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Abstract

The global climate is changing. The changing temperatures and precipitation patterns
will force glaciers to shrink and diminish snow cover in mountain environments. The
runo� of Alpine Catchments will be a�ected by these changes. The catchment of the
Gigerwald lake, a water resource for hydro power production in the Swiss Alps, will also
be a�ected by those changes. The Gigerwald catchment is a subcatchment of the Rhine
river. The Commission for the Hydrology of the Rhine Basin (CHR) tries to quantify the
melt waters entering the Rhine river. To drive those hydrological simulations an adequate
weather dataset is needed. Therefore the gridded dataset from MeteoSwiss (GRID) is
compared to the HYRAS dataset from the German Weather Service and to a simple
interpolated dataset of station data (IDW) of the SwissMetNet using inverse distance
weighting. The comparison is done using the semi-distributed hydrological model HBV.
Over a calibration period of 1999 to 2002 and a validation period of 2003 to 2006 the
simulations using the three datasets where compared to observed discharge and snow-
cover from MODIS snowcover images in their performance regarding the four objective
functions Nash Sutcli�e E�ciency, logarithmic Nash-Sutcli�e E�ciency, Volume Error
and Snowcover RMSE. The calibration with multiple objective functions was done by
selecting the Pareto Optimal parameter sets out of 150'000 runs of a Monte Carlo simu-
lation. From the resulting 157 sets, those that where above some user-de�ned thresholds
where selected. The Results show that the best model reproduction of the discharge
is generally achieved using the HYRAS dataset, even though the di�erences are only
marginal and might not be transferable to other catchments.
In the second part the future climate scenarios from global circulation models where

used to drive the HBV-light model to simulate future weather scenarios. The used
version has a new feature, which dynamically adapts the glaciers during the simulation,
according to its losses from melt water. Seven di�erent model combinations of Global
Circulation Models (GCM) with Regional Climate Models (RCM) where corrected using
quantile mapping (QM). The correction for the regional peculiarities of the weather
inside the catchment was based on observations from the GRID dataset. The calibration
procedure was slightly changed in this part. Again, from 150'000 runs of a Monte Carlo
simulation the Pareto optimal sets where selected. But then the 10 best out of these
159 according to an overall score where used to drive the HBV. The resulting scenarios
cover a mid-term scenario from 2036 - 2065 and a long-term scenario from 2069 - 2098.
In the mid-term period three possible glacier extent and thickness scenarios where used
to simulate the glaciers in the near future. Interpolated measurements where used to
parametrize the glaciers in the reference period from 1992 - 2021. The changes relative
to the reference period predict an increase of discharge during winter and spring due
to higher temperatures and increased precipitation during that time and a decrease of

III



discharge in the summer months due to reduced snow cover that outlasts into the late
summer months. These trends are manifested stronger in the long-term period than in
the mid-term period. Even though the changes are not statistically signi�cant due to
the large variation in the data, the trend is clearly visible and also in line with results
from other works. Using an analysis of variance the relative contribution of the climate
scenarios and the di�erent model parameters was assessed. The climate scenarios make
up the largest fraction of roughly 80% of the variance in the future discharge scenarios.
The parameter mostly make up less than 10% throughout the year and the contribution of
the glaciers is negligible, the remaining fraction of the variance emerges from interactions
between the contributors. According to the �ndings the glaciers in the Calfeisental are
not a key player in the discharge production in the catchment, because of their small
size. The total annual discharge into the Gigerwaldsee is projected to decrease by 3.5%
in the mid-term and by 6% in the long-term. Snow melt water will have a decreasing
and rain water an increasing in�uence on the discharge.
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1. Introduction

Global View

The Earth's Climate is changing. According to the Intergovernmental Panel on Climate
Change (IPCC) Assessment Report 5 (AR5) the global average air and ocean tempera-
tures have been observed to rise, as well as the global average sea level. Furthermore a
widespread melting of snow and ice has been reported. In the last century almost the
entire globe experienced surface warming and, including latest measurements, the global
average temperature di�erence over land and oceans combined between 1880 and 2012
is 0.85 ◦C. This corresponds to an average warming of 0.12 ◦C per decade from 1951 -
2012. The precipitation increased over mid latitude areas in the Northern Hemisphere
since 1951. On a global scale the number of cold days and nights has decreased whereas
the number of warm days and nights has increased. Extreme events are likely to have
occurred more often. Heat waves occurred more often over Europe, Asia and Australia
in the latest decades. Precipitation has increased over more land masses than it has
decreased. Namely it has increased in eastern and north-western North America, parts
of Europe and Russia, southern South America and Australia, and has declined in the
Sahel and other locations. Also the frequency and intensity of heavy precipitation has
increased in North America and Europe, elsewhere this is not certain (Hartmann et al.,
2013). The upper 75 m of the oceans warmed on average by 0.11 ◦C per decade from
1971 - 2010. During that time 60% of the net energy decreases was stored in the upper
oceans (0-700m) and 30% in greater depths. Regions of evaporation become more saline
and regions of precipitation fresher since 1970 (Rhein et al., 2013).
A trend of increasing average ice losses from 226 to 275 Gty−1 from glaciers that are

not connected to ice caps has been observed in the years 1993 - 2009 compared to 1971 -
2009. In Greenland the average ice loss increased from 34 to 215 Gty−1 from the period
2002 - 2011 compared to 1992 - 2001. Further the mean annual Arctic sea ice extent
decreased between 3.5 and 4.1% per decade during the years 1979 - 2012. Further also
the sea ice thickness decreased between 1980 and 2008 by 1.3 to 2.3 m. In contrast the
Antarctic sea ice increased by 1.2 - 1.8% per decade over the years 1979 to 2012 but with
strong regional di�erences of gains and losses. The snow cover extent in the Northern
Hemisphere declined signi�cantly, with average losses in June of 53% over the period
1967 - 2012. Over a longer time period, 1922 - 2012, where data was only available for
March and April it shows a decline of 7%. Permafrost shows higher temperatures in most
regions since 1980 but with strongly varying rates (Vaughan et al., 2013).
An e�ect of all the above can be seen in the sea level rise. From 1901 - 2010 the sea

level rose by 0.19 m. The rate of rise was getting higher during that period. Over the

1



1. Introduction

whole period it is 1.7 mmy−1, from 1971 - 2010 it was 2 mmy−1 and from 1993 - 2010
it was 3.2 mmy−1 (Rhein et al., 2013). The glacier mass loss and the thermal expansion
contribute to about 75% of the rise (IPCC, 2013).
The observed trends are believed to persist in the coming decades. The simulations

of global circulation models (GCM) predict a temperature rise of 0.3 - 0.7 ◦C for the
period 2016 - 2035 compared to 1988 - 2005, although only with medium con�dence.
For the period 2081 - 2100 these are 0.3 to 4.8 ◦C depending on the greenhouse gas
concentration. However it seem to be clear, that the Arctic regions will warm up faster
than others. With a very high probability the trend towards more frequent hot and
fewer cold temperature extremes will persist. Therefore heat waves will occur more
often, whereas on the other hand single cold extremes will most probably still occur
from time to time. Furthermore the trend to more extreme and intense precipitation
events will also persist (IPCC, 2013). Some correlations in historical records (i.e. cold
summers/warm winters being rather wet and hot summers/cold winters being rather dry)
are believed to persist in the future (Beniston, 2009; Vidale et al., 2007). In addition to
that Beniston (2009) state that warm/dry & warm/wet events will increase further as
they already have in the recent past.

Alpine View

The ecological e�ects of climate change on Alpine areas are manifold. During the last
century from 1946 - 1999 the mean winter precipitation increased across northern Europe
(IPCC, 2008; Klein Tank et al., 2002). In the eastern Mediterranean area the yearly
precipitation decreased over the same timespan, especially during the rainy seasons from
October to March (Norrant and Douguédroit, 2006). The trend for enhanced winter
precipitation is believed to persist in the future, especially in Alpine areas. At the
same time summer precipitation is projected to decrease (Zierl and Bugmann, 2005).
Furthermore the mean precipitation per wet day shows an increasing magnitude in areas
that are getting wetter as well as in areas that are getting drier (Klein Tank et al., 2002).
According to these �ndings Europe became and will be drier in the south and wetter in
the north. If a precipitation event occurs, there is a higher chance of it being an extreme
event, rising the risk of �ash �oods in both areas.
Trends of a decreasing snow cover, as well as a trend for a decreasing number of days

with snowfall since the 1980s until 1999 have been observed. However these e�ects are
mainly visible in mid and low altitudes, whereas high altitudes show only small changes
(Laternser and Schneebeli, 2003). The reason for the shorter snow cover persistence at
lower latitudes is believed to be rather the earlier snow melt in spring than a later onset
of snowfalls (Martin and Etchevers, 2005). On the other hand simulations of Zierl and
Bugmann (2005) showed that snow cover might even increase at elevations above 2700
m due to increased precipitation in winter. However this was only found for the �rst
decades of the the 21st century, afterwards the enhanced precipitation is outweighed by
the rising temperatures.
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1.1. Alpine Hydrological Changes

1.1. Alpine Hydrological Changes

The snow cover and glaciers acting as natural water reservoirs are projected to decline
further in the 21st century. Even though the total annual runo� is believed to stay
at about the same level with only a small tendency towards a decrease, the seasonal
distribution will change substantially (Zierl and Bugmann, 2005). Annual runo� regimes
are believed to change towards increasing runo� in winter months and decreasing runo� in
the low �ow season with high con�dence (IPCC, 2008). Zierl and Bugmann (2005) found
that the summer runo� will decrease substantially in high alpine catchments, while today
the highest fraction of runo� occurs at this time. During the �rst decades the predicted
summer losses are believed to be compensated by the increased winter gains. This is
in line with the �ndings of (Finger et al., 2012) who state that the melt season starts
earlier but later on during the melt season the runo� will be strongly reduced because of
glacier retreat and heavy snow melt in the spring months. However, in the short term,
the enhanced glacier melt is believed to increase the summer runo� of the alpine rivers,
but as glaciers shrink the runo� is believed to decrease (Hock et al., 2005) by up to 50%
(Zierl and Bugmann, 2005). This of course depends on the size of the remaining glaciers.

1.2. Hydropower

The future climatic changes and their consequences on the runo� are potentially strongly
in�uencing the hydropower production (IPCC, 2008). Lehner et al. (2005) modelled the
consequences of the changing water availability for all of Europe for the years 2020 and
2070. Depending on the method and the regional climate model (RCM) they found a
loss of 14.0 or 14.4% of gross hydropower potential. For the change in already developed
hydropower potential their results predict, depending on the RCM, a change of -4.2
(ECHAM4) or +0.2% (HadCM3) for the year 2020 and -5.2% or 15.5% for the year
2070. The future alterations in discharge regimes could lead to "unstable regional trends"
(Lehner et al., 2005). On the one hand predictions for increases in water availability
are made, and therefore up to 15% (Lehner et al., 2005) or even 30% (IPCC, 2008)
increased potential for hydropower, for northern Scandinavia and Russia as well as north
eastern Europe and on the other hand decreases of 20 to 50% in hydropower potential are
predicted for large parts of eastern and south-eastern Europe due to drier climate and
increased human water need. In western and central Europe the hydropower potential
is not believed to change drastically (Lehner et al., 2005). This is line with with the
�ndings of Zierl and Bugmann (2005) who predict only a slight trend towards decreasing
total annual runo�s from Alpine catchments.
In western Europe and Scandinavia the current potential is virtually exploited. This

includes also Switzerland, where around 58% of the electricity production is covered
by hydropower. Nevertheless,the potential for new sites is rather small. Di�culties
arise from environmental and social concerns from various groups (World Commission
on Dams, 2000). To not waste any of the existing potential it is important that the
existing structures perform at their optimum. Therefore possible changes need to be
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1. Introduction

found even if the e�ects seem to be small compared to northern and southern Europe.
Adaptive measures have to be taken, probably for every site itself. Finger et al. (2012)
showed that current hydropower infrastructures in the Vispa Valley are not suitable for
future climatic conditions. Accordingly hydropower companies need to deal with the
changes in the coming decades before the end of the 21st century. The company in the
Vispa Valley will have to adapt their infrastructures towards to increased runo� in fall
due to extreme events and have to deal with a drastically reduced amount of water due
to less ice melt in summer (Finger et al., 2012).

1.3. Rhine Basin

As can be seen from the above discussion the Alpine areas contain a lot of water in various
forms. The Alps as water towers for Europe play a big role in many areas a�ecting every
day life from drinking water and food production to health, from industrial development
to environmental concerns and energy production (Mountain Agenda, 1998). Some major
European rivers emerge from Alpine catchments. Namely these are the Po in the South,
the Rhone in south-western direction, the Danube in eastern direction and the Rhine
leaving the Alps in northern direction. The latter is of big interest to the International
Commission for the Hydrology of the Rhine Basin (CHR)1. The CHR is interested in
�ood management, impacts of climate change, sediment transport and deposition and
the assessment of contributions of snow and glacial melt waters to runo� tributaries.
In this work such a catchment is investigated. For hydrological simulations for e.g.

assessing the impacts of climate change the CHR project needs a consistent weather
dataset for the entire catchment of the Rhine river. The HYRAS dataset (Rauthe et al.,
2013) of the German Weather Service (German: Deutscher Wetterdienst) (DWD)2 ful�ls
this criteria. However its performance in hydrological modelling in Alpine catchments
has not yet been tested and compared to weather datasets created speci�cally for Alpine
areas. One such dataset is built of the gridded temperature (Frei, 2014) and precipitation
(Isotta et al., 2013) datasets from MeteoSwiss3. A third dataset for comparison is created
directly from station data around the catchment. All three datasets are built upon
SwissMetNet (Roulet et al., 2010) station data. The result of this study should build the
base for a decision whether the HYRAS dataset is suitable for hydrological simulations
in Alpine Catchments.

1.4. Structure of this Thesis

In the �rst part of the work I will compare the three weather datasets and assess the
contributions to the water �owing into the Gigerwaldsee. This will be done using an
updated version of the Hydrologiska Byråns Vattenavdelning (HBV)-light model (Seib-
ert and Vis, 2012). In the recent times the HBV model has been equipped with new
1http://www.chr-khr.org/en/projects (accessed: 17.07.2014)
2http://www.dwd.de (accessed: 17.07.2014)
3http://www.meteoschweiz.admin.ch (accessed: 17.07.2014)
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1.5. Research Questions

routines and possibilities to use more datasets. It is now able to split the runo� into
the contribution of snow melt, glacier melt and rain water to the total discharge and
can be calibrated to these datasets of snowcover and glacier mass balances Finger et al.
(submitted). For the �rst part of this work a version of the model was used that includes
the possibility to calibrate for the fraction of snow covered area derived from Moderate
Resolution Imaging Spectrometer (MODIS) snow cover products, but not yet for glacier
mass balances.
In the second part of this thesis I will look at the same Alpine catchment again. This

time the future impacts of climatic changes are elaborated. The goal is to simulate the
expected changes until the end of the 21st century by using an updated HBV version
compared to the �rst part. It includes dynamic simulation of present glaciers based
on glacier thicknesses and extents. The simulations are driven by downscaled climate
scenarios from global circulation model (GCM) which all are derived from the A1B
scenario (IPCC, 2008). I will try to quantify the relative shares of rain, glacial and snow
melt water contributing to the hydrograph. The scenarios should then o�er new insights
on the changing dynamics in the catchment and in the best case become a base for
decision of how to adapt to climatic changes for the company running the hydro power
system.

1.5. Research Questions

By comparing the weather datasets in the �rst part and assessing the future changes in
the catchment in the second part the following research questions shall be answered:

Research Question I: Which of the weather datasets GRID, HYRAS and IDW per-
forms best in hydrological simulations using the HBV model?

Research Question II: What is the improvement of using multiple datasets to cali-
brate the HBV model?.

Research Question III: How will changing temperatures and precipitation patterns
a�ect the amount and distribution of water �owing into the Gigerwaldsee?

Research Question IV: How big are the contributions of snow melt, glacial melt and
rain water now and how will their relative and absolute shares change throughout
the 21st century?

Research Question V: What is the contribution of the model parameters and the
seven climate scenarios on the variance of the resulting future discharge scenarios?

5



2. Study Site

For a better readability and easier localization on Swiss maps the Swiss names of several
locations are used:

Gigerwaldsee: the dammed lake of Gigerwald
Mapraggsee: the dammed lake of Mapragg
Calfeisental: the valley called Calfeisental
Weisstannental: the valley called Weisstannental
Sardonagletscher: the Sardona glacier
Chline Gletscher: the Chline glacier

The catchment of the Gigerwaldsee lies in the community of Pfäfers in the South of
the canton of St. Gallen in eastern Switzerland. The Gigerwaldsee is fed naturally by
a small mountainous catchment of about 52 km2 which extends from the upper part
of the Calfeisental, where the Sardonagletscher (0.45 km2) and the Chline Gletscher
(0.21 km2) are located until the end of the dam. Furthermore the lake is also fed by
partial catchments of the Weisstannental (total of 45km2), which are located north of the
Calfeisental (see Table 2.1 and Figure 2.1). There the water is collected at seven intakes
(1-7) and guided into the Gigerwaldsee in subsurface conduits (see Figure 2.2) and also
outside the two catchments in the Tersolbach (8) and guided into the Gigerwaldsee (9).
The exact location of the eight intakes and of the Gigerwaldsee can be seen in Table
2.1. The coordinates are provided in Swiss Grid Coordinates (CH1903). The size of
the catchments feeding the conduits is rather small, however summed up, they have
approximately the same size as the natural catchment of the Gigerwaldsee.
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Table 2.1.: Details of the water intakes
Number Water intake Location Catchment Height
on Map Size [km2] [m a.s.l.]

