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Abstract 
Knowledge of the extent and duration of snow cover is important for a number of applica-
tions, including climate change research, hydroelectric planning and prediction of ava-
lanches and flooding. Optical remote sensing is widely used for operational snow moni-
toring; however, its applicability is limited by cloud cover and illumination conditions. 
Synthetic Aperture Radar (SAR) sensors offer weather- and time-independent observation 
capabilities for wet snow cover. Numerous studies have demonstrated the applicability of 
C-band SAR imagery for wet snow mapping, but they usually only examined small-scale 
investigation areas. In the present thesis, a local resolution weighting (LRW) approach 
was used to produce composite images from Sentinel-1A C-band SAR data, covering the 
entirety of the European Alps with a single image. Subtracting a dry snow or snow-free 
reference image from these composites and applying a suitable threshold allowed the 
production of wet snow maps. Several algorithm improvements were introduced and as-
sessed in order to address issues arising from the inclusion of a wide variety of land cover 
classes and climate regimes within a single, wide-area investigation scene. The final wet 
snow mapping algorithm presented here incorporates external data on land cover, eleva-
tion, temperature and snow cover and is able to produce unsupervised wet snow classifi-
cations from LRW composite time series spanning an entire melting season. Algorithm 
application to 16-day LRW composites from the melting seasons of 2015 and 2016 re-
vealed good performances, reaching mean user’s accuracies over the entire snowmelt 
period of 76% for 2015 and 79% for 2016 when compared to MODIS snow cover prod-
ucts. Some limitations were identified due to the relatively long temporal baseline of 16 
days of the LRW composites. Availability of Sentinel-1B and RADARSAT constellation 
data in the near future will greatly reduce the composite period length. With those addi-
tional data sources, the method presented here will allow weather-independent wet snow 
mapping with high temporal and spatial resolution over wide areas. 
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1 Introduction 
The extent and duration of snow cover has far-reaching influence on climate, hydrology, 
ecology and economy on both global and local scale. On a global level, it plays an im-
portant role in controlling the planetary albedo and is therefore an important factor in 
Earth’s energy balance (Rees, 2005). Snow cover further influences soil moisture and 
temperature, vegetation growth conditions and permafrost. It shows high sensitivity to 
changes in temperature and precipitation and is therefore a good indicator of climate vari-
ability and change. Consequently, snow cover was included as an important climate vari-
able into the Global Climate Observing System GCOS (WMO and GCOS, 2011). On a 
local level, snow plays an important role as water storage for drinking, irrigation and 
hydroelectricity. Knowledge of the extent and state of snow cover in mountainous areas is 
crucial for predicting avalanches and flooding. It can also have direct economic influ-
ences, both beneficial (e.g. through skiing and other winter recreations) and adverse (e.g. 
through disruption of roads and railways) (Rees, 2005).  

For these reasons, continuous observation of snow cover is an important objective. Moni-
toring by means of traditional field surveying methods can yield very detailed and accu-
rate measurements, but is generally time-consuming and costly. Additionally, those 
methods usually only acquire point measurements, which may not be representative for a 
larger area (Snehmani et al., 2015). Remote sensing has proven to be a suitable tool for 
operational snow monitoring. The first snow map derived from satellite imagery dates 
back to 1960 and routine space-borne snow monitoring has been done since 1966 (Rees, 
2005). Most snow monitoring systems that are operational today use passive sensors that 
measure the visible and infrared part of the electromagnetic spectrum. These systems are 
well suited for snow detection, as they can exploit the high reflectance of snow in the 
visible part of the electromagnetic spectrum. Multispectral sensors can additionally utilise 
the characteristic drop of snow reflectance in the short-wave infrared, which is particular-
ly helpful to discriminate between snow cover and clouds (Rees, 2005; Dietz et al., 2012). 
The large number of available optical satellite systems allows snow mapping in a variety 
of spatial and temporal resolutions. However, the applicability of optical snow mapping is 
impaired by the presence of clouds, limited daylight, mountain shadow and bad illumina-
tion conditions induced by topography and weather (Rees, 2005; Dietz et al., 2012; 
Snehmani et al., 2015). These limitations can be overcome by using microwave sensors, 
as radiation from the microwave spectrum is independent of daylight and able to pene-
trate clouds. Passive microwave sensors have been used since 1978 to map snow cover 
through clouds and at night, but they are severely limited in terms of spatial resolution 
and maximal depth of the mapped snow pack (Rees, 2005; Dietz et al., 2012). Active 
microwave sensors, such as Synthetic Aperture Radar (SAR) sensors, achieve much high-
er spatial resolutions and offer weather- and time-independent observation capabilities. 
For this reason, increasing effort has been invested over the last decades to develop a 
reliable snow mapping method based on SAR satellite data. 
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1.1 Current state of research 

The potential of SAR imagery for snow monitoring applications has been discussed since 
the early 1980s. Investigation of backscatter signatures based on scatterometer measure-
ments revealed a general decreasing trend of backscatter coefficient with increasing snow 
wetness (Stiles & Ulaby, 1980). Experiments with airborne X-band SAR confirmed those 
findings and demonstrated the capabilities of SAR to detect wet snow cover (Mätzler & 
Schanda, 1984). These early studies also revealed the limitations of SAR imagery for 
detecting dry snow. Subsequent studies therefore focussed mostly on the occurrence of 
wet snow during snowmelt season. 

With the launch of the European Remote Sensing satellite ERS-1 in 1991 and ERS-2 in 
1995, continuous monitoring of the earth’s surface with C-band SAR became possible. 
While SAR-systems operating in X-band generally offer better separability of wet snow 
from snow-free areas, C-band SAR was found to be adequate for wet snow mapping (Shi 
& Dozier, 1993). Rott and Nagler (1995) introduced a method to extract wet snow from 
ERS-1 images by calculating the ratio between an image containing wet snow and a ref-
erence image featuring only dry snow or snow-free areas and applying a suitable thresh-
old to the ratio image. Similar approaches were subsequently successfully applied in mul-
tiple studies based on ERS data (e.g. Baghdadi et al., 1997; Nagler & Rott, 2000; Pies-
bergen, 2001), on ENVISAT ASAR data (e.g. Storvold & Malnes, 2004; Nagler & Rott, 
2005; Longpépé et al., 2009), on RADARSAT data (Pivot, 2012) as well as on COSMO 
SkyMed images (Schellenberger et al., 2012; Notarnicola et al., 2013). Recently, Nagler 
et al. (2016) demonstrated the suitability of this approach for the newly launched Senti-
nel-1A platform. Alternative approaches to SAR-based wet snow mapping were also 
proposed, using SAR interferometry (Strozzi et al., 1999) and polarimetry (Park et al., 
2014). However, the rationing approach with subsequent application of a suitable thresh-
old remains the most widely used method to date for deriving wet snow cover from radar 
imagery. 

1.2 Aim 

While the capabilities of SAR imagery for wet snow mapping have clearly been demon-
strated, most studies to date were confined to using data acquired within a single satellite 
track. This did not only limit the size of the study areas to the local scale, but also led to 
data gaps in complex terrain due to radar shadow and layover effects. Small (2012) intro-
duced a Local Resolution Weighting (LRW) method that allowed to combine SAR imag-
es from multiple ascending and descending orbits into one composite image, thereby 
overcoming both of those limitations (see chapter 2.2.2). Schaub (2011) and Rohner 
(2014) demonstrated the general suitability of such LRW composites based on ENVISAT 
ASAR and RADARSAT-2 data for wet snow mapping. However, they applied the largely 
unaltered method introduced by Rott and Nagler (1995) with one single wet snow thresh-
old to LRW composites covering the extent of Switzerland. This approach could be prob-
lematic, as the expansion of the study area from local to national scale increased the di-
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versity of land cover classes and climate regimes contained within a single composite 
image. This might necessitate the application of adjusted algorithm settings for different 
regions within the study area. Furthermore, the inclusion of different land cover types and 
temperature regimes within a single image might necessitate a more careful selection of 
data to be used as dry snow reference than suggested by the standard method, in order to 
avoid wet snow contamination of the reference image. These implications caused by an 
expansion of the study area have not yet been investigated. The present study aimed to 
close this gap by implementing and testing several adjustments to the standard wet snow 
thresholding method and incorporating additional data sources such as optically derived 
snow maps, temperature data, terrain model and land cover information. Usage of the 
dense SAR image time series available from the new Sentinel-1A satellite allowed a fur-
ther expansion of the study area beyond the national scale, covering the entirety of the 
European Alps. The following research questions were formulated: 

1. What is the performance in terms of classification accuracy of a wet snow map-
ping algorithm based on backscatter thresholding of Sentinel-1 Local Resolu-
tion Weighting (LRW) composite images in the Alps? 

2. How can the wet snow detection algorithm be improved by 
a) adding further input datasets? 
b) improving the quality of the dry reference backscatter image? 
c) adjusting backscatter difference thresholds? 
d) combining VH and VV polarisations? 
e) shortening the composite time period? 
f) using 250 vs. 500 meter resolution MODIS snow products? 

1.3 Thesis structure 

The study area and all used datasets are described in chapter 2. In chapter 3 the applied 
methods to produce the necessary input datasets as well as the actual snow mapping algo-
rithm are explained. Results are presented in chapter 4 and synthesised and discussed in 
chapter 5. Finally, the most important conclusions are summarised in chapter 6 and an 
outlook to possible further research is given. 

2 Data 

2.1 Study area 

The study area covered the European Alps and adjacent regions. It was defined by a rec-
tangle spanning from 43.5° N / 5.5° E (south-west corner) to 49° N / 17.5° E (north-east 
corner). It covered the entirety of Switzerland, Liechtenstein, Austria, Slovenia and San 
Marino as well as parts of France, Italy, Germany, the Czech Republic, Slovakia, Hunga-
ry, Croatia and Bosnia-Herzegovina (see Figure 1). The total land area was 563’000 km2, 
with elevations ranging from 0 – 4810 m.a.s.l. 
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Figure 1. Study area (red box) in the larger European context (Source: ESRI, 2015). 

2.2 Sentinel-1 SAR data 

2.2.1 Sensor overview 

The Sentinel-1 mission consists of two identical Satellites, carrying C-band Synthetic 
Aperture Radar (SAR) sensors. They are part of the European Earth observation program 
Copernicus and are operated by the European Space Agency (ESA). Sentinel-1A was 
launched on the 3rd of April 2014, Sentinel-1B followed on the 25th of April 2016 (ESA, 
n.d.). They fly on the same sun-synchronous, near polar orbit at 693 km altitude, with a 
180-degree orbital phasing difference. The repeat cycle for each satellite is 12 days, a 
combination of both satellites will achieve 6-day repeat pass observations (Torres et al., 
2012). 

The Sentinel-1 SAR sensor operates in the C-band at a centre frequency of 5.405 GHz. It 
can be operated in four different imaging modes, providing different coverage and spatial 
resolutions: Interferometric Wide-swath mode (IW), Wave mode (WV), Strip Map mode 
(SM) and Extra Wide-swath mode (EW). The IW mode is the nominal operation mode 
over land areas and achieves a geometric ground resolution of 5 m x 20 m within a swath 
width of 250 km. Data is usually acquired in dual-polarisation mode over Europe (Torres 
et al., 2012). At the time of writing, Sentinel-1B is still in its in-orbit commissioning 
phase. Therefore only Sentinel-1A data was used in this thesis. 

2.2.2 Local Resolution Weighting (LRW) composites 

In complex terrain like the Alps, single SAR acquisitions typically suffer from severe 
distortions in geometry due to foreshortening and layover-effects. These distortions are 

Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping,
Aerogrid, IGN, IGP, swisstopo, and the GIS User Community, Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap
contributors, and the GIS user community
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traditionally corrected by resampling the data into a map geometry, using a Digital Eleva-
tion Model (DEM). This results in a Geocoded Terrain-Corrected (GTC) product (Meier 
et al., 1993). Aside from geometric distortions, complex topography also influences the 
radiometry of a SAR scene, which is not accounted for by the GTC approach. To normal-
ize those radiometric distortions, Small (2011) introduced an approach to produce Radi-
ometrically Terrain-Corrected (RTC) images. This method uses the highly accurate state 
vectors of modern SAR satellites and a high-resolution DEM to produce a simulated radar 
geometry image that models the effects of terrain on the backscatter. This simulated im-
age is then applied to a SAR acquisition to compensate the terrain-induced backscatter 
differences. Land-cover induced backscatter differences are more easily retrieved from 
the resulting flattened RTC image, enabling the comparison of land-cover signatures over 
larger areas and even between multi-track acquisitions (Small, 2011). 

While the RTC approach has been proven to effectively compensate for geometric and 
radiometric distortions caused by topography, it cannot compensate for the terrain-
induced variations of local resolution and data gaps due to radar shadow. RTC images do 
however allow an easy joining of images from multiple acquisitions, both from different 
satellite tracks as well as from ascending and descending orbits. Since regions seen as 
foreslopes in ascending orbits are typically viewed as backslopes in descending acquisi-
tions, a combination of the two orbits presents great potential to compensate for locally 
varying resolution and data gaps. Small (2012) developed a method to combine RTC-
flattened radar images from multiple ascending and descending tracks into one composite 
image, thereby trading off temporal resolution for increased local spatial resolution and 
larger scene extents. This Local Resolution Weighting (LRW) approach computes the 
weighted sum of all contributing flattened backscatter observations, whereby images with 
higher local resolution are given a proportionally higher local weight. The weighting is 
done in such a way that all available acquisitions contribute to the final composite, there-
by reducing noise and increasing the Equivalent Number of Looks (ENL). The applicabil-
ity of this approach has been demonstrated using ENVISAT ASAR wide swath and Ra-
darsat-2 imagery acquired over Switzerland (Small, 2012). 

In the present thesis, pre-processed Sentinel-1A LRW composites covering the entire 
study area were used. A time series starting on the 30th of September 2014 and running 
through June 2016 was available, with data acquired in cross-polarisation (VH) as well as 
in like-polarisation (VV). The data was reprojected into geographic latitude/longitude 
coordinates, with a spatial resolution of 3x3 arc-seconds (roughly 90 Meters). Two tem-
poral aggregation levels were used: 1) composites of images acquired over an 8-day peri-
od with a four-day overlap with the previous and subsequent acquisition period, and 2) 
composites over a 16-day period and eight days of temporal overlap. The periods were 
chosen to match the dates of the MODIS snow product MOD10A2 (Riggs et al., 2006; 
see chapter 2.3). The 16-day LRW composite represented a good compromise between 
maximum data coverage of the study area and short time span. While most images still 
contained data gaps in the first half of the time series, the composite scenes were gap-free 
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from the 9th of November 2015 onwards. The total scene coverage of the 16-day compo-
sites varied between 82.3% and 100%. The 8-day composites offered a better temporal 
resolution, but at the cost of some very large data gaps, with coverage ranging from 
50.1% to 100% (see Figure 2). In addition to the large data gaps, the 8-day composites 
were expected to feature a generally higher noise level compared to the 16-day images 
due to the smaller amount of spatial overlap of the single SAR acquisitions. 

 
Figure 2. Coverage of the study area by the Sentinel-1A SAR composite images. 

2.3 MODIS snow product 

Snow products derived from optical imagery were used as part of the wet snow mapping 
algorithm as well as for comparison with the SAR-derived snow maps. All optically de-
rived maps used here were based on Moderate Resolution Imaging Spectroradiometer 
(MODIS) imagery. 

MODIS is a space-borne, multispectral optical instrument operated by the National Aero-
nautics and Space Administration (NASA). It observes the entire Earth every one to two 
days in 36 spectral bands. Spatial resolution ranges from 250 m (bands 1-2) over 500 m 
(bands 3-7) to 1000 m (bands 8-36) (NASA, n.d.). The first MODIS instrument was 
launched aboard the Terra satellite on the 18th of December 1999 and has been continual-
ly collecting data to the present (NASA, 2016b). A second MODIS instrument was 
launched aboard Terra’s sister satellite, Aqua, on the 4th of May 2002, and has also re-
mained operational to date (NASA, 2016a). 
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2.3.1 NASA MODIS snow product 

NASA offers a variety of snow products derived from MODIS imagery acquired by the 
Terra and Aqua platforms. The snow detection is based on the Normalized Difference 
Snow Index (NDSI), which is defined for MODIS imagery as 

𝑁𝐷𝑆𝐼 =  !"#$ !!!"#$ !
!"#$ !!!"#$ !

