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Abstract

Twitter data reflects what people do and think. Many tweets contain geotags, that allow to spatially locate
the tweet content. The utility of geolocated Twitter data for land use classification has been explored by
researchers. Most studies focus on relatively small study areas due to uneven global adoption of Twitter.
It is assumed that geotweets are mainly generated within human settlements and predominantly in cities.
However, this has never been assessed systematically.

In this study the potential of geotagged Twitter data to locate human settlements is estimated. There-
fore the spatial overlap of geotagged Twitter data with human settlements is assessed. As ground truth
serves the Global Urban Footprint (GUF) mask, a high resolution global model depicting human set-
tlements. Furthermore, the influence of geotemporal patterns, weather, settlement size and user char-
acteristics are observed and used to filter out tweets outside human settlement. Finally the amount of
Twitter data to get full global coverage of human settlements is estimated using Monte Carlo simulation.
Contrary to most studies deducted so far, this thesis has a global perspective. Special attention is given
to the reliability of Twitter data, therefore two independently sampled Twitter datasets are applied.

The observed overall spatial overlap of Twitter and GUF is roughly 80%. The overlap is dependent
on geographic region, daytime, weekday, season and user characteristics. No influence of weather was
observed. The potential of Twitter data as classifier is limited. In a simulation it is assessed that
data volumes of billions of geotagged tweets would be required use Twitter data as primary source
for classifying human settlement. Also, the reliability of Twitter data must be questioned as the two
independently sampled Twitter data sets often yield different results.

The high spatial overlap of Twitter data and human settlements can be seen as a good precondition for
Twitter data and social media data in general to be used as proxy for human settlement. Yet way larger
data volumes are required to do so. Nevertheless, the results can be used to put studies of small areas of
interest into a global context. Significant variations in temporal patterns over space can be attributed to
human behaviour. The reliability of global Twitter data from Twitter’s Streaming API is disputable due
to unrepresentative returned volumes.
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Chapter 1

Introduction

1.1 Motivation

Since the launch of the first iPhone in 2007 the world has changed dramatically. Smart mobile devices
connected to the internet surround us without temporal nor spatial limits. This has changed the way
we ’communicate, navigate, work and entertain ourselves’ (Duke and Montag, 2017). Psychologists
and sociologists eagerly attempt to understand the transformations in humans and societies driven by
smartphones and their possibilities. Notwithstanding, smartphones are not only information-feeding and
communication-enabling gadgets. As a by-product of our daily use of smartphones and internet we
generate massive amounts of data. Today, an almost inconceivable data volume of 5 exabytes ( = 106

terabytes) is generated on planet earth every other day. This corresponds to the accumulated data volume
that had been created by humans by 2003 (Akoka et al., 2017). The abundance of data has given rise
to the importance of data science and data analysts that try to extract valuable information from that
data. This relatively recent phenomenon has been described with the still inchoately defined term Big
Data.

The descriptive has arisen because big data is in many regards different from traditional data. A
common characterization of big data are the 5 V: huge Volume, high Velocity, low Veracity, high Variety
and high Value (Jin et al., 2015). In the first place, big data is about immense data volumes. This
poses a challenge to computing power and capacity, as big data analytics may exceed current processing
performance (Volume). Though, big data is not only ’big’, but it is consequently generated at high speed.
This challenges data analysts to store and exploit near real-time data (Velocity). On Twitter roughly
6’000 tweets are sent every second1. Big data is highly variable in structure and content (Variability). It
comprises structured, semi-structured and completely unstructured data such as text or images. Semi-
structured data formats like JavaScript Object Notation (JSON) have become standard in data exchange
over the web. Algorithmic concepts to find structures in this data, such as statistical learning, are

1http://www.internetlivestats.com, accessed 30-11-2017
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1. Introduction

required. Further, Big Data is less reliable than traditional data (Veracity). One major challenge is to
clean the data and distinguish useful from noise data. In social media automated bots contribute large
amounts to the data. Last but not least, the value of Big Data is undoubtedly outstanding. Leading
companies like Google or Facebook are at the core dealing with big data. It is estimated that from 2013
to 2020 90% of the growth in IT industry is driven by big data (Jin et al., 2015). Not only economy, but
also research institutes have entered this door. By November 2017 Google Scholar lists 251’000 papers
with the keyword Big Data.

While this widely accepted delineation of big data sees high temporal density of data as an inherent
characteristic, it does not mention space. Mobile devices build the core technology for the permanent
access to the world wide web. These devices are normally GPS-enabled or make use of other technologies
to be location-aware, such as RFID, WLAN or cell phone tower triangulation. The data produced
with mobile devices is spread across space and often explicitly geolocated. Thus, big data is also about
geography and its analysis an issue for GIScience, the science of geographic information (Graham and
Shelton, 2013).

Geography elucidates big data

Geographers have investigated the potentials and limitations of geographic big data. One of the most
intriguing types seems to be social media data. Numerous social media platforms have established geolo-
cation support (e. g. Twitter, Flickr, Facebook) or are inherently spatial in nature (e. g. Foursquare).
Some allow their data to be harvested via API’s, which makes it very attractive for researchers to make
use of. As data from social media reflects what people are ’looking, hearing, feeling’ it can be seen as a
sensor of real-world phenomena (Takahashi et al., 2011). Geographic social media data unravels where
people go, what they think about places and how they use them. Related studies have been published on
diverse topics ranging from demography, human mobility or land use classification. A plethora of studies
has proven the high potential of georeferenced social media data in geography and also pinpointed out
limitations.

The potential benefits of social media data in a geographic context can be summarized in two branches.
(1) They may serve as an alternative source of data to accomplish tasks that have been done using
traditional data. Social media data thus complement or replace other means of analysis at relatively
low cost. For example Patel et al. (2016) found that population density as obtained from costly census
data can to some degree be estimated using geolocated tweet density. Social media data has also been
used as control data for existing population density model validation (e. g. Lin and Cromley (2015)).
Hawelka et al. (2014) were able to successfully correlate global human mobility patterns with tourism data
provided by the World Economic Forum. (2) Social media data can semantically enrich existing data
and extend their resolution. Wang et al. (2016) and Frias-Martinez and Frias-Martinez (2014) enrich
urban land use classes with temporal human activity derived from social media. Adnan et al. (2013)
extract ethnicity from Twitter data and come up with a high-resolution ethnic map of London. High
resolution can also be enhanced temporally, for example in population distribution (Steiger, Westerholt,
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1. Introduction

et al., 2015). A more exploratory study by Lloyd and Cheshire (2017) derives retail center locations and
their customer catchment areas. Another question that has been subject to crowdsourced data analytics
is human perception of space, e. g. Chesnokova et al. (2017), Jenkins et al. (2016). Arribas-bel et al.
(2015) proclaim valuable applications of such data in the context of smart cities.

Insightful study results have, however, shed light on the manifold challenges. Contrary to traditional
data, social media data is not produced for the purpose of its analysis and information retrieval. The
data is therefore blurred and imprecise. E. g. in terms of geolocation the coordinates can be derived by
different means (GPS, WLAN) that have different levels of precision (Blanford et al., 2015). Precision
is in this regard traded off against larger data volumes. Likewise, accuracy of results, i. e. relation
of data to the phenomenon at inspection, is often hard to assess (Goodchild, 2013). Fore example,
population distribution derived from social media may be biased by the prevalent demographic groups on
the respective platform. Assessment of accurate information is hampered by the unrepresentative nature
of the data. Data gathered from social media —Quelle— platforms are not representative for human
population. Additionally, social media users are contributing to a varying degree. In a geographic context,
social media penetration is also unevenly adopted across the globe. A last pitfall is the absence of accurate
validation data. E. g. high resolution mapping of ethnicity (Adnan et al., 2013) or space perception
(Chesnokova et al., 2017) can hardly be validated by other data, as traditionally such phenomena can’t
be assessed at high spatial resolution. It is common practice to use control data as plausibility check
rather than as actual validation. Lack of validation data is the curse of studies that aim to extract novel
kinds of information from geographic big data.

Twitter data and Human Settlements

This thesis puts a much simpler, easier-to-validate and more fundamental question at its origin. Where are
social media data located in space? More precisely, are Twitter data located where human settlements are?
It is sensible to assume that people are predominantly staying inside areas where man-made infrastructure
is present. Infrastructure is the precondition for reachability. In very general terms it can therefore be
assumed that where there’s built-up area, there are probably people and where there’s no built-up area,
there are probably no people. In fact this relationship has been used to estimate population density from
remotely sensed built-up area models (Lin and Cromley, 2015).

If the geolocation of social media data is to reflect where people are, as pointed out by Takahashi
et al. (2011), it could be inferred that social media data are mainly situated on built-up areas and within
settlements. Studies have already glimpsed at this relationship, e. g. Leetaru et al. (2013). A set of
Twitter data collected from 2009 to 2013 by (Rios, 2013) illustrates this (Figure 1.1). The analysis of the
spatial relationship of built-up areas and Twitter data distribution may hence validate or question the
assumption that population distribution can be derived from built-up areas.

3



1. Introduction

Figure 1.1: Georeferenced tweets sampled from 2009 to 2013 (Rios, 2013).

Land cover classification

If georeferenced Twitter data really is located where human settlements are, then it should be viable to
infer the location of human settlements through Twitter data. The classification of built-up land cover on
large areas has traditionally been accomplished using remote sensing products from air- and spaceborne
sensors. The general procedure is to assign signatures to spectral or radiometric measurements that relate
to a specific type of land cover. Often ancillary data like DEM’s complement these (Esch et al., 2017).
There are numerous models depicting human settlements globally, such as Globcover2 or NASA Night
Lights3. The main challenge in remote sensing and in the extraction of built-up areas in particular is
the trade-off between spatial, spectral and temporal resolution. Global products predominantly rely on
coarse-resolution (< 100m) imagery (Potere et al., 2009). However, the typical physical scale of built-up
areas is at 10 - 20 m (Small, 2003). In 2017 Esch et al. (2017) released a high-resolution product (12m)
derived from radiometric measurements. The model depicts human settlements at an unprecedented
accuracy. Radiometric measurements can alleviate problems inherent to spectral methods such as cloud
cover.

Despite these recent advances, several challenges remain. Data quality and atmospheric effects are
of particular exigency for the detection of small-area class of human settlements. The definition of land
cover classes (e. g. urban land, human settlements, built-up area) is varying and dependent on the raw
data (Potere et al., 2009). The layer produced by Esch et al. (2017) for example depicts only built-up

2http://due.esrin.esa.int/pageglobcover.php, accessed2017− 12− 03
3https://www.nasa.gov/, accessed 2017-12-03
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1. Introduction

objects with a vertical component, hence, e. g. roads are not mapped. Finally, high spatial and temporal
resolution is still involving high costs (Potere et al., 2009).

In recent years a new potential source of land cover classifiers has risen: humans. Geo-Wiki is a
platform that asks volunteers to validate land cover models (Fritz et al., 2009). A similar project is
OpenStreetMap (OSM), a platform that lets citizens create polygons for objects on earth surface. Such
approaches are a low cost alternative with potentially high spatial and temporal resolution. However, the
acquisition relies on people that actively participate in mapping earth. Therefore, the data is commonly
summarized as Volunteered Geographic Information (VGI). This data is introducing a new kind of bias.
Densely populated areas in developed countries are much more completely reported than remote places
in developing countries (Barrington-Leigh and Millard-Ball, 2017). This is a limitation that has been
attempted to tackle through gamification (Baer, 2017).

Contrary to VGI, social media data are generated in huge volumes without active human ’work’
involved. Opposite to remote sensing, the temporal and spatial resolution of the data does not inherently
conflict due to physical limitations. The costs for data acquisition are very low. To take advantage of this
resource, it has to be assessed in how far social media data indicate built-up land cover. Studies on spatial
social media data mentioned above aim at describing land use. Opposite to land cover, the description
of physical properties of the earth surface, land use is the description of earth according to how humans
use it. Researchers see high potential for social media to fill this gap. – Quelle– For this purpose, such
studies extract textual or geotemporal patterns from the data. However, the applicability in land cover
classification has to the knowledge of the author not been studied. Despite this, the data has sparked
interest in the domain of remote sensing and already been embodied in several studies involving remote
sensing (e. g. Chakraborty et al., 2015; Lin and Cromley, 2015).

The global study

Most studies on geographic social media focus on study areas of limited size (rare exceptions are Graham,
Stephens, et al. (2013), Takhteyev et al. (2012) and Leetaru et al. (2013)). When comparing the results of
studies, one needs to take into account that observations may vary globally. While demographic variables
about Twitter usage have been studied by means of personal interrogation (Blank, 2016), observations
drawn directly from Twitter data have not. E. g. diurnal Twitter activity has been described in a number
of papers –Quelle–. But It is unknown, whether this feature is globally constant. This is a major research
gap that hampers the validation and comparability of existing research.

This thesis incorporates a global data set in spite of the manifold entailing obstacles. These range
from uneven geographic adoption of social media, excessive data volumes, time alignment problems or
projection problems. However, a global approach does not only face difficulties. It potentially reveals
spatially dependent characteristics of Twitter data. Such patterns may be helpful to put local study
results into a wider geographic context.
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1. Introduction

1.1.1 Research Questions

The previous section has disentangled a number of research gaps in the context of geographic social media
data. (1) A comprehensive description of the relation of Twitter data and human settlements puts to test
the assumption that people are staying within built-up areas. (2) Social media data, such as Twitter,
may complement and enhance the description of space as done with remote sensing or VGI. On the one
hand, Twitter data may enhance remote sensing products, since it does not mutually exclude high spatial
and temporal resolution. On the other hand, contrary to VGI, it does not require motivated people to get
involved. Twitter data is created independently in large volumes. This potential has not been explored
so far. (3) The vast amount of research on land use using Twitter data demands for a global framework
to put results into context. This ensures that the rich semantics extracted from Twitter data are valid
globally.

This study pursues a number of novel endeavours. For the first time the spatial overlap of geotagged
Twitter data and human settlements is assessed quantitatively and at high resolution. Contrary to the
great majority of studies, this feature is traced down on a global level. Factors that are expected to
influence the spatial overlap of human settlement and Twitter data are proposed and tested. Finally, the
potential of Twitter data as a proxy for human settlements is estimated through filtering by the proposed
factors and assessment of the spatial pervasiveness of tweets. Accordingly, the following research questions
are put forward:

RQ 1 Does the presence of geolocated tweets indicate built-up land cover?

RQ 2 What are factors that influence whether the geotag of Twitter data is on settlement area or outside?

RQ 3 Is a global classification of built-up land cover possible with Twitter data?

1.2 Background

In this section, a short introduction on Twitter and its applicability in geographic research will be given.
First, the functioning of the Twitter platform is described. Second, biases and major caveats that arise
are delineated. Then a review of existing literature on geographical Twitter data research is portrayed.
In the context thereof a set of methods and guidelines for this study are presented.

