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I 

 

Abstract 

Ecosystems deliver essential goods and services for human welfare. The measurement and 

monitoring of ecosystem properties, therefore, represent vital necessities, especially in times of 

global changes as today. Remote sensing has the ability to deliver relatively direct measurements of 

key ecosystem properties with a stable and strong predictive response to ecosystem functions. 

However, challenges are encountered when using measured reflectance data of vegetation canopy 

since the signal from the leaf albedo is modulated by the canopy structure. No direct conclusion on 

ecosystem properties like plant traits can thus be drawn without a model accounting for canopy 

structure. In this thesis, the retrieval of structural and leaf biochemical parameters is tested using the 

theory of spectral invariants. The first part analyses sensitivities of retrieved structural parameters 

across different canopy complexities to test their coherence, underlying assumptions and usability. 

The second part tries to implement the retrieved structural parameters in a model for the retrieval of 

leaf biochemical constituents, which accounts for canopy structural effects. 
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1. Introduction 

1.1 Context 

The goods and services provided by ecosystems represent very important benefits for human 

(Costanza et al., 1997). Ecosystem services are produced by the activities of organisms, which are 

linked to organisms by their functional traits (Andrew et al., 2014). Homolová et al. (2013) point out 

the importance of remote sensing in delivering relatively direct measurements of key ecosystem 

properties with a stable and strong predictive response to ecosystem functions. An important group 

of parameters relevant for ecosystem services are the plant traits, which include pigments, dry 

matter, water, biochemistry content, LAI or LAD (Andrew et al., 2014). Furthermore, the physiological 

status, plant productivity and nutrients availability of plants is strongly related to their pigment 

content (Curran, 1989; Gitelson et al., 2006). Monitoring the temporal and spatial dynamics of plant 

traits is therefore of large interest for environmental and agricultural management (Blackburn, 

2007). Spectral reflectance measurements provide a fast and non-destructive technique with 

considerable progresses made recently by physical and conceptual models in estimating leaf 

biochemical contents (Sims & Gamon, 2002; Zhang, 2008). 

Measured reflectance data, however, is not only influenced by the leaf albedo but is also affected by 

the canopy structure (Houborg et al., 2015; Rautiainen et al., 2004). Leaf biochemical constituents 

can therefore not directly be estimated from the measured signal since latter needs correction for 

canopy structural effects first. There are different canopy reflectance models (Myneni et al., 1995), 

one being the theory of spectral invariants (Huang et al., 2007; Knyazikhin et al., 1998; Panferov et 

al., 2001). It is based on the three-dimensional radiative transfer equation of solar radiation 

interacting with the vegetation canopy and is therefore physically consistent (Knyazikhin et al., 2013). 

The fact that the interaction probability of photons within the canopy is determined by the canopy 

structure only results in a wavelength independent behaviour of the vegetation canopy (Knyazikhin 

et al., 2011). The theory of spectral invariants shows that simple algebraic combinations of the single-

scattering albedo and canopy spectral transmittance and reflectance lose their wavelength 

dependency and determine three canopy structure specific variables – the canopy interceptance, the 

recollision and escape probabilities (Huang et al., 2007; Panferov et al., 2001). These three spectrally 

invariant variables can be combined into the directional area scattering factor (DASF), a factor which 

corrects reflectance data for canopy structural effects (Knyazikhin et al., 2013). 
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1.2 Motivation 

Although the theory of spectral invariants is meanwhile well developed and tested on simulated or 

remotely sensed spectral data, not many studies have tested the potential of its application. 

Derivations from the theory of spectral invariants show the possibility to retrieve structural 

parameters, i. a. the DASF, from hyperspectral data without canopy-reflectance models, prior 

knowledge, or ancillary information regarding leaf optical properties (Knyazikhin, 2013). The 

advantage besides not needing any knowledge about the measured canopy is the simplicity of the 

algorithm underlying the retrieval (Knyazikhin et al., 2013). On the other side, the simplicity also 

implies assumptions and parts of the theory have been derived from perfectly homogeneous 

canopies. This could lead to potential issues for the retrieval of structural parameters from real and 

more complex canopies. The retrieval seems to work so far; however, it was not yet fully tested on 

observational data of various canopy complexities. Furthermore, no attempt has been made to 

develop a method for the retrieval of plant traits from spectral measurements, which includes the 

theory of spectral invariants for the correction of structural effects. Such a retrieval would represent 

a considerable advance in remote sensing, since no simple solution separating the structural and 

biochemical portions of a remotely sensed signal without the need of additional information is 

known today. 

 

 

1.3 Aims and Objectives 

The aim of this thesis is to test the application of the spectral invariants theory for the retrieval of 

plant traits from remotely sensed high resolution hyperspectral data of different canopy 

complexities. Therefore, the retrieval of structural variables, namely the DASF, overall recollision 

probability, p1, and directional escape probability, R, is first investigated step by step from ideal 

conditions to complex vegetation canopies. For each degree of canopy complexity the results are 

compared with the theory and present studies for validity, assumptions are questioned, challenges 

are shown and the usability of the retrieved structural variables is assigned. With only a few studies 

to apply the spectral invariants theory on reflectance data, this thesis is to date one of the first to 

examine the retrieval of the DASF, overall recollision probability and directional escape probability 

from remotely sensed spectral data. After the evaluation of the retrieval of structural variables, a 
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method for the retrieval of leaf biochemical constituents derived from the spectral invariants theory 

and using the retrieved structural variables is tested. 

The thesis is subdivided into four parts. In the first one simulated spectra from the PROSAIL model 

are used to investigate sensibilities of the retrieved structural parameters to different variations of 

leaf biochemical and canopy structural parameters. The purpose of this part is to have a controlled 

experiment, although artificial, where each variation of the result can be related to a separate input 

parameter. It also represents a perfectly homogeneous canopy, which is often an assumption in the 

derivation of the theory. It is first looked at how the DASF values react to variations of the model 

parameters. In a second step the sensitivity of the overall recollision probability, p1, and the 

directional escape probability, R, to parameter variation is further examined. Lastly, the chlorophyll 

retrieval by Gitelson et al. (2006) is applied on the simulated spectra to analyse the effects of canopy 

structure on the pigment retrieval. The second part investigates crop land in Eschikon representing a 

homogeneous canopy as the next level of complexity. After an overview of the distributions of DASF 

values, in situ measurements of structural parameters are compared with retrieved DASF, p1 and R. 

The separation of crop types in the spectral invariant space, using the two dimensions of macro and 

micro structure, is tested as well. In the third part, the concept of spectral invariants is further 

applied on a heterogeneous canopy, the forest of Lägeren, with a similar procedure. First, 

distributions of DASF values are examined for the whole forest. Retrieved DASF values are then 

compared to LiDAR retrieved structural parameters to test for sensitivities. As for the homogeneous 

canopy, a separation of canopy structure types in the spectral invariant space is tested in the end. 

After the evaluation of the usability of retrieved structural variables from hyperspectral data using 

the theory of spectral invariants, a method for the retrieval of plant traits is attempted. It uses the 

relationship of Lewis & Disney (2007) who relate biochemical constituent concentrations at leaf level 

to reflectance measurements through the DASF and recollision probability. 
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2. Data 

2.1 Simulated data 

In order to analyse sensitivities of the three retrieved structural parameters to leaf biochemical 

constituents and structural variables of an ideal canopy, simulated spectra from the version 5 

PROSAIL model (Baret et al., 1992) are used. This allows to test the consistency of the retrieval and 

its assumptions on scenes representing ideal conditions and a perfectly homogeneous canopy. For 

the analysis, one parameter at a time is varied while the others are fixed to a basic parameter 

setting. The basic parameter setting for all spectra is given by table 1. 

Table 2 contains the variations of the parameters used for the analysis. Each of the simulated spectra 

is then used to calculate the slope, the intercept and the R2 of the linear fit of the retrieval as well as 

the DASF value (section 3.1.2). 

 

 

2.2 Observational data 

 The hyperspectral data was recorded by the pushbroom imaging spectrometer Airborne Prism 

Experiment (APEX) (Itten et al., 2008) at 284 spectral bands between 399.34nm and 2420.25nm. The 

homogeneous canopy consisting of agricultural crop land in the area of Eschikon (Switzerland) was 

 

Table 1. Basic parameter setting for the spectra of the PROSAIL model. 

PROSPECT:  SAIL:  

Structure parameter: 1.5 Leaf area index: 3.5 m/m 

Chlorophyll content (a+b): 50.0 μg/m2 Average leaf angle: 25° 

Equivalent water thickness: 0.025 cm Hot spot: 0.05 

Dry matter: 0.008 g/cm2 Diffuse fraction: 0.15 

  Sun zenith: 10° 

  Relative azimuth: 0° 

  View angle: 0° 
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Table 2. Parameter setting of the PROSAIL model for the sensitivity analysis of retrieved structural parameters to leaf 

biochemical constituents. 

Structure 

paramete

r [] 

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8     

Chloroph

yll 

content 

[μg/m2] 

10 20 30 40 50 60 70 80 90     

Equivalen

t water 

thickness 

[cm] 

0.00

5 

0.01

0 

0.01

5 

0.02

0 

0.02

5 

0.03

0 

0.03

5 

0.04

0 

0.04

5 
    

Dry 

matter 

content 

[g/cm2] 

0.00

4 

0.00

6 

0.00

8 

0.01

0 

0.01

2 

0.01

4 

0.01

6 

0.01

8 
     

Leaf area 

index [] 
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  

Average 

leaf angle 

[°] 

0 5 10 15 20 25 30 35 40 45 50 55 60 

Sun 

zenith [°] 
0 5 10 15 20 25 30 35 40 45    

Viewing 

angle [°] 
0 5 10 15 20 25 30 35 40 45    

 

 

flown over on August 30, 2013, while the heterogeneous canopy of the Lägern forest area 

(Switzerland) area was recorded on June 29, 2010. Both datasets were radiometrically calibrated 

(Hueni et al., 2013), atmospherically corrected by ATCOR4 (Richter & Schläpfer, 2004) and geocoded 

by PARGE (Schläpfer et al., 1998), resulting in a spatial resolution of 2m. For the topographic divert 

area of the Lägern forest, a LiDAR derived digital surface model was used for the geocoding.  
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2.3 In situ retrieved structural parameters 

The five in situ retrieved structural parameters for sensitivity analyses of the structural parameters 

retrieved from spectral data were measured in the area surrounding the ETH research station in 

Eschikon during the same date as the APEX overflight (Liebisch et al., 2014). They consist of 

integrated measurements of a 2x2m plot of the LAI, sky fraction, mean tilt angle of leaves, canopy 

height and destructively measured LAI. The LAI, sky fraction and mean tilt angle were all measured 

with the LAI 2200 Plant Canopy Analyzer (LI-COR, Inc., Lincoln, NE, USA) using a 270° view restricting 

cap. For the canopy height, the highest point of five random plants within the plot was measured 

from the ground without stretching them to their maximum length. The second LAI measurement 

was performed using a destructive method. 

 

 

2.4 LiDAR derived structural parameters 

Two LiDAR datasets are used to examine the sensitivity of retrieved structural parameters from 

spectral data as further independent measurements. The two datasets of structural parameters were 

derived from data of a full-waveform small-footprint airborne laser scanner (ALS) on August 1, 2010 

under leaf-on conditions of the Lägern forest area. The footprint diameter was approximately 0.25m 

and a mean point density of 40m-1 was obtained. 