. 

Since band 6 on Aqua is only partly functional, the NDSI for Aqua acquisitions are calcu-
lated by using band 7 instead of band 6 (Hall & Riggs, 2007). Snow is detected by apply-
ing suitable thresholds to the NDSI. Additional, individual thresholding of band 2 and 
band 4 prevent erroneous snow classification of surfaces with low reflectance (e.g. water 
surfaces) that might have a high NDSI value. For detection of snow in dense vegetation, 
additional criteria are implemented. Forested pixels are classified as snow if the scatter-
plot values of the NDSI and the Normalized Difference Vegetation Index (NDVI) lie 
within a defined polygon, and where band 1 and band 2 reflectance are above a fixed 
threshold. Finally, any wrong classifications of bright warm surfaces as snow are correct-
ed by applying a surface temperature screen. The final snow product is available with 
temporal resolutions of one day, eight days and one month, and with spatial resolutions of 
500 m in the sinusoidal grid or 0.05° in the climate modelling grid (Hall et al., 2001; 
Riggs et al., 2006). The 500 m daily product achieves an overall absolute accuracy of 
about 93%. Lower accuracies are found in forested areas and complex terrain, while 
higher accuracies of up to 99% have been observed in cropland and agricultural areas 
(Hall & Riggs, 2007). 

In the present study, the MODIS 8-day snow product MOD10A2 from collection five was 
used (Riggs et al., 2006). This product is based on daily 500 m resolution snow cover 
maps (sinusoidal grid), classified by the algorithm described above, that were then com-
bined into an 8-day composite image. If snow cover was detected in a pixel on any day 
during the 8-day period, then the cell is labelled as snow in the composite, regardless of 
whether it was classified as snow on any other day of the period. The composite therefore 
represented the maximum snow extent during the 8-day period. Cells that were cloud 
covered during all eight days were marked as cloud. In addition to the maximum snow 
extent, the data files also featured a second band containing an 8-bit “chronobyte” image, 
where each bit represented one day during the 8-day composite period. If the pixel was 
classified as snow on a particular day, the corresponding bit was set to one. This allowed 
the extraction of the total number of days during the 8-day period where a pixel was de-
tected as snow covered (Riggs et al., 2006). Based on this “chronobyte” image, an addi-
tional set of data spanning 16 days was produced, matching the date ranges of the 16-day 
SAR composites. Since this was twice the time span of the MOD10A2 product, the re-
quired minimal number of days of snow detection per pixel was also doubled. This meant 
that a pixel had to be detected as snow covered on at least two days during the 16-day 
period in order to be labelled as snow. Accordingly, a pixel had to be cloud-free for at 
least two days during the 16-day period, otherwise it was marked as cloud. 
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Only data from Terra was used in this study, as Aqua data suffered from the non-
functional band 6 and therefore showed more noise (Hall & Riggs, 2007). The study area 
was completely covered by MODIS tiles h18v04 and h19v04. They were downloaded for 
the entire available MOD10A2 time series from the 26th of February 2000 to the 8th of 
June 2016. The tiles were then mosaicked and reprojected into geographic coordinates 
using the open source Geospatial Data Abstraction Library (GDAL). The original 500 m 
resolution was resampled to 3x3 arc-second resolution using nearest neighbour 
resampling method and cropped to the investigation scene extent, so that it matched the 
Sentinel SAR data both in extent and in spatial resolution. 

2.3.2 EURAC MODIS snow product 

The Institute for Applied Remote Sensing at the European Academy (EURAC) in Bozen, 
Italy, produced a snow product that was based on the same MODIS data as the NASA 
products, but used a different approach to identify snow. Instead of using the NDSI, snow 
detection was done using only MODIS bands 1 (red) and 2 (infrared). This allowed ex-
ploitation of their higher spatial resolution of 250 m compared to the 500 m resolution of 
bands 4 and 6 used for the NDSI, resulting in a snow map with higher spatial resolution 
(Notaricola et al., 2013b). Bands 1 and 2 were combined to calculate the NDVI: 

𝑁𝐷𝑉𝐼 =  !"#$ !!!"#$ !
!"#$ !!!"#$ !

. 

To detect snow, thresholds were applied to the NDVI. In non-forested areas, a single 
global threshold was applied. In forested areas, individual NDVI-thresholds were used for 
coniferous, deciduous and mixed forests. Additionally, a multi-temporal approach was 
applied, where the ratio of the image to be classified was compared to a snow-free refer-
ence image. Cloud detection was done using the NDSI based on bands 4 and 6 as well as 
the 1000 m resolution emissive bands 20, 21, 26, 31, 32. Finally, the snow maps produced 
for MODIS Aqua and Terra data were combined to utilize the half-day acquisition time 
difference between the two sensors, reducing cloud coverage as well as the number of 
non-classified pixels (Notarnicola et al., 2013a). The resulting 250 m resolution snow 
maps achieved a mean overall accuracy of around 88.1% when compared to Landsat 7 
ETM+ images and around 93.7% when compared to ground measurements. Higher accu-
racies were achieved in open areas, while very rugged terrain with northern exposition 
and densely forested areas yielded lower accuracies (Notaricola et al., 2013b). 

For this study, daily EURAC snow cover maps for the entire year 2015 were available. 
Only 63% of the Sentinel-1 study area was covered by the EURAC data (see Figure 3). 
The daily maps were combined to the same 8-day periods as the NASA snow product, 
using the same combination rule as for the NASA data (i.e. if a pixel was marked as snow 
on one day, it was marked snow for the entire 8-day period). A second set of data span-
ning 16 days was produced in the same manner as for the NASA-data (i.e. if a pixel was 
marked as snow for at least two days during the 16-day period, it was marked as snow in 
the composite image). The composites were then reprojected, resampled and cropped 
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analogue to the NASA data, so that resolution and extent matched the Sentinel SAR data 
(missing areas were filled with NoData-values). 

 
Figure 3. Comparison of EURAC snow cover data extent (yellow box) with the study area (red box) 

(Source: ESRI, 2015). 

2.4 Digital Elevation Model (DEM) 

A Digital Elevation Model (DEM) derived from the Shuttle Radar Topography Mission 
(SRTM) was used. This mission, a joint endeavour of NASA, National Geospatial-
Intelligence Agency, and the German and Italian Space Agencies, flew in early 2000. It 
used interferometric radar to derive a global, high-resolution DEM at a maximum spatial 
resolution of one arc-second (Farr et al., 2007). The data used in this study had a spatial 
resolution of three arc-seconds and was cropped to the investigation scene extent. 

2.5 CORINE land cover map 

Information on land cover used in this thesis was extracted from the Europe-wide 
CORINE land cover (CLC) map, produced for the Copernicus land monitoring services. 
The latest available map was produced with data from 2011 and 2012. It classified land 
and water surfaces into 48 land cover classes, based on satellite data from IRS, SPOT and 
RapidEye, as well as from orthophotos and topographic maps. The map was available in 
100 m spatial resolution and achieved a reported thematic accuracy of at least 85% 
(Büttner et al., 2014). 

The land cover map was reprojected, resampled and cropped with GDAL in order to 
match the spatial resolution and extent of the Sentinel SAR composites. Resampling was 
done using the nearest neighbour approach. The land cover classes were then aggregated 
into seven classes: 

Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping,
Aerogrid, IGN, IGP, swisstopo, and the GIS User Community, Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap
contributors, and the GIS user community
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- urban areas:  CLC classes 1 – 11 
- agricultural land: CLC classes 12 – 22 
- forests: CLC classes 23 – 25 
- scrubland: CLC classes 26 – 29 
- natural non-vegetated areas: CLC classes 30 – 33 
- glaciers & perpetual snow: CLC class 34 
- water surfaces: CLC classes 40 – 44 

Wetlands (CLC classes 35 – 39), unclassified pixels and missing data (CLC classes 45 –
 48) only occurred in insignificant extents within the study area and were therefore ne-
glected. 

2.6 ERA-Interim temperature data 

Temperature data used in this study was derived from the global atmospheric reanalysis 
ERA-Interim, produced and distributed by the European Centre for Medium-Range 
Weather Forecasts (ECMWF). This reanalysis featured a multitude of surface and upper-
air parameters describing weather, ocean-wave and land-surface conditions. It was pro-
duced by assimilating various satellite and in situ data with forecast model outputs. The 
data was available globally in various spatial resolutions and a temporal resolution of 
three or six hours, depending on the parameter. The time series started in 1979 and has 
been continually updated to the present (Berrisford et al., 2011; Dee et al., 2011). 

6-hourly maps of temperature two meters above ground were available from ERA-Interim 
at a maximum spatial resolution of 0.125x0.125° in geographic coordinates. While this 
dataset gave a good overview of the regional temperature conditions, the spatial resolu-
tion was too coarse to adequately represent the actual surface temperature in complex 
terrain like the Alps. A resampling method considering terrain variation was therefore 
required to downscale the temperature data to match the 3x3 arc-second spatial resolution 
of the SAR data. The applied method is described in chapter 3.1.1.  

To validate the resampled temperature maps, a total of 80’630 surface temperature meas-
urements from 111 automated weather stations scattered over Switzerland were retrieved 
from the CLIMAP-portal provided by MeteoSchweiz (MeteoSchweiz, 2014). The meas-
urements were recorded over one year (1st October 2014 to 30th September 2015), with 
daily acquisitions at 06:00 UTC and 18:00 UTC. 

3 Methods 
Microwave radiation interacts with snow cover in a complex manner. The backscatter 
measured by a SAR antenna can be described as the sum of surface scattering at the snow 
surface, volume scattering within the snowpack and scattering at the snow-soil interface. 
Those contributors are in turn influenced by radar wavelength, snow grain size and liquid 
water content of the snow pack (Hall 1996). In C-band, the dominating factor is the snow 
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wetness, i.e. the amount of liquid water within the snow pack. Microwaves in the C-band 
spectrum can penetrate dry snow to a depth of about 20 meters, whereas the penetration 
depth in wet snow with liquid water content of 5 volume-% is reduced to a few centime-
tres (Mätzler, 1986). This means that for remote sensing applications, dry snow is largely 
transparent and therefore not detectable for C-band radar. Wet snow on the other hand 
typically reduces the backscatter intensity significantly due to high dielectric losses 
caused by the liquid water content within the snow pack (Mätzler & Schanda, 1984). This 
allows the mapping of wet snow cover by means of multitemporal change detection. A 
reference image taken during snow-free or dry-snow conditions is hereby subtracted from 
an investigation image acquired during snowmelt. This removes backscatter variations 
caused by topography and land cover; ideally only backscatter differences caused by die-
lectric losses in wet snow remain. A wet snow cover map can then be extracted from this 
difference image by applying a suitable threshold. 

This approach was introduced by Rott & Nagler (1995) and applied to ERS-1 C-band 
data acquired over the Austrian Alps. Baghdadi et al. (1997) used a similar approach for 
ERS-1 data taken over a study area in southeastern Québec, Canada. Similar approaches 
have later been successfully adapted to ENVISAT ASAR data (e.g. Storvold & Malnes, 
2004; Nagler & Rott, 2005; Longpépé et al., 2009), to RADARSAT data (e.g. Pivot, 
2012), to COSMO SkyMed images (Schellenberger et al., 2012; Notarnicola et al., 2013) 
and recently to Sentinel-1A data (Nagler et al., 2016). While those studies demonstrated 
the general applicability of this method for C-band SAR, they mostly featured a limited 
spatial extent and typically only analysed acquisitions from a few points in time. The 
multitemporal approach required repeat-pass acquisitions in a single geometry, which 
limited the number of useable acquisitions and complicated an analysis beyond single-
track collection. In the present thesis, LRW-composites (see chapter 2.2.2) were used as 
input data instead of single-track SAR acquisitions. This allowed the mapping of wet 
snow over a wide area while removing the need for exact repeat-pass acquisitions, there-
fore enabling the utilisation of all available images taken over the study area. The method 
was further refined by incorporating auxiliary data products from other sensors, allowing 
an efficient wide-area mapping of wet snow for an entire time series. 

Figure 4 gives an overview of the input datasets and processing steps used in the present 
study. Aside from any necessary pre-processing, the processing can be split into five main 
parts: 1) a backscatter difference image time series was produced by pixel-wise subtrac-
tion of the flattened γ0 reference backscatter from γ0 of the investigation scene; 2) a DEM 
and the CORINE land cover classification was used to mask out certain areas and section 
the remaining area of every difference image into regions; 3) temperature data and the 
MODIS snow cover product were used to mask out snow-free areas and thus amplify the 
backscatter differences between wet snow and dry/no snow in order to extract thresholds 
for each region from the time series; 4) the thresholds were applied to every difference 
image of the time series; 5) a post-classification correction of misclassified pixels based 
on the mean length of snow season for each pixel, extracted from the 15-year MODIS 
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time series, was applied. The result was a time series of wet snow cover maps that al-
lowed the investigation of retreating snow cover during the melting season. In the follow-
ing sub-chapters, the individual steps of the workflow are described in detail. 

 
Figure 4. Overview over all input datasets and processing steps. 

3.1 Radar pre-processing and data preparation 

The Sentinel LRW composites were already calibrated and georeferenced level 3 prod-
ucts, so that pre-processing was confined to converting the backscatter into the logarith-
mic decibel (dB) domain. The map projection and resolution of the LRW data was used 
as the target grid for all other datasets. 

The auxiliary data products used in this study were level 3 products with a sufficient de-
gree of georeferencing accuracy. A separate co-registration step was therefore not neces-
sary. Pre-processing of this data was limited to reprojection into the target grid, cropping 
to the scene extent and resampling to match the target resolution. With the exception of 
the temperature data, resampling was done using the nearest neighbour approach, in order 
to preserve the original data content. The temperature data needed to be resampled with a 
more complex approach in order to achieve the necessary level of detail. This resampling 
approach is described below. 

3.1.1 Resampling of the ERA-Interim temperature data 

The best available spatial resolution of the ERA-Interim surface temperature data was 
0.125x0.125° (or 450x450 arc-seconds) in geographic coordinates. While this gave a 
good overview of the regional temperature distribution, it was too coarse to adequately 
represent the local changes in surface temperatures due to complex terrain. A downscal-
ing method developed by Gao et al. (2012) using a DEM and the local lapse rate was 
therefore used to resample the temperature data to match the 3x3 arc-second spatial reso-
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lution of the SAR images. The DEM described in chapter 2.4 was used for this purpose. 
Additionally, the following ERA-Interim input datasets were used: 

- t2m: temperature two meters above ground 
- t700: temperature at the 700 hPa pressure level 
- t850: temperature at the 850 hPa pressure level 
- t925: temperature at the 925 hPa pressure level 
- z700: geopotential at the 700 hPa pressure level 
- z850: geopotential at the 850 hPa pressure level 
- z925: geopotential at the 925 hPa pressure level 

Only data for 06:00 UTC and 18:00 UTC was used, as those times coincided roughly 
with the ascending and descending passes of Sentinel-1A over the study area. A complete 
time series spanning from the 1st of October 2014 to the 29th of February 2016 was avail-
able. As the data was already georeferenced, no further pre-processing needed to be done. 

The resampling method was implemented as described by Gao et al. (2012). First, the 
geopotential data was converted to geopotential height by dividing each grid cell by the 
gravitational acceleration g. Next, the local lapse rate Γ was calculated for the different 
pressure levels (PL) by dividing the temperature difference (ΔT) of two pressure levels by 
the difference in geopotential height (Δz) of the same pressure levels: 

Γ =  !!"!! !!"!
!!"!! !!"!

. 

Next, the mean elevation h450s of every 450x450 arc-second ERA-Interim grid cell was 
calculated by averaging the DEM-values contained within each pixel. Based on this, the 
elevation difference Δh between the mean elevation and the actual DEM elevation h3s at 
each 3x3 arc-second grid cell was calculated:  

∆ℎ =  ℎ!"#! − ℎ!!. 

Finally, the temperature data could be resampled to the higher spatial resolution by calcu-
lating the height-corrected temperature T: 

T =  T!"# +  Γ ∗  Δh. 

