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Abstract

Remote sensing is an important tool to monitor phenology. In this Master's Thesis dif-
ferences in phenology in the Swiss National Park (SNP) in Val Trupchun from 2010 to
2015 are analyzed. The purpose was to �nd a relationship between meteorological data
and alpine phenology by using vegetation indices (VI). The start of phenological season
(SOPS) was de�ned as �rst day with a temperature above 5◦C, called growing degree
day 5 (GDD5). For all investigated years, the meteorological data were aggregate to
day of year (DOY) 175, the earliest Airborne Prism EXperiment Imaging Spectrometer
(APEX IS) acquisition date in 2010. In this data set, test sites in forest and grassland
vegetation classes were selected and suites of relevant VIs were calculated. Correla-
tions of VIs and meteorological data were found for Normalized Di�erential Vegetation
Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Modi�ed Soil Adjusted Vegeta-
tion Index 2 (MSAVI2) and Simple Ratio (SR). In particular, very strong correlations
between VIs of forest and days with precipitation as well as between VIs of grassland
and the total amount of precipitation were found. Further, the Normalized Di�erence
Water Index (NDWI) and Normalized Canopy Index (NCI) showed inconsistent corre-
lations with meteorological data. There were no correlations of VIs and temperature,
GDD5, global radiation and sunshine duration. Calculated di�erences between vege-
tation subclasses were found on a yearly base but not over all years. The calculation
of correlations between subclasses to meteorological data was not possible due to miss-
ing speci�c meteorological data for each test site. In the study area of Val Trupchun,
the main constraint is precipitation, in contrast to temperature postulated by other
researchers for high alpine regions. Further research on meteorological impact on high
alpine vegetation phenology by using VIs is desirable.
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1. Introduction

Alpine vegetation systems are highly vulnerable to climate (Beniston and Rebetez, 1996;
Theurillat and Guisan, 2001), and the responses of phenology to climate therefore of
particular interest (Busetto et al., 2010). In addition, climatic variables are often used
in combination with other environmental factors to explain main vegetation patterns
around the world (Guisan and Zimmermann, 2000). Vegetation patterns can be re-
lated to physical limits that are caused by environmental and physiological constraints
(Guisan and Zimmermann, 2000) also known as gradients (Austin, 1980). The litera-
ture di�erentiates between direct gradients (e.g. air temperature, soil pH), which are
not consumed by plants, indirect gradients (e.g. slope, aspect, elevation) with no direct
physiological relevance and resource gradients (e.g. nutrients, water, light), which are
consumed by plants (Austin, 1980). These gradients are conventionally summarized into
most important constraints like temperature, water availability and radiation (Nemani
et al., 2003).
The introduction is organized into four parts: environmental constraints in high alpine

regions, phenology and phenological key drivers, phenology and remote sensing by using
vegetation indices, and motivation and associated research questions.

1.1. Environmental Constraints

1.1.1. Temperature

Temperature in high alpine regions is one of the most important limiting factors. This
can be explained by the fact that vascular plants growth can only take place at tem-
peratures above the freezing point (Ladinig and Wagner, 2005). Temperature below
the freezing point can cause frost dryness due to non-available water caused by frozen
soil (Gebhardt et al., 2007). According to the literature, other resources than tempera-
ture (like precipitation) are not a limiting factor for productivity in high alpine regions
(Schultz and Halpert, 1993; Whittaker and Niering, 1975). Hence, the growth of trees
and �owering of plants is mainly temperature dependent (Kudo and Suzuki, 1999; Moser
et al., 2010). Nevertheless, a number of studies mention additional constraints having
an impact on plant growth, like water availability (Ladinig and Wagner, 2005) or tem-
perature the latter being of particular importance in the early growing season (Wang
et al., 2003).

1.1.2. Water Availability

Water availability is one of the most important constraints for plant growth all over
the globe (Jolly et al., 2005; Nemani et al., 2003). Water sources available to plants
usually comprise precipitation, snowmelt and ground water. Especially in higher alpine
regions snowmelt and precipitation are the dominant sources. Studies in the Chinese

1



1. Introduction

alpine regions determine precipitation as a primary constraint for alpine grassland and
mountain steppe (Sun et al., 2013)). Furthermore, the elevation gradient at higher
altitudes in�uences precipitation directly (Kariyeva and van Leeuwen, 2011) in a way
that the probability for precipitation increases with higher altitudes (Whittaker and
Niering, 1975).

1.1.3. Solar Radiation

The third main climatic constraint, solar radiation, is the primary driver for photosyn-
thesis. It provides the plants with the energy required for growth. Solar radiation is
more intense at higher altitudes (Blumthaler, 2012). It is therefore common to use solar
radiation measurements to estimate e�ciencies in photosynthesis (Szeicz, 1974).
The three constraints temperature, water availability and solar radiation are not

always equally limiting, but they always interact and lead to varying limitations on
vegetation activity and phenology over the whole growing season (Nemani et al., 2003).

1.2. Phenology

The International Biological Program (IBP) de�nes phenology as �the study of the
timing of recurrent biological events, the causes of their timing with regard to biotic
and abiotic forces, and the interrelation among phases of the same or di�erent species�
(Lieth, 1974). The annual course of vegetation development events di�ers from year
to year depending on changes within climatic gradients. Phenology varies not only
over geographic gradients but also over climate zones, vegetation types and weather
conditions (Richardson et al., 2013). In the nival belt, phenological development takes
place within one to three months (Ladinig and Wagner, 2005). According to Richardson
et al. (2013), phenology at higher altitudes is typically in�uenced by two critical factors,
namely the last day of snowmelt and the course of the temperature afterwards. In the
following section these phenological key drivers will be brie�y introduced.

1.2.1. Snowmelt and Frost

Snowmelt and frost events are not a direct climatic factor. Both depend on the depth
of the winter snow pack and springtime temperature (Richardson et al., 2013) and
in�uence the �owering phenology (Inouye et al., 2002). Furthermore, snowmelt is a key
factor for growth of alpine plants and is understood as start of growing season (Hoye
et al., 2007; Ide and Oguma, 2013; Inouye et al., 2002; Kudo and Suzuki, 1999), whereas
snow coverage blocks sunlight for photosynthesis, and spends shelter from severe cold
and supplies moisture (Ide and Oguma, 2013). Areas with late snowmelt pro�t from
a higher soil moisture content. Water availability is therefore not a constraint (Hoye
et al., 2007). In contrast, advanced snowmelt causes a lengthening of the growing season
and harsher growing conditions by increasingly exposing in a way that plants to frost
damage with early snowmelt (Wipf et al., 2006). On the other hand, a lengthening of
the growing season can result in a higher amount of growing degree days (see below)
and thus the available heat and energy for plants (Wipf et al., 2006).
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1.2.2. Growing Degree Days

The sum of days with temperature above a certain threshold is called Growing Degree
Days (GDD) (Ladinig and Wagner, 2005). GDD can be seen as an approximation to
heat and energy for plant development (Yang et al., 1997) and heat accumulation during
the phenological phase (Ladinig and Wagner, 2005). Hence, GDD models the role of
temperature for vegetation (Ladinig and Wagner, 2005). The temperature threshold
value can be set individually. A commonly used threshold is 0◦C (Ladinig and Wagner,
2005), called GDD0, or a threshold of 5◦C (GDD5) (Leuzinger et al., 2013; Moser et al.,
2010; Wipf et al., 2006). Due to its temperature dependency, GDD decreases with higher
altitudes.

1.2.3. Altitude

The altitude above sea level (a.s.l.) directly in�uences temperature and precipitation
(Kariyeva and van Leeuwen, 2011). Especially in mountainous landscapes, altitude is
one of the most in�uencing drivers of the variation in vegetation dynamics (Kariyeva
and van Leeuwen, 2011). Phenological change in mountainous ecosystems is mediated
by altitude because of direct in�uence on temperature (Chapman, 2013). In addition,
the total atmospheric pressure as well as relative concentration of certain life-supporting
gases (in particular CO2 and O2) decrease at higher altitudes and radiation increases at
cloudless sky (Körner, 2007). It is well known that altitude causes an average decrease
of temperature of 0.5◦C per 100m (Moser et al., 2010).
Summarizing the previous sections, factors like snowmelt and frost are important

drivers for vegetation at higher altitudes. The high altitude directly in�uences the
GDD as the average temperature decreases with elevation causing an elongation of
snow cover duration.
Climatic changes like warming of the atmosphere have varying in�uences on vege-

tation at higher altitudes (Menzel, 2002). On a global scale, the biggest changes are
predicted for snow-dominated regions at higher altitudes. In a study performed in the
European alpine region, an earlier �owering of grasses and woody species of 1 to 5 days
per decade in the years before 2000 was found (Ziello et al., 2009). These patterns
were linked to warming trends in the same period. Furthermore, a forced leaf-out of
European larch at a rate of 7 days for each 1◦C increase in spring air temperature was
monitored in the alpine region of Italy (Busetto et al., 2010). Changes in climate are
therefore causing observable phenological changes in alpine vegetation.