For the first parameter set, the resulting point cloud has been subdivided into a two dimensional grid 

with 2m resolution in the horizontal plane (600x478m) and different structural parameters have 

been derived on grid basis. Following parameters were used in the analysis: vegetation height 

(maximum echo height above ground), vegetation length (amount of histogram bins (1m) with a 

percentage proportion of echoes larger than 1% in the vegetation column), vegetation ratio 

(vegetation length/vegetation height), crown ration (crown base/vegetation height), cumulative 

intensity above 3m from ground, cumulative top intensity (intensity of top 3m of canopy), height 

percentiles (height above ground where 10%, 20%,.., 90% and 99% of the points are located 

underneath) and the point density per vertical bin (always 10 bins per vegetation column). 
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Figure 1. Canopy structure type distribution over the forest of Lägern (Leiterer et al., 2013). 

The second set of ALS derived parameter consists of a three dimensional voxel grid 

(2400x6600x436m, 2x2x2m resolution) of the Plant Area Density (PAD) (Schneider et al., 2014). This 

quantity is directly derived from the point cloud of the Plant Area Index (PAI). The PAI is an estimate 

of all light blocking elements within a canopy and is a widely used method to describe the amount of 

foliage (Holst et al., 2004). Solar radiation penetrates only a few meters into dense canopy. 

Therefore, it is sufficient to compare the retrieved structural parameters with the highest two voxel 

grids since deeper structure is probably not influencing the structural parameters anymore.  

 

 

2.5 Canopy structure types 

For the application of the spectral invariant space for canopy type discrimination on the 

heterogeneous canopy of the Lägern forest, an ALS derived Canopy Structure Type (CST) was used to 

compare with the results of the application. The underlying ALS raw data was again the same as for 
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the other two LiDAR datasets. For an area of 6592x2400m (8m resolution), a classification into seven 

canopy structure types was performed. The result is shown in figure 1. For more details on the 

determination of CSTs see Leiterer et al. (2015). 
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3. Methods 

3.1 Structural variable retrieval 

3.1.1 Theory of spectral invariants 

In the following section and throughout the thesis, the nomenclature of (Huang et al., 2007) is used. 

Since the scattering elements (leaves) of the medium (canopy) are much larger than the wavelength 

of the incoming radiation, one can use geometrical optics for the radiative transfer of solar radiation 

through a canopy (Huang et al., 2007). The theory of spectral invariants is further based on the 

assumption that the canopy is bounded by a non-reflecting surface from below (Huang et al., 2007), 

meaning the background reflection is negligible. This assumption is valid for a dense canopy.  

Solar radiation flux incident on the canopy can be split into three components: canopy transmittance 

t(λ), reflectance r(λ) and absorptance a(λ) (Huang et al., 2007). The canopy transmittance is the ratio 

of the mean downward radiation flux density at the bottom of the canopy to the downward radiation 

flux density above the canopy. The canopy reflectance and absorptance are defined analogous with 

the reflectance being the portion of the mean upward radiation flux density at the top of the canopy 

and the absorption being the portion of incident radiation absorbed by the canopy. According to the 

law of shortwave energy conservation the three components sum up to one (Smolander & Stenberg, 

2005): 

     t�λ� + r�λ� + a�λ� = 1     (1) 

Similar definitions can be made on the leaf scale. The leaf transmittance and reflectance are the 

portions of the radiation flux density incident on the leaf that transmits through and is reflected by 

the leaf respectively. The leaf albedo is the sum of these two and is dependent on the leaf 

biochemical constituents as well as the leaf structure: 

     ω�λ�  =  ρ
�λ�  +  τ
�λ�     (2) 

Starting from these quantities a set of parameters can further be deduced. The canopy interaction 

coefficient, i(λ), is the mean number of interactions a photon undergoes in the canopy at a certain 

wavelength (Huang et al., 2007). It is the ratio of the canopy absorptance to the mean absorptance of 

a leaf (Knyazikhin et al. , 2005): 

     i�λ� = ����
������       (3) 
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By multiplying the canopy interaction coefficient with the leaf albedo, one gets the portion of 

photons scattered by leaves, ω(λ)∙i(λ). According to (Smolander & Stenberg, 2005) the canopy 

interceptance i0 is the probability that a photon from the incident radiation will hit a phytoelement 

(ω(λ) = 0). 

Huang et al., (2007) further illustrate that the difference between portions of photons incident on 

scattering elements at two different wavelengths, i(λ) – i(λ0), is proportional to the difference 

between portions of photons scattered by scattering elements at the same wavelengths, ω(λ)i(λ) – 

ω(λ0)i(λ0). The ratio of both terms, a combination of basic quantities from radiative transfer, 

therefore loses any dependency on wavelength and is an example for a spectrally invariant 

parameter: 

     p = ����������
�������������������     (4) 

p is named the recollision probability (Stenberg, 2007) and is the probability that a photon scattered 

by a scattering element will interact again within the canopy (Knyazikhin et al., 2005; Panferov et al., 

2001; Smolander & Stenberg, 2005). It is largely insensitive to the direction of the incident beam and 

therefore an intrinsic canopy property (Huang et al., 2007). 

As deduced by (Knyazikhin et al., 2013), a photon incident on the canopy can be intercepted by the 

foliage with a probability of i0 or pass through the canopy without any interaction. If it gets 

intercepted by the foliage, the photon can either be absorbed or scattered by a phytoelement. The 

absorption and scattering is determined by the leaf albedo ωλ and is wavelength dependent. If the 

photon is scattered it can further either recollide with a phytoelement with a probability p or exit the 

canopy. If it exits the canopy with a probability of (1-p) the photon can get registered by the sensor 

with a probability ρ(Ω), where Ω is the direction between the scattering location and the sensor. ρ(Ω) 

is called the directional gap density (Knyazikhin et al., 2013). The parameters i0, p and ρ(Ω) are all 

wavelength independent and only a function of the canopy structure and viewing geometry. They 

can be combined into the directional area scattering factor (DASF): 

     DASF =  ρ�Ω� ��
���     (5) 

Further, the bidirectional reflectance factor (BRF) can be approximated by the quantities of the DASF 

and the leaf albedo if the assumptions for the spectral invariants theory are respected: 

     BRF��Ω� = ρ�Ω� ��
��� � ω�    (6) 
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However, as stated by Lewis & Disney, (2007) it is not possible to partition the canopy signal into its 

structural and leaf biochemical constituents as long as either of both is known, which is not the 

general case in remote sensing. 

In the spectral interval between 710 – 790nm the radiation scattered from the leaf interior is 

principally controlled by the absorption characteristics of chlorophyll, dry matter and water 

(Knyazikhin et al., 2013). Furthermore, theoretical and empirical studies (e. g. Lewis & Disney, 2007; 

Schull et al., 2011) have found that transformed spectra can be related to a fixed spectrum through 

spectral invariant relationship in the same spectral interval: 

     ω! � =  ���"
���"�! � 

ω! #�     (7) 

Here, ω! #� is the fixed reference spectrum and pL is the within-leaf recollision probability. The 

transformed spectrum corresponds to the fraction of radiation scattered from the leaf interior that 

interacted with the leaf constituents only. Radiation coming from the leaf interior is dominant in the 

spectral interval between 710nm and 790nm for which reason radiation scattered from the leaf 

surface can be neglected, and following assumption is valid for this interval (Knyazikhin et al., 2013): 

     ω� ≈ i
ω! � = ���"
���"�! � 

i
ω! #�    (8) 

, where iL is the leaf interceptance (fraction of radiation incident on the leaf that enters the leaf 

interior). This expression for the leaf albedo can be substituted into equation (6): 

     BRF��Ω� = ��%�&�����"���
���! � �'

ω! #�    (9) 

where p1 is: 

     p� = p
 + i
p�1 − p
�     (10) 

and corresponds to the overall recollision probability of Lewis & Disney (2007). p1 is a combined 

recollision probability that considers the impact of multiple scales of scattering (Lewis & Disney, 

2007). By rearranging equation (9), one obtains a linear relationship between BRF/ω! #� and BRF in 

the interval 710 – 790nm: 

      )*+ �&�
�! � 

= p�BRF��Ω� + i
ρ�Ω��1 − p
�i#  (11) 

The slope p1 and intercept R = i
ρ�Ω��1 − p
�i#, both spectrally invariant and mostly characteristics 

of the canopy structure, therefore determine the relationship between a fixed spectrum and the BRF 



12 

 

of the given canopy. R is the escape probability along a given direction termed the directional escape 

probability (Knyazikhin, 2013). The ratio R/(1 – p1) furthermore gives the DASF in the form: 

     DASF =  ρ�Ω� ���"
���     (12) 

Equation (6) once again can be rearranged and simplified as shown by Knyazikhin et al. (2013): 

     BRF��Ω� = DASF ∙ W�     (13) 

, where Wλ is the canopy scattering coefficient: 

     W� = ���"�
���"��.  

ω. �     (14) 

and ω.  = ωλ/iL = ω! � + sL/iL. The canopy scattering coefficient can thus be approximated by the ratio 

BRF/DASF, however, not accounting for surface properties of the leaves (iL) (Knyazikhin et al., 2013). 

Therefore, the DASF is a factor that corrects spectral data for canopy structural effects. 

Through the investigation of the impacts of the recollision probability over different spatial scales 

(leaf to canopy level), Lewis & Disney (2007) work out an equation that relates the canopy scattering 

coefficient via the recollision probability to the leaf biochemical constituents: 

     ∑ C�k2��λ, n��56
�5� = −ln 8 9���

���'���9����:   (15) 

In equation (15), Ci is the concentration of the leaf biochemical constituent i and k’i(λ ,n) the specific 

absorption coefficient of the same constituent, which is dependent on wavelength and refractive 

index, n, of the leaf surface. Lewis & Disney (2007) show that the impacts of n and pL (contained in 

p1) are rather small. 

Furthermore, the spectral invariant space enables to discriminate crop and canopy structure types 

according to the two dimensions of the macro and micro structure of canopies. The natural logarithm 

of the ratio of the intercept to the total escape probability, ln[R/(1-p)], is related to the macro 

structure of the canopy, e.g. tree spatial distribution, crown geometry and crown transparency. ln(1-

p) in contrast is related to the number of hierarchical levels within a pixel and characteristics like leaf 

distribution and leaf density. Since crop or tree types exhibit differences in both structural 

dimensions, the position in the spectral invariant space allows the separation or even classification of 

them. (Carmona et al., 2009; Knyazikhin et al., 2009; Schull et al., 2011) 
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3.1.2 Application of the theory of spectral invariants - Retrieval of structural parameters 

The DASF retrieval used in this thesis follows the algorithm proposed by Knyazikhin et al., (2013). The 

reference spectrum required by the retrieval is simulated with PROSPECT (Jacquemoud & Baret, 

1990) and the following input parameters: 

Structure parameter: 1.5 

Chlorophyll content: 16.0 μg/cm2 

Carotenoid content: 10.0 μg/cm2 

Brown pigments: 0.0 μg/cm2 

Equivalent water thickness: 0.005 cm 

Leaf mass: 0.002 g/cm2 

The reference spectrum is then taken as the sum of the simulated reflection and transmission. For 

each pixel a linear relationship between the reflectance data and the reflectance data divided by the 

reference spectrum is fitted for the region between 710nm and 790 nm (equation (11)). The slope, 

p1, the intercept, R, the goodness of the linear fit, R2 and the DASF value are all written to a separate 

layer of a new file. It is important to emphasise the difference between the recollision probability, p, 

and the slope, p1. Latter corresponds to the overall recollision probability and includes the within leaf 

recollision probability, pL, (formula (10)). This is important insofar as the retrieval of structural 

parameters permits to retrieve the overall recollision probability only. Therefore, the retrieved and 

analysed overall recollision probability is expected to show also sensitivities to leaf biochemical 

constituents beneath sensitivities to structural related parameters, which is not the case for the 

spectral invariant recollision probability. The sensitivity to leaf biochemical constituents is also valid 

for R. The retrieval of structural parameters is performed in the raw viewing geometry for pure 

radiometry and transformed geometrically thereafter. As a next step all pixels with a R2 smaller than 

 

Table 3. Spectral bands for retrieving pigment content from leaf reflectance spectra (Gitelson et al., 2006) 

 λ1 [nm] λ2 [nm] λ3 [nm] 

Chlorophyll 690 - 725 760 - 800 760 - 800 

Carotenoids 510 - 520 690 - 710 760 - 800 

Anthocyanin 540 - 560 690 - 710 760 - 800 
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a threshold value are filtered out in order to only use pixels were the theory of spectral invariants is 

valid. This value is elaborated for each of the two scenes by interactive manual investigation of the 

true colour images and corresponding R2 layers. For the heterogeneous canopy scene a further 

filtering is applied to remove shadowed pixels due to the illumination geometry. Thus, a threshold 

value in band 66 (727.9 nm) of the APEX sensor is determined visually by comparison with the true 

colour image of the scene. 