At lower altitudes, temperature conditions are mainly influenced by local circulation pat-
terns, while at higher elevations they are more representative of free airflow. The bounda-
ry layer between those two conditions usually lies at approximately 1500 m.a.s.l., which 
corresponds roughly to the 850 hPa pressure level. To account for those conditions, dif-
ferent reference temperatures and lapse rates were used for different elevations (see Table 
1). 

Elevation Reference temperature Tref Lapse rate Γ 
< 1500 m.a.s.l. t2m Γ!"#$!"!!"#$!" 
> 1500 m.a.s.l. t850 Γ!""#!"!!"#$!" 

Table 1. Reference temperatures and lapse rates for different elevations. 
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The resulting temperature maps contain some artefacts caused by the larger ERA-Interim 
pixel size, but in general they appear to well represent the height-induced temperature 
differences (see example in Figure 5). 

 
Figure 5. Example of resampled temperature map. 

To validate the temperature maps, a comparison with measurements from weather sta-
tions was conducted. Surface temperature measurements were available from 111 auto-
mated weather stations scattered over Switzerland, spanning one year (1st October 2014 to 
30th September 2015). Measurements from 06:00 UTC and 18:00 UTC were used as 
comparison values in order to match the reference times of the resampled ERA-Interim 
temperature maps. A total of 80’630 valid station measurements were available. A daily 
correlation analysis revealed good agreement between the resampled maps and the station 
measurements, with values for Pearson’s r varying around a median of 0.71 with a mean 
deviation from the median of 0.09. Agreement was slightly lower during winter months 
and higher during summer months. When comparing the values over the entire year, a 
correlation of 0.91 was achieved. Over all, the resampled temperature maps were suffi-
ciently accurate for the purposes of this study. 

3.2 Backscatter reference image 

The backscatter reference image represents the backscatter of the study area under snow-
free and/or dry snow conditions. It is therefore typically either an image composited from 
summer acquisitions, where no snow was present, or from winter images acquired during 
freezing periods, when all the snow present in the scene was completely dry. Calculating 
the average of multiple acquisitions that meet the required conditions can reduce errors 
induced by temporal variations of backscattering and speckle (Nagler & Rott, 2000). The 
quality of the reference image is crucial, as any wet snow contamination will most likely 
lead to an erroneous snow classification at that location. 

To assess which reference image was best suited for wet snow mapping, four different 
approaches were compared in the present study: 1) a simple summer reference, based on 
LRW composites acquired during summer months; 2) a simple winter reference, based on 
LRW composites acquired in winter during periods of lowest average temperature over 

Temperature map for 3rd April 2015, 18:00 UTC
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the study area; 3) a snow-adjusted summer reference, where any summer pixels with re-
sidual snow were replaced by winter pixels; and 4) an improved winter reference, where 
the selection of suitable acquisitions was based on temperature values on the pixel level 
instead of the average temperature over the entire scene. All reference images are printed 
in appendix A.2. The methods used to produce those reference scenes are described in 
detail in the following sub-chapters. 

3.2.1 Simple summer reference image 

Producing a reference image from summer acquisitions presented the simplest approach, 
as the vast majority of the study area was snow-free during summer months. This mini-
mized the chance of wet snow contamination for most of the reference scene. However, 
due to the inclusion of high elevations in the study area, some areas were snow-covered 
year-round. These areas featured wet snow conditions during the warm summer months, 
which led to wet snow contamination of the reference scene. While this problem only 
affected small areas at high altitudes that accounted for roughly 0.3% of the total study 
area, these were exactly the regions of interest for wet snow mapping during late melting 
season. Furthermore, backscatter during summer was influenced by factors like vegeta-
tion, tree canopy and soil moisture, which were less prominent during the early melting 
season. This could lead to backscatter differences between investigation and reference 
image that were not caused by snow cover and might cause erroneous snow classification. 

To minimize wet snow contamination, acquisitions from July and early August 2015 were 
used for the summer reference scene, as this was – according to the MODIS snow prod-
uct – the time with the smallest extent of residual snow. The average of the 16-day com-
posites from the following dates was calculated: 

- 04.07. – 19.07.2015 
- 12.07. – 27.07.2015 
- 20.07. – 04.08.2015 
- 28.07. – 12.08.2015 

All of those images were acquired during a period when large persistent data gaps in the 
northern part of the study area impaired the completeness of the scene. As a consequence, 
the reference image produced from those four images only covered 98.2% of the entire 
study area (see Figure 6). The remaining data gap was filled with the average backscatter 
of the earliest two composites that featured data in the missing area and that were taken 
outside of the melting season. The image dates of those composites were 

- 24.10. – 08.11.2015 
- 01.11. – 16.11.2015 
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Figure 6. Summer reference (VH-polarisation) image with remaining data gap in the northwest quadrant. 

3.2.2 Simple winter reference 

Dry snow is largely transparent for C-band radar; therefore the backscatter does not 
change significantly between snow-free ground and ground covered by dry snow (Stiles 
& Ulaby, 1980). This allowed the use of cold winter acquisitions that only featured dry 
snow as reference images for wet snow mapping. The advantage over summer acquisi-
tions was found to be that there were less disturbing influences from high vegetation 
growth, tree canopy and soil moisture. It was however more difficult to choose appropri-
ate acquisitions, since only images taken during freezing conditions should be used as 
reference. This made it necessary to use auxiliary temperature data to find acquisition 
periods when temperatures were below zero degrees across a large region. Note, however, 
that this approach could be problematic, since it was based on the mean temperature over 
the entire study area. When the study area is as large as it was in the present study, a 
mean temperature of below zero degrees over the entire area does not necessarily mean 
that all parts of it are actually frozen. Therefore, some wet snow contamination was to be 
expected with this approach, particularly at lower elevations. 

The resampled daily ERA-Interim temperature data was used to identify periods where 
the average temperature over the entire study area was below zero degrees. Three periods 
were identified where this condition was met: from the 27th of December 2014 to the 2nd 
of January 2015; from the 31st of January to the 9th of February 2015; and from the 16th of 
January to the 23rd of January 2016. To better match those relatively short time periods, 
8-day LRW composites were used instead of 16-day composites. The winter reference 
image was produced by calculating the average of 8-day composites from the following 
dates: 

- 01.01. – 08.01.2015 
- 29.01. – 05.02.2015 
- 13.01. – 20.01.2016 
- 17.01. – 24.01.2016 

Summer reference image (VH) before gap filling
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Between those four images, the entire study area was covered with data; therefore no gap 
filling was necessary. 

3.2.3 Snow-adjusted summer reference 

The main problem with the summer reference was the residual snow in high altitudes, 
which would most likely lead to wet snow contamination in the reference image. The 
main problem with the winter reference was that even if all acquisitions were taken dur-
ing a time when the mean temperature over the entire study area was below freezing, 
some parts, particularly in lower elevations, might still have been warmer and therefore 
feature wet snow contamination. Both those problems could be solved by producing the 
reference image from both summer- and winter acquisitions: summer images were used 
for lower elevations where no residual snow was found, while areas at high altitudes that 
were snow-covered year-round were replaced by winter acquisitions. Since only very 
high altitude pixels were replaced by the winter images, it was safe to assume that those 
areas were completely frozen in mid-winter. Therefore, the wet snow contamination of 
the used winter pixels should be very small. 

The decision on the replacement of summer pixels by winter pixels could be made in one 
of two ways: either a fixed elevation threshold is chosen (e.g. 2000 m.a.s.l.) of which one 
can safely assume that below this elevation there will be no residual snow during summer 
months. Using a DEM, all pixels with elevations above this threshold are then replaced 
by winter image backscatter values. Alternatively, a decision based on external snow data 
can be made. This approach was used in the present study: The MODIS snow cover data 
was used to identify residual snow pixels in the summer images. These pixels were then 
replaced by corresponding pixels from the winter reference image. 

3.2.4 Improved winter reference 

The snow-adjusted summer reference might have solved the problem of wet snow con-
tamination at high altitudes, but it still contained potentially distorting factors like high 
vegetation, tree canopy and soil moisture. This might lead to errors when mapping snow 
in early snowmelt season, because those factors are less prominent during this time peri-
od. It was therefore desirable to produce a reference image that was based solely on win-
ter images, where wet snow contamination could be avoided by having more control over 
which SAR acquisitions were used. This could be achieved by using the full spatial in-
formation contained within the resampled ERA-Interim temperature data rather than just 
the average temperature over the entire study area. 

Semi-daily temperature masks of freezing conditions were produced for the time series 
from October 2014 to February 2016, based on the resampled ERA-Interim temperature 
data from 06:00 UTC and 18:00 UTC. A conservative rule for freezing conditions was 
used: temperatures had to be below -1 °C for at least 24 hours, otherwise the pixel was 
masked out. This approach reduced errors due to inaccuracies in the resampled tempera-
ture data. The temperature masks were then applied to the flattened, but non-composited 
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Sentinel SAR acquisitions (ascending acquisitions were masked by the 06:00 UTC mask, 
descending acquisitions by the 18:00 UTC mask), producing a time series of SAR data 
where only pixels that featured data acquired during freezing conditions remained. A 
single LRW composite was then calculated over this entire time series of selected and 
masked images. The result was a winter reference image that should feature minimal wet 
snow contamination. The whole process is illustrated in the flowchart in Figure 7. 

 
Figure 7. Flowchart illustrating the processing steps to produce the improved winter reference scene. 

Unfortunately, the resulting reference image contained some large data gaps (see Figure 
8a). Those gaps were filled in a two-step process:  

1. A second set of temperature masks was produced, where a less conservative 
masking rule was applied (the temperature threshold was set at 0°C instead of 
-1°C and was based on the current temperature instead of the temperature 
over the last 24 hours). A second reference LRW was calculated based on 
those masks. Thanks to the less conservative masking, more data was availa-
ble and therefore fewer data gaps occurred; however, it also increased the 
probability of wet snow contamination. The resulting LRW was used to fill as 
many gaps as possible in the first reference LRW. 

2. Some gaps still remained after step one, as some areas in the south of the 
study area never experienced freezing conditions during the available time 
period. To avoid wet snow contamination, these gaps were filled using sum-
mer reference pixels. 
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Figure 8. The three steps of the improved winter reference for VH-polarisation. a) LRW based on -1°C for 
24h masking; b) gaps filled with LRW based on 0°C masking; c) final VH reference image, remaining gaps 

filled with summer images. 

3.3 Wet snow threshold identification 

The thresholds for wet snow discrimination were determined by comparing histogram 
peaks of SAR backscatter difference from cold and warm snow. The histograms were 
calculated for acquisitions spanning the extended melting period of the year 2015, which 
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was defined as starting with the first properly cold winter period on the 1st of January 
2015 and running to minimum snow extent on the 4th of July 2015. Individual histograms 
were produced with all four reference images, for 8-day and 16-day time windows as well 
as for VH- and VV-polarisation. Figure 9 illustrates the processing steps that were ap-
plied to extract the wet snow thresholds. 

 
Figure 9. Processing steps applied to extract a suitable wet snow threshold. 

The individual steps in more detail were as follows: 

1. Subtracting the reference image from all LRW composites produced 
backscatter difference images. 

2. To amplify the differences between cold and warm snow histogram peaks, 
snow free areas were masked out. This was achieved by applying snow masks 
extracted from the NASA MODIS snow cover product MOD10A2 (Riggs et 
al., 2006). To reduce noise and false classification in the MODIS snow map, 
only pixels identified as snow covered on at least 25% of the days of the 
MODIS composite time periods were labelled as snow. This meant that dur-
ing the 8-day period, a pixel had to be detected as snow covered on at least 
two days, and during the 16-day period for at least four days in order to be la-
belled as snow. This approach minimised the number of wrongly classified 
MODIS snow pixels. 

3. The snow-covered areas were then split into cold snow and warm snow areas 
by applying the resampled ERA-Interim temperature data. In theory, wet 
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snow occurs at temperatures above 0°C, while dry snow prevails at tempera-
tures below 0°C. Since the composite periods spanned several days, the deci-
sion had to be made based on the average temperature over those days, which 
necessitated more conservative temperature thresholds. A lower temperature 
limit of 4°C for warm snow and an upper limit of -2°C for cold snow were 
found to be good compromises between clear distinction of warm and cold 
snow while still leaving enough non-masked pixels to produce meaningful 
histograms. Based on those thresholds, temperature masks for warm and cold 
snow were calculated and applied to the backscatter difference images, result-
ing in two separate images for cold and warm snow conditions for every time 
period. The cold snow pixels were expected to be dominated by dry snow and 
the warm snow pixels by wet snow. 

4. The cold and warm snow backscatter difference images were averaged pixel-
wise over the entire melting period, so that a single averaged cold snow and a 
single averaged warm snow image remained. 

5. Normalized histograms were calculated for the cold and warm snow differ-
ence images. No-data pixels were ignored in the histogram calculation. Over-
laying the two histograms in the same plot allowed the extraction of the sepa-
rating threshold, defined as the point where the two histogram peaks inter-
sected. 

The result of this process was a histogram plot with individual peaks for cold and warm 
snow that represented the entire study area. To investigate whether different land cover 
classes or elevations require different wet snow thresholds, the difference images for cold 
and warm snow were further subdivided by land cover and/or elevation before the histo-
grams were calculated. The aggregated land cover classes urban areas, agricultural are-
as, forests, scrubland, non-vegetated areas and glaciers (see chapter 2.5) were differenti-
ated. Subdivision by elevation was done by dividing the study area into 500-meter eleva-
tion bands based on a DEM. In total, four different levels of subdivision were used to 
calculate the histograms: 1) one single histogram plot over the entire study area (no sub-
division); 2) subdivision by elevation; 3) subdivision by land cover; and 4) subdivision by 
both elevation and land cover. 

3.4 Wet snow mapping 

The wet snow mapping algorithm in itself was comparatively simple. Figure 10 shows the 
algorithm as a flow chart. The processing steps were as follows: A difference image γdiff 
was produced for every available Sentinel composite period by subtracting the reference 
backscatter γref from the investigated SAR composite backscatter γi (both backscatters 
were first transformed to the logarithmic dB domain): 

𝛾!"## =  𝛾!  –  𝛾!"#  
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The wet snow cover area was calculated by applying the determined threshold to the dif-
ference images. If different thresholds were used for different land cover classes and/or 
elevations, the difference images were first subdivided into the corresponding fragments. 
The different thresholds were then applied to the individual fragments, before the result-
ing wet snow sub-images were joined back together. 

 
Figure 10. Flow chart of the wet snow mapping algorithm. 

As the SAR data only allows the detection of wet snow, the main time period of interest 
was springtime. Wet snow map production was therefore limited to the months of Febru-
ary through August. 

3.5 Post-classification correction 

There were a multitude of error sources that could lead to misclassification of wet snow, 
e.g. noise in the reference or investigation image, more complex backscattering signatures 
in forests and urban areas, changes in soil moisture or surface roughness. Noise-induced 
misclassifications of wet snow typically appeared as very small, isolated patches consist-
ing of only a few pixels. The majority of those small-scale errors could be removed by 
applying a patch filter to the classified wet snow map, removing any isolated snow patch-
es that were smaller than 25 conjoined pixels. Other error sources led to larger misclassi-
fied areas that were not corrected by this approach. Given that snow is a highly seasonal 
phenomenon, these areas could partly be corrected by applying a Length Of Snow Season 
(LOSS) filter. If the mean duration of the snow season was known for a particular area, 
any pixels classified as wet snow within that area outside of the snow season could be 
corrected to snow-free. 

A LOSS map was produced from the available 15-year time series of NASA MODIS 
snow maps. The data was split into 15 time series, each spanning one hydrological year 
(1st of October to 30th of September (USGS, 2016)). For each time series, the indexed date 
of the first and last occurrence of snow was extracted for each pixel, resulting in two 15-
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element date index vectors per pixel. Outliers caused by misclassification or persistent 
cloud cover in the MODIS image were removed from each vector using the Thompson 
Tau method (Cimbala, 2011). Next, the mean and standard deviation of each vector was 
calculated. Finally, a separate map was produced for the first and the last occurrence of 
snow for a typical hydrological year by subtracting the standard deviation from the mean 
for the first occurrence of snow and adding the standard deviation to the mean for the last 
occurrence of snow. These two maps in combination defined the start and end date of a 
typical snow season for every pixel within the study area (see Figure 11). 

 
Figure 11. Maps of average first (top) and last (bottom) occurrence of snow. 