1.3. Assessment of Phenology Using Remote Sensing

Phenology and phenological changes are an important domain of research in the �eld
of remote sensing (RS). RS provides means of tracking phenological changes by mon-
itoring the re�ectance of electromagnetic radiation by vegetation on a temporal basis
(Badeck et al., 2004). Phenology of vegetation is measured for example by greenness,
leaf area index (LAI), absorption of chlorophyll, green aboveground phytomass, photo-
synthesis capacity or primary productivity (Lausch et al., 2015). In particular, LAI can
be deduced from RS data. The LAI describes the total of one-sided area of green leaves
per unit ground area [m2/m2] (Rundquist, 2002; Zhang et al., 2007). LAI varies with

3



1. Introduction

vegetation cover from zero (Atacama desert, South America) up to values of eight in
Amazonia (Huete et al., 2002).
To detect seasonal patterns of phenology, satellite or airborne remote sensing data

can be used (White and Nemani, 2006). VIs are commonly calculated to quantitatively
estimate the vitality of vegetation (Bannari et al., 1995; Lillesand et al., 2008). The
performance and the suitability of a particular index are generally determined by the
sensitivity of the index to a characteristic of interest (Haboudane et al., 2004). The
wavelength for vegetation spectra regions in the visual part (VIS, 400 to 700nm) and
near infrared region (NIR, 700 to 1300nm) (Lillesand et al., 2008) have been proved
to be rich in content (Collins, 1978). In the red part (600 to 700nm), the spectral
re�ectance of vegetation is characterized by very low values, because most incoming
energy is absorbed by plants (Lillesand et al., 2008) (Figure 1.1). The re�ectance
values increase rapidly in the range of 700 to 740nm. This spectral re�ectance pattern
of vegetation is generally called �red edge� (Broge & Leblanc, 2001). The di�erence
between red and NIR wavelengths is used for vegetation indices like simple ratio (SR)
(Jordan, 1969), normalized di�erence vegetation index (NDVI) (Rouse et al., 1974),
normalized di�erence water index (NDWI) (Gao, 1996), soil adjusted vegetation index
(SAVI) (Huete, 1988) and modi�ed soil adjusted vegetation index (MSAVI2) (Qi et al.,
1994). Furthermore, the short wave infrared (SWIR) spectral region (1500-1750nm)
contains information on plant water content and is therefore a potential range to detect
vegetation presence and status. The normalized canopy index (NCI) (Vescovo and
Gianelle, 2008) uses SWIR and green values to calculate grassland phenology.

Wavelength [μm]

A
p
p
ar

en
t 

R
efl

 e
ct

an
ce

Figure 1.1.: Spectrum of grass with typical spectral features
(source: http://www.markelowitz.com/Hyperspectral.html).

The remainder of this section reviews the VIs selected for all further (statistical)
analyses.
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1.3. Assessment of Phenology Using Remote Sensing

1.3.1. Simple Ratio (SR)

SR is one of the simplest VIs. SR is usually used in areas with green biomass and was
developed for the study of pigment content and pigment concentration (Vescovo and
Gianelle, 2008). The bene�t of SR is the fact that there is no saturation at high biomass
amounts. A disadvantage of SR is its insensitivity to low biomass amounts (Huete et al.,
1997). It was demonstrated that SR is a good estimator for biomass in boreal forest
(Chen, 1995) and for desert steppe in Inner Mongolia (Ren and Feng, 2014).

1.3.2. Normalized Di�erence Vegetation Index (NDVI)

The most used VI to monitor phenology in literature is NDVI. It is one of the most
used and studied vegetation index to detect biomass and vegetation health because
it e�ectively re�ects spatial variations in vegetation (Huete et al., 2002; White et al.,
2014, 2009). Furthermore, NDVI is often chosen because it enhances the vegetation
signal in low biomass conditions (Broge and Leblanc, 2001; Huete et al., 1997; Liu
et al., 2007; Shen et al., 2008). This enhancement in low biomass conditions implies
that NDVI shows a saturation e�ect at higher biomass levels (Huete et al., 1997, 2002;
Mutanga and Skidmore, 2004). Nevertheless, NDVI is used as e�ective indicator of plant
dynamics studying the relationship between climatic elements and phenology (Sun et al.,
2013). Most of the studies focussing on climatic elements and NDVI investigated the
relation between NDVI and precipitation or temperature. There are varying results on
NDVI and precipitation. Some studies found a very weak or intermediate correlation of
NDVI and precipitation (Mingjun et al., 2007; Yang et al., 1997), others found a strong
correlation of NDVI for grassland or forest and precipitation (Hao et al., 2012; Wang
et al., 2003). Furthermore, higher temperatures ought to lead to higher NDVI values
for vegetation (Braswell et al., 1997; Hao et al., 2012). Seasonal changes in temperature
have an additional impact on NDVI scores, with temperature at the beginning and the
end of the season being strongly positively related to NDVI (Wang et al., 2003).

1.3.3. Normalized Di�erence Water Index (NDWI)

The NDWI is a proxy for liquid water in vegetation and is therefore an indicator for
vegetation health status (Gao, 1996). NDWI is less sensitive to atmospheric scattering
than NDVI but performs worse in regions with low vegetation cover (Gao, 1996). NDWI
has not only been reported to show a high potential to monitor phenology in regions
with high snowfall and across varying regeneration stages (White et al., 2014) but also
correlates with aboveground biomass in alpine grassland studied in Slovakia (Halabuk
et al., 2013).

1.3.4. Soil Adjusted Vegetation Index (SAVI)

The SAVI handles soil-background variation which a�ects the measured vegetation spec-
tra (Haboudane et al., 2004). The SR and NDVI values for vegetation increase with
darker soil background (Huete, 1988). A soil adjustment factor is incorporated in SAVI
to reduce soil-noise (Qi et al., 1994). SAVI is still sensitive to variations in NIR re-
�ectance (Huete et al., 1997) but less sensitive to chlorophyll. The index is also a�ected
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1. Introduction

by saturation in dense vegetation cover, however less than NDVI (Haboudane et al.,
2004; Shen et al., 2008).

1.3.5. Modi�ed Soil Adjusted Vegetation Index 2 (MSAVI2)

Compared to the conventional SAVI, MSAVI2 additionally adjusts for soil e�ects in
a vegetation signal that varies with the amount of vegetation (Liu et al., 2007; Qi
et al., 1994). MSAVI2 is more sensitive to vegetation than SAVI or NDVI (Qi et al.,
1994). It seems to be the best estimator for dense canopies (Broge and Leblanc, 2001)
because there is no clear saturation at high canopy density (Haboudane et al., 2004).
Unfortunately, MSAVI2 is very sensitive to atmospheric e�ects (Broge and Leblanc,
2001).
Shen et al. (2008) have shown that soil adjusting vegetation indices do not improve

estimations of aboveground biomass estimation at high chlorophyll concentration (i.e.
dense vegetation), but are useful in estimating aboveground biomass for ecosystems
with low or medium vegetation cover such as in the desert steppe of Inner Mongolia.

1.3.6. Normalized Canopy Index (NCI)

NCI was developed to improve greenness or chlorophyll information in remote sensing
data. The use of SWIR re�ectance enables the inclusion of water content information
of the vegetation in the VI. In combination with a green band (500 to600nm) (Lillesand
et al., 2008), the production of grassland is reported to become quanti�able (Vescovo
and Gianelle, 2008). A strong correlation of NCI and phytomass was not only found
for green and dry grass in the Trentino Alps of Italy (Vescovo and Gianelle, 2008),
but also for grazed grassland in the Grassland National Park of Canada (Yang et al.,
2012). However, a study on rangeland detection in Iran using NCI reports poor accuracy
(Barati et al., 2011).
All introduced VIs were eventually developed with a focus on vegetation observation.

