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Abstract 

For billing purposes, mobile phone operators collect large volumes of data containing infor-

mation about time of phone activities (such as calls or SMS), as well as the location of the 

antennas people were connected to when initiating or receiving phone activities in so-called 

Call Detail Records (CDRs) (Ahas et al., 2008a). The Geography Department of the Uni-

versity of Tartu has a long-standing collaboration with Positium LBS (2014) which handles 

mobile positioning data from the Estonian mobile phone operators. For this thesis, the one 

month CDRs of 6 mobile phone users were provided as extracts of these data. Considerable 

research (e.g., Ahas et al., 2008a; Candia et al., 2008; Furletti et al., 2012) has been con-

ducted  analyzing CDR data that typically feature low spatial resolution (depending on the 

density of the antenna network) and are sampled in irregular temporal intervals (depending 

on the frequency of phone calls). Most of this work, however, focuses on the description of 

the spatial distribution of different human activities and not on the analysis of the actual 

movements expressed by individuals. 

An aim of the thesis is to develop techniques to reconstruct people’s trajectories in geo-

graphic space from the sparsely sampled CDR data. Subsequently, the trajectory recon-

struction methods are validated by comparing the reconstructed trajectories to the GPS 

trajectories available for the same users having a much finer temporal and spatial granular-

ity. A further aim is to investigate whether CDR data conditions (e.g., number of CDR fixes) 

under which a more accurate trajectory reconstruction is to be expected can be established.  

In several pre-processing steps, the one month CDR and GPS data of the six users are 

divided into daily segments and then clipped to the time frame shared by the GPS and the 

CDR data. To reconstruct the paths from the CDR segments, in a first step, different meth-

ods to match the antenna locations to the most reasonable node on the OpenStreetMap 

(OSM) road network are applied. In a second step, the shortest path between the identified 

nodes on the road network is computed.  

To validate the proposed methods, measures are computed that are aimed at assessing 

the similarity between the reconstructed and the corresponding GPS trajectories. The vali-

dation shows that overall, less than 30% of the actual travelled path can be reconstructed. 

The examination of the impact of the properties of the underlying CDR data on the accuracy 

of the reconstructed paths indicates that an increasing number of spatially unique CDR fixes 

and movements of an increasing length clearly have a positive impact on the accuracy of 

the trajectory reconstruction. The impact of the temporal resolution of the CDR data is mar-

ginal. 
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Zusammenfassung 

Für Abrechnungszwecke sammeln Mobilfunkunternehmen in so genannten Call Detail Re-

cords (CDRs) grosse Mengen an Daten. Diese enthalten Informationen über die Uhrzeit 

von Telefonverbindungen (Anrufe, SMS, etc.) sowie die Position der dazu verwendeten An-

tennen (Ahas et al., 2008a). Das Geographische Institut der Universität Tartu pflegt eine 

langjährige Zusammenarbeit mit der Positium LBS (2014), welche Zugang zu den Mobil-

funkdaten der estnischen Mobilfunkanbieter hat. Auszüge dieser Daten wurden für die vor-

liegende Masterarbeit zur Verfügung gestellt. Es existieren bereits viele Forschungsarbei-

ten (z.B., Ahas et al., 2008a; Candia et al., 2008; Furletti et al., 2012), welche sich mit der 

Analyse von CDR Daten beschäftigen. CDRs weisen eine geringe räumlich Auflösung, wel-

che abhängig von der Dichte des Mobilfunknetzes ist, auf. Des Weiteren liegen diese Daten 

in zeitlich unregelmässigen Abständen, abhängig von der Häufigkeit von Telefonverbindun-

gen, vor. Die meisten Analysen sind dabei darauf ausgerichtet die räumliche Verteilung von 

menschlichen Aktivitäten zu beschreiben und nur wenige Studien beschäftigen sich mit der 

Beschreibung von Bewegungen, welche von Individuen ausgeführt wurden.  

Ein Ziel dieser Masterarbeit ist es, Methoden zu entwickeln, welche die Rekonstruktion 

menschlicher Trajektorien im geographischen Raum auf Basis von CDR Daten ermögli-

chen. Durch den Vergleich der rekonstruierten Trajektorien mit den entsprechenden, zeit-

lich als auch räumlich höher aufgelösten, GPS Trajektorien sollen die entwickelten Metho-

den validiert werden. Ein weiteres Ziel dieser Arbeit ist es, zu untersuchen, ob bestimmte 

Eigenschaften der CDR Daten (z.B. die Anzahl an Mobilfunkverbindungen) dazu beitragen, 

dass bessere Rekonstruktionsgenauigkeiten erreicht werden können. 

In einem ersten Schritt werden dazu die CDR und GPS Daten, welche für sechs Mobilfunk-

teilnehmer über einen Zeitraum von jeweils einem Monat zur Verfügung stehen, in Seg-

mente unterteilt, welche die Positionen von jeweils einem Tag enthalten. Um zu gewähr-

leisten, dass die zusammengehörenden CDR und GPS Segmente jeweils die gleiche Zeit-

spanne abdecken, werden die Segmente entsprechend zugeschnitten. Darauf aufbauend 

soll versucht werden, anhand der CDR Segmente die zurückgelegten Trajektorien zu re-

konstruieren. Dazu werden in einem ersten Schritt verschiedene Map-Matching Methoden 

angewendet, um ausgehend von den Standpunkten der Antennen die wahrscheinlichste 

Position auf dem OpenStreetMap (OSM) Strassennetzwerk zu ermitteln. In einem zweiten 

Schritt wird der kürzeste Weg zwischen den identifizierten Positionen auf dem Strassen-

netzwerk berechnet.  

Zur Validierung der entwickelten Methoden, werden verschieden Masse berechnet, welche 

den Zweck haben, die Ähnlichkeit zwischen einer rekonstruierten und einer GPS Trajektorie 

zu erfassen. Die Analyse der Ähnlichkeitsmasse ergibt, dass insgesamt weniger als 30% 

der tatsächlich zurückgelegten Wege rekonstruiert werden können. Eine folgende Evaluie-

rung bezüglich der Auswirkung verschiedener Eigenschaften der zugrundeliegenden CDR 

Daten auf die Genauigkeit der rekonstruierten Wege weist darauf hin, dass eine zuneh-

mende Anzahl von CDR Positionen sowie eine zunehmende Länge der gesamten Bewe-

gung einen eindeutig positiven Effekt auf die Qualität der rekonstruierten Trajektorien ha-

ben. Der Einfluss der zeitlichen Auflösung hingegen ist minimal. 
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1 Introduction 

1.1 Context 

For billing and network management purposes, mobile phone operators collect large 

amounts of data containing information regarding time of phone activities (calls, SMS, etc.) 

as well as the location of the antenna that routed the respective phone activities in so-called 

Call Detail Records (CDRs) (Ahas et al., 2008a). These data are of interest because they 

can reveal information about the activities of a large number of people in space and time. 

The spatial resolution of the CDRs is dependent on the density of the mobile phone network 

as well as the coverage area of an antenna (Caceres et al., 2007). The temporal resolution 

is irregular as it depends on the number and time intervals of phone activities. The ad-

vantage of CDR data is that mobile phone use is very popular (mobile phone penetration of 

95% in Estonia) and therefore information about the behavior of a large fraction of the pop-

ulation over long time periods can be acquired by studying this data source (TNS, 2014). 

This kind of data, however, is generally not easily obtainable from mobile operators and the 

use of it has important implications for the privacy rights of the people concerned. For this 

study, the CDR and the corresponding GPS data of 6 mobile phone users over a one month 

period are provided by Positium LBS (2014) in collaboration with its long-standing partner 

in academia, the Geography Department of the University of Tartu and consent to use the 

data was obtained from mobile phone users involved in this study. 

Substantial research efforts have been expended on the analysis of CDR data. Most studies 

investigate the spatial distribution of a human activity, e.g., the seasonality of foreign tour-

ists’ space consumption in Estonia by Ahas et al. (2007a). The less prevalent studies that 

focus on the mobility of individuals often focus on the identification of proxies, e.g., radius 

of gyration, in order to describe a typical range of a mobile phone user (Blumenstock, 2012; 

Csáji et al., 2013; Frias-Martinez et al., 2010). The few research attempts (e.g., Doyle et al., 

2011; Wang et al., 2010) that try to reconstruct individuals’ movements based on CDR data 

only function in constrained settings (e.g., between a specific origin and destination). The 

study of human mobility is of particular interest with respect to, e.g., traffic prediction sys-

tems or urban planning (e.g., Brakatsoulas et al. 2005). Saluveer and Ahas (2014) recog-

nize considerable potential for mobility studies based on CDR data. 

1.2 Objectives and research questions 

Prediction of people’s movement behavior on the basis of CDR data, which typically feature 

low temporal and spatial resolutions, requires development of new methods based on var-

ious assumptions. An aim of this thesis is to propose methods to reconstruct individuals’ 

trajectories in geographic space from CDR data. In order to validate the proposed methods, 

the reconstructed trajectories are compared to the actively tracked GPS trajectories of the 

same journeys having a much finer temporal and spatial granularity. A last aim of this thesis 

is to examine whether CDR data properties (e.g., number of fixes) have an impact on the 

quality of the reconstructed trajectories. To address the above mentioned aims the following 

research questions (RQ) will be examined: 
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RQ 1: How can mobile phone users’ trajectories be reconstructed from sparsely sampled 

CDR data? 

RQ 2: In order to validate the trajectory reconstruction methods developed in this study, 

what level of similarity can be achieved by comparison of the reconstructed trajectories with 

higher resolution GPS trajectories of the same journeys?  

RQ 3: Which properties of the CDR data, such as sampling properties or trajectory length, 

affect the accuracy of the reconstructed trajectories?  

1.3 Thesis structure 

Following the introduction, Chapter 2 provides an overview of work related to trajectory re-

construction and mobile positioning data. Chapter 3 gives an overview of the methodology 

used in the thesis. Chapter 4 presents the data and the pre-processing steps required for 

the trajectory reconstruction and validation. Chapter 5 describes the methods developed to 

reconstruct trajectories based on CDR data. Chapter 6 explains the validation of the trajec-

tory reconstruction methods and discusses the results. In Chapter 7 the research questions 

are discussed and the results are placed into the context of the related work. Finally, Chap-

ter 8 summarizes the most important aspects of the thesis; furthermore, the main contribu-

tions are underlined and an outlook for future work is given.  
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2 Related Work 

This chapter gives an overview of related work and background information of concepts and 

algorithms that are used in this thesis. Particularly, the following topics will be considered: 

overview of different human movement tracking techniques based on mobile phones, their 

application areas and the involved privacy issues (Section 2.1); a selection of studies using 

CDR data regarding the geography of human activities and the mobility of the users (Section 

2.2); existing algorithms and relevant concepts to reconstruct trajectories such as map 

matching, centrality measures and automatic route selection (Section 2.3); and concepts to 

assess similarity of trajectories that are used for the validation of the algorithms (Section 

2.4). In Section 2.5, the research gaps are identified and the research questions of this 

thesis are presented.  

2.1 Human movement tracking with mobile positioning tech-

niques 

Human movement tracking is becoming increasingly more important because many human 

daily activities such as payment with a credit card, the use of a mobile phone or the use of 

other location-aware devices allow the inference of a person’s current geographic location 

(Giannotti et al., 2007). The analysis of such locational information may contribute to a bet-

ter understanding of how society works. Many modern mobile phones possess GPS receiv-

ers, which are explicitly designed to accurately assess a person’s position. In this section, 

however, the focus is on mobile positioning techniques through cellular networks – generally 

featuring a lower spatial and temporal resolution but potentially being available for a large 

fraction of the population over long time periods – as well as their possible application areas 

and issues regarding privacy and data security. Cellular network-based techniques are to 

be categorized amongst the Eulerian sensing methods, which collect measurements at pre-

defined points (Work et al., 2009). This is in contrast to Lagrangian measurements that are 

performed by a sensor (e.g., GPS device) moving along a trajectory.  

2.1.1 Mobile positioning techniques 

Especially within the domain of location based services (LBS), research was driven in the 

direction of identifying a mobile phone user’s position within a cellular network (Mountain 

and Raper, 2001a; Ratti et al., 2006). Smoreda et al. (2013) introduce the Global System 

for Mobile Communication (GSM) cellular network as a radio network of base transceiver 

stations (BTSs), each of which having one or more antennas. The BTSs are distributed in 

a manner that allows best possible radio coverage via small regions called cells. Devices 

such as mobile phones can access the phone network via the BTSs. Therefore the mobile 

phone’s position is identified using the cell global identity (CGI). Subsequently, the CGI can 

be matched with the coordinates or the cell coverage of the respective BTS station, which 

again can be used as approximate location of a mobile phone. When a mobile phone user 

moves from one cell into another during a phone call, the antenna is automatically switched. 

The antenna switches are designated as handovers (Zuo et al., 2012). In order to manage 

the user’s mobility, the cells are aggregated into bigger subdivisions of the cellular network, 
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referred to as location areas (LA). The location area code (LAC) gives information about 

the LA in which a user is located which enables the network to optimize the network traffic. 

In so-called visitor location registers (VLRs) the LAC and the last known CGI are stored. 

The VLR is updated each time a user moves from one LA to another, when the handset is 

switched on or off, or after a longer period of several hours with no mobile phone activity 

(Caceres et al., 2007; Saluveer and Ahas, 2014; Smoreda et al., 2013).  

Depending on the purpose for which the mobile phone data are collected or used, selected 

components of the above-mentioned information of the cellular network are stored or can 

be accessed. Additional information sources relevant for positioning consist of, inter alia, 

the received signal strength indicator (RSSI) and the timing advance (TA). As described in 

Waadt et al. (2009), the RSSI indicates the signal strength which is a function of the distance 

between BTS and the mobile device and can consequently be used as an approximation 

for the distance between the BTS and the handset. The TA gives an indication of the signal 

propagation delay from the BTS to the handset and back, which also can be transformed 

into a distance estimation between handset and BTS. If the time lag between handset and 

BTS for three or more BTSs are available, the mobile user’s location can be further nar-

rowed down to the overlapping area of the respective coverage areas, as described in the 

time of arrival (TOA) technique in Ahas and Laineste (2006). The angle of arrival (AOA) 

estimates the user’s position based on the angle at which the signals from at least two BTSs 

arrive (Zang et al., 2010). 

Call detail records (CDRs), which are at the center of this thesis, are archived for billing 

purposes or technical network management by mobile phone operators. CDR data usually 

comprise at least the following attributes: time of phone activity, CGI (which can be assigned 

to the antenna’s1 coordinates) and user ID (Ahas et al., 2010b; Järv et al., 2012). Depending 

on the mobile phone operator, different in- and / or outgoing mobile phone activities such 

as SMS, MMS, calls, and / or internet connections are included. Typically, CDR data includ-

ing internet connections (also referred to as data detail records) have a higher temporal 

resolution, since many services on a mobile phone regularly connect to the internet 

(Saluveer and Ahas, 2014). Optionally, further attributes such as call duration, the ID of the 

call / message receiver and cell handovers during a phone activity are contained in the 

CDRs (Bar-Gera, 2007; Csáji et al., 2013).  

CDRs are also referred to as passive mobile positioning data, thereby alluding to the fact 

that it is automatically stored in the log files of mobile service providers (Ahas et al., 2009, 

2008a; Smoreda et al., 2013; Toomet et al., 2011). Active mobile positioning data (also 

referred to as mobile tracing data), on the contrary, are collected after a special request to 

determine a mobile phone user’s location (Ahas et al., 2010a). Thereby the temporal reso-

lution of the data can be controlled, by requesting the mobile phone’s location in regular 

temporal intervals.  

                                                
1 In the following, BTSs will consistently be referred to as antennas.  
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2.1.2 Application areas of mobile positioning data 

The mobile phone penetration in developed countries is close to 100% (MDGS, 2014), 

therefore, knowledge of the behavior of almost the total population can potentially be ex-

tracted. Besides the advantage of the high penetration, CDR data is popular in research 

due to its relative ease of extraction (they are pre-processed by mobile phone operators in 

a standard format and recorded in highly secured databases) and they are available in huge 

quantities over long time periods (Smoreda et al., 2013). The following list comprises a non-

exhaustive overview of important areas where CDR data (as well as other mobile position-

ing data) are applied:   

 Location based services (LBSs), becoming increasingly important with the spread of 

smart phones (Asakura and Hato, 2004; Mountain and Raper, 2001a, 2001b; Ratti et 

al., 2006; Raubal et al., 2004) 

 Intelligent transportation systems (ITSs) for traffic prediction and management (Herring 

et al., 2010; Work et al., 2009) 

 Transportation infrastructure and public transportation planning (Saluveer and Ahas, 

2014) 

 Regional, urban / spatial planning (Ahas et al., 2008a; R. Ahas et al., 2007; González 

et al., 2008) 

 Identifying important tourism destinations and tourist tracking for management and pro-

moting purposes (Rein Ahas et al., 2007a; Andres et al., 2009; Shoval and Isaacson, 

2007) 

 Trend analyses or space-time variability studies including migration studies (Ahas et al., 

2008a; Blumenstock, 2012)  

 Surveillance and alibi queries for security or military services (de Montjoye et al., 2013; 

Gudmundsson et al., 2008; Kuijpers et al., 2010; Michael et al., 2006) 

 Studies of social interactions and structure (Candia et al., 2008; Palla et al., 2007; 

Phithakkitnukoon et al., 2010; Winter and Kealy, 2012) 

2.1.3 Privacy issues and data security 

Despite the important benefits that (mobile) positioning data represent for many application 

areas, there are major concerns regarding privacy issues and data security. As stated in 

Michael et al. (2006), humans are mostly unwillingly tracked. One should be aware that 

positioning data can be misleading. Wrong interpretations of an individual’s behavior might 

put the person in a bad light, which might unfairly damage his reputation. De Montjoye et 

al. (2013) reveal in their study how easily people are identifiable from temporally and spa-

tially very coarse data.  

Many authors are aware of privacy implications when using positioning data. Most of them 

come to the conclusion, however, that this data source brings far more advantages – when 

used in a controlled setting – than it brings harm (Michael et al., 2006; Ratti et al., 2006). 

According to a survey led by Ahas et al. (2010a) only 10% of the participants would not 

participate in a tracking study due to fear of surveillance. Fear of surveillance is dependent 
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on the cultural and the societal background, but is also a personal matter. Therefore, indi-

viduals should have the possibility to refuse being tracked and this without being considered 

as suspicious.   

Many authors (Ahas et al., 2010b; Ratti et al., 2006; Saluveer and Ahas, 2014) refer to the 

Directive on Privacy and Electronic Communications of the European Parliament (2002), 

which provides regulations concerning location data. According to these regulations, loca-

tion data need to be received and treated in aggregated and anonymous form, in order that 

the linkage of location data with real people is not possible. Otherwise the consent of the 

users to the extent and the duration necessary has to be expressed (European Parliament, 

2002). As a consequence, researchers apply various approaches in order to respect data 

security and thereby guarantee privacy of participants. For example, Smoreda et al. (2013) 

aggregate their data and investigate only small temporal units, whereas Doyle et al. (2011) 

delete the user IDs in their study.  

2.2 Studies with CDR data  

A considerable number of papers using mobile phone – specifically CDR – data have al-

ready been published. As mentioned in Section 2.1.1, CDR data differ in temporal resolution 

depending on inclusion of in- and / or outgoing phone activities, on the different kinds of 

included activities (SMS, MMS, calls, internet connections, etc.), as well as on whether 

handovers during phone calls are recorded or not. The component which is identical for all 

types of CDR data is the spatial resolution, which is equal to the coverage area or the loca-

tion of an antenna. Studies using primarily active mobile positioning data (Ahas et al., 

2010a; Andrienko et al., 2010; Ratti et al., 2006), which assess the mobile phone users’ 

positions in regular temporal intervals and therefore typically feature a higher temporal res-

olution, are not considered in the following two sections.  

