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Abstract

Forests play an essential role within carbon fluxes in the context of global warming, and

a proper estimation of forests’ productivity and their interaction with the environment

is hence paramount. Research on how and to what degree forests interact with their

environment has hitherto been carried out on a small number of trees and/or influencing

variables as well as at one time event only.

This thesis attempted to overcome these gaps and tried to establish a link between growth

of an entire forest and up to six environmental influences (altitude, terrain gradient,

terrain aspect, potential solar radiation, TWI). Both forest growth and the influences

were derived from two ALS acquisitions in 2002 and 2010 over the Ofenpass valley in

the Swiss National Park. For the forest growth, a single tree identification algorithm has

been used. Besides conventional OLS regression techniques, a spatially sensitive version

called SLR has been used to assess regional differences in the growth response.

Although the results indicated weak to absent correlations, a number of properties and

model guidelines could be found: results revealed a stronger correlation when the single

tree identification was used instead of only CHM differences; solar radiation and TWI

were the best tree growth predictors; regional differences were not significant enough to

be caught up by the SLR. Most importantly, this study revealed that the derivation of

regressors from topographic models alone is insufficient and that meteorological data and

other parameters have to be included as well.

iii





Contents

Abstract ii

List of Figures vii

List of Tables ix

Abbreviations xi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Organization of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 State of the Art and Problem Description . . . . . . . . . . . . . . . . . . 2
1.4 Tree Growth Influence Factors . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Tree Age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.2 Sunlight Exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.3 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.4 Altitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.5 Terrain Slope and Aspect . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.6 Drought . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Airborne Laser Scanning principles . . . . . . . . . . . . . . . . . . . . . . 13
1.5.1 ALS data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.2 LiDAR Error Sources . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Material & Methods 17
2.1 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 LiDAR Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 LiDAR Single Tree Detection . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Raster Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Environmental Influence Variables Approximation . . . . . . . . . . . . . . 22

2.5.1 Sunlight Exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.2 Water Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.3 Gradient and Aspect . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Statistical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6.2 Statistical Preconditions . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6.3 Spatial Peculiarities . . . . . . . . . . . . . . . . . . . . . . . . . . 29

v



Contents vi

3 Results & Interpretation 33
3.1 Descriptive Statistics of the Dependent Variables . . . . . . . . . . . . . . 33
3.2 Statistical Preconditions of the OLS Regression Models . . . . . . . . . . . 34
3.3 Regression Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 OLS Estimations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 SLR Estimations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Discussion 45
4.1 ALS Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Regression Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Concluding Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Conclusion 55

6 Outlook 57

A Additional Figures 59

B MATLAB Scripts 67
B.1 Main Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
B.2 Custom Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

B.2.1 Function "ch1903ToWgs84" . . . . . . . . . . . . . . . . . . . . . . 94
B.2.2 Function "smoothenMatrix" . . . . . . . . . . . . . . . . . . . . . . 95
B.2.3 Function "solrad" . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
B.2.4 Function "linReg" . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
B.2.5 Function "normDistTest" . . . . . . . . . . . . . . . . . . . . . . . 104
B.2.6 Function "analyzeSLRResults" . . . . . . . . . . . . . . . . . . . . 106

C Python Scripts 109

Bibliography 113

Personal Declaration 124



List of Figures

1.1 ALS error sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Overview of the Ofenpass valley in the SNP . . . . . . . . . . . . . . . . . 18
2.2 Textured rendering of the Ofenpass valley . . . . . . . . . . . . . . . . . . 19
2.3 Single tree height differences between 2002 and 2010 . . . . . . . . . . . . 21
2.4 Flow chart of the variables calculation . . . . . . . . . . . . . . . . . . . . 23
2.5 Potential solar radiation in the study area . . . . . . . . . . . . . . . . . . 24
2.6 Topographic Wetness Index (TWI) over study area . . . . . . . . . . . . . 26
2.7 Terrain gradient over study area . . . . . . . . . . . . . . . . . . . . . . . 26
2.8 Terrain aspect over study area . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 OLS prediction map based on absolute CHM differences . . . . . . . . . . 37
3.2 OLS residuals map based on absolute CHM differences . . . . . . . . . . . 38
3.3 OLS prediction map based on relative CHM differences . . . . . . . . . . . 39
3.4 OLS residuals map based on relative CHM differences . . . . . . . . . . . 40
3.5 Prediction map of the revised OLS model . . . . . . . . . . . . . . . . . . 41
3.6 Residuals map of the revised OLS model . . . . . . . . . . . . . . . . . . . 42
3.7 Prediction map of the revised SLR model . . . . . . . . . . . . . . . . . . 42
3.8 Residuals map of the revised SLR model . . . . . . . . . . . . . . . . . . . 43

4.1 Areas containing particular residual patterns of the revised SLR model . . 48
4.2 Relative growth of the identified single trees . . . . . . . . . . . . . . . . . 51
4.3 Absolute growth of the identified single trees . . . . . . . . . . . . . . . . 52

A.1 Histograms and Q-Q-plots for OLS single tree regression results . . . . . . 59
A.2 Histograms and Q-Q-plots for OLS CHM differences regression results . . 60
A.3 Residual versus Prediction plots indicating heteroscedasticity . . . . . . . 61
A.4 Spatial distribution of OLS predictions for absolute single tree growths . . 62
A.5 Spatial distribution of OLS residuals for absolute single tree growths . . . 62
A.6 Spatial distribution of OLS predictions for relative single tree growths . . 63
A.7 Spatial distribution of OLS residuals for relative single tree growths . . . . 63
A.8 SLR predictions and residuals on absolute tree growth . . . . . . . . . . . 64
A.9 SLR predictions and residuals on relative tree growth . . . . . . . . . . . . 65

vii





List of Tables

2.1 Specifications of the two ALS datasets . . . . . . . . . . . . . . . . . . . . 19

3.1 Descriptive Statistics for the investigated datasets . . . . . . . . . . . . . . 34
3.2 VIFs for all explanatory variable sets for the OLS regression models . . . . 35
3.3 K.S.- and D.W.-test p values based on the OLS residuals . . . . . . . . . . 35
3.4 OLS regression statistics for CHM differences and single tree growths (ab-

solute and relative) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Descriptive statistics for the OLS residuals, based on both the CHM dif-

ferences and single tree growths . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Parameters of the revised OLS and SLR regressions . . . . . . . . . . . . . 43

ix





Abbreviations

AGL Above Ground Level

ALS Airborne Laser Scanning

CHM Canopy Height Model

DBH Diameter at Breast Height

DSM Digital Surface Model

DTM Digital Terrain Model

GPP Gross Primary Production

GPS Global Positioning System

GWR Geographically Weighted Regression

IMI Integrated Moisture Index

INS Inertial Navigation System

LiDAR Light Detection And Ranging

NPP Net Primary Productions

OLS Ordinary Least Squares (Regression)

PAR Photosynthetically Active Radiation

PRF Pulse Repetition Frequency

SLR Scalable Local Regression

SNP Swiss National Park

TWI Topographic Wetness Index

VIF Variance Inflation Factor

xi





Chapter 1

Introduction

1.1 Motivation

The influence of forests on the global carbon cycle has commonly been approved as a key

component in investigations among ongoing climate change research and debates (Pan

et al., 2011). Forests share the overarching property of being built up by large biomass

quantities and hence provide an important terrestrial carbon reservoir (Reichstein et al.,

2013). Furthermore, forests as part of a living ecosystem constantly grow, and recent

studies hence assigned forested areas a particularly important role as global carbon sinks

(Ciais et al., 2009, Erb et al., 2013, Ma et al., 2012, Nabuurs et al., 2003, Pan et al., 2011,

Reichstein et al., 2013, Schimel, 2014). In turn, effects are also observable the other way

round, as forests themselves appear to be influenced by changes in the global climate

and carbon cycle shifts (Bonan, 2008, Ma et al., 2012, Pan et al., 2011). Consequently,

embedding forests in the global climate change discourse requires a thorough understand-

ing of ecological as well as biological processes present within them. More precisely, if

environmental conditions are assumed to have an effect on an individual tree’s growth,

they indirectly alter forest productivity, and hence the capability of these biotopes to act

as said carbon reservoirs and sinks. Therefore, describing and parameterizing environ-

mental influences on tree growth is as important as approximating forest productivity

itself. In a nutshell, this thesis seeks to provide an estimation and assessment of forest

productivity on the basis of influences from the environment.

1
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1.2 Organization of this thesis

This thesis is divided into six major chapters plus Appendix. The Introduction Chapter

addresses topics related to state of the art and further gives an overview over poten-

tial conditions and factors ought to have an influence on tree growth. ALS sampling

principles will be elaborated as well. In the Methods Section, the study area will be

described briefly, and parameterizations of the influence factors as well as the single tree

identification process based on ALS data shall take part. The Results Section gives an

overview over the forest productivity estimation (both statistically and visually by usage

of spatial maps). These results will then be brought to context and analyzed in the fol-

lowing Discussion, whose key statements finally leave room for Conclusion and Outlook

Chapters giving a summary over the major findings respectively addressing further work

to be done.

The Appendix is structured as follows: a first part contains more detailed results and

images of the statistical analyses, while two succeeding parts list the MATLAB- and

Python-code as written specifically for this thesis.

1.3 State of the Art and Problem Description

Hitherto, investigations and quantifications of ecological impacts on forest productivity

have commonly been carried out on the basis of one factor at a time: Rossi et al. (2006)

for instance examined the effect of available sunlight on growth, Lloyd and Fastie (2002)

analyzed growths in regions of low air temperature, and Bigler et al. (2006) assessed

the reactions of trees if confronted with water shortage. Further variables ought to have

an effect on forest productivity are the tree’s age due to consequent physiological issues

(Koch et al., 2004), topographic parameters such as terrain gradient and aspect (Feked-

ulegn et al., 2002), and finally also short-term effects like changes in forest management

(Erb et al., 2013) and occurrences of catastrophes like droughts or wildfires (Loudermilk

et al., 2013). In addition, a few theses indeed examined the effect of multiple potential

environmental influence factors on tree growth at once, but did so with a relatively small

number of trees and for specific sites like urban areas (e.g. Iakovoglou et al. (2001)). Sim-

ilar progress has been made in productivity estimation via related parameters such as

Gross and Net Primary Production (GPP resp. NPP; Vicca et al. (2012)) for single trees,
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carried out on the basis of tree rings (Babst et al., 2012) and (vegetation) indices sourced

from optical remote sensing data (Beck et al., 2011, Schubert et al., 2012). All in all, the

linkage between the environment and individual trees seems to have a strong fundament

despite consistent remaining uncertainties as expectable within ecological investigations.

However, analyses typically suffer from one or more issues:

• environmental influences are investigated only one at once,

• analyses are carried out on the basis of single trees rather than entire forests,

• data are acquired at one time event only.

As soon as forests are seen as part of a superimposed ecosystem involving a multitude

of processes at once, these issues have to be accounted for. Especially in the context

of climate change, momentary GPP and biomass estimations fail to provide a sufficient

foundation for trend analyses and development monitoring purposes; they suffer from a

"temporal scaling problem" (Morsdorf et al., in revision). As already shown, biomass

estimations based on optical remote sensing products are indeed feasible, but lack the

vertical dimension especially appreciable for tall-grown vegetation areas. However, es-

timations using the SAR approach still does not solve the Furthermore, productivity

estimations require an integration over entire forest stands to reach an adequate sta-

tistical sample size and capture regional (instead of only individual) effects. Means of

manual measurements, repeated over time, would be an unrealistically cumbersome task

to achieve. Sample acquisition would thus not only incorporate a temporal, but also

a spatial scaling problem. All in all, there is need for larger-scale, time-variant and

multivariate ecological studies.

Fortunately, the development of new remote sensing technology provided an answer to

such issues in the form of laser scanning. Sensors of this type have been developed for

terrestrial, airborne as well as spaceborne use, but especially Airborne Laser Scanners

(ALS) gained growing popularity in forest-related studies and are increasingly used for

tasks such as tree height modeling (Chen et al., 2007). ALS systems overcome drawbacks

of conventional optical remote sensing instruments by being able to sample not only

large areas, but provide vertical measurements as well (Lefsky et al., 2002b). For said

intentions, this property can be exploited in multiple ways: on the one hand, Lefsky
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et al. (2002a) have shown that forest biomass can be estimated using tree height. With

repeated ALS passes, estimations become not only tree heights, but height differences,

which may be seen as directly related to forest productivity. On the other, many of

the environmental influences on growth mentioned at the beginning of this Section can,

to a certain extent, be derived from ALS acquisitions. Consequently, Airborne Laser

Scanning plays a pivotal role in such analyses, and provides an expedient synthesis of

ecological studies and state-of-the-art technology.

On the basis of these topics, the following research goals are to be covered in this thesis:

1. Establishing a link between environmental and tree-inherent influence factors on a

tree’s growth.

2. Applying this investigation not only on the basis of one factor, but multiple at a

time

3. Extending analysis to entire forest stands instead of single trees only.

4. Investigating how well forest productivity and environmental influence factors can

be parameterized by means of ALS-derived data alone. Particular focus is laid on

a new technique to derive single trees based on the ALS point cloud (see Section

2.3).

5. As an additional property, the magnitude of growth response differences within the

study area will be examined by means of specifically developed spatial statistical

tools.

1.4 Tree Growth Influence Factors

1.4.1 Tree Age

The age of a tree has been reported to have an influence on the tree’s growth rate in a

variety of ways (Koch et al., 2004, Ryan and Yoder, 1997) and may be considered as one

of the growth prediction candidates not directly related to environmental conditions.

Tree age, and the history of its surrounding forest, can influence a tree’s response to

climate (Lloyd and Fastie, 2002). Trees were reported to have a reduced growth rate
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with progressing age (Martínez-Vilalta et al., 2007), which also results in a maximally

reachable tree height (Ryan and Yoder, 1997). Such maximum tree heights are to date

hardly quantifiable due to poor understanding of the influences (Koch et al., 2004). The

conventional approach to overcome this issue was to use Diameter at Breast Height

(DBH) to estimate biomass (Whittaker et al., 1974). Nevertheless have foresters been

using the correlation between maximum height of individual trees and growth rate of

them in younger years to predict further growth (Ryan and Yoder, 1997). Furthermore,

in the work of Avsar (2004) the relation between tree height and DBH has turned out to be

reasonably strong, indicating that studies based on tree height might yield comparable

results as if DBH was used. As for biological reasons, a common assumption holds

an aggravated water transport through the tree liable for growth limitation due to a

reduction of photosynthetic carbon gain (Koch et al., 2004, Ryan and Yoder, 1997). For

instance, Hubbard et al. (1999) found that older (and indeed taller) individuals of the

Pinus ponderosa species had a 44% lower hydraulic conductance as well as 63% lower

water potential among one-year-old needles compared to younger siblings, thus probably

indicating reduced photosynthesis rates. At the same time, the greater height of trees

might favor the formation of embolisms, possibly due to freeze-thaw events (Mayr et al.,

2003a), drought stress (Mayr et al., 2006), or other reasons. Therefore, if trees show

signs of suffering from water shortage, it might not automatically be drought and lack

of water supply from the environment causing it, but rather tree fitness emerging from

the individual itself.

Kalliovirta and Tokola (2005) thoroughly assessed models for the prediction of stem

diameter and tree age using mainly the tree’s height and crown width on the basis of dif-

ferent tree species, one of which belonging to the Pine species (Pinus sylvestris). Despite

their recommendation towards models using both the tree height and crown diameter as

explanatory variables for estimation, they stated that tree age among coniferous species

is mostly related with the tree’s height.

All in all, older trees are likely to show a reduced metabolic rate and consequently less

biomass production than young individuals (Gower et al., 1996). The inclusion of an

age proxy thus may encompass a variety of causes for tree growth reduction at once. It

is important to note, though, that these are mostly intrinsic to the tree itself and only

partially controlled by environmental conditions (i.e. temperature and water stress).

Such external stress factors also affect young trees and saplings and need to be included
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separately. However, in case the hypothesis of a reduced growth rate with increasing tree

height holds true, it should thus be possible to reverse the model and estimate an average

growth rate based on a tree’s age, possibly approximated using its current height.

1.4.2 Sunlight Exposure

Solar radiation is the primary supply of energy for life on the Earth’s surface (Szargut,

2003, Wild et al., 2005). Estimations have been made that 99.8% of the energy at the

Earth’s surface is due to sunlight (Dickinson and Cheremisinoff (1980), in Kumar et al.

(1997)). For logical reasons, solar radiation needs to be considered as a, if not the major

driving factor determining the healthiness and growth capability of single trees, forest

stands, yet entire ecosystems. Ecosystems are inter alia defined as "machines supplied

with energy from an external source, usually the sun" (Monteith, 1972), underlining the

prevalence of sunlight as an energy supplier. In ecosystems, the importance of the sun

for trees manifests itself in a variety of processes that depend on the diurnal amount of

electromagnetic radiation present, and this either directly by absorption of the shortwave

electromagnetic radiation part of the spectrum, or indirectly re-emission as longwave

radiation, and thus heat. Among plants, the most obvious process dependent on solar

radiation, photosynthesis, depends on electromagnetic wavelengths between 400 and 700

(resp. 380 and 710) nm (Jacovides et al., 2003), which is thus called "Photosynthetically

Active Radiation" (PAR; McCree (1981)). Plants are thus subject to a constant process

of growing towards maximal utilization of available light while keeping structural stress

at a minimal level (Hart et al., 2003). Other plant functions depend on this wavelength

range as well, but a broader electromagnetic spectrum is required for all plant functions

to work properly (Daubenmire (1974), in Kimmins (2004)). UV light does not play an

essential role in plant physiology though (Kimmins, 2004). More precisely, excessive UV

light had sometimes been seen as a major growth inhibitor for trees at high altitudes

near the treeline, but this effect is highly contentious (Kimmins, 2004). Heat as another

important consequence of incoming sunlight mainly originates from the interactions of

the shortwave electromagnetic irradiance, which is being absorbed and emitted in longer

wavelengths (thermal infrared). The amount of longwave (thermal) incoming radiation

from the sun is more or less negigible. This is an essential property of the energy

fluxes on the earth insofar as it simplifies the solar radiation budget calculation later

on, since no longer wavelength radiation propagation paths need to be considered in the
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model. What might need to be considered though is that solar radiation is subject to

constant variation throughout the landscape, day, and, in advanced models, solar cycle

and atmospheric composition. The landscape primarily alters solar radiation due to

topography (especially slope and aspect (Kimmins, 2004, Kumar et al., 1997)), ground

reflectance resp. albedo (Corripio, 2003) and position of patches neighboring the area

of interest (Kumar et al., 1997). Also, in a very mountainous terrain, shading due to

adjacent mountains and hills plays an essential role by attenuating the direct part of the

solar irradiance (Hughes, 2000). Daily variation is given due to the number of sunshine

hours (Ampratwum and Dorvlo, 1999) and position of the sun relative to the Earth’s

surface (solar altitude and azimuth angles (Corripio, 2003, Kumar et al., 1997)). Day

length (and thus probably the amount of solar radiation in general) was found to be of

special importance for tree growth and to be more important than temperature in the

study of Rossi et al. (2006).