1 Siezbach 739530 / 204225 7.98 1389
2 Mattbach 739035 / 203295 1.86 1386
3 Seez 739260 / 203100 10.87 1374
4 Seitenbach Seez 739365 / 203110 0.63 1373
5 Scheubsbach 742180 / 204150 6.64 1413
6 Lavtinabach 745680 / 203225 11.01 1003
7 Gafarrabach 746960 / 205960 5.34 1382
8 Tersolbach 749580 / 198310 7.83 1382
9 Gigerwaldsee 748729 / 197589 52 1335
10 Power plant Mapragg 755480 / 201724 - 835
11 Power plant Sarelli 759758 / 205045 - 515
12 Sardonagletscher 738400 / 197704 - 2700
13 Chline Gletscher 738520 / 198579 - 2570
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Figure 2.1.: Scheme of the Catchment
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2. Study Site

The system consists of two power plants, one is located at the Mapraggsee (10) and
the second is at the valley bottom in Sarelli (11). The whole catchment including the
Taminatal encompasses an area of 160 km2 with its highest elevation at the Piz Barghis
at 3247 m. The Gigerwaldsee has a maximal volume of usable water of 33.4 M m3. The
lower Mappragsee has volume of only 2.7 Mm3, it collects the waters of the intermediate
catchment of the Taminatal, serves as a compensating reservoir for the lower stage to the
power plant Sarelli and at the same time as the lower basin for pumping water (back) up
into the Gigerwaldsee. During the years 2000 to 2009 the mean annual energy production
at the Mapragg power plant consisted of 117 M kWh in winter and of 201 M kWh in
summer. Thereof 36 M kWh in winter and 132 M kWh in summer are produced from
natural in�ow. This sums up to an average energy production of 168 M kWh per year
from natural in�ow into the GIgerwaldsee during the period from 2000 - 2009. Including
the power plant Sarelli the produced energy was 166 and 323 M kWh in winter and
summer respectively. This means that 34% of the electricity is produced in winter and
66% in summer. However in winter 97 M kWh and in summer 114 M kWh are used for
pumping water back up into the Gigerwaldsee1. The mean annual potential energy of
the in�ow into the Gigerwaldsee, computed from the provided discharge data and the
following Formula:

Epot = V ∗ ρ ∗ g ∗ δh (2.1)

is roughly 311 M kWh per year over the period 2000 - 2009. Therefore the e�ciency of
the power plant Mapragg derived from this value and the mean annual production over
the same period provided by the company is around 54%. A similar value of 56% was
calculated for the Kárahnjúkar hydropower plant, the biggest dammed lake in Iceland
(Finger, 2014). According to the Kraftwerke Sarganserland AG the remaining 46% are
lost due to changes in the lake level of the Gigerwaldsee. When the lake is not �lled
completely, the pressure on the water falling on the turbine changes. Further this can also
in�uenced by the pump storage operation of on the whole site (Walter Uehli,Kraftwerke
Sarganserland AG, 2014, personal communication). In addition it might be necessary to
open up the dam during extreme events in order to prevent damage on the construction,
that way also some of the potential can be lost.

1These values where provided by the Kraftwerke Sarganserland AG.
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Figure 2.2.: Gigerwaldsee, on the right side of the lake (northern side) the waters col-
lected in the Weisstannental are guided into the lake (Picture taken by Corin Meier,
30.03.2014).
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3. Data

One objective of the present thesis was to evaluate the performance of the three weather
datasets. These are the gridded dataset from MeteoSwiss with its precipitation dataset
(Isotta et al., 2013) and temperature dataset (Frei, 2014), the HYRAS dataset (Rauthe
et al., 2013) of the German Weather Service DWD (German: Deutscher Wetterdienst)
and a self-made dataset from measurements of SwissMetNet weather stations (Roulet
et al., 2010). In the following sections the properties of these datasets are described to
compare the datasets themselves and how their performance in the hydrological modelling
study is assessed.

3.1. Interpolated Station Data (IDW)

Besides the gridded datasets Meteoswiss provides long time measurement series of a vast
number of climate variables from 210 measurement stations (Roulet et al., 2010). From
the three stations Elm, Bad Ragaz and Chur (see �gure 2.1 and table 3.1) the variables
mean daily temperatures 2 m above ground and daily precipitations sums where down-
loaded from the IDAWEB-Portal1. Since the three stations surround the catchments in
the Calfeisental and the Weisstannental, a simple inverse distance weighting-interpolation
as described in Lu and Wong (2008) was applied:

zG =

n∑
i=1

zi
(di−G)x

n∑
i=1

1
(di−G)x

(3.1)

where zG is the temperature or precipitation value at the position G (Gigerwaldsee),
as a result of the sum of the values at positions i, each divided by its distance (di−G)
to the Gigerwaldsee and this in turn divided by the sum of the inverse distances. The
distances remained in the �rst power (x = 1).
With the above formula only the distance between the stations is considered but not
the di�erence in altitude. For correcting the temperature with respect to altitude a
simple transformation was applied. Therefore the data of the three stations was scaled
a reference altitude of 500 m, then Formula 3.1 was applied and the result was scaled
to the average catchment elevation (2135 m). The scaling for altitude was done again
using the lapse rate of 0.6 ◦C/100 m (Dodson and Marks, 1997). This results in -9.81 ◦C
compared to the temperatures at 500 m.
1http://www.meteosuisse.admin.ch/web/de/services/datenportal/idaweb.html (accessed:
17.07.2014)
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3.2. MeteoSwiss Grid Data (GRID)

Table 3.1.: Weather stations around the Gigerwaldsee which where used for the precipi-
tation and temperature Interpolation using Inverse Distance Weighting
Weather Station Location Height [m a.s.l.] Distance to

[CH1903 LV03] Gigerwaldsee [km]

Elm 732265 / 198425 958 16.6
Bad Ragaz 756907 / 209340 496 14.3
Chur 759471 / 193157 556 11.6
Catchment (IDW) 748736 / 197602 2135 0

For the precipitation the correction would not have been as easily applicable, since
there also dry days, which would then disappear by such an operation. Within this work
it was only possible to correct the temperature dataset because correcting a precipitation
dataset would have gone beyond the scope of this work. Therefore and since the HBV
model is able to correct for such systematic errors by specifying the height where the
measurements where made (Seibert and Vis, 2012), the precipitation values where not
corrected.

3.2. MeteoSwiss Grid Data (GRID)

The dataset obtained fromMeteoSwiss is a gridded dataset, interpolated between weather
stations. The analysis method is quite new and considers the local precipitation-topography
relationships at the climatological time-scale using a distance and angular weighting in-
terpolation technique. The datasets for daily mean temperature (TabsD_ch02.lonlat)
and daily precipitation (RhiresD_ch02.lonlat) have a resolution of 5 km, however the
spacing between the measurement stations is bigger. It varies with the density of mea-
surement stations throughout the whole dataset. In densely covered areas the spacing
between the stations is between 10 and 15 km and elsewhere up to 25 km (Isotta et al.,
2013).
The calculation of the gridded dataset for temperature from the point measurements

across Switzerland is a very complex process and also allows dynamic adjustments to
the weather situations present at a certain day. The temperature calculation is split up
into a background and a residual �eld. The background �eld is designed to represent
large-scale weather phenomena at the basin scale. It includes a representation of a
vertical temperature pro�le allowing to account e.g. for inversion layers with varying
properties and other non-linear states of the atmosphere. These background pro�les
vary horizontally. Therefore the whole area is divided into sub-regions (northern, alpine
and southern part) which are given a certain weighting factor that attributes a location
to a �eld. Using this weighting factor and a topographic parameter the background
�eld is then calculated for every location, i.e. grid cell of the �nal product. For these
background �elds, manually identi�ed outliers, e.g. stations in cold pools are removed,
since such anomalies are accounted for in the residual �eld calculation (Frei, 2014).
The residual �elds account for e�ects that are determined as the di�erence between

11



3. Data

station measurements and values of the background �elds, but can not be captured
in their entire manifestation. Their interpolation in space relies on non-Euclidean dis-
tances. Having an adaptable, so-called "layering-factor" for a certain situation, it allows
to favour propagation of anomalies along certain altitudes. So e.g. residuals from a
mountain ridge are more likely to be connected to other mountain tops than to the closer
(in 2-dimensional Euclidean distance) valley bottom. These generalized distances are cal-
culated in advance for a range of possible weather phenomena. Then, the residual �elds
are calculated for the grid points using simple inverse distance weighting (see Formula
3.1 with a factor x = 2, but only over the four closest stations. The �nal value is then
the result of the combination of the background and the residual �elds (Frei, 2014).
The calculation of precipitation also depends on the approach of calculating a back-

ground �elds depending on a long term mean monthly value from 1971 - 1990, which are
called reference conditions in Isotta et al. (2013). The reference conditions where calcu-
lated using a linear regression of elevation and precipitation, called PRISM (Precipitation-
elevation Regressions on Independent Slopes Model). Thereby stronger weights are as-
signed to stations having more similar, digital elevation model (DEM)-derived attributes
such as exposition and aspect to the observed grid cell (Daly et al., 1994; Isotta et al.,
2013). Schwarb (2000) used an adapted version PRISM for the Alpine area and produced
a grid with mean monthly precipitation with 2 km resolution. Isotta et al. (2013) scaled
this product to a 5 km grid, which was then used as the reference �eld.
The anomalies are calculated using an adapted version of the SYMAP algorithm by

Shepard (1984). This is performed using a weighting scheme including inverse distance
weighting amongst others (Shepard, 1984), so that measurements closer to the grid point
get a higher weight (Isotta et al., 2013). Further the weight is also adapted to its direc-
tional isolation (Isotta et al., 2013). This directional isolation is calculated with respect
to the stations within the search neighbourhood (Frei and Schär, 1998). This neighbour-
hood consists of all cells, or stations respectively inside a minimal radius of 15 km. This
radius is increased in steps of 5 km (due to the grid spacing) until at least three stations
are found, with a maximum size of 60 km. If there are not three stations within 60 km the
cell value is returned as 'missing'. This procedure is said to take account of the variable
station density throughout the area, especially in boundary regions between high-density
and low-density station regions (Frei and Schär, 1998). However small scale information
can be displayed only where the station network is dense (Isotta et al., 2013).
The data from MeteoSwiss comes stored in multidimensional NetCDF �les. The DEM

used for calculation was the GTOPO302 by the United States Geological Survey (USGS),
which has a resolution of 30” (arc seconds) in East-West direction and 60” in the North-
South direction. This corresponds to approximately 1.6 and 2.3 km, respectively.
The average temprature and precipitation over the catchment was extracted from the

data and merged into an average time series using R (R-Team, 2005).
Since the resolution of the DEM is so coarse, it consists of smoothed maximum and

minimum elevation values, which means that mountain peaks are too low and valley
bottoms to high. Therefore such a dataset can not account for all the variability on

2http://www.eorc.jaxa.jp/JERS-1/en/GFMP/AM-3/docs/html/gtopo30.htm (accessed: 17.07.2014)

12

http://www.eorc.jaxa.jp/JERS-1/en/GFMP/AM-3/docs/html/gtopo30.htm


3.3. HYRAS Grid Data (HYRAS)

small scales of the strongly varying terrain (Daly, 2006) inside narrow alpine valleys
with big height gradients, like in this study. Not covered extreme events can not be
corrected easily, therefore only the systematic part of the error in the temperature dataset
is corrected in this work. The average catchment height derived from the GTOPO30
was 2087 m, whereas the one from the DHM25 (by Swisstopo3, considered as "ground
truth", was slightly higher with 2135 m a.s.l. Using a lapse rate of 0.6 ◦C/100 m the
underestimation correction factor of −0.288 ◦C was calculated and �nally added to the
measurements.

3.3. HYRAS Grid Data (HYRAS)

The data for the HYRAS Dataset mainly comes from German weather stations, but
also from stations located in Switzerland, Austria, France and the Czech Republic. It
was created for the purpose to cover Germany and the catchments of the rivers Rhine,
Donau and the Elbe. In this dataset there are also stations from MeteoSwiss covering the
catchment of the Rhine included. So to some extent the same data as in the two other
datasets was used for HYRAS as well. However the calculation of the gridded product
di�ers.
The underlying DEM is again the USGS GTOPO30. A grid covering the desired area

was created and the elevation values where interpolated to the nearest grid point center
locations using ordinary Kriging.
For the the precipitation the REGNIE (German: REGionalisierung der NIEderschlagshöhen,

English: Regionalization of Precipitation Sums) method was used. Therefore again back-
ground �elds where calculated. Here, they are created using multiple linear regression
with location dependent determining factors such as latitude, longitude, height and ex-
position. These factors and the monthly average value (of the period 1961 to 1990) are
known for each station. Using the least squares method, the regression-coe�cients are
calculated. The residuals of the regression are then interpolated between the stations,
where all stations within 20 km to the target cell are considered. Then the regression
value is added to the residual, which results in the background �eld value. The measured
precipitation value of a single day (in the dataset used here) is then divided by the value
of the background �eld of the corresponding grid cell. This dimensionless values are then
interpolated using inverse distance weighting, but with x = 2 (see Formula 3.1). Now,
as the �nal precipitation value, for every raster cell this quotient is multiplied with the
background �eld value (Steiner, 2009).
For the temperature this is slightly di�erent. The measurements at the stations are

divided into a background value and an anomaly value. The background value is calcu-
lated using multiple linear regression of the station data, the latitude and longitude and
the height. The anomaly value is then the remaining value, that can not be explained by
the regression, and can therefore be compared spatially. The interpolation weights are
determined by a similarity measure, so that the closer a station and the more similar its

3http://www.swisstopo.admin.ch/internet/swisstopo/en/home/products/height/dhm25.html

(accessed: 17.07.2014)
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values are to a certain grid cell the more weight it gets in the calculation of the anomaly
value of a certain cell. This value is then added to the background value and results in
the �nal temperature at a certain grid position (Steiner, 2009).
Since the HYRAS was created as well using the GTOPO30 DEM, the same shift as
described in Section 3.2 of −0.288 ◦C was used to correct for the mean altitude underes-
timation in the catchment.

3.4. Evaporation data

Furthermore the HBV model needs an evaporation time series for its calibration. This
data can be either daily values or monthly averages (Seibert and Vis, 2012). The evap-
oration series were calculated with Formula 3.2 from McGuinness and Bordne (1972)
described in Oudin et al. (2005):

PE =
Re(j, lat)

λρ
∗ Ta +K2

K1
if Ta +K2 > 0◦C

PE = 0 otherwise

(3.2)

where Re is the extraterrestrial radiation computed according to Allen et al. (1998),
which needs the day of year (j) and the latitude (lat) of the desired location as inputs.
λ is the latent heat �ux [2.26 MJ kg−1] and ρ is the density of water [1000kgm−3]. The
only kind of data that needs to be sampled is therefore the mean daily air temperature
Ta [◦C]. The factors K1 (=81∗1000) and K2 (=5◦C) are empirical scaling factors. Oudin
et al. (2005) showed that simple equations like the one by McGuinness and Bordne (1972)
are equally suitable for hydrological applications as the more physically correct and more
complex equation by Penman (1948).
For the performance assessment of the weather datasets monthly averages where re-

garded as su�cent, since the observed period was rather short with eight years. For the
climate scenarios which had a simulation time of 30 years, daily values where chosen in
order to adapt to changes during the simulation.

3.5. Discharge Data

The discharge data was provided by the "Kraftwerke Sarganserland AG". It was com-
puted from lake level observation using a volume-level relation of the Gigerwaldsee. Since
the HBV model uses discharge in Millimetres, it had to be divided by the catchment area
of roughly 96 km2. The mean discharge per month is shown in Figure 3.1.
The discharge is biggest during months May and June. In addition to that the Pardé

Coe�cients (Pardé, 1933) where calculated. This coe�cient is calculated monthly and
is de�ned as the quotient of the mean monthly discharge and the mean annual discharge
of a station. Thereby it is possible to determine di�erent types of discharge regimes
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3.6. MODIS Snowcover Data
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Figure 3.1.: left: Monthly average discharge into the Gigerwaldsee from 01.08.1997 to
31.12.2011. The total discharge is the sum of the discharge from Calfeisental (C) and
Weisstannental (W). right: Pardé Coe�cients of the three discharges on the left.

(Leibundgut et al., 1984). The Gigerwald catchment shows the characteristics of a "nival-
alpin" discharge regime after Aschwanden and Weingartner (1985). This is characterised
by high discharges during late spring and summer, with a peak in May and June and
relatively low discharges in the winter months due to frozen conditions. Even though
there are small glaciers in the catchment it does rather not �t into the "nivo-glaciare"
category, since there a single peak in June would have to be present.

3.6. MODIS Snowcover Data

Satellite derived snowcover images where obtained from the MOD10A1 version 5 product
of the MODIS sensor on the Terra satellite4. It uses the re�ectance in bands 4 (0.545 -
0.565 µm) and 6 (1.628 - 1.652 µm). The product is provided with a resolution of 500 m
at a daily time scale and is composited to prevent gaps due to cloud cover (Hall et al.,

4http://nsidc.org/data/mod10a1 (accessed: 17.07.2014)
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2002). The data was available from 2001 to 2008. Using Formula 3.3 the Normalized
Di�erence Snow Index (NDSI) after Hall et al. (1995) is calculated:

NDSI =
band4 − band6
band4 + band6

(3.3)

A pixel is then mapped as snow when the NDSI is ≥ 0.4 and if the re�ectance in
MODIS band 2 (0.841 - 0.876µm) is > 11%. But if the re�ectance in band 4 is < 10%,
then it is not classi�ed as snow. Further information on the products are provided in
Hall et al. (2002). The data was prepared the same way as in Finger et al. (submitted)
and also provided by them.

