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Abstract

Plant functional traits are features of an individual impacting fitness indirectly via its im-

pacts on growth, reproduction and survival. They became an important tool in modern ecol-

ogy, offering the opportunity to quantitatively model terrestrial vegetation. Hence, the need

for global, consistent plant trait data grows. In 2007, the TRY initiative has been launched with

the aim to build a global in situ trait database (Kattge et al., 2011). But when it comes to large

spatial scales, the in situ approach has its limitations though. Imaging spectroscopy and other

remote sensing techniques have the potential to complement the field approach by contigu-

ously mapping traits over large areas. Both approaches are successfully used to monitor plant

traits, but up to date, no concept exist to merge them. The objective of this study is to compare

the two approaches and discuss their limitations and convergence. Therefore, two traits, leaf

chlorophyll (CHL) and leaf water content (LWC), are derived from imaging spectroscopy for a

study area in Central Europe using vegetation indices (VIs). Via a species classification, a link

between the traits and six predominant species is established. The same traits are extracted

from the gap-filled TRY database for Europe. The trait distributions from the two sources were

then contrasted. Intraspecific variations showed large differences, the imaging spectroscopy

traits are much broader and vastly overlapping between species as opposed to the traits from

the TRY dataset. It is concluded that the differences emerge from limited precision of imaging

spectroscopy traits (especially associated to the VI approach) on the one hand, and biases in

case of TRY on the other hand. The latter is supposedly mostly because of an artificial re-

duction of intraspecific variance due to sampling protocols and sparse sampling, limited to a

number of distinct sites. To enable a better data-basis for future studies, imaging spectroscopy

and airborne remote sensing in general can provide a link between in situ and satellite data or

be integrated into gap-filling approaches.



Zusammenfassung

Plant functional traits beeinflussen die Fitness eines Individuums indirekt über deren Ein-

fluss auf Wachstum, Reproduktion und Fortbestand. Sie sind mittlerweile eine wichtige Grund-

lage der modernen Ökologie, in der das quantitative Modellieren der terrestrischen Vegetation

ein zentraler Bestandteil ist. Da eine solide Datengrundlage für globale Studien fehlte, wurde

die TRY-Initiative 2007 gegründet, mit dem Ziel, diese Lücke zu schliessen. In situ Sampling

stösst jedoch an seine Grenzen wenn es darum geht, eine globale Abdeckung zu erreichen.

Bildgebende Spektoskopie (eng. Imaging Spectroscopy) und andere hochauflösende Fern-

erkundungsmethoden können verwendet werden, um Traits über grosse Flächen zu erfassen

und haben damit das Potenzial, den in situ Ansatz zu ergänzen. Leider existieren bis heute

keine konkreten Pläne, diese beiden Ansätze zusammenzuführen. Diese Studie soll die beiden

Ansätze vergleichen und deren Grenzen sowie potenzielle Verbindungen diskutieren. Dazu

werden zwei Traits, Blatt-Chlorpphylgehalt und Blattwassergehalt von Imaging Spectroscopy

mittels Vegetationsindices für ein Studiengebiet in Zentraleuropa abgeleitet. Mittels Spezies-

Klassifizierung kann dann eine Verbindung zu den sechs prädominanten Arten hergestellt wer-

den. Die selben Traits werden von der TRY Datenbank abgeleited, jedoch für ganz Euroa. Die

Variabilität innerhalb und zwischen den Arten unterscheidet sich erheblich unter den Traits

aus den beiden verschiedenen Quellen. Die Verteilungen der Imaging Spectroscopy Traits sind

deutlich breiter und deren Überlagerung zwischen den Arten deutlich höher als diejenigen aus

TRY. Dies ist einerseits auf die geringere Präzision bei der Messung von Traits via Imaging

Spectroscopy (im Speziellen beim Verwenden von Vegetationsindices) zurückzuführen. An-

dererseits bestehen in TRY Lücken, die aus einem inkompletten Sampling von einer kleinen

Anzahl von Orten sowie das verwenden von Sampling-Protokolle resultiert. Für eine bessere

Datengrundlage für global orientierte Studien kann flugzeuggestützte Fernerkundung den Link

zwischen in situ und satellitengestützter Fernerkundung herstellen oder verwendet werden,

um gap-filling Ansätze zu unterstützen.
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1 Illumination map of Lägern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Shadow-correction of CHLAPEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Geographical distribution of gap-filled TRY records per species . . . . . . . . . . . 17

4 Species classification metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
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1 | Introduction

The ongoing debate whether the variety of impacts of human activities on planet Earth legit-

imates the introduction of a new epoch, the Anthropocene (Waters et al., 2016; Lewis & Maslin,

2015; Steffen et al., 2007), illustrates the expansive implication of our actions on the environ-

ment. The consequences are far-reaching, from changes in climate (Meehl et al., 2007), loss of

biodiversity (Sala et al., 2000) up to impacts on long-term geological processes (Crutzen, 2006),

to name only a few. It is essential for us and future generations to monitor, understand and model

the involved processes and impacts in order to make informed decisions in a fast changing world.

In the last decades, research has put more effort in studying the worlds vegetation, acknowl-

edging its involvedness with the earth-system (Steffen et al., 2004), but also recognizing that

humanity relays on ecosystem goods and services (Costanza et al., 1997). From rather simple

models describing vegetation dynamics on a high level of abstraction and treating species or even

communities as a discrete unit, more flexible and quantitative methods emerged (D́ıaz et al.,

2016; van Bodegom et al., 2014). The trait-based approach, which bases upon measurement of

features at individual level, allowing an individual to be “unique” rather than being categorized

based on simplistic assumptions (Cadotte et al., 2011; Violle et al., 2007; McGill et al., 2006).