On clear days, about 5% of the radiation gets scattered in the atmosphere, and this

fraction may rise over 17% on average days to 100% for completely overcast weather

situations (Kimmins, 2004). Under cloudy conditions, plants thus mainly receive scat-

tered sunlight and the effects affecting the direct radiation part (such as hill-shading)

diminish. If the cloud cover for the investigated area and time period was at hand, a

very precise solar radiation model would be computable. However, the consequences for

further growth estimation or prediction models would probably be not measurable with

such an increase in model accuracy. Moreover, it is likely for a study area of moderate

size to be affected by clouds all the same throughout the field, making such efforts of

exact budget calculation redundant.

The establishment and computation of a solar radiation budget model alone does not

yet predict the way a tree resp. forest stand grows though; the relation between solar

radiation and growth rate may in fact not be positive at all. For instance, Kimmins

(2004) states that the absence of solar radiation has a higher effect on plant growth

than adequate presence (or excessiveness) of it. More precisely, plants in dark areas

feature more cell division, hence elongation processes, and a reduced leaf production,

resulting in fast growth and tall but thin stems (which are so-called etiolated plants;

Kimmins (2004)). One would expect that especially trees growing below a (dense) forest

canopy become etiolated. However, etiolation is most obvious in herbaceous plants,
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and completely absent in shade-tolerant species, such as pines as present in this thesis’

investigated area (Kimmins, 2004).

With respect to such observations, the expected response of trees to sunlight suddenly

becomes very vague. Processes such as photosynthesis are just too complex to be assumed

to follow (daily) variation in incoming sunlight (Kimmins, 2004). Hence, the safest

thoughts on the impact of solar radiation on plants may be that both entire absence and

excess result in growth stagnation or even death of the individual. The effects of budgets

between excess and absence may in turn not be as predictable. It may be that trees on

south-facing slopes show rapid growth due to the great availability of solar radiation. At

the same time, pines are light-demanding species (Kimmins, 2004), and especially plants

growing in the shadowed north-facing slopes may try to reach more illuminated parts as

quickly as possible and could thus grow taller than their conspecifics in more frequent

sunlight. In the present thesis, analyses are thus carried out on an exploratory basis,

making very limited assumptions.

1.4.3 Temperature

Among the possible abiotic factors inhibiting tree growth rate temperature has been

one of the most investigated in the literature. Focus has usually been laid on influences

of air temperature (e.g. Gamache and Payette (2004), Petit et al. (2011)). In fact,

summer air temperature has typically been the most often identified factor functioning

as a growth-limiting climatic variable (Briffa et al. (1995), Graumlich and Brubaker

(1986), Jacoby et al. (1985), Norton (1984); all in Gamache and Payette (2004)), and

this in various ways. For instance, significant correlations have been found between plant

respiration respectively photosynthesis and temperature increases (Chapin et al., 1996).

More importantly, the formation of wood (xylogenesis) in trees under cold annual air

temperatures was found to be accelerated by warmer temperatures (Danby and Hik,

2007, Gorsuch and Oberbauer, 2002, Petit et al., 2011). Especially Petit et al. (2011)

reported a significantly increased increment in shoot length of heated trees in comparison

to the unheated control sample, and suspected xylogenesis, more precise cambial activity,

to be the key process for the determination of growth limitation. However, at the same

time trees with an increased growth rate in summer have been reported to be more

susceptible to frost drought in winter (Danby and Hik, 2007, Gorsuch and Oberbauer,
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2002). Growth inhibition due to temperature effects do not only apply for the winter

season though: shoots are typically surrounded by a "hull" of warmer temperatures

around the trees as long as they are not at the top of the tree crown. In this case, these

shoots reach into the outer atmosphere with colder temperatures, resulting in a reduced

growth rate of their tissues (Körner, 1998).

However, there have also been doubts recently on the linkage between increased air

temperatures and higher growth rates (Lloyd and Fastie, 2002). Nevertheless, trees con-

fronted with low mean annual temperatures typically show both a lower tree ring width

and height growth rate (Gamache and Payette, 2004, Körner, 2003), and additionally,

warmer temperature events in such environments may even alter a tree’s morphological

appearance, letting the tree erect into an upright form from a previous shrub-like shape

(Devi et al., 2008). More generally, air temperatures are likely to influence a tree’s struc-

tural growth, i.e. the "investment of photo-assimilates" (Körner and Paulsen, 2004).

These effects become generally more distinct at the treeline (Birmann and Körner, 2009,

Danby and Hik, 2007, Dullinger et al., 2004, Richardson and Friedland, 2007), which

is called "climatic treeline" if a major influence of the temperature on it is assumed

(Alvarez-Uria and Körner, 2007). Some studies calculated a generally applicable mean

temperature at which the treeline occurs (Körner and Paulsen (2004) for instance sug-

gested a mean temperature of 6.7 ◦C at which treelines are situated sans human influ-

ences). In association with global warming, treeline advances were especially coherent

with temperature increases (Harsch et al., 2009). The present study’s investigated area

covers regions where upper treelines are present. However, individuals at the border are

typically composed of krummholz and dwarf shrubs, sometimes even distorted growth

forms (Smith et al., 2003) and hardly grow taller than a few meters. With the restrictions

posed to the investigated trees, such individuals would possibly not even be recognized.

Therefore, treeline effects are, if present, only marginal.

The soil temperature as a counterpart to air temperature also plays an important role

in the health status and growth rate of trees. In fact, Alvarez-Uria and Körner (2007)

consider soil temperature as a primary factor influencing plant growth in general. Con-

sequences of cold soil temperatures are for instance reduced root diameters (Chapin

(1974), in Alvarez-Uria and Körner (2007)), a resistance of trees to grow their roots into

cold soils (Alvarez-Uria and Körner, 2007), and altered nutrient and water uptake (Va-

paavuori et al., 1992). Soil temperature is often characterized by a delayed adaptation
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to the air temperature above ground (Alvarez-Uria and Körner, 2007, Pregitzer et al.,

2000), and thus "lags behind" it. Consequently, trees are typically confronted with low

soil temperatures for a longer time than with low air temperatures, which further raises

the stress potential.

Both soil and air temperatures have distinct effects and consequently affect different parts

of the individual tree, and the effects have often been discussed resulting in contradic-

tory results. For instance, Barber et al. (2000) and Lloyd and Fastie (2002) identified a

diminishing effect of warmer air temperatures on tree ring width respectively tree growth

in general. This stands in contrast to the common assumption of decreased air temper-

atures to inhibit tree growth, which was also stated by others (e.g. Petit et al. (2011)

or Gamache and Payette (2004)). However, it is important to note in such a case that

the eventual tree growth in height may not always be correlated to tree ring width, since

the latter can also depend on stabilization requirements on steep mountainsides. Also,

Lloyd and Fastie (2002) identified this negative correlation between air temperature and

tree growth rate only in areas with less water availability. It is therefore conceivable

for temperature changes to be accompanied by an altered water ability in the form of

soil moisture (Koch et al., 2004, Lloyd and Fastie, 2002), which may therefore lead to

an additionally increased growth inhibition for trees. This temperature-induced drought

stress holds especially true for forests with a limited water supply and an increased air

temperature (Lloyd and Fastie, 2002), resulting in reduced carbon uptake (Barber et al.,

2000).

1.4.4 Altitude

The elevation of a tree above sea level is inherently linked to the often investigated

(alpine) treeline (e.g. Däniker (1923), Körner (1998), Miehe and Miehe (1994), Tran-

quillini (1979), Wardle (1993); all in Körner and Paulsen (2004)). Alpine treelines share

the characterization by a typically abrupt change (Birmann and Körner, 2009) from up-

right trees to shrubby forms (Körner and Paulsen, 2004), acting as a transition zone

(ecotone) rather than a sharp line (Birmann and Körner, 2009, Dullinger et al., 2004).

The causes for treelines are, despite numerous studies, not fully understood (Grace et al.,

2002). The most often mentioned assumption of a growth limitation at high altitudes

due to low temperatures (Becker and Bugmann, 2001, Kittel et al., 2000, Shi et al., 2008,
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Shiyatov and Mazepa, 2007, Smith et al., 2003, Vaganov et al., 1999) underwent revisions

and was found to be not as strong as previously thought (Grace et al., 2002). However,

these doubts were often targeted towards e.g. a globally applicable temperature thresh-

old value to explain treelines around the world (see e.g. Körner and Paulsen (2004)). If

they hold true for investigations based on regionally scaled areas is to be investigated

within the framework of this study.

1.4.5 Terrain Slope and Aspect

Slope or gradient is the maximum rate of change in height at a specific point from

its neighbors (ESRI, 2011b); aspect denotes the direction of the slope (ESRI, 2011a).

Both parameters serve as underlying variables within many topographic indices and

other variables and are therefore often already included in analyses, even if indirectly.

In the present study, terrain slope is an essential part of the solar radiation budget

calculation (see Sections 1.4.2 and 2.5.1 for an elaboration). However, there is more

to these properties in ecology, especially when it comes to environmental conditions for

trees.

Fekedulegn et al. (2002) investigated the influence of terrain aspect (separated into north-

east and southwest) on radial growth and found that three of four tree species showed

significantly higher growth rates at northeastern compared to southwestern aspects. Con-

sistent with the involvement of aspect in other ecological factors, the authors explained

growth differences with variations of precipitation and drought, and also species-specific

tolerances of and sensitivity to water shortage or moisture (for instance, yellow poplar

was found to be the most sensitive to moisture (Fekedulegn et al., 2002)). Addition-

ally, however, the authors concluded that drought alone cannot be made responsible

for growth differences, underlining the investigated theory of a multidimensional growth

influence model.

Similarly, also slope respectively the steepness of the terrain is a property that is found to

be used in other variables, such as in water runoff modeling (see Sections 1.4.6 and 2.5.2).

Consequently, the effects of slope alone on tree growth has rarely been investigated in

the literature.
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1.4.6 Drought

Water shortage is a phenomenon that often occurs together with increased temperatures

(Barber et al., 2000, Mayr et al., 2006). Trees generally show the highest growth rate

in moist soils (Ryan and Yoder, 1997), and a reduction in the water potential due to

parched soils reduces the positive pressure (turgor) of plant cells (Koch et al., 2004). In

summer, rising temperatures may thus not only cause drought stress, but also reduce

the sensitivity of growth rate to temperature fluctuations (Barber et al. (2000), Lloyd

and Fastie (2002); both in Gamache and Payette (2004)). Bigler et al. (2006) examined

drought effects in the Swiss Valais region, which, just like the area examined in this study,

is an inner-alpine dry valley (Rigling et al., 2002). The authors found that single drought

years as well as continuous drought periods resulted in long-term negative effects on ring

widths. In this area, drought could accordingly be a major reason for the decline of the

Scots pine that was observed (Bigler et al., 2006). Drought is not only limited to warm

summer temperatures though. As a special case, extremely low soil temperatures falling

below the freezing point in winter prevent water uptake by the tree; together with the

increased evapotranspiration due to still warm air temperatures, this effect is called frost

drought (Mayr et al., 2006, 2002), or winter desiccation (Tranquillini, 1980). This effect

gets amplified as soon as the tree crown stands out of the snow cover (Petit et al., 2011)

and is exposed to high wind speeds (Mayr et al., 2002). Especially the unusually cold

winters in Europe bringing along multiple freeze-thaw events thus induce severe drought

stress to trees (Mayr et al., 2002). In fact, even if the water temperature is above the

freezing point, trees may witness frost drought due to a higher viscosity of water at

lower temperatures (Kimmins, 2004). Consequently, there is a higher risk of embolisms

among trees suffering from frost resp. low temperature drought (Mayr et al., 2003b,

2002), eventually limiting growth or even leading to a tree’s death (Koch et al., 2004).

Embolisms particularly occur as soon as the water potential in conduits is lower than

xylem-specific thresholds where air crosses cell borders (Mayr et al., 2006). In consensus

with the altitude-temperature correlation, the embolism rate of trees at low elevation was

indeed significantly lower than at higher levels in the study of Mayr et al. (2006), whereas

embolism stress due to drought was an "important stress factor", at least for Picea abies

(Mayr et al., 2006). Additionally, drought as a stress-inducing factor may indirectly cause

the appearance of other harms to trees, which makes it therefore an exemplar for the

decline-disease theory (see e.g. Suarez et al. (2004)). For instance, Mattson and Haack



Chapter 1. Introduction 13

(1987) (in Bigler et al. (2006)) reported drought combined with higher temperatures to

promote insect outbreaks and phytopathogens. Similar consequences were described in

Kimmins (2004). This makes sense as such climatic conditions favor insect development

populations (Berryman (1989), in Bigler et al. (2006)).

1.5 Airborne Laser Scanning principles

1.5.1 ALS data acquisition

In order to establish an adequate statistical sample size, the above mentioned (bio-)

physical factors, most interpolated and available over the entire study area rather than

for single trees, must be assignable to as many trees as possible. This also means that all

growth rates for each of these trees has to be known and measured during the same time

period, which would be an unrealistically cumbersome task to achieve (Morsdorf et al., in

revision). Furthermore, change detection additionally requires a sample integration over

time, or in the present case of growth analyses over a defined time period, two discrete

time measurements. A possible solution to this problem is to use height models derived

by airborne laser scanners (Wehr and Lohr, 1999), recorded at multiple time stages.

ALS systems have gained growing popularity in remote sensing and are increasingly

used for tasks such as height modeling and forest-related studies (Chen et al., 2007).

Essential properties of ALS for this study are the directly given height measurement for

each sampled point as well as the possibility to discriminate between top of canopy and

ground, and therefore the ability to derive tree heights from the datasets.

Included in an ALS are two major components: a LiDAR (Light Detection And Ranging)

sensor measuring the actual returning laser beam as well as a positioning and orientation

system, comprised by a Global Positioning System (GPS) and an Inertial Navigation Sys-

tem (INS). LiDAR scanners emit laser pulses of known wavelength and intensity (in the

case of a full-waveform system; see below) or amplitude (discrete-return system) and mea-

sure the time until return, and therefore the distance between emitter and ground target.

Each emitted pulse will then be scattered at different time stages from targets having

different heights. Therefore, multiple signals (echoes) originating from one emitted laser

pulse may be recorded. Consequently, depths in the field, eventually target heights,

become measurable. The way these returning signals are measured and stored depends
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on the LiDAR configuration or specification; in case only a small number of echoes are

recorded, the LiDAR is termed a discrete return system, whereas sensors capturing all

the backscattering signals belong to the full-waveform scanner family. Full-waveform

systems allow for recording entire (vertical) transects of forests and other heterogeneous

ground targets and therefore lead to a larger amount of retrievable information from the

data (Heinzel and Koch, 2011), and thus an increased control of data interpretation by

the user (Heinzel and Koch, 2011, Mallet and Bretar, 2009). However, analyses of full-

waveform data are cumbersome and still a field of research (Heinzel and Koch, 2011),

but there is great potential especially for forestry applications; full-waveform LiDAR

systems have in fact been developed for this kind of targets (Mallet and Bretar, 2009).

The present study’s main input was limited to discrete return sensors and data though

since tree heights and ground terrain data were sufficient for all further analyses.

1.5.2 LiDAR Error Sources

As mentioned above, descriptions of tree physiology parameters on a regional level would

hardly be feasible without means like ALS measurements due to the extreme amount

of field work required. However, ALS-based height samples do not come without draw-

backs and it is important to treat ALS-sampled data with caution due to a multitude of

potential error sources.

In theory, the most important error sources for ALS products are shown in Figure 1.1

and may be seen as a system encompassing the platform (ALS and carrier), the sampled

objects resp. targets (ground, forest stands, other objects), and finally post-processing

methods. Platform-related error sources comprise e.g. the beam divergence angle, the

positioning of the platform, the pulse repetition frequency (PRF; Hopkinson (2007)) and,

to some extent, the flight planning (scan patterns) (Andersen et al., 2006). The LiDAR

footprint size further affects the accuracy of the estimated tree height, and the footprint

size in turn is dependent not only on the hardware configuration but also on the flying

altitude of the ALS platform in a geometrical way (Morsdorf et al., 2006). Target-related

error sources that add up are effects such as reflectance in the sampling wavelength of

the LiDAR, phenology (leaf-on versus leaf-off states of plants), and slope of the terrain

(Andersen et al., 2006). Post-processing of raw ALS point clouds, such as the interpola-

tion into a raster, always includes systematic deviations and simplifications (for instance,
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Platform specific

• GPS inaccuracies

• IMU drift

• Clock drift

• Scan patterns

Target specific

• Reflectance

• Phenology

• Terrain slope

• Artifacts (birds, smoke particles, etc.)

Sensor specific

• Footprint size

• Beam divergence angle

• PRF

 Post-processing specific

• Coordinate transformation effects

• Raster interpolation

• Co-registration shifts

Figure 1.1: The most important error sources for ALS-derived height models.

a raster cell might contain an average height value of all raw points from the ALS point

cloud that lie within its boundaries, and thus represents a simplification of the original

data). In the present thesis, post-processing steps are expected to superimpose platform-

and sensor-related error sources and cause the largest tree height estimation biases. In

combination, these error sources may lead to significantly under- or overestimated height

measurements of trees and therefore also to false alarms in the single-tree identification

process.

1.6 Hypotheses

As stated above, previous studies have found correlations between growth inhibition or

promotion and various environmental influences among different tree species and popu-

lations. However, in most cases, the limited sample size due to the required efforts for

analyses prevented the studies from being able to provide a result that is valid in a holistic

sense, and able to explain growth patterns for entire forest stands. With the advancing

technology and refinement of methods due to Airborne Laser Scanners (ALS), such pro-

cesses might to some extent be reproducible not only for individual trees, but also for
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their surrounding neighbors and a tree population as a whole. In addition, by including

several influences at once, a single model of tree growth and hence forest productivity

assessment and even prediction approaches practicability. This thesis therefore seeks to

provide explanation for tree growth rates over an entire valley in the Swiss National Park.

Since trees in this study are abstracted and measured using multi-temporal ALS mea-

surements, and since virtually all of the investigated influences are derived from digital

height models (DHM), the methods used here and insights gained from the estimation

processes may be transferable to other test sites.