Csáji et al. (2013) differentiate between the following three predominant research areas 

where mobile phone data are used: social structure, temporal dynamics and mobile behav-

ior of mobile phone users. Mobile phone activities used as proxy for the structure and dy-

namics of social networks mainly rely on the information of (the number of) phone activities 

taking place between different phone users, whereas typically users are modeled as nodes 

and the relations between them as links of different importance depending on the mobile 

phone interactions between the respective users (Eagle et al., 2009b; Hidalgo and 

Rodriguez-Sickert, 2008; Onnela et al., 2007; Palla et al., 2007). Since the actual geograph-

ical location is mostly not taken into account in these studies, they are not further examined 

in the following two sections. Studies within the two remaining – slightly adapted –  catego-

ries of Csáji et al. (2013) are presented the Sections 2.2.1 and 2.2.2,.  

2.2.1 Studies of spatio-temporal patterns of human activities 

The selection of studies presented in this section mostly aims at describing the spatial dis-

tribution of an investigated phenomenon regarding human behavior on an aggregated level, 

and, optionally, its temporal dynamics. Frequently, the information derived from these stud-

ies can be used for spatial planning purposes.  
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Candia et al. (2008) describe spatio-temporal calling patterns in an urban area with the aim 

of being able to detect anomalous events – such as an emergency situation – which would 

exhibit different patterns. Eagle et al. (2009a) show that differences in capital, urban and 

rural areas regarding average amount of monthly travel, average number of outgoing phone 

activities, or average tie strengths between subscribers exist. An approach called activity-

aware mapping introduced by Phithakkitnukoon et al. (2010) tries to capture differences in 

daily activity patterns (e.g., working, shopping) between people who share different work-

area profiles (basically location of workplace).  

Also the group of Rein Ahas at The University of Tartu (Estonia) has conducted multiple 

studies with the aim of describing spatio(-temporal) patterns of human activities based on 

CDR data. Ahas et al. (2007a), for example, analyze the seasonality of foreign tourists’ 

space consumption in Estonia. The method used therefore is called the social positioning 

method, which combines the use of locations (derived from the CDR data) and character-

istics of the users (such as nationality) to describe tourists’ space consumption. The objec-

tive is to use their results to implement regional planning measures. A model to predict 

space-time behavior of travelers as a function of air temperature is developed in Ahas et al. 

(2008a). Another paper of Ahas et al. (2010b) proposes an approach to determine locations 

meaningful to mobile phone users. Thereby, anchor points for all mobile phone users are 

computed in monthly intervals. According to the methodology of activity spaces, anchor 

points are classified into activity groups like home location or work location.  

2.2.2 Studies regarding mobility of mobile phone users 

The studies presented in this section have as primary aim the description of the mobile 

behavior of the mobile phone users. Many of the studies coming from the intelligent trans-

portation system (ITS) research use positioning data with higher spatial (RSSI, TA, GPS 

data, etc.) and temporal resolutions (active mobile positioning, GPS data) and are therefore 

not further explored in this section (Asakura and Hato, 2004; Calabrese et al., 2011; Velaga 

et al., 2009; Waadt et al., 2009; Zuo et al., 2012). A good overview regarding methodological 

issues when using CDR data for mobility studies is given in Saluveer and Ahas (2014). 

Wang et al. (2010) infer the transportation mode (e.g., walking, driving cars, public 

transport) of mobile phone users travelling between the same origin and destination based 

on travel times. Doyle et al. (2011) propose an alternative approach to the travel mode 

detection of Wang et al., who are only able to distinguish between travel modes that feature 

significantly different speeds. Therefore, the virtual cell paths for the two alternatives of a 

railway and a road are computed between a pre-defined source and a destination location. 

Subsequently, the number of cells that served phone activities of a specific user corre-

sponding to either of the two virtual cell paths determine the more probable transportation 

mode alternative.  

Through investigation of the interplay between human mobility and social ties, Wang et al. 

(2011) constitute one of the few exceptions amongst the social structure researchers work-

ing with mobile phone data who use geographical measures of closeness besides network 

closeness measures. Human mobility is thereby described by measures such as probability 

that users visit the same location (not necessarily) at the same time. Also Yuan et al. (2012) 
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make use of proxies to describe mobility of users, notably: the average lengths of the semi-

major and major axes of an ellipsoid representing the probability of a person to be found at 

a certain location as depicted in Figure 3 in González et al. (2008, p. 782); the movement 

eccentricity representing the deviation of an ellipsoid from a circle, and the movement en-

tropy, which characterizes the heterogeneity of a trajectory pattern based on the number 

and frequency of visited locations. The last measure was actually first used by Song et al. 

(2010) in the context of passive mobile phone data with the aim of defining the limits of 

predictability of human movements.   

Likewise González et al. (2008) address the question of predictability of human movements 

by using several proxies for mobility such as the radius of gyration. This variable is a popular 

one used as approximation for users’ mobility (Blumenstock, 2012; Csáji et al., 2013; Frias-

Martinez et al., 2010; González et al., 2008; Song et al., 2010; Yuan et al., 2012). The radius 

of gyration is obtained by computing the root mean square distance of all phone activity 

positions from their center of mass (Frias-Martinez et al., 2010). This variable is used in 

literature to describe a typical range for a user’s area of influence. Just as the variable 

number of different antennas that route phone activities of a mobile phone user is used as 

a proxy for a user’s area of influence. Similarly, Csáji et al. (2013) and Blumenstock (2012) 

compute proxies, comparable to the above-mentioned, to describe users’ mobile behavior. 

Additionally, the diameter of the convex hull devised from the CDR locations and the total 

length of the line segment resulting from a connection by straight lines of the CDR locations 

are used.  

Smoreda et al. (2013) devise daily mobility motifs (particular sequence of a particular num-

ber of antennas visited) for each user on the basis of CDR data that start and end at the 

location that is identified as home location. The most prominent motif is the movement be-

tween two distinctive antennas (e.g., home and workplace). Smoreda et al. find that seven 

motifs describe over 80 % of the population’s mobility motifs. Bar-Gera (2007) develops a 

method in which he makes use of registered handovers during a phone activity for a specific 

road section in order to devise speed indications for the road sections at different times. 

Based on the time, duration and the location of phone activities Furletti et al. (2012) differ-

entiate between the following four categories of mobile phone users in a particular city: 

commuters, residents, tourists and people in transit.  

Also recent work by the group of Rein Ahas focuses on the use of CDR data for mobility 

studies in Estonia (Järv et al., 2014, 2012; Saluveer and Ahas, 2014). Järv et al. (2012) 

propose a methodological approach that is able to distinguish between home and workplace 

commuting and other non-commuting movement based on phone activities along a specific 

road section. Thereby, the shortest-path heuristic is used to compute the connection be-

tween the home and workplace of the users crossing the investigated road segment. If the 

shortest paths of the respective users include the investigated road segment, it is classified 

amongst the commuting-related movements, otherwise amongst the non-commuting move-

ments. Järv et al. (2014) approximate mobility by the number of unique mobile activity lo-

cations and thereby extract the 10 most-frequent activity locations. The variation of these 

numbers is further analyzed for a one-year period where seasonal effects on human travel 

behavior can be observed. 
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2.3 Algorithms relevant for trajectory reconstruction 

This section provides an overview of the most important concepts that are used in the tra-

jectory reconstruction algorithms developed in this study. In the first part, a selection of work 

from the map-matching research domain is presented (Section 2.3.1). In the second part, a 

short introduction to centrality measures is given (Section 2.3.2), and, in the final part, au-

tomatic route selection algorithms are presented (Section 2.3.3).   

2.3.1 Map matching  

Chawathe (2007, p. 1190) defines the map-matching problem as follows: “The map-match-

ing problem is, in general, the problem of correlating the path of a vehicle to a vector map 

of roads or other features.” The problem thereby differs depending on the data source input 

(GPS, mobile positioning data, etc.) and whether the focus is on instantaneous positioning 

of vehicles (online map matching) or offline map matching that matches positions sampled 

in the past to a road network (Yin and Wolfson, 2004). The focus in this section is on offline 

map matching.  

In literature, the following types of map-matching algorithms are typically distinguished: ge-

ometric, topological, probabilistic and advanced (Lou et al., 2009; Quddus et al., 2007). The 

simplest form of a geometric algorithm matches a position to the closest road node or edge 

(referred to as point-to-point and point-to-arc map matching, respectively). These ap-

proaches are sensitive to measurement noise which results in identification of wrong roads 

especially in dense urban road networks, where roads lie close together (Newson and 

Krumm, 2009). A more advanced geometric map-matching algorithm is proposed by White 

et al. (2000) where a geometric curve-to-curve matching algorithm is use, in which piece-

wise linear curves between the original fixes, as well as between candidate map-matched 

fixes are constructed and compared to each other in terms of distance.  

A topological map-matching algorithm additionally makes use of contiguity of the road seg-

ments. Quddus et al. (2003) developed an enhanced topological map-matching algorithm 

which compares each point that is matched to an edge with the edge to which the previous 

point was matched. Probabilistic map-matching algorithms rely on elliptical or rectangular 

confidence regions surrounding the original positions (Quddus et al., 2007). These regions 

are derived, inter alia, from the error variances associated with the positioning device. Ad-

vanced map-matching algorithms use more refined concepts such as a Kalman Filter or the 

Hidden Markov model (HMM) (Krumm et al., 2007; Newson and Krumm, 2009; Quddus et 

al., 2007; Rahmani and Koutsopoulos, 2013). For example, Newson and Krumm (2009) 

apply a map-matching algorithm that uses a HMM and thereby place particular emphasis 

on data that are geometrically noisy and temporally sparse. Besides GPS data, positioning 

data from WiFi systems and cell tower multilateration are used.  

2.3.2 Centrality measures in road networks 

Centrality measures applied to the characterization of networks are used in various re-

search domains such as sociology, biology or technology (Dorogovtsev and Mendes, 2001; 

Onnela et al., 2007; Reka and Barabási, 2002). Thereby, a network is typically represented 
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as a graph consisting of nodes connected by edges. In the context of road networks cen-

trality measures are used, inter alia, for the following purposes:  

1. to identify the most important / significant locations (nodes) on a road network (Crucitti 

et al., 2006), 

2. characterization of road networks – e.g., self-organized vs. planned (Crucitti et al., 2008, 

2006; Porta et al., 2006), 

3. map generalization based on the centrality measure of a specific node / edge (Jiang and 

Claramunt, 2004; Jiang and Harrie, 2004).  

A good overview of different centrality measures in the context of road networks is provided 

in Crucitti et al. (2006) or in Latora and Marchiori (2007). In the following, some commonly 

used centrality measures are presented. The degree centrality is based on the assumption 

that a central node is connected to a high number of adjacent nodes. Therefore, the degree 

centrality can be given, for example, by the number of adjacent edges of the node under 

consideration. The closeness centrality assesses how near a node is to all the other nodes. 

Crucitti et al. (2006) compute the measure by adding up the lengths of all the shortest paths 

from the investigated node to all the other nodes in the graph. The betweenness centrality 

in Crucitti et al. (2006) is defined by the number of shortest paths between all origin-desti-

nation combinations of a graph that traverse the investigated node. In order to measure 

information centrality, Latora and Marchiori (2007) propose to measure the relative drop of 

efficiency of a graph as a consequence of the removal of an investigated node (2007).  

Centrality measures can be grouped according to some of their features. Crucitti et al. 

(2008) differentiate between topological centrality measures, which basically capture the 

number of steps (e.g., number of edges that are traversed) and spatial centrality measures, 

which consider metric distances (e.g., length of edges that are traversed). Furthermore, 

centrality measures can be categorized in local and global measures (Jiang and Claramunt, 

2004; Jiang and Harrie, 2004). A local centrality measure considers the immediate neigh-

borhood of an investigated node (e.g., degree centrality), whereas a global centrality meas-

ure considers the relationship of one node to all the other nodes of a graph (e.g., closeness 

centrality).  

2.3.3 Automatic route selection  

Automatic route selection between a pre-defined origin and destination on a road network 

is an extensively studied research subject. Thereby, the most commonly used approach is 

certainly the shortest-path algorithm, which has been studied for more than 40 years in 

diverse fields such as transportation and computer science (Fu et al., 2006).  

For the shortest-path computation, edges of a road network are assigned weights which 

represent the costs involved in a traversal of the respective edges. For example, an edge 

is weighted according to its length or the average edge travel time (depending on maximum 

speed tolerated and edge length) (Yin and Wolfson, 2004). A shortest-path algorithm finds 

a path between an origin and a destination node that minimizes the sum of the costs of all 

the edges composing the respective path (Fu et al., 2006). If a graph is directed, which 

means that travel directions on each edge are defined, the shortest path is not necessarily 



 2 RELATED WORK 

11 

the same when source and destination node are reversed (Dorogovtsev and Mendes, 

2001). Zhan (1997) differentiates between one-to-one (from one source node to all other 

nodes), one-to-some (from one source node to a subset of destination nodes) and all-to-all 

(from every node to every other node in the road network) shortest-path algorithms. A good 

overview of shortest-path algorithms is provided in Fu et al. (2006) or in Zhan (1997). One 

of the first algorithm in shortest-path computation is Dijkstra’s shortest-path algorithm, 

named after its inventor (Dijkstra, 1959). The more efficient A* shortest-path algorithm is a 

frequently used alternative in shortest-path computations (Hart et al., 1968). Dijkstra’s and 

A* shortest-path algorithms are both categorized amongst the one-to-all shortest-path algo-

rithms. Many other algorithms besides the classic Dijkstra and A* algorithms have been 

developed, for example, the one proposed by Geisberger et al. (2008) who make use of 

contraction hierarchies which makes computation much faster.   

The “simplest path algorithm” proposed by Duckham and Kulik (2003) is one of the alterna-

tive heuristics to the shortest-path algorithm discussed above. The authors argue that com-

plexity of route instructions may be as important as total costs used to travel paths. There-

fore, they develop an algorithm that offers the advantages of easier description and execu-

tion of the simplest path associated with a marginally longer path length compared to the 

shortest path. 

2.4 Assessment of trajectory similarity 

The assessment of similarity between different trajectories is an important tool that is, inter 

alia, used by researchers for method validation purposes and consists of comparing a mod-

eled path to an observed path (Lou et al., 2009; Newson and Krumm, 2009; Pelekis et al., 

2011), or, for data mining approaches (Giannotti et al., 2007; Laube et al., 2011). In partic-

ular, the research domains of computational geometry (Alt, 2009; Buchin et al., 2011) and 

time series analysis have been extensively involved in the development of concepts to an-

alyze trajectory similarity (Dodge et al., 2012; Vlachos et al., 2004). To assess the resem-

blance between two objects, a frequently used approach is to assess the actual dissimilarity 

by quantifying the distance between them (Faloutsos et al., 1997). In similarity analysis, the 

two concepts of whole matching and subsequence matching are distinguished (Agrawal et 

al., 1993). In the former case complete trajectories and in the latter case subsets of trajec-

tories are compared. 

A set of trajectory similarity measures is presented in the following two sections. The focus 

is on spatial measures in Section 2.4.1, which assess the similarity of trajectories purely 

based on their geometric shapes in space, and on spatio-temporal measures in Section 

2.4.2, which assess the similarity considering both the spatial and temporal dimensions of 

the objects (Dodge et al., 2012). 

2.4.1 Spatial similarity measures 

Many spatial similarity measures are based on the Euclidean distance. A very prominent 

measure, the Hausdorff distance, assesses the similarity between two sets of points 𝐴 and 

𝐵 that represent, for example, curves (Alt, 2009). The directed Hausdorff distance �⃗⃗� H(A,B)  
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is for all points a of 𝐴, the maximum of their minimum distance to 𝐵. The minimum distance 

of a point a ∈ 𝐴 to 𝐵 is the shortest distance between a and all points of 𝐵. �⃗⃗� H(A,B)  is 

expressed in the following Equation 1, whereas || . || represents the distance metric used, 

in this case the Euclidean distance:  

�⃗⃗� H(A,B) =max {𝑚𝑖𝑛{ ||a − b|| |𝑏 ∈ 𝐵}|𝑎 ∈ 𝐴} (Equation 1) 

The bidirectional Hausdorff distance 𝐷H(A,B)  is a symmetric measure and maximizes the 

directed Hausdorff distance from A to B and vice versa (Alt, 2009). It is expressed by the 

following Equation 2: 

𝐷H(A,B) = max (�⃗⃗� H(A,B), �⃗⃗� H(B,A))  (Equation 2) 

The average Hausdorff distance such as used in Guerra and Pascucci (2005) computes the 

average minimum Euclidean distance between the points of set A to set B, or vice versa.  

The similarity of network-bound trajectories is frequently assessed in terms of edge align-

ment. Newson and Krumm (2009) propose a measure which assesses the similarity be-

tween a modeled (matched) and a ground truth trajectory (correct route, see Figure 1). It is 

computed by dividing the sum of the total length of erroneously subtracted (d-) and the total 

length of erroneously added (d+) edges of the matched route (in comparison to the correct 

route) by the length of the correct route (d0). Lou et al. (2009), who use a comparable defi-

nition of similarity as Newson and Krumm (2009), compute the number (length) of correctly 

identified road segments divided by the total number (length, respectively) of identified road 

segments in order to assess the quality of their map-matching algorithm.  

 

Figure 1: Schematic representation of similarity measure used by Newson and Krumm (2009) 

Pelekis et al. (2011) propose an aerial similarity measure designated as locality in-between 

polylines (LIP). In Figure 2, the areas between two consecutive intersections resulting from 

the overlay of two trajectories are computed. Subsequently, the areas weighted according 

to the length of the respective sub-trajectories are summed, giving an indication of the dis-

tance between two trajectories.  
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Figure 2: Locality in-between polylines (Pelekis et al., 2011) 

An edit distance-based method such as the one used in Yin and Wolfson (2004) assesses 

the smallest number of insertions, deletions and substitutions (edit operations) required to 

change a trajectory to the one to which it is compared. Many other approaches, e.g., dy-

namic time wrapping or longest common subsequences as described in Vlachos et al. 

(2004, 2002), are used to assess the spatial similarity between trajectories.  

2.4.2 Spatio-temporal similarity measures 

The assessment of spatio-temporal similarity is complex and little research has focused on 

spatio-temporal similarity measures so far (Dodge et al., 2012). According to Dodge et al. 

(2012), most of the spatio-temporal similarity approaches employ a notion of Euclidean dis-

tance. A straightforward approach is to assess the dissimilarity between two time-refer-

enced trajectories by measuring the average Euclidean distance between the points com-

posing each trajectory at corresponding times (Buchin et al., 2011; Nanni and Pedreschi, 

2006).  

Fréchet distance is among the most frequently used similarity measures that consider the 

order of the points composing a trajectory besides its geometry (Alt and Godau, 1995; Alt, 

2009; Brakatsoulas et al., 2005; Buchin et al., 2010, 2009). Fréchet distance is a similarity 

measure from computational geometry (Buchin et al., 2010). A common metaphor used to 

describe the Fréchet distance is a man walking his dog, both walking on their respective 

paths (Buchin et al., 2010; Dodge, 2011). While they are both allowed to control their speed, 

they are not allowed to move backward. The Fréchet distance for the two paths is defined 

as the minimum length of a leash that is necessary along the walk.  