1.2.1 What is Twitter?

Twitter is probably the most famous and far reaching microblogging service worldwide. Its concept is
to enable anyone to share ideas and information. The mechanics are straightforward: Users can post
short text messages of maximal 1404 characters or images (tweet) that are visible for a selected audience

4As of November 2017 messages are allowed for up to 280 characters (https://www.nzz.ch/wirtschaft/twitter-verdoppelt-
laengen-limit-auf-280-zeichen-ld.1326983, accessed 2017-12-03). The sampling period of the data used for this thesis is not
affected.
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1. Introduction

(normally everyone). A user can follow other users to track his/her activity (e. g. Katy Perry is the most
followed Twitter user with over 100M followers by August 20175). Tweets can be denoted with hashtags.
Hashtags allow to relate a tweet to a topic, e. g. #ZurichOpenair. The platform is operated by Twitter
Inc., a company that was founded in 2006 and has since become one of the most visited websites on the
internet6. In 2010 Twitter reached a daily tweet volume of 50 M, in 2013 this number increased to 500
M tweets per day 7, a level where Twitter more or less remained constant until now. Twitter claims to
have 328 M active users monthly, whereof 82% gain access to the platform through mobile devices8.

Twitter data features some advantageous characteristics in the context of this study. (1) Data volume
of the service: Twitter has a huge user community of over 300 million users and with it a large data
volume. (2) Accessibility: There are other services like Facebook or Whatsapp that have a way larger
user base and even higher data volumes. Yet these don’t give easy access to their data, partly because
of the higher sensitivity of their data. Tweets are open for public and freely accessible through Twitter’s
Streaming API. (3) Nature of the data: E. g. Flickr gives easy access to a large data base, too. The
purpose of Flickr is to share images. It can be assumed that georeferenced images tend to be sent from
remote / scenic places such as National Parks (Li et al., 2013). Hence the spatial overlap of Flickr points
and built-up area may be less sticking. Twitter on the other hand gives no obvious reasons for this bias
to be assumed.

Twitter and Geography

As of 2009, Twitter implements geolocation sharing per tweet (Leetaru et al., 2013). There are two types
of geo-localization to be differentiated. (1) The precise geolocation with coordinates supplied by the
GPS-receiver or other means of positioning (e. g. cell phone tower triangulation, WLAN) internal to
the users (mobile) device.9 The positioning system have varying precision, i. e. a random offset of the
generated position from the user’s true position exists. (2) A set of coordinates that is place-related to a
point of interest, neighbourhood, city, country or continent level. Rather than from positioning systems
these coordinates most likely stem from a database where place names are holding a spatial reference.
E. g. for the city of Zurich the corresponding coordinates returned by Twitter are always Lat/Long
8.55/47.3667. Place-relating coordinates is not only a way to semantically enrich the geodata but also a
mean of obfuscation.

Obfuscation is a method to attenuate privacy concerns that come along with geolocation sharing.
For the same reason, geolocation is turned off by default on Twitter. The user has to actively opt for
enabling location addition to tweets. When users do so, locations are added on the obfuscated level
only. To enable precise geolocations, the user faces further obstacles. Having enabled obfuscated location
sharing, the user needs to explicitly look for the option to enable GPS-positioning. This can only be

5https://twittercounter.com/pages/100, accessed 2017-08-29
6https://www.alexa.com/topsites, accessed 2017-08-29
7http://www.internetlivestats.com/twitter-statistics, accessed 2017-08-29
8https://about.twitter.com/de/company, accessed 2017-08-18
9For a comprehensive discussion on positioning methods refer to Roxin et al. (2007)
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done on Twitter’s mobile application for Android and for iOS10. From the web page on internet browsers,
regardless whether on mobile devices or desktop machines, it is not possible to share precise geolocation.
Twitter’s API returns geolocation in one or several of the following fields: a point feature that is either
precise or artificially matched to a place name, a rectangular bounding box that is place-related or a text
string.

Privacy considerations and the intricacy of the process of enabling geolocation lead to a generally low
adoption of this functionality. Leetaru et al. (2013) find that only 1.8% of the tweets have a place-related
and 1.6% of the tweets exact geotag. Other studies found similarly low values, e. g. 0.6 % Takahashi
et al. (2011), 1.45 - 3.17% Morstatter et al. (2013), < 1% Li et al. (2013). The studies are not clear
about which acquisition methods were used to come up with these numbers. This can probably explain
the differing numbers. Also differing study areas may lead to differing share of precise geolocations. In
any case the rate of adoption of geoservices is very low and does surely not exceed few percent.

Besides on-site geolocation-sharing by the user (as intended by Twitter’s interface), geolocation can
be administered by other means. There are third-party applications that require the user to grant access
to their Twitter profile. One example is swarmapp11. This is a mobile device app that automatically
tracks a person in space for the purpose of a diary generation, and posts certain locations on Twitter.
The validity of geolocations is further complicated by the fact that geolocation on computers and mobile
devices can be manipulated. Freely accessible software allows to overwrite the location derived from
physical positioning systems (e. g. Manual Geolocation12). Whatever reasons one might have to fake his
geolocation, the ease of doing so exposes Twitter users to do so.

Accessing Twitter data

The live Twitter data can be queried via Twitter’s Streaming API. Access is granted upon creation of a
registered Twitter Application. In this way the volume returned is limited to 1% of the whole Twitter
traffic. The process of selecting the 1% can partly be curtailed by query parameters such as location or
keywords. It is not transparent how Twitter subsets the Twitter data stream. Studies suggest that the
sample is slightly biased in terms of e. g. top hashtags (Kumar et al., 2013). A costly way to overcome
this limitation is the Twitter Firehose API that returns 100% of the Twitter data stream. Due to the
high costs and extensive data volumes, most researches stick with the Streaming API sample.

1.2.2 Who tweets?

Twitter users do not represent the real world’s population in three regards. (1) Demographic variables
like age, gender and education correlate with Twitter usage. (2) The geographic location, i. e. culture
and economic circumstances influence Twitter penetration. (3) A significant amount of the registered
accounts are not belonging to single humans but rather to institutions (e. g. corporations) or fully

10https://support.twitter.com/articles/484789, accessed 2017-11-30
11https://de.swarmapp.com, accessed 2017-11-30
12https://chrome.google.com/webstore/, accessed 2017-12-03
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automated (spam) bots. Moreover, geographic Twitter data isn’t representative of Twitter’s user base.
(1) Some users are contributing more to the platform than others. (2) Sharing of geolocation is biased
by mainly cultural factors.

Twitter and Demography

Blank (2016) investigated in demographic variables that correlate with Twitter usage. He found that
’Twitter users fit the profile of young, well-educated, and wealthy elites’. It is therefore hard to infer
characteristics of any real-world population from Twitter data. In a purely geographic context this bias
may not play an overwhelming role, unless demographic variables correlate in space. This seems to be
the case indeed. In the same study by Blank it is estimated that rural people are less likely to be Twitter
users. Another study by Klotz et al. (2017) shows that in places where poor people live (slums) there
is less Twitter data. Whatever influence demographic variables might have on the presence and absence
of Twitter data in space, this thesis focuses on the spatial distribution of tweets. The observed patterns
may or may not be ascribed to demographic characteristics.

Geographical bias (Twitter penetration)

The spatial distribution (penetration) of Twitter data is highly biased in two regards. (1) At small scale
the density of tweets varies between continents, regions and countries. E. g. African countries have much
less georeferenced Twitter data than North America. The Netherlands have a much higher density than
Belgium. On a larger scale the adoption of Twitter in cities is higher than in the countryside. In general
it is assumed for Twitter data to be generated in Western European, Panamerican and East Asian cities
(Leetaru et al., 2013).

It is probably for this reason that most studies on Twitter focus on confined areas with a high Twitter
data density. The application of precise (GPS-) geotags for a specific research on a global level has to
this date not been found. In fact most studies don’t even regard places outside cities.

Bot or not?

The term social media suggests that Twitter users are people. However, not only accounts from single
human users prowl about Twitter. Fully and partly automated programs, commonly summarized as bots,
deliver large amounts of tweets (Chu et al., 2010). Fully automated accounts tweet updates from e. g.
weather stations, seismic stations, Twitter trends, or just random content. Other users post messages
on e. g. job opportunities, traffic jams and upcoming events or the like. Chu et al. (2010) distinguish
legitimate and malicious bots, where legitimate correspond to the classes mentioned above. Malicious
bots are fully automated users that tweet spam from hacked accounts. Legitimate bots account for large
amounts of the data produced on Twitter. Malicious tweets are only a small fraction of Twitter’s traffic
(Grier et al., 2010).
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Automated users often contribute meaningless data. In a geographic context, a bot may post geoloca-
tions that are not relevant. In Figure 1.2 the geolocated tweets of an automated bot and a real human are
plotted. The bot posts random (meaningless) locations, where the real user’s location point to relevant
locations. Hence, an analysis of human Twitter user’s behaviour has to exclude such accounts. Several
attempts have been made to classify users as bots or normal human users. Grier et al. (2010) looked for
bots by evaluating the URLs posted by users. Chu et al. (2010) found evidence for user characteristics in
the frequency of tweets. They distinguished humans, cyborgs and bots. There are also ready-made bot
classifiers available online (e. g. Botometer13). However, a standardized manner of cleaning Twitter data
does not exist. Bot detection is still an ongoing research, no definite solutions of high enough robustness
have been found by the author. This is also due to the fact that the most extensive exploration in the
field can not resolve a further issue: no hard line can be drawn to separate bot from human. There
are for example accounts kept by fire fighters or the fire brigade that post tweets from incidental sites.
Depending on the study, these are desirable or not. Sensitive exclusion criteria lead to a loss of much
data, insensitive criteria include more unwanted data. Therefore, studies often apply individual and
rudimentary tactics that meet their requirements. Criteria used to subset the data range from number of
tweets per user (Longley and Adnan, 2016), sorting by user name (Blanford et al., 2015), tweet keywords
for specific topics (Allen et al., 2016) or similar tweet content (Lloyd and Cheshire, 2017). More common
in literature is, however, that no mentions about data cleansing appear.

Instead of classifying (and eventually filtering) certain groups of users in advance, the behaviour of dif-
ferent groups of users is monitored. This requires methods that regard single user characteristics. For the
sake of consistency, a simplistic terminology that is expected to summarize Twitter users appropriately
is used henceforth. Here, bots are defined as accounts that without any human assistance post tweets.
These may be live weather data, randomized processes, trends on Twitter or earthquake warnings mea-
sured from seismographic stations. Services on the other hand are defined as Twitter accounts that are
created for the purpose of merchandising or information broadcasting. In comparison to bots, services
tweet human-generated contents, but probably multiple users are involved. Examples are employment
ads, firefighter alarms, traffic jams or local news. The categories bot and service are summarized as
nonpersonal users. In contrast personal users are the model Twitter user accounts controlled by single
humans.

Contribution bias

In scientific literature there is a consent that Twitter data, but also social media data in general is biased
by a small number of very active and a large number of very inactive users (Longley and Adnan, 2016),
(Longley, Adnan, and Lansley, 2015). Leetaru et al. (2013) even conclude that ’a very small number of
core users thus drive the majority of Twitter’s traffic’. In their data they find that the top 15% of the
most active users account for 85% of the tweet volume and the top 5% for 48% of the tweet volume.

13https://botometer.iuni.iu.edu/
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Figure 1.2: Point pattern generated from a user without (left) and with (right) spatial relevance.

This phenomenon is in Li et al. (2013) termed contribution bias. It is partly driven by nonpersonal users
but also present within real human users. Hence Twitter data is not only unrepresentative of the world
population, but also in terms of Twitter’s users.

Who tweets with geolocation?

There is another kind of bias introduced through the specific subset of precisely geolocated tweets used.
The Twitter users sharing their geolocation are only a small fraction of all Twitter. Leetaru et al. (2013)
assess a share of marginal 1.6% of the users sharing their GPS-location. A more recent study by Sloan
and Morgan (2015) discusses this issue. It is shown that there are small albeit significant differences in
the geotagging behaviour of demographic groups. The disparities of geotag adoption between gender,
age and profession are smaller than 1%. More peculiar are adoption rates among tweet languages. Some
languages like Turkish (8.3%), Indonesian (7.0%) or Portuguese (5.9%) show a relatively high rate of
geotag adoption. Very small rates are found in Korean (0.4%), Japanese (0.8%), Arabic (0.9%) German
and Russian (2.0% each) tweets. Cultural aspects hence seem to influence the adoption rate of geolocated
tweets. We can only assume that the language depends on countries. But it is impossible to get adequate
numbers for geotag sharing in different geographic areas, because tweets without geotag are not spatially
referenced. While this has substantial impact on social science study design, it may not be of concern for
the pure geolocation. However, it can be expected that the presence of geotagged tweets in geographic
regions is not only a function of Twitter penetration but so of the geotagging adoption.
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1. Introduction

1.2.3 Methods of Spatial Twitter analysis

Spatial Twitter data research can be grouped with respect to the attribute fields employed. Steiger, Al-
buquerque, et al. (2015) discerns (1) research using all information (including the tweet content) of tweets
from (2) puerly spatio-temporal research. Studies using the tweet content normally extract semantics
from tweets and locate it in space. Spatio-temporal reserach can according to a non-systematic literature
review by the author be split up into three main subfields: (a) Geotemporal: The timestamp of tweets
and temporal volumes of Twitter data per time are analysed for the extraction of human activity over
time and space (e. g. Longley and Adnan, 2016). (b) Interactions: The interaction between tweets is
assessed using geolocation, user id and re-tweeting behaviour. In doing so patterns of human mobility
and connectedness are assessed (e. g. Blanford et al., 2015). The methods used in such studies are
not suitable for the scope of this thesis. (c) Spatial: The application of the geolocation only is used to
estimate population densities (e. g. Lin and Cromley, 2015). Methodologically, this study is interested
in spatial and spatio-temporal patterns. A set of core literature on this topic is listed in Table 1.1.

Spatial patterns

The presence of social media data is seen as an indicator for human activity. Accordingly studies focusing
on spatial distribution of tweets are normally dealing with estimation of population densities. For this
purpose the density of tweets is assessed what involves some sort of aggregation. Spatial aggregation is
normally done on grid cells or administrative units. Measures for Twitter density estimation are kernel
density estimation (KDE) (Li et al., 2013)or quadrat counting (Jendryke et al., 2017; Patel et al., 2016).

The list of research using the geolocation of tweets only is short, as the scope of applications is limited
to characteristics relating to human activity in space. In 1.1 all the research found by the author on
purely spatial Twitter analysis is listed (gray).

Geotemporal patterns

Temporal variability in absolute observed tweet volumes are here referred to as Twitter activity signatures
(Yang and Leskovec, 2011). These can be associated with human activity. The simplest pattern described
in literature is the lower Twitter activity during night (e. g. Li et al., 2013). Most commonly research
focuses on diurnal patterns of Twitter activity (e. g. Soliman et al., 2017). Tweet volumes also vary
among days of the week. Weekend days show a different pattern than weekdays (Longley, Adnan, and
Lansley, 2015). The variation of such patterns in space is in numerous studies used as an indicator for
different types of land use (e. g. Li et al., 2013; Longley, Adnan, and Lansley, 2015; Yang and Leskovec,
2011). Frias-Martinez, Soto, et al., 2012 could assign differing temporal patterns to land use classes such
as business districts, leisure and residential areas. Since these patterns are spatially variable, they may
also influence the spatial overlap of Twitter with GUF.

