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Summary
For an independent detection of climate trends, the monitoring of glaciers and their changes
through time is important. Along with their hydrologic importance from regional to global
scales they can also cause or trigger natural hazards, requiring a monitoring system that
offers the possibility for frequent observations. Since satellite imagery covers large regions of
the globe, it is possible to monitor glacier change at a large spatial and temporal resolution.
Over the past years, these resolutions have even been pushed to new boundaries, resulting
in a growing publicly available archive of satellite data. Despite the positive effects in regard
to the density of information available for glacier monitoring this leads to an increase in
manual workload and processing time on servers and computers. Using the Google Earth
Engine (GEE) for detection, quantification and visualisation of glacier distribution displays
a valuable tool to automatically deal with this increasing workload.

The objective of this thesis is to implement fully-automated algorithms for glacier mon-
itoring within GEE which combines a multi-petabyte catalogue of satellite imagery and
geospatial datasets with planetary-scale analysis capabilities.
In a first step, a scene selection algorithm has been created, which is able to select the most
suitable images for glacier mapping in regard to a minimum of cloud cover and seasonal
snow. Different approaches have been applied and compared to a manually performed scene
selection in terms of quality of the scene selection and computation time. Although GEE has
certain usage limitations which lead to restrictions in either spatial or temporal resolution
and scale, the automated scene selection algorithm performs well enough to present a set of
most suitable images for further processing and is applicable at large scales.
The second algorithm automatically computes glacier outlines and calculates the area based
on an image composite of a prior scene selection. The creation of glacier outlines shows
promising results and can be applied over a large spatial scale. Nevertheless, future applica-
tions should additionally deal with shadows within the individual scenes and the detection
of debris-covered areas, as they both illustrate sources of error and reduce the quality of the
results.
Third, the implementation of an automated thresholding function enables to classify snow
and ice surfaces which provide good results even under the changing conditions of the re-
sulting image composite. Assuming that the snow covered area roughly represents the accu-
mulation area, it is tried to approximate the accumulation area ratio (AAR) and compare
the trend of the two measures. Although it displays a tool which should be further refined
by using reflectance values that are corrected for topographic effects, it offers the possibility
to compute a fair estimate of values over large regions.
Furthermore, the objective to complement already available glacier inventories with a mask
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of debris-covered regions was achieved by creating an image composite for the entire regions
of West-Central-Asia and the Swiss Alps respectively. Despite the dependency on the quality
of the prior scene selection the results provide promising insights for a better understanding
of ablation processes and their implications within a specific region.
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1 Introduction

1.1 Monitoring of global glacier change and -distribution
Monitoring of glaciers and their changes through time is important for an independent
detection of climate trends, as well as for their hydrologic importance from regional (run-off,
hydro-power) to global (sea-level rise) scales (IPCC 2013). They can also cause or trigger
natural hazards (ice avalanches, glacier lake outburst floods) requiring frequent observation
of their changes (Paul 2004). As glaciers are distributed globally and the huge and growing
archive of Landsat data is commonly used for the above purposes (but at regional scales),
using the Google Earth Engine (GEE) for detection, quantification and visualisation of
worldwide glacier distribution would be a most valuable asset.

1.2 Growing importance of satellite imagery
Applying glacier monitoring on a global scale is possible since satellite imagery covers large
regions of the globe. Before that, the application on a global level could not be pursued
due to the high costs of accessing images and keeping the acquired datasets up to date on
a regular basis. Although, in-situ measurements can’t be spared to gain information about
the processes on, in and around glaciers, satellite imagery offers a tremendous opportunity
to monitor glacier change at a larger spatial and temporal scale. Over the past decades
more and more satellite missions have been launched with the aim to survey and monitor
the Earth’s surface and near-surface systems. Thereby, spatial and temporal resolution are
pushed forward to new boundaries. Especially the (public) availability of Landsat The-
matic Mapper (TM) since 1984 (U.S. Geological Survey 2008) and the launch of the Sentinel
satellite mission by the European Space Agency (ESA) within the Copernicus programme
in 2014 both feature a promising outlook and represent important milestones for monitor-
ing services based on satellite imagery. Until now, a single Landsat satellite crosses every
point on earth once every 16 days. This revisit frequency is set to a completely new level
by the Sentinel satellite mission (Sentinel-2A and Sentinel-2B) which record images of the
same location every 5 days with a three times higher spatial resolution of 10 m. This also
illustrates the massive amount of data which will be available for processing in future. On
one hand, increasing spatial and temporal resolution have a positive effect regarding density
of information available for glacier monitoring. On the other hand, it leads to an increase
in manual workload and processing time on servers and computers. As in many other dis-
ciplines there is no way around automation processes as the amount of data is increasing
and the datasets themselves are getting larger and richer in detail. In combination with the
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CHAPTER 1. INTRODUCTION

availability of accurate and robust mapping methods for clean to slightly dirty glacier ice
(Albert 2002, Paul & Kääb 2005) automated processes would free the way to a more or less
complete global monitoring of glacierized areas.

1.3 Process of selecting suitable scenes for glacier
mapping applications

Particularly the automation of the process of selecting suitable scenes for glacier mapping
will be fundamental for future global monitoring of glaciers. Until today there have only
been a few attempts to automate glacier mapping processes which rely on multi-temporal
image processing and use Landsat-type sensors (Selkowitz & Forster 2016, Winsvold et al.
2016). Cloud cover, seasonal snow cover and shadows are the most deciding factors whether
a satellite scene is suitable or not for glacier mapping applications. The laborious work of
glacier analysts to manually browse through the constantly growing, already voluminous
archive of satellite images to globally map glaciers, is already unsustainable now and will
be unbearable in the near future if all available data should be exploited in regard to the
different applications in environmental studies and glaciology in particular. The aim here is
to make use of the computation power and direct data access within GEE and create a fully
automated work flow of selecting the most suitable scene(s) for glacier mapping applications.

1.4 Contribution to monitoring applications of glacierized
regions

Providing scientifically sound and concise information is a critical function in today’s world as
glacier changes are among the most prominent indicators of climate change (WGMS 2008).
The creation of glacier outlines and the possibility to compute the corresponding area of
glacierized terrain is thus an important task for glacier monitoring. With the automated
scene selection process described in Section 1.3 serving as starting point, the fully automated
creation of glacier outlines and computation of their area would contribute substantially to
glacier monitoring. As a result, a global assessment at a high temporal and spatial resolution
could be pursued with considerably reduced effort.
Apart from scene selection, the creation of glacier outlines and the subsequent area calcu-
lation, there are various additional applications which can profit from the possibilities of
automated processing helping to provide the improved access to significant environmental
information and data. This includes information on the Accumulation Area Ratio (AAR) of
a specific glacier (approximated by mapping the snow covered area), or complementing the
existing glacier inventories with extents of the debris-covered parts of a glacier.
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1.5 Research objectives
Implementation of the already available methods for data processing in GEE would allow
going truly global, thereby overcoming current restrictions due to the workload related to
image selection and scene-by-scene processing. A modular extension with already existing
vector datasets would allow to provide information about on-going glacier changes at an
unprecedented frequency and spatial coverage.
In this thesis the main objective is to elaborate on algorithms to automate the process from
image selection and scene-by-scene processing (named as Algorithm 1) to glacier classification
and area calculation to create glacier outlines (Algorithm 2). The objectives here are to
review whether it is possible to access necessary satellite data, compute needed measures
and hence automatically evaluate the quality of individual satellite scenes or not. The aim
also is to find the best or a set of most suitable scenes for glacier mapping to create precise
glacier outlines for a given time period.
In a second step, the focus will be on implementing an automated method to map snow- and
ice cover on glaciers (Algorithm 3) to approximate the Accumulation Area Ratio (AAR).
Being able to calculate time-series of such AAR approximations could serve as a meaningful
instrument in glacier monitoring, especially if used on remote glaciers with a low density of
measurements throughout the past (Barandun et al. 2015). In this part of the thesis the
objectives are to assess the potential to retrieve a reasonable approximation of the AAR from
the mapped snow covered area within GEE based on a preceding automatic scene selection
for a specified region. A special focus is on the implementation of the Otsu method to
automatically find the critical threshold to distinguish ice and snow (Ostu 1979).
In a last step of the thesis, the goal is to combine the above designed methods within GEE to
separate clean ice from debris-covered ice (Algorithm 4). Already available glacier inventories
could then be provided with a mask of the debris-covered parts for each glacier.

1.6 Structure of the thesis
This thesis constitutes several chapters following a common thread. First, in Chapter 2,
the scientific background to the essential methods in glaciology and the data used within
this thesis are given and datasets are described. In Chapter 3, the used methods and
algorithms which have been developed to automatically select suitable scenes (Algorithm
1), map the extent and calculate the area of glaciers (Algorithm 2), map snow- and ice cover
to approximate the accumulation area ratio (AAR) (Algorithm 3) and separate clean- and
debris-covered ice (Algorithm 4) are illustrated. In Chapter 4, the output and overall results
of the individual methods are shown and initial interpretations are illustrated. In Chapter
5, the results are discussed and set in relation to the current literature in these fields. In
a last step some general conclusions are drawn in Chapter 6 with the perspectives and the
insights which have been gained.
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2 Scientific background and data
In this Chapter the scientific background is given and the data for the computations are
described. The basic functionality of GEE is described as most of the calculations are done
within the GEE itself striving for automated approaches to achieve the research objectives.
This Chapter serves as foundation for the methodical Chapter 3.

2.1 Technical background on glacier monitoring
2.1.1 Distribution of glaciers
A total of 96.6% of the Earth’s glacierized area is represented by the large ice sheets of
Antarctica (85.7%) and Greenland (10.9%). Within the remaining 3.4% only 1.3% concern
mountain glaciers while the rest are covered by ice caps at higher latitudes (WGMS 1989).
Although mountain glaciers are only a small fraction of the overall glacierized area, they
represent the perennial surface ice that is most closely connected to human activities which
is why their monitoring is of such an importance in regard to serving as a climate indicator,
as water resource or for reasons of tourism.

2.1.2 Glacier inventories
To a greater understanding of our climate system, climate change and the effects of global
warming, one needs to understand how and why glaciers are important. Hence, glacier
inventories are an indispensable source of historical data and base on in-situ mass balance
measurements, as well as air- and spaceborne imaging systems (Kargel et al. 2014).
Here, the latest Randolph Glacier Inventory (RGI) released July 20, 2015 (Version 5.0)
has been used as database for glacier polygon imports into the GEE. The RGI is a publicly
available product provided by the Global Land Ice Measurements from Space (GLIMS, http:
//glims.org/RGI/rgi50_dl.html) and was motivated by the Intergovernmental Panel on
Climate Change (IPCC 2013) and designed to mostly get a globally complete snapshot of
glacier coverage from optical satellite images. Methods have primarily been tested with the
following regions of the RGI (Pfeffer et al. 2014):

• 06 Iceland
• 08 Scandinavia
• 11 Central Europe

• 13 Central Asia
• 14 South Asia West
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Figure 2.1: First-order regions by the RGI (Randolph Glacier Inventory 2015).)

2.1.3 Satellite imagery
The focus lies on optical rather than on microwave sensors and especially on Landsat
TM/ETM+ type sensors which are most frequently used for glacier mapping (Paul, 2014).
All algorithms described in Chapter 3 have been developed using Landsat TM/ETM+ type
sensor data but work as well with the Operational Land Imager (OLI) sensor from Landsat
8 or Sentinel 2 Multispectral Image (MSI) sensor imagery (Paul et al. 2016). Other sen-
sor types have not been tested but will work similarly if the sensor has individual bands
recording in similar spectral ranges.

2.1.4 Scene selection
To achieve the best satellite scene selection, at least the following three prerequisites have
to be given (Paul 2004):

1. cloud-free conditions

2. near the end of the ablation period (e.g. mid-August to mid-October)

3. minimum extent of seasonal snowfields

Prerequisite (1) can be evaluated using a cloud-score algorithm which sorts pixels by their
relative cloudiness including various indicators of a pixel to be cloudy. By filtering the
dates using built-in functions prerequisite (2) is considered. In Section 3.3.1 more technical
information is given. However, the recognition of seasonal snow in (3) has proven to be more
challenging and is presented in more detail in Section 3.2.

5



CHAPTER 2. SCIENTIFIC BACKGROUND AND DATA

Finding a suitable scene can be very challenging not only by trying to implement the above
prerequisites but also because most glacierized areas around the globe are rarely recorded
under decent conditions. Although one can find the most suitable scenes in a certain region,
they might not be good enough to be taken as a basis for further analysis and calculations.
In particular in maritime regions such as Svalbard, parts of Scandinavia and Greenland it is
difficult to find suitable scenes for glacier mapping even within a few years.

2.1.5 Classification of glacierized area
Segmentation of ratio images

In terms of the classification of snow and ice different methods have been investigated in
previous studies. One of the most promising methods still is the segmentation of ratio
images which already has been used extensively until today (Carturan et al. 2013, Gardent
et al. 2014). Especially the one of near infrared and short-wave infrared (corresponds to e.g.
Landsat TM4 and TM5) but also ratio images based the band covering red light and short-
wave infrared (corresponds to e.g. TM3 and TM5) have been implemented successfully as
the latter seem to better perform in zones of shadow but is mapping more of the turbid lakes
as water (Rott & Markl 1989, Paul & Kääb 2005). For the segmentation of ratio images
visual interpretations of ratio images revealed that a threshold around 2 works well in most
cases to separate glacierized areas from non-glacierized regions (see Section 4.2.1).

Classification of clean- and debris-covered ice

Similar to other classification work based on segmentation of ratio images, the detection of
debris-covered ice poses a difficult task (Racoviteanu et al. 2009, Paul et al. 2009). Here,
debris-covered ice is defined as the part of the glacier which is covered by a critical amount
of dirt and rock which is not recognized by the classifier any more. However, if the portion
of debris-cover within one pixel exceeds a certain threshold the pixel will not be classified as
glacier (Paul et al. 2004). In contrast, clean ice often includes some dirty ice (sand, gravel,
small stones, single boulders) but is still recognized as clean ice and thus classified as glacier.
A visual interpretation of a suitable scene by an experienced viewer can correctly classify
such glacier parts.

Sources of error

In addition to misclassification of debris-covered glaciers there are other sources of error. As
mentioned in Section 2.1.4, occurrence of seasonal snow can pose a problem as the eventual
classification of glacierized area is supposed to be larger than it should be. Water bodies such
as the ocean, lakes or rivers are also partly classified as glaciers and need to be recognized and
removed by either visual interpretation or additional intersection with respective datasets or
classifiers in a second step. Evaluating the result of the classification in the other direction
is the case for shadow being cast on parts of the glacier which usually occurs near steep
mountainsides (Paul 2000).
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2.1.6 Mapping snow on glaciers to approximate the accumulation area
ratio

Glacier mass balance is a response to annual atmospheric conditions and provides essential
estimates for the contribution of glaciers to sea level (Kaser et al. 2006). The mass balance
is highly dependent on precipitation and air temperatures throughout the year. A popular
proxy to estimate the mass balance is the determination of the equilibrium line of altitude
(ELA) which is marking the position where ablation is balanced by accumulation in the
respective year. Similarly, the Accumulation Area Ratio (AAR), which defines the ratio of
the accumulation area to the total area (Dyurgerov et al. 2009), is also a good indicator for
the mass balance of a glacier. As the snow covered area at the end of the ablation period
approximates the region with mass gain (accumulation area) it was decided to map the snow
covered area over several years within GEE as described in Section 3.4.