A further topic which will be addressed below deals with spatial autocorrelation and

methods to include this property (see Section 2.6.3 for further explanations). Especially

due to the diverse study area, showing ecologically distinct spatial regions, spatial re-

gression models are expected to be advantageous over regular Ordinary Least Squares

(OLS) counterparts. Therefore, an inter-comparison between two regression techniques

(spatial/non-spatial) will be carried out with the tree growth model and influence factors

described above.

Based on this background, the following hypotheses are to be covered in this study:

1. A tree’s growth rate depends on a set of distinct physical and biophysical influences,

including the tree’s age, the amount of potential solar radiation, temperature,

steepness and exposition of the ground, and water availability.

2. Spatial differences and effects in tree growth (spatial autocorrelation) can be prop-

erly identified, measured, and accounted for in a multivariate ecological regression

model.
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Material & Methods

2.1 Study Area

The introduced causes potentially affecting tree growth are expected to be most evident

under the absence of any human-induced interaction such as woodcutting or artificial

fires. The choice of a study area where human interference has been absent for a long

time is therefore crucial. This study examines the described effects within the Ofenpass

valley situated in the Swiss National Park (SNP), whose forests have not been managed

since the park establishment in 1914 (Verrelst et al., 2010). The only expectable human

interactions are due to touristic activities (although paths are not to be abandoned by

law), as well as a road situated on the northern slope of the valley. The Ofenpass valley

is comparable to the Valais for its location amid the inner Alps and its dryness (see e.g.

Rigling et al. (2002) or Bigler et al. (2006)), with a mean annual precipitation of 900 to

1100 mm (Schaepman et al. (2004)). The valley’s altitudes range from 1500m a.s.l. and

reaches up to 1900m in the eastern part, while surrounding mountain ridges and peaks

reach up to 3000m (Morsdorf et al., 2004).

Vegetation in the Ofenpass valley is characterized by alpine forest stands, dominated

by mountain pine (Pinus montana ssp. arborea) and stone pine (Pinus cembra) species

(Morsdorf et al., 2004). On the northern slope, more than a fifth of the upright trees are

dead (Morsdorf et al., 2005), which has mainly been caused by root rot fungi Dobbertin

et al. (2001). The investigated study area will cover the entire Ofenpass valley as shown

in Figure 2.2. A sample view of the forested Ofenpass valley is given in Figure 2.1.

17
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Figure 2.1: Overview of the Ofenpass valley near Stabelchod in the SNP.

2.2 LiDAR Data

The ALS sampled data originates from two helicopter-based flight campaigns date to

2002 and 2010. The covered area in the 2002 dataset was slightly smaller in size (14km2)

compared to the 2010 data and was entirely encompassed by the latter and was therefore

decisive for the study area. Two different ALS instruments were used (Toposys Falcon

II in the 2002 dataset and Riegl LMS Q 560 in 2010), and height and surface models

were computed by Toposys using their proprietary TopPit software. 2.1 lists the most

important sensor specifications of the two instruments.

2.3 LiDAR Single Tree Detection

The processing sequence of the LiDAR point cloud datasets in this study is described in

detail in Morsdorf et al. (in revision) and is based on Morsdorf et al. (2004). In short,

data was pre-processed in the steps listed as follows:
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Figure 2.2: Rendering of the study area (Ofenpass valley) with an overlay texture1.

Unit 2002 2010
Instrument Toposys Falcon II Riegl LMS Q 560
Beam deflection Fiber array Rotating mirror
PRF [kHz] 83 70
Echo detection mode first, last up to 7*
Nominal flying altitude AGL [m] 500 700
Max. Scan Angle [◦] ±7.3 (fixed) ±15
Wavelength [nm] 1560 1550
Pulse duration [ns] 5 4
Beam divergence [mrad] 1 ≤ 0.5
Avg. echo density [1/m2] 38.1 27.4
Time of acquisition October 2002 September 2010

Table 2.1: Specifications of the two used ALS datasets. *The full-waveform supported
by the LMS Q 560 was recorded, but only discrete returns were used in this study,

extracted during post-processing.

1. Identification of local height maxima in the CHM. These local maxima are assumed

to represent measurement returns from tree tops.

2. Clustering of the point cloud by means of approximating a 3D Gaussian fit curve to

the local maxima (mean) as well as tree height and crown diameter (curve standard

deviation).

3. Matching of trees from the two datasets, which is based on a tree’s location in the

x and y domain (the presumed tree height is unusable since the actual height might
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be significantly different due to the time gap between the two datasets. Moreover,

the actual increase representing tree growth is of main interest in this case). The

matching algorithm makes use of a nearest neighbor search.

The single tree identification resulted in a total of 408’915 objects for the 2002 dataset

and in 1’216’936 objects for 2010. The total number of matched pairs between the

two datasets were 403’624 objects. Table 3.1 lists further statistical information for the

identifications. It is important to note that despite positive results for successful tree

identification in Morsdorf et al. (2004), misclassifications and false alarms do happen,

and they occur in a multitude of ways: for instance, it may well be that heights get over-

estimated due to birds, smoke particles or other objects large enough to generate a return

for the LiDAR. Such errors are typically easy to identify in extreme overestimations as

in the 2002 dataset, where the maximum height clearly exceeds any realistic value. How-

ever, as soon as e.g. birds flying just above the canopy are erroneously recorded, an

accurate identification and elimination may not be feasible anymore. In order to limit

such systematic errors as good as possible beforehand, the maximum sensible tree height

was assumed to be at most 40m and the identified objects constrained to lie below this

value.

Secondly, the tree matching step revealed that some trees featured a height decline over

the eight years instead of a growth. Also, some seemed to have reached a stagnation in

growth and seemed to have more or less the same height in both 2002 and 2010. Trees

that have stagnated or lost height are depicted as green respectively red dots in Figure

2.3. Obvious explanations, besides a mismatching or displacement in the algorithm, are

avalanches, blowdowns or other causes resulting in a tree’s death and eventual fall-down.

Consequently, all trees with theoretical negative growth rates have been excluded from

further analyses as well.

Thirdly, some identified objects in the field may have had a height comparable to (young)

trees, but were in fact other species, boulders, or comparable. Based on the formulation

of Körner (1998), who defined a tree as having a height of at least three meters, all

objects below this threshold were omitted in the analyses. This also coincides with the

findings of Kalliovirta and Tokola (2005) who found young trees below the three meter

mark to not respond well to their age prediction models.
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Figure 2.3: Height difference of the identified single trees between 2002 and 2010.

2.4 Raster Data Preparation

Besides the single tree identification, also rasterized datasets of the sampled surface and

ground were derived from the LiDAR point cloud. As discussed in Section 1.5.2, ALS

sampled data may be prone to increased noise originating from a number of different

error sources, and thus deviations in tree height estimation. This logically was also the

case in the present study’s datasets. The usage of the rasterized canopy height model

omitted the step of identifying single trees and hence helped reducing the number of

error sources and total amount of error present. In order to get rid of objects other

than trees as good as possible and reduce the influence of young trees where only vague

growth signals are visible, the rasterized data were limited the same way as the single

trees identified to the tree height and growth range described in 2.3.

The consideration of the rasterized CHM mainly leads to a reduction of methodological

errors. However, the problems of platform-related error sources continue to exist also

within this dataset. These errors are of geometrical or physical origin and may thus not

be eliminable. In order to at least reduce their impact on the data, the CHM differences

dataset has been smoothed with an average kernel of 10x10 pixels (5x5m).



Chapter 2. Material & Methods 22

2.5 Environmental Influence Variables Approximation

For a number of environmental influence factors, calculation is either straight-forward

or not required at all. This is the case in the tree’s age, which is approximated with

the initial tree height in 2002 in a linear relationship, as well as the altitude, which is

derived from the DTM. The rest of the factors and their approximations will be addressed

below. All in all, the following influences and their parameterizations will be included

as explanatory factors in further analyses:

• Tree age: tree height

• Sunlight exposure: solar radiation budget

• Temperature: altitude [m]

• Slope

• Aspect

• Water availability/drought: Topographic Wetness Index (TWI)

These variables and the relations between them are further shown in a flow chart in

Figure 2.4.

2.5.1 Sunlight Exposure

There have been a number of studies addressing the calculation of the solar radiation

budget values for surfaces (e.g. Corripio (2003), Kumar et al. (1997)). In conventional

cases, a pixel-wise exact value of total solar radiation, integrated over one year, may

be required for further calculations. Also, depending on the number of modeled (atmo-

spheric) paths of radiation as well as wavelengths (shortwave, longwave), the calculation

may become too expensive to accomplish. The objective of this study deviates from

such problems insofar as it only requires relative radiation differences between (forest)

patches of the study area, which therefore does not only reduce the required accuracy

level of the radiation budget calculation, but also dramatically simplifies its execution.

It is easily assumable that meteorological conditions and changes have a more or less

equal impact over the entire study area and in sum affect all trees evenly. Moreover, too
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Figure 2.4: Flow chart showing the dependence of the variables used in the statistical
model, with differentiation of explanatory (environmental influences) and dependent

(forest growth) variables. See Section 2.6 for further details.

complex atmospheric paths such as multiple light scattering from neighboring areas do

not need to be calculated as they may be assumed to either appear uniformly over the

entire scene, or else to be too marginal to alter the resulting solar radiation significantly.

Finally, since we do not need to know the exact budget, an integration over one year

is not necessary; instead it may be sufficient to know the radiation of the days having

the shortest respectively the longest day length, covering the entire variation of both

number of sunshine hours and solar elevation angle. For the northern hemisphere, the

summer solstice occurs on June 21 and the Winter solstice around December 21, which

correspond to the day numbers 172 resp. 355, assuming no leap-year.

Eventually, most solar radiation differences between the trees are to be found due to the

incidence angle of the (direct) solar radiation path on the earth’s surface (Kumar et al.,

1997), and also the amount of shading present during the day originating from obscuring

escarpments. In addition, the investigated study area features a very rugged terrain,

which, depending on the solar altitude and azimuth angles, casts a significant amount of

shadow on certain areas, therefore blocking at least the directly transmitted part of solar
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Figure 2.5: Potential ground solar radiation budget over study area (Summer and
Winter solstices, one hour temporal sampling resolution), including relief shading ef-

fects.

irradiation (Chalkias, 2004). The amount of hillshading in the scene largely depends on

the solar position and was thus required to be repeatedly calculated for each radiation

integration time step. Hillshading was calculated using ESRI’s algorithm (ESRI, 2014b),

and standardized to a range of [0, 1] for an easier calculation of direct shortwave radiation

attenuation.

The solar radiation for the Summer and Winter solstices was calculated following Kumar

et al. (1997) with a temporal integration interval of one hour. This model estimates

per-pixel values of incoming shortwave radiation on direct or diffuse (scattered by the

atmosphere) paths and also considers slope, aspect, and also neighboring surfaces (Kumar

et al., 1997).

2.5.2 Water Availability

A thorough assessment of the causes and potential influences of tree growth inhibition

due to water stress would not be feasible for such a large number of trees as present in the

study area. It is also questionable whether an investigation of factors such as hydraulic
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efficiency of every tree in detail would be sensible, keeping in mind that the total number

of growth-promoting or inhibiting influences is high. Therefore, analyses were reduced

to the potential water availability for each tree’s ground based on the height model. A

common approach including the terrain characteristics at each point is the Topographic

Wetness Index (TWI; Sørensen et al. (2006)), which is described in Equation 2.1:

TWI = ln

(
c

tan (β)

)
(2.1)

where c is the specific upstream catchment area of each investigated patch and β denotes

the topographic gradient at the same location. The catchment area in turn is calculated

through the process of flow accumulation, where the total upslope area draining into this

one patch is calculated (Schwanghart and Kuhn, 2010). Patches draining into others

were retrieved using the D8 algorithm (Fairchild and Leymarie, 1991), which, for each

grid cell, evaluates the height difference to its eight neighbors and chooses the neighbor

with the largest difference as the drainage cell (Martz and Gabrecht, 1998). Despite its

popularity, the usage of the D8 algorithm has often been regarded as being critical as it

cannot handle flat topographic areas (Jones, 2002). In the present study, however, the

mountainous terrain hardly features any flat areas, and the usage of the D8 algorithm

was therefore assumed to be accurate enough.

2.5.3 Gradient and Aspect

The calculation of terrain gradient and aspect is relatively straight-forward and has been

done using MATLAB’s Terrain Data Analysis toolbox2. The resulting maps are shown

in Figures 2.7 and 2.8 respectively.

2.6 Statistical Model

2.6.1 General Considerations

The relation of spatial data to approximated natural influences is inherently prone to

a number of delicate statistical issues which mandatorily need to be considered during
2http://www.mathworks.ch/ch/help/map/ref/gradientm.html
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Figure 2.6: Result of the Topographic Wetness Index (TWI) calculation over the
study area.

Figure 2.7: Terrain gradient over study area, smoothed using a square moving average
kernel (5x5m). Values are given in degrees.
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Figure 2.8: Terrain aspect over study area, smoothed using a square moving average
kernel (5x5m). Values are given in degrees.

the establishment of a model. Therefore, a careful assessment of statistical preconditions

and well-considered choice of model is paramount. In this thesis, central focus is laid on

geostatistical models as well as their performance in comparison to regular estimation

models such as the Ordinary Least Squares (OLS) regression technique.

Model-wise, regular multiple OLS regressions are thus applied as a first step in order to

retrieve a general estimation for fitting quality. Subsequently, spatial regression models

will be calculated to address the common problems occurring when dealing with spatial

data as described below. These statistical regression models include the location of

the samples in their calculation to address problems like spatial autocorrelation as well

as spatial nonstationarity. Section 2.6.3 will address these issues in detail and give

an overview over the applicable techniques in this model. Finally, a comparison of

the model outcomes (predictions and residuals) may provide valuable information on

the difference in accuracy between ordinary statistical techniques and their counterpart

spatial estimators.

The analyses will be carried out based on the two underlying dataset types (variables

based on the interpolated raster datasets respectively the derived single trees). In all
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models, differences in tree height between 2002 and 2010 will be used as the depen-

dents, and the environmental influences described above as the explanatory variables.

Furthermore, the division between northern and southern slopes’ trees will be included

nonetheless to be able to differentiate data between the different micro-climates prevalent

in the two slopes’ regions. Since the height increments of trees relative to their "initial"

height in 2002 are of interest as well, these models will be repeated to conform with this

idea (in this case, the tree height as an estimation for tree age consequently will not be

considered). The significance level (α) for all tests will be set to 0.05.

2.6.2 Statistical Preconditions

A variety of tests to assess the statistical preconditions will be run to verify the accurate-

ness of prediction. The generally proposed statistical regression techniques also used in

this case are based on the OLS regression. Therefore, even if it may not be mandatory,

it is desirable for the standard regression technique to be parametric as well for best

comparability. The residuals of all models will thus be tested for Normal distribution

and, if necessary, required transformations may be applied to account for any devia-

tions. Normal distribution will be tested qualitatively by examination of histograms and

Quantile-Quantile- (Q-Q-) plots, and, moreover, by using Kolmogorov-Smirnov- (K.-S.-)

tests.

Furthermore, multivariate linear regression models require the explanatory variables not

to show correlation within each other, which is generally known under the term "mul-

ticollinearity". This effect may cause severe errors and misleading results in statistical

analyses and is by some seen as a "threat" and a "symptom of poor experimental de-

sign" (Farrar and Glauber, 1967). In the present case, Multicollinearity may indeed be

expected due to relations between some of the input variables (the solar radiation bud-

get as modeled here for instance depends on, and thus may correlate with, the slope of

the terrain). Technically spoken, it is of course reasonable to suspect an inappropriate

experimental design behind such analyses. However, it also becomes clear that if environ-

mental variables shall be derived almost entirely from topography, such design problems

become unavoidable. With respect to this issue, a careful surveillance of multicollinearity
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effects and, if necessary, measures to avoid them are crucial. One way to measure mul-

ticollinearity involves the examination of the Variance Inflation Factors (VIFs) between

each independent variable:

V IF =
1

1−R2
i

(2.2)

R2
ij denotes the coefficient of determination between the independent variables i and j.

Variables showing VIFs above a certain threshold are usually omitted from statistical

analyses (threshold values between 5 and 10 have usually been proposed (Neter et al.,

1989)).

Further tests to be performed involve an estimation for homoscedasticity and first-order

autocorrelation. Homoscedasticity is a desirable requirement for a statistical model and

denotes the homogeneity of variance along the entire range of the dependent variable.

In the case of heteroscedasticity, the variance does not remain equal, which violates the

variance homogeneity assumption of the (multivariate) OLS model. Heteroscedasticity

may well be expectable in the applied dataset already due to the declining variance

with increasing tree growth values. Analysis of heteroscedasticity will be done using the

Breusch-Pagan test as well as standardized residual plots.

Finally, autocorrelation in general refers to a common problem in general statistics where

an outcome signal shows a (linear) relationship with itself. In regression analyses, resid-

uals showing autocorrelation violate the assumption of uncorrelated error terms. The

most common test to detect autocorrelation, the Durbin-Watson test, will also be applied

in this study.

2.6.3 Spatial Peculiarities

Traditional statistical analyses have been extensively used in scientific theses and are

well-established means of correlation indication. This study includes a few dependent

and a number of independent variables and hence seems to be an ideal candidate for

such tests. There is, however, a central property within all variables, that basically turn

every test upside down that is to be used: their spatial nature.



Chapter 2. Material & Methods 30

Following Tobler’s first law of geography ("everything is related to everything else, but

near things are more related than distant things"; Tobler (1970)), geostatistical studies

have often focused on spatial autocorrelation as a central property in spatial datasets.

Spatial autocorrelation involves random variables whose values, within a certain distance

between each other, are either more similar (positive autocorrelation) or more diverse

(negative autocorrelation) than would be expected without the spatial property (Leg-

endre, 1993). Visually spoken, spatial data showing spatial autocorrelation are often

clustered together and show patchiness (Legendre, 1993). The most incisive consequence

of spatial autocorrelation on statistical analyses is that a global model suddenly fails

to explain variance among samples that, within their locality, behave differently than

the rest of the data. Therefore, there is need for a specialized regression model that

accounts for spatial autocorrelation, also including spatial versions of the preconditions

tests explained above.