3.7. Glacier Data

For the second part of this thesis where glaciers where included into the hydrological
simulation of the HBV, several informations about the glaciers present in the catchment
where needed. In order characterize the catchment prior to the simulation runs, the
relative glacierized area per elevation zone needs to be known. These where extracted
from shape�les that showed the extent of the glaciers present in the catchment. Those
glacier extents where calculated using the Glacier Evolution Runo� Model (GERM) of
Huss et al. (2010). The model was initialized with the glacier extents from 1973 obtained
from a glacier inventory Müller et al. (1976). Only the extent of 2010 was obtained from
the newer Swiss Glacier Inventory (SGI) (Fischer et al., submitted). The ice thickness
distribution from the glaciers in the catchment was determined according to Huss and
Farinotti (2012) by inverting the glaciers surface topography using DEMs of Shuttle
Radar Topography Mission (SRTM) and Advanced Space-borne Thermal Emission and
Re�ection Radiometer (ASTER) satellite images and glacier outlines from the Randolph
Glacier Inventory (RGI). This dataset was in turn necessary to set up the GERM to
calculate the extents for 1990, 2000 and 2010.
The glacier mass balances where calculated from long-term measurements from 1985

- 2008 (Fischer and Huss, in prep.). All the available measured mass balances of the
Swiss Glaciers during those 23 years where interpolated also unmeasured glaciers using
the methodology of Huss (2012). Since the data was based on observational ice volume
changes from the years 1985 - 2008, the values for the years 2010 and 2011 could not be
calculated the same way. They where estimated from yearly mass balance measurements
conducted at the Pizol glacier since 2006, which lies inside the Gigerwald catchment
(Huss (2014), personal communication). All the above glacier data was provided by
Matthias Huss.

3.8. Climate Scenarios

For assessing the impact of the change in future climate on the discharge regime of
the catchment of the Gigerwaldsee climate scenarios are used. There exist multiple
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3.8. Climate Scenarios

climate scenarios that seem possible under certain circumstances concerning economic
growth and social changes. There are the categories A1, A2, B1 and B2. A stands for
a world with more emphasis on the economic growth, whereas B stands for a rather
environmental emphasis. 1 stands for a global integration of all countries and players
and 2 stands for a more regional emphasis. In the A1 scenario a market oriented world
is assumed with strong economic growth. The population is assumed to peak in 2050
at 8.7 billions. Further there are three subgroups concerning the energy-technologies:
The A1F which stands for a scenario where intense use is made of fossil energy sources,
the A1T where non-fossil energy sources are used and �nally the A1B where a balanced
use of all kinds of energy sources is assumed (IPCC, 2008). The A1B scenario, which
was used here, assumes an increase in carbon dioxide from 360 to 600 ppm and a global
warming of 2.3 ◦C. The other models assume an increase of 1.3 to 5 ◦C. The A1B is
therefore considered as a medium to slightly optimistic future scenario (Lehner et al.,
2005). According to (Prein et al., 2011) the choice of the emission scenario has no big
e�ect, only in the second half of the century the impacts become stronger, where the
A1B lies between the B1 and A2 scenario (Finger et al., 2012).
Based on this scenario di�erent institutes have generated GCMs to simulate a global
climate, whereas other institutes have developed regional climate models (RCMs) to
downscale the global circulation simulations to a regional scale. In the ENSEMBLES5

project combinations of 7 GCMs and 15 RCMs are available (van der Linden and Mitchell,
2009). From these the GCM-RCM combinations shown in Table 3.2 where downloaded
from the RT2B experiments6. These are simulations of past and future climate ranging
from 1951 up to approximately 2100 which all depend on the A1B scenario.

As can be seen in Table 3.2, were four di�erent GCMs were chosen. These are the
same as in Finger et al. (2012) as they where judged to be adequate for mountainous
areas.

5http://www.ensembles-eu.org/ (accessed: 17.07.2014)
6http://ensemblesrt3.dmi.dk/ (accessed: 17.07.2014)
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Table 3.2.: Comparison of the seven climate models compared to observed and height-bias
corrected climate in the period 1980 - 2009. The values are quantile-mapped and the
temperatures are also height-bias corrected.

Nr GCM Institute RCM1 MDT
2

( ◦C)
RT

2 (-) MDP

(mmd−1)
RP (-)

1 ARPEGE CNRM ALADIN5.1 0.001 1.000 0.015 1.009
2 ARPEGE DMI HIRHAM5 0.001 1.000 -0.001 1.004
3 HadCM3Q0 ETHZ CLM -0.013 1.002 -0.004 1.004
4 HadCM3Q0 HC HadRM3Q0 -0.006 1.001 0.013 1.009
5 ECHAM5-

r3
KNMI RACMO2 0.000 1.000 0.023 1.016

6 ECHAM5-
r3

MPI REMO -0.000 1.000 0.005 1.002

7 BCM SMHI RCA -0.001 1.000 0.006 1.003
1 The RCMs are available from the ENSEMBLES project (http://ensembles-eu.org/).
2 MD represents the mean di�erences between each day of the scenario and the measurements. R is
the ratio of the standard deviation of the datasets 1-7 and the observed data from the GRID dataset.
The indices P and T are for precipitation and temperature respectively.

The GCMs normally produce results in a resolution of around 3◦ or 4◦ latitude and 4◦

to 10◦ in longitude (Prudhomme et al., 2002). Such resolutions correspond to about 330
to 440 km in latitude and to about 300 to 760 km in longitude. At such a scale a lot of
the regional a patterns and weather signals are lost (Prudhomme et al., 2002). A strong
locality of weather phenomena can be observed in Alpine areas due to large topographic
variability over short spatial distances (Daly, 2006). Therefore it comes clear that such
data has a much too coarse resolution for driving hydrological models at daily resolutions
such as in this study. The next step was therefore to scale the models from a global to
a more regional scale, using a RCM. These RCMs are driven by GCM data as a starting
and spatial boundary conditions (Akhtar et al., 2009). The resolution of these products
is typically in a range of around 10 to 50 km, which is closer to the scale of the modelled
processes.
Déqué et al. (2012) showed that the choice of the GCM and the RCM play a crucial

role in the outcome. Therefore depending on only one model for a hydrological impact
study would be to simplistic lead to erroneous results. To account for this uncertainty
seven RCMs depending on four di�erent GCMs are chosen. These RCMs are the same
as in Finger et al. (2012), who conducted a similar study for the Vispa valley in the
Swiss Alps. The choice of the same GCM-RCM combinations should allow a better
comparability between the two studies. Model simulations which where regarded as
unrealistic such as HadCM3Q3 and HadCM3Q16 (van der Linden and Mitchell, 2009)
were excluded from the study as it was done in Finger et al. (2012). To give an even
weight to the used GCM, simulations with the same driving GCM where sorted out, only
the BCM was available just once (see Table 3.2). The intention of the selection was to
not reduce the global uncertainty of the initial 15 simulations, in order to prevent an
underestimation of uncertainty (Andreas Gobiet,2014, personal communication).
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Teutschbein and Seibert (2013) point out several problems of using RCM simulations.
First they are a�ected by random and systematic model errors. These are e.g. incor-
rect seasonal variations of precipitation (Christensen et al., 2008; Terink et al., 2009;
Teutschbein and Seibert, 2010a) or too many simulated drizzle days (Ines and Hansen,
2006) so that in the end they do not agree with observed time series. Further they pointed
out that they therefore are not suitable for hydrological impact studies. One possible
solution therefore are the aforementioned ensembles of RCM simulations (Déqué et al.,
2007), since the median of the ensembles may �t the observations better (Teutschbein
and Seibert, 2013) and choosing multiple combinations of GCMs and RCMs has the ad-
vantage that more possible scenarios are covered and the uncertainty can be quanti�ed
better (van der Linden and Mitchell, 2009). The former is said to be especially true
for temperature simulations (Teutschbein and Seibert, 2013), whereas the precipitation
ensemble median often still deviates from the observed one.
Sharma et al. (2010) found that further downscaled RCMs produce better hydrological

simulations than the raw RCM data. Especially for small- to meso-scale catchments like
the one of the Gigerwaldsee, the RCM data is still too coarsely resolved (Teutschbein
and Seibert, 2013). This bias can be corrected with empirical-statistical post processing
methods (Suklitsch et al., 2010). Teutschbein and Seibert (2013) evaluated seven di�erent
bias-correction methods for �ve Swedish catchments and their performance compared
to raw RCM outputs. They found that more complex bias-correction methods such
as "distribution-mapping" performed better than for example the more simple "delta-
change" method.
These methods have been evaluated for ERA407 data, therefore it is not necessarily

given that the �ndings of Teutschbein and Seibert (2013) are simply transferable to GCM-
RCM datasets. It is rather believed that GCM-driven RCM-simulations contain even
more uncertainties introduced by the GCM simulations (Akhtar et al., 2009; Teutschbein
and Seibert, 2013). However Teutschbein and Seibert (2012) state that RCM models
introduce biases by themselves due to systematic model errors (Jacob et al., 2007) because
these biases occur also in models that were driven even with data at almost perfect
boundary conditions (i.e. ERA40 data) Jaeger et al. (2008); Kotlarski et al. (2005);
Teutschbein and Seibert (2010b).
However the transformation algorithm that was used in this work is "Distribution-

Mapping" recommended by (Teutschbein and Seibert, 2013), or called "Empirical Quan-
tiles" according to (Gudmundsson et al., 2012). In this thesis this method will be called
Quantile Mapping (QM) according to several other sources in the literature (Boé and Ter-
ray, 2007; Sun et al., 2011; Wood et al., 2004). QM is based on the cumulative distribution
functions (CDFs) after the empirical transformation of Panofsky and Brier (1968)(Boé
and Terray, 2007). The method uses observational data and the RCM-outputs of the
climate modelling chain. The reference period is observational data of the 30 years from

7The ERA40 is a dataset of meteorological variables. These stem from a re-analysis of meteorological
observations from September 1957 until August 2002. The data was assimilated from various sources
of observational methods by the European Centre for Medium-Range Weather Forecasts (ECMWF)
(Uppala et al., 2005).
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1980 to 2009 from MeteoSwiss GRID Dataset, which was also used to calibrate the HBV
model (see Section 3.2). The CDF of both the observed and the simulated data are
created. Then, for every day, and every one of hundred percentiles the value of the simu-
lation is replaced by the observed value from the same percentile at the day. This results
in a function which is then applied to the whole RCM output (Sun et al., 2011). This
is done for temperature and precipitation time series. An example result is provided in
Figure 3.2.
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Figure 3.2.: Bias correction using QM of the simulated (a) temperature and (b) precip-
itation during the calibration period 1980-2009 and an example simulated scenario
from 2070-2099. The underlying model is number (3) from Table 3.2. Figures have
been adapted from N. Addor (2014)

The underlying assumptions of bias corrections like QM are that the model error does
not change over time (Teutschbein and Seibert, 2013). Further the bias correction is
done for the precipitation and temperature separately, which adds some uncertainty to
the end result, so that a single day can turn out di�erently, however the characteristics
of a speci�c day are surely preserved. Further their statistical variability is not the same
as for observed weather for periods shorter than a month (Nans Addor, 2014, personal
communication).
The images of the di�erent CDFs show a clear correction of the bias in the datasets of

the RCM against the observational values. The corrected values show the same distri-
bution throughout the year as the observational values that were used as ground truth.
The corrected datasets described above where provided by Nans Addor.
As it was already done before in section 3.2, the temperature series was corrected again

for the bias in altitude.
However the data was not yet ready to use. Some of the climate scenarios consisted of

years with 360 days, where every month has 30 days. This was corrected by adding a 31st

day where necessary. The value of this day was a random value out of the same month,
but never the value of the 30th. This was done to prevent the same event to occur two
days in row. Especially if the 30th happens to be an extreme event, it is unlikely to have
the same extreme event two days in a row. In February the 30th and 29th, or only the

20



3.8. Climate Scenarios

30th day was deleted, depending on whether the year was a leap year or not.
After having corrected the climate scenarios they were used to create di�erent scenarios

for using them as input in the HBV simulations for the future. Most of the bias-corrected
data is available from 1951 to 2099. Some of the RCM simulations start at 1961 and
others only reach until the 31st of December in 2098. Therefore the periods for the
scenarios where selected the following way: Three scenarios of a length of 30 years were
produced: 1992-2021 as a reference period for the current climate, 2036-2065 as a mid
term period and 2069-2098 as the long term period. These years where chosen to get
scenarios representing medium term impacts in the middle of the century and long term
impacts at the end of the century.
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Figure 3.3.:Modelled climate changes in temperature and precipitation from the reference
period (1992 - 2021) and the mid- and long-term scenarios, divided into low �ow
(January - April) and melt season (May - September). The numbers 1 - 7 correspond
to the model combinations in Table 3.2.

The changes in the low and high �ow seasons in the two scenarios in the mid-term
and the long-term can be seen in Figure 3.3. All models predict rising temperatures for
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3. Data

both periods of the year, whereas the changes later in the century are bigger. The spread
of temperature rise in the low-�ow season of the mid-term scenario is relatively narrow
between 1.25 and 1.86 ◦C. In the melt season the spread is bigger (1.45 - 2.77). The
development of the precipitation in the low �ow season is rather uncertain. Five models
predict a slight increase whereas two models with the ARPEGE-GCM predict a relatively
large decrease (−10.47 - −5.72). In the melt season of the same period, �ve out of seven
models foresee a decrease in precipitation (−15.93 - −2.56 mm). In the long-term period
the spread of the temperature increase is again narrow (2.08 - 2.93 ◦C), but the di�erence
to the baseline period (1992 - 2021) is bigger. Again in the melt season the spread is bigger
compared to the low �ow season, as well as the rise compared to the mid-term period
(3.31 - 5.13 ◦C). The precipitation in the long-term period again rises in all GCMs except
for the ARPEGE (−2.50 - −1.66). The model ECHAM5-r3 produces by far the highest
values (33.52 and 35.94) the models HadCM3Q0 and BCM predict lower increases (2.45
- 7.50 mm). During the melt season the precipitation diminishes in all models but the
ECHAM5-r3-KNMI-RACMO2 (2.08 mm) with a relatively large spread (−28.14 - −3.64
mm). The ARPEGE models constantly (the highest) precipitation decrease. Compared
to Finger et al. (2012) the ranges are very similar and the relative changes of the models
are often the same.
The spread of the data can also be seen in the long term mean annual values in

Figure 3.4. However the inter-seasonal di�erences are not visible there. The rise in
temperature that already occurred during the last decades is however visible. Further
the temperature seems to be rising rather linear until 2099. The precipitation however
shows no clear trend, there only inter seasonal trends could be found as was shown
before. Further, a feature of climate models can be seen nicely here. The modelled
datasets show magnitudes and frequencies similar to those of the observations but not
at the same time. But since these models are only statistically correct over longer time-
scales, a correct timing of single events is never given. Towards the end of the 21st century
the variation of the climate scenarios gets a little bigger, there the model calculations
start to di�er more and more from each other.
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4. Methods

4.1. Statistical Comparison of the Weather Datasets

To compare the three weather datasets some simple statistical indices where calculated
using the Statistical Package for the Social Sciences (SPSS) (IBM Corp. Released, 2012).
These are the minima, maxima, mean, median, standard deviation and the number of
extremes above the 95% and below the 5%-quantile of all three datasets for the tempera-
ture data. (For the precipitation data the minimum is always 0 and therefore neglected.)
Furthermore the maxima, the mean the standard deviation and the extremes above the
95% quantile of all datasets was calculated. Additionally the mode was calculated. The
mode is more robust to extremes, by just giving the most frequent value, whereas the
mean is very sensitive to extremes which are typical for precipitation data. Whereas the
median is more sensitive to the number of extremes Panofsky and Brier (1968). Further-
more some statistical tests were conducted to determine whether the di�erences between
the three datasets where signi�cant. These are the Kolmogorov-Smirno�-Test to deter-
mine whether the data is normally distributed. And afterwards the Friedmann-Test to
test whether the central tendencies of the weather datasets are signi�cantly di�erent or
not.

4.2. The HBV Model

The HBV model was originally developed by Bergrström (1976). The latest published
version o�ers the possibility to include glacierised areas. It is described in Seibert and
Vis (2012). For this thesis the HBV-model was updated with a glacier routine that
dynamically adjusts the glaciers during the simulation once in a year. The bene�t of
including glacier mass balances in the HBV was shown before in Konz and Seibert (2010),
however there the glacier areas did not change in extent over time.

The HBV model used in the study of the comparison of the weather datasets was a
version published in February 2014. In this version it is possible to calibrate for snow
cover. The calibration for glacier mass balances was not yet implemented when the
studies for comparing the three weather datasets where done. (The glacier routine is
explained in Section 4.5.1.) Since the modelled time period is rather short with four
years of calibration and four years of validation, the glaciers are not expected to have a
big in�uence anyway.
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4.2. The HBV Model

4.2.1. Model Structures

The HBVmodel comes with a number of possible structures, that take account of di�ering
characteristics of a catchment. These include di�ering con�gurations of the upper soil
zones, snow zones, various numbers of groundwater boxes and combinations of the above.
First some preliminary runs with data from the Gigerwald catchment where done.

These runs showed no signi�cant di�erences in their performances, therefore it was de-
cided to stick to the standard version, which is shown in Figure 4.1. The standard version
uses an over�ow mechanism so, that there is additional runo� generated from the upper
soil zone (SUZ ) if the water hold capacity (UZL) is exceeded. Further the SUZ generates
a steady runo� Q1 and also propagates its water partly into the lower soil zone (SLZ ).
From there it is partly evaporated or guided also into the runo� (Q2 ).

Figure 4.1.: Scheme of the HBV model soil-routine (Source: Seibert and Vis (2012))

Furthermore the model also accounts for the glacierised areas in the catchment. The
determination of the glacierised area is described in Section 4.2.2. Using this feature,
the di�erent elevation-vegetation units can be characterized as glacier or non-glacierised
area. These areas remain constant during the simulation in the version from February
2014, although runo� is also generated from these areas (Seibert and Vis, 2012).

4.2.2. Catchment Characterisation

To adapt the model settings of the HBV to the watershed of the Gigerwaldsee several
operations had to be done with the geographic information system ArcGIS (ESRI, 2011).
Since the catchment does not consist of only a naturally con�ned area, but also of the
catchments of the neighbouring Weisstannental, the water intakes had to be localized as
"pour points" (see table 2.1) to derive their catchments. In the end the natural catchment
of the Gigerwaldsee as well as the eight catchments of the water intakes were merged
into one single polygon in order to be modelled in HBV.