The above mentioned studies usually focus on study areas of the extent of a single city. Different
studies are hardly comparable, as the observed geotemporal patterns often vary. For example the daily
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1. Introduction

and weekly patterns as found in Twitter data in London by Longley, Adnan, and Lansley (2015) and
in Amsterdam by Arribas-bel et al. (2015) are not fully conform. While Longley finds maximum tweet
volumes in the evening, Arribas-bel’s data show peaks at noon. Two explanations are possible: Either
the different study areas show different tweet behaviours. Or else temporal offset between the studies
(changes in behaviour) or the data querying process leads to unequal results. In either case the obtained
results are not generalizable.

Tweet Content

The actual tweet message in combination with geolocation reveals what people feel, think and do in
geographic areas (Hahmann et al., 2014). However, not only the place influences the content of tweets,
but also variables like daytime, season or weather. By means of sentiment analysis Modoni and Tosi
(2016) showed that there is a relation between weather conditions and the reported mood on Twitter.
If the tweet content is influenced by weather, it is not far to suppose that also the tweet location is
affected by weather conditions. To the author’s knowledge no research has been conducted on this topic.
However, common sense would tempt us to expect that rainy weather makes people stay inside buildings.
If this is to be true, then geolocation of tweets during rain are more likely to indicate human settlements.

1.3 Dealing with Twitter data intricacies

To answer the research questions as presented above in the context of the research presented, a number
of issues have to be considered: (1) The Unrepresentative user base and bots and services present in the
data, (2) the geographic bias in Twitter data distribution, (3) the geolocation acquisition method (GPS,
WLAN, resmapling) of tweets is not explicitly given, (4) results in geographic Twitter data research vary,
and (5) temporal Twitter activity patterns vary in space. In this section, methods that allow to approach
the research questions taking into account these caveats will be disclosed.

Users

Twitter data is unrepresentative of the world population. Few users drive the majority of Twitter’s traffic,
a phenomenon that has led to the coercion of the term contribution bias. Bots and services exacerbate this
circumstance by contributing vast amounts of data with (semi-) automatically generated content. Twitter
analysis is compelled to investigate its content by user to assess whether different user groups behave
differently in the context of the research questions. Well-established methods of removing undesired users
from the data do not exist.

In this study users are not filtered in a preprocessing step. Rather user’s behaviour is observed by means
of common strategics and one novel approach. (1) According to the definition of personal and nonpersonal
users, a classification scheme is set up to manually classify users accordingly. (2) In the context of the
contribution bias the user activity is observed. (3) Bot and prevailing service accounts are classified
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1. Introduction

with the help of tokens in their user name into semantic classes such as ’traffic’ or ’weather’. (4) A new
approach is tested that analyses the spatial distribution of geotweets per user. The spatial distribution
of a user’s geolocations is tested for Complete Spatial Randomness (CSR). Randomly distributed points
do not bear any relevant geographic information. The spatial overlap of human settlements and Twitter
data is analysed regarding these characterisations.

Geographic bias

The geographic distribution of tweets is highly biased. It is assumed that tweets are overrepresented
in cities. Twitter penetration is uneven amongst countries. A global study needs to carefully regard
that overall data is only representing parts of the world. The patterns under study have to be analysed
independently in different geographic regions.

In this study observed phenomena such as spatial overlap of GUF and Twitter data are analysed
separately in spatial regions in form of regular grids. Furthermore, for the first time the often claimed
discrepancy between Twitter usage in cities and rural regions with geolocated data is investigated. This
is done by comparing the Twitter density with human settlement size. Last, the geographic bias is
incorporated in the estimation of the potential of Twitter data as classifier for human settlements. The
calculations consider, that tweets are often close to other tweets.

Geotag precision and accuracy

Geotags can be created with physical localization sensors or by means of artificial manipulation. The
linked chain from geotag generation by a user to geotag retrieval via Twitter’s API is traversing Twitter’s
obfuscation process. A study that assumes GPS-generated geotags must be aware that imprecise (error
from positioning system), inaccurate (resampled geolocation) or plainly meaningless geolocations can be
present and even account for the bulk of the data.

In this study the identical geolocations of tweets are summarized. Tweet locations are also put into
the context of surrounding tweets. The nearest neighbour distance for every tweet is calculated and its
relevance for the spatial overlap with human settlements is assessed.

Replicability

Results from large-scale studies are not comparable due to the lack of global studies. It is unknown to
what degree characteristics of Twitter data vary in space and to what extent the process of querying
Twitter data is leading to different results. A replicable methodological framework allows its result to
be approximated with independently sampled data. Results from spatial Twitter data research can be
compared, if methods and data are replicable.

In this study the patterns found in the data are analysed globally. In doing so the degree of spatial
variation can be assessed. Further, two independently sampled data sets are applied and the results are
compared. One data set is of global coverage, the other only over Europe. If the results turn out to be
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unequal, replicability of the results from Twitter data studies in general have to be questioned. Either
the data shows varying patterns in space, or the data querying process and preprocessing might largely
impact the data.

Temporal patterns

Researchers have made use of the fact that land use and land cover classes show differing patterns of
human activity (Longley, Adnan, and Lansley, 2015), what is reflected in Twitter activity signatures.
Therefore tweets have to be analysed relative to their temporal context.

The spatial overlap of Twitter data with GUF is evaluated temporally. Tweets are therefore aggregated
to hourly intervals and to days of week. The observations are compared spatially. It is expected that
these temporal patterns of spatial overlap with GUF are similar in close areas. The patterns of overlap
of Twitter data and human settlement are also compared with the spatial distribution of Twitter activity
signatures.
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Chapter 2

Methods

2.1 Data

2.1.1 Global Urban Footprint (GUF)

GUF is a binary raster data set that depicts human settlements globally at a resolution of 0.4 arcsec (12
m). It is derived from high-resolution TanDEM-X and TerraSAR-X radar images captured in 2011-2012.
The authors (Esch et al., 2017) assess an overall accuracy for GUF of 85% which is unprecedented for
this kind of product. For practical reasons a resampled version of 2.8 arcsec (84 m) resolution is applied.

Additionally, a vectorized version of the settlements is derived. The settlement pixels are dissolved so
that a set of neighbouring positive pixels constitute a single polygon. A polygon represents an area of
connected human settlement (patch) but does not hold any underlying semantic value (e. g. city). There
are 11’289’316 settlement patches. These vary in size from 1′267m2 (one single pixel) to 4.17B m2.

The shape of the derived polygons is arbitrary, especially in terms of its size. The area covered by a
patch is not necessarily representative of the degree of urbanization in a certain location. For example
a river may divide a single city in two halves. Cities with no river on the other hand are not separated.
Hence the size of a patch is only a very limited dimension. In order to add a measure of urbanization to
the arbitrarily defined patch extent, a new attribute is added to this data. This attribute is the percentage
of settlement area within a radius of 10 km from the centroid of a patch (see Figure 2.1). It embeds the
patch into its environment. A patch of certain size in an urban area gets a much higher value than a
patch of the same size in a rural context.
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Figure 2.1: Sketch for the calculation of the degree of urbanization: The degree of urbanization of the dashed
patch (urb(patch)) is given by the share of settled area (blue) within a 10km buffer around its centroid.

2.1.2 Twitter data

Twitter data is downloaded via the freely accessible Twitter Streaming API1. It is possible to download
a limited amount of maximally 1% (Morstatter et al., 2013) of the live tweet volume that meet requested
properties (e. g. keywords). For the purpose of this thesis, data is queried by geolocation, which returns
georeferenced tweets only. These can be precisely located or obfuscated tweets. How Twitter selects the
subset of returned tweets is not clear. Since the share of georeferenced tweets is around 1%, it can be
assumed that most tweets meeting the requested properties are returned.

There are two distinct Twitter datasets employed. (1) Data from a query covering the greater area
of Europe (Teu) and (2) a dataset at full global coverage (Tworld). Teu was collected from 2017-05-18
12:23 to 2017-10-07 14:42 querying the parameters message, user name, user id, user location, place type,
place name, place country, timestamp, precise location, bounding box. The geographical extent of the
query is defined by a bounding box from -29.0 Lng / 33.0 Lat to 51.0 Lng / 72.0 Lat. 137’082’879 tweets
were downloaded in this time period. Most of the geolocated tweets are obfuscated to city, country or
continent level. The number of remaining precisely located tweets is 18’781’571. Tworld was collected
from 2016-04-21 10:25 to 2017-01-20 10:08. The queried attributes are limited to userid, time in GMT
and Long/Lat coordinates. The subset of precisely georeferenced data contains 17’852’042 distinct tweets.
Figure 2.2 summarizes the sampling periods of Tworld and Teu along with the daily amount of tweets
collected. Significant drops in the volume are due to outages of the client computer during the sampling
process.

Generally the whole data set is considered for analysis and hardly any cleaning is performed. However
1https://dev.twitter.com/streaming/overview, accessed 2017-11-11
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Figure 2.2: Daily tweet volumes over the sampling period of the two datasets Tworld (blue) and Teu. Weather
data sampling period started later than Teu.

two types of cleansing by geolocation are executed. First, in Tworld there is a pile of tweets that are located
exactly on the north or south pole. These tweets are removed from the data, since they are arguably
artefact geolocations. Second, in Teu there are tweets outside the queried area. These are tweets with
both precise and obfuscated geolocations. The bounding box of the obfuscated location intersects the
queried area and is therefore returned by Twitter’s API. Since the precise location is outside the queried
area, they are removed (175’618 tweets).

There are 17’852’042 distinct tweets in raw Tworld, but only 7’148’044 distinct geolocations. In Teu

the ratio is even more striking with 3’303’659 out of 18’605’953 tweets being distinct geolocations. The
likelihood for two GPS-located points to be in the exact same location twice is very low. These points
are very likely to be automatically generated or derived from inaccurate measurement or resampling
methods. From the response of the Twitter Streaming API obfuscated and GPS-located geolocation
can’t be discerned. For purely spatial analyses, duplicate geolocations are therefore regarded as one
single location.

2.1.3 Other data

Weather data

Weather condition was downloaded to accompany Teu from OpenWeatherMap2. This is a platform that
allows to query live weather data for requested cities by bounding box. The following parameters were

2https://openweathermap.org, accessed 2017-08-01
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queried: City Name, Snow, Rain, Wind, Clouds, Temperature, Timestamp, Geometry for the same area
like Teu from 2017-07-13 07:04 to 2017-10-07 14:42. In Figure 2.2 the period of weather data sampling is
indicated. The weather conditions are given per city (7’372 cities in total).

Time zones

Twitter and weather data timestamps are given in Greenwich Mean Time (GMT). In order to obtain the
local time the data has to be spatially joined with world time zones. The necessary geodata was acquired
from NaturalEarthData3.

2.2 Spatiotemporal patterns

Twittter activity signatures

Geotemporal patterns in terms of tweet volume are assessed with the given Twitter data. On the temporal
axis, the data is analysed at resolutions of (a) hour of day and (b) weekday. Successively, the patterns are
analysed spatially. In order to analyse temporal patterns in space, the study area is split into a regular
grid of 300 x 300 km (at equator) for Tworld and a grid of 200 x 200 km for Teu.4 Twitter data outside
land masses is ignored for two reasons. On one hand over the sea there are no human settlements. On the
other hand there are generally not enough tweets for a representative result. The grid is hence clipped
to the land masses, resulting in grid cells of varying shape and size. All calculations regarding area have
to be normalized to the area of the grid cell. Grid cells containing less than a minimum of 200 tweets are
also considered unrepresentative and therefore neglected.

The Twitter volumes over the course of a day form a spatially characteristic pattern (García-Palomares
et al., 2018). To verify this with the data at hand, two methods are applied to characterise diurnal
patterns. The tweets are therefore aggregated by hour. First, the hour of maximum Twitter traffic (peak
hour) is extracted for every grid cell. This is a very simple description for the diurnal Twitter pattern.
Second, the whole diurnal pattern is clustered. Frias-Martinez, Soto, et al. (2012) propose to use a k-
means algorithm to find similar diurnal Twitter activity patterns. The k-means input is a vector of 24
variables per sample: 0, 1, . . . , 23, where 0 is the amount of tweets per grid cell between 00.00 and 01.00.
The diurnal pattern is normalized in order to account for varying absolute tweet volumes in different grid
cells. The normalized values are the percentage of tweets relative to the amount of tweets at peak hour.
E. g. a pattern with peak hour at 12:00 with 1’000 tweets and 900 tweets at 13:00 gets the value 1 at
peak and 0.9 at 13:00. These normalized Twitter activity values correlate. E. g. during the night Twitter
volume is low everywhere. During the day, there are higher variabilities. Figure 2.3 a) illustrates this
by means of hourly boxplots over all grid cells. Therefore the variables are decorrelated using Principal
Component Analysis (PCA). The five first principal components explain 86.5% of the variance (Figure

3http://www.naturalearthdata.com/downloads/10m-cultural-vectors/timezones, accessed: 2017-06-22
4The grids were created in Universal Transverse Mercator projection (EPSG:3857).
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Figure 2.3: a) Distribution of the hourly volumes by grid cell. The volume of Twitter data per grid cell is
normalized from 0 to 1. The hour of day where grid cells have the highest amount of Twitter data (relative to the
absolute amount per grid cell) is 12:00. b) Result from PCA: Eigenvalues of the dimensions with highest load.

2.3 b)).
The five selected principal components are then clustered with a k-means algorithm. The number of

clusters is defined by looking at the behaviour of within cluster sum of squares (WSS). This measure
is an indicator for the homogeneity of the clusters obtained. Putting all values into one cluster leads
to a low homogeneity, many clusters lead to more homogeneous clusters, but on the downside also to
more clusters. The optimal value is defined where WSS is not further lowered significantly at increasing
clusters. In this case six clusters seem to reflect the structure of the data. The k-means algorithm is
hence run for six clusters. As a result, a cluster is assigned to every grid cell.

Spatiotemporal patterns of overlap with GUF

The spatial overlap of GUF and tweets is given as the share of tweets on settlements by the total amount
of tweets in a specified area. To assess how far the geotemporal patterns are related to the correspondence
with human settlements, tweets are spatially joined to GUF. Every tweet henceforth belongs to one of
the two classes 0 (outside settlement) and 1 (on settlement) depending on its relative location to GUF.
Tweets are then aggregated to hours and weekdays. The spatial overlap of Twitter and settlement by
hour of day and weekday is then examined spatially by grid cell.
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2.3 Classification of Users

Users are differentiated in several ways: (1) by manually checking accounts, (2) by user name, (3) by
number of tweets and (4) by point pattern distribution.