The most common example for a spatial regression model is the Geographically Weighted

Regression (GWR), which has originally been described by Brunsdon et al. (1998). GWR

accounts for such variations with location (spatial nonstationarity; (Brunsdon et al.,

1998, Chen et al., 2012)) by incorporating a local neighborhood function with a given

radius (Brunsdon et al., 1998), and tries to give a local model estimate depending on

this neighborhood (ESRI, 2014a). The underlying principle of GWR is explained in

Brunsdon et al. (1998). In the present study, GWR thus turns out to be favorable due

to two reasons: (i.) both tree growth rates are very likely to show (positive) spatial

autocorrelations due to similar conditions approximated by the independent factors, and

(ii.) there may be effects within factors, such as an increased solar radiation also raising

temperature and lowering soil moisture content, which need to be accounted for. Spatial

autocorrelation is therefore assumed to be of special importance in this thesis’ analyses,

because both the tree growths as well as the explanatory variables are expected to be

similar in certain regions.

The vast amount of data in this study, however, massively restricts the application of

GWR despite fast systems and large amounts of RAM available. In order to avoid such

calculation problems, Pozdnoukhov and Kaiser (2011) have proposed a spatial regression

technique providing comparable results to GWR, but considering the property of scala-

bility. The authors thus named their method the Scalable Local Regression (SLR). SLR

establishes a number of regression models with a spatial center that include all points
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within the specified locality radius (hereby denoted as kernel size) and predicts each point

by inclusion of a weight dependent on its distance to the kernel center (Pozdnoukhov and

Kaiser, 2011). Once all models are established, the final prediction of a point is a sum of

each model it lies in; the SLR hence works on a streaming principle (Pozdnoukhov and

Kaiser, 2011). There are a number of optional properties applicable within the model

like a local (machine-) learning method ("receptive field weighted regression"; Schaal and

Atkeson (1998), in Pozdnoukhov and Kaiser (2011)), which are turned off in this study

to get a local counterpart as close as possible to the global regular OLS. Analyses were

performed using the open source distribution of SLR provided by the authors3.

3http://ncg.nuim.ie/i2maps/





Chapter 3

Results & Interpretation

This thesis’ aim to examine the relation between ALS-derived influence factors and tree

growth has been targeted by means of multiple regressions. Unlike previous studies,

analyses included more than one potential influencing parameter at once, and was fur-

ther carried out on the basis of large forested areas instead of a low number of trees.

Therefore, it should eventually be possible to provide answers on how well the research

goals described in Section 1.3 have been reached. Regressions have further been tested

not only on the ALS-derived single trees, but also on the mere CHM differences, and any

improvements within the regression results might shed light on whether the single tree

identification process improves the result or not.

This Chapter is divided into three major parts. A first Section lists descriptive statistical

parameters of the investigated datasets (CHM height differences and ALS-derived single

tree growths) and thus provides a glimpse on the statistical distribution of the tree

growths within eight years. The next Section addresses statistical preconditions that

have to be met for the regular OLS multivariate regression models. A third major

Section finally provides regression results (both for the OLS and SLR models).

3.1 Descriptive Statistics of the Dependent Variables

Table 3.1 shows the most common descriptive statistical parameters of the analyzed

datasets. Minimum and maximum values correspond to the restrictions placed upon

potential samples (tree growths ∈ [0.5, 4]m) and are only listed for completeness.

33
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% samples # samples Min Max Mean Median SD
Single
Trees

abs. 26.54 107′125 0.50 4.00 1.13 0.91 0.66
rel. 26.54 107′125 0.02 1.32 0.15 0.11 0.13

δ CHM abs. 4.70 3′915′393 0.50 4.00 1.36 1.12 0.77
rel. 7.64 6′360′328 0.00 4.0 0.24 0.14 0.33

Table 3.1: Most common descriptive statistics for the investigated datasets (absolute
and relative height differences of the CHM models as well as the identified single trees).
In row are the percentage of examined data points relative to the total number, their
absolute number, minimal and maximal value of the samples, the mean and median

values of the samples, and finally also the standard deviation of the samples.

The statistics reveal that the single tree derivation process combined a very high number

of ALS sampling points to a single tree, which makes sense regarding the point density of

these instruments and the diameter a tree reaches on average, especially in an old-grown

forest. Slightly more than 50% of all pixels of the interpolated CHM raster within the

study area were assumed to be trees. Furthermore, mean and median growth values

suggest that trees grew only little.

3.2 Statistical Preconditions of the OLS Regression Models

A number of tests have been performed prior to or after the respective OLS regressions

in order to assess statistical meaningfulness of each model. These included a check

for normal distribution using histograms, Q-Q-plots and K.S.-tests, an assessment of

multicollinearity by means of VIF scores, a check for autocorrelation by application of

a D.W.-test, and finally a visual inspection of the standardized residuals to retrieve

potential heteroscedasticity effects.

Both the histograms and Q-Q-plots as shown in Figure A.1 indicate no normal distri-

bution in all test cases. This corresponds to the results of the K.S.-tests listed in Table

3.3, whose p values indicate a rejection of the null hypothesis ("residuals are normally

distributed at the 0.05 level").

Data have further been tested for multicollinearity (i.e. the correlation between the

explanatory variables) by means of the Condition Index (CI), VIF and variance decom-

position proportions as outlined in Belsley et al. (2004) and Friendly and Kwan (2009).

Table 3.2 contains the VIF scores for each independent variable set used in all OLS

regression models. Since all VIFs lie below the proposed thresholds of 5 and 10, it can
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Variable Altitude Sol.Rad. Gradient Aspect TWI Height 2002
δ CHM, abs. 1.2 1.4 1.4 1.2 1.0 1.2
δ CHM, rel. 1.1 1.3 1.4 1.0 1.0 -
Single, abs. 1.1 1.6 1.0 1.1 1.4 1.2
Single, rel. 1.0 1.4 1.0 1.1 1.4 -

Table 3.2: Variance Inflation Factors (VIFs) for all four explanatory variable sets as
used in the OLS regression models (CHM differences and single trees; absolute and
relative). Tree height in 2002 was not part of the explanatory variables in the relative
cases as it is already contained in the dependent variable. Since all VIFs lie below 5,

no multicollinearity is to be expected on a global scale.

be assumed that multicollinearity among the explanatory variables is not to be expected

on a global scale.

The p values of the D.W.-tests on autocorrelation are listed in Table 3.3 as well. p

values for the D.W.-tests are less than 0.05 in all cases as well, hence indicating that also

autocorrelation is present within all four models.

Model data K.S. Durbin-Watson

δ CHM abs. 0.00* 0.00*
rel. 0.00* 0.00*

Single Trees abs. 0.00* 0.00*
rel. 0.00* 0.00*

Table 3.3: Resulting p values from the K.S.- (Kolmogorov-Smirnov-) and D.W.-
(Durbin-Watson-) tests based on the residuals from the OLS models. The tests showed
that there is a high chance for all four residuals sets to suffer from autocorrelation and

residuals not being normally distributed.
* K.S.-test p values are significant at the 0.05 level

Finally, Figure A.3 depicts scatter plots of standardized predictions versus standardized

residuals as emerged from the OLS calculations. In case of (required) homoscedasticity,

the residuals would be scattered among the prediction axis in a homogeneous way. Since

this is not the case in all OLS models, it has to be assumed that this precondition is not

fulfilled as well.

3.3 Regression Results

3.3.1 OLS Estimations

In an initial step, regular OLS models have been carried out on the basis of both the

CHM as well as identified single trees, both for absolute and relative height differences.
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This resulted in four models for whose the most important model statistics are listed in

Table 3.4. These statistics include coefficients of determination (R2) for the general OLS

estimates and also statistical parameters of the additionally carried out ANOVA on the

independent variables against zero (F-statistics value and p value). The null hypothesis

for the ANOVA states that all regression coefficients are equal to zero (no environmental

variable has an influence on the height differences).

Model data R2 F p

δ CHM abs. 0.11 70114.33* 0.00
rel. 0.01 8283.61* 0.00

Single Trees abs. 0.03 613.13* 0.00
rel. 0.04 924.27* 0.00

Table 3.4: OLS regression statistics for both the CHM differences as well as single tree
growth models (absolute and relative), listing in row the coefficients of determination,

the F test statistics for the ANOVA, and also their respective p values.
* Coefficients are significantly different from zero at the 0.05 level

The R2 values of all four OLS regressions indicate a very weak goodness of fit for the

estimation and hence a high number of outliers and insufficient predictions. The F values

resulting from the ANOVA in turn are very high. Consequently, the p values for all four

models are zero, indicating that the null hypothesis for the ANOVA can be rejected at

the 0.05 level.

Furthermore, with focus on spatial distributions, both the OLS predictions and residuals

are depicted in their spatial context in Figures 3.1 and 3.2, respectively Figures 3.3 and

3.3 for the CHM differences, and A.4, A.5 and A.6, A.7 for the single tree growths.

Residual statistics are given in Table 3.5.

Model data min | r | max | r | mean median std RMSE

δ CHM abs. 0.00 5.21 0.00 0.18 0.72 2.00
rel. 0.00 3.83 0.00 0.09 0.32 0.69

Single Trees abs. 0.00 3.09 0.00 0.20 0.65 1.72
rel. 0.00 1.17 0.00 0.04 0.13 0.31

Table 3.5: Descriptive parameters for the OLS regression residuals. Listed in order
are the minimal and maximal values of the absolute residuals as well as the mean,
median, standard deviation and RMSE of the residuals (non-absolute). RMSE scores
are given as unstandardized values and should only be compared within the regression

models’ dependent variable type (absolute respectively relative tree growth).

As can be seen in the maps (Figures 3.1 and 3.2), growth on the north-facing slope of

the study area has been predicted to be greater in the absolute CHM difference model

(yellowish areas). For the CHM dataset, this corresponds fairly well to the ALS height
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Figure 3.1: Prediction map depicting the OLS result based on absolute CHM differ-
ences.

differences, and thus the independent variable. The residuals, however, nevertheless

indicate that the OLS estimation for this dataset has some flaws. This is especially

visible statistically: absolute CHM height differences estimated by OLS show an RMSE

of over two meters, which is far more than the average growth signal of 0.91m (median).

The relative CHM differences as predicted with OLS share similar issues: while the

predictions for the southern part of the study area came out higher than for the other

slope, the actual signal shows no differences between these two parts. Consequently, also

the relative CHM difference residuals resulted in a rather high RMSE, with most trees

having been over-, and a small part underestimated, the latter severely though (see the

residuals Histogram in Figure A.2, top right).

The absolute single tree predictions by the OLS method appear to be relatively constant,

with little variation over the study area. On the north-facing slope (southern part of the

study area), tree growth predictions are partially slightly lower than their surroundings,

but indifferent from the south-facing slope. The residuals in turn show a particularity
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Figure 3.2: Residuals map depicting the OLS result based on absolute CHM differ-
ences.

that is, albeit to a lower degree, also visible in the CHM models: a high number of single

samples or small groups scattered throughout the entire study area that got massively

underestimated (visible as blue spots in Figure A.5). Furthermore, the RMSE is slightly

lower than in the CHM differences model, but still higher than the average growth signal.

In the relative single tree growth case, spatial prediction patterns are comparable to the

absolute OLS single tree prediction model. The residuals, however, seem to contain less

outliers (underestimations) than in the absolute case, which is visible both in the spatial

distribution and the residuals histogram (Figures A.7 and A.1 respectively). Also, the

relative OLS predictions’ RMSE sees a much higher improvement compared to the CHM

model than in the absolute case. All in all, the OLS models so far might lead to the

assumption that the single tree model, based on relative growth estimations, provides

the statistically best solution.
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Figure 3.3: Prediction map for the OLS regression based on relative CHM differences.

3.3.2 SLR Estimations

In addition to the global OLS models, also SLR predictions have been carried out in

order to assess potential spatial nonstationarity effects. In a first run, SLR models have

been run with similar configurations as in the OLS case (the same variables), but only

on the single trees dataset and with three different locality sizes (local inclusion radii of

1km, 500m, and 250m). The resulting prediction and residual maps are shown in Figure

A.8 for the absolute, and Figure A.9 for the relative case, respectively.

At a first glance, all six SLR models seem to have produced very exaggerated predictions,

with high sensitivities to some of the predictor variables. In the 1km case, growth was

especially underestimated at places where solar radiation budget estimations were low.

This can be seen in Figure A.8, top left in the northwestern and southeastern part of the

valley. Consequently, the majority of samples show strong negative residuals (Figure A.8,

top right). The 500m and 250m models share these properties, but feature additional

effects in the form of large hotspots of underestimation (500m model case; westernmost
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Figure 3.4: Residuals map for the OLS regression based on relative CHM differences.

part of the study area), respectively underestimation (250m case; central part of the

valley). An assumption may be that these flaws are due to the smaller locality size of

these two models, as they are not visible in any of the input variables.

The relative SLR estimations share the same underlying features and issues, but with

different origins: instead of solar radiation, the altitude of each sample tree seems to be

the main driving factor leading to a relative growth overestimation towards the mountain

ridges as well as to an underestimation within the valley bottom. The 1kmmodel contains

a strong underestimation in the mid-western part of the valley, while this part has been

massively overestimated in the 250m model. The relative 500m model, however, did

not result in an underestimation unlike in the absolute case, but still suffered from the

altitude-related bias effect. This model also featured the lowest RMSE of all relative

SLR models, although this score was still above the one if estimations were retrieved

using the OLS approach.

All in all, the spatial patterns, residual histograms and RMSE scores of all six SLR esti-

mations showed that one or two input variables had a too strong effect on the predictions
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outcome. As all SLR models gave out VIFs above 10 for most of the sample points, and

with respect to the fact that some of the input variables were inter alia calculated using

each other, it was standing to reason that strong multicollinearity effects were indeed

responsible for the biased SLR predictions. Therefore, the statistically most accurate

model (relative growths, 500m kernel size) was re-run without altitude, aspect and gra-

dient, hereby denoted as "SLR revised". For comparison reasons, also the relative single

tree growth OLS model underwent a revision and was carried out with solar radiation

and TWI as the only predictors ("OLS revised"). Solar Radiation and TWI only share

terrain gradient as a direct common variable, but also involve further calculations and

were thus expected to cause less collinearity effects. The results of both the revised SLR

and OLS model are listed and depicted in Table 3.6 and Figures 3.5 to 3.8 respectively.

Figure 3.5: Prediction map of the revised OLS model on relative single tree growths.

With terrain gradient, aspect as well as altitude removed from the explanatory variable

pool, also the SLR model provided more credible predictions. Compared to all other

relative models, the revised SLR model’s residuals resulted in the lowest RMSE score.

There still remain a few areas where relative growth was underestimated though; par-

ticularly in the (south-) eastern part of the Ofenpass valley. Once more, these patterns

of underestimation seem to correspond with low solar radiation budget calculations as
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Figure 3.6: Residuals map of the revised OLS model on relative single tree growths.

Figure 3.7: Prediction map of the revised SLR model on relative single tree growths.
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Figure 3.8: Residuals map of the revised SLR model on relative single tree growths.

Model min | r | max | r | mean median std R2 RMSE
OLS revised 0.00 1.17 0.00 0.05 0.13 0.02 0.31
SLR revised 0.00 1.36 -0.03 0.02 0.16 - 0.16

Table 3.6: Parameters of the revised OLS and SLR regressions on relative single tree
growths (kernel size of the SLR model was 500m). Given in order are the minimum and
maximum values of the absolute residuals as well as the mean, median and standard
deviation of the residuals (sans absolute value), the coefficient of determination of the
revised OLS model, and lastly the RMSE of the residuals. R2 values cannot be given

for the SLR model due to its way of functioning.

seen in Figure 2.5. Other than that, the spatial patterns are comparable to those of

the revised OLS model, including the single outliers scattered throughout the study area

(rendered as blue spots). In the OLS case, predictions and hence also residuals did not

differ much from the original relative single tree case.





Chapter 4

Discussion

This thesis related forest productivity to environmental influences. Research questions

to be answered could be classified into two major categories: on the one hand, this thesis

attempted to relate environmental influences to tree growths. Unlike previous studies,

analyses were carried out with more than one influence factor at once, and on the basis

of entire forest stands rather than a few single trees. On the other, further assessments

covered the feasibility to derive the influencing parameters from ALS data alone. In

addition, also forest productivity as the dependent variable was estimated from ALS data

by means of a state-of-the-art single tree identification method. Statistical relations were

examined using multivariate OLS regression techniques as well as methods incorporating

distances between sample trees to account for spatial nonstationarity.

This Chapter broadens the context of the outcome of this study and answers the research

questions summarized above. Firstly, error sources and uncertainties related to the used

ALS products and methods will be addressed. This topic is followed by a discussion

about the actual estimation results and model properties. Findings are then brought to

context and summarized in a synthesis at the end of this Chapter.

4.1 ALS Uncertainties

The total number of potential error sources from the raw ALS data acquisition principle

is comparably large as outlined in Section 1.5.2. There, error sources were classified

into platform-, sensor-, target-, and post-processing-specific errors. With respect to the

45
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effort spent to identify single trees within the LiDAR point cloud, it is likely for target-

and processing-related errors to account for most of the uncertainty in tree and tree

height retrieval. Gaveau and Hill (2003) investigated the accuracy of vegetation height

estimation based on ALS data and have found a general negative bias of around 1.27m

within trees. As it turned out they found that this effect seemed to be caused by not

only an insufficient sampling density of (small footprint-) LiDAR systems, but also by

lack of density within the tree crown itself, allowing the laser pulse to penetrate through

the treetop to a certain extent before being reflected. Morsdorf et al. (2004) used a

single tree detection method similar to the one applied in this thesis and found trees to

indeed be underestimated as well. In the work of Morsdorf et al. (in revision), where

the same method was used, the underestimation resulted in around 0.27m and 0.49m for

two examined datasets.

Since this study examined coherences on the basis of multi-temporal data, there was one

processing step possibly accounting for the most severe error source: the matching of the

identified single trees. Within the time span of eight years, trees might have changed in

shape as well as in size and height, and some might have needed to grow at an angle due

to landslides. Furthermore, the Ofenpass valley is characterized by a comparably high

tree density, which additionally complicates the matching step. Therefore, the height

error due to mismatching might be as large as the tree heights themselves. With respect

to the average growth of around 0.9m in the Ofenpass valley, there hence is a high risk

that the height estimation errors alone are higher than the actual growth signal, and that

ecological studies in slowly growing forests based on (multi-temporal) ALS acquisitions

might not yet yield good results.