3.6 Wet snow map validation 

The Sentinel-derived wet snow maps were validated against MODIS-derived snow maps 
of the same time period. Two separate comparisons were made, one against the 500 m 
resolution NASA MODIS snow product and one against the 250 m EURAC MODIS 
snow product. For each image, a confusion matrix was produced. There are several 
measures that can be used to validate such classifications: overall accuracy, Kappa coeffi-
cient, error of commission, error of omission, user’s accuracy and producer’s accuracy. In 
this study, the area was classified into only two classes (wet snow and dry/no snow), and 
for the majority of the study period the dry/no snow class covered a substantially larger 
area than the wet snow class. This meant that even if a pixel was assigned to the dry/no 
snow class completely randomly, there was still a high chance that the assignment was 
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correct, leading to a high, but not very meaningful value for the overall accuracy. Cohen’s 
kappa was therefore generally a more telling indicator for the actual quality of the classi-
fication, as it is corrected for chance agreement (Cohen, 1960). However, in the context 
of the present study, the kappa coefficient was not ideal because of the properties that 
were compared: the optically derived MODIS snow maps displayed the total snow cover 
area, without differentiating between wet and dry snow. As discussed in chapter 3, C-
band radar sensors can only detect wet snow; therefore the SAR-derived snow maps only 
showed the wet parts of the total snow covered area, making a direct comparison more 
complicated. A high error of omission was expected in the early melting period, when 
large parts of the snow pack were still dry and therefore invisible to the radar. For this 
reason, the most descriptive measure for this study was the user’s accuracy, which is the 
counterpart to the error of commission: it measured the percentage of correctly allocated 
wet snow pixels. The validation of the wet snow maps was therefore mostly based on the 
user’s accuracy. The kappa coefficient was also considered, but only as a comparison 
tool: if of one algorithm setting produced generally higher kappa values than another, it 
was assumed that the corresponding settings produce more accurate wet snow maps. Due 
to the different nature of the compared quantities (i.e. wet snow cover vs. total snow cov-
er), the absolute value of kappa could however not be directly translated into an absolute 
quality measure. As the total wet snow area decreases strongly during the melting season, 
the results were always viewed together with the total number of classified wet snow 
pixels.  

The general performance of the Sentinel wet snow mapping algorithm was assessed by 
looking at the time series of those measures over the entire melting period. In addition, 
confusion images displaying agreement and disagreement between the Sentinel and the 
MODIS snow maps were produced, allowing a spatially more detailed investigation of 
the results. Data gaps and masked areas in the Sentinel composite image, and pixels that 
were cloud-covered in the MODIS image were excluded from the accuracy assessment.  

4 Results 
In this chapter, the relevant results of the wet snow mapping investigations are listed and 
described. The retrieved wet snow thresholds are described in sub-chapter 4.1. In sub-
chapter 4.2, the results from the different adjustments to the standard wet snow mapping 
algorithm are described, compared against each other and finally merged to form the final 
wet snow mapping algorithm. The results from applying this final algorithm to current 
SAR composite data from 2015 and 2016 are described in sub-chapter 4.3. 

4.1 Determination of wet snow thresholds from Histograms 

The wet snow threshold was determined by comparing the histograms of backscatter dif-
ference from areas covered by cold and warm snow cover. Cold snow should be predom-
inately dry; therefore the difference between the dry snow reference and the cold snow 
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backscatter should be close to zero dB, with only small variance. On the other hand, the 
reduced backscatter from warm and therefore mostly wet snow should lead to a negative 
backscatter difference and therefore to a histogram peak in the negative dB range. Ideally, 
the two histogram peaks would exhibit only very little overlap and allow the extraction of 
a clear separating threshold. A sufficient separability was given if both histogram peaks 
were unimodal, the apex of one histogram was outside of the other peak (i.e. if there was 
a valley between the two peaks) and if the warm snow peak featured generally lower 
backscatter difference values than the cold snow peak. If one of those conditions was not 
met, no threshold could be determined. 

The histograms displayed over the next pages were all produced using the improved win-
ter reference and VH-polarisation. While the shapes of the peaks were slightly different 
for the other three reference images and for VV-polarisation, the overall trends were the 
same for every case. 

4.1.1 Single threshold for all land cover classes and elevations 

In a first step, histograms were produced for warm and cold snow backscatter difference 
over all elevations and land cover classes (see Figure 12, bottom left plot). As expected, 
the cold snow backscatter difference produced a narrow histogram peak close to zero dB. 
However, the warm snow histogram showed a bimodal distribution covering a wide range 
of backscatter difference from -10 to +5 dB. This suggested that the warm snow backscat-
ter was influenced by a multitude of effects and not just the reduced backscatter due to 
the higher dielectric losses in wet snow. A distinct extraction of a threshold was not pos-
sible from this plot. 

4.1.2 Thresholds subdivided by elevation 

In a second step, the snow pixels were split into 500 m elevation bands and individual 
histograms were produced for each band (see Figure 12, first and second row). This re-
vealed a clear pattern: In lower elevations, the warm snow peaks lay clearly in the posi-
tive dB sector. This suggested that the reduced backscatter of wet snow was completely 
masked by some other effect that led to an increase in backscatter. No wet-snow threshold 
could therefore be extracted from those histograms. With increasing elevation, the warm 
snow histogram peak was shifting towards lower backscatter difference. Starting from 
2000 m.a.s.l., the apex of the warm snow peak lay distinctly left of the cold snow peak 
and continued to shift towards lower backscatter difference with increasing elevation. 
Consequently, clear threshold detection was only feasible for elevations above 2000 
m.a.s.l. The pixels were therefore additionally split into two zones, one for elevations 
below 2000 m.a.s.l. and one for elevations above 2000 m.a.s.l. (see Figure 12, bottom 
row). A threshold of -1.4 dB for VH-Polarisation and for the improved winter reference 
was extracted from the histogram for elevations above 2000 m.a.s.l. The thresholds for 
the other reference scenes and for VV-polarisation can be found in Table 7 in appendix 
A.3. 
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Normalised histograms from all land cover classes for different elevation zones 

 
Figure 12. Normalised histograms of VH-backscatter difference from snow-covered pixels from all land 
cover classes and for different elevation zones. Red peak: warm snow pixels (T > +4°C). Blue peak: cold 

snow pixels (T < -1°C). Applied reference scene: improved winter reference. 

4.1.3 Thresholds subdivided by land cover class 

In a third step, the snow pixels were split into different land cover classes based on the 
CORINE land cover map. To reduce the influence of mixed pixels that typically occur at 
the border between two different land cover classes, a 3x3 pixel erode function was ap-
plied to the land cover map, thereby masking out the border zones. Individual histograms 
were then produced for each class (see Figure 13). This approach revealed that the ma-
jority of pixels contributing to the positive backscatter difference signal of warm snow 
observed at elevations below 2000 m.a.s.l. originated from the land cover classes forest, 
urban areas and agricultural areas. Incidentally, these were the predominant land cover 
classes for areas below 2000 m.a.s.l., while being barely present at elevations above 2000 
m.a.s.l. (see Table 2). This could help to explain the shift of the warm snow peak from 
positive to negative backscatter difference with increasing elevation observed in Figure 
12. The land cover classes found to allow a clear threshold extraction were nonvegetated 
areas and glaciers, which made up the majority of the land area above 2000 m.a.s.l. The 
extracted thresholds for the improved winter reference and VH-polarisation were -1.5 dB 
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for non-vegetated areas and -1.9 dB for glaciers. The thresholds for the other reference 
scenes and for VV-polarisation can be found in Table 6 in appendix A.3. 

 Land cover portion  
below 2000 m.a.s.l. 

Land cover portion  
above 2000 m.a.s.l. 

Urban areas 6.3 % 0.0 % 
Agricultural areas 43.8 % 0.1 % 
Forest 40.2 % 4.5 % 
Scrubland 8.2 % 33.1 % 
Non-vegetated areas 1.2 % 56.1 % 
Glaciers 0.0 % 6.1 % 

Table 2. Share of the different land cover classes on the total study area below and above 2000 m.a.s.l., based 
on CORINE land cover classification. 

Normalised histograms over all elevation zones from the different land cover classes 

 
Figure 13. Normalised histograms of VH-backscatter difference from snow-covered pixels from the different 

land cover classes over all elevation zones. Red peak: warm snow pixels (T > +4°C). Blue peak: cold snow 
pixels (T < -1°C). Applied reference scene: improved winter reference. 

4.1.4 Thresholds subdivided by elevation and land cover class 

As a last step, snow pixels were subdivided by both elevation and land cover, so that in-
dividual histograms were produced for every 500 m elevation band within each land cov-
er class. Figure 14 displays the histograms for urban areas, Figure 15 for agricultural 
areas, Figure 16 for forested areas, Figure 17 for scrubland, Figure 18 for non-vegetated 
areas and Figure 19 for glaciers. This further subdivision did not reveal any new infor-
mation for the land cover classes forest, urban areas and agriculture, a threshold extrac-
tion was still not possible at any elevation. This problem was particularly dominant for 
forested areas, where the warm snow backscatter difference showed persistently higher 
values over all elevations than the cold snow (see Figure 16). The land cover classes non-
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vegetated areas and glaciers showed clear separability for all elevations above 
2000 m.a.s.l., with only small threshold differences between the different elevation bands. 
The most interesting land cover class for this approach was the class scrubland, as it was 
present on a wide elevation spectrum. It showed similar behaviour as the analysis over all 
land cover classes combined: at lower altitudes, the warm snow histogram peak featured 
higher backscatter difference values than the cold snow peak and lay well within the posi-
tive backscatter difference zone, thereby preventing a threshold extraction. With increas-
ing elevation, the warm snow peak shifted towards lower backscatter difference values, 
until threshold extraction became possible above 2000 m.a.s.l. (see Figure 17). This sug-
gested that there might be a general phenomenon that masked out any wet-snow induced 
backscatter reduction at lower elevations and instead led to an increase in backscatter 
difference. The most likely explanation was signal mixing due to the length of the com-
posite period: as wet snow at lower elevations can occur and completely melt of within a 
few days or even hours, the LRW composite calculation could lead to a mixing of signals 
from wet snow and snow-free ground. The wet snow signal could therefore be lost in the 
process of calculating the weighted average of a pixel. This problem is discussed in more 
detail in chapter 5.4.2. 

Normalised histograms from urban areas for different elevation zones 

 
Figure 14. Normalised histograms of VH-backscatter difference from snow-covered pixels from land cover 

class urban areas for different elevation zones. Red peak: warm snow pixels (T > +4°C). Blue peak: cold 
snow pixels (T < -1°C). Applied reference scene: improved winter reference. 

Normalised histograms from agricultural areas for different elevation zones 

 
Figure 15. Normalised histograms of VH-backscatter difference from snow-covered pixels from land cover 
class agricultural areas for different elevation zones. Red peak: warm snow pixels (T > +4°C). Blue peak: 

cold snow pixels (T < -1°C). Applied reference scene: improved winter reference. 
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Normalised histograms from forested areas for different elevation zones 

 
Figure 16. Normalised histograms of VH-backscatter difference from snow-covered pixels from land cover 

class forest for different elevation zones. Red peak: warm snow pixels (T > +4°C). Blue peak: cold snow 
pixels (T < -1°C). Applied reference scene: improved winter reference. 

Normalised histograms from scrubland for different elevation zones 

 
Figure 17. Normalised histograms of VH-backscatter difference from snow-covered pixels from land cover 
class scrubland for different elevation zones. Red peak: warm snow pixels (T > +4°C). Blue peak: cold snow 

pixels (T < -1°C). Applied reference scene: improved winter reference. 

Normalised histograms for non-vegetated areas for different elevation zones 

 
Figure 18. Normalised histograms of VH-backscatter difference from snow-covered pixels from land cover 
class non-vegetated areas for different elevation zones. Red peak: warm snow pixels (T > +4°C). Blue peak: 

cold snow pixels (T < -1°C). Applied reference scene: improved winter reference. 
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Normalised histograms for glaciers and perpetual snow for different elevation zones 

 
Figure 19. Normalised histograms of VH-backscatter difference from snow-covered pixels from land cover 

class glaciers and perpetual snow for different elevation zones. Red peak: warm snow pixels (T > +4°C). 
Blue peak: cold snow pixels (T < -1°C). Applied reference scene: improved winter reference. 

 

The results described and shown here were derived from the difference image based on 
16-day VH composites and the improved winter reference scene (see chapter 3.2.4). The 
wet snow thresholds for this configuration, as far as they were identifiable, are listed in 
Table 3. Similar analyses were carried out for the other three reference images as well as 
for VV-polarisations. The corresponding wet snow thresholds are listed in Table 6 in 
appendix A.3. While there were clear differences in the derived thresholds for the differ-
ent polarisations and reference images, the main characteristics of the histograms did not 
derivate from those described here. That is, with one exception: when using the summer 
reference, the warm and cold snow peaks for land cover class glacier were both shifted 
towards higher backscatter difference, well into the positive dB zone (see Figure 20). This 
could be explained by the widespread wet snow contamination of the summer reference 
scene in those areas (see chapter 3.2.1), which led to decreased reference backscatter and 
therefore to increased backscatter difference for both warm and cold snow. While a sepa-
ration of the peaks was still possible, the derived thresholds were atypically high, with 
values ranging between 0 and +5 dB. 

Normalised histograms for glaciers and perpetual snow 

 
Figure 20. Normalised histograms of VH-backscatter difference from snow-covered pixels from land cover 

class glaciers and perpetual snow for different elevation zones. Red peak: warm snow pixels (T > +4°C). 
Blue peak: cold snow pixels (T < -1°C). Applied reference scene: simple summer reference. 
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0-500 m.a.s.l. - - - - - - - 
500-1000 m.a.s.l. - - - - - - - 
1000-1500 m.a.s.l. - - - - - - - 
1500-2000 m.a.s.l. - - - - - - - 
2000-2500 m.a.s.l. - - - -1.0 dB -1.3 dB - -1.2 dB 
2500-3000 m.a.s.l. - - - -1.3 dB -1.5 dB -1.8 dB -1.5 dB 
3000-3500 m.a.s.l. - - - - -1.5 dB -2.0 dB -1.7 dB 
3500-4000 m.a.s.l. - - - - - -2.0 dB -1.7 dB 
All elevations - - - - -1.5 dB -1.9 dB - 
Below 2000 m.a.s.l. - - - - - - - 
Above 2000 m.a.s.l. - - - -1.0 dB -1.5 dB -1.9 dB -1.4 dB 

Table 3. Wet snow thresholds for 16-day VH composites, based on the improved winter reference scene. 

4.1.5 Threshold application 

Table 3 lists the different wet snow thresholds, as far as they could be determined. For 
certain land cover classes and elevations, definition of a clear threshold was not possible. 
This was either because the corresponding land cover class or elevation zone experienced 
some backscatter effect that masked out the decreasing backscatter of wet snow, or be-
cause the number of pixels for that class was too small to produce a meaningful histo-
gram. In the wet snow mapping algorithm, areas where no individual threshold could be 
derived were therefore handled according to the following three rules: 

1. If no clear threshold could be determined over all elevations for a certain land 
cover class, the threshold extracted from areas above 2000 m.a.s.l. within that 
land cover class was applied to all elevations. 

2. When individual thresholds per elevation band were applied, the threshold for 
the lowest separable elevation band was applied to all elevations below it and 
the threshold for the highest separable elevation band was applied to all ele-
vations above it. 

3. If a certain land cover class did not allow the extraction of a threshold for any 
elevation, the threshold determined over all land cover classes for areas above 
2000 m.a.s.l. was applied to all elevations of that land cover class. 

4.2 Refinement of the wet snow mapping algorithm 

Several adjustments and extensions to the standard wet snow mapping algorithm based on 
thresholding were introduced and tested against each other in the present study. The re-
sults from those comparisons are described in this sub-chapter. The following refinements 
were implemented: 
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1. Masking of forested areas due to interference of canopy backscatter effects on the 
wet snow backscatter. 

2. Application of a Length-Of-Snow-Season (LOSS) filter to correct misclassifica-
tions due to backscatter-reducing effects that occur in snow-free areas during 
warmer periods. 

3. Application of individual wet snow thresholds for different land cover classes 
and/or elevation zones to account for land cover induced backscatter differences. 