This approach works on all levels of abstraction and from regional to global scale, but depends,

however, ultimately on the availability of trait data. There exist two major methods to measure

trait data, in situ sampling and remote sensing.

The in situ approach requires a direct access to the object of interest. This may include

collecting leaves for later measurements or dimensioning an individual in the field. This method

allows to take accurate measurements using standardized sampling protocols (Cornelissen et al.,

2003). It may be feasible (yet laborious) to gather in situ data for regional studies, but rather

unrealistic for global scales. Indeed, global studies need global data. In 2007, Kattge et al.

(2011) started TRY, an initiative to compile regional in situ datasets into one single, global

database. TRY has been used in a range of studies since then (a complete list is available online:

https://www.try-db.org/TryWeb/Publications.php). The TRY database is extremely sparse,

which can be partially overcome using gap-filling approach to fill the missing values statistically

https://www.try-db.org/TryWeb/Publications.php
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(Schrodt et al., 2015). Nevertheless, TRY shows biases on different levels and a global coverage

of plant traits using in situ techniques is unrealistic (Jetz et al., 2016).

Remote sensing is bases on measurement from distance. This incorporates a variety of plat-

forms, ranging from small drones, helicopters and airplanes up to satellites orbiting the earth,

carrying different sensors systems like spectroradiometers, laser- or radarbased systems. There-

with, data can be collected contiguously, covering regional scales with high resolution (meters)

up to global scales, with a lower resolution of tens to hundreds of meters (Lillesand et al., 2008).

Only a limited number of traits can be measured using remote sensing. Airborne LiDAR (light

detection and ranging), for example, can be used to derive structural traits like plant height or

crown dimension (van Leeuwen & Nieuwenhuis, 2010) but is rather insensitive to below-canopy

traits like trunk volumes (Hilker et al., 2010). Imaging spectroscopy measures a range of wave-

lengths with a high spectral resolution on pixel basis and is capable of quantifying especially

physiological and biochemical traits (e.g. leaf water, nitrogen or chlorophyll content) but is re-

stricted to top-of-canopy (Homolova et al., 2013). The link to individuals can be done using

species classification approaches (Martin et al., 1998). Satellites can cover global scales with

high temporal resolution, however, they can measure only a limited number of traits due to the

low spectral resolution and the link to species cannot be established because of the low spatial

resolution (Homolova et al., 2013).

This thesis consists of a study (presented in Chapter 2) that will be submitted to Remote

Sensing of Environment. The aims are to: i) derive high quality species specific vegetation index

maps for a study site for the traits chlorophyll content (CHL) and leaf water content (LWC) using

airborne imaging spectroscopy, ii) compare the traits to the respective traits from the gap-filled

TRY database and iii) detect sources of possible mismatches of the traits and discuss convergence

of the two approaches. In Chapter 3, the findings are briefly reflected.

2
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Chapter 2 | Measuring plant traits

Abstract

Plant functional traits are features of an individual impacting fitness indirectly via its im-

pacts on growth, reproduction and survival. They became an important tool in modern ecol-

ogy, offering the opportunity to quantitatively model terrestrial vegetation. Hence, the need

for global, consistent plant trait data grows. In 2007, the TRY initiative has been launched with

the aim to build a global in situ trait database (Kattge et al., 2011). But when it comes to large

spatial scales, the in situ approach has its limitations though. Imaging spectroscopy and other

remote sensing techniques have the potential to complement the field approach by contigu-

ously mapping traits over large areas. Both approaches are successfully used to monitor plant

traits, but up to date, no concept exist to merge them. The objective of this study is to compare

the two approaches and discuss their limitations and convergence. Therefore, two traits, leaf

chlorophyll (CHL) and leaf water content (LWC), are derived from imaging spectroscopy for a

study area in Central Europe using vegetation indices (VIs). Via a species classification, a link

between the traits and six predominant species is established. The same traits are extracted

from the gap-filled TRY database for Europe. The trait distributions from the two sources were

then contrasted. Intraspecific variations showed large differences, the imaging spectroscopy

traits are much broader distributed and vastly overlapping between species as opposed to the

traits from the TRY dataset. It is concluded that the differences emerge from limited precision

of imaging spectroscopy traits (especially associated to the VI approach) on the one hand, and

biases in case of TRY on the other hand. The latter is supposedly mostly because of an artificial

reduction of intraspecific variance due to sampling protocols and sparse sampling, limited to a

number of distinct sites. To enable a better data-basis for future studies, imaging spectroscopy

and airborne remote sensing in general can provide a link between in situ and satellite data or

be integrated into gap-filling approaches.

Keywords Functional traits, Imaging spectroscopy, Temperate forest, TRY

4
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2.1 Introduction

The impact of global change on the biosphere involves a large array of consequences, one of it

being loss of biodiversity (IPCC, 2014). Efforts to halt this irreversible trend were not successful

up to date (Tittensor et al., 2014), even if the international community agrees on the importance

of this task (Secretariat of the Convention on Biological Diversity, 2005). A decreasing diversity

goes along with a loss of ecosystem functions, threatening the supply of essential goods and

services (Cardinale et al., 2012). Numerous studies have shown that ecosystem functions can

be linked directly to plant functional traits (de Bello et al., 2010; D́ıaz et al., 2007; Petchey &

Gaston, 2006; D́ıaz & Cabido, 2001), which are the morphological, physiological or phenological

features of an individual impacting fitness indirectly via its effects on growth, reproduction and

survival (Violle et al., 2007). With the objective to understand and predict functional diversity

in a changing environment, functional traits have been used in a large array of research fields.