They show varying saturation levels where they no longer respond to variations in green
biomass (Huete et al., 1997). When saturated, the detection of changes in land cover or
land use, as well as the retrieval of biophysical vegetation parameters and net primary
production from VIs become di�cult (Huete et al., 1997). LAI is often used to describe
the index saturation. Di�erent VIs saturate at di�erent LAI levels. Indeed, NDVI as
well as SR are saturating around a LAI value of three, SAVI around a LAI of four,
and for MSAVI2 no clear LAI limitations are reported (Badeck et al., 2004; Haboudane
et al., 2004; Lu et al., 2005; Mutanga and Skidmore, 2004).
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2. Motivation

The upper part of the Trupchun Valley (Val Trupchun) in the SNP is covered by alpine
grasslands, larch and Swiss stone pine forests (Kneubühler et al., 2014). Data acquired
on an annual basis using the APEX IS (Schaepman et al., 2015) show visual di�erences in
phenology and snow cover from summer 2010 to 2015 (Figure 2.1). Possible explanations
for the di�erences in vegetation development (phenology) between the years could be
varying spatial distributions of snow (Kneubühler et al., 2014) or di�erent weather
conditions (Billings and Bliss, 1959; Ladinig and Wagner, 2005; Totland, 1997).
This study provides an in-depth analysis on phenological di�erences within the years

from 2010 to 2015. Di�erent vegetation classes were identi�ed for this purpose. The
use of VIs o�er the possibility to detect di�erences between vegetation classes both
spatially (i.e. within a single scene) and temporally (between di�erent points in time).
The relationship of VI values with environmental constraints and deduced phenological
key drivers allows conclusions on the main phenological driver in the higher alpine
region of Val Trupchun. Potential correlations of VIs and available meteorological data
are investigated by addressing the following research questions:

2010 2011 2012 2013 2015

Figure 2.1.: RGB-representation of upper Val Trupchun acquired on
24.06.2010, 26.06.2011, 29.06.2012, 12.07.2013, and 3.07.2015.
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2. Motivation

2.1. Research Questions

� Are the VIs linearly correlated with temperature?

� Are di�erences between VI values of vegetation classes linkable to meteorological
derivatives and so to environmental constraints and key drivers?

� Are there di�erences in VI values within vegetation classes due to the fact that
there are di�erent terrain aspects?

� Are there di�erences in VI values between forests with di�erent tree composition
depending on environmental constraints and key drivers?

� Are the chosen VIs appropriate to detect di�erences between vegetation classes in
alpine regions?

� Which of the VIs performs best?
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3. Material and Methods

3.1. Study Area and Data

3.1.1. Study Area

The SNP is located in the south-western part of Switzerland (Figure 3.1) in the Cen-
tral Alps and occupies an area of 170km2, ranging in altitude from 1350 to3170ma.s.l.
(Figure 1). Nearly 86km2 are covered with vegetation: roughly 50km2 are covered
with forest (mainly pine forest), 33km2 with alpine grassland and 3km2 with subalpine
grassland (Schütz et al., 2003). The SNP was founded in 1914 and henceforward all
grazing, logging and hunting activities were prohibited (Schütz et al., 2003). The ab-
sence of human inventions o�ers a great possibility to study ecosystem processes like
phenological development over years (Kneubühler et al., 2014).

Figure 3.1.: Location of the SNP in the south-east of Switzerland.

The study area of this Master's Thesis is located in the upper part of Val Trupchun in
the SNP (Figure 3.2) . Dominant land cover is composed by rocks, bare soil, snow �elds,
grassland communities and forest (Kneubühler et al., 2014). The south-western exposed
hillsides are mainly covered by alpine grassland (1930 to2570ma.s.l.) and small patches
of larch and Swiss stone pine forest (Larix decidua Mill. / Pinus cembra L., 1920 to
2160ma.s.l.). The north-eastern exposed hillsides are covered by larch and Swiss stone
pine forest (1920 to 2240ma.s.l.) and grassland (1920 to 2800ma.s.l.), accounting to
roughly 50% each (Schmid, 2016).
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3. Material and Methods

Figure 3.2.: Location of Val Trupchun (black rectangle) in the SNP (light blue bound-
ary). (source background map: Bundesamt für Landestopogra�e, Switzer-
land).

3.1.2. Data

3.1.2.1. Airborne Prism EXperiment Imaging Spectrometer (APEX IS) Data

APEX is an airborne pushbroom scanner with 1000 across track pixels covering a �eld of
view of 28degrees (Schaepman et al., 2015). The solar re�ected radiation ranging from
0.380 to 2.500µm is measured with 334 recon�gurable spectral bands in the visible/near
infrared (VNIR) and 198 spectral bands in the SWIR spectral region (Jehle et al., 2010).
APEX IS data sets were acquired over the study site every year from 2010 to 2015

around DOY 175, except for 2014 (Table 3.1). In 2014, data acquisition took place
on DOY 270 and was therefore excluded from the data analysis, because it is not
comparable phenologically. The �ight altitude over the study site ranged between 6600
and 7200ma.s.l., resulting in a resampled pixel size of 2m.
The number of �ight lines acquired over Val Trupchun varies for the di�erent years.

In 2012, unstable meteorological conditions led to a reduced number of acquired �ight
lines. In 2011, the APEX sensor experienced technical problems and only two �ight
lines could be acquired. The e�ective �ight lines (sectors) are de�ned in Table 3.1, the
di�erent sectors are presented in Figure 3.3.
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3.1. Study Area and Data

Figure 3.3.: APEX IS acquisition in 2013 of Val Trupchun. The di�erent colored rectan-
gles indicate the four sectors (source sectors: RSL/APEX Flight planning).

3.1.2.2. Digital Elevation Model

The digital elevation model (DEM) used for these thesis has a spatial resolution of
2m. The accuracy below 2000ma.s.l is +/− 0.50m, above 2000ma.s.l. +/−1m to 3m
(swissALTI3D, Bundesamt für Landestopogra�e, Switzerland).

3.1.2.3. Meteorological Data

The closest meteorological station to Val Trupchun is placed at Bu�alora (2816494/1170225,
CH1903+) at 1968ma.s.l., 50m outside of the SNP. At Bu�alora, mean annual precipi-
tation of 925± 162mm and a temperature of 0.2± 0.7◦C (mean ± SD) were measured
between 1904 and 1994 (Risch et al., 2008). Meteorological data for the station Bu�alora
were obtained from IDAWEB (MeteoSchweiz, 2016).
For this study, meteorological data was collected comprising air temperature mea-

sured 2m above ground and aggregated to a daily mean (in◦C), precipitation per day
(in mm), global radiation (in W/m2) and sunshine duration aggregated to a daily sum
(in h). It would have been interesting to have data about snow coverage but unfortu-
nately it was not available for every year for the meteorological station in Bu�alora.
For consistency reasons, no snow coverage data have been used.
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3. Material and Methods

Table 3.1.: Dates (DOY) and time (local time) of APEX IS data acquisitions for upper
Val Trupchun.

year DOY
acquisition time

sector
start end

2010 175 11:29 11:56 A, B, C, D
2011 177 14:48 15:15 A, B
2012 180 10:36 11:05 A, B, C
2013 193 11:53 12:20 A, B, B/C, C, D
2015 184 10:35 11:14 A, B, B/C, C

Meteorological Derivatives In this study, SOPS was calculated using GDD5, as men-
tioned above. The values obtained are recorded in Table 3.2. In 2010, the threshold of
5◦C was reached for the �rst time at DOY 114 at Bu�alora station. Until DOY 175
(APEX data acquisition date), 33 GDD5 with temperature above 5◦C were recorded
in 2010. For comparability reasons, all meteorological data and derivatives were ag-
gregated to the same ending date (DOY 175). The growing days (GD) between SOPS
and the baseline acquisition date (DOY 175) were counted. Temperature (T) was used
as summarized value based on GD and GDD5. Global radiation (GR) and sunshine
duration (SD) were summarized over GD. The days with precipitation (PD) over the
GD period were summarized, as well as the total amount of precipitation (PT).

3.2. Methods

3.2.1. Data Preprocessing

The APEX IS data acquired over the SNP were geometrically and radiometrically cor-
rected, subsetted and subsequently mosaicked as described below. Di�erent vegetation
masks were generated and the test sites used in this study were selected.

3.2.1.1. Geometric and Atmospheric Processing

The �ight lines of APEX were processed to level L2 (Schaepman et al., 2015) by ap-
plying geometrical and radiometrical correction using PARGE (Schläpfer and Richter,
2002) and ATCOR-4 (Richter and Schläpfer, 2002) software packages. The datasets
containing the relevant parts of Val Trupchun were geo-recti�ed using TRAFO (inte-
grated in ATCOR-4) with bilinear interpolation. The chosen coordinate de�nition is
SWISS (CH-1903, Switzerland).