4.2 Regression Results

Growth predictions as provided by the initial OLS and SLR models resulted in an overall

rather heterogeneous outcome, as can be seen in the predictions and residuals maps (see

Chapter A). Especially the initial SLR models produced extreme predictions, which

however improved within the revised SLR model. Despite heterogeneity, all regression

models shared a number of generally observable properties. For instance, neither an SLR

nor a OLS estimation provided a solution showing strong linear relationships on a global

scale. In all OLS cases, coefficients of determination turned out to be very low (global R2
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values cannot be given for SLR models due to their way of functioning). Furthermore, a

number of statistical preconditions for multiple linear regressions were not met:

• In the OLS case, residuals were not normally distributed, and heteroscedasticity

was likely to be present among them

• In the SLR analyses, local VIFs indicated very strong multicollinearity among the

independent variables

Residuals not being Normal distributed may have been caused by the restrictions applied

to trees as described in Section 2.3. For instance, the removal of trees having an absolute

"negative growth" assigned artificially shifted the expected growth range towards values

greater than zero. The unrestricted dataset indeed contained a high number of trees with

negative growth, probably due to alignment errors, tree blowdowns and other causes. The

global average of absolute growths of trees based on this restricted dataset were around

0.9 m (median), being just slightly above the lower limit of the allowed growth range

of 0.5 to 4 m. Consequently, with a global OLS estimation, residuals turned out to

be negatively skewed (see Figure A.1), with the majority being slightly overestimated.

However, as the main focus of this thesis was laid on forest productivity and not on tree

mortality, the restriction to only positive height differences is thus reasonable.

As briefly addressed in the Results Chapter, the problem of multicollinearity posed severe

restrictions especially on the SLR models. In their local models, VIFs were mostly above

10 and thus indicated present to strong local multicollinearity, at least in a statistical

sense. While conventional statistical models suffer from multicollinearity if a number of

predictor variables somehow show a certain correlation between each other, the problem

turned out to be much worse in the present case. Some variables were not only sta-

tistically, but also mathematically related to each other. Therefore, an inclusion of all

intended environmental variables caused an overreaction of the respective SLR models.

In the OLS case, the effects were weaker probably since the multivariate least squares re-

gression technique simply allows for certain variables not to be included at all (regression

coefficients will be zero in this case).

These implications hence required removal of those variables leading to uncertain esti-

mations. As can be seen in the initial relative SLR models in Chapter A, altitude has
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Figure 4.1: Areas containing particular residual patterns of the revised SLR model.

been the main driver for a bias within the residuals. Altitude was originally intended

to represent an approximation of air temperature. The fact that an omission of it re-

sulted in a strongly improved model (see Figure 3.8) is in agreement with Paulsen et al.

(2000), who also found that tree growth did not change gradually towards the treeline,

and hence higher altitudes. Their findings that tree growth did change in an abrupt

manner could not be reproduced in this thesis though. All in all, even if the results did

not give hints on whether temperature had or had no effect on the growth of trees, it

revealed that an approximation of air temperature using altitude is not satisfactory, and

that the raw, untransformed altitude alone certainly had no influence on growth. Trees

in the study area were distributed at heights between 1765 and 2386m. This range of

621m has probably been too small to result in significantly different air temperatures.

Terrain gradient and aspect were further removed as they mainly caused (multi-) collinear-

ity effects. This comes with no surprise due to the multiple inclusion of both of them

in solar radiation and TWI. Potential solar radiation varies with the sun inclination an-

gle on the surface, and is thus directly dependent on terrain gradient as well as aspect

(Corripio, 2003). TWI witnessed similar problems due to its inclusion of terrain gradient

(Sørensen et al., 2006). Fekedulegn et al. (2002) being one of the few papers explicitly
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examining the effect of terrain aspect on tree growth also did so mainly in combination

with drought stress and precipitation. Consequently, it might well be that their findings

could have been reproduced with solar radiation instead of terrain aspect.

This leads to an issue which is directly related to proper variable selection and avoidance

of multiple definitions: the inclusion of influence factors parameterized in a way that only

a fraction of what they actually encompass is contained in the model. This effect is more

relevant within a part of the investigated factors than within others. Potential ground

solar radiation, for instance, is a more or less known relationship between solar irradiance,

atmospherical conditions and the overall geometric constellation of the Earth and sun.

Even if the application of a potentially more advanced model raised the accuracy of the

retrieved solar radiation budget, it would not have made such a strong difference on the

growth prediction outcome. However, this is also due to the small study area size of

14km2, and is to be re-addressed when analyses are carried out at larger scales: if, for

instance, the study area is massively expanded, effects such as cloud cover become more

prevalent.

Other parameterizations were much more prone to the effect that only parts of the in-

tended influences were considered. The most prominent example for this can be found

within water availability: TWI only includes relative estimations of water running down-

hill from a contributing upslope area (Sørensen et al., 2006), with equal amounts of water

available at the top of the hills for each part of the study area. Other effects, such as

water loss due to evapotranspiration or soil infiltration, or additional water gain origi-

nating from mountain streams, lakes, increased local precipitation and other sources, are

completely absent. Some of these effects are—once more—already contained in other

variables, such as evapotranspiration being directly related to solar radiation. Others

can be included by using compound indices. Iverson et al. (1997) for instance developed

the "Integrated Moisture Index" (IMI), which includes soil water holding capacity, hill-

shading and curvature in addition to flow accumulation estimations, and combines them

using a weighting scheme. Even if it was tested only in relatively arid regions, the IMI or

a comparable compound index might lead to improved growth predictions in the alpine

Ofenpass valley as well.

It becomes evident that a proper definition and choice of explanatory variables is one

of the most crucial part of an analysis as carried out here. A deficient implementation
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of environmental influences otherwise leads to high estimation errors, visible in the high

RMSE values of the initial models, and also to an increased uncertainty in the accurate-

ness of the statistical model itself. Also, with respect to the fact that both the revised

OLS and SLR models provided similar results in the end, it may be said that the parame-

terization of environmental influences requires even more focus than the actual regression

technique itself. This statement, however, might only be valid to a certain extent, and

probably depends on the distribution of the data: in the present study, spatial auto-

correlation which SLR should account for was indeed to be expected, but tree growths

did not form spatially distinct regions that would have resulted in definable patterns.

Instead, tree growth differences occurred at a much smaller scale: for instance, the un-

derestimated trees scattered throughout the study area (blue spots) did not form larger

patches. Therefore, even the SLR model regarding such spatial effects could not provide

a solution to estimate these trees, simply because the inclusion radii down to 250m were

still too high. Any attempts to construct models small enough in space would possibly

have led to a statistical insignificance as they would eventually only have included one

or a handful of samples. A possibly much better solution would have been to seek for

further potential environmental properties ought to have an effect on tree growth.

One such factor suspected to have an influence is competition between trees: those trees

not surrounded by others within a certain distance probably had a better starting position

for developing and growing tall. A number of different competition indices have been

established so far. Rivas et al. (2005) compared a number of different competition indices

(distance-independent as well as dependent), with various competitor selection methods

for the distance-sensitive indices. Interestingly, they found that for their examined species

(Pinus cooperi Blanco), the best distance-independent index provided a similarly high

accurateness as the corresponding best distance-dependent index. Some of the indices

rely on further tree structural properties like crown diameter or diameter at breast height

(DBH). A number of studies have already shown that all of these parameters are indeed

derivable from ALS-sampled data (e.g. Huang et al. (2011), Popescu et al. (2003), Yao

et al. (2012)). Therefore, an inclusion of a means for competition might substantially

increase the regression model accuracy, but comes at a cost of further error sources and

uncertainty; additional work might be required to identify the best competition index

for the investigated study area.
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Figure 4.2: Growth of the identified single trees relative to their initial height as
retrieved from the ALS data.

The results as retrieved within the context of this study did not provide a statistically

strong relationship between influences of the environment and tree growths. However,

especially the revised SLR model nevertheless showed a few findings: (i.) the effect of

altitude seems to be vanishingly low, and (ii.) solar radiation might indeed have an

influence, but any lack of high sunlight exposure does not lead to growth inhibition

among trees. This can be seen in the easternmost parts of the study area, where trees

are situated on particularly shadowed slopes, but still have not grown less than their

neighbors that are more exposed to sunlight (areas A and B in Figure 4.1). Other areas,

such as the center of the southern slope in the valley (area C; Figure 4.1) or the north-

westernmost part of the study area (area D in Figure 4.1), have been underestimated

by both the OLS and SLR models. The actual relative tree growths in Figure 4.2 show

that these areas indeed encompass mainly trees with higher relative growths than their

surroundings. This effect, visible in both areas C and D, is either due to small initial tree

sizes in 2002, or due to indeed high growth during the eight years from 2002 to 2010 (see

the turquoise to red trees in Figure 4.3). Since these regional patterns cannot be seen in

the explanatory variables, both the OLS and SLR models consequently failed to predict

accurate relative growths for the trees within them. The actual causes for these patterns
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Figure 4.3: Absolute growth values of the identified single trees as retrieved from the
ALS data.

remain unknown, although a possible explanation might be that these were simply other

species, and hence these effects might could have been explained by inclusion of tree

species classification as an additional variable.

4.3 Concluding Insights

Eventually, there remain three major issues which have led to the vagueness of the results

as they are:

• Some of the included environmental influences were parameterized in a way that

only a small part of their impacts on tree growth could be accounted for (e.g. water

availability parameterized using TWI)

• Other potential influences were completely absent (e.g. competition, meteorological

factors)
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• Trees all in all showed a relatively small growth signal, and the ALS data post-

processing until the retrieval of single trees resulted in an overly increased noise

floor

Consequently, the growth prediction model as present in this case may not be able to

work properly at any comparable test site. The findings nevertheless exemplify a number

of peculiarities and guidelines for further improved models:

• The RMSE scores of all OLS models suggest that the identification of potential

single trees from ALS-derived height measurements is beneficial.

• Multicollinearity can pose a severe problem when working with ecological data

insofar as the explanatory variables have a physical impact on each other. There-

fore, in order to avoid multiple variable inclusions, appropriate dimension reduction

techniques or either a reduction of the number of variables become unavoidable.

• In contrast to this statement, however, solar radiation and TWI alone do not seem

to explain enough variance within growth of trees. Other and more causal effects

might be required in a model to provide better explanations, and hence predictions,

of growth and growth differences.

• Directly related to the lack of explained variance is the finding that ALS-derived

parameters alone seem to be insufficient for a proper identification of environmental

influences on tree growth. Especially the usage of weather data like temperature

and precipitation is expected to raise accuracy remarkably. The present thesis’

investigated study area was of too small size to feature distinct meteorological,

let alone climatic differences in space. An enlargement of the study area would

hence be beneficial for the inclusion of weather data, as they are more likely to

produce regional differences. This would also correspond to the aim to predict

forest productivity in the context of larger-scale up to global processes.

• Models accounting for spatial nonstationarity and/or spatial autocorrelation are

only of relevance as soon as regional effects are clearly visible at least on a certain

scale. As soon as differences become too local, improvements in residual errors

should not be expected anymore.
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Conclusion

This thesis aimed towards explaining tree growth on the basis of ecological influences.

Unlike previous studies, analyses were carried out not only on a small number of trees

but for entire forest stands, and not only with one or two predictor variables, but with six

at once. Tree height was estimated on the basis of two ALS acquisitions taking place in

2002 and 2010, with a single tree identification procedure as described in Morsdorf et al.

(in revision). In addition, also CHM differences were analyzed to examine the benefit of

the single tree identification process.

The investigated ecological influence factors comprised solar radiation, altitude, initial

tree height in 2002, terrain gradient, terrain aspect, and TWI. All of these variables

were parameterized based solely on the same ALS datasets. Relations were examined by

means of multivariate OLS regressions on the one hand, and a counterpart additionally

addressing spatial relatedness, the SLR.

In a first run, tree growth had been estimated with all of the aforementioned influence

factors as explanatory variables. Due to statistical preconditions not met, particularly

owing to explanatory variables being correlated to each other, analyses had to be re-run

with only solar radiation and TWI. This improved predictions especially in the SLR case,

while the OLS results remained relatively similar.

The regression results showed that neither the multivariate OLS nor the SLR models were

able to provide an overall trustworthy prediction (R2 values for the OLS model ranged

between 0.01 and 0.11; RMSE scores of the residuals lied between 1.72 and 2m for the

absolute tree growth, and between 0.16 and 0.69 for the tree growth relative to the initial
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tree height). Residual patterns nevertheless gave certain clues about the predictors’

influence: solar radiation does not seem to be the limiting factor for tree growth, and TWI

does at least explain parts of the variation. Other findings were more method- and model-

specific: RMSE scores improved when analyzing single trees identified within the LiDAR

point cloud rather than CHM height differences. Furthermore, a mere parameterization

of predictors on the basis of terrain data alone has been found to be insufficient for

ecological applications. Therefore, other data sources such as weather data might lead

to improved results and hence are unavoidable. This also accounts for predictors not

included in this study, such as tree competition, insect outbreaks, soil properties and

other potential influences on tree growth.

Eventually, despite weak correlations in the statistical models, it becomes evident that

multivariate analyses are essential within ecological studies. Especially when assessing

the estimation of forest productivity, the dependence of more than one influence factor

at once remains a key topic to be investigated. Furthermore, by regarding interactions

and dynamics on a regional scale rather than locally for single trees, analyses correspond

more to the aim of quantifying forest productivity in the context of the global carbon

cycle. An extension of study areas to even larger scales may hence be appreciable, and

spatial differences might then be better coverable by means of SLR and/or other spatially

sensitive methods. To do so, however, requires the availability of more input data as well

as a stronger tree growth signal, which can partially be achieved by improving the ALS

single tree identification process on the one hand, and by using data with higher sampling

density and longer time gaps between acquisition dates (and hence higher tree growths)

on the other.



Chapter 6

Outlook

Multivariate, larger-scale ecological studies will continue gaining importance and are

particularly expected to become a central part of analyses on global warming and global

carbon fluxes. The interactions between forests and their environment are, on one side

not yet fully understood, and on the other hardly quantifiable to date. This thesis

sought to overcome this latter issue and attempted assessing forest productivity with

environmental conditions.

The outcome of this study revealed a number of key aspects to be considered in further

analyses, leaving room for further studies with improved conditions and methods. On the

one hand, analyses in this study have shown that a restriction to topographic variables

alone is insufficient for ecological parameter modeling. Further theses hence may also

include other measurement series as predictors, such as weather data. On the other, there

is room for improvement in terms of the single tree identification method from ALS data:

in this study, the tree height estimation error turned out to be too large mainly due to the

tree identification process and overshadowed any actual growth signal. Hence, retrying

this study in a forest with taller growth rates, or else over a larger time period than eight

years, might reduce this problem by an increased growth signal. Furthermore, however,

improvements to the single tree identification from ALS data are unavoidable especially

in the case of slowly growing forests, and are indeed on the way (Morsdorf et al., in

revision).

Finally, repeating multivariate forest productivity estimations in a significantly larger

test site might yield interesting results on larger-scale interactions between forests and
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their environment as well as on differences between contiguous forest stands. In contrast

to this study with a single enclosed valley, spatially sensitive statistical models such as

the SLR are expected to be particularly powerful on multiple forests on larger areas.



Appendix A

Additional Figures

Figure A.1: Histograms (top) and Quantile-Quantile- (bottom) plots for the residuals
emerging from the OLS regressions based on the identified single trees (absolute: left,

relative: right).
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Figure A.2: Histograms (top) and Quantile-Quantile- (bottom) plots for the residuals
emerging from the OLS regressions based on CHM differences (absolute: left, relative:

right).
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Figure A.3: Plots showing standardized predictions versus standardized residuals as
an indication for heteroscedasticity. Plots are given for the OLS CHM differences (ab-
solute and relative; top row), for the OLS single tree growths (ditto; middle row) as well
as for the revised OLS model on single tree growths (bottom). As patterns are visible
in all five plots, there are high chances that all models suffer from heteroscedasticity.
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Figure A.4: Spatial distribution of OLS predictions on the basis of absolute single
tree growths.

Figure A.5: Spatial distribution of OLS residuals on the basis of absolute single tree
growths.
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Figure A.6: Spatial distribution of OLS predictions on the basis of relative single tree
growths.

Figure A.7: Spatial distribution of OLS residuals on the basis of relative single tree
growths.
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Figure A.8: Predictions (left) and residuals (right) of the SLR models based on
absolute tree growths. Kernel sizes were 1km (top), 500m (middle) and 250m (bottom).
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Figure A.9: Predictions (left) and residuals (right) of the SLR models based on
relative tree growths. Kernel sizes were 1km (top), 500m (middle) and 250m (bottom).





Appendix B

MATLAB Scripts

B.1 Main Workflow

The code below denotes the main workflow as done in MATLAB based on the initially

available data. Used custom functions are appended in the next Section.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %%%% %%%%

3 %%%% $$$$$$$$$$$$....=7$$$$$$$$$$$$.............................. %%%%

4 %%%% $$$777777$$$$=.:$$$$7777777$$$,............................. %%%%

5 %%%% $$$........$$$.$$$.........$$$,............................. %%%%

6 %%%% $$$.......=$$$..$$$$,......$$$,............................. %%%%

7 %%%% $$$.=7$$$$$$$....$$$$$$....$$$,............................. %%%%

8 %%%% $$$.$$$$$$$~.......+$$$$$..$$$,............................. %%%%

9 %%%% $$$...7$$$$$......... $$$$.$$$,............................. %%%%

10 %%%% $$$.....,$$$$$$........$$$.$$$,............................. %%%%

11 %%%% $$$........?$$$$$I....7$$$.+$$$,............................ %%%%

12 %%%% $$$.......... I$$$$$$$$$$...I$$$$$$$$$$$.................... %%%%

13 %%%% $$...............7$$$$$,......:7$$$$$$$7.................... %%%%

14 %%%% ............................................................ %%%%

15 %%%% measurements | products | policy %%%%

16 %%%% %%%%

17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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18 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

19 %%%%

20 %%%% Main Workflow

21 %%%%

22 %%%% 2013−2014 Benjamin Kellenberger

23 %%%% RSL @ UZH

24 %%%%

25 %%%%

26 %%%% For custom functions, see further sections of the thesis' appendix.

27 %%%%

28 %%%% For Bibliography Sources and other References, refer to the

29 %%%% References Section in this thesis.

30 %%%%

31 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

32

33 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

34 % 1. Variable Preparation

35 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

36

37 %% Constants

38 ks = 10; % Kernel Size for smoothing filter

39

40 % Allowed height of "trees"

41 minAbsH = 3;

42 maxAbsH = 40;

43

44 % Min and max CHM differences

45 minAbsDCHM = 0.5;

46 maxAbsDCHM = 4;

47 minRelDCHM = 0;

48 maxRelDCHM = 4;

49

50 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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51 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

52

53 %% Delta CHM

54 load ras.mat;

55

56 % Interpolate to 0.5m cell size

57 [dtm02, x, y, X, Y] = resizeMatrix(ras.dtm02, ras.x, ras.y, ...

58 ras.X, ras.Y, 2.*length(ras.x), 2.*length(ras.y));

59 dtm10 = resizeMatrix(ras.dtm10, ras.x, ras.y, ras.X, ras.Y, ...