Hence, functional traits have become an important tool in a quantitative, more globally orien-

tated ecology (Violle et al., 2014; Kattge et al., 2011; Lavorel et al., 2007; Cornelissen et al.,

2003). D́ıaz et al. (2016), for example, used functional trait data to picture global functional

diversity of vascular plants and link plant form and function to a limited set of trait combina-

tions. Lavorel et al. (2007) see huge potential in functional traits to derive more representative

plant functional types (PFTs), used to limit the complexity of global vegetation models. Oth-

ers, like Scheiter et al. (2013) or van Bodegom et al. (2012) work towards fully trait-based and

thus more flexible dynamic global vegetation models (DGVMs). More examples can be found

in Cornelissen et al. (2003) and Kattge et al. (2011). However, these studies need a consis-

tent, representative database, covering a wide range of traits from different species, regions and

environmental conditions.

With the aim to establish such a global trait database, Kattge et al. (2011) launched the

TRY initiative in 2007, a seminal project to merge existing plant trait databases into a global

collection of field measurements and make them available for the scientific community. Up to

date, TRY contains over 5 million records for 1100 traits and 100 000 plant species. However,

TRY exhibits two major deficiencies. First, the dataset is extremely sparse, less than two percent

5
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of the traits are measured per individual (Schrodt et al., 2015). Second, the individual plants are

not selected randomly, which introduces a bias leading to a loss of representativity (Jetz et al.,

2016).

The sparseness of TRY has been tackled using gap-filling approaches to predict missing en-

tries (Swenson, 2014; Shan et al., 2012), culminating in a method called bayesian hierarchical

probabilistic matrix factorization (BHPMF) proposed by Schrodt et al. (2015), that accounts

for phylogeny and trait-trait correlations. With a mean performance of R2=0.88 ± 0.085 for

13 selected traits, the method seems promising. Though, the sparseness of the selected traits

(49.6-92.3) is not representative for the average sparsity of TRY, which is around 98%. And

still, gap-filling methods can not correct for the bias present in the dataset, as they rely on the

concept of the samples being a representative subset of the population, which may not be given.

Jetz et al. (2016) visualised the “spatial and environmental data gap” for latitudinal regions and

found that on average, only 2% of vascular plants have any trait measurements associated and

that there is still a huge data gap in terms of taxonomical, geographical, environmental, tem-

poral and functional representativity. This limits the range of questions that can be answered

and could lead to wrong conclusions if biases are not being considered properly (Lindenmayer

& Likens, 2013).

The existing gaps in TRY cannot be filled by solely putting more efforts in collecting field

data. Field measurements are always limited through financial means and capacity limits and

are prone to biases by nature (Schimel et al., 2015; Marvin et al., 2014). An approach with

huge potential to complement the field-bases approach and reduce the mentioned deficiencies is

remote sensing. Space-borne missions to monitor global vegetation exist, satellite products are

used to monitor changes of vegetation type, cover (Turner et al., 2003; Friedl et al., 2002; Tucker

& Townshend, 2000) and activity (de Jong et al., 2013) over time and are used as covariates in

global biodiversity models (Pettorelli et al., 2016; Skidmore & Pettorelli, 2015; Jetz et al., 2012).

However, they are not specialized on the task of mapping global plant trait variations (Jetz et al.,

2016). On the other hand, airborne systems like imaging spectroscopy (Schaepman et al., 2009)

and LiDAR (van Leeuwen & Nieuwenhuis, 2010) have reached a technological level that allows

to measure traits with a high spatial resolution (Hilker et al., 2010; Kokaly et al., 2009; Ustin

6



2.1 | Introduction

et al., 2009) and link them to species via canopy classification approaches (Féret & Asner, 2013;

Martin et al., 1998). Asner & Martin (2016) demonstrated this potential of imaging spectroscopy

by linking canopy traits to species across numerous sites over the world.

However, imaging spectroscopy has limitations. The set of traits that can be derived is re-

stricted to canopy- and leaf-level (which can, as has been demonstrated by Feilhauer et al.

(2016), be partly overcome using trait-trait correlations), as light interacting with the upper

canopy is measured (Homolova et al., 2013). Further, imaging spectroscopy measures are de-

pendent on a variety of conditions like viewing angle that have to be controlled (Asner et al.,

2015) and on factors disturbing the trait signal like canopy structure (Blackburn, 2007) and

shadow effects (Damm et al., 2015) which introduce uncertainties. Imaging spectroscopy, as

opposed to in situ sampling, measures traits at pixel basis. To establish a link between pixel and

species, a resolution much smaller than the species dimension is needed. Even if large areas can

be covered with this approach, the spatial extent and temporal resolution are limited (Homolova

et al., 2013).

Both approaches, field measurements and remote sensing, have strengths and weaknesses.

Still, no concrete plans exist to merge these approaches on a global scale even if the benefits

are non-controversial. Local studies, comparing field measurements from the TRY database to

remotely sensed traits are missing.

