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Summary 
Due to losses of habitat and reduced prey abundances for predators such as leopards and lions, 

conflicts between them and humans are widespread in Africa. As a consequence, predators feed 

on livestock of local farmers and thus risk to be shot. To enable effective management strategies 

that mitigate such conflicts, a comprehensive understanding of the spatial ecology of predators is 

critical. By analyzing home ranges and kill sites, this study addressed two major aspects of the 

ecology of leopards and lions in the Khutse and Central Kalahari Game Reserve, Botswana. 

Regarding home ranges, four methods were selected to investigate the effect of their 

parameterization: MCP, KDE, t-LCH and BRB. First, the effect of the parameters was analyzed 

for each method. Then, systematic trends of the methods were analyzed. The most appropriate 

versions of each method were used to analyze the home ranges of the individual leopards and 

lions in an ecological context. An emphasis thereby was to examine the temporal variability of 

the results in terms of their area and shape. It was found that the k-rule of t-LCH performed 

markedly better than the a-rule. The inclusion of time scaling factors yielded more interconnected 

isopleths whose shape indicated moving pathways. For BRB, the ecological model used to set the 

smoothing parameter turned out to be critical and to cause problems in conjunction with 

heterogeneous sampling intervals. On average, MCP produced home ranges whose areas and 

shapes differed significantly from those of the other methods. The areas of KDE, t-LCH and BRB 

were similar whereas their shapes allowed for a better differentiation. The observed individuals 

have home ranges that are among the largest worldwide and mostly within the protected area. 

Particularly the home ranges of the lions varied markedly over time, emphasizing the need to 

consider different temporal aggregations. Despite their largely overlapping home ranges, the 

leopards rarely encountered and thus indicate a strong active avoidance behavior. 

Regarding kill sites, the performance of a clustering approach was analyzed by using different 

variables to indicate the probability of a cluster to be an actual kill site through weights. The sets 

of variables that yielded the lowest errors were used to determine the spatial distribution of kill 

sites in terms of their proportion inside the core area, home range and game reserves. The 

combination of the cluster duration and ratio of distances moved before and after a cluster proved 

to yield the lowest errors, while the time of day had hardly any impact. The incorporation of 

additional variables consistently led to higher success rates regarding the detection of kill sites. 

Irrespectively of the criterion used to set the weight threshold, the ratios of kill sites within the 

core area and home range remained stable. Almost all detected kill sites were within the home 

range. Two lions that were shot because of livestock predation proved to have small proportions 

of kill sites outside the game reserves. However, these ratios seemed to be too low to justify their 

killing. It is thus likely that spatiotemporal clustering approaches cannot detect such clusters 

reliably.  
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I General introduction 

1 Motivation 

Large cats, such as leopards and lions, are not only critical for healthy ecosystems, but also 

contribute to the economic welfare of a country by means of ecotourism (Bauer & de Iongh 2005; 

Pitman et al. 2012). However, their presence also leads to conflicts with local farmers in many 

African countries, since their livestock gets attacked and killed by feline predators (Bauer & de 

Iongh 2005; Patterson et al. 2004; Schiess-Meier et al. 2007). A major driver of this conflict is 

the spreading of the area used by humans for living and agriculture, which leads to a fragmentation 

and loss of habitat of large cats as well as decreasing abundances of their natural prey (Pitman et 

al. 2012; Ramsauer 2006; Swanepoel et al. 2013; Winterbach et al. 2014). In order to mitigate the 

issue of livestock predation, typical strategies of public authorities include translocating problem 

animals and constructing fences around the borders of game reserves. Fences, however, rarely 

forms an obstacle for predators due to insufficient maintenance and construction types (Kesch et 

al. 2014). Translocations, on the other hand, can only be successful when being based on a 

profound knowledge of the demands of the predators in the respective area (Fontúrbel & 

Simonetti 2011; Tumenta et al. 2013; Weilenmann et al. 2010). When such strategies fail, 

predators are shot by the government or killed by local farmers (Bauer et al. 2014; Patterson et al. 

2004). As a consequence, the African populations of leopards and lions have been rapidly 

decreasing during the last decades (Bauer et al. 2014; Marker & Dickman 2005; Swanepoel et al. 

2013). 

2 Goals of this study 

In order to develop effective conservation strategies for these species, it is critical to enhance the 

knowledge about their spatial ecology. Two major aspects in this context are to determine the area 

that offers the resources required by an animal to live and to investigate its interactions with prey 

species (Downs & Horner 2008; Pitman et al. 2014; Swanepoel et al. 2013; Tambling et al. 2010; 

Tumenta et al. 2013). This thesis addresses these two aspects for leopards and lions in the Kalahari 

by analyzing their home ranges and kill sites. 

Numerous papers are available concerning the analysis of home ranges. However, only few of 

them used more than one or two home range estimators to compute the results of free-ranging 

animals while the majority concentrated on simulated data (such as Getz et al. (2007), Lichti & 

Swihart (2011) or Wall et al. (2014)). Since the performance of a home range estimator depends 

on the used simulation, the findings of such studies often differ markedly from each other and 

analyses that used data of free-ranging animals (Downs & Horner 2008; Horne & Garton 2006). 

Another feature shared by most studies is the implicit assumption of temporally invariable home 
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ranges. This issue arises when home ranges are computed on data from only one single time period 

(typically one year). Although there are papers that investigated temporal variations of home 

ranges, they concentrated only on the presence of seasonal patterns of their area sizes but 

neglected their shape (e.g. Loveridge et al. (2009), Marker & Dickman (2005) or Tumenta et al. 

(2013)). 

An objective quantification of kill sites is critical since those occurring within grazing areas 

indicate potential livestock predation and can ultimately cause the predator to be killed. The only 

data source to determine the extent of livestock predation, however, are usually reports of affected 

local farmers. In order to get rid of problem animals that cause financial losses and to receive 

higher financial compensations, farmers are tempted to exaggerate the actual extent of livestock 

predation and accordingly may be not an objective data source (Bauer & de Iongh 2005; Schiess-

Meier et al. 2007). An inherent step in independently quantifying kill sites and analyzing them 

from an ecological perspective it to locate them first. Even if machine learning techniques are 

intended to locate and predict kill sites in the end, they first require large amounts of validation 

data to be trained (Pitman et al. 2012; Tambling et al. 2010). Such validation data can be ideally 

obtained by locating kill sites through spoor-tracking or continuous observation. However, both 

of them are time-consuming and may be infeasible, depending on the predator species and habitat. 

Spatiotemporal clustering approaches provide a time-saving means of automatically detecting 

potential kill sites and subsequently visiting only promising candidates in the field (Tambling et 

al. 2012). The amount of time savings, however, depends on the predator species and the 

clustering rules of the algorithm. Particularly for lions, only a relatively simple algorithm was 

used so far that resulted in many false alarms (Tambling & Belton 2009; Tambling et al. 2010; 

Tambling et al. 2012). 

This thesis addresses the above-mentioned research gaps by investigating the following points: 

 Quantification of the effect of different home range estimators and their parameterizations 

on the result when being applied to data of free-ranging animals 

 Computation of the home range sizes of leopards and lions in the Kalahari by using 

different home range estimators 

 Analysis of the temporal variability of the area size and shape of home ranges 

 Development of an enhanced clustering approach that yields lower errors 

 Analysis of the spatial distributions of kill sites with regard to ratios inside home range 

boundaries and the protected game reserves 

3 Thesis structure 

Part I and II of this thesis provide basic knowledge about the ecology of the analyzed species and 

their environment. In addition, detailed information is provided about the data and its 

preprocessing. Part III refers specifically to the home range analyses. The first chapter of this part, 
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Chapter 7, introduces the concept of home ranges and discusses temporal autocorrelation as one 

of its major issues. Detailed information is given on the functionality and parameters of the home 

range estimators used in this study and further methods are briefly reviewed. Chapter 8 informs 

about all selected parameters and conducted analyses, whose results are presented in Chapter 9. 

The discussion of the results in Chapter 10 incorporates ecological information from the literature 

and the organization whose data was used (Leopard Ecology & Conservation), to put it in a wider 

context. Chapters 11 to 14 belong to part IV and refer to the detection of kill sites. Chapter 11 

thereby introduces the concept of spatiotemporal clustering and reviews findings of previous 

studies. Chapter 12 informs about how the enhanced clustering approach developed in this study 

works and how its results were validated and used to estimate the spatial distribution of kill sites. 

The results are shown in Chapter 13 and discussed in Chapter 14. Part V discusses the main 

achievements of the home range and kill site analyses and their implications. Finally, an outlook 

is given on potential research questions, which arose from the results of this theses. 

4 Cat ecology 

Leopards (Panthera pardus) and lions (Panthera leo) are phylogenetically closely related animals 

since both of them belong to the same lineage of the family Felidae (Macdonald & Loveridge 

2010). This phylogenetic family comprises all cats and is subdivided into several different 

lineages. Except for a highly similar structure of the skeleton, another characteristic shared by all 

felids (cats) is that they are carnivorous (Hunter & Hinde 2005). However, despite of their kinship, 

leopards and lions differ in some points distinctively. 

4.1 Lion 

Apart from the tiger, which does not live on the African continent, the lion is the largest member 

of the family felidae in Africa (Haas et al. 2005). For males, the shoulder height usually ranges 

between 1.1 and 1.2 meters, whereas the body length (without the tail) lies between 1.7 and 2.5 

meters. This results in body masses of 160 to 200 kg, although this range may be exceeded or 

undercut massively in rare cases. Female lions are roughly 20–27 percent smaller and lighter than 

males, even though their shoulder height is almost the same (Figure 1) (Haas et al. 2005; Hunter 

& Hinde 2005). In captivity, lions may reach an age of up to 30 years, whereas this life span is 

roughly reduced by half, meaning 12 to 15 years, in the wild (Hunter & Hinde 2005). Today, lions 

are mainly found in sub-Saharan African countries, especially in the eastern and southern parts of 

the continent. However, a small and isolated population lives in the Gir Forest region of India, 

which is a relic of the formerly much larger dispersal of lions over parts of Europe and Southwest 

Asia (Bauer et al. 2012; Ramsauer 2006). No precise counts are available for the overall 

population size. Extrapolations of known small populations and educated guesses resulted in 

African population sizes of 39’000 (range from 29’000 to 47’000) and 23’000 (16’500 to 30’000) 

for the year 2002 (Bauer et al. 2012; Bauer & Van Der Merwe, S. 2004). Despite the high 
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uncertainty, it is clearly evident that the number of lions has been decreasing for a long time and 

still does. Accordingly, the International Union for Conservation of Nature (IUCN) classes this 

species as vulnerable on their Red List of threatened species (Bauer et al. 2012). 

 

Unlike most members of the family Felidae, lions live in prides (Eloff 1998). The size of such 

prides is highly variable due to their dependency on the environmental conditions. Typically, a 

pride consists of 5–9 adult females and 2–6 adult males (Haas et al. 2005). In arid habitats with a 

scarcity of prey, prides may be much smaller with up to two members (Eloff 1998; Haas et al. 

2005). Whereas in the majority of cases a lioness stays with the pride in which she was born, 

males have to leave their pride when reaching sexual maturity (at approximately 2–2.5 years) or 

some months thereafter to find a new pride or live with other males in a coalition (Funston 2011; 

Haas et al. 2005; Hunter & Hinde 2005; Macdonald & Loveridge 2010). Although a pride 

membership is stable, it is common that, especially under difficult conditions like droughts, its 

members form subgroups that live spatially separated for hours to months. This social structure 

of repeated splitting and merging is called as fission-fusion (Ramsauer 2006; Spong 2002). 

Several tasks are undertaken together within the pride, such as the breeding of cubs, the defense 

of the territory, or hunting (Hunter & Hinde 2005; Macdonald & Loveridge 2010). The latter 

usually involves several members of the pride, which cooperate by adopting different roles (Haas 

et al. 2005). In this cooperative hunting strategy, some of the lions sneak to the flank of their 

 

Figure 1. A female lion located in the study area. Photography by Monika Schiess-Meier. 
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potential prey and start to leap towards it and thereby direct it towards the second, waiting group 

(Hunter & Hinde 2005). However, lions do not strictly follow this pattern but occasionally exhibit 

deviating behaviors in which single lions participate in the hunt not at all or only partly ((Haas et 

al. 2005; Scheel & Packer 1991). When lions hunt individually or in small groups, their success 

strongly depends on how closely they can sneak to their victim, since they lack the stamina for 

extended chases. They usually begin their sprint when they are not further than 5–15 meter away 

and thereby reach top velocities of 50–60 km/h (Haas et al. 2005; Hunter & Hinde 2005). Lions 

are not picky about their nutrition and consume everything from larger insects up to adult 

elephants and also scavenge carcasses. Their preferred prey, though, weights around 150 kg and 

includes animals such as gemsboks, buffalos, giraffes or zebras (Haas et al. 2005; Macdonald & 

Loveridge 2010). Hunting takes place due to the reduced visibility of the predators and the 

reduced heat in some areas mainly during dusk, night and dawn (Hunter & Hinde 2005, 

Macdonald & Loveridge 2010; Ramsauer 2006). 

Territoriality is an important aspect of the ecology of lions (Spong 2002). Because a territory of 

a pride usually persists for many generations and the reproduction success of expelled adult lions 

that need to find a new territory is significantly lower, its defense is of high importance and 

involves the whole pride (Hunter & Hinde 2005; Spong 2002). While lionesses primarily want to 

protect their cubs, denning sites, water sources and hunting grounds, the main objective of males 

is to preserve their exclusive mating privileges (Haas et al. 2005). The size and shape of such a 

territory is represented by the concept of home ranges in ecology, which is the “[…] area routinely 

used by an animal to meet its daily needs” (Fieberg & Börger 2012: 890). This concept will be 

introduced in more detail in Chapter 7.1. A home range is shared by all members of a pride and 

its size depends highly on the environmental conditions. Thus, depending on the availability of 

resources such as prey or water, the size of home ranges may vary between a few dozen and more 

than thousand square kilometers (Hayward et al. 2009). Apart from a few areas with high prey 

abundances such as in central Kenya, territories of prides of lions often overlap to a considerable 

degree (Hunter & Hinde 2005; Spong 2002). Especially in arid areas such as the Kalahari, where 

home ranges are among the biggest worldwide, it appears reasonable to allow a shared usage of 

parts of the territory since they could hardly be defended effectively anyway (Hunter & Hinde 

2005). In fact, the members of adjacent prides are thoroughly aware of the presence of the 

intruders because they use a variety of techniques to proclaim their presence, such as roaring, 

scent marks and scraping (Eloff 1998; Hunter & Hinde 2005). This active avoidance behavior 

prevents that members of the different prides are at the same time in the overlapping region and 

accordingly get in conflict. In most cases, only peripheral areas of the home range overlap each 

other while the core areas are used exclusively (Haas et al. 2005; Spong 2002). 
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4.2 Leopard 

The leopard belongs together with the lion and cheetah to the group of the three big African cats 

(Hunter & Hinde 2005). However, it is considerably smaller than the lion with a shoulder height 

of 50–70 cm and a body length of 90–170 cm (without tail) for adult males. This results in a 

weight of typically 40–75 kg, compared to 160–200 kg for a male lion (depending on the habitat, 

more extreme weight may exist). Female leopards are roughly 10 % smaller and up to 40 % lighter 

(Bailey 1993; Hagen et al. 1995; Stein & Hayssen 2013). In captivity, a leopard can reach an age 

of more than 20 years. Due to injuries, starvation, trophy-hunting, and so on, its lifespan in the 

wild is substantially reduced and lasts only 10–12 years on average (Bailey 1993; Hunter & Hinde 

2005; Stein & Hayssen 2013). Because of its high adaptability and habitat tolerance, the leopard 

is the most widely distributed wild cat (Marker & Dickman 2005; Pitman et al. 2013). It can 

survive in forests, savannahs, mountain areas, and even semi-deserts and, thus, can be found 

nearly in all of sub-Saharan Africa and large parts of southern Asia such as Iran, India, China, or 

Thailand (Macdonald & Loveridge 2010; Marker & Dickman 2005; Stein & Hayssen 2013). No 

precise numbers of the worldwide population size are available and the latest large-scale census 

from Martin & de Meulenaer (1988 in Marker & Dickman 2005) estimating 714’000 individuals 

for sub-Saharan Africa dates back to 1988 and is known to be flawed (Henschel et al. 2008; 

Marker & Dickman 2005). Due to its decreasing trend (Henschel et al. 2008) and the fact, that 

this estimate is 27 years old, the current African population size will be considerably smaller. The 

leopard is currently labeled as near threatened by the IUCN but this classification could change 

to vulnerable soon (Henschel et al. 2008). 

Like the majority of cats, leopards are solitary and, thus, have no social constructs such as a pride 

(Bailey 1993; Stein & Hayssen 2013). As already discussed for the lions, food efficiency for cats 

is assumed to be optimal for solitary individuals or groups of two. Due to their smaller body size 

and reduced physical strength compared to lions, leopards prefer smaller prey which can be 

dragged away from potential rivals to a safe place (Hunter & Hinde 2005; Stein & Hayssen 2013). 

Accordingly, living in a pride to defend the prey is not necessary. As a consequence, leopards 

meet each other only for a few days for reproduction (Hagen et al. 1995; Hunter & Hinde 2005). 

An exception are female leopards which live temporarily in small groups with their cubs during 

upbringing. As soon as the cubs are able to take care of themselves, what happens after 12 to 20 

months, they leave their mother and look for their own home range (Bailey 1993; Hagen et al. 

1995; Mizutani & Jewell 1998). 
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Because leopards occur in many parts of the world, their prey is versatile and requires flexible 

hunting strategies (Hagen et al. 1995). One approach is to hide behind cover and sneak in the 

direction of the potential prey. As soon as the distance is within 5 to 15 meters, a short sprint with 

velocities of up to 60 km/h begins (Hunter & Hinde 2005). Another strategy is to ambush prey on 

a tree and let oneself drop upon the prey or climb down the tree unseen and start a sprint (Hagen 

et al. 1995). Just as lions, leopards are tolerant in terms of feeding and eat everything from a buck 

to a zebra or steal remains of prey hunted down by other predators (Bailey 1993; Hagen et al. 

1995). Their preferred prey size is around 50 kg, ranging from 20 to 80 kilograms and including 

the bushbuck, impala, antelope, or duiker (Hunter & Hinde 2005; Macdonald & Loveridge 2010). 

In order to protect their prey from scavengers, leopards drag it on a tree or, if trees are unavailable, 

hide it in a cave or thick bush (Bailey 1993; Hagen et al. 1995). The hunting behavior of leopards 

depends strongly on the available prey and its customs and other factors such as human 

disturbances (Hagen et al. 1995). For these reasons, the leopard hunts during the day instead of 

the night in some parts of its distribution area (Bailey 1993). 

Just as lions, leopards are territorial and, therefore, have home ranges that they will defend against 

other leopards (Hunter & Hinde 2005). The prevailing goal of females in this regard is to obtain 

and secure access to resources required for survival and reproduction, while males primarily want 

to have access to as many females as possible. Hence, male leopards have significantly larger 

 

Figure 2. A leopard lying on the ground surrounded by shrubs. Photograph by Monika Schiess-Meier. 
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home ranges than females have (Bailey 1993). Except for differences due to sex, differences due 

to the extensive global distribution area with strongly varying environmental conditions lead to 

diverging home range sizes. In Thailand, where resources are abundant, leopards occupy areas as 

small as 2.5–7.5 km2 (Macdonald & Loveridge 2010). For many parts of Africa, home ranges are 

within 30 and a few hundred square kilometers (Hagen et al. 1995; Hayward et al. 2009; Marker 

& Dickman 2005), although they may be expanded up to 500 km2 for females and 2’500 km2 for 

males in the arid Kalahari region (Hunter & Hinde 2005). Depending on the average size of the 

home ranges in an area, the degree of overlap varies substantially. While there are no or only 

minimal overlaps in habitats such as Thailand, they may exceed a quarter of a leopard’s entire 

home range in dry African habitats (Hunter & Hinde 2005). Home ranges of females show 

generally a higher proportion of overlaps because their cubs usually settle down nearby (Hagen 

et al. 1995). In order to avoid confrontations within the shared areas, leopards actively avoid each 

other just as the lions do (active avoidance behavior). This means that each leopard knows the 

position of its neighbors because of scent marking and vocal communication and thereby avoids 

clashes (Bailey 1993; Hunter & Hinde 2005; Marker & Dickman 2005). Ecologists presume that 

leopards (and lions) tolerate such shared areas because it is better than risking injuries during a 

fight and possibly get a new, more powerful neighbor which insists on an exclusive use of its 

territory (Hunter & Hinde 2005). 

4.3 Cross-species interactions between lions, leopards and humans 

By nature, leopards are cautious and avoid encounters with other predators. This is particularly 

true for clashes with lions, which can easily kill an adult leopard due to their inferior physical 

strength. Therefore, when a leopard detects a nearby lion, it usually seeks shelter in a thicket, 

crevice, or on a large tree (Hagen et al. 1995). If an adult leopard stumbles upon an unattended 

lion cub, however, it will kill it. The same is true for adult lions and in fact, they are the main 

source of mortality to juvenile leopards (Hunter & Hinde 2005). Another, quite one-sided 

interaction concerns kleptoparasitism, which means the stealing and consuming of prey that 

another animal has hunted down. Thereby, lions play the role of the thieves and steal prey from a 

broad variety of other predators, such as the leopard or cheetah (Bailey 1993; Hunter & Hinde 

2005). 

Both lions and leopards show a decreasing population trend, as mentioned before. The main 

reason for this is the loss of habitat due to the increasing human population and subsequently the 

expanding agriculture (Bailey 1993; Macdonald & Loveridge 2010; Schiess-Meier et al. 2007). 

As a consequence, there is less natural prey available for predators. In order to compensate this, 

predators raid the farmer’s livestock (Hagen et al. 1995; Hunter & Hinde 2005). Although 

significantly more livestock is lost annually due to other causes such as diseases, injuries or 

starvation, particularly lions and leopards induce considerable economic losses and are therefore 
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frequently killed by farmers (Hunter & Hinde 2005; Macdonald & Loveridge 2010; Patterson et 

al. 2004). In addition, some leopards and lions die each year because of trophy-hunting 

(Macdonald & Loveridge 2010). Because of the growing wildlife-tourism, however, which 

generates income for the local residents, the protection of these animals has improved during the 

last decades (Hagen et al. 1995; Hunter & Hinde 2005). 
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II Data and study area 

5 Available data 

All telemetry data on the leopards and lions were collected and provided by the organization 

Leopard Ecology & Conservation. The data, provided as Excel worksheets, encompasses 

recorded positions of 16 leopards and 21 lions. The time spans of the datasets vary between a few 

months and several years. Since the quality and quantity of the data is heterogeneous, the datasets 

needed to be preprocessed before the ones appropriate for the scheduled analyses were selected. 

5.1 Preprocessing 

In a first step, the attributes containing the date and time were transformed to a consistent format 

for all datasets. In addition, records with an invalid or missing value for one of these two attributes 

or the geographic coordinates were deleted. In order to remove spurious records, the datasets were 

further filtered according to their coordinates, notes-attribute and dilution of precision (DOP) 

values. This included the removal of records with a longitude or latitude value distinctively 

different from all the other values of the dataset (i.e. outliers). If the coordinates of an animal did 

not change beyond the scope of spatial uncertainty between the records in a dataset and the notes 

revealed that the collar had to be changed, broke off or the animal died, these records were 

considered as spurious and were deleted. The DOP informs about the spatial configuration of the 

satellites used to obtain a positional measurement. Although other factors play a role as well and 

the relationship is nonlinear, a large DOP indicates imprecise and possibly defective 

measurements (Frair et al. 2010; Lewis et al. 2007). Thus, these records were removed. Because 

this accompanied by a loss of information, a cut-off value of 10.0 was used, as proposed by Lewis 

et al. (2007). Less than 1 % of the records of each animal were lost due to the threshold of 10.0. 

Because different kinds of collars were used, some of the datasets include Argos measurements 

in addition to the GPS measurements. They occur, however, only as irregularly distributed short 

bursts and are quantitatively negligible. For reasons of consistency, these Argos measurements 

were deleted. 

5.2 Selection criteria 

5.2.1 Home range analysis 

In order to be considered for the analysis of the home ranges, the position data of each leopard 

and lion had to fulfill three criteria: 

 The dataset records measurements over at least one entire year. 

 No gap (i.e. a period of missing fixes) longer than one week occurs. 

 The period over which fixes were recorded matches the one of the other leopards and 

lions so that the temporal intersection of all animals is at least half a year. 
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The first criterion ensures that the home range constructed from the point data includes all 

ecologically important regions for the animal. It also allows to investigate effects of seasonality, 

if present. This is also a goal of the second criterion, since an investigation of seasonal differences 

requires all seasons to be included in the data. Additionally, long gaps could cause certain regions 

to be over- or underemphasized in the home range estimation. The specific threshold of one week 

was selected following an initial investigation of the datasets. The vast majority of occurring gaps 

was shown to last less than one week, while a few datasets had gaps of several weeks or months. 

The third criterion ensures that the comparison of the results of different individuals is significant. 

The time period over which fixes are available for all of the leopards and lions is half a year. 

However, the shared time period for all of the individuals except for a few ones can be much 

longer. 

5.2.2 Kill site detection 

For the detection of kill sites, the same criteria were used as for the home range analysis. However, 

only datasets of lions were considered due to their finer sampling intervals (Table 1). The lion 

datasets were further filtered according to the number of validated kill sites for the respective 

individual, with a lower boundary of 15 validated kill sites. 

5.3 Harmonization of the sampling intervals 

A closer look at the selected datasets revealed, that different sampling intervals occur within most 

of them. For example, the majority of the lion’s datasets mix main sampling intervals of 5, 30 and 

60 min (Table 1). This means a factor of 6 or 12 between the lowest and highest SI. For the 

leopards, the range of SI is smaller with factors of 1 to 3.3. 

Table 1. Range of sampling intervals of each selected leopard and lion. Only frequent sampling intervals are 
listed. The order in which the SI are presented corresponds to their incidence. 

Individual Species Main SI [min] Factor 

Verity Lion 30, 5   6.0 

Ella Lion 30, 5, 60 12.0 

Jane Lion 30, 60, 5 12.0 

Hitchcock Lion 30, 60, 5 12.0 

Mexico Lion 30   1.0 

Madge Lion 30, 60, 5 12.0 

Orange Lion 30, 60   2.0 

Getika Lion 30, 5   6.0 

Ronja Leopard 300, 180, 120   2.5 

Mothamongwe Leopard 300, 90   3.3 

Bogarigka Leopard 60   1.0 

Gham Leopard 60   1.0 
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Irregular sampling intervals can, depending on the method used for home range estimation, result 

in biased results (Calenge et al. 2009; Katajisto & Moilanen 2006; Kranstauber et al. 2012). In 

order to avoid this bias, one can remove all records that have been recorded more frequently than 

those with the coarsest sampling interval. Another approach would be to include a lot of 

interpolated records so that the SI of all fixes orient themselves towards the highest sampling 

interval. While the first approach reduces the number of records, the second one includes points 

that are only estimated and may deviate from the true position distinctively. 

In order to decrease the potential bias of the home range results, the range of sampling intervals 

was reduced by removing points that have been sampled too frequently. However, this was carried 

out only for the lion datasets that include a 5 min SI (Verity, Ella, Jane, Hitchcock, Madge and 

Getika). There are two reasons for this decision: Firstly, the factors of these individuals are 

markedly higher than the factors of the others. Secondly, there is hardly a benefit in measuring 

the position every 5 instead of 30 minutes. Thus, the loss of ecological information for the purpose 

of home range estimation should be minimal. In addition, the shrinkage of the affected datasets 

to 73.6 % – 95.6 % of their previous size is acceptable. This solution is a compromise between 

the loss of data, the reduction of potential biases and the conservation of biological information. 