 

 

3.2 Retrieval of pigments and leaf biochemical constituents 

One method to derive leaf pigment concentration is presented by Gitelson et al. (2006), who build up 

their simple three-band model on the conceptual model developed by Gitelson et al. (2003): 

     ;R�λ���� − R�λ<���=  ∙  R�λ>��� ∝ C�   (16) 

They find three spectral bands (λ1-3; table 3) for each of chlorophyll, carotenoids and anthocyanin 

that fit into the model and show high correlations with extracted pigment concentrations, Ci, of the 

respective pigments. However, this method is elaborated for leaf level reflectance only where 

structural effects are not accounted. The application of this model on remote sensing data of 

vegetation would therefore lack in a correction for structural effects resulting in biased 

concentrations. 

A possible solution to incorporate structural effects in the estimation of leaf biochemical content 

from hyperspectral data is tested here with the implementation of equation (15). This equation is 

derived by Lewis & Disney (2007). As described in the theory section, it links leaf biochemical 

constituent concentrations to reflectance measurements, accounting for canopy structure. The 

equation contains following variables: reflection, DASF and recollition probability of a pixel, the 

absorption coefficients (figure 14a) and the concentrations of leaf biochemical constituents. The right 

hand side of the equation comprises of the reflection and the structural variables, which equals the 

superposition of the effective absorption of each leaf constituent (left hand side). It is hypothesised 

that one should be able to solve for the concentration of each constituent, if enough spectral bands 

are available. Contrariwise, Lewis & Disney (2007) also postulate the impossibility to derive both, 

structural parameters and leaf biochemical concentrations at the same time from hyperspectral data. 

By bringing in the retrieval of structural parameters, however, a new variable is added to the 

problem in the form of the reference spectrum. Through the relationship of BRF/ω! # and BRF, the 
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two needed structural variables can be retrieved. The retrieved variables (DASF and p1) can then be 

inserted in equation (15) together with the reflectance and known specific absorptions, which leaves 

only the leaf biochemical concentrations unknown. 

The method for the retrieval of leaf biochemical concentrations is chosen utilising a look up table 

(LUT). First, the LUT is generated to simulate the absorption spectrum of a leaf (left hand side of 

equation (15)) using the constituent concentration, specific absorption coefficients of the structural 

parameter, chlorophyll a+b, carotenoid, dry matter and the equivalent water thickness and a 

refractive index, n, of 1.4 as proposed by Lewis & Disney (2007). The absorption spectra of all 

possible combinations of constituent concentrations (table 4) are saved in the LUT with a spectral 

resolution of 1 nm. 

In a second step, the right hand side of equation (15) is calculated. The reflectance data from APEX is 

corrected with the according DASF to get the canopy scattering coefficient (equation (13)) and the 

negative natural logarithm of the ratio, incorporating the recollision probability, is calculated. Next, 

the LUT has to be convoluted to the wavelengths of the APEX sensor. The last step compares the 

retrieved absorption spectrum of each pixel with the ones of the LUT and assigns the root mean 

squared error for each comparison. The combination of constituent concentrations of the LUT with 

the smallest error should therefore come closest to the one of the pixel. 

 

Table 4. Biochemical constituent concentrations used for the simulated absorption spectra of the look up table. 

Structure 

parameter [] 
1.6 1.8 2.0 2.2 2.4     

Chlorophyll 

content [μg/m2] 
30 35 40 45 50 55 60 65 70 

Carotenoid 

content [μg/m2] 
2 4 6 8 10     

Equivalent water 

thickness [cm] 
0.015 0.020 0.025 0.030 0.035     

Dry matter 

content [g/cm2] 
0.008 0.010 0.012 0.014 0.016     
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3.3 Simulated reflectance data 

3.3.1 Sensitivity analysis of retrieved structural parameters to parameter variation of the model 

First, the effects of the variation of different model parameters (table 2) to the DASF are plotted, 

analysed and compared to similar results of the literature. The intent is to evaluate the coherence of 

sensitivities experienced by the DASF. However, different effects could be blurred when considering 

only the DASF. For a more detailed evaluation of the coherence of the retrieval, variations of the 

model parameters are further compared to the resulting overall recollision probability, p1, and 

directional escape probability, R. The attribution to geometrical and structural parameters is simpler 

for these retrieved parameters as they can further be related to more concrete parameters, e. g. LAI, 

viewing angle or gap fraction (Rautiainen et al., 2004; Smolander & Stenberg, 2005; Wang et al., 

2011). Using simulated spectra is a big advantage for the analysis of structural dependencies of p1 

and R. Both are sensitive to leaf biochemical constituents as their definition contains the within leaf 

probability pL. The concentrations of the biochemical constituents can be hold constant in the model, 

through which p1 and R are only sensitive to structural parameters. 

 

3.3.2 Pigment retrieval with simulated data 

Lastly, the pigment retrieval of Gitelson et al. (2006) is performed for chlorophyll using the simulated 

spectra to examine how canopy structure influences the retrieval. The concentration of chlorophyll is 

first varied in the PROSPECT model (leaf spectrum only) with all the other parameters hold constant. 

Then the chlorophyll content is set to a constant value and the LAI is varied in the SAIL model 

(Verhoef, 1984). The correlation between the retrieved chlorophyll content and the chlorophyll 

values used in the PROSPECT model is taken as function to relate retrieved chlorophyll content for 

the SAIL model to “real” chlorophyll content. A linear correction of retrieved chlorophyll content with 

the DASF is further tested, which would represent a simple method to correct retrieved pigment 

concentrations for structural influences of canopies. 
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3.4 Observational data of homogeneous and heterogeneous canopies 

The structural parameter retrieval for the data of the homogeneous canopy in Eschikon is performed 

before the geometrical rectification to use the pure radiometry of the data. However, both the 

geometrically corrected and uncorrected DASF retrieval are used depending on the available in situ 

data. The crop types of the different fields are given in the raw geometry, while the in situ retrieved 

structural measurements are given in the true geometry. 

For the analysis with the two LiDAR derived parameter sets the DASF retrieval for the heterogeneous 

canopy of the Lägern area is performed before the geometrical rectification where the CST-dataset is 

not used. Since the CST-dataset is given in 8m resolution, the DASF map is resampled to the same 

resolution of 8m. Therefore, the DASF map is first geometrically rectified and then resampled 

because no geometrical data is available for the 8m resolution. 

 

3.4.1 Distribution of DASF values 

To examine whether the homogeneity of the agricultural canopy is also reflected by the DASF values, 

53 fields (figure 6a) are selected via regions of interests (ROI) and assigned with crop type to compile 

two statistics. Out of these 53 fields, 16 are corn (co), 11 temporal grassland (tg), 11 meadow 

grassland (mg), 5 natural grassland (ng) and 8 sugar beet (brs). An additional crop type is created by 

merging the three grassland classes into grassland (g). First, all fields of one crop type are taken 

together to form one class. The mean and standard deviation of the DASF values are compared 

between the classes to analyse how the different crop types differ from each other in respect to the 

DASF. In a second step the mean DASF value and standard deviation of the different fields of one 

crop type are compared to each other to check how the DASF values vary within one crop type. The 

statistics are complemented by manual investigations of the scenes. 

The first investigation of the heterogeneous canopy examines different distributions of DASF values. 

The starting point is the DASF statistic over the whole forest of the Lägern. Next, the distribution of 

DASF values between the original spatial resolution of 2m and the resampled spatial resolution of 8m 

is compared to check for resampling effects of the retrieval of structural parameters from 

hyperspectral data. Illumination effects are also analysed by comparing the DASF values of the 

northern side of the Lägern hill with the more exposed southern side. 
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3.4.2 Sensitivity analyses of retrieved structural parameters to in situ retrieved and LiDAR-

derived structural parameters 

Analog to the simulated data, a sensitivity analysis is conducted with the retrieved structural 

parameters from the remotely sensed spectral data. For the homogeneous canopy of Eschikon, in 

situ retrieved structural parameters (2.3) are compared to the retrieved ones (DASF, p1 and R) and 

relationships are tested for coherence. Other than for the simulated spectral data, the canopies of 

the remotely sensed data do not experience constant leaf biochemical constituent concentrations. 

Competing effects to structural sensitivities are therefore expected from the biochemical constituent 

variability in the sensitivity analyses of the overall recollision and directional escape probabilities. The 

DASF, however, should not experience such sensitivities since no leaf parameter is included in its 

definition. The in situ measurements are given as point data with a GPS location, but are integrated 

measurements of a 2x2m plot. A plot of 3x3 pixels (6x6m) around the pixel containing the GPS 

location was selected in the scene of the retrieved structural parameters. The average of these pixels 

is then taken as approximation of the retrieved parameter value for the comparison with the 

corresponding point data of the in situ measurement. 

LiDAR derived canopy structure parameters of the Lägern forest parametrise relatively distinct 

characteristics of the canopy structure and represent well qualified references for sensitivity analyses 

of the DASF. The different LiDAR derived structural parameters are therefore compared to the DASF 

to further test the coherence of retrieved structural parameters from spectral data of a 

heterogeneous canopy. 

 

3.4.3 Crop and canopy type discrimination in the spectral invariant space 

As described in 3.1.1, the spectral invariant space allows the separation of crop types or tree species. 

Therefore, the two dimensions of macro and micro structure are used to span the plane and the 

position within the plane is determined by structural characteristics of the pixel. This analysis tests if 

the discrimination of crop or canopy types in the spectral invariant space is possible using the 

retrieved parameters p1 and R. The sensitivity to leaf biochemical constituents of p1 and R probably 

interferes with the sensitivity to structural parameters, which could result in challenges regarding the 

coherence of the spectral invariant space. 

For crop properties like crop height, crop width, ground cover and distribution are affecting the 

macro structure, while the number of hierarchical levels within a pixel, e.g., leaf density and leaf 

distribution, is in contrast related to the micro structure (Carmona et al., 2009; Knyazikhin et al., 
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2009; Schull et al., 2011). The location of a point in the spectral invariant space can therefore 

separate crops according to their macro and/or micro structure. To generate the spectral invariant 

space the average values of the directional escape probability and the overall recollision probability 

from each of the 53 fields are taken to place the fields into the spectral invariant space. The same is 

also performed using the data retrieved from the plots (see 3.4.2). 