2.1.7 Automation processes
A high quality inventory of glaciers and ice caps from both aerial photographs and satellite
images still needs to be created by a well-trained glaciologist. Having experience and expert
knowledge in creating a glacier inventory with all glacier parameters from satellite imagery
is crucial for its quality. Additionally, every satellite scene should be analysed individually
as atmospheric conditions are changing from scene to scene and even within a single scene.
This knowledge is still applicable when working with semi-automated methods as has been
done in other studies before (Selkowitz & Forster 2016, Robson et al. 2016, Winsvold et al.
2016).
Automated approaches often lack the required flexibility in such context. It is thus a goal to
build algorithms in a way that the computer can work with satellite data like an expert would
do. This includes taking decisions on the further processing based on interim results. Still,
achieving the same level of flexibility and reliability is a difficult task. Inaccuracies which
need to be limited are dependent on the spatial and temporal resolution of the available scenes
which might not meet the requirements of a suitable scene in each particular application.
Furthermore, the general assumptions made to simplify the algorithm are sources of error.
Nevertheless, working towards automation has a lot of advantages, despite the fact that
it is difficult to automate a complex process of selecting the most suitable scene(s) in all
the different locations of the world with distinct atmospheric conditions and constantly
varying conditions in regard to cloud-, seasonal snow- and shadows. As described in Section
1.2 the increase of workload and processing time on servers and computers is calling for
new alternatives on handling the shear endless and constantly increasing data flow. With
automation processes the true power of computational processing can be played off and
create new possibilities regarding spatial coverage of calculations. Automation processes
are carried out within the GEE which handles all data inquiries on its own servers (cloud
computing) which leads to a decrease in processing time on the user’s computer which is
only prompted the final results of the data inquiry. Consequently, it should be possible to
retrieve glacier outlines on at large scales or to monitor glacier change over several years.
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2.2 The Google Earth Engine (GEE)
The Google Earth Engine is a platform combining a multi-petabyte catalogue of satellite
imagery and geospatial datasets with planetary-scale analysis capabilities and is available
for everyone to detect changes, map trends, and quantify differences on the Earth’s surface
(Google Earth Engine Team n.d.). It is thus a tool for analyzing geospatial information with
an application programming interface (API) which is available in Python and JavaScript.
Here, the methods are built on using JavaScript.

2.2.1 Background
As stated above, it would be truly valuable for environmental change studies to automatically
map glaciers on a global level. In theory GEE could give the opportunity to handle such an
amount of data and calculate multi temporal changes of glacier extents within two points of
time. To reach this point though, it is important to outline the key functionalities that have
to be achieved within GEE and check whether they are existing or if they can be obtained
with additional work.

Terminology of data types

The following terms and expressions are used here as they exist within the GEE (Google
Earth Engine Team n.d.). The special notation indicates that one deals with the respective
data type:

Image
Images are composed of one or more bands and each band has its own name, data
type, pixel resolution and projection. In addition, each Image has metadata stored as
a set of properties.

ImageCollection
An ImageCollection is a stack or time series of Images.

Feature
A Feature is defined as a GeoJSON feature and includes geometry properties which
can be added to a map in the GEE or outside of it when exported.

FeatureCollection
A FeatureCollection is a collection of Features. Imported .shp-files are saved as
FeatureCollection within GEE containing single glacier polygons as single Features.

Data availability

The GEE data catalogue shows a variety of different datasets. The user has access to images
from different satellite images providers such as MODIS, LANDSAT, SENTINEL or digital
elevation data from the Shuttle Radar Topography Mission (SRTM). In addition to that,
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Figure 2.2: Earth Engine’s application programming interface (API) with the documentation tab,
the code editor, the output tab and the direct visual feedback on the map (from top left corner,
clockwise)

the GEE data catalog includes satellite data in raw format, orthorectified imagery, top-of-
atmosphere- and surface reflectance data.
The GEE data catalog serves as a basis for most of the calculation within the GEE environ-
ment as one’s codes work best when staying inside this environment. Importing additional
data is possible but often limits the use of built-in functions especially designed to work with
data from the GEE data catalog. In these cases suitable workarounds have been created.

Limits and restrictions

During the building of the entire algorithms and fragments of them testing has been cru-
cial to see whether the queries are hitting the usage limit on Google’s servers. As a first
restriction, Google is only allowing 3 queries per second which helps to ensure that resource-
intensive algorithms do not affect the overall availability of GEE’s services. In addition to
that, client-side computations time-out after three minutes, whereas exports get the same
error message only after a longer time: they hit the precompute limits after two hours of
computation time or the on-the-fly limits after 10 minutes per Feature.

Depending on the size of the initial ImageCollection and the imported FeatureCollection
these limits can be reached. There are ways to bypass these limits by adapting ones data and
parameters. Particularly the scale parameter of regional counts of pixels instantly reduces
the computation time but unfortunately at an expense of accuracy and detail. However,
if ones algorithms provide extraordinary and promising results, there is the possibility to
ask for additional computation power, although this has only been granted for less than a
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handful of projects such as for "Global Forest Watch". Depending on the further applications
it could be worth to apply for such an increase in data usage.

2.2.2 Methodical feasibility: basic functionalities
Access satellite raw data

Spectral band info can be retrieved by calling respective band names on a specific image
or image collection within GEE. A specific band normally contains DN values or spectral
radiance per pixel.

Subsetting

GEE contains methods to filter a collection or list by date ranges, metadata (e.g. path and
row information) or based on boolean operators. Items are excluded from further calculations
using filters to create subsettings. Filters are crucial methods to use to reduce the amount
of data in a pre-processing step to downsize the overall processing.

Masking

Masks make it possible to hide specific values or value ranges. It is often used to set particular
values to the value of zero thus acting as a sort of filter.

Cloud detection

For scoring pixels by their relative cloudiness, Earth Engine provides a cloud-scoring algo-
rithm and an additional method to create a composited image out of single pixels chosen by
their relative cloud-score. This cloud-score has been slightly modified to the conditions in
high mountain areas.

Ratio images

By using simple mathematical operations ratio images are calculated and saved as new
images.

Pixel counting

A simple pixel counting method is implemented and enables the area calculation for glacier-
ized area within a certain region in combination with internal methods of GEE.

2.2.3 Import of external datasets
To import vector datasets such as the one from the RGI Google Fusion Tables need to be
created. The recommended tool to convert .shp-files into Google Fusion Tables is Shpescape
(Livni 2016) which directly uploads the resulting file into one’s Google Drive folder ready to
be queried by the GEE.
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2.2.4 Export and further calculations
Exports are again saved to one’s Google Drive where they can be viewed or downloaded for
further use. Only Images (multi-band GeoTIFF), tables (.csv-file) and FeatureCollections
(.csv-, .kml- and GeoJSON-files) can be exported.

2.3 Study regions and data of comparison
As stated before, the aim would be to go truly global, by overcoming current restrictions due
to the high workload of scene-by-scene processing. Therefore, at least some of the results are
related to a larger scale. To be able to test the algorithms, a few different test regions have
been selected where data from other studies and investigations are available for comparison.
The testing for Algorithm 1 (automated scene selection) has been done with a subset of the
Swiss Alps, mainly in the region of the Bernese- and Valais Alps, whereas Algorithm 1.2 has
been tested for Central Europe. Algorithm 2 (creating glacier outlines) was examined within
Central Europe and Scandinavia. The results were compared to data from the Swiss Glacier
Inventory from 2003 (Paul 2004) based on satellite data and the one from 2010 (Fischer et al.
2014) derived by manual digitization from high-resolution (25 cm) aerial orthophotographs.
These datasets were retrieved from the data catalogue of the Randolph Glacier Inventory
(http://www.glims.org/RGI/rgi50_dl.html). Algorithm 3 has been tested for the glaciers
Findelen (Switzerland), Kesselwand (Austria) and Storglaciaeren (Sweden). The testing of
Algorithm 4 (separation of clean- and debris-covered ice) has been done within the Swiss
Alps, with a focus on the Bernese- and Valais Alps, and for Central- and West Asia focusing
on the Karakoram mountains.
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3 Methods

3.1 General remarks
The various scripts consist of different functions which have been built to match the purpose
of this study. In the following sections the main functions are explained, keeping it on a
conceptual level. Advanced GEE users and curious readers can examine the specific code in
the appendix or within the GEE itself by using the provided links to the specific algorithms
in Chapter 7.
As a methodical “road map” the approach of the glacier classification and mapping of (Paul
2004) used in the Swiss Glacier Inventory (SGI) is pursued. The code is based on RGI vector
data retrieved directly on the website of the RGI containing glacier polygons on a global
scale. The tool shpescape (Livni 2016) was used to convert .shp file format into the format
of a FeatureCollection used in GEE. To simplify coding and lower the time of processing
various RGI regions were fragmented into smaller units or even single glacier polygons. All
RGI regions and fragments imported as mentioned above are publicly available within GEE.
This chapter explains the different algorithms, divided in four parts: First, the scene selection
which serves as basis to identify the suitable scenes according to the prerequisites explained in
Section 2.1.4. It is divided into Algorithms 1.1 and 1.2 representing two different approaches
of scene selection (single scene selection and multi scene selection. Second, the calculation of
a glacierized area is done by Algorithms 2.1 (automatic approach) and 2.2 (semi-automatic
approach). Third, Algorithm 3 is mapping snow- and ice cover and trying to approximate
the AAR of a glacier and covers the implementation of the Otsu method in detail. Algorithm
4 deals with the separation process of clean- and debris-covered ice and shows the possibility
to retrieve a debris-cover mask for existing inventories.

3.2 Scene selection
3.2.1 Algorithm 1: Automated scene selection
Two approaches of automated scene selection have been pursued: Algorithm 1.1 handles
the selection of the most suitable scenes for a specific path and row, whereas Algorithm 1.2
handles the selection of the most suitable scenes for a set of glaciers over a wider region.
The latter one takes a FeatureCollection (a set of geometries imported to GEE) instead
of path row information. These two approaches needed two separate algorithms and are
conceptually described in Figure 3.1 and 3.2 respectively.
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Figure 3.1: Concept of Algorithm 1.1 with the three sequential steps: (A) selection of the end of
ablation period, (B) minimization of cloud cover and (C) minimization of seasonal snow cover. For
(B) (and subsequently for (C) too) the three different approaches define the perimeter of analysis:
(i) a snow cover mask based on the Normalized Difference Snow Index (NDSI) is generated, (ii) the
imported RGI polygons are taken as reference area or (iii) a specifically sketched geometry is used.
Within (C) two possible approaches can be used: (j) uses a NDSI>0.5 mask whereas (jj) computes
the Otsu threshold based on the near infrared (NIR) band to classify and quantify snow cover.
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Figure 3.2: Concept of Algorithm 1.2 with the three sequential steps: selection of the end of
ablation period (A), minimization of cloud cover (B) and minimization of seasonal snow cover (C).
For (B) (and subsequently for (C) too) there are three different approaches to define the perimeter of
analysis: (i) a snowcover mask based on the Normalized Difference Snow Index (NDSI) is generated,
(ii) the imported RGI polygons are taken as reference area or (iii) a specifically sketched geometry
is used. Within (C) two possible approaches can be used: (j) uses an NDSI>0.5 mask whereas (jj)
computes the Otsu threshold based on the near infrared (NIR) band to classify and quantify snow
cover.
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User-defined variables

Several user-defined variables are required to successfully run Algorithm 1. A selection of
the important ones is given in Table 3.1:
Changing these variables on one hand, offers a quick and easy handling of otherwise hidden
variables. On the other hand, it offers some flexibility to adapt to error messages. The latter
ones can occur when the time horizon is set to a wide time range, causing time-out messages
when exporting the results. The two scale parameters then need to be increased accordingly.

Spatial and temporal filter of ImageCollections

To reduce the amount of data to be analysed a spatial filter is applied on the terrain corrected
ImageCollection which has been loaded in advance. In part (A) of this algorithm this
filter is based on the specific path and row information for Algorithm 1.1 (Figure 3.1).
Whereas, in Algorithm 1.2 (Figure 3.2) the ImageCollection is filtered by the imported
FeatureCollection.
In a second step the ImageCollection is filtered by a date range which should correspond
to the end of ablation time in the region of analysis. For example, in the test region of the
Swiss Alps the date range has been specified from 15th July to 15th October.

Minimal cloud cover

In part (B) the images are checked on their cloudiness. This cloud-score is calculated based
on top-of-atmosphere (TOA) corrected conversions of the respective image. In many cases,
satellite scenes already come with some pre-calculated factor for cloudiness such as the
"Automatic Cloud Cover Assessment" (ACCA) for Landsat 7 images (Irish 2000). The
ACCA, however, does not perform well over snow and ice due to the cold surfaces. This is
why another approach has been pursued to better match the specific application within this
environment of cold surfaces.
To reduce the perimeter where computations of the minimization of cloud cover (and subse-
quently also of seasonal snow) are based on, three different approaches (see Figures 3.1 & 3.2)
are compared: this spatial limitation can either be done (i) by calculating the normalized-
difference snow index (NDSI) for the entire image, (ii) by clipping the images to the defined
RGI polygon or (iii) by clipping them to a manually drawn polygon.
Primarily, this is done to prevent the algorithm from falsely discarding images without clouds
over the glacierized area, but still achieving a high cloud-score. Hence, a mask is generated
in advance to focus the computations on where glaciers actually exists. In addition to that,
it also lowers the computation time.
In regard to computation time, the approach using the NDSI mask (i) is faster but has the
disadvantage of sometimes underestimating the seasonal snow cover in the next step due to
clouds covering the glacierized area resulting in a small NDSI-mask. The approach using
the RGI polygons (ii), however, takes a lot more computation time as the polygons can be
quite complicated (large amount of vertices). If a specific region of interest exists and can
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Figure 3.3: Use of different thresholds for the "Normalized Difference Snow Index" (NDSI) to
define the perimeter on which the cloud-score is based. The NDSI is calculated based on raw digital
numbers of a Landsat 5 scene (ID: LT5195028201127 9MOR00). Every pixel whose value lies above
the respective threshold is added to the perimeter of further computation. Every classification color
also includes the color of the thresholds above (e.g. violet classification includes turquoise and yellow
pixels too).
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Variable Description
startJulian defines the starting (julian-) day of analysis
endJulian defines the ending (julian-) day of analysis
startYear defines the starting year of analysis
endYear defines the ending year of analysis
path defines the path-information of the scene to analyse
row defines the row-information of the scene to analyse
ss_LowThreshold defines the lower threshold for values to accept in regard to

the snowcount deviation value
ss_HighThreshold defines the upper threshold for values to accept in regard to

the snowcount deviation value
scale_otsu defines the scale on which fnOtsu() are based on

Table 3.1: User-defined variables of Algorithm 1 for quick adjustments.

be outlined without much effort, it can be useful to (iii) manually draw a simple polygon
with a lower amount of vertices within GEE.
When using (i), values above a certain threshold are masked out and ignored by the calcu-
lations. The threshold to separate snow and ice based on NDSI from other terrain is usually
set around 0.6 (Choi & Bindschadler 2004). However, for this application a lower threshold
of 0.2 has been chosen to widen the perimeter of analysis because clouds immediately next
to the glacierized area can affect the suitability of a respective satellite scene in a negative
way. Figure 3.3 illustrates the calculation of this perimeter with different thresholds for the
NDSI (0, 0.2, 0.4 and 0.6 respectively) and illuminates the decision to take 0.2 as threshold
within this method. For approaches (ii) and (iii) the perimeter of computation is defined by
their respective geometry.
Images with a cloud-score higher than 15% within this perimeter are then discarded. This
results in an ImageCollection only containing images with a low value for cloudiness.

Minimal seasonal snow cover

As for part (C) in Figures 3.1 and 3.2, the aim is to minimize the occurrence of seasonal
snow. Two approaches are applied: A less accurate but much faster approach is to create an
NDSI mask and classify pixels greater than 0.6 as snow. The more accurate approach is to
calculate the Otsu threshold (Ostu 1979) based on the near infrared band for each image of
the ImageCollection individually. Doing so, snow can even be separated from ice leading to
a more specific count of snow pixels. However, this approach takes much more computation
time. The function to retrieve the Otsu threshold is described in detail in Section 3.4. The
snowcount is calculated for each image individually and stored as additional property of the
image. Images with a high snowcount are discarded and ignored for further application.
Images with a low snowcount are expected to be good as they indicate that during this
period of time a low amount of seasonal snow is affecting the detection of glacierized area.
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This entails the risk of falsely including images with reasonably high cloud cover as this can
lead to an underestimated amount of seasonal snow cover. This effect is taken up again in
Section 4.1.1.
At this point of the process there are again two separate ways to go depending on using either
Algorithm 1.1 or Algorithm 1.2: Whereas in Algorithm 1.1 only scenes from an identical
path and row are assembled, the ImageCollection first needs to be sorted by path and
row to secondly sort it by the snowcount for Algorithm 1.2. For both the result is an
ImageCollection only containing the most suitable scenes for glacier mapping, sorted in
descending order of suitability.