4. Comparison of different approaches of reference image production to find the 
most suitable method. 

5. Comparison of different combinations of the two polarisations in order to exploit 
the full information content of every SAR acquisition. 

6. Comparison of different temporal baselines of the LRW composites to find the 
best compromise between spatial completeness and temporal resolution. 

7. Comparison of different MODIS validation data in order to assess the influence 
of spatial resolution of the validation images on the achieved accuracies. 

Since those refinements partly build on the results of previous adjustments, some deduc-
tions are already described in this chapter. A more in-depth discussion of the results can 
be found in chapter 5.  

4.2.1 Masking of forested areas 

The investigation of histograms subdivided by land cover (see chapters 4.1.3 and 4.1.4) 
revealed that the backscatter difference of warm snow pixels that were forest-covered was 
consistently higher than that of forest-covered cold-snow pixels, thereby preventing wet 
snow detection by means of thresholding. This effect was most likely due to the scattering 
properties of forest: in densely forested areas, the backscatter signal was dominated by 
volume scattering in the crown, where usually only little snow is found. Due to the 
oblique angle of incident radar rays, only a very small part of the signal could reach and 
be scattered by the snow-covered forest floor. Wet snow mapping in densely forested 
areas therefore appeared to be infeasible. This finding is in agreement with several studies 
(e.g. Baghdadi et al., 1997; Rees & Steel, 2001), which noted that snow mapping in 
densely forested areas with the standard approach is impossible. Some efforts have been 
made in the past to overcome this limitation by incorporating forest canopy models (e.g. 
Cohen et al., 2015). Such investigations were beyond the scope of this study; therefore 
forested areas were masked out in all further analyses. 

4.2.2 Assessment of the length-of-snow-season correction 

Aside from snow wetness, other changes of the land surface such as soil moisture, vegeta-
tion changes or standing water can also lead to a decrease of radar backscatter. Such in-
fluences could lead to misclassification of wet snow. To illustrate this issue, an exemplary 
wet snow map was calculated based on a 16-day VH-polarised image, composited from 
images acquired between the 9th and the 24th of May 2015, and using the snow-corrected 
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summer reference image. The resulting wet snow map was then compared to the MODIS 
snow map of the same date to produce a confusion image, where pixels were marked as 
correctly classified as wet snow, correctly classified as dry/no snow, wet snow error of 
omission and wet snow error of commission. Masked-out pixels and areas where cloud 
cover obscured the MODIS-image were marked separately. Figure 21 displays the result-
ing confusion images. The top image shows the confusion map before the application of 
the Length-Of-Snow-Season (LOSS) correction. Aside from the correctly detected wet 
snow cover along the Alps, large regions in the Po Valley as well as in low altitude areas 
in the north and the northeast of the study area were initially erroneously classified as wet 
snow (red pixels), leading to an increased error of commission. A comparison with the 
ERA-Interim temperature maps of the same period revealed that the temperatures in those 
areas during the acquisition period were well above snowmelt level; therefore it was safe 
to assume that those areas were in fact snow-free and that those wet snow pixels were 
misclassified. The LOSS-filter (see chapter 3.5) effectively removed most of those mis-
classified pixels, producing a much more plausible map (see Figure 21, bottom). Some 
misclassification remained around the Adriatic Sea, which was most likely due to mis-
classification in the original NASA MODIS snow cover product that the LOSS-filter was 
based on. Overall, the LOSS-filter seemed to function as an effective correction device. 

 
Figure 21. Exemplary comparison of the confusion images of a wet snow map before (top) and after (bottom) 

applying the length-of-snow-season correction. 

Wet snow confusion image: without LOSS-correction
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For a more meaningful evaluation of the LOSS-correction performance, a set of wet snow 
maps was produced for each reference image and polarisation, covering the entire melting 
period of 2015. Each map was compared against the corresponding NASA MODIS snow 
map before and after the LOSS-correction. User’s accuracy, error of omission, kappa 
coefficients and total number of wet snow pixels were extracted from the results. Figure 
22 displays the results for wet snow maps derived from VH-polarisation and from the 
snow-adjusted summer reference. The user’s accuracy was significantly increased over 
the entire time series by applying the LOSS-correction, reaching an improvement of up to 
48% compared to the non-corrected maps. Since this correction only removed wet snow 
pixels, an improvement in the error of omission was not possible, leading to the same 
values before and after the LOSS-correction. The total number of wet snow pixels was 
reduced by up to 4.8 million. 

 
Figure 22. Comparison of user’s accuracy, error of omission and number of classified wet snow pixels of 

snow maps produced from VH-polarised 16-day composites and from the snow-adjusted summer reference 
before and after application of the LOSS-filter. 

The magnitude of the improvement in user’s accuracy achieved by the LOSS-correction 
varied, depending on the reference scene and polarisation used for the generation of the 
wet snow maps. However, every case showed a clear improvement after application of 
the LOSS-filter (see Table 4). The correction was therefore applied to every map pro-
duced in the further analyses. 
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 Summer ref. Winter ref. Snow-adj.  
summer ref. 

Improved  
winter ref. 

 VH VV VH VV VH VV VH VV 

Min. increase  
in UA 3.3% 3.3% 6.2% 9.4% 6.7% 6.1% 3.0% 8.1% 

Max. increase 
in UA 40.3% 33.3% 32.6% 40.6% 48.0% 33.6% 20.8% 46.2% 

Table 4. Minimal and maximal increase in user’s accuracy (UA) of snow maps produced for the melting 
season of 2015 after applying the LOSS-correction for the different reference scenes and polarisations. 

 

4.2.3 Comparison of different threshold subdivisions 

Four different subdivisions of the wet snow threshold were compared against each other: 
1) one single threshold applied to all land areas within the study area; 2) individual 
thresholds per land cover class, as far as they could be determined; 3) individual thresh-
olds per 500 m elevation band, as far as they could be determined; and 4) individual 
thresholds per 500 m elevation band within each land cover class (see chapters 3.3 and 
4.1). The expectation was that subdivided thresholds would produce more accurate wet 
snow maps, as they could better account for backscatter differences between different 
land cover classes and/or elevations. However, a comparison of the accuracy measures 
for the wet snow maps produced with the different threshold subdivisions revealed almost 
no variations. Figure 23 shows the measures for the maps based on VH-polarised images 
and the improved winter reference. The overall trend was very similar for maps derived 
from VV-polarised images and from the snow-corrected summer reference and the simple 
winter reference.  

In general, the subdivision of the wet snow threshold barely influenced the accuracy of 
the resulting wet snow map. Subdivision by land cover led to a very slight improvement 
in user’s accuracy and error of omission in the very early melting season, but the changes 
were not significant enough to justify the higher computational and manual effort associ-
ated with the production of those subdivided snow maps. In the later part of the melting 
season, the subdivisions even seemed to produce slightly lower accuracies compared to 
the non-divided threshold, but these changes were again very small. The comparison of 
kappa values showed very little differences as well and therefore confirmed those find-
ings. 
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Figure 23. Comparison of user’s accuracy, error of omission and number of classified wet snow pixels of 
snow maps produced from VH-polarised 16-day composites and from the improved winter reference for 

different subdivisions of the wet snow threshold. 

There was one exception to this trend. Snow maps produced with the simple summer 
reference image showed higher sensitivity to the threshold subdivision in the second half 
of the melting season (see Figure 24). Starting in May, the accuracies of the wet snow 
maps produced with a single threshold began to fall, dropping below 20% in July and 
August. With the number of classified wet snow pixels reaching almost zero, the error of 
omission increased up to 99.8%, making the resulting wet snow maps completely unusa-
ble. This problem was likely caused by wet snow contamination of the summer reference 
image in high altitude areas (see chapter 3.2.1). During summer months, the only areas 
still featuring wet snow were largely identical with the areas where the summer reference 
contained wet snow contamination. This led to an increase in omission of wet snow as the 
time series progressed towards summer. These effects could already be observed in the 
histograms (see Figure 20), where both warm and cold snow peaks were suddenly shifted 
towards higher backscatter difference with increasing elevation. As can be seen in Figure 
24, using individual and much higher thresholds of up to +5 dB for those areas could 
partly correct this effect. Best results were achieved when thresholds were set individual-
ly per land cover class. An increase in user’s accuracy of up to 56.6% could be achieved. 
Further subdivision by elevation did not bring significant further improvement. 
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Figure 24. Comparison of user’s accuracy, error of omission and number of classified wet snow pixels of 
snow maps produced from VH-polarised 16-day composites and from the summer reference for different 

subdivisions of the wet snow threshold. 

Based on those findings, a single threshold was applied for wet snow maps derived from 
the simple winter, improved winter and snow-adjusted summer reference in all further 
analyses. For maps derived from the simple summer reference, individualised thresholds 
for each land cover class were used.  

4.2.4 Comparison of different reference images 

A direct comparison of wet snow map accuracies achieved by applying the four different 
reference images was carried out. Based on the findings of chapter 4.2.3, a single thresh-
old for the entire scene was used for the two winter reference images and the snow-
adjusted summer reference image. Individual thresholds per land cover class were used 
for the simple summer reference.  Figure 25 and Figure 26 show the wet snow accuracy 
measures over the entire melting period for VH and VV polarisations. All time series 
show similar overall trends: After lower levels in early snowmelt season, the user’s accu-
racy increased for April images, reaching up to 98% for the improved winter image in 
VH-polarisation and 95% in VV-polarisation. User’s accuracy for both VH- and VV-
polarisation then start to fall again, reaching a minimum for the composite spanning from 
the 10th to the 25th of June. After that, user’s accuracies start to increase again. The error 
of omission largely behaved as expected: Widespread dry snow cover in early snowmelt 
season led to a high error of omission. In April and May, increased snow melting trans-
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formed the majority of snow cover into wet snow, making it detectable by radar and 
therefore reducing the error of omission. In the later months, the residual snow cover was 
mostly wet and therefore detectable with a relatively low error of omission. The kappa 
coefficient behaved inverse to the error of omission: after very low values in the begin-
ning of February, it began to gradually increase until reaching a maximum of 0.77 for VH 
and 0.70 for VV by the end of April. After that, the behaviour of the kappa coefficient 
largely mirrored the user’s accuracy. 

In VH-polarisation, the improved winter reference produced the most accurate wet snow 
maps in terms of user’s accuracy in the first half of the investigation period. Starting at 
the end of May, the snow-adjusted summer reference surpassed the improved winter ref-
erence in terms of user’s accuracy and produced consistently more accurate wet snow 
maps during summer months (see Figure 25). The simple summer and winter references 
showed similar trends, but at a consistently lower level of user’s accuracy than their im-
proved versions. This confirmed that the adjusted methods applied to generate the im-
proved winter and snow-adjusted summer reference (see chapter 3.2) did in fact present 
an improvement over the simpler approaches.  

 
 Figure 25. Comparison of user’s accuracy, error of omission and number of classified wet snow pixels of 

snow maps produced from VH-polarised 16-day composites for different reference images. 

The overall trends and achieved user’s accuracies were similar for VH- and VV-
polarisations. However, in VV-polarisation, wet snow mapping with the snow-adjusted 
summer reference outperformed mapping with the improved winter reference in terms of 
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user’s accuracy over the entire melting season. The accuracy differences between the 
results for the four reference images were largest in June, July and August. While the 
user’s accuracies were similar for VH- and VV- polarisations, the error of omission was 
significantly higher in VV-polarisation from May onwards (see Figure 26).  

 
Figure 26. Comparison of user’s accuracy, error of omission and number of classified wet snow pixels of 

snow maps produced from VV-polarised 16-day composites for different reference images. 

All four reference versions displayed a gradual decrease in user’s accuracies between the 
end of April and the beginning of June. This period corresponded with a relatively high 
percentage of cloud-coverage present in the MODIS image. Consistent cloud cover ob-
scured up to 22% of detected wet snow pixels (see Figure 27, red line). While cloud cov-
erage does not influence the radar-retrieved wet snow map, it does impair the MODIS 
snow image, leading to lower agreement when the two datasets were compared. Addi-
tionally, a clear drop in Sentinel data coverage could be observed in the beginning of 
June, reaching only 82% on the composite from the 10th to the 25th of June (see Figure 27, 
blue line). This drop in completeness, together with the high percentage of cloud ob-
scured wet snow pixels, could help explain the distinct notch in user’s accuracy and kap-
pa for the corresponding composite period (see Figure 25 and Figure 26). The decrease in 
accuracy was therefore interpreted as an artefact of the validation process and not neces-
sarily as evidence of actual malfunction of the wet snow mapping algorithm.  
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Figure 27. Data completeness of the 16-day SAR composites and cloud occlusion of wet snow pixels over 

the melting period of 2015. 

The results presented in this sub-chapter demonstrated that the snow-adjusted summer 
reference produced consistently more accurate wet snow maps than the simple summer 
reference and that the improved winter reference produced consistently more accurate 
maps than the simple winter reference. As a consequence, the simple summer and winter 
reference images were not used for any further analyses. Between the improved winter 
reference and the snow-adjusted summer reference, no clear favourite could be deter-
mined. The improved winter reference seemed to outperform the snow-adjusted summer 
reference in the first half of the melting period, while the snow-adjusted summer refer-
ence produced more accurate wet snow maps during the second half of the investigation 
period, with the changeover being located in mid-May. Based on those findings, all fur-
ther analyses were performed with both improved reference scenes. 

4.2.5 Combination of VH- and VV-polarisations 

So far, wet snow maps have been extracted separately from VH- and VV-polarised imag-
es. To exploit the full information content of the polarised data, a combination of the two 
polarisations was desirable. A weighted average of the backscatter differences DVH and 
DVV was calculated: 

𝐷!"#$ = 𝑊 ∗ 𝐷!" + 1 −𝑊 ∗  𝐷!!. 

Six different values for the weight W were compared: W = 0 (which makes Dcomb equiva-
lent to DVV), W = 0.2, W = 0.4, W = 0.6, W = 0.8, and W = 1 (which makes Dcomb equiva-
lent to DVH). For each weight, separate histograms for cold and warm conditions were 
produced and individual thresholds per weight were extracted. These thresholds were 
then applied to the weighted backscatter difference images to produce wet snow maps. 
The resulting accuracies over the melting period are plotted in Figure 28 (for the im-
proved winter reference) and Figure 29 (for the snow-adjusted summer reference).  

When applying the improved winter reference, pure VH-polarisation produced highest 
user’s accuracies and kappa in the first part of the melting period, but around mid-May it 
was surpassed by the pure VV-polarisations as well as by the different combinations (see 
Figure 28). The weights W = 0.4 and W = 0.6 produced the highest mean values over the 
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entire snowmelt season in terms of user’s accuracy (65.5%) resp. kappa (47.5%) (see 
Table 5).  

 
Figure 28. Comparison of combinations of VH- and VV-polarisations for the improved winter reference, 

using different weights for the VH-polarisation (W = 0 is equivalent to VV-polarisation; W = 1 is equivalent 
to VH-polarisation). 

When using the snow-adjusted summer reference, the VV-polarisation achieved higher 
user’s accuracies than the VH-polarisation for most of the melting period. However, it 
also produced consistently higher errors of omission, which led to lower kappa coeffi-
cients (see Figure 29). The weight W = 0 achieved the highest mean user’s accuracy of 
73.8% over the snowmelt season, but in terms of kappa the weight of W = 0.8 appeared to 
be best, producing a mean kappa value of 55.0% (see Table 5). When considering both 
user’s accuracy and kappa, a value somewhere between these two weights would achieve 
the best compromise. 
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Figure 29. Comparison of combinations of VH- and VV-polarisations for the snow-adjusted summer refer-

ence, using different weights for the VH-polarisation (W = 0 is equivalent to VV-polarisation; W = 1 is 
equivalent to VH-polarisation). 

 

  W=0.0 W=0.2 W=0.4 W=0.6 W=0.8 W=1.0 

Improved winter  
reference 

mean UA 62.8% 64.2% 65.5% 65.1% 62.0% 59.6% 

mean kappa 43.9% 46.2% 47.5% 47.5% 46.2% 44.3% 

Snow-adjusted summer 
reference 

mean UA 73.8% 73.6% 72.5% 69.6% 66.8% 63.0% 

mean kappa 46.7% 49.3% 51.6% 54.0% 55.0% 54.8% 

Table 5. Mean values for user’s accuracy (UA) and kappa coefficient over the entire snowmelt season for the 
different reference scenes and different values for the weight W. 

