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Abstract

Grassland degradation is defined by loss of productivity and spatial extent. In the Borana Zone,
southern Ethiopia, this process threatens the traditional nomadic pastoral culture. Recurrent
droughts, increasing population and land cultivation, as well as a ban on fire causing bush en-
croachment are the main drivers in this process, strongly influencing the regional livestock produc-
tion and therefore household incomes. Using remote sensing time series, it is possible to identify
land cover changes over time and map degraded areas. Likewise, remotely sensed precipitation
time series provide information about drought periods a↵ecting grassland productivity.

This master thesis provides insights into local trends regarding the spatial extent and produc-
tivity of grasslands by using the Google Earth Engine JavaScript API for the application of a
supervised thresholded minimum distance classifier on annually aggregated images of Landsat 5, 7
and 8 that were transformed to useful descriptors based on the Normalized Di↵erence Vegetation
Index (NDVI).

Areal grassland loss is mainly introduced by two di↵erent drivers: humans and droughts. By
regressing per-pixel NDVI sums on sums of precipitation, the respective residuals can be regressed
on time to conduct trend analyses and di↵erentiate drivers of degradation. Using this so-called
RESTREND method, classification results were linked to overall greening or browning processes
that align to the findings in other relevant studies.

Natural grassland disappeared in the north predominantly due to degradation processes, while
higher sums of precipitation in the south led to conversions to managed pastures. A flipped rain
season in the year 2011 started a short period of general greening which ended by 2013. The
combination of annual results and overall trends further revealed e↵ects of multiple consecutive
processes over the time series.
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1. Introduction

The Borana Zone, named after an Oromo clan, is confronted with a great reduction of productive
pastures in the last decades [1]. Anthropogenic and naturally induced factors, like bush encroach-
ment due to an o�cial ban of fire in the 1970’s and recurrent droughts have severe impacts on
local households and their livestock. Herds shrink, leading to decreasing household incomes and
increasing poverty as well as food insecurity. Between 1983 and 2003, the average cattle holding per
household declined by 54 %, the droughts of 1983/84, 1992/93 and 1999/2000 resulted in a 49 %
loss of cattle herd [3]. Such scenarios are mostly followed by declining cattle birth rates, a shortage
of milk and slow herd recovery. Pastoralism, the use of natural resources to feed livestock, forces
herders to travel long distances between pastures for their cattle and market-centers for trading,
making survival based on mobility [19]. However, this extensive form of livestock production gives
herders a chance to cope with regional drought events, where crop cultivation fails [3]. In 2009,
more common and severe droughts further degraded already heavily used grasslands and water
holes, leading to violent conflicts and a drastically reduced mobility due to fear and insecurity [19].
This not only e↵ected herds and their access to pastures, but also herders and their ability to sell
their goods on markets.

With help of satellite imagery and remote sensing, it is possible to map and monitor land use
and land cover changes to strengthen resilience and coping abilities of communities in such times
of distress, as well as suggest or evaluate policies concerning those changes. Also, information from
local farmers and their awareness of land degradation are vital for understanding the dynamics of
land cover changes. The majority is aware of the increasing problem of grazing land deterioration
over the last 40 years, even if it is perceived not as severe in lowlands as in highlands [5]. At the
end of dry season, common used grasslands are closed by the elected elders to allow a su�cient
regrowth. During this time, watchman enforce this policy of protection.

Several studies over the last ten years focused on the Borana Zone, its land degradation dy-
namics [1][16] due to droughts [3] and farmers perceptions of this processes [5][18][4][17]. Remote
sensing approaches similar to the methods in this study at hand where used in [1], where the
authors used unsupervised clustering to identify training regions for a supervised maximum likeli-
hood classifier of seven classes in Yabelo (5426 km2), one of eight Borana districts. Their results
were validated with 450 ground truth points and resulted in accuracies between 81.3 % and 84.6
%, depending on di↵erent assessed years. [16] clustered eight types of land cover for five di↵er-
ent areas within the Borana Zone with a total study area of 735.90 km2. They also validated
through fieldwork, but with unknown accuracy. For their di↵erent test sites, both studies resulted
a grassland coverage of roughly 35.5 % to 40 % with a low decrease or even very steep increase of
areal extent between 1985 and 2011 (Soda Kebele: +27 % [16]). They connected this increment
to an enormous decline in bushland due to successful e↵orts to reintroduce fire clearings, improved
management, grassland enclosures and cessation of grazing.

There is agreement on multiple reasons for grassland degradation in the Borana Zone: bush en-
croachment [1], conversion to agricultural land, increased numbers of cattle and human population
[5], droughts and related shortage of feed and water [17].

The reason for an o�cial ban on fire in the early 1970’s was linked to a loss of forest cover in
the Ethiopian highlands but lead to bush encroachment [4]. In response to more and denser shrub
lands, pastoralists learned to herd camels in addition to cattle [1].

It sounds surprising that droughts and their severe impacts on households lead to crop cultiva-
tion, which is more prone to fail due to such conditions, but the participation of pastoral households
in agriculture is generally accepted as a way of livelihood diversification in response to economic
stress [18]. Though it is highly erratic (successful harvests occur roughly every three years [4])
and yields vary due to precipitation and soil fertility, grain prices are increasing during droughts,
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CHAPTER 1. INTRODUCTION

while animal’s values decrease. Herders are often forced to sell their livestock at a loss before they
die, leaving them with an insu�cient herd size to meet their demands. Crop cultivation is a way
to substitute this decline, but also creates conflicts by fragmenting and restricting access to prime
grazing lands [18]. It is estimated that less than 15 % of Borana households is relying on livestock
alone, while the majority relies also on some kind of grains.