Classification by hand

Users are classified as personal and nonpersonal as defined in Chapter 1. This is done for Tworld only.
This method leaves full control over the classification process to the author and gives deep insight to
the data set. Selected Twitter accounts are inspected by the author on Twitter’s website. Indicators
for nonpersonal accounts considered are (1) (very) high tweet frequency, (2) similar tweet structure, (3)
content, e. g. advertisement, (4) regular intervals of tweets and (5) number of followers.

(1) Automated accounts often post tweets in intervals of seconds to several minutes or hours. Personal
users normally do not exhibit such high Twitter activity. One exception worth mentioning are users that
deploy third-party geo-applications that have access to his/her Twitter account. The most prevalent
application found is swarmapp.com5. This app automatically tweets the user’s location. Because real
people’s activity is posted, these users are classified as personal, despite the high tweet frequency. (2)
Both automated accounts as well as services tend to post tweets in an predefined format. For example
accounts that push meteorological measurements automatically show a hard-coded tweet structure. Like-
wise services that are not fully automated like job advertisers follow a predefined format. (3) The content
of the tweets is probably the most meaningful but also the most arbitrary indicator. Many accounts can
clearly be assigned to a specific purpose they serve. Examples are meteo stations, traffic news feeder
or job advertisers. Others definitely show human thought behind every tweet. But many accounts lie
between the two and leave room for speculation. For example some users have a meteo measurement
feeder installed on their personal account. (4) Automated accounts often exhibit not only high post-
ing frequencies, but also very regular intervals. (5) Normally, automated users and services have fewer
followers in relation to the amount of tweets they post.

These five factors are considered separately and rated subjectively. In a first step a subset of 200
randomly selected users is classified. However, the chances to hit a nonpersonal user are very low,
indicating that most users are actually personal users. In a second attempt the users are listed alongside
their corresponding number of tweets in the dataset and ordered from the most to least active user.
It is sensible that the most active tweeters are usually nonpersonal users. For the sake of illustration,
the most active users are examined. The top ten of this list are given in Table 2.1. These users look
very much like nonpersonal users by just looking at the user name. Manual inspection verifies this
presumption. 511NY is a traffic information website from New York, SONICjobs an employment adder,
EveryFinnishNo claims to post every number in Finnish (be this possible or not). The tweets of the
secluded leader of this ranking googuns_lulz are randomly generated content6. In total the 1’500 most

5https://www.swarmapp.com
6http://victorz.ca/bots/googuns, accessed 2017-08-14, 16:22
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Figure 2.4: Share of personal, nonpersonal and unknown user accounts of top 1’500 ordered by user activity
(bin width = 30 users).

active users are classified as personal and nonpersonal.
The manual classification of users bears three disadvantages. First, the distinction is hard to op-

erationalise and hence results in subjective judgements. Second, the process of classification is time
consuming. The results can hardly be transferred to other Twitter data sets, as the users may change
over time and with the study area. And third, the semantics of personal and nonpersonal might not be
an adequate schema. There are nonpersonal Twitter accounts that post meaningful locations, e. g. fire-
fighter operation locations or real estate locations. For these reasons the users are additionally handled
by automatable and reproducible means.

Tworld n Tweets Teu n Tweets

1 googuns lulz 41’222 Every Finnish Number 153’379
2 511NY 30’674 OV Radar 116’159
3 infosrv 28’954 Solar Realtime Edent 109’945
4 Chatter ng 22’466 BrugOpen 106’459
5 EveryFinnishNo 20’271 Pen-Y-Renglyn 105’301
6 PenYRenglyn 19’714 Trendinalia España 65’641
7 VirtualJukebox 19’391 Trendinalia UK 59’019
8 SONICjobs 18’142 L’hora catalana 46’640
9 propertiesindia 18’034 infosrv 46’209
10 slappervader 16’889 Trendinalia France 43’760

Table 2.1: Absolute number of tweets of the top 10 users in both data sets.

Classification by number of tweets

The classification by hand has revealed that nonpersonal users are found mainly among the frequent
tweeters. As a mean of overcoming tedious manual work and in the context of contribution bias, users
can simply be analysed by their activity. In Figure 2.4 the share of nonpersonal users is shown along
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the user activity. In the top 1’500 most active users it can be seen that the probability for a user to be
personal increases with a decrease of activity, a trend that is expected to proceed further into less active
users.

Ranking users according to their activity is hence expected to embed the user among similar users.
The correspondence of Twitter data with GUF might be affected by the characteristics ordered like this.

Classification by user name

Besides the distinction between personal and nonpersonal, Twitter accounts can be grouped into more
detailed classes. Many of the nonpersonal accounts follow a clear purpose. E. g. some are posting job
opportunities, others weather information or current Twitter trends. The prevailing groups of accounts
are assessed by manual inspection of the tweets and given in Table 2.2. It is assessed whether different
groups exhibit different spatial overlap with settlements.

In order to make the process of group extraction fast and as objective as possible, the user names of
the respective accounts are scanned for keywords. Regular expressions (regex) allow to extract substrings
out of strings such as user names. The tokens corresponding to each category are given in Table 2.2. The
tokens are also collected during the course of manual Twitter account inspection.

Category Token

trendinalia trendinalia, trendsmap
job job, career, tmj, work
weather weather, meteo
news feed, news, reports, info, live
traffic traffic, road, travel
bot bot

Table 2.2: Categories and corresponding keywords as derived from manual classification.

Classification by geographic point pattern distribution

Tworld and Teu clearly are no randomly distributed point processes. Notwithstanding, single users often
show a random or dispersed behaviour. These are most likely to be automated bots or services. In any
case random point processes are never to reveal any underlying spatial structure. In order to detect these
accounts, users with more than 50 distinct tweet locations are classified according to spatial distribution.

The null hypothesis in the test is ’The point pattern is random or regular’. Hence a one-side test
for CSR or regularity against clustering is applied. The patterns of single user’s geolocations are very
diverse. Typical users have many clustered tweets in the surroundings of their home town and some
outliers in far-away destinations. Common tests for CSR such as the Nearest Neighbour Index (NNI) are
relying on mean NND. The NNI requires a certain degree of evenness in the distribution of the points,
which is not guaranteed in Twitter user’s geolocations. Therefore the following median-based approach
is executed:
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The observed NND (Pobs) is compared to the NND of an expected random point pattern (Pexp) in the
area of the minimum enclosing rectangle of the observed point pattern. As of observation, Pexp follows a
Poisson distribution with the following form Pexp(x) = λx ∗e−λ/x!, where λ is the median of Pexp(x). An
estimate of Pexp at the extent of Pobs is obtained through a simulation of 30 randomly generated point
processes. From these the average median NND λ is derived. We seek for the probability that the median
of Pobs is lower or equal to λ (P (λ ≤ λobs)). This is then given as Fx(λobs), where Fx =

∫
Pexp(x)dt.

Hence the resulting p-value is interpreted as an indicator for the probability at which Pobs follows Pexp
and can be considered random.

2.4 Point distribution

Tweets tend to cluster in urban areas. Spatial outliers may indicate places where people rarely go and
that are probably not settled. An easily implementable and interpretable measure for spatial outliers is
the nearest neighbour distance (NND). High relative NND values indicate outliers. For both datasets the
NND is calculated independently for all distinct points. Hence NND = 0 is not possible. The NND of
the tweets is compared to their position relative to GUF.

2.5 Influence of Weather

Weather parameters on OpenWeatherMap can only be requested in limited frequency. The weather
however doesn’t change rapidly and the weather parameters on OpenWeatherMap are only updated in
intervals of approximately three hours. Therefore data is queried every three hours. The data can only
be requested for selected places (7’372 distinct places in the queried area). It should be noted that these
locations are not necessarily set according to the location of meteo stations, but rather according to cities.
The values are interpolated from physical measurements.

The weather condition in the moment of the tweet t and a location l hence needs to be estimated. This
is accomplished in two steps: (1) Linear interpolation along the time axis and (2) subsequent Inverse
Distance Weighting (IDW) interpolation in terms of space. Let the collective of weather value locations be
S where si ε S represents a distinct location and i = {1, . . . , 7′372}. Each si is defined by a unique location
li and holds a number of weather measurements mi = (precipitation,wind, temperature, clouds, snow)

at a given time. A single tweet is also given with coordinates l and timestamp t. For this purpose the
5 nearest neighbouring weather locations Snn are selected. From these the measurement shortest before
mi(0) and after mi(1) the timestamp of the tweet are selected. Linear interpolation of the measured
values mi(0) and mi(1) over time is conducted to get an estimate of the weather conditions at the time
of tweeting t. The value of an linearly interpolated value is given as:

m∗(t) = mi(0) + (t− ti(0)) ∗
mi(1)−mi(0)

ti(1)− ti(0)
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, where ti(0) is the time of the measurement right before the time of the tweet and ti(1) right after.
Then the estimated values m∗ at t of the k nearest weather data points are used to do Inverse Distance
Weighting interpolation (IDW). This method allows take into account the distance of si from the tweet
location in weighing the value of each station with the inverse of its squared distance. The formula
applied looks like following:

z∗(x) =


∑N
i=1m

∗ ∗ d(x, xi)−2∑N
i=1 d(x, xi)

−2
if d(x, xi) > 0

zi if d(x, xi) = 0

, where z∗(x) is the interpolated value for a tweet, m∗ is the estimated weather value at t0 at weather
station i and d(x, xi) is the distance from the tweet to weather point i. The obtained values are then
analysed relative to the position of tweets.

2.6 Classification of Tweets

With the above characteristics, it is attempted to identify tweets that are likely to be outside human
settlement. Yet, the numerous characteristics do not provide any outstandingly clear exclusion criteria.
Some collinearity exists. It is therefore unfeasible to use hard classification criteria per class. Instead a
random forest (RF) model is trained (Breiman, 2001). RF is a supervised classification algorithm that
performs well with noisy input data. The procedure is based on random decision trees. Every tree consists
of a random sample of test data that predicts the output class based on given input variables. In this
case the inputs are derived from the above discussed characteristics. Following inputs are generated per
tweet: continent, user type by regex, p-value of user point distribution, bounding box area of user point
distribution, number of tweets per user, number of identical points to this tweet, hour of day, month,
weekday, NND. The model is trained for the corresponding GUF class where a tweet is placed on. A
random sample of 5% of the data sets is used to train the model. There are 50 trees generated per model.
The model is validated using 10 independently sampled subsets of the data.

2.7 The role of GUF patch size

The above implemented measures are all aiming to describe a single tweet’s probability of being on
built-up area. However, tweets are geographically biased. It has been described that Twitter data is
restricted to certain geographic regions of the world (Leetaru et al., 2013). Likewise, it is assumed that
Twitter data is mainly found in urban areas rather than in rural towns. To test this assumption the
patch size and the degree of urbanization per patch is compared with the amount of tweets contained in
the respective patch. Due to unevenly distributed Twitter data, a set of models is calculated for different
geographic locations. If the tweets are evenly distributed, the number of tweets per patch is dependent
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on the patch size. Hence the density would be the same everywhere. It is expected that the tweet density
of large patches and patches with a high degree of urbanization is higher than the density in small and
less urbanized patches.

2.8 Detection of Settlement

Explain assumptions The given data does show where settlements are. A problematic issue is that it
doesn’t show all settlements. Therefore it is attempted to estimate how much data is needed to cover
all human settlements. Settlement pixels that are covered with at least one tweet are henceforth referred
to as detected pixels. It is assumed that the overlap of tweets and settlement area is constant. Under
this assumption, the amount of tweets that have to be collected to detect all pixels of a given raster with
settlement is calculated. If tweets were evenly distributed, a linear relationship between the amount of
tweets and the amount of detected pixels can be expected. However, tweets are geographically biased,
therefore duplicate and close-by tweets are present in the data. These don’t contribute to the detection
of more settlement areas. Therefore the amount of duplicate geolocations in different data set sizes needs
to be estimated. For this purpose a Monte Carlo simulation is run on subsets of the given data. For
every size the average number of detected and duplicate /close-by geolocations is computed.

Close-by is here defined as half the resolution of GUF (= 84 m/2 = 42 m). Two tweets that are
closer than 42m are more likely to be in the same pixel than in different pixels. Out of some close-by
tweets all but one tweet are regarded as close-by. With this value the detection rate of the Twitter data
sets is modelled. For a given quantity q of Twitter data tq the number of detected raster cells tdet is
tq − tguf=0 − tclose − tdupl, where tclose is the number of close-by geolocations that are on settlement,
tdupl is the number of identical geolocations that are on settlement and tguf=0 is the number of tweets
outside settled area. tdet is estimated through observation of randomly selected subsets of the data at
hand of varying size. The share of tdet is then defined as tr = tdet/tq. tr is assumed to decrease with
higher volumes due to an increase in tdupl and tclose.

We then fit the detection rate tdet ∼ tq to a non-linear model. tdet follows an exponential function
of the form tdet = a ∗ tbq, where a and b are the parameters to be estimated. Non-linear least square
analysis is performed to obtain these. The resulting values for a and b define a function tdet(tq). The
amount of Twitter data required to detect all pixels of human settlement can be estimated analytically
at tdet(npixels).
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Results

The spatial overlap of Twitter data and GUF is henceforth given in percentage of tweets overlapping
GUF settlement from all selected tweets. The overall spatial overlap of GUF and Twitter data is 84.1%
for Tworld and 79.9% for Teu. The significant, albeit small difference of the two data sets can partly
be explained by the extent of the sampling areas. A subset of Tworld within the spatial extent of Teu
(henceforth abbreviated Tworld(EU)) has an overall overlap of 83.1%. The correlation in European
countries is hence lower than elsewhere. However there remains a considerable offset between the two
datasets. The aforementioned numbers relate to distinct tweets. When summarizing identical points,
the spatial overlap of Tworld is 83.7% and 76.5% for Teu. Also Tworld(EU) has a lower overlap of 81.4%
when unique geolocations are considered. These numbers resemble more impressive when relating it to
the chance of random points to overlap with settlement. For example the area of the queried area of Teu
is 1.9 ∗ 107km2 while only 2.6 ∗ 105km2 are covered with built-up area. The spatial overlap of a random
point pattern would be 1.3%. Tweets outside built-up area tend to be in the vicinity of settlements. In
Tworld 38.3% of all tweets outside settlements are within 84 meters from settlement, which is the GUF
raster resolution. In Teu there are 34.4% of the tweets outside settlement within 84 meters. In sum
there are 90.7% (Tworld) and 84.1% (Teu) of all distinct geolocation on settlement or as far away as the
resolution of GUF. Table 3.1 summarizes the key data of the two data sets.

Spatial extent Sampled days Total tweets Distinct tweets Overlap Overlap dist.

Tworld World 275 17.9 M 7.1 M 84.1 % 83.7 %
Teu Europe 143 18.6 M 3.3 M 79.9 % 76.5 %
Tworld(EU) Europe 275 3.7 M 1.5 M 83.1 % 81.4 %

Table 3.1: Overview of the two independently sampled Twitter data sets Teu and Tworld and the tweets from
Tworld within the spatial extent of Teu (Tworld(EU)). Overlap is the spatial overlap of GUF and the Twitter data
set, overlap dist. is the overlap of distinct geolocations only.
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3.1 Spatiotemporal patterns

3.1.1 Geographical distribution

Figure 3.1 gives an overview of the spatial distribution of the two Twitter data sets. The spatial distri-
bution of the tweets Tworld across the globe is uneven in several regards. On a global level the majority
of the tweets is concentrated in Europe, North America, Indonesia, Japan and parts of South America.