3.2.2 Manual scene selection
For the comparison of manual and automated scene selection the USGS Global Visualization
Viewer (GLOVIS, see Figure 3.4) is used (U.S. Geological Survey 2005). It’s containing dif-
ferent datasets such as from Landsat, ASTER, MODIS and Sentinel satellite missions. With
GLOVIS one can preview images from specific locations and dates with all its metadata and
eventually download the wanted scenes for further use in its original format and resolution.
In the first level the pixels have a resolution of 1000 m which only provides a first glance
at the images. The resolution can be set to 240 m per pixel resulting in a higher visibility
with more details but slightly slower loading times. Eventually, images can be downloaded
in orthorectified .jpg-format or in their full resolution including all the band information.
After the pre-selection and the download of these images they are loaded into a GIS software
(in this case QGIS Desktop 2.10.1) where they can be compared visually. Eventually, the
best scenes can be determined by cloud cover- and seasonal snow cover comparison. This
needs some experience of the observer but offers opportunities to select the scenes based on
the particular application.

3.3 Area calculation and glacier extent
In this Section two main approaches are stated: First, Algorithm 2.1 is explained, which
results in different area calculations for the set of glaciers it analyses over a given time
range. The aim here is to import geometries from the RGI as references indicating the
occurrence of glaciers and then calculate the glacierized area within and around them.
Algorithm 2.2 is set up in a similar way but ends with the calculation of the ratio image over
a large scale and creates a mask of all glacierized areas within the region of analysis. This
region is set far wider, resulting in longer computation time and the need (or possibility) to
apply some post-processing steps to refine the the result.

3.3.1 Algorithm 2.1: Area calculation
In Algorithm 2.1 a slightly different approach in the process of finding suitable scenes for
glacier mapping is used: in terms of minimal cloud cover the qualityMosaic method is
applied in combination with a cloud scoring method, which creates one single image out of
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Figure 3.4: Interface of the USGS Global Visualization Viewer (GLOVIS). Retrieved from
http://glovis.usgs.gov/

the least cloudy pixels of an ImageCollection. Therefore, the order of the two minimiz-
ing processes (cloud cover & occurrence of seasonal snow) are switched in comparison to
Algorithms 1.1 & 1.2.
Image composites are helpful to get the most suitable pixels over a given time period for a
specific application. By doing this, the occurrence of non-suitable data points decreases and
results in a better accuracy. However, they represent an artificial consolidation and not an
actual state of an environment. Luckily, most glaciers and their environment do not change
quickly and only move very slowly. This allows creating image composites over several years
(e.g. three to five) to achieve the most accurate representation of the state of a glacier.
The aim of Algorithm 2.1 is to create glacier outlines based on a selection of suitable scenes
within a time period of several years and then calculate the area of this set of glaciers.

User-defined variables

Several user-defined variables are required to successfully run Algorithm 2.1. A selection of
the important and easily adjustable ones is given in Table 3.2.
Changing these variables on one hand, offers a quick and easy handling of otherwise hidden
variables. On the other hand, it offers some flexibility to adapt to error messages.

Spatial and temporal subsetting

As for Algorithm 2.1 (Figure 3.5) the filtering on spatial and temporal basis (A) are working
in the same way as in Algorithm 1.2 (Section 3.2). On a spatial level, the geometry of
the FeatureCollection is intersected with the starting ImageCollection and on temporal
level a period of years is defined by which the ImageCollection is reduced.
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Figure 3.5: Concept of Algorithm 2.1 with four sequential steps: selection of the end of ablation
period (A), minimization of seasonal snow cover (B), minimization of seasonal snow cover (C) and
the iteration process over an imported collection of glacier polygons (D).
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Variable Description
startYear defines the starting year of analysis
endYear defines the ending year of analysis
startJulian defines the starting (julian-) day of analysis
endJulian defines the ending (julian-) day of analysis
gte_ndsi values above this threshold will be part of the ndsi mask gener-

ated to define the perimeter of computations (e.g. to minimize
seasonal snow)

buffersize size of the buffer around the polygons (in metres)
ss_LowThreshold defines the lower threshold for values to accept in regard to

the snowcount deviation value
ss_HighThreshold defines the upper threshold for values to accept in regard to

the snowcount deviation value
iceAndSnowThreshold defines the threshold to use for the segmentation of the ratio

image
scale_snowcount defines the scale for the minimization of seasonal snow
scale_otsu defines the scale on which the calculation of the maximum

between-class-variance is calculated

Table 3.2: User-defined variables of Algorithm 2.1 for quick adjustments.

Minimal seasonal snow cover

As for part (B), the aim is to minimize the occurrence of seasonal snow. Like before, for each
image individually in the ImageCollection, the Otsu threshold (see Section 3.4) is computed
based on the near infrared band. After classifying the snow pixels the count can be computed
for each image (snowcount). In the next step, the remaining satellite scenes are sorted by
path and row and divided into sub-collections, each of them only containing images from
identical path and row. Within these sub-collections the deviation of each image’s snowcount
from the mean snowcount of its respective sub-collection is then calculated (snowcount-
deviation-value). Images with a deviation outside the defined maximum- and minimum-
threshold are discarded. In a last step in part (B) these sub-collections are merged again for
further calculations.

Minimal cloud cover

In part (C) the aim is to get the least possible cloud cover over the area of interest. The
method qualityMosaic creates a composite image from all the remaining images in the
ImageCollection based on a so-called quality band. In this case the quality band is defined
as cloud score. Standard TOA calibration is applied to the images of the ImageCollection
and then a cloud score is assigned to each pixel using the simpleCloudscore method de-
scribed in Section 3.2.1. It selects the lowest possible range of cloud-scores at each pixel
and computes per-band percentile values from the accepted pixels. The output is a single
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image covering the entire area of interest based on the imported FeatureCollection in the
beginning.

Calculate glacierized area

In part (D) the single image from (C) serves as foundation to create a ratio image of two
bands using Digital Numbers (DN). In the context of this study the bands 3 and 5 are used
for Landsat 5 and 7. By using a manually defined threshold of 2 the output is then classified
in glacierized- (above threshold) and other terrain (below threshold). For every feature of
the FeatureCollection the pixels (containing the area in m2) of this segmented ratio image,
which intersect with the feature, are summed up. Like this, every glacier feature is provided
with the information of its represented glacierized area within the given parameters of the
algorithm.

Examples

Figure 3.6 shows a comparison of several Landsat 5 TM images recorded over summer 2003.
All images have a distinct amount and spatial distribution of cloud cover which results
in different suitability. Additionally, depending on the weather conditions of the respective
time period the image was recorded, the amount of seasonal snow around the glacierized area
varies a lot. Based on the amount of seasonal snow included within an image it is sorted
out and ignored for the segmentation of the ratio image (see Section 3.3.1). Based on that
resulting collection the pixel with the least cloud score is chosen for the image composite.

3.3.2 Algorithm 2.2: Semi-automatic method with additional manual
post-processing in conventional GIS

As Figure 3.8 shows, Algorithm 2.2 is based on the same three (A-C) sequential steps
of Algorithm 2.1. The difference lies, first, in a larger buffer zone around the imported
FeatureCollection, which results in a larger area of analysis for the processes of seasonal
snow cover (B) and cloud cover (C) minimization. Second, the last step (D) does not calcu-
late the area within GEE but stops after the segmentation of the ratio image, which results
in a detection of the glacierized area. However, testing of Algorithm 2.2 has proven to be
more CPU-intensive than Algorithm 2.1 as the more effortful calculations lie in parts where
pixels need to be counted. These sorts of computations mainly lie in part B and C and are
intensified by the selection of large areas of analyses and time ranges.
The aim of this Algorithm, again, is to create glacier outlines based on a selection of suitable
scenes within a time period of several years. But this time with additional manual post-
processing with help of conventional GIS software.

Regional and global scale

This Algorithm has been tested with data from the RGI as well, mainly with its regional
divides (see Section 2.1.2). As for most of the 19 RGI regions the export queries timed-out
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Figure 3.6: Comparison of several Landsat 5 TM scenes (pseudocolor representation with bands 5,
4 and 3) recorded over summer 2003 (path: 195, row: 28). Examples of cloud cover are highlighted
red. Glacierized area is colored in cyan and usually includes a fair amount of seasonal snow. a)
shows a good example for a scene with a very high cloud-score over the perimeter of interest,
whereas b) shows that a scene can have a lot of cloud cover but not over the perimeter of interest.
Scenes c) and d) are scenes with a low resulting cloud score but with c) being more suitable as it
contains less amount of seasonal snow around the glacierized area.
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Figure 3.7: Creation of image composites in the Bernese and Valais Alps. Composite (a) is based
on the least cloudy pixels of the ImageCollection whereas in (b) the images with reasonable*
snowcount are discarded from the ImageCollection before the least cloudy pixels are selected for
the composite.
*: only images with a snowcount-deviation-value between 0.5 and 1.2 are retained.
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Figure 3.8: Concept of Algorithm 2.2 with the three identical sequential steps (A), (B), (C) from
Algorithm 2.1: selection of the end of ablation period (A), minimization of seasonal snow cover (B),
minimization of seasonal snow cover (C). The difference is in (D) which is designed to calculate the
ratio image over a large scale and create a mask of all glacierized area.
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with a scale of 30m per pixel this parameter was increased to values between 120 m and
240 m per pixel to be able to finish the exports and generate outputs. This shows that the
computations within Algorithm 2.2 are quite CPU-intensive.

Post-processing steps

The outputs of GEE are in the format of geoTIFF and can thus be imported into regular
GIS applications. For this thesis the open source GIS software QGIS is used to import and
display data in this format. The outputs are intersected with datasets containing water
bodies which are subtracted from the end result. Additionally, obvious mis-classifications
are visually corrected and removed.

3.3.3 Usage limits
During the computation process error messages can occur when

1. the time range is too big, resulting in a huge collection of images

2. the FeatureCollection is too big or contains an enormous amount of vertices

3. both of the above together.

In this case it can cause time-out messages when exporting the results. However, there
are possibilities to evade them (see Figure 3.9). The scale parameters of either the snow
cover minimization method or the one from the segmented ratio image can be increased
accordingly (resulting in a loss of accuracy) or the time range and/or the FeatureCollection
has to be chopped up leading to loads of manual work. Another possibility in regard to the
minimization of snow cover is to bypass the effortful Otsu method by a less time-consuming
NDSI calculation or even bypass it completely depending on the amount of data to be
processed.

3.4 Mapping of snow- and ice cover
3.4.1 Algorithm 3: Using the Otsu thresholding function to map snow

cover and approximate the accumulation area ratio (AAR)
A truly valuable asses in glacier monitoring would be to automatically provide estimates
related to glacier mass balance. The concept of accumulation area ratio (AAR) is often
applied as a proxy to a glacier’s mass balance. Nevertheless, the calculation of the AAR is
not easy to implement in an automated manner as the outlines of the accumulation area
and the ablation area respectively would need to be known. One could assume that by
mapping snow- and ice cover of a glacier these areas could at least be approximated. In
the following, this approach to approximate the AAR within GEE is presented by using the
Otsu-thresholding function (Ostu 1979).
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Figure 3.9: Possible adaptions to error- and time out messages: (A) either a FeatureCollection
or an NDSI mask can be used to spatially filter the images and localize further calculations. (B)
In regard to the minimization of seasonal snow cover either the Otsu method or a more simple
NDSI count can be used to try to relatively quantify seasonal snow cover. In addition to that it
is possible to smoothen the RGI polygons before importing them or rising the scale of either the
snow cover minimization method or the one from the segmented ratio image.
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Figure 3.10: Concept of the implemented Otsu method to separate snow from ice on a glacier.
A.1 and A.2 define a loop, resulting in finding the threshold which corresponds to the maximum
Between-Class Variance.
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Implementation of Otsu-thresholding function

Thresholding is a simple and commonly used technique for image segmentation (Pal & Pal
1993). The Otsu method is an image thresholding function named after Nobuyuki Otsu (Ostu
1979), which allows to perform clustering-based image thresholding and to reduce an image
to a binary image. The method separates the image into two classes (named foreground-
and background pixels) with a threshold and then calculates the variance for both classes.
It then iterates through all the possible threshold values with the aim to find the threshold
value where the sum of foreground and background variance is at its minimum (Ostu 1979).
Luckily, the threshold with the minimum within-class variance is also the threshold with the
maximum inter-class variance (Greensted 2010). The latter is used within Algorithm 3 (see
Figure 3.10) as it is easier to implement. The following equation serves as mathematical
basis:

BetweenClass V ariance σ2
B = σ2 − σ2

W (3.1)
= Wb(µb − µf )2 +Wf (µf − µ)2

(where µ = Wbµb +Wfµf ) (3.2)
= Wb ∗Wf (µb − µf )2 (3.3)

σ2
B = BetweenClass V ariance

σ2
W = WithinClass V ariance

Wf = weight, foreground (values above threshold)
Wb = weight, background (values below threshold)
µf = mean, foreground (values above threshold)
µb = mean, background (values below threshold)
µ = overall mean

Snow cover mapping

The Otsu method can be used to distinguish between ice and snow within the glacierized
area. In the fields of glaciology it performs well to separate ice and snow if the thresholding
function is used on a near infrared (NIR) band (e.g. band 4 for Landsat 7) and has been
tested in other studies as well (De Angelis 2014). Figure 3.11 shows an example of how
these snow- and ice-masks are calculated based on a Landsat 7 raw image from summer
2015 with use of the implementation of the Otsu method in GEE. By having this separation
of snow- and ice pixels and calculating the amount of pixels in each class an approximation
to the AAR could be done. However, to correctly calculate the AAR one would need the
exact outlines of the accumulation and ablation area. The algorithm is mapping snow-
and ice cover respectively, which only serves as proxy to accumulation- and ablation area.
Nevertheless, by computing such an approximated AAR (proportion of the count of snow
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Figure 3.11: Example of snow and ice separation for Aletschgletscher based on the implementation
of the Otsu method. The left shows a Landsat 5 and 7 image composite of an automated scene
selection for 2010. The right shows the classification based on the same image composite.

pixels in relation to the total pixel count) a comparable trend could be identified in regard
to manual AAR calculations from previous studies.

3.4.2 Trend comparison
To be able to compare the results from the approximated AAR calculation by mapping
the snow covered area within GEE with data from manual AAR calculations, the series
’Fluctuations of Glaciers’ (FoG) is consulted and used as relation. Prepared by the World
Glacier Monitoring System (WGMS) it continuously publishes internationally collected and
standardized data on changes in glaciers on global level at intervals of 5 years (WGMS 2008,
2012, e.g.). The glaciers which will serve as basis for that trend comparison are:

• Findelen (Switzerland)

• Kesselwand (Austria)

• Storglaciaeren (Sweden)

3.5 Separation of clean- and debris-covered ice
The RGI is a combination of new and previously-published glacier outlines (Pfeffer et al.
2014) and is publicly available in its fifth version by the time of this thesis (http://www.
glims.org/RGI). The glacier outlines are usually acquired using automated segmentation
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Figure 3.12: Clean-ice and debris-covered ice classification with use of imported RGI glacier
polygons.

of ratio images too but with additional manual editing to deal with incorrect classification
of glacierized area such as regions cast by shadow or covered by debris, thick enough to
hide the spectral information of the ice underneath. In several regions outlines have been
completely manually digitized, either from satellite data or topographic maps.
As findings of Chapter 4 will show, the algorithms presented in this thesis do not perform
well either in shadow zones and debris-covered glacier parts. Especially debris cover remains
a big issue when making use of fully automated approaches without any manual corrections.
But although this might pose a problem to completely detect glacierized area, it poses the
opportunity to supply the RGI with a debris mask, simply by intersecting the glacier outlines
retrieved from GEE with the outlines of the RGI dataset. In the following the term clean ice
will refer to the part of the glacierized area whose spectral information is not hidden under
debris-cover (see Figure 3.12). However, clean ice is not referring to pure ice but can contain
dirt. It rather indicates the part of the glacier which can be detected by the segmentation
of a ratio image. From a spectral classification point of view, this means, that as long as
a pixel (e.g. 30 m x 30 m) contains a certain share of (possibly) dirty ice it is classified as
clean ice within the algorithm.