25



4. Methods

The HBV can be run with di�erent altitude and vegetation zones. This makes it a
semi-distributed model (Seibert and Vis, 2012). It would have been possible to generate
multiple vegetation zones, but an increased model complexity does not necessarily lead
to better simulation results (Finger et al., submitted). This was con�rmed by the results
of some preliminary test runs with three vegetation zones including forest and open soils
or grass land. Therefore the catchment was split up into two zones, which simply consist
of glacierized and non-glacierized areas, regardless of soil and vegetation type.
The DEM of the catchment was divided into 11 elevation zones, each covering 200

meters in altitude. Each of these elevation bands was split up further into three exposition
groups: North, South and East/West combined. Each grid cell with a height and an
elevation was then given a value of either one of the two zones. Thereby the relative
amounts of glacierized and non-glacierized areas were determined for every elevation
band and exposition.
For the comparison of the three weather datasets this model complexity was adequate

to run the model. For the climate scenarios some more steps had to be done in order
to characterize the glacier in more detail. Smaller elevation zones in steps of 10 m
where determined. Again the amount of glacierized area relative to the entire catchment
was determined. This time the operations where of counting the relative values where
conducted using the commercial software package MATLAB (TheMathWorks Inc., 2013)
since the amount of elevation zones had become to big to be easily handled using ArcGIS.
Furthermore also the glacier water equivalent (WE) per elevation zone had to be known.
This was done using the glacier thickness data described in Section 3.7. The glacier
thickness was distributed on the elevation zones and then multiplied with a constant ice
density of 900 kg/m3 in order to obtain the WE for every 10 m elevation zone.

4.2.3. Performance Measures

The following e�ciency measures where used in this thesis for assessing the performance
of the HBV-simulations. These functions are all part of the used HBV-light model
versions and where therefore regarded as given.

Nash-Sutcli�e E�ciency

The most commonly used performance measure in HBV is the Nash-Sutcli�e e�ciency
(see Formula 4.1). The formula by Nash and Sutcli�e (1970) compares the observed
(Qobs) discharge value with the simulated (Qsim) at time steps i - n. The squared
di�erence between the two is summed up and this sum is then further divided by the
sum of the squared di�erences between the observed values and and the average of the
observed values. This is then subtracted from 1:

ENS = 1−

n∑
i=1

(Qi,obs −Qi,sim)2

n∑
i=1

(Qi,obs −Qobs)2
(4.1)
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4.2. The HBV Model

Thereby it is examined whether a simulation is better than a simulation by just looking
at the mean of the observations. A perfect �t occurs at ENS = 1. If it is below zero, the
simulation is worse than the a simulation by simply taking the average discharge of the
observations. Because of the squared di�erences this goodness of �t function gives more
weight on high �ow events. Since there the di�erences are generally bigger, the squaring
of the di�erences puts more weight on those events than on low-�ow events. Therefore
also the Logarithmic Nash-Sutcli�e e�ciency is used (see Formula 4.2). However this
function has been used to determine model performance in a number of studies using
the HBV model (Akhtar et al., 2009; Seibert and Uhlenbrook, 2000; Teutschbein and
Seibert, 2012) and other models Finger et al. (2012, 2011).

Logarithmic Nash-Sutcli�e E�ciency

To introduce an estimate of model performance that gives more weight to the low �ow
season the logarithmic Nash-Sutcli�e e�ciency is used. By using logarithmic discharge
values the weight is more evenly distributed over all kinds of events.

ELogNS = 1−

n∑
i=1

(ln(Qi,obs)− ln(Qi,sim))2

n∑
i=1

(ln(Qi,obs)− ln(Qobs))2
(4.2)

Volume Error

The volume error function looks at the modelled amounts of discharge. By dividing the
sum of the absolute di�erences between the observed and simulated discharges by sum of
the observed discharges the fraction should ideally be 0, which would result in an optimal
volume error of 1.

EV olErr = 1−
|
n∑
i=1

(Qi,obs −Qi,sim)|
n∑
i=1

(Qi,obs)

(4.3)

Snowcover RMSE

The Snowcover Root-Mean-Square Error (RMSE) in Formula 4.4 is a statistical measure
to calculate the between the simulated snow cover (SCsim) and the observed snowcover
(SCobs) of the entire catchment at time steps i to n. The snowcover is represented in
fractions and ranges from 0 for no snowcover to 1 for an entirely snow covered catchment.
By subtracting the root of the mean squared error from 1, the perfect match between
observations and simulation would result in a RMSE of 1.

ESCRMSE = 1−

√√√√ 1

n

n∑
i=1

(SCi,sim − SCi,obs)2 (4.4)
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Glacier Mass Balance Nash-Sutcli�e E�ciency

To be able to compare the performance of the generation of glacier mass balances over
one hydrological year (October 1st - September 30th) the Glacier Mass Balance Nash
Sutlic�e E�ciency (EMB−NS) in Formula 4.5 has been introduced in the latest version
of the HBV-light (June 3rd 2014):

EMB−NS = 1−

m∑
y=1

(MBy,obs −MBy,sim)2

m∑
y=1

(MBy,obs −MBobs)2
(4.5)

It compares the modelled glacier mass balance (MB) to external data, be it from a
model or from measurements. The procedure is the same as in the calculation of the
Nash-Sutcli�e E�ciency (NSE) for the discharge in Formula 4.1. The di�erence here is
that the MBs are measured over a whole year (y), and therefore the no daily values are
calculated.
The mass balance calculated in the model or used for the input �le is not directly

observable in nature. TheMB of a point in time (y) consists of the relative area covered
by glaciers (ArG) at the start of the simulation (i.e. warm-up period) multiplied by the
cumulative sum of WE-loss/gain over the whole simulation period, starting (always) with
a value of zero at the day the warm up period of the simulation starts:

MBy =

m∑
y=1

δWEy ∗ArG (4.6)

Therefore the mass balances calculated according to Formula 4.6 are measured in mm
relative to the initially glacierised area.

4.3. Comparison of Di�erent Model Runs using
Multivariable Calibration

Di�erent datasets and multiple objective functions to calibrate hydrological models have
been used in di�erent studies in the past. The goal of the hydrologists was to limit the
parameter sets to a certain part of the parameter space in instead of multiple equi�nal
sets of di�erent places in the parameter space (Franks et al., 1998). Further a proper
validation of the processes represented should also include an internal validation by com-
paring internal processes of models (Ambroise et al., 1995). Besides Finger et al. (2012)
and Konz and Seibert (2010) multiple datasets were also used by many other authors.
Since the 1990s di�erent additional observational datasets where used in hydrological
models. These where e.g. groundwater data (Kuczera and Mroczkowski, 1998; Seibert,
2000), saturated zones (Franks et al., 1998), salinity data (Kuczera and Mroczkowski,
1998), snowpack and soil water data (Ambroise et al., 1995). More recently for glacierised
catchments also glacier mass balances at di�erent time scales (Konz and Seibert, 2010;
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4.3. Comparison of Di�erent Model Runs using Multivariable Calibration

Schae�i and Huss, 2011) combined with snow cover data (Finger et al., 2012, 2011, sub-
mitted) where used.

Especially in mountainous watersheds where glaciers and snow are present the demand
for such additional observational datasets is provides additional information to constrain
the model parameters since the runo� is not only generated by rainfall but also by snow
and glacier melt (Finger et al., submitted).

In the HBV model the model runs are evaluated in terms of the objective functions in
Section 4.2.3. In the �rst part of this work four out of the �ve aforementioned objective
functions where used. The Glacier MB NSE was not used in the comparison of the
weather datasets, since the version of the HBV-light model used at that time did not yet
support this feature. The four remaining objective functions cover several aspects of the
discharge characteristics and also the snow covered area. The selection of these objective
functions is assumed to represent the relative importance of the variables runo� and snow
cover for the operation of the dammed lake. I assume that a well modelled fraction of
the snow covered area is less important than a well represented discharge importance for
the operators. The runo�, or rather the water running into the lake is assumed to be
of highest importance. Accordingly the snow cover only accounts for one fourth of the
objective functions.

For the evaluation of a possible bene�t of the model performance the e�ects of several
combinations of the objective functions to their own performance scores is explored.
First a simulation using only objective functions evaluating the discharge performance
are used. These are the NSE, LogNSE and the Volume Error each accounting for one
third of the total. Then the discharge objective functions combined with the snow cover
(SC) RMSE. In addition calibration to SC only was done too. The model was calibrated
using a Monte Carlo (MC) simulation with 150'000 runs. From the whole amount of
parameter sets, the Pareto optimal parameter sets where selected with the help of a
Matlab-Script (Polityko, 2008). The function in the script checks for each parameter set
if it performs better in at least one out of the four objective functions compared to every
other parameter set. Only if this is ful�lled it is selected as a Pareto optimal set. They
represent parameter combinations that reach scores in their objective functions such that
the score of one function can not be improved without reducing the score of the others.
This is done in a four dimensional space using all of the four objective functions during
the period from 2006 - 2011.

From the Pareto Points in terms of the selected objective functions NSE, LogNSE,
Volume Error and SC RMSE the values above a threshold of 0.8, for the functions NSE,
LogNSE and SC RMSE and 0.95 for the generally very good scores in Volume Error
respectively, where then selected. With this method a di�erent number of sets is selected
for every combination of objective functions.
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4.4. Performance Assessment of the Weather Datasets

4.4.1. Model Calibration 1999 - 2002 and Validation 2003 - 2006

In order to calibrate the HBV model for each of the three datasets a MC simulation
was applied to test a large amount of random parameter combinations (Seibert and Vis,
2012). In a �rst run the three datasets were tested with the default parameter values
of the HBV, except for the values for the measurement stations for temperature and
precipitation (Telev and Pelev). Then some scatter-plots, similar to those in Figures
A.1, A.2 and A.3 in Appendix A.1.1 with the complete parameter space of 150'000 sets
where created. From these it could be seen which parameters had their best performance
(using the Nash-Sutcli�e e�ciency in Formula 4.1) just at or close to their user-de�ned
limits. Especially for the HYRAS dataset the range for the height of the precipitation
measurements Pelev) had to be lowered to around 1000 m to make it perform better.
For the parameters SCF, CFMAX and Pelev the limits had to be expanded slightly in
comparison to the recommended values in Seibert and Vis (2012). The MC simulation
was run again with the new parameter settings until the scatter plots showed no more
limitation of performance to possible parameter ranges (see Figures A.1, A.2 and A.3).
The optimal parameter sets could then be searched for depending using the the method

in 4.5.2 and on the preferences of the author (Confesor and Whittaker, 2007). Depending
on whether more focus was laid on the low �ow, the peak �ow or the overall volume one
or another combination can be selected. Since for a dammed lake no simple decision for
one e�ciency measure can be made, the set of all four parameters was selected.
The above tests are designed to show whether the three tested datasets provide a

useful source of information for the HBV model. However, from calibration only, it is
not yet clear if the model would also perform well in a period di�erent to the calibration
period. Especially since at least the GRID dataset is intended to be used for the creation
of future scenarios it is important to get an estimate of the model performance under
conditions di�erent to those during the calibration period. Therefore the models where
tested using a split-sample test (Kleme², 1986). Data for all three weather datasets
and discharge data which cover the same period is only available for nine years and �ve
months from 01-08-1997 until 31-12-2006. According to Seibert and Vis (2012) one year
of warm up period is su�cient for the HBV model. To get a proper start at January
1st, the warm-up period was set to end at the 31-12-1998 and thus covers 17 months.
The calibration period was set to four years from 01-01-1999 to 31-12-2002 and the
validation period to 01-01-2003 to 31-12-2006. This split has the advantage to include
the same two extreme events, the extremely dry year 2003 and the year 2005 with an
extreme precipitation event in August (Bezzola et al., 2008), into the validation period
as proposed in Koboltschnig et al. (2008), using the PREVAH model (Gurtz et al., 1999)
with hourly discharge data. A drawback of this setting is the further reduced weight (i.e.
1/8) of the MODIS snowcover data compared to the discharge data due to its limited
availability of only the years 2001 and 2002 during the calibration period.
These parameter combinations where then used in Batch Runs inside the HBV model

to create multiple equi�nal model simulations which where then evaluated using the NSE
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and the LogNSE, since the other objective functions are not available in the results of
batched runs.
Using the above process the three weather datasets GRID, HYRAS and IDW are

evaluated and rated according to their performance in HBV model simulations over the
same periods of calibration and validation.

4.5. Discharge Scenarios

4.5.1. HBV Simulations

The HBV model was used again in order to calculate future discharge in the Gigerwaldsee
catchment. The model was calibrated again to measured discharge, snow cover and
this time also glacier mass balances. The period chosen for calibration were the years
from 2006 to 2011. This way not only the special years 2003 and 2005, but also the
heavy precipitation events on melting snow in 1999 Aschwanden (2000) is included in
the validation. The only drawback is, that MODIS snow cover data is only available
from 2001 to 2008. Therefore only three years of calibration using snow cover can be
evaluated. Which again reduces the �nal weight of the MODIS snowcover data from 1/4
to 1/8.

New HBV Glacier Routine

In the version of the HBV model that is used for the simulation of the climate scenarios a
new routine that calculates the evolution of the extent and the water equivalent of glaciers
over time was implemented. This part of the model was originally designed by Huss
et al. (2010). The so called ∆h-parametrization (see Formula 4.7 calculates the glacier
surface elevation change in response to a change in mass balance. The parametrization of
thickness change in the model of Huss et al. (2010) is done using DEM di�erences where
data is available or, where no DEMs are available, by empirically derived parameters of
known similar glaciers and the following formula:

∆h = (hr + a)γ + b ∗ (hr + a) + c (4.7)

where hr is a normalized elevation range and is calculated from (hmax − h)/(hmax −
hmin). hmax and hmin are the maximum and the minimum glacier surface elevation.
The parameters a, b, c and γ are empirically derived constants that change according
to glacier size. Glaciers are classi�ed as large (>20 km2), medium (between 5 and 20
km2) and small (<5 km2) valley glaciers. The surface changes are calculated spatially
distributed. At the end of the hydrological year the glacier extent is updated. The
gained or lost ice volume is converted into a distributed thickness change under the
assumption of immediate redistribution of surface accumulation due to ice �ow. To
give the aforementioned outputs the model needs a DEM and glacier outlines and the
spatial distribution of surface mass balance calculations from di�ering models as well as
estimates of the bedrock topography for ice thickness distributions and total ice volume.

31



4. Methods

The formula for the annual calculation of the change in glacier mass Ba in Huss et al.
(2010) is as follows:

Ba = fs ∗ ρice ∗
i=hr∑
i=0

Ai ∗∆hi (4.8)

Since the HBV model is semi-distributed (Seibert and Vis, 2012) it can not take any
DEM informations directly. Therefore the information about ice thickness and volume
changes is calculated using the water equivalent as a parametrization of amounts of ice
or changes in glacier thickness in Formula 4.7. The water equivalent has to be given
to the model inside a �le, with amounts of WE per elevation. Before any hydrological
simulations are started, the model calculates a lookup table for possible glacier melt
scenarios. Inside that table there are the resulting glacier areas for every elevation zone
speci�ed in the model resulting from glacier melt in 1%-steps of the total glacier volume.
The volume is calculated by multiplying the area (speci�ed in an input �le) with the water
equivalent. Then for each 1%-step at every elevation the normalized water equivalent
change is computed according to Formula 4.7. However instead of the thickness change,
the change in water equivalent is computed. The value for fs in Formula 4.8 is then
calculated based on that glacier volume change, i.e. change in water equivalent which
corresponds to every percent of melt. The formula used in the HBV looks as follows:

∆WEa = fs ∗
i=hr∑
i=0

Ai ∗∆hi (4.9)

∆WEa is known from the loss of glacier mass, i.e. glacier water equivalent of 1%, and
δhi is calculated from Formula 4.7 and Ai is known from an input �le.
Then for each elevation the new water equivalent is computed according in the following

way using fs:

WE1 = fs ∗WE0 + fs + ∆WEi (4.10)

where WE1 is the updated water equivalent for the initial water equivalent WE0.
Then for each of the elevation zones (in 200 m steps) the new glacier area is computed.

This is done by subtracting all areas from all elevations within a zone with a new water
equivalent of <0. This results in the aforementioned lookup table where the resulting
glacier areas in the di�erent elevation zones per percentage of melt are speci�ed.
During the hydrological model simulation, using the degree-day method the glacier

melt is calculated in mm. This melt is added to the water content of the glacier. The
out�ow of the melted water is then computed according to Stahl et al. (2008):

Qt,g = KG(t, g) ∗ S(t, g) (4.11)

where S(t, g) is the liquid water stored in the glacier water content of an elevation zone
g at time t and KG(t, g) is an out�ow coe�cient varying with time as a function of the
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water equivalent in the glacier elevation zone g at time t:

KG(t, g) = KGmin + dKG ∗ exp[−AG ∗WE(t, g)] (4.12)

where in Stahl et al. (2008) KGmin is a minimum value that represents conditions with
only minimal out�ow and KGmin + dKG represents the out�ow coe�cient at maximum
out�ow, this two parameters are determined by calibration in the HBV model. AG is a
calibration parameter as well, both in Stahl et al. (2008) and the HBV implementation
and WE is the water equivalent of the glacier elevation zone g at time t.
Finally in each hydrological year and based on the percentage of melt in comparison to

the original glacier volume, the corresponding glacier areas are selected from the lookup
table and applied to the di�erent elevation zones. In order to make sure that the glacier
volume does not change due to resizing areas, the melted glacier water, which was not
routed into runo� in the declining areas is being redistributed from the melted area to
the non-melted area.