3.2.1.2. Building Subsets and Mosaics

From the available �ight lines, subsets of the study site were generated. To get a data set
for each year that contains the entire area of the study site the subsets were mosaicked
with a feathering of 20 pixels to blend the boundaries of the images. In the year 2012 and
2015, the used subsets contain some clouds. By using the mosaic tool, the less clouded
�ight line subsets were chosen as top subset. This o�ered the generation of an optimal
mosaic for the respective year. Due to reduced data acquisition in 2011, the extension
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3. Material and Methods

of the mosaic is smaller in this year than in the others. Therefore, all mosaics of the
other years were resized to the extent of 2011 (E:2800683/N: 1165001 to E: 2803761/N:
1161549). Subset and mosaic generation was performed using the commercially available
software ENVI 5.2 (Exelis Visual Information Solutions, Boulder, Colorado).

3.2.1.3. Data Co-Registration

By comparing the mosaic of the individual years, discontinuous displacements of the
images of up to tree pixels (6m) are recognizable. These shifts are usually corrected by
setting tie points in the images to be co-registered. Unfortunately, in high alpine regions
there are often too few clearly distinguishable objects which allow the setting of proper
tie points. In the present scenes only shade o�ers identi�able points for co-registration.
Since the acquisition times between the years vary up to 270min, the shade moves and
these features are not usable as tie points (Figure 3.4 ). Therefore, the shifts could not
be corrected and the test sites must consequently be selected manually for comparison
between the years.

Figure 3.4.: Close-up of a tree group. The red asterisk indicates the same tree in the
acquisition of 2011 around 3 p.m. (left) and in 2012 around 10.45 a.m.
(right). The shade moves roughly 90◦.

3.2.1.4. Land Cover Mapping

To separate land cover classes di�erent approaches can be used. In this Master's Thesis
a linear spectral unmixing (LSU) approach was used to �nd pure endmembers. LSU is
a well approved approach to determine classes (Nichol and Wong, 2007; Smith et al.,
2007). Endmembers were selected to distinguish between soil, grassland, rock, forest,
snow and cloud. By applying a LSU approach, every pixel is decomposed in a collection
of constituent spectra which indicates the fraction of each endmember presented in the
pixel (Keshava and Mustard, 2002). LSU was mainly applied to the dataset of 2011.
For cloud detection, data from 2012 and 2015 were used.

Cloud Mask Generation For a proper analysis of vegetated parts, cloudy parts must
be excluded. For the sake of a complete land cover map, clouds and snow have to be
di�erentiated. The selected endmembers of clouds and snow were not pure enough to
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di�erentiate between these two classes with a LSU. The use of Normalized Di�erenced
Snow Index (NDSI) alleviates this issue and facilitates the discrimination between snow
and clouds. The index is de�ned as follows:
NDSI=TMband2−TMband5

TMband2+TMband5

As evident within the formula, the NDSI was originally developed for the Land-
sat Thematic Mapper (TM) sensor, motivated by the large discrepancy between snow
(nearly zero) and clouds (high values) in TM band 5 (Hall et al., 1995). Since the
present thesis deals with APEX imagery instead, the bands in the NDSI had to be
approximated by the closest hyperspectral bands. Suitable substitutes for TM bands 2
and 5 were identi�ed at wavelengths of 0.5177µm and 1.6153µm, respectively.
Unfortunately, the discrimination between clouds and background was still di�cult

because part of the rivers were re�ecting similar to clouds. With additional visual as-
sessment and manual selection, a su�cient cloud mask was created. The cloud mask was
calculated for the data sets of 2012. The clouds in 2015 were dissolved after mosaicking.

Forest Mask Generation It emerged to be di�cult to �nd endmembers of trees. There
are no closed-canopy forests in the SNP; trees often stand in lines up at hillsides instead.
Hence, single trees are mainly recognizable through their shade in the used APEX IS
data set. Endmember selection for trees, tree shade and grassland did not discriminate
trees from their shade properly. Therefore the forest mask was created through selecting
visually discernible forested areas instead. Since forest stands in upper Val Trupchun
are not dense, manual sampling of forest test sites in this area might not result in tree
spectra (see Test Site Selecting). In the end, the forests mask contained also tree shade
and grassland.

Grassland Mask Generation The selection of pixels with a grassland fraction greater
than 0.35 led to an overall acceptable result, except for misclassi�cations at open soils
at higher altitudes and depressions on hillsides. These pixels could be removed by
including pixels with a soil fraction of less than 0.59. As mentioned before, single trees
were also classi�ed as grassland. Therefore, parts of grassland inside the forest mask
were excluded from the grassland mask.

3.2.1.5. Test Site Selection

Due to the spatial shift between the years (see Section II. A. 3.), small test sites within
the forest and grassland mask were selected manually. In general, statistically repre-
sentative sample sizes consist of 30- 40 measurements. This sample size is found to be
appropriate to detect in�eld radiometrically variation of vegetation (Kneubühler, 2002).
For this study, 35 test sites per class were selected. Each test site includes 3x3 pixels
(6x6m).

Forest Test Site Selection Forest test sites were chosen by height, dispersion and
tree composition and lay within the disjoint set of the forest and cloud masks (i.e., only
patches covered by the forest mask, but not by the cloud mask were selected). From the
complete set of over 60 test sites in the forested area, 35 test sites were selected according
to the following rules: �rst, the altitude of pixels within the3x3 patches needed to feature
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3. Material and Methods

a standard deviation score of at most 1.5m. Second, the tree species was required to
re�ect the most typical species distributions within the area. Candidate patches were
therefore compared to the SNP geographic informations system (GIS) inventory, which
includes information about tree compositions (Schmid, 2016). Test sites with ratios
between 100% larch inventories up to 50/50% larch/stone pine inventory were selected.

Grassland Test Site Selecting As for the forest test sites, grassland test sites were
selected by altitude and dispersion over the hillslopes. First, over 90 test sites were
selected. The primal criterion for inclusion was the altitude standard deviation, being no
larger than 1.7m. A second criterion was a su�ciently well-balanced selection between
north-east and south-west aspect. Under these restrictions 35 test sites remained.

3.2.1.6. Vegetation Classes Generation

Di�erent vegetation classes were built (see Table 3.3) with a sample size of at least 5
samples per class. For the forest, a class with all values (AF) was built with 35 sam-
ples. The class forest north-east (FNE) includes 26 samples, forest south-west (FSW)
9 samples. The �ve test sites with the highest larch percentage (100% to 80% larch)
were grouped together to larch 92 (L92). The same was done for larch 70 (L70) (70%,
13 samples), larch 60 (L60) (60%, 12 samples) and larch 50 (L50) (50%, 5 samples).
In All Grassland (AG), 35 test sites are represented. 15 grassland test sites have a
north-eastern aspect (GNE) and 20 a south-western (GSW).
For some further calculations, the vegetation classes in their entirety were used (e.g.

All test sites forest, AF, sample size 35). For comparability with meteorological deriva-
tives, an average value per year for the respective vegetation class was calculated (e.g.
averaged All Forest, aAF, sample size 5).

3.2.2. Calculation of Vegetation Indices

All applied VIs were developed for multispectral broadband sensors (e.g. Landsat TM).
Using the hyperspectral band closest to the center wavelength of the broadband sen-
sor has proven to be a solid method (Table 3.4) (Psomas et al., 2011; Verrelst et al.,
2008). For all �ve years and all forest and grassland test sites NDVI, SR, NDWI, SAVI,
MSAVI2, and NCI were calculated.

3.2.3. Statistical Analyzes

The use of statistical methods allows to test whether correlations of VI values of veg-
etation classes and meteorological data are signi�cant. In addition, statistic enables
to test if di�erences between means of vegetation classes are signi�cant. All statistical
analyses were carried out using SPSS (IBM SPSS Statistics Version 21).

3.2.3.1. Test for Normal Distribution

The data were tested for normal distribution using the Kolmogorov�Smirnov test. De-
pending on the test size a di�erent signi�cance level is de�ned (e.g. sample size of 35
=0.2224, see Appendix A.1). The tested values are normally distributed if the asso-
ciated signi�cance values are higher than the pre-set signi�cance level (Brosius, 2011).
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3.2. Methods

All vegetation class VI values were tested for normal distribution as well as the averaged
vegetation class VI values and the meteorological derivatives.