Giannotti et al. (2007) present a trajectory mining approach that aims at identifying similar 

trajectories in large GPS or GSM trajectory databases. Thereby, identical trajectory seg-

ments are identified that have visited similar places in the same order and used the same 

amount of time for the travel in between.  
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2.5 Identification of research gaps and research questions 

As set out in Section 2.3, CDR data have already been extensively studied in many different 

contexts, but with the focus mainly on spatial patterns of human activities (e.g., defining 

home / work locations or tourism destinations), and less on the actual movement expressed 

by individuals (e.g., Ahas et al., 2010b, 2008b). The existing studies that try to assess mo-

bile phone users’ mobility on the basis of CDR data often use proxies (e.g., radius of gyra-

tion, in order to describe a typical range of a mobile phone user) (Frias-Martinez et al., 2010; 

Järv et al., 2014; Wang et al., 2011; Yuan et al., 2012). These proxies are used, inter alia, 

to characterize people according to their area of influence or to investigate whether there 

are correlations, e.g., between mobile phone usage or social network and the mobility of a 

person. A few researchers (Blumenstock, 2012; Csáji et al., 2013; González and Barabási, 

2007), who reconstruct trajectories, connect the locations of consecutive phone activities 

with straight lines and do not make use of a road network, despite the evidence that most 

human movement is network-bound (Brinkhoff, 2002). The methods developed that make 

use of a road network in their research, work only in very specialized (constrained) settings 

(e.g., between a specific origin and destination) (Bar-Gera, 2007; Doyle et al., 2011; Järv et 

al., 2012).  

The study of movement is of special interest to understand activities and processes occur-

ing in the geographic space as well as for applications oriented towards traffic supervision 

and management. Many mobility studies, however, in ITS rely on GPS data or active mobile 

positioning data typically featuring a higher temporal resolution and / or mobile positioning 

data that have more precise location information, such as signal strength or RSSI (Asakura 

and Hato, 2004; Promnoi et al., 2009; Waadt et al., 2009; Zuo et al., 2012). These kinds of 

data do not share the typical features of CDR data that are low in temporal and spatial 

resolution and therefore their methods are not directly applicable to the CDR data.  

The main advantages of CDR data are that they are available for a large fraction of the 

population, over a long time period and do not involve any active human tracking with addi-

tional devices (Ahas et al., 2010a; Caceres et al., 2007; Montoliu and Gatica-Perez, 2010). 

If the interest is in the movement of people, the CDR data need to be processed and a few 

assumptions (e.g., movements are bound to a network, use of shortest path to travel be-

tween locations) need to be made in order to be able to create trajectories from the low 

spatial and temporal resolution data (Kracht, 2004; Ratti et al., 2006). If the trajectories can 

be reasonably reconstructed, there is considerable potential in CDR data to assess overall 

mobility of a country and not only the mobility of a test sample such as described in 

Brakatsoulas et al. (2005). So far, relatively little methodological work has been published 

on how to reconstruct trajectories from CDR data. 

One of the aims of this thesis is to develop techniques to reconstruct individuals’ movement 

behavior in geographic space on the basis of a test CDR data set of 6 mobile phone users 

in Estonia over a one month period. Furthermore, the methods developed in the study are 

validated by assessing the accuracy of the reconstructed trajectories by comparing them to 

GPS data of the same users having a much finer temporal and spatial granularity. This 

thesis is therefore a response to the urgent need for validation of CDR methods as ascer-

tained by Smoreda et al. (2013). The last aim of this thesis is to investigate which properties 
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of the CDR data have an impact on the accuracy of the reconstructed trajectories. The 

intention is to make statements regarding CDR data conditions under which a better quality 

of trajectory reconstruction is to be expected. To address the above-mentioned aims the 

following research questions (RQs) will be examined: 

RQ 1: How can mobile phone users’ trajectories be reconstructed from sparsely sampled 

CDR data? 

RQ 2: In order to validate the trajectory reconstruction methods developed in this study, 

what level of similarity can be achieved by comparison of the reconstructed trajectories with 

higher resolution GPS trajectories of the same journeys?  

RQ 3: Which properties of the CDR data, such as sampling properties or trajectory length, 

affect the accuracy of the reconstructed trajectories?  
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3 Overview of the overall workflow and the software used  

This chapter gives a brief overview of the Chapters 4 - 6, which constitute the methodolog-

ical part of this thesis, and introduces the software that was used.  

Chapter 4: Description and pre-processing of the data 

A description of the main characteristics of the initial CDR, GPS and OpenStreetMap (OSM) 

road network is given in the first part of Chapter 4. In a second part, the pre-processing and 

filtering steps applied to the different data sources are described. The positioning data are 

partitioned into temporal units suitable for analysis. The road network needs to be made 

routable and implemented as a graph, in order to be able to use it for routing purposes.  

Chapter 5: Development of methods to reconstruct trajectories from CDR data 

In Chapter 5, methods are developed to reconstruct paths from sparse CDR data. In a first 

step, CDR fixes are matched to nodes on the graph, and in a second step, shortest paths 

are computed between the identified nodes.  

Sections 6.1-6.4.1: Validation of trajectory reconstruction methods by comparison of 

reconstructed paths to ground truth 

The validation of the developed trajectory reconstruction methods is done by comparing the 

reconstructed paths to the ground truth which is derived from the GPS data. Therefore, a 

range of similarity measures is proposed and implemented.  

Section 6.4.2: Impact of CDR data properties on accuracy of trajectory reconstruction  

In Section 6.4, the similarity measures are investigated with respect to the properties of the 

CDR data that the trajectory reconstruction is based on. The aim is to make statements 

regarding data conditions (e.g., a notion of minimum number of CDR fixes) under which a 

higher accuracy of trajectory reconstruction is to be expected.  

Software used 

For the implementation of the above-mentioned steps, the Integrated Development Envi-

ronment (IDE) Eclipse (2014) based on Java (2014) was used. For many spatial function-

alities and operations GeoTools (2014) – an Open Source Java Library – was accessed. 

Furthermore, Maven (2014), a Software Project Management Tool, was used. For visuali-

zation purposes, besides mapping options provided by GeoTools, ArcGIS 10.2 (2014), a 

commercial GIS software of ESRI (2014), was used. Microsoft Office Excel 2013 (Microsoft, 

2014) and the IDE RStudio (2014), based on the R environment (R-project, 2014), were 

applied for statistical analyses and visualizations. 
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4 Data and pre-processing 

4.1 Overview 

The following chapter describes the initial positioning and road network data and the pre-

processing steps applied to the different data sources.  

 

Figure 3: Workflow of the pre-processing of the positioning data 

The original one month CDR and GPS data of the six mobile phone users are described in 

Section 4.2. The following pre-processing steps, as visualized in the workflow in Figure 3, 

are undertaken for the positioning data: The time zone is converted to make it identical for 

the GPS and the CDR data and the coordinate system is transformed from a spherical to a 

Cartesian one (Section 4.3.1). The one month data for the six users is subsequently divided 

into analyzable daily segments (Section 4.3.2). The daily CDR and GPS files are subse-

quently clipped according to the time frame of each other, in order to ensure that the ana-

lyzed time periods of the two data sources are identical and therefore comparable (Section 

4.3.3). In the last step, the daily segments, unsuitable for the analysis, are excluded from 

the data sample (Section 4.3.4). 

 

Figure 4: Workflow of pre-processing of the OSM road network  

Figure 4 shows the workflow of the OpenStreetMap (OSM) data pre-processing, which is 

described in Section 4.4. In a first step, the original road network is made routable (Section 

4.5.1). In a second step, the routable road network data is transformed into a graph model 

(Section 4.5.2).  

4.2 Positioning data 

The CDR and GPS data of six mobile phone users from Estonia – referred to as users 1, 3, 

4, 5, 6, 72 – for the month of June 2013 have been used for this study. Every time a mobile 

phone user initiates a phone activity (such as a call, a SMS, or a MMS)3 the location of the 

antenna that routes the phone activity and the starting time of the respective interaction are 

registered as one entry into a log file. A GPS device, which is integrated into a user’s mobile 

phone, continuously registers the locations and the corresponding times. In the following, 

                                                
2 The users expressed their consent to use the data. The data of user 2 were not used for this study because 
it originates from a different mobile phone operator.  
3 In the following, the two terms “CDR fixes” and “phone activities” are used interchangeably both referring to 
initiated – not received – calls, SMS and MMS by a user.  
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the aforementioned registered CDR and GPS entries are referred to as CDR and GPS fixes, 

respectively. Table 1 shows the number of CDR and GPS fixes available of the different 

users. It can be seen that there are considerable differences in terms of number of CDR 

fixes and GPS fixes. While user 1 has 75 CDR fixes in total, which corresponds to 2.5 fixes 

per day on average, user 4 has 292 fixes in total, which corresponds to 9.7 fixes per day on 

average. It is also observable that the number of CDR fixes does not correlate with the 

number of GPS fixes. User 1, for instance, with the highest number of GPS fixes has the 

lowest number of CDR fixes. 

Table 1: Initial number of CDR and GPS fixes per user 

User Number of CDR fixes Number of GPS fixes 

1 75 207’889 

3 219 139’208 

4 292 184’617 

5 79 135’519 

6 152 110’382 

7 169 26’262 

4.2.1 CDR data 

Table 2 shows an excerpt of the original CDR data. Notably, the CDR data features (a) the 

user id, (b) the date and time (Eastern European Summer Time (EEST) with the precision 

of a second) of the outgoing phone activity, and (c) the longitude and (d) the latitude in 

World Geodetic System 1984 (WGS 84) coordinate system of the antenna to which the 

mobile phone was connected during the activity. Good descriptions of the CDR data, similar 

to the one used in this study, are provided in Ahas et al. (2010b, 2009) or Järv et al. (2014).  

Table 2: Excerpt from the original CDR data of user 6 

Non-identifiable user ID Start Time (EEST) Longitude  Latitude 

6 01.06.2013 11:49:15 26.7305472 58.3802722 

6 01.06.2013 13:40:18 26.7305472 58.3802722 

6 01.06.2013 17:03:35 26.73 58.3669444 

6 01.06.2013 18:54:02 26.72025 58.3802444 

6 01.06.2013 22:31:06 26.7205555 58.3813888 

6 01.06.2013 22:53:48 26.7202666 58.3925 

User ID 

CDR data are pseudonymous and with the consent of a mobile phone user it is possible to 

identify his unique pseudonym. The CDR and GPS data owners are matched when already 

known GPS users ask their billing extraction from the mobile operator and then this is used 

to find the user ID from a large pseudonymous CDR database. 
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Temporal Resolution 

The temporal resolution of the CDR data is highly dependent on the frequency of phone 

activities a mobile phone user initiates (but not receives in the case of this study). There 

might be a gap of a couple of seconds up to several hours between two consecutive phone 

activities. On average, the users in the data sample make about 6 phone activities per day. 

Therefore the temporal resolution of the data, on an individual level at least, is rather coarse. 

Spatial Resolution 

The spatial accuracy of the CDR data is inherent to the structure of the antenna network, 

which reflects the population density patterns and the transportation infrastructure (Ahas et 

al., 2010b). Voronoi cells4 define the area closest to each antenna. They are a frequently 

used approximation of the area where the mobile phone user can be assumed to be located 

during the phone activity (Ahas et al. 2009). If the antenna is very crowded or the visibility 

of the antenna is disturbed, the mobile phone might switch to any other antenna in the 

neighborhood (Ahas et al., 2010b). The spatial accuracy is dependent on the sizes of the 

Voronoi cells. These again are dependent on the density of the antennas. According to 

Ahas et al. (2008b) in Estonia’s biggest cities Tallinn, Tartu and Pärnu, location accuracies 

between 100 and 1000 m may be expected. In suburban regions, spatial accuracies vary 

between 450 m and 2 km. Rural areas, which are mostly unpopulated such as Estonia’s 

remote wetland areas, have a spatial accuracy between 1.5 and 20 km (Ahas and Laineste, 

2006). Based on the calculation of the theoretical positioning error on 180’000 positioning 

measurements, Ahas et al. (2007b) show that the accuracy of mobile positioning data in 

Estonia is within 1000 m for 61% of the positioning points in urban areas and within 3000 

m for 53% of the positioning points in rural areas.  

Availability of the data 

CDR data is automatically stored for all mobile phone users in any mobile phone operator’s 

network according to the billing purposes and data retention directives from the EU (e.g., 

European Parliament, 2002). TNS EMOR (2014) omnibus survey in Estonia considering 

mobile phone penetration initiated by Ahas et al. (2010b) showed that 95% of the population 

has a mobile phone. Private company Positium LBS (2014) purchases this billing infor-

mation in a pseudonymous form and this information is delivered with a fixed interval to 

Positium’s servers. Currently Positium LBS handles mobile positioning data from all three 

Estonian mobile phone operators: EMT, Elisa and Tele2. The one month CDR data for the 

six users in this study is provided by Positium LBS in collaboration with its long-standing 

partner in academia, the Geography Department of the University of Tartu. 

Summary 

A summary of the most important features of the CDR data is given in Table 3.  

                                                
4 Given a set of discrete points in a metric space, the Voronoi cell of such a point is the set of points in that 

space that are closer to that point than to any other point, a Voronoi diagram is then the set of all those Voronoi 

cells (Aurenhammer, 1991). 
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Table 3: Summary of the most important features of the CDR data 

Spatial Resolution Temporal Resolution Availability 

 Area of Voronoi cell (ap-
proximation) 

 Dependent on density of 
mobile phone network:  

 Urban area: Ø 1000m 

 Rural area: Ø 3000m 

 Dependent on number of 
phone activities 

 6.17 phone activities / day 
for original data in this 
study 

 Potentially of total popula-
tion (95% mobile phone 
penetration in Estonia) 

 6 test users in this study 

4.2.2 GPS data 

For each user a file of one month GPS data collected with an Android application for the 

month of June 2013 is available for this analysis. Table 4 shows an excerpt of the original 

GPS data of user 1. A GPS entry features the following attributes: (a) time of observation in 

milliseconds elapsed since start of Unix epoch (00:00:00 Coordinated Universal Time (UTC) 

on January 1, 1970) with the precision of a second, (b) the longitude, and (c) the latitude of 

the mobile phone at the respective time, as well as (d) the speed of the mobile phone in 

m/s. The speed measurements are not used in this study. The other attributes are further 

described in the following. 

Table 4: Excerpt from the original GPS data of user 1 

Time (Unix timestamp) Longitude Latitude  Speed (m/s) 

1371825786000 59.423379 24.7956574 2.125 

1371825787000 59.4233822 24.7956957 1.6875 

1371825788000 59.4233854 24.7957276 1.375 

1371825789000 59.4233869 24.7957496 0.875 

1371825790000 59.4233903 24.7957664 0.4375 

1371825791000 59.4233928 24.7957846 0 

Temporal Resolution 

The temporal resolution of the GPS data is dependent on how much the person moves. If 

the mobile phone is stationary over a longer period, GPS positions are not further registered 

to save the battery life of the device. If the mobile phone is moved, the frequency of time-

referenced points registered differs depending on the movement speed. The higher the 

speed, the more entries are registered. The GPS data in this study have an average time 

between consecutive GPS fixes of 19 s. The deviation, however, is very high. 

Spatial Resolution 

Reviewing the literature, horizontal positioning errors of GPS devices can be found between 

approximately 2 and 25 m, depending on (amongst other factors) the measurement condi-

tions (environment) and the devices used (Haklay and Weber, 2008; Kuter and Kuter, 2010; 

Sigrist et al., 1999; Wing and Eklund, 2007). A typical horizontal positional error, which is 

indicated in a manufacturer’s technical specifications, would be less than 7 m in 95% of the 

cases (Thales, 2005). It can be assumed that the horizontal positioning error in this study 

is approximately within the same range, without knowing the exact specifications.  
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Availability  

GPS data is only gathered if the respective people are in accordance with actively being 

traced and have signed an agreement. Mobility Lab of University of Tartu is collecting GPS 

data of approximately 60 volunteers in Estonia (MobilityLab, 2014). The number of partici-

pating people is increasing as new volunteers are continuously found. The mobile phones 

of the respective people are provided with a GPS chip and an Android platform, where 

special software is installed. This software collects and transmits the data securely into the 

Mobility Lab database when an internet connection is available. 

Summary 

A summary of the most important features of the GPS data is provided in Table 5. 

Table 5: Summary of the most important features of the GPS data 

Spatial Resolution Temporal Resolution Availability 

 Approx. < 7 m  Depending on speed 

 Approximately every 19 s  
 

 People need to be actively 
traced 

 The same 6 test users 

4.3 Pre-processing of positioning data 

4.3.1 Time zone conversions and coordinate system transformation 

To be able to compare CDR and GPS data, the time indications need to be within the same 

time zone. The CDR data which is in Eastern European Summer Time and the GPS data 

which is in UTC are therefore transformed to the computer time, which is Central European 

Summer Time (CEST). Since the data was collected in June 2013, summer time is relevant. 

Therefore one hour is subtracted from the time of the CDR data and two hours are added 

to the time of the GPS data. Due to the time transformation, the first CDR fix of user 3 – at 

00:28:41 in EEST and at 23:28:41 in CEST –  is preponed to the May 31, 2013. This CDR 

fix is manually deleted from the original CDR data file.  

The original CDR and GPS datasets are converted from the geographic WGS 84 to the 

projected coordinate system Universal Transverse Mercator (UTM) zone 35N5 in which Es-

tonia is mostly contained. UTM uses a 2-dimensional Cartesian coordinate system.6 Since 

the Cartesian coordinate system is built upon two perpendicular axes and the unit is m, 

distance calculations are facilitated. 

4.3.2 Segmenting the CDR data 

To calculate trajectories, the temporal frame of reference to investigate needs to be defined. 

Figure 5 shows a typical phone activity frequency distribution over the period of a week. A 

diurnal pattern is clearly distinguishable (Csáji et al., 2013; Järv et al., 2012). The threshold 

time that divides the data could be set to the time with the minimum mobile phone activity, 

                                                
5 http://spatialreference.org/ref/epsg/wgs-84-utm-zone-35n/ (accessed 10.5.2014) 
6 For further information check the ArcGIS Resource Center http://help.arcgis.com/en/arcgisdesk-
top/10.0/help/index.html#/Universal_Transverse_Mercator/003r00000049000000/ (accessed 10.5.2014) 

http://spatialreference.org/ref/epsg/wgs-84-utm-zone-35n/
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which could be referred to as “functional midnight”. According to Figure 5, this would be 

between 4 and 6 o’clock, depending on whether it is a workday or a weekend day. For 

simplicity, in this study the CDR data is divided into daily segments based on the date. 

Consequently, the basic temporal unit that is investigated corresponds to one day, which 

starts at 00:00 and ends at 23:59. Given that the algorithm uses computer time the threshold 

is set to 24:00 CEST, which corresponds to 01:00 EEST. The time lag of one hour is un-

problematic though because, as mentioned before, the functional midnight would be later 

than midnight.  

 

Figure 5: Average phone activity dynamics (Csáji et al., 2013) 

The fixes belonging to one unit of analysis are stored in daily segments maintaining all 

spatial and temporal attributes, as well as the mobile phone user’s ID. The files are desig-

nated in the following manner: x_1306dd (“x” representing the user number, “13” the year 

of 2013, “06” the month of June, and “dd” the day of the month). Through the partitioning, 

156 and 165 separate CDR and GPS daily segements are created, respectively. Table 6 

shows the statistics for the daily CDR files of each user. The average number of fixes per 

day varies between 3.2 and 9.7 for the different users. Comparing the average number of 

fixes per day to the average number of fixes from different locations (via different antennas) 

per day, it is observable that the former is considerably higher than the latter. This second 

number is important, because consecutive fixes with identical position are of no use for the 

trajectory reconstruction methods used later on.  