4.5.2. HBV Calibration for Climate Scenarios

For the determination of equi�nal parameter sets the HBV was calibrated during the
years 2006 - 2011. Compared to the calibration in Section 4.3 the procedure was changed
slightly. The used weather dataset was the GRID dataset. The decision for the GRID
dataset was made before �nishing the comparison of the weather datasets. Since the
QM of the climate data was therefore done using the GRID dataset and also due to
time constraints it was decided to not switch to the HYRAS dataset. Furthermore the
di�erences between the GRID and the HYRAS dataset where rather small anyway.
As explained in Section 4.5.1 the glacier routine for dynamically adapting glaciers of

the HBV-light is used here for the �rst time. Therefore also glacier mass balances and
more detailed glacier areas where needed. From the data described in Section 3.7, the
relative amounts of glacierised area in the catchment where calculated. They where
determined for small range elevation zones of only 10 m. Further the water equivalent
in the same zones was derived from the glacier thicknesses described in Section 3.7 by
multiplying with a constant density of 900 kg/m3. For calibration to glacier MB an input
�le with observed annual mass balances that where interpolated to unmeasured glaciers
(Huss, 2012) was needed.

Finding the optimal parameter sets

As it is shown in Finger et al. (2011) and Finger et al. (submitted) the use of multiple
datasets allowing to calibrate to multiple datasets leads to a higher model consistency
and therefore creates discharge simulations that are right for the right reasons. The
parameters where selected according to their performance in the �ve objective functions
in Table 4.2. From another MC simulation with 150'000 runs with the parameter ranges in
Table 4.1 every parameter set which contained any negative objective function score was
removed. This way the big dataset was made smaller in order to get shorter computation
times for the Pareto point calculation, which resulted in 7221 parameter sets. In contrast
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to Section 4.3 the Pareto points where calculated from all parameters (except the ones
containing negative values) directly. Then, the remaining 159 Pareto points (see Figure
4.2) where ranked as in Finger et al. (submitted). Each of the �ve objective functions
should have been ranked over all parameter sets. The resulting ranks for every objective
function of every parameter set where averaged and this was considered as the rank for the
parameter set. However as was seen after applying those parameters, the results where
rather bad when using all �ve objective functions, especially the modelled discharge in
spring was strongly underestimated. After some tries, the best possible solution was
found if the Glacier NSE was only used for the Pareto calculation but not for ranking
the Pareto optimal parameter sets. So in the end it can be said that the discharge data
has a weight of 27/40, the MODIS snowcover data has 9/40 and the glacier data 4/40.
The 10 sets with the best ranks where selected and regarded as being equi�nal (Beven,

2012) and are shown in Figure 4.2. The resulting objective function ranges of the �nal
selection can be found in Table 4.2. By looking only at Pareto Points one does not
necessarily get the points with the highest overall scores, but they are de�nitely a good
compromise between all the objective functions and are more likely to be a local optimum
in the parameter space. This can partly be veri�ed by the widely scattered parameter
values in nearly all parameters in Figure 4.3 and also shows nicely the equi�nality of
di�erent parameter sets, they all have a comparable overall performance but use values
from very di�erent parts of the parameter space.
Compared to the studies of Finger et al. (2012, 2011, submitted) where only 10'000

MC simulations where done, the 150'000 runs done here seem quite a lot. However
this way the probability increases for �nding more better performing solutions to the
equi�nality problem (Beven, 2012) increases. However the parameter space is not really
explored better. If we do the math, we take the 33rd root (for 33 parameter to calibrate)
of 150'000 the number of resulting tries for every parameter is around 1.45 and for 10'000
it is 1.32. The number of of runs may therefore be a bit high, but it does not make the
results worse.
Those 10 sets of parameters where then used to drive the HBV-light model with the

temperature and precipitation datasets from the seven climate scenarios. The results can
be found in Section 5.2.3. Their performance was then evaluated during the calibration
period from 2006 - 2011 and the preceding seven years from 1999 - 2005 as validation
period. That way the special years 1999, 2003 and 2005 can be evaluated. Those results
can be found in section 5.2.2.

Bene�t of Calibration using Snowcover and Glacier Mass Balances

To assess the bene�t of using multiple objective functions and input datasets several
combinations of the former have been tested. The model was run with the same con�g-
uration and input data of temperature, precipitation, potential evaporation, discharge,
fraction of snow covered area and glacier mass balances. The multi criteria evaluation
was done based on the Pareto points for every combination. That way the e�ect of
combining di�erent objective functions can be seen more clearly. It was done for every
combination of the three groups: Q (consisting of NSE, LogNSE and Volume Error), SC
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4.5. Discharge Scenarios

Table 4.1.: Initial parameter ranges of the HBV-light model for the MC-simulation
Paramter lower limit upper limit
KGmin 0.01 0.2
dKG 0.01 0.5
AG 0 10
PERC 0 4
UZL 0 70
K0 0.1 0.5
K1 0.01 0.2
K2 0.00005 0.1
MAXBAS 1 6
PCALT 1 20
TCALT 0.1 1
Pelev 1000 2500
Telev 1000 2500
TT -2 0.5
CFMAX 0.5 10
SFCF 0.5 0.9
CFR 0.05 0.05
CWH 0.1 0.1
CFGlacier 0.1(1 where no glacier) 5 (1 where no glacier)
CFSlope 1 5
FC 100 550
LP 0.1 1
BETA 1 5

Table 4.2.: Ranges of the selected parameter sets.
Objective Function Range of the 10 best Sets

NSE 0.69 - 0.87
LogNSE 0.76 - 0.86
Volume Error 0.87 - 1.00
Snowcover RMSE 0.79 - 0.81
Glacier Mass Balance NSE 0.23 - 0.97
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Figure 4.2.: The selection of the 10 equi�nal parameter sets for the calculation of the
climate scenarios out of the 159 Pareto points from 150'000 parameter sets (not dis-
played).
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Figure 4.3.: The parameter values of the 10 equi�nal parameter sets and their performance
in reference to the NSE.
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(consisting of the Snow Cover RMSE) and MB (consisting of the Glacier Mass Balance
NSE). And, since the selection of the 10 best parameter sets was not done with the same
objective functions as the Pareto selection was done the performance when using all �ve
objective functions and when leaving out the MB is assessed. The results can be found
in Section 5.2.1.

4.5.3. Analysis of Uncertainties

In a modelling chain as described in Section 4.5.1 many uncertainties are included. First
there are the climate scenarios, where there are unceratinties from the GCM and the
RCM and manifested in the many di�erent outcomes of the seven combinations in Table
3.2. Second there are multiple equi�nal parameter sets for the HBV runs. Third, and only
for the Scenario 2035 - 2064, there are three di�erent glacier extents, according to three
di�erent climate models. Therefore a two-way Analysis of Variance (ANOVA) for the
periods from 1992 - 2021 and 2069 - 2098 and for the period from 2036 - 2065 a three-way
ANOVA is conducted. The work�ow was derived from the techniques described in von
Storch and Zwiers (1999) and Bosshard et al. (2013) and inspired by the results in Finger
et al. (2012). The goal was an analysis of the contributors to the global uncertainty, i.e.
the relative contribution to the variance of the simulated discharge of the three "e�ects"
as they are called in Bosshard et al. (2013). The three e�ects are the seven climate
scenarios (C), three glacier scenarios (G) and the ten Parameter sets (P ). According to
the theory of ANOVA the sum of squares of the di�erent independent variables (SSC,
SSG, SSP ) and the sum of squares of their interactions (SSI) sum up to the sum of
squares of the total (SST ). ◦ stands for the average over the particular index, and i for
each day in the time series:

SSTi =
C∑
c=1

G∑
g=1

P∑
p=1

(Qc,g,p −Q◦,◦,◦)2 (4.13)

SSCi = G ∗ P ∗
C∑
c=1

(Qc,◦,◦ −Q◦,◦,◦)2 (4.14)

SSGi = C ∗ P ∗
G∑
g=1

(Q◦,g,◦ −Q◦,◦,◦)2 (4.15)

SSPi = C ∗G ∗
P∑
p=1

(Q◦,◦,p −Q◦,◦,◦)2 (4.16)

Since SST is the sum of all the above sum of squares, SSI can be simply calculated
algebraically by:

SSIi = SSTi − SSCi − SSGi − SSPi (4.17)
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Then for the sums of the squares of each e�ect their fraction of the total variance
(SST ) for every day i is calculated as it is described in Bosshard et al. (2013):

σ2C =
1

I

∑
i=1

SSCi
SSTi

(4.18)

σ2G =
1

I

∑
i=1

SSGi
SSTi

(4.19)

σ2P =
1

I

∑
i=1

SSPi
SSTi

(4.20)

σ2Interactions =
1

I

∑
i=1

SSIi
SSTi

(4.21)

Using the relative variance fractions it is possible to look at every day of the simulation
and determine the percentage of variance attributed to each of the three e�ects or the
interactions of these. The introduced procedure is valid for the scenario 2036 - 2065. For
the others the procedure is the same, only the terms belonging to the glacier scenarios
are removed. That way the SST for the scenarios 1992 - 2021 and 1969 - 2098 consist
of the SSC, SSP and their interactions.
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5. Results

5.1. Comparison of Weather Datasets

The statistics of the central tendencies of the three weather datasets can be found in the
Tables 5.1, 5.2 and 5.3. The result of the Kolmogorov-Smirnov Test with an asymptotic
signi�cance of 0 shows that, at a signi�cance level of 5%, the null hypothesis can be
rejected. Therefore none of the three datasets MeteoSwiss Grid (GRID), HYRAS Grid
(HYRAS) and the interpolated station data (IDW) is normally distributed, neither for
the temperature nor for the precipitation time series. Because of this, the matching test
for checking whether such datasets are signi�cantly di�ering in their central tendencies
is the Friedman Test. The asymptotic signi�cance is again 0 for the precipitation, which
means that at a signi�cance level of 5% the central tendencies of the precipitation datasets
are signi�cantly di�erent over multiple time steps N. In contrast, the result of testing the
altitude corrected temperature datasets is above the signi�cance level of 5% and therefore
the null hypothesis is accepted. Hence the temperature datasets are not signi�cantly
di�erent in their central tendencies.

Table 5.1.: Results of the statistical comparison of the three datasets.
Weather Dataset N1 K.-S.

Temp.2
K.-S.

Precip.3
Friedman
Temp.4

Friedman
Precip.5

all
MeteoSwiss GRID 10957 0.000 0.000
HYRAS Grid 10957 0.000 0.000 0.105 0.000
MeteoSwiss IDW 10957 0.000 0.000

combinations
GRID & HYRAS 0.516 0.000
GRID & IDW 0.298 0.000
HYRAS & IDW 0.000 0.000
1 N = the number of samples, covers the period of 1977 to 2006 in all datasets.
2,3 The asymptotic signi�cance is 0.000. This means that with a signi�cance level of 5% the null hy-
pothesis of the Kolmogorov-Smirnov Test can be rejected. Hence the data is not normally distributed.
This result is true for each of the datasets individually.

4 The asymptotic signi�cance is 0.105, therefore, with a signi�cance level of 5%, the null hypothesis
of the Friedmann test is accepted. This means that the central tendencies of the three datasets do
not di�er signi�cantly.

5 The asymptotic signi�cance is 0.000. This means that with a signi�cance level of 5% the null
hypothesis of the Friedman Test can be rejected. Hence the central tendencies of the precipitation
datasets are signi�cantly di�ering from each other.
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The Friedman Test was also done for the combinations GRID & HYRAS, GRID & IDW
and HYRAS & IDW. There the results where 0.52, 0.3 and 0 respectively. This shows that
the GRID and the HYRAS temperatures have the most similar central tendencies of all
combinations, and HYRAS and IDW share the least commonalities. For the precipitation
all combinations showed an asymptotic signi�cance of 0.

For the temperature datasets, which are all corrected for the altitude bias, the di�er-
ences in other statistical measures are only marginal. The lowest temperatures are mea-
sured in the IDW dataset, which also has the biggest standard deviation with 7.53 ◦C.
The IDW dataset also shows the biggest variation throughout the year. This is visible
from the mean monthly temperature over the period in Figure 5.1(a). The IDW has the
coldest average temperatures in winter and the warmest during summer (even if the dif-
ferences are small to the HYRAS and GRID. However these di�erences are not signi�cant
as was already found by the Friedman test in Table 5.1.

The precipitation datasets show signi�cant di�erences which is concluded by the result
of the Firedman test, but is also clearly visible in the monthly averages in Figure 5.1(b).
The IDW shows the lowest mean precipitation during all months, followed by HYRAS
and the GRID dataset with the biggest amount (see Figure 5.4). The reason for these
di�erences are partly evident and are discussed in section 6.1.

Table 5.2.: Comparison of the three temperature datasets.
Weather Dataset Min

[ ◦C]
Max
[ ◦C]

Mean
[ ◦C]

Median
[ ◦C]

StDev
[ ◦C]

5th
Perc.
[ ◦C]

95th
Perc.
[ ◦C]

MeteoSwiss GRID -25.9 19.1 0.7 0.8 6.8 -10.9 11.4
HYRAS Grid -27.8 18.5 0.6 0.6 6.8 -11.2 11.3
MeteoSwiss IDW -27.7 17.5 -0.2 0.3 7.5 -12.5 11.3

Table 5.3.: Comparison of the three precipitation datasets: IDW-Interpolated values from
three MeteoSwiss-Stations in Chur, Elm and Bad Ragaz, MeteoSwiss-Grid and the
HYRAS-Grid

Weather Dataset Max
[mm]

Mean
[mm]

Median
[mm]

Mode
[mm]1

StDev
[mm]

95th
Perc.
[mm]

MeteoSwiss GRID 129.3 4.8 0.3 0.100 9.4 751.0
HYRAS Grid 108.4 3.8 0.3 0.002 7.6 506.0
MeteoSwiss IDW 111.4 3.1 0.1 0.028 6.7 380.0
1 The mode was calculated from all precipitation values above 0. If 0 is included in the calculation
the mode is 0 for all datasets
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Table 5.4.: Comparison of the precipitation sums of the three datasets: IDW-Interpolated
values from three MeteoSwiss-Stations in Chur, Elm and Bad Ragaz, MeteoSwiss-Grid
and the HYRAS-Grid

Weather Dataset All Time
Sum [mm]

Winter
Sum
[mm]1

Spring
Sum
[mm]2

Summer
Sum
[mm]3

Fall Sum
[mm]4

MeteoSwiss GRID 52232 10989 12020 17363 11861
HYRAS Grid 41723 8766 9525 13913 9519
MeteoSwiss IDW 34059 6690 7710 11763 7896
1 Winter Season from December to February
2 Spring Season from March to May
3 Summer Season from June to August
4 Fall Season from September to November

1 2 3 4 5 6 7 8 9 10 11 12
−10

−5

0

5

10

T
em

pe
ra

tu
re

 [°
C

]

 

 

MeteoSwiss−GRID
HYRAS−Grid
IDW−Station Data

(a) Temperature

1 2 3 4 5 6 7 8 9 10 11 12
2

3

4

5

6

7

P
re

ci
pi

ta
tio

n 
[m

m
]

(b) Precipitation

Figure 5.1.: Mean monthly temperature and precipitation of the three compared datasets
over the period 1977 - 2006.
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5.1.1. Results of Multivariable Calibration for the Weather Datasets

The di�erences between the combinations are very small if a Pareto selection is applied.
So that in the end all combinations have about the same performance. Since the results
showed such a stable behaviour if the Pareto selection was done and the thresholds
applied (see Figure 5.2(a), the same analysis was also run for the hundred best runs, in
terms of every objective function combination 5.2(b).
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Figure 5.2.: a) After applying trehsholds and the selection of the Pareto optimal parameter
sets. Number of parameter combinations: 1-19, 2-23, 3-35, SC-5, All-23.
b) 100 best runs from the calibration. Before applying thresholds and selecting the
Pareto parameter sets.
Mean objective function scores with di�erent combinations of objective functions. 1
= NSE, 2 = NSE + LogNSE, 3 = NSE + LogNSE + Volume Error, SC = snowcover
RMSE and All = all combined.

If not only the Pareto parameter sets are used but the 100 best parameter sets of
150'000 then the results are much more distinct. For the discharge measures the di�er-
ences between three combinations are not as big as when snowcover is used alone. Also
the standard deviation (black whiskers) become smaller in when using the Pareto param-
eter sets. Especially the score of the calibration to SC only drops remarkably. However
it is visible in all combinations, that if an objective function is added to the procedure,
its performance rises, whereas the performance of the others mostly drops slightly. Only
the snow cover RMSE shows a very stable behaviour over all combinations. Its standard
deviation is the smallest of all the objective functions, which is the case in both analyses.