It needs to be emphasized that this partial reduction of the SI does not seek to eliminate the 

temporal autocorrelation (see discussion in Chapter 7.2). Table 12 and Table 13 of Section 9.1 

clearly show that the datasets are still temporally autocorrelated. 

5.4 Final data 

5.4.1 Home range analysis 

Six lions and four leopards fulfilled all criteria mentioned in Section 5.2 and thus constitute the 

basis for the analyses (Table 2). Additionally, two more lions are listed in Table 2 (Orange and 

Getika). Although they fulfill criteria 1 and 2, the shared time period required by criterion 3 will 

get too narrow if these two lions are included. Because their datasets nonetheless carry significant 

ecological information, they are incorporated into selected analyses. 

Figure 3 shows the time spans over which positions have been recorded for the selected animals. 

The datasets roughly cover the period from the second half of 2011 to the end of 2014, whereby 

the time periods of the lion datasets tend to be longer than those of the leopards. One exception is 

the leopard named Ronja, who has the longest time series of all animals. Because Ronja is the 

only animal of the selection that has records from the years 2009 and 2010, her movements cannot 

be compared to any of the other individuals during this time period. Therefore, the records of 

Ronja from 2009 and 2010 were removed for the analyses. Figure 4 presents the sampling 

intervals of the lion and leopard datasets. While the most frequent intervals of the lions after the 
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harmonization are 30, 60 and rarely 270 minutes, the positions of the leopards had been recorded 

at much coarser intervals of 5, 1, 3 and sometimes 2 or 1.5 hours. Thus, the sampling interval 

varies not only between the animals (of the same and different species), but also within a single 

dataset. Due to these differences, the lion-datasets contain much more records than those of the 

leopards (Table 2) 

Table 2. List of individuals used for the home range analysis. Two of the animals (Orange and Getika) are 
highlighted (*) because their comparability to other individuals was limited in some of the analyses. The 
number of records after the harmonization of the SI for some of the lions are presented in the outer right 
column. 

Name Species Sex No. of records 

Verity Lion F 23’369 

Ella Lion F 31’039 

Jane Lion F 21’944 

Hitchcock Lion M 20‘246 

Mexico Lion M 22‘520 

Madge Lion F 28‘277 

Orange * Lion M 17‘787 

Getika * Lion F 20‘711 

Ronja Leopard F   9‘447 

Mothamongwe Leopard M   6‘130 

Bogarigka Leopard M   7‘474 

Gham Leopard M   5‘088 

 

Whereas all lions were equipped with the same collar type designated GPS Plus Iridium 

(Vectronic Aerospace GmbH, Berlin, Germany), three different types of two manufacturers were 

used for the leopards. Except for the types GPS Plus Globalstar and Vertex Survey Iridium 

(Vectronic Aerospace GmbH, Berlin, Germany), the model G3C 275A of the manufacturer 

SirTrack (SirTrack Limited, Havelock North, New Zealand) were used for the leopards. All of 

these collars determine their position by using a satellite navigation system, although the SirTrack 

collar also records a few fixes based on Argos Doppler shift measurement at episodic intervals. 
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Figure 3: Time periods covered by the datasets of the selected animals. Except for Ronja, the datasets of 
the leopards tend to contain data over a shorter period than those of the lions. Considering only the 10 
regular animals (without Getika and Orange), the period shared by all of them lies between September 
2012 and May 2013. 

 

Figure 4. Sampling intervals of the eight lions (red) and four leopards (black). The main SI of the lions (after 
the harmonization) are 30 and 60 minutes. The intervals of the leopards are much coarser with values of 
5, 1, 3 and sometimes 2 or 1.5 hours. Values that differ up to 5 minutes from these most frequent sampling 
intervals have been rounded to the nearest interval for this diagram. 
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5.4.2 Kill site detection 

Four lions, which are listed in Table 3, fulfilled all criteria and were used for the kill site detection 

part. Since the datasets have not been altered for the kill site detection, the information about these 

lions presented in section 5.2.1 is valid here as well. 

Table 3. Four lions met all criteria for the kill site detection part. The number of validated non-kill sites was 
not a selection criterion. Due to the low numbers for the other lions, only the non-kill sites of Madge was 
included in the validation. 

Name Species Sex No. of validated kill sites No. of validated non-kill sites 

Verity Lion F 23   2 

Ella Lion F 29   1 

Madge Lion F 18 14 

Getika Lion F 22   4 

 

6 Study area description 

The study area is situated in the central Kalahari region in Botswana, between 22.5–24.5° S and 

23.0–26.0° E. It includes both the Khutse Game Reserve (KGR, 2’600 km2) and the much bigger 

Central Kalahari Game Reserve (CKGR, 54’000 km2) just north of KGR (Figure 5), where 

animals are being protected (Weilenmann et al. 2010). The only artificial barrier that separates 

the game reserves from the adjacent regions is a fence at their southeastern border. However, 

since various species are known to dig holes under fences in the Kalahari, it is permeable to a 

certain degree for animals such as leopards, lions or hyenas (Kesch et al. 2014). In particular the 

regions in the Southeast of the study area are used by many farmers (Mishra et al. 2015). The 

grazing land for their livestock is in some cases located directly at the border of the game reserves 

or may even overlap them (Mills & Schiess-Meier 2009; Schiess-Meier et al. 2007). 

The climate of the study area can be described as semi-arid, having a cold and dry season during 

the hemispherical winter (June–September) and a warm and wet season during summer 

(November–April) (Department of Meteorological Services, Leopard Ecology & Conservation 

2014; Weilenmann et al. 2010). As observable in Figure 6, the mean monthly precipitation lies 

between 0 and 10 mm during winter and increases to 60–80 mm during summer months. The 

mean monthly temperature also shows seasonality and varies between 12° C and 25° C. The 

vertical bars, which show the averaged daily minimum and maximum values, reveal that the 

diurnal variances are quite pronounced and often higher than the seasonal differences 

(Department of Meteorological Services). 
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Figure 5. Map showing the frontiers of Botswana and the location of the study area (approximated by the 
area of the Khutse Game Reserve and Central Kalahari Game Reserve). The hatched areas represent further 
game reserves in Botswana. From Weilenmann et al. (2010: 703). 

 

Figure 6. Mean monthly temperature (red) and mean monthly precipitation (blue) of the study area. In 
addition to the mean value (dashed line), the averaged daily minima and maxima are shown as vertical 
bars. The winter season is much drier and noticeably cooler than the summer. The diurnal temperature 
difference is often larger than the one over the year. 



 

Chapter 6 | Study area description 

17 
 

The data source used to compute the precipitation values is the Climatology Version 2011-Product 

of the Global Precipitation Climatology Centre (GPCC) in the 0.25° grid resolution version. Only 

those 0.25° x 0.25° tiles were considered that lie at least partially within the study area. The 

temperature measurements were provided by the web service climate-data.org. Only data from 

stations in or close to the study area were used for the analysis, including the monitoring stations 

in Ghanzi, Kang, Letlhakeng, Molepolole and Serowe. 

Botswana’s topography is pronounced only weakly and has an average elevation of 1’000 m 

above sea level (Food and Agriculture Organization of the United Nations (FAO)). Data from 

ASTER GDEM was used to obtain the elevations and slopes present in the study area. GDEM is 

a global digital elevation map product generated by the ASTER instrument of the Terra satellite 

with a spatial resolution of 30 m. It is made available by the Ministry of Economy, Trade, and 

Industry (METI) of Japan and the United States National Aeronautics and Space Administration 

(NASA). According to this data, more than 95 % of the study area has elevations of 950–1’300 

m (above sea level). and slopes smaller or equal than 10°. Thus, areas inaccessible to animals are 

unlikely or at least very rare. 

According to GlobCover (2009), a global land cover map produced by the European Space 

Agency (ESA), the prevailing part of the study area is classified roughly as grassland. A more 

detailed land cover analysis of the study area revealed that this grassland is in fact a mixture of 

open scrubland and open herbaceous vegetation (Mishra et al. 2015). Typically, representatives 

of the species Acacia can be found (Food and Agriculture Organization of the United Nations 

(FAO); Weilenmann et al. 2010). Some regions dominated by cropland are observable in the 

south-eastern edge of the study area, which are actually grazing areas used by the livestock of 

local farmers (Schiess-Meier et al. 2007). 
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III Home range analysis 

7 Theoretic background 

7.1 The concept of home ranges 

The home range is “[…] that area traversed by the individual in its normal activities of food 

gathering, mating, and caring for young. Occasional sallies outside the area, perhaps exploratory 

in nature, should not be considered as in part of the home range” (Burt 1943: 351). This definition 

from William H. Burt is, despite some criticism, still widespread and constitutes the basis of the 

home range concept. It rests on an observation made by Darwin (1861 in Börger et al. 2006) that 

animals usually restrict their movements to certain areas that they use repeatedly over time, rather 

than wander around the landscape randomly (Börger et al. 2008; Burt 1943; Fieberg & Börger 

2012; Kie et al. 2010). 

The afore-mentioned criticism mainly concerns three points of the definition: First, it contains 

vaguely defined terms such as “normal activities” or “occasional sallies” which are hard to 

substantiate in an ecologically meaningful way (Kie et al. 2010; Millspaugh & Marzluff 2001). 

Secondly, it leaves open how to delineate the actual boundary of the home range (Kie et al. 2010). 

And thirdly, it fails to incorporate the temporal dimension, although Burt himself stated that a 

home range may change over time (Burt 1943; Hansteen et al. 1997). Those deficiencies gave rise 

to an adjusted home range definition, which assigns individual probabilities of occurrence to 

certain parts of the home range (Katajisto & Moilanen 2006; Millspaugh & Marzluff 2001). This 

alternative perspective not only allows to exclude ecologically not meaningful parts of the home 

range, as proposed by Burt (1943), but also expands this idea by implying that even within the 

meaningful part of the home range some areas may be more important than others. 

Assuming that an animal spends more time in areas of its home range that are more important to 

it (and thus will be sampled more often there) enables to measure their relevance by the density 

of the coordinate points (Benhamou & Cornélis 2010). This results in a density or utilization 

distribution (UD) (Gitzen et al. 2006) throughout the whole home range, which was defined by 

Van Winkle (1975: 118 in Seaman & Powell 1996) as “[…] the two-dimensional relative 

frequency distribution for the points of location of an animal over a period over time”. Strictly 

speaking, the restriction to a two-dimensional frequency distribution is neither computationally 

nor ecologically necessary. Because both the time and elevation can contribute to a more 

comprehensive understanding of a movement pattern, the UD could also be enhanced to three or 

four dimensions for certain applications (Keating & Cherry 2009). Compared to Burt’s definition, 

which implicitly assumes a homogeneous UD for the whole home range, the varying UD provides 



 

Chapter 7 | Theoretic background 

19 
 

useful additional information about the habitat usage of the subject of investigation (Benhamou 

2011; Fieberg & Kochanny 2005). 

It is not always sensible to use all measurement points for the home range estimation, since even 

GPS collars can occasionally provide imprecise or erroneous fixes (Hebblewhite & Haydon 2010; 

Frair et al. 2010). Furthermore, the home range is intended to represent areas that are important 

to the animal (Burt 1943; Getz et al. 2007). By designating the home range as the area in which 

the probability of occurrence of an animal is higher than or equals a certain percentage value, one 

can avoid unwanted outliers and thus returns Burt’s definition of a homogeneous UD (Seaman & 

Powell 1996). Although ecologically hardly justifiable (Börger et al. 2006), the home range is 

delineated through the 95 % (Börger et al. 2006; Fieberg & Kochanny 2005; Getz et al. 2007) and 

50 % isopleth (Downs & Horner 2008; Fieberg & Börger 2012; Lichti & Swihart 2011) by 

convention. The latter is also called core area (i.e. areas of more intense activity). For home range 

estimators that do not produce a UD, usually a percentage of points farthest away from the 

centroid of all points is excluded (Hayward et al. 2009; Laver & Kelly 2008; Marker & Dickman 

2005; Weilenmann et al. 2010). 

In this thesis, the term “core area” refers specifically to the 50 % home range isopleth (MCP: hull 

around the 50 % of points being closest to the centroid), whereas the term “home range” refers to 

the general concept of home ranges. When the 95 % isopleth (MCP: hull around the 95 % of 

points being closest to the centroid) is meant specifically, the term “home range” is always 

accompanied by the percentage value (e.g. “95 % home range”). 

7.2 Temporal autocorrelation: Problem or asset? 

7.2.1 Definition 

When dealing with movement data and home range estimation, it is widely assumed that the 

individual points are independent of one another (De Solla et al. 1999; Swihart & Slade 1985a). 

Independence in this context means that a specific point is not determined or influenced in any 

way by prior position points. Or, in other words: “[…] an animal’s position … at time t + k is not 

a function of its position at time t” (Swihart & Slade 1985b: 1176). An animal whose sampled 

positions are completely independent would thus move in a random manner without any 

observable intention or primary direction. It is very unlikely that any animal, and lions or leopards 

in particular, would move in this manner (De Solla et al. 1999). Thus, movement data of real 

animals are temporally autocorrelated (Katajisto & Moilanen 2006). The degree of 

autocorrelation depends mainly on the sampling interval and the mobility of the animal under 

investigation. The sampling interval denotes the time that passed between two consecutive 

sampled positions. The shorter it is and the smaller the distance that an animal can at most move 

between two sampled positions (i.e. the lower its mobility), the higher the temporal 

autocorrelation (Hansteen et al. 1997; Huck et al. 2008; Swihart & Slade 1985a). 
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7.2.2 Effects 

Simulations revealed that increasing values of positive autocorrelation generally lead to smaller 

home range size estimations (De Solla et al. 1999; Hansteen et al. 1997; Swihart & Slade 1985b). 

Negative temporal autocorrelation is very unlikely to be observed with animal movement data, 

especially when using short sampling intervals, and has therefore not been investigated (De Solla 

et al. 1999). In order to obtain the same dataset with different degrees of autocorrelation, the 

sampling interval must be artificially varied by means of subsampling (e.g. exclude every third 

entry of the list with all points ordered by date and time). This either reduces the sample size or 

requires comparing time series of varying duration. In both cases, other factors than only temporal 

autocorrelation are changed as well and will influence the resulting home range size (De Solla et 

al. 1999; Perotto-Baldivieso et al. 2012; Swihart & Slade 1985b). Since data of real animals are 

usually more complex than the simplified simulations and are also affected by the above-

mentioned issues, there is no universally valid relation between autocorrelation and home range 

size (Hansteen et al. 1997). In addition, temporal autocorrelation does not affect all home range 

estimators to the same degree. Due to the assumption of temporally independent data, which is 

made by many statistical home range estimators (such as the conventional kernel density 

estimator), they are particularly affected by this issue (Katajisto & Moilanen 2006; Lyons et al. 

2013; Swihart & Slade 1985b). 

7.2.3 Ways to deal with it 

Although the concrete effect of temporal autocorrelation on a specific dataset and methodology 

is often unknown, it became a widespread approach to deal with this issue by simply eliminating 

it (Perotto-Baldivieso et al. 2012; Katajisto & Moilanen 2006). This was accomplished by 

enlarging the temporal gap between two fixes through subsampling. For large sampling intervals, 

it is likely that an animal has changed its movement directions several times so that the fixes can 

be considered as independent (De Solla et al. 1999; Katajisto & Moilanen 2006). The downside 

of reducing the sample size is that it can lead to an underestimation of the area of the home range. 

This, however, is actually intended to be avoided through the elimination of the autocorrelation 

(Katajisto & Moilanen 2006; Kie et al. 2010). More importantly, (positive) autocorrelation is an 

inherent characteristic of animal movement data. Removing it reduces the biological 

expressiveness of the data severely (De Solla et al. 1999; Hansteen et al. 1997; Huck et al. 2008). 

Because of that, the perspective has changed recently from regarding autocorrelation as a problem 

to considering it an asset that must be retained and included in the analysis (Börger et al. 2006; 

Downs & Horner 2012; Dürr & Ward 2014; Horne et al. 2007). 
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7.3 Selected home range estimators 

7.3.1 Minimum convex polygon (MCP) 

The minimum convex polygon (MCP) was the first method used for home range estimation and 

is despite its age still popular among ecologists (Downs & Horner 2008; Getz & Wilmers 2004; 

Huck et al. 2008). According to Laver & Kelly (2008), who investigated 141 studies related to 

home range estimation within 2004 to 2006, 68 % (96 studies) of them used MCP. One reason 

for this is the simplicity of this method. Having a group of fixes for an animal, the minimum 

convex polygon (also known as convex hull in computational geometry) can be built by 

connecting adjacent exterior points of the group, so that the resulting polygon is as small as 

possible but includes all points. When connecting the exterior points, the angle created through 

three adjacent points must be smaller than 180 degrees at the inner face (Figure 7) (Burgman & 

Fox 2003). 

 

Because no parameters have to be set for the construction of the home range, MCP is often thought 

to be particularly appropriate for the comparison of results across studies (Hansteen et al. 1997; 

Huck et al. 2008). Several more recent studies refuted this argument since the results of MCP 

depend highly on the sample size and presence of outliers (Börger et al. 2006; Downs & Horner 

2008; Millspaugh & Marzluff 2001). Another disadvantage of MCP is the implicit assumption 

that an animal’s home range has a convex shape. This not only cannot be justified ecologically, 

but also leads to a massive overestimation of the true area when the fixes are unevenly distributed 

in space (e.g. U-shaped) (Börger et al. 2006; Burgman & Fox 2003; Fieberg & Börger 2012; Huck 

et al. 2008). However, the influence of the sample size and degree of the overestimation may not 

be severe or present at all for certain data (Nilsen et al. 2008). Attempts to reduce the sensitivity 

 

Figure 7. Construction of the minimal convex polygon from a group of spatial points. All of the points (blue 
polygon) are included by the hull and each angle between three consecutive points, when looking from the 
interior of the polygon, is smaller than 180 degrees (i.e. convex). For the green polygon, 5 % of the points 
farthest away from the centroid were excluded (in this case: one point). 
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of minimum convex polygons to outliers are premised on the exclusion of extreme points, e.g. the 

exclusion of the 5 % of the points farthest from the centroid built by all data points, which is then 

labeled as “95 % MCP” (Figure 7) (Börger et al. 2006). 

7.3.2 Kernel density estimation (KDE) 

Unlike MCP, whose construction is based purely on geometry, a kernel density estimator (KDE) 

is a probabilistic method that was introduced to ecological applications by B. J. Worton in 1989 

(Börger et al. 2006; Laver & Kelly 2008). The broad field of applications of KDE and its 

improvements compared to MCP, while still being relatively simple to compute, made it the most 

often used estimator in current home range studies (Lichti & Swihart 2011; Millspaugh & 

Marzluff 2001). Having a group of spatial points (representing an animal’s measured positions), 

the basic idea of KDE is to calculate (most often two-dimensional) probability densities for 

several positions that are distributed at regular intervals over the area determined by the group of 

points. The sum of these individually calculated and partially overlapping probability densities at 

a position x results in the value of the utilization distribution at x (Figure 8) (Keating & Cherry 

2009; Seaman & Powell 1996). In mathematical terms, the previous description is expressed as 

𝑈�̂�𝑥 =  
1

𝑛ℎ
 ∑ 𝐾 (

𝑥 − 𝑋𝑖

ℎ
)

𝑛

𝑖=1

 (1) 

where 𝑈�̂�𝑥 is the estimated utilization distribution at a defined position x, n is the number of fixes, 

h is the bandwidth, K is a kernel function, x is the position at which the probability density is 

estimated, and Xi represents the coordinates of the ith animal measurement point (Keating & 

Cherry 2009; Millspaugh & Marzluff 2001; Seaman & Powell 1996). 

The estimated UD describes how intensively an animal uses its space at any position through a 

bivariate probability density function. The binary home range boundaries can be derived from 

this density function by delimiting the areas of the UD that contain a certain proportion of its 

volume, and drawing the maximum extent of these areas as borders projected on the ground 

(Seaman & Powell 1996). In order to delimit the respective areas of the UD, one has to start at 

the highest densities and then proceed downwards until the volume threshold (e.g. 95 %) is 

reached. 
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Bandwidth selection 

The most influential parameter for the shape of the resulting UD is the bandwidth or smoothing 

parameter h (Downs & Horner 2008). The bandwidth determines whether and how strong fixes 

contribute to the density estimates depending on their distance to the current position of the kernel 

by varying its width (Kie et al. 2010; Millspaugh & Marzluff 2001). A small value of h leads to 

narrow kernels, whereby nearby fixes have a more pronounced influence on the density estimate, 

 

Figure 8. Illustration showing the functioning of KDE. a) Fixes of one or several animals serve as input data, 
for which multiple density distributions are being calculated and summed up to one overall utilization 
distribution (UD). b) 2-D view of the UD, where the color encodes the density (yellow: low, red: high). c) 
Illustration of the UD as a 3-D surface where the z-axis represents the density. 
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while fixes further away are more likely to fall outside the kernel or have only a minimal impact 

(Seaman & Powell 1996). Although a small bandwidth helps exposing small-scale detail, it also 

causes the UD to break into its constituent kernels and thus creates artifacts of the sampling 

process and underestimations of the home range size. Larger bandwidths, on the other hand, reveal 

the general shape of the distribution but may result in oversmoothing (i.e. the loss of local peaks 

and valleys) and overestimation of the home range size (Gitzen et al. 2006; Jones et al. 1996; 

Keating & Cherry 2009; Millspaugh & Marzluff 2001; Seaman & Powell 1996). 

A variety of methods exist to choose the smoothing parameter, whereby each of them is optimal 

only for a specific kind of data (Lichti & Swihart 2011; Kie et al. 2010). Therefore, the choice of 

the bandwidth should depend on an animal’s space use properties, where known (Gitzen et al. 

2006). The reference bandwidth (abbreviated as REF) is one of the earlier methods to estimate 

the smoothing parameter and can still be found sometimes in recent studies (Börger et al. 2006; 

Gitzen et al. 2006; Lichti & Swihart 2011). It derives h from the standard deviation of the input 

points, which are supposed to follow a unimodal normal distribution (Huck et al. 2008; Seaman 

& Powell 1996). Thus, the better the points follow this distribution, the better REF will perform. 

Since most real animals violate this assumption, REF often oversmooths the UD and thus 

overestimates the true home range size (Gitzen et al. 2006; Huck et al. 2008; Millspaugh & 

Marzluff 2001; Seaman & Powell 1996). 

The currently most often used method for bandwidth selection is called least-squares cross-

validation (LSCV) (Laver & Kelly 2008). Like the biased cross validation (BCV) or smoothed 

cross-validation (SCV) methods, it belongs to the category of cross-validation (CV) techniques 

(Duong & Hazelton 2005). The basic idea of the CV techniques is to set a value for h that 

minimizes the deviation between the estimated and true density distribution. To achieve this, the 

methods iteratively tests different bandwidths and seek to minimize the (asymptotic) mean 

integrated squared error (Duong & Hazelton 2005; Gitzen et al. 2006; Millspaugh & Marzluff 

2001; Seaman & Powell 1996). LSCV is the most widespread CV technique and provides 

bandwidths that are usually unbiased and more accurate than those of REF, but at the expense of 

a high variability (Jones et al. 1996; Millspaugh & Marzluff 2001). It also computes UDs that 

tend to be smoothed insufficiently. Although LSCV is thought to be particularly suitable for space 

utilizations of multiple disjoint clusters, the method cannot determine a bandwidth when an 

excessive number of fixes are close to or at the same position, causing it to fail (Gitzen et al. 2006; 

Kie et al. 2010; Millspaugh & Marzluff 2001). 

The solve-the-equation plug-in approach (PI) belongs to a second category of plug-in techniques 

(Duong & Hazelton 2005). It also attempts to analytically minimize the discrepancy between an 

estimated and a true density distribution (Millspaugh & Marzluff 2001). Unlike LSCV, PI 

accomplishes this by calculating an initial bandwidth h0 on the basis of the covariance matrix of 
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the fixes, which is then inserted into a function that calculates h1. The value of this h1 is then again 

plugged in a lower-derivative function, resulting in h2. This procedure can be repeated as often as 

desired although it is usually stopped after two stages (h3 as the final bandwidth) (Gitzen et al. 

2006). The performance of PI is comparable to the one of LSCV and can be somewhat better or 

worse depending on the input data (Gitzen et al. 2006; Lichti & Swihart 2011). PI tends to 

oversmooth the density distribution and its bandwidths may be slightly biased. On the other hand, 

its estimates are much less variable than those of LSCV (Gitzen et al. 2006; Jones et al. 1996; 

Lichti & Swihart 2011; Millspaugh & Marzluff 2001). Its main advantage against LSCV is 

probably the fact that it works regardless of the spatial configuration of the data. 

Choice of the kernel 

A second parameter of KDE that needs to be chosen is the kernel itself. When using a fixed kernel, 

the same bandwidth is applied to all data points. An adaptive kernel, however, adjusts the degree 

of smoothing in dependency of the spatial density of the data points. Regions with lower point 

densities (e.g. peripheral areas of the home range) are therefore smoothed more than those with a 

high density (Millspaugh & Marzluff 2001; Seaman & Powell 1996). In general, the fixed kernel 

is favored because it yields a lower bias in areas with low point densities (Gitzen et al. 2006; 

Millspaugh & Marzluff 2001). If one is interested primarily in the parts of the home range with a 

high UD, though, the adaptive kernel may be the better choice (Seaman et al. 1999). 

In addition to the kind of interaction between the kernel and bandwidth, the function of the kernel 

can also be varied. Popular options are the bivariate normal, biweight or Epanechnikov kernel 

(Laver & Kelly 2008). For the ordinary 2-D kernel density estimation, however, the choice of the 

kernel function has little or no effect on the results and is therefore not even reported in numerous 

studies (Gitzen et al. 2006; Kie et al. 2010; Laver & Kelly 2008). 

Problematic statistical assumptions 

Due to its high sensitivity on the value of the smoothing parameter, which depends both on the 

data itself and the method used for its estimation, the performance of KDE can vary considerably 

(Benhamou & Cornélis 2010; Getz & Wilmers 2004; Seaman & Powell 1996). The main 

advantages of KDE are that it does not assume a certain spatial distribution of the data points and 

provides a continuous utilization distribution instead of only a binary home range border 

(Hansteen et al. 1997; Seaman et al. 1999). In addition, it allows home ranges with multiple 

centers of activity (i.e. disjoint or disconnected home range regions) (Börger et al. 2006). 

Nevertheless, KDE has some problems to reproduce sharply delimited unused areas such as gaps 

or outer boundaries in certain cases (Getz & Wilmers 2004; Gitzen et al. 2006; Lichti & Swihart 

2011). Another conceptual problem of using KDE with movement data arises because it assumes 

independent points as input (Benhamou & Cornélis 2010; Downs & Horner 2012; Katajisto & 
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Moilanen 2006). As discussed in Chapter 7.2, particularly movement data sampled at short 

temporal intervals are highly temporally autocorrelated and therefore not independent. 

7.3.3 Time local convex hull (t-LCH) 

Local convex hull (LCH) can be seen as a mixture of the generalized MCP and the KDE approach 

developed by Getz & Wilmers (2004; Huck et al. 2008). Just as KDE, it places individual kernels 

over each point. However, these kernels are not parametric but get their shape directly from the 

spatial distribution of the points by constructing them as minimum convex polygons. (Getz et al. 

2007). The creation of these convex polygons represents the first step of the LCH approach. 

Afterwards, these polygons are merged one by one in order to obtain the home range. Each of the 

single hulls uses only a fraction of all points as its neighborhood, which is selected according to 

a specific rule (Lyons et al. 2013). The steps of this procedure are illustrated in Figure 10. 