Table 6: Statistics for daily CDR segments per user 

User Num-
ber of 
days 

Average 
number 
of fixes 
per day 

Average num-
ber of fixes 
from different 
locations per 
day 

Average total 
time between 
first and last fix 
[min] 

Average mean 
time between 
consecutive fixes 
[min] 

Average total dis-
tance between first 
and last fix [m] 

Average mean 
time between 
consecutive 
fixes [m] 

    Only daily segments with n>1 considered for these statistical values 

1 21 3.6 2.4 420.6 169.9 54'167.6 10'617.2 

3 24 9.1 3.0 584.2 79.1 37'341.7 5'994.7 

4 30 9.7 4.9 624.8 93.0 90'744.9 11'532.2 

5 25 3.2 1.8 313.7 124.3 27'116.9 4'795.5 

6 27 5.6 3.7 540.3 118.8 37'483.9 6'820.5 

7 29 5.8 3.2 456.2 126.0 4'810.0 1'093.7 
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4.3.3 Clipping the CDR and GPS daily segments for similar time frames 

Schematic representation of the CDR and GPS data clipping 

 

Figure 6: Principle of the clipping of the daily segments: fixes crossed out in grey are discarded due to lack of 
corresponding data of the opposite data source 

The daily segments, generated as described in the previous Section 4.3.2, are clipped ac-

cording to the schematic representation in Figure 6. In a first step, the CDR data are clipped 

to the time frame given by the first and the last fix of the GPS data plus a 30 min tolerance. 

The tolerance guaranties that CDR fixes shortly before the first GPS position and after the 

last GPS position are not excluded. Without such a tolerance, the fourth CDR fix, lying in 

the blue hatched area of the schematic representation in Figure 6, would have been dis-

carded, although this fix would have been informative for the prediction of the movement 

registered by the GPS device. In a second step, the GPS fixes are clipped to the time frame 

given by the first and the last fix of the already clipped CDR data.  

The reason for the clipping is that validation by comparison of the two data sources is only 

logical for corresponding time frames of the GPS and the CDR data. It does not make sense 

to keep CDR data for time periods with no ground truth (GPS) data available. The opposite 

is also true, no ground truth data should be kept for time periods when no path reconstruc-

tion is feasible due to lack of CDR data. As consequence of the clipping, it is possible that 

complete CDR daily segments are deleted because there is no corresponding GPS data of 

the respective time period available and vice versa. Out of 156 CDR daily segments, 17 are 

excluded because there was either no corresponding GPS segment or no temporal overlap 

of the CDR and the GPS daily segments. Hence, 139 GPS – CDR comparison cases are 

remaining after the clipping.  

4.3.4 Excluding daily segments unsuitable for reconstruction 

The disqualification criteria for the daily segments vary by the two data types that are used. 

These are described in the following two sections. Obviously, if a CDR daily segment is 

excluded for further analysis, the corresponding GPS segment is excluded as well and vice 

versa.  
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4.3.4.1 Exclusion of unsuitable daily CDR segments 

As an absolute precondition for trajectory reconstruction, at least two fixes from different 

places per day are required. Therefore, daily segments consisting of less than two fixes 

from different places are excluded from the data sample. In this way, 37 daily segments are 

disqualified, 20 of which consisted of only one CDR fix. Hence, out of the 139 comparison 

cases, 102 are left for further investigation.  

4.3.4.2 Exclusion of unsuitable daily GPS segments 

To exclude daily segments in which the original GPS points show excessively large spatial 

gaps between consecutive points, a maximum tolerable gap length is defined. To define 

such a threshold, all the gap lengths between consecutive fixes of all the clipped daily GPS 

segments, which are supposed to serve as ground truth, are extracted. Subsequently, the 

extracted gap lengths are classified into groups of 50 m each. Figure 7 shows a frequency 

diagram for the different gap length classes in a logarithmic scale. The orange strokes indi-

cate values where changes in the frequency distribution are discernible. They represent 

candidate thresholds. In this study, the maximum gap length tolerated is set to 700 m, since 

this is the stricter threshold between the two candidates. If this threshold is exceeded, the 

respective daily segment is excluded for further analysis.  

 

Figure 7: Frequency diagram representing the number of gaps as a function of their lengths  
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Figure 8 shows the number of affected daily segments as a function of the maximum toler-

ated gap length between consecutive GPS fixes. With a threshold set to 700 m, 21 seg-

ments are excluded (as indicated with the orange stroke) from the 102 daily segments. 

Hence, the data sample is reduce to 81.  

 

Figure 8: Diagram representing number of daily segments to exclude as a function of the tolerated maximum 
gap length between consecutive GPS fixes 

4.4 OSM road network data 

The road network data is from OpenStreetMap (OSM, 2014). OSM is the “Wikipedia of 

maps”. It is a community project and its content is generated by volunteering contributors 

(Haklay and Weber, 2008). The biggest advantage of OSM is that the data are freely avail-

able to everyone. One of the disadvantages is that there is no guarantee of comprehensive-

ness, consistency and correctness (Mondzech and Sester, 2011). Haklay (2010) reported 

a geometric accuracy of the OSM data between 5 and 20 m for the city of London. The 

coverage of OSM data differs highly according to the region; especially in rural areas there 

are still blank parts.  

The features in the OSM data are tagged with so-called key-value combinations. A key 

describes the broad class of the feature and the value gives further details about the feature 

that was classified with a tag (OSM, 2014). The key “highway”, for example, describes any 

road connecting one location to another that has been paved or otherwise improved to allow 

passage by motorized vehicles, cyclists, pedestrians and others (OSM, 2014). The value, 

which might be “motorway”, “primary”, “residential”, etc., gives further details about the type 

of the feature generally classified as “highway”.  

OSM data for most of the countries are downloadable as shapefiles on Geofabrik (2014). 

Geofabrik provides the OSM data in a zip file per country or a bigger region in the osm.bz2 

data format which yields an OSM XML after decompression. The Estonia “estonia-lat-

est.osm.bz2” zip file for this thesis was downloaded on October 30, 2013.  
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4.5 Pre-processing of OSM road network data 

4.5.1 Making OSM road network routable 

On the Geofabrik homepage it is also possible to directly access the roads of Estonia as 

ESRI compatible shape file. This file, however, is not routable, which implies that it is not 

suitable for graph processing, such as a shortest-path computation. Since a shortest-path 

algorithm needs to be implemented, the original OSM data needs to be accordingly pro-

cessed. The program OSM to RouteWare v.1.07c downloaded from Routeware (2014) was 

therefore used. According to RouteWare (2014) the program is designed to make the OSM 

data routable and highlight errors in the data. Graser and Straub (2013) give an overview 

of the characteristics a road network should feature, in order to be suitable for routing pur-

poses. The unzipped “.osm” file containing all data from Estonia serves as input to the OSM 

to RouteWare program. As output a shapefile called “roads.shp” is generated. Table 7 gives 

an overview of the attributes that come with each road feature represented as polyline.  

Table 7: Attributes of routable road features 

Attribute Description 

OSM ID Unique number of the OSM feature (e.g., “128743565”) 

Name (optional) Name of the feature (e.g., “Raudtee”) 

Reference (optional) Reference of the feature (e.g., “Interstate 12” or “A1”) 

Type Value of OSM key “highway” or ferry ( e.g., “secondary”) 

Attribute in RW Net format A number defined by RouteWare describing the road class 

Max Speed (optional) Speed limitation in in km/h, available for the features tagged 
with the OSM key “maxspeed” (e.g., “90”) 

Duration  Time to travel the edge in min, only available for a few ferry 
edges (if not available duration = 0) 

When visually comparing the original roads shape file of OSM to the roads shape file made 

routable by OSM to RouteWare, the following main differences are discernible:  

 Highways tagged with the following values are excluded from the original roads file: 

‘path', 'track', 'pedestrian', 'cycleway', 'footway', 'proposed', 'construction', 'raceway', 'bri-

dleway'. In summary, roads that are not traversable by cars are excluded. 

 Lines tagged with the value ‘ferry’ out of the class with the key “route” are added to the 

routable road network. The original roads file from OSM only contains features with the 

key “highway”.   

 The lines in the routable shape file are split at all intersections. This is needed for the 

routing. Ferry edges, however, are never split. This makes sense since ferries cannot 

be switched once one is upon them. 
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Figure 9: OSM7 road network of Estonia, showing the added and removed lines  

Figure 9 shows the edges which are added (blue, ferry lines) or removed (brown, roads not 

traversable by cars). In terms of length, the original shape file with a total length of 48’700 

km is 15% longer than the routable shape file with a total length of 41’200 km.  

4.5.2 Transforming OSM road network to a GeoTools graph model 

The polylines stored in a roads shape file, usable for routing purposes, must now be trans-

formed into a graph model. A graph consists of a set of nodes connected by edges. The 

edges might have additional attributes such as maximum speed, driving directions, etc. Cao 

and Krumm (2009) present in their paper how a graph can be generated out of trips regis-

tered as GPS traces.  

The LineStringGraphGenerator of GeoTools (2014) is used to generate an undirected graph 

– comparable to the graph representation used in Crucitti et al. (2008) – out of the shape 

file consisting of multiline features representing roads. A detailed description is available on 

the homepage8. Before turning the polylines into the edges of the graph, their coordinates 

are transformed from the global coordinate system WGS 84 to the Cartesian coordinate 

system UTM Zone 35N, which is also used for the positioning data (see Section 4.3.1). The 

intersections between the edges represent the nodes of the graph. The generated graph 

consists of 99’299 nodes and 123’976 edges. Since the graph is undirected, there is no 

information available about the direction of the traffic on a specific edge.  

                                                
7 © OpenStreetMap contributors for all the maps in this thesis, http://www.openstreetmap.org/copyright (ac-
cessed 13.6.2014) 
8 http://docs.geotools.org/latest/userguide/extension/graph/index.html (accessed 10.5.2014) 
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4.6 Possible CDR, GPS, OSM data constellation 

 

Figure 10: Initial OSM, CDR, GPS constellation (subset of CDR / GPS data of user 4, 03.06.2013) 

After the above-described pre-processing, a CDR GPS data constellation could appear as 

the example visualized in the map in Figure 10. In the following Chapter 5, the aim is to 

reconstruct the trajectory out of the CDR data and thereby try to come as close as possible 

to the movement expressed in reality, which was registered by the GPS device.  
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5 Trajectory reconstruction based on CDR data 

5.1 Overview 

The focus in this chapter is on the development of methods to reconstruct trajectories from 

the pre-processed CDR segments. The flow chart in Figure 11 illustrates the steps the tra-

jectory reconstruction is composed of.  

 

Figure 11: Workflow of trajectory reconstruction 

Firstly, the pre-processed daily segments of CDR fixes are matched to a node on the road 

network. Seven different rules are applied in order to find the most probable node on the 

graph to which the user realistically might have been closest. Secondly, the shortest path 

is computed between the identified nodes on the network. This results in a set of edges that 

constitute the reconstructed path.  

5.2 Matching CDR data to a node on the network 

A straightforward but not very accurate approach, to reconstruct the trajectories, would be 

to connect the consecutive locations where mobile phone activities took place. There are at 

least two critical issues regarding this approach: Firstly, the location of the cell tower is, 

most of the time, not a good approximation for the place where the actual phone activity 

was initiated. Secondly, as Brinkhoff (2002) states, most human movements take place on 

a network. Thus, it makes sense to take some kind of network into consideration. The net-

work is provided by the OSM road network data as described in Section 4.4. 

In a first step, the CDR fixes need to be matched to the road network. Therefore, the follow-

ing different map-matching (MM) approaches are proposed and further described in the 

following sections: A straightforward approach is to identify the node on the road network 

lying closest to the antenna position (Section 5.2.1). A reasonable assumption would be 

that a mobile phone user might be anywhere within the area that is closest to the respective 

antenna that routed the phone activity. This region is described by a Voronoi diagram (Sec-

tion 5.2.2). Based on the Voronoi cells, it is possible to compute the center of gravity and 

subsequently find its closest graph node (Section 5.2.3). By intersecting the Voronoi dia-

gram with the graph nodes, candidate nodes, representing the potential whereabouts of the 

mobile phone user, can be identified. Based on the characteristics of the nodes, the most 

probable location amongst the candidate nodes can be identified (Section 5.2.4). Finally, it 

is also possible to identify the candidate edges by intersecting the edges with the respective 

Voronoi cell, and subsequently, base the choice of the most probable edge on characteris-

tics of the edges (Section 5.2.5).  

A 
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5.2.1 MM method 1: Approach relying on proximity of nodes to antenna 

The most straightforward approach to come from the antenna position to a node on the road 

network is to go through all the graph nodes and determine the node with the shortest Eu-

clidean distance to the antenna (cf. point-to-point matching described in White et al. (2000)). 

The estimation of the location of the mobile phone in the place of the antenna is an inaccu-

rate localization technique, but since it is a straightforward one, this technique is frequently 

used in literature (Csáji et al., 2013). The algorithm devised for MM method 1 works in the 

following manner:  

Algorithm MM method 1: Find the closest graph node to an antenna 

Input:  
Graph graph 
Antenna antenna //antenna which is supposed to be map matched to a graph node 
Output: 
Node nearestNode //nearest node of the graph to the input antenna 
Initialize: 
Double shortestDistance //initially set to a high number 
Node nearestNode //initially set to zero 
 
for (Node node : g.getNodes()) //iterate through all graph nodes 
 Node currentNode = node;  

Double currentDistance = Euclidean Distance between currentNode and an-
tenna 

 If currentDistance < shortestDistance  
  shortestDistance = currentDistance 
  nearestNode = currentNode 

 

Figure 12 shows the visualization of a subset of the data of user 4. The closest node, de-

picted in red, will be stored amongst the set of destination nodes used for the shortest-path 

computation in a further step.  

 

Figure 12: Node on the road network closest to the CDR fix (subset of CDR data of user 4, 03.06.2013) 
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5.2.2 Computing the Voronoi diagram 

The map-matching methods described in the following Sections 5.2.3 - 5.2.5 are based on 

the identification of the Voronoi cells that surround each antenna. The Voronoi diagram is 

computed on the basis of the antenna locations extracted from the CDR files and additional 

antenna locations, which were provided, with a slight positional shift due to data security 

reasons, by Positium LBS (2014). The resulting static map of antennas consists of the 1052 

antenna positions available in June 2013, of which 96 positions are extracted from the six 

one month CDR files. Figure 13 shows the Voronoi diagram computed with help of the 

VoronoiDiagramBuilder9 provided by GeoTools (2014). A Voronoi diagram tessellates a 

metric space into a cell for each antenna site based on the Euclidean distance 

(Aurenhammer, 1991). All points included in the resulting Voronoi cell surrounding a partic-

ular site are closer to this site than to all the other sites. Points lying on the segments of the 

Voronoi cells are equidistant to two antenna sites. A clear overview of how to construct a 

Voronoi diagram based on the antenna locations is given in Waadt et al. (2009). 

 

Figure 13: Voronoi cells describing the area closest to each antenna (Estonian mobile phone operator’s anten-
nas, partially slightly shifted, June 2013) 

                                                
9 http://tsusiatsoftware.net/jts/javadoc/com/vividsolutions/jts/triangulate/VoronoiDiagramBuilder.html (accessed 
11.5.2014) 

http://tsusiatsoftware.net/jts/javadoc/com/vividsolutions/jts/triangulate/VoronoiDiagramBuilder.html
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Voronoi cells are a common approximation of the geographical areas of cell coverage (e.g., 

Doyle et al., 2011; Frias-Martinez et al., 2010; Waadt et al., 2009; Zang et al., 2010). They 

are easy to compute and result in non-overlapping regions, which facilitate the non-ambig-

uous assignment of an individual’s location to the area of the Voronoi diagram. The approx-

imation of a cell’s geometry by a Voronoi diagram is based on the assumption of free room 

propagation, all antennas having equivalent radiated power, and both phone and antenna 

software will look for the best service (Waadt et al., 2009). 

5.2.3 MM method 2: Approach relying on center of gravity of Voronoi 

cells 

A common approach in literature (e.g., Doyle et al., 2011; Smoreda et al., 2013; Waadt et 

al., 2009) to approximate a user’s location as a point is to use the center of gravity of a 

polygon. Similarly to Doyle et al. (2011), the centers of gravity of the Voronoi cells are used 

as an approximation for the location where the individual is assumed to be. Waadt et al. 

(2009) argue that the estimation error of the mobile station’s location can be minimized by 

taking the cell’s center of gravity instead of the location of the antenna.  

The center of gravity was calculated using the getCentroid10 function provided by GeoTools 

(2014). Figure 14 shows the center of gravity in contrast to the antenna location. In a second 

step, the estimated location by the centroid function needs to be map matched to a node of 

the graph model. This is done in a fashion similar to that described in the algorithm in Sec-

tion 5.2.1. The node lying closest to the center of gravity indicates the estimated location of 

the user and will be used as a basis for the path calculation in a further step.  

 

Figure 14: Center of gravity of the Voronoi cells used (subset of CDR data of user 4, 03.06.2013) 

                                                
10 http://www.vividsolutions.com/jts/javadoc/com/vividsolutions/jts/geom/Geometry.html#getCentroid%28%29 
(accessed 12.5.2014) 
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5.2.4 MM method 3 and 4: Approaches relying on degree centrality of 

nodes 

The two approaches described in this section are both based on a pre-selection of candi-

date nodes. Therefore candidate nodes that are contained by a Voronoi cell are identified 

and stored in sets of candidate nodes. One cell contains on average 94 nodes.  

MM methods 3 and 4 are based on the assumption that there is a higher probability of 

locating mobile phone users accurately when identifying nodes of high importance. To de-

termine the importance of a node, the degree centrality measure is used. According to Jiang 

and Claramunt (2004) and Crucitti et al. (2008) the degree centrality is a topological cen-

trality measure expressing the relationship of a node to its (immediate) neighbors. It can 

also be considered a local centrality measure, since it only considers the neighborhood, 

and not the graph as total, as a global centrality measure would (Jiang and Claramunt, 

2004; Jiang and Harrie, 2004).  

MM method 3 counts the number of adjacent edges of a node. Since the algorithm only 

considers the immediate neighbor edges, the centrality is called “one-level” degree central-

ity. MM method 4 additionally considers the number of adjacent edges of the considered 

node’s neighbor nodes. Since it considers two levels of neighbors, this measure is called 

“two-level” degree centrality. In both methods, the node with the highest one-level and two-

level degree, respectively, is determined as the mobile phone user’s location amongst the 

candidate nodes. If there are multiple nodes achieving the highest identical degree central-

ity, the algorithm qualifies the first node of the candidate set as the “most central” one. This 

introduces a certain degree of randomness. Figure 15 shows the nodes with the highest 

one-level and two-level degree centralities, respectively.  

 

Figure 15: Highest one-level and two-level degree centrality (subset of CDR data of user 4, 03.06.2013) 
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5.2.5 MM methods 5-7: Approaches relying on edge-based criteria  

MM methods 5-7 are based on the identification of candidate edges prior to defining, with 

the highest probability and based on various assumptions, the edge where the mobile 

phone user might have been located.  