5.1.2. Results of Weather Dataset Evaluation

From the 150'000 runs of the Monte Carlo simulation with each dataset the 100 best runs
where taken. Of these 100 best runs the Pareto optimal solutions were selected. Then
the four objective functions above 0.8, or 0.95 for the Volume Error, where selected. The
ranges of the parameters after the selection are shown in Table 5.5.
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Table 5.5.: Ranges of the HBV model parameters after selecting the Pareto and applying
the thresholds from the 150'000 runs of a Monte Carlo simulation in the calibration
period 1999 - 2002

GRID HYRAS IDW
Parameter min max min max min max
KGmin 0.0 0.2 0.0 0.2 0.0 0.2
RangeKG 0.0 0.5 0.1 0.5 0.0 0.5
AG 0.5 9.8 0.4 8.5 0.5 10.0
PERC 0.7 3.8 0.8 4.0 1.0 3.5
UZL 0.6 63.7 1.0 66.7 9.9 68.0
K0 0.1 0.4 0.1 0.3 0.1 0.3
K1 0.0 0.2 0.0 0.2 0.0 0.2
K2 0.0 0.1 0.0 0.1 0.0 0.0
MAXBAS 1.0 2.4 1.0 2.4 1.0 2.4
PCALT 10.0 10.0 10.0 10.0 10.0 10.0
TCALT 0.6 0.6 0.6 0.6 0.6 0.6
Pelev 1357.3 1716.6 1017.3 1243.2 486.0 786.5
Telev 1833.9 2383.8 1779.2 2326.0 1756.9 2258.2
TT1 -1.9 0.1 -1.9 0.5 -2.0 0.3
CFMAX1 3.9 9.6 4.7 10.0 3.2 7.5
SFCF1 0.7 0.9 0.6 0.9 0.7 0.9
CFR1 0.1 0.1 0.1 0.1 0.1 0.1
CWH1 0.1 0.1 0.1 0.1 0.1 0.1
CFGlacier1 1.0 1.0 1.0 1.0 1.0 1.0
CFSlope1 1.1 3.3 1.0 4.8 1.0 3.9
FC1 100.3 537.8 103.7 508.0 110.3 539.0
LP1 0.3 1.0 0.3 0.9 0.3 1.0
BETA1 1.0 4.9 1.1 4.7 1.0 4.8
TT2 -2.0 0.5 -1.8 0.4 -1.9 0.4
CFMAX2 0.9 9.1 0.6 9.5 0.9 9.9
SFCF2 0.5 0.8 0.5 0.9 0.5 0.9
CFR2 0.1 0.1 0.1 0.1 0.1 0.1
CWH2 0.1 0.1 0.1 0.1 0.1 0.1
CFGlacier2 0.2 4.4 0.5 5.0 0.1 4.8
CFSlope2 1.5 5.0 1.0 4.3 1.1 5.0
FC2 111.6 522.0 116.3 521.0 113.2 535.4
LP2 0.3 0.9 0.3 1.0 0.3 0.9
BETA2 1.0 5.0 1.2 4.8 1.1 5.0
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The same number of parameter sets resulted for GRID and HYRAS with 23 parameter
combinations for both and 28 for the IDW dataset. Those selected parameter sets where
then used for evaluation of the model during calibration and validation period.
From the average NSE, LogNSE in Figures 5.3,5.4 and 5.5 it can be said, that all the

models perform su�ciently well (unfortunately the HBV model supports no output of
Volume Errors or Snowcover RMSE in the batched runs). The ranges of the parameter
sets can be seen in Table 5.6. The amount of decline is in all models and both objective
functions between 0.05 and 0.1. In terms of an overall performance the HYRAS dataset
reaches the highest values and the GRID the lowest. However the di�erences are marginal
and hardly signi�cant. Further the errors and the general shape of the simulation is very
similar in all three datasets, only the magnitudes or volumes of errors are di�ering slightly.
Further, it comes clear that the performance of each model declines as expected in the
validation period.

Table 5.6.: Ranges of the NSE and the LogNSE in the Calibration Period 1999 - 2002
Calibration V alidation

Obj. Function min max mean min max mean
GRID

NSE 0.80 0.86 0.83 0.72 0.82 0.77
LogNSE 0.80 0.87 0.84 0.73 0.82 0.79

HY RAS
NSE 0.82 0.86 0.86 0.73 0.86 0.80
LogNSE 0.81 0.89 0.87 0.64 0.84 0.77

IDW
NSE 0.80 0.79 0.83 0.66 0.79 0.73
LogNSE 0.80 0.89 0.86 0.73 0.85 0.78

As a �rst impression of the inspection of the hydrographs the timing of the discharge
peaks as well as the general shapes of the hydrographs are represented pretty good
by the parameter ensembles. However the amplitude of the peaks is often over- or
underestimated. This is recognizable best in the Figures A.4, A.5 and A.6 covering every
single day in the Appendix. Further the absolute errors (see Figures A.10, A.11 and
A.12) in the calibration period are highest during the days 100 and 150 when using the
GRID and the HYRAS datasets, in the IDW these errors occur less concentrated but are
rather distributed evenly throughout the period between the days 150 and 300.
Moreover the three results show all a bad performance during the days 150 - 200 of

the year in the validation period. These days correspond to May 30th and July 19th, so
basically during June and July. Which can be seen as the second half of the high-�ow
season in spring and summer. At the same time, the discharge at the beginning of the
high �ow season around day 100 (April 10th) tends to be underestimated according to the
error plots in Figures A.7 to A.12, which represent the di�erences between observation
and simulation where the observed values are higher than the highest value or lower than
the lowest value of the simulation at a certain day.
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Figure 5.3.: Mean daily observed and the range of the simulated discharges of the GRID
datasets.
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Figure 5.4.:Mean daily observed and the range of the simulated discharges of the HYRAS
datasets.
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5.1. Comparison of Weather Datasets

The borders of the grey areas in Figures 5.3, 5.4 and 5.5 represent the highest and lowest
possible model outcomes for each day of the whole period of all Pareto optimal simulation
results. Therefore the errors can not be directly be estimated from the Figures showing
the average year. Concerning the errors during calibration all three datasets show a very
similar behaviour during the days 200 (July 19th) to 300 (Oct 27th) and 350 (Dec 16th)
to day 100 (Apr 10th). The GRID and HYRAS datasets both show a �rst small cluster
of errors of underestimations between days 100 and 130 (May 10th), whereas this cluster
is bigger for HYRAS. In return, the next, bigger cluster of underestimations is bigger
with a higher amplitude in the GRID dataset and lasts around 20 days from around
day 130 to day 150 (May 30th) in both. From this day on, their mean annual errors
are very similar until day 300. Then during the days 300 to 350 (Dec 16th), HYRAS
shows only one big overestimation of the simulation, whereas GRID shows several but
smaller overestimations. The end of the year, especially during the validation period.
The biggest errors when using the IDW dataset occur around 50 days later during the
days between day 150 and 200. Its overestimations during the days 200 to 250 (Sept 7th)
are slightly bigger than in the other two.
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Figure 5.5.: Mean daily observed and the range of the simulated discharges of the IDW
datasets.

Generally it can be said that the IDW dataset has the more distinct peaks, which
often come rather as a single or short-duration event. Whereas this is the opposite in
HYRAS and even more pronounced in the GRID-driven simulations (see Figures A.7,
A.8 and A.9). This is very well visible in the errors during 2003, where IDW produces
a smaller number of errors than the other two, but still has one event that shows a very
large underestimation of measured discharge towards the end of the year. This peak is
also present in the other two, but with a slightly smaller amplitude. The phenomena
of higher amplitudes in IDW-driven simulations occurs during other events as well (e.g.
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5. Results

in 2000, 2001 (overestimation), in 2002 (overestimation), in the validation period in the
middle of 2004, 2005 towards the end of the year and also in 2006). In all three �gures
the extreme discharge event in August 2005 is visible as a very distinct peak. Further
the dry summer in 2003 is in terms of errors represented pretty good compared to the
years 2004 - 2006.

The plots of the relative errors in Figures A.13, A.14 and A.15 reveal a di�erent side of
the simulations. The relative errors are smallest for the periods with the biggest absolute
errors mentioned before, which is basically the from day 100 until day 300. The period
with the biggest relative errors are the winter days, where the absolute error is very small.
Further, during the calibration period the shape and some distinct peaks show the same
behaviour in all three datasets, only the amplitudes di�er slightly. During the validation
the mean relative errors of the GRID and HYRAS driven simulations show also a similar
shape with with di�ering amplitudes. One exception occurs in the �rst 50 days of the
year. There the GRID dataset produces a distinct negative peak, where the simulation
was overestimated by a factor higher than two.

5.2. Discharge Scenarios

5.2.1. Multivariable Calibration

In Figure 5.6 the same e�ects are visible as in Section 5.1.1. Only now the Glacier NSE
was added to the datasets. The presented method has the e�ect, that in the datasets
of SC and MB only one parameter set is left, since the Pareto solution depending on
only one objective function is only one set. If a calibration is done for discharge (Q),
snowcover (SC) or glacier mass balances (MB) only, the score of the particular objective
function(s) is highest compared to the combined runs. This means that adding another
objective function is a trade-o� between the performance of the model in respect to that
function and the others. Several e�ects can be observed in Figure 5.6. The �rst is, that
parameter sets that are not used for calibration are performing worse than if they are
used too. This behaviour is strongest for the MB. Further the snowcover is never much
higher than 0.8, be it when it is used alone for calibration or in combination with other
functions. The LogNSE increases when snowcover is used for calibration, but decreases
when a calibration to discharge only is done. The discharge produces worse results when
the MB is added than if the SC is added. When both are used, the NSE gets worse than
if only one of the two was used but the LogNSE improves compared to the performance
with MB only.

The e�ect of the decision to leave out the mass balance when selecting the 10 best
parameter sets is visible in Figure 5.7. The performance of the MB NSE is reduced
pretty much, the Log NSE and the SC are as well slightly reduced. On the other hand
the NSE increases as well as the Volume Error.
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Figure 5.6.: Performance of the HBV-light by calibration to di�erent combinations of
objective functions. The bars represent the mean scores of the particular objective
functions described in the legend. The thin black bars indicate the standard deviation
from the mean. The values in brackets on the x-Axis represent the number of resulting
parameter sets after the selection procedure described in 4.5.2.
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Figure 5.7.: The 10 best parameter sets. Left: without the MB NSE. Right: including
MB NSE
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5. Results

5.2.2. Model Performance during Calibration and Validation Period

The modelled discharge during the using the GRID weather dataset generally matches
the observed discharges satisfactorily. The peak of the high �ow event in August 2005
is rather good represented whereas other peaks are not simulated correctly. The model
often has di�culties in simulating peak and low �ows correctly. This is visible in 2003, a
year with a very hot and dry summer, where peaks are often underestimated and low �ow
periods in late summer and fall overestimated. In Figure 5.8 the validation period from
2001 onwards shows a tendency for an underestimation of spring discharge which also
occurs during the calibration period. This is also visible in Figure 5.9, where especially
in the months from April to June the (mean) modelled discharge is rather too low. In
return the mean modelled discharge in fall is to high.
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Figure 5.8.: Calibration (2006 - 2011) and validation period (1999 - 2005). The grey
area depicts the whole bandwith of the simulation from the daily minimum to its
maximum.

The simulated and observed snowcover from MODIS imagery in Figure 5.10 shows that
the general variability of the observed snowcover is higher in the observed data than in the
simulation. The mean modelled snowcover is to high during the months January and May
- September and November. The highest di�erence is in June where the overestimation
of the fraction of the snow covered area is around 15%. During the other �ve months it
�ts the observations rather good. Furthermore the observed fraction of the snow covered
area mostly lies inside the variability of the model uncertainty emerging from the 10
parameter sets.
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Figure 5.9.: The discharges accentuated to the di�erent sources of water and the observed
total discharge. The grey areas show the 10th and the 90th percentile of all the
simulations of the total runo�.
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Figure 5.10.: The observed and simulated snowcover during the calibration and validation
period (available only from 2001 - 2008). The grey areas depict the 10th and 90th

percentile of all the simulations.
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5. Results

5.2.3. Climate Change E�ects on Discharge

In the top graph of Figure 5.11 the performance of the HBV with using climate scenarios
as weather data during the reference period is shown. The most striking di�erence to the
simulations using measured data is the bad representation of the discharge during May
and June. During the rest of the year the modelled discharge is mainly higher than the
observation, but except for May and June the simulations are rather good. In the future
scenarios the mean monthly simulated discharge is more evenly distributed throughout
the year, due to the comparably small peak in May. The discharge accounted to rain is
biggest during summer and peaks in August. The snow melt discharge peaks in June.
The discharge from glacier melt water is very small, with a peak in August in the order
of 33'000 m3 a day. In the future periods this distribution changes, mostly between the
reference scenario and the mid-term scenario from 2036 - 2065. There the shape of the
total discharge resembles more the current, observed discharge with peaks in May and
June. The biggest di�erence occurs in the water from snow melt.
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Figure 5.11.: The mean modelled discharge using climate scenarios in the three periods
1992 - 2021, 2036 - 2065 and 2069 - 2098 and it's shares accounted to rain, snow melt
and glacier melt water. Note the very thin dotted line at the bottom, representing
the glacier melt water. The grey area shows the 10th and the 90th percentile of all the
simulations of the total runo�.
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5.2. Discharge Scenarios

There is much less water in fall, than in the reference period and the rain water peak
occurs in May, which is a month earlier. Further there is more rain water in Winter. In
the reference period during May an June the discharge from snow melt is bigger than
the discharge from rain, but this changes already in the mid-term period. The trend of
declining melt accentuated to snow melt continues in the long-term period (2069 - 2098).
The snow melt water declines in the mid- and the long-term scenario with the biggest
losses in June and July.
During the reference period the runo� from rain water peaks in August. Then until

the mid-term the discharge increases in winter and decreases in summer and the peak
shifts to June. In the long-term the trend continues, because the discharge from rain
becomes less in June, the peak is then evenly distributed to May and June.
The glacier melt water declines more in the mid-term period, at the end of which

the glaciers will have disappeared. Therefore there is no more glacier melt water in the
long-term period.
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Figure 5.12.: The modelled change in discharge compared to the reference scenario 1992
- 2021. The vertical bars indicate the standard deviation of the change signal.

The total runo� shifts towards May, and less in June. In winter the modelled discharge
increases in both scenarios. This results in a average year with smaller monthly discharge
magnitudes and a more evenly distributed runo� throughout the year. However the
representation of the observed discharge is rather bad and therefore the change is also
looked at as a relative signal in Figure 5.12 compared to the reference scenario. They
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5. Results

follow the same trends in the mid- and the long-term. The discharge is more concentrated
in winter whereas it declines during summer. In October it increases in the mid-term
period and then decreases again in the long-term. The changes are mostly signi�cantly
di�erent from the mean(!) of the baseline period, however between the two scenarios the
di�erences are never signi�cant, since the standard deviations always overlap.
The sums of the discharges over one year in Table 5.7 show that the overall discharge

follows a slightly decreasing trend. However the results are mostly not signi�cant. The
model predicts a decrease of 3.5(± 7.5)% in the mid-term and a decrease of around 6(±
11.4)% in the long-term of the overall discharge. At the same time the discharge ascribed
to rain increases by about 7(± 15.3) or 8(± 17.8)% respectively compared to the reference
period. On the other hand the only signi�cant results are the decline of runo� due to
snow melt which is predicted to decrease by 20(± 19.1) and 28(± 20.5)% respectively.
And last, the glacier melt water will be reduced singi�cantly by 85(± 16.0)% in the
mid-term and certainly disappear completely in the long-term scenario.

Table 5.7.: The changes of the discharge shares in the mid- and the long-term scenario
compared to the reference scenario in Million m3s and percentages.

Discharge Reference Period Mid-Term Long-Term
shares [M m3] | [%] [M m3] | [%] [M m3] | [%]
Qtot 234 | 100 226 | 96.5 (± 7.5) 220 | 94 ((± 11.4)
Qrain 150 | 100 160 | 107 (± 15.3) 162 | 108 (± 17.8)
Qsnow 81 | 100 65 | 80 (± 19.1) 58 | 72 (± 20.5)
Qglacier 3 | 100 0.5 | 15 (± 16.0) 0 | 0 (± 0)

When comparing the observed weather data with the climate scenarios of the same
period (see Figure 5.13) for �nding causes for the di�erence in discharge and snowcover
simulation using the scenarios and the observations it can be seen that the temperature
simulation represents the monthly temperature variations quite well. Only in April, May
and June the observed temperatures are above the scenarios, in April the di�erence
the simulations are about 0.8 ◦C above the measurements, in May the di�erence is a
little smaller with about 0.6 ◦C and in June the di�erence is biggest with 1.4 ◦C. The
simulated precipitation is quite di�erent from the observed one. It is above the observed
in January, March, April, June, September and November and below in February, May,
August, October and December.
The simulated snow cover during the calibration period (see Figure 5.14) fails to rep-

resent the behaviour of the magnitude of the variations throughout the year. The decline
of area covered with snow in spring occurs slower than in the observations. In the months
June, July and August the di�erence is up to 20%. In return the representation is better
from September to February. But still the variations over one year are more extreme
in the observations, which means that the model simulates too little snow in winter
and too much during summer. The onset of snow melt in March is earlier than in the
observations, but is then happening slower.
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Figure 5.13.: Temperature and precipitation simulated by climate scenarios during the
calibration and validation period (1999 - 2011).
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Figure 5.14.: The modelled fraction of the snow covered area during the baseline period
from 1992 - 2021 and the scenarios from 2036 - 2065 and 2069 - 2098.
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5.2.4. Analysis of Uncertainties

The ANOVA based uncertainty analysis reveals that the variance is mainly driven by
the 7 di�erent climate scenarios. From August to December their contribution is biggest
(between 80 and 90%). From January to July it is below 80% but always bigger than
70%. The variance fraction of the parameter sets is around 10% and biggest during late
spring and early summer. The contribution of the glacier scenarios is vanishingly small in
the mid-term period, therefore that area is not visible in the Figure 5.15(a). The variance
fraction accentuated to the interactions and errors is biggest in winter with around 15%.
Between the two scenarios there is no big di�erence, even though there are no glaciers
in the long term period. However the in�uence of the parameter sets becomes smaller in
the long-term period during the whole year apart from June and July.
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Figure 5.15.: Mean monthly relative contribution of the 7 climate scenarios and 10 pa-
rameter sets to the variance of the simulated discharge scenario for the two future
periods
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6. Discussion

6.1. Di�erences in Weather datasets

One goal of this thesis was a comparison of the three di�erent weather datasets GRID,
HYRAS and IDW at the catchment of the Gigerwaldsee in Switzerland. They are used
for discharge simulations using the conceptual model HBV (Seibert and Vis, 2012). As
can be seen in Sections 3.2, 3.3 and 3.1 the three datasets, to some extent, have the same
base data, which are measurements of weather stations of the SwissMetNet network
(Roulet et al., 2010).