This study is an attempt to make a first step in this direction. We investigate in a regional

study how imaging spectroscopy and in situ measurements, represented by the gap-filled TRY

dataset, complement each other when coming from independent sources. Therefore, two phys-

iological traits are derived for the site, being located in Central Europe: Leaf chlorophyll a&b

content (CHL) and leaf water content (LWC), the ratio of leaf water to fresh mass, are estimated

at maximum growing season via vegetation indices (VIs). Both VIs can be derived in high qual-

ity from multispectral imaging data (Homolova et al., 2013). Chlorophyll a&b allows to draw

conclusions about plant-environment interactions (Blackburn, 2007) and are key elements in the

photosynthesis (Grimm, 2001), which is an important driver of ecosystem services like climate

regulation or carbon sink (Garbulsky et al., 2013). As a measure of canopy water condition,

LWC is a useful indicator of carbon uptake and plant transpiration (Stimson et al., 2005). Also,

7
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light detection and ranging (LiDAR)-based canopy height (CH) is used to assess the heterogene-

ity of plants in the datasets, as the TRY database has been restricted to full-grown plants. This

traits are combined with a species classification of the study site, which provides a link between

pixel-based trait measurements and species. The VI maps are then rescaled to fit the trait values

present in the TRY database, in which all three traits are present or can be derived from. We

then investigate the traits from the different sources, their distributions and co-variation, which

allows to draw conclusions about the two approaches and their convergence.

2.2 Materials

2.2.1 Study area

The Lägern (47.48N, 8.40E, 866 m a.s.l.) is an eastern foothill of the Jura mountain range

located in Switzerland, northwest of Zurich (see Fig. 9 in in Apendix A). The hill ridge of about

10 km length is almost entirely covered with managed temperate forest. The site shows a high

diversity in terms of species, age and diameter distribution. In the western part, the forest is

dominated by Ash (Fraxinus excelsior), Sycamore (Acer pseudoplatanus) and European beech

(Fagus sylvatica). In the east, European beech, Norway spruce (Picea abies) and, to a lesser

extent, Silver fir (Abies alba), are predominant. Other, less common species to be found at the

site are Linden (Tilia cordata), Oak (Quercus robur) and Elm (Ulmus glabra). At the south-facing

slope, a 300 x 300 m plot is located (further referred to as P1, see Fig. 1), consisting of mature,

full grown trees. For this area, reference tree species data is available in the form of polygons

delineating individual tree crowns (ITCs). A further subplot (P2) of 800 x 800 m, located in the

east, shows high species diversity and is used to visualize results in more details. For a more

extensive description of the study site, we refer to Eugster et al. (2007).

2.2.2 The TRY database

The TRY initiative (Kattge et al., 2011) has been launched in 2007 with the objective to make

global trait data available for the research community in a consistent way. A variety of databases

have been compiled, and TRY is still growing. Up to date, the database contains over 5 million

8
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records for 1 100 traits and 100 000 plant species. Nearly half of the records are geo-referenced

(http://www.try-db.org, December 30, 2016).

The TRY data (version June 2015) used in this study has been received pre-filtered and gap-

filled. The pre-filtering was done as described in Kattge et al. (2011): The trait-space was limited

to non-juvenile plants and plants grown under natural environmental conditions. Illogical values

have been removed. Then, a robust outlier detection has been applied. The data has been gap-

filled using BHPMF (Schrodt et al., 2015). BHPMF is briefly summarized in Appendix D. The

gap-filling was done for the global dataset, based on 86 652 entries for leaf dry mass, 31 898 for

leaf fresh mass and 19 222 for leaf chlorophyll content per leaf area.

2.2.3 Individual tree crown data

An ITC map (shown in Appendix 12) representing single tree crowns for plot P1 was used to

train and do a species classification of the Lägern site. The tree species map was derived from

UAV data, which was collected on 21 October, 2013 at a flight height of 270 m above ground.

The UAV data, consisting of 174 rectified images, was co-registered to a canopy height model

derived from airborne laser scanning data, resulting in a merged dataset with a spatial resolution

of 8 x 8 cm. Crown shapes have been derived using an ITC detection approach. Mixed crowns

and polygons containing more than two tree crowns were removed manually. The ITCs were

associated with tree species in a field campaign.

2.2.4 LiDAR data

A canopy height model (CHM), derived from LiDAR data (further referred to as CHMLiDAR),

has been provided by Schneider et al. (2014). Full-waveform LiDAR data (1550 nm wavelength)

was gathered under leaf-on (August 1st 2010) and leaf-off (April 10th) conditions, using RIEGL

LMS-Q680i sensor in the first and RIEGL LMS-Q560 sensor in the second mission. The sensors

were mounted on a helicopter. The data, having a footprint of 0.25 m and a point density of 20

points per m2 in leaf-off and 40 points per m2 under leaf-on conditions, was used to generate

the CHMLiDAR. First, a digital terrain model (DTM) was derived by selecting and interpolating

ground return echoes. The CHMLiDAR was then calculated by subtracting the DTM from the first

9
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echoes (representing top of canopy) in the leaf-on dataset. The resulting map was registered

to the Swiss national grid CH1903+ and resampled to a spatial resolution of 2 x 2 m. The

reported uncertainty in height is up to ±4 m. For more details regarding flight mission, dataset

and product generation, we refer to Schneider et al. (2014).

