of the three operations shown in figure 2.4 and explained in detail by Curlander &

McDonough (1991), Massonnet & Souyris (2008) and Stebler et al. (2008). Following the SAR

image processing, the image’s geometric and radiometric distortions caused by terrain variations

can be addressed in the post-processing (Small, 2011). The post-processing steps, namely

geocoding and radiometric calibration, aim to provide a calibrated data base for further analyses
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as well as comparisons of data sets (Stebler et al., 2008). In this section, the abovementioned

post-processing steps are explained in order to create a mutual understanding of the steps

applied to the ASAR and RS-2 scenes used in this study.

(a) Surface Scattering (b) Volumetric Scattering

Figure 2.3: Radar scattering mechanisms (European Space Agency, 2014d)

SAR raw data Range compression

Range 
compressed data

Azimuth compression

Single Look 
Complex image

Multi looking

Multilook image

Figure 2.4: SAR image processing steps (adapted from Stebler et al., 2008)

2.2.1. Geocoding

The geocoding processing step aims to find the corresponding location on the Earth’s surface for

each pixel in the scene, mathematically connecting the observed objects (3D) with the digital

representation (2D). This is achieved using either ellipsoidal heights or a Digital Elevation Model
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(DEM) with the rigorous Range-Doppler approach, taking topographic effects into account

topographic effects as well as the sensor’s state vectors (Meier, 1989; Stebler et al., 2008).

2.2.2. Radiometric calibration

For meaningful multi-sensor or time series intercomparisons, a common normalization of the

SAR backscatter values is needed (Small, 2011). Therefore, a definition of the term backscatter is

necessary. According to Small (2011), backscatter β is defined as the "ratio between the scattered

power Ps and incident power Pi at ground level", hence

β = Ps/Pi (2.5)

Since the assumption of point targets is not usually valid, there is a need for an areal normal-

ization of β, returning a so called backscatter coefficient (Ulaby et al., 1982). Depending on the

reference area and the terrain model chosen (see figure 2.5) the resulting backscatter coefficients

return different information (Small, 2011):

Figure 2.5: Reference areas for SAR backscatter (Small, 2011)

– Beta naught (β0): The solid rectangle Aβ lies in the slant range plane; the resulting backscat-

ter is known as radar brightness and is generally defined as

β0 =
β

Aβ
(2.6)
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In case of the ASAR system, Rosich & Meadows (2004) defined the relationship between

radar brightness (β0) and the value of the image pixels ("Digital Number (DN)") as follows

β0
i,j =

DN2
i,j

K
(2.7)

where

K = absolute calibration constant; derived from measurements

over precision transponders

DN2
i,j = pixel intensity value at image line and column i,j

– Sigma naught (σ0): When the ground area Aσ is chosen as reference area, the resulting

backscatter coefficient is calculated using an ellipsoidal Earth model (denoted with a

subscript E), in order to be able to gain knowledge of the incident angle θE (Small, 2011).

The formula is as follows

σ0
E = β0 ·

Aβ

Aσ
= β0 · sin θE (2.8)

– Gamma naught (γ0): This third backscatter coefficient uses the plane perpendicular to the

line of sight (Aγ) as the reference area for the normalization and applies the following

formula

γ0
E = β0 ·

Aβ

Aγ
= β0 · tan θE (2.9)

As the Aγ area is closest to the actual amount of ground "visible" to the radar, its use is

preferred (Small, 2011).

Geocoded Terrain Correction (GTC)

When the SAR scene’s σ0
E and γ0

E values are calculated using an ellipsoidal Earth model and

terrain-geocoded using a DEM, the output is a Geocoded Terrain Corrected (GTC) product

(Small, 2011). While the flat-earth assumption is valid for regions with flat terrain, it doesn’t hold

true for rugged, mountainous regions, where the backscatter information mixes terrain-induced

as well as thematic effects (Small et al., 2007).

Radoimetrically Terrain Corrected (RTC)

As mentioned in the last section, rugged, mountainous terrain requires additional calibration

steps in order to remove changes of the recorded brightness values caused by changes in the

local scattering area and changing scattering mechanisms due to different incident angles.

Additionally, the target surface’s slope and aspect can cause significant changes to the scattering

area within neighboring resolution cells due to shadowing, foreshortening and layover effects,
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leading to uncertainties critical for quantitative image analysis (Loew & Mauser, 2007; Small,

2011). In order to overcome these uncertainties, the ellipsoid model is replaced by a DEM, based

on which a Local Incidence Angle Mask (LIM) can be calculated. In connection with the local

incident angle θE, a Slope Correction Factor (SCF) can be calculated as follows (Kellndorfer et al.,

1998)

σ0
T = β0 ·

Aβ

Aσ
= σ0

E ·
sin θLIM

sin θE
(2.10)

The σ0
T normalization (the T denoting the use of a terrain model) is referred to as "NORLIM"

by Small (2011). In order to overcome the angular methods’ inaccurate modeling of layover

and foreshortening, Small (2011) stresses the need for a backscatter normalization that uses a

reference DEM to spatially integrate all local illuminated areas (Aγ) at each radar geometry

position before using this local reference area in the normalization process as follows

γ0
Ti,j

= β0
i,j ·

Aβ∫
DHM

Aγi,j

(2.11)

The difference between a GTC and a Radiometrically Terrain Corrected (RTC) scene is presented

in figure 2.6 on the next page, showing considerable improvements for thematic interpretations

of the RTC scene such as wet snow cover. A summary of the SAR backscatter normalization

conventions is given in table 2.2.

Table 2.2: SAR backscatter normalization conventions (modified from Small, 2011)

Convention 1 2 3 4 5

Symbol β0 σ0
E γ0

E σ0
T β0

T
Earth Model None Ellipsoid Ellipsoid Terrain Terrain
Reference Area Aβ Aβ Aγ A˜ σ Aγ

Normalization β0 = β
Aβ

σ0
E = β0 · Aβ

Aσ
γ0

E = β0 · Aβ

Aγ
σ0

T = β0 · Aβ

Aσ γ0
T = β0 · Aβ∫

DHM
Aγ

= β0 · sin θE = β0 · tan θE = σ0
E ·

sin θLIM
sin θE

Product GTC NORLIM RTC

2.3. Physical properties of snow

In order to understand the factors influencing the SAR backscatter from a snow pack, knowledge

about its physical properties is vital. This chapter gives an overview of relevant physical

properties and characteristics of snow with regard to microwave remote sensing as well as the

techniques used to derive information about the state of the snow pack, based mainly on the
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(a) GTC image (γ0
E)

(b) RTC image (γ0
T)

Figure 2.6: Differences between GTC and RTC
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publications from Rees (2006), DeWalle & Rango (2008), Singh & Singh (2001), and Seidel &

Martinec (2004).

2.3.1. Description of snow and snow pack

A snow pack’s most basic physical parameter is its density ρs, a value normally ranging between

1 g/cm3 for freshly fallen snow and 6 g/cm3 for one-year-old snow (although in very cold conditions,

the density of the fresh snow can be as low as 0.01 g/cm3). The increase in snow pack density

results from the compaction process induced by wind, gravity, and thermal metamorphism.

Regarding the snow pack’s internal structure, the most important parameter is grain size. It is

generally defined as the ice crystal’s mean radius, with some definitions taking its form and

orientation into account as well. Even though grain sizes of 0.01 mm have been reported for new,

low-density snow, the grain size typically lies between 0.1 and 3 mm. As a result of melting and

refreezing, the crystals can merge together, forming macroscopic inclusions of solid ice.

The third parameter often used to characterize the snow pack is defined by the snow’s wetness w,

often referred to as LWC. This unit is defined as the availability of water content in the form of

liquid in a snow pack, not only including the capillary water between the snow crystals, but also

the gravitational water moving downward within the snow pack. LWC is usually expressed as a

volumetric percentage, sometimes as a mass percentage. The volumetric LWC values normally

range between 0% for snow packs with temperatures below 0°C up to around 10% for temperate

snow packs. The upper limit is defined by the snow’s ability to hold liquid water in its pores;

higher volumetric LWC values lead to drainage of the liquid water at the bottom of the snow

pack. Since the LWC does not say anything about the absolute amount of melt water within a

snow pack, this parameter is described by the SWE dw. It is defined as the depth (e.g. in meters)

of all liquid water that would be released upon complete melting of the snow pack. It can be

calculated as follows

SWE =
ρs

ρw
· d (2.12)

where

SWE = snow water equivalent [m]

ρs = snow pack density [kg/m3]

ρw = density of liquid water, approx. 1 000 kg/m3

d = snow pack depth [m]

According to Rees (2006), SWE will typically be about a third of the snow pack’s depth, although

with low-density snow this value can be much lower.

Not only the the snow pack’s internal properties influence the interaction of the electromagnetic

radiation with the snow pack, but also the surface geometry, represented by the surface roughness
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(at larger scales this becomes surface topography) (Rees, 2006; DeWalle & Rango, 2008; Singh &

Singh, 2001).

2.3.2. Dielectric properties of snow

According to Bernier (1991), snow can be considered as a mixture of ice, air, and water. Therefore,

the dielectric properties of the snow pack depend on its density, the size of the ice crystals, as well

as the dielectric constant of ice, air, and water. As the dielectric constant changes considerably

between water (extremely high dielectric values) and ice (extremely low dielectric values), two

cases have to be considered: dry and wet snow conditions (Woodhouse, 2006).

Dry snow

As dry snow consists of closely-spaced ice needles where the host medium is simply air, the

extremely high dielectric constant of water does not need to be considered. Therefore, the overall

low dielectric constant of dry snow is a result of an extremely low dielectric constant of ice in

combination with the one of air (according to Rees (2006), air can be assumed to be free space

with a dielectric constant of 1), the microwaves do not interact greatly with the dry snow pack,

resulting in a penetration depth Lp of more than 10 m for C-band (Piesbergen, 2001; Bernier,

1991; Woodhouse, 2006; Rees, 2006).

Wet snow

As opposed to dry snow, wet snow includes droplets of water between the ice particles. Due to

the extremely high dielectric constant of liquid water, it has a very strong effect on absorption,

resulting in a penetration depth Lp for a snow pack with an LWC of 2% of only a few centimeters.

2.3.3. Backscatter properties of snow

The backscatter signature of a snow pack is a mixture of the geometric structure as well as

the electromagnetic properties of ice, air, water vapor, and the liquid water. As dry snow is

transparent to a C-band microwave sensor, the backscatter signal for a snow pack of 1–3 m is

approximately equal to the surface scattering of the underlying soil, since the surface scattering

at the air/snow interface can be ignored for incident angles above 45° (Piesbergen, 2001; Bernier,

1991; Strozzi, 1996). According to Rees (2006), the volumetric scattering from the irregularities

within the bulk of the medium (i.e. snow pack) can be neglected as well, unless the snow pack is

too deep.

In the case of wet snow, the backscatter processes are different, as the dielectric constant of
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(a) Dry snow

(b) Wet snow

Figure 2.7: Backscatter differences between dry and wet snow conditions

15



2 Theory Christoph Rohner

wet snow (ε′′, see section 2.3.2 on page 14) is much higher than in the dry snow case. This

increase in ε′′ leads to an increased scattering at the air/snow interface as well as a decrease in

penetration depth Lp, thus surface scattering becomes the main contributor to the backscattered

signal, which itself is governed by frequency, polarization, incident angle, and surface roughness

(Bernier, 1991; Rees, 2006).

Figure 2.8: Microwave backscattering from snow (based on Piesbergen, 2001)
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3. Data

The data sets used for this thesis can be divided into five categories that are discussed in

detail in the following chapter. The SAR data sets included data from both ASAR and RS-2.

There were also data sets from optical remote sensing, ground measurements provided by

SLF, meteorological data from both SLF and Federal Office of Meteorology and Climatology

(MeteoSwiss), as well as auxiliary data sets from a multitude of sources. At the end of this

chapter, the software used for data processing is described.

3.1. SAR

3.1.1. Envisat ASAR

Envisat was launched with an Ariane 5 rocket from the Centre spatial guyanais in Kourou (French

Guiana) on 1 March 2002, carrying ten remote-sensing instruments, including the Advanced

Synthetic Aperture Radar (ASAR) used in this thesis (European Space Agency, 2014a). Envisat

orbited the Earth in a sun-synchronous polar orbit of about 800 km altitude, passing the equator

at 10:00/22:00 mean local time in descending/ascending orbit. With 501 orbits in cycle and an

orbit period of 100.59 minutes, Envisat had a repeat cycle of 35 days (European Space Agency,

2014a).

The data set used for this thesis comprised a total of 330 scenes from the beginning of 2007 until

the contact to the satellite was lost on 8 April 2012 (European Space Agency, 2012). The scenes

were acquired in the Wide Swath Mode (WSM) with ASAR’s C-band SAR, centered at 5.331

GHz. The use of this imaging mode with a resolution of 150 m and a pixel spacing of 100 m at a

swath width of 405 km offered the possibility of covering Switzerland’s whole area in single

scene (European Space Agency, 2007). Although ASAR acquired the scenes in both VV and HH

polarization, only six scenes in 2011 were available in HH polarization for this thesis.

The data set’s temporal resolution was on average one scene every six days between 2007 – 2011,

and one scene every two days for 2012 (see figure 3.1 on the next page). The image acquisitions

took place around 09:45 UTC (descending orbit) and 21:15 UTC (ascending orbit).

For every acquisition, four data sets were used as input. These were a Geocoded Terrain Cor-

rected (GTC), as well as an Radiometrically Terrain Corrected (RTC), a Local Incidence Angle

Mask (LIM) and an Area data set, of which the latter two were needed for the RTC processing

(see section 2.2.2). All these data sets were geocoded using the Swiss national grid coordinates

(CH1903). All had the same pixel spacing of 100 m as well as identical extents.

As the data sets were acquired with different incidence angles as well as different orbit config-

urations, the use of RTC scenes was preferred over GTC scenes (see chapter 2.2.2 on page 10).
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Figure 3.1: Distribution of scenes per month (2007 – 2012)

The Area data set was used for the derivation of Local Resolution Weighting (LRW) composites

(see 4.3 on page 33) and the selection of suitable IMIS stations (see section 4.1 on page 29), while

the LIM rasters were used for the derivation of the RTC representations.

3.1.2. RADARSAT-2

In addition to the ASAR data sets, four RADARSAT-2 (RS-2) scenes were used. RS-2 is a col-

laboration between MacDonald, Dettwiler and Associates Ltd. (MDA) and the Canadian Space

Agency (CSA) and was launched on 14 December 2007 on a SOYUZ-FG rocket from Baikonur

(Kazakhstan) (Hillman et al., 2009). The satellite orbits the Earth in a sun-synchronous polar orbit

of 798 km altitude, passing the equator at 06:00/18:00 mean local time in descending/ascending

orbit. Its orbit duration is 100.7 minutes, resulting in a repeat cycle of 24 days (Hillman et al.,

2009; MacDonald, Dettwiler and Associates Ltd., 2011, 2014).

The images were acquired using the sensor’s ScanSAR Narrow beam mode, providing a swath

width of 300 km with a resolution of 50 m using a C-band SAR centered at 5.405 GHz (MacDo-

nald, Dettwiler and Associates Ltd., 2011, 2014). The four scenes were acquired in 2010 and 2012

and are available in both VV and VH polarization for all four dates, covering around 90% of

Switzerland’s area (see figure 3.1 and table 3.1 on the next page). For compatibility reasons, all
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were available as well with a 100 m pixel spacing in order to match the ASAR scenes. As for the

ASAR scenes, each acquisition was available as an Area, LIM, GTC, and RTC representation.

As mentioned in the description of the Envisat ASAR data set, the use of RTC scenes was

preferred over GTC representations. As a result of the limited data set, the Area data set was

only used with the scenes acquired on 26 April 2012 and 27 April 2012 in order to calculate a

LRW composite. As mentioned previously, the LIM rasters were not used directly.

Table 3.1: RS-2 image characteristics

Date Orbit Areal coverage of CH

2010-04-26 17:23:36 UTC Ascending 89%
2010-04-27 05:33:21 UTC Descending 94%
2012-02-28 05:33:37 UTC Descending 94%
2012-03-23 05:33:37 UTC Descending 94%

3.2. Optical remote sensing

For the validation of the wet snow classification using SAR scenes (see section 4.2 on page 30),

optical data sets stemming from the AVHRR, Landsat 7 (LS 7), and the MODIS were used. As

shown in figure 3.1 on the preceding page and table 3.2, the acquisitions were from 2010 to 2012.

Table 3.2: Availability of optical remote sensing scenes for comparisons

AVHRR LS 7 MODIS

2010-04-26 X × X
2010-04-27 X × X
2011-03-20 × X ×
2011-03-28 X × ×
2011-03-29 × X ×
2011-05-28 X × ×
2011-05-30 × X ×
2012-02-28 X X X
2012-03-22 × X ×
2012-03-23 X × X
2012-03-24 × X ×
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(a) Envisat ASAR (RTC) 2007-11-13 UTC (b) Envisat ASAR (RTC) 2012-04-07 UTC

(c) RADARSAT-2 (RTC) 2012-02-28 UTC (d) RADARSAT-2 (RTC) 2010-04-27 UTC

Figure 3.2: Dry/wet snow conditions in Envisat ASAR/RADARSAT-2 RTC scenes

3.2.1. AVHRR Snow Extent

The six AVHRR snow extent products were produced and provided by the Remote Sensing

Research Group from the University of Bern, distributed evenly across the years 2010, 2011,

and 2012. The scenes were available in both single path as well as daily maximum composites,

both in WGS84 projection and with a spatial resolution of 0.01°. In order to be able to use

the data with both the ASAR and the RS-2 scenes, the projection was changed to CH1903 and

the pixels resampled to 100 m/25 m using the nearest neighbor approach. The AVHRR snow

extent product was classed into five discrete values, shown in table 3.3. As the daily maximum

composites incorporated a maximum of 2–3 overpasses per day (Hüsler et al., 2014), they were

used for validation purposes.