6.1.1. Correction of Altitude Bias

The fact that the temperature dataset was corrected for the shift in altitude but the
precipitation was not, may seem odd. The correction of the temperature data for the
height can be done easily using the lapse rate applied in section 3.2 and 3.3. However
precipitation is not believed to be as simply scalable for a height di�erence as tem-
perature. Especially at horizontal distances below 40 km, as in the present study, the
phenomena related to topography, such as the amplitude of rain shadow are very complex
(Roe, 2005). Further simple correction would also alter the distribution of drizzle days,
since most probably some multiplication factor would have been the simplest solution.
Therefore it was decided that the precipitation datasets where not corrected further af-
ter the horizontal inverse distance weighting using the Euclidean Distances to the three
surrounding stations. Since the di�erence in mean altitude between the stations (670 m)
and the mean elevation of the catchment (2135 m) is not considered, the systematically
lower values of the IDW compared to the other two are not surprising. This can be ex-
plained simply by the fact that precipitation is generally higher in greater altitudes due
to orographic e�ects (Beniston, 2006; Jacobeit, 2007; Konrad I., 1996). In addition to
that, gridded precipitation datasets show generally higher values when calculated using
background or reference �elds and anomalies than with simple interpolation of station
measurements, this is because the latter rather underestimate the precipitation system-
atically since most stations are located in rather dry valley conditions (Isotta et al.,
2013). The combination of the above explains the bias in the IDW dataset towards lower
precipitation sums compared to HYRAS and GRID data.
The precipitation series of the two gridded datasets GRID and HYRAS are not cor-

rected either. Since the grid spacing in both datasets is very large, there are believed to
be bigger inconsistencies, since at daily time scales the spatial resolution is believed to
be at the order as the grid spacing, which is 10-15 km (Isotta et al., 2013). Therefore
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such errors are believed to be much bigger than a possible shift due to a slight altitude
inaccuracy of 50 m.
The temperature of the of GRID and HYRAS where corrected in the same way, because

they both depend on the same DEM (USGS GTOPO30). Both data series in the end
consist of single values per day which are averages over the entire the catchment. The
average catchment height derived from the GTOPO30 when using the same grid cells
as the temperature and precipitation data from GRID and HYRAS were derived from,
is 2087 m. The average height, derived from the DHM25 is 2135 m. It is believed to
be much more robust, compared to the GTOPO30 (RMSE of 97m globally1), since its
error in the Alpine area lies only in the order of 3-8 m2. Therefore the temperature is
overestimated by (0.288 ◦C). It should be noted that, due to the small number of raster
cells covering the catchment, this procedure showed to be very sensitive to the method
for selecting the cells for the average height calculation from GTOPO30. When selecting
only cells that are entirely inside the catchment the average height was even bigger than
2135 m, which would have led to an increasing temperature after the correction. However,
selecting the same number of cells as the weather data was derived from is believed to
be the right solution.
The Kolmogorov-Smirnov and the Friedman tests in Table 5.1, where also done before

the correction of the temperature dataset to altitude. There, the Friedmann-Test for the
temperatures showed an asymptotic signi�cance of 0, which means that at a signi�cance
level of 5% the central tendencies of the weather datasets where di�erent. Therefore I
conclude that after the correction the three temperature datasets where representative
for the same elevation.
The main purpose of the comparison of the weather datasets in this thesis is to evaluate

their performance in hydrological simulations. The HBV model is able to correct for
systematic errors in weather datasets, therefore it is not of fundamental importance that
the datasets match exactly the altitude of the catchment. It can always be accounted
for by adjusting the parameters Pelev and Telev (Seibert and Vis, 2012). However
the datasets have to represent the "true" weather pattern which regulates the discharge
in its relative internal characteristics. This feature of the HBV however may lead to
good results for the wrong reasons. As can be seen in Figure A.2 in the Appendix the
altitude of HYRAS Pelev values is concentrated between 1000 and 1400 m although the
possible range would have been up to 2500 m. Since the average height of the catchment
is considerably higher (2135 m), it is therefore assumed, that HYRAS' precipitation
values are systematically to low. On the other hand they seem to have the right relative
internal characteristics of the weather patterns. Compared to that, the absolute values of
GRID seem to be closer to the "true" magnitudes (see Figure A.1). However the relative
characteristics seem to be di�ering, since the model results are constantly slightly worse
compared to HYRAS. This indicates indeed better results for the HYRAS dataset for
the wrong reasons, i.e. an unrealistic value for the virtual weather stations Pelev and
Telev. Note that both precipitation datasets are biased towards a lower elevation, since

1http://www.eorc.jaxa.jp/JERS-1/en/GFMP/AM-3/docs/html/gtopo30.htm#dcwdem5
2http://www.swisstopo.admin.ch/internet/swisstopo/en/home/products/height/dhm25.html
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6.1. Di�erences in Weather datasets

the values for Pelev in the scatter plots in Figures A.1 and A.2 are concentrated around
1500 and 1200 m respectively. For the IDW dataset the range for Pelev was set to 400 -
800 m (Figure A.3), because the precipitation values were not corrected for altitude. After
some pretests the best model performances were found within that range, which would
mean that the IDW values are representing the magnitudes rather good. Therefore it is
assumed that HYRAS might have the biggest systematic errors, but the relative internal
weather patterns are represented best.
Concerning the temperatures it can be said that they all show a distribution closely

around the average catchment height. I therefore assume that the corrected temperatures
match with the discharge measured at the Gigerwaldsee. Here it is always assumed that
the discharge measurements are correct. Of course there are also uncertainties in the
discharge measurements, in particular in this case as the discharge data was computed
from lake level observations provided by the "Kraftwerke Sarganserland AG".

6.1.2. Assessment of Di�erences in GRID, HYRAS and IDW

Di�erences in Temperature

The values of the temperature are very similar in all three datasets. Before the correction
due to the altitude see Sections 3.1 and 6.1.1 the temperatures of IDW and the other two
were di�ering a lot. After the correction the central tendencies showed very similar values
(see Table 5.1). The values of IDW showed the lowest mean temperature afterwards (see
Table 5.2). The reason for that can be seen in the long-term monthly averages in Figure
5.1(a): IDW shows the lowest mean temperatures during the winter months, with a
di�erence of about (4 ◦C). In contrast during summer it rises above the other two. This
could to be an artefact from its origin. Since it originally stems from three locations at
an average height of 670 m, the data still shows the same �uctuation pattern now at 2135
m as they did at the lower level. Further GRID always has the highest temperatures in
the minima, maxima, means, median and the percentiles. HYRAS is always in between
the two (except for the minimum) and the IDW has the lowest temperatures in these
measures. However for the calibration of the HBV the general shape is important (see
Section 6.1.1). There HYRAS and GRID show a very similar behaviour in the monthly
means, with HYRAS showing slightly higher �uctuations.

Di�erences in Precipitation

The �rst di�erence in the two datasets is that the background �elds in GRID rely on
averages from the years 1971-1990 (Isotta et al., 2013) and those from HYRAS (Rauthe
et al., 2013) on averages from 1961-1990. The di�erences between the HYRAS and
GRID precipitation datasets are rather surprising. The reason for the di�erence of about
1 mm in daily averages per month over the period 1977 - 2006 (see Figure 5.1(b)) can
only be guessed by assessing the di�erences in the calculation and used data. Both
GRID (see (Isotta et al., 2013)) and HYRAS (see (Steiner, 2009)) are calculated using
background �elds and adding the anomalies of the observed day to that value. Both use
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linear regression for the calculation of the background �eld at cells without measurement
stations and an inverse distance weighting method for the anomalies at a certain day. One
di�erence lies in a detail of the calculation of the background �elds. In both methods
some stations are selected in the neighbourhood of each grid cell for the calculation
of the background �elds. In HYRAS these depend on only on a search radius (i.e.
20 km) (Rauthe et al., 2013; Steiner, 2009), whereas in GRID an minimum number
of stations was de�ned. The background �eld was then calculated using the PRISM
method by Schwarb (2000). Thereby the representative stations are selected according
to their similarity in topographical properties, such as elevation and exposition. Then
their relative weight in the linear regression is increased when they show similar properties
(Isotta et al., 2013; Schwarb, 2000). This can lead to a di�erent selection of stations for
the interpolation of the background value at a certain grid cell. It is therefore possible,
that stations that are located further away get higher weights, and such just being e.g.
at the opposite side of a mountain ridge, but having a di�erent exposition get much
lower weights (Schwarb, 2000). As stated in Rauthe et al. (2013) an increased number of
stations (or a denser measurement grid) can lead to locally di�ering values. The above
procedures most probably lead to a di�ering number of stations for the same location.
The varying selection could therefore be the explanation for the systematic di�erences
in the precipitation estimates of GRID and HYRAS. The di�ering search radii for the
interpolation of the anomalies could also contribute to the problem. Therefore one would
have to know the considered stations for all grid cells and their respective values to be
able to make a proper comparison. The shape of the long-term daily averages per month
in Figure 5.1(b) is very similar in all three datasets. The biggest di�erence is visible
in spring, where the increase in precipitation in the GRID is highest from January to
March. In the other two the di�erences between the months is smaller during that period.
I would generally say from visual inspection of the monthly averages, that GRID shows
the highest �uctuations. The reason might be that GRID was designed speci�cally for
mountainous areas, since there the precipitation �uctuations are bigger. Furthermore
this might probably be the cause for the di�ering performance in the HBV simulations.

6.1.3. Calibration and Validation using GRID, HYRAS and IDW

The calibration and validation using the three datasets showed generally satisfying re-
sults. The general shape of the hydrographs is very similar, they mostly get the timing of
the peaks right, only the amplitude is not always covered by the ensembles. In the IDW
driven simulation this leads to the e�ect that the model produces a wrong distribution in
the validation period, which is visible in Figure 5.5. There the average high �ow season is
shifted to earlier stages in the year. Interestingly this happens only during the validation
period. In the other two (see Figures 5.3 and 5.3) this phenomena is visible as well to
some extent, but not as pronounced as in the IDW. The origin in the single years is for
the IDW and HYRAS in the two years 2005 and 2006, where the �rst discharge peak in
the year is simulated rather good but the second (and a third in 2050) peak is mostly
underestimated and therefore a source of large errors. The reasons for the di�erent pro-
nunciation of the average phenomena can only lie within the weather datasets, since the
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rest of the model, including the snow covered area are the same. But the occurrence
of the problem itself, regardless of its pronunciation can either be attributed to a lack
of information within the datasets or to the model structure. However, generally it can
be said, that the �rst two to four peaks during the validation periods cause the largest
(absolute) errors.
Interestingly the absolute and the relative errors show a very contrasting image. While

the absolute errors are bigger during high �ows, the relative errors are highest during the
low �ow season (see Figures A.13, A.14 and A.15 in Appendix). This shows that at high
runo� magnitudes a small percentage of deviation from the measurement causes a large
absolute volume error. At the same time, small absolute deviations during the low �ow
season can easily be twice as much as the observation or even more. One has to bear
this fact in mind, since it might often be present in hydrological simulations.
However the di�erences between the relative internal distribution of the three datasets

are rather small, both in the datasets and in the discharge simulations: The magnitude
of the di�erences between the di�erent results seems to match, at least intuitively.
A source of uncertainty in these �ndings might be the fact that the long-term averages

cover a longer timespan, whereas the model was run only in the years 1999 to 2006 (warm
up starting at 01.08.1997), with a calibration period of only four years from 1999 to 2002.
Furthermore, uncertainties in the measured data occur from measurement errors from
small-scale weather variations, measurement device design and windy conditions (Beven,
2012). The used techniques in the creation of the weather data sets �nally also add
uncertainties that are then propagated into the modelling chain.

6.2. Multi-variable Calibration

The calibration of the two di�erent model runs in this work was done quite di�erently.
The second part was done with the updated version of the HBV model. In the meantime
a decision was made to not use the threshold technique of the �rst part again in the
second part. The de�nition of the thresholds is very subjective and produces a di�erent
number of parameter sets and the objective function scores might be di�erent in other
catchments, which might make it necessary to adapt the thresholds. Furthermore, if
di�erent thresholds for di�ering objective functions are chosen, a di�erent weight is im-
plicitly attributed to the di�erent objective functions. This was not intended in this case.
The intention in the �rst part was to chose the best performing parameter sets for every
objective function. But this can also be achieved by creating a score calculated from all
objective functions as it was done in the second part (see Section 4.5.2). However the
performance of the two techniques is similar in the end. Moreover the decision for either
thresholds or a number of best performing parameter sets is subjective in both cases, as
well as the weight that is given to the datasets.
The calibration results of the �rst part in Figure 5.2(a) reveal an interesting property

of the selection of Pareto optimal parameter sets and applying thresholds. The di�erent
calibrations, especially the one using snowcover only, reach much higher scores. This
is because the thresholds where applied before the selection of Pareto points. So even
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though the snowcover was not not used in the following calculation of the Pareto Points,
it still reached a rather high score. This results �nally in a very small number of well-
performing parameter sets, e.g. the calibration to snow cover only has only 5 sets left
out of 150'000.
The intention in the second part, �nding the best possible parameter sets, was of course

not changed. However the technique of using thresholds and Pareto points was discarded.
The decision of sticking to the Pareto Points was made since this technique allows to take
account for every objective function itself instead of merging all the functions into one
(Beven, 2012). In my opinion, results from the Pareto selection favour results from
various places in the parameter space. Because if there where two sets, both performing
almost equally good over all measures, but one is always performs slightly better than the
other, the Pareto technique would only select the better one, whereas when only working
with thresholds or ranking techniques both could be selected. Furthermore the sets
inside the selection are said to be "dominant" over those that where not selected (Beven,
2012). Therefore it is probably a better approach to �nd the really equi�nal parameter
sets instead of the almost equi�nal sets. However the disadvantage is, that the overall
performance of such a bunch of parameter sets could be worse overall, compared to the
ranking method. Searching for Pareto points only would not be enough as can be seen
in the rather bad simulations in Figure 5.6 even when all �ve functions where combined.
Further depending on the number of earlier MC simulation results the number of resulting
Pareto points would change too. Therefore and for �nding really the best performing
sets only, the ranking method of Finger et al. (submitted) was applied after the selection
of the Pareto points as well.
But here also a very subjective method came into play. The decision to leave out the

MB NSE in the selection of the 10 best sets out of the Pareto solutions can be justi�ed
with the better discharge simulation in spring during the calibration and validation period
and the very small glaciers in the catchment. This can also be seen in Figure 5.7, where
the NSE and the Volume Error show an improved performance when leaving the MB
out. The discharge emerging from glacier melt is probably too small to be simulated
adequately. This could also bee seen in the big sensitivity for small changes in the
parameter sets concerning the glacier mass balance in Figure 5.6.
To this end this method combines the advantages of both solutions: It should cover

more distinct sets out of the parameter space and thereof only the top performing sets
where selected.
Concerning the multi-variable calibration it can be said that the model robustness

bene�ts from using more than one objective function Finger et al. (2011). It is clearly
visible in Figure 5.2(b) and 5.6 that the results improve always for the added objective
function, whereas the performance of the others gets slightly worse. As can be seen
in Finger et al. (2011), the discharge measure is getting worse when using objective
functions for discharge, snow cover and also glacier mass balances combined. Further
in both studies the discharge simulations are rather bad, when only snow cover is used
for calibration. The same e�ect was also found by Finger et al. (submitted); Parajka
and Blöschl (2008) who also investigated the e�ect of MODIS snow cover images for
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the calibration in the HBV model. But the new mean score mostly stays within the
range of the standard deviation of the combination before a new function is added.
Furthermore the internal consistency of the model is improved when multiple datasets
are used, and therefore produces the correct results for the right reasons (Finger et al.,
2011, submitted).
In this work the snowcover and the glacier MB receive a relatively small weight com-

pared to the discharge which is calibrated with three objective functions. But I actually
doubt that the performance of the snowcover would increase much in this model con�g-
uration, since the performance of the snowcover in the selection of the 10 best sets (see
Figure 5.7) is pretty close to the performance of the very best snowcover RMSE when
calibrating for snowcover only (see Figure 5.6). This could mean that there is some-
thing happening inside the model structure which does prevent the snowcover simulation
from creating better results. Anyway, the results for the simulated snowcover are not
satisfying, especially the overestimations of the simulation in June of more than 15%
(see Figure 5.10). For this case an objective function applied only during the melt and
accumulation season of snow (leaving out the winter months, when it should be easier to
model the snowcover correctly) could have resulted in di�erent parameter sets and also
better representation of snowcover. An alternative to the presented solution could there-
fore be the "Correctly Predicted Snowcover Area" index used Finger et al. (submitted)
from April 1st to August 1st. It is therefore thinkable that the use of other metrics (they
also used a RMSE for the glacier MB calibration, instead of the NSE) and other weights
in the multi-variable calibration could have changed the selection of the parameter sets
and result in slightly di�erent scenarios (see Section 6.3.2).
To sum up, using an additional objective function might diminish the performance

of the other functions very slightly and increases its own performance at least a little
bit, but using multiple objective functions increases the overall consistency of the model
as was also shown by Finger et al. (2012, 2011) and Finger et al. (submitted). In the
end always some subjectivity is introduced into the modelling process, which also allows
to account for unique properties of the observed catchment. As long as the models do
not represent the real world processes more adequate the selection of parameters using a
multi-variable calibration is always a trade-o� between ideals such as internal consistency
and model performance.

6.3. Climate Scenarios

The creation of future scenarios asks for decisions to be made that can have an in�u-
ence on the whole modelling chain. Starting from the selection of discharge data, going
over observed weather, catchment characterisation, selection of climate scenarios, post-
processing methods of those, model calibration method, parameter ranges, parameter
selections and even analysis methods, every single step has its in�uence on the result
and also brings uncertainties into the result. By using multiple climate scenarios for
precipitation, temperature and even glacier extents it was tried to cover the uncertainty
of the modelling chain to some extent. By using multiple parameter sets it was tried to
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take account of the equi�nality problem (Beven, 2006) and as stated in (Finger et al.,
2012) multiple parameter sets perform similarly in the evaluation period but di�erently
in future periods and therefore cover more possible outcomes.