2.2.5 Imaging spectroscopy data

The spectral data was acquired using APEX (airborne prism experiment), an airborne disper-

sive pushbroom imaging spectrometer (Schaepman et al., 2015). Three scenes were captured

under clear sky conditions on April 24, June 21 and August 24 2015. Each scene consist of 284

spectral bands covering the wavelength-range from 399 to 2432 nm with a spectral sampling

interval of 2.5-14.1 nm and a full width at half maximum ranging from 3.3 to 14.2 nm. The

flight height of 4.5 km above sea level resulted in a ground pixel size of around 2 x 2 m for

all three missions. Postprocessing of the APEX data was done by performing spectral, geomet-

ric and radiometric calibration (Hueni et al., 2013) as well as geo-rectification and atmospheric

correction (Richter & Schläpfer, 2002; Schläpfer & Richter, 2002). The three APEX scenes were

image-to-image co-registrated to the LiDAR datasets using ENVI v5.3 (Exelis Visual Information

Solutions, 2015).

2.3 Methods

2.3.1 Preparation of TRY dataset

The gap-filled TRY dataset as provided was filtered in terms of species and geographic ex-

tent. Species not occurring on the Lägern site (see Eugster et al. (2007) for complete list) were

dropped. Also, species being underrepresented in the tree species map covering subplot P1 (in-

troduced in subsection 2.2.3), were excluded from the dataset. Further, the geographic region

was limited from -8 to 25◦ in longitude and 40 to 55◦ in latitude, centering the dataset around

the study area. In this step, non-georeferenced records were dropped. The area has been chosen

rather large, ensuring that enough samples from different sites remain in the dataset. To verify

the comparability of the Lägern site to a much larger area, covering several climatic regions, the
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trait-ranges have been compared between different climatic zones (see Appendix 13 for more

details). The selected species and the distributions of the observations are showed in Fig. 3.

Leaf chlorophyll content per leaf area [g m-2] (CHLTRY) and canopy height [m] (CHTRY, also

called plant height) are present in the gap-filled TRY dataset, while leaf water content [%]

(CHLTRY), the relative weight of water inside a leaf compared to the total weight, was derived

from leaf fresh mass [g] and leaf dry mass [mg] as:

LWCTRY = 1− Leafdrymass

1000 ∗ Leaffreshmass
(1)

2.3.2 Tree species classification of Lägern

A tree species classification for the Lägern site is performed to establish the link between VIs

and species. The ITC map is used as ground truth and the three APEX scenes as explanatory data.

Classification of forest canopy using imaging spectroscopy bases on the principle that different

species have a characteristic spectral fingerprint that is expressed in the measured spectrum

(Martin et al., 1998). The classification is performed using support vector machines (SVMs).

SVMs are well suited for high dimensional, collinear settings with a low number of training

samples and have been found to yield good results in species classification tasks using high reso-

lution imaging spectroscopy data (Melgani & Bruzzone, 2004; Mountrakis et al., 2011). Inspired

by Demir & Ertrk (2009), a spatial hierarchical approach has been chosen for classification, in-

creasing the likelihood of neighboring pixels to belong to the same species as its surrounding

pixels and thus, reducing the heterogeneity of the resulting species map. Pixels classified with

low reliability were rejected. This conservative approach has been chosen due to validation data

not being available outside subplot P1.

The ITCs were rasterized to exactly match the imaging spectroscopy data. Pixels covered to

less than 95% by a single species were dropped in order to retain pure pixels to avoid a mixture

of different species or of vegetation and background in a pixel (Fig. 12 in Appendix C). The SVM

model is tuned on the original resolution of 2 x 2 m using 10-fold cross-validation. This has been

done with the R package e1071 (Meyer et al., 2015), which allows for probability predictions

11



Chapter 2 | Measuring plant traits

(based on LIBSVM, Chang & Lin (2011)). A radial kernel has been chosen because we want data

points lying outside the data clusters in the feature-space to have a low classification certainty

(see Appendix 11). The trained model is then applied on the original data-cube with 2 x 2 meter

resolution (level 1) and a version down-sampled by factor 2 (level 2) using average function.

Each pixel of level 1 is restricted to belong to one of the species occurring at the corresponding

pixel of level 2 or its 8-neighbors. If none of the classes has a probability larger than a probability

threshold p, the pixel is excluded as supposed to be a mixed pixel, a species not being part of the

training dataset, or an atypical individual (e.g. young or unhealthy). Finally, the candidate class

with the highest probability is assigned.

The probability threshold p is chosen based on the following criteria: (i) The accuracy (rate

of correct classification) and Cohen’s Kappa (Cohen, 1960) must be as large as possible ensuring

the most robust prediction possible. (ii) A significant amount of pixels must remain in the final

classification, containing pixels of all species of interest. (iii) The remaining pixels should be

distributed over the whole site to represent the variability across the Lägern.

2.3.3 Deriving vegetation index maps of Lägern

Mapping of plant traits using imaging spectroscopy can be done using either physical or em-

pirical models. Physical models, not considered in this study, base upon radiative transfer models

(RTMs), which have the capability to simulate light absorption and scattering inside canopies as

well as biophysical and -chemical properties of the leaves. Empirical models link the measured

spectral signal to traits, most often by using VIs that have been defined empirically. Without a

link to field measurements, VIs are relative quantities (Homolova et al., 2013). The reliability of

VIs depends on using high quality sensors providing high signal-to-noise ratio measurements, fo-

cusing on dense vegetation (Asner et al., 2015) and controlling of influencing factors like viewing

geometry and conditions (Richter & Schläpfer, 2002) and irradiance and shadow effects (Damm

et al., 2015). Other factors like leaf structure and orientation, surface characteristics, moisture

content and woody elements have an influence on the measurement as well and potentially

impact the accuracy of VIs (Blackburn, 2007).