The AVHRR snow extent product was the only optical product including information on the

cloud cover of each scene.
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Table 3.3: Classification scheme of the AVHRR snow extent product

Pixel value Cover type

0 No snow
100 Snow
200 Water
250 Cloud
255 No data

Table 3.4: Areal statistics for the AVHRR snow extent scenes (Hüsler et al., 2014)

Areal cover Areal snow cover Areal cloud cover Areal No Data cover
Scene of CH [%] of CH [%] of CH [%] of CH [%]

2010-04-26 100.00% 16.83% 71.12% 0.00%
2010-04-27 100.00% 16.12% 58.08% 0.00%
2011-03-28 100.00% 13.69% 78.46% 0.00%
2011-05-28 54.94% 8.32% 10.26% 45.06%
2012-02-28 100.00% 42.33% 41.08% 0.00%
2012-03-23 68.24% 19.64% 0.16% 31.76%

3.2.2. Landsat 7

The LS 7 scenes consisted of a total of nine acquisitions on six days in the years 2011 and 2012.

They had a spatial resolution of 30 m and were processed and provided by Dr. Hendrik Wulf

from the Remote Sensing Laboratory (RSL) at the University of Zurich. As with the AVHRR

snow extent data set, the LS 7 data set was resampled and projected to match the ASAR and

RS-2 scenes.

The snow classification for the scenes was made using the Normalized Difference Snow Index

(NDSI) algorithm, described by Seidel & Martinec (2004) as follows:

NDSI =
TM2− TM5
TM2 + TM5

≈ MODIS4−MODIS6
MODIS4 + MODIS6

(3.1)

where

TM2 = LS 7 Enhanced Thematic Mapper Plus (ETM+) band 2 (525–605nm)

TM5 = LS 7 Enhanced Thematic Mapper Plus (ETM+) band 2 (1 550–1 750nm)

MODIS4 = MODIS band 4 (545–565nm)

MODIS6 = MODIS band 4 (1 628–1 652nm)

The values returned were then converted to FSC, with values >0.4 indicating the presence of

snow (Hendrik Wulf, 2014-09-11, personal communication). As there are multiple scenes per
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day covering different areas of Switzerland, these same-day acquisitions were further combined

into one single scene. The same procedure was used to combine the scenes from 22 March 2012

and 24 March 2012. As can be seen in figure 3.3, the product shows striping effects due to the

failure of Landsat’s Scan Line Corrector (SLC). A ’no data’ flag was applied to all affected pixels.

As opposed to the aforementioned AVHRR snow extent product, this data set did not include

information regarding the cloud cover, since only the FSC values and no data values were stored.

Figure 3.3: Landsat 7 FSC for 2012-03-23

3.2.3. MODIS Aqua/Terra

The third snow cover data set was based on the MODIS/Terra Snow Cover Daily L3 Global

500 m Grid (MOD10A1) data set, providing daily FSC values ranging from 0–100 (Hall et al.,

2006). The gaps in the MOD10A1 FSC product caused by cloud cover were interpolated by Dr.

Hendrik Wulf using data from the Aqua and Terra satellites (Hendrik Wulf, 2014-09-11, personal

communication). Cloud cover was not specifically flagged, but a value of 0 was attributed to

such pixels. The 2.74% No Data values stemmed from the water bodies that have been masked

out of the final product. The spatial resolution of the original four scenes was approximately 460

m, later resampled to 100 m/25 m using ArcMap 10.2.1.
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Table 3.5: Areal statistics for the Landsat 7 scenes

Areal cover Areal snow cover Areal No Data cover
Scene of CH [%] of CH [%] of CH [%]

2011-03-20 17.36% 8.17% 82.64%
2011-03-29 17.91% 2.42% 82.09%
2011-05-30 10.27% 0.03% 89.73%
2012-02-28 32.72% 20.29% 67.28%
2012-03-22 43.96% 12.41% 56.04%
2012-03-24 10.32% 7.30% 89.68%

Table 3.6: Areal statistics for the MODIS Aqua/Terra scenes

Areal cover Areal snow cover Areal No Data cover
Scene of CH [%] of CH [%] of CH [%]

2010-04-26 97.26% 23.44% 2.74%
2010-04-27 97.26% 22.90% 2.74%
2012-02-28 97.26% 53.70% 2.74%
2012-03-23 97.26% 39.64% 2.74%

3.3. Ground measurements

The ground measurement data used for this thesis originated from the IMIS network operated

by SLF. This measurement network consists of 114 automated measurement stations throughout

the Swiss Alps (see table A.1) providing information regarding meteorological as well as snow

parameters. The point measurements were made once every 30 minutes and transmitted to SLF

on an hourly basis (Lehning et al., 1999). The parameters measured at IMIS snow stations are

listed in table 3.7 on the next page. Due to the remote locations of the stations, the electrical

power supply is ensured by a battery charged using a solar panel. Therefore, the sensors cannot

be heated or ventilated, leading to the possibility of measurement errors as well as data gaps

(Lehning et al., 1999).

However, these stations do not measure the SWE or the amount of fresh snow directly. Therefore,

a physical snow pack model is used at SLF to estimate additional parameters (Jonas, 2012;

Lehning et al., 2002, 1999).

3.3.1. SNOWPACK output

SNOWPACK is a finite-element based physical snow pack model, developed and run by SLF

to provide additional information for avalanche forecasting (Lehning et al., 1999). It models
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Table 3.7: Parameters measured at IMIS stations (Lehning et al., 1999)

Abbrev. Description Measurement units

HS1 Snow depth [cm]
TA Air temperature [° C]

TSS Temperature of snow surface [° C]
TS1/TS2/TS3 Temperature of snow at 25/50/100 cm [° C]

TS0 Ground temperature [° C]
RSWR Reflected short-wave radiation [W/m2]

RH Relative humidity [%]
Wind speed (average/peak) [m/s]

Wind direction [°]

snow as a three-phase porous medium (ice, water, and air), characterized by each phase’s

volumetric content as well as micro-structural parameters derived from the network of IMIS

stations (Lehning et al., 1999, 2002).

Since point measurements, as realized with the IMIS network or manually dug snow pits, are not

able to capture to snow’s high spatial variability, the parameter outputs from the SNOWPACK

model were used in this thesis to derive continuous information regarding the state of the snow

pack. From the multitude of parameters only few were used for this thesis. These parameters

were layered information on LWC, snow pack density, and snow temperature. The layered nature

of the aforementioned parameters included the value of snow height for every measurement

intrinsically.

3.4. Meteorological data

In addition to the meteorological values measured at the IMIS stations (see section 3.3), two data

sets provided by MeteoSwiss were used. As a source of point measurements with a high temporal

resolution (up to one measurement every 10 minutes) the CLIMAP-net database from MeteoSwiss

was utilized. Out of the many parameters available, precipitation, air temperature and wind

speed/direction information were chosen to identify possible reference scenes for the wet snow

detection process. In addition to the CLIMAP-net point measurements, the gridded data sets

from MeteoSwiss provided regularly spaced areal representations of meteorological parameters

such as temperature, precipitation, and sunshine duration at daily/monthly/yearly intervals.

The grids were generated using advanced interpolation techniques based on measurements

from CLIMAP-net stations and had a spatial sample interval of 0.02083 degrees, equaling

approximately 2.3 km the in West-East direction, and 1.6 km in the North-South direction

(MeteoSwiss, 2011).
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Figure 3.4: Example of an IMIS station (Hinterrhein–Unter Surettasee, see table A.1; courtesy of
Dr. Tobias Jonas)

3.5. Auxiliary data sets

Additional geodata were used to investigate influencing factors of the SAR backscatter as well

as for illustration purposes. These data sets originated from the Federal Office of Topography

(swisstopo) as well as from the Federal Statistical Office (BFS).

– Federal Office of Topography (swisstopo)

– DHM25: For extraction of elevation, slope, and aspect information, this DEM with

a spatial resolution of 25 m was used. It covered all of Switzerland as well as small

parts of the neighboring countries (Swiss Federal Office of Topography, 2004).

– swissBoundaries3D: For illustration purposes, the national/municipal boundaries

derived from the municipal boundary data set were used. The boundaries represent

the state as per 2013 (Swiss Federal Office of Topography, 2013b).
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– swissALTI3D: For the geolocation of the IMIS stations, the high resolution DEM with a

spatial resolution of 2 m was used. The DEM was created using both Light Detection

And Ranging (LIDAR) and stereo correlation techniques (Swiss Federal Office of To-

pography, 2013a).

– SWISSIMAGE: The orthophoto mosaic with a spatial resolution of 0.25 m was used

for the geolocation of the IMIS stations as well as for illustration purposes (Swiss Fe-

deral Office of Topography, 2010).

– VECTOR25: To mask out the influence of water bodies from the analysis, the vector

data set from swisstopo was used (Swiss Federal Office of Topography, 2007). The lake

mask included every lake – natural or artificial – larger than 0.4 km2. The underlying

soil cover information was also extracted from the VECTOR25 data set. Therefore,

multiple categories were merged into the classes bedrock, detritus, and glacier as shown

in table 3.8.

Table 3.8: Merged categories from the VECTOR25 data set to derive soil cover information

Bedrock Detritus Glacier

Z_Fels (Bedrock) Z_GerGeb (Detritus with shrubbery) Z_Glet (Glacier)
Z_GerGle (Detritus on glacier)

Z_Geroel (Detritus)
Z_GerWaO (Detritus in open woodland)

– European Environment Agency (EEA): In order to be able to mask out the agricultural areas

from the wet snow map (see section 4.2.3 on page 32), the Coordination of Information on

the Environment (CORINE) data set from 2006 was used (European Environment Agency,

2007).

– Federal Statistical Office (BFS): To investigate the influence of forest cover in connection with

the SAR backscatter of wet snow, the forest type classification (Waldmischungsgrad 1992,

short: WMG1992) was used. The data set represents the state as of 1992 and differentiates

between five forest types and the forest free case (Swiss Federal Statistical Office, 2004).

The appropriate spatial resolution (25 m/100 m) was used, for the pixel spacing of each

satellite data set.

3.6. Developed Software

Almost all the data processing and calculation steps as well as the plots and charts created by

the author were programmed and executed in Matlab (R2012a/R2012b) from The MathWorks,
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Inc., while most of the geoprocessing (e.g. image resampling operations, two-dimensional trans-

formations) were scripted in Python 2.7, using ESRI’s ArcPython interface for ArcMap Versions

10.1/10.2.1. Additionally, ArcMap was used to resample/project/calculate the aspect/slope as

well as the lake and agriculture masks described in section 3.5.
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4. Methods

The workflow of the thesis is presented in this chapter. A delineation of the selection process of

IMIS stations is first presented, followed by a description of the wet snow retrieval algorithm

based on the paper from Nagler & Rott (2000). The criteria used to define dry reference scenes

are then explained and the masks are developed. The second part of this chapter presents

the theory behind as well as the application of the LRW image processing approach, before

concluding with the accuracy assessment methodology of the wet snow detection. In the third

part, the steps concerning the isolation of external influencing factors are described.

4.1. Selection of suitable IMIS stations

As the IMIS stations are located in a mountainous environment, not all stations were suitable for

analysis of the SAR backscatter, partly due to rough terrain (steep slopes prone to foreshortening

and layover) or features within the scene (e.g. small water bodies, buildings, shrubs/forests

or streets), as shown in figure 4.1. Additionally, the coordinates of certain stations were only

available with an accuracy of ±50 m. In order to prevent errors induced by inaccurate coordinates

or terrain/features on the results of this thesis, each station’s coordinates were geolocated using

the SWISSIMAGE and swissALTI3D data sets from swisstopo and shifted, before the selection

process was run. The main goal of the selection process was to find representative stations with a

(a) Station Taminatal–Schaftäli (b) Station Hinterrhein–Unter Surettasee

Figure 4.1: Examples of the surrounding terrain for two IMIS stations. The footprints of 3×3

pixels around the station’s location are shown in blue (RS-2) and red (ASAR)

surrounding perimeter of 300 m (3×3 pixels of ASAR), undisturbed by the influences of terrain,
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vegetation or man-made objects. Additionally, the station’s altitude was taken into account, in

order to ensure a distribution over diverse height bands. The subset of stations suitable for

this thesis consisted of 38 stations, distributed representatively throughout the Swiss Alps (see

figure 3.5 on page 26 and table A.1 on page 98). The stations were distributed over the height

bands shown in table 4.1.

Table 4.1: Height distribution of selected IMIS stations

Height band [m] Number of stations

< 1 700 6

1 700 - 2 099 8

2 100 - 2 399 8

2 400 - 2 699 9

≥ 2 700 7

4.2. Discrimination of wet snow

Radar-based discrimination of wet snow from dry snow is typically based on the difference in

dielectric properties caused by the liquid water within the snow pack (see section 2.3.2) and

was described by Nagler & Rott (2000). The discrimination between wet and dry snow is of

importance for this thesis, since it provides information regarding the state of the snow pack.

4.2.1. Algorithm

The algorithm presented by Nagler & Rott (2000) and Piesbergen et al. (1995) was developed

for the application on C-band European Remote Sensing Satellite (ERS) 1/2 and RADARSAT

imagery, and proved to be feasible as well for scenes from ASAR as shown by Nagler & Rott

(2005).

As a first step, feasible dry reference images need to be defined. According to Nagler & Rott

(2000, 2005) these consist of either snow free summer images, or images acquired in winter with

dry snow. In both of these cases, surface scattering from the snow-ground interface dominates,

in contrast to the snow melt case (see section 2.3.3 on page 14). If possible, dry reference scenes

should be temporally as close as possible to the scenes they are compared with. Additionally,

the incident angle should agree as good as possible.

Once the reference scenes have been selected, the wet snow mapping algorithm can be applied
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pixel by pixel as follows (after Nagler & Rott, 2000):

Data: Dry reference scene, wet snow scene, LIM

Result: Binary wet snow mask

if (pixel == Layover or pixel == Shadowing or θi < 17◦ or θi > 78◦) then
WetSnowMask == NaN −→ snow mapping not possible

else if pixelws-pixelre f < TR then
WetSnowMask == 1 −→ wet snow

else
WetSnowMask == 0 −→ dry snow/snow free

end
Algorithm 1: Wet snow classification algorithm (Nagler & Rott, 2000)

As a value for TR, Nagler & Rott (2000) found a threshold of -3 dB to be appropriate for ERS

1/2 and RADARSAT scenes, which holds true as well for the Envisat ASAR case (Nagler & Rott,

2005). As visible in the algorithm, Nagler & Rott (2000) defined a lower and upper boundary

for incidence angles θi of 17
◦ and 78

◦. This condition was investigated for all 330 ASAR scenes

over flat areas of 1 km2 (see table 4.2). As can be seen in figure 4.2, the ASAR scenes fulfill

the condition of the algorithm. Additionally, the areas with layover or shadowing in the GTC

and RTC scenes were reclassed to NaN in Matlab, thus having no impact on the final result, as

R− NaN = NaN and NaN −R = NaN.

Table 4.2: Reference areas for retrieval of θi (coordinates in CH1903)

Place name Coordinates UL corner [m] Coordinates LR corner [m]

Utzensdorf North 610 000/222 100 611 000/221 100

Linthebene 714 400/228 600 715 400/227 600

Piano di Magadino 717 000/114 000 718 000/113 000

Plaine de l’Orbe 531 000/171 000 532 000/170 000

Gürbetal 606 000/185 000 607 000/184 000

Chablais 559 000/134 000 560 000/133 000

Altstätten (SG) 762 000/250 000 763 000/249 000

Ober Vinschgau 837 000/179 500 838 000/178 500

4.2.2. Identification of reference scenes

In order to find suitable dry reference scenes, the criteria mentioned in section 4.2.1 on the

preceding page were taken into account as were meteorological data. A dry reference scene was

selected for each year, giving a reasonably small temporal difference. To address the similarity

of the orbit parameters, a reference scene was attributed to all scenes with the same track. If

there was no suitable reference for a given track, a dry scene with the smallest difference in
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Figure 4.2: Incident angle range over reference areas for ASAR scenes from 2007–2012

orbital parameters (based on the incident angles gained over the reference areas described in

table 4.2) was selected. In order to ensure dry conditions, the temperature profile during the

course of a year was investigated for different regions (see figure 4.3) and height levels. For

extended periods of time, when the temperature was below 0° C, the corresponding scenes were

inspected visually regarding their usability as a dry reference. A sample plot for the canton

Grisons (region 4) is shown in figure 4.5.