Keeping in mind that RGI data is not specifically acquired within a narrow time range
but over a large time period, it is important to align the date range of data acquired within
GEE to the dates of the respective dataset from the RGI. Without matching points in time
it won’t be meaningful to create such a debris mask. As for some regions throughout the
world it is difficult to retrieve the exact dates the RGI is based on, debris masks are created
here for two example regions only:

• Swiss Alps (with focus on Bernese and Valais Alps)

• Central- and West Asia (with focus on Karakoram mountains)
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4 Results

4.1 Scene selection
In the following sections the fully automated algorithms 1.1 and 1.2 are compared to the
manual way of scene selection. According to the respective algorithm the manual scene
selection is done within the same satellite imagery archives and within the same time range.
The comparison is based on the resulting scene selection and the needed time to process the
data. In this example Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat
5 Thematic Mapper (TM) scenes between July 15th and October 15th from 2009 to 2011
have been explored. As for the different approaches to count seasonal snow (see j) and jj) in
Figures 4.1 & 4.3) the one using the automatic setting of the Otsu threshold proved to be
too time consuming when the set of images appears to be rather large. Consequently, the
other approach is used in the following, using an NDSI mask for every image to determine
the amount of seasonal snow.

4.1.1 Comparison of single scene selection (Algorithm 1.1): manual vs.
automated method

Resulting scene selection

In figure 4.1 the comparison between the manual scene selection using GLOVIS (one specific
path/row) and the automatic image selection within GEE and its three different approaches
of perimeter determination for cloud-score and snowcount is illustrated (Algorithm 1.1, see
figure 3.1). The result of the manual scene selection is taken as model. Hence, the auto-
matic image selection should ideally result in the same image selection. The manual scene
selection has been constructed to include a fair amount of images, whilst the least suitable
rated images would not be useful on their own but still contain small regions of glacierized
area which suit the respective conditions. The result of the original method (see Figure 3.1)
is shown in (A) whereas (B) includes a weighting by the Landsat ACCA cloud-score of each
scene (Irish 2000). The identical number of images selected manually and in (i) happened
by coincidence. In approach (i) the automatic image selection selects 10 out of 13 identical
scenes as with the manual selection but misses another 3 scenes in comparison with the man-
ual image selection (all because of a mean cloud-score above the set threshold). However, the
3 additional images automatically selected in (i) all include a high amount of low hanging
and thick clouds partially lying over the glacierized area of the image (see Figure 4.2). It
can happen that the algorithm then classifies such scenes as suitable, even though they’re
not. Particularly if the clouds are thick enough to cover the spectral information beneath
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Figure 4.1: Comparison of manual scene selection using GLOVIS and automatic scene selection
within GEE (Algorithm 1.1) from 2009 to 2011 including Landsat 5 and 7 imagery data. Identical
shadings of manually (left) and automatically (right) selected Landsat scene IDs show the same
IDs. Numbers with black background indicate that these scenes are missing in the manual scene
selection. Two different results are shown: (A) uses Algorithm 1.1 as described in figure 3.1 without
weighting of the resulting scene selection which is sorted by the calculated snowcount. (B) uses a
weighting by the Landsat ACCA cloud-score of each scene (Irish 2000) to deal with undervalued
snowcount calculated due to high cloud cover.
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Figure 4.2: Additionally selected scenes of the automated approaches: i) rather unsuitable scenes
due to high cloud cover near and partially over the glacierized area. ii) rather suitable scene which
mistakenly wasn’t selected manually.

them. As a result, the NDSI mask, which defines the perimeter of the cloud analysis, turns
out to be too small. This setting results in a low snowcount and a mistakenly high estimated
suitability. Because of the clear bounds of the clouds the mean cloud-score within the NDSI
perimeter stays reasonably low and the scene is not discarded from further analysis.
Approach (ii) uses the imported RGI polygons to define the area of analysis for the cloud-
score and the subsequent snowcount. It detects 7 of the most suitable images but includes
one image (see Figure 4.2) with a considerable amount of clouds. However, this image should
have been part of the manual scene selection. The cloud cover barely interferes with the
glacierized area. This example indicates that by manually selecting suitable scenes it can
happen to miss specific images, whereas the automatic selection algorithm shows more con-
sistent results.
With approach (iii) a total of 6 images are selected. They appear to be the 6 best suitable
ones as well when compared with the image selection performed manually.
Comparing the different approaches presented in figure 4.1 (i-iii) one can recognise that (ii)
and (iii) are more limiting on the resulting scene selection whereas approach (i) collects a
wider series of images. Surprisingly, (iii) performs even better in regard to sorting. The best
images tend to be at higher positions in the resulting order. In regard to computation time
used to complete the respective image selection algorithm (i) and (iii) perform faster by far
compared with the approach using the complete RGI polygons (ii). Whenever the region of
interest is rather small it is thus recommendable to use either approach (i) or (iii).
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As for part (B) in figure 4.1 a weighting of the snowcount resulting from GEE with the
Landsat ACCA cloud-score (Irish 2000) is performed. With this weighting the above ex-
plained issue of undervalued snowcounts due to high cloud cover can be dampened. The
ACCA score is a proper tool used on Landsat images to calculate the mean cloud cover of a
scene, helping end-users to filter the Landsat archive by scenes with a reasonably low ACCA
score. Scenes with a high ACCA score tend to perform slightly poorer than scenes with a
low ACCA score. By comparing the resulting scene selection of part (B) one can tell that
the sorting process is improved by applying the weighting.

Processing time

In regard to processing time it took around 20 minutes to manually find suitable images
using GLOVIS and another 20 minutes to take a closer look at a higher resolution and sort
the resulting selection, making it approximately 40 minutes of total time to find suitable
images to work with.
For the automated image selections within GEE it takes approximately one minute to enter
the correct variables. However, that effort is not included in the different durations of the
automatic image selection.
For (i) the runtime was 40 seconds. Compared to the manual image selection this approach
is 60-times faster.
For (ii) the overall runtime of 16 minutes reveals that this approach takes longer to compute
because of the mostly complex structure of the individual RGI polygons. The higher the
amount of vertices of polygons the algorithm has to deal with, the longer it takes to compute
the result.
That’s also why approach (iii) completes a lot faster compared to (ii). With a total of six
vertices the polygon is a lot simpler than the RGI polygons.
Eventually, approaches (i) and (iii) complete in a by far smaller period of time compared
with the approach using the complete RGI polygons (iii). Whenever the region of interest
is rather small it is thus recommendable to either use approach (i) or (iii). Nevertheless, as
will be seen in the following Section 4.1.2 when the region of analysis gets larger it will get
more and more time consuming to manually draw a geometry.
The observations mentioned above have been the same for different time periods and loca-
tions in the world. Nonetheless, it must not be forgotten that although all the automatic
image selection approaches do deliver their own selection, the accuracy of the manual scene
selection might still be arguably better compared to the automatic processing, as a trained
glaciologist is easily able to interpret the changing conditions between individual scenes.

4.1.2 Comparison of multiple scene selection (Algorithm 1.2): manual
vs. automated method

Resulting scene selection

As in Section 4.1.1, the results of the manual image selection are taken as role model. In
Figure 4.3 only a selection of the scenes (path/row: 193/28, 193/27, 194/27 and 194/28) is
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Figure 4.3: Region of analysis represents the area of central Europe’s glaciers. It results in 16
different scenes covering the region. The manual and the different approaches of the automatic
image selection are compared for four different scenes (a-d). The grey color gradient indicates the
order of the manual image selection. Same grey tones indicate matching images in the respective
manual and automatic image selection. Images which are missing in the opposing selection are
highlighted black.

36



CHAPTER 4. RESULTS

listed in comparison with the results of the manual selection. For all the automatic image
selections (i-iii) the weighting presented earlier in Section 4.1.1 is directly applied within the
algorithm. Using approach (i), a total of 58 images for 16 different scenes for the year 2010
have been selected. This makes an average of approximately 3.6 images for a period from
15th July to 15th October per scene and year. Approach (ii), which uses the original RGI
polygons as reference for the cloud-score on every image, unfortunately timed out after two
hours attempting to export the selection. As for approach (iii) a total of 22 images have
been selected which makes an average of approximately 1.4 images per scene and year.

Overall, the automatic image selection processes recognise suitable scenes as such. As for
the images the algorithm does not detect as suitable images, the deviation value of the
snowcount is usually too high resulting in discarding the respective image from the selection
(used upper threshold: 1.2).
As for example in approach (i) the following deviation values are calculated: 1.43 for (a),
1.39 (b), 1.25 (c) and 1.46 (d). In this example no image which has been discarded due to a
too low value (threshold used: 0.5) has been found to be suitable after checking the image
manually. Hence, at least the lower threshold seems to be set appropriately.
As for the images which are "falsely" selected from the algorithm, the issue with the thick
cloud cover surrounding the perimeter of analysis as described in Section 4.1.1 comes into
effect: The respective images all come with reasonably high cloud cover which affects the
glacierized area only partially but is thick enough to cover the spectral information beneath
them and significantly reduce the area classified by applying the NDSI classification. The
algorithm thus falsely selects them as suitable images. As stated, the applied weighting with
the ACCA cloud score should take care of this. However, if clouds almost exclusively occur
in the region of glaciers and snow covered areas then even the weighting does not perform
flawlessly.

Processing time

In regard to processing time it took around five minutes per scene to manually find suitable
images using GLOVIS and another five minutes to take a closer look at a higher resolution
and sort the resulting selection, making it 40 minutes of total time to find suitable images
for each of the four scenes. For this example eight scenes have actually been investigated
which are only partially illustrated in Figure 4.3. A total of 90 minutes was needed for
the resulting selection due to second lookups and comparisons of similarly suitable images.
Thus, extrapolated to the whole set of 16 scenes it would easily take 180 minutes to find the
most suitable satellite images for the defined region.
For the automated image selection approach (i) it takes approximately one minute to enter
the correct variables. The runtime for the setting described above was 7 minutes. This
makes a total of 8 minutes for approach (i) which is using an NDSI mask for every image as
reference to calculate its cloud-score. As mentioned the computation process of the approach
using the RGI polygons (ii) timed out and could not complete. At the time of writing the
export functionality is limited to two hours which is why it stays unclear for how long the
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export would have taken to complete. Approach (iii) took three minutes to complete and
output its image selection results. Compared with one another it takes a lot longer doing it
the manual way. At the same time, again, the overall accuracy of the manual scene selection
might be arguably better compared to the automatic processing.

4.2 Area calculation and glacier extent
4.2.1 Algorithm 2.1: Area calculation
Comparison of thresholds to create glacier masks

Figure 4.4: Comparison of various thresholds used to create glacier masks based on a ratio image
of band 3 and 5 of of the image composite of Landsat TM 5 scenes recorded during the summer of
2003. Glacier masks are clipped to the RGI polygon of Aletschgletscher including a buffer zone of
300m. The higher threshold T is set, the less pixels are part of the glacier mask.

In Figure 4.4 the creation of various glacier masks based on different thresholds for a seg-
mentated ratio image are shown. The ratio image is calculated using the red and the near
infrared (NIR) band:

red

NIR
⇔ e.g.

band 3
band 5 for Landsat 5 Thematic Mapper

The glacier mask itself consists of values above the respective threshold. With T=1 the
glacier mask almost expands to the full extent of the buffered RGI polygon. The higher
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the threshold T is set, the less pixels are included in the glacier mask. A large part of the
glacier tongue and even some moraines with debris cover are already excluded with T=2
and are excluded more and more for larger thresholds. For example, with T=6 the medial
moraines are continuously ignored. Especially in the lower parts of the glacier a lot of the
(likely debris-covered) glacierized area seems to be left out.
Ideally, these thresholds should be set individually for each scene as the results can vary
from image to image, but a dynamic setting of these thresholds has not been pursued here.
Instead, the same threshold of 2.5 has been chosen for each segmented ratio image.

Results of area calculation for Central Europe and Scandinavia

Figure 4.5: Example of the segmentation of a ratio image in the Southern Alps based on raw
digital numbers (DN). A threshold of 2.5 has been applied to separate non-glacierized (below) and
glacierized (above) pixels. Pixels above that threshold lying within the respective RGI polygons
are included in the calculation of the glacierized area.

In Figure 4.5 the segmentation of a ratio image based on the short wave infrared (SWIR) and
the red band of a Landsat image composite from 2001 to 2003 is exemplified. In addition to
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the actual glacierized area, lakes and rivers are usually classified as glacierized by mistake as
their spectral behaviour is similar to the one of ice and snow. In this case this does not pose
a problem as the ratio is intersected with the imported RGI polygons before to calculate the
area within each polygon. Hence, water bodies generally do not affect the result but require
special consideration in case of glaciers terminating in lakes.

In Table 4.1 one can compare the area calculated within GEE with the area which is contained
as attribute for each imported RGI polygon. The area calculation is based on an image
composite created from images from 1999 to 2003. The specific year, in which these area
measurements have been taken, lies within a wide time range (Central Europe data covers
the 1980s until today). However, around 95% of the data has been gathered around the early
2000s. The values of the last column (delta [%]) indicate that deviations are in a reasonable
range. However, in case of very small glaciers these relative differences rise.

Comparison of small and big glaciers

Table 4.2 shows the means of the relative differences of various subgroups sorted by glacier
size. The figures indicate, that the larger the area of the glaciers get, the lower is their
measure of relative difference (see Table 4.1). An interpretation could be, that the area
calculation of small glaciers is likely to be overestimated. However, this might only be a
relative effect as the area grows squared, whereas the perimeter grows about linearly with
increasing area. Thus, the error of overestimation is relatively smaller for large glaciers.
Figures 4.6 and 4.7 show the progression of the deviation value between the calculated area
within GEE and the value attached to the polygon of the RGI inventory for Central Europe
and Scandinavia. In both cases a similar effect can be seen. It seems that, most likely, the
area of small glaciers is overestimated by the algorithm within GEE. This is probably due
to the buffer zones, which are applied in order not to limit the classification process to the
outlines of the RGI only. This buffer zone around the imported polygons enlarge the area of
small glaciers in a stronger way than the buffering does for large glaciers due to the relative
error propagation in regard to perimeter and area.