The remote sensing community introduced a palette of di↵erent methods and approaches to
quantify land use and land cover changes, using the optical spectrum of light as well as microwaves
[2]. For classification of land quality, unsupervised and supervised algorithms are available. Cluster
methods like k-Means group pixels purely based on their appearance descriptors, making prior
knowledge (training data) unnecessary. This helps in lack of any information about the study site,
but post-interpretation demands for identification of results. Supervised classifiers, on the other
hand, enable scientists to input their prior-expertise in form of training datasets. The output
will group pixels that are similar to regions that were already labeled as some kind of land cover.
Besides, there exist multiple varieties that concern input descriptors, spatial connections or data
transformations. Vegetation parameters can further be used in regression models to estimate
di↵erent dependent or independent variables, respectively. For example can yields be estimated
by utilizing the NDVI as performance proxy.

The main goal of this work is the identification of grassland in the whole Borana Zone. This
is achieved by applying a supervised thresholded minimum distance classification. The result
allows for the quantification of areal extents in a time series of sixteen years. Precipitation data
was used for linear regressions, executing the so-called RESTREND method (REsidual TREND)
[20]. Its purpose is the identification of vegetation performance trends under consideration of
water availability. Since the same methods could be applied to all kinds of land cover classes,
an application was developed using the Google Earth Engine Javascript API [9]. It allows the
classification and mapping of a variety of classes, purely based on the input training data.
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2. Test Site and Materials

Figure 2.1: Thematic maps of the study area overlaid by Landsat WRS-2 scene boundaries.

The study site is located at 5.05� North 38.20� East and has a total area of 52671 km2 [Fig.2.1].
Altitudes vary between 450 m in the western flatlands and up to 2487 m (west of Mega) in the
highland ridges cutting the area north to south. Besides the slopes of those highlands, the surface
is mainly a rather flat plateau at around 1000 to 1500 m altitude. The climate is semi-arid /
arid, precipitation occurs primarily in two rain seasons. Roughly two thirds of the annual rain
falls around April and one third between October and November [Fig.2.2]. The average annual
temperature varies from 19� C to 26� C, with droughts typically every five to six years [1].

Multiple trends are altering the land cover in the Borana Zone. Recurrent droughts degrade
grassland and pastures. Cattle herds shrink and households try to compensate the resulting lack
of calories with agriculture. A ban on fire led to bush encroachment and regions that reintroduced
fire clearings often observed a decline of e�ciency, because fire can not spread over degraded bare
soil between inflammable bushes. Regional cooperatives introduced so-called Kalos, intensively
managed pastures around villages, in an attempt to counteract processes of degradation and herd
shrinking. Its main concept is to bring all cattle to one Kalos after another, providing su�cient
time for remaining other pastures to regrow.

9



CHAPTER 2. TEST SITE AND MATERIALS

Monthly Precipitation in the Borana Zone [mm]
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Figure 2.2: The combination of precipitation as a proxy for cloud cover and numbers of taken
images per month results in sums of available cloud free pixels. The months December to March
have peaks well beyond 1.2e6 cloud free pixels, while the value is roughly half around September.
Due to the images provided by Landsat 8 starting in 2013, the number of cloud free pixels increased
noticeably. The mean annual sums of precipitation reveal droughts roughly every five years.
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CHAPTER 2. TEST SITE AND MATERIALS

2.1 Landsat Data

A total number of 2767 Landsat 5,7 and 8 images were used to generate a time series from January
2000 to December 2016. Landsat 5 imagery was available up until 2011, whereas Landsat 8 data
could be obtained as of 2013. Per year, this results in approximately 100 to 150 di↵erent scenes,
respectively 350 in 2013 and after. All images available on the Google servers were atmospherically
corrected to surface reflectance and included a cloud mask (using the CFMask algorithm [8]). For
dataset merging, Landsat 8 bands were renamed to correspond to the respective wavelengths of
Landsat 5/7 bands.

Despite this high amount of imagery, an intra-annual variability in terms of dates of observation
needed to be considered for the numbers of images and cloud-free pixels. During rain periods,
surface information tends to be hidden by cloud cover. A summation of cloud free pixels resulted
in an asymmetric bimodal distribution with highest peaks between the months December to March
and less pronounced gradients in September. The reasons for this distribution not only lie within
the respective cloud cover, but the fact that there simply were less datasets available, especially
over dry seasons, around June [Fig.2.2].

The number of available and used images gets further put into perspective, considering the
study site’s extent over several Landsat scenes [Fig.2.1].

2.2 TRMM Multi-Satellite Precipitation Analysis (TMPA)
Data

The Tropical Rainfall Measuring Mission (TRMM) satellite was launched in 1997 and re-entered
the atmosphere in 2015 [12]. The multi-satellite Algorithm 3B42 merges passive microwave data
of sensors on multiple satellites (TRMM, DMSP, Aqua, NOAA) and infrared data collected by the
international constellation of geosynchronous earth orbit (GEO) satellites to precipitation data in
millimeter at a 3-hour temporal and a 0.25� spatial resolution [13][11]. 3B42 continued to exist up
until July 2017, while the transition to a new generation, the Global Precipitation Measurement
(GPM) and the Integrated Multi-Satellite Retrievals for GPM (IMERG) begun [12].

The TMPA dataset was used to conduct analyses concerning the general pattern of rain and
drought in the test area and to link the availability of surface information to cloud cover [Chap.2.1].
Mainly, however, this precipitation data of adequate spatial resolution were used as regressors for
aggregated NDVI values in a linear regression model, in order to build trends out of the respec-
tive residuals. This residual trend (RESTREND) method enables general statements concerning
tendencies of phenological greening or browning processes.

2.3 Training Data

Classification is highly dependent on good training data and necessarily needs to be validated.
In this study, areas of grassland and pastures were manually collected with very high resolution
imagery of di↵erent dates in Google Earth Pro and the support of a clustered image [Chap.3.2].
The training polygons were sampled to points on a 30 x 30 meter grid. Based on their descriptor
values, a class centroid was built in their mean as an ideal representation of considered land cover
type.
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3. Methods

To tackle research questions concerning grassland, a first obvious step is to classify this specific
land cover type. Since no a priori information was considered, an unsupervised k-Means clustering
was executed to group pixels to distinctive classes, based on their respective descriptors. The
cluster manually identified as grassland helped to train a classifier by pointing out regions to
collect su�cient training data from. The minimum distance classifier built with these selected
grassland regions was thresholded and verified with the training set and a separated validation set.
By applying the trained classifier on image compositions of every year in the series, a changing
spatial extent of grassland was documented.