Selecting a neighborhood: k-, r- and a-method 

One rule for choosing the neighborhood of each single hull is based on the number of enclosed 

points k (applied in Figure 10b). Thus, each local hull is constructed around the selected point 

itself and its k-1 closest neighbors (Figure 9 A) (Getz & Wilmers 2004). According to this rule, 

higher point densities will lead to smaller polygons. We will term this version of the LCH method 

subsequently as the k-method. A second rule, called r-method, uses all neighbors within a distance 

r from the selected point for its local hull (Figure 9 B) (Getz et al. 2007). Although the search 

radius (kernel) has always the same size by definition, the area and shape of the hulls themselves 

will vary due to the convexity-requirement. The third rule, the a-method, includes all neighbors 

whose summed distances to the selected point are less or equal to a threshold value a (Figure 9 

C) (Lyons et al. 2013). This method involves the prior calculation of the distances to all neighbors, 

which are then ordered and summed up one, by one beginning from the smallest distance (Getz 

et al. 2007). 

 

 

 

Figure 9. Illustration of the three methods to select a neighborhood: (A) k-method, (B) r-method and (C) a-
method. From additional files of Lyons et al. 2013: 7. 
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After having constructed the individual hulls, they need to be merged in order to obtain the home 

range. This step varies according to the chosen neighborhood method. For the k-method, the hulls 

with the smallest areas indicate the most frequently used regions of the home range, which 

therefore should be preserved in each isopleth (Getz et al. 2007). This is why the hulls are sorted 

by their area before the approach starts with the smallest hull and continuously selects the next 

larger one, merging their areas (see Figure 10c)). This process of repeatedly building the union of 

the individual hulls stops as soon as a defined percentage of all points is covered by the united 

area. In order to build the 95 % home range, 95 % or all points need to be covered (Getz & 

Wilmers 2004). Because all hulls have a similar size when using the r-method, the hulls are 

ordered by the number of points contained. Hulls including the same number of points are sorted 

by their area. Starting from the hull with the most points (and the smallest area as a secondary 

criterion), the union is constructed in the same way as for the k-method (Getz et al. 2007). If the 

neighborhood was chosen by using the a-method, the hulls that include the most points are 

indicative of often used areas. Thus, as for the r-method, the hulls are sorted by the number of 

contained points (Getz et al. 2007; Lyons et al. 2013). 

Rules to set the value of k, r and a 

There are three ways to choose appropriate values for the neighborhood parameter. If the true 

topology is known, the minimum spurious hole covering (MSHC) rule can be applied. It requires 

selecting the smallest value of the parameter for which the home range isopleths match the true 

topology best (Getz & Wilmers 2004; Lyons et al. 2013). While the MSHC rule is suitable for 

simulated home ranges, the true topology is unknown when investigating real animals. In that 

case, the topography of the study area together with ecological knowledge about the animal under 

investigation can be utilized. If the animal is known to avoid certain large physical features such 

as lakes or hills, the parameter should be chosen so that the estimated home range leaves these 

features out (Getz & Wilmers 2004; Getz et al. 2007). If a study area lacks such large-scale 

obstacles or the ecology of the animal is not known well enough, a third method of parameter 

estimation is to plot the parameter value against the home range area. While the curve will be 

steep for small parameter values because spurious holes are filled, it will level-off at a certain 

point, before the gradient of the curve will increase again due to the erroneous inclusion of real 

holes (Getz et al. 2007). Such plateaus indicate proper estimates for the parameter value (Getz et 

al. 2007; Lichti & Swihart 2011). Instead of computing the local convex hulls for a vast number 

of parameter values, Getz (2004) suggests to use the following rules of thumb in order to get an 

idea of their magnitude. 

 k: equals the square root of the number of data points 

 r: having all nearest neighbor distances between 2 points calculated (i.e. the straight line 

that connects a point with its closest neighbor), r equals half the largest occurring distance 

 a: equals the distance of the two points furthest apart from each other 
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Adding the temporal dimension: t-LCH 

LCH ignores the timestamps of the point data by selecting the neighborhood exclusively on the 

basis of a 2-D Euclidean space. Lyons et al. (2013) developed an extension of the approach, called 

time local convex hull (t-LCH), which expands this 2-D space to a third dimension by including 

the time. The respective metric is called time-scaled distance (TSD) and defined as 

𝑇𝑆𝐷𝑖𝑗 = √∆𝑥𝑖𝑗
2 + ∆𝑦𝑖𝑗

2 + (𝑠𝑣𝑚𝑎𝑥∆𝑡𝑖𝑗)2 (2) 

where i and j denote the two points between which the TSD is calculated, x and y are the projected 

coordinates of the points, s is a dimensionless scaling factor, vmax the maximum theoretical 

velocity and t the timestamp of a point. s can be seen as parameter to adjust the influence of the 

 

Figure 10. a) The data points of the sample dataset. b) Illustration of the first step of the LCH estimator, 
which consists of building hulls for each data point, whereby its neighborhood can be chosen according to 
three methods (Figure 9). Here, the k-method was applied. c) The isopleths can be constructed by drawing 
the boundary around the hulls with the smallest areas, which contain X % of all points. 
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time on the TSD (Dürr & Ward 2014). When s = 0, the TSD is reduced to its two spatial 

dimensions and thus corresponds to the metric of the conventional LCH. vmax can be chosen on 

the basis of ecological expert knowledge or calculated from the data (Lyons et al. 2013). 

The selection of the neighborhood and construction of the isopleths works in the same way as 

described for LCH, except that t-LCH deals with time-scaled distances. This often leads to the 

situation that, e.g. for the k-method with k = 5, not the five spatially closest points will be selected 

as a neighborhood because they were recorded much later and are therefore located temporarily 

far away. The TSD does not alter the subsequent step of sorting the hulls when using the same 

criteria as for LCH but offers additional sorting criteria (Lyons et al. 2013). 

Advanced geometric estimator without a continuous UD 

Both LCH and t-LCH make no assumptions about the spatial distribution of the data but rather 

form their kernel according to the data (Getz et al. 2007; Huck et al. 2008). This characteristic 

enables local convex hull based methods to take into account regions of the home range that are 

inaccessible for or not used by the animal anyway (Benhamou & Cornélis 2010; Getz & Wilmers 

2004; Getz et al. 2007). However, since LCH and t-LCH are non-statistical estimators, they 

cannot model the spatial uncertainty (Lyons et al. 2013). Another drawback is that due to a lack 

of a probability density function a continuous UD cannot be obtained. In addition, only a limited 

number of isopleths can be generated (particularly with a low number of points n) and the smallest 

possible isopleth is limited to 3/n*100 % (Lichti & Swihart 2011). Similar to the bandwidth of 

KDE, the choice of the optimal neighborhood parameter is difficult and somewhat subjective. To 

mitigate this issue, the a-method is usually applied because it is very stable over broad value 

ranges (Getz & Wilmers 2004; Getz et al. 2007; Huck et al. 2008). 

The main advantage of t-LCH is the inclusion of the temporal dimension. Simulations have shown 

that this leads, especially for complex patterns, to a better reproduction of movement paths (Lyons 

et al. 2013). t-LCH also allows the computation of additional metrics for deepened analyses such 

as the frequency or duration of visits at a certain position of the home range. Because these metrics 

are sensitive to gaps or bursts in the data, a regular sampling interval is essential to avoid biased 

results. A main disadvantage of the temporal extension of LCH is the additional parameter s. Its 

value is not only largely subjective, but also impedes the choice of the neighborhood parameter 

due to the abstractness of the TSD (Lyons et al. 2013). 

7.3.4 Biased random bridges (BRB) 

Based on Brownian motion 

Instead of analyzing a set of points to estimate the home range, the Brownian Bridge (BB) 

approach models the movement trajectory to estimate the UD (Byrne et al. 2014; Kranstauber et 

al. 2012). Since only individual fixes are known, the trajectory must be estimated. Without any a 

priori knowledge of the true motion pattern, a reasonable approximation is to model it by using 



 
Part III | Home range analysis 

30 

 

Brownian motion (Horne et al. 2007; Kranstauber et al. 2012). For this kind of movement, the 

directions taken at previous time steps have no impact on the direction taken at a given time. Thus, 

a series of independently chosen directions finally lead to a random walk between two subsequent 

fixes (Codling et al. 2008; Horne et al. 2007). Mathematically, the space use density between two 

fixes follows a bivariate normal distribution and is expressed as1 

𝜑(𝑧;  𝜇, 𝜎2) =
1

2𝜋𝜎2
𝑒𝑥𝑝 [

−(𝑧 − 𝜇)2

2𝜎2
] (3) 

with 

𝜇(𝑡) = 𝑎 +
𝑡

𝑇
(𝑏 − 𝑎) 𝜎2(𝑡) =

𝑡(𝑇 − 𝑡)

𝑇
𝜎2

𝑚 (4) 

where z denotes any position in a two-dimensional space, µ the mean value, σ2 the variance, a the 

(two dimensional) starting position of a segment between two successive points, b the (two 

dimensional) ending position, T the duration of the segment and t the evaluation time (ranging 

between 0 and T). σ2
m represents the variance of the Brownian motion and is termed diffusion 

coefficient (Horne et al. 2007). Without going into detail, which is discussed extensively in Horne 

et al. (2007) and Bullard (1991), the density function of Brownian bridges (dfBB) at a position z is 

defined as 

𝑑𝑓𝐵𝐵(𝑧) =
1

𝑇𝑡𝑜𝑡
∑ {∫ 𝜑(𝑧; 𝜇𝑖(𝑡), 𝜎𝑖

2(𝑡))𝑑𝑡
𝑇𝑖

0

}

𝑛−1

𝑖=0

 (5) 

where Ttot is the total time span of all data points and n the number of points. 

According to equation (5), the density function of Brownian bridges depends on the spatial 

position and time of the data points, the spatial uncertainty of the fixes and the diffusion 

coefficient (Horne et al. 2007). The latter parameter (σ2
m) is a key driver in the Brownian bridge 

model and quantifies how diffusive or irregular the path of an animal is (Byrne et al. 2014; 

Kranstauber et al. 2012). Since the diffusion coefficient can be directly estimated from the 

trajectory itself, it depends on the mobility of the animal under investigation (Bullard 1991; Horne 

et al. 2007). The variance term σi
2(t) inserted into equation (5) is zero at positions z that coincide 

with the two measured points of a segment and is maximal mid-way between them (Bullard 1991; 

Kie et al. 2010). The probability density shows the opposite pattern: It is minimal between the 

two points of a segment and maximal at their position (Bullard 1991; Kie et al. 2010). In fact, its 

                                                      
1 The original equation (3) in Horne et al. (2007) contains an erroneous square root around (2πσ2) which 

leads to maximum probabilities higher than 1. The error was found thanks to the help of Patrick Donà. 
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value is infinitely high because the coordinates of the points are known precisely. The solution to 

this problem is to treat the point positions a and b as not precisely known by applying a smoothing 

at the end by means of σi
2(t) (included in equation (5)) (Bullard 1991; Horne et al. 2007). Figure 

11 shows the general shape and distribution of probability densities of a Brownian bridge. In order 

to create a UD of a home range, the bridges between all segments are integrated and averaged 

over the total time span (Bullard 1991). 

 

 

Adding a directional bias 

A fundamental problem of the BB estimator is its assumption of random movement. If an animal 

moved really totally random, studying home ranges would be pointless (Benhamou 2011; Bullard 

1991). Thus, it is in fact necessary that the motion pattern deviates from this assumption. 

However, the coarser the sampling interval and the higher the mobility of an animal, the less 

realistic the assumption of the BB approach becomes (Byrne et al. 2014; Horne et al. 2007; Huck 

et al. 2008). In order to base the approach on a more realistic assumption, especially for coarser 

sampling intervals, Benhamou (2011) included a drift (i.e. a directional bias) into the Brownian 

motion and called the resulting home range estimator biased random bridges (BRB). 

Because of this drift, the likelihood of moving in a specific direction is not uniformly distributed 

anymore (Börger et al. 2008; Codling et al. 2008). Instead, the drift ensures that an animal rather 

moves in a preferred direction that is independently determined for each segment between two 

points (Benhamou 2011; Dürr & Ward 2014). Because of this added advection component the 

orientation and shape of the bridges is altered compared to Brownian bridges (see Figure 11): The 

stronger the drift, the longer and lower the biased random bridge is on average (Benhamou 2011). 

Mathematically, the space use density of these bridges is defined as follows: 

 

Figure 11. Schematic representation of a Brownian bridge between two fixes (black dots). The brightness 
of the gray tone corresponds to the value of the probability density. The highest values can be found close 
to the two points. From Downs & Horner (2012: 2). 
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𝜑(𝑧;  𝜇, 𝜎2) =
1

2𝜋𝜎2
𝑡𝑜𝑡

𝑒𝑥𝑝 [
−(𝑧 − 𝜇)2

2𝜎2
𝑡𝑜𝑡

] (6) 

The mean value µ stayed the same as for the Brownian bridge (see equation (4)) while the variance 

σ2
tot changed to 

𝜎2
𝑡𝑜𝑡(𝑡) = 𝜎2

𝑚𝑖𝑛 +
4𝑡 (1 −

𝑡
𝑇

)

𝑇𝑚𝑎𝑥
∗

𝐷 ∗ 𝑇𝑚𝑎𝑥

2
 (7) 

σ2
tot is the total variance, σ2

min the relocation variance, D the diffusion coefficient and Tmax an upper 

time threshold. The latter parameter ensures that segments of the trajectory, which are 

exceptionally large due to gaps, are not considered in the calculation (Benhamou 2011; Dürr & 

Ward 2014). Although both D and σ2
m term the diffusion coefficient, they are not equivalent as D 

equals σ2
m/2. The density function of the biased random bridges approach is defined as 

𝑑𝑓𝐵𝑅𝐵(𝑧) =
1

𝑇𝑡𝑜𝑡
∑ {∫ 𝜑(𝑧; 𝜇𝑖(𝑡), 𝜎2

𝑡𝑜𝑡𝑖
(𝑡))𝑑𝑡

𝑇𝑖

0

}

𝑛−1

𝑖=0

 (8) 

The detailed explanation of the BRB approach can be found in Benhamou (2011).  

Selection of parameters 

Tmax needs to be chosen according to the sampling interval present in the data, as all segments 

whose time span exceeds this threshold will get a diffusion coefficient of zero and hence will be 

ignored for the computation of the UD (Benhamou 2011; Dürr & Ward 2014). Therefore, Tmax 

should include all segments sampled at the regular intervals but exclude the ones that connect a 

large temporal gap. An upper limit of the parameter value is given by the serial autocorrelation, 

which is a basic requirement of the BRB approach (Benhamou 2011). 

As mentioned for the Brownian bridges, smoothing must be applied to avoid infinite values at the 

measured points. The same is true for biased random bridges approach (Benhamou 2011; Bullard 

1991). The smoothing parameter should take the uncertainty of a recorded position as well as the 

animal’s behavior into account, so that all potential positions of the individual at that time are 

included (Benhamou & Cornélis 2010). For GPS measurements of animals with a high mobility, 

the latter component is usually larger than the uncertainty of the fix. 

Advantages and drawbacks 

A main advantage of Brownian and biased random bridges is that they explicitly makes use of the 

autocorrelation in the data by analyzing trajectories instead of a set of points (Dürr & Ward 2014; 

Horne et al. 2007; Huck et al. 2008). Because of that, the approaches can deal with varying 

sampling intervals, which are rather the normal case than the exception (Horne et al. 2007). 
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However, at coarse sampling intervals, the basic assumption of the Brownian bridges estimator 

becomes quite unrealistic. The BRB approach on the other hand may be still applicable to such 

data because of its advection component (Benhamou 2011; Horne et al. 2007). A main limitation 

for both approaches is their dependence on sufficiently autocorrelated data, whereby a clear 

definition of a ‘suitable’ value is lacking. Thus, there is no clear demarcation between a sampling 

interval that is high enough and one that is too coarse (Benhamou 2011; Huck et al. 2008; Kie et 

al. 2010). 

7.4 Review of additional home range estimators 

The selected home range estimators for this study represent only a small fraction of all available 

methods. Some of them are introduced in this paragraph to provide a more comprehensive 

overview. A simple geometrically-based alternative to MCP is the α-hulls method. It is based on 

a Delaunay triangulation in which all lines longer than the average line length are deleted 

(Burgman & Fox 2003). Because of that, the α-hulls method is not restricted to a convex shape 

and may even account for large holes. Many authors, however, focus on extending the widely 

used location-based kernel density estimator. One of these extensions comes from Katajisto & 

Moilanen (2006) and is called time kernel. It is based on the conventional KDE but weights the 

individual fixes according to their temporal and spatial density: The higher these densities are, 

the lower the weight of the affected fixes. This allows to reduce the bias due to autocorrelation 

but also reduces the effective sample size and induces a higher degree of subjectivity (Katajisto 

& Moilanen 2006). These disadvantages are avoided by the product kernel approach of Keating 

& Cherry (2009), which treats time as a covariate for the kernel function following a wrapped 

Cauchy distribution. Another method, KDE-DT, is presented in Downs & Horner (2012). Other 

than the before mentioned extensions, KDE-DT ignores time and looks at trajectories rather than 

location points. It performs a Delaunay triangulation over which a modified KDE is being run. 

This modified KDE is restricted to the triangulation network and its fixes (instead of a regular 

grid that is overlaid over the fixes) and computes the distances between the fixes according to the 

shortest-path network distances. Whereas other movement-based estimators such as Brownian 

Bridges provide unrealistic results for very coarse sampling intervals, KDE-DT is still applicable. 

The downsides of the method are its limited accuracy for fine sampling intervals and the ignorance 

of time (Downs & Horner 2012). 

Instead of extending KDE, Downs et al. (2011) presents a method called time-geographic density 

estimation (TGDE) that is based on time-geographic techniques. In TGDE, a geoelliptical kernel 

is placed over two subsequent fixes and computes due to their spatial and temporal differences as 

well as the maximum velocity of the animal all places where the latter could have been 

theoretically. By shifting the kernel point by point and summing up the resulting density values, 

overall isopleths are obtained (Downs et al. 2011; Wall et al. 2014). A slightly modified version 
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of TDGE can be found in Wall et al. (2014) which estimates all parameters directly from the data. 

The main advantages of time-geographic techniques are their immunity against varying sampling 

intervals, the limitation of the kernel to regions that are reachable for the animal, and the 

ecologically derived smoothing. As a disadvantage, the results strongly depends on the value of 

the maximum velocity, which may be observed for a specific animal only infrequently (Downs et 

al. 2011). 

With Brownian bridges and biased random bridges, two representatives of mechanistic methods 

have already been discussed. Dynamic Brownian bridges are another extension to Brownian 

bridges developed by Kranstauber et al. (2012). As the movement pattern of an animal often varies 

over time, keeping the variance of the Brownian motion (σ2
m) constant during an entire trajectory 

may account for those variations inadequately. Therefore, by using an adjusted version of 

behavioral change point analysis (Gurarie et al. 2009), different values for the variance are 

calculated for different behavioral patterns (Kranstauber et al. 2012; Byrne et al. 2014). Instead 

of using only Brownian motion as a movement model, Börger et al. (2008) and Codling et al. 

(2008) provide an overview of more complex mechanistic models such as (biased) correlated 

random walks, Lévy walks, multiscaled random walks or reinforced random walks. Depending 

on the animal under investigation, these models may lead to more realistic results. 

8 Methodology 

The coordinates of all datasets were converted from WGS84 (EPSG: 4326) to the projected spatial 

reference system Cape / UTM zone 36S (EPSG: 22236) for all analyses of this study. 

8.1 Selection criteria for the home range estimators 

According to simulations, the performance of a home range estimator (HRE) largely depends on 

the spatial distribution of the data points (Downs & Horner 2008; Getz & Wilmers 2004; Horne 

& Garton 2006; Lichti & Swihart 2011). This is why the findings of studies that investigated the 

performance of different HRE were usually contradictory. Examples can be found in Downs & 

Horner (2008), Getz & Wilmers (2004), Getz et al. (2007), Lichti & Swihart (2011), Seaman & 

Powell (1999) or Wall et al. (2014). In order to evaluate the performance of the HRE for the 

present kind of data, simulations would be necessary that mimic the real data as closely as possible 

(Horne & Garton 2006). This, however, would require knowing the true home ranges, which is 

not possible. This is why it was not the goal to analyze the assumptions of each HRE to pick the 

“best” for the analyses. Instead, a variety of different methods were chosen that should provide a 

sound idea of possible estimations for this kind of data. 

An important criterion for the choice of the HRE was their relevance for ecological analyses. That 

means that the most often used methods should be included in this study which are the MCP and 

KDE approaches (Downs & Horner 2008; Laver & Kelly 2008; Lichti & Swihart 2011). In 
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addition, two conceptually different estimators were selected that incorporate the temporal 

dimension of the data. The time local convex hull (t-LCH) and biased random bridges (BRB) 

estimators, which are both relatively new, were chosen for this purpose. Although both the t-LCH 

and BRB approaches are at least methodologically more sophisticated, their complexity keeps 

within limits, which may be an important factor when being applied to routine ecological 

analyses. 

8.2 Temporal autocorrelation 

Whether the GPS data of the leopards and lions are temporally autocorrelated was tested by means 

of the Schoener’s ratio (t2/r2). The term t2 represents the mean squared distance between 

subsequent fixes, whereas r2 is the mean squared distance between each single fix and the center 

of activity (Swihart & Slade 1985b). It has been shown through simulations that the expected 

value of t2/r2 for independent successive observations and a large sample size is close to 2. Values 

larger than 2 indicate negative autocorrelation, values smaller than 2 positive autocorrelation (De 

Solla et al. 1999; Swihart & Slade 1985b). More details can be found in Swihart & Slade (1985b) 

and De Solla et al. (1999). 

The Schoener’s ratio was calculated using the package adehabitat (Calenge 2006) in R (R Core 

Team 2015). Due to memory constraints, the datasets of the lions had to be reduced to 15’000 

records. Since some of the datasets include several distinctively different sampling intervals, the 

ratio was calculated for each of them separately. The dataset of the leopard Mothamongwe for 

example includes fixes at a sampling interval of 5 h and 90 min. Therefore, one ratio has been 

calculated for the fixes having the coarse and a second one for the higher sampling interval. 

8.3 Uncertainty of collar data 

Theoretically, state-of-the-art GPS systems allow horizontal position errors of 3 to 30 m (Lewis 

et al. 2007; Tomkiewicz et al. 2010). Depending on factors such as canopy closure, topography 

and collar orientation, position fixes may not only fail but also be biased and thus result in larger 

errors (Frair et al. 2010; Swanepoel et al. 2010). To quantify the accuracy of the leopards and 

lions GPS data, their mean deviation from the centroid was calculated by means of the following 

formula: 

𝑒𝑟𝑟𝑜𝑟 =  
1

𝑛
√∑[(𝑥𝑖 − �̅�)2 + (𝑦𝑖 − �̅�)2]

𝑛

𝑖=1

 (9) 

where n is the number of records, xi and yi the ith x- and y-coordinate, and x̄ and ȳ the mean x- and 

y-coordinates of the whole dataset. Eight datasets from different collars of the two types GPS 

Plus Iridium and Vertex Survey Iridium (Vectronic Aerospace GmbH, Berlin, Germany) were 

available for the error analysis (Table 4). 
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Table 4. Overview of the datasets to quantify the GPS error. “Vertex” designates the Vertex Survey Iridium 
collar and “GPS Plus” the GPS Plus Iridium collar. 

Dataset No. of days Sampling interval [h] No. of records 

Vertex 1 10 3   38 

Vertex 2 10 3   37 

Vertex 3 12 3   48 

GPS Plus 1   2 1   28 

GPS Plus 2   2 1*   29 

GPS Plus 3   2 1   25 

GPS Plus 4   2 1*   28 

GPS Plus 5 29 1 650 

*a minority of the records had a shorter sampling interval 

 

As shown in Table 4, most of the datasets include between 25 and 50 records. For one GPS Plus 

collar, a longer time series of 650 records was collected over 29 subsequent days. The collar was 

positioned near the LEC camp in KGR and not moved during the recording of the fixes. Note that 

all Vertex datasets were collected at a sampling interval of 3 h, while the GPS Plus collars have 

intervals of mostly 1 h. 

8.4 Two stages of home range analysis 

8.4.1 Effect of parameters and home range estimators 

Due to the high sensitivity of some of the home range estimators on their parameters and the 

resulting home range on the used estimator (Dürr & Ward 2014; Getz & Wilmers 2004; Seaman 

& Powell 1996; Wall et al. 2014), it is important to get an idea of the range of potential results. 

Therefore, the first step of the home range analysis involved the investigation of the effect of the 

parameters that have been varied and the influence on the HRE itself. A main goal was to quantify 

the influence of the choice of the parameter values and the home range estimator for this specific 

kind of data. A second purpose was to provide a basis of decision-making for the reduction of the 

data volume for the subsequent analyses. 

8.4.2 Differences between the individuals 

After having quantified the effect of parameters and methods, the results of the home range 

estimation were compared between the individual leopards and lions. The findings of the previous 

analysis (Section 8.4.1) were used to reduce the number of comparisons. For example, if the home 

ranges of t-LCH for a specific leopard fall into two categories whose members are highly similar, 

one representative per category was chosen for the comparison between the individuals. At least 

one and at most two results per home range estimator were picked for each individual. The 

intentions of this analysis step were to compare the home ranges with the literature of other 
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authors and to analyze their shape and temporal variability. Finally, the differences between the 

leopards and lions as well as their interactions were discussed. 

The temporal partitioning of the dataset is based on ecological expert knowledge. The climate 

data shown in Chapter 6 indicates a warm and wet season during the hemispherical summer and 

a cold and dry season during winter. One of the determinants for carnivores is the abundance of 

prey, which in turn depends on the availability of consumable plants and drinking water (Leopard 

Ecology & Conservation 2014; Tumenta et al. 2013; Winterbach et al. 2014). As the latter two 

follow the seasonal climatic variation, it is a key driver for the leopards and lions as well. Thus, 

in consultation with Stephen Henley2, two ecologically relevant seasons have been defined: June 

to September and November to April. The months May and October constitute the transition 

between these two seasons and are highly variable. They are therefore excluded. For each HRE 

and individual several home ranges were calculated on the basis of their yearly seasons. The 

kernel density estimator using the reference bandwidth was chosen to compute the seasonal home 

ranges due to its tendency to oversmooth (see Sections 10.1.1 and 10.2.1). This characteristic 

ensures that the temporal variation is affected as little as possible by an inconsistent behavior of 

the HRE whose variations are mainly due to its functioning instead of real changes. The seasonal 

home ranges of all years of observation were compared to detect seasonal and other temporal 

changes. 

8.5 Selection of the parameters 

8.5.1 MCP 

The percentage of points used for the computation of the convex polygon had to be set. For the 

computation of the home range, the commonly used values of 95 and 50 were chosen. 

8.5.2 KDE 

Smoothing parameter 

Four different methods were selected to derive the bandwidth h from the data: Reference 

bandwidth (REF), Solve-the-equation plug-in (PI), Biased cross-validation (BCV), and Smoothed 

cross-validation (SCV). It was initially planned to include the least square cross-validation 

bandwidth estimator as well. A preliminary analysis, however, revealed that the deficiency of 

LSCV to compute a result for points that are close together (see Section 7.3.2) inhibited its 

utilization. 

While the whole dataset was used for the bandwidth estimation for the leopard data, it had to be 

reduced by half for the lions (with points selected randomly). Otherwise the algorithms 

                                                      
2 Personal communication on April 28, 2015. Dr. Stephen Henley works as field coordinator and researcher 

for LEC in Botswana. 
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implemented in the R package ks were not able to determine a value. The only exception is the 

reference bandwidth, which is simple to compute and therefore managed to use the whole dataset 

for the lions, too. A brief analysis was carried out (see Appendix A.1) to estimate the effect of the 

reduced sample size on the resulting bandwidth computed by PI, BCV and SCV. In this analysis, 

for each of the leopards, the resulting smoothing parameters (PI, BCV and SCV) were calculated 

when using the full and the half dataset. The bandwidths for the reduced datasets were calculated 

10 times for each leopard in order to take possible fluctuations into account that may occur due 

to the random point selection of the subset. From the range of the resulting ratios between the 

bandwidth for the complete and the reduced dataset, the most conservative ones were used as 

correction factors. Thus, the estimated smoothing parameters for the lions were multiplied by the 

following correction factors: PI: 0.817, BCV: 0.902, SCV: 0.796. The resulting bandwidths for 

the KDE approach are listed in Table 5 for the leopards and in Table 6 for the lions. 