Analog to the homogeneous canopy, the discrimination of canopy types is tested using the spectral 

invariant space. For forested areas the macro structure is related to parameters like tree spatial 

distribution, crown geometry and crown transparency. The micro structure on the other side is 

related to leaf distribution and leaf density, e.g. leaf/needle clumping, within the canopy (Schull et 

al., 2011). Here, a larger influence of the macro structure compared to the agricultural canopies is 

expected because of the different crown geometries. In addition, the differences between leaf and 

needles impact the micro structure as well resulting in a better differentiation of canopy types in 

both dimensions. 

 

 

3.5 Using the theory of spectral invariants for the retrieval of leaf biochemical 

constituents 

The retrieval of the leaf biochemical constituent concentrations from spectral measurements, which 

is corrected for canopy structure and presented in section 3.2 is tested on corn field number 1. 

Therefore, the mean values of the field are taken for the retrieved structural variables (DASF and p1), 

while the retrieval is performed per pixel of the reflectance data. The reason is challenges shown 

later to appear while retrieving structural variables on pixel level of this resolution.  
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4. Results 

4.1 Simulated reflectance data 

a b 

c d 

e f 
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Figure 2. Simulated spectra using the PROSAIL model with varying leaf biochemical and structural input parameters 

The figures 2a-h illustrate a part of the PROSAIL spectra described in section 2.1 (table 1 and 2) and 

used in the sensitivity analysis of retrieved structural parameters of the simulation section. As 

expected, the spectra of the structural parameters (fig. 2a-d), the structure parameter of the leaves 

(fig. 2e) and the dry matter (fig. 2g) vary over the whole spectral range whereas the ones of the 

chlorophyll (fig. 2f) and the equivalent water thickness (fig. 2h) only vary within the characteristic 

spectral region of their absorption. 

 

4.1.1 Sensitivity of DASF to parameter variation 

a b 
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Figure 3. Sensitivity analysis comparing the retrieved DASF to input parameters of the PROSAIL model 

The figures 3a-h show the variation of the DASF for the different parameter settings of the PROSAIL 

model. 
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A comparable relationship as presented by Rautiainen et al., (2009) and Mõttus (2007) between the 

DASF and the LAI is found here (fig. 3a) linking the DASF to a characteristic structural variable of the 

canopy. This relationship probably arises from a strong link between the recollision probability of a 

canopy and the LAI (Smolander & Stenberg, 2005) which will be analysed in the next section. The 

characteristic saturation effect experienced by the spectrum (fig. 2a) is furthermore also found in the 

DASF. 

As expected, the average leaf angle of the canopy medium has a large influence on the DASF (fig. 3b). 

Assuming a predominantly homogeneous canopy with a uniform leaf angle distribution, a photon 

entering the canopy and interacting with a leaf can escape the canopy after the interaction through a 

gap in a certain direction (3.1.1). If the leaf distribution stays unchanged and the photon is located at 

the same point in the canopy as before but the leaf angle changes, the gap distribution will be 

different. While gaps in certain directions will be larger, others will diminish. Also, for a fixed viewing 

geometry in geometrical optics, a point outside the canopy will receive a different amount of 

reflected radiation if the reflecting surface varies its tilt angle. Therefore, the directional escape 

probability and consequently the DASF should theoretically vary with a varying mean tilt angle of the 

leaves. Latter explanation is most certainly the reason for a lower DASF with higher leaf angle. Since 

the viewing geometry is set to 10° sun zenith and 0° viewing angle, a higher leaf angle scatters more 

radiation in a flat angle. Therefore, less radiation reaches the sensor. In addition, the scattered 

radiation travels a longer way through the vegetation when scattered in a flat angle which results in a 

higher absorption probability (Smolander & Stenberg, 2005). The outlier at 45° on the other side is 

very surprising and cannot be explained. The much higher DASF compared to the surrounding values 

is indicative of a smaller influence of the structure for this leaf angle. However, as described above, 

more radiation is scattered away for larger leaf angles. Also, this angle is far from resulting in a hot 

spot effect with a viewing angle of 0° and sun zenith of 10°. Another effect not clear here seems to 

play a major role for this leaf angle, thus. 

After a steeper jump downward of the DASF value between the sun zenith angles of 0° and 5° (fig. 

3c), the DASF values are only decreasing slowly with sun zenith angle. These findings seem in line 

with Knyazikhin et al. (2013), who report that the canopy interceptance is depending on the solar 

direction, but is approximately unity for dense vegetation. The next section will show whether this 

relationship is also supported for the present data. Again very surprising, the sun zenith angle of 45° 

looks like an outlier. Comparing the results with the ones from (Adams, 2013), however, suggests 

that this outlier is more an artefact of the data range. The findings from Adams (2013) show that the 

DASF values, after decreasing until 45°, start to increase again for larger sun zenith angles. Therefore, 
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the findings presented here seem to support the ones from Adams (2013). It must be noted, though, 

that there is less variation in the DASF here than there is in the results of Adams (2013). 

The of the DASF to viewing angle is similar to the one of the sun zenith angle, however, the steep 

jump between 0° and 5° viewing angle being upward (fig. 3d). The outlier at 45° can, again, be 

explained with the findings of Adams (2013), who’s relationship between the DASF and the viewing 

angle is similar to a quadratic function. On the other side, while the DASF is very slightly increasing 

between 0° and 45° in her analysis, figure 3d here suggests a different progression of the DASF with 

viewing angle. This could be due to different setups of simulated canopies. 

Figures 3e-h illustrate very surprising results. While the DASF is nearly not sensitive to the equivalent 

water thickness (fig. 3h) the concentrations of the other biochemical constituents affect the DASF 

clearly, although the canopy structure parameters of the model are hold constant. Contrary to its 

definition, the DASF retrieved in this analysis is sensitive to biochemical constituents, especially 

chlorophyll and dry matter content. The DASF values vary between 0.64-0.78 (fig. 3f) and 0.73-0.59 

(fig. 3g) for rather normal chlorophyll and dry matter contents of 30-60 μg/cm2 and 0.008-0.014 

g/cm2 respectively. The reason for the sensitivity to different concentrations of biochemical 

constituents, at least in this analysis, is apparent when looking at the spectra; the most obvious two 

being the ones of dry matter and chlorophyll (fig. 2f and g). The variation of the reflectance for the 

fixed parameter set and varying dry matter concentration is weak around 710nm. Nearly no 

difference in the reflectance spectrum is therefore apparent for the different dry matter 

concentrations around the wavelength 710nm. Around 790nm, however, the spectrum varies much 

more for different dry matter concentrations of the model (fig. 2g). Chlorophyll shows a comparable 

picture, but with the reflectance around 710nm being the shifting one while the reflectance around 

790nm is constant for all concentrations (fig. 2f). The resulting behaviour of the spectrum for both 

biochemical constituent variations is that the slopes between 710nm and 790nm of the spectra differ 

strongly from each other. When calculating the DASF, this part of the spectrum is used to fit the 

linear relationship between HCRF/ω0λ vs. HCRF. Since the function of the HCRF spectrum, which 

differs between the constituent concentrations, is always normalised by the same function of ω0λ, 

the function HCRF/ω0λ vs. HCRF consequently varies between the constituent concentrations as well. 

Therefore, the slope and the intercept of latter function vary too, resulting in a sensitivity of the 

DASF to different leaf biochemical constituent concentrations (fig. 3f and 3g). This effect is also 

apparent for the structure factor (fig. 2e and 3e), however, not for the equivalent water thickness 

(fig. 2h and 3h) since water is not absorbing in this spectral range. 
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4.1.2 Sensitivity of overall recollision and directional escape probabilities to parameter variation 
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Figure 4. Sensitivity analysis comparing the overall recollision and directional escape probabilities to input parameters from 

the PROSAIL model 

The figures 4a and b show the expected results with the characteristic saturating relationship 

between p1 and the LAI and no correlation between the LAI and R. Compared with the studies of 

Rautiainen et al., (2009) and Mõttus (2007) however, the range of p1 is much smaller and the curve 

flattens already for lower LAIs. This could be due to the perfectly distributed scattering elements of 

the canopy that result in higher overall recollision probabilities compared with real canopies of small 

LAIs. 

The results for the average leaf angle (fig. 4c and d) follow, again, the expectations. p1 shows a very 

small positive trend but the variation is probably negligible and can therefore be assumed constant 

compared with R. The sensitivity of R to the average leaf angle strengthens the argumentation of the 

last section that the directional escape probability is reduced for larger leaf angles. Reflectance from 

a canopy with larger leaf angles, therefore, needs more correction which is reflected in the lower 

DASF. 
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For the sun zenith as well as for the viewing angle, the findings are very similar. In line with the 

theory, it is predominantly the directional escape probability that is sensitive to the sun zenith (fig. 

3f) and the viewing angle (fig. 4h). Both, the functions of the sun zenith angle vs. R and the viewing 

angle vs. R have the same form as the functions of the DASF vs. these parameters. Remembering that 

R is linear in the DASF, these results suggest that R is the controlling parameter. This links the gap 

density to the viewing angle as reported by Knyazikhin et al. (2013). For the sun zenith the 

dependency of R is more difficult to explain, since the directional gap density is constant for 

stationary viewing angle. p1 on the other hand experiences only small variations for both parameters 

(fig. 3e and g) and is therefore most certainly not sensitive. 

Both, the overall recollision probability, p1, and the directional escape probability, R, show large 

sensitivities to biochemical constituents (fig. i-p). The sensitivity is not surprising since the within leaf 

recollision probability is contained in both parameters. However, the magnitude of the sensitivity is 

much larger than for all structural input parameters of the model. 

 

 

 

Figure 5. Relationship between PROSPECT input and retrieved chlorophyll (Gitelson et al., 2006) concentrations. 

y = 0.0001x
2
 * 0.0380x – 0.0736; R

2
 = 1.00 
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Figure 6. Retrieved chlorophyll concentration using the retrieval of Gitelson et al. (2006) combined with the relationship of 

figure 5 for PROSAIL simulated spectra with constant chlorophyll input concentration and varying LAi (blue). Scaled 

retrieved DASF from the same simulated spectra (red) 

 

4.1.3 Pigment retrieval 

The Pigment retrieval for chlorophyll of Gitelson et al., (2006) works perfectly for the simulated 

PROSPECT data as can be seen in figure 5. The function that relates retrieved chlorophyll content to 

the concentration of the input is slightly quadratic, however with a perfect correlation of 1.00. Thus, 

the chlorophyll retrieval of Gitelson et al., (2006) is very well suited for leaf level reflectance data. 

When a canopy structure is added, however, the chlorophyll retrieval of Gitelson et al., (2006) fails to 

predict reliably the correct chlorophyll content. The y axis in figure 6 corresponds to the retrieved 

chlorophyll content of the simulated canopies transformed to real chlorophyll concentration using 

the function of figure 5. Figure 6 illustrates how only one structural variable, the LAI, can influence 

the chlorophyll retrieval through its modulation of the radiation absorption and reflectance 

distribution. While the input of chlorophyll concentration for all spectra of figure 6 (blue graph) is 

constantly 45 μg/cm2, the retrieved chlorophyll concentrations are much higher and varying with LAI. 