The tweets Teu are largely congruent to Tworld, with the exception that the density is 2.3 times higher.
It contains 3’303’659 distinct tweet locations as compared to 1’455’984 in the same area of Tworld. Western
European countries show higher tweet densities, particularly the Netherlands and UK. The tweets tend
to be in densely populated areas, especially cities. There are differences on a small scale between national
boundaries. E. g. the Netherlands show a clearly higher tweet density than its neighbouring countries.
In the area of Finland there is an area of dense tweets of rectangular shape in both data sets that are
generated by a bot.

3.1.2 Temporal Twitter activity signatures

Temporal patterns in the volume of Twitter data can be observed at weekly and daily time scales.
Figure 2.2 depicts the number of tweets received per day during the sampling period. Aside from the
heavy drops due to client server outages, two distinctive phenomena can be discerned: (1) There are
variations in the overall amount of tweets gathered. These can’t be related to any obvious cause. Teu has
on average a higher sampling rate than Tworld by the factor 2. On an average fully sampled day (without
technical problems) Tworld receives 68’728 tweets and Teu 137’523. (2) There are regular oscillations
present almost throughout the whole sampling period. The frequency of these are the duration of one
week. On weekends the amount of tweets is on average 26.4% (Tworld) and 15.8% (Teu) higher than during
weekdays. The weekday of minimal Twitter traffic is in both datasets Monday with 62’287 and 129’201
tweets for Tworld and Teu, respectively. The weekday with most Twitter traffic is Saturday (78’702 and
149’559 tweets).

On a daily time scale the tweet volume varies, too. In both datasets there is an overall minimum Twitter
activity between 3 am and 4 am with an average of 646 and 1’200 tweets every day. The maximum in
Tworld has highest Twitter volumes at 5 pm to 6 pm with 4’467 tweets, where Teu has its maximum from
20 pm to 21 pm with 9’463 tweets on average.

The Twitter activity by hour of day and day of week is given in Figure 3.2. From Monday to Friday
there is a slight increase in Twitter volume. It can also be observed that on weekends the rise of Twitter
activity is slightly delayed compared to weekdays. The two datasets show some differences. In Tworld,
Saturday and Sunday show a different pattern, but not so in Teu. Furthermore, the amount of tweets
in the evening in Teu show a more accentuated peak than in Tworld. The difference of minimum Twitter
activity in the night and maximum Twitter activity during the day is in Teu much higher than in Tworld.
Tworld(EU) exhibits yet another pattern of Twitter activity with weekdays peaking in the morning and
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Figure 3.1: Spatial distribution of the tweets of Tworld (blue) and Teu (yellow).
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Figure 3.2: Daily tweets volume globally grouped by day of week for Tworld (left) and Teu (middle) and
Tworld(EU). Only fully sampled days are used and average amounts are displayed.
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Figure 3.3: Daily tweets volume of four major cities in Western Europe and four major cities in Eastern Asia.

weekends peaking at noon.

3.1.3 Spatiotemporal variation

The temporal patterns vary in space. Figure 3.3 illustrates this phenomenon on hourly aggregated daily
Twitter volume from Tworld. The tweets of eight cities with a high Twitter activity are selected. Four cities
lie in Eastern Asia (Singapore, Jakarta, Kuala Lumpur and Tokyo), four in Western Europe (London,
Amsterdam, Milan and Lisbon). In order to make the differing total amounts of tweets comparable, the
y-axis is normalized to 0 - 1. The two geographic regions group into two separate patterns. European
cities peak around noon, then drop down in the afternoon before in the evening the activity rises again.
Contrary the Asian cities peak in the late afternoon.

This behaviour is mapped in space. Figure 3.4 depicts the hour of day with maximum amount of
tweets on a regular grid over the land surface. Grid cells with less than 200 tweets are considered
unrepresentative and coloured gray. All other grid cells are coloured according to the hour of maximum
Twitter volume starting from black at midnight to blue at 6 am to yellow at noon and to red at 6pm.
Many observations can be done here: Globally there are four regions with considerable tweet densities.
North America has maxima in the afternoon although being rather inconsistent. South America on the
other hand peaks in the late evening and at midnight. Greater Europe has maxima before and around
noon and (South-) East Asia in the evening. When zooming in there are more interesting patterns.
Southern European countries tend to peak later in the afternoon than northern European countries. The
Iberian west coast shows a very distinct pattern of late-evening peaks. Eastern Asia shows a later peak
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Figure 3.4: Twitter peak hours on a 300km2 grid over land.

in the eastern countries (Japan and Philippines). In South America there are three homogeneous regions.
In eastern South America Twitter traffic peaks in the morning. South of it the peak is at 6 pm and in
Southern Argentina it’s at 21.00. Summed up, the peak hour of a grid cell tends to be similar to the
peak hour of its neighbouring grid cells.

Clustering of the daily Twitter routine

The spatial correlation of the diurnal tweet pattern is even more pronounced when clustering the whole
temporal routine. A k-means with five clusters and the first five PC’s results in a spatially highly
correlated set of grid cells (Figure 3.5). The United States form a homogeneous area (yellow). Latin
America is divided into two clusters, one comprising the rough area of Argentina (orange) and one with
the rest of Latin America including Central America (red). Europe and Africa including Turkey form a
single cluster (green). India is in a single cluster, where parts of Russia are included (violet). The last
cluster comprises Eastern Asia and Australia (blue). The cluster centres are plotted alongside the world
map. The differences are, as expected, found during the day, in the night all clusters show a low activity.
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Figure 3.5: Cluster membership of grid cells as obtained from PCA 1 - 5. The according cluster centres are
given.

3.1.4 Spatiotemporal overlap with GUF

The spatial overlap of Twitter data with GUF shows spatial as well as temporal trends. (1) Temporally,
variations at diurnal, weekly and seasonal time scales are observed. (2) Spatially differing patterns on
continent level can be seen.

Temporal patterns of spatial overlap with GUF

An aggregation of tweets by day and its correspondence with GUF is shown in Figure 3.6. Similar to the
absolute volumes of tweets per day, there are regular oscillations present throughout the whole sampling
period of both data sets. However, the peaks of this pattern correspond to the weekdays (contrary to
the absolute volumes). Hence, on weekends the spatial overlap of GUF and tweets is lower than during
the week. Clearly visible is also the difference in the magnitude of the oscillation: Tworld has a smaller
difference of correspondence with GUF between weekdays and weekends than Teu. This phenomenon
can largely be explained by differing geographic extents of the data sets. Tworld(EU) is mapped in light
colour in Figure 3.6. The amplitude of this data is similar to the amplitude of Teu indicating a stronger
dependency of the spatial overlap of tweets and GUF on the day of week in Europe.

One more thing that can be observed in Figure 3.6 are periods of drop in spatial overlap in mid-year
months. Again this is a special characteristic of European tweets, as Tworld(EU) and Teu share a more
heavy drop than Tworld. It is plausible to relate these drops to the weather conditions that are dependent
on seasons in Europe. But still the drop can be observed in Tworld as well, which might be explained by
the dominance of tweets from geographic areas with seasons (Europe, North America, Japan).
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Figure 3.6: Spatial overlap of GUF and Teu (yellow) and Tworld over the sampling periods. The subset of Tworld

at the spatial extent of Teu is drawn in light blue.

Tworld experiences a drop in spatial overlap in the last few weeks. This drop can either be associated
with a season dependent change of tweeting behaviour. This might also be due to changes in Twitter’s
privacy rules or default geotag sharing options. This would also explain the lower spatial overlap of tweets
and GUF in Teu.

The spatial overlap of GUF and tweet locations aggregated by hour of day and weekday are shown in
Figure 3.7. The spatial overlap is lowest in the night (3am - 4am) in both datasets. Saturdays (orange)
and Sundays (red) show a different pattern than weekdays: The minimum spatial overlap in the night
is higher than the minimum spatial overlap on weekdays. During the day, spatial overlap stays low as
compared to weekdays. On Sundays the correspondence is generally lower than on Saturdays.

There are considerable differences between the datasets. In Tworld, weekends roughly follow the same
pattern as weekdays: During the night the spatial overlap drops and rises constantly towards the late
evening. In Teu, Saturday and more thoroughly Sunday do show a pattern independent from weekdays’
pattern. The minimum spatial overlap is on Sunday during the day. While on weekdays the drop of
spatial overlap is by roughly 5% between 3 am and 7am, on weekends there is no change in spatial
overlap of the same magnitude. The discrepancy can again be explained by the differing geographical
area. Tworld(EU) shares the characteristic described for Teu, with the exception that the overall spatial
overlap is higher in Tworld(EU).
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Figure 3.7: Percentage of tweets on settlement area for the two data sets on daily course, split by day of week.
Although Teu has a lower spatial overlap with GUF and different patterns than Tworld. Tworld(EU) shows patterns
similar to Teu.

Geographic variation in spatial overlap

The different patterns in Teu and Tworld described above indicate that geography reveals structures in the
data. In fact, the spatial overlap with GUF is not a spatially randomly distributed variable. In Figure
3.8 the percentage of distinct tweet locations on settlement per total distinct tweet locations is mapped
on a grid. The grid cells are coloured orange when their value is below the median spatial overlap of all
cells and green otherwise. The median is 77.5% in Tworld and < 69.0 % in Teu. Coloured gray are cells
with less than 200 distinct tweet locations.
Tworld: It can be observed that mainly Latin American countries lie above the median. North Amer-

ica, India and parts of Europe are generally below the median. Northern Europe is dominated by the
automated bot Every Finnish Number that posts random geolocations with a low spatial overlap with
GUF. The spatial pattern of correspondence is not as distinctive as is the case for the temporal variation
in tweet volume (Figure 3.4).
Teu: In Scandinavia the spatial overlap is consistently below the median, not only in the area influenced

by Every Finnish Number. For the rest, large areas of France, Spain, UK and Turkey show spatial overlap
above median. Eastern Europe has both, areas of higher and areas of lower spatial overlap.

A comparison of the two datasets reveals consistent patterns in the area of Europe. The patterns
described above are present in both data sets. But also patches of lower overlap in the area of the Alps,
Slovenia and Western France are consistent. Eastern Europe has in both data sets grid cells above and
below the median. The two data sets are almost congruent. The patterns present show non-random
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Figure 3.8: Spatial overlap of GUF and Tworld (upper) and Teu. Green grid cells indicate a spatial overlap
above the median of all cells, orange below.
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spatial arrangement. The grid cell values in Europe are congruent in both data sets, a strong indication
for the robustness of the obtained result. Reasons for this consistent collocation in the two data sets can
be manifold. Cultural differences of tweeting behaviour is only one possibility. It may just as well be the
constitution of the user base in these locations, such as the dominant bot in Finland.

Spatiotemporal patterns by weekday and hour of day are spatially variable. However, consistent
patterns can not be observed at large scales of 300km2. At small scale aggregation to continents distinctive
patterns are visible (Figure 3.9). Africa and Australia both exhibit a very noisy pattern without obvious
trends. This is probably due to the low number of tweets on these continents. Asia, Europe, South and
North America have a more pronounced daily routine. On all continents there is a tendency for spatial
overlap to be lower on weekends with Sunday generally below Saturday. Europe and South America both
show little variation in spatial overlap with GUF throughout a day. In both subsets the spatial overlap is
on weekdays lowest during the night.1 North America and Asia clearly have lower spatial overlap during
the night. In Asia, the spatial overlap is close to 90% in the evening. Overall maximum spatial overlap
is found in South America, what is in line with results in Figure 3.8.

3.1.5 Point distribution

Tweets tend to be spatially clustered. The nearest neighbour index for both data sets is close to 0.
Geographical outliers are more likely to be outside human settlements. The average NND (D) for Tworld
is 566.7 m. Separate values for tweets by their location respective to GUF reveal that Dguf1 = 415.9m

and Dguf0 = 1′379m2. Teu has a lower D of 302.5 with Dguf1 = 116.4m and Dguf0 = 909.0m. This
difference can to some degree be explained by the differing extent. Tworld at the extent of Europe has
the following values: D = 363.4m, Dguf1 = 145.7m and Dguf0 = 1′316.8m. These values are close to
Teu. The remainder of the discrepancy can be attributed to the higher point density of Teu, which may
also increase the probability of small nearest neighbours. This shows that tweets with far away nearest
neighbours are generally less likely to be on human settlement than tweets with close nearest neighbours.

Figure 3.10 shows the cumulative nearest neighbour distribution for the two datasets split by their
relative position to GUF. It can be observed that tweets outside GUF tend to have nearest neighbours
that are further away. It is worth noting that nearest neighbours are calculated using all distinct points
inside or outside settlement.

3.2 Influence of User Characteristics

An aggregation of tweets by user reveals that there are 3’172’437 distinct users in Tworld and 1’043’168
in Teu. This adds up to an average user activity of 5.6 and 18.0 tweets per user. The user activity is a

1Note that the spatial subset of Europe in this graphic is based on political continent boundaries and therefore smaller
than Tworld(EU).

2Dguf1 is the average NND of the subset of tweets on settlement, Dguf0 the NND of the subset of tweets outside
settlement.
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Figure 3.9: Temporal patterns of spatial overlap of GUF and subsets of Tworld by continent.

Figure 3.10: Cumulative NND for both data sets split by the tweet’s relative position to GUF.
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Figure 3.11: a) Cumulative tweet volume by user activity. b) Daily routine of tweet volume of manually
classified users (nonpersonal and personal).

very biased variable. Median number of tweets are 2 and 3 for the two data sets and the mode is 1 in
both. Figure 3.11 a) depicts this bias in a cumulative distribution. On the x-axis the users are ordered
by the amount of tweets. The y-axis is the cumulative amount of tweets. For example the 10% of users
that are most active account for 60% of the tweet volume in Tworld. Teu on the other hand has 74% of
the tweet volume from its top 10% users. A data set with an equal amount of tweets per user would give
a diagonal from 0/0 to 100/100. Hence Figure 3.11 a) illustrates that both data sets exhibit a strong
contribution bias and the contribution bias is higher for Teu than Tworld.

Classification of users by hand (Tworld only)

Out of the 1’500 top users 191 are personal and 1’210 are nonpersonal. So there are only 1’401 classi-
fied. The remaining 99 users can’t be classified because their accounts no longer existed at the time of
classification. Either they are not found (no further information given) or they are blocked by Twitter.
These accounts are labelled separately. Moreover there are accounts that are private, which makes it
hard to classify. If there is no obvious indication for nonpersonal user (e.g. high number of tweets while
low number of followers), these accounts are labelled personal.