Table 5. Smoothing parameters for the kernel density estimator (KDE) for the leopards. 

Leopard hREF hPI hBCV hSCV 

Ronja 2126.9   922.8 2022.5   881.3 

Mothamongwe 1614.8   820.8 1488.1   843.9 

Bogarigka 3093.5 1183.8 2861.6 1187.3 

Gham 2015.7   966.7 1945.8   961.4 

 

Table 6. Smoothing parameters for the kernel density estimator (KDE) for the lions. 

Lion hREF hPI hBCV hSCV 

Verity 2873.9 1229.7 2793.5 1171.6 

Ella 2132.4   919.7 2102.0   869.6 

Jane 2759.8   985.3 2676.7 1023.0 

Hitchcock 3270.8 1356.4 3195.2 1308.8 

Mexico 1665.0   450.5 1628.1   422.3 

Madge 3080.0   680.7 2694.8   723.4 

Orange 1694.3   697.6 1665.2   663.5 

Getika 2173.3   842.6 2104.5   774.5 

 

Kernel 

The kernelUD-function of the R package adehabitatHR, which was selected to compute the KDE, 

allows to choose between the Gaussian and the Epanechnikov kernel function. According to the 

literature, the effect of the kernel function is negligible (Gitzen et al. 2006; Kie et al. 2010; Laver 

& Kelly 2008). This was also confirmed by an own brief analysis (see Appendix A.2), for which 

the volume of intersection (VI) between the UD provided by the two kernel functions (using hREF) 



 

Chapter 8 | Methodology 

39 
 

was calculated (for further information about the volume of intersection see Section 8.6.2). Index 

values between 0.92 and 0.95 indicate a negligible influence of the kernel function. Thus, a 

comparison of different functions was not carried out and all KDE calculations were performed 

using the Gaussian kernel.  

Although the kernel type (fixed or adaptive) does have a significant effect on the result, a fixed 

kernel was used for all KDE results. One reason for this decision is that the literature generally 

recommends to use this kernel type (Gitzen et al. 2006; Millspaugh & Marzluff 2001; Millspaugh 

et al. 2004; Seaman et al. 1999). A second reason is that the adehabitatHR package (and all the 

others that have been reviewed) supports only the fixed kernel. 

Grid and extent 

The extent parameter allows to determine how much larger the area is compared to the minimum 

bounding rectangle around all the points that is considered by the UD. The grid parameter controls 

the number of cells in each dimension for which individual UD values are calculated. The higher 

the value of these two parameters, the higher the computational effort. An extent-factor of 0.3 and 

a grid of 700 cells were set for all individuals. 

8.5.3 t-LCH 

Due to computational issues, only every second point of the lion datasets was used for the t-LCH 

approach. The algorithms of the R package tlocoh (used for the computation of t-LCH) could not 

deal with more than approximately 15’000 data points. In order to process a reasonably broad 

range of k- and a-values, 10’000 data points appeared to be the threshold. With more points, the 

memory of the computer was overloaded and R crashed. 

Thin out bursts 

t-LCH is one of the home range estimators whose results may be biased by strongly varying 

sampling intervals within a dataset. In order to reduce potential bias, the tlocoh package provides 

a tool to remove the most extreme bursts based on a threshold (subsequently called burst value). 

Its value was chosen so that at most 10 % of the data were discarded. 

Neighborhood selection: a- and k-value 

Of the three rules to select the neighborhood for the local convex polygons, the a- and k-rule are 

usually preferred over the r-rule due to their lower errors (according to simulations) and 

dependency on the exact neighborhood value (Dürr & Ward 2014; Getz et al. 2007; Lichti & 

Swihart 2011). For these reasons, the a- and k-method were selected to compute the t-LCH home 

ranges. 
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In order to choose an appropriate a- or k-value, a broad range of values needs to be calculated that 

can be analyzed subsequently. In a first step, the isopleth plots of the results were analyzed 

visually to narrow down the range of reasonable results. This means that neighborhood values 

that lead to very fragmented home ranges with a huge number of holes even in the 50 % core area, 

as well as values that result in massively “oversmoothed” home ranges lacking any level of detail 

got excluded. After that, the area of different isopleths (e.g. 95 %, 75 % and 50 %) was plotted 

against the neighborhood value. Sharp jumps in area indicate outliers and abrupt changes between 

relatively stable states. Whereas outliers were excluded from the list of appropriate neighborhood 

values, abrupt changes were used to partition the values into relatively homogeneous groups. As 

a third tool, the ratio of the total perimeter to the area was plotted against the a-/k-value. This plot 

shows how fragmented and patchy the isopleths are. Sharp jumps in this plot indicate 

neighborhood values at which spurious or legitimate holes are filled. Again, neighborhood values 

that indicate a transition between two stable states were excluded. Of the remaining range of 

values, two neighborhood values for both the a- and k-method were selected (using the isopleth 

plots) that represent a lower and upper bound. While the former provides a slightly fragmented 

but detailed view of the home range, the latter is rather oversmoothed and reduced to the most 

important features. 

Influence of time 

The parameter s is a scaling factor that controls the impact of the temporal difference between 

two fixes (Dürr & Ward 2014; Lyons et al. 2013). Since there is no optimal or right value for this 

scaling factor, the developers of the t-LCH approach recommend to start with an s-value that 

time-selects 60 % of the hulls and then try different values as well (Lyons et al. 2013). In this 

study, s-values were used that time-select 40, 60 and 80 percent of the hulls. In addition, an s-value 

of 0 was used, what actually eliminates the impact of time and results in the classical local convex 

hull (LCH) approach. 

Parameter overview 

Table 7 and Table 8 present the parameter values used for the t-LCH estimator for the leopards 

and lions, respectively. Two a- and two k-values were selected for each of the four s-values per 

individual. Thus, 16 home ranges were calculated in total for each leopard and lion using t-LCH. 
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Table 7. Parameter overview of the t-LCH approach for the leopards. The parameter values that were 
selected for the ecological analysis of the individuals are highlighted. 

Leopard burst value s a1, a2 k1, k2 

Ronja 0.60 

0 130’000, 220’000 95, 165 

0.023 160’000, 250’000 100, 150 

0.040 150’000, 220’000 95, 165 

0.096 160’000, 240’000 105, 135 

Mothamongwe 0.280 

0 100’000, 160’000 105, 135 

0.005 110’000, 300’000 70, 95 

0.010 150’000, 290’000 90, 140 

0.025 180’000, 260’000 95, 140 

Bogarigka 0.960 

0 240’000, 400’000 125, 210 

0.004 190’000, 300’000 125, 185  

0.009 200’000, 310’000 145, 205 

0.023 230’000, 350’000 155, 195 

Gham 0.985 

0 130’000, 240’000 90, 160 

0.0005 160’000, 270’000 115, 155 

0.0012 120’000, 220’000 135, 170 

0.0031 90’000, 170’000 115, 165 
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Table 8. Parameter overview of the t-LCH approach for the lions. The parameter values that were selected 
for the ecological analysis of the individuals are highlighted. 

Lion burst value s a1, a2 k1, k2 

Verity 0.990 

0 310’000, 490’000 160, 250 

0.002 190’000, 340’000 160, 230 

0.008 240’000, 340’000 170, 270 

0.022 290’000, 450’000 170, 250 

Ella 0.980 

0 300’000, 480’000 180, 290 

0.001 140’000, 210’000 190, 300 

0.005 160’000, 280’000 180, 280 

0.020 240’000, 320’000 170, 270 

Jane 0.980 

0 280’000, 500’000 150, 250 

0.003 160’000, 290’000 180, 310 

0.007 170’000, 290’000 170, 250 

0.022 190’000, 270’000 170, 260 

Hitchcock 0.990 

0 320’000, 440’000 150, 250 

0.002 140’000, 340’000 170, 250 

0.006 220’000, 310’000 180, 270 

0.025 240’000, 340’000 150, 270 

Mexico 0.987 

0 170’000, 370’000 110, 210 

0.002 160’000, 310’000 160, 250 

0.007 150’000, 270’000 150, 260 

0.028 190’000, 290’000 160, 270 

Madge 0.980 

0 200’000, 400’000 150, 280 

0.002 260’000, 380’000 160, 270 

0.005 240’000, 380’000 180, 250 

0.023 230’000, 400’000 180, 270 

Orange 0.495 

0 200’000, 420’000 140, 260 

0.004 160’000, 290’000 110, 220 

0.010 130’000, 290’000   90, 230 

0.038 180’000, 330’000 120, 230 

Getika 0.985 

0 210’000, 310’000 190, 340 

0.004 160’000, 320’000 160, 250 

0.018 230’000, 340’000 160, 300 

0.045 210’000, 310’000 190, 310 
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8.5.4 BRB 

Section 7.3.4 describes the principles of the biased random bridges approach in theory. In practice, 

BRB is usually approximated by a movement-based KDE. The reasons for that are mathematical 

difficulties in solving some of the differential equations (particularly due to the anisotropy of the 

diffusion coefficient) (Benhamou 2011; Börger et al. 2008). So far, the exact version of BRB has 

not been implemented in any known R package. Since the mathematical differences are quite 

small and the lack of the diffusion anisotropy negligible, the usage of the movement-based KDE 

is a valid approximation of BRB (Benhamou 2011). 

Smoothing parameter hmin 

Since BRB is a mechanistic rather than a statistic approach as (location-based) KDE is, its 

smoothing parameter hmin should be based on ecological grounds (Börger et al. 2008; Kie et al. 

2010; Wall et al. 2014). One component of hmin is the uncertainty of the position measurement. 

As presented in Section 9.2, the observed errors are between 2 and 15 m. Because the GPS error 

may be larger when the orientation of the collar is not ideal or the field of view between the 

satellites and the collar is restricted (e.g. animal lying under a tree), twice the maximum observed 

error (30 m) was selected for the uncertainty component. 

In order to quantify the second component of hmin (all potential locations at a specific time, see 

Section 7.3.4), the recommendation of Benhamou & Cornélis (2010) and Jay et al. (2012) was 

applied. It intends that half the distance that can be covered by an animal over a longer time period 

using its maximum transit velocity is added to the uncertainty component. “A longer time period” 

was defined as 30 to 120 minutes, depending on the sampling intervals present in a dataset, 

whereas the maximum travel velocity was defined as the 99th percentile of speeds found in a 

dataset. Thus, the value of the 99th percentile velocity found in the part of the dataset that was 

sampled at the most abundant sampling interval between 30 and 120 min was multiplied with the 

respective sampling interval. Then, half this distance was added to the 30 m of the uncertainty 

component to obtain the value of hmin. 

Due to the varying sampling intervals within a dataset the definition of hmin is somewhat 

ambiguous. For example, the lioness named Jane has two main sampling intervals of 30 min and 

60 min. While the maximum travel velocity does not depend much on the choice of taking 30 min 

or 60 min as the sampling interval (3.32 km/h vs. 2.87 km/h), the smoothing parameter almost 

doubles (860.7 m vs. 1463.5 m). Except for the choice of the sampling interval used to compute 

hmin, the formula of Benhamou & Cornélis (2010) and Jay et al. (2012) is only a general 

recommendation and may not be equally adequate in all cases. To take these issues into account, 

a range of values for the smoothing parameter was calculated. The value of hmin obtained by the 

above-mentioned formula served as a reference value that was reduced and increased in steps of 

20 %. Thus, hmin was scaled by a list of factors (e.g. [0.6, 0.8, 1.0, 1.2, 1.4]). The range of this list 
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was restricted manually so that only reasonable UD resulted that were not overly fragmented or 

oversmoothed. However, the BRB result using the unscaled smoothing parameter hmin was 

calculated for all individuals for comparison, even if it produced highly fragmented or 

oversmoothed results. 

Maximum time difference tmax 

Tmax determines the maximally allowed time difference between two consecutive fixes so that 

they are considered for the computation of BRB. It should be large enough to incorporate the 

regular sampling intervals of a dataset but small enough to exclude time differences that are too 

large to guarantee serial autocorrelation (Benhamou 2011). The results of Section 9.1 clearly 

showed that all regular sampling intervals fulfill the condition of autocorrelation. Therefore, the 

value of tmax was set to be large enough to incorporate the regular sampling intervals of the 

respective datasets. 

Minimum movement threshold lmin 

In the absence of binary activity data indicating resting times, a value needs to be selected for lmin. 

This parameter defines the minimum distance between two consecutive points so that the bridge 

built by them is considered as movement. The selection of lmin followed the suggestion of Dürr & 

Ward (2014), which used twice the value of the measurement uncertainty. For this study, a value 

of 30 m was set for lmin for all individuals. 

Number of segments for a bridge tau 

The approximation of BRB through movement-based KDE requires subdividing a single bridge 

into several steps of duration tau. For each of these steps a kernel density estimation is performed. 

As rules or guidelines for selecting a value for tau are lacking, a brief analysis was conducted to 

quantify the effect of its value. Thus, a variety of values for tau (1, 3, 6, 12 and 15 min) was used 

to calculate the area of the 50 % and 95 % home range isopleth for the four leopards. In a second 

step, the obtained areas for each individual were divided by the maximum value (separately for 

the 50 % and 95 % result). The resulting values show the difference between the largest and the 

smallest area (see Appendix A.3). The biggest observed difference was 1.5 % for the 50 % 

isopleth area of Bogarigka. All the other differences of the 50 % and 95 % isopleths were between 

0.1 % and 1.0 %. Therefore, the influence of tau was considered as negligible and a single constant 

value was used for each individual. A duration of 10 % of the smallest regular sampling interval 

was selected for the parameter tau. 

Grid and extent 

An explanation of the extent and grid parameters can be found in Section 8.5.2. The same values 

were used here as for KDE (extent = 0.3, grid = 700). 
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Parameter overview 

Table 9 and Table 10 give an overview of the selected parameters for the BRB approach for the 

leopards and lions, respectively. Different results per individual were calculated by varying the 

hmin factors in steps of 20 % of the reference smoothing value. 

Table 9. Selected parameters for the BRB approach for the leopards. The hmin factors are increased in steps 
of 0.2. The result using the reference value of hmin (1.0) was computed for every individual. 

Leopard hmin [m] hmin factors tmax [min] lmin [m] tau [min] 

Ronja 1246.4 0.6–1.6 310 30 12 

Mothamongwe 1924.2 0.4–1.4 310 30   9 

Bogarigka 1396.1 1.6–2.4 190 30   6 

Gham 1331.6 0.8–1.6 190 30   6 

 

Table 10. Selected parameters for the BRB approach for the lions. The hmin factors are increased in steps of 
0.2. The result using the reference value of hmin (1.0) was computed for every individual. 

Lion hmin [m] hmin factors tmax [min] lmin [m] tau [min] 

Verity   893.9 1.8–2.2 40 30 3 

Ella   925.4 1.4–2.2 70 30 3 

Jane 1463.5 1.2–2.0 70 30 3 

Hitchcock 1422.1 1.6–2.2 70 30 3 

Mexico 1123.9 1.6–2.4 70 30 3 

Madge 1479.2 1.6–2.4 70 30 3 

Orange 1768.7 0.8–1.6 70 30 3 

Getika   917.6 1.4–2.2 40 30 3 

 

8.6 Criteria of home range comparison 

For each of the home range estimators, the 95 % and 50 % isopleths were computed. For KDE 

and BRB, which result in a utilization distribution (UD), the UD was computed as well. A series 

of measures was determined to describe the resulting home ranges and allow comparisons 

between them. 

8.6.1 Home range descriptors 

The following measures were determined to describe the features of a 95 % or 50 % home range 

isopleth: 

 Area 

 Number of holes 

 Number of disjoint areas 

 Relative size of the 50 % core area to the 95 % home range 

 Compactness 
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The size of the area includes all polygons of a home range (in case several disjoint polygons are 

present) but does not count the area of holes, if present. A hole needs to have an area of at least 

0.25 km2 to be counted. This threshold was set to exclude spurious holes that are probably only 

an artefact of the HRE. A lower limit was also applied for the number of disjoint areas. They need 

to have an area of at least 1 km2, otherwise they were ignored. The relative size of the core area 

designates the size of the core area (50 % isopleth) in relation to the entire home range area (95 % 

isopleth). As a last measure, the compactness was computed. The compactness measure S used in 

this study is defined as 

𝑆 =  
4𝐴

𝜋𝐷2
 (10) 

with A being the area of the isopleth (areas of holes are included) and D the diameter of the 

smallest circumscribing circle around all (possibly spatially disjoint) parts of the isopleth (Ebdon 

1985). The compactness thus describes the ratio of the areas of the home range isopleth and the 

smallest circle that encircles the whole isopleth. It is an indicator of the ecological efficiency since 

a circle has the lowest perimeter at a given area (Ebdon 1985). Thus, such a home range allows 

an animal to reach every point of the area quickly and reduces the length of the perimeter that 

needs to be defended against intruders. 

8.6.2 Overlap measures 

Two measures of spatial overlap were calculated to quantify how well two home range results 

equal each other. The first of them is a spatial intersection of two isopleths stemming from 

different results. The overlapping area is divided by the areas of the respective isopleths to obtain 

the relative value of intersection. 

For those HRE that produce a utilization distribution (KDE and BRB), the intersection of their 

UD was computed as well. Other than the home range isopleths, which only inform about where 

an animal has been, the UD also informs about how frequently a specific region has been used by 

the animal (Fieberg & Kochanny 2005; Gitzen et al. 2006). Thus, an intersection of two utilization 

distributions also takes into account how frequently the overlapping regions have been used 

(Fieberg & Kochanny 2005; Millspaugh et al. 2004). Seidel (1992 in Fieberg & Kochanny 2005) 

developed an index called volume of intersection (VI) index that applies the idea of an intersection 

of UD. The values of this index range between 0 (no overlap) and 1 (complete overlap). Further 

details about the VI index can be found in Fieberg & Kochanny (2005) and Millspaugh et al. 

(2004). The VI index was applied as a second measure to quantify the overlap for KDE and BRB. 

A threshold of 95 % was used for the computation, which means that the 5 % of the UD with the 

lowest space use density were excluded from the intersection. 
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8.6.3 Coefficient of variation 

The coefficient of variation (CV) was used to summarize the results of the individual leopards 

and lions to exclude their impact on the performance of the HRE and their parameters. It divides 

the standard deviation by the average to normalize its value. This normalization allows to quantify 

the variation irrespectively of the absolute values. The CV was calculated for the area and 

compactness of the 50 % and 95 % isopleths of each HRE for each individual separately. 

8.7 Hardware and Software 

All analyses were done in R (version 3.2.0) (R Core Team 2015) using RStudio (version 0.99.442) 

as an integrated development environment (IDE). The programming software ran on a Windows 

8.1 (64 Bit) machine with 16 gigabytes of memory. Except for the basic functionalities provided 

by R, different additional packages were used for the different analyses. Table 11 gives an 

overview of the most important packages. 

Table 11. Summary of the most important R packages used for the analyses. 

R package Usage in this study 

adehabitat Computation of Schoener's ratio 

adehabitatHR Computation of MCP, KDE and VI index 

adehabitatLT Provides the data structure for BRB 

hab Calculation of the Euclidean distances between two individuals 

ks Estimation of bandwidths for KDE 

maptools Provides tools to manipulate spatial objects 

move Get basic movement measures 

rgdal Reprojection of the spatial reference system 

rgeos Computation of home range overlap 

sp Provides spatial data structures 

T-LoCoH Computation of t-LCH 

tripack Computation of shape measures 

 

9 Results 

9.1 Temporal autocorrelation 

The Schoener’s ratios t2/r2 shown in Table 12 (lions) and Table 13 (leopards) are clearly below 

the critical region around the value of 2. The highest value of the observed lions is 0.00998 for 

the part of the data of Orange that has been sampled at 60 min intervals. Since this value is much 

smaller than 2, the lion data can be regarded as positively autocorrelated. The Schoener’s ratios 

of the leopards are considerably higher than those of the lions, with a maximum value of 0.09582 

(Mothamongwe, 300 min.). This difference is caused by the coarser sampling interval: The lower 
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it is, the lower is the temporal autocorrelation and accordingly the higher is the Schoener’s ratio 

(De Solla et al. 1999; Swihart & Slade 1985b). Nevertheless, even the 5 h sampling intervals of 

the leopards lead to values well below the threshold of 2. Therefore, also the leopard data is 

positively autocorrelated. 

Table 12. Schoener's ratios for the different sampling intervals of the lions  

Individual Sampling interval [min] t2/r2 

Verity 30 0.00062 

Ella 
30 0.00098 

60 0.00320 

Jane 
30 0.00070 

60 0.00219 

Hitchcock 
30 0.00073 

60 0.00246 

Mexico 30 0.00247 

Madge 
30 0.00118 

60 0.00384 

Orange 
30 0.00349 

60 0.00998 

Getika 30 0.00149 

 

Table 13. Schoener's ratios for the different sampling intervals of the leopards. 

Individual Sampling interval [min] t2/r2 

Ronja 

120 0.00217 

180 0.02083 

300 0.02186 

Mothamongwe 
90 0.01807 

300 0.09582 

Bogarigka 
60 0.00240 

180 0.01389 

Gham 
60 0.00908 

180 0.04646 

 

9.2 Uncertainty of collar data 

The eight control datasets shown in Table 4 resulted in horizontal errors of 2.1 m to 15.0 m. The 

individual results are listed in Table 14. The dataset containing 650 records (GPS Plus 5) 

corresponds fairly well to the other, much smaller GPS Plus datasets. The Vertex datasets seem 

to have higher errors (4.9–15.0 m) than the GPS Plus datasets (2.1–7.6 m). Since the former 
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belong not only to a different collar type but were also sampled at a coarser sampling interval (3 h 

instead of 1 h), the cause for the discrepancy could not be determined. In addition, the low number 

of records of the datasets (except for GPS Plus 5) does not allow inferences about the statistical 

significance of the discrepancy. However, for the purpose of home range estimation, the 

magnitude of the errors is unobjectionable. 

Table 14. Horizontal errors of the eight control datasets. 

Dataset Horizontal error 

Vertex 1 15.0 m 

Vertex 2   4.9 m 

Vertex 3 11.4 m 

GPS Plus 1   2.2 m 

GPS Plus 2   2.2 m 

GPS Plus 3   7.6 m 

GPS Plus 4   2.1 m 

GPS Plus 5   2.3 m 

 

9.3 Effect of parameters 

9.3.1 KDE 

Table 15 shows the coefficients of variation of the KDE approach. The relative variations of the 

area are comparable for the 50 % and 95 % home range isopleths, with mean CV values of 13 % 

and 17 %, respectively. The difference of the compactness values is much more pronounced, with 

values of 13–85 % for the core area and 7–45 % for the 95 % isopleth. While the mean and median 

CV values are moderate for the compactness of the 95 % home range boundary, they are 

considerably larger for the core area. A Kruskal-Wallis test with the normalized areas and 

compactness indices (of both the 50 % and 95 % isopleths) was conducted to test whether the 

KDE home range estimates produced by the four different bandwidth estimators differ 

significantly. P-values smaller than 1.13*10-08 (χ2 between 39.89 and 158.29, df = 3) required to 

reject the null hypothesis (α = 0.05). Thus, there is a difference between the results of KDE. 

Table 15. Coefficient of variation values of KDE. A summary of the coefficients of all individuals is shown. 

 50 % 95 % 

CV measure Area [%] Compactness [%] Area [%] Compactness [%] 

Minimum   9 13 6 7 

Maximum 29 85 25 45 

Median 17 53 11 16 

Mean 17 53 13 17 
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A closer look at the differences between the parameter sets of KDE revealed that the results of 

each individual can be assigned to one of two groups (see Figure 12). One of them comprises the 

results of REF and BCV. Their area sizes and compactness values of both the 50 % and the 95 % 

isopleth differ on average less than 3 %. In addition, their VI indices are above 0.96, which means 

nearly identical utilization distributions. The home range estimates of the second group, which 

comprises the results of PI and SCV, show the same degree of conformity. The high similarity of 

the KDE results estimated using PI and SCV was confirmed through a Kruskal-Wallis test 

statistic: The areas and compactness indices of the 50 % and 95 % isopleth do not differ 

significantly when using a threshold of 5 % (χ2 :0.024–0.068, df: 1, p: 0.59-0.88). The contrary is 

true for REF and BCV which produce significantly different results according to the test (χ2: 

30.75–53.39, df: 1, p smaller than 2.74*10-5). However, this seems to be an issue with the 

functioning of the test (see discussion in Section 10.1.1). 

The differences between PI/SCV and REF/BCV are quite pronounced. The areas of the 50 % and 

95 % home range boundaries produced by PI and SCV are on average roughly 30 % resp. 20 % 

smaller than those of the other group. The compactness of the 50 % isopleth is on average approx. 

65 % smaller (95 % isopleth: 30 % smaller). Considering also the number of disjoint areas and 

the number of holes (see Appendix A.5, which are usually much higher for PI and SCV, the home 

range estimates produced by PI and SCV tend to be undersmoothed and fragmented (compare 

Figure 12). The datasets of the lions are affected more severely by the undersmoothing of PI and 

SCV than those of the leopards. For all of them, the number of regions for both the 50 % and 

95 % isopleth is considerably increased. Whereas the number of holes of the 95 % isopleth is 

increased as well for most of the lions (when using PI or SCV), no such trend can be observed for 

the number of holes of the core area. 
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9.3.2 t-LCH 

The summarized CV values for the time local convex polygon estimator are presented in Table 

16. Both the relative standard deviations of the area and the compactness are clearly smaller for 

the 95 % home range isopleth than for the core area. Particularly the compactness of the latter 

shows a wide range (19–71 %) and has a high mean CV of 34 %. The scattering of the 50 % area 

is also quite pronounced, with a maximum value of 33 % and a mean value of 21 %. The area and 

compactness of the 95 % isopleth can be termed as stable, with mean and median values of 7 % 

resp. 10 %. Overall, there is a significant difference between the area values and compactness 

indices for both isopleths of all computed t-LCH home ranges. Due to the large number of 

 

Figure 12. Example of the high similarities between REF (a) and BCV (b), as well as PI (c) and SCV (d). The 
home ranges of PI and SCV tend to be fragmented and undersmoothed, whereas REF and BCV seem to 
oversmooth slightly. 
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statistical tests conducted for t-LCH, their results are listed in Table 17 instead of being mentioned 

in the running text. 

Table 16. CV-values of t-LCH. A summary of the coefficients of all individuals is shown. 

 50 % 95 % 

CV measure Area [%] Compactness [%] Area [%] Compactness [%] 

Minimum 9 19 4 5 

Maximum 33 71 10 16 

Median 22 31 7 10 

Mean 21 34 7 10 

 

In addition to the overall similarity it was investigated whether there are trends observable for the 

individual parameters. Neither for the results produced by the a-rule nor by the k-rule the null 

hypothesis could be met for any of the four measures (see Table 17, columns “a-rule” and “k-

rule”). However, the p-values for the k-rule are several magnitudes larger than those of the a-rule. 

There are also significant differences between the results produced by using the s-value that time-

selects 0 %, 40 %, 60 % or 80 % of the hulls (columns “s0”, “s40”, “s60” and “s80”). The only 

exception to this is the area of the 50 % isopleth when testing all results with an s-value of 0. 

When looking at the combinations of the neighborhood rule parameter and the time parameter 

separately, high similarities can be observed between the s-values that time-select 40 %, 60 % 

and 80 % of the hulls. In fact, there is no significant difference for nearly all of the measures 

between the 60 % and 80 % s-values when looking at the a- and k-rule results separately (columns 

“a-rule: s60-s80” and “k-rule: s60-s80”). The same is true for the 40 % and 60 % s-values 

(columns “a-rule: s40-s60” and “k-rule: s40-s60”). 