In an initially independent approach, annual sums of NDVI per pixel were modeled and used
as dependent variables in a linear regression model with annual sums of precipitation per pixel. As
these NDVI sums turned out to be valuable and informative pixel descriptors, they were further
considered in the classification. Assuming that rain is the main influencer of vegetation’s ability to
grow in arid or semi-arid areas, the residuals of these regressions provide information about greening
or browning tendencies under consideration of water availability. Further, they can themselves be
regressed over time to calculate slopes of trends.

The NDVI forms the normalized di↵erence of infrared and red reflectance to an index that is
strongly correlated with vegetation productivity [7]. It has a theoretical value space of [-1,1] but
interpretable results vary between 0 (no photosynthesis) and 1 (very high productivity). Trends
of this value can be used as a proxy for photosynthetic activity changes [6].

3.1 Data Preparation and Descriptors

The right set of pixel descriptors has high impact on successful classification e↵orts. To some
extent, a choice on these variables also determines the temporal resolution of the result. A basic
criterion that needs to be met in such a consideration, is that every pixel is represented in every
time step, setting the minimal temporal resolution to an interval that can fulfill this demand. For
the test site, temporal units shorter than a calendar year, for example rain or phenological seasons,
could not meet this requirement [Fig.3.1]. By aggregating the data to annual bins and therefore
over whole growing cycles, risks of e↵ects of the Modifiable Temporal Unit Problem (MTUP),
describing influences of aggregation levels and starting phases on respective model results, were
minimized [6].

The following subsections explain the di↵erent methods used to extract certain descriptors. A
bold line at the end of each subsection summarizes the respective inputs and outputs.

3.1.1 Normalizing

All bands were used in the surface reflectance value space. The descriptors for the classifier, which
includes the Landsat bands itself, needed to be in similar dimensions, since distance measurements
in the classification process are related to the respective descriptor variances. A distance of 1
would for example include the complete interpretable value space of NDVI, while excluding all
observed Landsat band values, scattering around +- 10000. Since an ordinary value normalization
(xi � min(x))/(max(x) � min(x)) resulted in computational timeouts and insu�cient execution
speed, all Landsat bands were simply divided by 300 to resemble to annual NDVI sums spreading
between 5 and 15, even though this step does not influence intra-annual intra-regional data vari-
abilities over multiple Landsat scenes and therefore is not a real normalization in a strict sense.
To further overcome the problem of a need for similar dimensionality, distance measurements in

12



CHAPTER 3. METHODS
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Figure 3.1: An aggregation to annual values per band ensured that every pixel was considered in
every step. The temporal distribution of observations did not follow any particular pattern, but
shows intra-annual gaps and tends to a year’s shoulder.

the classification algorithm were based on mahalanobis distances rather than euclidean di↵erences,
which take respective variances into account [Chap.3.3].

B[1-7] ! Normalizing ! Mean of Bands in dimensions of roughly [0,15]

3.1.2 Moving Window - Slicing

365 days were in the most extreme cases represented by just six observations, also including those
that are actually clouded, scattered over the year without any particular pattern [Fig.2.2][Fig.3.1].
An empirical analysis of random sample pixels showed errors for the preprocessed cloud masks
in form of outlying very low or negative NDVI values in the respective pixel’s time series. On
the other hand, very high NDVI values which can be seen in relation to their dates of respective
observation were found. If an image is available on a Day Of Year (DOY) where the growing cycle
happens to peak, the time series consequently includes a relatively high valued record, but a pixel
of the exact same land cover class lacking just this particular observation will show a lower average
as a result. Therefore, whole observations represented by the top and bottom 30 % NDVI values
per pixel were sliced in a window of three years [Fig.3.2]. Specifically, a pixel’s NDVI values for
the respective years y�1, y, y+1 were sorted in an ascending array to pick the maximum of the
bottom and minimum of the top scoring 30 %. In the following masking process, only observations
higher than the maximum low-value and lower than the minimum high-value are allowed to be
reduced to band mean values per year. For this procedure, the NDVI must be considered a quality
criterium in such, that a whole observation with all its respective bands and represented by its
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Figure 3.2: A visual example of the masking process of extreme values for the year 2014 at a random
point. By slicing outliers, the average of remaining bands changes. The sliced observations are
assumed to better represent a class in the whole time series by eliminating extremes introduced by
observation circumstances.

NDVI, can potentially be masked. Slicing 60 % of observations in total leaves less than half the
sample size with mediocre values to average but also eliminates outliers introduced by observation
circumstances. Since the modeled sum of NDVI resulted in more homogeneous results, the sliced
NDVI mean itself was not used as descriptor, but only the 3-year-means of the remaining not sliced
Landsat bands [Chap.3.1.3]. In order to account for Landsat 7 Scan Line Errors these band means
were further averaged to local means in a 500 m radius in one iteration [15].

B4,B3 ! NDVI ! Slicing ! Local means ! 3-year-mean of bands

3.1.3 Annual NDVI Sum Modeling

All assumable cloud free NDVI values > 0, including also sliced observations, were considered in a
linear regression model that reduces a pixel’s values per year to multiple sine waves. A single such
wave can be written as a linear combination of a ⇤ sin(x) + b ⇤ cos(x), where x is set based on the
desired frequency [10]. By linearly combining waves of di↵erent frequencies, non-harmonic waves
can be modeled. Multiple sine waves with wavelengths � = year/[2, 4, 6, 8] were considered to
model sums of NDVI, primarily for the RESTREND analysis, but also as classification descriptors.

A regression model of eight independent variables (four waves with two coe�cients each) but,
in the worst case, only six dependent ones (real NDVI observations), inevitably fails due to under-
determination. Hence, annual sums of NDVI were obtained by merging all observations in the time
series 2000 - 2016 to a single artificial year, based on their respective DOYs. The resulting regression
model of waves in di↵erent lengths forms a general shape of signal evolution for a modeled year.
Every pixel’s individual general shape was again modified for the di↵erent years by concatenating
modeled NDVIs for every tenth DOY and replacing values where real observation of respective
year are available. The resulting array was again regressed over four di↵erent sine waves, with
real values weighted by a factor 50 in the underlying residual optimization of regressions [Fig.3.3].
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The respective NDVI sums were masked to 0 > NDV I > 40 = 0 in order to reduce meaningless
variance produced exclusively by water surfaces.