3.2.3.2. Correlation of Classes

To test the power of connection between two variables a correlation analysis was per-
formed (Brosius, 2011). It is a premise to do a correlation test analysis that the data
are on an interval or ratio scale. Furthermore, the knowledge about the distribution of
the data decides on whether to use a parametric or non-parametric correlation analysis.
For normally distributed data, a Pearson's correlation can be carried out; data fol-
lowing another, possibly unknown distribution require a transformation into ranks and
hence Spearman's rho correlation instead (Brosius, 2011). Correlation coe�cients range
in both cases from 0 (no correlation) to 1 (perfect positive correlation) or -1 (perfect
negative correlation) with steps in between (Brosius, 2011) (see Appendix A.2).
To test if VI values correlates with temperature the auxiliary quantity of height was

used. Because there are no temperature data of di�erent altitude levels, the well-known
linear decrease of temperature with height of 0.5◦C for 100m was assumed.
Correlations of altitude and AF VI values and AG VI values as well as meteorological

derivatives and aAF VI values and aAG VI values were calculated.

3.2.3.3. Di�erences Between Classes

To test on di�erences between means of classes, an independently sampled t-test was
done (Brosius, 2011). An important prerequisite to the t-test is the homogeneity of
variances between the two investigated classes. This can be tested by Levene's test of
similarity of variances (null hypothesis: variances are the same in both test sets).
The t-test has been carried out between FNE and FSW, GNE and GSW as well as

between L92, L70, L60 and L50, respectively. After �nding di�erences between means
of the vegetation classes, a second round of t-tests was carried out between the averaged
means of classes aFNE and aFSW, aGNE and aGSW and between aL92, aL70, aL60
and aL50.
In addition, in case of �nding di�erences between means of classes (e.g. between

aFNE and aFSW), a correlation test analysis of meteorological derivatives and aFNE
and aFSW was applied to the mentioned samples. The same sequence was performed
for aGNE and aGSW as well as for aL92, aL70, aL60 and aL50.
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4. Results

In this section, the most important results are presented. Meteorological derivative dis-
tributions are shown introduced. Preprocessed data like mosaics, data co-registration,
land cover mapping and test site selection are depicted. The calculated vegetation in-
dices are reviewed. Correlations of vegetation classes, meteorological derivatives and
limiting constraints as well as di�erences between vegetation classes are presented.

4.1. Data

The APEX IS and meteorological data are already comprehensively discussed in the
methods section. This section describes the response to meteorological derivatives ex-
plaining the distribution among the years.
Meteorological conditions di�er for every year analyzed in their characteristics and

extremes. In the period between 2010 and 2015, the highest values can be observed
in 2011 for most of the meteorological derivatives (Figure 4.1). GD, PD and PT show
an �M�-shaped �gure among the years with higher values in 2011 and 2013 and lower
values in 2010, 2012, and 2015 (denoted as �M�-shape further below). GR, SD, T and,
to some extent also GDD5 peak in 2011, followed by lower values.

4.2. Data Preprocessing

In this section, the results of selected processing steps are presented and the chosen test
sites are illustrated.

4.2.1. Building Subsets and Mosaics

The mosaics from 2010 to 2015 are presented in Figure 4.2. Comparing the mosaics, a
clear di�erence between 2011 and 2013 depending on the available sectors can be seen.

4.2.2. Land Cover Mapping

The �nal masks for clouds, forest and grassland are presented in Figure 4.3. The full
area of upper Val Trupchun covers 5.32km2, of which 0.175km2 are forest, 1.287km2

grassland and 0.189km2 area covered by clouds.

4.2.3. Test Site Selection

The selected test sites in the forest and in grassland are presented in Figure 4.4.
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Figure 4.1.: Meteorological derivatives summarized from SOPS to DOY 175 (a) and
individual units (see brackets) summarized from SOPS to DOY 175 (b)
and (c).
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4.2. Data Preprocessing

(a) (b)

(c) (d)

(e)

Figure 4.2.: Mosaics of di�erent sectors, (a) 2010, (b) 2011, (c) 2012, (d) 2013 and (e)
2015 (scale of e also applies to a-d).
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4. Results

Figure 4.3.: Applied land cover mask in the upper Val Trupchun.

Figure 4.4.: Selected test sites for forest and grassland in Val Trupchun. (source back-
ground map: Bundesamt für Landestopographie, Switzerland).
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4.3. Vegetation Indices Calculation

4.3. Vegetation Indices Calculation

All VIs were calculated for each year from 2010 to 2015. Being representative for all
VIs, the results for the NDVI can be seen in Figure 4.5.
Figure 4.6 displays boxplots of VIs for all forest test sites and years. VIs vary in the

forest test sites, showing higher mean values in 2011 and 2013 and lower mean values in
2010, 2012 and 2015 implicating an an �M�- shape (MSAVI2, NDVI, SAVI and SR). For
MSAVI2, there are three mild outliers (test site 3 (2012), 9 (2010) and 15 (2012)). The
same mild outliers were also found in NDVI and SAVI. Furthermore, the distribution of
test site values was similar among the years, only the range of values di�ers from VI to
VI. NDWI shows di�erent results: Test site 20, 22 and 31 as extreme outliers (asterisks)
show considerably lower values than the rest of the data. In addition, the �M�-shape
was not visible. The data range and distribution were relatively stable. The NCI shows
decreasing means from 2010 to 2015.
For all grassland test sites, boxplots for all years and VI values were calculated (Figure

4.7). VIs vary in the grassland test site showing higher mean values in 2011 and 2013
and lower mean values in 2010, 2012 and 2015, implicating an �M�- shape similar to the
forest sites (MSAVI2, NDVI, SAVI and SR). MSAVI2, NDVI and SAVI show mostly the
same outliers (test sites 23 and 27), but the boxplots are more extended. The MSAVI2
2013 est site 15 was also an outlier. The NDWI shows one extreme outlier at test site
number 35, the median slightly increases from 2010 to 2015. The NCI decreases from
2010 to 2015.

4.4. Statistical Analysis

4.4.1. Analyzing the Distribution

All datasets listed in Table 4.1 were tested on normal distribution for each year and VI,
with the averaged values from 2010 to 2015. Nearly all tested VI data as well as the
meteorological data are normally distributed with the exception of NDWI values and
one time NCI value.

4.4.2. Analyzing the Correlation of Classes

Detailed results for correlations of temperature and aAF and aAG as well as between
GD, GDD5, T, GR, PD, PT, SD and aAF and aAG can be found in the following
sections. The di�erences between FNE and FSW as well as GNE and GSW, their
averages aFNE, aFSW, aGNE, aGSW as well as between the di�erent larch classes
L92, L70, L60, L50 are also presented.

4.4.2.1. VI Diminishing with Temperature

The VI values (2010 to 2015, averaged for every test site) are presented in relation to
their altitude (Figure 4.8). The depicted trend lines show a slight decrease of the values
with increasing altitude for forest test sites and a slightly stronger decrease for grassland
test sites for MSAVI2, NDVI, NDWI, SAVI and SR. Only the NCI trend line shows a
weak increase with altitude for forest as well as for grassland test sites.
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4. Results

(a) (b)

(c) (d)

(e)

Figure 4.5.: Maps of NDVI values in (a) 2010, (b) 2011, (c) 2012, (d) 2013, (e) 2015.
All maps use the same color code (values smaller than 0 are adapted to 0;
spatial scale of e also applies to a-d).26



4.4. Statistical Analysis

(a) (b)

(c) (d)

(e) (f)

Figure 4.6.: VI values in the forest sites from 2010 to 2015, the y axis showing the
respective VI. Boxes indicate interquartile range crossed by horizontal bars
representing the median. The whiskers span was 1.5x the interquartile
range. Mild outliers represented by curls lay in the 1.5x to 3x interquartile
range. Asterisks representing extreme outliers are far o� 3x interquartile
range. Point numbers correspond to sample numbers.
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4. Results

(a) (b)

(c) (d)

(e) (f)

Figure 4.7.: VI values in the grassland sites from 2010 to 2015, the y axis showing
the respective VI. Boxes indicate interquartile ranges crossed by horizontal
bars representing the median. The whiskers span was 1.5x the interquartile
range. Mild outliers represented by curls lay in the 1.5x to 3x interquartile
range. Asterisks represent extreme outliers that are far o� the 3x interquar-
tile range. Point numbers correspond to sample numbers.
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4.4. Statistical Analysis
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Figure 4.8.: (a) VI values 2010 to 2015, averaged for every test site for forest. (b) VI
values 2010 to 2015, averaged for every test site for grassland.
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4. Results

Table 4.1.: Results of the Kolmogorov-Smirnov test for normal distribution. Displayed
are the not normal distributed VI values which have been calculated.

sample size (n) Kolmogorov-Smirnov
critical value

asymptotic signi�cance
(two tailed)

2010 NDWI
forest

35 0.2242 0.004

NDWI forest
mean

5 0.5633 0.309

NDWI grassland
mean

5 0.5633 0.379

NDWI larch 60 5 0.5633 0.497
NDWI forest
north-east

5 0.5633 0.414

NCI forest
south-west

5 0.5633 0.393

NDWI grassland
north-east

5 0.5633 0.4

NDWI grassland
south-west

5 0.5633 0.419

The correlation of VI values in the forest with their auxiliary quantity of altitude was
presented in Table 4.2. There was only a signi�cant correlation of altitude and auxiliary
VI value for two years. Additionally, the correlation was weak (MSAVI2 forest, −0.301).
There was however a positive weak correlation of NCI of 0.373 with increasing altitude.
All VIs, excluding NCI, of grassland test sites correlate signi�cantly with altitude

Table 4.3. The averaged VIs shows a moderate correlation (values between −0.53 and
−0.569). As already described for forest, there was a negative correlation for all VIs
with increasing altitude. The only exception was NCI which positively correlates with
increasing altitude (value of 0.498).