4.2.3. Masking

As shown by Veitinger (2010), a post-processing of the result is necessary for better results due to

unrelated changes in backscatter. Therefore, water bodies as well as agricultural and residential

areas were masked out of the resulting wet snow product. The water bodies mask was extracted

from the VECTOR25 data set (including bodies of water with a surface >0.4 km2), as was the

mask for residential areas. Since changes in backscatter can also be caused by e.g. agricultural

areas (Caves et al., 1999), a mask was created using the 2006 CORINE data set, merging together

all eleven types of agricultural surface (see section 3.5 on page 25). The possibility of wet snow

detection in forests is covered extensively in the literature (e.g. Baghdadi et al., 1997; Caves et al.,

1999; Piesbergen, 2001), unanimously stating that a detection of wet snow is not possible in areas
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Region 4Region 2

Region 1

Region 5

Region 3

Figure 4.3: Allocation of regions in Switzerland

with dense forest cover, even though a proposition has been made by Koskinen & Hallikainen

(1997) to overcome this problem. Since this algorithm is difficult to apply due to the high number

of reference images needed (Malnes & Guneriussen, 2002), forested areas were masked out as

well, using the forest type classification data set from the Federal Statistical Office (BFS). All four

masks were binary (0/1): they only excluded data, leaving the rest of the data unchanged.

4.2.4. Algorithm application

The application of the wet snow mapping algorithm presented on page 31 as well as the masking

was scripted and carried out in MATLAB. The algorithm results were saved in two different

forms: firstly as a binary wet snow mask, using the -3 dB threshold given in Nagler & Rott (2000)

and secondly in a continuous form, with the resulting dB difference stored as pixel values. The

latter was done in order to retain the additional information within the exact values as well as to

be able to redefine the threshold value during the course of the analysis.

4.3. Local Resolution Weighting (LRW)

Although areas suffering from layover and shadowing effects did not influence the result of the

wet snow classification as a result of the NaN classification mentioned in section 4.2, there is

an interest to not only address the above-mentioned effects, but also to reduce noise within the
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(a) Lake mask based on VECTOR25 data set (b) Agriculture mask based on CORINE Landcover 2006

(c) Mask for residential areas based on VECTOR25 data
set

(d) Mask for forested areas based on the BFS forest type
classification

(e) Merge of all masks applied on wet snow detection algorithm

Figure 4.4: Masks applied to wet snow detection algorithm (black areas excluded from result)
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scene. A first approach is the so called Optimal Resolution Approach (ORA) that combines SAR

data from two crossing orbits of the same day, choosing each pixel on the basis of the highest

available resolution (Small et al., 2004; Piesbergen et al., 1997). This approach was extended by

Small et al. (2004) by exchanging the boolean pixel choice to fuzzy set theory, using the inverse

local resolution as a weight for each pixel when compared to the other available images in the

subset (Small et al., 2010). This process, called Local Resolution Weighting (LRW), results in

a much more homogeneous spatial resolution without applying masks; only areas affected by

shadowing are not considered (Small et al., 2010). In order for the LRW approach to be feasible,

the temporal resolution of the SAR scenes need to be sufficiently high, otherwise the differences

between the scenes will cause a temporal blurring of the composite image.

4.3.1. Theory

As mentioned above, a subset of RTC images with a high temporal resolution and diverse

incidence angles are required for the LRW approach. Ideally, the orbit configuration differs

(ascending/descending) within the selected subset to minimize the areas with shadowing,

foreshortening or layover (Small et al., 2010). Since the illuminated area per pixel is known for

each RTC image, and it is inversely proportional to the local resolution, its value can be used

as a weighting coefficient. As areas in radar shadow do not have a value for illuminated area,

the respective pixel value will have a weight of 0 and will thus not influence the LRW image.

According to Small et al. (2004) the formula for each grid location with n scenes is as follows:

Wi =
1
Ai

/ n

∑
j=1

1
Aj

; γ0
c =

n

∑
i=1

Wi · γ0
i (4.1)

where

Wi = Weight for image i

Ai = Illuminated area for image i

γ0
c = Composite backscatter value

γ0
i = Backscatter value for image i

Even though the LRW approach comes with trade-offs – a decrease in temporal resolution, as

multiple images are required for a single composite image – the result is an image with normal-

ized backscatter as well as an optimal spatial resolution, allowing better thematic interpretation

compared to single GTC or RTC products (Small et al., 2004, 2010; Small, 2012).
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RTC 1 RTC 2 Area 1 Area 2... RTC n ... Area n

LRW Approach

(see equation 4.1)

LRW 
Image

Figure 4.6: LRW image processing steps (adapted from Schaub, 2011)

4.3.2. Wet snow detection with LRW images

The optimized spatial resolution of the LRW image makes it well suited to detect wet snow cover

using the algorithm from Nagler & Rott (2000) presented in section 4.2, given a small temporal

difference of the image subset used for LRW calculation. In order to find suitable temporal

windows for the generation of LRW composites, image statistics for multiple temporal windows

were calculated and compared with one another. The goal was to achieve an optimal balance

between a high number of images in the subset (if possible with a big areal overlap between

ascending and descending image acquisitions) and a small time difference between the scenes.

As can be seen in figures B.1a to B.1g on pages 103–109, these requirements could not be fulfilled

simultaneously for most of the ASAR time series: with a small time difference, there were

usually only few scenes available for the LRW calculation and thus there was no areal overlap

available to minimize shadowing, foreshortening or layover. Even with a temporal window of

30 days, there were gaps in the availability of LRW composites with a high areal overlap, and

since the snow melt period is normally short-lived, the upper limit for the LRW’s temporal

baseline was limited to two weeks, since otherwise there would be a mixture of different wetness

levels. A careful selection of LRW composites with big areal overlaps was thus necessary for the

accuracy assessment described in the following section.

4.4. Accuracy assessment

The SAR wet snow classification accuracy was investigated using both the spaceborne opti-

cal imagery (see section 3.2) as well as the measured/modeled parameters gained through

IMIS/SNOWPACK (see section 3.3). The assessment was carried out for LRW composites with a
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temporal tolerance of five, seven, ten, and fourteen days in order to investigate the influences of

temporal baseline and image availability.

4.4.1. Comparison of SAR wet snow classification with optical remote

sensing imagery

The LRW composites were compared to the available optical snow cover products on a pixel-

by-pixel basis. Due to the differences in classification between the optical snow cover products,

the values were recoded according to the scheme shown in tables 4.3, 4.4, and 4.5. As SAR

differentiates between the presence and absence of wet snow, but cannot determine the presence

of dry snow solely based on the SAR data (see section 6.1.2), only the user’s accuracy could be

assessed for all comparisons using the following formula (Lillesand et al., 2008):

User’s accuracy =
SARws ∩Os

(SARws ∩Os) ∪ (SARws ∩Ons)
(4.2)

where

SARws = Pixels classified as wet snow in SAR image

Os = Pixels classified as snow in optical remote sensing image

Ons = Pixels classified as no snow in optical remote sensing image

The classification accuracy was assessed for the five, seven, ten, and fourteen day LRW compos-

ites. Since the extents of both the optical as well as the SAR scenes differed within the variety of

image acquisitions, the user’s accuracy was calculated not only for the comparison of a single

LRW composite against an optical satellite image, but also for all of the available composites

within the given time frame.

Table 4.3: Recoding scheme of the AVHRR snow cover product

Original value Cover type Recoded value

0 No snow 0

100 Snow 1

200 Water NaN
250 Cloud NaN
255 No data NaN
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Table 4.4: Recoding scheme of the Landsat 7 snow cover product

Original value Cover type Recoded value

0-0.399 FSC < 40% 0

0.40-1 FSC ≥ 40% 1

No data Cloud/No data NaN

Table 4.5: Recoding scheme of the MODIS snow cover product

Original value Cover type Recoded value

0-39.9 FSC < 40% 0

40-100 FSC ≥ 40% 1

No data Cloud/No data NaN

4.4.2. Investigation of external influencing factors

In addition to the accuracy assessments described above, differences in the distribution of three

environmental variables between the wet snow classification using LRW composites and the

optical reference scenes have been assessed. Therefore, the distribution of the characteristics of

different variables was calculated for both products (see table 4.6). The formula used to calculate

the distribution differences followed:

Distribution Varx,yRe f erence =
SARws ∩ (Ons ∪Os) ∩Varx,y

SARws ∩ (Ons ∪Os)
(4.3)

Distribution Varx,ySAR =
SARws ∩Ons ∩Varx,y

SARws ∩Ons
(4.4)

DistributionDi f f erence = Distribution Varx,yRe f erence − Distribution Varx,ySAR (4.5)

where

Varx,yRe f erence/SAR = Variable x with characteristic y in the reference/SAR scene

(see table 4.6)

SARws = Pixels classified as wet snow in SAR image

Os = Pixels classified as snow in optical remote sensing image

Ons = Pixels classified as no snow in optical remote sensing image
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Table 4.6: Assessed environmental influencing factors on wet snow detection

Variable Characteristics

Aspect N (315°-45°) E (45°-135°) S (135°-225°) W (225°-315°) Flat
Slope [°] 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90

Ground Cover Bedrock Detritus Glacier Other

4.4.3. Analysis of the relationship between liquid water within the

snow pack and SAR backscatter

As the SAR backscatter signal is strongly influenced by the presence of liquid water within the

snow pack (see figure 2.7), the relation between the liquid water and the radar backscatter was

investigated. As described in section 3.3.1, layered information on the LWC were provided for

the subset of 38 stations in the Swiss Alps. Since LWC values are provided as a percentage, the

value itself does not describe the amount of liquid water in the snow pack. In combination with

information about the snow pack’s density, the SWE could be calculated, although SWE values

describe the combined amount of water from snow as well as liquid water within the snow pack.

In order to retrieve an absolute number describing the liquid water in the snow pack, a new

quantity dubbed Liquid Water Volume (LWV) was calculated using the information given by

the layered LWC data set. The point modelings of LWC were therefore assumed to have taken

place over an area of 1 m2. As the layer thickness and the LWC were known, the LWV could be

calculated using the formula

LWVi = 100 · 100 · LHi · LWCi [cm3] (4.6)

where

LWVi = LWV of layer i [cm3]

LHi = Height of layer i [cm]

LWCi = LWC of layer i [%]

The SAR backscatter values were retrieved for each station and scene (VV for ASAR, VV and VH

for RS-2), averaging the backscatter values over different window sizes (1×1, 3×3, 5×5, and 7×7

pixels). Regarding the LRW composites, the temporal tolerance was varied between 5 and 14 days.

In addition to the satellite data, snow height and multiple LWV values were retrieved, such as the

snow pack’s total LWV and the LWV sum for the uppermost 10/20/30/40/50/60/70/80/90 cm

of snow with an LWC>0%. The relationship between LWV and the backscattered signal was

then assessed by calculating the correlation coefficient as well as executing a regression analysis

for the different combinations of the variables. For the regression analysis, a linear regression
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was executed using MATLAB to model the relationship between the dependent variable SAR
backscatter and the explanatory variable LWV. For the correlation coefficient Spearman’s rho was

used due to the non-normal distribution of both, the dependent and the explanatory variable.

4.4.4. Comparison of SAR wet snow classification with IMIS station

data

As a second accuracy assessment, the SAR wet snow classification was compared against the

IMIS station parameters snow height and LWC. To account for possible errors induced by

noise in the SAR wet snow classification, the assessment was carried out with differently sized

windows surrounding the 38 selected stations at altitudes between 1 600 and 3 000 meters above

sea level (see figure 3.5/table A.1). While the comparison against snow height values allowed a

plausibility check of the wet snow detection algorithm (if a pixel was classified as wet snow, the

snow height had to be >0 cm at the time of image acquisition), the layered information about

the LWC within the snow pack could be used to verify the wet snow classification using SAR

imagery.

For the accuracy assessment of the wet snow mapping algorithm, a confusion matrix was

calculated including the two possible cases wet and dry/no snow for the SAR derived classification,

and snow-covered as well as snow free for the snow height values. For the comparison against

the LWC values derived from the SNOWPACK model, the SAR based wet snow classification

was compared against the maximum LWC value for the whole depth of the snow pack. These

analyses returned user’s, producer’s or overall accuracy, depending on the differentiation ability

between dry and wet conditions in the reference. The latter two statistical values were calculated

according to the following formulae (Lillesand et al., 2008):

Producer’s accuracy =
SARws ∩ Re fns

(SARws ∩ Re fns) ∪ (SARns ∩ Re fns)
(4.7)

Overall accuracy =
(SARws ∩ Re fws) ∪ (SARns ∩ Re fns)

SARws ∪ SARns ∪ Re fws ∪ Re fns)
(4.8)

where

SARws = Pixels classified as wet snow in SAR image

SARns = Pixels classified as no/dry snow in SAR image

Re fws = Pixels classified as wet snow in reference

Re fns = Pixels classified as no snow in reference
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As in section 4.4.3 on page 40 the comparisons were carried out for LRWs with temporal

differences of 5, 7, 10, and 14 days, as well as for different areas surrounding the IMIS stations

(1×1, 3×3, 5×5, and 7×7 pixels).
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5. Results

This section presents the results of the analyses made with the different methods described in

section 4 with the scope of answering the research questions. In section 5.1, the classification

accuracy of the wet snow discrimination algorithm of Nagler & Rott (2000) are compared against

different optical snow cover products. In section 5.2 the classification results presented in section

5.1 are controlled for systematic biases regarding the influence of slope, terrain aspect, and

underlying soil cover with the data sets described in section 3.5 using the methodology presented

in section 4.4.2. Section 5.3 covers the plausibility of the SAR wet snow cover classification by

comparing it to the IMIS station measurement and model output values, before investigating the

SAR backscatter dependency in relation to snow wetness values derived from IMIS stations.

5.1. Classification accuracy assessment of SAR wet snow

mapping against optical products

In the following subsections, the classification accuracy of both ASAR and RS-2 LRW composites

as well as single RS-2 scenes in comparison with snow cover products from AVHRR, LS 7, and

MODIS (see figure 3.1) is presented.

5.1.1. ASAR wet snow maps

For the comparison of the ASAR LRW wet snow maps with the optical snow cover products

the pixel spacing of the latter was adjusted to match the 100 m pixel spacing of the ASAR LRW

composites. The user’s accuracy values were calculated using formula 4.2 on page 38.

Figures 5.1, 5.2 and 5.3 illustrate the performance of the ASAR wet snow maps against AVHRR,

LS 7 and MODIS snow products respectively. In each figure, the solid lines show the mean

accuracy of all scenes with a given temporal window while the dashed lines denominate the

lowest/highest classification accuracy respectively. Since some scenes only had a small number

of pixels that were classified in both the ASAR LRW as well as the optical reference product

resulting in outliers, only classifications with a total of more than 30 000 pixels were used to

define the minimum/maximum values.

Comparison against AVHRR snow cover

The classification accuracy of ASAR LRW composites with different temporal windows against

AVHRR snow cover products (see table 3.4) is shown in figure 5.1 on the following page.
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The overall user’s accuracy for the ASAR LRWs with an areal overlap between the ascending and

descending scenes (solid red line) was highest for the 7 day LRW with an accuracy of 95.4% and

lowest for the 10 day LRW with 92.13%. The 5 day LRW had a user’s accuracy almost as high

as for the 7 day composite with 94.73%, while the 14 day LRW composite was only marginally

higher than the one with a temporal window of 10 days with a user’s accuracy of 92.77%. The

highest user’s accuracies for the different temporal windows consistently reached values of >94%

and peaking out at 96.48% for the 14 day composite, whereas the lowest accuracies dropped

down to around 88% for the 10 and 14 day ASAR LRWs after reaching accuracies >94% for the 5

and 7 day composites.

Overall user’s accuracy values for ASAR LRWs without an areal overlap were constantly lower

when compared to the overlapping case. The classification accuracy for the 5 day ASAR LRW

was 89.81%, before decreasing to 85.59% when comparing the 7 day composite to the AVHRR

snow cover product. With 87.66% and 86.02% the values for the 10 and 14 day ASAR LRWs were

almost equal. The individual maxima for the composites without an areal overlap lay between

94.47% (10 day ASAR LRW) and 99.58% (14 day composite), whereas the lowest accuracies for

the non-overlapping case were around 85% for the 5 and 7 day LRWs and 85% for the 10 and 14

day cases.
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Figure 5.1: Classification accuracy of ASAR LRW composites compared with AVHRR snow cover
products
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Comparison against LS 7 fractional snow cover

Figure 5.2 on the next page shows the classification accuracies for different temporal windows

of ASAR LRW composites in comparison with LS 7 FSC products (see table 3.5).

The overall user’s accuracy for the ASAR LRW composites with an areal overlap of ascend-

ing/descending scenes had a minimum of 86.46% for the 7 day composite and a maximum with

a temporal window of 5 days and a value of 90.01%, with the values for the 10 and 14 day ASAR

LRWs lying in between with accuracies of 86.60% and 87.24% respectively. When comparing the

individual ASAR LRW composites with an areal overlap to LS 7 FSC products for each temporal

window, the maxima showed constant values of 90-91%, whereas the minima exhibited a slightly

deceasing tendency in classification accuracy, dropping from 90.01% (5 day LRW) to 85.50% (7

day LRW), before plateauing at around 85%.