When the values for both accuracy measures achieved with both reference images were 
considered together, a weight of W = 0.4 proved to be the best compromise over the en-
tire time series. All further analyses were therefore carried out with a weighted average of 
VH and VV backscatter differences, where the VH-polarisation was weighted with 0.4 
and VV-polarisation with 0.6. The corresponding wet snow thresholds were -1.1 dB when 
applying the improved winter reference and -2.3 dB when applying the snow-adjusted 
summer reference. 
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4.2.6 Comparison of 16-day and 8-day composites 

The length of the temporal baseline for the composite images is the result of a trade-off 
between temporal resolution and image completeness. As the focus in this study was on 
high percentage of data coverage, a relatively long composite period of 16 days was cho-
sen (see chapter 2.2). During the melting season, the extent of snow cover can change 
heavily within only a few days, which can lead to a mixing of snow- and ground-
backscatter over 16 days. It was expected that this mixing impaired the overall accuracies 
of wet snow maps achievable with 16-day composites. In theory, a shorter composite 
period should reduce the mixing of different backscatter signals and therefore improve 
the accuracies of retrieved wet snow maps.  

To test this theory, wet snow maps were produced based on 8-day composite images and 
their accuracies were compared to the accuracies achieved with the 16-day composites. 
Figure 30 displays the results for the improved winter reference. The snow-adjusted 
summer reference produced slightly different absolute values, but the overall trends were 
the same. The 8-day composite wet snow maps showed more fluctuations in accuracies, 
but viewed over the entire melting period the achieved values in user’s accuracy were 
similar for 8-day and 16-day composites. The 8-day composite maps displayed generally 
higher values in error of omission for both reference images, leading to generally lower 
kappa values. 

 
Figure 30. Comparison of wet snow accuracies achieved by 16-day and 8-day composites and the improved 

winter reference. 
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The expected increase in accuracy for 8-day composites could not be observed. The rea-
son for this was most likely the lack of enough data to produce 8-day composite images 
with sufficient quality. The 8-day radar composite images suffered from large data gaps, 
with data coverage during the melting period varying between 64% and 99% (see chapter 
2.2). Where data was available, the spatial overlap between the different SAR acquisi-
tions was smaller than for 16-day composites, which impaired the noise-reduction capa-
bilities of the LRW-algorithm and therefore led to more noisy images. The combination 
of data gaps and higher noise level most likely offset any improvement in accuracy 
achieved due to decreased signal mixing. A definitive assessment of the relationship be-
tween length of temporal baseline and quality of wet snow mapping was therefore not 
possible due to the lack of sufficient data. Consequently, only 16-day composite data was 
used for all further analyses in this study. 

4.2.7 Validation with the EURAC MODIS snow product 

So far, the wet snow maps produced in this study were validated against the MODIS 
500m resolution snow product available from NASA (Riggs et al., 2006). The main ad-
vantages of this product were its high overall accuracy of up to 99% (Hall & Riggs, 2007) 
and the large spatial coverage of a single image tile. Its main disadvantage was the 500m 
spatial resolution, which was roughly five times coarser than the LRW composite resolu-
tion. Any comparison between the two data sets will therefore suffer from an inherent 
inaccuracy due to the resolution differences. To assess the magnitude of this problem, the 
wet snow maps were additionally validated against the 250m resolution EURAC MODIS 
snow product (Notaricola et al., 2013b). This product was based on the same input data as 
the NASA product, but exploited the higher spatial resolution of MODIS bands 1 & 2 to 
produce snow maps with 250m resolution (see chapter 2.3.2). The expectation was that a 
comparison with a higher resolution validation image would lead to higher agreement 
between Sentinel- and MODIS-derived snow maps. 

The comparison was conducted for wet snow maps derived from the improved winter 
reference and the snow-adjusted summer reference. Figure 31 shows the results for the 
improved winter reference; the results for the snow-adjusted summer reference displayed 
the same overall trends and are therefore not printed here. The results demonstrated a 
higher user’s accuracy for the EURAC product for the majority of the melting season. 
However, the error of omission was also generally higher for the EURAC product, partic-
ularly during the summer months. As a consequence, the overall map agreement, meas-
ured by the kappa coefficient, was very similar for both MODIS products during the first 
half of the melting season, but was significantly lower for the EURAC product during 
summer months. The usage of the EURAC product could therefore not be seen as an im-
provement to the wet snow map validation process. 
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Figure 31. Comparison of accuracies of wet snow maps produced with the improved winter reference and 

validated against the NASA and the EURAC MODIS snow product. 

The reason for the lack of improvement in accuracy despite the higher spatial resolution 
could be partly explained by the quality of the EURAC snow data. Notarnicola et al. 
(2013b) reported a mean overall accuracy of the EURAC snow product of around 88% 
when compared to Landsat 7 images, which is well below the reported accuracies of the 
NASA snow product of around 93% to 99% (Hall & Riggs, 2007). An investigation of 
the time series of daily EURAC snow cover maps further revealed large fluctuations in 
quality. While some daily maps appeared to be of very good quality, others were very 
noisy, featured a high number of unclassified pixels, clear artefacts and some obvious 
misclassifications of cloud cover as snow, particularly during summer months (see exam-
ples in Figure 32). Combination of these daily maps into 16-day composites to match the 
temporal resolution of the radar data added up those errors and led to a generally lower 
quality snow map compared to the NASA product. The higher level of noise and artefacts 
therefore mostly offset the benefits of the higher spatial resolution in terms of accuracy. 
As a result, the EURAC MODIS snow product did not present a gain in the context of 
this study and were not used any further. 
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Figure 32. Examples of problems observed with the EURAC MODIS snow product: noisy snow classifica-

tion and data gaps (top) and artefacts misclassified as snow (bottom). 

4.2.8 Summary of the final algorithm settings 

A number of variations on the input datasets and settings of the wet snow mapping algo-
rithm originally introduced by Rott & Nagler (1995) were tested and compared in the 
present study. Based on the results, the final algorithm was set up as follows: 

• Forested areas and water bodies were masked out using the CORINE land cover 
map. 

• A post-classification correction of misclassified snow pixels by means of a 
length-of-snow-season map proved to be effective and was adopted in the algo-
rithm. 

• Subdividing the wet snow thresholds by land cover or elevation only produced 
significant changes in one case: when wet snow mapping was based on the sim-
ple summer reference image, a subdivision by land cover could correct some of 
the errors introduced by the high-altitude wet snow contamination of the refer-
ence image. However, the classification accuracies achieved from applying sub-
divided thresholds to the simple summer reference were still lower than the ones 
achieved by applying a single threshold to the snow-adjusted summer reference. 
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Therefore the subdivision of thresholds was deemed ineffective and was not 
adopted in the final algorithm. 

• The snow-adjusted summer reference produced more accurate wet snow maps 
than the simple summer reference. Similarly, the improved winter reference pro-
duced more accurate maps than the simple winter reference. No clear favourite 
between the improved winter reference and the snow-adjusted summer reference 
could be determined. The improved winter reference tended to work better in ear-
ly snowmelt season up to mid-May, while the snow-adjusted summer reference 
was superior in late spring and summer months. As a consequence, the final algo-
rithm calculated two wet snow maps for every input image; one based on the im-
proved winter reference, and one based on the snow-adjusted summer reference. 

• A combination of VH- and VV-polarisations produced the best results when con-
sidering the entire melting period. A weighted average of the backscatter differ-
ences of VH and VV with a weight of 0.4 for VH and 0.6 for VV proved to be the 
best compromise. The corresponding wet snow thresholds were -1.1 dB when ap-
plying the improved winter reference and -2.3 dB when applying the snow-
adjusted summer reference. 

• A shortening of the composite period length from 16 to 8 days did not achieve 
any improvement in overall accuracy due to lack of sufficient radar data. The fi-
nal algorithm therefore only considered 16-day composites. 

• Validation of the wet snow maps against the higher-resolution EURAC snow 
product did not yield any improvements due to the lower overall quality of the 
EURAC snow product compared to the NASA product. The EURAC product 
was therefore not considered any further. 

4.3 Application of the final wet snow map algorithm 

4.3.1 Application to snow melt season of 2015 

With the algorithm set as described above, a wet snow map time series was produced, 
starting in February of 2015 and running through August 2015. Figure 33 shows the accu-
racy measures of the resulting wet snow maps. By applying the improved winter refer-
ence to images acquired from February to April and the snow-adjusted summer reference 
from May to August, a mean user’s accuracy of 76% over the entire period was achieved. 
The kappa coefficient was very low during early snowmelt season due to widespread dry 
snow cover. Once the majority of snow cover became wet by the end of April, kappa 
values of around 0.7 were achieved, indicating good overall agreement between Sentinel 
wet snow maps and MODIS snow maps. The complete confusion matrices can be found 
in Table 9 and Table 10 in the appendix A.4. 
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Figure 33. Accuracy measures for the wet snow maps of the snowmelt season of 2015, produced with the 

final algorithm settings. 

Wet snow covered approximately 16’000 km2 or 2.8% of the study area in the beginning 
of February, reached its widest spread in mid-April with an area of roughly 26’000 km2 
or 4.5% of the study area, and then retreated to approximately 1’600 km2 or 0.3% of the 
study area by the end of August. Over the next pages, an excerpt of the wet snow cover 
time series is pictured, showing one wet snow map per month (Figure 34). The image 
acquired in February shows some clear artefacts caused by backscatter differences be-
tween single acquisition tracks. These were partly caused by data gaps in the correspond-
ing LRW image, and partly by the generally short-lived nature of wet snow at lower ele-
vations. It was possible that wet snow was present during the acquisition of one satellite 
track within the 16-day period, but was already gone by the time the track next to it was 
recorded. Depending on the amount of overlap between the single tracks, those differ-
ences could lead to abrupt changes in wet snow cover from one track to another. This 
turned out to be a major limitation of wet snow mapping in the early melting season with 
16-day composites (see also chapter 5.4.2). From March onwards, this problem became 
less dominant, and the wet snow maps describe the retreat of the snow cover into higher 
altitudes during spring generally well. 
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Figure 34. Time series of wet snow maps over the snowmelt season of 2015 (one image per month), derived 
with the final algorithm from 16-day LRW composites. Blue: wet snow. Background: Improved winter refer-

ence image for VH-polarisation. 



 4.3   Application of the final wet snow map algorithm 

  51 

4.3.2 Application to snow melt season of 2016 

The final algorithm was additionally applied to the most recent Sentinel-1 data from the 
snowmelt period of 2016. While the LRW data was available in near-real time, the 
MODIS data was usually publicised with a delay of one to two months, which limited the 
accuracy assessment of the 2016 wet snow cover time series to the time period of Febru-
ary to the beginning of June. The results showed similar overall trends to the 2015 results. 
The mean user’s accuracy was 79%, with the improved winter reference slightly outper-
forming the snow-adjusted summer reference. Due to the lack of validation data of the 
late melting season, it could not be assessed whether the snow-adjusted summer reference 
would have outperformed the improved winter reference during summer months. Kappa 
values were again very low during early snowmelt due to widespread dry snow cover, but 
reached good values of around 0.7 by April, indicating generally good agreement be-
tween Sentinel and MODIS snow cover maps. The complete confusion matrices can be 
found in Table 11 and Table 12 in the appendix A.4. 

 
Figure 35. Accuracy measures for the wet snow maps of the snowmelt season of 2016, produced with the 

final algorithm settings. 

The total wet snow cover area in February 2016 was significantly lower than in 2015, 
only covering approximately 6’400 km2 or 1.1% of the study area. Maximum wet snow 
cover was reached by the end of March, with coverage of 31’000 km2 or 5.4% of the 
study area. The images on the next two pages (Figure 36) show one wet snow map per 
month for the melting season of 2016. The February-image displays less between-track 

U
se

r's
 a

cc
ur

ac
y

0

0.2

0.4

0.6

0.8

1
Accuracies of final algorithm applied to snowmelt season 2016

Er
ro

r o
f o

m
is

si
on

0

0.2

0.4

0.6

0.8

1

Ka
pp

a

0

0.2

0.4

0.6

0.8

1
Snow-adjusted summer reference Improved winter reference

20
16

02
02

-20
16

02
17

20
16

02
10

-20
16

02
25

20
16

02
18

-20
16

03
05

20
16

02
26

-20
16

03
12

20
16

03
05

-20
16

03
20

20
16

03
13

-20
16

03
28

20
16

03
21

-20
16

04
05

20
16

03
29

-20
16

04
13

20
16

04
06

-20
16

04
21

20
16

04
14

-20
16

04
29

20
16

04
22

-20
16

05
07

20
16

04
30

-20
16

05
15

20
16

05
08

-20
16

05
23

20
16

05
16

-20
16

05
31

20
16

05
24

-20
16

06
08

# 
w

et
 s

no
w

 p
ix

el
s

×106

0

1

2

3

4

5



4   Results 

52 

artefacts than the one from 2015. This might partly be due to the generally smaller 
amount of snow that was present in February of 2016 compared to 2015, and partly due to 
the higher number of individual radar acquisitions that were available to produce the 
LRW composite, which increased the amount of radar track overlap. 
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Figure 36. Time series of wet snow maps over the snowmelt season of 2016 (one image per month), derived 
with the final algorithm from 16-day LRW composites. Blue: wet snow. Background: Improved winter refer-

ence image for VH-polarisation. 
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5 Discussion 
In this study, a method to map wet snow cover area originally introduced by Rott & 
Nagler (1995) for ERS-1 data was adapted to Sentinel-1A SAR data that was composited 
by means of local resolution weighting (LRW; see Small, 2012). A variation of input 
datasets and different algorithm settings were compared and validated. Results of those 
comparisons were described in chapter 4. In this chapter the different findings are linked 
and the performance and applicability as well as some limitations of the used methods are 
discussed. 

5.1 General performance of Sentinel-1A LRW wet snow mapping 

After implementing and comparing all algorithm adjustments, the final wet snow map-
ping algorithm was set up. It first masked out all forested areas and water surfaces using 
the CORINE land cover map. Then it calculated the difference between the backscatter in 
dB of any given investigation LRW composite and of a dry/no snow reference image. For 
investigation images acquired before mid-May, the improved winter reference (see chap-
ter 3.2.4) was applied, for images acquired later in the melting season, the snow-adjusted 
summer reference (see chapter 3.2.3) was preferred. The backscatter differences of VH- 
and VV-polarisations were then combined by calculating a weighted average between the 
two, with a weight of 0.4 for VH and 0.6 for VV. Next, wet snow areas were identified by 
applying a threshold of -1.1 dB to difference images produced with the improved winter 
reference and a threshold of -2.3 dB to difference images produced with the snow-
adjusted summer reference. A post-classification correction based on a length-of-snow-
season map produced from a 15-year MODIS time series (see chapter 3.5) was then ap-
plied to remove misclassified wet snow pixels. Finally, the wet snow maps were validated 
against 500 m resolution MODIS snow maps.  

With this algorithm, the Sentinel LRW products demonstrated good capability for wide 
area wet snow mapping. By using the improved winter reference for scenes acquired up 
to mid-May and the snow-adjusted summer reference for the later acquisitions, a mean 
user’s accuracy of 76% for the period of February through August 2015 and 79% for the 
period of February through May 2016 was achieved. Individual maps achieved user’s 
accuracy of up to 97%. Major drops in user’s accuracy down to 43% in June 2015 could 
be partly explained by large data gaps in the Sentinel composite and high percentage of 
residual cloud cover in the MODIS validation image (see chapter 4.2.4); therefore, those 
values were not seen as evidence for bad algorithm performance. The achieved accuracies 
agreed well with the results from a similar investigation carried out by Rohner (2014). He 
used a similar algorithm based on C-band LRW composites from ENVISAT ASAR and 
Radarsat-2 acquisitions to map wet snow cover over Switzerland, achieving user’s accu-
racies of between 76% and 90%. 

The Cohen’s kappa coefficient (Cohen, 1960) was calculated as a measure of overall 
agreement between Sentinel wet snow maps and MODIS snow maps. Kappa values were 
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very low for acquisitions from February and March. This could be partly explained by the 
differences between Sentinel and MODIS in terms of what the respective products dis-
played: The MODIS snow product mapped the entire snow pack, while Sentinel could 
only detect wet snow. As most snow present in the early melting season was still dry, it 
was invisible to the radar sensor, leading to large differences between Sentinel and 
MODIS snow maps. Around the end of March and beginning of April, the snow pack 
became wet on a large scale, making the Sentinel and MODIS snow maps more compara-
ble. The achieved kappa values in this later period were scattered around 0.7, indicating 
good overall agreement between Sentinel and MODIS snow maps. 