NDVIs in whole time series ! Sine wave modeling ! Annual sums of NDVI

3.1.4 Pixel Neighborhoods

Every pixel’s descriptor space was widened by including the mean of its directly neighboring pixel’s
annual sums of NDVI. Doing so, the probability for a pixel to be classified as a specified land cover
type increases if it’s surrounding neighbors also look similar to the class in terms of NDVI sums.
To prevent errors due to the neighbor’s sequence of appearance in the descriptor matrix, the values
were reduced to a single mean.

Sum of NDVI ! Mean for eight neighbors

In summary, the data set was heavily modified in the preparation phase. In extreme cases and
with exception of the slicing procedure, six di↵erent observations per pixel and respective year
were transformed to following descriptors [Tab.3.1]:

• 3-year-mean of sliced Landsat Bands [1-7], averaged over a 500 meter kernel

• Modeled NDVI sum

• Mean of eight neighboring pixel’s NDVI sums

Table 3.1: Simplified workflow of the Landsat 5, 7 and 8 data aggregation for the derivation of
descriptors.

Landsat 8 Bands B2 B3 B4 B5 B6 B7
Rename to ...

Landsat 5/7 Bands B1 B2 B3 B4 B5 B7
Spectrum Blue Green Red NIR SWIR1 SWIR2

LS7 Wavelength (µm) 0.0441 - 0.514 0.519 - 0.601 0.631 - 0.692 0.772 - 0.898 1.547 - 1.749 2.064 - 2.345
Derived Descriptor Modeled NDVI sum

Derived Descriptor Mean of neighbors

Slicing

Normalizing

Derived Descriptor Sliced B1 mean Sliced B2 mean Sliced B3 mean Sliced B4 mean Sliced B5 mean Sliced B7 mean

The covariance matrix for all descriptors shows their mutual connections [Tab.3.2]. A high
variance of a certain variable makes clean thresholding for respective classes easier. Covariance
provides information concerning the relationships among descriptors in the respect, that a high
covariance is an indicator of the tendency that two variables describe the same fact. That is the
case for NDVI sums based on bands 3 and 4, which are mostly similar to their neighbor’s. Bands
5 and 7 have respective maximums resembling to NDVI sums, which results in similar variances.

Table 3.2: Covariance Matrix for the selected descriptors in 2016 in a spatial subset and multiplied
by 100 in following order: 1: Sliced B1 mean, 2: Sliced B2 mean, 3: Sliced B3 mean, 4: Sliced
B4 mean, 5: Sliced B5 mean, 6: Sliced B7 mean, 7: Modeled NDVI sum, 8: Mean NDVI sum of
neighbors

1 2 3 4 5 6 7 8

1 12.399 18.752 30.938 29.573 49.108 48.323 -32.225 -31.625
2 18.752 30.827 56.18 53.01 87.903 87.57 -62.669 -61.283
3 30.938 56.18 124.9 101.648 192.411 202.957 -175.729 -171.767
4 29.573 53.01 101.648 117.631 159.925 149.763 -83.737 -82.798
5 49.108 87.903 192.411 159.925 336.471 348.275 -263.496 -256.824
6 48.323 87.57 202.957 149.763 348.275 385.739 -313.4 -304.83
7 -32.225 -62.669 -175.729 -83.737 -263.496 -313.4 395.621 383.88
8 -31.625 -61.283 -171.767 -82.798 -256.824 -304.83 383.88 377.276
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Model Shape
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Figure 3.3: Based on all observations (NDV I > 0) in the time series, an individual general model
shape was calculated for each pixel. By introducing a respective year’s real values 50 times each
to a further regression model, the general shape was modified. Note that the plateaus for actual
values are a result of this weighting, since every real value was introduced to the model with 50
independent observations.
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3.2 Clustering and Training Data Collection

An unsupervised k-Means clustering of the aggregated descriptor image for the year 2013 helped
to get a first impression of di↵erent present land cover classes. Most high resolution images
available and used for training data collection were taken between 2012 and 2014, making 2013 a
legitimate approximation. The method of clustering is independent from any training data and a
priori information, but only groups pixels to k classes based on their respective descriptors and
distance/resemblance to each of those groups. Every group has its centroid in a n-dimensional
space, where n is the number of descriptors, in the mean of all their belonging pixels. Using k-
Means, the number of di↵erent groups to distinguish is up to be guessed and approximated by the
user. Based on visual interpretation of very high resolution imagery in Google Earth Pro, k = 10
was identified as a good fit to render grassland areas in reasonable matters for further manual data
collection.

3.3 Classification and Validation

Distance Measurements
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Figure 3.4: In this example, 40 random pixels were visualized and thresholded in the descrip-
tor dimensions B5 and B7 (sliced annual means), as they have high variance and covariance to
each other [Fig.3.2]. While some points are included in both distance measurements (black), the
euclidean distance (red) thresholds the data points in a circle around their means and the maha-
lanobis isodistance (green) has an elliptic shape. Descriptors with a lower variance like the mean
of B2, thresholded with euclidean isodistances, would potentially yield false-positives.

Without exhaustive training datasets and knowledge of all existing land cover classes, multi-
class classifications introduce unnoticeable errors by assigning pixels of unknown or untrained
classes to one that the algorithm learned [14]. This can be avoided by performing a one-class
classification, where samples are only available for one class of interest. Contrary to using another
subcategory, the PU-classifiers (positive and unlabeled training data), this study uses a P-classifier
and therefore only positive samples for training. In consequence, just a producer’s accuracy but
no confusion matrix or other standard parameters like user’s accuracy and Cohen’s kappa are
extractable, since it can not be assumed that all points not included in the training dataset are
not part of the class [Tab.3.3].