4.2.2 Algorithm 2.2: Semi-automatic method with additional manual
post-processing in conventional GIS

Global analysis

A global application was not yet possible due to limitations in the functionality of GEE
for such intense computations. At the time of writing renderings and illustration within
the GEE API time out after five minutes. However, re-running the same code can help to
overcome this issue as the servers can use cached calculations. Like this, calculations can
still be rendered to the API using a few extra loops. Another possibility is to export the
results to Google Drive as limitations are set at longer time durations. Hence, export queries
hit time out messages only after two hours. Again, re-running the same code will help to
overcome this limitation but, nevertheless, it remains unclear at which level the preceding
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RGI_Name RGI_Area GEE_Area delta [%]
Aletsch 82.20 84.74 +3.1
Gorner 56.46 59.69 +5.7

Fiescher 31.33 31.97 +2.0
Pasterze 17.77 17.51 -1.4
Rhone 15.83 17.01 +7.5

Argentiere 11.73 12.62 +9.4
Vernagtferner 8.55 9.36 +1.5
Hintereisferner 8.03 8.15 +1.5

Gries 5.29 5.84 +10.4
Kesselwandferner 3.96 4.31 +8.8

Jamtalferner 3.82 4.21 +10.2
Silvretta 2.88 3.10 +7.8

Saint Sorlin 2.87 3.15 +9.9
Careser 2.83 2.73 -3.4

... ... ... ...
Standard Deviation (total): 77.42

Table 4.1: Small selection of the area calculation resulting from Algorithm 2.1 for the RGI region of
Central Europe. The middle columns contain the area measurement provided for the RGI inventory
(GEE_Area). Additionally, it contains the area which was calculated within GEE based on an
image composite from the images of the years 1999 to 2003 (RGI_Area). The last column indicates
the measure of the relative difference (delta) between GEE_Area and RGI_Area in percent.

mean of delta [%] number of glaciers
total glaciers +54.82 3980
glaciers > 0.5 km2 +11.05 681
glaciers > 1 km2 +7.30 407
glaciers > 5 km2 +3.02 78
glaciers > 10 km2 +0.13 27
glaciers > 15 km2 -1.94 13

glaciers < 0.5 km2 +63.65 3298

Table 4.2: Means of the relative difference (delta) of various subgroups sorted by glacier size. The
larger the area of the glaciers, the lower their measure of relative difference and vice versa.
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Figure 4.6: For the glaciers of Central Europe: progression of the measure of relative difference
(delta_%) between the area calculations from within GEE and the RGI polygon.

Figure 4.7: For the glaciers of Scandinavia: progression of the measure of relative difference
(delta_%) between the area calculations from within GEE and the RGI polygon.
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query timed out. Therefore, an application of the stated methods in Chapter 3 on a global
level has not yet been done. However, some results carried out on large regional scales are
presented in the following subsection.

Regional analysis

Several segmentations of ratio images have been done in order to create masks of glacierized
area within GEE, export the result and display it in QGIS. The masks have been exported
for several RGI regions (see Section 2.1.2). However, only Central Europe (Figure 4.8) and
Iceland (Figure 4.9) are displayed here. For large RGI regions (such as Greenland, Alaska or
the Antarctic Subantarctic) exports timed out even when using pixel resolutions of 60 m and
90 m instead of 30 m of the exported image. Working with even lower resolution wouldn’t
make sense as data accuracy decreases a lot using lower resolutions.

The results show that the glacier mask based on the respective image composite repre-
sents the glacierized area quite well. Especially the data for Central Europe shows good
results in relation to the outlines of the RGI. However, in regard to the quality requirements
of a glacier inventory the automatic creation of a glacier mask definitively needs some post-
processing as it does not yet represent the actual outlines of the glacierized area in a flawless
way. As predicted, especially water bodies need to be removed accordingly, such as rivers,
lakes and parts of the sea which are falsely classified to represent glacierized surface. The
latter is important particularly when dealing with glaciers reaching into water, which is the
case for many glaciers in Scandinavia or Greenland (denoted with a) in Figures 4.8 and 4.9).
In addition to that, debris covered parts of the glaciers are often not included if the debris
cover is thick enough to hide spectral information underneath (denoted with b) in Figures
4.8 and 4.9).

4.3 Algorithm 3: Using the Otsu thresholding function to
map snow cover and approximate the accumulation
area ratio (AAR)

4.3.1 Use of 1-year image composites
Figure 4.10 presents the results of creating snow- and ice masks using the Otsu thresholding
function (Ostu 1979) described in detail in Section 3.4. These masks are based on segmented
ratio images from satellite scenes acquired during the late summer period of one specific
year. The same multi image selection code as in Algorithm 1.2 has been applied (see Section
3.2).The resulting masks from Findelen in year 2000, 2007 and 2010 show good results in
regard to distribution of snow- and ice pixels with a low amount of ice patches in the upper
parts of the glacier and a low amount of snow pixels in the lower parts respectively. This
could suggest a good depiction of accumulation- (snow pixels) and ablation area (ice pixels).
Nonetheless, as the years 2005, 2006, 2008 and 2011 clearly show, chances of getting striping
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Figure 4.8: Ratio mask created within and exported from GEE of Central Europe with 30m pixel
resolution, displayed in QGIS. The RGI polygon dataset is shaded in a light blue whereas the
glacier mask is displayed in grey tones. a) Water bodies are falsely classified and often included
in the glacier mask. b) Parts which are debris-covered are not detected as the underlying spectral
information of the glacierized area is hidden.
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Figure 4.9: Ratio mask created within and exported from GEE of Iceland with 30m pixel reso-
lution, displayed in QGIS. The RGI polygon dataset is shaded in a light green whereas the glacier
mask is displayed in grey tones.
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Figure 4.10: Creation of snow- and ice masks for three different glaciers using the Otsu thresh-
olding function with a 30 m resolution. All the snow- and ice masks are based on image composites
of a specific year. 46
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pattern within an image (due to the missing scan line corrector of the Landsat 7 satellite) are
relatively high. The same results are found in the 2005, 2008 and 2010 composite images for
Storglaciaeren. However, there are no such striping effects visible in the composite images
of Kesselwandferner. In some cases this causes the approximated AAR to be too low as the
patches in the accumulation area classified as ice turn out to be rather large (see images
2005, 2006, 2008 for Findelen). For those composite images flawed by the missing scan
line corrector, the method of mapping snow and ice cover is prone to errors and does not
represent best practice. A method to compute and retrieve the height of an end-of-summer
snowline (Callegari et al. 2016) would probably represent the conditions of a glacier more
accurately, as misclassification of a large amount of pixels would not strongly affect the final
result. Either way, creating an algorithm adapting to such matters is not a simple task.
Furthermore, there are two causes when no mask can be computed: First, in some years
there are no composite images resulting from the scene selection at all (see 2002 and 2007
of Kesselwandferner), which can happen if for a specific year no image data could be found
at this specific spot or if, more likely, the scenes within the analysed time period were all
discarded due to heavy cloud cover. Second, if the image composite quality is low, the
image appears blurred at the location of the glacier (mainly due to cloud cover). If that’s
the case, no optimal threshold can be found by the Otsu method, because no maximum
Between-Class-Variance could be retrieved for the specific composite image.
Due to the flawed quality in quite a few of the resulting image composites it was decided to
extend the time period to two following years to increase the set of images resulting from the
respective scene selection. By doing so, the quality of the image composites and consequently
also the quality of the snow- and ice masks should be enhanced. Although this is not entirely
useful in glaciological terms, because of the fact that the AAR can vary a lot between two
years, the results might still be reasonable for a trend analysis.

4.3.2 Use of 2-year image composites
The results of the approximated AAR based on 2-years image composites are shown in Fig-
ure 4.11. In contrary to Figure 4.10 the masks are based on a set of images taken within
two years as with a greater time span the chance is bigger that there are some suitable
images to create a best possible image composite. As predicted, these results do not show
any case where no image composite could be created and only one single case where the
Otsu method couldn’t retrieve a threshold to compute the snow- and ice masks. In addition
to that, there are less striping effects of the missing scan line corrector in Landsat 7. For
Findelen there is visible evidence to that, whereas the composites and resulting masks of
Kesselwandferner and Storglaciaeren from 2002/03 and 2006/07 respectively show a striping
pattern. Some masks still show inconsistent classification in comparison to those in Figure
4.10. This is the case when the image composite is based on images which have been taken
under conditions unsuitable for glacier mapping. This does not stop the algorithm to create
an image composite and results in an unclear classification between ice and snow. Addi-
tionally, some composite images might still contain seasonal snow on parts of the ablation
area resulting in a overestimation of the AAR. An extreme example would be the masks
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Figure 4.11: Creation of snow- and ice masks of three different glaciers using the Otsu thresholding
function with a 30 m resolution. All the snow- and ice masks are based on image composites of
two following years. The ratio between the count of snow pixels and the total count of pixels of
both classifications represent the approximation of the AAR.
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of Kesselwandferner in 2004/05 where almost 90% of the area is classified as snow. How-
ever, the masks from 2000/2001 for Kesselwandferner and Findelen show examples of rather
consistent classification.

4.3.3 Trend comparison
In order to calculate the actual AAR for a glacier one would need to know the exact outlines
of the accumulation- and the ablation area. Still, one could say that the approximated
AAR computed in Algorithm 3, by mapping snow and ice cover respectively, should follow
the same trend as the real AAR. Assuming the data within FoG (WGMS 2008, 2012) are
accurate, the trend comparison in Figure 4.12 shows the data in several diagrams for a
12-year period from 2000 to 2011. It has to be noted, that FoG data is not yet published
for the year of 2011, which is why 2010 acts as reference value for the period of 2010 to
2011. Unfortunately, there are missing data series for Findelen from 2001 to 2004 and for
Storglaciaeren from 2004 to 2005. Due to the fact that the composite images are based on a
2-year period, the changes do not turn out to be that drastic as the actual AAR measures do.
Apart from that, the measures roughly appear to be in the same region. One of the mutual
curve progressions is the minimum point of the Kesselwandferner in the years of 2002 and
2003 which is likewise represented in the approximated AAR with a local minimum for the
same period and a following rise of the AAR value. Another similarity can be detected for
Storglaciaeren with a slight increasing and a subsequent decreasing AAR in the last three
points in time. However, the latter might be accidental when looking at the classification
results of Figure 4.12 as the ice- and snow masks respectively are not delineated properly
with pixel clusters from both masks over the entire area of the glacier.

4.4 Separation of clean- and debris covered ice
Crucial element of a completely automated Algorithm 4 is again the preceding image selec-
tion. It needs to perform well in order to create best possible image composites on which
the classification of clean- and debris-covered ice is based on. In this particular example (see
Figure 4.13) the selection is additionally based on a time range where images are known to
be suitable for glacier mapping. For example, during the hot summer period in 2003 the
Swiss Alps were highly exposed with the least possible seasonal snow- and cloud cover in
years.
Conditions for the region in Central- and West Asia however, are not that good throughout
the entire area but show similar results. The Karakoram mountains are well-known for their
large areas of debris-covered glaciers (Herreid et al. 2015), which is why the yellow areas are
distributed more extensively than in the Swiss Alps. In addition to that, in some regions
the stripe pattern is even visible in the debris mask which is due to the failure of the scan
line corrector for all ETM+ scenes after 2003. This can lead to patchy classifications for
debris-covered glacier ice and clean ice.
In order to create a neat debris mask it was important to exclude the rock outcrops (visible
exposure of bedrock, sometimes occurring within the perimeter of a glacier) before importing
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Figure 4.12: Comparison of the AAR values based on the data series from Fluctuations of Glaciers
(FoG) and the approximation of AAR by mapping snow- and ice cover within GEE. *Note: As
2011 FoG data is not yet published the reference value is of 2010.

the RGI polygons into GEE. The conversion tool Shpescape sometimes did consider the rock
outcrops to be part of the glacierized area although they are signified separately within the
RGI dataset. Eventually, the rock outcrops should not be included in the debris mask, which
should exclusively represent the deris-covered part of the glacierized area. Including these
outcrops would result in an overestimation of the debris-covered parts.
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Figure 4.13: Separation of clean- and debris-covered ice based on an image composite of Landsat
5 + 7 images for the years 2002 to 2003 (left, Central- and West Asia) and 2003 (right, Swiss Alps)
respectively. Top: complete image composite. Middle: image section of area of analysis. Bottom:
corresponding debris-covered part of glacierized area.
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5 Discussion

5.1 General suitability of GEE for glacier mapping
General evaluation of functionalities within GEE

To create automatic processes within GEE it is important to understand which processes
are time consuming and which are not. By the time of writing it is not possible to monitor
ongoing computation processes within GEE although it would simplify the process of building
algorithms and keeping them efficient. Despite this missing functionality it is possible to get
approximate measures for the computational effort of the individual processes by manually
computing them within GEE. The following list displays the relative computation effort of
functions used in this thesis (the slowest first):

• Scene selection process
– minimizing seasonal snow (snowcount & subsetting)
– minimizing cloud cover (apply cloud-score)

• Calculating with raster- and vector data simultaneously (e.g. intersections)
– buffering of RGI polygons (effort increases with more vertices per polygon)
– clipping images to polygons
– area calculation (pixel count within polygons)

• Creation of image composites

• Mathematical operations with images (e.g. creation of segmented ratio images)

In this thesis, clearly the scene selection process takes the most effort to finish as it can
include a large amount of datasets in the beginning and filtering the collection of images
by rating every image with a certain suitability (which includes the examination of plenty
of individual pixels depending on the chosen scale) is a slow process. Compared to that,
the creation of a qualityImage and the ratio image is much faster. However, whenever a
buffer is created or an image needs to be clipped to a complex polygon for further processing,
computation time increases significantly. This is not very surprising as the combination of
raster and vector data usually calls for complex computations. Of course, the measures
stated above depend on the size of the region of analysis, how many images have to be taken
into account, the range of the time period or the complexity of the polygons to name just a
few important variables for a given setting.
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5.2 Algorithm 1: Scene selection
The automatic image selection algorithms (Algorithm 1.1 & 1.2) show satisfying results in
relation to the manual image selection. Most of the manually selected images to be found
in the automatic selection result with some exceptions if cloud and snow cover meet certain
conditions within a processed image. The different approaches (see i), ii) and iii) in Figures
3.1 & 3.2) are used to determine the perimeter on which computations of the minimization
of cloud cover and seasonal snow are based on. Each of them leads to different results in
regard to the respective image selection and the needed computation time. Moreover, the
choice between the two approaches for the classification and count of snow cover (see j and
jj) allows to additionally adapt to the given set of conditions.

Approaches to define the perimeter of computations

Limiting the computations to the area of a pre-defined NDSI mask (i) proves to be a fast
approach with the flaw of sometimes underestimating the amount of seasonal snow in a
respective image due to high cloud cover around the actual glacierized area. If the ultimate
aim is to automatically retrieve the best possible image for glacier mapping this will not be
the best possible approach to use. However, if the aim is to make a pre-selection of suitable
images of a wide region to create an image composite out of it, this approach can be very
swift and useful.
Limiting the computations to the area within imported RGI polygons (ii) performs better
regarding the resulting sorting of suitable images for glacier mapping. However, it is impor-
tant to note that - compared to the other approaches - it takes extremely long to perform the
calculations within the complex perimeter of the RGI polygons. Therefore, the applicability
of this approach is rather low. Nonetheless, a pre-processing of this vector dataset or even
its conversion to a raster dataset could show promising results in regard to processing time.
At last, by limiting the computations to the area within a manually drawn polygon around
the assumed glacierized area (iii) results have proven to be very sound without needing too
much processing time. However, the application of this approach needs some extra work
in advance to delineate the perimeter of the test region and some experience with GEE, in
particular when various delineations need to be merged and the size of the area of interest
is large.