60 2.*length(ras.x), 2.*length(ras.y));

61 dsm02 = resizeMatrix(ras.dsm02, ras.x, ras.y, ras.X, ras.Y, ...

62 2.*length(ras.x), 2.*length(ras.y));

63 dsm10 = resizeMatrix(ras.dsm10, ras.x, ras.y, ras.X, ras.Y, ...

64 2.*length(ras.x), 2.*length(ras.y));

65

66 % Calculate CHM and Delta CHM

67 chm02 = dsm02 − dtm02;

68 chm10 = dsm10 − dtm10;

69

70 dchm = chm10 − chm02;

71

72 % Save

73 dtm = struct('x', x, 'y', y, 'X', X, 'Y', Y, 'z', dtm10);

74 save('dtm.mat', 'dtm');

75

76 chm = struct('chm02', chm02, 'chm10', chm10);

77 save('chm.mat', 'chm');

78

79 save('dchm.mat', 'dchm');

80

81 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

82

83 %% Mask
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84 load mask.mat;

85

86 % Contents of File "mask.mat":

87 % − "mask": the original mask created using inpolygon and the trees as

88 % well as poly2mask

89 % − "newmask": a manually modified version of "mask", removing

90 % additionally unwanted regions

91

92 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

93

94 %% Environmental Influences

95

96 % Gradient & Aspect

97 [lat, lon] = ch1903ToWgs84(X, Y);

98 [asp, grad] = gradientm(lat, lon, dtm.z);

99 asp = asp .* pi ./ 180; % convert to radians

100 grad = grad .* pi ./ 180;

101 grad_smoothed = smoothenMatrix(grad, [ks ks], 'average');

102 asp_smoothed = smoothenMatrix(asp, [ks ks], 'average');

103

104

105 % Solar Radiation

106 sr = solrad(dtm.z, lat, 0.5, 0.2); % Assuming a global reflectance

107 % of 0.2. 0.5 = cell size [m]

108 sr_s = smoothenMatrix(sr, [ks ks], 'average');

109

110

111 % TWI

112 dtmGRID = GRIDobj(dtm.x, dtm.y, dtm.z); % Making use of the TopoToolbox

113 % by Schwanghart & Kuhn, 2010

114 flowDir = FLOWobj(dtmGRID); % D8 Algorithm

115 fa = flowacc(flowDir); % Calculation of Flow Accumulation

116 fa(newmask == 0) = NaN;
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117 fa_smoothed = smoothenMatrix(flipud(fa.Z), [ks ks], 'average');

118 twi = real(log(fa_smoothed ./ tan(grad_smoothed)));

119

120 clear fa fa_smoothed dtmGRID flowDir;

121

122

123 % Altitude

124 z_s = smoothenMatrix(dtm.z, [ks ks], 'average');

125

126

127 % Tree height

128 h_s = smoothenMatrix(chm.chm02, [ks ks], 'average');

129

130 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

131

132 %% Apply Restrictions & Retrieve logicals

133

134 % Absolute

135 dchm_smooth = smoothenMatrix(dchm, [ks ks], 'average');

136 dchm_smooth(newmask == 0) = NaN;

137 dchm_smooth(dchm_smooth < minAbsDCHM) = NaN;

138 dchm_smooth(dchm_smooth > maxAbsDCHM) = NaN;

139 dchm_smooth(chm.chm02 > maxAbsH) = NaN;

140 dchm_smooth(chm.chm10 > maxAbsH) = NaN;

141 dchm_smooth(chm.chm02 < minAbsH) = NaN;

142 dchm_smooth(chm.chm10 < minAbsH) = NaN;

143

144 ii = ~isnan(dchm_smooth);

145

146 % Relative

147 dchm_rel = dchm ./ chm.chm02;

148 dchm_rel = smoothenMatrix(dchm_rel,[ks ks], 'average');

149 dchm_rel(newmask == 0) = NaN;
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150 dchm_rel(dchm_rel < minRelDCHM) = NaN;

151 dchm_rel(dchm_rel > maxRelDCHM) = NaN;

152 dchm_rel(chm.chm02 > maxAbsH) = NaN;

153 dchm_rel(chm.chm10 > maxAbsH) = NaN;

154 dchm_rel(chm.chm02 < minAbsH) = NaN;

155 dchm_rel(chm.chm10 < minAbsH) = NaN;

156

157 temp = dchm_smooth >= 0.5 & dchm_smooth <= 4;

158 dchm_rel(~temp) = NaN;

159 clear temp;

160 % The above step is important because it only makes sense to restrict

161 % the *absolute* height differences to [0.5,4] m.

162

163 jj = ~isnan(dchm_rel);

164

165

166 % Logicals further restricted to independents

167 kk = ii & ~isnan(grad_smoothed) & ~isnan(h_s) & ~isnan(sr_s) & ...

168 ~isnan(z_s) & ~isnan(twi) & ~isnan(asp); % Absolute

169 ll = jj & ~isnan(grad_smoothed) & ~isnan(h_s) & ~isnan(sr_s) & ...

170 ~isnan(z_s) & ~isnan(twi) & ~isnan(asp); % Relative

171

172

173 save('regressionInput.mat','dchm_smooth','dchm_rel','asp', ...

174 'grad_smoothed','twi','sr_s','z_s','h_s','dtm');

175 save('logicals_dchm.mat','ii','jj','kk','ll');

176

177

178 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

179 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

180

181 %% Single Trees

182 load alltrees.mat;
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183 % File contains structure "alltrees", which already consists of matched

184 % trees and their heights in 2002 ("h") and 2010 ("alsh")

185

186 alltrees.deltaH = alltrees.alsh − alltrees.h; % Abs. height increase

187 alltrees.dHrel = alltrees.deltaH ./ alltrees.h; % Rel. height increase

188

189 % Variable assignments

190 alltrees.grad_smoothed = getNearest(x, y, alltrees, grad_smoothed);

191 alltrees.asp_smoothed = getNearest(x, y, alltrees, asp);

192 alltrees.twi = getNearest(x, y, alltrees, twi);

193 alltrees.sr_s = getNearest(x, y, alltrees, sr_s);

194

195 alltrees.newmask = getNearest(x, y, alltrees, newmask);

196 % The above step is necessary since the manual creation of "newmask" led

197 % to a minor tree number decrease

198

199

200 % Logicals

201 ii_s = alltrees.newmask == 1 & ...

202 alltrees.deltaH >= minAbsDCHM & alltrees.deltaH <= maxAbsDCHM & ...

203 alltrees.h >= minAbsH & alltrees.h <= maxAbsH & ...

204 alltrees.alsh >= minAbsH & alltrees.alsh <= maxAbsH; % Absolute

205

206 jj_s = alltrees.newmask == 1 & ...

207 alltrees.dHrel >= minRelDCHM & alltrees.dHrel <= maxRelDCHM & ...

208 alltrees.h >= minAbsH & alltrees.h <= maxAbsH & ...

209 alltrees.alsh >= minAbsH & alltrees.alsh <= maxAbsH; % Relative

210

211

212 temp = alltrees.deltaH >= 0.5 & alltrees.deltaH <= 4; %see above

213

214 jj_s(~temp) = 0;

215 clear temp;
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216

217

218 % Further restrictions (as above)

219 kk_s = ii_s & ~isnan(alltrees.grad_smoothed) & ~isnan(alltrees.h) & ...

220 ~isnan(alltrees.sr_s) & ~isnan(alltrees.twi) & ~isnan(alltrees.asp);

221

222 ll_s = jj_s & ~isnan(alltrees.grad_smoothed) & ~isnan(alltrees.h) & ...

223 ~isnan(alltrees.sr_s) & ~isnan(alltrees.twi) & ~isnan(alltrees.asp);

224

225

226 save('trees.mat', 'alltrees');

227 save('logicals_single.mat','ii_s','jj_s','kk_s','ll_s');

228

229 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

230 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

231

232 %% Save Data for SLR

233

234 % For the SLR invocation procedure, please refer to the remainder of the

235 % Appendix.

236

237 % indexing coordinates:

238 [y x] = size(X);

239 scaleFactor = y/x;

240

241 XC_s = scaledata(alltrees.x,0,1);

242 YC_s = scaledata(alltrees.y,0,scaleFactor);

243 % Function "scaledata" by Aniruddha Kembhavi

244 % http://www.mathworks.ch/matlabcentral/fileexchange/15561−data−scaling/

content/scaledata.m

245 % Accessed 18.08.2014

246

247 % Absolute
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248 slrSingleAbs = [XC_s(kk_s), YC_s(kk_s), ...

249 alltrees.deltaH(kk_s), alltrees.grad_smoothed(kk_s), ...

250 alltrees.asp(kk_s), alltrees.twi(kk_s), alltrees.sr_s(kk_s), ...

251 alltrees.z(kk_s), alltrees.h(kk_s)];

252 dlmwrite('slr_global_abs_single.csv',slrSingleAbs,'delimiter',' ');

253 clear slrSingleAbs;

254

255

256 % Relative

257 slrSingleRel = [XC_s(ll_s), YC_s(ll_s), ...

258 alltrees.dHrel(ll_s), alltrees.grad_smoothed(ll_s), ...

259 alltrees.asp(ll_s), alltrees.twi(ll_s), ...

260 alltrees.sr_s(ll_s), alltrees.z(ll_s)];

261 dlmwrite('slr_global_rel_single.csv',slrSingleRel,'delimiter',' ');

262 clear slrSingleRel;

263

264 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

265 % 2. Descriptive Statistics

266 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

267

268 %% dCHM

269

270 % Absolute

271 disp('Percentage, absolute, dCHM:');

272 disp(num2str(sum(logical(kk(:))) ./ length(kk(:)) .* 100));

273

274 disp('Num samples, absolute, dCHM:');

275 disp(num2str(sum(logical(kk(:)))));

276

277 disp('Min, absolute, dCHM:');

278 disp(num2str(min(dchm_smooth(kk(:)))));

279

280 disp('Max, absolute, dCHM:');
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281 disp(num2str(max(dchm_smooth(kk(:)))));

282

283 disp('Mean, absolute, dCHM:');

284 disp(num2str(mean(dchm_smooth(kk(:)))));

285

286 disp('Median, absolute, dCHM:');

287 disp(num2str(median(dchm_smooth(kk(:)))));

288

289 disp('StdDev, absolute, dCHM:');

290 disp(num2str(std(dchm_smooth(kk(:)))));

291

292 % Relative

293 disp('Percentage, relative, dCHM:');

294 disp(num2str(sum(logical(ll(:))) ./ length(ll(:)) .* 100));

295

296 disp('Num samples, relative, dCHM:');

297 disp(num2str(sum(logical(ll(:)))));

298

299 disp('Min, relative, dCHM:');

300 disp(num2str(min(dchm_rel(ll(:)))));

301

302 disp('Max, relative, dCHM:');

303 disp(num2str(max(dchm_rel(ll(:)))));

304

305 disp('Mean, relative, dCHM:');

306 disp(num2str(mean(dchm_rel(ll(:)))));

307

308 disp('Median, relative, dCHM:');

309 disp(num2str(median(dchm_rel(ll(:)))));

310

311 disp('StdDev, relative, dCHM:');

312 disp(num2str(std(dchm_rel(ll(:)))));

313
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314 %% Single Trees

315

316 % Absolute

317 disp('Percentage, absolute, single trees:');

318 disp(num2str(sum(logical(kk_s(:))) ./ length(kk_s(:)) .* 100));

319

320 disp('Num samples, absolute, single trees:');

321 disp(num2str(sum(logical(kk_s(:)))));

322

323 disp('Min, absolute, single trees:');

324 disp(num2str(min(alltrees.deltaH(kk_s(:)))));

325

326 disp('Max, absolute, single trees:');

327 disp(num2str(max(alltrees.deltaH(kk_s(:)))));

328

329 disp('Mean, absolute, single trees:');

330 disp(num2str(mean(alltrees.deltaH(kk_s(:)))));

331

332 disp('Median, absolute, single trees:');

333 disp(num2str(median(alltrees.deltaH(kk_s(:)))));

334

335 disp('StdDev, absolute, single trees:');

336 disp(num2str(std(alltrees.deltaH(kk_s(:)))));

337

338 % Relative

339 disp('Percentage, relative, single trees:');

340 disp(num2str(sum(logical(ll_s(:))) ./ length(ll_s(:)) .* 100));

341

342 disp('Num samples, relative, single trees:');

343 disp(num2str(sum(logical(ll_s(:)))));

344

345 disp('Min, relative, single trees:');

346 disp(num2str(min(alltrees.dHrel(ll_s(:)))));
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347

348 disp('Max, relative, single trees:');

349 disp(num2str(max(alltrees.dHrel(ll_s(:)))));

350

351 disp('Mean, relative, single trees:');

352 disp(num2str(mean(alltrees.dHrel(ll_s(:)))));

353

354 disp('Median, relative, single trees:');

355 disp(num2str(median(alltrees.dHrel(ll_s(:)))));

356

357 disp('StdDev, relative, single trees:');

358 disp(num2str(std(alltrees.dHrel(ll_s(:)))));

359

360 clear;

361

362 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

363 % 3. OLS Regressions

364 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

365

366 % Note that most of the statistics are retrieved, but never read out

367 % and possibly overwritten by subsequent models. In order to see the

368 % values, just call the variables in the right position.

369

370 %% Constants

371 doStandardize = 0; % Originally intended for better comparison between

372 % absolute and relative models; now not used anymore

373 outputFormatDCHM = '−dpng';

374 outputFormatSingle = '−depsc';

375

376 if doStandardize

377 colorRangeAbs = [−1 1];

378 else

379 colorRangeAbs = [−4 4];
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380 end;

381

382 dtm_grid = GRIDobj(dtm.x, dtm.y, dtm.z);

383

384 % Load in required datasets

385 load regressionInput;

386 load logicals_dchm;

387

388 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

389 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

390

391 %% DCHM, Absolute

392 X = cat(3, ones(size(dchm_smooth,1), size(dchm_smooth,2)), ...

393 asp, sr_s, h_s, z_s, grad_smoothed, twi);

394 Y = dchm_smooth;

395

396 [~, ~, stats, residStats, predictions_dchm_abs, residuals_dchm_abs] ...

397 = linReg(doStandardize,kk,Y,X);

398

399 pred_dchm_abs_grid = GRIDobj(dtm.x, dtm.y, predictions_dchm_abs);

400 resid_dchm_abs_grid = GRIDobj(dtm.x, dtm.y, residuals_dchm_abs);

401

402 pred_glob = figure;

403 imageschs(dtm_grid, pred_dchm_abs_grid, 'caxis', colorRangeAbs, ...

404 'colorbar', true);

405 set(pred_glob,'Position',[0 0 900 600]);

406 swisstick;

407

408 if doStandardize

409 title('OLS Predictions for CHM differences, absolute growth − std');

410 print(pred_glob,'ols_dchm_abs_pred_std',outputFormatDCHM);

411 else

412 title('OLS Predictions for CHM differences, absolute growth');
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413 print(pred_glob,'ols_dchm_abs_pred',outputFormatDCHM);

414 end;

415 %close(pred_glob);

416

417 % Residual maps

418 res_glob = figure;

419 imageschs(dtm_grid, resid_dchm_abs_grid, 'caxis', colorRangeAbs, ...

420 'colorbar', true);

421 set(res_glob,'Position',[0 0 900 600]);

422 swisstick;

423 if doStandardize

424 title('OLS Residuals for CHM differences, absolute growth − std');

425 print(res_glob,'ols_dchm_abs_resid_std',outputFormatDCHM);

426 else

427 title('OLS Residuals for CHM differences, absolute growth');

428 print(res_glob,'ols_dchm_abs_resid',outputFormatDCHM);

429 end;

430 %close(res_glob);

431

432 % Residual histogram

433 res_hist = figure;

434 hist(residuals_dchm_abs(kk), 20);

435 set(res_hist,'Position',[0 0 900 600]);

436 if doStandardize

437 title('Histogram of OLS Residuals for CHM differences, absolute growth

− standardized');

438 print(res_hist,'hist_ols_dchm_abs_resid_std',outputFormatDCHM);

439 else

440 title('Histogram of OLS Residuals for CHM differences, absolute growth

');

441 print(res_hist,'hist_ols_dchm_abs_resid',outputFormatDCHM);

442 end;

443 %close(res_hist);
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444

445 % Normal distribution test

446 if doStandardize

447 [h,p,ksstat,cv] = normDistTest(residuals_dchm_abs(kk), ...

448 'absolute CHM differences (standardized) ', ...

449 'Predicted growths (standardized)', 'normDist_abs_dchm_std', ...

450 outputFormatDCHM);

451 else

452 [h,p,ksstat,cv] = normDistTest(residuals_dchm_abs(kk), ...

453 'absolute CHM differences', 'Predicted growths', ...

454 'normDist_abs_dchm', outputFormatDCHM);

455 end;

456

457 % Homoscedasticity test

458 pred_std = standardize(predictions_dchm_abs(kk));

459 res_std = standardize(residuals_dchm_abs(kk));

460 homosc = figure;

461 scatter(pred_std, res_std, '.b');

462 title('Standardized Residuals Plot for CHM differences, absolute growth');

463 xlabel('Standardized Predicted Values');

464 ylabel('Standardized Residuals');

465 print(homosc, 'resplot_ols_dchm_abs', '−depsc');

466

467 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

468

469 %% DCHM, Relative

470 X = cat(3, ones(size(dchm_rel,1), size(dchm_rel,2)), asp, ...

471 sr_s, z_s, grad_smoothed, twi);

472 Y = dchm_rel;

473

474 [~, ~, stats, residStats, predictions_dchm_rel, residuals_dchm_rel] ...

475 = linReg(doStandardize,ll,Y,X);

476
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477 pred_dchm_rel_grid = GRIDobj(dtm.x, dtm.y, predictions_dchm_rel);

478 resid_dchm_rel_grid = GRIDobj(dtm.x, dtm.y, residuals_dchm_rel);

479

480 pred_glob = figure;

481 imageschs(dtm_grid, pred_dchm_rel_grid, 'caxis', [−1 1], ...

482 'colorbar', true);

483 set(pred_glob,'Position',[0 0 900 600]);

484 swisstick;

485 if doStandardize

486 title('OLS Predictions for CHM differences, relative growth − std');

487 print(pred_glob,'ols_dchm_rel_pred_std',outputFormatDCHM);

488 else

489 title('OLS Predictions for CHM differences, relative growth');

490 print(pred_glob,'ols_dchm_rel_pred',outputFormatDCHM);

491 end;

492 %close(pred_glob);

493

494 % Residual maps

495 res_glob = figure;

496 imageschs(dtm_grid, resid_dchm_rel_grid, 'caxis', [−1 1], ...