Two-level heuristic to identify the candidate edges 

A two-level heuristic to identify the candidate edges, where the user might have been lo-

cated during a phone activity, is used. In the first step, all edges are chosen as potential 

edges that lie entirely inside a Voronoi cell. If no edge is entirely contained in a Voronoi cell, 

then edges that only intersect (are partially contained in) the Voronoi cell are identified as 

candidate edges. On average, there are 120 entirely contained and 126 intersecting edges 

per Voronoi cell. There are seven Voronoi cells that do not entirely contain an edge. If, from 

the beginning, all the edges that intersect the cell would be considered as candidate edges, 

the case would occur in which an edge that overlaps two consecutively used Voronoi cells 

would qualify twice as a probable location. In this case, trajectory reconstruction could not 

be performed between the two respective locations. The decision regarding the identifica-

tion of candidate nodes based on intersect or contain operations has consequences for 

expectations of movement between two neighboring Voronoi cells to happen or not. In this 

study, it is expected that a movement was expressed by the user when the mobile phone 

is connected to different neighboring antennas in consecutive phone activities.  

MM method 5: Find the edge with the highest road category 

MM method 5 is based on the road type, which is stored as an attribute for each edge. The 

algorithm for MM method 5 iterates through the whole set of candidate edges and retrieves 

the associated road type of each edge. The road type, which is a nominal value, is subse-

quently ranked according to its “semantic” importance on the ordinal scale represented in 

Table 8. The underlying assumption is the following: The higher the score, the more im-

portant is the road, and consequently the higher is the probability that the mobile phone 

user was located on the respective edge. 

Table 8: Assigning a ranking to road types 

Road type  Ordinal scale 

Motorway 11 

Trunk 10 

Trunk edge 9 

Primary 8 

Primary edge 7 

Secondary 6 

Secondary edge 5 

Tertiary  4 

Tertiary edge 3 

Residential 2 

Remaining categories 1 



 5 TRAJECTORY RECONSTRUCTION BASED ON CDR DATA 

37 

MM method 6: Find the edge with the highest speed limitation 

The algorithm of MM method 6 works in a similar fashion to MM method 5, except that the 

considered attribute is speed. The advantage of the speed attribute is that it is a ratio vari-

able. Comparisons between ratio values are feasible without the necessity of a prior rank-

ing, as was the case for the road types. The underlying assumption is again, that edges 

with higher speed limitations are considered as more important and consequently more 

frequented roads. Therefore, the probability of an accurate location of a mobile phone user 

is higher at these edges.  

MM method 7: Find the longest edge  

In contrast to MM methods 5 and 6, which are based on an edge attribute, MM method 7 is 

based on a geometric attribute, namely the length of an edge. For MM method 7, all points 

inside the intersection of the network and the Voronoi cell are assigned an equal probability. 

This uniform distribution gives no preference to one point over another. With these assump-

tions, a user is more likely to be found on a longer edge, since it contains more probable 

positions than a shorter edge. Therefore, in MM method 7 edges are rated according to 

their length. 

Figure 16 shows the identified edges based on the respective edge-based criterion that has 

been used. As in MM methods 3 and 4, in MM methods 5-7 edges that are in a higher 

position in the candidate edge set are favored. This is due to the fact that as soon as the 

first edge reaches the highest value of the respective criterion among the candidate set, 

further edges which yield equally high values are no longer considered. This again intro-

duces some randomness into the edge selection process. The shortest-path algorithm, de-

scribed in Section 5.3, only takes nodes as input. For this reason, one of the end nodes of 

the respective identified edge is considered as the estimated location of the mobile phone 

user during the phone activity.  

 

Figure 16: Edges identified on edge-based criteria: the two criteria highest road category and maximum speed 
identify the same edge, the respective road category (secondary) and the maximum speed (50km/h) are indi-
cated (subset of CDR data of user 4, 03.06.2013) 
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5.2.6 Pre-validation of CDR map matching 

Before the identified graph nodes are used as inputs for the shortest-path computations, a 

quality estimation for the different map-matching methods is made. As described in Waadt 

et al. (2009) and Zang et al. (2010), the validation of an estimated position (in our case the 

node on the network) is done by comparing it to the location of the GPS point at the respec-

tive time. Since, in the case of the datasets used here, there is not always a GPS point with 

corresponding temporal coordinates available, the Euclidean distance between the tempo-

rally closest GPS fix and the CDR fix is used as a quality measure for the different map-

matching methods. The descriptive statistics in Table 9 and the box plots in Figure 17 show 

the distance distribution in m for the different MM methods. From an examination of the box 

plots, it is discernible that the distribution of the distance data appears comparable for all 

the methods. The minimum distance varies between 5.3 and 26.6 m and the maximum 

distance between 12’024.1 and 14’858.4 m. The median is between 380.4 and 501.6 m, 

the mean between 983.5 and 1’802.6 m. The fact that the mean is significantly higher than 

the median is an indication for a distribution that is skewed to the right. As can be seen in 

the box plots, there are some important outliers showing high estimation errors (distances). 

More than 75% of the distances are lower than, depending on the method, 666.6-1’234.0 

m.  

The validation results of Waadt et al. (2009), who used the center of gravity as the estimated 

location within the Voronoi cell, show estimation errors below 356 m for 50% of all cases 

and below 881 m in 90% of all cases. The median value for the equivalent MM method 2 in 

this study is approximately of the same order of magnitude. The 90th percentile with a value 

of 4’257.8 m is significantly higher though. The generally high values of the 90th percentile 

of all the methods are partially caused by the fact that the time gap between the CDR fix 

and the temporally closest GPS fix is quite large. Statistical analyses showed that for 50% 

of the cases the closest GPS fix available was below 53 s and for 75% of the cases below 

12 min. The maximum time difference was more than 5 h though. 

A comparison of the statistics of the different map-matching methods shows that MM 

method 6, which is based on the speed criterion, – especially when looking at the percen-

tiles – yields considerably lower distance values. 75% of all cases have estimation errors 

below 971.4 m and 90% of all the cases below 1947.7 m. Therefore, MM method 6 is qual-

ified as the most suitable map-matching method. The comparison of the different methods 

is further elaborated in Section 6.4.1.  
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Table 9: Descriptive statistics for the distances in m between CDR and GPS fixes for the MM methods 1-7 

 MM 1 MM 2 MM 3 MM 4 MM 5 MM 6 MM 7 

Min. 20.7 29.4 17.4 17.4 5.3 5.3 26.6 

1st Qu. 181.2 201.7 178.8 246.5 267.8 190.8 194.1 

Median 457.9 479.1 462.4 380.4 469.1 412.7 501.6 

Mean 1252.3 1389.5 1802.6 1765.8 1423.8 983.5 1196.8 

3rd Qu. 934.8 1234.0 1053.6 1022.6 971.4 666.6 1149.9 

.9 Perc. 3882.8 4257.8 7533.3 8201.7 4507.6 1947.7 2798.2 

Max. 13954.6 12141.3 14858.4 12024.1 12442.5 12024.1 10396.1 

 

Euclidean distance between map-matched CDR fix and the temporally closest GPS fix for each MM method 

 

 

 

 

 

 

 
                                                    

Figure 17: Box plots showing the Euclidean distances between the map-matched CDR fixes (according to MM 
methods 1-7) and the temporally closest GPS fixes, the diamond represents the mean 

5.3 Shortest path between the selected nodes 

As soon as the CDR data is assigned to a node on the network by one of the above-de-

scribed map-matching methods, a shortest-path algorithm is implemented to find the short-

est connections between consecutive locations on the network (Wentz et al., 2003). Alt-

hough there are other approaches to compute the way between two locations, such as 

simplest path proposed by Duckham and Kulik (2003), shortest-path is still the most fre-

quently used one in navigational research (Fu et al., 2006; Järv et al., 2012). Since compu-

tational efficiency is not primarily of importance, Dijkstra (1959) shortest-path algorithm, 

which is implemented in GeoTools (2014), is used to identify the edges that have been 

travelled between two different locations. The algorithm computes the shortest paths from 
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a single node to all the other nodes on a graph. Since the shortest path for a whole se-

quence of nodes needs to be computed, the GeoTools DijkstraShortestPathFinder11 

(DSPF) needs to be adapted in a way that allows sequential shortest-path computations. 

Also, a filter condition must be implemented which guarantees that consecutive nodes with 

identical location are only considered once in the shortest-path computations.  

Before the shortest path can be computed, a weighting strategy for the graph must be de-

fined. In contrast to Jiang and Claramunt (2004), who use an unweighted graph where each 

edge has a unit distance, in this study, the edges are weighted according to their lengths. 

The EdgeWeighter12 interface of GeoTools (2014) is therefore used. The sequential short-

est-paths algorithm works in the following way: 

Algorithm: Sequential shortest-paths computation 

Input: 
NodeSet nodeSet //map matched CDR locations 
 
Initialize: 
Graph graph 
FeatureCollection shortestPathCollection //feature collection where shortest  
 path is stored 
 
//define an edge weighting strategy (edges are weighted according to their  
 lengths) 
EdgeWeighter weighter = new EdgeWeighter() 
 getWeight(Edge edge) //edge as input of getWeight method 
  return edge.getLength() //output is the length of the edge  
 
//calculate shortest paths between the sequence of nodes 
for (int i = 1; i<nodeSet.size; i++) 
 Node sourceNode = nodeSet.get(i-1) 
 Node destinationNode = nodeSet.get(i) 
 if(!sourceNode.equals(destinationNode)) //test locations are not identical 
  DijkstraShortestPathFinder dspf = new DijkstraShortestPath 
   Finder(graph,sourceNode,weighter) //initialization of the Dijkstra 
   ShortestPathFinder using the arguments grah, sourceNode and weighter 
  dspf.calculate() //shortest-path computation from source to all graph  
   nodes    
  ArrayList<Edges> pathEdges = dspf.getPath(destinationNode) //path  
   from source node to destination is retrieved 
  if (pathEdges.size=0) 
   System.out.println(“path to that destination could not be  
    computed probably an error with the network dataset”) 
  for (int i; i<pathEdges.size(); i++ //iterate through path 
   shortestPathCollection.add(pathEdges.get(i)) //adding shortest  
    path of the first source – destination couple  

As observable in the algorithm, the DSPF needs to be reinitialized for every source – des-

tination couple, since the shortest path to all nodes for only one source node is computed 

each time. The output message, that a path to a destination could not be computed due to 

a problem with the network dataset, showed up only for one set of input nodes – the daily 

                                                
11 http://udig.refractions.net/files/docs/api-geotools/org/geotools/graph/path/DijkstraShortestPathFinder.html 
(accessed 13.5.2014) 
12 http://udig.refractions.net/files/docs/api-geotools/org/geotools/graph/traverse/standard/DijkstraIterator.Edge-
Weighter.html (accessed 13.5.2014) 
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segment 6_130605 map matched by MM method 4 (center of gravity rationale). The re-

spective daily segment was therefore excluded from the data sample, which is thereby re-

duced from 81 to 80 cases. Figure 18 shows the visualization of the reconstructed paths 

based on MM method 6 (maximum speed rationale) and MM method 7 (longest edge ra-

tionale). When comparing the reconstructed paths to the GPS points in this map, it seems 

that the MM method 6 based reconstructed path better imitates the ground truth data. Quan-

tification of the similarity between a reconstructed path and the ground truth will be subject 

in the following Chapter 6.  

 

Figure 18: Reconstructed trajectories on the basis of MM method 6 (TR 6, maximum speed rationale) and MM 
method 7 (TR 7, longest edge rationale) (subset of CDR data of user 4, 03.06.2013) 

5.4 Summary of trajectory reconstruction methods 

Table 10 shows an overview of the seven different trajectory reconstruction (TR) methods 

that have been developed in this study. In a first step, the CDR fixes have been map 

matched to a node of the network by application of one of the seven different rationales 

presented in Sections 5.2.1 - 5.2.5. In a second step, the sequential shortest-paths algo-

rithm – described in Section 5.3 – is applied, to find the shortest connections between the 

identified nodes.  

Table 10: Overview of trajectory reconstruction (TR) methods and the respective underlying map-matching (MM) 
methods 

TR method MM Rationale  

TR 1 (based on MM 1) Closest node to antenna 

TR 2 (based on MM 2) Closest node to center of gravity of Voronoi cell 

TR 3 (based on MM 3) Highest one-level degree centrality node 

TR 4 (based on MM 4) Highest two-level degree centrality node 

TR 5 (based on MM 5) Highest road category 

TR 6 (based on MM 6) Maximum speed edge 

TR 7 (based on MM 7) Longest edge 
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6 Validation  

6.1 Overview 

The validation of the developed trajectory reconstruction methods is documented in this 

chapter. Figure 19 is a visualization of the different steps that lead to a quantification of the 

similarity between the reconstructed paths and the ground truth.  

 

Figure 19: Workflow of validation of trajectory reconstruction methods by comparing reconstructed paths to the 
ground truth 

To validate the trajectory reconstruction methods, the reconstructed paths are compared to 

the GPS points that constitute the ground truth. Therefore, the GPS points need to be con-

verted to units comparable to the reconstructed paths. This is accomplished by identifying 

the edges representing the travelled path, through matching the GPS points to the road 

network (Section 6.2). Similarity measures are computed (Section 6.3) and statistically an-

alyzed (Section 6.4) to compare the resulting ground truth paths to the reconstructed paths.  

6.2 Making paths from GPS fixes 

The most likely travelled on graph edges are identified and stored as a set of edges in order 

to obtain a ground truth that is comparable to the reconstructed paths. Therefore, the fol-

lowing three steps are undertaken: 

1. Identify all the edges that are closest to at least one GPS fix based on the Euclidean 

distance between the GPS fix and its perpendicular projection to the edge. 

2. Disqualify unlikely edges based on an edge-score criterion (number of GPS points 

projected to a specific edge in relation to its length).  

3. Fill the gaps by application of a shortest-path heuristic to construct a continuous 

ground truth path.  

The three above-mentioned steps are described in detail in Sections 6.2.1 - 6.2.3 and vis-

ualized in Figure 20. In a last step, the ground truth paths are compared to the original GPS 

data in order to assess the quality of the ground truth path. If a path deviates considerably 

from the corresponding original data, it is disqualified. The respective filtering criterion is 

described in Section 6.2.4.  
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(a) Initial GPS fixes 

 
(b) Step 1: Identified edges lying closest to at least 
one GPS fix 

 
(c) Step 2: Filtered GPS edges 

 
(d) Step 3: Final, continuous, ground truth path 

Figure 20: Visualization of initial GPS fixes and the three steps for deriving the continuous GPS path (subset of 
GPS data of user 4, 03.06.2013) 

6.2.1 1st step: Identifying edges closest to GPS fixes 

In the first step, the raw positioning points (Figure 20a) need to be matched to one of the 

edges of the road network (Smoreda et al., 2013). This is done by defining the edge located 

closest to the GPS point, based on the Euclidean distance between the GPS point and the 

edges. The thereby identified edges are consolidated into a set of edges maintaining the 

order of the movement. An edge, however, is only added to the set, if it is not already in-

cluded. Therefore, multiple travelled paths are not distinguishable.  

The algorithm follows the same principles as algorithm 1 used to map match points to an 

arc described in White et al. (2000, p. 96). The computation of the distance between a point 

and a line segment depends on whether the point is perpendicularly projectable to the line 

segment (as in Figure 21(a)) or not (as in Figure 21(b)). In the first case, the distance be-

tween point and line segment equals the Euclidean distance between point p and its per-

pendicular projection p’ to the line segment. In the latter case, this would be the Euclidean 

distance between point q and its projection to the start or end point q’ of the line segment – 
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favoring the shorter one of the two. To project the point to the line segments the project13 

function of LocationIndexedLine provided by GeoTools (2014) is used. 

  

  

(a) Point p is perpendicularly projectable to line seg-
ment if max {d1,d2} <d3 = true 

(b) Point q is not perpendicularly projectable to line 
segment if max {d1,d2}>d3 = true 

Figure 21: Distance calculation between a point and a line segment defined by A0 and A1 (White et al., 2000)  

As observed in Figure 20(b), there is one major constraint to this straightforward approach. 

As also stated by White et al. (2000), edges, which obviously have not been traveled when 

looking at the sequence of GPS points, are identified. This is particularly problematic at 

junctions where an adjacent (certainly not travelled on) edge happens to be located closest 

to a GPS fix due to imprecise GPS measurements. The removal of these unintentionally 

identified sideways by the first step approach is documented in the following Section 6.2.2. 

6.2.2 2nd step: Removing unintentionally identified edges 

Edges which were unintentionally identified are discarded based on a minimum required 

edge-score value, which is computed for each edge by counting the number of GPS points 

matched to it divided by its length. A comparable approach is used by Smoreda et al. (2013), 

who classify candidate edges as “ambiguous” based on the number of CDR fixes that are 

matched to an edge. The threshold value of the edge scores is empirically defined by in-

vestigation of several GPS daily segments: Firstly, the number of edges that should be 

eliminated e is counted by visual comparison of the original GPS points and the identified 

edges of the 1st step path. Subsequently, the edge scores of all the edges composing the 

1st step path are computed and listed in descending order. Thirdly, the edge score at the eth 

+ 10% last position, which represents the appropriate threshold value for the investigated 

data unit, is retained. The increase of e by 10% assures that with a higher probability all the 

unintentionally identified edges are removed. Repeating this for 10 randomly selected data 

segments14, a mean edge-score value of approximately 0.035 was obtained for the ground 

                                                
13 http://www.vividsolutions.com/jts/javadoc/com/vividsolutions/jts/linearref/LocationIndexedLine.html (ac-
cessed 13.5.2014) 
14 The threshold value of the edge-score computation is based on the following GPS daily segments: 
1_130618, 1_130625, 3_130621, 4_130602, 4_130622, 5_130602, 5_130625, 6_130618, 6_130620, 
7_130627 
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truth data. The standard deviation is 0.02, indicating a rather small variance, which again 

confirms that the threshold value seems to be representative for the investigated dataset.  

In the 2nd step, edges which were identified in the first step are filtered retaining only edges 

that have an edge-score value lower than 0.035. Since the GPS signal might be weak in 

certain areas, edge scores might lead to a disqualification of edges which obviously should 

be part of the ground truth movement. In Figure 20(c), this phenomenon is observable, 

especially in the north-eastern part of the 2nd step path. This problem is tackled in the fol-

lowing Section 6.2.3.  

6.2.3 3rd step: Making GPS path continuous 

Since it is reasonable to assume that a travelled path is continuous, the occurring gaps in 

the 2nd step path – due to weak or temporarily missing GPS signal – are refilled in the third 

step. The gap refilling is based on the shortest-path heuristic, as described in Section 5.3. 

The following steps lead to a continuous path: A gap between two consecutive edges is 

identified, if the smallest distance between the two of them is greater than 0. Subsequently, 

the shortest paths for the four possible combinations of start and end node of the two edges 

are computed. The path with the smallest number of edges among the four shortest paths 

is used as gap filler and is thus added to the filtered edge set that resulted from step 2. The 

final ground truth path is visualized in Figure 20(d). As a result of step 3, the sequence of 

the edges is no longer maintained. Therefore, the resulting ground truth path is purely spa-

tial. The only temporal information available is that the movement took place within the 

same time period (minus max. 30 min) as the available CDR data, as a result of the initial 

data clipping (see Chapter 4.3.3). Since the GPS map matching includes shortest-path com-

putation, problems with the road network data might occur (cf. Chapter 5.3). This was the 

case for two GPS files15, which were consequently excluded from the data sample, which 

is thereby reduced from 80 to 78 analyzable segments.  