Even for a LAI of 1 the retrieved concentration is slightly overestimated, underlining the importance 

of the effect of canopy structure on reflectance data. The red graph in figure 6 shows the DASF 

values of the corresponding canopies scaled by a factor of 100. As can be seen, the forms of both 

graphs are not parallel. 
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Figure 7. (a) True colour image of raw geometry scone of the agricultural area around Eschikon with selected fields. Red: 

corn, blue: temporal grassland, yellow: meadow grassland, cyan: natural grassland, thistle: sugar beet. (b) Retrieved DASF 

map of the selected fields after the filtering of pixels not meeting the assumptions of the retrieval (R
2
). 
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4.2 Observational data of homogeneous canopy 

Figure 7a illustrates the true colour image of the APEX scene of Eschikon in raw geometry. The 

regions of interest are coloured according to the crop types. Figure 7b shows the retrieved DASF map 

of the scene where the underlying data is already filtered from low R2 value pixels and restricted to 

the regions of interest. 

 

4.2.1 Distribution of DASF values 

The pixel level distribution of DASF values from all fields is illustrated by figure 8. It has a maximum at 

a DASF of 0.63 with a relatively smooth distribution around it and a second small peak at 0.42. There 

are further a few very small values between 0.1 and 0.3. The relatively even distribution around the 

maximum with a second smaller peak could be indicative that only one crop type stands out in terms 

of a characteristic DASF. Since this smaller peak is at a very low DASF, the influence on reflectance of 

the canopy structure of that crop type would be high. It could therefore be corn. 

 

 

Figure 8. Distribution of DASF pixel values over all fields. 
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Figure 9. Mean DASF values and standard deviations for (a + b) each crop type, and fields of (c) corn, (d) temporal 

grassland, (e) meadow grassland, (f) natural grassland, (g) sugar beet. Fields without data contain no pixels that satisfy the 

requirements of R
2
 larger than 0.998. 

Figure 9a illustrates the mean DASF values and standard deviations of all the fields of one crop type 

taken together. The mean values (co: 0.59, g: 0.67, brs: 0.62) are spread across a small range of 0.09, 

suggesting that the homogeneity of the agricultural canopy is indeed reflected in the DASF values 

and supporting the conclusion from above that probably most crop types have similar DASF values. 

However, the expected crop type with a very low DASF is not found here. When separating the grass 

types (fig. 9b) the mean DASF values (co: 0.59, tg: 0.69, mg: 0.65, ng: 0.58, brs: 0.62) are obviously 

spread across a similar range of 0.11. Interestingly, a difference in the canopy structure seems to be 

implied for the different grass types, especially observed between tg and ng with a more influencing 

structure (smaller DASF) of the latter. However, this observation is weakened by the overlapping 

standard deviations, which suggests no clear difference between the grass types. The homogeneity 

between the crop types means on the other hand that these five crop types can hardly be separated 

according to their mean DASF values, especially considering the standard deviations. These rather 

large standard deviations, ranging from 0.06 to 0.10, are standing out since they are in the order of 

the differences between the crop types. When looking at the individual fields (fig. 9c-g) large 

differences in the DASF means are noticeable within one crop type with differences of at least 0.10 

between fields for all crop types except bsr.  

When exploring the fields that stand out from the others in the true colour and DASF scenes, some 

reasons might arise why they differ from the others. The fields with the lowest DASF values of co (3, 

4 and 8 in fig. 9c) manifest some sparse covered surfaces within the fields where bare soil or 

probably a mix between vegetation and bare soil is visible, which are not masked out. This is also the 

case for other fields of co where such pixels show considerably lower DASF values. The small peak 
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around 0.42 in fig. 8 most probably comes from these pixels. This potential issue is further discussed 

in section 5. Field 5 of co shows larger areas of very high DASF values ranging from 0.75 to >0.8. 

Nothing corresponding, however, is found in the true colour image. In field 1 of tg darker stripes with 

low DASF values are visible probably originating from a tractor. Field 7 of tg demonstrates similar 

areas of high DASF as field 5 of co, with values even ranging from 0.8 to 0.95. But again no evidence 

for a cause of such high DASF values is found in the true colour image. By looking very carefully at 

field 11 of mg one can distinguish two separate grass fields in the RGB image. These two fields are 

much more pronounced in the DASF scene, which is probably the reason for the outlying DASF mean 

and the larger standard deviation. 

By taking these issues into consideration, the distribution of the DASF values gets a little bit more 

homogenous for the examined agricultural canopy, especially the high variation between fields of 

one crop type. Despite the better picture, variations within fields remain higher than expected and 

therefore suggesting a rather heterogeneous canopy. 

Further investigations of the fields show that in most co fields stripes barely visible on the true colour 

scene are, however, very prominent on the DASF map. Because these stripes are always oriented 

longitudinal to the field boarders, they are presumably stemming from tractor tracks. These tracks 

are probably the main contributors to the variation in the DASF within the fields of co as they show 

lower values (e.g. 0.52-0.65 for the tracks compared with 0.63-0.72 between the tracks for field 13). 

This could either mean that the tracks would add some kind of structure to the otherwise more 

homogeneous canopy of co, or that the DASF retrieval, like for the bare soil surfaces, does not work 

properly for the tracks. Since the tracks are green in the true colour image, it is assumed that the 

vegetation is dense enough and that the lower DASF values therefore come from the added structure 

of the tracks. Such longitudinal stripes are also present in other fields, especially the ones of brs. In 

addition, even though brs should be very dense and ground covering at this stage of growth, the true 

colour image reveals sparse covered areas with sometimes even visible bare soil. These areas are 

often masked out, but the same problem as for co emerges. Although the masking works better for 

brs, there are still unmasked pixels that should be filtered. Similarly, grassland fields, mainly mg and 

ng, show even larger areas scattered across the fields masked out by the R2 filter. It is not clear 

whether this comes from the young age, the sparser crop type or another reason not evident here, 

but it is an indication that the spectral invariant theory may not work properly for these types. The 

areas of very high DASF values present in some fields on the other side could indicate a high LAI, as 

section 4.1.1 would suggest. 

The overall picture of a homogeneous agricultural canopy is in the end not reflected in the DASF. 

Apparently, different effects are present on this spatial level. 
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Figure 10. Sensitivity analysis of DASF to (a) LAI, (b) Sky fraction, (c) Mean tilt angle, (d) Canopy height, (e) LAI destructive. 

Green: corn; red: soybean; cyan: sugar beet; magenta: temporal grassland. Plots without pixels satisfying the requirements 

of R
2
 larger than 0.98 are not shown. 
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4.2.2 Sensitivity of DASF to in situ retrieved structural parameters 

The figures 10a-e illustrate the sensitivity of the DASF to in situ retrieved structural parameters of the 

2x2m plots. It is stated here that one needs to be very careful with these results and the ones of the 

following section, since the number of data points used is rather low. This makes the correlation 

prone to outliers. Also, there are different crop types involved that may need a separate 

consideration. However, for a first investigation this data provides valuable insights for the behaviour 

of the DASF and its relation to more concrete parameters. 

As expected, the DASF correlates with the LAI and LAI destructive with a R2 of 0.383 and 0.423 

respectively (fig. 10a and e). These findings support the probable link between the recollision 

probability and the LAI already mentioned in the results of section 4.1.1. This relationship could be a 

reason for the areas of very high DASF values found in section 4.2.1 for co and tg, suggesting high 

LAIs for these areas. For higher LAIs, the DASF should experience a saturation effect as shown by 

section 4.1.1. This effect is not visible here, eventually due to the few data points. 

Three effects that influence the DASF in different directions are linked to the sky fraction. The most 

straight forward effect is that a lower sky fraction directly means that the canopy interceptance is 

higher and therefore also the DASF. A lower sky fraction also results in a lower escape probability and 

therefore a higher recollision probability. This effect makes the DASF higher as well. On the other 

side, a lower escape probability also results in a lower directional escape probability for flat canopies 

(Knyazikhin et al., 2013). This effect lowers the DASF in contrast. The comparatively high R2 of 0.542 

for the negative correlation with the sky fraction (fig. 10b) suggests that either the effects of the 

canopy interceptance and/or the recollision probability predominate. The next section will further 

break this relationship down to provide more insight. 

The mean tilt angle of the leaves is nearly not correlated with the DASF (R2 = 0.010), therefore 

suggesting no relationship between these two parameters (fig. 10c). This missing relationship is not 

in line with the theory and the explained findings of the simulation section 4.1.1. The lack of 

relationship probably originates from unreliable in situ measurements for the mean tilt angles of the 

plots. 

The DASF shows a comparably good sensitivity (R2 = 0.406) to the height average of the plots of sb, 

brs and tg, while no correlation is evident for co (fig. 10d). The first result is consistent with a set of 

studies between height measurements and spectral invariants (Heiskanen, 2006; Kimes et al., 2006; 

Schull et al., 2007). Schull et al. (2007a) and Wang et al. (2011) for example find correlations between 

canopy heights retrieved from the escape probability and such from LiDAR measurements. However, 
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this relationship seems missing for co. On the other hand, interpolating both functions could suggest 

that the DASF curve is flattening with height for crop canopies. This interpretation of the data is very 

hypothetical since no data points are available in between. The negative correlation for sb, brs and tg 

would mean that for higher vegetation, more radiation is absorbed as a result of the canopy 

structure. This indicates either a higher recollision probability, lower directional gap density, lower 

canopy interceptance or a mix between these. Again, the next section will hopefully give more insight 

about this relationship. 

 

4.2.3 Sensitivity of overall recollision and directional escape probabilities to in situ retrieved 

structural parameters 
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Figure 11. Sensitivity analysis of p1 and R to (a + b) LAI, (c + d) Sky fraction, (e + f) Mean tilt angle, (g + h) Canopy height, (i + 

j) LAI destructive. Green: corn; red: soybean; cyan: sugar beet; magenta: temporal grassland. Plots without pixels satisfying 

the requirements of R
2
 larger than 0.98 are not shown. 
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To further decouple the effects of the structural parameters on the DASF, the directional escape 

probability, R, and the overall recollision probability, p1, are considered separately (fig. 11a-j). It is 

noticeable that the quality of the sensitivities is generally very low, except for the ones to the canopy 

height. 

Despite the expected correlation between the DASF and the LAI in the previous section, the 

correlation analysis between the overall recollision probability and the two LAIs (fig. 11a and i) and 

the directional escape probability and the two LAIs (fig. 11b and j) show rather bad results. While the 

overall recollision probability is comparably not/weakly correlated with the two LAIs (R2 of 0.008 and 

0.126), the directional escape probability is weakly/moderately correlated with both LAIs (R2 of 0.159 

and 0.271). Especially the missing correlation between p1 and the LAI is not comparable with 

previous studies comparing p to LAI (Mõttus, 2007; Rautiainen et al., 2009) and the PROSAIL section. 

As mentioned in 4.2.2, a varying sky fraction can impact the DASF through different effects. The 

figures 11c and d entangle these effects nicely. While p1 shows no correlation, R is moderately 

correlated negatively with the sky fraction. Therefore, the sensitivity of the DASF to the sky fraction 

arises probably from the sensitivity of the canopy interceptance. This result also presents the most 

straight forward explanation of the relationship between sky fraction and DASF (4.2.2). 

The mean tilt angle is neither correlated with p1 nor with R (fig. 11e and f), but as supposed in section 

4.2.2 it is most certainly due to the non-reliable in situ measurements of the mean tilt angle of the 

plots. 