Relative trait maps for CHLAPEX, LWCAPEX and LAIAPEX are derived from the APEX June scene.
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The LAI is used for postprocessing, which is subject to the next section. CHLAPEX is calculated

using area under continuum-removed curve normalized to the chlorophyll absorption band depth

between 650 and 720 nm (ANCB650-720), as found in Malenovský et al. (2013), LWCAPEX via

normalized difference water index (NDWI), described by Gao (1996). The LAIAPEX is calculated

using an empirical function following Heiskanen (2006).

ANCB650−720 =
1
2

∑n−1
j=1 (λj+1 − λj)(1− ρj+1 + 1− ρj)

1− Rb

Rc

(2)

NDWI =
R860 −R1240

R860 +R1240
(3)

LAI = 2.41 ∗ 10−4e10.83∗(R860−R670)/(R860+R670) (4)

In formulas 2-4, R is the reflectance at a given wavelength, denoted as subscript. Rb is the

reflectance at the wavelength of maximum absorption, Rc, the reflectance of continuum line at

wavelength of maximum absorption. λj is the wavelength of band j, ρj continuum removed

reflectance at band j, n is the number of spectral bands.

2.3.4 Postprocessing of the vegetation index maps

The VI maps were postprocessed to increase reliability and make the data consistent with the

gap-filled TRY dataset. Applied steps include a) correcting the indices for shadowing-effects and

b) dropping pixels of non-dense vegetation and removing pixels representing juvenile plants.

Step a) increases the quality of the VI maps while step b) was performed for to remove ground,

understory and mixed pixels as well as reducing the dataset to pixels representing grown trees.

This step was necessary to be consistent with the TRY database, where juvenile plants have been

removed before gap-filling.

Shadow-effect correction is a crucial step to improve VIs quality (Damm et al., 2015). Pixels

being directly illuminated by the sun have a high signal-to-noise ratio (SNR), resulting in a high

VI quality. Shaded pixels are an artifact of the atmospheric correction and receive high amounts

of diffuse irradiance, which lowers the SNR and thus, the quality of the VI. For the correction of
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shadow-effects, an illumination map for the APEX June scene was created. The training data was

prepared by selecting 300 pixels from the scene randomly (restricted to forest). For each of these

pixels (P ), a nearby pixel (if possible from the same tree crown) that is in cast shadow (Psh)

and one being fully illuminated (Psun) is selected and the spectrum is extracted from the APEX

scene. The spectra (S) of each of these three pixels is averaged individually using arithmetic

mean. The illumination intensity (Ip) was calculated as:

IP =
mean(SP )−mean(SPsh

)

mean(SPsun)−mean(SPsh
)

(5)

The illumination map was then derived using linear SVM regression with the training data

as ground truth, and the spectral data as explanatory variables. The resulting map, shown in

Figure 1, is histogram stretched and scaled to values from 0 to 1. As a compromise between

a pure signal and a sufficient amount of pixels, representing the variability of the traits at the

study site, pixels with a lower illumination intensity than 0.5 were removed. This threshold

is chosen by inspecting the LOESS smoothed relationship between shadow and VI, shown for

CHLAPEX in Figure 2. It exhibits a nearly linear relationship and a constant variance above the

illumination intensity of 0.5. The VI not shown in the figure (LWCAPEX & LAIAPEX) show a very

similar behavior. The pixels not being rejected are corrected for the shadow effect; The LOESS

fit was subtracted from the VI values and the mean of the smoothed line from illumination 0.5-1

is added again (Figure 2, bottom).

As a next step, pixels not covering full-grown trees were filtered out using the CHMLiDAR.

All pixels with CHMLiDAR<5 m were removed. As the LiDAR data was acquired in 2010 and

the analysis is based on 2015 data, we expect some changes in the canopy height. The height

changes for the Lägern site from 2010 to 2014 have been quantified by Schneider et al. (2015):

The mean height change was reported to be 0.3 m ± 0.2, caused by tree cutting and growth.

Discarding regions where young trees grew up to a height above 5 m means rejecting some useful

pixels. Contrariwise, accepting pixels where trees have been cut after 2010 possibly introduces

some additional variation coming from juvenile trees. Finally, pixels showing an LAIAPEX<2 were

discarded. The index maps are intersected with the tree species classification derived in section

2.3.2. This step further improves quality and pureness of the remaining pixels as the classification
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Figure 1: Map of Lägern showing illumination intensities (Ip), derived from APEX June scene.
The training data is created by randomly select 300 pixels (+) and choosing a pixel in full
shadow and full sun from the same tree crown. The illumination intensity was then calculated
as a function of the selected pixels spectra. The training data is used to train a linear SVM on the
spectral data and deriving an illumination map for the Lägern site.
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Figure 2: The top Figure shows the relationship between CHLAPEX and illumination intensity,
which takes values from 0 (shaded) to 1 (sunlit). The blue line is the LOESS smoothed curve.
The bottom Figure shows the CHLAPEX after correction for illumination effects. The red boxes
show the part being removed from the dataset. The cut-off at illumination lower than 0.5 is
a compromise between omitting shaded pixels, where the accuracy of the index is lower, and
keeping enough pixels per species in the dataset to cover as much of the variability as possible.
After correction, the shadow effect can be neglected.

implicitly filters for the same criteria: A high classification certainty is likely to be assigned to

pure pixels (not being a mixture of multiple species or vegetation and soil) and moreover, pixels

similar to the training pixels, which did not include juvenile plants.

Finally, CHMLiDAR, was filtered using a 3 x 3 moving window with maximum function to set

pixels to the nearby local maximum. This has been done to be consistent with the TRY database,
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where the plant height at highest point is given. The resulting map was masked with the VI

maps.