As was already the case when comparing the ASAR LRWs to AVHRR, the composites without an

areal overlap exhibited slightly lower user’s accuracies when compared to those with an overlap

between ascending and descending scenes. The values ranged from 76.30% (14 day LRW) to

84.23% (7 day LRW), with the 5/10 day composites’ values at 83.53% and 81.52%. Regarding

the individual maxima for each temporal window, the accuracy was 85.06% for the 5 day ASAR

LRW and then reached 85.58% and 86.57% for the 7 and 10 day composites. Since only small

regions were covered with non-overlapping LRWs, no maxima and minima could be defined for

the 14 day LRW with a sample size of >30 000 pixels. The remaining individual minima of the

user’s accuracy ranged from 82.18% in case of the 10 day ASAR LRW to 85.58% for the 7 day

composite scene. This was the same value as for the individual maximum, as it was the only

scene with more than 30 000 classified pixels and a temporal window of 7 days. As is visible

in figure 5.2 on the following page, the individual minima were partly higher compared to the

overall accuracies. This is due to the 30 000 pixel restriction, since only one out of three ASAR

LRW scenes surpassed this number, whereas the other two scenes were all contributing to the

overall accuracy.
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Figure 5.2: Classification accuracy of ASAR LRW composites compared with Landsat 7 fractional
snow cover products

Comparison against MODIS fractional snow cover

The classification accuracy of ASAR LRW composites with different temporal windows against

MODIS snow cover products (see table 3.6) is shown in figure 5.3 on the next page.

The overall user’s accuracy for ASAR LRWs with an areal overlap of the contributing ascending

and descending scenes could only be calculated for the 7, 10, and 14 day LRWs, as there was

no constellation of ASAR scenes with both ascending and descending orbits within the defined

5 day time frame. Therefore, also individual minima and maxima were inexistent for LRW

composites with an areal overlap. The remaining temporal windows exhibited classification

accuracies of 87.38%/90.35%/90.67% for the 7/10/14 day case. The individual maxima for the

available three temporal windows were close to the overall user’s accuracies, with a maximum

at 92.95% for the 14 days LRW. As for the maxima, the minima deviated only slightly from

the overall accuracies, with values ranging from 86.74% to 87.38%, with the latter equaling the

overall and individual maximum of the 7 day composite, since its overall user’s accuracy was

only calculated from a single LRW.

For the ASAR LRWs without areal overlap there were scenes available for all four temporal

windows. The overall user’s accuracy was generally lower compared to the areal overlapping

case. The 5 and 7 day composites had the highest accuracy with 87.57% and 87.53% respectively,

whereas the 10 day ASAR LRWs had a small decrease in terms of classification accuracy with
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81.31%. The lowest value was calculated for the 14 day composite with 75.84% user’s accuracy. In

terms of individual scenes, the maxima only showed small differences for the different temporal

windows with values ranging from a low of 83.76% (10 day LRW) to a maximum of 89.57%

(temporal window of 7 days). The individual minima showed a strong decrease in classification

accuracy between the 5 day ASAR LRW with an accuracy of 85.65% and the 7 day composite

(56.16%), before plateauing at 54.63% user’s accuracy for both, the 10 and 14 day temporal

windows.
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Figure 5.3: Classification accuracy of ASAR LRW composites compared with MODIS fractional
snow cover products

5.1.2. RS-2 wet snow maps

With its high resolution, the classification accuracy of RS-2 scenes against the optical remote

sensing snow cover products was of particular interest for this study, even though the number

of possible comparisons was limited due to the number of available RS-2 scenes (see section

3.1.2). The number of available scenes was further reduced as a result of the snow classification

algorithm’s need for a dry reference scene (2012-02-28) and the creation of an LRW composite for

the two scenes from 2010-04-26/2010-04-27. Therefore, the creation of diagrams as in section 5.1.1

on page 43 was not feasible. The confusion matrices will be presented instead. The data shown

was based on an intersection of the classification results from both, VV and VH polarizations,
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thus only those pixels were flagged as wet snow where both polarizations were classified as wet
snow.

Comparison against AVHRR snow cover

The comparison of RS-2 wet snow classifications with AVHRR snow cover products showed only

minor differences in user’s accuracy between the years 2010 and 2012. As visible in tables 5.1 to

5.3, the accuracy was highest for the comparison of the RS-2 LRW wet snow mask (based on

the two scenes from April 2010) with the 2010-04-26 AVHRR scene with an accuracy of 93.64%.

The agreement with the AVHRR snow cover product from 2010-04-27 (one day later) was lower

with 89.24%, possibly since the former AVHRR scene had higher cloud cover (see table 3.4),

thus increasing the number of NaN pixels. The comparison of the RS-2 wet snow mask from

2012-03-23 to the AVHRR snow cover product of the same date showed a slightly higher user’s

accuracy compared to the 2010-04-27 case with 90.75%. This AVHRR scene had almost no cloud

cover, while the areal cover of Switzerland dropped from 100% for the 2010-04-26/2010-04-27

scenes to 68.24% in March 2012.

Table 5.1: Confusion matrix for the comparison of RS2 LRW WSM (2010-04-26/2010-04-27) with
AVHRR Snow Cover (2010-04-26)

AVHRR Snow Cover 2010-04-26

R
S2

LR
W

W
SM

2
0
1
0
-0

4
-2

6
/2

7 Snow No Snow NaN
Wet snow 9 436 720 641 015 14 319 151

No/dry Snow 5 444 276 2 883 854 26 437 720

NaN 6 518 153 9 744 326 59 550 785

User’s Accuracy 93.64%

Table 5.2: Confusion matrix for the comparison of RS-2 LRW WSM (2010-04-26/27) with AVHRR
Snow Cover (2010-04-27)

AVHRR Snow Cover 2010-04-27

R
S-

2
LR

W
W

SM

2
0
1
0
-0

4
-2

6
/2

7 Snow No Snow NaN
Wet snow 8 556 080 1 031 304 11 987 424

No/dry Snow 3 538 089 3 043 736 15 231 775

NaN 5 505 830 22 273 702 91 027 259

User’s Accuracy 89.24%
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Table 5.3: Confusion matrix for the comparison of RS-2 WSM (2012-03-23) with AVHRR Snow
Cover (2012-03-23)

AVHRR Snow Cover 2012-03-23
R

S-
2

W
SM

2
0
1
2
-0

3
-2

3 Snow No Snow NaN
Wet snow 1 912 592 194 858 1 588 794

No/dry Snow 11 986 663 10 232 878 17 472 623

NaN 6 665 995 51 279 885 33 641 712

User’s Accuracy 90.75%

Comparison against LS 7 fractional snow cover

Only one comparison could be carried out against the LS 7 FSC product, as there were only

two LS 7 FSC products within a few days to an available RS-2 scene, namely on 2012-03-22 and

2012-03-24. As mentioned in section 3.1.2 on page 18, these two FSC products were merged

into a single scene, dubbed 2012-03-23 (see table 3.5). The lack of further matches between RS-2

and LS 7 acquisitions is highly unfortunate, as the available pixel resolution were high for both

products with a 25 m pixel spacing for RS-2 and 30 m for LS 7.

As shown in table 5.4, the user’s accuracy for the comparison of the SAR and the merged LS 7

FSC scenes was 89.27% with approximately 2 000 000 pixels classified as wet snow in the RS-2

scene and either snow or no snow in the MODIS FSC product.

Table 5.4: Confusion matrix for the comparison of RS-2 WSM (2012-03-23) with Landsat 7 FSC
(2012-03-23)

LS 7 FSC 2012-03-23

R
S-

2
W

SM

2
0
1
2
-0

3
-2

3 Snow No Snow NaN
Wet snow 1 775 105 213 458 1 707 681

No/dry Snow 12 906 706 7 645 217 19 140 241

NaN 7 625 255 37 291 674 46 670 663

User’s Accuracy 89.27%

Comparison against MODIS fractional snow cover

From the MODIS instrument, three FSC scenes that coincide with RS-2 acquisition dates were

available, namely 2010-04-26, 2010-04-27, and 2012-03-23. This provided the possibility to assess

the wet snow detection algorithm three times, twice against the RS-2 LRW described in section

5.1.2 and once against a wet snow mask derived from the single 2012-03-23 scene.

As shown in tables 5.5 to 5.7, the user’s accuracy was low for both comparisons with the RS-2
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LRW wet snow mask with 61.80% and 66.70% against the 2010-04-26 and 2010-04-27 MODIS

FSC products. In both MODIS reference scenes, the number of pixels classified as wet snow in

RS-2 and either snow or no snow in the MODIS scene was very high compared to the AVHRR

and LS 7 accuracy assessments. The user’s accuracy for the single RS-2 wet snow mask acquired

on 2012-03-23 was at 93.80% with about 3 700 000 classified wet snow pixels in the SAR scene

(see table 5.7).

Table 5.5: Confusion matrix for the comparison of RS-2 LRW WSM (2010-04-26/2010-04-27) with
MODIS FSC (2010-04-26)

MODIS FSC 2010-04-26

R
S-

2
LR

W
W

SM

2
0
1
0
-0

4
-2

6
/2

7 Snow No Snow NaN
Wet snow 15 056 228 9 306 178 34 480

No/dry Snow 6 359 434 28 339 198 67 218

NaN 6 861 792 66 197 614 2 753 858

User’s Accuracy 61.80%

Table 5.6: Confusion matrix for the comparison of RS-2 LRW WSM (2010-04-26/2010-04-27) with
MODIS FSC (2010-04-27)

MODIS FSC 2010-04-27

R
S-

2
LR

W
W

SM

2
0
1
0
-0

4
-2

6
/2

7 Snow No Snow NaN
Wet snow 14 368 401 7 173 125 33 282

No/dry Snow 5 753 832 16 000 394 59 374

NaN 7 438 043 81 386 649 2 762 900

User’s Accuracy 66.70%

5.2. Evaluation of external influencing factors on

classification accuracy

As stated by Bernier (1991), Nagler & Rott (2000) or Koskinen et al. (2000), several external

factors can influence the discrimination of wet snow from dry snow/snow free areas. While in

section 5.1 we restricted our analysis to controlled external influence factors, we now want to

investigate the influence of these factors on the algorithm’s performance.

Positive cover percentage differences represent an underrepresentation of the specific variable’s

characteristic within the total of misclassified SAR pixels when compared to the distribution
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Table 5.7: Confusion matrix for the comparison of RS-2 WSM (2010-03-23) with MODIS FSC
(2012-03-23)

MODIS FSC 2012-03-23

R
S-

2
W

SM

2
0
1
2
-0

3
-2

3 Snow No Snow NaN
Wet snow 3 465 424 229 064 1 756

No/dry Snow 25 304 799 14 296 465 90 900

NaN 17 510 396 71 314 296 2 762 900

User’s Accuracy 93.80%

of the variable’s characteristic over all pixels classified as wet snow. Negative cover percentage

differences stand for an overrepresentation in the totality of misclassified pixels.

5.2.1. ASAR wet snow maps

In the following section, the influence of the aforementioned external environmental factors

is described for the year of 2012. The focus was on 2012 in order to have a common baseline

regarding the wet snow classification (i.e. the same dry reference scene used for all ASAR LRWs).

Additionally, the dense time series for the spring melting season of 2012 offered an availability

of LRWs composites outnumbering the other years.

The plots differed between LRWs with variable temporal windows as well as between LRWs

with and without an areal overlap between ascending/descending orbits. As a result of the

dense time series in 2012, the lowest areal overlap for the latter case was at 66.7%.

Slope

For the analysis regarding the slope of misclassified pixels (i.e. classified as wet snow in the

ASAR LRW, but not within the snow cover extent of the optical reference scene), the terrain’s

slope was divided into classes with 10° intervals.

For all three different reference products, the curve progression was similar. The amount of

pixels with slopes smaller than 10° was overrepresented in the LRW based classification by 0.5%

to 20%, whereas slopes between 10° and 30° tended to be underrepresented by 2%–11%. For

values from 30° to 70° steepness, the results show differences between the reference products

from AVHRR and LS 7/MODIS. While the snow cover product from the former sensor showed

an decreasing underrepresentation towards a slope of 70°, the latter two products had a slight

tendency towards overrepresentation. The biggest range in cover percentage difference was be

found in the ASAR LRW comparison against LS 7 FSC products (see figure 5.4b). For values

above of 70° slope, all three comparisons tended towards a cover percentage difference of 0%,
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signifying matching values between expected (see equation 4.3) and actual steepness distribution

(see equation 4.4).
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(c) ASAR LRW comparison against MODIS

Figure 5.4: ASAR LRW misclassification dependency on different slopes
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Terrain aspect

Regarding the terrain aspect, the aspect values derived from swisstopo’s DHM25 data set were

grouped into five classes, namely: Flat areas without aspect, as well as northerly, easterly,

southerly, and westerly exposed areas (see table 4.6). As was the case when comparing actual to

expected slope distribution, the comparison of terrain aspect distribution seems to agree well

between the LS 7 and MODIS FSC product, whereas for the AVHRR case there was only a partial

agreement. In comparison to the former two snow cover products the ASAR LRWs trended

towards an underrepresentation of pixels with a northerly exposition, while the comparison with

AVHRR snow cover indicated an overrepresentation of between 1% to 7%. All three products

agreed well by indicating an overrepresentation regarding the misclassified pixels with a easterly

terrain aspect, exhibiting cover percentage differences between 5% and 14%. The same agreement

was found with westerly facing pixels, although in this case the cover percentage difference

indicated an underrepresentation for all three reference snow products, ranging from 3% to 16%.

In case of a southerly exposition the comparisons did not agree between the three reference

snow cover products: for AVHRR, the comparison resulted in an underrepresentation by 5% to

11%, while for LS 7, the values indicated an underrepresentation by approximately the same

percentage. The cover percentage difference values for the comparison with MODIS FSC were

grouped around 0% difference, indicating an equal distribution between the expected and actual

distribution of misclassified pixels regarding terrain aspect (see equations 4.3 and 4.4). For flat

surfaces, the resulting cover percentage difference was between -2% and 0.5% for all reference

snow products.
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(c) ASAR LRW comparison against MODIS

Figure 5.5: ASAR LRW misclassification dependency on different terrain aspects
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Underlying soil cover

The last external environmental factor assessed was the ground cover. Therefore, four classes

were defined according to the scheme shown in table 3.8 on page 27: Bedrock, detritus, glacier,

and other. As the class other consisted of a multitude of ground cover types, it was considered

for the analysis.

The curve progression of the comparisons against all three optical snow cover products had a

high similarity. There was a tendency towards an underrepresentation of bedrock as well as

detritus covered ground within the misclassified pixels of the ASAR LRWs composites when

compared to the reference products. With a cover percentage difference of 7%-11% (AVHRR)

and 1%-8% (LS 7/MODIS), the difference for bedrock was slightly lower than for detritus, where

the values reached approximately 10% for all three comparisons. Additionally, the range of cover

percentage differences decreased as well. Regarding the ground cover class glacier, the cover

percentage difference values decreased towards 2%-5%, independent of the chosen reference

product.
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(c) ASAR LRW comparison against MODIS

Figure 5.6: ASAR LRW misclassification dependency on different soil cover types
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5.2.2. RS-2 wet snow maps

In addition to the comparison between the optical snow cover products and the ASAR LRWs in

section 5.2, the influence of environmental factors was investigated for the available RS-2 scenes

as well. In difference to the comparison against ASAR scenes, scenes from both, 2010 (LRW

composite with scenes from 2010-04-26 and 2010-04-27) and 2012 (single scene), were included

into the comparison, as the RS-2 LRW from 2010-04-26/2010-04-27 had a very high areal overlap

between ascending and descending scenes, with a temporal difference of only about twelve

hours. As mentioned in section 5.1.2, only those pixels were flagged as wet snow where both

polarizations (VV and VH) had wet snow as an output of the wet snow mapping algorithm.

Slope

When comparing the expected and actual distribution of terrain steepness (see equations 4.3 and

4.4), the curve progression was similar as for the ASAR case. Slopes between 0° and 10° were

overrepresented in the RS-2 scenes/LRW composites as compared to the reference products. The

cover percentage difference ranged from 15%-25% for the single scenes, for the two comparisons

of the RS-2 LRW against the AVHRR and MODIS products, the values were at 10% (MODIS)

and 37% (AVHRR). For slopes between 10° and 20°, the values for expected and actual slope

distribution were relatively similar, resulting in cover percentage differences of in between -1.8%

(overrepresentation in RS-2 scene) and +5% (underrepresentation in RS-2 scene) for both single

scenes as well as LRW composites. Slopes between 20° and 40° were generally underrepresented

within the RS-2 pixels classified as wet snow by the detection algorithm that were outside the

optical product’s snow extent. The cover percentage difference was highest for the comparison

between the LRW composite and AVHRR with 14% and lowest for the LRW–MODIS comparison

with about 2%. The cover percentage differences of single scene based comparisons were in

between, with all values within a range of 5%. Slopes increasing towards 70° showed a decreasing

underrepresentation of misclassified RS-2 pixels, whereas for slopes above 70° expected and

actual steepness distribution were almost equal.

Generally, the variation of the comparisons based on LRW composites was higher than for

comparisons based on single RS-2 scenes.

Terrain aspect

While the outcome regarding terrain steepness was similar between ASAR and RS-2, this was

not true for the variable of terrain aspect. In contrast to the comparison shown in figure 5.5,

misclassified pixels with a northerly terrain aspect were generally overrepresented by between

3% (comparison against LS 7 FSC) and 14% (AVHRR). The cover percentage difference regarding

the RS-2 LRW composites were between -4% (vs. LS 7) and +2% (vs. MODIS). For easterly facing
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Figure 5.7: RS-2 misclassification dependency on different slopes

pixels, the misclassified pixels from the non-LRW comparisons against AVHRR and MODIS

snow cover products had a trend towards an underrepresentation by up to 7%, whereas the

LRW based comparisons as well as the comparison with LS 7 indicated an equal percentage of

expected and actual distribution. For southerly exposures, the discrepancy between single scene

and LRW based comparisons was accentuated with cover percentage differences of 14% and

17% for the single scene based comparisons against AVHRR and MODIS snow cover products,

while the LRW based comparisons had cover percentage difference values of -1% and +3.5%. As

for easterly facing pixels, the single scene-based comparison with the LS 7 FSC product seemed

to agree more than with the LRW comparisons. The same situation could be seen for westerly
exposed pixels, although with a trend towards an overrepresentation of this terrain aspect:

both RS-2 LRW comparisons as well as the comparison with the LS 7 FSC product showed an

overrepresentation by 2% to 4%, whereas the comparisons with MODIS and AVHRR had almost

identical values with a 7% overrepresentation.