Table 4.2.: Correlation of VI values and associated altitude values for forested test sites.
The numbers of signi�cant values indicate the numbers of years with signif-
icant values.

numbers of signi�cant values averaged signi�cant correlation
coe�cients (R)

MSAVI2 forest 2 -0.301
NCI forest 1 0.373
NDVI forest 2 -0.306
NDWI forest 2 -0.499
SAVI forest 2 -0.306
SR forest 2 -0.349
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4.4. Statistical Analysis

Table 4.3.: Correlation of VI values and associated altitude values for grassland test
sites. The numbers of signi�cant values indicate the number of years with
signi�cant values.

numbers of signi�cant values averaged signi�cant correlation
coe�cients (R)

MSAVI2 grassland 5 -0.530
NCI grassland 2 0.498
NDVI grassland 5 -0.542
NDWI grassland 5 -0.569
SAVI grassland 5 -0.542
SR grassland 5 -0.563

Table 4.4.: Correlations of VI values and selected meteorological derivatives, averaged
over all years. Only signi�cant correlation coe�cients (R) are shown.

mean over years GD PD PT

MSAVI2 forest 0.929 0.938
NDVI forest 0.931 0.940
SAVI forest 0.931 0.940
SR forest 0.942 0.937
MSAVI2 grassland 0.894
NDVI grassland 0.897
SAVI grassland 0.897
SR grassland 0.879 0.895

4.4.2.2. Correlating Averaged VI Values with Meteorological Derivatives

The signi�cant results for the correlation of meteorological derivatives (GD, GDD5, T,
GR, PD, PT, SD) with averaged vegetation classes (aAF, aAG) VI values are listed
in Table 4.4. Very strong and positive correlations for aAF with GD are reported for
MSAVI2, NDVI, SAVI and SR (R values higher than 0.929). For aAG, only SR shows
a very strong positive correlation of 0.879 with GD. Precipitation was signi�cant for
both vegetation classes. MSAVI2, NDVI, SAVI and SR for forest correlate strongly to
PD with positive correlation values over 0.937. In contrast, PT correlate strongly in
the grassland case with the same VIs with values higher than 0.894.

4.4.3. Di�erences Between Classes

Di�erences between two or more subclasses of a vegetation class allow for further sta-
tistical analysis. The results of di�erence of means calculations of VI values with FNE
and FSW as well as GNE and GSW are presented below. The VI values of the di�er-
ent forest tree compositions (L92 L70, L60, L50) have also been tested on di�erences
between the individual classes.
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4. Results

Table 4.5.: VI values of the forest and grassland separated in two aspect groups (north-
east and south-west). Levenes test: values above 0.05 represent variance
homogeneity. T-test di�erences of means between aspects: values above
0.05 indicate no di�erence between the aspect classes.

levenes t-test di�erences of means
between aspect

NCI 2010 forest 0.798 0.017
MSAVI2 2012 forest 0.031 0.002
NDVI 2012 forest 0.029 0.002
SAVI 2012 forest 0.029 0.002
SR 2012 forest 0.056 0.016
NCI 2013 forest 0.810 0.016
NCI 2015 forest 0.448 0.000
SR 2015 forest 0.007 0.004
NCI 2010 grassland 0.394 0.000
MSAVI2 2011 grassland 0.119 0.018
NCI 2011 grassland 0.318 0.015
NDVI 2011 grassland 0.145 0.017
SAVI 2011 grassland 0.145 0.017
NCI 2012 grassland 0.005 0.019
NCI 2013 grassland 0.255 0.001
NCI 2015 grassland 0.565 0.000

4.4.3.1. Analysis of VI Values with Di�erent Aspect

The test of di�erences of means between the two sampled groups (NE and SW aspect)
was made for every year and every VI. Signi�cant t-test results are listed in Table 4.5.
The VI resulting in most frequent di�erences over the years between the two groups
appears to be NCI, being signi�cant in 2010, 2013 and 2015 for forest and all years
for grassland. All other presented VIs shows signi�cant di�erence only for two years at
maximum.
To �nally correlate di�erences in the aspect with meteorological derivatives the veg-

etation classes FNE, FSW, GNE and GSW VI values had to be averaged on a yearly
basis to be comparable with the �ve years of meteorological data. For forest as well
as for grassland homogeneity was found in the variances and no signi�cance for di�er-
ences between aspect north-east and south-west. The absence of di�erence between the
averaged aspect classes makes a correlation analysis needless.

4.4.3.2. Analysis of Averaged VI Values with Di�erent Tree Compositions

The forest classes with di�erent larch percentage (L92, L70, L60, L50) showed variance
homogeneity, no di�erence of means between the tested classes was signi�cant. There-
fore, further analysis of di�erences of means between averaged tree percentage classes
and correlations with meteorological data allow no further �ndings.
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5. Discussion

5.1. Data

To estimate above ground green biomass or phenological development with VIs from RS
data, the acquisition date is essential. In the beginning of the phenological season, VIs
are in�uenced by a mixture of background and standing litter (Halabuk et al., 2013).
In the early summer (end of June to July) litter is still there but vegetation has already
overgrown, so that VIs response represents phenological development. Data acquisition
for this study took place between end of June and begin of July and is therefore adequate
for phenological research.

5.1.1. Meteorological Derivatives

Nearly all meteorological derivatives (GD, GDD5, T, GR and SD) show a maximal
peak in the year 2011. This can be explained with SOPS in 2011 at DOY 97 the longest
extended GD period. The second peak is present in 2013 in which GD and especially
PT and PD show higher values. The temporal trend of GDD5 expectably coincides
with the course of T, as the two are directly related. The higher values of GD and
GDD5, T, GR and SD suggest that climatic conditions allowed advanced phenological
development in spring 2011 compared to the other years, which coincides with the
�ndings of Kneubühler et al. (2014).

5.2. Methods

5.2.1. Test Site Selection

Test sites were selected in a consistent manner with a restricted altitude standard de-
viation in the test site of less than 1.7m for grassland and less than 1.5m for forest
and dispersed over the area and with di�erent aspect. The sample size is appropriate
(Kneubühler, 2002) and the 3x3 pixels forming the test sites su�ciently diminish e�ects
of shifts between the APEX IS data. The selected test sites are surveyed on consistency
and usefulness on 2011 APEX IS data and proved to be su�cient.

5.2.2. Vegetation Indices Calculation and Application

As mentioned in the results (II.C.1.), most of the VIs show only mild outliers, with
NDWI being the only exception. In 2010, NDWI data has a value span of 0.395 for
forest and 0.380 for grassland. In all other years the di�erences between the highest
and lowest values are smaller than 0.17. The reason for these extreme outliers is based
on the selection of test sites. For both forest and for grassland the outlier test sites
(forest: 20, 22, 32; grassland 34, 35) are located where the calibration wire of APEX
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5. Discussion

IS causes the data voids (Jehle et al., 2010). The calibration wire is interpolated in
the data and not visual in most of the spectral bands. Unfortunately, the calibration
wire is poorly interpolated in the 2010s near infrared bands (also at 1.245µm) and
therefore clearly visible. Therefore, the values at position under the calibration wire do
not represent correct values for the NDWI calculation in 2010. The poor performance of
NDWI reduces the comparability with the other VIs used in this thesis. In fact, NDWI
is chosen as robust VI in alpine vegetation because standing litter does not in�uence
the resulting value due to sensitivity to plant water (Halabuk et al., 2013). For the
mentioned reasons this cannot be con�rmed in this study.
The boxplots of nearly every VI present an �M�-shape. The same �M�-shape exists in

the meteorological derivatives. In fact, the high values in the 2013 VIs stand out because
in the meteorological derivatives GDD5 and T are extremely low. This discrepancy could
probably be explained with the acquisition time of APEX IS data at July 12. Between
the meteorological end date DOY 175 and the APEX IS data acquisition date, 18 days
passed in which phenology had time to develop.
For NCI and NDWI, the distribution is only slightly �M�-shaped. For NCI a decreasing

tendency can be seen over the years, whereas the opposite trend is present within the
data for NDWI. This pattern cannot be explained with meteorological derivatives.