6.2.4 Disqualification of unsuitable ground truth paths  

A measure that works as proxy for closeness of a path to the original GPS fixes is applied, 

disqualifying paths that were poorly matched to the road network (due to noisy GPS signals 

or methodological limitations) from serving as ground truth. The measure is computed by 

taking the average of all distances from the path edges to their respective closest original 

GPS points. The diagram in Figure 22 shows this measure for each ground truth path in 

ascending order. A clear change of slope is indicated with an orange line at a value of 54 

m. This value will serve as maximum tolerable average distance of the path to the original 

data. Applying this threshold value, 5 paths out of the 78 remaining GPS paths are excluded.  

                                                
15 The two daily segments 1_130621 and 4_130621 are therefore excluded for further analysis. 
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Figure 22: Diagram of average distance from an edge to the closest GPS fix per ground truth path  

6.3 Assessing similarity between reconstructed and ground truth 

paths 

6.3.1 Units to be compared 

Eventually, for each of the 73 remaining daily segments one ground truth path as well as 

seven paths reconstructed in different ways are available. By comparison of the paths re-

constructed by one of the seven different TR methods to the ground truth paths, an opera-

tional validation in the sense of Rykiel (1996) of the respective TR method is done. Figure 

23 shows an exemplary constellation of a ground truth path and a path reconstructed with 

TR method 4 of the daily segment 4_130603.  

 

Figure 23: Path reconstructed by TR method 4 and corresponding ground truth path, allowing quantification of 
the similarity of the two paths (based on CDR and GPS data of user 4, 03.06.2013) 
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6.3.2 Computation of similarity measures 

Similarity measures need to be defined in order to assess the similarity between two paths. 

Since the developed ground truth paths do not contain any temporal – or sequential – infor-

mation, the focus is put on spatial similarity measures. Since no multiple travelled paths are 

considered in the ground truth, duplicate (in terms of spatial equality) edges are removed 

from the reconstructed paths, before similarity computations are performed.  

Since there is no universally suitable similarity measure, a range of similarity measures are 

implemented and tested (Brakatsoulas et al., 2005; Wentz et al., 2003). The similarity is 

computed pairwise for each reconstructed and ground truth path couple. Depending on the 

specific question at hand, the fulfilling of different similarity criteria might be of interest and 

therefore, the measure that most appropriately reflects these criteria can be used. The im-

plemented similarity measures (SM) and their advantages and disadvantages are listed in 

Table 11. It must be noted, however, that certain characteristics of the SMs which are listed 

on the advantage side, might equally be listed amongst the disadvantages, and vice versa. 

The similarity measures which do not automatically yield values between 0 and 1, are nor-

malized to a range between 0 and 1, in order to be mutually comparable. Higher values 

indicate higher similarities, whereas 0 means no similarity at all and 1 signifies perfect sim-

ilarity in terms of the respective SM.  

Table 11: Overview of the different proposed and implemented similarity measures (SMs) 

SM Approach  Advantage Disadvantage 

Comparison of total length / number of edges of the paths  

SM1 Ratio of the number (no.) of edges (E) of 
the longer path (in terms of no. of E) to 
the no. of E of the shorter path. In the 
sketch: no. of E of reconstructed path 
(RP) (red) divided by no. of E  of ground 
truth path (GTP) (blue) 

 
 

 Easy to imple-
ment and fast 
(a) 

 If value close to 
1, no guarantee 
that paths are 
spatially similar 
(b) 

SM2 Ratio of the length (L) of the longer path 
to the L of the shorter path. In the sketch: 
L of RP (red) divided by L of GTP (blue) 

 
 

 (a) 

 Edges weighted 
according to 
their length (c) 

 (b) 

Similarity measures based on alignment in terms of edges  

SM3 Ratio of the no. of shared E between RP 
and GTP (violet) to the total no. of E of 
the GTP (blue + violet) 

 

 

 Exact and strict 
measure (d) 

 Measure of how 
well ground truth 
path is approxi-
mated by recon-
structed path (e) 

 Problematic if 
paths are of dif-
ferent lengths (f) 

 Boolean criteria: 
Two paths lying 
close together, 
but following 
parallel edges, 
are not consid-
ered similar at 
all (g) 
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SM Approach  Advantage Disadvantage 

SM4 Ratio of L of shared E between RP and 
GTP (violet) to the total L of the GTP 
(blue + violet)  

 
 

 (c) 

 (d) 

 (e) 

 (f) 

 (g) 

SM5 Ratio of no. of shared E between RP and 
GTP (violet) to the total no. of E of the 
RP (red + violet)  

 

 

 (d) 

 Measure of how 
much of the re-
constructed 
path was actu-
ally travelled (h) 

 (f) 

 (g) 

SM6 Ratio of L of shared E between RP and 
GTP (violet) to the total L of the RP (red)  

 

 
 

 (c) 

 (d) 

 (h) 

 (f) 

 (g) 

Normalized Hausdorff distance based similarity measures 

SM7 Bidirectional Hausdorff distance 
𝐷H(GTP,RP) as defined in Alt and Guibas 
(1996): The longest shortest distance 
from any node of the GTP (blue) to its 
closest node on the RP (red), or vice 
versa from RP to GTP (distance in yel-
low)  

 

Normalization: If 𝐷H(GTP,RP)  > L of 
GTP  SM7 = 0; otherwise the 
𝐷H(GTP,RP)   is divided by the L of the 
GTP, and this fraction is subsequently 
subtracted from 1.  
 

 Does not ac-
count for exact 
alignment, but 
looks more at an 
overall close-
ness (i) 

 (f) 

 Susceptible to 
outliers (j) 

 Difficult normali-
zation proce-
dure (k) 

SM8 Average (avg.) directed Hausdorff dis-

tance from RP (avg. �⃗⃗� H(RP,GTP)): Avg. 
distance to travel from a node of the RP 
(red) to the closest node on the GTP 
(blue) (averaged L of yellow arrows) 

 

 (h) 

 (i) 

 Less suscepti-
ble to outliers (l) 

 (f) 

 (k) 
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SM Approach  Advantage Disadvantage 

Normalization: If avg. �⃗⃗� H(RP,GTP) > 
1000 m16  SM8 = 0; otherwise the avg. 

�⃗⃗� H(RP,GTP) is divided by 1000 m, and 
this fraction is subsequently subtracted 
from 1. 
 

SM917 Avg. directed Hausdorff distance from 

GTP (avg. �⃗⃗� H(GTP,RP)): Avg. distance 
to travel from a node of the GTP to the 
closest point on the RP (averaged L of 
yellow arrows) 

 

Normalization: Normalization procedure 
is identical to that of SM8.  
 

 (e) 

 (i) 

 (l) 

 (f) 

 (k) 

Similarity measures based on convex hull of the paths 

SM11 Ratio of the area of the convex hull of the 
combination of GTP and RP (grey) to the 
total L of the GTP (blue + violet) 

 

 

Normalization: Normalization procedure 
is identical to that of SM8.  
 

 (i) 

 By taking into 
account length 
of ground truth 
paths, long or 
roundish paths 
are treated 
equally (m) 

 (f) 

 Convex hull is a 
quite rough esti-
mation of the 
area that has 
been covered 
(n) 

SM12 Ratio of the area of intersection of the 
convex hull of the GTP and the convex 
hull of the RP (light violet) to the area of 
the union of the two separate convex 
hulls (light red, light blue + light violet) 

 

 

 

 (i) 

 Measure re-
flects whether 
area of move-
ment described 
by the two paths 
coincides (o) 

 (n) 

 Sensitive to ex-
treme cases of 
two paths that 
are identical and 
straight lines ex-
cept for the last 
edge, where the 
two paths go 
into opposite di-
rections, result-
ing in no overlap 
of the convex 
hulls) (p) 

 

                                                
16 The threshold of 1000 m was determined by investigation of the distribution of the values of average 
Hausdorff distances from the reconstructed paths of all comparison cases in ascending order. The threshold is 
set to the value where the most significant change of slope in the distribution is observed.  
17 SM10 was rejected. For this reason the numeration is not continuous.  
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6.3.3 Discussion of similarity measures 

Correlations between SMs1-12 

 

Figure 24: Scatter plot matrix for the different similarity measures including correlation values for all the 511 
comparison cases 

Figure 24 shows a scatter plot matrix including the correlation values for the 11 similarity 

measures that have been computed for all the 511 comparison cases18. It is notable that 

the SMs 1 and 2, 3 and 4, as well as 5 and 6 show high correlation values of 0.866, 0.934 

and 0.963, respectively. This is unsurprising, since the only difference between each pair 

of SMs is that either the number of the edges or the actual length of the edges is considered. 

In contrast to the SMs 3-6 that capture similarity based on the exact alignment of the edges 

of two paths and therefore are quite strict measures, SMs 1 and 2 do not account for the 

spatial arrangement at all. SMs 1 and 2 are basically useful to give a first impression 

whether two paths are within the same range in terms of scale of the movement.  

The Hausdorff distance based similarity measures (SMs 7-9) introduce an interesting as-

pect into the quantification of path similarity. In contrast to the Boolean SMs 3-6, which 

check whether the alignment of edges is identical or not, the Hausdorff distance based SMs 

                                                
18 The application of seven different trajectory reconstruction methods to the 73 different daily CDR segments 
results in 511 different reconstructed paths that are compared to the corresponding ground truth path.  



6 VALIDATION 

52 

as well as the SMs 11 and 12 have the capability to make a more differentiated statement 

about the overall closeness between two paths that do not necessarily follow the same 

edges. The main constraint of SMs 7-9, however, is that there is no obvious way to normal-

ize them. The normalization approaches which are tested in this study led to little convincing 

distributions of similarities. It is obvious from the plots for SMs 7-9 in Figure 24 that many 

values are equal to 0 and subsequently quite rapidly augment to values close to 1. The 

Hausdorff distance based SMs would be better suited to compare paths that are mutually 

comparable, especially in terms of total path length. For example, the non-normalized SMs 

7-9 might give a very interesting indication about which TR method works best for one spe-

cific daily segment.  

SM 11, which is amongst the convex hull based similarity measures, has the same issue 

with normalization as have the Hausdorff based distances. What is remarkable though, are 

the rather high correlation values of 0.817 and 0.592 between SMs 11 and 8, and SMs 11 

and 9, respectively. This indicates that the average Hausdorff distance based measures 

and the SM 11 seem to comparably capture path similarity, although they are computed in 

different ways. By dividing the whole area covered by the two paths (approximated by the 

convex hull of both paths) and subsequently dividing it by the length of the ground truth 

path, the SM 11 is a proxy for the average distance between the two paths, which is also 

the case for SMs 8 and 9. This again explains the above-mentioned correlations between 

the two SMs. SM 11 can be seen as a straightforward approach of the LIP similarity meas-

ure proposed by Pelekis et al. (2011), who use the area between two trajectories as dis-

tance measure between them (see Figure 2, Section 2.4.1).   

What applies for SMs 11 and 12 is that the convex hull is a rather rough description of the 

actual area covered by the movement. A concave hull would be a more meaningful repre-

sentation. However, there is no exact definition of the concave hull and the therefore avail-

able algorithms are rather sophisticated. For example, when using the alpha-shape algo-

rithm of Wei (2008), the parameter alpha, which controls the precision of the boundary, 

needs to be specified. This parameter is very dependent on the point density (path nodes) 

and the scale of the movement. And since these two parameters vary considerably over the 

whole set of available paths, the parameter would need to be adjusted individually for the 

different cases. The reasons which led to the use of the convex hull instead of the concave 

hull are the clear definition for the convex hull for a set of points (or a polyline or polygon 

which are decomposable to a set of points) (Avis et al., 1997; Efron, 1965) as well as the 

available implementation19 on GeoTools (2014).  

6.3.4 Selection of similarity measures 

Since SMs 1 and 2 do not take into account the spatial arrangement of the two paths, they 

are not further considered in the analysis of the results. Amongst the similarity measures 

based on alignment in terms of edges (SM 3-6), a focus is put on SM 4, since it weighs 

edges according to their length and uses the ground truth path as reference that should be 

approximated as closely as possible. As in Newson and Krumm (2009), the length of the 

                                                
19 http://tsusiatsoftware.net/jts/javadoc/com/vividsolutions/jts/geom/Geometry.html#convexHull%28%29 (ac-
cessed 14.5.2014) 
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ground truth is used as reference. But while Newson and Krumm compute the total error 

(ratio of the sum of erroneously identified and not identified edges to the total length of the 

true path), in this case the ratio of the number of correctly identified edges to the total length 

of the ground truth path is computed. 

Since no appropriate way was found to normalize the set of Hausdorff distance based sim-

ilarity measures in order to make the measures comparable to the remaining similarity 

measures, they are not used in further analyses. The same issue regarding normalization 

applies for SM 11 which is amongst the two convex hull based similarity measures. SM 12 

(the second of the convex hull based similarity measures), which puts the shared area of 

the intersection of the separate convex hulls of the ground truth path and the reconstructed 

path in ratio with the union of the two convex hulls, has the advantageous property of auto-

matically yielding values between 0 and 1.  

Therefore, SM 12 is the second SM – next to SM 4 – that is used for further analysis. By 

comparison of the convex hulls of the separate paths, it is more tolerable than SM 4, and 

basically testifies to what extent the areas of movement are identical. The fact that SM 4 is 

in ratio to the length of the ground truth path only, and SM 12 in ratio to the area of the union 

of the convex hulls of both paths, leads to the result that SM 12 yields values in a compa-

rable range, although the criterion is less strict. Additionally, the high correlation value for 

SMs 4 and 12 of 0.729 (cf. Figure 24) indicates that the two measures seem to perceive the 

paths in a comparable way in terms of similarity. 

6.4 Results 

As mentioned above, SM 4 and SM 12 are used to analyze the different trajectory recon-

struction methods in Section 6.4.1, as well as to analyze possible factors having an impact 

on the quality of the resulting reconstructed paths in Section 6.4.2. Thus, all analyses in the 

following are based on the assumption that SMs 4 and 12 are capable of adequately cap-

turing the expected similarities between paths. 

6.4.1 Comparison of different trajectory reconstruction algorithms 

Table 12 and Table 13 give an overview of the distribution of the SMs 4 and 12 for the 

different TR methods, respectively, as well as the box plots for the two SMs for each method 

in Figure 26. The mean and the median lie within a rather small range for the different TR 

methods, namely 0.15-0.21 for SM 4 and 0.23-0.29 for SM 12, and 0.07-0.16 for SM 4 and 

0.19-0.26 for SM 12, respectively. These – rather low – values indicate that the TR methods 

generally do not seem to perform very well. The 3rd quartiles are not much more promising. 

For example, 75% of the paths reconstructed with TR method 1, which is approximately in 

the mid-range of the proposed methods, reach a SM 4 lower than 0.24 and a SM 12 lower 

than 0.41.  

Figure 26 demonstrates that the paths generally obtain higher similarity values with SM 12 

than with SM 4. This was to be expected since SM 12 is comparing the shared area of 

movement between the two paths, whereas SM 4 is comparing the shared edges between 
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the two paths, which is a much stricter criterion. The box plots also show that the distribu-

tions of the similarity values are comparable for the different methods, but that slight differ-

ences in the scores for each method are observable. Particularly in terms of SM 4 but also 

in terms of SM 12, TR method 6 receives the highest scores. The conclusions so far are 

congruent with the pre-validation of the map-matching methods in Section 5.2.6, where 

likewise only small differences between the methods could be assessed, but MM method 6 

showed the best performance. The worst similarities are obtained by TR method 3 (which 

was based on the one-level degree centrality). In general, the results suggest that the TR 

methods relying on edge characteristics generally perform slightly better. The evidence for 

this statement is rather fragile though. Since MM method 6 produces the most reliable re-

sults, the analysis is mostly focused on MM method 6 in the following part of the analyses. 

Also the scatter plot in Figure 25, whose dots represent the values of SM 4 and SM 12 for 

the 511 different paths that have been color-coded according to their TR algorithm, gives 

no evidence for an unambiguously outperforming algorithm. With some goodwill one might 

argue that most of the dots in the upper right part of the plot are in the color of TR method 

6. A clear pattern, however, is not discernible.  

Correlation between SM 4 and SM 12 for all 511 comparison cases, color-coded according to TR method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                              

 

Figure 25: Scatter plot for SMs 4 and 12 for all 511 comparison cases, color-coded according to the TR method  
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Table 12: Descriptive statistics for SM 4 for the different trajectory reconstruction methods 

 TR 1 TR 2 TR 3 TR 4 TR 5 TR 6 TR 7 

Min. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1st Qu. 0.03 0.03 0.00 0.02 0.00 0.04 0.03 

Median 0.12 0.12 0.07 0.15 0.09 0.16 0.12 

Mean 0.18 0.18 0.15 0.20 0.16 0.21 0.19 

3rd Qu. 0.24 0.23 0.22 0.27 0.23 0.30 0.22 

Max. 0.78 0.73 0.68 1.00 0.87 0.83 0.79 

 

Table 13: Descriptive statistics of SM 12 for the different trajectory reconstruction methods 

 TR 1 TR 2 TR 3 TR 4 TR 5 TR 6 TR 7 

Min. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1st Qu. 0.03 0.06 0.02 0.03 0.03 0.05 0.06 

Median 0.20 0.21 0.19 0.22 0.21 0.26 0.26 

Mean 0.26 0.26 0.23 0.25 0.27 0.29 0.28 

3rd Qu. 0.41 0.45 0.39 0.38 0.48 0.44 0.43 

Max. 0.88 0.74 0.70 0.74 0.78 0.86 0.75 

 

Distribution of SM 4 and SM 12 per trajectory reconstruction method 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                 

 

Figure 26: Box plots of the values of SMs 4 and 12 for the 73 reconstructed daily paths with the different TR 
methods  
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6.4.2 Impact of CDR data properties on accuracy of trajectory recon-

struction 

As seen in the previous section, the average similarity measures for the different trajectory 

reconstruction methods are always lower than 0.3. The overall accuracy of the trajectory 

reconstruction methods developed in this thesis, therefore, is not very high. In the following, 

the intention is to investigate whether CDR data conditions can be found which may be 

expected to lead to a higher accuracy of trajectory reconstruction. The properties investi-

gated in this study are the number of CDR fixes from different locations (Section 6.4.2.1), 

the temporal resolution of the CDR data (Section 6.4.2.2), and the scale of the mobile phone 

user’s movement (Section 6.4.2.3). Figure 27 - Figure 29 exemplarily show configurations 

of reconstructed and ground truth paths, the original CDR data, as well as all the computed 

SMs 4 and 12 and the associated statistical properties that are investigated. The recon-

structed paths are all based on TR method 6. The edges that are shared between the re-

constructed and the ground truth paths are depicted in pink. The reconstructed trajectory in 

Figure 27 with SMs 4 and 12 of 0.83 and 0.84, respectively, is based on 11 CDR fixes from 

different locations. The associated temporal resolution (avg. time between consecutive 

CDR fixes) is 34.4 min and the total distance covered is approx. 200 km (in terms of total 

distance between consecutive GPS fixes). Similarity measures for the reconstructed path 

in Figure 28 are significantly lower with SMs 4 and 12 of 0.25 and 0.38, respectively. The 

number of spatially unique CDR fixes with 3, as well as the temporal resolution with on 

average 130.8 min between consecutive calls, are considerably lower and the total distance 

covered of 9 km is much shorter in comparison to the statistical properties of Figure 27. The 

reconstructed path in Figure 29 has the lowest similarity measures of the three examples. 