The overlap of all tweets with GUF is 84.1%. While 75.6% of the content generated by nonpersonal
users is on GUF, the spatial overlap of all classified personal users is 80.8%. Personal users arguably
have a higher spatial overlap than nonpersonal users. However, the spatial overlap of users classified
as personal is still lower than overall. The spatial overlap for all except the classified users is 85.3%.
Figure 3.11 illustrates the hourly share of personal, nonpersonal and unknown users on the total tweet
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volume. Generally the behaviour of these classes is similar. At times of low Twitter traffic the share of the
classified users increases. Nonpersonal users are overrepresented at night. The increased share of users
classified as personal may also be interpreted as a characteristic of these very active users. The lowest
share is in the evening. Under the assumption that nonpersonal users are less likely to be on settlement,
this corresponds to the findings of Figure 3.7 where the highest spatial overlap with GUF is found in the
evening, too.

As nonpersonal users dominate during the night, the difference in tweet volume between day and night
is more pronounced when looking at personal users only. The fact that the classified personal users have
a lower spatial overlap than the overall spatial overlap leaves two interpretations. Either personal users
are actually more likely to post from areas outside settlement. In this case the distinction of personal
and nonpersonal users is not relevant for this study. The alternative case is that frequent users behave
differently from less frequent users. Hand-classification would then be superfluous, as a simple ordering
according to user activity would be more adequate.

User activity

The influence of user activity on the spatial overlap of Twitter data and GUF is less pronounced than
expected. The most active users (> 10’000 tweets) show a significantly lower spatial overlap with GUF
than other users. Figure 3.12 b) shows the local trends of both datasets on a semi-logarithmic scale. The
curves are local means derived from a generalized additive model of the user activity and user’s spatial
overlap with GUF. Both datasets have a spatial overlap of ±80% for users with one single tweet. From
there the spatial overlap rises up to around 90% at users with 100 tweets. Tworld shows a decreasing
spatial overlap from there on below 20%. Teu has another peak of spatial overlap at users with 1’000
tweets and decreases then. The higher the tweets per user, the higher is the standard deviation. This is
due to the fact that only few observations (users) post large amounts of data. Summing up, the highest
spatial overlap is found in mid-range users (100 and 100-1’000 tweets for Tworld and Teu respectively).

User name keywords

The investigations of individual user groups has led to groups of varying size. Most users are found in
the categories job (10’394 and 1’205 users), news (7’844 and 2’274 users) and traffic (2’722 and 1’433
users for Tworld and Teu). The large discrepancy between the two data sets can be explained by the total
number of users in each of them. In total the amount of users in all classes is only 0.8% and 0.6% of the
whole user base in the data. However, the tweet volume captured from the entire tweet volume is 10.8%
of Tworld and 7.6% of Teu. The share of distinct geolocations on the other hand is again a small fraction
of 3.1% and 1.5% within the classes out of all distinct geolocations. This indicates that the classes are
including users that tweet the same geolocation over and over again.

In Figure 3.12 a) the spatial overlap with GUF is listed for all classes and both data sets. The
dashes indicate the overall spatial overlap. The spatial overlap of the classes with GUF is, in line with
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Figure 3.12: a) Spatial overlap of GUF per user class as obtained from regex. b) Correspondence with GUF of
users according to their activity. Note the logarithmic x-axis.

expectations, generally lower than the overall spatial overlap. Exceptions are the category job where both
datasets show a higher spatial overlap than the average and trendinalia where Teu is slightly higher than
average. The category job can be considered reliable due to the large amount of distinct geolocations.
Trendinalia yet has only 122 and 53 distinct geolocations and is therefore less reliable. The lowest overlap
with GUF show the categories bot and traffic.

Accounts in the category traffic are typically placing geolocations in tweets where there’s traffic rush.
The low spatial overlap with GUF can be explained by the fact that GUF does not comprise flat built-up
areas like roads. It is likely that this category highly correlates with road locations. It is noticeable that
none of the categories shows a spatial overlap nearly as low as random geolocations. The lowest category
bots with roughly 50% spatial overlap shows still high clustering on human settlements (random would
be 1%).

User characterization by point pattern process

In Tworld the number of users with more than 50 distinct geolocations is 12’720. From these 9’816 are
significantly clustered at a confidence level of 95%, 2’904 are random or dispersed (22.8%). In Teu there
are 28’912 users with more than 50 distinct geolocations. 3’272 users show a significantly random or
dispersed pattern (= 11.3%). The randomness of a user’s geolocations do however not directly indicate
low correspondence with GUF. Many users with random points have geolocations within a very small
area. These tend to be all on settlement. If one takes into account the area of the minimal enclosing
rectangle, users with high spatial overlap can to some degree be separated from others. In Figure 3.13
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Figure 3.13: Users according to their p-value and spatial outstretch. Large points stand for users with many
tweets outside settlement area. The spatial stretch is given as the sum of maximum latitudinal and longitudinal
distance.

the users are given according to their p-value and spatial stretch. The spatial stretch is given as the sum
of latitudinal and longitudinal maximum distance.3 Small points have a high spatial overlap with GUF
and vice versa. Note that the y-axis is logarithmically distorted. We can observe that the significantly
random or regular users (p(x) > 0.05) tend to have either very large or very small areas. Generally users
with a spatially restricted scope are more likely to be non-clustered. The users covering a large area that
are random or dispersed exhibit a low spatial overlap with GUF. Similarly, the spatially very narrowly
confined users are more likely to have a low spatial overlap with GUF. However, many users with high
correlation are there, too. This is, because depending on where the user’s small tweet area is, they are all
on settlement or all outside. In either way, users that are not significantly clustered should be regarded
critically, as the point pattern is not bearing spatial information.

3.3 Influence of Weather (Teu only)

The dependency of tweet’s spatial overlap with GUF on environmental conditions can be exemplified
seasonally. The correlation decreases in summer in higher latitudes. In latitudes without seasons, the
correspondence remains constant throughout the whole sampling period (Figure 3.14).

3This is due to technical problems in Postgis in calculating very large areas on spheres.
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Figure 3.14: Spatial overlap of Twitter and GUF by Latitude. The bold lines represent the local mean of the
daily correspondence. Higher latitudes exhibit lower correlation in summer.

The weather data interpolation has led to 548’020 tweets with rain out of 11’020’568 classified tweets.
This low ratio is probably due to the summer season during the sampling period. Surprisingly the correla-
tion with weather data is exactly opposite to what was expected. When there is rain, the correspondence
with GUF is lower (63.5%) than without rain. A geographically split analysis on a 200km * 200km grid
does not alter this result in any region. The spatial overlap of GUF and tweets is in all grid cells below
average of all tweets. Also for the other weather variables cloud cover, temperature, wind and snow, the
spatial overlap of tweets and GUF is not higher in uncomfortable weather conditions. The values are
furthermore analysed on a grid and normalized to average weather conditions per grid cell. Also this
method did not detect a trend for higher spatial overlap with GUF in adverse weather conditions.

3.4 Influence of GUF patch size and degree of urbanization

The average GUF patch size is 0.09 km2 at a total area of 1.05 billion km2. The median size is 0.01 km2.
Hence the vast majority of patches is very small. In the extent of Teu the average size is 0.08 km2, the
median 0.01 km2 and the total area is 0.26 billion km2. In an evenly distributed dataset the number of
tweets linearly increases with the patch area, so that point density is constant. However the number of
distinct geolocations only slightly correlates with the area of GUF patches. For Tworld the correlation is
R2 = 0.2845, Teu has a slightly higher value of R2 = 0.3015. This can be explained with the fact that
only a small fraction of the patches, namely 2.1% have at least one tweet on top. Although it is more
likely for large patches to be covered with a tweet, other factors seem more important. The most obvious
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Figure 3.15: Tweets density over degree of urbanization. Only patches with at least one tweet are included.
Note the logarithmic y-axis.

of them is geography. Large parts of the world are not covered with tweets, what biases the correlation.
This might also be the reason why the correlation in Teu is slightly higher, as Europe has a higher average
Twitter penetration than the world.

The Twitter density per patch is overall correspondingly low. For Tworld the average number of
tweets per km2 is 0.64 with a minimum of 0 and a maximum of 54’436. Teu has an average density of
2.0 tweets ∗ km−2 with a minimum of 0 and a maximum of 43’647. An overall correlation between the
density of tweets and the patch area can’t be expected due to the lack of data in many places. In areas
with high Twitter density, the correlation is expected to be higher. A segmentation of the world into a
300 km2 grid however shows that there is no significant correlation between tweet density and patch size
in any region. With the exception of some isolated grid cells (most of them situated in South America),
there is no cell with an R2 of more than 0.1. A similar pattern is present in Teu. Rather, patches of small
size show a number of outliers that have very high tweet densities. This can partly be explained with
the overproportionally high number of small patches, why outliers are more probable. Also small patches
tend to produce outliers as the small area leads to very high densities with just a few tweets on it.

GUF patch degree of urbanization

The derived degree of urbanization of GUF patches are given in percentage of settlement area in the
radius of 10 km from the centroid of a patch. On average a GUF patch has 6.9% settlement area in
its surrounding area. The distribution is skewed towards smaller amounts with a median of 3.7% and a
maximum of 94.8%.
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The influence of the degree of urbanization on tweet density is more pronounced. Higher degree of
urbanization leads to a higher tweet density in both data sets and Tworld(EU), as can be seen in Figure
3.15. However this only holds true because patches with no tweets are excluded. The variability increases
with lower degree of urbanization. In conclusion it can be stated that on average tweets are more dense
in urban areas, but they may be dense in less urban areas too. Probably the patches with low degree of
urbanization and high tweet density stem from regions with generally high Twitter penetration.

3.5 Classification of tweets

The random forest classifier has an overall accuracy of 0.88 for Teu and 0.89 Tworld. Precision is 0.88
for Teu and 0.9 for Tworld. This is the percentage of true positives by all positives. Hence, this number
illustrates that in both datasets the tweets classified as settlement are to 90% actually on settlement on
Tworld and 88% in Teu. As compared to the raw tweets where 84% and 79% are on settlement, this is an
increase. This comes at the the cost of some false negatives. Recall is the share of true positives in the
true positives and false negatives. In this case the false negatives are tweets that are on settlement but
not classified as such. Both data sets have a recall of 98%. Hence 2% of the tweets on settlement are
wrongly classified as being outside settlement.

Precision Recall Accuracy

Teu 0.88 ±0 0.98 ±0 0.88 ±0
Tworld 0.9 ±0.01 0.98 ±0 0.89 ±0.01

Table 3.2: Classification results of RF model. Values are means of 10 predictions of 0.1% randomly selected
tweets of the respective data sets. The standard deviation is rounded to two digits after comma.

A precision of 90% shows that the classifier can distinguish tweets on settlement from tweets outside
settlement. When the result is seen in relation with the distance to the nearest settlement, the power of
the method becomes even more striking. In Figure 3.16, random samples classified with the trained RF
are shown. The x-axis represents the distance to the nearest settlement and y stands for the ECDF. The
two curves list all tweets classified as 0 (no settlement) or 1 (settlement). It can be observed that the
tweets classified as settlement tend to be closer to human settlements. The classifier can not only select
tweets from the raw data sets that are more likely to be on human settlement, but also the false positives
tend to be close to human settlement.
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Figure 3.16: Cumulative Distance of 1% randomly sampled tweets by the respective predicted class settlement
(1) and outside settlement (0). The x-axis is logarithmic.

3.6 Detection of Settlements

In total GUF has 11’289’316 patches of connected touching settlement pixels. 11’054’157 (= 97.9%) of
them are not covered with any tweet from Tworld. From the patches with area of more than 1M m2

(97’749) there are still 44’504 = 46% not covered with tweets. In the extent of Europe there are 3’099’100
patches from where 3’028’116 are not covered with tweets (= 97.7%). The estimation of detected pixels
obtained through a Monte Carlo simulation are shown in Figure 3.17 a). tguf=0, the tweets outside
settlement area, stays constant in both data sets, which is sensible due to the random selection process.
In Teu, tclose is constant with slight decrease at increasing sample size. Tworld shows a slight trend
towards increase in the share of tclose. The main process that can be observed in both data sets is that
tdupl increases at the expense of tdet. However, Teu has a lower share of detected pixels at any data
set size. This can be explained by the differing geographic extent of the two data sets. Worldwide the
chances for two tweets to be close or identical is smaller than in the restricted area of Europe.

In Figure 3.17 b) the values of tdet as simulated for varying sample size are given as points. The points
exhibit an exponential behaviour. The fitted curves are overlaid. For Teu the function takes the form
y = 117.532 ∗ x0.561, where the independent variable x is the sample size and y the number of detected
pixels. E. g. at a sample size of 10 M tweets the function estimates that 993’473 pixels are detected.
Tworld with its higher detection rate has the following fitted model: y = 77.18 ∗ x0.64. At a sample size
of 10 M it would accordingly detect 2’352’314 pixels. With the help of this function and statistics from
GUF the amount of Twitter data needed to detect all settlement pixels is estimated. In GUF, there are in
total 175.2 M pixels with human settlement. This is a share of 0.7% of all classified pixels in GUF (24 B).
The amount of tweets needed to detect all human settlements is then given as 17.52 ∗ 106 = 77.18 ∗ x0.64

what results in x = 8′380′807′008. Hence according to this extrapolation an amount of > 8 B precisely
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Figure 3.17: Results obtained from Monte Carlo simulation. a) show the share of the parameters tguf0, tclose,
tdupl and tdet for the two data sets. b) displays the absolute values of tdet and the fitted curve.

geotagged tweets are needed to detect all human settlements. The same procedure applied to Teu and
the GUF data in this area yields an even higher number of 10.6 B required tweets. The total number of
pixels in this area is 2.4 B whereof 49.5 M are labelled settlement (2.1%) These values are summarized
in Table 3.3.

The data sets were sampled in a period of 275 (Tworld) and 143 (Teu) days returning roughly 18 M
tweets each. The sampling period to obtain a tweet volume that is sufficient to detect all pixels would
then be 81’527 days for Teu and 129’101 days for Tworld.

n Settlement Pixels n tweets tdet(T ) T (tdet = all) Required sampling days

Teu 49.5 M 18.6 M 1.4 M 10.6 B 81’527
Tworld 175.2 M 17.9 M 3.4 M 8.4 B 129’101

Table 3.3: Summary of detection rates of the two data sets. tdet(T ) stands for the detected pixels with the given
data, T (tdet = all) is the required tweet volume to detect all pixels.
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Chapter 4

Discussion

This study has revealed interesting patterns in the spatial and temporal relationship of tweets and human
settlements. An overall high spatial overlap is significantly influenced by spatial, temporal, user-specific
and partly environmental variables. In the following it is examined if and to what degree the results can
answer the research questions of this thesis.

4.1 Research Question 1

Does the presence of geolocated tweets indicate built-up land cover?