Underlying soil cover

Regarding the ground cover type, the curve progression showed a high degree of similarity to

ASAR. Both, bedrock and detritus seemed to be underrepresented in the RS-2 scenes/LRWs, with

the former’s cover percentage differences ranging from 5% (RS-2 vs. LS 7) to 14% (RS-2 LRW vs.

AVHRR), and the latter’s from 11% (RS-2 vs. LS 7) to 26% (RS-2 LRW vs. AVHRR). Also pixels

with the cover type glacier seem to be underrepresented within the totality of RS-2 wet snow

pixels lying outside the snow cover extent of the optical reference products. For glacier, cover

percentage difference values ranged from 2% (RS-2 vs. LS 7) to 12% (RS-2 LRW vs. AVHRR).
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Figure 5.8: RS-2 misclassification dependency on different terrain aspects

5.3. Comparison of SAR wet snow mapping results

against IMIS station data

In the following section, the results of the plausibility assessment using the SAR wet snow

classification and the values derived from the IMIS stations are presented.

5.3.1. SAR wet snow mapping vs. snow height

Prior to the comparison of snow height derived from SNOWPACK, an accuracy assessment of

the modeled values was carried out. Therefore, the snow height values measured directly by the

IMIS stations were subtracted from the snow height values obtained from SLF’s SNOWPACK

model (see figure 5.10). The result based on 5 186 comparisons showed an average overestimation

of the modeled snow height values by 8.38 cm, with a standard deviation of 10.39 cm. Based

on these values, SNOWPACK snow heights <11 cm were assumed to be snow free, with the

desirable side effect to also masking patchy snow covers of small depth.

As for the classification accuracy assessment of SAR wet snow mapping against optical products

presented in section 5.1, only the user’s wet snow classification accuracy could be calculated

for the comparison against IMIS derived snow height information, as well as the producer’s

accuracy for snow free conditions according to SNOWPACK.
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Figure 5.9: RS-2 misclassification dependency on different soil cover types

Envisat ASAR LRW

The user’s and producer’s accuracies for the individual combinations of LRW temporal tolerance

and pixel area included around the IMIS stations are summarized in figure 5.11, the confusion

matrices can be found in appendix C.1.

The user’s accuracy for the different cases consistently reached values between 97% and 98%.

The accuracy deteriorated with increasing temporal windows of the LRW composite, whereas

increasing the number of included pixels to determine the snow’s wetness state around the

station improved the accuracy. Both findings agreed with the expectations: an increased

temporal baseline of the LRW composites might have included multiple snow wetness states,

thus influencing the classification. Increasing the number of pixels incorporated into the

determination of the snow’s state (wet or dry) might have canceled out errors due to noise in

the backscattered signal, which would otherwise have caused misclassifications. However, the

very high values for the user accuracies must be interpreted with care, since only about 4% of

the situations had snow free conditions. The calculation of the producer’s accuracy for snow
free conditions according to the IMIS data is shown with the dashed lines in figure 5.11. The

diagram shows again a trend towards a higher accuracy for bigger sized windows surrounding

the station’s position. The aforementioned tendency of smaller temporal baselines of the LRWs

to higher accuracies cannot be seen anymore for the producer’s accuracy.

RADARSAT-2

As a result of the small set of available wet snow classifications for RS-2 scenes, there were no

situations where IMIS stations reported snow heights of less than 11 cm and could therefore
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Figure 5.10: Histogram of snow height difference between modeled values from SNOWPACK
and direct measurements at IMIS stations

be considered snow free (see tables C.5a to C.5d on page 115). Therefore, no conclusions

could be drawn from the comparison of RS-2 scenes against SNOWPACK derived snow height

information.

5.3.2. SAR wet snow mapping vs. IMIS LWC

As a second SNOWPACK derived parameter, LWC was compared against the SAR based wet

snow classification. In order to be able to compare the binary wet snow classification, the LWC

values were discretized into wet and dry snow. The limit was defined at the transition from the

pendular (capillary forces dominate, water is kept between the grains) to the funicular regime

(water will start to flow due to gravity), defined by Mitterer et al. (2013) as 3% LWC.

As the penetration depth Lp for C-band SAR is reduced quickly with LWCs above 0% (see

section 2.3.2 on page 14), the presence of a layer with an LWC ≥3% was considered as sufficient

for a classification of the snow pack as wet from the radar’s perspective.
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Figure 5.11: User’s accuracy (solid lines) and producer’s accuracy (dashed lines) for the compar-
ison of ASAR LRWs with IMIS snow height information

Envisat ASAR LRW

As the parameter LWC allowed to differentiate between wet and dry snow, the overall accuracy

could be calculated for every combination of LRW temporal tolerances and pixel windows

surrounding the stations’ coordinates.

In contrast to the user’s accuracy for the comparison of the ASAR LRW based wet snow

classification, the LRW composites with the smallest temporal baseline did not score the highest

overall accuracies, it was rather the inverse of the results of the comparison against IMIS derived

snow heights. Regarding the number of included pixels around the station coordinates, the

results were as expected, with bigger areas reaching higher accuracies as compared to smaller

areas. The overall accuracy values ranged from 70% (5 day LRW with a 1×1 pixel area) to

a maximum of 76% for the 14 day LRW with 7×7 pixels included around the stations. The

accuracy range over all pixel areas was higher for LRWs with a small temporal tolerance, even

though the percentage differences never exceeded 3.5% for a LRW composite. The individual

confusion matrices can be found in tables C.6a to C.9d on pages 116–119.
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Figure 5.12: Overall accuracy for the comparison of ASAR LRWs with IMIS LWC values

RADARSAT-2

The overall accuracy for the comparison between SNOWPACK derived LWC values and wet

snow classification for RS-2 was lower compared to the overall accuracies of ASAR LRW (see

figure 5.12 and tables C.10a to C.10d). For the 1×1 pixel case the overall accuracy was at 69% and

thus within 1% to 4% of the values reached by the different ASAR LRWs. Unlike the accuracies

for ASAR LRW, the accuracy values deteriorated for the 3×3 (68%) and 5×5 (65%) pixel case,

before increasing again for the 7×7 pixel case (71%).

Although the line progression was unexpected, the bad performance might have been caused

by the small number of possible comparisons (n=72). A change of the overall accuracy by 5%

could be induced by only four misclassified pixels/stations. Therefore, these values have to be

interpreted with care.

5.4. Assessment of the influence of liquid water on SAR

backscatter

This section describes the results of the analysis made regarding the influence of liquid water

within the snow pack on the backscattered radar signal. Therefore, the LWC values modeled
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by SLF’s SNOWPACK at the location of the 38 selected IMIS stations were converted to LWV

values according to formula 4.6 on page 40. A statistical analysis of regarding the correlation

between radar backscatter and LWV was carried out by means of a correlation analysis and a

regression analysis. The analysis was executed for different depths of wet snow layers at 10 cm

intervals up to a depth of 90 cm as well as for the total LWV of the snow pack.

5.4.1. Influence of LWV on ASAR LRW composites

As mentioned in section 4.4.3, the three variables LWV, LRW temporal window, and the

integration area for the backscattered signal were varied, resulting in a total of 160 different

combinations with between 3 300 and 10 300 observations for 191 dates between 2007 and 2012.

Since a presentation of all the results was not feasible and the results were highly consistent,

only a representative selection is described in the following. The plots not shown in this section

can be found in appendix D.

The correlation was overall weakest for the 5 day LRW case (see figure 5.13) with higher

coefficients for bigger areas. A trend towards a higher coefficient could be detected with

increasing integration depths of the LWV, although the values did not differ greatly. The

lowest/highest correlation for the 1×1 pixel case were -0.37/-0.42, whereas they reached -0.42/

-0.47 for the 7×7 pixel case. The values indicated a moderately negative correlation for all LWV

depths, which was highly significant. Regarding the R2 values for the 5 day ASAR LRW case,

the same pattern could be seen with the lowest values for the 1×1 pixel area and the highest

values for 7×7 pixels. While the values were again lowest for the LWV integrated over the whole

depth as well as for small integration depths, the value culminated for an integration depth of

70 cm, although the differences were again of small magnitude. The extremes were reached with

14% for 1×1 pixels and the total LWV, and 22% for 7×7 pixels and 70 cm integration depth.

These results were highly significant as well.

For the 14 day ASAR LRWs, the results were very similar, even though with slightly improved

correlation coefficients as well as R2 values (see 5.14). Regarding the former, the values ranged

between -0.43 and -0.48 for the 1×1 pixel case and -0.47 and -0.53 for an averaging area of 7×7

pixels. The R2 values ranged in between 18% and 23% for the smallest, and 22% and 28% for

the largest averaging area around the stations. Again, all these values were highly statistically

significant with p<0.001 and indicated a moderate correlation between LWV and the measured

backscattered signal.

The described two cases mark the upper and lower limits for both Spearman’s correlation

coefficient as well as the R2 values, with the 7 and 10 day LRW composites lying in between.

As mentioned, the values show a statistically significant but moderate correlation between the
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two variables, although the R2 value indicates that a precise prediction of LWV based on SAR

backscatter will generally not be possible.
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Figure 5.13: Correlation coefficient and R2 for 5 day ASAR LRW
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Figure 5.14: Correlation coefficient and R2 for 14 day ASAR LRW
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5.4.2. Influence of LWV on RS-2 scenes

For the RS-2 scenes, the two polarizations (VV and VH) were analyzed statistically for relation-

ships with LWV values, additionally the possibility of combining the two polarizations was

looked into as well. As for the assessment of the ASAR scenes, the LWV values were calculated

for depths between 10 cm and 90 cm at 10 cm intervals as well as the total LWV of the snow

pack. Also the circumjacent number of pixels was kept as for the ASAR case. The plots not

shown in this section can be found in appendix D.

As expected, the correlation for the VV polarization got stronger the more pixels were used for

the determination of the backscatter, probably due to a smoothing effect of extreme values (see

figure 5.15a). For the 1×1 pixel case the correlation coefficient was -0.18 for the total LWV of

the snow pack and between -0.3 (LWV90) and -0.35 (LWV20) for different depths, showing a

largely stable behavior over all depths up to 90 cm. Except for the 1×1 and 3×3 pixels cases

with LWVtot, all correlations were statistically significant (p-values <0.02).

A similar outcome can be seen for R2 (see figure 5.15b): higher numbers of included pixels

increased the R2 value, although the curve progression differed between the cases. For the

1×1 pixel case, the value was lowest for the insignificant LWVtot case (3%) and reached its

maximum for LWV20 with 11%, before decreasing slightly with increasing LWV integration

depths. For the 3×3, 5×5, and 7×7 pixel case, the curve progression was alike, with the lowest

R2 values for LWVtot before exhibiting a maximum value for the LWV50 or LWV60 case. For

greater LWV depths, the values remained within 0.5% of the maximum value. Except for the

already mentioned LWVtot case for 1×1 pixels, only the LWVtot/3×3 pixel case was statistically

insignificant.

Regarding the VH polarization, the findings were similar to the VV case, although the values for

both, the correlation coefficient as well as R2 deteriorated slightly. For the VH polarized RS-2

backscatter, the results were only significant for all integration areas at depths <20 cm, with the

correlation coefficient and the R2 value for LWVtot being insignificant for all integration areas

except 7×7 pixels.

As for the ASAR LRW composites, the general correlation between the RS-2 backscatter of either

polarization and the amount of liquid water within the snow pack was moderately negative,

with the R2 values indicating that an accurate prediction of LWV based on the backscattered

signal is generally not possible, even though high values in LWV will produce low backscatter

and vice versa.

As a last analysis, the relationship between LWV and a combination of the two available polar-

izations RS-2 was investigated. Therefore, the backscatter of the two polarizations were either

subtracted (VH-VV) or divided (VH/VV) by each other. Unfortunately, as a result of the high

variance of the backscatter for given LWVs and almost parallel slopes of the regression lines for

VH and VV, the results for both operations were either insignificant or exhibited lower R2 values
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than for the single polarization case, while lacking an improvement in correlation strength (see

figures D.7 and D.8).
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Figure 5.15: Correlation coefficient and R2 for RS-2 (VV)
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Figure 5.16: Correlation coefficient and R2 for RS-2 (VH)
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6. Discussion

This section consists of a discussion of the LRW and snow detection algorithms used as well

as the results presented in the previous section, following the structure from section 5. The

results are discussed regarding their plausibility by comparing them to the available scientific

literature. The limitations in terms of data quality and availability are shown. The section ends

with suggestions for improvement.

6.1. Discussion of results

6.1.1. Analysis of LRW calculation

Due to Switzerland’s mountainous terrain causing geometrical distortions and shadowing, the

usability of RTC scenes for the derivation of physical parameters is diminished. To overcome

these limitations, as well as to improve the spatial resolution of the SAR scene, LRW composites

can be calculated, using multiple scenes with differing orbits. Although LRWs represent a

useful extension of the GTC and RTC products, the approach has some limitations, especially for

short-lived processes such as snow melt. As investigated by Caves et al. (1999), "the usefulness of

this [LRW] approach is limited by the temporal lag between the ascending and descending passes

which is latitude dependent". Regarding the snow melt case for Switzerland, this temporal lag

should not exceed seven to ten days in order to minimize mixture of wet and dry/no snow

signals in the combined image. Even though this requirement could be fulfilled for most of the

year 2012 where a dense time-series was available, this was not the case for most of the years

2007–2011 (see figures B.1a to B.1d on pages 103–106), inducing an uncertainty in the wet snow

classification of more than 5% for the Swiss Alps region compared to a classification using single

SAR scenes (Schaub, 2011). These uncertainties could be found as well in this study (see sections

5.1/6.1.3).

Although the temporal constraints limit the use of LRWs to dense time-series or slow-processes,

for which a temporal lag does not constitute a problem, the approach can also be used for the

generation of reference scenes needed for wet snow detection approach from Nagler & Rott

(2000) in order to overcome the absence of longer dry and cold periods (Schaub, 2011). Therefore,

single dry scenes from multiple years can be merged using the LRW approach. It was used for

this study to calculate yearly reference LRWs, using scenes from dry and cold periods between

mid December and mid February.

Furthermore, given a dense time-series of overlapping, RTC SAR scenes, the LRW approach

provides a solid basis for wet snow mapping even in mountainous terrain.
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6.1.2. Analysis of the wet snow detection algorithm

Like the LRW calculation, the wet snow detection algorithm from Nagler & Rott (2000) showed

its strengths and weaknesses, previously presented by Caves et al. (1999), during the course of

this thesis. The algorithm implementation was fairly easy and, as a result of the fixed threshold

of -3 dB, usable in a wide range of terrains, given RTC images. As mentioned above, the

constraints regarding the missing coverage and geometric distortions induced by the terrain

could be addressed using LRW composites. Other influences were of physical nature and are

thus harder to handle. First of all, since the radar cannot detect both wet and dry snow, it was

not possible to draw conclusions regarding the melting process’ depth within the snow pack.

This was because snow melting processes occurring on the surface had the same signature as a

layer of wet snow within the snow pack, given the same LWC of the layer. This presented a big

drawback, as the snow melting process was influenced by the terrain’s aspect: satellite passes

that take place in the morning were more likely to detect surface melting processes on easterly

facing slopes (and evening passes on westerly facing slopes), due to thawing caused by the

morning/evening sun. Additionally, since the area of dry snow could not be detected directly

using SAR, but only either inferred using wet snow maps from previous years (Nagler et al.,

1998) or by assuming that areas above the wet snow line were covered by dry snow, and therefore

adding uncertainties (Storvold & Malnes, 2004; Storvold et al., 2006), the statistical comparison

to optical products could only yield the user’s accuracy for the wet snow classification, not the

overall accuracy (see section 4.4).

6.1.3. Classification accuracy of SAR wet snow mapping against

optical products

The results of the comparison of snow cover data derived from optical remote sensing and wet

snow cover maps created from SAR LRW composites underlined the advantage of LRWs created

from scenes with differing orbit configurations in terms of classification accuracy as well as

consistency of the outcomes. This was not only true when averaging all results, but also for the

individual comparisons between SAR derived wet snow maps and optical snow cover products.

When looking at the two cases individually (with and without overlap between scenes from

different orbit configurations), the results were as expected: for the overlapping LRWs, there

was a general trend towards higher user’s accuracies for composites with a shorter temporal

integration time (five or seven days), whereas the classification accuracy deteriorated with longer

temporal baselines. This fact can be explained by the mixture of different snow wetness states

within a single LRW, caused by bigger temporal differences (Schaub, 2011; Piesbergen et al.,

1995).
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While the trend towards better classification accuracy for shorter temporal tolerances was

relatively distinct for the LRWs with overlaps between the different orbit configurations, it

was not as clear for the non-overlapping case. As seen in section 5.1.1 the highest accuracy

was reached for 7 day LRWs (LS 7/MODIS) and 5 day LRWs (AVHRR) respectively. The fact

that these LRWs were created from images of the same orbit configuration allows to conclude

that for these cases and with the given temporal density of the time series, a time window of

seven days was necessary in order to integrate enough scenes for the LRW approach to work,

thus minimizing the topographic effects. As mentioned earlier, a two week time span seemed

to increase the noise from multiple snow wetness states, thus deteriorating the classification

accuracy.