The chosen classifier is based on mahalanobis distances in the 8-dimensional descriptor space.
In a first step, the training dataset consisting of multiple polygons is sampled to points on a 30
x 30 meter grid. 30 % of these samples were separated for later validations. A reference year,
which is the year for which it can be assumed that the training is correct, needs to be set based
on information about the training data collection process.

The algorithm exclusively uses the training points to build a class centroid in the mean of all
their respective descriptors for the reference year. This center is then used for distance measure-
ments to the respective descriptors of every single pixel in the test site for every year in the time
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Table 3.3: If only samples of a single class were trained (t+) for a P-classification, it is not possible
to know how many positive (r+) or negative (r� ) classified results actually are samples of another
class (t�). In consequence, only one producer’s accuracy, which is the probability that the trained
land cover is classified as such, is available. Table based on [14].

t+ t� UA
r+ X x x
r� X x x
PA X x x

series. To take data variance into account, the mahalanobis distance was deployed. Euclidean
isodistance would allow high variations in dimensions with actual low variance, while mahalanobis
isodistances enables thresholding of the data preferred along more variable dimensions [Fig.3.4].
The continuous valued output ultimately needs thresholding for conversion in a binary value space.

For this study, thresholding was done manually based on validation results and visual interpre-
tation of respective outputs. The training dataset was narrowed by extracting a separate validation
set. An underestimated threshold is indicated by many excluded training and validation points,
vice versa for overestimation. Further, overfitting is indicated by included pixels that are not part
of the class by means of visual interpretation.

Two tools were made available to set a satisfying threshold. First, the relative numbers of
training and validation points considered to be part of the class based on a respective threshold in
a moving five-integer-increment interval provide information about how broad or narrow a selected
threshold would be under consideration of false-negatives (producer’s accuracy). This chart will
further be referenced to as accuracy chart [Chap.4]. Second, a histogram of distance values in the
study site helps to put the accuracy chart in perspective in so far, as it indicates the possibility of
false-positives using a certain threshold.

3.4 Residual Trends
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Figure 3.5: The annual root mean square errors of every year’s pixels regression show average
model deviations of up to 20 %. The respective errors of each pixel per year got regressed over
time to conduct the RESTREND analysis.

In the initial approach, the method is completely independent from any classification e↵orts.
Assuming that the annual sum of precipitation is the main driver and preventer of vegetation
growth in arid and semi-arid parts of the world and that the NDVI sum is a satisfying proxy for
photosynthetic activity, all pixels in the test site can be reduced to linear regression models of
those two variables. Specifically, the natural logarithm of rainfall sums is assumed to be in a linear
relationship with sums of NDVI, since vegetation production reaches a plateau in years of very high
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precipitation [20]. The models can be oriented in two di↵erent dimensions, by either reducing all
pixels per year (regional reduction) or all years per pixel (temporal reduction). The total number of
reductions depends on a decision in that matter and equals to one model per year or one model per
pixel, respectively. The main disadvantage of a regional reduction is an inevitable dependency of
the resulting map from the spatial resolution of the independent regression parameters, specifically
the lower resolved precipitation data. Every NDVI pixel within a single precipitation pixel is
assumed to have the same NDVI, so the calculated residuals show an overall tendency in one
direction. On top of this tendency, actual di↵erences in land cover types and their vegetation
performances become apparent. These spatial dependencies can be avoided by deploying temporal
reductions. Here, every pixel has sixteen tuples of NDVI and precipitation. Based on those, a
NDVI value can be modeled per pixel that has a spatial dependency on only itself.

The RMSE, root mean square error of these pixel-based models per year reveal a high depen-
dency of photosynthetic activity from total precipitation. With NDVI sums roughly between 5
and 15, a RMSE of 1 equals to an accuracy of at least 80 % [Fig.3.5]. Also, the respective annual
residuals, which are a pixel’s deviation from the model, were calculated to quantify the di↵erence
between an actual NDVI and the value predicted by the model per year. These residuals indicate
greening performance under consideration of water availability. To account for Landsat 7 Scan
Line Errors which lead to stripes within the scenes and gain a homogeneous result, the residuals
were averaged to a pixel’s respective local mean of 500 meters in one iteration [15].

By calculating a pixel’s series of residuals over time, another version of linear regression model
can be obtained, where those residuals are dependent variables of the independent time constant.
The resulting trends can be linked to degradation processes over time.

Other studies also use annual sums of NDVI as estimation of total photosynthetic activity
[20]. Due to lacking yearly data for this study, NDVI sums were modeled [Chap.3.1.3]. Doing so,
every year was represented by a homogeneous sample and sample size, removing all dependencies
between calculated sums and total numbers of available observations.

The Kendall-Tau correlation [-1,1] is a ranked-based non-parametric test of the null-hypothesis
that the residuals are ordered randomly over time. A positive tau value indicates an overall
increasing trend, a negative value a decreasing, but it tells nothing concerning the severity of trends.
In its essence, it is a reduction of sixteen di↵erent residuals per pixel to a single representative
value that provides a general impression of greening or browning trends.

3.5 Application

The same methods were executed for two land cover classes, natural grasslands and managed
pastures, and can potentially be applied to every conceivable trained class. The procedure always
follows the same basic steps, so an application was developed for faster and standardized processing.
The workflow consists of following steps:

• Collect ground truth (e.g. in Google Earth Pro) and import it as fusion table

• Set appropriate reference year and assess training data set

• Export resulting classification image and a separated set of points for validation

• Convert the validation set to a fusion table and rename column ”system:index” manually to
any other name

• Import classification image and fusion tables with a set reference year

• Pick of a threshold based on mapped results and the accuracy charts

• Assessment of trends in areal extents and maps for di↵erent years

• Assessment of individual pixels

• Assessment of RESTREND results, general and per pixel

• Export of maps as .TIF for further processing

The output of the classification is an image where each pixel contains the distance to the trained
class centroid. By defining which distances are still close enough to the centroid, these continuous
values get transformed in a binary image mask.
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4. Results

Using the developed application, two land cover classes were assessed. Kalos ground truth samples
were easy to find due to their distinctive shapes. Natural Grassland, on the other hand, was di�cult
to train because of an ambiguous appearance that often and depending on the observation date
either resembled bare soil or indicated overlapping with many trees or bushes.