Approaches to classify and count seasonal snow cover

In relation to the minimization of seasonal snow and the required functionality to classify
and count snow pixels, the pros and cons of two approaches (see j) & jj)in figures 3.1 &
3.2) have to be balanced: whereas (j) counts all the pixels classified as snow and ice by
creating an NDSI mask, (jj) the application of the Otsu method (Ostu 1979) to separate
snow from ice allows to specifically count the pixels classified as snow and ignore the ones
classified as ice. Therefore, compared to the count of pixels classified by NDSI mask it gives
a different result and should be the approach to go for when only snow cover should be
mapped. Nevertheless, to be able to use the advantage of the Otsu method the outlines of a
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glacier need to be available as a classification of snow and ice is not meaningful if too many
pixels of other terrain are included in the process. Eventually, using the Otsu method to
perform a minimization of seasonal snow does not lead to significantly better results than
doing it with the much simpler and faster creation of an NDSI mask. With the usage limits
in mind, the Otsu method is not applicable for large datasets unless the spatial or temporal
resolution or the size of region to assess is reduced. Additionally, regarding the method of
automated scene selection presented before, the different snowcounts do not necessarily need
to represent the truth but rather display and stay in the same relation to each other. In
fact, the consistency and the low error rate of the used approach is more important. Hence,
in terms of applicability the approach of creating an NDSI mask to delineate the perimeter
of computations (j) represents best practice.
In respect of a global assessment, the results of the image selection algorithms suggest that,
wherever applicable, the approach based on a manually drawn geometry (iii) works best. It
additionally includes a flexibility to adapt to ones initial research setting as a manually drawn
geometry can range from a rudimentary sketched polygon to more complex delineation if
favoured and possible at all in relation to the size of the area of analysis and the computation
time within GEE that comes with it. However, if the area of interest is rather small and
the amount of satellite images computations is rather low (e.g. 2’000 km2 for a period of 4
months within 3 following years), using the Otsu method in combination with the original
RGI polygons is applicable without any problems.
Overall, the automatic scene selection algorithm performs well in relation to the fact that it
automatically and successfully filters those scenes which are not suitable for glacier mapping.
In regard to the functionalities of Algorithm 2, 3 and 4 this is very useful as they all inherently
base on image composites where it is crucial to have a whole collection of images to chose
from. However, the automatic scene selection algorithm is not yet sophisticated enough to
evaluate the true goodness of a respective scene. To a greater degree it is only capable of
interrelating various scenes and filter a collection of the most suitable ones.

5.3 Algorithm 2: Area calculation and glacier extent
Effects of prior scene selection

As Algorithm 2.1 and 2.2 include a prior scene selection they heavily depend on a successful
outcome of it. Normally it is possible to include a sufficient amount of images to create an
image composite. Nonetheless, this does not mean that it is based on high quality images.
A successful outcome of the prior scene selection thus is given if it not only contains the
least worst but the best possible images. Therefore, any knowledge needs to be used in the
preparation of a query about the period in which a specific region might have been recorded
under suitable conditions in terms of glacier mapping (for example, the knowledge of the
near perfect conditions in the Swiss Alps in the late summer period in 2003). A guide on
these period can be derived from the mass balance time series available at WGMS WGMS
(2008). Years with very negative balances point to very good glacier mapping conditions.
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Debris cover and shadows

The fact of not being able to correctly classify debris covered parts of glaciers only just
made it possible to create a mask for a clean-ice glacier polygon. But nevertheless, missing
this functionality definitely is one of the major downsides to manual glacier mapping and
would pose a valuable feature to implement in the future as soon as a suitable method can
be applied in an automated fashion. Based on this lack, area calculation suffers in regard to
accuracy as debris will continuously be detected as other terrain and thus not be included
in the classification of glacierized area.
In addition to that, the effects of shadows occurring due to the topography of a region or cloud
shadows have not been taken into account here. This is also very relevant as glacierized area
mostly appears in mountainous regions including steep slopes typically resulting in shady
areas and frequent (also orographic) clouds. In contrast to the lack of detecting debris-
covered glaciers, occurrence of shadow can vary strongly and also depends on the time of the
year. Later in the year, shadows increase but seasonal snow cover decreases. The optimal
time is thus a compromise between these two effects.

Effects of buffer zones around imported RGI polygons

In the results of Algorithm 2.1 a buffer zone of 100 m is applied consider possible area
changes (in comparison with the respective RGI polygons) of advancing glaciers. While a
buffer zone of several dozen metres might be applicable for most of the glaciers worldwide in
this context, surging glaciers might exceed this distance within a single year will still not be
represented correctly by this method. It is also important to note, that even with a buffer
zone of only 100 m the area will be overestimated due to snow covered areas on the other
side of a mountain’s ridge. This can be corrected by the application of drainage divides
which would specify a fixed glacier boundary at the mountain ridges. However, this is a
post-processing step that has not been implemented in this thesis.
Additionally, the tendency of overestimating a glacier’s area increases for small glaciers as
the extra area of analysis added by the creation of a buffer zone is much larger for smaller
glaciers in relative terms as it is for larger glaciers. Most likely, this might explain the results
shown in figures 4.6 and 4.7 respectively. Considering that the vast majority of glaciers is
below a few km2 in total area, this overestimation of the area of small glaciers would result
in large overestimations for a regional scale estimation of the glacierized area.
It is thus important to weigh if a buffer should be applied or not. One could say, that
for a best possible estimate of the global (or even regional) extent of glacierized area the
creation of a buffer zone should be spared. Moreover, the computation time decreases by
not applying any buffer zones to the respective geometries. However, by doing so, one takes
the risk to ignore any growth in glacierized area in comparison to the condition of the used
glacier geometries although this might be a minor problem these days.
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Effects of ETM+ scenes with missing scan line corrector

Due to the scan line corrector failure of Landsat 7 all ETM+ scenes acquired after May 2003
include missing data which display in line patterns of no data perpendicular to the flight
direction of the satellite. Pixels missing in the corresponding scenes were not included in
the computation. This has two implications for the different applications used here: First,
in terms of automatic scene selection, Landsat 7 scenes with missing data most probably
feature less pixels classified as snow. This results in a lower snowcount and thus these scenes
are generally preferred by the automatic scene selection in comparison with for example
Landsat 5 scenes. Second, it happens that when the image composite is created some
pixels are missing at specific locations. This happens if at specific locations either the scene
selection process does not pass any pixel as none of them is fulfilling the set of conditions or
if there is no data to pass due to the failure of the scan line corrector. However, the latter
can be avoided if the time range includes a reasonable amount of images.

5.4 Algorithm 3: Using the Otsu thresholding function to
map snow cover and approximate the accumulation
area ratio (AAR)

5.4.1 Image quality dependency
The differentiation between snow- and cloud cover using the implementation of the Otsu
method in GEE performs well and results are reasonable. Although it has proven to be a
time-consuming computation it can be applied without limitations for single glaciers or even
smaller regions. When the mapped snow cover is used as an AAR approximation the Otsu
method is only informative if a respective scene or image composite comes with least possible
seasonal snow and without cloud cover or missing data (e.g. failure of scan line corrector
in Landsat 7). As soon as an image has issues (clouds, gaps, shadows), the resulting AAR
approximation gets imprecise. It is thus highly dependent on the foregoing scene selection,
regardless of whether the selection follows automatically or knowledge based.
Moreover, from a methodical and glaciological point of view, 2-year image composites are
not the best option to retrieve meaningful end of summer snow cover data. Nevertheless,
for a trend analysis they proved to be less prone to errors than 1-year image composites as
chances improve to compute fairly delimited ice- and snow masks if the number of images
available for a region increases.

5.4.2 Applicability of trend analysis for specific regions
As a result of the observed dependencies, it is difficult to perform a trend comparison.
Nevertheless, Algorithm 3 seems to technically do its job by providing accurate snow- and
ice masks based on and strongly dependent on the input material it is given. It is thus
clear that a complete accordance of the approximated AAR values and the measurements
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of the AAR published in the Fluctuations of Glaciers (FoG) series is given. Given the short
computation time, Algorithm 3 can provide a first glimpse at a specific glacier or area in
terms of AAR calculation but results remain an approximation. The AAR determination
is thus a tool which should be further refined and offers the possibility to compute a fair
estimate of values over large regions. The quality of the approximation should be evaluated
visually as unreliable masks can quickly be recognised as such. Further improvements can
be expected by using reflectance values that are corrected for topographic effects (variable
local incidence angle of the sun) instead of the raw digital numbers.

5.5 Algorithm 4: Separation of clean- and debris-covered
ice

The quality of the results depends on the previous scene selection and undoubtedly, the
quality of the debris-masks varies due to changing conditions within an image. However, the
separation of clean- and debris-covered ice of a glacier does perform well. With Algorithm
4 it is thus possible to provide debris masks by intersecting the glacier outlines retrieved
from GEE with the outlines from the respective glacier inventory. The algorithm has proven
to compute stable results even over a large region within a few minutes. In this particular
application GEE is a valuable tool to map glacierized areas at large spatial scales.
The fact that debris cover highly affects the response of glaciers to climate change (Scherler
et al. 2011), illustrates an additional application of this algorithm as it offers the opportunity
to regularly map and measure the debris-covered parts of a specific glacierized region. Thus,
the algorithm could help to detect a trend in debris cover within that region and hence
support calculations of future water availability (Immerzeel et al. 2010). Debris cover also
plays a relevant role for ablation processes by decreasing the melting rates of the ice beneath
(Kayastha et al. 2000) it .
In addition to that, the algorithm could also serve to provide data for observation purposes
and indicate major changes in debris cover such as from rock fall events.

5.6 Outlook and perspectives
Shadows related to topographic conditions and clouds have not been taken into account
in this thesis. This could be implemented in a similar way as suggested by Selkowitz &
Forster (2016) where the most deeply shadowed pixels were masked when surface reflectance
in specific bands were below a certain threshold. Although this method does not distinguish
between cloud- and topographic shadow, it could be a first step into including shadow into
the glacier mapping process as it represents a simple and effective way of handling shad-
ows and minimizing their effect on the resulting mapping process. Another approach to
specifically deal with cloud shadows to reduce misclassification is demonstrated by a method
called Temporal Dark Outlier Mask (TDOM) presented by a group from the United States
Department of Agriculture (Housman et al. 2015). This algorithm identifies pixels which
appear dark in infrared bands only for a specific point in time but not always appear dark
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when examining the same location within a series of images. Some dark pixels are then
recognised as statistical outliers and thus most likely to be affected by cloud shadow.
In regard to the automatic scene selection the intersection between raster and vector data
resulted in high computation efforts. A promising approach for the definition of the perime-
ter of computation would be to priorly smoothen the vector polygons, convert them into a
raster format and vary the spatial resolution of the resulting rasterized polygon dataset. In
combination with the shortly available functionality of GEE to track the different compu-
tation processes the applicability of the automated scene selection method could certainly
be improved. In particular the reduced computation time would allow to increase the area
covered.
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6 Conclusion
The main objective of implementing a tool within GEE was to automate the image selection
process and to retrieve the best suitable images for glacier mapping. This goal has been
pursued by taking the most important measures for scene selection into account. The cre-
ated algorithm is able to quickly filter a collection of thousands of images by a specific time
period and to recognize and output those images with a minimum of cloud- and seasonal
snow cover. Various automated approaches have been compared in terms of the quality of
the resulting scene selection and the duration of the computation, whereas they differ in
their process of designating the perimeter where cloud-score computation and seasonal snow
calculation are applied. Results show that it is best to keep the computations as simple as
possible by either using a manually outlined (approach iii) perimeter or use an NDSI mask
(approach i) to define the perimeter of computations. Based on these findings, however,
further improving this algorithm may result in more precise scene selections within even
shorter computation times. As this is the base for most of the other applications described
here it will be crucial to refine this algorithm in the future.

Despite the dependency on the prior scene selection, it was possible to create glacier out-
lines of good quality over a large spatial scale. Not least because the temporal horizon for
creating glacier outlines can be set over a few years which leads to a larger collection of
suitable images on which the final image composite is based on. Nevertheless, future appli-
cations should additionally deal with shadows within the individual scenes and the detection
of debris-covered areas as they both illustrate sources of error and reduce the quality of
the scene selection process and all subsequent computations. Additionally, the consequences
of possibly used buffer zones should be addressed by an implementation of automatically
derived drainage divides.

The implementation of an automated thresholding algorithm using the Otsu method (Ostu
1979) within GEE to classify snow and ice surfaces proved to provide good results even un-
der the changing conditions of the scenes. However, achieving a good approximation of the
AAR for a single glacier is highly dependent on the quality of the available images acquired
near the end of the ablation period. An extension of the time period to two following years
resulted in less computation errors and a more distinct classification of ablation and accu-
mulation area but neglects the fact that AAR can vary a lot between two years. Wherever
knowledge about the quality of a set of scenes for a specific region is available, it should be
used to interpret or even improve the results.

The objective to complement already available glacier inventories with a mask of debris-
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covered regions was achieved by creating an image composite for the entire regions of West-
Central-Asia and the Swiss Alps respectively. Even though the classification of clean ice and
debris-covered ice is dependent on the prior scene selection and the resulting image compos-
ite, this application could provide promising results for a better understanding of ablation
processes and their implications within a specific region.

Although the presented findings need further improvements, they display an important step
towards automation processes in glacier monitoring and illustrate the capabilities of GEE as
a computation environment.
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7 Appendix

7.1 Algorihtm 1: Automated scene selection based on
different approaches

1 // change following lines for different approaches (i-iii): 25-35, 66-68,
91, 113

2 //user - defined variables
3 var start = 2010;
4 var end = 2010;
5 var buffersize = 300; // [m]
6
7 var scale_meanCloud = 30; // [m]
8 var scale_snowcount = 30; // [m]
9 var gte_ndsi = 0.2;
10 var ss_LowThreshold = 0.5;
11 var ss_HighThreshold = 1.15;
12 var cloud_threshold = 15; // [%]
13
14 // _____________________________________________________________________
15 // visualisation options
16 var visRGBl7 = {" opacity ":1,"bands":["B3","B2","B1"],"gamma" :1.3};
17 var visFalse = {" opacity ":1,"bands":["B5","B4","B3"],"gamma" :1.3};
18 var vis_ratio = {" opacity ":0.75 ," palette ":["0080 ff"," ff0080 "]};
19 var vis_Ice = {" opacity ":1,"bands":["B4"]," palette ":["00 fff4"," fdffb6 "]};
20
21 // _____________________________________________________________________
22 // import the FeatureCollection ( imported RGI polygons are saved as

FeatureCollections )
23 // import -tool: shpescape .com/ft/ upload /
24
25 var glacierpolygon = ee. FeatureCollection (
26 //’ft:1 s_HD0wV6tLeswo5oGVMQ3mI2UL63cv1lNErc4i1F ’ // 3 glaciers
27 ’ft:1 hRnmU5H2rgXsywt8m -0 TIbmF6I__zl9gqgRsMbaM ’ // " bernese alps ".
28 //’ft:1 DdMSc3xERbmGCfChR3hlkVS - PkLKCVKs2uQw2X7K ’ // central Europe
29 //’ft:1 oEqGiDwFPyc_t6dGOqdI4942aO5k06QBWaAxDNbF ’ // scandinavia
30
31 // next line is used for approach (iii) and needs a geometry to be drawn

manually :
32 // geometry
33 )
34 . geometry (); // needed for approach (i) & (ii)
35 //. buffer ( buffersize ); // optional
36
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37 Map. addLayer ({ eeObject : glacierpolygon , name: ’glacierpolygon ’});
38 Map. centerObject ( glacierpolygon );
39 print( glacierpolygon , ’glacierpolygon ’)
40
41
42 // ____________________________________________________________________
43 // create function to map over year_coll
44
45 var fnChooseCollection = function (start , end){
46 var imgColl = ee. ImageCollection (ee. ImageCollection .load(’LANDSAT /

LE7_L1T ’)
47 .merge(ee. ImageCollection .load(’LANDSAT / LT5_L1T ’)))
48 . filter (ee. Filter . calendarRange (196 , 288, ’day_of_year ’))

// end of ablation period
49 . filter (ee. Filter . calendarRange (ee. Number (start), ee.