The findings of the tests are in agreement with the optical analysis of the results (compare Figure 

13): The a-rule results in distinctively different isopleths than the k-rule as soon as the time is 

incorporated. The 50 % isopleth of the latter show much more spatial detail, are more fragmented 

and usually consist of more disjoint polygons. The core areas of the a-rule, on the other hand, are 

very compact (mean compactness of 0.53 compared to 0.35 for k) and resemble a circle in shape. 

Because of that, they show much less spatial detail. The mentioned tendencies are also true for 

the 95 % isopleth, but are much less pronounced there. Another substantial differences is 

observable between the exclusion and inclusion of time. When no hulls are time-selected, the 

above-mentioned differences between the a- and k-rule are mostly absent. In that case, both the 

50 % and 95 % isopleth are quite fragmented and the core area consists of a collection of circular 

polygons which can be connected to each other or disjoint. As soon as time is included, the 

isopleths (particularly the 50 % isopleth) are strongly directed and interconnected when using the 

k-rule. For the a-rule, the isopleths become also slightly directed but tend heavily towards a 
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compact shape. The degree to which the time is included does hardly alter the mentioned patterns, 

although they seem to become marginally stronger from 40 % to 80 % of time-selected hulls. 

 

Figure 13. Influence of the parameters of t-LCH. The results of the k-rule (a), c), e)) have more detailed and 
fragmented isopleths, whereas those of the a-rule (b), d), e)) are very compact when time is included 
(illustrations c)–f)). The exclusion of time (a) and b) leads to a dot-like pattern. The differences between 
40 % (c) and d)) and 80 % (e) and f)) of the hulls being time-selected are small and inconsistent. 
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9.3.3 BRB 

Note that the results of BRB were not derived from independently determined values for one or 

several parameters but were rather scaled versions of a single reference value (hmin) and thus 

interrelated. 

As shown in Table 18 the relative standard deviations are quite small for the areas of both 

isopleths (mean of 6 % resp. 5 %). In addition, the areas can be regarded as stable, with ranges of 

6 % and 4 %. Although the area correlates with the (scaled) value of hmin (compare Figure 14), its 

coefficient is smaller than 1. The CV of the compactness for the 95 % isopleth has a moderate 

mean and median, but reached a maximum value of 17 %. The compactness of the core area is 

markedly less stable, with a maximum of 35 % for the CV and a quite pronounced mean value of 

18 %. The compactness index increases together with hmin but the relation is not linear and has a 

slope smaller than 1. According to the Kruskal-Wallis test, the results (Table 18) are significantly 

different regarding both their area (χ2: 34.349, df: 3, p: 1.67*10-7) and compactness (χ2: 27.271, 

df: 3, p: 1.36*10-5) of the 50 % isopleth. For the 95 % isopleth, the area (χ2:35.822, df: 3, p: 

8.164*10-8) and the compactness (χ2: 16.645, df: 3, p: 0.0008) are significantly different, too. 

Table 18. CV-values of BRB. A summary of the coefficients of all individuals is shown. 

 50 % 95 % 

CV measure Area [%] Compactness [%] Area [%] Compactness [%] 

Minimum 3   5 4   3 

Maximum 9 35 8 17 

Median 6 20 5   6 

Mean 6 18 5   8 

 

 

 

Figure 14. Effect of the parameter hmin of BRB. The areas and the compactness indices of both isopleths are 
positively correlated to the value of hmin (scaling factor increases from image a) to c)).  
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9.4 Evaluation of the home range estimators 

The following results were obtained by taking the average over all parameter versions per home 

range estimator (see Section 8.5). These mean values were normalized by the largest value found 

for each HRE so that values between 0 and 1 were obtained. 

The MCP approach resulted in the largest 50 % and 95 % home range areas in 10 of 12 cases 

each. In the other two (respectively four) cases, it produced isopleths that are between 87 % and 

98 % of the largest area. This trend was also confirmed by the results listed in Table 19, which 

presents averaged values over all 12 individuals. At the other end of the range, KDE yielded the 

smallest estimates for both isopleths in the most cases (on average 70 % and 82 % of MCP for 

the 50 % and 95 % isopleths). The core areas of the t-LCH approach are usually the second largest 

(in 10 of 12 cases). The minimum area per individual is, except for one case, between 65 % and 

75 % of the maximum area. The typical range for the 50 % isopleth area is accordingly smaller 

than the one for the 95 % isopleth (70–85 % of the maximum). However, when MCP is ignored, 

the 95 % isopleths are more similar to each other than the core areas with differences of less than 

10 % (on average less than 5 %, compare Table 19) for most individuals. The Kruskal-Wallis test 

statistics confirms the higher similarity of the 95 % isopleth: Whereas there is a significant 

difference between the areas of KDE, t-LCH and BRB for the core area (χ2: 9.480, df: 2, 

p: 0.0073), they can be considered as being the same for the 95 % isopleth (χ2: 1.526, df: 2, 

p: 0.4664). For this and the subsequent tests of Section 9.4 MCP was excluded as it has nearly 

always a value of 1 for the area and compactness and thus interferes with the test (for the detailed 

reasons see the discussion in Section 10.1.1). When looking only at individual pairs for the 50 % 

isopleth, no differences exist between BRB and KDE (χ2: 3.323, df: 1, p: 0.0683) and BRB and t-

LCH (χ2: 1.847, df: 1, p: 0.1741). 

Table 19. Mean normalized descriptive measures of the four HRE. The mean value of all versions of a single 
HRE was normalized by dividing it by the maximum value of the four HRE (per individual). Here, the average 
of these values of all individuals are presented. Comp. stands for compactness. 

 50 % 95 % 

Method Area Holes Regions Comp. Area Holes Regions Comp. 

MCP 0.99 0.00 0.16 1.00 0.99 0.00 0.18 1.00 

KDE 0.70 0.49 1.00 0.30 0.82 0.89 0.92 0.52 

t-LCH 0.83 0.36 0.33 0.42 0.85 0.25 0.20 0.64 

BRB 0.79 0.70 0.57 0.30 0.87 0.57 0.68 0.57 

 

In the matter of compactness, MCP consistently produced the most compact home range isopleths 

(normalized values of 1.00 in Table 19). Particularly the core area exhibits particularly high 

absolute values of at least 0.94, which is very close to a circle (compare Figure 15 a)). The 

compactness indices of the other methods are only 25–50 % of the one of MCP for the core area 
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(on average 30–42 %, see Table 19). KDE typically resulted in the lowest compactness, although 

BRB yielded comparably low values for the core area. t-LCH produced especially for the 50 % 

isopleth more compact estimates than KDE and BRB. The range of compactness indices is smaller 

for the 95 % than for the 50 % isopleth in most cases, with relative differences of less than 15 %. 

Because of two “outliers”, the ranges are on average are similar to those of the core area. 

Statistically, the compactness indices of KDE, t-LCH and BRB are significantly different for the 

50 % (χ2: 13.358, df: 2, p: 0.0013) and 95 % (χ2: 10.293, df: 2, p: 0.0058) isopleths. However, 

KDE and BRB (compare Figure 15 c) and d)) result in values that can be considered as being the 

same (χ2: 0.054, df: 1, p: 0.8170 for the 50 % boundary and χ2: 1.548, df: 1, p: 0.2134 for the 95 % 

boundary). The same is true for the 95 % isopleths of BRB and t-LCH (χ2: 3.764, df: 1, p: 0.0524), 

whereas the compactness indices of the 50 % isopleths are too diverse (χ2: 6.316, df: 1, p: 0.0120). 

 

 

Figure 15. Major trends of the home range estimators in the example of Mothamongwe: MCP (a) with a 
nearly circular core area, t-LCH (b) with a low number of regions and holes, BRB (c) with a similar size and 
shape as KDE (d), which tends to have the highest number disjoint regions. 
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In general KDE resulted in the most fragmented home ranges with the largest number of regions 

for both isopleths and holes for the core area (compare Figure 15). Only BRB produced similarly 

high or even higher values (compare the number of holes for the 50 % isopleth in Table 19). 

t-LCH is quite stable concerning the absolute number of holes and areas and is only undercut by 

MCP, which has zero holes and one region per definition. While the averaged maximum absolute 

values for the number of holes of KDE and BRB are small for the core area and moderate for the 

95 % isopleth, extreme values were obtained for the number of regions, particularly for KDE. 

9.5 Home ranges of individuals and their interactions 

9.5.1 Reducing the set of results 

Based on the findings from the investigation of the effect of the HRE and their parameters 

(Sections 9.3, 9.4, 10.1 and 10.2), only a subset of the results per individual is used for the 

comparison between them. For KDE, the result obtained by using REF as a bandwidth estimator 

was selected. Other than SCV and PI, which resulted in massively undersmoothed estimates for 

most of the individuals, REF (and BCV) produced more appropriate home ranges. Because the 

results of REF are nearly identical to those of BCV but much faster to compute, the former was 

selected. For t-LCH, the lower and upper boundary value of the k-rule (k1 and k2) determined at 

the s-value that time-selects 60 % of the hulls were considered (compare Table 7 and Table 8). 

Other than the a-rule, the results of the k-rule show a reasonable level of spatial detail. As the 

inclusion of time leads to less disjoint regions for both the 50 % and 95 % isopleth and the 

differences between time-selecting 40 %, 60 % or 80 % of the hulls are minor, the 60 % time 

inclusion was selected. For BRB, one of the results in the mid-range of the computed values (see 

Table 9 and Table 10) was selected. Since the different results are equally scaled versions of a 

reference value, the average of e.g. two more extremes values would lead to an almost identical 

outcome as taking a result from the middle area. Table 20 gives an overview of the result used for 

the comparison for each individual. 
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Table 20. Selected hmin factors for BRB for the comparison between the individuals 

Individual Species hmin factor 

Ronja Leopard 1.2 

Mothamongwe Leopard 0.8 

Bogarigka Leopard 2.0 

Gham Leopard 1.4 

Verity Lion 2.0 

Ella Lion 1.8 

Jane Lion 1.6 

Hitchcock Lion 2.0 

Mexico Lion 2.2 

Madge Lion 1.8 

Orange Lion 1.4 

Getika Lion 1.8 

 

9.5.2 Leopards 

The average home range sizes of the leopards range between 695 and 2357 km2 for the 95 % 

isopleth and between 202 and 487 km2 for the 50 % isopleth (compare Table 21 and Appendix 

A.4 for the detailed results). Both the biggest and smallest (50 % and 95 %) home ranges were 

obtained for males (Bogarigka and Mothamongwe). The only female leopard, Ronja, occupies 

the second largest 95 % home range while her core area is similarly small as that of 

Mothamongwe. Consequently, her core area is only 16 % of her whole home range instead of 21–

34 % as for the other leopards (Table 21). The home range of Ronja is the only one of all leopards 

in this study that lies considerably (on average 28.3 % ± 6.7 % for the 95 % isopleth, 1.4 % ± 

1.7 % for the 50 % boundary) outside the protected area of KGR and CKGR (compare Figure 16 

and Figure 17). However, the 95 % boundaries of Mothamongwe and Bogarigka also transgress 

the protected area marginally (3.6 % ± 0.8 % resp. 0.6 % ± 0.8 %). The mean compactness values 

of the core area are identical for all male leopards, with a value of 0.40 (± 0.12). Only the home 

range of Ronja is less compact, with an index value of 0.32 (Table 21). Note that only KDE, t-

LCH and BRB were considered to compute the average compactness of both isopleths as the 

value of MCP is mostly predetermined by its functioning. For the 95 % isopleth, the two 

individuals whose area is markedly larger (Bogarigka and Ronja) also have lower compactness 

values (0.37 ± 0.02 and 0.29 ± 0.02). As for the core area, the males Gham and Mothamongwe 

have identical compactness values of 0.53 (± 0.04). According to a Spearman correlation test 

there is neither for the 50 % (ρ: 0.258, df: 2, p: 0.7418) nor the 95 % isopleth (ρ: -0.738, df: 2, p: 

0.2621) a significant relationship between the size of a home range and its compactness. The 

influence of sex on the area and the compactness could not be tested due to an insufficient number 

of individuals. 
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The temporal variations of the home range size are shown in Figure 18, those of the compactness 

in Figure 19. As the trends do not change markedly between the 50 % and the 95 % isopleth, only 

the graphs of the latter one are presented. While there is only a subtle change for Mothamongwe, 

the three seasons analyzed for Bogarigka shows a strong increase of the home range area (compare 

Figure 20). The time series of Ronja exhibits distinctive alternating trends but they do not coincide 

 

Figure 16. Positions and overlaps of the 95 % home range isopleths of the leopards. The home ranges 
obtained by using KDE and the reference bandwidth are presented. See Figure 3 for the time spans over 
which data was recorded for each individual. 

 

Figure 17. Positions and overlaps of the 50 % home range isopleths of the leopards. The home ranges 
obtained by using KDE and the reference bandwidth are presented. See Figure 3 for the time spans over 
which data was recorded for each individual. 
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with seasons or single years. Figure 21 reveals that the sharp increase of her area during the 

summer of 2013 is caused by a second center of activity in the south. About equally heterogeneous 

trends are observable for the compactness index (Figure 19). Ronja has quite pronounced 

increases of compactness during the winter while Bogarigka shows just the opposite pattern. As 

for the plot of the home range area, the curve of Mothamongwe neither varies strongly nor follows 

a clear pattern. 

 

 

 

Figure 18. Temporal variability of the 95 % home range size of the leopards. W stands for winter season 
(June–September), S for summer season (November–April). The subsequent number designates the year 
(2011–2014). 

 

Figure 19. Temporal variability of the 95 % home range compactness of the leopards. W stands for winter 
season (June–September), S for summer season (November–April). The subsequent number designates the 
year (2011–2014). 
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There is a striking overlap of the (static) home range of Ronja with the one of Mothamongwe of 

81 % resp. 44 % for the 95 % isopleth (Table 22). Even for the core area about half of the two 

home ranges overlap each other (Table 23). When looking at the utilization distribution instead 

of individual probability isopleths, a value of 63 % indicates a fairly high similarity (Table 24). 

The computation of the Euclidean distances between the GPS points that were recorded 

approximately at the same time (maximum time shift of 90 min.) resulted in a minimum distance 

 

Figure 20. Spatiotemporal variation of Bogarigka’s home range. After summer 2011, the home range was 
extended towards the northeastern direction. The same spatial reference frame was used for all of the 
individual images. 

 

Figure 21. Spatiotemporal variation of Ronja’s home range. There is an additional core area in the south 
that is only present during summer 2013. The same spatial reference frame was used for all of the individual 
images. 
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of 0 m (3.5 km for the 10 %, 6.6 km for the 25 % and 10.2 km for the 50 % quantile). Figure 23 

a) shows the histogram of the Euclidean distances that meet the criteria for the maximum allowed 

time difference between Ronja and Mothamongwe. The smoothed curve of the distances are 

visualized in Figure 22 a). There is also an overlap between Ronja and Bogarigka (42 % resp. 

23 %) at the 95 % isopleth. However, the importance of this interaction shrinks when looking at 

the VI index (15 %) and the core areas (0 % resp. 1 %). Another remarkable overlap occurred 

between the home ranges of the male leopards Bogarigka and Gham. At the 95 % isopleth, 

Bogarigka covers almost the entire home range of Gham (94 %) whereas still 53 % resp. 34 % of 

their areas overlap at the 50 % isopleth (the VI value is 52 %). Despite the largely overlapping 

home ranges, the two leopards rarely meet each other directly (Figure 22 b) and Figure 23 b)). 

The minimum Euclidean distance for them is 639 m, with a mean distance of 21.9 km (8.7 km 

and 14.2 km for the 10 % and 25 % quantiles). 

 

 

Figure 22. Visualization of the distances between the GPS points recorded at similar times between a) Ronja 
and Mothamongwe and b) Gham and Bogarigka. Note that the curve of the visualized distances has been 
smoothed and therefore lacks the actual minima/maxima. 
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Table 21. Mean area, compactness and core area ratio values (with standard deviation) for the 4 leopards 
and 8 lions (separated by a heavy gray line). The averages of all HRE are presented. The highest value is 
printed bold and the lowest is indicated in italics for the leopards and lions, respectively. Females are 
underlined. Note that MCP was ignored for the average compactness. 

 50 % isopleth 95 % isopleth  

Individual Area [km2] Compactness Area [km2] Compactness core area ratio 

Ronja   211.6 ± 30.6 0.32 ± 0.01 1315.0 ± 191.3 0.29 ± 0.02 0.16 ± 0.01 

Mothamongwe   202.4 ± 18.3 0.40 ± 0.03   694.7 ± 22.3 0.53 ± 0.02 0.29 ± 0.02 

Bogarigka   486.8 ± 65.2 0.40 ± 0.12 2357.4 ± 112.6 0.37 ± 0.02 0.21 ± 0.02 

Gham   303.5 ± 14.6 0.40 ± 0.08   908.5 ± 48.9 0.53 ± 0.04 0.34 ± 0.03 

Verity   746.6 ± 73.3 0.37 ± 0.20 3277.8 ± 219.8 0.50 ± 0.01 0.23 ± 0.02 

Ella   473.4 ± 57.6 0.37 ± 0.12 2411.8 ± 125.9 0.57 ± 0.03 0.20 ± 0.01 

Jane   788.7 ± 122.0 0.33 ± 0.03 3093.8 ± 193.0 0.52 ± 0.02 0.26 ± 0.03 

Hitchcock 1061.4 ± 83.7 0.31 ± 0.06 4317.4 ± 361.6 0.52 ± 0.01 0.25 ± 0.00 

Mexico   187.2 ± 19.1 0.56 ± 0.07 1707.0 ± 132.1 0.53 ± 0.07 0.11 ± 0.01 

Madge   482.3 ± 153.1 0.26 ± 0.17 3430.6 ± 619.0 0.50 ± 0.03 0.14 ± 0.02 

Orange   344.1 ± 26.6 0.45  ± 0.02 1131.1 ± 50.2 0.63 ± 0.02 0.31 ± 0.04 

Getika   427.1 ± 29.8 0.40  ± 0.06 2090.2 ± 95.2 0.39 ± 0.10 0.21 ± 0.00 

 

Figure 23. Histograms showing the frequencies of the distances between a) Ronja and Mothamongwe, and 
b) Gham and Bogarigka. The interval length is 1 km. The cut-off value for the histogram is 100 km. 
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9.5.3 Lions 

The average home range size (95 %) of all 4 HRE for the lions range between 1131 and 4317 km2, 

whereas that of the core area ranges between 187 and 1061 km2 (compare Table 21 and Appendix 

A.4 for the detailed results). Both the smallest and largest area for the 50 % and 95 % isopleth 

were obtained by male individuals. For example, the core area size of the male with the largest 

values, Hitchcock, is about the same as the 95 % area of the male Orange (1061.4 ± 83.7 km2 vs. 

1131.1 ± 50.2 km2). An influence of the sample size or the time span over which fixes have been 

recorded does not seem to play a major role since the individuals with the largest and smallest 

values all have almost identical datasets in these regards. The core areas are 20–31 % of the size 

of the 95 % boundaries for most lions. The female Madge and the male Mexico are exceptions to 

this with much lower ratios (14 % and 11 %). The home ranges of the females with 427–789 km2 

resp. 2090–3431 km2 (50% and 95 % isopleths) lie between the extreme values obtained for the 

males. Accordingly, no significant difference of the area due to the sex could be determined 

(Mann-Whitney U test) for the core area (U: 10, df: 6, p: 0.570) or the 95 % boundary (U: 10, 

df: 6, p: 0.570). 

None of the individuals has a home range (95 % boundary) that exceeds the boundary of the 

protected area markedly. The highest values were found for Madge, Verity and Mexico, whose 

95 % isopleth lie to 3.8 % ± 2.5 %, 2.8 % ± 1.7 % and 2.6 % ± 2.0 % outside the game reserves. 

Interestingly, the value for the core area of Madge is equally high (2.8 % ± 3.5 %) as for the 95 

isopleth (compare Figure 24). However, the second core area at the border is present only in some 

of the home range estimates. The compactness values are significantly higher for the 95 % than 

for the 50 % isopleth (U: 8, df: 14, p: 0.0134). They are also higher for the males than for the 

females (for both isopleths) but are not statistically significant (95 %: U: 2.5, df: 6, p: 0.1745, 

50 %: U: 4, df: 6, p: 0.3682). When looking at the areas and compactness values of all 50 % 

isopleths, there is a strong negative correlation between them that is statistically significant (ρ: -

0.838, df: 6, p: 0.0093). Thus, the larger the core area, the less compact it is. The correlation for 

the 95 % isopleth is moderate but not significant (ρ: -0.482, df: 2, p: 0.2265). 
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The areas of some home ranges show some abrupt changes over time for both the 95 % and 50 % 

isopleths (Figure 25). The home range sizes of Ella and Verity both decreased markedly between 

summer 2011 and winter 2012. While the former was largely stable after the shrinkage, the latter 

moved in eastern direction afterwards (Figure 27). Two of the male lions (Hitchcock and Mexico) 

also experienced a pronounced decrease of their home range size between summer 2012 and 

winter 2013. While the home range of the former has recovered within the following season, it 

took Mexico three seasons to do likewise. The third male, Orange, increased his home range over 

time slightly. The strongest increase in area was found for the female Madge (Figure 28). Her 

territory increased within two years by a factor of 13.5 towards the north and east. Additionally, 

she had a second disjoint core area west of the old one during summer 2013 that is also visible in 

the home range over the entire time period (Figure 24). The temporal variation of the compactness 

values kept mostly within narrow bounds (Figure 26). For three of the lions (Verity, Jane and 

Orange) the compactness increased during each summer while only one individual (Mexico) 

showed the opposite pattern. 

  

 

Figure 24. The home range of Madge (biased random bridges result is shown) transgresses the boundary 
of the game reserves for both the 95 % and 50 % isopleth. 
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Figure 25. Temporal variability of the 95 % home range size of the lions. W stands for winter season (June–
September), S for summer season (November–April). The subsequent number designates the year (2011–
2014). 

 

Figure 26. Temporal variability of the 95 % home range compactness of the lions. W stands for winter 
season (June–September), S for summer season (November–April). The subsequent number designates the 
year (2011–2014). 
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A look at the overlap tables (Table 22, Table 23 and Table 24) as well as Figure 29 and Figure 30 

reveals that the home ranges of the males hardly overlap each other for the 95 % and not at all for 

the 50 % isopleth. Only Hitchcock overlaps the territory of Orange to 16 % at the 95 % boundary, 

but a VI index value of 4 % indicates that only peripheral regions are affected. Between the 

females, extensive overlaps are much more common. Strong spatial interactions can be found 

between Verity, Ella and Getika whereas Ella and Getika have particularly extensive overlaps 

even for the core area (56 resp. 61 %, VI index of 62 %). The core areas of Verity and Ella as 

well as Verity and Getika overlap each other by 8–14 %. As observable in Figure 31 a) and Figure 

32 a), Verity and Ella stayed together for about half a year before their distance increased again. 

Jane and Madge, whose distances are shown in Figure 31 b) and Figure 32 b), also show a 

significant degree of interaction at the 50 % isopleth (16 resp. 31 %). Table 25 gives an overview 

of the Euclidean distances between the females, which have VI values of at least 20 %. The 

maximum time lag of the GPS points of the two respective individuals is 60 minutes. 

 

 

Figure 27. Spatiotemporal variation of Verity’s home range. After summer 2011, the home range shrank 
drastically and subsequently moved towards the east. The same spatial reference frame was used for all of 
the individual images. 

 

Figure 28. Spatiotemporal variation of the Madge’s home range. After winter 2012 a nearly exponential 
increase in size primarily directed to the northeast could be observed. The same spatial reference frame 
was used for all of the individual images. 
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Figure 29. Positions and overlaps of the 95 % home range isopleths of the lions. The home ranges obtained 
by using KDE and the reference bandwidth are presented. See Figure 3 for the time spans over which data 
was recorded for each individual. 

 

Figure 30. Positions and overlaps of the 50 % home range isopleths of the lions. The home ranges obtained 
by using KDE and the reference bandwidth are presented. See Figure 3 for the time spans over which data 
was recorded for each individual. 
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Table 25. Euclidean distances between lionesses based on the GPS points that are closest in time. Note that 
different units were used to cover the different granularities. Values with the unit meter are in italics. 

Interaction Minimum 10 % quantile 25 % quantile 50 % quantile 

Ella – Getika     0.0 m   6.4 km 12.0 km 20.1 km 

Verity – Ella     0.0 m 12.0 m 56.0 m 23.2 km 

Getika – Verity     0.0 m   7.9 km 17.8 km 28.1 km 

Jane – Madge 154.7 m 16.4 km 23.7 km 36.8 km 

 

 

 

Figure 31. Visualization of the distances between the GPS points recorded at similar times between the 
females a) Ella and Verity and b) Jane and Madge. Note that the curve of the visualized distances has been 
smoothed and therefore lacks the actual minima/maxima. 
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Whereas the home ranges of males do not overlap each other, all of them overlap with at least one 

female. Mexico covers 61 % of the home ranges of Ella and Getika as well as 38 % of the one of 

Verity at the 95% boundary (Table 22). He is thus the male with the most spatial overlaps with 

females. His core area, however, overlaps only those of Getika and Ella markedly (20 % and 

13 %). Table 26 and Figure 34 a) support this finding as the minimum distance between Mexico 

and Verity is with 5.5 km much higher than between Mexico and Ella (0 m) or Getika (666 m). 

In addition, the distance between him and Verity continuously increased over time (Figure 33 a)). 

The second male Orange only overlaps significantly with Verity (32 % at the outer boundary, 

31 % at the 50 % isopleth and a VI index of 54 %). The low minimum and 10 % quantile of a few 

meters also indicate a high degree of interaction between them. The last male (Hitchcock) 

overlaps only one female (Jane) markedly with 59 % at the 95 % isopleth and a VI index of 29 %. 

Although their core areas hardly overlap (1 %) and they seem to have met only during April 2013 

briefly (Figure 33 b)), the distances smaller than 1 km are numerous (Figure 34 b)). Compared to 

the Euclidean distances of the other individuals that have similarly low minimum distances, the 

values for the quantiles are much higher. 

  

 

Figure 32. Histograms showing the frequencies of the Euclidean distances between the females a) Ella and 
Verity, and b) Jane and Madge. The interval length is 1 km. The cut-off value for the histogram is 100 km. 
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Table 26. Euclidean distances between male lions based on the GPS points that are closest in time. Note 
that different units were used to cover the different granularities. Values with the unit meter are in italics. 

Interaction Minimum 10 % quantile 25 % quantile 50 % quantile 

Mexico – Verity 5.5 km 19.4 km 25.6 km 35.6 km 

Mexico – Ella 0 m 474.6 m 11.8 km 18.2 km 

Mexico – Getika 666.3 m 12.4 km 18.9 km 26.2 km 

Orange – Verity 0 m 15.5 m 295.5 m 6.9 km 

Hitchcock – Jane 0 m 12.6 km 23.5 km 36.0 km 

 

 

 

Figure 33. Visualization of the distances between the GPS points recorded at similar times between a) 
Mexico and Verity and b) Hitchcock and Jane. Note that the curve of the visualized distances has been 
smoothed and therefore lacks the actual minima/maxima. 
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9.5.4 Cross-species comparison 

The home range sizes of the lions presented in Table 21 are on average larger for both the 50 % 

(563.9 km2 ± 263.4 km2 vs. 301.1 km2 ± 114.3 km2) and the 95 % isopleth (2682.5 km2 ± 

970.7 km2 vs. 1318.9 km2 ± 639.6 km2). Whereas the differences of the 95 % boundary are 

statistically significant (U: 24, df: 10, p: 0.0485), those of the 50 % isopleth are not (U: 24, df: 

10, p: 0.2140). The mean compactness values of the lions and leopards are identical for the 50 % 

isopleth (0.38 ± 0.09 vs. 0.38 ± 0.03) and thus statistically not different (U: 13.5, df: 10, p: 0.729). 

When looking at the 95 % boundary, lions have on average slightly more compact home ranges 

(0.52 ± 0.06) than the leopards (0.43 ± 0.10) but the difference is not significant (U: 21, df: 10, p: 

0.4399). 