2.3.5 Rescaling vegetation indicess

The traits CHLAPEX and LWCAPEX, as derived from VIs, are relative quantities, while the TRY

database contains measurements in absolute physical units. To be able to compare these mea-

sures in terms of species-wise co-variation and intraspecific differences, the VIs were rescaled.

As no calibration data was used, a method mapping the minimum (fmin) and maximum (fmax)

summary statistics from the VI to the absolute traits from TRY was applied. This was achieved

by performing linear scaling of the values as:

V Iscaled = a ∗ V I + b (6)

with

a =
fmax(T )− fmin(T )

fmax(V I)− fmin(V I)
(7)

b = fmin(V I) ∗
fmax(T )− fmin(T )

fmax(V I)− fmin(V I)
+ fmin(V I) (8)

The appropriate summary statistics is selected following theoretical consideration, supported

by analyzing the stability of the summary statistic across different climatic zones (Fig. 13).

2.4 Results

2.4.1 TRY dataset

A set of species has been selected from the gap-filled TRY dataset. For each species, the

number of samples and the number of distinct sites is reported in Table 1. The spatial distribution

of the species, shown in Figure 3, reveals large spatial gaps in the TRY dataset at hand. Some

species like Ash, Silver fir and Sycamore are underrepresented, while others, like Sessile oak and

European beech are present in higher numbers. The most species investigated are sampled from

a relatively small number of distinct sites.
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Table 1: The table shows the tree species that have been selected for this study. The number of
samples per species and distinct sites per species are displayed. A site is considered as distinct if
the observation locations do not fall inside a grid of 1 x 1◦.

Species name Species type Number of ob-
servations

Number of
distinct sites

Ash deciduous 128 15
European beech deciduous 621 54
Norway spruce conifer 517 39
Sessile oak deciduous 820 21
Silver fir conifer 113 14
Sycamore deciduous 84 8
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Figure 3: Geographical distribution of gap-filled TRY records per species. The observations have
been aggregated and counted on a 1 x 1◦ grid. The Lägern study site is marked in yellow. Only
a few samples are within the immediate vicinity of the study site.

2.4.2 Tree species classification

Figure 4 shows the criteria i & ii, introduced in section 2.3.2, in relation to threshold p.

These criteria can only be validated inside subplot P1, as ground truth data is missing outside.

This is a reason why p has been chosen very conservatively with p = 0.875, resulting in an

accuracy of 0.93 ± 0.02, Cohen’s Kappa of 0.83 ± 0.03 and 36% coverage, meaning that 64% of

the pixels were removed. The spatio-hierarchical approach poses an improvement of about 3%

in terms of Accuracy and Cohen’s Kappa, compared to a more simplistic method which does not

include the neighborhood restriction. In fact, this restriction does discard some additional pixels

rather than changing the classification. Criterium iii, the spatial distribution of the remaining
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pixels, is evaluated visually based on the final classification to the Lägern and a selected close-

up area (P2), shown in Figure 5. The patterns appear to be homogeneously distributed and

clumped, corresponding to individual or groups of tree crowns. Compared to Eugster et al.

(2007), Sycamore is largely underrepresented in the west, while Silver fir is overrepresented in

the East. The dominance of European beech seems legitimate.
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Figure 4: Species classification metrics in relationship to the probability threshold p. Pixels
with a lower classification certainty than p are discarded. The classification metrics, accuracy
and Cohen’s Kappa and their standard deviation are derived using 10-fold cross-validation. The
overall percentage of pixels remaining in the Lägern site when applying the threshold decreases
continuously.
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Figure 5: Species classification map of Lägern. Figure (a) shows the species classification of the
Lägern site. The classification is based on training data available for plot P1. Linear SVM was
trained and applied using all three APEX scenes. Figure (b) represents the classification certainty
p. Subplot P2 shows a high species diversity, containing both, coniferous and deciduous trees.
For further analysis, all pixels with p<0.875 are discarded.
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2.4.3 Vegetation index maps of Lägern

CHLAPEX and LWCAPEX for the Lägern site were derived from the APEX June scene using

common VIs. Postprocessing, which included correcting for shadow effects, excluding non-dense

vegetation and juvenile plants below a height threshold, yielded high-quality VI maps. The

shadow-corrected CHLAPEX and LWCAPEX as well as CHMLiDAR are shown in Figure 6.

CHLAPEX shows no relationship to the insolation, coming from West, after shadow correction.

Variations occur in small-scale patches, but also in larger dimensions. The northern region of the

scene, being dominated by Ash, shows higher values of leaf chlorophyl content. The LWCAPEX

values are distributed more homogeneously over the scene. The insolation seems to have an

influence on the leaf water content, even after shadow-correction. This might be related to

bad performance of the VI or with the irradiance drying out the leaves at top of canopy, which

motivated the removal of pixels with illumination intensities below 0.5. LAIAPEX, used for post-

processing, is shown in the Appendix 15. After removing pixels with an illumination intensity

lower that 0.5 shadow effects were no longer visible.
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Figure 6: Trait maps of Lägern, showing (a) relative CHLAPEX, (b) relative LWCAPEX and (c)
CHMLiDAR. The maps a and b, derived from APEX data, were corrected for shadowing effects.
CHMLiDAR is derived from LiDAR. The plots on the righthand side show the close-up view of
subplot P2.
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2.4.4 Comparing remotely sensed traits to field observations

To compare VIs to the field measurement, an appropriate summary statistic had to be selected

to input into formula (6) introduced in Section 2.3. We decided to use per-species summary

statistics, because they represent the interspecific rather than overall variations, as we suppose

the VIs to be not highly precise, but in principle accurate measurements of the traits. The mode

was selected due to this measure being the most stable across different climatic regions (See

Appendix 13). This suggests that the true range of per-species modes at the Lägern corresponds

to those across Europe.
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Figure 7: Cross comparison of TRY traits (Europe) versus VIs (Lägern) for CHL and LWC. The
VIs have been scaled by mapping the minimum and maximum mode across all species to the
respective values of the TRY traits. The points correspond to the mode of the distributions.
The densities of the TRY traits are depicted along the y-axis, the relative traits from imaging
spectroscopy along the x-axis.