497 'colorbar', true);

498 set(res_glob,'Position',[0 0 900 600]);

499 swisstick;

500 axis equal;

501 if doStandardize

502 title('OLS Residuals for CHM differences, relative growth − std');

503 print(res_glob,'ols_dchm_rel_resid_std',outputFormatDCHM);

504 else

505 title('OLS Residuals for CHM differences, relative growth');

506 print(res_glob,'ols_dchm_rel_resid',outputFormatDCHM);

507 end;

508 %close(res_glob);

509
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510 % Residual histogram

511 res_hist = figure;

512 hist(residuals_dchm_rel(ll), 20);

513 set(res_hist,'Position',[0 0 900 600]);

514 if doStandardize

515 title('Histogram of OLS Residuals for CHM differences, relative growth

− standardized');

516 print(res_hist,'hist_ols_dchm_rel_resid_std',outputFormatDCHM);

517 else

518 title('Histogram of OLS Residuals for CHM differences, relative growth

');

519 print(res_hist,'hist_ols_dchm_rel_resid',outputFormatDCHM);

520 end;

521 %close(res_hist);

522

523 % Normal distribution test

524 if doStandardize

525 [h,p,ksstat,cv] = normDistTest(residuals_dchm_rel(ll), ...

526 'relative CHM differences (standardized)', ...

527 'Predicted growths (standardized)', 'normDist_rel_dchm_std', ...

528 outputFormatDCHM);

529 else

530 [h,p,ksstat,cv] = normDistTest(residuals_dchm_rel(ll), ...

531 'relative CHM differences', 'Predicted growths', ...

532 'normDist_rel_dchm', outputFormatDCHM);

533 end;

534

535 % Homoscedasticity test

536 pred_std = standardize(predictions_dchm_rel(ll));

537 res_std = standardize(residuals_dchm_rel(ll));

538 homosc = figure;

539 scatter(pred_std, res_std, '.b');

540 title('Standardized Residuals Plot for CHM differences, relative growth');
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541 xlabel('Standardized Predicted Values');

542 ylabel('Standardized Residuals');

543 print(homosc, 'resplot_ols_dchm_rel', '−depsc');

544

545 clear;

546

547 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

548 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

549

550 load trees;

551 load logicals_single;

552

553

554 %% Single Trees, Absolute

555 X = [ones(length(alltrees.deltaH),1), alltrees.asp, alltrees.sr_s, ...

556 alltrees.h, alltrees.z, alltrees.grad_smoothed, alltrees.twi];

557 Y = alltrees.deltaH;

558

559 [~, ~, stats, residStats, predictions_single_abs, ...

560 residuals_single_abs] = linReg(doStandardize,kk_s,Y,X);

561

562 pred_glob = figure;

563 scatter(alltrees.x(kk_s), alltrees.y(kk_s), 3, ...

564 predictions_single_abs(kk_s), 'fill');

565 set(pred_glob,'Position',[0 0 900 600]);

566 swisstick;

567 axis equal;

568 caxis(colorRangeAbs);

569 colorbar;

570 if doStandardize

571 title('OLS Predictions for Single Trees, absolute growth − std');

572 print(pred_glob,'ols_single_abs_pred_std',outputFormatSingle);

573 else
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574 title('OLS Predictions for Single Trees, absolute growth');

575 print(pred_glob,'ols_single_abs_pred',outputFormatSingle);

576 end;

577 %close(pred_glob);

578

579 % Residual maps

580 res_glob = figure;

581 scatter(alltrees.x(kk_s), alltrees.y(kk_s), 3, ...

582 residuals_single_abs(kk_s), 'fill');

583 title('Residuals for absolute growth (single tree model); global model');

584 colorbar;

585 set(res_glob,'Position',[0 0 900 600]);

586 swisstick;

587 axis equal;

588 caxis(colorRangeAbs);

589 colorbar;

590 if doStandardize

591 title('OLS Residuals for Single Trees, absolute growth − std');

592 print(res_glob,'ols_single_abs_resid_std',outputFormatSingle);

593 else

594 title('OLS Residuals for Single Trees, absolute growth');

595 print(res_glob,'ols_single_abs_resid',outputFormatSingle);

596 end;

597 %close(res_glob);

598

599 % Residual histogram

600 res_hist = figure;

601 hist(residuals_single_abs(kk_s), 20);

602 set(res_hist,'Position',[0 0 900 600]);

603 if doStandardize

604 title('Histogram of OLS Residuals for Single Trees, absolute growth −

standardized');

605 print(res_hist,'hist_ols_single_abs_resid_std',outputFormatDCHM);
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606 else

607 title('Histogram of OLS Residuals for Single Trees, absolute growth');

608 print(res_hist,'hist_ols_single_abs_resid',outputFormatDCHM);

609 end;

610 %close(res_hist);

611

612 % Normal distribution test

613 if doStandardize

614 [h,p,ksstat,cv] = normDistTest(residuals_single_abs, ...

615 'absolute single tree growths (standardized)', ...

616 'Predicted growths (standardized)', ...

617 'normDist_abs_single_std', outputFormatSingle);

618 else

619 [h,p,ksstat,cv] = normDistTest(residuals_single_abs, ...

620 'absolute single tree growths', 'Predicted growths', ...

621 'normDist_abs_single', outputFormatSingle);

622 end;

623

624 % Homoscedasticity test

625 pred_std = standardize(predictions_single_abs(kk_s));

626 res_std = standardize(residuals_single_abs(kk_s));

627 homosc = figure;

628 scatter(pred_std, res_std, '.b');

629 title('Standardized Residuals Plot for Single Trees, absolute growth');

630 xlabel('Standardized Predicted Values');

631 ylabel('Standardized Residuals');

632 print(homosc, 'resplot_ols_single_abs', '−depsc');

633

634 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

635

636 %% Single Trees, relative

637 X = [ones(length(alltrees.deltaH),1), alltrees.asp, alltrees.sr_s, ...

638 alltrees.z, alltrees.grad_smoothed, alltrees.twi];
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639 Y = alltrees.dHrel;

640

641 [~, ~, stats, residStats, predictions_single_rel, ...

642 residuals_single_rel] = linReg(doStandardize,ll_s,Y,X);

643

644 pred_glob = figure;

645 scatter(alltrees.x(ll_s), alltrees.y(ll_s), 3, ...

646 predictions_single_rel(ll_s), 'fill');

647 set(pred_glob,'Position',[0 0 900 600]);

648 swisstick;

649 axis equal;

650 caxis([−1 1]);

651 colorbar;

652 if doStandardize

653 title('OLS Predictions for Single Trees, relative growth − std');

654 print(pred_glob,'ols_single_rel_pred_std',outputFormatSingle);

655 else

656 title('OLS Predictions for Single Trees, relative growth');

657 print(pred_glob,'ols_single_rel_pred',outputFormatSingle);

658 end;

659 %close(pred_glob);

660

661 % Residual maps

662 res_glob = figure;

663 scatter(alltrees.x(ll_s), alltrees.y(ll_s), 3, ...

664 residuals_single_rel(ll_s), 'fill');

665 title('Residuals for relative growth (single tree model); global model');

666 set(res_glob,'Position',[0 0 900 600]);

667 swisstick;

668 axis equal;

669 caxis([−1 1]);

670 colorbar;

671 if doStandardize



Appendix B. MATLAB Scripts 88

672 title('OLS Residuals for Single Trees, relative growth − std');

673 print(res_glob,'ols_single_rel_resid_std',outputFormatSingle);

674 else

675 title('OLS Residuals for Single Trees, relative growth');

676 print(res_glob,'ols_single_rel_resid',outputFormatSingle);

677 end;

678 %close(res_glob);

679

680 % Residual histogram

681 res_hist = figure;

682 hist(residuals_single_rel(ll_s), 20);

683 set(res_hist,'Position',[0 0 900 600]);

684 if doStandardize

685 title('Histogram of OLS Residuals for Single Trees, relative growth −

standardized');

686 print(res_hist,'hist_ols_single_rel_resid_std',outputFormatDCHM);

687 else

688 title('Histogram of OLS Residuals for Single Trees, relative growth');

689 print(res_hist,'hist_ols_single_rel_resid',outputFormatDCHM);

690 end;

691 %close(res_hist);

692

693 % Normal distribution test

694 if doStandardize

695 [h,p,ksstat,cv] = normDistTest(residuals_single_rel, ...

696 'relative single tree growths (standardized)', ...

697 'Predicted growths (standardized)', ...

698 'normDist_rel_single_std', outputFormatSingle);

699 else

700 [h,p,ksstat,cv] = normDistTest(residuals_single_rel, ...

701 'relative single tree growths', 'Predicted growths', ...

702 'normDist_rel_single', outputFormatSingle);

703 end;
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704

705 % Homoscedasticity test

706 pred_std = standardize(predictions_single_rel(ll_s));

707 res_std = standardize(residuals_single_rel(ll_s));

708 homosc = figure;

709 scatter(pred_std, res_std, '.b');

710 title('Standardized Residuals Plot for Single Trees, relative growth');

711 xlabel('Standardized Predicted Values');

712 ylabel('Standardized Residuals');

713 print(homosc, 'resplot_ols_single_rel', '−depsc');

714

715

716 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

717 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

718

719 %% OLS Revised (only with Solar Radiation and TWI)

720 X = [ones(length(alltrees.deltaH),1), alltrees.sr_s, alltrees.twi];

721 Y = alltrees.dHrel;

722

723 [~, ~, stats, residStats, predictions_single_rel, ...

724 residuals_single_rel] = linReg(doStandardize,ll_s,Y,X);

725

726 pred_glob = figure;

727 scatter(alltrees.x(ll_s), alltrees.y(ll_s), 3, ...

728 predictions_single_rel(ll_s), 'fill');

729 set(pred_glob,'Position',[0 0 900 600]);

730 swisstick;

731 axis equal;

732 caxis([−1 1]);

733 colorbar;

734 if doStandardize

735 title('OLS Revised Predictions for Single Trees, relative growth −

standardized');
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736 print(pred_glob,'ols_revised_single_rel_pred_std',outputFormatSingle);

737 else

738 title('OLS Revised Predictions for Single Trees, relative growth');

739 print(pred_glob,'ols_revised_single_rel_pred',outputFormatSingle);

740 end;

741 %close(pred_glob);

742

743 % Residual maps

744 res_glob = figure;

745 scatter(alltrees.x(ll_s), alltrees.y(ll_s), 3, ...

746 residuals_single_rel(ll_s), 'fill');

747 set(res_glob,'Position',[0 0 900 600]);

748 swisstick;

749 axis equal;

750 caxis([−1 1]);

751 colorbar;

752 if doStandardize

753 title('OLS Revised Residuals for Single Trees, relative growth −

standardized');

754 print(res_glob,'ols_revised_single_rel_resid_std',outputFormatSingle);

755 else

756 title('OLS Revised Residuals for Single Trees, relative growth');

757 print(res_glob,'ols_revised_single_rel_resid',outputFormatSingle);

758 end;

759 %close(res_glob);

760

761 % Residual histogram

762 res_hist = figure;

763 hist(residuals_single_rel(ll_s), 20);

764 set(res_hist,'Position',[0 0 900 600]);

765 if doStandardize

766 title('Histogram of OLS Revised Residuals for Single Trees, relative

growth − standardized');
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767 print(res_hist,'hist_ols_revised_single_rel_resid_std',

outputFormatDCHM);

768 else

769 title('Histogram of OLS Revised Residuals for Single Trees, relative

growth');

770 print(res_hist,'hist_ols_revised_single_rel_resid',outputFormatDCHM);

771 end;

772 %close(res_hist);

773

774 % Normal distribution test

775 if doStandardize

776 [h,p,ksstat,cv] = normDistTest(residuals_single_rel, ...

777 'relative single tree growths (standardized)', ...

778 'Predicted growths (standardized)', ...

779 'normDist_rel_single_revised_std', outputFormatSingle);

780 else

781 [h,p,ksstat,cv] = normDistTest(residuals_single_rel, ...

782 'relative single tree growths', 'Predicted growths', ...

783 'normDist_rel_single_revised', outputFormatSingle);

784 end;

785

786 % Homoscedasticity test

787 pred_std = standardize(predictions_single_rel(ll_s));

788 res_std = standardize(residuals_single_rel(ll_s));

789 homosc = figure;

790 scatter(pred_std, res_std, '.b');

791 title('Standardized Residuals Plot for Single Trees, relative growth (

revised model)');

792 xlabel('Standardized Predicted Values');

793 ylabel('Standardized Residuals');

794 print(homosc, 'resplot_ols_revised_single_rel', '−depsc');
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Upon successful calculation of the SLR models (see B for the script), the following

commands are executed for statistics and map retrieval of the SLR results:

1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 % 4. SLR Results Analysis

3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4

5 % These commands take place after calculation of all SLR models as lis−

6 % ted in Script "slr.py".

7

8

9

10 load trees.mat;

11 load logicals_single.mat;

12

13 fileFormatDCHM = '−dpng';

14 fileFormatSingle = '−depsc';

15

16 doStandardize = 0;

17

18

19

20 if doStandardize

21 colorRangeAbs = [−1 1];

22 else

23 colorRangeAbs = [−4 4];

24 end;

25

26

27 %% Global; single trees; absolute

28 stats1 = analyzeSLRResults('slr_global_abs_03233_results.txt', ...

29 alltrees.x, alltrees.y, kk_s, doStandardize, colorRangeAbs, ...

30 'global SLR model on absolute single tree growths (kernel size 1km)',

...
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31 'slr_global_abs_1km', fileFormatSingle);

32

33 stats2 = analyzeSLRResults('slr_global_abs_01617_results.txt', ...

34 alltrees.x, alltrees.y, kk_s, doStandardize, colorRangeAbs, ...

35 'global SLR model on absolute single tree growths (kernel size 500m)',

...

36 'slr_global_abs_500m', fileFormatSingle);

37

38 stats3 = analyzeSLRResults('slr_global_abs_00808_results.txt', ...

39 alltrees.x, alltrees.y, kk_s, doStandardize, colorRangeAbs, ...

40 'global SLR model on absolute single tree growths (kernel size 250m)',

...

41 'slr_global_abs_250m', fileFormatSingle);

42

43

44

45 %% Global; single trees; relative

46 stats4 = analyzeSLRResults('slr_global_rel_03233_results.txt', ...

47 alltrees.x, alltrees.y, ll_s, doStandardize, [−1 1], ...

48 'global SLR model on relative single tree growths (kernel size 1km)',

...

49 'slr_global_rel_1km', fileFormatSingle);

50

51 stats5 = analyzeSLRResults('slr_global_rel_01617_results.txt', ...

52 alltrees.x, alltrees.y, ll_s, doStandardize, [−1 1], ...

53 'global SLR model on relative single tree growths (kernel size 500m)',

...

54 'slr_global_rel_500m', fileFormatSingle);

55

56 stats6 = analyzeSLRResults('slr_global_rel_00808_results.txt', ...

57 alltrees.x, alltrees.y, ll_s, doStandardize, [−1 1], ...

58 'global SLR model on relative single tree growths (kernel size 250m)',

...
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59 'slr_global_rel_250m', fileFormatSingle);

60

61

62

63 % SLR Revised (relative growth; without altitude):

64 stats7 = analyzeSLRResults('slr_global_rel_01617_custom_results.txt', ...

65 alltrees.x, alltrees.y, ll_s, doStandardize, [−1 1], ...

66 'SLR revised model on relative single tree growths (kernel size 500m)'

, ...

67 'slr_global_rel_revised_500m', fileFormatSingle);

B.2 Custom Functions

This Section covers all custom functions used in the main workflow, in chronological

order of invocation.

B.2.1 Function "ch1903ToWgs84"

1 function [lat lon] = ch1903ToWgs84(easting, northing)

2

3 % Approximative Conversion from CH1903 Easting/Northing

4 % to WGS84 Lat/Lon [degs] using the formulae described in

5 % Marty (1999).

6 % See http://www.swisstopo.admin.ch/internet/swisstopo/en/home/topics/

survey/sys/refsys/switzerland.parsysrelated1.37696.downloadList.12749.

DownloadFile.tmp/ch1903wgs84en.pdf

7

8 eastC = (easting − 2E5) ./ 10E6;

9 northC = (northing − 6E5) ./ 10E6;

10

11 latC = 16.9023892 + (3.238272 .* eastC) − (0.270978 .* northC .^2) +

(0.002528 .* eastC .^ 2) − (0.0447 .* northC .^ 2 .* eastC) − (0.0140

.* eastC .^ 3);
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12 lonC = 2.6779094 + (4.728982 .* northC) + (0.791484 .* eastC .* northC

) + (0.1306 .* northC .* eastC .^2) − (0.0436 .* northC .^ 3);

13

14 lat = latC .* 100 ./ 36;

15 lon = lonC .* 100 ./ 36;

16

17 end

B.2.2 Function "smoothenMatrix"

1 function result = smoothenMatrix(input, kernelSize, varargin);

2

3 filterType = 'gaussian';

4

5 if nargin > 2

6 filterType = varargin{1};

7 end

8

9 filter = fspecial(filterType,kernelSize);

10 result = filter2(filter, input);

11

12 end

B.2.3 Function "solrad"

1 function srad = solrad(dem,lat,lon,r)

2 %

3 %

4 % Script follows the approach of Kumar et al 1997. Calculates clear sky

5 % radiation corrected for the incident angle (selfshading) plus

6 % diffuse and reflected radiation. Insolation is depending on

7 % time of year (and day), latitude, elevation, slope and aspect.

8 %
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9 %

10 %

11 % Reference: Kumar et al., 1997; ESRI 2014a

12 %

13 %

14 % Felix Hebeler, Dept. of Geography, University Zurich, May 2008.

15 % Edited and adapted by Benjamin Kellenberger, Feb 2014.