Table 22–Table 24 display intersections between the home ranges of the leopards and lions. When 

looking at the 95 % home range isopleth, especially the home range of Bogarigka largely overlaps 

those of many lions (Table 22). The other three leopards cover the territories of at least one lion 

each to one third or more. With the exception of Bogarigka, the 95 % and 50 % home range 

isopleths of the lions overlap a larger proportion of the respective home range boundaries of the 

 

Figure 34 Histograms showing the frequencies of the Euclidean distances between a) Mexico and Verity, 
and b) Hitchcock and Jane. The interval length is 1 km. The cut-off value for the histogram is 100 km. 
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leopards than vice versa. Verity for example overlaps at least 73 % of the home range of each 

leopard (conversely, the maximum is 57 %). But also Ella, Mexico, Orange and Getika have high 

overlap values for at least one of the leopards. The home ranges of Jane and Hitchcock hardly 

intersect those of the leopards whereas no interspecific overlap for Madge can be shown with this 

data. The VI values in Table 24 display the same pattern, with particular high values between 

Ronja and Orange, Mothamongwe and Orange as well as Gham and Mexico. Table 23 reveals 

numerous overlaps between the core areas as well. The territories of the leopards overlap only 

with those of Mexico, Orange and Getika significantly. From the perspective of the lions, the core 

areas of Ronja, Mothamongwe and Gham overlap with those of the lions particularly strong. 

There are no interspecific overlaps of the core areas for Jane, Hitchcock and Madge. 

About half of the 32 distance analyses between leopards and lions resulted in minimum values of 

less than 1 km, with an absolute minimum of 53 m for Mothamongwe and Verity. Table 27 

presents an extract of the interspecific distances whose minimum is smaller than 1 km. Note that 

the maximum allowed time shift was set to 2 h for the computation of the distances. Figure 35 a) 

shows the histogram of the distances for the individuals with the highest overlap value for the 

95 % isopleth (Mothamongwe and Verity, overlap of 97 %), b) presents that for the individuals 

with the highest overlap value for the 50 % isopleth (Gham and Mexico, overlap of 77 %). 

Table 27. Extract of the Euclidean distances between the leopards and lions based on the GPS points that 
are closest in time. The records are sorted by the 50 % quantile. Mothamongwe is abbreviated as “Motha” 
and Bogarigka as “Boga”. The name of the individual mentioned first refers to a leopard, the other to a lion. 

Interaction Minimum 

[m] 

10 % quantile 

[km] 

25 % quantile 

[km] 

50 % quantile 

[km] 

Motha – Orange  408   6.6 10.5 15.0 

Gham – Mexico  566   5.5 10.0 15.1 

Motha – Verity    53   7.0 11.3 17.3 

Ronja – Verity  257   6.3 11.7 18.7 

Ronja – Orange  140   6.8 11.9 19.4 

Boga – Orange  276   8.6 14.4 21.7 

Gham – Ella  106   9.8 15.0 21.9 

Gham – Getika  133 10.4 16.6 24.5 

Boga – Verity  296   9.4 15.9 25.1 

Boga – Ella  186 10.1 16.3 25.3 

Boga – Mexico  246 11.0 18.4 26.4 

Boga – Getika  360 12.0 19.0 29.0 

Ronja – Getika  672 20.8 27.8 35.7 

Ronja – Ella  718 15.4 25.5 36.5 

Motha – Ella  437 21.0 29.6 40.1 
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10 Discussion 

10.1 Effect of parameters 

10.1.1 KDE 

The fact that no difference between the KDE estimates using PI and SCV exists is not surprising 

considering their highly similar bandwidth values (see Table 5 and Table 6) and the fact that the 

bandwidth was the only variable parameter in the computation. The rejection of the null 

hypothesis for the REF and BCV results on the other hand was unexpected, given their nearly 

identical mean areas, compactness values and high VI indices. This rejection is probably not based 

on the differences between the results of REF and BCV but rather a problem arising from the 

combination of the normalized measures and the working principle of the Kruskal-Wallis test. 

Since the area and compactness values were divided by the maximum occurring values of the 

respective HRE to remove the differences due to the individual itself, the largest area (or 

compactness index) produced by KDE for a specific individual receives the value of 1. 

Unfortunately, the REF bandwidth estimator resulted in the largest areas and compactness values 

for all of the 12 individuals and thus always received the value of 1. The Kruskal-Wallis test 

 

Figure 35. Histograms showing the frequencies of the Euclidean distances between a) Mothamongwe and 
Verity, and b) Gham and Mexico. The interval length is 1 km. The cut-off value for the histogram is 100 km 
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builds ranks from the values and checks the regularity of them. Building ranks from a series of 

exact same values and comparing them against a second variable thus will interfere with the 

working principle of the test. For this reason and because of the high similarities for all of the 

descriptive and overlap measures, the results of REF and BCV are regarded as being without any 

significant difference. As the presence of REF could have also biased the testing for differences 

for the totality of the KDE estimates, the test was repeated without REF, while only PI, SCV and 

BCV were included. The results were still significantly different (χ2: 17.59–71.78, df: 1, p: less 

than 2.74*10-5). 

Even though it cannot be determined which KDE result is closest to “the truth”, those based on 

REF and BCV seem to be more realistic for most individuals. A core area, which is defined as the 

most frequently used area where most activities are concentrated (Haas et al. 2005; Hansteen et 

al. 1997), is unlikely to consist of more than 10 regions, as it is the case for 10 of 12 individuals 

when using PI or SCV. Considering that only those holes larger than 0.25 km2 and those regions 

larger than 1 km2 have been counted, the fragmentation is in fact even higher. However, PI and 

SCV did not always lead to as fragmented home ranges as shown in Figure 12 c) and d). 

Furthermore, REF and BCV tend to oversmooth slightly (compare the home ranges of Ronja or 

Mothamongwe for example in Appendix A.5), which is in agreement with the literature (Gitzen 

et al. 2006; Jones et al. 1996; Sain et al. 1994; Seaman & Powell 1996). The extent of these 

differences is much clearer when looking also at the shape of the resulting home ranges (displayed 

by the compactness index) instead of considering only their areas. The data do not support the 

claim of superiority of PI and SCV over REF and BCV mentioned in Gitzen et al. (2006) and 

Duong & Hazelton (2005). It is possible that PI and SCV do not perform well only for the point 

densities and distributions of these specific datasets, since these factors can influence bandwidth 

estimators markedly (Gitzen et al. 2006; Scott & Terrell 1987). 

Because of the small computational demand and the seemingly reasonable home range estimates, 

REF is the most appropriate bandwidth estimator for these datasets. As BCV produces similar 

results but takes the longest of all methods to calculate the bandwidth (Duong & Hazelton 2005), 

it is less recommendable. PI and SCV reveal more details and can provide a second perspective 

for those datasets whose fragmentation stay within limits when using these bandwidth estimators. 

10.1.2 t-LCH 

The occurrence of (significant) differences between the a- and k-rule corresponds to a previous 

comparison of Getz et al. (2007) who already noticed differences when using simulations and real 

data. Whereas their results indicated a consistently better performance of the a-rule (for the 95 % 

and 100 % isopleth), the same cannot be stated for the leopard and lion data in this study. Here, 

despite the rejection of the null hypothesis through test statistics, the areas and compactness values 

can be termed as being similar. For some individuals the a-rule yielded slightly larger areas while 
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for others it produced marginally smaller areas (maximum deviation of 14 % and a mean deviation 

of 1 %). The highly similar compactness indices and visual analysis support the claim of a 

comparable performance of the two rules for the 95 % isopleth. For the 50 % home range, the 

situation looks quite different. Here, the a-rule yielded markedly larger (on average 16 %) and 

more compact (on average 42 %) core areas. Consequently, the core areas are less defined and 

lack any spatial differentiation. This is contradictory to the statement of Getz et al. (2007: 2) that 

the a-rule produces “[…] more clearly defined isopleths in regions where data are more 

abundant.” Since the functioning of the a-rule (see Section 7.3.3) supports the statement of Getz 

et al. (2007), it is likely that the differing behavior of the a-rule is connected to the data used in 

this study. Extended home ranges of the individuals may hold a substantial range in point density. 

In order to obtain reasonable and stable results for the low-density isopleths (such as 95 %), quite 

high a-values had to be set. This in return led to the inclusion of a lot of points in the high-density 

regions (e.g. 50 %) and thus to a lack of spatial detail. As the k-rule does not regard spatial 

distances but assigns a fixed number of points to each hull, the varying density does not affect the 

choice of its value to the same degree. 

The inclusion of time through the time-scaled distance alters the result of the local convex hull 

approach substantially. While a dot-like pattern similar to that of undersmoothed KDE results is 

observable for s = 0, the regions of the isopleths become more interconnected when 40 % or more 

of the hulls are time-selected. In addition, they become directed towards the pathways of the 

animals (Lyons et al. 2013). This leads not only to better defined isopleths, particularly for the k-

rule, but also bears a substantial added value as it provides a rough estimate of the movement 

paths. 

Since the degree of the inclusion of time (40 %, 60% or 80 %) did not affect the results noticeably 

(and most of them were statistically significant), it seems to be sufficient to stick to the 

recommendation of Lyons et al. (2013) and use an s-value that time-selects 60 % of the hulls. Due 

to the lack of spatial detail of the a-rule, the usage of the k-rule is preferable for this kind of data 

if one is particularly interested in the spatial dynamics of the core area. If the 95 % home range is 

of primary interest, the choice has only a minor influence. A potential advantage of the a-rule, 

however, could be the increased reliability that all regions of the home range that are essential for 

an individual are included in the core area isopleth. 

10.1.3 BRB 

The mechanistic nature of BRB requires a choice of parameters based on the ecology of the 

specific individual under investigation and its data (see Sections 7.3.4 and 8.5.4). Thus, there 

should be actually no need to vary parameter values extensively. However, the smoothing 

parameter hmin seems to be an exception as the model proposed by Benhamou & Cornélis (2010) 

(the developers of the BRB approach) and Jay et al. (2012) did not lead to reasonable home range 
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estimates for most of the individuals. One reason for this is the variety of sampling intervals 

present in a dataset, which requires to choose which one(s) should be included in the computation 

of hmin. Aside from that, the definition of the model exhibits a fundamental problem: While the 

time span between two position measurements used to calculate the maximum travel velocity 

does not have a large influence on this velocity (see Section 8.5.4), the subsequent multiplication 

with the respective time span to obtain the final distance almost exclusively determines hmin. The 

quantification of this time span is not clearly defined and offers scope for interpretation. As a 

further difficulty the appropriate time span can vary markedly between individuals of the same 

species in the same habitat. The home range estimate of the leopard Mothamongwe is based on a 

time span of 90 min for the calculation of hmin and seems to be rather oversmoothed (Figure 36 a) 

and b)). The estimate of the leopard Ronja, which rests on a longer time span of 120 min, seems 

to be adequate. Other examples are the lions Orange and Madge. The BRB results of both are 

based on 60 minutes intervals. While the computed bandwidth fits perfectly to Orange, the home 

range of Madge is severely undersmoothed (Figure 36 c) and d)). Due to these reasons, the usage 

of several models or a scaling for hmin was necessary to obtain reasonable estimates. In addition, 

the usage of only one constant sampling interval for each dataset may facilitate the modelling of 

hmin. 

Similarly to KDE, the influence of the smoothing parameter on the area and compactness is quite 

strong (compare Figure 14 and Figure 36). Since BRB is approximated through a movement-

based KDE, the increase in hmin leads to larger kernels and thus necessarily to larger home range 

areas (because of overshooting) (Getz et al. 2007; Lichti & Swihart 2011). Together with the 

continuous filling of small holes, this results in an almost constant increase. The compactness 

mainly changes when disjoint home range areas arise or disappear. This happened mostly for the 

core areas which therefore show a much more jumpy trend, as confirmed by the high CV. 
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10.2 Evaluation of the home range estimators 

10.2.1 Performance 

The fact that MCP produced the largest home range estimates is in agreement with the general 

literature (Börger et al. 2006; Huck et al. 2008; Hull et al. 2015).The often-mentioned dependence 

of the area on the sample size could not be observed (Börger et al. 2006; Downs & Horner 2008; 

Seaman et al. 1999). Otherwise the difference between MCP and the other methods would be 

larger for the lions than for the leopards, which have markedly smaller sample sizes. This is not 

the case here and in agreement with Nilsen et al. (2008) and Hull et al. (2015), who could not find 

a systematic relationship between the sample size and the area of MCP when using data of free-

 

Figure 36. Difficulty in computing an appropriate hmin. Image a) and b) belong to the leopard 
Mothamongwe, c) and d) to the lion Madge. The images on the left (a) and c)) present the reference value 
for hmin, the images on the right side are more sensible appearing suggestions. 
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ranging animals. It is more plausible that the strong dependency of this HRE on the spatial 

distribution of the samples caused its larger area estimates (Downs & Horner 2008; Seaman et al. 

1999). This is supported by the fact that the difference between the home range estimators is 

smaller when high compactness indices were obtained for KDE, t-LCH and BRB (compare the 

area and compactness of the 50 % and 95 % isopleths in Table 19) and thus MCP’s assumption 

of convexity becomes more realistic (Börger et al. 2006). However, despite its largest area 

estimates, it is dangerous to take the results of MCP as a conservative estimate for purposes such 

as the protection of species, as suggested by Huck et al. (2008). Particularly the core area of MCP 

overlaps the core areas of the other HRE only to 40–65 % (25- and 75-percentile, 54 % on 

average) with extreme values of down to 21 % for one individual. This means that although a 

sufficiently large area would be protected, it may not be the most important area for the animal. 

For the 95 % isopleth, the situation is less critical, with overlaps of 70–90 % (mean: 72 %, extreme 

value: 58 %) but still far away from a full coverage. 

On average, the area sizes of the 95 % isopleths of KDE, t-LCH and BRB can be considered as 

being the same. The same is true for the 50 % isopleth, although only the areas of KDE and BRB 

as well as BRB and t-LCH are similar enough to be statistically significant. This is surprising as 

various simulations claimed the superiority of the one or other approach (Getz & Wilmers 2004; 

Getz et al. 2007; Lichti & Swihart 2011). Keeping in mind that these findings are partially 

contradictory and are only valid for their respective simulated dataset (Seaman et al. 1999), the 

high similarity of the estimators confers some reliability to the results. That KDE usually 

generated the smallest areas is contradictory to the findings in the literature. In fact, various 

analyses with simulated and real data indicated that KDE tends to oversmooth and result in higher 

area estimates than e.g. t-LCH, whose estimates were consistently larger in this study (Downs & 

Horner 2008; Huck et al. 2008; Getz et al. 2007; Lichti & Swihart 2011; Seaman & Powell 1996). 

Of course, the results refer to averaged values and the parameter range obtained for KDE is large. 

But since two of its parameters led to oversmoothing and the other two to undersmoothing, the 

average is assumed to represent a realistic estimate. 

When looking at the shape of the home ranges the differences become more pronounced (compare 

Table 19). Whereas MCP produces consistently the most compact estimates, KDE is at the other 

extreme, with values that are only 30–50 % as high. Keeping in mind that MCP is based on the 

assumption of convexity, the large discrepancies to the remaining HRE is evident (Börger et al. 

2006). However, while the 95 % isopleth resembles the results of the other HRE, the almost 

circular core area lacks any spatial detail (see Figure 15 a)). The kernel-based approaches KDE 

and BRB have markedly lower compactness values than t-LCH (or MCP), especially regarding 

the core area. This is due to their fragmented home ranges, which contain much more disjoint 

regions than the geometrically-based approaches. Since the compactness index is a ratio of the 

total area of the isopleth and the area of the smallest circumscribing circle encompassing all its 
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disjoint regions, the latter ones markedly influence the compactness value. The number of holes 

on the other hand does not affect the index, as their areas are not subtracted from the total area. 

Therefore, despite the much higher number of holes of BRB for the core area (compare Table 19), 

its compactness is on average the same as the one of KDE. As t-LCH tends to generate 

interconnected isopleths as soon as time-scaled distances are used, its estimates are more compact 

and less fragmented (Getz et al. 2007). In addition, the estimates of t-LCH are much more 

consistent than those of the kernel-based approaches (Lichti & Swihart 2011). It is likely, 

however, that this is mainly the consequence of the different methodologies. Whereas the home 

range estimates of t-LCH are in the end selected from a range of candidates to get “reasonable” 

results, no such preselection is done for KDE and only to a lesser extent for BRB (choice of 

scaling factors). 

10.2.2 Practical application 

Irrespective of its performance, MCP allows to estimate home ranges with a minimum effort and 

expert or prior knowledge. Although being only an extension of this simple HRE, t-LCH turned 

out to be the most time-consuming and computationally troublesome approach (Getz & Wilmers 

2004). In order to obtain a representative range of potential results to select from, about 30–40 

different a- and k-values had to be computed for each individual and level of time inclusion. Apart 

from the expenditure of time, the availability of memory proved to be the major issue. Even after 

the inevitable reduction of the lion datasets to approximately 10’000 points, the required memory 

often exceeded 16 gigabytes for the above-mentioned number of a-/k-values when using time-

scaled distances. Another issue with t-LCH relates to the choice of its parameters (Getz & 

Wilmers 2004). Although guidelines and methods exist to select the parameters a and k, none of 

them worked for these datasets. While the MSHC rule (see Section 7.3.3) could not be applied 

due to a lack of sufficiently large regions (or objects) that are inaccessible or avoided by the 

leopards and lions in the study area, the rules of thumb to select a and k either led to very 

fragmented and unstable or to massively oversmoothed home ranges. Despite its disadvantages, 

of all methods t-LCH allows the deepest insights into the data. Although the choice of an 

“appropriate” result from a range of candidates is subjective, it requires to engage oneself with 

the data and its behavior when using different parameters. As the choice of the exact value for 

both the neighborhood rule and the time parameter s turned out to be not as critical as for KDE, 

the disadvantages are considered as being counterbalanced by the benefits. 

KDE is comparably simple to use as MCP but requires, depending on the method used to estimate 

the smoothing parameter, much more computing time for large datasets. As the bandwidth is 

usually the only adjustable parameter with a significant impact, it is recommended to use as many 

different methods for bandwidth estimation as possible. Ideally, a package like ks is selected to 

compute KDE that uses the full bandwidth matrix instead of reducing the constrained matrix to a 

single value, as it has been necessary for adehabitatHR (see Duong & Hazelton (2005) for further 
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details). Since ks does not support the same data structures as the other HRE, spatial comparisons 

are impeded severely. Therefore, the computation of KDE was performed using adehabitatHR. 

When only KDE is used for the analysis of data, this restriction does not matter and ks would be 

the favoured choice. 

BRB also uses a smoothing parameter like KDE, but its estimation is materially different. Instead 

of estimating hmin from the data itself, it must be deduced from ecological models. The difficulty 

is to find a model that works reliably for all individuals of a species irrespectively of their 

underlying data. In order to adjust a given model or develop a new one, substantial ecological 

expert knowledge is necessary. Thus, to obtain sensible results using BRB is time-consuming, 

even though the computational part itself is carried out much faster than e.g. for t-LCH. 

10.3 Home ranges of individuals and their interactions 

10.3.1 Leopards 

The observed home ranges of leopards in the Khutse Game Reserve and the Central Kalahari 

Game Reserve are among the largest worldwide (Marker & Dickman 2005). Similarly high values 

could only be found for males in the Kgalagadi Transfrontier Park with home range sizes of 769–

2182 km2 (Bothma et al. 1997; Hayward et al. 2009; Marker & Dickman 2005) and, at a lower 

level, in the Cederberg Mountains, with areas of 100-910 km2 (Martins & Harris 2013). The 

Kgalagadi Transfrontier Park is situated at the border of Botswana and South Africa and thus is 

also part of the (semi-) arid Kalahari region (Bothma & Bothma 2012) whereas the Cederberg 

Mountains lie 200 km north of Cape Town in South Africa with a highly variable annual rainfall 

of 179–669 mm (Martins & Harris 2013). Other reported home range sizes are around 179–451 

km2 in Namibia (with the exception of the Waterberg Plateau for which home ranges of 40–119 

km2 have been estimated), 12–38 km2 in Kenya or 15–76 km2 in the northeastern region of South 

Africa (Kruger National Park) (Hayward et al. 2009; Marker & Dickman 2005; Mizutani & Jewell 

1998; Stein et al. 2011). The exact numeric values exhibit a high degree of uncertainty due to 

differing home range estimators, parameterizations and definition used in the respective studies. 

Even when the same methodology was used for two studies, different spatial distributions of the 

GPS fixes of the respective animals also affect the performance of HRE ((Downs & Horner 2008; 

Getz & Wilmers 2004; Horne & Garton 2006; Lichti & Swihart 2011). Nevertheless, the 

differences in magnitude are evident and indicate significant differences. 

Although it is hardly possible to statistically relate the home range size directly to individual 

climatic factors, numerous studies investigating the ecology of leopards found a correlation 

between the quality of the habitat and the home range area (Bothma & Bothma 2012; Marker & 

Dickman 2005; Mizutani & Jewell 1998; Stein & Hayssen 2013). An arid habitat is usually 

characterized by a scarcity of prey for the leopards, requiring them to expand their home area to 

meet their requirements. However, among other factors, the presence and density of inter- and 
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intraspecific competitors also influences the quality of a habitat for a leopard and thus its home 

range markedly (Bothma et al. 1997; Hayward et al. 2009; Marker & Dickman 2005). 

Intraspecific competition may be a reason for the increase of the home range area of the male 

Bogarigka (see Figure 20). Although its expansion might have been at the cost of the male 

Mothamongwe, it seems to be too strong compared to the decrease of the latter. Thus, it is quite 

possible that another unobserved (male) leopard moved away or died and thus created a vacancy, 

or that Bogarigka took over the home range of another unobserved male. The home range shift of 

Ronja during the summer 2013 (see Figure 21) is more likely to be related to raising her offspring 

since she has shown similar shifts before the period investigated in this study3. In this summer, 

Ronja raised a cub that left her to find an own home range in April or June. One reason for her 

shift towards the south might have been a lower density of other carnivores, which may endanger 

the life of cubs (Hunter & Hinde 2005; Stein & Hayssen 2013). Since it has been shown previously 

that even extensive overlaps of leopards of the same sex may occur (Table 24), it is unlikely that 

the shift of Ronja’s home range is related to intraspecific competition. 

The extent of the observed overlaps (compare Figure 16) is surprising since leopards are known 

to be solitary and to maintain a largely exclusive home range towards individuals of the same 

species and particularly of their own sex (Bailey 1993; Hagen et al. 1995; Hunter & Hinde 2005; 

Mizutani & Jewell 1998). Although the large home ranges in arid habitats are known to exhibit 

considerable overlaps of the peripheral regions, at least the core area is thought to be used 

exclusively (Hunter & Hinde 2005; Marker & Dickman 2005; Stein & Hayssen 2013). However, 

the two male leopards Bogarigka and Gham had even for the core area overlaps of 53 % resp. 

34 % (Table 23). Even though the analysis of their Euclidean distance revealed that they were 

usually separated by 5 to 30 km (with a minimum of about half a kilometer), this is a remarkable 

degree of overlap and an indicator of a pronounced active avoidance behavior (Hunter & Hinde 

2005; Marker & Dickman 2005; Mizutani & Jewell 1998). This may be an inevitable adaptation 

since home ranges of several hundred or thousand square kilometers are barely defendable. 

The spatial interactions of Ronja with Mothamongwe (and to a minor extent with Bogarigka and 

Gham) correspond to the literature as home ranges of males usually overlap those of several 

females in order to have access to as many of them as possible (Bailey 1993; Bothma & Bothma 

2012; Mizutani & Jewell 1998). The latter is also the reason why home ranges of males are in 

general much larger than those of females. In addition, it was assumed that this also leads to lower 

compactness values. Both, however, could not be observed in this study (Table 21): The only 

female leopard has the second largest home range that is about twice the size of that of the males 

Gham and Mothamongwe and of a markedly lower compactness. Without the second core area 

of Ronja in the south during summer 2013 her home range would be of course considerably 

                                                      
3 Personal communication with Monika Schiess-Meier on July 29, 2015. Monika Schiess-Meier is the 

founder and managing director of LEC. 
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smaller (and its compactness higher). Nevertheless it was important enough to belong to the 50 % 

isopleth of that season and to the 95 % isopleth when looking at the whole timespan. As it is 

unknown whether that second center of activity should be regarded as an occasional sally or as 

an indispensable part of the home range, it is safer to assume the latter one from a conservational 

point of view. The number of individuals is of course insufficient to draw conclusions for the 

whole leopard population of the Kalahari region. Still, a lack of sex-specific differences has also 

been stated by Marker & Dickman (2005) who investigated leopards in the northern part of 

Namibia. According to them, the home range sizes of females may be too large in poor habitats 

for males to encompass several of them. The presence of significant differences due to sex for 

leopards in the Kgalagadi Transfrontier Park stated by Bothma et al. (1997), however, questions 

the generality of this reasoning. The presence of unobserved male and female individuals may 

alter the interpretation of the observed interactions. 

Neither the area nor the compactness of the home ranges showed a clear seasonal variation. While 

the seasonal differences of precipitation in the study area potentially could lead to corresponding 

adaptations of the individuals, the pronounced diurnal variations provide a sensible justification 

for their absence. The study of Marker & Dickmann (2005) in the Waterberg Plateau about 2–3° 

north and 7–8° west of KGR and CKGR also detected no seasonal variations of the home range 

size. Except for Ronja and Bogarigka, whose home range changed considerably during the 

observation period, the relatively stable territories of Mothamongwe and Gham are quite compact 

(see Table 21). Figure 16 shows that the home range of Mothamongwe lies directly at the eastern 

border of KGR and transgresses it. Thus, the proximity of livestock may compensate the small 

home range area in terms of prey availability (Schiess-Meier et al. 2007). However, this does not 

explain the small and compact territory of Gham. Since overlaps seem to be largely tolerated 

(compare Figure 17) it is not too likely that a subordinate position of these two leopards in the 

social hierarchy is the cause for their home range area and shape (Hayward et al. 2009). The fact 

that the home ranges of three leopards transgress the fenced border of the game reserves 

corresponds with the reported issue of livestock predation (Schiess-Meier et al. 2007). 

10.3.2 Lions 

The observed home range sizes (95 % isopleth) for the lions of KGR and CKGR range between 

1131 and 4317 km2 (mean: 2682.5 ± 970.7 km2). They are thus markedly larger than the home 

range sizes of 604 km2–1861 km2 (mean: 838 ± 421 km2) computed by Ramsauer (2006) in the 

same study area during the years 2003–2006. It may be that the lions had more stable home ranges 

during these years, what results in smaller areas. However, home ranges were not analyzed 

regarding their temporal variability by Ramsauer (2006). The only equally large areas have been 

found in the dune savanna of the Kgalagadi Transfrontier Park (1500–4500 km2) that belongs to 

the Kalahari region as well (Funston 2011; Hayward et al. 2009; Tumenta et al. 2013). Markedly 

smaller are the home ranges in the more humid regions of the Waza National Park in Cameroon 
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(537–1534 km2), the Kunene region in the northwest of Namibia (up to 1628 km2) or the 

Makgadigadi Pans National Park northeast of the CKGR in Botswana (up to 1143 km2) (Bauer & 

de Iongh 2005; Hayward et al. 2009; Tumenta et al. 2013). For regions with a high prey abundance 

such as the tropical savanna of the Selous Game Reserve in Tanzania, home ranges are less than 

100 km2 (Hayward et al. 2009; Spong 2002). Due to different methodologies and spatial 

distributions of the GPS fixes, the same restrictions regarding the comparisons of home ranges 

are valid as discussed for the leopards in Section 10.3.1. Much less variable than the observed 

home range sizes are their compactness values (on average 0.38 ± 0.09 at the 50 % and 0.52 ± 

0.06 at the 95 % isopleth). Surprisingly, the compactness of the home range is negatively related 

to the home range size. From an energetic perspective, at least for the 95 % boundary the opposite 

would be expected. Yet, it needs to be considered that the home ranges of the individuals are 

constituents of the pride’s territory, for which the situation may be different. 