A surprising result is displayed by the figures 11g and h. While the expected and reported strong 

relationship between recollision probability and canopy height is also presented here for p1 (R2 = 

0.799 and 0.457), R shows an even higher correlation with the canopy height. However, both 

correlations are in opposite direction than one would expect, since p1 is negatively and R positively 

correlated with canopy height. Interpreting these results would mean that the larger the vegetation 

volume is the lower the overall recollision and the higher the escape probability. This is in fact 

opposite to the theory. Furthermore, the opposite correlations for p1 and R lead to a cancelling effect 

for co in the sensitivity of the DASF to crop height, whereas the sensitivity of p1 seems to dominate 

for the other crop types. 
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Figure 12. Spectral invariant space for field level data. Green: corn (R2 = 0.59), cyan: sugar beet (R2 = 0.13), red: meadow 

grassland (R2 = 0.78), blue: natural grassland (R2 = 0.15), magenta: temporal grassland (R2 = 0.49), black: sugar beet, 

meadow, natural, temporal grassland (R2 = 0.48). Fields without pixels satisfying the requirements of R
2
 larger than 0.998 

are not shown. 

4.2.4 Crop discrimination in the spectral invariant space 

While the crop types were not separable with the DASF, corn obviously separates itself from the 

other crop types in the spectral invariant space (Fig. 12). As expected, all crop types are scattered 

across a similar range of the macro structure values (x-axis), strengthening the evidences found in 

4.1.1 that the crop types have DASF values in a comparable range. The y-axis, however, shows that 

corn has a clearly different micro structure than the other crop types, meaning that the leaf density 

and/or distribution of corn are distinguishable from the others. This makes certainly sense when 

thinking of a corn canopy. The leaf distribution is different for corn due to the leaf form and 

orientation and the crop height than for the low but dense grass types and the sugar beet with its 

rather low canopy and horizontal leaves. This difference is enough to separate corn from the other 

crop types in the spectral invariant space. Despite lying on different lines in the space, the other crop 

types cannot be separated from each other since they are all located in the same area. Very similar 

results are obtained by Carmona et al. (2010), where corn is also separable from the other crop 

types. 
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Figure 13. Spectral invariant space for plot level data. Green: corn (R
2
 = 0.07), cyan: sugar beet (R

2
 = 0.78), magenta: 

temporal grassland (R
2
 = 0.89), blue: soybean (R

2
 = 0.92). Plots without pixels satisfying the requirements of R

2
 larger than 

0.98 are not shown. 

When applying the spectral invariant space to the data from the plots used for the sensitivity analysis 

of spectrally retrieved to in situ retrieved structural parameters, a different result is obtained (fig. 

13). The crop types of sugar beet, temporal grassland and soybean still lay on a comparable line as 

before, however, with temporal grassland being separable from sugar beet and soybean especially 

due to the lower values of the micro structure of sugar beet and soybean. The biggest difference 

compared with figure 12 is corn which is placed in a totally different place with no visible relationship 

between the macro and micro structure. It is still separable from the other crop types, but this time 

due to the macro structure. The range of the micro structure values, which was the main difference 

between corn and the other crop types when looking at the mean values of the fields, is the same as 

for the other crop types. The reason why corn is separable from the other crop types in this analysis 

is, therefore, totally opposite to the one before. 
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4.3 Observational data of heterogeneous canopy 

 

 

Figure 14. DASF map of the Lägern forest area with applied R
2
 and shadow filter (white pixels). Dark pixels represent low 

DASF values. 

 

4.3.1 Distribution of DASF values 

The figures 15a and b show the distribution of the DASF pixel values for the Lägern forest scene (fig. 

14) in the original 2m and resampled 8m resolution respectively. The distribution of the 2x2m 

resolution is smoothly distributed around the most frequent value of 0.52 with a median of 0.58. The 

distribution of the 8x8m resolution is flatter on top with the most frequent value of 0.535 which is 

also the median. Since especially the distribution of the 2m resolution scene is unimodal, no canopy 

structure type seems distinctive yet and the distribution could suggest evenly distributed DASF 

values for all canopy structure types. This, however, seems much more unlikely than for the 

homogeneous canopy because the differences in the macro structure between the different canopy 

structure types should definitely be more pronounced. 

Figure 15c illustrates the difference of the two distributions subtracting the distribution of the 8m 

from the 2m resolution. It emphasises how the distribution of the 8m resolution is more shifted 

towards lower DASF values compared with the 2m resolution. 
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c  

Figure 15. Distribution of DASF pixel values of the Lägern forest area at (a) 2m resolution, (b) 8m resolution. (c) Difference 

of (a) and (b). 

Compared with the homogeneous canopy (fig. 8) the heterogeneous canopy (fig. 15a) shows smaller 

DASF values. This suggests, as expected, a larger influence on reflectance from the higher and more 

complex forest canopy as opposed to the agricultural canopy. When looking at the different exposed 

areas, however, a difference in the distribution of DASF values is clearly visible. The norther hillside, 

which is less exposed to the sun, shows smaller DASF values (fig. 16a) than the southern hillside (fig 

16b). When comparing the south side of the Lägern forest with the agricultural canopy, first still 

show smaller DASF values than latter. Therefore, the suggested higher influence of the forest canopy 

structure is probably valid. 

Comparing the DASF values of the canopy structure types, no CST (fig. 1) is distinctive when looking 

at the mean DASF values and standard deviations as suggested by figure 17. The differences between 

the mean values are even smaller than the ones of the crop types ranging from 0.44 to 0.52 but with 

comparable standard deviations ranging from 0.07 to 0.1. 
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a b 

Figure 16. Distribution of DASF pixel values of (a) the northern hillside, (b) the southern hillside the Lägern forest area. 

 

 

Figure 17. Mean DASF values and standard deviations for each of the canopy structure types. 
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4.3.2 Sensitivity of DASF to LiDAR-derived structural parameters 

 

a b 

c d 

e f 

Figure 18. Sensitivity analysis of DASF to (a) Vegetation height, (b) Vegetation length, (c) Vegetation ratio, (d) Crown ratio, 

(e) Cumulative intensity above 3m from ground, (f) Cumulative top intensity. 
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The results from the correlation analysis between the DASF and the first set of LiDAR retrieved 

structural parameters are illustrated by the figures 18a-f. No sensitivity of the DASF to neither of the 

parameters is found, which is very surprising. The relationship between canopy height and spectral 

invariants has been shown by different studies (Heiskanen, 2006; Kimes et al., 2006; Schull et al., 

2007) and was also found in the sections 4.2.2 and 4.2.3. However, no trend or pattern is indicated 

here (fig. 18a). The DASF was also expected to be related to the cumulative intensity of the top three 

meters of the canopy (fig. 18f) since a higher intensity is indicative for a more closed canopy crown. 

This should result in a higher DASF because less radiation would enter the canopy, interact with it 

and get absorbed or scattered away. Instead, the DASF values look rather randomly distributed over 

the parameter range in the plots of the figures 18. One conclusion could be that the DASF is not 

related to these parameters. This, however, seems very unlikely for the reasons mentioned above. 

The figures 19a and b show the sensitivity of the DASF to the difference between the height of the 

first 1% of points and the height of the first 10%, respectively 20%, of points registered by the LiDAR 

sensor as echo. The figures 19c and d show the same, but for the relative density of the first two bins 

from top of the canopy. For these two analyses one would expect a similar result to the one expected 

for figure 18f. If less echo points are registered on top of the canopy over a longer distance (fig. 19a 

and b), the canopy is expected to be less dense. Therefore, more radiation would be able to 

penetrate into the canopy and interact with it. The same is valid for the density of the first, or 

respectively second, two meters (bin 1 or 2) from top of the canopy (fig. 19 c and d). Unfortunately, 

neither sensitivity nor other pattern is found here. This is less surprising, since these two parameters 

stem from the same dataset as the ones of figures 18a-f. 

 

a b 
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c d 

Figure 19. Sensitivity analysis of DASF to (a) difference of vegetation height to height where 90% of points lay beneath, (b) 

difference of vegetation height to height where 80% of points lay beneath, (c) Relative density of top bin, (d) Relative 

density of bin 2. 

The last analysis for the heterogeneous canopy compares the DASF to the second set of a LiDAR 

derived structural parameter, the PAI (fig. 20a to d). Again, a smaller PAI on top is indicative for a less 

dense canopy there. Hence, more radiation is able to enter the canopy, interact with it and get 

absorbed or scattered away. However, as for the other analysis of this section, no sensitivity is found 

for the DASF to relative PAI of the top 4 meters of the canopy (fig. 20 a and b). The figures 20c and d 

show that the DASF is similarly distributed for all PAI intervals. The interpretation of this would mean 

that the density of the canopy top layer does not affect the DASF, which is a parameter incorporating 

different structural parameters. However, it is shown at the beginning of this chapter (fig. 3a and 

10a) and in the sections 4.1.1 and 4.2.2 that the LAI, for example, influences the reflectance and 

therefore the DASF as explained above. Therefore a correlation between the DASF and the PAI values 

of the top layers would be highly conceivable. 

The same analysis was also performed for the different CSTs. However, they are not presented here 

since they do not show any relationship as well. 
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c d 

Figure 20. Sensitivity analysis of DASF to PAI of (a) top bin, (b) second bin. Relative frequency distribution of the pixels 

between DASF and PAI values of (c) top bin, (d) second bin. 

 

4.3.3 Canopy type discrimination in the spectral invariant space 

Contrary to the homogeneous canopy where at least some differences between crop types are 

visible in the spectral invariant space for averaged field values (fig. 12) and on plot-level (fig. 13), no 

discrimination of canopy types is found for the Lägern forest (fig. 21). Although the points lie more or 

less on a line, the different canopy types are not grouped in characteristic areas in the space as for 

example in Knyazikhin et al. (2009) and Schull et al. (2011). 

One reason could be the use of the pixel-level data of p1 and R. Some results from sections of the 

homogeneous canopy already suggest that the retrieval of p1 and R, and therefore also the DASF, is 

not always reliable on a smaller pixel size. 
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Figure 21. Spectral invariant space for the Lägern forest area. Green: CST1, magenta: CST2, cyan: CST3, yellow: CST4, red: 

CST5, blue: CST6, black: CST7. 

 

4.4 Leaf biochemical constituent retrieval 

4.4.1 Three-band Method with canopy structure 

As expected and already experienced in section 4.1.3, the chlorophyll retrieval of Gitelson et al. 

(2006) is struggling as soon as a canopy structure is present. This is further shown by figure 22, where 

no relationship between the in situ retrieved chlorophyll content and retrieved chlorophyll content 

using the method of Gitelson et al. (2006) is found. 

 

4.4.2 Leaf biochemical retrieval method derived from spectral invariants theory 

The different specific absorption spectra for the biochemical constituents used in the LUT are shown 

in figure 23a. While the structure parameter has a constant but slow specific absorption over the 

whole spectrum, the other constituents possess characteristic absorption peaks. 
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Figure 22. Comparison of in situ retrieved total and retrieved (Gitelson et al., 2006) chlorophyll content. 