As a result of the few comparisons possible for the RS-2 case and the big variation between the

different cases, the ASAR findings could neither be accepted nor refused. While all RS-2 scenes

seemed to perform well against the AVHRR product, this was not true for the MODIS case, with

a high accuracy for the single scene based comparison and only moderate results for the two

based on the RS-2 LRW.

A comparison of the accuracies reached in this study and the ones found in the scientific

literature was difficult, as the latter only reports overall accuracies, thus including the statistically

derived dry snow cover (see section 6.1.2), reportedly overestimating the snow covered area for

areas above 1 500 m altitude (Caves et al., 1999). However, when comparing the results of this

thesis with the findings from Hindberg et al. (2014), the outcomes seem to match well. Hindberg

et al. (2014) presented three user’s accuracies for wet snow detection in Lofoten (Norway) and

compared RS-2 with Landsat 8. All three snow detection methods were based on a -3 dB

thresholding. For the first case, the co-polarized channel, for the second case, both the co- and

cross-polarized channel and for the third case, either the co- or cross-polarized channel had to

be lower than the -3 dB limit to classify a pixel as wet snow. While the first case was relevant for

the single-pol ASAR LRW composites, the second approach was applied to dual-pol RS-2 scenes.

The user’s accuracies reported for the Lofoten area were 82.26% for the first and 76.26% for the

second requirement. The corresponding accuracies from this thesis were between 76% and 90%

for the ASAR LRW–LS 7 FSC comparison (depending on the temporal window) and 89% for the

RS-2–LS 7 case. Even though the other optical products exhibited large differences in terms of

spatial resolution, the agreement of the comparisons regarding the user’s accuracy were quite

good, thus showing the potential of wet snow detection using SAR LRW composites even in

rugged, mountainous terrain.
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6.1.4. Analysis of external influencing factors on wet snow

classification accuracy

This section follows the structure of sections 5.2.1 and 5.2.2. Given the similarity of the results

between ASAR and RS-2, the analysis was combined for both data sources.

Slope

As shown in sections 5.2.1 on page 51 and 5.2.2 on page 58, areas with no or small gradients

up to 10° were generally overrepresented in the totality of misclassified pixels when compared

to the expected distribution of these slopes, independent of the SAR data source or the optical

reference product. When looking at both, flat (see figure 6.2) and mountainous regions of

Switzerland (as in figure 6.1), the reasons for these misclassifications became clearer. Firstly, the

topography of the Swiss Plateau, accounting for more than 30% of Switzerland’s total surface

area (Carol & Senn, 1950), is predominantly flat at an altitude of around 400-600 m and therefore

seldom covered by snow. As visible in figure 6.2, a lot of isolated pixels were classified as wet in

the flat areas. Some reasons for these misclassifications were listed by Caves et al. (1999), such

as agricultural activity, flooding/precipitation or wind roughing of open water. Although the

first issue should generally be solved using a mask for the agricultural areas, the second one

might have constituted a problem that would explain part of the misclassifications. The third

issue can be seen multiple times in figure 6.2, with the most prominent occurrence in the Lake

Überlingen. Although a lake mask for water bodies with a surface of more than 0.4 km2 was

applied during the wet snow classification, this part of Lake Constance was not part of the data

set, as it lies outside of Switzerland’s borders. But not only the Lake Überlingen constituted a

source of misclassifications, but also the many small lakes as well as rivers and bogs. Examples

could be seen in the Saas and Matter Valley, where the misclassified pixels followed the course

of the rivers, as well as east of Brig, where misclassifications occurred close to an within lakes. It

seems reasonable to assume that the changes in surface roughness of lakes and rivers at least

partly explain the overrepresentation of flat and nearly-flat surfaces, especially if these were

located in the Swiss Plateau, since these areas usually do not lie within the snow cover extents

from the optical products.

The underrepresentation of gradients between 10° and 30° and partly 30°-40° in the totality

of misclassified pixels was more difficult to explain. One reason might be due to the location

of these gradients, as they mostly occur in the alpine and pre-alpine parts of Switzerland

and were therefore more likely to be within the snow cover extent of the optical reference

products, resulting in fewer misclassified pixels. The accurate representation of slopes above 40°

when compared to the expected distribution was most probably due to the overall small cover

percentage of those slopes: 40°-50° slopes only account for roughly 6% of Switzerland’s total
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area, slopes above 50° only about 2.5%. In combination with the high probability of snow cover

during winter and spring due to their location in the pre-alpine and alpine regions, an under- or

overrepresentation of these slopes was unlikely.

Even though systematic under- and overrepresentations were detected for all of the comparisons

(for both, RS-2 and ASAR), no evidence could be found in the scientific literature of terrain

slope influencing the classification accuracy – except for its influence on geometric distortions

within the scenes, which were minimized using the LRW approach. Additionally, since the curve

progression of under- and overrepresentation can be explained logically, the effect of slope seems

not to be of significance.

Figure 6.1: Distribution of misclassified pixels (red) in the Valais region (Envisat ASAR LRW–
LS 7, 2011-03-23)
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Figure 6.2: Distribution of misclassified pixels (red) in Eastern Switzerland (Envisat ASAR
LRW–LS 7, 2011-03-23)

Terrain aspect

Regarding the terrain aspect, the agreement from the comparisons with different optical snow

extent sources was not as concordant as for the terrain’s slope. While the easterly facing slopes

were overrepresented and westerly exposures underrepresented in all comparisons, it is also

visible that the differences between expected and actual distribution was significantly stronger

for the LRW composites without areal overlaps. When looking at figure 6.3, created from two

LRW composites integrating either only ascending (green pixels) or only descending pixels (red

pixels) with MODIS, the green pixels are located predominantly on the easterly facing slopes,

whereas the red pixels are in majority located on the westerly exposed areas. Thus, for both

cases, the misclassifications can be found predominantly on the side facing away from the sensor.

This has two potential implications: first of all, the local resolution was worse for these pixels,

and secondly, the high incidence angle caused part of the radar waves to be reflected away from

the sensor, thus lowering the radar backscatter from these areas. A lower radar backscatter

directly influenced the outcome of the wet snow classification approach by increasing the gap in

backscatter between dry reference and the wet snow scene.

Even though the snow cover reference products generally showed the usual snow cover distribu-

tion with less snow in westerly and south-westerly exposed slopes due to solar irradiation and

prevailing winds (Ehrler et al., 1997) and would thus cause an overrepresentation of misclassified
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pixels on these slopes, the proportion of scenes from ascending and descending orbits seems to

influence the statistics more.

Since LRWs with an areal overlap between scenes with differing orbit configurations do not only

improve the local resolution but also deliver more accurate backscatter values for areas facing

away from the sensor, the differences between expected and actual distribution of misclassified

should result in a more accurate classification of the wet snow distribution. Even though this

can be seen in figures 5.5 and 5.8 to a certain extent, the differences were still relatively large.

This could partly be explained with the definition of "LRWs with overlap", since already a single

pixel with coverage from both, an ascending and a descending scene, was sufficient for the LRW

to be classified as "overlapping". When looking at examples with an areal overlap of almost 100%

(e.g. the RS-2 LRW composite from 2010-04-26/2010-04-27), the differences between expected

and actual distribution of misclassified pixels were further diminished, in the RS-2 example to

about 3% for the easterly and westerly exposed slopes (see figure 5.8).

Given the above results, an influence of the aspect on the classification accuracy of wet snow

could not be ruled out, even though different aspects caused misclassifications mainly due to

their influence on the imaging geometry. This effect can be minimized effectively by using LRW

composites with different viewing directions and a temporal baseline that is as small as possible.

Figure 6.3: Distribution of misclassified pixels in the Valais region for the comparison between
Envisat ASAR LRWs and MODIS. Green: ASAR LRW from 2010-04-12 (composite
of ascending scenes), red: ASAR LRW from 2010-04-26 (composite of descending
scenes)
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Underlying soil cover

For the last of the assessed external factors, underlying soil cover, the agreement between the

comparisons with different optical references was again very high. For all three different soil

cover types (bedrock, detritus, and glacier), fewer pixels were misclassified than would be expected

from the distribution of the respective soil covers (see figures 5.6 on page 57 and 5.9 on page 61),

although for bedrock and glacier the deviations were only relatively small.

For the explanation of the differences between the expected and actual distribution of misclassi-

fied pixels three causes are thinkable:

1. The underlying soil directly influences the (backscatter) properties of the snow cover,

2. the spatial distribution of soil cover types influences snow cover,

3. the misclassifications are not caused by soil itself, but soil cover distribution is dependent

on other factors (spurious correlation).

Regarding the first case, the underrepresentation could be caused by the influence of the ground

cover type on the drainage properties. Given a good drainage of the soil (as with e.g. detritus,

Hiller et al., 2005), not only the drainage of the soil itself, but also the snow’s drainage is

improved, which can decrease the LWC in the lower parts of the snow pack. A decrease in LWC

will increase the radar backscatter (given the snow in the upper part of the snow pack is dry or

almost dry and can thus be penetrated), reducing the chance of a pixel being classified as wet
and therefore shifting the cover percentage difference towards an underrepresentation compared

to the expected misclassification distribution.

While the first explanation looks at the influence the soil cover has on the snow pack, the second

one concentrates on the possibility that the spatial distribution of a soil cover influences the

statistics. When looking at the altitudinal distribution of all three soil cover types, glaciers have

a lower limit of about 2 000 m with the majority of the glaciated areas ranging from 2 500 m

and 3 500 m (see figure 6.6a on page 80). Since snow cover is highly likely even in the spring

season for this altitude, thus covering almost the whole extent of glaciers, only single pixels at

the glacier’s edge might be classified wrongly, therefore inducing an underrepresentation. The

same is true for the soil cover type detritus, with areas predominantly located between 2 000 m

and 3 000 m of altitude (see figure 6.5a). In difference to glaciers, detritus covered ground can

also be found at lower altitudes, therefore increasing the chance of misclassifications. Since the

detritus covered areas located at lower altitudes only constitute a small part of the whole area,

there will be fewer pixels wrongly classified as wet than would be expected based on the total

area of detritus pixels classified as wet snow. The same applies for Switzerland’s areas covered

by bedrock, even though the altitudinal distribution of those areas is more widespread, with

about 25% of the pixels at elevations below 2 000 (see figure 6.4a on the next page), thus possibly

resulting in a minor underrepresentation of misclassified pixels.
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Even though it was possible to at least partly explain the differences in cover percentage with

the first two cases, the possibility of a spurious correlation is thinkable as well. This would mean

that even though we see certain similarities between the areal patterns of snow occurrence and

the soil cover type, the latter is actually influenced by another external factor. In terms of soil

cover, the external influencing factor could be the terrain’s slope, as the occurrence of bedrock,

detritus, and glaciers is limited to certain slope values (see figures 6.4b/6.5b/6.6b).

Due to the interdependence of the explanatory approaches and the external influencing factors

as well as the limitations regarding the availability of optical reference scenes, no statements can

be made to the influence of the soil cover types on the classification accuracy of wet snow using

SAR.
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Figure 6.4: Distribution of elevation and slope for ground cover type bedrock in Switzerland
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Figure 6.5: Distribution of elevation and slope for ground cover type detritus in Switzerland
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Figure 6.6: Distribution of elevation and slope for ground cover type glacier in Switzerland

6.1.5. Analysis of SAR wet snow mapping results in comparison to

IMIS station data

The interpretation of the comparison between the SAR based snow classification and the ground

reference from SNOWPACK was difficult. As presented in section 5.3 on page 60, the user’s

accuracy for the snow height parameter was very high, and relatively high for the producer’s

accuracy. Even though the results of these accuracy assessments in combination with the fact

that the values mostly react as expected to changes in SAR footprint size and temporal baseline

indicated the applicability and accuracy of the algorithm, the explanatory power was somewhat

limited. First of all, the IMIS stations were selected based on their predominantly flat topography.

Therefore, variations in snow cover due to topography or exposition were not reflected in the

statistics. Additionally, since only the spring time melting season (1 February – 31 July) was

included in the SNOWPACK data set, the occurrence of snow free conditions was limited to

about 4% of all cases for comparisons against ASAR LRW composites and did not occur at all

for the RS-2 image acquisitions. This restriction was particularly influencing the user’s accuracy

values, limiting the results to values between 96% and 100%. The producer’s accuracy was not

directly influenced, as its calculation was based on the about 400 snow free situations according

to SNOWPACK.

For the comparison of the SAR scenes with LWC data modeled by SNOWPACK, the restrictions

regarding the missing snow free conditions did not apply, as only the snow wetness was

investigated. Using the 3% LWC threshold, 45% – 47% of all the snow packs for the ASAR

and 82% for the RS-2 image acquisition dates were classified as wet based on their modeled

SNOWPACK LWC. With overall accuracies of 70% and 76% the accuracy was reasonably high,

showing the practicability of the wet snow detection algorithm (see figure 5.12 on page 64).

Using an improved model incorporating the penetration depth of the radar waves into the snow
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pack could possibly improve the accuracy of this comparison. The limitations regarding the

interpretation of the accuracy values calculated for RS-2 (see section 5.3) impedes a meaningful

assessment of the results.

6.1.6. Analysis of SAR wet snow mapping results in comparison to

the liquid water volume (LWV)

The statistical evaluation of the comparison between SAR backscatter and LWV values derived

from layered SNOWPACK data showed consistent results for both the linear regression as well

as the correlation analysis. This consistency could be seen for both, variations of the temporal

tolerance of the LRW calculation and the pixel area, for which the backscatter was calculated.

The pattern of the results with respect to the correlation coefficient as well as a the R2 value was

as expected: smaller temporal baselines and larger pixel areas generally improved the statistical

evaluations, longer temporal integration windows and smaller areas lead to a deterioration of

the values. Once again, this can be explained with the mixture of different snow states when

integrating multiple scenes over longer periods, and the noise reducing effect of larger areas.

The moderate, negative correlations and low R2 values met the expectations. First of all, SAR

backscatter decreases with increasing wetness of snow due to an increase of the dielectric

constant (Nagler & Rott, 2000; Baghdadi et al., 1997; Woodhouse, 2006), causing a negative

correlation. Secondly, due to the limited penetration depth of C-band SAR in wet snow (see

section 2.1.3), only the topmost portion of the whole wet snow pack had an influence on the

backscattered signal, causing variations of LWV values for a given SAR backscatter. These

variations resulted in the moderately negative correlation coefficients and the low R2 values

shown in section 6.1.6. This finding regarding the negligible influence of liquid water in the

lower portions of the snow pack was supported by the flat curve progression of figures 5.13–5.16

for different integration depths of wet snow layers as well as numerous scientific publications

(e.g. Brogioni et al., 2006; Longépé et al., 2009).

6.2. Synthesis

While this thesis’ main goal was the investigation of the relation between modeled LWC values

and Envisat ASAR backscatter for a mountainous terrain like Switzerland, it was first necessary

to investigate the accuracy of the wet snow detection algorithm. This algorithm, introduced

by Nagler & Rott (2000) and Piesbergen et al. (1995) – even though sometimes altered to fulfill

the specific requirements of authors (e.g. Besic et al. (2015)) – is still the only means to reliably

detect wet snow using SAR scenes. Its reliability has been proven in numerous publications (e.g.
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Malnes & Guneriussen, 2002; Hindberg et al., 2014), although predominantly for flat terrains due

to the restrictions regarding geometrical distortions. To overcome these limitations, this thesis

employed the LRW approach, taking advantage of the dense ASAR time series available for

Switzerland in 2012. The resulting accuracies for the wet snow detection were in accordance with

the scientific literature and showed the advantage of LRWs calculated from scenes with differing

orbit configurations. Additionally, the dependency regarding the temporal lag for the LRW

calculation could be detected as well. Regarding the external factors, this thesis did found any

evidence for the direct influence of different slopes on the classification result; although it might

influence the accuracy of wet snow detection due to the interdependence with underlying soil

cover types. With regard to the terrain’s aspect, the differences in the distribution of misclassified

pixels were most probably caused by differences in the imaging geometry as well as the diurnal

temperature variations, of which the former problem could be reduced significantly using

overlapping scenes from different orbit configurations.

While the accordance between optical snow extent products and SAR based wet snow classifi-

cations was good, the comparison against snow height values derived from SNOWPACK was

more difficult to interpret. As a result of the concentration on the spring melting season, almost

no snow free reference measurements (snow height <11 cm) were available, thus dramatically

reducing the range of possible user’s accuracy values. For the producer’s accuracy based on

approximately 400 comparisons the values reached about 75% to 90%. With an overall accuracy

of about 70%–75%, the comparison against LWC values derived from SNOWPACK showed a

fair accordance as well.

Even though this thesis has successfully shown the applicability of the wet snow detection

algorithm in mountainous terrain, the analysis found only a moderately negative correlation

between the modeled wetness of the snow pack and the SAR backscatter. Given the dielectric

properties of wet snow and its ramifications for the penetration depth of C-band SAR (outlined

in section 2.3.2), these results are well in accordance with the theoretical expectations.