The fact that none of the lions has a home range that extensively overshoots the protected area 

indicates that sufficient resources are available there for the observed lions. This is in agreement 

with the findings of Bauer et al. (2014) who detected a massive decrease of the lion population 

between 2005 and 2010 and thus a release of previously occupied areas. Yet, the 95 % isopleths 

of some of the lions such as Mexico, Verity or Orange are close to the border and therefore to the 

livestock of the farmers. Particularly Madge may be a habitual livestock raider (Bauer & de Iongh 

2005; Tumenta et al. 2013) since even her core area transgressed the boundary of the game reserve 

slightly. However, occasional sallies are not regarded by the concept of home ranges, meaning 

that the actual problem of livestock killing may be much more urgent than displayed by the home 

ranges and their respective overlap values (Schiess-Meier et al. 2007). 

Males are often reported to have larger home ranges than females, even though these differences 

are only rarely statistically significant because of a too low number of individuals and the high 

variability between them (Hayward et al. 2009; Loveridge et al. 2009; Tumenta et al. 2013). Such 

a sex-specific disparity could not be found for the lions here. It is rather that the males have the 

most extreme areas in both directions, whereas those of the females lie in between. Because of 

that, females have on average even a larger home range for both the 95 % isopleth (2860 ± 581 

km2 vs. 2385 ± 1698 km2) and the 50 % isopleth (584 ± 170 km2 vs. 531 ± 466 km2). Seasonal 

patterns have only been found for the compactness of the 95 % boundary for some of the lions. 

The fact that the area did not show any seasonality at all is in agreement with the findings of 

Ramsauer (2006). Since Loveridge et al. (2009) only found statistically insignificant seasonal 

differences for a slightly less arid region than the Kalahari, whereas Tumenta et al. (2013) detected 

pronounced (and significant) differences for a much more humid study area with three distinct 

seasons, the seasonal changes may be not pronounced enough in KGR and CKGR to result in 

respective behavioral changes of the lions. Even if the seasonality of the climate is strong enough, 

other influences seemed to determine the size of the home ranges during the observation period 
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(at least for Verity, Ella, Hitchcock and Madge). As lions exhibit strong sociality (Haas et al. 

2005; Macdonald & Loveridge 2010), the loss of an individual (particularly of a male) can cause 

a cascade of reactions such as breakings of prides. It is thus likely that intraspecific drivers caused 

the observed fluctuations4. 

Based on the overlaps presented in Table 22–Table 24 the individuals were assigned to individual 

prides. The territories of the three males did not overlap each other beyond a few percent for the 

outer boundary. Since only males that belong to the same pride have extensively overlapping 

home ranges, the three males are assumed to belong to different prides (Haas et al. 2005; 

Loveridge et al. 2009). Due to the high VI value of 54 % and distinct overlaps of the core areas, 

Verity likely belong to the same pride as Orange. The home ranges of Ella and Getika overlap 

strongly with that of Mexico and thus are assumed to belong to the same pride. The pronounced 

overlap of the home range of Getika and Ella (VI index of 62 %) and small Euclidean distances 

between them (Table 25) support this interpretation. It has to be mentioned, though, that Getika 

died in February 2013, while data for Mexico is only available since September 2012. Because of 

that, the observed shared timespan is rather short. Interestingly, the 95 % overlap values for 

Mexico and Verity are rather high with 38 % resp. 72 %. Considering also the VI value of 21 % 

this potentially reflects a pronounced degree of interaction. Except for the shrinkage of her home 

range after the summer of 2011, Verity’s territory shifted eastward and away from Mexico 

(compare Figure 27 and Figure 33 a)). However, the distance towards Orange, whose home range 

lies in the direction of Verity’s shift, did not change markedly. Hitchcock, also a male, overlaps 

a significant part (59 %) of Jane’s home range at the 95 % isopleth and therefore is assumed to 

be in the same pride. When looking at their core areas, a low spatial overlap of 1 % is surprising. 

The histogram in Figure 34 b) proves that the two lions met frequently, although this is hardly 

visible in the smoothed distance curve of Figure 33 b). The separated home ranges but highly 

overlapping 95 % boundaries and frequent encounters indicate that they belong to different 

subgroups of the same pride (known as fission-fusion) (Funston 2011; Ramsauer 2006). 

With the available data in this study, Madge is the only lioness that could not be assigned to a 

pride. She spatially interacts only with Jane (see Figure 31 b)) who belongs to a pride. Since 

lionesses are known to be highly territorial against foreign individuals of the same sex, it is 

possible that they belong to the same pride which encompasses more members than only Jane and 

Hitchcock and is split into subgroups (Eloff 1998; Funston 2011; Haas et al. 2005; Spong 2002). 

According to Figure 31 b) and Figure 32 b), Jane and Madge met only rarely and kept usually a 

distance of more than 10 km. The shift of Madge’s home range towards the northeast (Figure 28) 

resulted in an overall home range that seems to consist of two separate parts (Figure 29). In 

addition, this shift increased the distances between Madge and Jane and thus reduced the degree 

                                                      
4 Personal communication with Monika Schiess-Meier and Dr. Stephen Henley on September, 1 2015. 
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of their spatial interaction (Figure 31 b)). Another interesting interaction occurred between Ella 

and Verity, who wandered around together for about half a year with distances of less than 1 km 

(Figure 31 a)). According to information from LEC5 they used to be in the same pride together 

with Jane and Madge before and separated for an unknown cause. The observed dynamics of their 

home ranges may therefore correspond to the time period right after the pride disbanded. 

Since the data basis of the eight lions covers only a part of the estimated lion population within 

the study area (Bauer et al. 2014) and was not selected with regard to some known pride structures, 

it is not possible to draw conclusions about the size of the prides in the study area. Studies on 

comparable study sites (Winterbach et al. 2014) found that prides contained about 3 to 12 (on 

average 4.7–7.5) individuals (Eloff 1998; Funston 2011). This probably reflects the pride sizes 

that could be expected in KGR and CKGR. 

10.3.3 Cross-species comparison 

On average, the home range areas of the lions are about twice as large as those of the leopards for 

both isopleths. This also reflects the results of other authors, particularly in comparable habitats 

(Bothma et al. 1997; Funston 2011; Hayward et al. 2009). For resource-rich habitats with smaller 

home ranges, factors of three to four were reported (Hayward et al. 2009). 

Leopards and lions in the Central Kalahari region show extensive overlaps regarding their home 

ranges. Particularly the home ranges of Bogarigka, Verity, Ella and Orange intersect up to the 

core area with the home ranges of numerous individuals of the other species. However, since lions 

have no reasons to avoid leopards and the home ranges of both species are very large, a lack of 

interspecific overlaps would have been surprising. The fact that the home ranges of the lions 

generally overlap a higher proportion of the respective leopard than vice versa is at least partially 

due to their larger areas. The opposite pattern is only observed for Bogarigka, whose home range 

is larger than that of the lions Mexico, Orange or Getika. 

For the interspecific distances presented in Table 27 it is likely that the respective individuals 

encountered several times. At velocities of 50–60 km/h (Haas et al. 2005; Hunter & Hinde 2005), 

the observed minima of less than 1 km but also some of the 10 % quantiles can easily be covered 

within a sampling interval of at least 30 min. Thus, such encounters may often remain undetected 

but had no serious consequences for any of the observed leopards. Since leopards are physically 

inferior to lions they have an interest in avoiding encounters as often as possible (Hagen et al. 

1995; Hunter & Hinde 2005). Such an active avoidance behavior is indicated by the histograms 

shown in Figure 35. Considering the high overlap values between the respective leopards and 

lions, distances of less than 5 km make up only a small fraction of all recorded distances.  

                                                      
5 Personal communication with Monika-Schiess Meier and Stephen Henley on September 1, 2015. 
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IV Kill site detection 

11 Related work 

The investigation of kill sites provides information usable for numerous purposes, such as the 

conservation of carnivores, dietary compositions, and the interactions between carnivores and 

prey populations (Bacon et al. 2011; Merrill et al. 2010; Pitman et al. 2014). Although continuous 

observation provides the most accurate kill site estimates, it is restricted by its high time 

consumption and accordingly small sample sizes (Sand et al. 2005; Tambling & Belton 2009). 

Particularly for studies of reclusive species living in barely accessible terrain or roaming over 

large areas, the increasing availability of affordable GPS collars provides a cost-efficient 

alternative to collect data on kill-sites (Anderson & Lindzey 2003; Pitman et al. 2012). 

Spatiotemporal clustering algorithms have been often applied to GPS data in order to detect kill 

sites. Such clustering approaches are based on the fact that consuming prey requires a predator to 

stay longer at a location than most other activities (Merrill et al. 2010). Comparisons of kills 

located though GPS clusters with scat analyses for different predator species revealed that 

clustering approaches are generally biased towards large prey (Bacon et al. 2011; Pitman et al. 

2014; Tambling et al. 2012). For lions, Tambling et al. (2012) found that the number of killed 

prey weighing less than 100 kg are underestimated by as much as 50 %. Since small prey account 

only for a small proportion of the total biomass intake (Bacon et al. 2011; Tambling et al. 2012), 

GPS clusters are nevertheless suitable for the investigation of kill rates and feeding behavior, as 

being shown in Pitman et al. (2013) and Sand et al. (2005). 

Another application of spatiotemporal clustering is to indicate potential kill sites, for which 

information on additional variables (e.g. vegetation density) are recorded that can be used for 

building predictive models of kill sites. One of the first studies of this kind, by Anderson & 

Lindzey (2003), used several spatial and ecological variables determined at GPS clusters of 

cougars (Puma concolor) as input for a logistic regression model. This model suggested the 

timespan of a GPS cluster, particularly during the night, as a main predictor. Tambling et al. 

(2010) and Pitman et al. (2012) expanded the list of predictor variables and used general linear 

models to predict kill sites of lions and leopards, respectively. Among other variables, both studies 

found the ratio of distance moved before and after a cluster to be an important contributor to the 

prediction model. 

The kill site detection rates and appropriate methodology of clustering algorithms depend on 

many factors, such as the prey size (Pitman et al. 2012; Tambling et al. 2010), anthropogenic 

pressure (Pitman et al. 2013; Smith et al. 2015) and the social structure of the predator (Merrill et 

al. 2010; Tambling & Belton 2009). For example, Pitman et al. (2014) analyzed kill sites of 
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leopards by defining clusters as two or more subsequent points (sampling interval of 2 h) within 

50 m, whereby clusters being closer than 100 m and 8 h (closest point to closest point) were 

merged. Of the validated clusters obtained by this methodology, 37 % proved to be actual kill 

sites (Pitman et al. 2014). For lions, on the other hand, which kill noticeably larger prey than 

leopards (Haas et al. 2005; Hunter & Hinde 2005; Macdonald & Loveridge 2010) only 16 % of 

the clusters were found to be actual kill sites (Tambling et al. 2012). Although the less refined 

clustering rules (two or more consecutive points [sampling interval of 1 h] within 100 m) might 

be partially responsible for the lower success rate, the fact that lions often feed on prey in groups 

(Haas et al. 2005) is likely to influence the success rate as well, since it leads to lower handling 

times and thus shorter clusters (Merrill et al. 2010). 

12 Methodology 

12.1 Analysis procedure 

A successful detection of kill sites depends, among other factors, largely on the selected rules for 

the clustering approach. In order to evaluate the effect of different variables (in this approach) 

and to determine the rule yielding the lowest error rates, the results of different sets of variables 

were compared in a first step. The clustering rule that led to the lowest overall error was then used 

to estimate the ratio of kill sites inside the 50 % and 95 % home range boundaries as well as inside 

the protected area of the game reserves.  

12.2 Effect of the clustering rule 

12.2.1 Building clusters 

As proposed by various authors (Anderson & Lindzey 2003; Tambling et al. 2010; Tambling et 

al. 2012), a cluster must consist of at least two consecutive GPS fixes that are closer in space than 

the maximum observed GPS error plus a buffer for translocations of the individual (and its prey). 

Although the data of all four lions was predominantly sampled at 30 min and 60 min intervals 

short periods of coarser sampling intervals occurred. Since it is questionable whether two 

successive fixes being close in space but far away in time belong to the same cluster, a temporal 

threshold was incorporated as well. A value of 65 min was set for all individuals. The whole 

workflow is shown in Figure 37. 

12.2.2 Merging and filtering clusters 

Since lions consume prey often in prides (Haas et al. 2005; Macdonald & Loveridge 2010), it is 

likely that individuals do not stay by a carcass permanently but return to it repeatedly (Tambling 

et al. 2010). By merging clusters that are spatially nearly identical but temporally separated, it can 

be avoided that such behavior results in several single clusters and, thus, in overestimation of their 

number. Pitman et al. (2012), who analyzed kill sites of leopards, merged clusters having their 
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closest points within 8 h. As lions prefer larger prey (Hunter & Hinde 2005) handling times of 

small prides or individually hunting lions can be longer than those of leopards. Based on this 

information and observations made by LEC6, the time threshold for merging clusters was set to 

10 h (for the temporally closest points of the respective clusters). Finally, as in Tambling et al. 

(2010), all clusters lasting less than 2 h were deleted (see Figure 37). Due to the irregular sampling 

interval, clusters were also deleted, if they consisted of too few GPS fixes. For datasets with 

60 min SI, 2 fixes were the minimum and for those having 30 min as their coarsest SI, 4 fixes 

were required. The clusters obtained after the merging step were considered as potential kill sites 

and from the data basis for the subsequent weighting. 

 

 

                                                      
6 Personal communication with Dr. Stephen Henley and Monika Schiess-Meier on September 1, 2015 

 

Figure 37. Illustration of the clustering rules applied to the lion datasets. The orange colored ellipse 
represents the final clusters, which were then weighted according to the variables mentioned in Section 
12.2.3. 
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12.2.3 Assigning weights 

Previous studies that built predictive models of kill sites for felids found that the detection rate 

could be significantly improved by including additional variables. Except for the duration of a 

cluster (Dur) (Anderson & Lindzey 2003; Pitman et al. 2012), the ratio of distance moved before 

and after a cluster (DistR) (Pitman et al. 2012; Tambling et al. 2010) and the time of day (ToD) 

(Anderson & Lindzey 2003) proved to be the strongest contributors. These variables were 

incorporated in the clustering approach as weights, expressing the probability of a cluster being 

an actual kill site. In a first step, the clusters were weighted according to their value for each 

variable separately. 

For the variable Dur, the time period of each cluster (defined by the temporal difference between 

the first and last GPS fix belonging to the same cluster) was computed and divided by the longest 

time period of all clusters to obtain normalized values. For DistR, the ratio of the sum of distances 

moved between all fixes within 24 h before the start of a cluster and 24 h after the end of a cluster 

was computed. Thus, the larger the distance travelled during the 24 hours before a cluster and the 

smaller it is during the 24 hours after a cluster, the higher is the resulting value. The ecological 

signification of DistR is that carnivores are supposed to range farther when being hungry and 

reduce their activity afterwards (Pitman et al. 2012). Again, the variable values were normalized. 

The last weighting variable, ToD, is based on the fact that many predators prefer to hunt between 

dusk and dawn due to their reduced visibility (Anderson & Lindzey 2003; Haas et al. 2005; 

Martins & Harris 2013; Patterson et al. 2004). As lions in KGR and CKGR are also nocturnal 

(Ramsauer 2006), each GPS fix that belongs to a cluster and was recorded between dusk and 

dawn was assigned the value 1. Fixes belonging to a cluster and being recorded during the day 

received a value of 0. Dusk was defined as 5 p.m. and dawn as 8 a.m. If the mean of the assigned 

values was larger than 0.33, the cluster received a value of 1 for the ToD variable. If the mean 

was smaller than 0.33, a value of 0.5 was set. Since resting occurs mainly during the day, when 

hunting success is reduced and high air temperatures potentially restrict high physical efforts 

(Patterson et al. 2004; Ramsauer 2006), corresponding clusters receive lower weights. 

12.2.4 Sets of variables 

The combinations of the three variables Dur (duration of a cluster), DistR (ratio of distance 

travelled before and after a cluster) and ToD (time of day) were used to build four different sets 

of variables to assign weights, which are presented in Table 28. For comparison, the clustering 

approach used in Tambling & Belton (2009), Tambling et al. (2010), and Tambling et al. (2012) 

was included as a fifth variable set (setTA). Its rules were adapted to the data in this study and are 

as follows: Consecutive fixes must be within 50 m and 65 min and a cluster must last 2 h or 

longer. The adaptations were necessary due to the different and heterogeneous sampling interval 

occurring in our data. 
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Table 28. Combinations of the three variables used for weighting of clusters. Dur corresponds to the 
number 1, DistR to 2 and ToD to 3. Set12 therefore used the variables Dur and DistR. SetTA stands for the 
clustering approach used (among others) in Tambling et al. (2010) and does not use any weights. norm 
stands for “normalized”. 

Variable set name Involved variables Weighting formula 

Set12 Dur, DistR norm(Dur + DistR) 

Set13 Dur, ToD Dur * ToD 

Set23 DistR, ToD DistR * ToD 

Set123 Dur, DistR, ToD norm (Dur + DistR) * ToD 

SetTA  -  - 

 

12.2.5 Validation 

To validate the results of the different sets of variables, a small amount of validated kill sites and 

non-kill sites was available, as presented in Table 3 on page 15. According to comparisons with 

the literature, all of the totally 91 validated kill sites involved large prey above 100 kg (Bauer et 

al. 2014; Hayward et al. 2006; Schiess-Meier et al. 2007; Winterbach et al. 2014). The validated 

kill sites were used to compute the type II errors, which show the proportion of undetected 

validated kill sites. Each cluster was buffered by 50 m and then spatially intersected with each 

validated kill site belonging to the respective lion. If a match was found, it was tested whether 

they intersected temporally as well. For the temporal intersection, the kill date estimated by spoor 

trackers was buffered according to the time difference between the estimated kill date and the 

observation date. Based on preliminary analyses and information from LEC7, the buffer values 

listed in Table 29 were defined. The sum of clusters that spatially and temporally intersected with 

validated kill sites was divided by the number of validation records for the respective animal, 

transformed into percentages (values higher than 100 % were set to 100 %) and subtracted from 

100 %. Thus, high values indicate high percentages of erroneously not identified kill sites. 

 

Table 29. Time buffers used for the intersection of clusters and validation data. 

Time difference* Time buffer 

Up to 1 day ± 1 day 

2 to 7 days ± 2 days 

8 to 14 days ± 3 days 

15 to 21 days ± 4 days 

22 to 30 days ± 5 days 

more than 30 days ± 10 days 

*The timespan between the date of observation and the estimated non-/kill date. 

                                                      
7 Personal communication with Dr. Stephen Henley on September 3, 2015. 
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The validated non-kill sites (only available for Madge) were used to determine the type I errors, 

which show the proportion of detected kill sites that are known to be none. Each cluster was 

buffered by 50 m and tested for intersection with the validation data. Dates of a non-kill site were 

buffered by ± 3 days to account for potential inaccuracies that may have occurred during the 

process of manually determining the date and coordinates of a cluster. The sum of intersections 

was divided by the number of validation records for the respective animal and transformed into 

percentages. Again, values higher than 100 % were set to 100 %. The higher the type I error, the 

higher the percentage of erroneously detected “kill sites”. 

The resulting errors were measured at different weights (0.1–0.5, in steps of 0.1) and the average 

of the errors for the weights from 0 to 0.5 was computed for all individuals. Only weights between 

0 and 0.5 were considered for the mean error because most error type I and II values are identical 

beyond this weight, which would reduce the differences between the sets. For Madge, these 

measures refer to the total error, which is the sum of the type I and type II errors. For Getika, 

Verity and Ella, these measures refer to the type II error only (due to insufficient validated non-kill 

sites). The minimum error and its associated weight were determined only for the total error of 

Madge. Since type II errors always increase with increasing weights, their minimum is always 0 

and occurs at weight 0.  

12.3 Estimated kill sites 

According to the results of Section 13.1, set12 and set123 achieve the lowest errors. As set12 requires 

less information to compute, it was selected for the subsequent analyses. 

12.3.1 Criteria to select weight thresholds 

The minimum total error is the most appropriate criterion to select the weight threshold in many 

situations. It ensures that the sum of overestimation and underestimation of kill sites is minimal 

according to the available validation data and thus was one of the criteria (denoted as Errormin) 

used in this study. However, the total error could only be determined for one of the four 

individuals (Madge). In order to apply the criterion to the other lions, the error type II for the 

weight yielding the minimum total error was determined for Madge. The weight threshold for the 

other individuals was selected by inspecting at what weight value the difference of their type II 

errors was closest to the reference of Madge. This procedure, however, implicitly assumes that 

there are no significant differences between the individuals regarding the ability to locate their 

kill sites. Given that no validation data about non-kill sites were available for the other individuals, 

it was nevertheless the only possible procedure. The resulting weight thresholds for this criterion 

are shown in Table 34. 
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A maximum allowed error type II of 10 % was selected as a second criterion (denoted as 

Error II10) to define the weight threshold. It is defined as the maximum weight which results in a 

type II error less than or equal to 10 % (see Table 34). Error II10 ensures a reasonable degree of 

underestimation but ignores potentially resulting overestimation. Information on the error type II 

was available for all individuals. 

A final criterion is based on ecological information rather than on observed error rates of the data 

by setting the weight threshold according to the resulting mean kill rates. The kill rate denotes the 

time that passes between two successive kills of an individual or pride (Merrill et al. 2010; Sand 

et al. 2005). It was determined by using the time to kill (TK) definition of Merrill et al. (2010) that 

starts to count the time between kills at the first fix being no longer part of a cluster, and ends to 

count at the first fix belonging to the consecutive cluster. Because kill rates depend on many 

factors such as climate, vegetation, sex and prey abundance (Funston et al. 1998; Rapson & 

Bernard 2007), values from the literature were used to roughly set a lower and upper boundary of 

the ecologically reasonable TK values. Lionesses in Kruger National Park and Karongwe Game 

Reserve in South Africa were found to have quite high kill rates of 1.7–2.6 days (Funston et al. 

1998; Lehmann et al. 2008). Other studies in Madjuma and Shamwari Game Reserve (South 

Africa), that did not distinguish between males and females, found that lions killed on average 

every 4 to 5 days (Power 2002; Rapson & Bernard 2007). Accordingly, TK thresholds of 2 and 5 

days were defined. The respective weights were found by calculating the resulting mean TK 

values at different weight thresholds (Figure 38). The weights being closest to the lower (TKlow) 

as well as to the upper TK boundary (TKhigh) were used as criteria to set the thresholds (see Table 

34). 

 

 

Figure 38. Mean time to kill (TK) values at different weights. All of the analyzed lions are females. 
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12.3.2 Spatial distribution of kill sites 

The spatial distribution of the kill sites was analyzed according to three ecologically relevant 

aspects: The ratio of kill sites inside the 50 % home range, inside the 95 % home range, and inside 

the protected area. The kill sites that matched the respective criteria presented in Section 12.3.1 

were intersected with the polygons of the two home range isopleths and the game reserves (KGR 

and CKGR). The area of the polygons was buffered by 50 m prior to the intersection in order to 

take the GPS error into account. 

13 Results 

13.1 Effect of the clustering rule 

For all of the four lions, set23 results in the strongest decrease of clusters when increasing the 

weight threshold from 0 (see Figure 39 for Madge and Figure 40 for Getika). Except for Ella, set13 

shows the flattest curve whereas set12 and set123 are between the two extremes and almost 

identical. For Ella, the curves of set13, set12 and set123 are almost identical and less steep than those 

of set23. Except for set12 and set123, set23 and DistR as well as set13 and CluDur exhibit curves that 

are identical or at least very similar for all individuals. The curve of ToD looks different from the 

other curves because it is a binary factor instead of a continuous normalized number. Verity and 

Getika (Figure 40) show an almost straight line for ToD, whereas a sharp bend around the weight 

0.5 is visible for Ella and Madge (Figure 39). The plots for Verity and Ella can be found in 

Appendix A.7.  

 

 

Figure 39. Number of clusters for Madge obtained at different weights. The four sets of variables involving 
weighting are presented plus the three individual variables for comparison. SetTA resulted in 1409 clusters 
(not shown). 
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When looking at the errors of the sets of variables, those of type I decrease with increasing weight 

thresholds whereas those of type II increase (Figure 41 and Figure 42). Since no type I errors 

could be determined due to an insufficient number of validated non-kill sites, only type II errors 

are shown for Getika (Figure 42). The errors of the Tambling approach are constant because it 

does not use weights. For Madge (Figure 41), set23 shows the lowest error type I but the highest 

error type II over all weights. Set13 shows the opposite pattern, with the highest errors of type I 

and the lowest errors of type II for most weights. Both error types are identical for set12 and set123 

and are, except for the weights 0.26–0.34, between the extremes of set23 and set13. This leads to 

the lowest minimum total error of 29.4 % (for the weight of 0.14) and the lowest mean total error 

of 62.2 % of all sets (Table 30). Set13 has only a slightly higher mean total error of 63.8 % and 

often shows the lowest total errors for single weights, but has a markedly higher minimum total 

error of 40.5 %. The mean total error of set23 is higher than the one of the other sets and is only 

surpassed by setTA. 

For Getika, the error curves look similar to those of Madge (Figure 42). Again, set23 has the 

highest errors of type II, which is confirmed by Table 31. Although set13 has the lowest error for 

most weights and thus also on average, it is undercut by set12 and set123 for the weights between 

0.14 and 0.26. Set12 and set123 yield identical type II errors for all weights, which holds true for 

Verity and Ella, too. The low error type II value (0 %) for setTA indicates that all validated kill 

sites were detected. For Verity, set12, set13 and set123 have similar errors for most weights and 

nearly identical ones for the mean errors (Table 32). Only set23 consistently yielded higher errors 

of type II. The lowest mean errors are with 71.2 % markedly higher than those for the other 

 

Figure 40. Number of clusters for Getika obtained at different weights. The four sets of variables involving 
weighting are presented plus the three individual variables for comparison. SetTA resulted in 768 clusters 
(not shown). 
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individuals. For Ella, the lowest errors for most weights and on average were produced by set12 

and set123 (Table 33). Unlike the other lions, set13 yielded the highest type II errors here. The error 

plots for Verity and Ella can be found in Appendix A.7. 

 

 

 

 

Figure 41. Type I and II error plots for Madge obtained at different weights. The errors of all five sets are 
shown. Dashed lines represent the rate of missed kill sites, solid lines the rate of erroneously detected ones. 

 

Figure 42. Type II error plots for Getika obtained at different weights. The errors of all five sets are shown. 
The dashed lines represent the rate of missed kill sites. Insufficient validation data was available to 
determine type I errors. 
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Table 30. Validation of the total error (sum of error type I and II) for Madge. The lowest error values per 
column are underlined. 

Variable 

set 

Minimum total error Total error at different weights [%] Mean total error 

(0.0–0.5) [%] Value [%] Weight 0.1 0.2 0.3 0.4 0.5 

set12 29.4 0.14 50.0 51.6 51.6 68.3 88.9 62.2 

set13 40.5 0.24 71.4 42.1 57.1 62.7 62.7 63.8 

set23 38.1 0.06 46.0 73.8 83.3 88.9 88.9 74.5 

set123 29.4 0.14 50.0 51.6 51.6 68.3 88.9 62.2 

setTA 92.9  - 92.9 92.9 92.9 92.9 92.9 92.9 
 

Table 31. Validation of the error type II for Getika. The lowest error value per column are underlined 
(considering only sets with weights). 

Variable set Error type II at different weights [%] Mean error type II 

(0.0–0.5) [%] 0.1 0.2 0.3 0.4 0.5 

set12 13.6 22.7 50.0 77.3 91.0 42.1 

set13   4.5 31.8 40.9 50.0 68.2 32.0 

set23 40.9 63.6 77.3 86.4 86.4 61.7 

set123 13.6 22.7 50.0 77.3 91.0 42.1 

setTA 0 0 0 0 0 0 
 

Table 32. Validation of the error type II for Verity. The lowest error values per column are underlined 
(considering only sets with weights). 