4.1 Cluster

Figure 4.1: The pink cluster was identified as grassland. Training data for both minimum distance
classifications was obtained under consideration of this result.

Multiple unsupervised k-Means clusterings were performed and tested, with k = [3, 16]. Since
the primary goal was not necessarily a homogeneous image segmentation but only the identification
of potential grasslands, k = 10 was picked as best fit for this land cover type, based on a visual
result interpretation [Fig.4.1].

4.2 Kalos

Kalos are intensively managed grazing enclosures for cattle. These pastures are fenced by bushes
in mostly geometrical shapes, making them reasonably easy to find [Fig.4.2]. 86 such Kalos were
located randomly on the test site and sampled to 1713 points. 1192 of them were used for training,
521 were excluded for validation. Google’s very high resolution images of the area were mainly
from the years 2012 and 2014, making 2013 a legitimate approximated reference year. The distance
threshold was set based on accuracy results and visual map interpretation [Fig.4.3]. t = 4.4 yielded
a classification accuracy of 95.1 % for validation data, which is the relative number of points that
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Figure 4.2: Ground truth example for Kalos with its distinctive shape. These fenced pastures
provide food for cattle of nearby villages.

were actually considered in the resulting class. Higher thresholds could not substantially further
increase the accuracy but only made false positives more likely.

The result shows a clear increase of managed pastures between 2011 and 2016 [Fig.4.3]. The
areal extent raised by two thirds in 2013 alone and reached over 3500 km2 in 2015. Besides the
bu↵er zones around already existing pastures, substantial areal gain was reached as of 2012 in the
northern flatlands between Finchawa and Yabelo, where class distances notably decreased for pixels
with also generally slightly decreasing RESTREND residuals and therefore negative Kendall tau
coe�cients [4.4]. In other words, residual trends tend to be inverse proportional to their likelihood
of being classified as Kalos. Southeast of Yabelo, the Kendall’s tau for newly gained areas was
notably lower. For a patch southwest of Dubuluk, where land was also gained, this connection
inverted in so far, as areas with positive Kendall tau values showed a tendency of decreasing class
distances and therefore a higher probability of being pastures.

In general, Kalos could be found close by and around settlements or vice versa, people histor-
ically settled close to suitable lands. The same is true for most parts of newly gained land of this
surface cover type. A majority of pixels newly classified as Kalos after 2011 has negative trends of
residuals, meaning over the time series they performed worse in terms of photosynthetic activity
under consideration of available water, but exactly this performance loss made them more likely
to be identified as pastures.
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Figure 4.3: Kalos: The descriptor means of all respective training points build the class centroid,
an ideal but averaged representation of desired class. The threshold defines a necessary similarity
between a pixel and the centroid in order to still be considered part of the class. For t > 4.4,
increasingly more unlikely pixels are included in the class without the benefit of a satisfying higher
accuracy, which means the inclusion of training points into the class.
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Figure 4.4: Kalos as classified in the year 2012. RESTREND Kendall tau values were masked to
all pixels classified in 2013 to present areal gain, which can mainly be observed between Finchawa
and the central area of Yebelo. In the south, small patches with a positive Kendall’s tau around
the settlement Dubuluk transformed to Kalos.
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4.3 Natural Grassland

Figure 4.5: Ground truth examples of natural grassland. The appearance in di↵erent observations
is highly depending on respective prevailing conditions like water availability.

Natural grassland was trained exclusively with very high resolution imagery of dry season 2012.
Within the identified grassland cluster, bright white spots were collected, as they were assumed
to be natural green grasslands in wet seasons [Fig.4.5]. 36 polygons were sampled to 537 training
points and 223 validation samples. Because of ambiguous appearances, many potential training
spots were left out, leaving a relatively small dataset to work with. Remaining trained regions
were therefore assumed to be pure and made a high accuracy desirable. A steady increase of
included training points existed for thresholds  4.1, suggesting this very value as widest distance
reasonable to pick. 95.4 % of the validation dataset is considered part of the natural grassland
class under this consideration [Fig.4.6].

For the first half of the time series, natural grasslands occupied a quite steady total area of
roughly 250 km2, although regarding result alone does not prove that no shifts and movements
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took place in these years. 2011 and 2012 brought a notable increase, in 2011 75 % more pixels
were considered grassland than the year prior. In 2013, however, even more than this new areal
gain was radically lost again.

While the vast majority of grassland pixels between Finchawa and Yabelo were lost in regions
of a negative Kendall’s tau, this relation turned for many lost parts in the south [Fig.4.7]. There
is a notable correlation between increasing classification distances and also positive RESTREND
results for southern grassland areas around Dubuluk and roughly 60 km west of Mega.

In comparison, some areas were classified as both, Kalos and natural grassland. The class centroids
built with respective training datasets present very similar shapes that were on a just slightly lower
overall level for Kalos, where especially the modeled sums of NDVI were lower. By widening the
variances still acceptable for successful classifications under consideration of certain thresholds,
pixels could in consequence appear similar enough to be part of either class. Between Finchawa and
Yabelo both classifications cumulate pixels, in some cases the same. These double classifications
could be categorized as errors, but in consideration of years mapped di↵erently in [Fig.4.4] and
[Fig.4.7], many actually indicate land cover conversions from natural grasslands to managed Kalos.
As will be discussed, this is also and especially true for the region around Dubuluk, where pixels
were mapped in a transition phase [Chap.5].