Figure 23b illustrates an example taken from the analysis of the biochemical constituent retrieval. It 

represents the absorption spectra of a pixel of corn field number 1. The blue curve shows the 

absorption retrieved using the mean DASF and p1 of the field and applied on the spectrum of the 

pixel (right hand side of the equation). The red curve represents the lowest absorption spectrum of 

the LUT (structure parameter: 1.6; chlorophyll: 30 μg/m2; carotenoids: 2 μg/m2; equivalent water 

thickness: 0.015 cm; dry matter: 0.008 g/cm2). This leaf biochemical composition is assigned by the 

algorithm to nearly all pixels of the field. There is a large discrepancy in y-direction between the 

retrieved absorption spectra and the ones from the LUT. Since all other absorption spectra from the 

LUT are positioned even higher than the one shown here, the RMSE between retrieved spectra and 

LUT spectra is always smallest for the spectrum with the smallest constituent concentrations. When 

further comparing the two curves both show a similar progress throughout the wavelengths, but 

there is a shift between the two spectra and the local maxima are much more pronounced in the 

simulated spectrum relative to the retrieved spectrum. By shifting the blue curve by 1 and 

multiplying it afterwards by 3, both in the y-direction, the two curves become comparable (cyan 

curve). When analysing the two curves now, it is apparent that except the local maximum around 

675nm every other local maximum or minimum is shifted between the retrieved and simulated 

absorption spectrum. Moreover, the shifts are not constant. While the maximum around 1480nm of 

the retrieved spectrum is shifted towards higher wavelengths by 40nm compared to the simulated 

spectrum, the maximum around 1910nm of the retrieved spectrum is shifted towards smaller 

wavelengths by 20nm. Figure 14b also illustrates that the retrieved spectrum has more local maxima 

(630nm, 1205nm, 1880nm, 2115nm, 2060nm and a few around 2320nm) than the simulated 

spectrum. However, this is probably because the water parameter is set so high that its absorption 

overwhelms the one of dry matter where the peaks of 1205nm and higher probably originate from. 
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Figure 23. (a) Specific absorption spectra of used leaf biochemical constituents. (b) Lowest simulated LUT, retrieved and 

transformed retrieved absorption spectra. (c) Lowest and highest simulated LUT and all retrieved (corn field 1) absorption 

spectra. 

The absorption spectra of all pixels of the corn field are shown by figure 23c (cyan). As expected, the 

absorption spectra are very similar with the only difference laying in the absorption magnitude. The 

similar absorption signature makes sense since all the spectra should be from the same crop type. It 

must be noted, however, that small shifts in x-direction (maximum 10nm) of the local maxima are 

found between the lower and higher absorption spectra. The lowest and highest simulated 

absorption spectra from the LUT are also illustrated in figure 23c. They show the superposition of the 

different constituent absorption as stated by the left hand side of equation (15), since both curves 

have the same form but with different magnitudes. Similar to figure 23b, all retrieved absorption 

spectra have a comparable progress to the simulated ones, once scaled by adding 1 and multiplying 

by 3. Again, the two peaks at 1480nm and 1910nm are slightly shifted. This effect is stronger for both 

peaks for the retrieved spectra with a higher absorption. Furthermore, the missing peaks in the LUT 

spectra are probably also due the overwhelming water absorption. 
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5. Discussion 

5.1 Sensitivities of retrieved structural parameters 

The probably most striking result of the thesis is the sensitivity of the retrieved structural parameter 

DASF to leaf biochemical constituents. The sensitivities of the overall recollision probability, p1, and 

directional escape probability, R, are less surprising since both contain the within leaf recollision 

probability, pL, which is sensitive to leaf biochemical constituents. The DASF on the contrary is a 

fraction for the correction of reflectance due to the loss of radiation through the canopy structure 

and viewing geometry and should not experience any other influences than from structural and 

geometrical parameters. This result, if significant and correctly interpreted, would therefore question 

the ability to reliably retrieve structural parameters from hyperspectral data. The reason of this bias 

lays in the influence of the biochemical constituents on the slope of the reflectance in the spectral 

range used for the retrieval (4.1.1). This spectral region is proposed by Lewis & Disney (2007), who 

find that each spectrum of the Boreal Ecosystem Atmosphere Study (BOREAS) (Middleton & Sullivan; 

2000) and Spectral Barrax Campaign (SPARC) (Carmona et al., 2010) can be described by a reference 

spectrum and a set of spectral invariant parameters in this region. Since a linear relationship is also 

obtained for every parameter setting of the model here, this result is not questioned. However, the 

results from the simulated spectra illustrate clearly the inability of the tested method to retrieve 

structural variables reliably for varying leaf biochemical constituent concentrations. This fact 

challenges either the spectral region used by the retrieval or the use of the reference spectrum, both 

central assumptions of the retrieval. Since even one plant experiences high variations of biochemical 

concentrations during an annual cycle (e. g. Demarez, 1999; Ottander et al., 1995), the reliability of 

retrieved structural parameters is seriously doubted. Furthermore, one reason why this problematic 

did not arise yet is that the influence of one constituent can easily overwhelm the influence of 

another. Adams (2013) for example tests the influence of different leaf biochemical concentrations 

(chlorophyll, dry matter and equivalent water thickness) when retrieving the DASF. She finds that 

quiet different concentrations do have nearly no effect on the retrieval. However, she changes all 

three constituent concentrations at a time. Similar results to hers could be reproduced (not shown) 

using the PROSAIL model with her input parameters. It is also shown with the same model and 

algorithm, on the other hand, that changing the concentration of only one biochemical constituent at 

a time results in different retrieved parameter values. This further points out that the effect of one 

biochemical constituent concentration can be blurred through the effects of other constituent 

concentrations. 
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Despite the important bias in the retrieval, the results of the correlations between retrieved 

structural parameters and input structural parameters of the model are either in accord with 

expectations from the theory or comparable with other work. This is especially significant since not 

only the results between the structural variables of the model and the DASF but also the more 

detailed ones between structural variables of the model and p1 and R are all in line with the theory of 

spectral invariants. It shows that the theory is working well nonetheless, at least for constant leaf 

biochemical constituent concentrations. So despite the sensitivity of the DASF to biochemical 

constituents of the canopy, the results indicate that the retrieval is not completely wrong. They 

rather show one aspect supporting the theory and the other highlighting a probable issue in the 

retrieval of structural variables with respect to leaf biochemical constituents. 

In contrast to the simulation section, the results of the sensitivity analysis of retrieved p1 and R from 

remotely sensed data of homogeneous agricultural canopy to in situ retrieved structural parameters 

are mostly not what is initially expected by the theory or obtained by other work. With the exception 

of the sky fraction, none of the sensitivities show a trend or can be brought in line with the theory. As 

already mentioned, the sensitivities to leaf biochemical constituents of the overall recollision and 

directional escape probabilities are not controlled in this analysis. The lack of relationship between 

spectrally and in situ retrieved structural parameters implies that the influence of the biochemical 

constituents must be comparable to or even larger than the influence of the structural parameters. 

This explains the discrepancy to the analysis with simulated spectral data and literature. The 

correlations between in situ retrieved structural parameters and the DASF, on the other side, show 

comparable but much weaker results to the ones of the simulation section. It must also be noted that 

the DASF values are lower compared to the mean field values of the same crop types, which is rather 

indicative for the influence of an unknown effect. The influence of biochemical constituents on the 

DASF already experienced with simulated spectra could also be present here, which would explain 

the much weaker relationships between DASF and in situ retrieved structural variables. It is therefore 

questioned if the retrieval of structural parameters from hyperspectral data of more complex 

canopies than perfectly homogeneous ones can be performed reliably enough with this method. On 

the one side, p1 and R are affected too much by the sensitivity to leaf biochemical constituents, 

which drowns their sensitivity to structural variables of the canopy.  On the other side, the retrieval 

of the DASF seems not fully coherent. Unfortunately, the analysis is not able to demonstrate whether 

latter originates from the sensitivity of the DASF to leaf biochemical constituents or from the 

augmented complexity of the canopy compared to the one of the PROSAIL model. These results 

nevertheless suggest that the retrieval struggles with more complex canopies containing varying leaf 

biochemical constituents. 
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Neither the sensitivity analysis between the DASF and LiDAR retrieved structural parameters nor the 

spectral invariant space from the forest of Lägern produce any trend or interpretable result. As for 

the simulated and homogeneous canopy, the sensitivity to biochemical constituents is also expected 

for structural parameters retrieved from heterogeneous canopy. This would explain the bad results 

obtained in this section. However, another issue seems to affect the results in first order. When 

looking at the map specifications of the data sets, the first LiDAR data set starts at the upper left 

corner 669660.5 / 259209.5 while the geometrically rectified APEX data starts at 664202 / 262659. 

This results in a shift of 0.5m since both have a spatial resolution of 2x2m. Therefore, the missing 

relationship between the LiDAR retrieved structural parameters of the first set and the retrieved 

DASF is probably due to a lacking image coregistration. The upper left corner of the second LiDAR 

retrieved structural parameter set is 668539 / 260380 which, again, results in a shift of 1m compared 

with the DASF data set. This spatial shift is probably also responsible for a lack in image coregistration 

and a missing relationship between the two parameters. The figures 20c and d further support this 

hypothesis as they show that the DASF is similarly distributed for all PAI values. This would mean that 

the DASF is not affected by the density of the vegetation canopy which is highly improbable. 

Therefore, a missing coregistration between the datasets seems very likely. Consequently, no 

conclusion can be drawn for the sensitivity of retrieved structural parameters to LiDAR derived 

structural parameters and their usability for the heterogeneous forest of the Lägern. 

Other interesting findings still result from the analysis of the heterogeneous area, for example when 

investigating different exposed areas of the hill. As normal for the northern hemisphere, the 

northern side of the hill of the Lägern forest is less exposed to the sun compared to the southern 

side. A lot more pixels are filtered out by the shadow filter therefore, but the remaining pixels still 

show overall smaller DASF values than on the south side of the hill (fig. 16a and b). This result 

suggests a sensitivity of the retrieved structural parameters on illumination, since darker pixels result 

in smaller DASF values. The sensitivity would have a large impact on the application spectrum of the 

retrieval. Especially for hilly areas, but also forested areas in general where a lot of smaller 

topographical effects generate large illumination differences, the meaning of retrieved DASF would 

be very limited by this issue. 

A similar effect is found when comparing the distributions of DASF values from the 2m resolution and 

the resampled 8m resolution (fig. 15). The statistic of the DASF value distribution from the 8m 

resolution contain more lower DASF values, which suggests resampling effects. It could be presumed 

that the lower resolution comprises more aggregated pixels where the theory of spectral invariants is 

not valid but which are mixed with good ones so that they pass through the filter. This problem is 

already mentioned in section 4.2.1 where mixed pixels of vegetation and bare soil are not filtered out 
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and show considerably lower DASF values. This hypothesis, however, is rejected by the fact that only 

very few pixels are filtered out by the R2 filter in the forest at the 2m resolution. The main reason is 

probably the shadowing effect. The shadows in the 2m resolution scene are mostly only a few pixels 

large, often situated between tree crowns or on the northern side of a crown. While resampling, 

these shadowed areas are often mixed with more illuminated ones. The shadow mask at the 

resolution of 8m finds only the largest shadowed areas of the 2m resolution, while smaller ones are 

averaged out during the resampling. Therefore, more shadowed areas of the 2m resolution are not 

filtered in the 8m resolution which causes a larger number of slightly darker pixels. Darker pixels lead 

to a shift towards lower DASF values as discussed by the last paragraph. This further demonstrates 

how resampling can affect the retrieval of structural parameters. 