6.3. Limitations

Several limitations influenced the application or interpretation of the results. This was caused

either because of limitations of the available data or on the basis of considerations regarding the

integrity of the data sets.

One of the biggest uncertainties was caused by the representation of the data sets as vector and

raster. For the IMIS/SNOWPACK data sets, the parameters were measured and modeled at a

single point. With the spatial heterogeneity of the snow cover, this value can differ significantly

over short distances due to changes in the underlying soil or the topography. Conversely,

raster representations such as the remotely sensed data sets average the values over the whole
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area of a pixel. This leads to an inclusion of signals from unwanted features such as lakes or

anthropogenic features, causing noise in the data. This was especially true for Envisat ASAR

due to its pixel spacing of 100 m, thus averaging the backscattered signal over 1 ha, and for

AVHRR with a pixel area of 1 km2. It is therefore difficult to accurately represent small scale

features using raster cells and features with a big extent using point measurements. This was

the main reason, why this thesis only used a selection of the available measurement stations, as

only some had similar conditions over an extent of multiple ASAR pixels, let alone AVHRR.

A second limitation results from the fact that certain data sets used for masking were not

up-to-date. As it is not possible to reliably detect wet snow cover in forested areas (Baghdadi

et al., 1997; Caves et al., 1999; Piesbergen, 2001), they were masked out together with settlements,

water bodies, and agricultural areas. While the latter three categories are both, slowly evolving

and included in relatively recent data sets, this was not the case for the forest cover data set,

therefore inducing uncertainties regarding the classification of wet snow.

Furthermore, the applicability of the wet snow detection in mountainous terrain using LRW is

strongly dependent on the availability of a dense time series, if possible with both ascending and

descending orbits. For the case of longer temporal lags, the signals from different snow states

are mixed, causing incorrect values. Due to the requirement regarding the dense time-series,

part of the analysis could only be carried out for 2012, since for the other years LRWs with a

small temporal lag and big areal overlaps were not available on a regular basis. Unfortunately,

caused by the loss of contact with ASAR, the peak of snow melt could not be observed for 2012.

Therefore, the outcome of the analyses was heavily relying on the climatic conditions until May

2012, possibly biasing the outcome.

Another limitation of this study was the limited availability of optical snow cover extent products,

especially from sensors with a high resolution such as LS 7. The small number of scenes in

combination with the sometimes small areal overlap between the optical and SAR scenes resulted

in only relatively few possible comparisons for the wet snow detection algorithm.

Lastly, the big differences in pixel spacing (25 m for RS-2 and 1 km for AVHRR) of the satellite

products might have influenced the classification accuracy, making a meaningful comparison

challenging.

6.4. Suggestions for improvement

In order to overcome the problem regarding the small number of publications allowing a

comparison of the wet snow detection’s user’s accuracy, the areas covered with dry snow need

to be estimated according to the approaches from Nagler et al. (1998), Storvold & Malnes (2004),

and Storvold et al. (2006). With the application of this approach, the overall accuracy can be

calculated. Since this value is reported in a variety of publications (e.g. Nagler & Rott, 2000;
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Storvold & Malnes, 2004), it could then be used to assess the differences between single scene

based wet snow classifications and those based on LRW composites. Since the estimation of

the area covered by dry snow is adding uncertainties to the result (Storvold & Malnes, 2004;

Storvold et al., 2006), this approach was not used in this thesis.

For more up-to-date data sets needed for masking, optical satellite images could be used to

classify the extent of e.g. forests or water bodies. Using these data sets, the uncertainties caused

by the algorithm’s inability to detect snow in forested areas, could be minimized. Unfortunately,

the given time frame of this thesis did not allow such a land cover classification from optical

remote sensing.

In order to improve the availability of LRW composites available for wet snow detection, dense

time-series as the one from 2012 are desirable. Having such frequent scenes available not only

increases the accuracy of the wet snow detection, but also allows more accurate investigations

regarding the starting and ending point of snow melt. Additionally, an increase in spatial

resolution of both optical and radar data not only helps to better capture the spatial heterogeneity

of snow and snow parameters, but also improves the comparability of point and raster based

measurements.

Furthermore, the inclusion of additional optical snow cover extent data sets (especially from

Landsat 7/8 or other highly resolved products) would allow additional evaluations and thus

improve the interpretability of influencing factors.

Given the dense time series of 2012, the application of the algorithm proposed by Koskinen

& Hallikainen (1997) might be possible, allowing to assess the detection of wet snow even in

forested areas, which is of interest for snow hydrological purposes. Given the already small

number of available user’s accuracy values for wet snow classification in the scientific literature,

the application of this algorithm would have decreased this number even further, as almost all

articles mask out forested areas, therefore this approach had to be abandoned.

Lastly, the implementation of a dynamic LWC threshold, based on the layered LWC values from

SNOWPACK, would more closely reflect penetration properties of the radar signal and thus

potentially improve the fixed thresholding used in this study. This approach could even improve

the correlation between the water content of the snow pack and the detected SAR backscatter,

although a prediction of SWE or LWV values for the whole snow pack will most likely not be

possible due to the constraints presented in section 6.1.6.
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7. Conclusion

In this thesis, the usability of wet snow detection in mountainous regions and the influence of

different external factors on the classification accuracy was analyzed. Additionally, the relation

between modeled snow wetness information to C-band SAR backscatter was investigated. In

this section, the research questions stated in the Introduction are answered.

1 What different ways of retrieving snow wetness information from satellite radar data
are there and how do they differ
a) in terms of accuracy?
b) in terms of complexity?
c) in terms of inputs?

Although wet snow detection with SAR sensors using the thresholding method has been

researched for well over ten years, the algorithm’s basis remained the same. Some efforts

were made regarding a dynamic definition of the wet snow threshold as well as improving the

classification accuracy in forested areas and mountainous terrain. The biggest differences in

the application of the algorithm can be seen regarding the post-processing of the input wet

snow and dry reference scenes, as not all topographies perform equally well with GTC or RTC

scenes, thus requiring the use of composites. This thesis showed the applicability and accuracy

of the wet snow detection algorithm for the Swiss Alps using Local Resolution Weighting (LRW)

composites. Therefore, a high temporal resolution of LRW input scenes is necessary to prevent a

mixture of the fast changing snow conditions in the signal. Additionally, the performance of

the wet snow detection algorithm is improved when calculating the LRW composite from input

scenes with both, ascending and descending orbits.

2 Which parameters influence the SAR based wet snow retrieval and what is the relative
sensitivity to each?

As outlined in section 6, the accuracy of the wet snow detection is influenced by numerous

factors. Changes in the surface characteristics – often occurring in agricultural areas and on water

surfaces – are known to cause misclassifications. Wet snow classification in densely forested

areas is difficult, since backscattering from the trees is dominating, hindering the detection of

wet snow cover of the ground. Furthermore, both, the terrain’s slope and its aspect, as well

as the underlying soil cover can influence the accuracy of the wet snow detection. Due to

interdependencies between the different factors, the sensitivity of the classification to the factors

could not be quantified.
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3 Is it possible to retrieve information about the sensitivity of the SAR backscatter to
snow pack based information on the locally known depth of the melting process?

Based on the statistical analysis of multiple thousand comparisons between the backscatter

values from SAR LRW composites and layered LWV values derived from SLF’s SNOWPACK

model, only a moderate correlation could be found, unaffected of the number of pixels included

from the vicinity of the station. The moderate correlation is caused by the limited penetration

depth of C-band SAR with only a few centimeters even for low LWCs. Hence, only the topmost

portion of the wet snow pack interacts with the radar wave, independent of the amount of liquid

water in the lower portions of the snow pack. Additionally, since dry snow cannot be detected

by C-band SAR, an estimation of LWV or SWE is not possible from C-band SAR alone.
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8. Outlook

To improve the accuracy of wet snow classification and to expand the range of snow hydrological

products, certain requirements need to be fulfilled in the future. These requirements as well as

promising developments are presented in this section.

In order to diminish the uncertainties regarding the snow’s state in forested areas, a refinement

of the present approaches (e.g. Koskinen & Hallikainen, 1997) is necessary and should be

expanded in order to include additional input data sets such as meteorological parameters and

optical data sets.

Currently, multiple satellites with C-band SAR instruments have been launched or are planned

to be launched within the next years. This should help to improve the availability of C-band

SAR scenes and possibly allow an operational wet snow detection using LRW composites with

a small temporal lag. For reasons of continuity, both, ESA and Canadian Space Agency (CSA)

plan the following two C-band SAR missions

– Sentinel-1A/B: With Sentinel-1A, the first of the two identical, polar-orbiting satellites was

launched on 3 April 2014 and is currently in the commissioning phase. With the planned

launch of Sentinel-1B in 2016, the constellation will have a revisit time of six days with a

resolution of 20×40 m in the extra wide swath mode (European Space Agency, 2014b,c;

Malenovský et al., 2012)

– RADARSAT Constellation: This constellation mission is planned to be launched by the

Canadian Space Agency in 2018, ensuring C-band data continuity regarding the RS-2 end

of life. It consists of three satellites, resulting in a revisit time of only four days with a

minimal resolution of 100×100 m and a swath width of 500 km (Canadian Space Agency,

2014).

In addition to C-band, the applicability of the wet snow detection algorithm from Nagler & Rott

(2000) and Piesbergen et al. (1995) for X-band SAR was shown by e.g. Mätzler & Schanda (1984),

Schellenberger et al. (2012) and Besic et al. (2015). The use of the current and upcoming satellites

such as COSMO-SkyMed or TerraSAR-X might additionally help to ensure the availability of

wet snow products with a high spatial and temporal resolution.

Lastly, the theoretical framework was devised for the retrieval of both, snow cover extent as well

as SWE, using dual-frequency (X-/Ku-band), dual-polarization (VV/VH) SAR (Rott et al., 2011,

2012a). The algorithm was planned to be used operationally with the Cold Regions Hydrology

high-resolution Observatory (CoReH2O) mission within the ESA Living Planet program. Since

the CoReH2O mission was finally not selected by ESA and the framework is currently not used

operationally. It remains to be seen whether future missions will benefit from the preliminary

work done in this field.
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A. Location of IMIS stations

Table A.1: IMIS station coordinates, selected stations written in bold

Abbrev. Locality Location Elev. [m] Easting [m] Northing [m]

1ALI2 Allieres Chenau 1 716 565 804 148 686

1CHA2 Chaussy Pierres Fendues 2 220 578 868 136 218

1ELS2 Elsige Elsige 2 140 615 575 153 165

1FAE2 Färmel Muri 1 970 604 347 152 127

1FIR2 First Schmidigen-Bidmeren 2 110 647 887 168 807

1FIS2 Fisi Fisi 2 160 618 067 146 711

1GAD2 Gadmen Gschletteregg 2 060 673 273 177 447

1GUT2 Guttannen Homad 2 110 665 114 170 140

1JAU2 Jaun Fochsen 1 716 587 469 164 670

1LAU2 Lauenen Trüttlisbergpass 1 970 595 482 141 634

1LHO2 Lauberhorn Russisprung 2 166 638 716 159 182

1OBM2 Ober Meiel Gross Stand 2 110 582 680 141 181

1OTT2 Ottere Ottere 2 020 609 436 154 275

1ROA2 Rotschalp Schneestation 1 870 642 415 180 503

1ROA3 Rotschalp Giebelegg 1 700 647 285 181 205

1ROA4 Rotschalp Tanngrindel 1 838 643 573 180 626

1SCH2 Schilthorn Schneestation 2 360 630 365 158 479

1SHE2 Sieben Hengste Schibe 1 850 628 564 177 584

1STH2 Stockhorn Vorderstocken 1 780 606 199 170 095

1SWM2 Lauterbrunnen Dirlocherhorn 2 260 636 952 152 206

2MEI2 Meiental Laucheren 2 210 685 004 177 554

2MUO2 Muotathal Rupperslaui 2 083 699 515 199 400

2RNZ2 Rienzenstock Rienzenstock 2 400 690 893 171 170

2SCA2 Schächental Seewli 2 030 697 589 185 441

2SCA3 Schächental Alpler Tor 2 330 702 186 194 253

2SCB2 Schönbüel Bidmer 1 770 650 769 181 126

2URS2 Urseren Giltnasen 2 170 682 404 160 067

2YBR2 Ybrig Wannen 1 701 705 399 210 310

3AMD2 Amden Bärenfall 1 610 729 501 225 836

3ELM2 Elm Chüebodensee 2 050 729 279 199 679

3GLA2 Glärnisch Guppen 1 630 721 610 206 302

Continued on next page
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Table A.1 Continued: IMIS station coordinates, selected stations written in bold

Abbrev. Locality Location Elev. [m] Easting [m] Northing [m]

3MUT2 Muttsee Mutten 2 474 720 390 190 947

3ORT2 Ortstock Matt 1 830 715 769 197 453

3TAM2 Taminatal Wildsee 2 460 748 557 203 768

3TAM3 Taminatal Schaftäli 2 170 753 893 195 303

4ANV2 Anniviers Orzival 2 630 607 468 115 206

4ANV3 Anniviers Tracuit 2 590 616 833 107 765

4ARO2 Arolla Les Fontanesses 2 850 600 525 97 564

4ARO3 Arolla Breona 2 610 609 545 103 996

4BAG1 Val de Bagnes Col du Creblet 2 659 586 673 105 636

4BEL2 Belalp Lengi Egga 2 556 641 190 138 305

4BOR2 Bortel Bortelseewji 2 520 651 682 126 789

4BOV2 Boveire Pointe de Toules 2 700 584 389 92 601

4CON2 Conthey Etang de Trente Pas 2 230 587 328 126 495

4FNH2 Finhaut L’Ecreuleuse 2 240 563 301 105 585

4FOU2 La Fouly Glacier de Saleina 2 972 568 349 91 267

4FUL2 Fully Grand Cor 2 610 573 059 115 975

4GAN2 Gandegg Schneestation 2 717 624 748 142 043

4GOM2 Goms Ernergalen 2 450 661 030 141 321

4GOM3 Goms Galmihorn 2 430 660 649 148 952

4GRA2 Grammont Loz 1 984 549 568 132 953

4ILI2 Val d’Illiez Les Collines 2 020 552 841 115 726

4MUN2 Mund Chiematte 2 210 637 466 131 414

4NEN2 Nendaz Essertse 2 325 594 345 111 656

4OBW2 Oberwald Jostsee 2 430 667 290 155 257

4OBW3 Oberwald Mällige 2 200 670 267 151 138

4SAA2 Saas Seetal 2 480 634 036 113 470

4SAA3 Saas Schwarzmies 2 810 641 400 108 199

4SAA4 Saas Gibidum 2 680 636 089 108 215

4SLFM1 SLFMiet1 Combartseline 2 204 592 000 110 148

4SPN2 Simplon Alpjer 2 620 650 575 119 632

4SPN3 Simplon Wenghorn 2 420 646 836 114 240

4STN2 St. Niklaus Oberer Stelligletscher 2 910 624 090 112 974

4TRU2 Trubelboden Schneestation 2 480 611 306 135 518

Continued on next page
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Table A.1 Continued: IMIS station coordinates, selected stations written in bold

Abbrev. Locality Location Elev. [m] Easting [m] Northing [m]

4VDS2 Vallee de la Sionne Donin du Jour 2 390 594 522 130 017

4ZER2 Zermatt Triftchumme 2 750 622 353 99 003

4ZER4 Zermatt Alp Hermetje 2 380 621 261 93 900

5DAV2 Davos Bärentälli 2 560 782 061 174 726

5DAV3 Davos Hanengretji 2 450 778 291 184 617

5DAV4 Davos Frauentobel 2 330 779 042 184 210

5DAV5 Davos Grüeniberg 2 300 779 505 184 971

5ELA2 Ela Tschitta 2 725 774 403 162 547

5ELA3 Ela Muot 2 306 778 578 163 961

5FLU2 Flüela Flüela Hospiz 2 390 791 582 181 009

5HTR2 Hinterrhein Alp Piänetsch 2 150 735 434 156 310

5HTR3 Hinterrhein Unter Surettasee 2 200 746 500 155 699

5JUL2 Julier Vairana 2 430 773 048 149 948

5KLO2 Klosters Madrisa 2 140 785 499 198 214

5KLO3 Klosters Gatschiefer 2 310 790 140 190 814

5LUK2 Lukmanier Lai Verd 2 550 703 000 162 315

5LUM2 Lumpegna Gesamtstation 2 388 708 749 176 585

5PAR2 Parsenn Kreuzweg 2 290 780 431 191 674

5PUZ2 Puzzetta Schneestation 2 195 709 050 164 874

5ROT2 Rothorn Totälpli 2 700 765 100 179 738

5SLF2 SLF Flüelastrasse 1 560 783 879 187 447

5TUJ2 Tujetsch Culmatsch 2 270 698 313 171 102

5TUJ3 Tujetsch Nual 2 220 699 639 167 026

5TUM2 Tumpiv Val Miez 2 195 720 869 182 319

5VLS2 Vals Alp Calasa 2 070 735 200 170 779

5VMA2 Val Madris Schwarzseen 2 530 755 780 143 191

6BED2 Bedretto Cavanna 2 450 682 250 154 199

6BED3 Bedretto Cassinello 2 100 683 168 149 446

6BOG2 Bosco Gurin Hendar Furggu 2 310 679 538 131 902

6BOG3 Bosco Gurin Pizzo Bombögn 2 179 681 070 128 855

6CAM2 Campolungo Fontane 2 220 698 229 146 845

6DTR2 Dötra Preda 2 060 709 714 155 619

6FRA2 Frasco Efra 2 100 708 905 132 853

Continued on next page
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Table A.1 Continued: IMIS station coordinates, selected stations written in bold