Both examined land cover classes simultaneously had growing phases initiated around 2011 /
2012. Strikingly, the normal rain pattern flipped in 2011 and brought two thirds of total precipita-
tion in the second rain season around November [Fig.2.2]. The following peak in April 2012 again
accounted for two thirds of total precipitation for the year. In other words, two abundant rain
seasons occurred within half a year. This was the only such case in the time series and it further
amplified the e↵ects of already increased availability of water around the year 2012 [Fig.2.2].
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Figure 4.6: Natural grassland: The steady increase of more included training data points stopped
for t > 4.1. The resulting spatial extents per year show a slightly negative general trend, but a
high extremes for the years 2011 and 2012. Also, a following steep decrease under previous levels
is notable.
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Figure 4.7: Natural Grasslands as classified in the year 2013. Results of the RESTREND Kendall
tau values were masked to all pixels classified in 2012 to present areal loss. In the north, land
was lost in regions with a negative Kendall’s tau, while pixels of increasing photosynthetic activity
dropped out in the south.
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5. Discussion

2767 Landsat images of multiple scenes were processed for this study. By aggregating annual
classification descriptors, problems of spatial and temporal availability constraints were tried to be
overcome. Modeling data, like in this case sums of NDVI, always introduces uncertainties that need
to be considered. Likewise, data availability directly influences results of data aggregations, making
descriptor selections a trade-o↵ of resolutions and approximations. The Landsat 7 Scan Line Error
made spatial averaging necessary and therefore lowered the spatial resolution of respective results
to some extent. Rather than providing absolute answers to questions concerning areal extents
of certain classes, this study should be perceived as big data processing and aggregation work
flow under very specific constraints. It provides overall tendencies, trends and relative answers.
The RESTREND method is based on the basic assumption precipitation would almost linearly
influence vegetation activity. Although this is per se not wrong, especially in arid parts of the
world, it nevertheless is a general assumption that can be proven wrong under certain conditions.
If all the rain would fall in just one day rather than in the period of a year, vegetation activity
would obviously be influenced very di↵erently. On top of all those methodological approximations
and simplifications of complex processes in a long time frame, the classification itself is always
only as good as its training. Even the best and most precise descriptors would not yield satisfying
results, if the training is unsatisfactory. Here, ground truth information directly gathered in the
field would be the gold standard. Although the developed application would certainly be capable
of processing also these datasets, presented results are based on training data collected with very
high resolution satellite imagery of di↵erent years and therefore are distorted.

Considering all of these problems, respective results for Kalos, the managed pastures around
villages, and natural grasslands only show relative trends. This becomes especially apparent when
setting classification distance thresholds. Di↵erent maximal distances to class centroids conse-
quently yield other results, but basically show the same overall tendencies and trends, just on
di↵erent general levels of areal extent. This threshold selection is based on personal judgments and
approximations by the user under consideration of provided accuracy charts and image histograms,
which further introduces uncertainties. Nevertheless, results are mapped to surface images and can
be observed and interpreted visually, which is something humans can do fast and intuitively, unlike
machines.

Based on the two classifications presented in the previous chapter, some general statements
were extracted. They are predominantly based on logical reasoning and require further studies for
certain explanations. However, these findings align with the relevant literature presented in the
introduction of this thesis.

Natural grassland has higher NDVI sums than Kalos. Observing the class centroids of
both classes, it is notable that they are almost identical in their shapes [Fig.4.3][Fig.4.6]. Grassland,
however, has a trained NDVI sum of 9.606, while the sum for Kalos is 9.351. Both centroids were
built without actual ground truth, but based purely on very high resolution satellite imagery, which
to some extent jeopardizes the study results as a whole. But considering these values to be true,
it leaves the conclusion that trained grassland shows higher vegetation activities than intensively
managed pastures.

Single annual RESTREND residuals help identifying processes in a temporal con-

text. A Kendall’s tau, representing a whole RESTREND analysis, shows overall trends concerning
the time series on a map. Since this single value is based on sixteen respective residuals per pixel,
these individual values represent temporally high resolved partial results that enable assumptions
concerning the succession of events.

Multiple reasons lead to disappearing natural grassland patches. Based on an evalua-
tion of respective RESTREND results, it can be argued that di↵erent drivers provoke a disappearing
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of grassland areas. While strongly negative trending residuals suggest land degradation in terms
of conversion to bare soil [Fig.5.1], a low Kendall’s tau in combination with decreasing distances to
the Kalos centroid suggests a conversion to Kalos, as they have lower sums of NDVI per training
definition and therefore lower photosynthetic activity. In other words, a grassland pixel showing
only a damped negative Kendall’s tau before dropping out of class, potentially transformed to
Kalos [Fig.5.2]. Three reasons are suggested for disappearing patches of positive RESTREND
results. Residuals of clearly ascending trend slopes identify pixels of raised photosynthetic activity.
Bush encroachment is a process capable of explaining such losses under this constraint [Fig.5.3].
The rise of crop cultivation presents another possible reason, but since harvests tend to not be
very successful, it is assumed that respective Kendall tau coe�cients would be less pronounced
[Tab.5.1]. Finally, it is possible that the increase of photosynthetic activity is not temporally
correlating with respective classification distances. Around Dubuluk, grassland loss was severe
while Kendall tau coe�cients were high. Simultaneously, Kalos classification distances decreased
notably. Investigative pixel inspections suggest a greening process starting in 2009 that lead to
conversions from bare soil to natural grassland [Fig.5.4]. In 2012, pixels were again in transition
and had temporary low distances to both class centroids. Starting in 2013, resemblance to natural
grassland radically decreased, while classification distances further stayed on continuous low levels
for Kalos. In consequence, it is assumed that these areas were transformed to managed pastures
shortly after they became initially productive natural grasslands.

Kalos were gained in previous natural grassland areas and shrub lands. Gained areas
in the north showed a tendency to slightly negative RESTREND taus. Since these areas were also
characterized by high losses of natural grassland, a conversion to Kalos is suggested [Fig.5.2].
Southeast of Yabelo, pixel distances reduced drastically and symmetrically to clearly negative
annual RESTREND residuals, while a previous similarity to natural grassland was not always
detected. These areas lost vegetation performance and therefore became more similar to Kalos.
Despite the ban on fire clearings of bushes and shrubs, the method is well established in the region
and capable of explaining this relation [Fig.5.5]. Small areas south of Dubuluk and north of Adilli
show positive residual trends in combination with decreasing classification distances. These pixels
became pastures due to their greening tendencies. However, it is assumed that photosynthetic
activity initially increased because former degraded land transformed to natural grassland and
just in further consequence, it was occupied as Kalos [Fig.5.4][Tab.5.1].