With a spatial overlap on GUF of roughly 80%, Twitter data is an indicator for human settlements.
The spatial overlap is by a factor of ±100 higher than would be expected from random geolocations. The
20% of the tweets outside human settlements tend to be in the vicinity of human settlements. 92.7% of
the distinct tweet locations in Teu and 97.1% of the distinct tweet locations in Tworld are within 1km

from a GUF settlement patch.
This can be interpreted in three ways: (1) Either near-by tweets may actually be on human settlement

and the applied ground truth (GUF) is wrong. However, according to Esch et al. (2017) GUF is one of
the most accurate products depicting human settlements. Twitter geolocations on the other hand have,
depending on the positioning system employed, varying accuracies of meters to kilometers (Roxin et al.,
2007). Due to this, Twitter data probably isn’t more accurate than GUF in predicting human settlement.
(2) Yet GUF does not depict flat built-up areas (Esch et al., 2017). Supposing that humans tweet mainly
from any kind of built-up area, the tweets outside human settlement could indicate built-up areas that
are not depicted by GUF, such as roads or town squares. This conjecture is supported by the fact that
flat infrastructure like road is predominantly in the vicinity of settled areas. Also Rios (2013) reports that
transportation routes are covered with Twitter data (see Figure 1.1). Further studies may incorporate

49



4. Discussion

other kinds of infrastructure in order to test this. (3) A third explanation is that the tweet locations
reflect places of human activity. They tend to be close to built-up area in the same way like humans
tend to be close, but not necessarily right upon built-up area. People probably also visit city parks or
the nearby forests on a regular basis. This is also supported by the fact that tweets are more likely to be
close to human settlement than far away. This explanation is in line with the assumption that Twitter
data reflects human population distribution at a fine resolution (Patel et al., 2016).

It is probable that a combination of the latter two processes described above contribute to the distri-
bution of Twitter data. Thus, the idea that Twitter data might be more accurate in detecting human
settlement than GUF is rejected while the explanations claiming that Twitter data reflects any kind of
infrastructure and/or human activity are supported. This suggests that Twitter data is only an indirect
indicator for human settlement and a direct indicator for human activity. As stated in the introduction of
this thesis, models of built-up land cover only depict features that the data allows to detect. Twitter data
seems to detect human activity rather than settlements. Yet the two phenomena spatially overlap, what
is used to estimate population density from remotely sensed built-up areas (Bhaduri et al., 2002). How-
ever, Twitter data may provide higher resolution information on population distribution than physical
measurements do. Future research should therefore focus on quantitatively assessing the relationship of
human activity and Twitter data. Furthermore, if tweets from within human settlements can be discerned
from tweets outside settlement, Twitter can also serve as an accurate proxy for human settlements. This
is the focus of the second research question.

4.2 Research Question 2

What are factors that influence whether the geotag of Twitter data is on settlement area
or outside?

Properties of tweets that were assumed to affect the spatial overlap of Twitter and human settlement
are time, geography, user characteristics, weather conditions and the relative position of a tweet to other
tweets. With the help of a random forest these properties were used to discern tweets outside settlement
from tweets on settlement.

4.2.1 Spatiotemporal setting

The spatially differing temporal Twitter activity signatures suggest that the use of Twitter space-dependent.
Also the overlap of tweets and GUF varies spatially. Latin America has a relatively high spatial overlap
while North America generally shows a lower degree of overlap. Northern Europe has a relatively low
spatial overlap. Whether these differences can be explained with different human behaviour can not be
definitely concluded. However, compared to the Twitter activity signatures, which are not consistent in
the Teu and Tworld, the spatial overlap is spatially consistent.
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Also temporal patterns of overlap are varying geographically. The maximum overlap of tweets and
GUF for example is in the evening in Asia, at noon in North America and in the morning in South America
(see Figure 3.9). The temporal pattern of the whole dataset Tworld is similar to the patterns of Asia and
North America. This is due to the fact that Twitter data set is dominated by Eastern Asian and North
American tweets. Hence, any temporal patterns found in the full data set are in fact reflecting the regions
with highest Twitter penetration. Discussing explanations for temporal variation in overlap of GUF and
tweets has to be based on spatial subsets of the data with more or less constant Twitter penetration. How
these spatial subsets are to be selected poses another challenge: If space is subdivided into very small
areas, the number of tweets within that area may be too small for a representative result. On the other
hand, large subdivisions lead to a mixture of patterns. This can be illustrated by the different temporal
overlap patterns of Europe in Figure 3.9 and Tworld(EU) in Figure 3.7. The spatial subset of the former
is based on political boundaries, where in the latter by a bounding box of the queried area and therefore
slightly larger. This issue is referred to as Modifiable Areal Unit Problem (Wong, 2004).

Some features of the observed spatiotemporal patterns can be attributed to human behaviour. The
lower overlap during weekends is very probable ascribable to the fact that on off-days people are able to
head outside instead of staying inside working environments. The observed decrease of overlap of Twitter
and GUF in Northern hemispherical summer months is likely to be due to the fact that people go out in
warm weather. On the other hand, with the same logic it is assumed that during night people reside in
their homes and thus the spatial overlap of tweets and GUF is high. Twitter data shows on all continents
(except for Africa) the opposite: the spatial overlap of tweets and GUF during the night is lower compared
to the rest of the day. A possible explanation for this unexpected result is that the relative contribution
of bots posting random geolocations to the Twitter traffic increases during the night. According to the
results of manual classification, the share of bots during the night actually increases (see Figure 2.4).
Bots and services are not particularly active at night, but people are particularly inactive what leads to
a high share of nonpersonal users. In this light, studies using temporal characteristics of Twitter data
have to be judged critically. E. g. Lin and Cromley, 2015 used geolocated tweets sent between 6 pm and
8 am to identify residential areas. This is only possible when nonpersonal users are excluded from the
data (what hasn’t been done in Lin and Cromley’s study).

Nonpersonal users are not only represented to a varying degree temporally, but also spatially. Over
Finland the user Every Finnish Number posts most of the geolocated tweets in this region. The geolo-
cations are most likely randomly generated. In the region of Finland, the overlap of GUF and tweets
is therefore lower than average (see Figure 3.8). The same bias can be suspected in other regions. The
interpretation of geographic variations in the overlap of GUF and tweets has to account for this. The
high spatial overlap in South America can either be due to the fact that people in South America tend
to stay within human settlements or due to a lower share of nonpersonal users. Thus, the distinction of
desired from undesired users is crucial for a reliable interpretation of these results.
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4.2.2 Classification of Users

The pronounced contribution bias demands for an investigation of the data at user level. The most active
users are often not of the kind that is desired, but rather likely to be bots with no, or services with little
meaning in spatial regards. Several approaches have been tested, among which some have turned out to
be more feasible than others.

Manual classification

Classification by hand bears the disadvantage of high workload and more importantly subjective decisions.
Millions of users pose a major hindrance for a nearly representative sampling. The classification process
can only partly be standardized (here through given criteria). It might especially be that the perception
of the content of a Twitter user page is biased by the author’s cultural background. Accounts foreign
to the author are unlike harder to classify. Those foreign accounts are checked more extensively and
with use of translation tools. Despite this, comparing users in different cultural regions can not be done.
Another drawback of this approach is that it’s hardly generalizable. Different Twitter data sets are made
up of different users, as these are changing over time and by request parameters.

However, the manual assessment of driving actors can also be seen as a window into the blackbox of
big data. In this case, the manual classification not only led to a deepened understanding of the data,
but was crucial for the development of further analysis methods. It is argued that getting to know to the
data is a prerequisite for analysing Twitter data. Bots as well as the contribution bias are not specific
to Twitter data. They are inherent characteristics of social media data (Li et al., 2013). The need for
manual data sighting is not limited to Twitter data, but a necessity for any social media data analysis.

Automated classification

The user classification according to their tweet activity, selected keywords and geolocation distribution is
relevant for the overlap with GUF. The most active tweeters are clearly bots or services that post tweets
overlapping GUF to a lower degree than average. Likewise, selected keywords could extract groups of
users that show varying overlap with GUF. This approach was completed with English keywords only,
certainly the predominant language on Twitter. But the approach could be enhanced by incorporating
more languages.

The assessment of the point pattern distribution per user is relevant for the overlap of tweets and GUF,
too. Users that do not tweet meaningful geolocations can be distinguished from users with meaningful
geolocation. Most importantly, users that (by visual inspection) are unambiguously personal users with
meaningful geolocations get a low p-value. This is a major advantage over methods relying on mean
nearest neighbour distances (Lagache et al., 2013). Though, users that by means of this method get a
high p-value do not necessarily have many points outside human settlement. Most of the users with a
high p-value have many points in either a very small or a very large area (see Figure 3.13). In the case
of small area, the tweets are often all on GUF. Although the p-value does not predict the overlap of a
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Figure 4.1: Amount of tweets from undesired users by user activity, point distribution and regex keywords.
Circle sizes indicate the number of tweets per user class. On the nodes of the triangle are summed tweets from
users that are only in one of the user classes, on the edges in both neighbouring classes, in the center in all three
user classes.

users tweets with GUF, it identifies users with random or regular point distributions and can therefore
be recommended to be applied in further studies on geotagged social media data. The method may
be enhanced in two regards: First, the sea area could be excluded for the simulation of random point
patterns, as this may be done so by nonpersonal accounts, too. Second, nonpersonal users may use
different coordinate systems for geolocation generation. In this thesis the simulated random points were
generated inWGS84 coordinates. This could additionally be done in other (projected) coordinate systems.

The three automated methods combined identify 3’150’164 tweets in Tworld and 3’963’382 in Teu as
tweets from undesired users when thresholds given in Figure 4.1 are applied. This is a share of 17.7% for
Tworld and 21% for Teu of the whole data volume. Although these methods found such a large part of
the data to be sent from nonpersonal users, many studies do exclude only a small fraction from their raw
data. E. g. Jenkins et al. (2016) remove no data, Lin and Cromley (2015) remove nearby geolocations
only, Soliman et al. (2017) exclude ’redundant tweets without true geographic coordinates’. The results of
such studies have to be regarded critically. When Twitter data is queried by geolocation only, monitoring
or cleansing of undesired users during the study is of particular exigency. While filtering by keywords
in the Streaming API might omit many users posting random or similar content, a geolocation query
returns all tweets that are geolocated not regarding tweet contents. With the here applied methods to
classify users, the same users are sometimes detected by two or all three methods. Figure 4.1 illustrates
this with circles indicating the number of tweets detected by each method. In the corners of the triangle
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the number of tweets detected by one single method are given. On the edges, tweets detected by the two
neighbouring methods are summed and in the center tweets detected by all three methods. Particularly
the methods looking at regex keywords and user activity have often detected the same users. However,
there are hardly any users classified as nonpersonal by all three methods. Many users are only detected by
one of the methods. On one hand this is a legitimization for the incorporation of several user classification
methods in this study. On the other hand, this exemplifies that Twitter data cleansing is important and
depending on the applied method leading to different results. The methods used in this study are by no
means covering all types of undesired users. E. g. one aspect that is not discussed here are what Chu
et al. (2010) name cyborgs and malicious bots. Cyborgs are bots that imitate human behaviour and are
therefore hard to detect with the methods applied here. Malicious bots post content on hacked accounts
and are equally hard to detect.

In 2014, Driscoll and Walker (2014) called for a ’common language for Twitter research’. In this spirit,
research has to be conducted on how to standardize Twitter data cleansing integrating many approaches
that describe Twitter users. A standardized framework for the detection of undesired users would make
Twitter studies more comparable. This might also involve the development of a programming library for
this purpose that can be used by researchers. An easy-to-use and freely available programming interface
would leverage the use of standardized methods.

4.2.3 Weather data

The seasonal variability in ovrerlap of GUF and tweets (Figure 3.14) clearly suggests that weather-related
behaviour of staying inside or outside of buildings is represented in Twitter data. However, there was no
correlation found between the weather data and the overlap of GUF and tweets. The interpolated values
were analysed in spatially and temporally restricted subsets. In doing so, a bias induced by different
weather regimes per region was circumvented. None of the weather parameters rain, cloud coverage,
temperature, snow, wind showed to have an influence on the overlap of GUF and tweets. Therefore it is
tantalising to assume, that either the weather data or the applied methods are not suitable.

A first uncertainty is introduced by the fact that the weather data is not based on direct measurements
but rather on resampled values to town locations. Therefore the spatial distribution is uneven. Further-
more, these values are then interpolated temporally and spatially to the timestamp and the location of
tweets. Due to these two intermediated manipulations of the data, the weather values calculated per
tweets might be to far offset from the actual weather conditions.

A second issue is that other changes in tweeting behaviour than expected might be induced by weather
condition. E. g. bad weather might lead to a decrease in Twitter activity amongst personal users. If
so, nonpersonal users would have a larger share and hence the spatial overlap of tweets and GUF would
decrease.

At this point, a definite conclusion on the influence of weather data on overlap of tweets and GUF
can’t be drawn. It is probable that the sum of uncertainties introduced by the weather data, the Twitter
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data and the applied methods lead to an insignificant result when using ancillary weather data. The
observed seasonal variation of Twitter data overlap with GUF suggests, that weather influences the
tweeting location of people.

4.2.4 Point distribution

NND is a simple but in this case powerful measure. Tweets with close nearest neighbours are more likely
to be on settlement. Put differently, the NND is a measure for local point density. High tweet density
enhances the likelihood for human settlement. The caveat of using NND as indicator of a tweet’s position
relative to GUF is, that spatial outliers are always regarded as outside human settlement. The application
of this method has to be regarded carefully, otherwise tweets in big clusters dominate and fine granular
information is lost.

Another weakness of the NND is that it is dependent on the data density. Data sets with high tweet
density have generally lower NNDs. This especially poses a problem when the density of tweets varies
not only due to ground truth, but due to a geographic bias. This is the case in Twitter data. In this case
tweets on settlement in countries with a low Twitter penetration are likely to have a high NND. Then
the NND is not a good predictor.

Last, the NND could be substituted with an average k-NND. This method takes, instead of the one
nearest neighbour, the k nearest neighbour distances and is therefore more robust.

4.2.5 Patch Size

It was observed that the degree of urbanization of a GUF patch influences the tweet density. This confirms
the presumption in many research papers, that tweets are overrepresented in cities (e. g. Soliman et al.,
2017). The correlation of degree of urbanization of a patch and tweets density is overshadowed by uneven
geographical distribution. Only the exclusion of patches with no tweets leads to a visible trend 3.15. The
applied measure of urbanization (percentage of settlement area in the surrounding) has shown to be a
better indicator than the GUF patch size.

However, if population density was incorporated per patch, which is normally higher in cities, the
observed effect might even out. It remains unclear whether urban people are using Twitter more than
people from the countryside. This would require a comparison with population data.

4.2.6 Classification with Random Forest

The application of the RF has shown that tweets on settlement can with the help of the above discussed
factors to some degree be distinguished from tweets outside settlement. Especially when taking into
account the distance to the nearest settlement of the classified tweets, the classifier shows its full strength.
The classifier predicts many false positives. But these tend to be near settlement. This result is argues
for the validity of the used factors discussed in this thesis.
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Gini Index Teu Gini Index Tworld
NND 103792.62 72469.50
Duplicated geolocation 38951.61 24950.67
User activity 36289.41 24332.89
Hour of day 19251.72 20169.08
User point distr. 11810.08 4691.21
BBox area 11103.54 6866.43
Day of week 8983.18 9368.65
Month 6312.18 11118.51
User keyword 3406.77 3143.74
Continent 0.22 7182.94

Table 4.1: Factor importance (Gini Index) for the RF model. High value indicate high relative importance. For
details on how the values are generated refer to the R package randomForest.