Number (end), ’year ’))
50 . filterBounds ( glacierpolygon )
51 ;
52 return imgColl ;
53 };
54 // call the function to get a subset of the collection .
55 // this is where the cloud score gets computed on.
56 var imgColl_filtered = fnChooseCollection (start , end);
57 print( imgColl_filtered , ’imgColl_filtered by dateRange ’);
58
59 // ______________________________________________________________________
60 // add simple cloudscore to each image:
61 // Computes a simple cloud - likelihood score in the range [0 ,100] using a

combination of brightness ,
62 // temperature , and NDSI. It’s intended mainly to compare multiple looks at

the same point for
63 //* relative * cloud likelihood . (https :// developers . google .com/earth - engine

/ landsat #simple -cloud -score)
64
65 var fnCloudScore_simple = function (img){
66 var ndsi = img. normalizedDifference ([’B2’, ’B5’]);
67 // next line is for approach (i)
68 // var snow_mask = ndsi. updateMask (ndsi.gte( gte_ndsi ));
69 // next line is for approach (ii) & (iii)
70 var snow_mask = img.clip( glacierpolygon );
71 // convert to TOA because simpleCloudScore only works with TOA corrected

images
72 var toTOA = ee. Algorithms . Landsat .TOA(img);
73 var toTOA_masked = toTOA. updateMask ( snow_mask );
74 var img_masked = img. updateMask ( snow_mask );
75 // cloudscore
76 var cloudscore = ee. Algorithms . Landsat . simpleCloudScore ( toTOA_masked );
77 // add the cloud -score band to the input image
78 return img_masked . addBands (cloudscore , [’cloud ’]);
79 };
80
81 // apply the function above to the imageCollection

66



CHAPTER 7. APPENDIX

82 var imgColl_cls_scored = imgColl_filtered .map( fnCloudScore_simple );
83 print( imgColl_cls_scored , ’imgColl_cls_scored ’);
84
85 // _______________________________________________________________________
86 // Function for mean cloud cover
87
88 var fnMeanCloud = function (img){
89 var reduction = img. reduceRegion ({
90 reducer : ee. Reducer .mean (),
91 // next line is only used for approaches (ii) and (iii). Otherwise : NDSI -

mask limits the perimeter
92 // geometry : glacierpolygon ,
93 scale: scale_meanCloud
94 , maxPixels : 34e9
95 });
96 return img. setMulti ({ cloud_mean : ee. Dictionary ( reduction ).get(’cloud ’)})

;
97 };
98
99 // map it over imgColl_cls_scored to keep all the bands necessary for otsu

method ...
100 var imgColl_mc = imgColl_cls_scored . select ([’B2’, ’B5’, ’cloud ’]).map(

fnMeanCloud );
101 // ... and filter it to be less than " cloud_trheshold "
102 var imgColl_mc_filter = imgColl_mc . filter (ee. Filter .lte(’cloud_mean ’,

cloud_threshold ))
103 . filter (ee. Filter .lte(’CLOUD_COVER ’, 40));
104 print( imgColl_mc_filter , ’imgColl filtered by < cloud_threshold ’);
105
106 // ______________________________________________________________________
107 // Function to apply the snowcount
108
109 var fnSnowcount = function (img){
110 var ndsi = img. normalizedDifference ([’B2’, ’B5’]);
111 var classification_masked = img. updateMask (ndsi.gte( gte_ndsi ));
112 var count = classification_masked . reduceRegion ({ reducer : ee. Reducer .

count (),
113 // next line is only used for approaches (ii) and (iii).

Otherwise : NDSI -mask limits the perimeter
114 // geometry : glacierpolygon ,
115 scale: scale_snowcount
116 , maxPixels : 34e9
117 });
118 return classification_masked . setMulti ({ snowcount : ee. Dictionary (count).

get(’B2’)});
119 };
120
121 // call the snowcount method on imgColl_mc_filter ( already applied with

cloudscore )
122 var coll_SC = imgColl_mc_filter .map( fnSnowcount );
123
124 // ______________________________________________________________________
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125 // seasonal snow analysis : add countSnow and path/row - information to each
image passed to that function

126
127 var fn_PR = function (img){
128 var path = ee. String (img.get(" WRS_PATH "));
129 var row = ee. String (img.get(" WRS_ROW "));
130 return img. setMulti ({ pathrow : path.cat("_").cat(row)});
131 };
132
133 // map fn_PR to add path/row - information
134 var coll_SC_PR = coll_SC .map(fn_PR);
135
136 // Get the distinct path/rows as features .
137 // Note , this leaves the feature with system :index from a random image ,

but it doesn ’t matter .
138 var distinct = ee. FeatureCollection ( coll_SC_PR . distinct ([" pathrow "]).

select ([" pathrow "]));
139
140 // Join.
141 var filter = ee. Filter . equals ({
142 leftField : ’pathrow ’,
143 rightField : ’pathrow ’});
144 var saveall = ee.Join. saveAll (" collection ").apply(distinct , coll_SC_PR ,

filter );
145 // print(saveall , ’saveall ’);
146 // Make a collection of collections .
147 var collcoll = saveall .map( function ( result ) {
148 return ee. ImageCollection . fromImages ( result .get(" collection "))
149 .set(" pathrow ", result .get(" pathrow "));
150 });
151
152 // ______________________________________________________________________
153 // function to add the value of the mean snowcount of an ImageCollection to

each individual image in it.
154
155 var fnMean = function ( imgColl ){
156 var agg_sum_sc = ee. ImageCollection ( imgColl ). aggregate_sum (’snowcount ’);
157 var imgColl_size = ee. ImageCollection ( imgColl ).size ();
158 var mean_sc = ee. Number ( agg_sum_sc ). divide ( imgColl_size );
159 var fnSetMean = ee. ImageCollection ( imgColl ).map( function (img){
160 return img.set ({ mean_sc : mean_sc });
161 });
162 return fnSetMean
163 ;};
164
165 // ______________________________________________________________________
166 // function to add a value which serves as ’checkback ’ for recognising

OUTLIERS
167
168 var fnLimit = function (img){
169 var count = ee. Number (img.get(’snowcount ’));
170 var mean = ee. Number (img.get(’mean_sc ’));
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171 var ss_limit = count. divide (mean); // if this value is bigger than 1.2
--> exclude

172 return img.set ({ ss_limit : ss_limit });
173 };
174 // filter the scenes by the upper and lower threshold ( ss_High ...& ss_Low

...)
175 var bestOf_scenes = collcoll .map( fnMean )
176 . flatten ()
177 .map( fnLimit )
178 . filterMetadata (’ss_limit ’, ’not_greater_than ’,

ss_HighThreshold )
179 . filterMetadata (’ss_limit ’, ’not_less_than ’,

ss_LowThreshold );
180
181 // ______________________________________________________________________
182 // apply a function which weights the snowcount with the ACCA cloudscore

from Landsat .
183
184 var accaWeight = bestOf_scenes .map( function (img){
185 var weightedSC = ee. Number (ee.Image(img).get(’snowcount ’)). multiply (ee.

Number (ee.Image(img).get(’CLOUD_COVER ’)). multiply (0.8).add (1));
186 return img. setMulti ({ snowcount_weighted : weightedSC });
187 });
188 print(accaWeight , ’accaweight ’);
189
190 // sort the resulting scene selection
191 var doublesort = accaWeight .sort(’pathrow ’).sort(’snowcount_weighted ’);
192 print(doublesort , ’double sorted (pathrow , snowcount )’);
193 Export .table. toDrive ({ collection : doublesort , folder :’GEE - Exports ’,

fileFormat : ’CSV ’});
194
195 // taskname to copy for export
196 var taskname = ee. String (’mss_ ’).cat(start. toString ()).cat(’-’).cat(end.

toString ())
197 .cat(’_’).cat(’cl’).cat( cloud_threshold . toString ())
198 .cat(’_’).cat(’ndsi ’).cat(ee. Number ( gte_ndsi ). multiply (100).

toShort ())
199 .cat(’_’).cat(’sclMC ’).cat( scale_meanCloud . toString ())
200 .cat(’_’).cat(’sclSC ’).cat( scale_snowcount . toString ()).cat(’

_’);
201 print( taskname );

7.2 Algorihtm 2 fragment: Segmentation of ratio image
and area calculation

1 // NOTE: Prior to this area calculation algorithm could/ should be a
2 // automatic or manual scene selection . To keep things faster
3 // no such scene selection has been included but can be added.
4
5 // SET VARIABLES
6 var year = 2000;
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7 var meters = 100; // buffer -size
8 var iceAndSnowThreshold = 2.5;
9
10 // 1. load feature ( collection ) OUTPUT : buffered polygon ( feature or

featureCollection )
11 var fnLoadFeature = function ( meters ){
12 var glacierpolygon = ee. FeatureCollection (
13 ’ft:1 s_HD0wV6tLeswo5oGVMQ3mI2UL63cv1lNErc4i1F ’ // 3 glaciers
14 //’ft:1 hRnmU5H2rgXsywt8m -0 TIbmF6I__zl9gqgRsMbaM ’ // " bernese alps ".
15 //’ft:1 DdMSc3xERbmGCfChR3hlkVS - PkLKCVKs2uQw2X7K ’ // central Europe
16 //’ft:1 riNNK134G_MAJ19d5D9J0Jd7kfRbj3u0jukE0Vgk ’ // Trift Gletscher
17 //’ft :137 OesD3wY9mtBg3xW9X9TuQqt5i2zd74GcQoh04l ’ // southern andes new
18 //’ft:1 Qppz_vwNhJmAcJ0SynJaFN23Pc1LylZnnMqbnh6s ’ // normal new zealand
19 //’ft:1 C5cK7ZANtNzWkhb6ORxC2Gc003tbijzVGyItO4jK ’ // iceland
20 //’ft:1 oEqGiDwFPyc_t6dGOqdI4942aO5k06QBWaAxDNbF ’ // scandinavia
21 );
22 var bufferIt = function ( glacierpolygon ){
23 return glacierpolygon . buffer ( meters );
24 };
25 var buff_glacierpolygon = glacierpolygon .map( bufferIt );
26 Map. addLayer ( buff_glacierpolygon );
27 Map. centerObject ( buff_glacierpolygon , 11);
28 return buff_glacierpolygon
29 //.first () // outputs only the first polygon
30 ;
31 };
32 //

__________________________________________________________________________

33 // here could be a whole scene selection process as it is stated in
34 // Algorithm 1 ( automatic scene selection )
35
36 //2. function to load an ImageCollection
37 var fnChooseCollection = function (year){ // L5=LT5_L1T , L7=LE7_L1T , L8=

LC8_L1T
38 var imageCollection = ee. ImageCollection (’LANDSAT / LE7_L1T ’)
39 . filterDate (ee. String (ee. Number (year). toShort ()).cat(’

-07-15’),
40 ee. String (ee. Number (year). toShort ()).cat(’ -10-15’));
41 return imageCollection ;
42 };
43 //

___________________________________________________________________________

44 // 3. simpleComposite
45 var fnSimpleComposite = function ( imageCollection ){
46 var simpleCompositeIMG = ee. Algorithms . Landsat . simpleComposite ({
47 collection : imageCollection ,
48 percentile : 50,
49 cloudScoreRange : 10,
50 maxDepth : 80
51 });
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52 return simpleCompositeIMG ;
53 };
54 //

___________________________________________________________________________

55 // 4. ratio with classification of Ice/Snow + masking
56 var fnRatio = function ( simpleCompositeIMG ){
57 var tmRatioIMG = simpleCompositeIMG . expression (
58 ’TM3 / TM5 ’, {
59 ’TM3 ’: simpleCompositeIMG . select (’B3’), // landsat 7
60 ’TM5 ’: simpleCompositeIMG . select (’B5’) // landsat 7
61 });
62 var tmRatioClassified_0 = tmRatioIMG .where( tmRatioIMG .lt(

iceAndSnowThreshold ),
63 0); // ... where blablabla ... set the output to "

number "
64 var tmRatioClassified_01 = tmRatioClassified_0 .where( tmRatioClassified_0

.gte( iceAndSnowThreshold ), 1);
65 // mask it with itself to get rid of data declared as "0"( zero)
66 var tmRatioMask = tmRatioClassified_01 . updateMask ( tmRatioClassified_01 );
67 return tmRatioMask ;
68 };
69
70 //

___________________________________________________________________________

71 // 5. calculate area
72 // with reducer .sum ()
73 var fnAreaCalc_sum = function ( tmRatioMaskclip , passedFeature ){
74 // Generates an image in which the value of each pixel
75 //is the area of that pixel in square meters .
76 var areaImage = tmRatioMaskclip . multiply (ee.Image. pixelArea ());
77 var reducedRatioCount = areaImage . reduceRegion ({
78 reducer : ee. Reducer .sum (),
79 geometry : passedFeature . simplify (100). geometry (),
80 scale: 30,
81 bestEffort : true
82 , maxPixels : 34e9
83 });
84 var calcArea = ee. Number ( reducedRatioCount .get(’B3’)). divide (1e6); //

= km2
85 return calcArea ;
86 };
87
88 // ////////////////////////////////////////////////////////////////////////
89 // apply the functions 1. - 5.
90
91 var loadedFeatureCollection = ee. FeatureCollection ( fnLoadFeature ( meters ));
92 var imageCollection = fnChooseCollection (year). filterBounds (

loadedFeatureCollection . geometry ());
93 print( imageCollection , ’imageCollection ’)
94 var simpleComposite = fnSimpleComposite ( imageCollection );
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95 print( simpleComposite )
96 //

------------------------------------------------------------------------------

97 // MAIN FUNCTION which sets the respective area property to a glacier
98 var fnSetArea = function ( passedFeature ) {
99 return passedFeature . setMulti ({ GEE_Area : fnAreaCalc_sum ( fnRatio (

simpleComposite ), passedFeature )});
100 };
101 // apply fnMultiPoly
102 var series_multifeature = loadedFeatureCollection .map( fnSetArea ); // takes

loadedFeature one by one
103 print(’series_multifeature ’, series_multifeature );
104
105 //

------------------------------------------------------------------------------

106 // EXPORT
107 var exportTable = ee. FeatureCollection ( series_multifeature ); // needs to be

a featurecollection to be exported properly
108 Export .table. toDrive ( exportTable );

7.3 Algorihtm 3: Using the Otsu thresholding function to
map snow cover and approximate the accumulation
area ratio (AAR)

1 // With the some variations of the following lines the masks can also be
mapped

2 // and visualised for specific years. Follow the link to this algorithm :
3 // https :// code. earthengine . google .com /4774 da8d1558c5796c80678c4e9c4c00
4
5 var vizParams = {" opacity ":1, ’bands ’:’swir1 ,nir ,red ’, ’gamma ’:1.3};
6 var vizParams2 = {" opacity ":1, ’bands ’:’red ,green ,blue ’, ’gamma ’:1.3};
7 var vizICE1 = {" opacity ":1,"bands":[’red ’]," palette ":["2fa6ff"]};
8 var vizICE2 = {" opacity ":1,"bands":[’red ’]," palette ":[" FFFF00 "]};
9
10 // create a sequence of years which should be included in the exported

table:
11 var years = ee.List. sequence (2000 , 2002 , 2);
12 print(’years ’, years);
13 // /////////////////////////////
14 var bounds = ee. FeatureCollection (
15 //’ft:1 e6ybmK_UqYmpgFxSIbOTia -XVuPgu - DQya8YTHip ’ // Kesselwandferner
16 //’ft:1 WJVcFvo4alGl9Enl -9 NQ2aOdyvnuwIGTZBDutWo9 ’ // storglaciaeren
17 ’ft:1 bqVVU2QG2_76ZYEN0PgR11BqMXgI3DkhpR240Uqj ’ // findelengletscher
18 //’ft:1 s_HD0wV6tLeswo5oGVMQ3mI2UL63cv1lNErc4i1F ’ // 3 glaciers
19 //’ft:1 hRnmU5H2rgXsywt8m -0 TIbmF6I__zl9gqgRsMbaM ’ // " bernese alps ".
20 );
21 Map. centerObject ( bounds );
22 // ////////////////////////////
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23 var startJulian = 182;
24 var endJulian = 288;
25 var increment = 1;
26 var gte_ndsi = 0.3;
27 var scale_snowcount = 30;
28 var ss_LowThreshold = 0.4;
29 var ss_HighThreshold = 1.2;
30 var iceAndSnowThreshold = 3;
31 var scale_otsu = 30;
32 var scale_exportimage = 30;
33 // ///////////////////////////
34 var sensorBandDictLandsatTOA =ee. Dictionary ({
35 L8 : ee.List ([1 ,2 ,3 ,4 ,5 ,9 ,6]) ,
36 L7 : ee.List ([0 ,1 ,2 ,3 ,4 ,5 ,7]) ,
37 L5 : ee.List ([0 ,1 ,2 ,3 ,4 ,5 ,6]) ,
38 L4 : ee.List ([0 ,1 ,2 ,3 ,4 ,5 ,6])
39 });
40 // ... change names to:
41 var STD_NAMES = [’B1’, ’B2’, ’B3’, ’B4’, ’B5’, ’B7’, ’B6