Table 5.1: Grassland and pasture loss or gain was analyzed under consideration of di↵erent RE-
STREND results and concludes to respective assumptions concerning underlying circumstances.
Fire clearing, land degradation and bush encroachment was assumed in scenarios, where a transi-
tion from natural grasslands to Kalos could not be detected.
Kendall Tau -1 0 1

Areal loss Land degradation Grassland becomes Kalos Grassland becomes Agriculture Bush encroachment
Areal gain Fire clearing Kalos gains Grassland Preceding greening

5.1 Example: Land Cultivation and Degradation

The area southeast of Yabelo is characterized by natural grassland loss, partly in combination with
strong negative RESTREND results. Multiple processes were revealed by pixel inspections. After
2012, distances to the natural grassland centroid increased radically while RESTREND residuals
dropped. In this example, distances to Kalos never decreased below the threshold, which in
further consequence suggests land degradation in terms of conversion to bare soil [Fig.5.1]. Before,
a cyclical oscillation of classification distances is notable and indicates land management strategies
like fallow periods.
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Grassland: Pixel Distances per Year
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Figure 5.1: Natural grassland degradation after fallow periods: After two cycles of land cultivation
and fallow, the pixel potentially degraded, since classification distances increased in correlation to
negative residuals in respective years.

5.2 Example: Early Natural Grasslands to Kalos
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Figure 5.2: Transition from early natural grassland to managed pastures: This pixel result is
symptomatic for land cover changes south of Finchawa. In years where classification distances to
Kalos drastically dropped, residuals were particularly negative.

South of Finchawa, many pixels converted from natural grassland to Kalos between 2012 and
2013 [Fig.4.4][Fig.4.7]. Specifically, regions showed short distances to the natural grassland centroid
since early years of the time series, before they increasingly resembled Kalos. For the majority,
this transition is correlated to negative RESTREND residuals and also slightly negative Kendall
tau coe�cients well over �0.5 [Fig.5.2].

5.3 Example: Bush Encroachment

A patch of natural grassland disappeared over the period 2012 - 2013, roughly 60 km west of Mega
[Fig.4.7]. These pixels had a positive Kendall’s tau in common and did not transform to Kalos.
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Grassland: Pixel Distances per Year
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Figure 5.3: Transition from natural grassland to bushland: Good vegetation performances let
classification distances sink in 2009 and therefore suggest former grassland close to degradation.
When greening processes further increased, distances followed along. Bushes potentially spread as
of 2013.

Their respective residuals indicate an overall greening process around 2009 which first decreased
classification distances to natural grassland but further increased them again over previous lev-
els. Corresponding charts suggest greening of degraded grassland that further resulted in bush
encroachment [Fig.5.3].

5.4 Example: New Natural Grasslands to Kalos
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Figure 5.4: Transition from new natural grassland to managed pastures: In the area around
Dubuluk, greening tendencies transformed large patches to natural grassland, but shortly after the
transition, they were converted to managed pastures.

Around the settlement of Dubuluk, natural grassland was lost and Kalos were gained. While
this transition is assumed to take place in correlation to negative Kendall tau coe�cients, residuals
in this area resulted in positive trends. It was concluded that greening impulses between 2007 and
2009 transformed these areas to grassland and in further consequence, between 2012 and 2013,
they were re-functioned as Kalos [Fig.5.4].
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5.5 Example: Fire Clearing
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Figure 5.5: Fire clearing: With a severe drop of residuals, the pixel in this example became more
similar to the Kalos class centroid.

Newly gained Kalos patches with a negative Kendall’s tau and former low resemblance to
natural grassland, indicate fire clearings. These pixels became more similar to managed pastures
due to their rather radical loss of vegetation activity.
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6. Conclusion

The results show a clear accumulation of grassland pixels, natural and manged, in the central
regions of the Borana Zone. Locations of settlements and villages are linked to the presence of
such grasslands, likewise, spatial distribution in large scales gives the impression of the influence
of former water bodies, although this was not further investigated. Kalos became an increasingly
present land cover type starting in 2010 and spread especially over previous former grasslands.
This is just one of the reasons for disappearing grassland patches in the Borana Zone. Bush en-
croachment and land degradation to bare soil are other factors responsible for a radically shrinking
grassland extent as of 2013. All of these are reported and known dynamics in the region, although
other relevant studies did not consider the concatenation of these di↵erent processes in a broader
time frame. Generally, a north-south di↵erence can be observed in such, that grassland was lost
in the north predominantly due to losses in vegetation activity, while good photosynthetic per-
formances converted degraded grasslands to managed pastures in the south. This happened in
correlation to general spatial and temporal patterns of precipitation [Fig2.1][Fig.2.2].

Future developments will be highly dependent on these precipitation patterns and anomalies
like droughts or flipped rain seasons, but in general it is assumed that Kalos land cover shares will
further increase due to active transformation e↵orts by regional pastoralists. This dynamic will
consequently raise pressure on natural grasslands, which already su↵er from degradation processes
and bush encroachment. The results suggest a new equilibrium for natural grassland areal extents,
that is roughly half the pre-2010 level. However, a reintroduction of fire clearing in selected
patches west of Mega would very likely allow natural pastures to regrow, since the grassland loss
in these areas is not connected to degradation tendencies. Despite countermeasures like fallow
periods, the central region south of Yabelo largely su↵ered from degradation processes starting in
2013. Overexploitation needs to be prevented and land management strategies will further gain
importance in order to minimize damages, but future rainfalls will dictate the final result of this
region’s transformation process.
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Appendix

For registered Google Earth Engine users, the developed application is available at
https://code.earthengine.google.com/ec6c0ca785edabc18e8b2dc64a43b18d .
Please note that some complex results were preprocessed and imported for a faster computational
performance (indicated in the import section at the top). Therefore, the app can not simply be
used in another region of interest.
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