One of the strengths of the random forest algorithm is its ability to report the relative importance
of the input factors for the classification (Breiman, 2001). In Table 4.1 the Gini Index is given for the
applied factors for both data sets. In both data sets, the NND is the most important factor. In Teu the
importance of the factor continent is very low due to the spatial extent of the data set. Amongst the
factors defining the spatiotemporal setting (gray), the hour of day is the most important factor.

The dominance of the NND may introduce a geographical bias in the prediction accuracy. Places with
low Twitter penetration have fewer tweets and thus contribute less to the model generation. The NND is
therefore representative for places with high tweets densities. The classifier is then more likely to classify
tweets with relatively high NNDs as outside settlement in countries with a low Twitter penetration,
because the density is lower and hence the average NND is higher.

It would therefore be advisable in further studies to watch the accuracy of the classification in spatial
subsets. Further improvements could be achieved using regression random forests on the distance of
tweets from GUF instead of classification on inside or outside settlement (see ibid.).

4.3 Research Question 3

Is a global classification of built-up land cover possible with Twitter data?

Due to the insufficient coverage, a global classification of human settlements is not possible with the
given Twitter data only. More data does however not lead to a significantly higher coverage of tweets to
an extent that human settlements are globally covered. Twitter data is in fact limited to certain areas of
the world (Leetaru et al., 2013). A larger Twitter data set generated by a longer sampling period produces
more data mainly in these regions with high Twitter penetration. To estimate how much Twitter data
would be required to get global coverage, a curve was fitted for different sample sizes of the given data.
According to this estimate 10.6 B (Teu) and 8.4 B (Tworld) precisely geolocated tweets would be required,
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what corresponds to a sampling period of 223.4 and 353.7 years, respectively.
The differences in the estimates for Teu and Tworld exemplify uncertainties in this estimation. tdet

is with 1.4 M in Teu significantly smaller than in Tworld with tdet = 3.4M , although the data set are
almost equal in size. The higher detection rate in Tworld (3.4 M out of 17.9 M = 19.9%) compared to Teu
(7.5%) results in a higher estimate for the required data volume to detect all pixels in Teu. Considering
the smaller spatial extent of Teu, a lower number of required tweets would be expected for Teu. Other
uncertainties may arise from the following assumptions made. It is assumed that the tweeting behaviour
of people stays constant. Changes in tweeting frequency, geolocation sharing or geographic adoption may
increase or decrease the detection rate. The pixels size of the classification raster is fixed at 84 meters.
Setting the output raster resolution differently may lead to a different result. E. g. Schneider et al. (2009)
presented a global map of urban extent at 500 m resolution.

Despite these uncertainties, the results nevertheless exemplifies that a global or even Europe-wide
classification with Twitter data only is far beyond producibility. However, due to the high spatial overlap
of Twitter data and human settlements, the use of Twitter data as complementary or control data for
land cover classifiers bears high potential. This has already been proposed by Miao (2017).

4.4 Comparison of Teu and Tworld

The two Twitter data sets used do often show different results. Differences are found in the downloaded
volume per day, the number of distinct geolocations, the overall spatial overlap with GUF (Table 3.1),
the user diversity (Figure 3.11 a) ), the diurnal volumes (Figure 3.2), and the user classification results
(Figure 3.12). In this section the differing results for the two data sets are discussed in the context of the
data acquisition process and their different spatial and temporal extent.

4.4.1 Amount of geolocated tweets

In this study the data is queried by geolocation. The process of downloading Twitter data is not expected
to introduce any uncertainties. However, the different volumes per day call for a critical view on the
downloading process. A first source of uncertainty is probably the implementation of the data crawler
infrastructure. Twitter’s Streaming API relies on REST requests. Hence, any software can be used to
stream the data. In this case the software was written in Python using tweepy (Teu) and in R (Tworld).
Variations in Twitter data volume raise the question whether the crawling infrastructure can influence
the amount of data retrieved.

Another issue is the changing Twitter specifications. Just recently, Twitter has changed the maximum
message length of a tweet to 280 instead of formerly 140 characters 1. Such changes go without notice
when it comes to more trivial functionalities like geolocation sharing. Changes in the user interface of
the Twitter mobile app (e. g. changing the location to the geolocation sharing activation button in the

1https://help.twitter.com/de/using-twitter, accessed 2017-12-03

57



4. Discussion

app menu) may lead to a rise or decline of geotagged tweets. Teu and Tworld are downloaded in different
time frames. It is therefore possible that the amount of geotagged tweets may have changed during this
time period due to changes in Twitter’s specifications. This has wide implications for the comparability
of Twitter data sets. Only two years ago Blanford et al. (2015) report that 91% of the geolocated tweets
are located by GPS. In 2017, as indicated by the many duplicate points in the given data, the amount of
GPS-geolocated tweets is substantially lower.

A possible scenario for the observed differences in Twitter volume and user activity distribution could
be delineated as follows: Twitter chnages either the default settings for geolocation sharing or the location
of the geotag sharing button in the app menu. More people don’t share geolocation or only obfuscated
geolocations. However, the nonpersonal users do not access Twitter through the mobile application
and pursue to post precise geolocations. The retrieved data consists of fewer users and contains more
duplicate (obfuscated) geolocations. The spatial overlap with GUF may decrease, because nonpersonal
users contribute more to the retrieved data.

4.4.2 Diurnal and weekly patterns

A comparison of two datasets has shown that diurnal and temporal patterns are inconsistent. For example
Tworld has peak hours in the morning and Teu in the afternoon at the same spatial extent.

One possible explanation for differing results is the 1% download limit of Twitter’s Streaming API. In
scientific literature it is widely accepted that geolocated tweets do not significantly exceed the 1% limit
at any time (Kumar et al., 2013). As of testing, tweets that were sent by the author were not always
returned by the Streaming API when querying Teu. This is evidence that not all tweets are returned.
It is not clear how many and which tweets are omitted. In any case geotemporal analyses are therefore
unreliable. If geotagged tweets are to exceed the 1% limit in certain time slots, it has to be presumed that
geotagged tweet share is variable. This is what Leetaru et al. (2013) found. As long as the geotagged
tweets do not exceed the 1% limit, all geolocated tweets are returned. Once this limit is surpassed,
Twitter returns only a subset of all tweets. Then comparing absolute tweet volumes becomes invalid.

Let’s illustrate this process with an example (see Figure 4.2). For the sake of convenience, the absolute
tweet volume is assumed to be constant over time in this example. When total tweet volume is 10’000
tweets per time, then the returned number of tweets is 100. We assume two longitudinal differing places
(orange and green). The total amount of geolocated tweets is given in 4.2 a). The geolocated tweets
exceed the 1% limit from 4:00 am to 8:00 pm due to a diurnal pattern in the green location. The
corresponding response to a request from Twitter is given in b). Due to random sampling, the location
orange exhibits a diurnal pattern that is not present in the full geolocated data set. The circumstance
is further complicated by the fact that the total tweet traffic is likely to vary with time. In Figure 4.2
c) the tweets for data from Tworld in GMT are grouped by continent. Here the absolute amount of data
varies. But it is unknown whether this amount is always the full amount of returned tweets. The activity
signatures per continent influence the total amount of tweets and the geolocation sharing adoption per
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Figure 4.2: A query bias introduced when geolocated tweets exceed the 1% limit of Twitter traffic. a) Shows a
simplified absolute geolocated tweet volumes for two region in different time zones in stacked position at GMT.
b) Shows how many tweets are absolutely returned by a query per area. In c) the returned tweets per continent
from Tworld at GMT are given.

continent determine the share of geolocated tweets.
The phenomenon described biases a geotemporal analysis only when geolocation share varies and partly

or permanently lies above the 1% threshold. If this is the case in a systematic manner (e. g. due to varying
geotag adoption rates in space as described by Sloan and Morgan (2015)), any geotemporal analyses have
to be questioned. In this thesis a global inspection of Twitter peak hours and clustering of the daily
routine was done. The results, interpreted in this light, lead to a different conclusion. The observed
spatially varying Twitter activity signatures are the product of spatially varying Twitter penetration and
geolocation sharing adoption in combination with real spatially variable Twitter activity signatures. The
spatial clustering of similar Twitter activity signatures as given in Figure 3.5 could then be explained
with their geographical position relative to other areas, whose Twitter activity influence the 1% value.

This theory is corroborated by the fact that the spatial overlap with GUF is more stable than the
purely temporal patterns. Figure 3.7 shows that the GUF correlation in Teu and Tworld show a similar
pattern (especially the behaviour of weekends) despite that the absolute volumes as given in Figure 3.2
look very different. Teu is likely to contain a more complete set of this data, since the query area is
smaller than in Tworld. A smaller query extent reduces the chances for the relevant tweets to exceed the
1% limit. Hence, Twitter data from different geographic query extents can not be compared.

The same problem has been described by Driscoll and Walker (2014) for specific keywords that at some
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point exceed the 1% limit. In a geographic context, this problem is particularly interesting, because it
biases the amount of data geographically. Research relying on spatiotemporal Twitter activity signatures
has to take into account, that the query extent used in Twitter’s Streaming API determines the amount
of data returned.
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Chapter 5

Conclusion

This thesis is an attempt to correlate the distribution of geolocated tweets with human settlements.
The influence of spatiotemporal patterns, user characteristics, weather conditions and settlement size
was investigated. With the help of these elements tweets on human settlement could be distinguished
from tweets outside human settlement using a random forest predictor. Finally, the potential coverage
of Twitter data on human settlements was estimated using Monte Carlo simulation. The work can be
described as explorative in the sense that there is hardly any research using densities of precise geolocation
to classify land cover.

Main Findings

It can be concluded that geolocated Twitter data is a strong indicator for human settlements. Further
findings are:

• The fact that people are outside settlements on weekends and in summer seems to be reflected in
Twitter data

• Spatial overlap of Twitter data and human settlements is spatially variable

• While temporal Twitter activity signatures are differing dependent on the Twitter data set, the
temporal patterns of spatial overlap are robust

• Twitter data cluster in centres with a high degree of urbanization

• Twitter data tend to be on or close to human settlement

• Nonpersonal users contribute a considerable amount to the Twitter data

• Twitter’s Streaming API can generate artificial patterns due to its 1% limit
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Figure 5.1: An illustrative excerpt from Tworld (red) overlapping GUF.

However, at the current state of Twitter it is not possible to accumulate a data sample that would
merely allow a global classification of human settlements. Twitter data is highly clustered in space and
does never detect all settlements. Even in regions with a high Twitter penetration, many settlements are
not covered with tweets. An excerpt of GUF and Tworld Figure 5.1 summarizes this conclusion. This
thesis started with the assumption that where there’s built-up area, there are probably people, and where
there’s no built-up area, there are probably no people. This assumption is corroborated by Twitter data.
As of the results presented, let the statement be completed: Where there are tweets, there are probably
people. But where there are no tweets, there are not necessarily no people!

Future Work

Future work on Twitter data and social media has to focus on five main issues:
First, the user community of Twitter has to be analysed more thoroughly. This thesis suggests that

the amount of data created by bots is tremendous. There are no standard cleansing methods. Means
of cleansing have to be developed that can be easily implemented by researchers. Prerequisite for data
cleansing by user is a proper definition of user categories that goes beyond bot or not. There are far more
kinds of users to be distinguished. This would lead to more valid results and ensure that studies can be
compared more effectively.

Second, further studies that focus on globally existing patterns in Twitter data are required to pull
local studies out of their narrow scope. Differences in the results of different studies with geographic
context have not yet been discussed in the light of cultural impact on e. g. Twitter activity signatures.
Little is known about geographical differences in the usage of social media. Today studies of different
geographic locations can only be compared with great caution.

Third, the potential of social media data as proxy for human settlements is not limited to Twitter data.
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It would be interesting to do the same analysis with data from different social media platforms. This
would lead to a deepened understanding of the spatial overlap of human settlements and social media
data. Moreover, other social media platforms show complementing penetration levels across countries.

Fourth, the overlap of human settlement and tweets can be used in other research contexts. For
example tweet clusters of tweets outside human settlement are likely to indicate scenic or tourist hot
spots.

And fifth, the scope of the work can be widened in several regards. The where of Twitter data can
possibly more exhaustively be explained using transportation networks. Tweet content may also be a
source of information in this regard that has not been exploited in this thesis.

Closing Words

In literature the legitimation for studying geotemporal social media data like Twitter are manifold.
One very popular motivation is to help urban planners in sensing land use and land cover. (Frias-
Martinez and Frias-Martinez, 2014), (Longley, Adnan, and Lansley, 2015)) If, by any means, something
can be concluded with certainty, then it is that Twitter data is not suitable for assisting urban planning
authorities. Any results from analyses of this data are highly biased. (1) Tweeters are only a small
fraction of the population that is by no means representative of the whole population. (2) The share
of tweets from bots and services as well as very frequent tweeters is overwhelming (Blank, 2016). This
circumstance is furthermore complicated by the fact that disambiguation of individual Twitter users from
bots and services is not easy. Any decision making based on this information will be guided by a small
fraction of the population and non-humanoid accounts. A democratic legitimization to use this data in
public authorities is not given1.

Nevertheless, the study of social media data should be an important research goal for many reasons:
(1) If the number of social media users increase in the the future, more data will be generated. More
data leads to more accurate insights into real-world processes. (2) Social media data seems to be highly
connected to real-world processes at a first glance. e. g. the spatial distribution widely correlates
with human settlement. The diurnal patterns match with human habit of sleeping and activity. It is
tempting to relate any pattern found in this data to the real-world. A critical view at social media data is
crucial to detect any snap judgements done in research before it becomes state of the art and eventually
influences individual’s lives. (3) The potential of data generated by people is undoubtedly given and
with it dangers. Other sources of social media platforms like Facebook, Whatsapp but also location data
collected by Google are probably more representative of a population. On one hand in this data lies much
more information that could be exploited and yield better results. On the other hand the fact that this
data is more personal and bears more valuable information makes the data unsuitable for public access.
But the data is also undisclosed because it is the capital of large companies. The question is raised about
who gets access to social media data. Profit-driven IT companies like Google hold tremendous amounts

1For a discussion on this topic see Salkin (2011)
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5. Conclusion

of highly personal data. Researchers on the other hand are stuck with few sources of very biased less
accurate data. This hampers knowledge generation from valuable information that exists.

Widening the view is also essential when assessing human settlements with big data. Twitter data is
not a globally applicable data stream for this purpose. Whatsoever, the results have to be regarded in
a larger context of a rapidly changing world with social media platforms emerging and more and more
people using them. As Twitter indicates, people are accessing social media mainly from within human
settlements. Automatic means allow to remove noise that is generated by undesired users and outliers
that are often outside human settlements. The preconditions for human settlement classification are given
and maybe existing inherently in social media data. The availability of denser data with higher coverage
will raise the question of classification of human settlements with social media data again in future.
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