5.2 Assessment of different backscatter reference images 

A backscatter reference image can be produced from any radar image that features as 
little wet snow cover as possible. Nagler & Rott (2000) suggested to average multiple 
SAR images acquired either during cold winter months, when the entire snow pack was 
frozen, or during summer months, when all snow has melted off. In the present study it 
was demonstrated that this approach could be problematic if the study area is very large 
and features several different climate regimes. No winter acquisition featuring freezing 
temperatures over the entire area was available as reference. No completely snow-free 
summer acquisition was available, either, as the study area featured several high-altitude 
regions that were snow-covered all year round. Both winter and summer reference images 
therefore inevitably featured some degree of wet snow contamination, which led to errors 
in the snow mapping process. 

Two improvements on the simple averaging of winter or summer acquisitions for refer-
ence generation were proposed in this study: 1) The snow-adjusted summer reference, 
which used summer acquisitions as reference for all snow-free areas, and winter acquisi-
tions for any high altitude areas with persistent snow cover (see chapter 3.2.3); and 2) the 
improved winter reference, which was composited from pixels chosen by applying masks 
of freezing temperatures to each individual radar acquisition (see chapter 3.2.4). Investi-
gation of wet snow maps produced over the entire snowmelt season of 2015 revealed that 
these two improved approaches outperformed the simple averaging approach over the 
entire time series. The application of one of those approaches is therefore recommended 
for studies that simultaneously investigate large areas and/or a wide range of elevations. 
Between the two improved approaches, no clear favourite emerged. The improved winter 
reference generally worked better during late winter and spring. From the end of May 
onwards, the snow-adjusted summer reference yielded higher user’s accuracies. This was 
most likely due to backscatter differences between winter and summer scenes other than 
snow-induced differences. During summer, vegetation is generally higher and more de-
veloped than during winter, which typically increases the volume scattering of the radar 
signal. Large differences in vegetation between investigation and reference scene could 
lead to backscatter differences that were big enough to be classified as wet snow, even 
though the cause of the differences lay in the amount of biomass. To minimise such sea-
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sonal distortions, it is recommended to choose the appropriate reference image based on 
the acquisition date of the investigation scene. This is in accordance to the findings of 
Rohner (2014), who noted that the reference scene should be temporally close to the in-
vestigation scene. 

5.3 Threshold extraction 

Wet snow areas were separated from dry snow and snow-free areas by subtracting a ref-
erence image from the investigation image and applying a threshold to the resulting dif-
ference image. Rott & Nagler (1995) suggested a wet snow threshold of -3 dB for ERS-1 
C-band radar images, based on comparison of field observations and SAR data. This val-
ue has subsequently been applied in a multitude of studies using ERS data (e.g. Baghdadi 
et al., 1997; Nagler & Rott, 2000) and ENVISAT ASAR data (e.g. Storvold et al., 2006; 
Longepe et al., 2009; Schaub, 2011; Rohner, 2014). Recently, the same algorithm was 
adapted to Sentinel-1A data, where an adjusted threshold of -2 dB was chosen based on 
histograms of the backscatter differences (Nagler et al., 2016). The same histogram ap-
proach was used in this study: Backscatter from snow-covered areas was divided into 
warm and cold snow by applying temperature masks. Backscatter histograms of those two 
classes were then used to identify a separating threshold (see chapter 3.3). It was found 
that the threshold was dependent on the applied reference image. When the final algo-
rithm settings (see chapter 4.2.8) were applied, a wet snow threshold of -1.1 dB was iden-
tified for the improved winter reference, while -2.3 dB was used for the snow-adjusted 
summer reference. This large difference implies that the threshold should always be de-
termined individually based on the applied reference image. 

A separate analysis was carried out to investigate whether subdividing the thresholds by 
land cover or elevation could improve the overall wet snow map accuracy (see chapter 
4.2.3). The investigation revealed that individual wet snow thresholds per land cover class 
showed considerable differences (see Table 6 in appendix A.3). The thresholds were low-
est for glaciers and non-vegetated areas and increased for scrubland. Agricultural areas 
and urban areas featured backscattering differences between cold and warm snow that 
were too small to clearly identify a wet snow threshold. These trends were consistent with 
the findings of Koskinen et al. (1997), who noted that the backscattering differences in C-
band SAR between wet snow and dry/no snow decreases with increasing biomass. No 
such trend was expected for subdivision by elevation, as radar backscatter is generally not 
influenced by altitude. However, the wet snow thresholds showed significant differences 
for the different elevation zones (see Table 6 in appendix A.3). This could be partly ex-
plained by the strong correlation between land cover and elevation: densely vegetated 
land cover classes like forests and agricultural areas were predominately found in eleva-
tions below 2000 m.a.s.l., while sparsely or non-vegetated classes like scrubland, non-
vegetated areas and glaciers were more prominent above 2000 m.a.s.l. The backscatter 
differences and resulting differences in thresholds had therefore the same cause as with 
the subdivision by land cover. As a consequence, subdivision by elevation did not provide 
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any new information compared to subdivision by land cover. Despite the differences in 
thresholds subdivided by land cover, the final wet snow maps produced with subdivided 
thresholds showed almost no difference compared to maps produced with a single thresh-
old over all land cover classes (see chapter 4.2.3). Threshold subdivision was therefore 
deemed ineffective and was not adopted in the final algorithm. 

5.4 Limitations  

5.4.1 Validation with the MODIS snow product 

The accuracy measures provided in this thesis give a good general indication on the over-
all performance of the wet snow mapping algorithm. However, they should not be inter-
preted as absolute accuracies of the resulting wet snow maps for several reasons: Firstly, 
the MODIS snow product used as validation was in itself a classification that came with 
inherent uncertainties and could therefore not be seen as absolute ground truth. While the 
overall quality of the MODIS snow maps was generally good, with accuracies beyond 
93% (Hall & Riggs, 2007), any present classification errors were inevitably propagated 
into the Sentinel wet snow map validation. Secondly, as mentioned earlier, the MODIS 
snow product mapped the entire snow pack, while the radar sensor could only detect wet 
snow. This difference led to lower accuracy values for the Sentinel wet snow maps in 
early snowmelt season that were ultimately not a reflection of their actual quality. For this 
reason, the main accuracy measure used in this study was the user’s accuracy, as the non-
detectable dry snow cover did not influence it. Thirdly, the NASA MODIS snow product 
used as standard validation dataset featured a significantly coarser spatial resolution of 
500 m compared to the roughly 90 m resolution of the Sentinel composite data. The vali-
dation could therefore not account for the full level of detail that the wet snow maps 
could in theory provide, most likely leading to an underestimation of the actual wet snow 
map accuracy. To investigate this effect, a comparison of wet snow map validations based 
on a 500 m NASA snow product and a 250 m EURAC snow product was carried out. 
This analysis did not, however, provide any definitive insights due to the generally lower 
quality of the EURAC snow product (see chapter 4.2.7). Better results could possibly be 
achieved by using snow maps retrieved from higher-resolution optical sensors such as 
Landsat or Sentinel-2 as validation data. The smaller footprint of those sensors compared 
to MODIS would have required significantly more pre-processing effort and data storage 
capacity, pushing their application beyond the scope of this thesis. Furthermore, higher 
resolution validation data could not have prevented the fourth problem encountered in the 
validation process of the wet snow maps: the long composite period of 16 days. This 
problem is discussed in more detail in the following sub-chapter. 

5.4.2 Usefulness of 16-day radar composites for snow monitoring 

Snow cover area can change drastically within a very short time period. A single snowfall 
event can greatly increase the total snow-covered area within a few hours, while a warm 
weather period can lead to an equally fast decrease of snow-covered area. This holds true 
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especially for areas at lower elevations that typically do not feature continuous snow cov-
er during winter months. Operational, satellite-based monitoring of snowmelt therefore 
requires revisit times of between one and five days (Malenovský et al., 2012; Key et al., 
2007). This requirement was not fulfilled with the 16-day LRW composites used in this 
thesis. As described in chapter 2.2.2, even this comparatively long time span could not 
guarantee gap-free composites over the entire time series. A shortening of the composite 
period length without major data gaps would therefore only be possible if the study area 
were greatly reduced in size. Since the focus of this study was on wide-area wet snow 
mapping, the longer composite period length was accepted as necessary prerequisite for 
sufficient data coverage over the entire Alps. 

The main problem associated with a long temporal baseline of LRW composites was the 
mixing of different backscatter signals. The final backscatter value of any composite pixel 
represented the weighted average of all backscatter values measured at that pixel over a 
16-day period. If wet snow was present during the first days of the composite period, but 
melted within the 16 days, the resulting composite backscatter value represented a mix-
ture of wet snow and no snow. As the snow mapping was strictly binary, the results of 
such cases were wrong no matter whether those particular pixels were ultimately mapped 
as wet snow or as snow-free. This problem was particularly severe for areas at elevations 
below 2000 m.a.s.l., where the snow pack was generally thin and could completely melt 
over large areas within only a few days. The snow mapping capabilities of 16-day com-
posite images was therefore severely limited for areas below 2000 m.a.s.l. 

A further problem was that some parts of the study area were sometimes only imaged on 
one or two days within the 16-day period. They therefore did not represent the mean 
snow conditions over the 16 days, but the present conditions on those particular days. 
This could lead to composites that represented the snow conditions of different points in 
time within a single image. This problem, together with the mixing of different backscat-
ter signals, caused an uncertainty about what exactly a wet snow map derived from a 16-
day LRW composite represented: it was neither the maximum nor the minimum wet snow 
extent over the corresponding 16 days, but some not exactly quantifiable mean value 
between these two extremes. This stood in contrast to the MODIS snow maps that repre-
sented the maximum snow extent over the composite period, which further complicated 
the validation process. 

Shorter composite time periods should reduce these two problems. Accuracy assessment 
of snow maps produced from shorter composite periods should therefore yield better val-
ues. This hypothesis was tested by mapping wet snow extend from 8-day radar compo-
sites. However, at the time of writing not enough Sentinel data was available to produce 
sufficiently complete coverage of the study area over an 8-day period. Any potential im-
provements in accuracy of the resulting wet snow maps due to reduced signal mixing 
were therefore offset by the lack of data (see chapter 4.2.6). By the end of 2016, Sentinel-
1B radar imagery should become readily accessible, effectively doubling the amount of 
available data. This should enable complete coverage of the study area in eight days or 
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even less. A future repetition of the comparison between 8-day and 16-day snow maps 
with this new data should therefore produce more telling results. 

5.4.3 Problems with radiometric stability of Sentinel-1A data 

High radiometric stability of SAR data is crucial for accurate surface monitoring. Varia-
tions in radar backscatter should be exclusively caused by variations in physical surface 
conditions and not by imprecisions in the radar calibration. A recent study by El Hajj et 
al. (2016) assessed the radiometric stability of Sentinel-1A data acquired between the 1st 
of October 2014 and the 1st of February 2016. They found that data acquired prior to the 
19th of March 2015 and after the 25th of November 2015 showed very little variation in 
the backscattering coefficient σ0, indicating good calibration. However, data acquired 
between the 19th of March and 25th of November 2015 displayed a mean increase in σ0 of 
nearly 1 dB for both VH and VV polarisations compared to the images acquired before 
and after this period (El Hajj et al., 2016). As this period covers the majority of the 
snowmelt season of 2015, a distorting effect on the wet snow thresholds retrieved in the 
present thesis had to be expected, depending on the used reference image. This effect 
could be observed in the histograms calculated for the threshold retrieval. 

The summer reference was produced from images that were acquired during the period of 
increased σ0. Since most pixels selected as warm snow pixels in the histogram process 
(see chapter 3.3) were also derived from this period, the backscatter overestimation was 
corrected by calculating the backscatter difference. However, most cold snow pixels were 
derived from the months of January and February, which lay outside of the period of in-
creased σ0. The backscatter difference calculated with the summer reference was there-
fore too low, leading to a shift of the cold snow peak towards lower backscatter differ-
ence values (see Figure 37, left). The winter reference was calculated from images ac-
quired in January of 2015 and 2016, thus representing the period of correct σ0. Applying 
the winter reference therefore led to the inverse effect on the histograms: the cold snow 
peak is located correctly, while the warm snow peak is shifted towards higher backscatter 
difference values (see Figure 37, right). As a consequence, the wet snow threshold for the 
winter reference (-1 dB) is roughly 1 dB higher than the one for the summer reference (-
1.9 dB), matching the 1 dB shift in σ0 caused by the calibration error described by El Hajj 
et al. (2016). It is reasonable to assume that without this calibration error, the different 
reference images would have produced more similar wet snow thresholds. The improved 
winter reference and the snow-adjusted summer reference were both produced from im-
ages acquired inside and outside of the period with increased σ0, which slightly damp-
ened, but could not eliminate the distorting effect of the calibration error on the thresh-
olds. 
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Figure 37. Normalised histograms of VH-backscatter difference from snow-covered pixels from all land 
cover classes for elevations above 2000 m.a.s.l. Red peak: warm snow pixels (T > +4°C). Blue peak: cold 

snow pixels (T < -1°C). Black line: extracted threshold. 

Since the period of increased σ0 almost matched the main investigation period, the extrac-
tion of individual thresholds per reference image could at least partly compensate the 
distortions caused by the calibration error. If for example the winter reference (produced 
from images with correct σ0) was applied to an image acquired in May 2015 (within peri-
od of increased σ0), the resulting difference image exhibits an overestimation of backscat-
ter difference. This overestimation is however partly compensated by applying the higher 
threshold extracted for the winter reference. In general, the wet snow maps should there-
fore not be impaired too severely. Still, some degree of resulting error had to be expected. 
These errors could have been prevented if the increased σ0 was corrected in the original 
Sentinel images acquired between the 19th of March and 25th of November 2015, before 
any further analysis was carried out. Unfortunately, the paper by El Hajj et al. (2016) was 
published too late to incorporate their findings into the data analysis of the present thesis. 

6 Conclusion and outlook 
This thesis investigated the adaptability of existing methods for wet snow mapping based 
on multitemporal radar backscatter thresholding to Sentinel-1 LRW composite images. 
The goal was to simultaneously map the entire European Alps, thereby leaving the local 
to national scale that was used in most previous studies and move towards a multi-
national scale, including a wide variety of land cover classes, climate regimes and eleva-
tions. Level 3 LRW composites from Sentinel-1A C-band SAR were available with 16- 
and 8-day temporal baselines for the period from the 1st of October 2014 to the end of 
June 2016. The main investigation period was the extended snowmelt period of 2015, 
spanning from February to August. Conclusions from those investigations were combined 
in a final wet snow mapping algorithm that was then applied to images from the snow-
melt period of 2016. Validation of the wet snow maps was done by comparison with 
snow maps derived from optical MODIS data. 

In general, the wet snow mapping algorithm showed good performance during the main 
and late snowmelt season and demonstrated its applicability to wide-area investigation 
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scenes. Some difficulties were encountered when mapping wet snow at lower elevations, 
which were mainly caused by the long temporal baseline of 16 days and the subsequent 
mixing of wet snow and snow-free ground backscatter signals. This limited the algorithm 
performance for areas at lower elevations and during the early snowmelt season. 

A variety of adjustments to the wet snow mapping algorithm were proposed and tested in 
order to obtain the best possible results. The incorporation of a DEM and daily tempera-
ture data enabled the extraction of more representative wet snow thresholds. A land cover 
map was used to mask out water surfaces and forested areas. This improved the overall 
quality of the classification, as wet snow mapping within forested areas proved to be in-
feasible. Major improvements in the final map accuracies could be achieved by applying 
a length-of-snow-season map to the classified image. This map was calculated from the 
available 15-year time series of MODIS data and was able to correct the majority of pix-
els falsely classified as wet snow. 