5.2.3. Statistical Analysis

5.2.3.1. Analysis of Distribution

The averaged data are normally distributed with exception of forest and grassland
NDWI. Averaged NDWI values are not normally distributed, potentially because of
the already mentioned calibration wire (II.B.) of the APEX IS data. If the test sites
forming outliers in 2010 for NDWI are excluded in the Kolmogorov-Smirnov calculation,
the data are normally distributed.
The normal distribution of the VIs allows for their use in statistical analysis because

this indicates no saturation. A sharp right hand shoulder in a histogram (not shown in
this study) of a VI indicates saturation (Huete et al., 2002). Saturation e�ects occur
when the amount of above-ground green biomass is too high.

5.2.3.2. Analyzing the Correlations of Classes

Diminishment with Temperature The 5-year averaged VI values for test sites slightly
decrease for nearly all VIs with increasing altitude. Di�erences in the inclination of the
trend line can be observed between forest and grassland: grassland shows a stronger
decrease than forest. The same pattern can be observed for the correlation of VI value of
a site and its altitude. For forest test sites, the values of up to two years show signi�cant
and weak negative correlations. For grassland, the values for all �ve years are signi�cant
(excluding NCI values) with moderate negative correlations. Other studies also describe
a decrease in NDVI with higher elevation which is probably caused by reduced vegetation
productivity and cover (Chapman, 2013; Kariyeva and van Leeuwen, 2011). In contrast
to forest, the grassland cover decreases with increasing altitude. Vegetation is getting
sparse and more background gets visible. This leads to the assumption that temperature
is for forest not an equally strong limiting factor for forest as it is for grassland.
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5.2. Methods

In contrast to other studies, the correlation analysis for NCI presents a positive trend
with increasing altitude. The studies that used NCI presented results with potential
for biomass estimation of NCI (Vescovo and Gianelle, 2008; Yang et al., 2012). It is
questionable if NCI is exclusively controlled by biomass, instead it can be supposed that
NCI is sensitive to background substance (soil and rock).

Correlating of Averaged VI Values with Meteorological Derivative The results of VIs
correlated with meteorological derivatives show clear dependences between VIs on one
side and GD and precipitation on the other side. All other meteorological derivatives
were not signi�cant (GDD5, T, GR, SD). Surprisingly, there is a di�erence between
forest and grassland responses to precipitation. The values for forests are very strongly
correlated with PD, those for grassland instead with PT (MSAVI2, NDVI, SAVI and
SR). This can be explained by the adaptive strategy of water use e�ciency (Wang
et al., 2003). The correlation with the amount of precipitation is also indicated in
other studies for upper Yellow River Catchment in China (forest and grassland) and
for Kansas (grassland) (Hao et al., 2012; Wang et al., 2003). In this study area, a
proposed main constraint by water availability in high alpine regions can be con�rmed
as presented by (Wang et al., 2013).
As described in the introduction, GDD is an important parameter to monitor vege-

tation phenology and available heat for plants. In the study site upper Val Trupchun,
GDD5 is not signi�cantly correlated with VIs (at least during the years 2010 to 2015).
The same result is found for T. This result does not coincide with �ndings for Nebraska
in which the correlation of NDVI and GDD was strongly signi�cant (Yang et al., 1997).
The deviant results may be due to the fact that for Nebraska, GDD was calculated
using minimum and maximum temperature with a minimal threshold of 10◦C. Because
vegetation in alpine regions is adapted to a harsher climate, thresholds for GDD should
be reviewed.

5.2.3.3. Analyzing Di�erences Between Classes

VI Values of Di�erent Aspects Di�erences of means between the aspects are found
for forest as well as for grassland. In particular, NCI is signi�cant for forest for three
years and for grassland for all �ve years. NCI may strongly be in�uenced by di�erent
illumination e�ects which could be an explanation for this very strong correlation over
time and vegetation classes. The other interesting pattern is shown in 2012 for forest.
MSAVI2, NDVI, SAVI and SR are signi�cant in di�erences of means between the aspects
NE and SW. A meaningful explanation for this is not found.
The averaged VIs show no di�erences between the aspect groups. Consequently, there

is no dependence on factors of meteorological derivatives.

Averaged VI Values of Di�erent Tree Compositions Between the di�erent tree
classes is no di�erence in composition found. It is well known that larch budburst occurs
later as altitudes increases (Moser et al., 2010). But budburst had already happened
at the acquisition dates. The adaption of tree species of a high alpine forest to climate
may cause this result. There is no di�erence in means in early summer (end of June)
between the tree classes in the forest.
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5.3. Limitations of This Study

Unfortunately, an applied automatic co-registration for the �ve years mosaic was not
feasible. Co-registered data sets would theoretically allow comparing single trees instead
of entire forests. In this case, the selection of small-sized test sites would not have been
necessary because the whole area of grassland or forest (single trees) could have been
used for subsequent analyzes.
The di�erent amount of APEX IS data over Val Trupchun led to the fact that in 2011

a limited area had to be chosen as study area. For vegetation comparability, it would
have been interesting if the study are would comprise forest further down the valley
because it is denser and would allow a wider range in altitude to be explored.
APEX IS data for 2010 were not available at the same preprocessing level as for

the other years. This mainly impacts infrared bands in the range of 1.07 to 1.46µm.
This lack is clearly observable for test site NDWI values and causes the non-normal
distribution of NDWI. In 2010 data, a small line-artifact is visible between 1.29 and
1.46µm (2.8m cross section dimension) and a wide strip from 1.14 to 1.28µm (48.2m
cross section dimension), where VI values behave unexpectedly. In recent state-of-the-
art data the calibration wire is interpolated already in the preprocessed data.
Meteorological data were restricted by availability for Bu�alora station. It would

have been really interesting to have snowmelt and snow package data for every year.
This would allow de�ning the start of season independently from temperature. The
use of GDD5 in this study only allowed for an assumption of the start of the season.
Furthermore, more meteorological stations located in the Val Trupchun would enabled
a correlation analysis on test site level with the correspondent VI values.
Meteorological derivatives all have the same end date (DOY 175) because of com-

parability reasons. In 2013, the di�erence between DOY 175 and the acquisition date
was 18 days. Due to the potentially strong phenological-driving impact of this period of
time, the aggregated meteorological values do not really represent the initial phenology-
meteorological position in 2013. For further calculation, it would be essential to review
the use of 2013 data.
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5.4. Research Questions

5.4.1. Are the VIs Linearly Correlated with Temperature?

Yes, the VIs for grassland and partly for forest are correlated with altitude and due
to the linear dependence of temperature with altitude, also with temperature. The
correlations of grassland VIs (MSAVI2, NDVI, NDWI, SAVI and SR) and altitude are
moderate in every year. For forest, the correlations are weak in two of �ve years for
the same VIs. A reason for this di�erence between the vegetation classes could be that
grassland is getting sparse with higher altitude and soil and rock background visibility
increases.

5.4.2. Are Di�erences Between VI Values of Vegetation Classes Linkable
to Meteorological Derivatives and so to Environmental Constraints
and Key Drivers?

Yes, there are di�erences in the VI values between the forest and grassland vegetation
classes. The main di�erence applies to the very strong correlation of the numbers of days
with precipitation and forest and also to the very strong correlation of the total amount
of precipitation and grassland. Therefore, precipitation as part of the water availability
constraint seems to be the main driver for alpine vegetation in the upper Val Trupchun.
Additionally, forest correlates with GD. Correlations of vegetation classes and all other
meteorological derivatives (GDD5, T, GR, SD) are not signi�cant.

5.4.3. Are There Di�erences in VI Values Within Vegetation Classes Due
to the Fact that There Are Di�erent Terrain Aspects?

Yes, there are di�erences of means in vegetation classes VI values due to di�erent as-
pects. The di�erence was clearly found between GNE and GSW test sites and partly in
FNE and FSW. For averaged aspect data (aGNE, aGSW, aFNE, aFSW) no di�erence
was found regardless of the sample aspect. This leads to the conclusion that meteoro-
logical derivatives are not correlated with the averaged VI values because there is no
di�erence between the aspects.