’];
42 var STD_NAMES2 = [’blue ’, ’green ’, ’red ’, ’nir ’, ’swir1 ’, ’temp ’, ’

swir2 ’];
43 // ____________________________________________________________________
44 // _____________________________________________________________________
45 // create imageCollection from Top -Of - Atmosphere data
46 var imgCollTOA = ee. ImageCollection (
47 ee. ImageCollection .load(’LANDSAT / LE7_L1T_TOA ’)
48 . select ( sensorBandDictLandsatTOA .get(’L7’), STD_NAMES2 )
49 .merge(ee. ImageCollection .load(’LANDSAT / LT5_L1T_TOA ’)
50 . select ( sensorBandDictLandsatTOA .get(’L5’), STD_NAMES2 ))
51 );
52 // create imageCollection from raw data
53 var imgCollRAW = ee. ImageCollection (
54 ee. ImageCollection .load(’LANDSAT / LE7_L1T ’)
55 . select ( sensorBandDictLandsatTOA .get(’L7’), STD_NAMES2 )
56 .merge(ee. ImageCollection .load(’LANDSAT / LT5_L1T ’)
57 . select ( sensorBandDictLandsatTOA .get(’L5’), STD_NAMES2 ))
58 )
59 // /////////////////////////////////////////////////////////// MAIN

FUNCTION
60 //

_________________________________________________________________________

61 var fnMain = function ( startYear ){
62 var imageCollectionTOA = imgCollTOA
63 . filter (ee. Filter . calendarRange (startYear , ee. Number ( startYear ).add(

increment ), ’year ’))
64 . filter (ee. Filter . calendarRange ( startJulian , endJulian , ’day_of_year ’))
65 . filterBounds ( bounds )
66 ;
67 // Compute a cloud score. This expects the input image to have the common
68 // band names: [" red", "blue", etc], so it can work across sensors .
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69 var cloudScore = function (img) {
70 // A helper to apply an expression and linearly rescale the output .
71 var rescale = function (img , exp , thresholds ) {
72 return img. expression (exp , {img: img })
73 . subtract ( thresholds [0]). divide ( thresholds [1] - thresholds [0]);
74 };
75
76 // Compute several indicators of cloudyness and take the minimum of them

.
77 var score = ee.Image (1.0);
78 // Clouds are reasonably bright in the blue band.
79 score = score.min( rescale (img , ’img.blue ’, [0.1 , 0.3]));
80
81 // Clouds are reasonably bright in all visible bands.
82 score = score.min( rescale (img , ’img.red + img.green + img.blue ’, [0.2 ,

0.8]));
83
84 // Clouds are reasonably bright in all infrared bands.
85 score = score.min(
86 rescale (img , ’img.nir + img.swir1 + img.swir2 ’, [0.3 , 0.8]));
87
88 // Clouds are reasonably cool in temperature .
89 score = score.min( rescale (img , ’img.temp ’, [300 , 290]));
90
91 // However , clouds are not snow.
92 var ndsi = img. normalizedDifference ([’green ’, ’swir1 ’]);
93 return score.min( rescale (ndsi , ’img ’, [0.8 , 0.6]));
94 };
95
96 var addCloudband = function (img) {
97 // Invert the cloudscore so 1 is least cloudy , and rename the band.
98 var toTOA = ee. Algorithms . Landsat .TOA(img);
99 var score = cloudScore (toTOA);
100 score = ee.Image (1). subtract (score). select ([0] , [’cloudscore ’]);
101 return img. addBands (score);
102 };
103 var scoredTOACollection = imageCollectionTOA .map( addCloudband );
104
105 // same collection but in RAW format (DN)
106 var imgCollRAW_filtered = imgCollRAW
107 . filter (ee. Filter . calendarRange (startYear , ee. Number ( startYear ).add(

increment ), ’year ’))
108 . filter (ee. Filter . calendarRange ( startJulian , endJulian , ’day_of_year ’))
109 . filterBounds ( bounds );
110 var scoredRAWCollection = imgCollRAW_filtered
111 . combine ( scoredTOACollection
112 . select (’cloudscore ’));
113
114 // count the snowpixels and add a snowscore + path/row info
115 var fnSnowcount = function (img){
116 var path = ee. String (img.get(" WRS_PATH "));
117 var row = ee. String (img.get(" WRS_ROW "));
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118 var ndsi = img. normalizedDifference ([’green ’, ’swir1 ’]);
119 var classification_masked = img. updateMask (ndsi.gte( gte_ndsi ));
120 var count = classification_masked . reduceRegion ({ reducer : ee. Reducer .

count (),
121 geometry : bounds ,
122 scale: scale_snowcount ,
123 maxPixels : 34e9
124 });
125 return img. setMulti ({ snowcount : ee. Dictionary (count).get(’green ’)
126 , pathrow : path.cat("_").cat(row)

});
127 };
128 // map the snowcount - function over the collection with the cloudscore
129 var scoredRAWCollection = scoredRAWCollection .map( fnSnowcount );
130
131 // Get the distinct path/rows as features .
132 // Note , this leaves the feature with system :index from a random image ,
133 // but it doesn ’t matter .
134 var distinct = ee. FeatureCollection ( scoredRAWCollection . distinct ([" pathrow

"]). select ([" pathrow "]));
135
136 // Join.
137 var filter = ee. Filter . equals ({
138 leftField : ’pathrow ’,
139 rightField : ’pathrow ’});
140 var saveall = ee.Join. saveAll (" collection ").apply(distinct ,

scoredRAWCollection , filter );
141
142 // Make a collection of collections .
143 var collcoll = saveall .map( function ( result ) {
144 return ee. ImageCollection . fromImages ( result .get(" collection "))
145 .set(" pathrow ", result .get(" pathrow "));
146 });
147
148 // function to add the value of the mean snowcount of an ImageCollection
149 //to each individual image in it.
150 var fnMean = function ( imgColl ){
151 var agg_sum_sc = ee. ImageCollection ( imgColl ). aggregate_sum (’snowcount ’);
152 var imgColl_size = ee. ImageCollection ( imgColl ).size ();
153 var mean_sc = ee. Number ( agg_sum_sc ). divide ( imgColl_size );
154 var fnSetMean = ee. ImageCollection ( imgColl ).map( function (img){
155 return img.set ({ mean_sc : mean_sc });
156 });
157 return fnSetMean
158 ;};
159 // function to add a value which serves as ’checkback ’ for recognising

OUTLIERS
160 var fnLimit = function (img){
161 var count = ee. Number (img.get(’snowcount ’));
162 var mean = ee. Number (img.get(’mean_sc ’));
163 var ss_limit = count. divide (mean);
164 return img.set ({ ss_limit : ss_limit });
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165 };
166
167 // map these functions above:
168 var bestOf_scenes = collcoll .map( fnMean )
169 . flatten ()
170 .map( fnLimit )
171 . filterMetadata (’ss_limit ’, ’not_greater_than ’, ss_HighThreshold )
172 . filterMetadata (’ss_limit ’, ’not_less_than ’, ss_LowThreshold );
173 // print( bestOf_scenes , ’collection after snowcount - filter ’);
174
175 // create a quality -image with the images left over from the previous

selection process
176 var qualityImage2 = ee. ImageCollection . fromImages ( bestOf_scenes . toList

(1000) )
177 . qualityMosaic (’cloudscore ’);
178
179 // /////////////// OTSU /////////////////////
180 var qualityImageclipped = qualityImage2 .clip( bounds );
181 // Create a combined reducer .
182 var reducer = ee. Reducer .mean ()
183 . combine (ee. Reducer .count (), null , true);
184
185 // Create an image of threshold constants .
186 // This is the list where all the possible thresholds are stored .
187 var thresholds = ee.List. sequence (
188 30, // from here ...
189 180, // to here ...
190 5); // ... with this increment .
191 var thresholdImage = ee.Image. constant ( thresholds );
192
193 // //// OTSU FUNCTION
194 var fnOtsu = function (img){
195
196 // Compare ’nir ’ of img against each of the threshold images .
197 var bgMask = img. select (’nir ’).lt( thresholdImage );
198 var fgMask = img. select (’nir ’).gte( thresholdImage );
199
200 // Compute stats in each half.
201 // Magic here: This multiplies ’nir ’ of img by the mask to replicate B4

of img N times ,
202 // so we can then mask with multiple masks all at once.
203 var bgStats = img. select (’nir ’). multiply ( bgMask ). updateMask ( bgMask )
204 . reduceRegion ({
205 reducer : reducer ,
206 geometry : bounds ,
207 scale: 30,
208 maxPixels : 34000000000}) ;
209 // print(bgStats , ’bgStats ’);
210 var fgStats = img. select (’nir ’). multiply ( fgMask ). updateMask ( fgMask )
211 . reduceRegion ({
212 reducer : reducer ,
213 geometry : bounds ,
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214 scale: 30,
215 maxPixels : 34000000000}) ;
216
217 // check.
218
219 // Loop over thresholds to compute BCV for each. These aren ’t images

anymore .
220 var size = thresholds .size (). subtract (1); //
221
222 var bcv = ee.List. sequence (0, size).map( function (n) {
223 var n = ee. Number (n).int ();
224 // Names for the mean and count properties .
225 var mean = ee. String (’constant_ ’).cat(ee. String (n)).cat(ee. String (’

_mean ’));
226 var count = ee. String (’constant_ ’).cat(ee. String (n)).cat(ee. String (’

_count ’));
227
228 // Normalize the counts
229 var cb = ee. Number ( bgStats .get(count))
230 var cf = ee. Number ( fgStats .get(count))
231 var total = cb.add(cf);
232 var wb = cb. divide (total);
233 var wf = cf. divide (total);
234
235 var mb = ee. Number ( bgStats .get(mean)). divide (total);
236 var mf = ee. Number ( fgStats .get(mean)). divide (total);
237 return wb. multiply (wf). multiply (mb. subtract (mf).pow (2)); // !!!!!
238 })
239
240 var maxbcv = bcv.sort ().get(size); // gets the maximum value of bcv -list
241 // create an image with selected band of thresholdImage : constant value!
242 var indexofOptimum = thresholdImage . select (bcv. indexOf ( maxbcv ))
243 var castToNumber = indexofOptimum . reduceRegion ({
244 reducer : ee. Reducer .max (),
245 geometry : bounds . geometry (),
246 scale: scale_otsu ,
247 maxPixels : 34e9
248 });
249
250 return img. setMulti ({ otsu_threshold : ee. Number ( castToNumber
251 .get(ee. String (’constant_ ’).cat(ee. String (bcv. indexOf ( maxbcv )))))});
252 };
253 // ////////////////////////////////////////////////////////////
254 var otsuIMG = ee.Image( fnOtsu ( qualityImageclipped ));
255 var nir = otsuIMG . select (’nir ’);
256 var iceSnow = nir.gt (0)
257 .add(nir.gt(ee. Number ( otsuIMG .get(’otsu_threshold ’))));
258
259 // Output contains 0s and 1s. Mask it with itself to get rid of the 0s.
260 var iceMask = iceSnow .mask( iceSnow )//.clip( bounds );
261
262 // add the snowcount to the polygon .
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263 var count = iceMask
264 . reduceRegion ({
265 reducer : ee. Reducer . frequencyHistogram (). unweighted (),
266 geometry : bounds ,
267 scale: 30,
268 bestEffort : true
269 , maxPixels : 34e9
270 });
271
272 var toFC = ee. FeatureCollection (ee. Feature (count. values ()));
273
274 var dictionary = count.get(’nir ’)
275 var thisyear = ee. String (ee. Number ( startYear ). toShort ())
276 .cat(’-’).cat ((ee. Number ( startYear )
277 .add( increment ). toShort ()));
278 var icecount = ee. Number (ee. Dictionary ( dictionary ).get(’1’));
279 var snowcount = ee. Number (ee. Dictionary ( dictionary ).get(’2’));
280 return bounds . setMulti ({
281 year: thisyear
282 , snowcount : snowcount
283 , icecount : icecount
284 , proxyAAR : snowcount . divide ( icecount .add( snowcount ))
285 })
286 }
287 // ///////////////////////////////////////////////// end of MAIN FUNCTION
288 // map the MAIN FUNCTION over the set of years
289 var series = ee. FeatureCollection (years.map( fnMain ));
290 print(series , ’series ’);
291 Export .table. toDrive ({
292 collection : series
293 //, description :
294 , folder : ’Algorithm3 ’
295 //, fileNamePrefix :
296 , fileFormat : ’CSV ’});

7.4 Algorihtm 4: Separation of clean- and debris-covered
ice and creation of debris masks

1 // The following link includes the process of automatic scene selection
2 // and the creation of the debris -mask:
3 // https :// code. earthengine . google .com/ d0c3364def6f1952584ff0589afc22ab
4
5 // load the respective image composite (saved as an asset to your drive)
6 // based on this image the debris -mask will be created .
7 var composite = ee.Image("users /* username */* nameOfImageComposite ");
8 // example composite
9 // https :// code. earthengine . google .com /? asset=users/ noahzeltner /

SUI_qualityImage
10 // //////////////////////////////////////////////////////////////////////
11 var vizParams = {
12 bands: [’vis -red ’, ’vis -green ’, ’vis -blue ’],
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13 min: 0,
14 max: 255,
15 gamma: [1.2]
16 };
17 var vizICE2 = {" opacity ":1,"bands":[’vis -blue ’]," palette ":[" FFFF00 "]};
18 Map. addLayer (composite , vizParams , ’quality Image ’);
19 var t = 2.5;
20
21 var tmRatioIMG = composite . expression (
22 ’red / swir1 ’, {
23 ’red ’: composite . select (’vis -blue ’),
24 ’swir1 ’: composite . select (’vis -red ’)
25 });
26 var tmRatioMask = tmRatioIMG . updateMask ( tmRatioIMG .gte(t));
27 var tmRatioMaskbin = tmRatioMask .lt(t).and( tmRatioMask .gte(t));
28
29 // create a binary ratio mask (only 0s and 1s)
30 var ratio = tmRatioMaskbin .where( tmRatioMaskbin .eq (0) , 1);
31
32 // load the featurecollection for the debris -mask ( glacier inventory import

)
33 var fc = ee. FeatureCollection (
34 //’ft:1 HYxXmQrLBrp4IQ9wzvsX5q4C5D6zQw9N6BSH -BrI ’ // centralAsia
35 //’ft :13 GQSeqSXIZHWyjC -CbDcdya0 - cyGRaFa7oPcLPZN ’ // centralAsia without

rock outcrops
36 ’ft:1 Fu9aEQhD3UsqLvikVWfWtyR8VCTynxNRktHIyqG3 ’ // swiss alps
37 );
38 Map. addLayer ({ eeObject : fc , name: ’featureCollection ’, shown: false });
39 // clip ratio to featurecollection
40 var r_clipped = ratio.clip(fc). unmask (0, false);
41 // create constant image and clip it to the featurecollection
42 var constant = ee.Image (1.0);
43 var c_clipped = constant .clip(fc);
44
45 // subtract the clipped ratio image rom the clipped constant image:
46 // debris should stay "1" whereas rest is 0.
47 var debris = c_clipped
48 . subtract ( r_clipped
49 );
50 Map. addLayer ({ eeObject : debris , name: ’debris ’, shown: false });
51 // create the debris -mask
52 var debrisMask = debris . updateMask ( debris );
53 Map. addLayer ({ eeObject : debrisMask , visParams : {" palette ":["#00 FF00"]},

name: ’debris mask ’, opacity : 1})
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