The total distance covered is only 3 km and the number of unique CDR fixes is 2. The 

temporal resolution is slightly lower than that of Figure 27. The figures are used to illustrate 

the discussion of the results in the following three sections. 

 

SM 4 SM 12 Unique CDR fixes Temp. resol. [min] Total distance [km] 

0.83 0.84 11 34.4 203.8 

Figure 27: Path reconstructed by TR method 6 and corresponding ground truth path, plus associated similarity 
measures and statistical properties of the data used (based on CDR and GPS data of user 4, 11.06.2013)  
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SM 4 SM 12 Unique CDR fixes Temp. resol. [min] Total distance [km] 

0.25 0.38 3 130.8 9.2 

Figure 28: Path reconstructed by TR method 6 and corresponding ground truth path, plus associated similarity 
measures and statistical properties of the data used (based on CDR and GPS data of user 6, 22.06.2013) 

 

SM 4 SM 12 Unique CDR fixes Temp. resol. [min] Total distance [km] 

0.07 0.32 2 49.0 3.0 

Figure 29: Path reconstructed by TR method 6 and corresponding ground truth path, plus associated similarity 
measures and statistical properties of the data used (based on CDR and GPS data of user 5, 28.06.2013) 
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6.4.2.1 Impact of number of spatially unique CDR fixes on accuracy of trajec-

tory reconstruction 

In a manner similar to Newson and Krumm (2009), this section tests how the quality of the 

resulting paths is influenced by the amount of available data serving as input for the meth-

ods developed during this research. In their study, Newson and Krumm validated map-

matching methods by comparing map-matched paths to ground truth paths, by actively de-

grading their data by reduction of the temporal resolution. By contrast, this study relies on 

the variety of the available number of fixes in the 73 daily segments under investigation. 

Since multiple consecutive CDR fixes with identical locations serve as a single input infor-

mation for the TR methods, the number of spatially unique CDR fixes might therefore be 

the more relevant indicator for the input data quality – in terms of quantity of data – than the 

total number of CDR fixes. This variable, however, is only a proxy for the number of CDR 

fixes that are actually used as input for the methods. In fact, the precise indicator for the 

amount of usable input data would be the number of consecutive phone activities from dif-

ferent locations. The measure used here (number of spatially unique CDR fixes), however, 

is probably a good proxy for the number of consecutive phone activities from different loca-

tions, since it can be assumed that phone activities from identical locations usually occur 

directly one after the other. In addition, although the movement back and forth between two 

locations during an entire day could be reconstructed, the similarity assessment (as indi-

cated in Section 6.3.2) is purely spatial and therefore does not take into account multiple 

travelled edges.  

The exemplary ground truth – reconstructed path comparisons in Figure 27 - Figure 29 may 

give rise to the assumption that the quality of trajectory reconstruction is improved when the 

number of spatially unique CDR fixes available is augmented. Figure 30 and Figure 31 

investigate whether this assumption applies to all daily segments of the test sample. Figure 

30 shows the average SMs 4 and 12 for an augmented exclusive criterion of minimum re-

quired number of CDR fixes from different locations for TR method 6. When assuming to 

tolerate daily segments with at least 2 spatially unique phone activities, which corresponds 

to the minimum condition for TR and represents all daily segments available, average SMs 

of 0.21 and 0.29 are obtained. An upward trend in the average SM with increase of the 

minimum required CDR fixes from different locations is clearly distinguishable. Daily seg-

ments, featuring 11 spatially unique CDR fixes, reach SMs 4 and 12 of 0.77 and 0.73, re-

spectively. In terms of SM 4, this means that 77% of the ground truth paths could be recon-

structed on the basis of the CDR fixes, which is quite promising. This finding must be treated 

with caution though, because the average SMs for 11 available CDR fixes with unique lo-

cation is based on two daily segments only.   

Figure 31 shows again the scatter plot for the total of 511 comparison cases, this time color-

coded according the number of available spatially unique fixes, classified into groups of 

equal to or less than 4 (colored in red) and more than 4 (colored in blue) available spatially 

unique CDR fixes. The scatter plot clearly shows a cluster of blue points in the upper right 

part of the figure. Analysis of both Figure 30 and Figure 31 provides evidence that the in-

troduction of a criterion of minimum required number of CDR fixes with unique locations per 

daily segment for TR leads to a considerably higher path quality. 
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Figure 30: Bar chart for TR method 6 with SMs 4 and 12 resulting from an augmentation of the minimum number 
of required CDR fixes with unique locations, thereby reducing the number of daily segments considered 

Correlation between SM 4 and SM 12 for all 511 comparison cases, color-coded according to two groups of 
number of spatially unique CDR fixes used as input 
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Figure 31: Scatter plot for SMs 4 and 12, color-coded according to two classes of number of spatially unique 
CDR fixes used as input 
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6.4.2.2 Impact of temporal resolution of CDR data on accuracy of trajectory 

reconstruction 

A further variable that might give an indication on the quality of the CDR segments is the 

temporal resolution of the included fixes. The underlying assumption is that data available 

in smaller time intervals give more precise information about the movement behavior of the 

respective mobile phone users. The average time difference between consecutive CDR 

fixes of a daily segment is used as a proxy for the temporal resolution of the input data. The 

fact that consecutive phone activities with identical locations in a daily segment are not 

excluded from the computation of the temporal resolution brings some bias into this varia-

ble. This is due to the fact that multiple phone activities via the same antenna, despite high 

temporal resolution do not increase the level of information of input data (as stated in the 

previous Section 6.4.2.1). Since this applies equally to all of the daily segments, this short-

coming should not introduce significant interference.  

To test whether the temporal resolution has an impact on the quality of the reconstructed 

paths, the daily segments were classified into three equal-sized groups of high, medium 

and low temporal resolution and subsequently analyzed. The respective class boundaries, 

given by the average time difference between consecutive phone activities, are indicated in 

Table 14. It may be observed that temporal resolutions vary dramatically between 6 min 

and more than 9 h. The average SMs 4 and 12 of the reconstructed paths with TR method 

6 for each group are shown in Figure 32. It is notable that daily segments with medium 

temporal resolution of 55-110 min seem to produce the best reconstruction quality. It is 

counterintuitive that segments with a high temporal resolution have lower similarity values. 

A possible explanation could be that multiple calls in short temporal intervals are an indica-

tion that the phone user is stationary rather than mobile, busy calling people, and therefore 

is not giving any information of value regarding his movement behavior (in terms of different 

antennas used). The CDR fixes in Figure 29 show this type of calling pattern: 4 phone 

activities within 6 min were routed via the same antenna. This finding would be in contra-

diction to the statement from the previous paragraph that multiple phone activities via the 

same antenna are equally distributed throughout the data sample, but are much more prev-

alent in the group of high temporal resolution segments. In further research, it would be 

interesting to compute temporal resolution considering only consecutive CDR fixes with dif-

ferent locations, testing whether this has an impact on the ranking in terms of the average 

SMs of the three temporal resolution groups. 

Figure 33 shows again the scatter plot for the paths reconstructed using all the seven dif-

ferent TR methods, this time color-coded according to the temporal resolution. A clear pat-

tern is not distinguishable. The high (red) and medium (blue) resolution dots are slightly 

overrepresented in the upper right part, whereas the low resolution (green) dots are rather 

to be found in the lower left part. These are only tendencies and a clear statement about 

the impact of the temporal resolution of the CDR data on the reconstruction quality cannot 

be made. The visualized examples in Figure 27 (high temp. resolution, SMs of 0.83 and 

0.84), Figure 29 (medium temp. resolution, SMs of 0.07 and 0.32), and Figure 28 (low temp. 

resolution, SMs of 0.25 and 0.38), neither give evidence that medium temporal resolution 
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yields the highest reconstruction quality, nor do they support the initial assumption that tra-

jectory reconstruction is improved when the temporal resolution is augmented. 

Table 14: Class boundaries for the three equal-sized groups of low, medium and high temporal resolution ac-
cording to the average time difference between consecutive CDR fixes 

Low temp. resolution Medium temp. resolution  High temp. resolution 

580-111 min 110-55 min 54-6 min 
 

Figure 32: Bar chart representing the avg. SMs for reconstructed paths with TR method 6 for three groups of 
avg. time between consecutive CDR fixes 

Correlation between SM 4 and SM 12 for all 511 comparison cases, color-coded according to average 
time between consecutive CDR fixes 
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Figure 33: Scatter plot for SMs 4 and 12 of all 511 comparison cases, color-coded according to three classes of 
average time between consecutive CDR fixes 
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6.4.2.3 Impact of scale of movement on accuracy of trajectory reconstruction 

Besides the impact of the characteristics of the CDR data on the quality of the reconstructed 

paths, which was investigated in the previous Sections 6.4.2.1 and 6.4.2.2, the nature of 

the movement itself might have an impact on the quality of the result. The expressed move-

ments are especially heterogeneous in terms of their geographical extent or the size of their 

spatial footprint. The scale of a trajectory can be assessed, inter alia, in several ways: the 

total area covered (e.g., described by the minimum bounding box, the concave or the con-

vex hull of the CDR or the GPS fixes), the total length of the CDR or the GPS paths, or the 

sum of the Euclidean distances between consecutive CDR or GPS fixes. In this study, the 

sum of the Euclidean distances between consecutive GPS fixes, which is an approximation 

for the total length of the movement expressed in reality, was used to categorize the daily 

segments into three groups of equal size (ca. 24 segments per group). As listed in Table 

15, short-distance, medium-distance, and long-distance movements entail path lengths de-

rived from the GPS fixes of 0.7-5.5 km, 5.6-14.9 km, and 15.0-482.0 km. Short-distance 

movements would typically represent intra-city movements. The medium-distance group 

comprises typical lengths of commuting distances from suburban to urban areas. And the 

third category would represent inter-city trips.  

Figure 27 - Figure 29 seem to show a clear trend of an improved trajectory reconstruction 

quality when the map scale on which the movement is represented gets smaller, and the 

distance covered increases. Figure 34 and Figure 35 investigate whether this assumption 

can be affirmed when all daily segments are considered. The bar chart in Figure 34 shows 

that the average SMs 4 and 12 for the paths reconstructed with TR method 6 increase 

considerably when the distance of the movement is varied from short to long. As indicated 

by SM 12, the separate convex hulls of the reconstructed and the ground truth paths be-

longing to the long-distance group, on average have 41% of overlap, whereas the paths 

belonging to the short-distance group only have 21% of overlap on average. The scatter 

plot in Figure 35 represents again the values of SMs 4 and 12 for all 511 comparison cases. 

A cluster of red dots (representing long-distance movements) is clearly identifiable in the 

upper right part of the diagram. The blue dots (representing short-distance movements) and 

the green dots (representing medium-distance movements) are mainly to be found in the 

lower left area of the diagram. Both Figure 34 and Figure 35 give evidence that there is a 

positive correlation between the geographical dimension of the movement and the quality 

of the reconstructed paths.  

Table 15: Class boundaries for the three equal-sized distance groups according to the path lengths derived from 
the GPS fixes 

Short-distance Medium-distance Long-distance 

0.7-5.5 km 5.6-14.9 km 15.0-482.0 km 
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Figure 34: Bar chart with average SMs 4 and 12 for daily segments grouped into three classes of distance of 
movement 

Correlation between SM 4 and SM 12 for all 511 comparison cases, color-coded according to the distance 
of the movement  
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Figure 35: Scatter plot representing the correlation between SMs 4 and 12 for all 511 comparison cases, color-
coded according to three distance of movement classes  
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7 Discussion 

This chapter addresses the research questions (RQs), placing the results of the study in the 

context of the related research. Firstly, the trajectory reconstruction methods devised in this 

study are discussed and suggestions for improvements are made (Section 7.1). Subse-

quently, Section 7.2 discusses the validation of the trajectory reconstruction methods and 

gives suggestions for further investigation. Finally, Section 7.3 discusses whether CDR data 

properties have an impact on the quality of the reconstructed trajectories and directions for 

future studies are identified.  

7.1 Methods to reconstruct trajectories from sparse CDR data  

Reconstructing trajectories from CDR data which are sampled in irregular temporal intervals 

and with a spatial resolution equal to the size of the coverage area of an antenna requires 

several pre-processing steps (as described in Chapter 4) and application of a number of 

heuristics (as described in Chapter 5). In contrast to the statement of Blumenstock (2012) 

that there is no knowledge available regarding the whereabouts of a user between phone 

activities, in this study several assumptions are made in order to narrow down the user’s 

potential location between consecutive phone activities. Such additional knowledge is de-

rived, for example, from the assumptions that individuals’ movements are usually bound to 

a network (Brinkhoff (2002) or Jiang and Jia (2009)) or that individuals tend to follow the 

shortest path when travelling between two locations. These and further assumptions serve 

as basis for the discussion of RQ 1.  

RQ 1: How can mobile phone users’ trajectories be reconstructed from sparsely sampled 

CDR data? 

Assumption of network-bound movement 

In order to narrow down the potential whereabouts of a mobile phone user, it is assumed in 

this study that movements take place on a network. Therefore, the OSM road network is 

applied to which the CDR locations are projected and on which the shortest paths between 

the identified nodes are computed. The assumption of network-bound movement is certainly 

a reasonable one since it is observable in everyday life and also confirmed from literature 

(e.g., Brinkhoff, 2002). A visual inspection of the GPS fixes supports the assumption that 

the trajectories of our test users follow the road network in most of the cases. One should 

be aware, however, that errors are introduced by movements that are not bound to a net-

work. Additionally, there are methodological constraints regarding the network used in this 

thesis. That is to say that the network basically consists of roads intended for cars which 

constitutes a problem for movements expressed by pedestrians or train users. Broadening 

of the network to include a wider range of travel possibilities would certainly be part of further 

investigations 

Segmentation of the CDR data 

A first important decision to enable trajectory reconstruction from CDR data, which needs 

to be made, concerns the choice of an appropriate temporal frame of reference. This study 
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used a segmenting approach based on daily segments. Therefore, midnight, which is sup-

posed to be a time when people typically sleep in their homes, was chosen as segmenting 

criterion. Consequently, trajectories are reconstructed that start in the morning when an 

individual usually begins to move by leaving his home and end in the evening when the 

individual typically is home again. As a minimum condition for the trajectory reconstruction, 

at least two mobile phone activities routed via different antennas need to be available in the 

daily segments. Otherwise, it is not reasonable that the user was present at any locations 

other than the one covered by the single antenna. A limitation of the segmenting criterion 

used in this study is that, particularly at weekends, when people tend to stay awake and 

move around longer, midnight is not an appropriate time to divide the trajectories. Another 

segmenting approach could be the estimation of the home of a user by analyzing over which 

antenna the majority of phone activities are routed outside usual office hours, as in Ahas et 

al. (2009) or Csáji et al. (2013). The segmentation could subsequently be based on the 

spatial criterion of the “home antenna”. González et al. (2008) find that human trajectories 

show high temporal and spatial regularities, therefore it would be interesting to try to aggre-

gate CDR data, for example, of multiple workdays or of multiple Mondays. The application 

of alternative temporal frames of reference is certainly an interesting direction for future 

research.  

Heuristic-based map matching to deal with coarse spatial resolution 

To deal with the coarse spatial resolution of the CDR data, different map-matching ap-

proaches are employed in order to locate the user in a realistic position on the road network 

as suggested by Saluveer and Ahas (2014). As stated by Zang et al. (2010), there is very 

little research on the localization of a user solely on the basis of the antenna position ob-

tained from CDR log files. Most researchers use additional information such as RSSI. One 

achievement of this thesis is the proposition of a number of map-matching heuristics for 

CDR data and their validation with GPS data. The map-matching algorithms which were 

proposed are based on the use of the Voronoi cells which are quite frequently employed to 

describe the area which is closest to an antenna compared to others and therefore the area 

with the highest probability for the location of the mobile phone user. Voronoi cells, however, 

are an ideal approximation and therefore may be unreliable indicators of the actual area in 

which the user is located. Especially in urban areas with a dense cellular network, it is pos-

sible that the mobile phone switches to an antenna that is actually not the closest to the 

mobile phone, if the line of the antenna signal is interrupted (through noise introduced by 

scattering and reflection of buildings) or if the closest antenna is very crowded 

(Blumenstock, 2012; Csáji et al., 2013). In this case, it is obvious that the map-matching 

methods used in this study are incapable of finding the true position.  

A set of candidate nodes / edges is defined for each CDR fix by intersecting the correspond-

ing Voronoi cell with the nodes / edges of the road network, respectively. A number of dif-

ferent criteria are used to rate a node / edge of the set of candidate nodes / edges, respec-

tively, as the most probable location of the phone user. A criterion used for nodes is, for 

example, the degree centrality. According to Crucitti et al. (2006), this centrality measure is 

an inappropriate measure in urban networks because node degrees are limited due to ge-

ographical constraints. It would be interesting to investigate map-matching algorithms 



 7 DISCUSSION 

67 

based on further centrality measures proposed by Crucitti et al. (2006), e.g., closeness cen-

trality. Edges were favored according to their attributes. As suggested by Saluveer and 

Ahas (2014), in the edge-based map-matching methods semantically more important roads 

(MM method 5) or roads that permit a higher speed are favored (MM method 6). The un-

derlying assumption is that more important roads are more frequented and the probability 

of an accurate positioning, therefore, is higher.  

The pre-validation of the map-matching methods (Section 5.2.6) show that most of the 

matched CDR locations are within a reasonable distance from the temporally closest GPS 

fixes. The mean and median distances between the map-matched CDR fixes (with the best 

performing MM method 6) and the ground truth of 938.5 and 412.7 m, respectively, indicate 

that the map matching leads to an improvement of the locational accuracy when comparing 

these numbers to the length of a cross-section of a cell size reported to be between 200 

and 10’000 m by Saluveer and Ahas (2014). In further research, it would be interesting to 

similarly compute the distances between the ground truth and CDR fixes that are randomly 

assigned to a position within the Voronoi cell in order to verify whether the heuristic-based 

map-matching methods perform better.  

Shortest-path heuristic to fill temporal gaps between consecutive phone activities 

In order to deal with the low temporal resolution of the data, which results in large spatial 

gaps between the known locations, a shortest-path algorithm is used to model the user’s 

trajectory within two consecutive phone activities. Dijkstra shortest-path algorithm which is 

implemented in GeoTools (2014) – an Open Source Java Library – was therefore applied. 

Dijkstra shortest-path algorithm computes the shortest paths from one source location to all 

destinations on the road network and therefore needs to be reinitialized for every new 

source location. The algorithm implemented in GeoTools needs to be adapted in order to 

compute the shortest path between an ordered set of fixes. Additionally, a rule needs to be 

implemented that ensures that consecutive fixes with identical locations are only considered 

once, since a shortest-path computation between two similar locations is not sensible. The 

edges of the road network are weighted according to their length. If maximum speed toler-

ated was known for all edges, it would be sensible to use average travel time to traverse an 

edge instead of the length. In this way the fastest instead of the shortest path would be 

computed. If more data were to be processed and computational efficiency consequently 

was more important, the application of a faster algorithm such as A* algorithm or the algo-

rithm proposed by Geisberger (2008) would be recommended. Instead of the shortest-path 

heuristic, which is also used by Järv et al. (2012) to predict the movement between home 

and work location of Tallinn commuters, a “simplest path” heuristic as proposed by 

Duckham and Kulik (2003) could be implemented in future research. 

Summary and Outlook 

As shown in this thesis, trajectory reconstruction from sparsely sampled CDR data is feasi-

ble by firstly, map matching CDR fixes based on various assumptions to the road network 

and in a second step, connecting the map-matched locations with a shortest-path algorithm. 