Abbrev. Locality Location Elev. [m] Easting [m] Northing [m]

6FRA3 Frasco Costa 2 170 706 180 134 331

6FUS2 Fusio Alpe di Röd 2 390 690 802 143 502

6MES2 Mesocco Pian Grand 2 380 732 362 141 747

6NAR2 Nara Schneestation 2 070 709 823 147 852

6SIM2 Simano Schneestation 2 450 718 448 147 401

6VAL2 Vallascia Schneestation 2 270 690 125 155 980

7BER2 Bernina Motta Bianco 2 450 799 122 144 311

7BER3 Bernina Puoz Bass 2 620 790 343 146 290

7BEV2 Bever Valetta 2 510 783 957 157 061

7KES2 Kesch Porta d’Es-cha 2 725 788 351 166 290

7LAG2 Piz Lagrev Schneestation 2 730 777 150 147 050

7LAG3 Piz Lagrev Materdell 2 300 773 641 143 964

7LAV1 Lavin Gonda-Cotschna 2 405 804 130 184 940

7OFE2 Ofenpass Murtaröl 2 360 818 233 168 461

7SMN2 Samnaun Ravaischer Salaas 2 520 820 670 204 666

7VIN2 Vinadi Alpetta 2 730 828 725 202 233

7ZNZ2 Zernez Pülschezza 2 680 797 312 175 077
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B. ASAR LRW areal statistics
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C. Confusion matrices

C.1. Envisat ASAR LRW wet snow classification vs. IMIS

snow height

5 Day ASAR LRW (1×1 pixels) vs. Snow Height

SNOWPACK Snow Height (HS)
Snow (HS≥11cm) No snow (HS<11cm)

A
SA

R Wet Snow 1 093 24

No wet snow 2 100 96

User’s accuracy 98.42%

(a) 1×1 pixels

5 Day ASAR LRW (3×3 pixels) vs. Snow Height

SNOWPACK Snow Height (HS)
Snow (HS≥11cm) No snow (HS<11cm)

A
SA

R Wet Snow 1 071 21

No wet snow 2 122 99

User’s accuracy 98.08%

(b) 3×3 pixels

5 Day ASAR LRW (5×5 pixels) vs. Snow Height

SNOWPACK Snow Height (HS)
Snow (HS≥11cm) No snow (HS<11cm)

A
SA

R Wet Snow 966 17

No wet snow 2 227 103

User’s accuracy 98.27%

(c) 5×5 pixels

5 Day ASAR LRW (7×7 pixels) vs. Snow Height

SNOWPACK Snow Height (HS)
Snow (HS≥11cm) No snow (HS<11cm)

A
SA

R Wet Snow 931 15

No wet snow 2 262 105

User’s accuracy 98.41%

(d) 7×7 pixels

Table C.1: Assessment of 5 day ASAR LRW wet snow classification with IMIS snow height
values 111
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7 Day ASAR LRW (1×1 pixels) vs. Snow Height

SNOWPACK Snow Height (HS)
Snow (HS≥11cm) No snow (HS<11cm)

A
SA

R Wet Snow 1 591 35

No wet snow 2 984 114

User’s accuracy 97.85%

(a) 1×1 pixels

7 Day ASAR LRW (3×3 pixels) vs. Snow Height

SNOWPACK Snow Height (HS)
Snow (HS≥11cm) No snow (HS<11cm)

A
SA

R Wet Snow 1 538 31

No wet snow 3 037 118

User’s accuracy 98.02%

(b) 3×3 pixels

7 Day ASAR LRW (5×5 pixels) vs. Snow Height

SNOWPACK Snow Height (HS)
Snow (HS≥11cm) No snow (HS<11cm)

A
SA

R Wet Snow 1 392 23

No wet snow 3 183 126

User’s accuracy 98.37%

(c) 5×5 pixels

7 Day ASAR LRW (7×7 pixels) vs. Snow Height

SNOWPACK Snow Height (HS)
Snow (HS≥11cm) No snow (HS<11cm)

A
SA

R Wet Snow 1 343 21

No wet snow 3 232 128

User’s accuracy 98.46%

(d) 7×7 pixels

Table C.2: Assessment of 7 day ASAR LRW wet snow classification with IMIS snow height
values
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10 Day ASAR LRW (1×1 pixels) vs. Snow Height

SNOWPACK Snow Height (HS)
Snow (HS≥11cm) No snow (HS<11cm)

A
SA

R Wet Snow 2 274 61

No wet snow 4 692 231

User’s accuracy 97.39%

(a) 1×1 pixels

10 Day ASAR LRW (3×3 pixels) vs. Snow Height

SNOWPACK Snow Height (HS)
Snow (HS≥11cm) No snow (HS<11cm)

A
SA

R Wet Snow 2 209 50

No wet snow 4 757 242

User’s accuracy 97.79%

(b) 3×3 pixels

10 Day ASAR LRW (5×5 pixels) vs. Snow Height

SNOWPACK Snow Height (HS)
Snow (HS≥11cm) No snow (HS<11cm)

A
SA

R Wet Snow 1 997 32

No wet snow 4 969 260

User’s accuracy 98.42%

(c) 5×5 pixels

10 Day ASAR LRW (7×7 pixels) vs. Snow Height

SNOWPACK Snow Height (HS)
Snow (HS≥11cm) No snow (HS<11cm)

A
SA

R Wet Snow 1 899 29

No wet snow 5 067 263

User’s accuracy 98.50%

(d) 7×7 pixels

Table C.3: Assessment of 10 day ASAR LRW wet snow classification with IMIS snow height
values
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14 Day ASAR LRW (1×1 pixels) vs. Snow Height

SNOWPACK Snow Height (HS)
Snow (HS≥11cm) No snow (HS<11cm)

A
SA

R Wet Snow 3 287 90

No wet snow 6 680 306

User’s accuracy 97.33%

(a) 1×1 pixels

14 Day ASAR LRW (3×3 pixels) vs. Snow Height

SNOWPACK Snow Height (HS)
Snow (HS≥11cm) No snow (HS<11cm)

A
SA

R Wet Snow 3 237 70

No wet snow 6 730 326

User’s accuracy 97.88%

(b) 3×3 pixels

14 Day ASAR LRW (5×5 pixels) vs. Snow Height

SNOWPACK Snow Height (HS)
Snow (HS≥11cm) No snow (HS<11cm)

A
SA

R Wet Snow 2 910 52

No wet snow 7 057 344

User’s accuracy 98.24%

(c) 5×5 pixels

14 Day ASAR LRW (7×7 pixels) vs. Snow Height

SNOWPACK Snow Height (HS)
Snow (HS≥11cm) No snow (HS<11cm)

A
SA

R Wet Snow 2 802 45

No wet snow 7 165 351

User’s accuracy 98.42%

(d) 7×7 pixels

Table C.4: Assessment of 14 day ASAR LRW wet snow classification with IMIS snow height
values
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C.2. RADARSAT-2 wet snow classification vs. IMIS snow

height

RS-2 (1×1 pixels) vs. Snow Height

SNOWPACK Snow Height (HS)
Snow (HS≥11cm) No snow (HS<11cm)

R
S-

2 Wet Snow 37 0

No wet snow 35 0

User’s accuracy 100.00%

(a) 1×1 pixels

RS-2 (3×3 pixels) vs. Snow Height

SNOWPACK Snow Height (HS)
Snow (HS≥11cm) No snow (HS<11cm)

R
S-

2 Wet Snow 36 0

No wet snow 36 0

User’s accuracy 100.00%

(b) 3×3 pixels

RS-2 (5×5 pixels) vs. Snow Height

SNOWPACK Snow Height (HS)
Snow (HS≥11cm) No snow (HS<11cm)

R
S-

2 Wet Snow 36 0

No wet snow 36 0

User’s accuracy 100.00%

(c) 5×5 pixels

RS-2 (7×7 pixels) vs. Snow Height

SNOWPACK Snow Height (HS)
Snow (HS≥11cm) No snow (HS<11cm)

R
S-

2 Wet Snow 38 0

No wet snow 34 0

User’s accuracy 100.00%

(d) 7×7 pixels

Table C.5: Assessment of RS-2 wet snow classification with IMIS snow height values
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C.3. Envisat ASAR LRW wet snow classification vs. IMIS

LWC

5 Day ASAR LRW (1×1 pixels) vs. LWC

SNOWPACK LWC
Max LWC≥3% Avg LWC<3%

A
SA

R Wet Snow 515 598

No wet snow 367 1 803

Overall accuracy 70.61%

(a) 1×1 pixels

5 Day ASAR LRW (3×3 pixels) vs. LWC

SNOWPACK LWC
Max LWC≥3% Avg LWC<3%

A
SA

R Wet Snow 519 568

No wet snow 363 1 833

Overall accuracy 71.64%

(b) 3×3 pixels

5 Day ASAR LRW (5×5 pixels) vs. LWC

SNOWPACK LWC
Max LWC≥3% Avg LWC<3%

A
SA

R Wet Snow 494 484

No wet snow 388 1 917

Overall accuracy 73.44%

(c) 5×5 pixels

5 Day ASAR LRW (7×7 pixels) vs. LWC

SNOWPACK LWC
Max LWC≥3% Avg LWC<3%

A
SA

R Wet Snow 489 452

No wet snow 393 1 949

Overall accuracy 74.26%

(d) 7×7 pixels

Table C.6: Assessment of 5 day ASAR LRW wet snow classification with IMIS LWC values
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7 Day ASAR LRW (1×1 pixels) vs. LWC

SNOWPACK LWC
Max LWC≥3% Avg LWC<3%

A
SA

R Wet Snow 809 808

No wet snow 523 2 537

Overall accuracy 71.54%

(a) 1×1 pixels

7 Day ASAR LRW (3×3 pixels) vs. LWC

SNOWPACK LWC
Max LWC≥3% Avg LWC<3%

A
SA

R Wet Snow 808 751

No wet snow 524 2 594

Overall accuracy 72.74%

(b) 3×3 pixels

7 Day ASAR LRW (5×5 pixels) vs. LWC

SNOWPACK LWC
Max LWC≥3% Avg LWC<3%

A
SA

R Wet Snow 772 633

No wet snow 560 2 712

Overall accuracy 74.49%

(c) 5×5 pixels

7 Day ASAR LRW (7×7 pixels) vs. LWC

SNOWPACK LWC
Max LWC≥3% Avg LWC<3%

A
SA

R Wet Snow 756 598

No wet snow 576 2 747

Overall accuracy 74.90%

(d) 7×7 pixels

Table C.7: Assessment of 7 day ASAR LRW wet snow classification with IMIS LWC values
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10 Day ASAR LRW (1×1 pixels) vs. LWC

SNOWPACK LWC
Max LWC≥3% Avg LWC<3%

A
SA

R Wet Snow 1 178 1 143

No wet snow 823 4 042

Overall accuracy 72.64%

(a) 1×1 pixels

10 Day ASAR LRW (3×3 pixels) vs. LWC

SNOWPACK LWC
Max LWC≥3% Avg LWC<3%

A
SA

R Wet Snow 1 162 1 083

No wet snow 839 4 102

Overall accuracy 73.25%

(b) 3×3 pixels

10 Day ASAR LRW (5×5 pixels) vs. LWC

SNOWPACK LWC
Max LWC≥3% Avg LWC<3%

A
SA

R Wet Snow 1 101 914

No wet snow 900 4 271

Overall accuracy 74.76%

(c) 5×5 pixels

10 Day ASAR LRW (7×7 pixels) vs. LWC

SNOWPACK LWC
Max LWC≥3% Avg LWC<3%

A
SA

R Wet Snow 1 059 856

No wet snow 942 4 329

Overall accuracy 74.98%

(d) 7×7 pixels

Table C.8: Assessment of 10 day ASAR LRW wet snow classification with IMIS LWC values
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14 Day ASAR LRW (1×1 pixels) vs. LWC

SNOWPACK LWC
Max LWC≥3% Avg LWC<3%

A
SA

R Wet Snow 1 797 1 558

No wet snow 1 169 5 735

Overall accuracy 73.42%

(a) 1×1 pixels

14 Day ASAR LRW (3$\times$3 pixels) vs. LWC

SNOWPACK LWC
Max LWC≥3% Avg LWC<3%

A
SA

R Wet Snow 1 784 1 508

No wet snow 1 182 5 785

Overall accuracy 73.78%

(b) 3×3 pixels

14 Day ASAR LRW (5×5 pixels) vs. LWC

SNOWPACK LWC
Max LWC≥3% Avg LWC<3%

A
SA

R Wet Snow 1 677 1 268

No wet snow 1 289 6 025

Overall accuracy 75.08%

(c) 5×5 pixels

14 Day ASAR LRW (7×7 pixels) vs. LWC

SNOWPACK LWC
Max LWC≥3% Avg LWC<3%

A
SA

R Wet Snow 1 646 1 185

No wet snow 1 320 6 108

Overall accuracy 75.58%

(d) 7×7 pixels

Table C.9: Assessment of 14 day ASAR LRW wet snow classification with IMIS LWC values
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C.4. RADARSAT-2 wet snow classification vs. IMIS LWC

RS-2 (1×1 pixels) vs. LWC

SNOWPACK LWC
Max LWC≥3% Avg LWC<3%

R
S-

2 Wet Snow 37 0

No wet snow 22 13

Overall accuracy 69.44%

(a) 1×1 pixels

RS-2 (3×3 pixels) vs. LWC

SNOWPACK LWC
Max LWC≥3% Avg LWC<3%

R
S-

2 Wet Snow 36 0

No wet snow 23 13

Overall accuracy 68.06%

(b) 3×3 pixels

RS-2 (5×5 pixels) vs. LWC

SNOWPACK LWC
Max LWC≥3% Avg LWC<3%

R
S-

2 Wet Snow 35 1

No wet snow 24 12

Overall accuracy 65.28%

(c) 5×5 pixels

RS-2 (7×7 pixels) vs. LWC

SNOWPACK LWC
Max LWC≥3% Avg LWC<3%

R
S-

2 Wet Snow 38 0

No wet snow 21 13

Overall accuracy 70.83%

(d) 7×7 pixels

Table C.10: Assessment of RS-2 wet snow classification with IMIS LWC values
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D. Statistical analysis plots
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Figure D.1: 5 day ASAR LRW vs. LWV
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LWV tot LWV10 LWV20 LWV30 LWV40 LWV50 LWV60 LWV70 LWV80 LWV90
0

0.2

0.4

0.6

0.8

1

p−
va

lu
e

Correlation’s p−value for ASAR LRW vs. LWV (7 day LRW)

 

 

1x1 pixels
3x3 pixels
5x5 pixels
7x7 pixels
0.05 Confidence Level

(c) p-values for Spearman’s Rho
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Figure D.2: 7 day ASAR LRW vs. LWV
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(c) p-values for Spearman’s Rho
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Figure D.3: 10 day ASAR LRW vs. LWV
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(a) p-values for Spearman’s Rho
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Figure D.4: 14 day ASAR LRW vs. LWV
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RS-2

LWV tot LWV10 LWV20 LWV30 LWV40 LWV50 LWV60 LWV70 LWV80 LWV90
0

0.2

0.4

0.6

0.8

1

p−
va

lu
e

Correlation’s p−value for RS−2 vs. LWV (VV)

 

 

1x1 pixels
3x3 pixels
5x5 pixels
7x7 pixels
0.05 Confidence Level

(a) p-values for Spearman’s Rho
LWV tot LWV10 LWV20 LWV30 LWV40 LWV50 LWV60 LWV70 LWV80 LWV90

0

0.2

0.4

0.6

0.8

1

p−
va

lu
e

R2’s p−value for RS−2 vs. LWV (VV)

 

 

1x1 pixels
3x3 pixels
5x5 pixels
7x7 pixels
0.05 Confidence Level

(b) p-values for R2

Figure D.5: RS-2 (VV) vs. LWV
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Figure D.6: RS-2 (VH) vs. LWV
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(c) p-values for Spearman’s Rho
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Figure D.7: RS-2 (VH-VV) vs. LWV

124



Christoph Rohner D Statistical analysis plots

LWV tot LWV10 LWV20 LWV30 LWV40 LWV50 LWV60 LWV70 LWV80 LWV90
−1

−0.5

0

0.5

1

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

Correlation Coefficient for RS−2 vs. LWV (VH/VV)

 

 

1x1 pixels
3x3 pixels
5x5 pixels
7x7 pixels

(a) Spearman’s Rho
LWV tot LWV10 LWV20 LWV30 LWV40 LWV50 LWV60 LWV70 LWV80 LWV90

0

20

40

60

80

100

R
2  v

al
ue

 [%
]

R2 value for RS−2 vs. LWV (VH/VV)

 

 

1x1 pixels
3x3 pixels
5x5 pixels
7x7 pixels

(b) R2 values

LWV tot LWV10 LWV20 LWV30 LWV40 LWV50 LWV60 LWV70 LWV80 LWV90
0

0.2

0.4

0.6

0.8

1

p−
va

lu
e

Correlation’s p−value for RS−2 vs. LWV (VH/VV)

 

 

1x1 pixels
3x3 pixels
5x5 pixels
7x7 pixels
0.05 Confidence Level

(c) p-values for Spearman’s Rho
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Figure D.8: RS-2 (VH/VV) vs. LWV
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