5.4.4. Are There Di�erences in VI Values Between Forests with Di�erent
Tree Composition Depending on Environmental Constraints and
Key Drivers?

No, there are no di�erences in the VI values between forests with di�ering tree compo-
sition.

5.4.5. Are the Chosen VIs Appropriate to Detect Di�erences Between
Vegetation Classes in Alpine Regions?

Yes, the chosen VIs are appropriate to detect di�erences between classes in alpine
regions. MSAVI2, NDVI, SAVI and SR speci�cally suited for change detection. NCI
does not seem to be appropriate in alpine regions. The obtained values for NCI appear
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to be unreliable, e.g. NCI increases with height. NDWI cannot be de�nitely excluded
due to limited test site selection.

5.4.6. Which of the VIs Performs Best?

In this study MSAVI2, NDVI, SAVI and SR performed on an adequate and comparable
level, therefore they are appropriate for phenological observation in alpine regions. Fur-
thermore, it is important to point out that no saturation e�ect could be found in the
VI data. Hence, saturation does not constrain the selected VIs in high alpine regions.
Most studies in literature use NDVI for correlation analyzes with meteorological data.
For this reason the use of NDVI is recommended.
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6. Conclusions

The correlation of meteorological data with di�erent VI values of vegetation classes was
tested in this Master's Thesis. APEX IS data sets of the di�erent test sites of forest and
grassland in the Swiss National Park (SNP) were explored. The analyses showed very
strong correlations of VI values (MSAVI2, NDVI, SAVI, and SR) with precipitation.
This result con�rms the �ndings of other studies (Hao et al., 2012; Wang et al., 2003).
In a similar study a strong relation between alpine regions and temperature is stated
(Schultz and Halpert, 1993). The available data from SNP con�rm a dependency from
temperature but only in that way that VI values decreased with higher altitudes. No
signi�cant correlation of temperature and vegetation classes could be found.
APEX IS data from 2010 to 2015 allow a detailed study on the di�erences in VI values

of vegetation classes. The quality of APEX IS data series is unfortunately damaged due
to unsolved problems with co-registration and data preprocessing. The applied data
nevertheless contain a wealth of spectral information and enable in-depth analysis of
phenological development state.
Detailed correlation analysis of vegetation classes in high alpine regions with meteo-

rological data bears the potential to improve the understanding of climate constraints in
high alpine regions. Further climate constraint analysis may provide input parameters
in high alpine regions for climate change modelling. Long-term multi-temporal data
will help to correlate meteorological data with vegetation classes present in the SNP
more robustly and probably con�rm climatic trends.
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7. Outlook

To further investigate the dependence of VI values for vegetation classes on meteorology
data, some aspects need to be considered. An enhanced set of meteorological data
is needed to correlate the speci�c test sites and meteorological data in more detail.
Most important, there should be speci�c meteorological data for each test site. Precise
information on the snowmelt data for each test site would further enable clarify SOPS.
In this study the end date for meteorological data was chosen equal to the acquisition
date in 2010 (earliest acquisition date). It could be a possibility to �nally sum up the
meteorological data to the real acquisition date every year. The comparability between
the years will be more complicated, but meteorological values would better represent
the e�ective meteorological condition in the particular year.
The NCI performed worse for alpine vegetation in this Master's Thesis than reported

by other authors. Therefore, more research is necessary on NCI performance in rugged
terrain with sparse vegetation cover.
If climate trend studies should be undertaken, the multi-temporal data acquisition

needs to be expanded. It makes sense to continue the acquisition with APEX IS since
reliable results were achieved. Long-term data sets are speci�cally needed to investigate
the impact of climate change on vegetation.
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Nomenclature

aAF averaged All Forest

aAG averaged All Grassland

aFNE averaged Forest Noth-East

aFSW averaged Forest South-West

AG All Grassland

aGNE averaged Grassland North-East

aGSW averaged Grassland South-West

aL50 averaged Larch 50

aL60 averaged Larch 60

aL70 averaged Larch 70

aL92 averaged Larch 92

APEX IS Airborne Prism EXperiment Imaging Spectrometer

CO2 Carbon dioxid

DEM Digital Elevation Model

DOY Day Of Year

FNE Forest North-East

fNIR far Near InfraRed

FSW Forest South-West

GD Growing Days between SOPS and DOY 175

GDD Growing Degree Days

GDD0 Growing Degree Days with temperature above 0°C

GDD5 Growing Degree Days with temperature above 5°C

GNE Grassland North-East

GR Global Radiation
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Nomenclature

GSW Grassland South-West

L50 Larch 50

L60 Larch 60

L70 Larch 70

L92 Larch 92

LAI Leaf Area Index

LSU Linear Spectal Unmixing

MIR Middle InfraRed

MSAVI2 Modi�ed Soil Adjusted Vegetation Index 2

NCI Normalized Canopy Index

NDSI Normalized Di�erenced Snow Index

NDVI Normalized Di�erential Vegetation Index

NDWI Normalized Di�erence Water Index

NIR Near InfraRed

nNIR near Near InfraRed

O2 Oxygen

PD Days with Precipitation

pH Potential of Hydrogen

PT Total amount of Precipitation

RS Remote Sensing

SAVI Soil Adjusted Vegetation Index

SD Sunshine Duration

SNP Swiss National Park

SOPS Start Of Phenological Season

SR Simple Ratio

SWIR Short Wave InfraRed

T Temperature

TM Landsat Thematic Mapper

54



Nomenclature

VI Vegetation Index

VIS Visible Spectrum

VNIR Visible/ Near InfraRed
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A. Additional Results

A.1. Kolmogorov-Smirnov Distribution

A.2. Correlation Coe�cient
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A. Additional Results

Table A.1.: Kolmogorov-Smirnov distribution with signi�cant α
(http://www.statistik.tuwien.ac.at/public/dutt/vorles/
mb_wi_vt/node98.html).

α

n 0.1 0.05 0.025 0.01 0.005
1 .9000 .9500 .9750 .9900 .9950
2 .6838 .7764 .8419 .9000 .9293
3 .5648 .6360 .7076 .7846 .8290
4 .4927 .5652 .6239 .6889 .7342
5 .4470 .5094 .5633 .6272 .6685
6 .4104 .4680 .5193 .5774 .6166
7 .3815 .4361 .4834 .5384 .5758
8 .3583 .4096 .4543 .5065 .5418
9 .3391 .3875 .4300 .4796 .5133
10 .3226 .3687 .4092 .4566 .4889
11 .3083 .3524 .3912 .4367 .4677
12 .2958 .3382 .3754 .4192 .4490
13 .2847 .3255 .3614 .4036 .4325
14 .2748 .3142 .3489 .3897 .4176
15 .2659 .3040 .3376 .3771 .4042
16 .2578 .2947 .3273 .3657 .3920
17 .2504 .2863 .3180 .3553 .3809
18 .2436 .2785 .3094 .3457 .3706
19 .2373 .2714 .3014 .3369 .3612
20 .2316 .2647 .2941 .3287 .3524
21 .2262 .2586 .2872 .3210 .3443
22 .2212 .2528 .2809 .3139 .3367
23 .2165 .2475 .2749 .3073 .3295
24 .2120 .2424 .2693 .3010 .3229
25 .2079 .2377 .2640 .2952 .3166
26 .2040 .2332 .2591 .2896 .3106
27 .2003 .2290 .2544 .2844 .3050
28 .1968 .2250 .2499 .2794 .2997
29 .1935 .2212 .2457 .2747 .2947
30 .1903 .2176 .2417 .2702 .2899
31 .1873 .2141 .2379 .2660 .2853
32 .1844 .2108 .2342 .2619 .2809
33 .1817 .2077 .2308 .2580 .2768
34 .1791 .2047 .2274 .2543 .2728
35 .1766 .2018 .2242 .2507 .2690
36 .1742 .1991 .2212 .2473 .2653
37 .1719 .1965 .2183 .2440 .2618
38 .1697 .1939 .2154 .2409 .2584
39 .1675 .1915 .2127 .2379 .2552
40 .1655 .1891 .2101 .2349 .2521

Approximation für n > 40 1.07√
n

1.22√
n

1.36√
n

1.52√
n

1.63√
n
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A.2. Correlation Coe�cient

Table A.2.: Correlation coe�cient de�nition by Brosius (2011).

correlation coe�cient Possible interpretation

0 No correlation
Over 0 to 0.2 Very week correlation
0.2 to 0.4 Week correlation
0.4 to 0.6 Mean correlation
0.6 to 0.8 Strong correlation

0.8 to nearly 1 Very strong correlation
1 Perfect correlation
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