The few other trajectory reconstruction algorithms proposed in literature so far are mostly 

designed for a particular purpose (e.g., inferring travel mode between a pre-defined origin 

and destination pair in Doyle et al. (2011) or Wang et al. (2010)) and therefore are only 
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applicable under constrained conditions. In a further development of the trajectory recon-

struction methods, consideration should be given to how the temporal information of the 

CDR data could be maintained in the trajectory. The edges composing the paths could be 

assigned time information by interpolation between the last phone activity of the previous 

antenna and the first phone activity of the following antenna. However, such interpolation 

would require most uncertain and speculative assumptions. If, for example, a temporal gap 

of several hours occurs between two consecutive calls taking place at a distance of 10 km, 

the assumption of linear movement behavior between the two consecutive phone activities 

as used in the decompression algorithm for previously compressed GPS data in Richter et 

al. (2012) would probably not be a sensible one in this case. Maybe the inclusion of the 

behavior of a user during previous days would help to gain knowledge regarding how much 

time is usually spent in a particular place. Another methodological issue is how stop-overs 

(inferable from multiple phone activities routed via the same antenna over a certain time 

period) could be modeled.    

7.2 Validation of the trajectory reconstruction methods  

In the previous section, it was discussed how trajectories can be reconstructed from CDR 

data. The logical question that follows is how well the devised methods perform. With the 

exception of a few studies (e.g., Zang et al., 2010), no validation of methods developed in 

the context of transportation research for mobile phone data has been carried out (Smoreda 

et al., 2013). The availability of GPS data for the six test users, generally with a much higher 

spatial and temporal resolution, enables a validation of the methods developed in this re-

search by assessing the similarity between reconstructed trajectories and the ground truth. 

This contributes to the discussion of RQ 2:  

RQ 2: In order to validate the trajectory reconstruction methods developed in this study, 

what level of similarity can be achieved by comparison of the reconstructed trajectories with 

higher resolution GPS trajectories of the same journeys? 

Before discussing RQ 2, it is reasonable to consider the following issues: 

- How suitable are the used comparison units? 

- How do the SMs assess the similarity?  

Suitability of comparison units 

In order to facilitate the comparison of the ground truth to the reconstructed trajectories, the 

GPS points are transformed into a structure similar to that of the reconstructed trajectories, 

which is a subset of connected edges from the OSM road network (see Section 6.2). There-

fore, the GPS fixes are matched with the road network using a geometrical map-matching 

algorithm that identifies the set of road network edges that are closest to at least one GPS 

fix. Based on an edge-score criterion (number of GPS points projected to a specific edge in 

relation to its length) unlikely edges are disqualified from the set. In a final step, the spatial 

gaps in the ground truth path are filled by application of a shortest-path heuristic. A major 

constraint of the map-matching methodology developed in this study is that multiple trav-

elled paths are not identifiable. The quality control of the ground truth path by comparison 
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to the original GPS data (cf. Section 6.2.4) shows that the average distance of the GPS 

paths to the original data is at maximum 54 m. The approach could certainly be improved, 

for example, by taking into account edge connectivity, as is suggested by Velaga et al. 

(2009). Another possibility would have been to not map match the GPS points to the net-

work and thereby avoid manipulation of the ground truth data. However, similarity compar-

isons such as path alignment would not have been possible using this approach. Similarity 

could be assessed by computing the average minimum distance from a GPS point to the 

reconstructed path. On the basis of such a measure, it would be difficult to say how similar 

two paths really are, and such an approach would be very sensitive to GPS sampling issues.  

Effectiveness of similarity assessment 

As seen from the review of literature regarding the assessment of trajectory similarity in 

Section 2.4, numerous measures to compare trajectories are used. In this study, a range of 

similarity measures with their associated advantages and disadvantages (see Table 11, 

Section 6.3.2) have been proposed and implemented. If the order of the ground truth path 

could be maintained, it would be interesting to implement Fréchet distance instead of 

Hausdorff distance which is said to better assess similarity between two planar curves as 

observed by visual inspection (Alt et al., 2004). Both measures, however, indicate similari-

ties between two paths as distances in a metric unit such as km or m. In order to receive 

values between 0 and 1 for low and high similarities, respectively, a normalization of the 

resulting distances would be required. Since no obvious way to normalize the resulting dis-

tances exists so far, Hausdorff and Fréchet distances make comparisons between trajecto-

ries of very different nature (e.g., in terms of length), as it is the case in the data sample, 

and comparisons to other similarity measures difficult. A further interesting idea would be 

to include temporal information in the similarity assessment by comparing the reconstructed 

path segments to the ground truth path segments for time intervals defined by two consec-

utive CDR fixes. A more in-depth discussion of the various proposed similarity measures is 

to be found in Section 6.3.3.  

SM 4 computes the ratio of the length of the shared edges between the ground truth path 

and the reconstructed path to the total length of the ground truth path. It was chosen as one 

of the SMs on which further analyses are based on, since it weighs edges according to their 

length and uses the ground truth path as reference that should be approximated as closely 

as possible. This SM is comparable to the measure used in Lou et al. (2009) to quantify the 

quality of their map-matching algorithm. The only difference is that the length of correctly 

identified edges is divided by the length of the “reconstructed” path and not by the length of 

the ground truth path. SM 4 is a reliable similarity measure in that a high value of the SM 

always indicates that most of the edges could be precisely reconstructed on the basis of 

the CDR data. It is a very strict similarity measure though and as soon as the edges are not 

identical, it cannot assess whether two trajectories are still close to each other or very far 

apart. For this reason, SM 12 (ratio of the area of intersection of the convex hull of the 

ground truth path and the convex hull of the reconstructed path to the area of the union of 

the two separate convex hulls) was chosen as the second SM on which to base the valida-

tion and subsequent analyses of the impact of different CDR data properties on the trajec-

tory reconstruction quality. SM 12 compares the areas of the movement of two trajectories 

to each other rather than comparing exact path alignment and is therefore more tolerant in 
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most cases. Figure 29 (see Section 6.4.2) shows nicely how SM 4, with a value of 0.07, 

exhibits a much lower similarity for the same ground truth and reconstructed paths constel-

lation than SM 12 with a value of 0.32. Depending on the type of similarity required (which 

again depends on the purpose of the similarity assessment and the type of trajectory), SM 

4, SM 12 or even a very different one might be the most suitable.  

Validation of trajectory reconstruction methods 

The quality of the trajectory reconstruction methods is assessed by computation of the SMs 

4 and 12 for the reconstructed and the corresponding ground truth paths. As found in Sec-

tion 6.4.1, the average similarity measures for the different trajectory reconstruction meth-

ods are 0.15-0.21 and 0.23-0.29 for SM 4 and SM 12, respectively. Even TR method 6 

(based on the fastest edge heuristic) which was qualified as the method yielding the highest 

similarity measures, has values of SM 4 and 12 lower than 0.30 and 0.44, respectively, for 

75% of the cases. These rather low values indicate that the methods developed in this study 

do not work well on a general level. The low similarity measures may be issued from an 

averaging of the similarity measures over the total number of the comparison cases. The 

scatter plot in Figure 25 shows that in some cases high similarity measures are yielded. In 

the following Section 7.3, it is discussed whether CDR data conditions could be established, 

under which higher similarity measures are to be expected.  

Summary and Outlook 

In conclusion, the similarity measures to be expected from the TR methods proposed in this 

study are, in general, rather low. However, it must be acknowledged that the ground truth 

paths are only approximations of the actual travelled paths and that the SMs are two pos-

sible ones amongst many others that could capture similarity in very different ways. As 

discussed in the previous section, TR methods could be improved using improved map-

matching and gap-filling heuristics, but the low temporal and spatial resolution of the CDR 

data impose strict limits on the potential trajectory reconstruction quality that can be ex-

pected. If an individual does not use his phone while visiting a certain place, there is no 

means to extract that location from the CDR data if the place is not located somewhere 

within two available CDR fixes. The few researchers who comparably reconstructed trajec-

tories on the basis of CDR data (e.g., Blumenstock, 2012; Csáji et al., 2013; González and 

Barabási, 2007), notably under constrained conditions (cf. Section 2.2.2), did not validate 

their methods. It would be interesting to apply the TR methods developed in this study to 

different mobile phone users and to other road network settings (from different countries) in 

order to compare trajectory reconstruction qualities to the ones obtained here.  

7.3 Impact of CDR data properties on trajectory reconstruction ac-

curacy 

In Section 6.4.2, the reconstructed trajectories were systematically grouped according to 

different CDR data properties, in order to investigate whether these properties have an im-

pact on the trajectory reconstruction quality. This leads to the discussion of the final re-

search question:  
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RQ 3: Which properties of the CDR data, such as sampling properties or trajectory length, 

affect the accuracy of the reconstructed trajectories? 

Trajectories obtained from CDR data are very heterogeneous as they result from different 

users’ backgrounds (movement behavior, etc.) and different mobile phone use behavior 

(number of CDR fixes, etc.). In order to test whether certain kinds of CDR data facilitate 

more accurate trajectory reconstruction, the following three properties of the CDR segments 

were examined: number of spatially unique CDR fixes, temporal resolution of CDR data, 

and scale of the movement. These are discussed in the following: 

Number of spatially unique CDR fixes 

In Section 6.4.2.1 it was ascertained that the number of spatially unique CDR fixes has a 

considerable impact on the obtained similarity measures. With at least 5 CDR fixes from 

different locations, for TR method 6, similarity measures around 0.5 are to be expected, 

instead of 0.2-0.3 when accepting all daily segments (at least 2 fixes). By raising the number 

of spatially unique CDR fixes to 11, the accuracy could be improved to approx. 0.7. This 

outcome is mostly in line with the findings of Saluveer and Ahas (2014) who state that at 

least 15 CDR fixes per day are required to adequately reconstruct a user’s trajectory. Ac-

cording to their study, trajectory reconstruction with fewer than 7 fixes becomes problematic. 

Multiple phone activities via the same antenna are included in these numbers. This could 

provide a partial explanation for why higher threshold values are proposed by Saluveer and 

Ahas compared to those in this study. In their study, however, no specific indications are to 

be found for how trajectories were reconstructed and validated.  

Newson and Krumm (2009) emphasize the importance of assessing when a method breaks 

down by giving an indication of the minimum temporal resolution required for reasonable 

results. In their transportation mode inference study, Wang et al. (2010), for example, in-

clude only users who engage in at least one phone activity per hour in order to have more 

spatio-temporal information that enables to more accurately infer the trips the users made. 

Since they have access to a dataset of close to one million users, they can afford such a 

strict filtering criterion. A further way of finding such a minimum number of required CDR 

fixes for the trajectory reconstruction methods proposed here could consist of using data 

detail records (DDRs). These data have the same spatial resolution as CDR data, but typi-

cally feature a much higher temporal resolution, since many services on the mobile phone 

regularly connect to the internet. On average, 100 DDR fixes in contrast to 6 CDR fixes are 

registered per person per day (Saluveer and Ahas, 2014). By reconstructing trajectories 

from DDR data that are iteratively reduced in the number of available fixes, it is possible to 

define the threshold number of fixes from which a reasonable or expected accuracy can be 

obtained.  

Average time between consecutive CDR fixes 

The grouping of the CDR segments according to their temporal resolution showed fewer 

important effects on the average similarity measures obtained than the number of CDR fixes 

(see Section 6.4.2.2). The assumption that an increase of the temporal resolution would 

improve the reconstruction quality could not be affirmed. Instead, it was found that a me-

dium temporal resolution (avg. of 55-110 min between consecutive phone activities) yields 
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the best reconstruction quality, with SMs still very low around 0.3 for TR method 6. A pro-

posed explanation for the lower reconstruction quality with higher temporal resolution data 

was that phone activities taking place in short time intervals typically originate from the same 

place and therefore do not give indications of the mobility behavior of a user. The finding 

that the temporal resolution does not significantly affect the accuracy of the reconstructed 

trajectories could result from the fact that the comparison of the paths is purely spatial and 

time is not taken into account.  

Scale of the movement 

The last criterion that was investigated was the effect of the scale of the movement on the 

trajectory reconstruction quality. As proxy for the scale of the movement, the distance be-

tween consecutive GPS points is summed, in a manner identical to the measure “total line 

segment length” as proxy for the distance covered by an individual described in Csáji et al 

(2013). The findings in Section 6.4.2.3 show that the group of long-distance movements 

(referring to inter-city trips) yields a considerably higher trajectory reconstruction accuracy 

than the group of medium-distance and short-distance movements (referring to commuting 

traffic and intra-city trips, respectively). These findings are in line with the ones of many 

researchers (e.g., Rose (2006) or Zang et al. (2010)) who likewise ascertain that trajectory 

reconstruction for inter-city trips is easier than for inner-city trips. Possible factors explaining 

this observation that are mentioned by the authors are the significantly higher road network 

densities and the higher likelihood of a mobile phone not connecting to the closest antenna 

due to overcrowding or disruptions of the antenna signals caused by buildings. Both factors 

apply to this study as well and constitute a difficulty for a correct map matching of the CDR 

fixes to the road network. Additionally, it is conceivable that long-distance travelers in the 

majority of the cases follow the roads that primarily permit fast movement and therefore the 

map-matching methods mainly relying on the importance of a node or edge (e.g., highest 

road category, highest speed tolerated, etc.) function better. In contrast, short-distance 

movements (intra-city trips) take frequently place on less important roads as well, since the 

primary goal is to get to the destination which is not necessarily next to a major road. An 

implication of this finding might be that trajectory reconstruction from CDR data is generally 

better suited for long-distance movements.  

Summary and Outlook 

In conclusion, the findings show that better trajectory reconstruction accuracies are to be 

expected if more spatially unique CDR fixes serve as input for the methods and when the 

movement takes place over a long distance. In order to verify these findings, the examina-

tion of more CDR segments would be required. In further research it would be interesting 

to test whether the data properties investigated in this study correlate amongst each other 

(e.g., relationship between long-distance movements and number of phone activities). Fur-

thermore, it would be interesting to examine further criteria such as the impact of urban vs. 

rural settings on the accuracy of short-distance movements. 
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8 Conclusion 

8.1 Summary 

There have been many attempts to reconstruct people’s movements on the basis of posi-

tioning data, relying on positioning data such as GPS with high temporal and spatial reso-

lution. Call detail records (CDRs), which are used in this study, are automatically stored for 

billing purposes by mobile phone operators and are therefore potentially available relatively 

cheaply and for long time periods for a very large fraction of the population (Furletti et al., 

2012). This kind of data, however, is generally not easily obtainable from mobile phone 

operators and the use of it has important implications for the privacy rights of the people 

concerned. In this study, the CDR and the corresponding GPS data of 6 mobile phone users 

in Estonia over a one month period are provided by Positium LBS (2014) in collaboration 

with its long-standing partner in academia, the Geography Department of the University of 

Tartu and consent to use the data was obtained from the mobile phone users involved in 

this study. The major constraints of this data source are the low spatial resolution, which 

depends on the coverage area of an antenna and the antenna network density, and the 

generally low temporal granularity depending on the regularity/irregularity and the frequency 

of phone activities of a user.  

It is therefore a challenge to gain knowledge of the movement behavior of an individual from 

the CDR data. In this thesis, several methods for reconstructing trajectories from sparse 

CDR data have been proposed and validated. To this end, the following steps have been 

undertaken: The one month CDR and GPS data of the 6 test users are divided into daily 

segments and subsequently clipped according to each other’s time frames. CDR segments 

consisting of fewer than two fixes with unique locations, as well as GPS segments with large 

spatial gaps, are disqualified from further analysis. The trajectory reconstruction consists of 

a two-level approach. Firstly, one of the seven different map-matching techniques that are 

proposed is used to match the CDR fixes to the most reasonable nodes on the road network. 

Secondly, the identified nodes are consecutively connected with a shortest-path heuristic. 

In order to validate the proposed trajectory reconstruction (TR) methods, the reconstructed 

paths are compared to the corresponding GPS trajectories. This is done by computing a set 

of similarity measures. Based on two selected similarity measures – relying on the number 

of shared path edges and the shared area of movement of the two paths, respectively – 

analyses are carried out. Thereby TR method 6, which favors edges with higher speed 

limitations, is identified as the most satisfactory method. Furthermore, it could be found that 

an increasing number of spatially unique CDR fixes and movements of an increasing dis-

tance have a positive impact on the accuracy of trajectory reconstruction, whereas the tem-

poral resolution of the CDR data is less important.  

8.2 Contributions 

This is one of the first attempts to propose and validate concrete and generally applicable 

methods to reconstruct trajectories on the basis of a set of pre-processed CDR segments 

and the inclusion of a road network. To this end, a combination of already available GIS 
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methods, firstly, to match CDR data to the road network, and secondly, a shortest-path 

algorithm to connect the identified nodes, is applied. Profiting from the special situation of 

the availability of the higher resolution GPS data of the same journeys, the TR methods are 

validated by comparing the reconstructed trajectories to the corresponding GPS trajecto-

ries. This is a response to the urgent need for validation of methods relying on CDR data 

as ascertained by Smoreda et al. (2013). The validation of the methods shows that on a 

general level similarity measures are not expected to be particularly high. This is unsurpris-

ing, since the CDR segments are very heterogeneous, being dependent on the movement 

behavior and the calling habits of a mobile phone user. From the testing of the effect of 

CDR data properties on the accuracy of the TR methods, it is possible, however, to give 

indications of the data conditions, such as number of spatially unique CDR fixes and scale 

of the movement, under which higher accuracies of trajectory reconstruction are to be ex-

pected. The application of the methods developed in this study to data details records (DDR, 

mobile internet data) that are stored by many mobile phone operators would be easily fea-

sible as the spatial resolution is identical to that of the CDR data and seems to be very 

promising, since the number of registered fixes is considerably higher.  

8.3 Outlook 

In order to further validate the TR methods and to establish with more certainty the criteria 

under which TR methods work reliably, testing on CDR or DDR data of greater numbers of 

users, over longer time periods, and also in road network settings from different countries 

is required. Further investigation could determine whether application of more refined map-

matching methods or a different heuristic – e.g., simplest path as proposed by Duckham 

and Kulik (2003) instead of shortest path – to connect the nodes would produce higher 

similarity measures for TR methods. Additional clues such as time budget and speed limi-

tations could be used in order to reduce the potential area of a mobile phone user’s where-

abouts on a road network, comparable to the approach used by Kuijpers et al. (2010). An 

area for further examination could be an investigation of whether a different approach of 

segmenting CDR data would lead to more reasonable trajectory units. The data could be 

segmented based on a spatial criterion, for example, the antenna which is expected to be 

the user’s home location. Further research could be directed towards the inclusion of the 

temporal dimension to the trajectories. Edges comprising the trajectory could be assigned 

with temporal indications that have been reasonably interpolated between known CDR 

fixes. Besides the suggested improvements of the TR methods developed in this study, an 

application of the methods for many different purposes is also conceivable. It would be 

interesting, for example, to investigate the degree of similarity of trajectories for multiple 

daily segments of the same users, in order to test the assumption of a high spatio-temporal 

regularity of human trajectories as ascertained by González et al. (2008). In order to analyze 

the frequency of use of different road network edges, the reconstructed paths of multiple 

users (e.g., originating from a similar area or having a common destination, or of all users 

who made at least two calls from different places) could be aggregated and suitably visual-

ized. With the information about the socio-economic background (e.g., gender, language, 

age) of mobile phone users, it could be investigated whether differences between different 

socio-economic groups regarding movement behavior (e.g., trajectory length, area of move-

ment) are distinguishable. 
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