 

 

5.2 Impact of high spatial resolution 

Another issue regarding the retrieval of structural parameters is concerning the goodness (R2) of the 

linear relationship between HCRF/ω and HCRF. The R2 should be an indication for the validity of the 

applicability of the theory of spectral invariants on a pixel. In the analysis of the homogeneous 

canopy, however, an ideal threshold value for the filtering of pixels with too low R2 could not be 

found. If the threshold is set to a value where all bare soil pixels are removed, a lot of vegetation 

pixels are removed as well. Especially the grass types are vulnerable to higher threshold values. On 

the other side, a lower threshold value includes too many bare soil pixels which exhibit very low 

DASF values as shown by figure 8. There is probably still enough vegetation signature in the 

reflectance of these pixels so that the linear fit of the DASF retrieval is valid. However, the theory of 

spectral invariants should not be valid for the mentioned pixels since they are brown in the true 

colour scene and therefore certainly not a saturated vegetation pixel. This illustrates another 

challenge of the retrieval where the spectral range between 710nm and 790nm is apparently not 

enough to clearly separate dense vegetation from sparse one. It is suspected that the cause for the 

difficulties mentioned above are the small spatial resolution and eventual effects at this scale not 

considered by the theory or retrieval. 

As presented in section 4.2.4, the results of the spectral invariant space are very different depending 

on the number of aggregated pixels. When taking mean values of retrieved parameters from a field, 

the resulting spectral invariant space can be reasonably interpreted and seems therefore to make 

sense. Corn is namely separable from the other crop types on the micro scale, while a similar range 
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of macro scale values is taken up by all crop types. This result is comparable to the one of Carmona et 

al. (2010), where corn is the only crop type distinguishable from the others. However, when taking 

the same data on plot level (6x6m), a different distribution of values is obtained in the spectral 

invariant space. The result also makes less sense and shows a weak trend for corn. Other studies (e. 

g. Knyazikhin et al., 2009; Schull et al., 2011; Wang et al., 2011), however, applying the theory of 

spectral invariants on reflectance data do not encounter this problem. The studied canopies are, 

however, forested areas which better meet the requirement of a dense canopy bounded from below 

by a non-reflecting background. In addition, most of these studies work with data on a spatial 

resolution between 15.7m (Schull et al., 2011) and 500m (Wang et al., 2010). However, one study 

(Knyazikhin et al., 2009) successfully discriminates tree species from forest reflectance data using 

retrieved structural parameters on a comparable resolution (3.3m) than used here. It is thus not clear 

whether the issues experienced in this thesis are the result of using reflectance data of an 

agricultural canopy, which eventually does not fully meet the requirements of dense vegetation, or 

the small spatial resolution where the sensitivity of retrieved structural parameters is too strong. It is 

assumed that the issues are linked to the sensitivities of retrieved overall recollision and directional 

escape probabilities to biochemical constituents as already argued in 5.1. This is particularly apparent 

on high resolution as for example the plot level data as explained in the following and leads to 

incoherent results for the spectral invariant space. The results are much better when taking the 

mean values of retrieved structural parameters from a whole field. It is hypothesised that the reason 

for the improvement when using lower resolution data is probably the aggregation of the variation of 

biochemical constituent concentrations within a pixel. Biochemical constituents do still influence the 

values of p1 and R, though. However, the distribution of constituent concentrations can probably be 

assumed constant between the fields of one crop type considering the large numbers of averaged 

pixels in every field. This reduces the effect of biochemical constituents on p1 and R for each of the 

crop types, which in turn leads to relatively coherent results. The analysis of crop discrimination 

using the spectral invariant space conducted here on plot level comprises only 20 measurements in 

total, while Knyazikhin et al. (2009) use much more pixels in their analysis. The number of 

measurements used by this thesis is by far insufficient to be able to neglect outliers. Therefore, the 

bad result from the plot level analysis should be taken into account with care. The analysis on field 

level consists not of too many measurements neither, but the measurements themselves are mean 

values from a large number of pixels. The spatial resolution could hence have a central impact on the 

application of the spectral invariants theory on reflectance data as suggested by these results. 

Further, the impact of the sensitivity of applications of the spectral invariants theory to leaf 

biochemical constituents needs absolutely more investigation. Especially the transition area of the 
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resolution where biochemical sensitivities could be neglected due to statistical considerations would 

be of large interest and eventually a resort to the challenges illustrated here. 

 

 

5.3 Leaf biochemical constituent retrieval 

The analysis of the chlorophyll retrieval using a leaf level model presents the evidence highlighted by 

many papers about the need of a correction for canopy structural effects of reflectance data. The 

retrieval of Gitelson et al. (2006) works perfectly on leaf level reflectance, but fails by far to predict 

chlorophyll concentration when a canopy structure is added. However, a linear correction of the 

retrieved chlorophyll concentrations with the DASF seems not possible. The reason is the different 

forms of the progressions of retrieved chlorophyll concentration values and DASF values for varying 

LAI. No other model has been tested; however, a correction of retrieved chlorophyll concentrations 

with the DASF is, at least from a conceptual point of view, senseless since the DASF represents a 

correction factor for reflectance data and not for a product of latter. Another idea would therefore 

be to apply the DASF linearly on the reflectance data as intended and use Gitelson et al.’s three band 

model with the corrected reflectance. However, the formula can be rearranged ( formula (4) of 

Gitelson et al., 2006). Through the resulting band ratio and the suggested bands for the retrieval of 

the chlorophyll pigments, the DASF is multiplied in the numerator and the denominator and 

consequently cancel itself down in the fraction. Therefore, no correction is obtained and the model is 

still biased for canopy level reflectance data. 

The attempt to retrieve leaf biochemical constituent concentrations using derivations from the 

spectral invariants theory leads to promising first results, but needs further effort to obtain a 

satisfying and applicable method. The curves of retrieved and simulated absorption spectra illustrate 

a similar progress throughout the absorption spectra. The absorption features of the different 

constituents used in the simulations are relatively well visible in the retrieved spectra and no 

additional absorption feature is strikingly apparent. This indicates that the used constituents seem to 

compose the most important absorption elements and that retrieved absorption spectra can 

probably be reconstructed as the superposition of the product of specific absorption coefficient and 

respective constituent concentration as stated by equation (15). Nevertheless, important challenges 

are encountered, which prevent reliable retrievals of leaf biochemical constituents so far. One is the 

difference of the absorption intensities between simulated and retrieved absorption. It seems as if 

there is first a shift of the whole retrieved spectrum in y-direction and then also a stretch of the 
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peaks. By applying a linear transformation to the retrieved spectra, they get comparable to the 

simulated spectra. However, it is not clear why such large differences between simulated and 

retrieved spectra occur. It is also unsolved where the exact origin of this transformation is situated 

and therefore what the exact transformation of each spectrum is. The first shift is probably due to 

the structure parameter. Its absorption is relatively constant over the whole spectrum. A wrong 

parametrisation of the structure parameter therefore leads to a shift of the whole spectrum in 

positive y-direction because of the principle of superposition. The difference in the absorption 

intensities of the peaks is then presumably an issue of the concentrations of the remaining 

biochemical constituents. Although the probable reason of the difference between retrieved and 

simulated absorption spectra seems obvious, the cause is still vague. It is unclear whether the 

retrieved or simulated spectrum is the correct one and why the wrong one is scaled compared to the 

correct one. A further remaining challenge is the shift in x-direction of certain peaks. Assuming a 

solution for the first challenge, even if the two absorption spectra laid on a comparable position in y-

direction, the shifts of the local maxima would impede an exact comparison between retrieved and 

simulated spectrum wavelength wise. Therefore, the retrieval of leaf biochemical constituents would 

still experience challenges. Again, the reason for the shift of certain peaks remains unclear. The 

simulated spectra have been convoluted to match the wavelengths of the APEX sensor. Since the 

spectra are absorption and not reflection, it is thus questioned if the convolution also works reliably 

for absorption spectra. 

With regard to the first part of the thesis, further points have to be considered regarding the 

retrieved structural parameters used in the retrieval of biochemical constituents. For this analysis the 

mean values of retrieved structural parameters from one field are used. As discussed in 5.2, the 

sensitivity of retrieved parameters to leaf biochemical constituents is probably reduced for a large 

number of aggregated pixels. However, this has two further implications for the retrieval of leaf 

biochemical constituents. First, the general applicability of such a retrieval for remote sensing data is 

reduced since another piece of information is needed. This information, the classification of a pixel to 

a crop or tree species, is needed for the aggregation of the pixels. The results of this study suggest 

that without this process, the influence of the sensitivity of retrieved parameters to biochemical 

constituents is too important. However, even if this sensitivity is reduced through the aggregation, 

the retrieved structural parameters are still dependent to biochemical constituents. Since the 

structural parameters are used in the retrieval of biochemical constituents, latter are themselves 

dependent on present biochemical constituents of the canopy, which is of course problematic. 

In addition to the implications of the sensitivity of retrieved structural parameters, another 

fundamental problematic needs attention. Even if the sensitivities could be fully eliminated through a 
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revised retrieval, both retrievals would be performed on the same underlying data. This would still 

represent an obstacle for the reliability of retrieved biochemical constituents because of the 

dependence of the two retrievals. Therefore, the postulate of Lewis & Disney (2007) is probably true 

and the exact retrieval of both, structural parameters and leaf biochemical constituents is 

fundamentally not possible for spectral data without additional information. This postulate, which is 

further supported by this thesis, suggests that for the retrieval of leaf biochemical constituents from 

remotely sensed spectral data at least one additional independent measurement of the same 

vegetation canopy is indispensable. Possibilities could consist of multiangle spectral measurements 

or a simulation approach using LiDAR measurements for the canopy structure model combined with 

spectroscopic measurements for the spectral response of the canopy.  
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6. Conclusion 

This thesis presents multiple investigations of the sensitivity of spectral invariants theory applications 

to leaf biochemical and canopy structural parameters to assign the possibility of estimating leaf 

biochemical constituent contents from hyperspectral remote sensing data that are corrected for 

canopy structural effects. The application of the theory of spectral invariants comprises the retrieval 

of structural parameters from high resolution hyperspectral data, namely the DASF, the overall 

recollision probability, p1, and the directional escape probability, R, as well as crop/canopy type 

discrimination using the spectral invariant space. 

Beneath sensitivities of the DASF to illumination and resampling, the most striking findings are the 

rather large sensitivities of retrieved structural parameters on leaf biochemical constituents. These 

results challenge severely the assumptions of the retrieval and have huge impacts on usability and 

significance of spectral invariants applications. The sensitivity is less surprising for p1 and R, but the 

magnitude of the sensitivity to leaf biochemical constituents is at least as important as the sensitivity 

of the two parameters to canopy structural parameters. However, the sensitivity of the DASF to leaf 

biochemical constituents found in this thesis is probably a worst case result for the application of the 

theory of spectral invariants. The applications of the theory seem nevertheless to work for idealised 

canopies and spectral data, however, the results of this thesis suggest only under two conditions: 

1. The content of leaf biochemical constituents can be controlled. 

2. The spatial resolution is large enough to aggregate enough variation of leaf biochemical 

constituent concentrations, which reduces the sensitivity. 

Despite the critiques on the application, the correctness of the theory of spectral invariants is neither 

challenged nor doubted.  

The attempt to retrieve leaf biochemical constituents from hyperspectral remote sensing data using 

retrieved structural parameters seems promising at first sight since simulated and retrieved 

absorption spectra come relatively close. However, besides challenges still experienced during the 

retrieval, the implications of the sensitivities of structural parameters make a reliable retrieval for 

leaf biochemical constituents impossible without additional information. At least two independent 

measurements are therefore suggested for the simultaneous retrieval of canopy structural and leaf 

biochemical constituents. 
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