16 %

17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

18

19

20 %% parameters

21 %It ; % total hours of daily sunshine (calculated inline)

22 %M ; % air mass ratio parameter (calculated inline)

23 %r = 0.20; % ground reflectance coefficient (more sensible to

give as input)

24 n = 1; % timestep of calculation over sunshine hours: 1=

hourly, 0.5=30min, 2=2hours etc

25 tau_a = 365; %length of the year in days

26 S0 = 1367; % solar constant W m^−2 default 1367

27

28 dr= 0.0174532925; % degree to radians conversion factor

29

30 %% convert factors

31 [slop,asp]=get_ders(dem,lat,lon); % calculate slope and aspect in

radians using given cellsize cs

32

33 lat=lat*dr; % convert to radians

34 fcirc = 360*dr; % 360 degrees in radians

35

36 %% some setup calculations

37 srad=0;

38 sinL=sin(lat);
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39 cosL=cos(lat);

40 tanL=tan(lat);

41 sinSlop=sin(slop);

42 cosSlop=cos(slop);

43 cosSlop2=cosSlop.*cosSlop;

44 sinSlop2=sinSlop.*sinSlop;

45 sinAsp=sin(asp);

46 cosAsp=cos(asp);

47 term1 = ( sinL.*cosSlop − cosL.*sinSlop.*cosAsp);

48 term2 = ( cosL.*cosSlop + sinL.*sinSlop.*cosAsp);

49 term3 = sinSlop.*sinAsp;

50

51

52

53

54

55 %% calculating for the shortest and longest day (day nr. 172 and 355):

56 d = 172;

57 unfinished = 1;

58 while unfinished;

59 if d == 355

60 unfinished = 0;

61 end;

62

63 display(['Calculating solar radiation for day ',num2str(d)]);

64 % clear sky solar radiation

65 I0 = S0 * (1 + 0.0344*cos(fcirc*d/tau_a)); % extraterr rad per day

EQ. 7; solar flux outside atmosphere

66 % sun declination dS

67 dS = 23.45 * dr* sin(fcirc * ( (284+d)/tau_a ) ); %in radians, correct

/verified EQ. 4; solar declination

68 % angle at sunrise/sunset

69 % t = 1:It; % sun hour
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70 hsr = real(acos(−tanL*tan(dS))); % angle at sunrise

EQ. 6; angle at sunrise

71

72 It=round(12*(1+mean(hsr(:))/pi)−12*(1−mean(hsr(:))/pi)); % calc

daylength

73 %% daily loop

74 I=0;

75 for t=1:n:It % loop over sunshine hours

76

77 disp(['Calculating radiation for hour ', num2str(t)]);

78

79 % hourangle of sun hs

80 hs=hsr−(pi*t/It); % hs(t)

81 %solar angle and azimuth

82 alpha = asin(sinL .* sin(dS)+cosL .* cos(dS) .* cos(hs));% solar

altitude angle

83 sinAlpha = sinL.*sin(dS)+cosL.*cos(dS).*cos(hs);

84 alpha_s = asin(cos(dS) .* sin(hs) ./ cos(alpha)); % solar azimuth

angle

85 % correction using atmospheric transmittivity taub_b

86 M=sqrt(1229+((614.*sinAlpha)).^2)−614.*sinAlpha; % Air mass ratio

87 tau_b = 0.56 * (exp(−0.65*M) + exp(−0.095*M));

88 tau_d = 0.271−0.294*tau_b; % radiation diffusion coefficient for

diffuse insolation

89 tau_r = 0.271+0.706*tau_b; % reflectance transmittivity

90 % correct for local incident angle

91 cos_i = (sin(dS).*term1) + (cos(dS).*cos(hs).*term2) + (cos(dS).*

term3.*sin(hs));

92 Is = I0 * tau_b; % potential incoming shortwave radiation at

surface normal (equator)

93 % R = potential clear sky solar radiation W m2

94 R = Is .* cos_i;

95 R(R<0)=0; % kick out negative values
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96

97

98 % Hillshading

99 azimuth = alpha_s;

100 azimuth = 360.0−azimuth+90; %convert to mathematic unit

101 azimuth(azimuth>=360)=azimuth−360;

102 azimuth = azimuth .* (pi ./ 180); % convert to radians

103

104 altitude = alpha;

105 altitude = (90−altitude) .* (pi ./ 180); % convert to zenith angle

in radians

106

107

108 % calculate hillshading

109 h = 255.0 .* ( (cos(altitude) .* cos(slop) ) + ( sin(altitude) .*

sin(slop) .* cos(azimuth−asp_hs)) ); % ESRIs algorithm

110 h(h<0)=0; % set hillshade values to min of 0.

111

112 h=setborder(h,1,NaN); % set border cells to NaN

113

114 h = h ./ 255;

115 R = R .* h; % apply hillshading

116

117 Id = I0 .* tau_d .* cosSlop2./ 2.*sinAlpha; %diffuse radiation;

118 Ir = I0 .* r .* tau_r .* sinSlop2./ 2.* sinAlpha; % reflectance

119 R= R + Id + Ir;

120 R(R<0)=0;

121 I=I+R;% solar radiation per day (sunshine hours)

122 end % end of sun hours in day loop

123 %% add up radiation part for every day

124 srad = srad + I;

125

126 d = 355;
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127 end;

128

129

130

131 function [grad,asp] = get_ders(dem,lat,lon)

132 [asp, grad] = gradientm(lat, lon, dem);

133 asp = asp .* pi ./ 180;

134 grad = grad .* pi ./ 180;

135 asp=asp.*−1+pi; % convert asp 0 facing south

136

137

138

139

140

141 function grid = setborder(grid,bs,bvalue)

142 grid(1:bs,:)=bvalue; %toprows

143 grid(size(grid,1)−bs+1:size(grid,1),:)=bvalue; %bottom rows

144 grid(:,1:bs)=bvalue; %left cols

145 grid(:,size(grid,2)−bs+1:size(grid,2))=bvalue;

B.2.4 Function "linReg"

1 function [b, bint, stats, residStats, predictions, residuals, regCoeffs,

dwp] = linReg(doStandardize, logicalVar, dependent, X)

2

3 logicalVar(logicalVar > 1) = 1;

4

5 Y = dependent(logicalVar(:));

6

7

8

9 % Extract valid data points only (according to logicalVar)

10 numDim = 1;
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11 if size(X,3) > 1 % at least 2 dimensions

12 numDim = 2;

13 end;

14

15

16 X_input = zeros(sum(logicalVar(:)),size(X,numDim+1));

17

18 for i=1:size(X,numDim+1)

19 if numDim == 1

20 tempVar = X(:,i); % 1D data

21 else

22 tempVar = X(:,:,i); % 2D data

23 end;

24

25 X_input(:,i) = tempVar(logicalVar);

26 end;

27

28

29

30 [b, bint, ~, ~, stats] = regress(Y, X_input); % we don't use the MATLAB

provided residuals as they are transformed to be Student−t distributed.

31 disp('Regression results:');

32 disp('*******************');

33 disp(strcat('R square: ',num2str(stats(1))));

34 disp(strcat('F value: ',num2str(stats(2))));

35 disp(strcat('p value: ',num2str(stats(3))));

36 disp(strcat('Error variance estimation: ',num2str(stats(4))));

37 disp(' ');

38

39

40 % Collinearity Diagnostics (by Brian Lau, 2011;

41 % http://www.subcortex.net/research/code/...

42 % collinearity−diagnostics−matlab−code ; accessed 10.07.2014)
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43 disp('Collinearity diagnostics:');

44 disp('*************************');

45 cd = colldiag(X_input);

46 disp(cd.str);

47 colldiag_tableplot(cd);

48 disp(' ');

49

50

51 % Regression Coefficients calculation

52 regCoeffs = zeros(size(X_input, 2), 1);

53 for i=1:size(X_input, 2)

54 tempVar = X_input(:,i);

55 tempVar = tempVar(:);

56 regCoeffs(i) = b(i) .* std(tempVar) ./ std(Y(:));

57 end;

58

59

60

61 % Prediction and Residual calculation

62 predictions = NaN(size(dependent,1), size(dependent,2));

63 predictions(:) = b(1);

64

65 for i=2:size(X,numDim+1)

66 if numDim == 1

67 tempVar = X(:,i); % 1D data

68 else

69 tempVar = X(:,:,i); % 2D data

70 end;

71 predictions = predictions + b(i) .* tempVar;

72 end;

73

74 predictions(~logicalVar) = NaN;

75
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76

77 residuals = predictions − dependent;

78 residuals(~logicalVar) = NaN; % maybe unneccessary since all unwanted

values are already "NaN"

79

80 if doStandardize

81 predictions = standardize(predictions);

82 residuals = standardize(residuals);

83 end;

84

85

86

87

88 % Residual statistics

89 disp('Residual statistics:');

90 disp('********************');

91

92 residStats = NaN(6,1);

93

94 r_abs = abs(residuals(logicalVar));

95 residStats(1) = min(r_abs); disp(strcat('Min |r|: ',num2str(residStats(1))

));

96 residStats(2) = max(r_abs); disp(strcat('Max |r|: ',num2str(residStats(2))

));

97 residStats(3) = mean(residuals(logicalVar)); disp(strcat('Mean r: ',

num2str(residStats(3))));

98 residStats(4) = median(residuals(logicalVar)); disp(strcat('Median r: ',

num2str(residStats(4))));

99 residStats(5) = std(residuals(logicalVar)); disp(strcat('Std.Dev. r: ',

num2str(residStats(5))));

100 residStats(6) = rmsError(Y, residuals(logicalVar)); disp(strcat('RMSE: ',

num2str(residStats(6))));

101 disp(' ');
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102

103 dwp = dwtest(residuals(logicalVar), X_input);

104 disp(strcat('Durbin−Watson p: ', num2str(dwp)));

105

106

107

108 end

B.2.5 Function "normDistTest"

1 function [h,p,ksstat,cv] = normDistTest(variable, titleString, x_label,

outputPath, fileFormat)

2

3 % Provides a test for Normal distribution of data, using the following

4 % three evaluation methods:

5 %

6 % 1. Histogram of data

7 % 2. Q−Q−plot

8 % 3. K.S.−test

9 %

10 % 2014 Benjamin Kellenberger

11

12

13

14 %% 1. Histogram

15 if nargin > 1

16 hfig = figure;

17 hist(variable, 20);

18 title(['Histogram of residuals (', titleString, ')']); %,'FontSize

',18);

19 xlabel(x_label);

20 ylabel('Number of samples');

21 set(hfig,'Position',[0 0 900 600]);
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22 if nargin > 3

23 print(hfig, strcat(outputPath, '_hist'), fileFormat);

24 end;

25 close(hfig);

26 end;

27

28

29

30

31 %% 2. Q−Q−plot

32 if nargin > 1

33 qqfig = figure;

34 qqplot(variable);

35 title(['Quantile−Quantile plot of residuals (', titleString, ')']);

36 set(qqfig,'Position',[0 0 900 600]);

37 if nargin > 3

38 print(qqfig, strcat(outputPath, '_qq'), fileFormat);

39 end;

40 close(qqfig);

41 end;

42

43

44

45 %% 3. K.S.−test

46 [h,p,ksstat,cv] = kstest(variable);

47

48 if p < 0.05

49 disp(['Data are not Normal distributed at the 0.05 level (p=', num2str

(p), ').']);

50 else

51 disp(['Normal distribution present at 0.05 level (p=', num2str(p), ').

']);

52 end;
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B.2.6 Function "analyzeSLRResults"

1 function [stats, data] = analyzeSLRResults(path, xcoord, ycoord, logicVar,

doStandardize, cRange, titleString, outputFileName, fileFormat)

2

3 data = csvread(path);

4

5

6 data(:,1) = xcoord(logicVar);

7 data(:,2) = ycoord(logicVar);

8

9 residuals = data(:,4) − data(:,3);

10 if doStandardize

11 data(:,4) = standardize(data(:,4));

12 residuals = standardize(residuals);

13 end;

14

15

16 %% Statistics

17 stats = zeros(6,1);

18 residuals_abs = abs(residuals);

19

20 stats(1) = min(residuals_abs);

21 stats(2) = max(residuals_abs);

22 stats(3) = mean(residuals);

23 stats(4) = median(residuals);

24 stats(5) = std(residuals);

25 stats(6) = rmsError(data(:,3), data(:,4));

26

27

28 %% Figures

29 if nargin > 5

30

31 % Predictions
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32 pred = figure;

33 scatter(data(:,1), data(:,2), 3, data(:,4), 'fill');

34

35 set(pred,'Position',[0 0 900 600]);

36 swisstick;

37 axis equal;

38 colorbar;

39 caxis(cRange);

40 if doStandardize

41 title(['Predictions for ', titleString,' (standardized)']);

42 if nargin > 7

43 print(pred,strcat(outputFileName,'_pred_std'), fileFormat);

44 end;

45 else

46 title(['Predictions for ', titleString]);

47 if nargin > 7

48 print(pred,strcat(outputFileName,'_pred'), fileFormat);

49 end;

50 end;

51 %close(pred);

52

53

54 % Residuals

55 resid = figure;

56 scatter(data(:,1), data(:,2), 3, residuals, 'fill');

57

58 set(resid,'Position',[0 0 900 600]);

59 swisstick;

60 axis equal;

61 colorbar;

62 caxis(cRange);

63 if doStandardize

64 title(['Residuals of ', titleString,' (standardized)']);
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65 if nargin > 7

66 print(resid,strcat(outputFileName,'_resid_std'), fileFormat);

67 end;

68 else

69 title(['Residuals of ', titleString]);

70 if nargin > 7

71 print(resid,strcat(outputFileName,'_resid'), fileFormat);

72 end;

73 end;

74 %close(resid);

75

76

77 residHist = figure;

78 hist(residuals(:));

79 set(residHist,'Position',[0 0 900 600]);

80 if doStandardize

81 title(['Histogram of standardized residuals of ', titleString]);

82 if nargin > 7

83 print(resid,strcat(outputFileName,'_residhist_std'),

fileFormat);

84 end;

85 else

86 title(['Histogram of residuals of ', titleString]);

87 if nargin > 7

88 print(resid,strcat(outputFileName,'_residhist'), fileFormat);

89 end;

90 end;

91 %close(residHist);

92 end;

93

94 end
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Python Scripts

1 #!/usr/bin/env python
2
3 """ """ """ """"""""""""""" """ """ """"""""""""""" """ """ """ """""""""
4 SLR Analysis Procedure
5
6 Script based on the work of Christian Kaiser
7 (christian.kaiser@nuim.ie)
8 and Alexei Pozdnoukhov (alexei.pozdnoukhov@nuim.ie);
9 adapted by Benjamin Kellenberger

10 (benjamin.kellenberger@geo.uzh.ch).
11
12 Note that the SLR method requires a Linux platform to run cor -
13 rectly. The Python distribution shipped with Mac OS X will not
14 work (reason: their implementation of the "Queue" data structu -
15 re has a maximum capacity of 32’767 entries , which is not enough
16 for the high number of samples examined here).
17
18 Furthermore , the original SLR method would not give a result if
19 the local VIF was over 10. This test was therefore bypassed.
20
21 2014 Benjamin Kellenberger
22
23 """ """ """ """"""""""""""" """ """ """"""""""""""" """ """ """ """""""""
24
25 """
26 0. Initialization
27 """
28
29 import numpy as np
30 from slr import SLR
31 from util import csv_to_ndarray
32
33
34 """
35 N. Main Function Definition
36 """
37
38 def calculateSLR(path , cr, sr, tr , wRange , nameOut):

109
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39 # Read the data
40 data = (csv_to_ndarray(path ,
41 sep=" ", header=False , dtype="float32"))
42 print "File read -in done."
43 coords = data[:, cr[0]:cr[1]]
44 samples = data[:, sr[0]:sr[1]]
45 targets = data[:, tr[0]:tr[1]]
46
47 # Initialize the SLR algorithm
48 print "Creating the SLR model"
49 slr = SLR(params = {
50 ’w_range ’: wRange , ’dist_adapt ’: False , ’diag_only ’:

True ,
51 ’meta’: False , ’penalty ’: 1e-7
52 })
53
54 # Feed in the stream , one sample at a time
55 nsamples = samples.shape [0]
56 for i in range(nsamples):
57 slr.update(coords[i,:], targets[i], samples[i,:])
58 if not i % 1000:
59 print("Iter %d of %d, %d in dictionary" % (i,

nsamples , len(slr.rfs)))
60
61 # Prediction of all new points
62 results = {}
63 for i in range(nsamples):
64 job_id = slr.query(coords[i,:], samples[i,:])
65 results[job_id] = {
66 ’coords ’: coords[i,:], ’samples ’: samples[i,:], ’

target ’: targets[i]
67 }
68 if not i % 1000:
69 print("Predicted %d of %d samples" % (i, nsamples))
70
71 # Get all the results
72 slr.save_state(nameOut + "_state")
73 output = open(nameOut + "_results.txt", "w")
74
75 cnt = 0
76 for r in slr.results(nmax=nsamples):
77 results[r[0]][ ’prediction ’] = r[1]
78 cnt += 1
79 tgt = str(results[r[0]][ ’target ’]).replace("[","").

replace("]","").strip()
80 res = str(results[r[0]][ ’prediction ’]).replace("[","").

replace("]","").strip()
81 crd = ",".join(map(str , results[r[0]][ ’coords ’])).strip

()
82 output.write("%s,%s,%s\n" % (crd , tgt , res))
83
84 if not cnt % 1000:
85 print("%d of %d results retrieved." % (cnt , nsamples

))
86
87 output.close();
88
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89 # Flush memory
90 del slr
91 del data
92 del coords
93 del samples
94 del targets
95
96 print("All done.")
97
98
99 """

100 1. Function Calls for all investigated Datasets
101 """
102 #
103 # Type , Kernel Size (1km = 0.3233 , 500m = 0.1617 , 250m = 0.0808)
104 #
105
106 # Absolute , 1km
107 calculateSLR(’../ datasets/slr_global_abs_single.csv’, [0,2],

[3,9], [2,3], 0.3233 ,
108 "../ results/slr_global_abs_03233")
109
110 # Absolute , 500m
111 calculateSLR(’../ datasets/slr_global_abs_single.csv’, [0,2],

[3,9], [2,3], 0.1617 ,
112 "../ results/slr_global_abs_01617")
113
114 # Absolute , 250m
115 calculateSLR(’../ datasets/slr_global_abs_single.csv’, [0,2],

[3,9], [2,3], 0.0808 ,
116 "../ results/slr_global_abs_00808")
117
118
119 # Relative , 1km
120 calculateSLR(’../ datasets/slr_global_rel_single.csv’, [0,2],

[3,8], [2,3], 0.3233 ,
121 "../ results/slr_global_rel_03233")
122
123 # Relative , 500m
124 calculateSLR(’../ datasets/slr_global_rel_single.csv’, [0,2],

[3,8], [2,3], 0.1617 ,
125 "../ results/slr_global_rel_01617")
126
127 # Relative , 250m
128 calculateSLR(’../ datasets/slr_global_rel_single.csv’, [0,2],

[3,8], [2,3], 0.0808 ,
129 "../ results/slr_global_rel_00808")
130
131
132 # SLR Revised (relative , 500m, only Solar Radiation & TWI)
133 calculateSLR(’../ datasets/slr_global_rel_single.csv’, [0,2],

[5:7], [2,3], 0.1617 ,
134 "../ results/slr_global_rel_01617_custom")
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