The importance of a high-quality reference backscatter image could be demonstrated by 
comparing four different approaches of reference calculation. Two advanced methods 
were presented that managed to significantly reduce the wet snow contamination of the 
reference image and therefore improve the quality of the wet snow classification com-
pared to the simple usage of winter or summer acquisitions as reference. Instead of using 
one fixed wet snow threshold for all analyses, individual thresholds were determined for 
each reference image and polarisation. It could be demonstrated that the different refer-
ence images produced substantially different thresholds. Some of those differences might 
have been caused or amplified by radiometric instability of the Sentinel images. A correc-
tion of those instabilities would likely reduce the differences between the different 
thresholds. Nevertheless, an individual determination of the wet snow threshold for the 
applied reference image is recommended. An additional analysis was conducted to assess 
whether a further subdivision of thresholds by land cover class and elevation zone could 
increase the overall quality of the wet snow maps. However, this subdivision did not pro-
vide any significant improvement for the final algorithm. 

Differently weighted combinations of VH and VV polarisations were tested against each 
other. Which combination produced the best results depended on the image date and the 
chosen reference image. By considering the entire snowmelt season and both of the im-
proved reference scenes, a combination of polarisations with a weight of 0.4 for VH- and 
0.6 for VV-polarisation was found to be the best compromise. 

Some problems and limitations were observed and discussed due to the relatively long 
16-day temporal baseline of the composite images. A shortening of the period to eight 
days or fewer was hypothesised to improve the overall quality of the wet snow maps. 
However, no clear conclusion could be reached in that respect due to a lack of sufficient 
Sentinel-1 acquisitions. Similarly, no clear verdict could be given on the question of 
whether the use of the 250 m MODIS snow product could enhance the accuracy assess-
ment. It was assumed that the higher level of detail compared to the standard 500 m reso-
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lution would improve the wet snow map accuracies, but the generally lower quality of the 
250 m MODIS product compared to the standard 500 m product did not allow any con-
clusive insights. 

The final wet snow mapping algorithm worked well for wide-area Sentinel-1 16-day 
LRW composites. It allowed unsupervised wet snow classification of entire time series of 
composite images and could be adapted into an operational snow mapping system. The 
resulting snow maps allowed the tracking of snowmelt processes over large areas and 
clearly visualised the retreat of the snow cover into higher altitudes during the snowmelt 
season. However, they offer limited practicability for detailed hydrological applications 
due to the temporal blurring caused by the long composite period length. The present 
thesis should therefore chiefly be seen as a precursor to future studies that will incorpo-
rate more SAR data and can therefore shorten the temporal baseline of wide-area compo-
site images. Such studies should become feasible in the near future, as the second Senti-
nel radar satellite, Sentinel-1B, was already launched and is at the time of writing in its 
in-orbit commissioning phase. Operational Sentinel-1B data should become available by 
the end of 2016 and will allow at least a bisection of the composite period length. With 
RADARSAT constellation, the Canadian Space Agency plans an additional C-band SAR 
mission. This mission is scheduled to launch in 2018 and will consist of three identical 
radar satellites, achieving a combined revisit time of four days (Canadian Space Agency, 
2015). If data from both Sentinel-1 and all three RADARSAT constellation satellites can 
be combined to produce LRW images, composite periods of only a few days should be 
feasible. Additional incorporation of X-band data from TerraSAR-X or COSMO-SkyMed 
into the algorithm is also conceivable. With this increase in data availability, SAR-
derived wet snow maps will offer good capabilities for hydrological analyses and climate 
change research over wide areas. 
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A   Appendix 

A.1   List of Abbreviations 

ASAR Advanced Synthetic Aperture Radar 

CORINE Coordination of Information on the Environment 

COSMO Constellation of small Satellites for Mediterranean basin Observation 

DEM Digital Elevation Model 

ECMWF European Centre for Medium-Range Weather Forecasts 

ENL Equivalent Number of Looks 

ENVISAT Environmental Satellite 

ERA ECMWF Re-Analysis 

ERS-1/2 European Remote Sensing Satellites 1 and 2 

ESA European Space Agency 

EURAC European Academy in Bozen, Italy 

GCOS Global Climate Observing System 

GDAL Geospatial Data Abstraction Library 

GTC Geocoded Terrain-Corrected radar image 

LOSS Length-Of-Snow-Season  

LRW Local Resolution Weighting 

MODIS Moderate Resolution Imaging Spectroradiometer 

NASA National Aeronautics and Space Administration 

NDSI Normalised Difference Snow Index 

NDVI Normalised Difference Vegetation Index 

RTC Radiometrically Terrain-Corrected radar image 

SAR Synthetic Aperture Radar 

SRTM Shuttle Radar Topography Mission 

UTC Universal Time Coordinated 

VH Cross-polarisation (Vertical – Horizontal) 

VV Like-polarisation (Vertical – Vertical) 
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A.2   Reference images 
Simple summer reference for VH-polarisation 

 

 

Snow-adjusted summer reference for VH-polarisation 

 
Figure 38. Comparison of the simple and the snow-adjusted summer reference images for VH-polarisation. 

Left: image over the entire study area. Right: Subset of Lucerne and Central Switzerland. 
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Simple winter reference for VH-polarisation 

 

 

Improved winter reference for VH-polarisation 

 
Figure 39. Comparison of the simple and the improved winter reference images for VH-polarisation. Left: 

image over the entire study area. Right: Subset of Lucerne and Central Switzerland. 
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Simple summer reference for VV-polarisation 

 

 

Snow-adjusted summer reference for VV-polarisation 

 
Figure 40. Comparison of the simple and the snow-adjusted summer reference images for VV-polarisation. 

Left: image over the entire study area. Right: Subset of Lucerne and Central Switzerland. 
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Simple winter reference for VV-polarisation 

 

 

Improved winter reference for VV-polarisation 

 
Figure 41. Comparison of the simple and the improved winter reference images for VV-polarisation. Left: 

image over the entire study area. Right: Subset of Lucerne and Central Switzerland. 
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A.3   Wet snow thresholds 

Land cover 
class Elevation 

Summer  
reference 

Winter  
reference 

Snow adjusted  
summer  

reference 

Improved 
winter  

reference 

VV VH VV VH VV VH VV VH 

Urban areas 

0-500 m - - - - - - - - 
500-1000 m - - - - - - - - 
below 2000 m - - - - - - - - 
above 2000 m - - - - - - - - 
all elevations - - - - - - - - 

Agricultural 
areas 

0-500 m - - - - - - - - 
500-1000 m - - - - - - - - 
1000-1500 m - - - - - - - - 
below 2000 m - - - - - - - - 
above 2000 m - - - - - - - - 
all elevations - - - - - - - - 

Forests 

0-500 m - - - - - - - - 
500-1000 m - - - - - - - - 
1000-1500 m - - - - - - - - 
1500-2000 m - - - - - - - - 
below 2000 m - - - - - - - - 
above 2000 m - - - - - - - - 
all elevations - - - - - - - - 

Scrubland 

0-500 m - - - - - - - - 
500-1000 m - - - - - - - - 
1000-1500 m - - - - - - - - 
1500-2000 m - - - - - - - - 
2000-2500 m -1.8 -2.0 -1.1 -0.7 -1.7 -1.9 -0.7 -1.0 
2500-3000 m -1.9 -1.6 -0.9 -0.5 -1.9 -1.6 -0.9 -1.3 
below 2000 m - - - - - - - - 
above 2000 m -1.8 -1.9 -1.1 -0.7 -1.7 -1.9 -0.7 -1.0 
all elevations - - - - - - - - 

Non-vegetated 
areas 

1500-2000 m - - - - - - - - 
2000-2500 m -3.0 -1.9 -1.5 -1.1 -2.9 -1.9 -1.0 -1.3 
2500-3000 m -3.3 -1.9 -1.4 -1.0 -3.2 -1.9 -1.2 -1.5 
3000-3500 m - -1.1 -1.1 -1.0 - -1.7 - -1.5 
below 2000 m - - - - - - - - 
above 2000 m -3.1 -1.9 -1.5 -1.1 -3.0 -1.9 -1.1 -1.5 
all elevations -3.1 -1.9 -1.5 -1.1 -3.0 -1.9 -1.1 -1.5 

Glacier 

2500-3000 m -0.1 1.3 -1.1 -1.2 -1.6 -2.2 -1.3 -1.8 
3000-3500 m 0.7 3.0 -1.2 -1.4 -1.9 -2.6 -1.5 -2.0 
3500-4000 m 3.2 - -1.4 -1.7 -2.3 -3.0 -1.6 -2.0 
below 2000 m - - - - - - - - 
above 2000 m 0.7 2.5 -1.2 -1.3 -1.8 -2.4 -1.4 -1.9 
all elevations 0.7 2.5 -1.2 -1.3 -1.8 -2.4 -1.4 -1.9 

Table 6. Wet snow thresholds (in dB) for the different reference scenes and polarisations, extracted from 
individual histograms per land cover class. 
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Land cover 
class 

 
Elevation 

Summer  
reference 

Winter  
reference 

Snow adjusted  
summer  

reference 

Improved 
winter  

reference 
VV VH VV VH VV VH VV VH 

All land  
cover classes 

0-500 m - - - - - - - - 
500-1000 m - - - - - - - - 
1000-1500 m - - - - - - - - 
1500-2000 m - - - - - - - - 
2000-2500 m - -2.0 -1.3 -0.9 - -1.9 -0.9 -1.2 
2500-3000 m -3.0 -1.7 -1.3 -1.0 -2.9 -1.9 -1.2 -1.5 
3000-3500 m - - -1.2 -1.2 -1.9 -2.1 -1.3 -1.7 
3500-4000 m 2.4 3.4 -1.4 -1.6 -2.1 -2.7 -1.3 -1.7 
below 2000 m - - - - - - - - 
above 2000 m -2.6 -1.8 -1.3 -1.0 -2.6 -2.0 -1.0 -1.4 
all elevations - - - - - - - - 

Table 7. Wet snow thresholds (in dB) for the different reference scenes and polarisations, extracted from 
histograms over all land cover classes. 
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A.4   Confusion matrices for the final snow maps of 2015 and 2016 

 

 MODIS snow product 
Snow No snow 

Sentinel  
wet snow maps 

Wet snow P11 P12 
Dry/no snow P21 P22 

Table 8. Template of the accuracy assessment confusion table. 

 

Year: 2015 / Reference: improved winter reference / Unit: No. of Pixels 

Composite period P11 P12 P21 P22 

20150202-20150217 2136027 500653 29965889 17039116 
20150210-20150225 1995596 410745 23685690 21957656 
20150218-20150305 2111569 461764 16918122 31184360 
20150226-20150313 1919333 696493 11208120 36561001 
20150306-20150321 1779705 1025193 9871276 38166522 
20150314-20150329 1597439 401957 8347127 42144097 
20150322-20150406 1679039 45306 6931319 42058098 
20150330-20150414 2193578 87001 7091702 43240274 
20150407-20150422 3298899 391557 5327035 43654507 
20150415-20150430 3733243 572103 2848048 45263694 
20150423-20150508 2982790 476390 1667580 45831449 
20150501-20150516 2128537 655300 686941 47185904 
20150509-20150524 1843017 940081 511120 48728187 
20150517-20150601 1309568 880618 417841 47313674 
20150525-20150609 1254346 951674 416658 49922069 
20150602-20150617 762422 741124 275275 46471394 
20150610-20150625 308344 514271 140251 40422402 
20150618-20150703 451490 407187 207066 46888618 
20150626-20150711 350820 342482 167906 47143489 
20150704-20150719 241284 282842 109660 50802316 
20150712-20150727 211024 232767 84583 51000493 
20150720-20150804 194319 182212 89075 49172994 
20150728-20150812 186408 185612 83065 47098186 
20150805-20150820 161102 238958 50217 46992671 
20150813-20150828 191790 177695 72103 46246467 
20150821-20150905 190621 158343 85986 47285145 
20150829-20150913 226363 168647 126531 47202107 

Table 9. Confusion matrix values for all wet snow maps produced with the final algorithm (applied reference 
scene: improved winter reference) over the snowmelt period of 2015 (P-values represent the number of pixels 

of the corresponding confusion matrix cell). 
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Year: 2015 / Reference: snow-adjusted summer reference / Unit: No. of Pixels 

Composite period P11 P12 P21 P22 

20150202-20150217 6204236 1553161 25897605 15986605 
20150210-20150225 4391564 1395154 21289650 20973244 
20150218-20150305 4035015 1179630 14994601 30466491 
20150226-20150313 3547421 1893006 9579956 35364488 
20150306-20150321 2767117 2124883 8883790 37066831 
20150314-20150329 1935873 685180 8008619 41860869 
20150322-20150406 1814675 190553 6795611 41912846 
20150330-20150414 2239996 233745 7045206 43093530 
20150407-20150422 3166366 379707 5459506 43666337 
20150415-20150430 3636932 523192 2944309 45312578 
20150423-20150508 2790321 467448 1860041 45840341 
20150501-20150516 1967476 629717 848001 47211414 
20150509-20150524 1739405 842074 614731 48826120 
20150517-20150601 1254614 732531 472795 47461749 
20150525-20150609 1172406 791952 498596 50081711 
20150602-20150617 688117 626119 349580 46586317 
20150610-20150625 273100 345838 175495 40590835 
20150618-20150703 370953 205206 287603 47090592 
20150626-20150711 283442 98101 235284 47387863 
20150704-20150719 213422 46352 137522 51038806 
20150712-20150727 189992 69181 105615 51164079 
20150720-20150804 176949 48077 106445 49307129 
20150728-20150812 170719 49897 98754 47233901 
20150805-20150820 149644 113908 61675 47117715 
20150813-20150828 177041 75401 86852 46348755 
20150821-20150905 174272 58247 102335 47385229 
20150829-20150913 194415 76106 158479 47294636 

Table 10. Confusion matrix values for all wet snow maps produced with the final algorithm (applied refer-
ence scene: snow-adjusted summer reference) over the snowmelt period of 2015 (P-values represent the 

number of pixels of the corresponding confusion matrix cell). 
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Year: 2016 / Reference: improved winter reference / Unit: No. of Pixels 

Composite period P11 P12 P21 P22 

20160202-20160217 722123 165348 9844343 33464991 
20160210-20160225 721923 415492 9844540 41693289 
20160218-20160305 897819 277051 11101287 40397594 
20160226-20160312 836064 241760 11164555 40433314 
20160305-20160320 1141236 209460 12591278 38679976 
20160313-20160328 1546667 655281 9662371 40778855 
20160321-20160405 2630761 598000 6049734 41421951 
20160329-20160413 2767173 717937 2030107 43506655 
20160406-20160421 4143163 592581 2361875 44962041 
20160414-20160429 3967131 537072 2571224 44994888 
20160422-20160507 3641229 687375 2545602 44981607 
20160430-20160515 3352725 693558 1573058 45763972 
20160508-20160523 2894464 960789 675730 47015057 
20160516-20160531 2964652 649713 951300 47294939 
20160524-20160608 1281335 707688 329914 47988314 

Table 11. Confusion matrix values for all wet snow maps produced with the final algorithm (applied refer-
ence scene: improved winter reference) over the snowmelt period of 2016 (P-values represent the number of 

pixels of the corresponding confusion matrix cell). 

Year: 2016 / Reference: snow-adjusted summer reference / Unit: No. of Pixels 

Composite period P11 P12 P21 P22 

20160202-20160217 1496919 411186 9069513 33219129 
20160210-20160225 1452949 735828 9113480 41372754 
20160218-20160305 1471553 648064 10527378 40026523 
20160226-20160312 1464531 615318 10535913 40059698 
20160305-20160320 1724445 466979 12007842 38422451 
20160313-20160328 1954278 817770 9254547 40616346 
20160321-20160405 2805757 900572 5874630 41119282 
20160329-20160413 2855061 1001361 1942120 43223107 
20160406-20160421 4135679 745466 2369268 44809014 
20160414-20160429 3956434 740152 2581795 44791701 
20160422-20160507 3673996 764260 2512678 44904646 
20160430-20160515 3212243 662958 1713432 45794448 
20160508-20160523 2745010 982582 825166 46993065 
20160516-20160531 2789692 609186 1126242 47335261 
20160524-20160608 1217551 658703 393695 48037087 

Table 12. Confusion matrix values for all wet snow maps produced with the final algorithm (applied refer-
ence scene: snow-adjusted summer reference) over the snowmelt period of 2016 (P-values represent the 

number of pixels of the corresponding confusion matrix cell). 
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