6.3.1. Performance of the HBV when using Climate Scenarios during
Calibration Period

As was shown in the Results section, the performance of the HBV running with climate
scenarios is quite bad in the spring months, especially in May and June. Since there
is too little discharge in May and June, the reason could be too little snow melt in
spring, emerging from to low temperatures. Snow cover is very sensitive to temperature
changes, therefore an increase of e.g. 1 ◦C could decrease the duration of the snow
cover in Alpine areas by several weeks (IPCC, 2008). The simulated temperatures from
the climate scenarios are in fact too low in May and June (see Figure 5.13). So this
could indeed cause the too little snow melt in May and June in Figure 5.14. But on
the other hand the precipitation does support this assumption. In June the simulated
precipitation is higher than the observed one and in May it is slightly lower. This
therefore should rather lead to more discharge, especially in June. These �ndings lead to
the conclusion that the error emerges rather from the model structure and not from the
input data. This is also supported by the fact that the discharge patterns of observed
and simulated discharge are the same during the calibration and validation period using
measured weather data. In both periods the discharge is simulated to low in spring and
to high in fall. To my mind this is linked to the simulation of the snowcover simulation in
the catchment. The observed snowcover in Figure 5.14 undergoes more extreme changes
throughout the year, and declines much faster, particularly in spring, which of course
leads to lower discharge from snowcover. The reason for the slow decline of snowcover
could on the one hand nevertheless emerge from the too low temperatures, but also simply
from insu�ciencies in the model structure. This might have had a di�erent outcome if
the snowcover would have received more weight in during the calibration. However, the
model never achieved a higher snowcover RMSE than 0.82, even when only calibrating for
snowcover (see Figure 5.6). The HBV model uses the degree-day method for computing
snow melt (Seibert and Vis, 2012), which only uses temperature and totally neglects
any radiation interactions. Another reason might be the rather special catchment which
actually consists of one natural catchment, which is the Calfeisental but also of several
parts of the Weisstannental, where water is guided into the Gigerwaldsee with subsurface
conduits. The source of the errors is however unknown, but to my mind it is a result of a
combination of at least some of the above possibilities. Another possibility is thinkable:
Since spring is the most important period for hydropower production (Finger et al.,
submitted), some artefacts from the management of the dam could have disrupted the
discharge signal.
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6.3.2. Changes in Runo� due to Climate Change

The results of the two future periods in Figure 5.11 are most probably a�ected with
the same problem of producing to little discharge in spring, as during the calibration
and validation period. Therefore the change was assessed using relative changes in the
same way as in Finger et al. (2011) (see Figure 5.12). That way the impact of the
changes can be visualized and the changes due to changing climate is assessed. As can
be seen in Figure 3.3 the climate models produce quite di�erent predictions for the future
periods, even contradictory for precipitation. This can partly explain the large standard
deviations in the change signal. But all models agree on rising temperatures, therefore
warming temperatures can be seen as very certain for for the future. In the mid-term
the increases of the seven models in the low �ow season (January - April) are around
1.5 ◦C and in the melt season (May - September) around 2 ◦C. In the long-term scenario
the temperature increases around 2.5 ◦C during the low �ow season and around 4 ◦C
during the melt season. In the low �ow season in the mid-term period �ve out of seven
models predict increasing precipitation of around 5% and also �ve out of seven predict
decreasing precipitation of around 10% during the melt season. In the long-term period
these trends continue and manifest in bigger di�erences compared to the baseline period.
The precipitation in the low �ow season increases further, at least in 5 out of seven
models and decreases in the melt season in 6 out of 7 models.
The rising temperatures result in less accumulation of snow during winter, which can be

seen in Figure 5.14. This loss of potential melt water in spring during the low �ow season
might, in regard of discharge, be balanced out by the increasing precipitation. Figures
5.11 and 5.12 demonstrate that the overall discharge in the low �ow season increases
in both the mid- and the long-term season. Further the discharge distribution over the
year is being shifted towards the winter and spring months. In summer the discharge is
projected to become smaller. This can be accentuated to the smaller amount of remaining
snow in summer, which in turn is a consequence of smaller amount of precipitation
falling as snow in winter and increasing melt in spring due to higher temperatures.
The discharge increases again towards the end of the year in November and December,
probably again due to less precipitation falling as snow and melt events due to higher
temperatures. October seems to be a month of transition where the discharge rises
slightly in the mid-term, but then decreases in the long-term compared to the reference
period due to a smaller snowcover in October compared to the mid-term period. In
the two future scenarios the trend goes into the direction of more evenly distributed
discharge throughout the year. However this is not certain due to the model failures in
May during the calibration and validation period. Further the changes from the mid- to
the long-term period are not signi�cant, since the standard deviations are just to big or
the changes to small. However the trend is clearly visible. Furthermore the snowcover
in summer is overestimated in the calibration and validation period (see Figure 5.10. If
this is propagated into the scenarios, then the summer discharge is overestimated and
therefore the projected decline in summer discharge might in fact be bigger.
The glacier discharge was neglected so far in the above discussion. Glaciers would most

probably produce more discharge in summer and early fall and play a crucial role when
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the snow cover is at its minimum (Finger et al., 2012). To my mind the present glaciers
in this catchment are already to small and are believed to have disappeared by around
2050 according to the model by Huss et al. (2010). The small size of the glaciers might be
a cause for the rather small and insigni�cant di�erence between the mid- and the long-
term scenario compared to Finger et al. (2012), where the discharge from glacier melt
water will be subject to much bigger changes than in the Calfeisental. In catchments
where glacierisation is insigni�cant the runo� will already in the short term react to
precipitation changes. In such with more glacierisation the short-term trends will rather
go towards increased runo� due to increased glacier melt (Braun et al., 2000). However
as glaciers shrink the annual hydrographs will go more towards the direction of those in
the Gigerwaldsee catchment, with a strongly decreasing runo� in future summers (Huss
et al., 2008).
However the trend in annual sums of discharges in Table 5.7 points in the same di-

rection. The overall discharge within the average year of the scenario periods show a
slightly decreasing, but insigni�cant trend. The change in discharge from snow melt
water is also modelled to decrease but this results is signi�cant in both periods, because
of its magnitude of more than one fourth in the long-term scenario compared to the
reference period. For the rain water the opposite is the case, the overall discharge from
rain water will increase, mainly due to increased precipitation in winter, however this is
again insigni�cant.
Compared to the study in the Vispa valley of Finger et al. (2012) with the physi-

cally based TOPographic Kinematic APproximation and Integration (TOPKAPI) model,
which even allowed integration of hydropower operational rules, the results of this the-
sis are created with a much simpler model setup. However the results are very similar.
The seasonal distribution of future runo� shows the same trends. Both works predict
an earlier melt season and a reduced runo� in summer, due to the advanced snow melt
in spring. Nowadays the biggest �ood events occur during summer (Bader, 2000), this
might however change to earlier times of the year, not say in winter (Zierl and Bugmann,
2005). This changes in the hydrological cycles might force the hydropower companies to
change their management practices (Finger et al., 2012) to take account of the reduced
runo� in late summer and fall and most probably also due to increased water need further
downstream during the drier summer months.

6.3.3. Uncertainties

Such a modelling chain holds uncertainties in all the steps mentioned in Section 6.3. The
ANOVA covers the uncertainty introduced by the selection of the seven climate scenarios,
the ten parameter sets and in the mid-term period also the three glacier extents. In Fig-
ures 5.15(a) and 5.15(b) the overwhelmingly big contribution of the climate scenarios is
visible. This is comprehensible when looking at Figure 3.3. The spread of the projections
of future weather is rather big. The temperature di�erences between the models range
up to 2 ◦C in the two scenarios and for precipitation not even all models agree whether
it would increase or decrease.
Compared to that the contribution of the parameter sets is very small. If this result is
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compared to the result of the same procedure in Finger et al. (2012) some di�erences oc-
cur. However the latter also shares the big contribution of the climate scenarios in winter
and spring with the present result. Further the glaciers play a big role in months when
they are melting from (June - September). However in the watershed of the Gigerwaldsee
the glaciers are too small to even have a visible impact on the uncertainty. The parame-
ter sets have their maxima in summer in both works, which could be explained with the
biggest amounts of discharge in summer and therefore the biggest impact on absolute
discharge if some parameter changes. Furthermore in summer all hydrological processes
contribute to the runo� and therefore the parameters have their biggest in�uence during
that time. A cause of the smaller impact of the parameters in this work could be that
the fully distributed and physically based TOPKAPI model (Todini and Ciarapica, 2001)
has more parameters to calibrate and therefore produces bigger uncertainties than the
HBV model.
Besides the evaluated uncertainties above there can be others to in�uence the �nal

result. Other climate scenarios than the A1B scenario where not looked at. Therefore
di�erent scenarios might have produced very di�ering results. Another source of uncer-
tainty is the applied correction of -0.288 ◦C for all the temperature datasets. Which at
least in�uences the absolute values of the results, but should not have altered the relative
changes, since also the temperature for calibration and validation where corrected.
Further there are some things that were totally neglected by the modelling chain. These

are for example changes in the land cover, which could emerge from climate changes.
According to the IPCC (2008) the Alpine �ora will change rather due to a decrease in
snow cover than due to temperature rise directly. However an upward shift of the tree
lines due to warming temperatures (Gehrig-Fasel et al., 2007) could increase the forest
area in the catchment. If in winter more snow is stored in the tree canopies it is more
exposed to the atmosphere and therefore water is lost by sublimation (Hedstrom and
Pomeroy (1998); Lundberg and Halldin (2001) in: Zierl and Bugmann (2005)) which
could alter the runo� regime (Zierl and Bugmann, 2005).
Errors and inaccuracies also occur in the input data, i.e. the precipiation, temperature

and discharge measurements will also have produced artefacts in the �nal calculations.
Finally also the model structure has most probably also had its in�uence. It was

not assessed whether it would have been better split up the catchment into the natural
Catchment and the parts in the Weisstannental.
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7.1. Comparison of weather datasets

Possible reasons for the di�erent model simulation performances was identi�ed in the
datasets for the two weather variables temperature and precipitation. The e�ect of
systematic di�erences between the datasets can be corrected by the HBV model, but
relative di�erences inside the datasets are most likely to be a large contributor to di�ering
results. The temperature dataset could be the main reason for the di�erences between the
IDW dataset and GRID or HYRAS. There the temperature �uctuations and therefore
the relative changes throughout the year are higher in the long-term mean than in the
other two. In the precipitation dataset on the other hand the �uctuations seem biggest in
the GRID dataset, whereas, apart from systematic di�erences, HYRAS and IDW show
a similar shape of the monthly averages. This might be the largest contributor in the
di�erences between the GRID and the HYRAS dataset.
The combination of precipitation and temperature as they are represented by the HYRAS
dataset seem to lead to the best discharge simulations combined with the present HBV
model con�guration. Therefore the Research Question 1 can be answered saying that
the HYRAS dataset gives the best simulation results in the Alpine catchment of the
Gigerwaldsee. Even though the di�erences between HYRAS and GRID are not that big
they persist throughout di�erent model settings and runs. However the rather small
di�erences might not be reproducible in any other Alpine catchment or model setting. It
might be that for other sites the GRID or even the IDW could produce higher objective
function scores. For the CHR this means that the HYRAS dataset is a valid source for
weather data even within the alpine area. It should therefore be possible to conduct
hydrological simulations (with the HBV model) in the entire catchment of the Rhine
river with the same dataset.

7.2. Climate Scenarios

In the second part of this work a modelling chain was presented that was partly in-
spired by the work of Finger et al. (2012). The used model was the HBV-light model
with a newly implemented dynamic glacier routine, which allows glaciers to shrink dur-
ing the simulation. Using discharge data that was derived from lake level changes of
the Gigerwaldsee, temperature and precipitation data from a gridded dataset from Me-
teoSwiss, the use of a MC calibration and the subsequent Pareto solution determination
and thereof selection of the best parameter sets, ten equi�nal parameter sets were found
to drive the scenario calculations. With the use of the A1B emission scenario and seven
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resultant GCM-RCM combinations from the ENSEMBLES project the HBV-light model
was driven to simulate a reference period and two future discharge scenarios. For the
mid-term scenario, from 2036 - 2065, three glacier scenarios where calculated with the
model presented in Huss et al. (2010). The baseline period was driven with interpolated
glacier extents from measurement of surrounding glaciers with the methodology of Huss
(2012). The long-term period was driven without any glacier data, since the glaciers in
the catchment will have disappeared by then according to the model calculations of Huss
et al. (2010).
With the results the research questions 2 - 5 raised in Section 1.5 can be answered:

Research Question 2:

An improvement of the model performance with regard to the total discharge could not
be made. But the internal model consistency including discharge, snowcover and glacier
mass balance simulation was improved. As was already stated in Finger et al. (2012)
the result is a trade o� between discharge, and the internal model consistency of the
snow cover simulation and the glacier mass balances. This means that with regard to
discharge better solutions would have been possible, but with the present con�guration
the maximum possible model consistency was found. Probably the results would have
been di�erent if discharge, snowcover and mass balance data would have had the same
weight during the calibration.

Research Question 3:

The annual distribution of waters �owing into the Gigerwaldsee will change quite much
during this century. Generally it can be said that the discharge increases during spring
due to warmer temperatures, which cause increased snow melt. This is ampli�ed by more
precipitation falling as rain and a general increase of precipitation during the low �ow
season. The discharge from snow melt is the main contributor to the increased discharge
in spring. During summer the discharge from snow melt is projected to decrease due
to the increased melt in spring and therefore reduced snow in summer. Moreover the
reduced precipitation in summer causes the discharge due to rain to decrease as well.
These two in the end cause the reduced total runo� in summer. The role of the glaciers
can be neglected due to their small size. In fall the discharge from snow melt is minimal,
whereas towards the winter months the precipitation starts to increase again, causing
more discharge from rain water.

Research Question 4:

Today, with reference to the reference period, the total discharge into the Gigerwaldsee
from the Calfeisental and the Weisstannental combined is roughly 234 Million(M)m3 per
year. The total discharge will, according to the mostly insigni�cant model predictions,
decrease by 3.5(± 7.5)% in the mid-term, resulting in 226 Mm3 per year, and in the
long-term by 6(± 11.4)% to around 220 Mm3 per year. These percentages also hold for
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7. Conclusion

the decline in potential energy stored in the lake, compared to the 311 M kwh per year
from 2000 to 2009, which mean roughly a potential energy per year of 300 and 292 M
kWh.
For the discharge ascribed to rain the model predicts an increase of around 7(± 15.3)%

in the mid-term to 160 Mm3 and and increase of around 8(± 17.8)% in the long-term to
around 162 Mm3 per year.
The melt water from snow routed into the Gigerwaldsee of roughly 81 Mm3 per year

is projected to decrease by about 20(± 19.1)% in the mid-term to around 65 Mm3 and
by about 28(± 20.5)% in the long-term to 58 Mm3 per year.
Finally the amount of glacier melt water of around 3 Mm3 per year is projected to

diminish by 85(± 16.0)% to 0.5 Mm3 per year in the mid-term. In the long-term scenario
the glaciers are modelled to have disappeared completely.

Research Question 5:

In the ANOVA in Section 5.2.4 the contribution of the seven climate scenarios and ten
parameter sets and the three glacier scenarios to the total variance of the global mean
of all 70, or 210 model runs respectively was shown. In the mid-term period the biggest
fraction of the variance is made up by the climate scenarios by roughly 82% on average
throughout the year. The parameter sets make up less than 7% on average throughout
the year and the glacier scenarios only about 0.00004%. The rest of about 11% is made
up by interactions of the three.
In the long-term scenario without glaciers the proportions are about the same, since

the glaciers have a very small contribution to the variance. The rough numbers are: 84%
of the variance is made up by the climate scenarios, 6% by the parameter sets and around
10% by interactions and errors.

Final Remarks

To sum up the whole work it can be said that there are visible trends that can give a rough
idea about the discharge distribution throughout the 21st century. But the development
of hydrological models still has to go further to better represent the real-world processes
as well as the development of the di�erent climate models, which still produce a lot of
uncertainties. Further also the techniques of parameter selection in hydrological models
need to be re�ned in order to explore the parameter space more e�ciently and select
appropriate parameter sets. All in all a lot of uncertainties are contained in such a
modelling chain, and many sophisticated decisions need to made, which demand a lot of
knowledge and understanding of the underlying processes.
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A. Appendix

A.1. Figures of the Calibration and Validation Period of the
3 Datasets

A.1.1. Dotty Plots

Dotty Plots of the used parameter combinations for the calibration of the HBV model
using the the three datasets. Parameters with vertical lines are either kept constant
(CFR, CWH) or not used in the used model structure (DELAY, PART).
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Figure A.1.: Dotty Plots of the used parameter combinations using the IDW dataset.
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Figure A.2.: Dotty Plots of the used parameter combinations using the IDW dataset.
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Figure A.3.: Dotty Plots of the used parameter combinations using the IDW dataset.
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A.1. Figures of the Calibration and Validation Period of the 3 Datasets

A.1.2. Discharge Plots
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Figure A.4.: Daily discharge of calibration and validation period using the GRID dataset.
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Figure A.5.: Daily discharge of calibration and validation period using the HYRAS
dataset.
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Figure A.6.: Daily discharge of calibration and validation period using the IDW dataset.

A.1.3. Errors

Absolute Errors

Note that the errors represent the di�erences between observation and simulation where
the observed values are higher than the highest value in the simulation or lower than the
lowest of the simulation at a certain day.
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Figure A.7.: Daily discharge errors of calibration and validation period using the GRID
dataset.
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Figure A.8.: Daily discharge errors of calibration and validation period using the HYRAS
dataset.
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Figure A.9.: Daily discharge errors of calibration and validation period using the IDW
dataset.
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Average Errors
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Figure A.10.: Average daily discharge errors of calibration and validation period using
the GRID dataset.
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Figure A.11.: Average daily discharge errors of calibration and validation period using
the HYRAS dataset.
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A.1. Figures of the Calibration and Validation Period of the 3 Datasets
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Figure A.12.: Average daily discharge errors of calibration and validation period using
the IDW dataset.
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Figure A.13.: Relative Errors of the Calibration and Validation Period of the mean daily
discharge values using the GRID dataset.
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A. Appendix
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Figure A.14.: Relative Errors of the Calibration and Validation Period of the mean daily
discharge values using the HYRAS dataset.
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Figure A.15.: Relative Errors of the Calibration and Validation Period of the mean daily
discharge values using the IDW dataset.
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