Variable set Error type II at different weights [%] Mean error type II 

(0.0–0.5) [%] 0.1 0.2 0.3 0.4 0.5 

set12 56.5 69.6 87.0 91.3 95.7 71.2 

set13 69.6 73.9 82.6 91.3 95.7 71.4 

set23 60.9 82.6 91.3 95.7 100 76.9 

set123 56.5 69.6 87.0 91.3 95.7 71.2 

setTA 0 0 0 0 0 0 
 

Table 33. Validation of the error type II for Ella. The lowest error values per column are underlined 
(considering only sets with weights). 

Variable set Error type II at different weights [%] Mean error type II 

(0.0–0.5) [%] 0.1 0.2 0.3 0.4 0.5 

set12 44.8 58.6 62.1 72.4 86.2 54.4 

set13 55.2 75.9 86.2 96.6 100 70.7 

set23 48.3 58.6 72.4 82.8 96.6 64.1 

set123 44.8 58.6 62.1 72.4 86.2 54.4 

setTA 0 0 0 0 0 0 
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13.2 Estimated kill sites 

For all individuals, the range of weight thresholds due to the applied criterion is small (Table 34). 

The criterion Error II10 yielded in often the lowest threshold value, whereas the highest values 

were produced either by Errormin or TKhigh. The ratio of kill sites within the 50 % home range 

isopleth is hardly influenced by the selected criterion for Madge and Ella, and only moderately 

for Getika and Verity. Except for Getika, whose ratio is between 60.9–67.9 %, all individuals 

have highly similar ratios between 52.1 % and 57.0 %. The differences of the ratio of kill sites 

within the 95 % isopleth due to the selected criterion do not exceed 2.4 % (Table 34). The ratio 

lies between 96.2 % and 98.8 % for all of the individuals. Madge is the only lion whose ratio of 

kill sites inside the game reserves differs from 100 % for all of the criteria, having 6.8–8 % outside 

(Figure 43). Depending on the criterion, a small percentage of kill sites lie outside the protected 

area for Verity as well (0.3–0.4 %). All kill sites of Getika and Ella are within the game reserves. 

 

Table 34. Spatial distribution of the kill sites of all individuals. For the home range intersection, the mean 
value (± sd) of the 5 home range estimations selected in Section 9.5 is shown. 

Criterion Weight 

threshold 

No. of 

kill sites 

Inside 50 % 

home range [%] 

Inside 95 % 

home range [%] 

Inside game 

reserves [%] 

Madge 

Errormin 0.14 125 54.2 ± 6.8 96.8 ± 3.1 92.8 

Error II10 0.10 195 54.2 ± 8.3 96.9 ± 3.7 92.3 

TKlow 0.08 295 54.8 ± 7.5 97.1 ± 3.2 93.2 

TKhigh 0.12 150 53.7 ± 7.4 96.8 ± 3.7 92.0 

Getika 

Errormin 0.12   78 67.9 ± 3.7 98.7 ± 2.2 100 

Error II10 0.06 203 60.9 ± 4.1 97.7 ± 1.4 100 

TKlow 0.06 203 60.9 ± 4.1 97.7 ± 1.4 100 

TKhigh 0.10   99 67.3 ± 3.7 98.8 ± 1.8 100 

Verity 

Errormin 0.04 308 52.6 ± 3.0 96.2 ± 1.8 99.7 

Error II10 0.02 520 52.1 ± 3.2 96.5 ± 1.7 99.6 

TKlow 0.04 482 55.7 ± 2.7 96.6 ± 0.9 100 

TKhigh 0.08   95 56.6 ± 2.4 98.9 ± 1.5 100 

Ella 

Errormin 0.06 482 55.7 ± 2.7 96.6 ± 0.9 100 

Error II10 0.04 635 55.7 ± 3.1 96.4 ± 1.1 100 

TKlow 0.06 482 55.7 ± 2.7 96.6 ± 0.9 100 

TKhigh 0.10 183 57.0 ± 3.4 97.5 ± 1.6 100 
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Figure 43. Visualization of Madge’s potential kill sites. The size of the cluster marker scales according to its 
weight: The larger a cluster marker, the higher the probability that it represents an actual kill site. No weight 
threshold was applied. 

 

14 Discussion 

14.1 Effect of the clustering rule 

The fact that almost identical results for both the number of clusters as well as for the errors were 

obtained for set12 and set123 demonstrates that ToD had no effect. The identical numbers of clusters 

for Dur and set13 as well as DistR and set23 (see Figure 39 and Figure 40) support this finding. 

This is surprising considering that nocturnal predators, such as the investigated lions, usually rest 

during the day and hunt during the rest of the day (Anderson & Lindzey 2003; Ramsauer 2006; 

Tambling et al. 2010). Because of that, clusters (referring to kill and resting sites) are expected to 

occur at any time of day and thus require being differentiated by ToD. For set23, ToD may have 

no effect because the distance ratio already differentiates clearly between resting and kill sites. 

Halving the weight of clusters that already have very low values may result in changes too small 

to detect. However, this is less likely for set13 because resting can result in equally long clusters 

as consuming prey. Therefore, another possible explanation is that the binary classification used 

for ToD is too coarse and thus confuses resting and kill sites (Tambling et al. 2010). The lack of 

a sharp bend in the curve of ToD for Verity and Getika (Figure 40) is due to a low number of 

clusters classified as diurnal. This either confirms an inadequate classification or indicates an 

unusual resting behavior of those individuals (Haas et al. 2005; Macdonald & Loveridge 2010; 

Ramsauer 2006; Schiess-Meier et al. 2007). 
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Figure 39 and Figure 40 show that DistR (and thus set23) leads to a clear separation between the 

majority of clusters having a low weight and the minority having a high weight. This is caused 

by the large value range that can occur when dividing the sum of Euclidean distances. As soon as 

there is at least one particularly large ratio, most other clusters receive small weights for this 

variable, which reduces their differentiability. The duration of a cluster (Dur, set13), on the other 

hand, allows for a better differentiability of a larger proportion of clusters due to a narrower range 

of values and therefore seems to be preferable over set23 and DistR, respectively. The lower errors 

of set13 compared to set23 found in three of four error plots support this conclusion. Since set12 and 

set123 include both variables, their influences cancel each other out. This effect leads to a total 

error for Madge that is slightly smaller than that of set13 and significantly smaller than that of 

set23. The fact that set12 and set123 also produced the lowest mean type II errors for Verity and Ella 

supports the finding that they are the most appropriate sets of variables (that have been 

investigated here) for the detection of clusters. 

Although set12 and set123 yielded the lowest total errors and markedly lower type I errors for 

Madge, their type II errors can compete with those of setTA only for low weights. If it is critical 

not to miss any potential kill site, a weight threshold of 0 ensures the same low rate of type II 

errors as setTA. By using a low threshold such as 0.1 (for Madge), however, a type II error of 0 % 

and a type I error of 50 % yields half as many unnecessary field visits compared to setTA. The 

inclusion of variables to assign weights that mark the probability of a cluster being a kill site has 

no disadvantages compared to the approach of Tambling & Belton (2009). Applying weights is 

thus a sensible extension that allows reducing significantly the workload for visiting potential kill 

sites to validate them, e.g. to gather data for the construction of a predictive model. 

14.2 Estimated kill sites 

Although the number of kill sites varies significantly depending on the weight threshold criterion, 

the ratios are quite stable. This indicates that the importance of different regions can be estimated 

reliably, even though the absolute number of kill sites might massively under- or overestimate the 

actual number. Since the TKlow and TKhigh criteria predetermine the number of kill sites by using 

the kill rate for its computation, they are not recommendable to estimate absolute kill site 

numbers. Regarding the estimation of the ratios, however, they produce comparable results as the 

other criteria. A potential advantage of them over Errormin and Error II10 is that the performance 

of the latter heavily depends on the amount of available validation data. 

Interestingly, the 50 % home range isopleths for three of four lions contain almost the same 

percentage of kill sites. As an exception, Getika not only has a significantly higher ratio of kill 

sites within the 50 % boundary (Table 34), but also the smallest (static) home range of all 

individuals (Table 21). Since Getika’s home range widely overlaps with those of Ella and Verity, 

who have lower ratios and larger core areas, it is unlikely that this area has particularly high prey 
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abundances (Winterbach et al. 2014). Rather, Getika spends more time in the core area and thus 

hunts predominantly there. The fact that the ratios of kill sites within the 95 % home range isopleth 

are close to 100 % supports the claim, that this area contains all resources required by the 

individual (Burt 1943). 

As already indicated by the overlap analysis of the home ranges (compare Section 9.5.3), Verity 

and Madge are the only individuals with kill sites outside the protected area. Since the kill sites 

outside the game reserves intersect grazing areas of cattle, it is likely that they represent livestock 

predation (Mills & Schiess-Meier 2009; Mishra et al. 2015; Schiess-Meier et al. 2007). The fact 

that both lions were labeled as problem animals and finally shot8 supports this assumption. Cattle 

killed by lions weigh more than 100 kg in most cases and thus should be easily detectable by 

using clustering approaches (Ramsauer 2006; Tambling et al. 2010). Nevertheless, the observed 

ratios of kill sites outside the protected area seem to be, particularly for Verity, too low to justify 

their classification as problem animals. It is thus likely that lions show different killing and 

feeding behavior when being close to human settlements (e.g. shorter cluster durations and lower 

distance ratios) due to potential disturbances, which reduces the detection rate of such kill sites 

(Pitman et al. 2012). The existence of such impacts due to anthropogenic disturbances has already 

been observed for cougars by Smith et al. (2015). 

14.3 Final remarks 

The amount of validation data available for the individual lions was quite small. Particularly 

validated non-kill sites were sparse and within a reasonable range only for one individual 

(Madge). The computed errors of Section 13.1 exhibit therefore a high level of uncertainty. 

Preliminary analyses (see Appendix A.8) have shown that the inclusion of the accelerometer data, 

which were partially available for the lions, can improve the accuracy of the clustering approach. 

However, the accelerometer data cannot be downloaded remotely but can only be obtained when 

changing the GPS collar (store-on-board), which is typically done every 1–1.5 years. As a 

consequence, the clustering approach could not be used to locate recent potential kill sites to visit 

and validate them. Thus, data from the accelerometers was not included in the final clustering 

algorithm. 

  

                                                      
8 Personal communication with Dr. Stephen Henley and Monika Schiess-Meier on September 1, 2015. 
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V Conclusion 

15 Achievements 

The first step of the home range analysis concerned the effect of the parameterization of the home 

range estimators selected for this study. The obtained results differed considerably from the 

results found in the literature. For KDE, it was shown that the reference bandwidth produced more 

realistic home range estimates than the more sophisticated cross-validation (except for BCV) and 

plug-in approaches. For t-LCH, simulations claimed consistently lower errors when using the a-

rule instead of the k-rule. However, using data from this study, the former yielded markedly larger 

core areas that lack any spatial detail. The a-rule was therefore found to be less appropriate. A 

possible explanation for that may be the large span of point density in the data, which led to the 

inclusion of too many points during the construction of the hulls when using the a-rule. The 

analyses revealed that the inclusion of the time parameter s significantly affects the home range 

estimates of t-LCH by forming the isopleths according to the pathways of the individual. In 

addition, it was found that the model proposed by Benhamou & Cornélis (2010) and Jay et al. 

(2012) to determine the smoothing parameter of the approximated version of BRB has some 

unresolved issues. One of them proved to be the presence of several different sampling intervals 

in a dataset. Another issue was the strong dependence on the selected timespan associated with 

the maximum travel velocity. 

By averaging the results of the individual sets of parameters for each HRE and individual, MCP 

proved to compute areas that are significantly larger than those of the other methods. Unlike 

results from literature, KDE produced home ranges whose areas are the smallest of all methods. 

When considering only the area, KDE, t-LCH and BRB were found to be statistically identical 

regarding the 95 % isopleth and almost identical regarding the core area. However, the 

compactness index, which represents the shape of the home ranges, showed more distinctive 

differences than the area. It revealed that the estimates of KDE and BRB are equally fragmented 

and undersmoothed, whereas those of t-LCH tend to be much more cohesive. A drawback of 

t-LCH proved to be the lack of functioning guidelines to set its parameters for the data used here. 

A comparison of the obtained home range estimates with those from the literature revealed that 

the lions and leopards in the Khutse Game Reserve and the Central Kalahari Game Reserve have 

home ranges that are among the largest worldwide. This is at least partially explained by the 

observed temporal variability of the home range area and shape which lead to larger home ranges. 

Because most other authors did not investigate the temporal variability of their estimates and 

partially used different home range definitions and estimators, comparisons of home range 

estimates incorporates a high level of uncertainty. It is likely that the observed home range shifts 

over time masked differences due to sex and season that might have existed otherwise. The spatial 
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overlaps of the home ranges were analyzed and used to reconstruct pride structures of the lions. 

As none of the males showed intersecting home ranges, they were assumed to belong to different 

prides. For the leopards, an unexpectedly high degree of overlaps was found between individuals 

of the same sex. An analysis of their Euclidean distances at similar times revealed that they rarely 

encountered each other and thus demonstrate a strong active avoidance behavior. It was found 

that, except for Ronja’s trip towards the south during one season, all leopards and lions had their 

home ranges predominantly within the protected area. However, even small percentages being 

outside indicate potential livestock predation. Regarding interspecific interactions, it was found 

that extensive overlaps occurred between the home ranges of leopards and lions. The small 

Euclidean distances obtained for several interspecific comparisons indicate that direct encounters 

were not unusual but ended for none of the leopards lethal. Since the vast majority of distances 

are larger than 5 km and lions have no reasons to avoid encounters with leopards, the latter are 

assumed to actively avoid lions. 

The effect of different variables and their combinations, which were found to be particularly 

useful for locating kill sites in previous studies, was analyzed by incorporating several variables 

as weighting criteria. It was found that the combination of the duration of a cluster and the ratio 

of distances moved 24 h before and after a cluster yielded the lowest overall error and moderate 

type II errors. The time of day of a cluster, on the other hand, had no effect on the result. It is 

possible that the respective classification was too coarse and therefore minimized the impact of 

the variable. It was concluded that the incorporation of weights to quantify the probability of a 

cluster being a kill site entails no disadvantages. On the contrary, selecting an appropriate weight 

threshold value can save a considerable amount of time when visiting potential kill sites, e.g. to 

collect validation data to train predictive models. The set of weighting parameters that performed 

best was applied to four of the lions to estimate the spatial distribution of their kill sites and the 

extent of livestock predation. Irrespectively of the selected criteria to determine the weight 

threshold, the ratios of kill sites within the 50 % and 95 % home range isopleths were quite stable. 

This indicates that, although the absolute number of kill sites vary considerably, their spatial 

distribution is quite stable on large scales. The fact that almost all kill sites are within the 95 % 

home range boundary supports its ecological relevance. Those lions that were marked as problem 

animals and shot by the government were also found to have small percentages of their kill sites 

outside the protected area. The low extent of potential livestock predation suggests that those 

clusters could not be located reliably by using spatiotemporal clustering. It is supposed that lions 

change their feeding behavior when being close to humans so that clusters are shorter and harder 

to detect, which results in an underestimation of the extent of livestock predation. 
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16 Implications 

The deviations of the results from the literature concerning the choice of the home range estimator 

and its parameterization emphasizes the differences between real, imperfect data and simulated 

data. The latter has therefore only a limited validity for analyses of free-ranging animals. Due to 

a lack of studies that applied t-LCH to comparable datasets, it remained unclear whether the poor 

performance of the a-rule is, as assumed, a result of the extreme range of spatial densities or 

eventually a programming issue of the R package T-LoCoH. Further studies are needed to provide 

clarification. The moderate differences of the areas computed by the different HRE (except for 

MCP) indicate that their choice is not critical when home range sizes are the only goal. The 

observed differences of 10–20 % are within the (high) level of uncertainty arising through the 

comparison of results that used different parameterizations, methodologies and data sources. The 

incorporation of the shape and spatial position of a home range, however, reveals larger 

differences between the HRE. Particularly the shape of home ranges produced by MCP proved to 

be markedly different from those of all other HRE. It is therefore recommended to include shape 

measures in home range analyses so that comparisons between studies are based on more than a 

single criterion. This, however, requires using the same measures for all studies. Due to the large 

differences between MCP and the other HRE regarding the size, shape and position of the home 

ranges, the result of MCP should not be regarded as a conservative estimate of ecologically 

important areas for an individual. 

The observed variability of home ranges over time questions, at least for lions, the suitability of 

the conventional static home range analysis. By computing home ranges based on data from a 

single year, some of the observed shifts may not be visible or might be misinterpreted. Using data 

from several years, as it is the case here, helps detecting such shifts but can lead to seemingly 

disjoint core areas and overestimated areas. A key finding of the home range analysis part is the 

strong dependence of the home range estimate on the temporal aggregation level used. It is 

therefore suggested to analyze home ranges at different temporal aggregation levels to detect 

potential shifts. In addition, using several home range estimators provides a more comprehensive 

view of home ranges and allows to quantitatively estimate their level of uncertainty. The observed 

extents of the core areas and their intersections for some of the leopards indicate that they should 

not be understood in the sense of defended territories but only as regions of increased utilization 

density. This is supported by the fact that the 95 % home range isopleths were much more compact 

than the core areas for most individuals. 

The findings of the kill site analysis highlight the potential advantages of ranking clusters 

according to their probability of being kill sites. The application of the developed clustering 

approach was found to reliably display the spatial distribution of kill sites on large scales. 

Although the accuracy of the approach is limited, it allows for rough estimates at very low 
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expenses, particularly in combination with the time to kill (TK) criterion. However, spatio-

temporal clustering approaches cannot be recommended to quantify livestock predation as they 

are suspected to underestimate such kill sites to a considerable degree. 

17 Future work 

Incorporating the shape of a home range was found to support more comprehensive differen-

tiations of home ranges. In order to serve as an additional criterion for comparisons between 

studies, however, the same shape measures must be used. Further research is required to analyze 

the effects of various characteristics of home ranges (e.g. the level of disjointedness in the case 

of several polygons) and find measures that optimally represent them, so that they can be 

established as standards. In addition, the home range analysis raised many questions concerning 

the observed spatiotemporal shifts. It is therefore suggested to conduct analyses that investigate 

the reasons for those shifts in order to consider them appropriately in conservation strategies. 

Although the analysis of home ranges in terms of individual seasons revealed many shifts over 

time, they may look different when using different temporal aggregations. Accordingly, future 

work should expand the analysis of spatiotemporal shifts, e.g. by using moving windows of 

varying width for temporal aggregation and comparing their results. 

A major limitation of the kill site detection consisted in the insufficient validation data to evaluate 

the performance of the different sets of variables properly. It is suggested to collect large numbers 

of validated kill and non-kill sites, e.g. by using the presented clustering approach, to assess its 

performance in a statistically significant manner. It was concluded that the investigated clustering 

approaches are likely to underestimate the absolute number and proportion of livestock predation. 

In order to verify this hypothesis, it is suggested to check the GPS positions of a known problem 

animal as soon as it leaves the protected area and moves towards rangeland. By comparing the 

number of clusters with the number of validated livestock predation events, the adequacy of the 

clustering approaches for this purpose of use may then be assessed. 
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VII Appendix 

A.1 KDE: Influence of the sample size on the bandwidth 

The average of 10 iterations done for each of the four leopards is shown. The correction factors, 

which are based on these values, were used for the lions in order to compensate their reduced 

sample size for the estimation of the bandwidth. 

Individual HPIhalf HPIfull HSCVhalf HSCVfull HBCVhalf HBCVfull 

PF07_Ronja  1114.03 922.84 1081.28 881.26 2240.62 2022.49 

PM07_Mothamongwe 989.59 820.83 1033.86 843.93 1648.11 1488.12 

PM08_Bogarigka 1441.89 1183.76 1470.52 1187.32 3205.26 2861.58 

PM09_Gham 1192.77 966.72 1211.51 961.44 2171.04 1945.78 

 

A.2 KDE: Influence of the kernel function 

The volume of intersection index (95 %) was calculated between the Gaussian and Epanechnikov 

kernel using the reference bandwidth for all of the 12 leopards and lions. The higher the VI index, 

the smaller the differences between the kernel functions. 

Individual VI index1 

PF07_Ronja 0.94 

PM07_Mothamongwe 0.95 

PM08_Bogarigka 0.94 

PM09_Gham 0.93 

LF12_Verity 0.94 

LF13_Ella 0.94 

LF16_Jane 0.93 

LM06_Hitchcock 0.94 

LM07_Mexico 0.92 

LF14_Madge 0.93 

LM08_Orange 0.93 

LF07_Getika 0.92 

1between the Gaussian and Epanechnikov kernel function 
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A.3 BRB: Influence of tau 

Normalized areas of the 50 % and 95 % isopleth when using BRB with different values for the 

parameter tau [seconds]. 

Individual-isopleth combination 60 sec 180 sec 360 sec 720 sec 900 sec 

PF07_Ronja 50 % 1.00000 0.99993 0.99970 0.99953 0.99922 

PF07_Ronja 95 % 0.99902 0.99917 0.99938 0.99981 1.00000 

PM07_Mothamongwe 50 % 0.99891 0.99905 0.99926 0.99965 1.00000 

PM07_Mothamongwe 95 % 0.99859 0.99877 0.99904 0.99923 1.00000 

PM08_Bogarigka 50 % 0.98498 0.98698 0.99021 0.99683 1.00000 

PM08_Bogarigka 95 % 0.99194 0.99301 0.99478 0.99838 1.00000 

PM09_Gham 50 % 0.99691 0.99728 0.99793 0.99937 1.00000 

PM09_Gham 95 % 0.99813 0.99839 0.99872 0.99945 1.00000 

 

A.4 Detailed home range results 

Area and compactness values of the core area (50 %), separately by individual and HRE. For t-

LCH, the average of the lower and upper boundary values k1 and k2 is presented. Females are 

underlined. 

 Area [km2] (50 % isopleth) Compactness (50 % isopleth) 

Individual MCP KDE t-LCH BRB MCP KDE t-LCH BRB 

Ronja   259.4   211.7 199.8   175.4 0.95 0.34 0.32 0.31 

Mothamongwe   230.9   194.6 203.2   180.9 0.96 0.39 0.44 0.38 

Bogarigka   578.0   494.8 394.3   480.1 0.94 0.51 0.46 0.24 

Gham   325.7   302.4 301.3   284.7 0.96 0.37 0.52 0.32 

Verity   852.9   707.2 769.8   656.6 0.97 0.64 0.27 0.19 

Ella   568.8   466.3 439.8   418.7 0.98 0.46 0.44 0.20 

Jane   987.6   780.4 723.3   663.5 0.98 0.37 0.30 0.31 

Hitchcock 1203.5 1040.7 996.9 1004.6 0.97 0.36 0.33 0.23 

Mexico   182.1   182.2 166.1   218.3 0.97 0.50 0.52 0.66 

Madge   721.1   401.6 309.1   497.3 0.97 0.50 0.19 0.09 

Orange   352.6   312.5 383.0   328.3 0.98 0.45 0.42 0.47 

Getika   470.7   418.0 387.8   431.8 0.97 0.46 0.31 0.43 

 

  



 

Appendix A.4 

121 
 

Area and compactness of the home range (95 %), separately by individual and HRE. For t-LCH, 

the average of the lower and upper boundary values k1 and k2 is presented. Females are underlined. 

 Area [km2] (95 % isopleth) Compactness (95 % isopleth) 

Individual MCP KDE t-LCH BRB MCP KDE t-LCH BRB 

Ronja 1629.1 1304.1 1192.2 1134.5 0.70 0.32 0.28 0.28 

Mothamongwe   712.0   721.0   667.7   678.1 0.84 0.55 0.50 0.54 

Bogarigka 2505.0 2423.6 2221.6 2279.5 0.60 0.37 0.40 0.35 

Gham   872.1   987.0   863.0   912.0 0.81 0.56 0.48 0.55 

Verity 3601.2 3350.2 3129.6 3030.0 0.76 0.51 0.50 0.48 

Ella 2618.3 2386.1 2364.9 2278.0 0.83 0.59 0.60 0.53 

Jane 3327.7 3238.0 2872.3 2937.3 0.82 0.53 0.54 0.49 

Hitchcock 4897.0 4346.5 3991.9 4034.0 0.86 0.54 0.51 0.52 

Mexico 1852.4 1559.8 1591.7 1824.2 0.91 0.48 0.63 0.49 

Madge 4417.4 3347.2 2710.6 3247.3 0.77 0.50 0.46 0.54 

Orange 1091.9 1150.6 1077.9 1204.1 0.96 0.66 0.61 0.61 

Getika 2243.6 2083.9 1985.9 2047.4 0.90 0.36 0.53 0.28 

 

Ratio of the 50 % isopleth to the 95 % isopleth, separately by individual and HRE. The results of 

the different HRE are shown for each individual. For t-LCH, the average of the lower and upper 

boundary values k1 and k2 is presented. Females are underlined. 

Individual MCP KDE t-LCH BRB 

Ronja 0.16 0.16 0.17 0.15 

Mothamongwe 0.32 0.27 0.31 0.27 

Bogarigka 0.23 0.20 0.18 0.21 

Gham 0.37 0.31 0.35 0.31 

Verity 0.24 0.21 0.25 0.22 

Ella 0.22 0.20 0.19 0.18 

Jane 0.30 0.24 0.25 0.23 

Hitchcock 0.25 0.24 0.25 0.25 

Mexico 0.10 0.12 0.11 0.12 

Madge 0.16 0.12 0.12 0.15 

Orange 0.32 0.27 0.36 0.27 

Getika 0.21 0.20 0.20 0.21 
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A.5 Selected home range estimates 

The selected home range estimates (5) for each individual used for the ecological analyses are 

shown below. 

Ronja 
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Mothamongwe 
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Bogarigka 
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Gham 
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Verity 
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Ella 
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Jane 
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Hitchcock 
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Mexico 
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Madge 
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Orange 
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Getika 
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A.6 Temporal variation of all home ranges 

The following plots show the temporal variation of the home ranges of all leopards and lions. The 

home range estimates are based on KDE and the reference bandwidth. 

 

Ronja: Winter 2011–Winter 2014 

    

   

 

 

Mothamongwe: Winter 2011–Winter 2013 
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Bogarigka: Summer 2011–Summer 2012 

   

 

 

Gham: Winter 2012–Summer 2012 

  

  

 

Verity: Summer 2011–Winter 2013 

    

 

Ella: Summer 2011–Summer 2013 
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Jane: Summer 2012–Winter 2013 

    

 

Hitchcock: Winter 2012–Summer 2013 

    

 

Mexico: Winter 2012–Summer 2013 

    

 

Madge: Summer 2012–Winter 2014 

    

 

Orange: Summer 2012–Winter 2014 
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Getika: Winter 2011–Winter 2012 

   

 

 

A.7 Effect of the clustering rule 

The following plots show the results of the evaluation of the clustering rule (Section 13.1) for 

Verity and Ella. 

Verity 
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Ella 

 

 

 

A.8 Inclusion of activity data 

It was investigated whether the inclusion of activity (accelerometer) data could improve the 

results of the set of variables that yielded the lowest errors in Section 13.1 (set12). Accordingly, 

the weighting formula of set12 presented in Section 12.2.4 was extended to 

norm (Dur + DistR + Act). 

Act was defined as the mean of the 75 %, 85 % and 95 % quantiles of all activity values (in x- 

and y-direction) within the time span of the respective cluster. 
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A.9 R Code 

The code of the most important R scripts are provided digitally on the attached CD. Please note 

that the code was tailored to the author’s working environment and expects certain folder 

directories, input files and R packages. It thus will not work on your computer without 

modifications. The purposes of the R scrips are briefly explained in a text document (on the CD).
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