Per-species distributions and co-variations of the APEX indices and the TRY traits are shown

in Figure 7. The distributions of the traits from both sources are unimodal and unskewed. The

most striking difference, present in the two plots, are the peaked distributions in TRY, opposed

to the strongly overlapping and flat distributions of the VIs. The variation explained by the

species (which is the intraspecific variance divided by the total variance) is 94% for CHLTRY,

but only 26% in case of CHLAPEX. The modes of CHLTRY and CHLAPEX are co-varying except
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Figure 8: The Figure shows the canopy height derived plant height of Lägern vs plant height in
TRY for selected species. The estimation of canopy height in situ is done via direct measurement
or via allometric rules, deriving the height from other metrics (Cornelissen et al., 2003). The
height of the Lägern trees is derived from a CHMLiDAR by applying a focal maximum filter to go
from canopy to plant height. This is a simple approach. However, it gives a valid (yet rough)
representation of the plant heights at the site. The species in TRY have been selected follow-
ing sampling protocols and have been further limited preliminary to applying gap-filling, which
explains the unnatural hight distributions. It is unclear to what extent the reduction of trait
space impacts the variability of other trait distributions. The plant heights at the Lägern site are
limited to trees above 5 m, which is an attempt to be consistent with the TRY database, where
juvenile plants have been removed. The distribution represent the afforestation at the site, some
species like Silver fir show two highly distinct peaks of high-grown individuals of around 40 m
and a second one at ca. 20 m, representing young stands and being the result of afforestation.
Contrariwise, the European beech shows a more natural distribution.

for European beech, which takes high values in TRY, but low values in APEX. The variation in

LWCTRY is explained by 58%, those of LWCAPEX to 30% by the species. The modes of LWC are

slightly co-varying.

The variabilities of the TRY traits are not significantly related to the number of samples

present in the dataset. Norway spruce and European beech, for example, do not show sub-

stantially larger variation than species having less samples, like Sycamore. The relation has

been tested using simple linear regression of standard deviation versus number of samples and

resulted in p=0.176 in case of CHL and p=0.1266 for LWC.

To give an intuition for the limited diversity in the gap-filled TRY dataset, CHMTRY and

CHMLiDAR are compared in Fig. 8.
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2.5 Discussion

2.5.1 Representativity of this study

The TRY database represents the largest source of plant traits currently available. The gap-

filling approach used to fill the missing values is state-of-the-art and has been proved to yield

good results (Schrodt et al., 2015). Europe has the highest sampling density in the dataset

(Kattge et al., 2011) and thus, our study might not be representative for other areas, where

substantially less samples are available.

The imaging spectroscopy data covers a relatively small, but highly diverse area. Even if

other study sites might show different trait variabilities, the findings can be extended to other

areas in Europe, as the basic principles (e.g. remote sensing versus in situ) and mechanisms (e.g.

disturbing factors, sampling gaps) are inherent to this methods.

This study focuses on six species, which were selected to correspond to the predominant

species at the Lägern site. Species underrepresented in one of the datasets were dropped. How-

ever, the findings might be valid for other tree species, as further discussion is not limited to

these species in particular. This also applies to other traits than the two selected in this study, as

long as they can be derived from imaging spectroscopy.

2.5.2 Imaging spectroscopy vs in situ observations

The imaging spectroscopy based data covers a small subset of the TRY data used in this study.

Thus, the intraspecific variability of the traits is expected to be much smaller in reality. However,

the comparison of the imaging spectroscopy and in site traits draws a different picture, which is,

as we argue here, a result of the different measurement and sampling methods. The distributions

are assessed taking first a remote sensing, and then the TRY perspective.

From the perspective of remotely sensed traits, the CHLTRY distributions do underestimate

the variation for all species and the overlapping among them. The main cause for intraspe-

cific variation are the genetic variation and phenotypic plasticity (Pigliucci, 2001). The genetic

variation determines the phenological plasticity, how an individual can react on environmental

conditions. Thus, the existing variability of a trait is a function of the genotype and the en-
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vironmental conditions, including climate and influences from other plants, animals or human

activity. The per-species distributions of CHLTRY suggest a very low plasticity and genetic vari-

ability over different environmental conditions, which is also visible in the comparison across

climatic regions (Fig. 13). LWCTRY exhibits larger intraspecific variance and larger overlapping

of the distributions.

The probable underestimation of the intraspecific variations can have different reasons: An

incomplete sampling, for example, caused by the use of standardized protocols. This can lead

to a low overlapping of traits among species (Violle et al., 2012). As an example, we refer to

Cornelissen et al. (2003), who established a sampling protocol for plant traits used to tackle

large-scale questions. They propose to sample from robust, well grown plants located in well

illuminated environments. For selection of leaves for later weighting of dry and fresh mass,

which we use to derive LWCTRY, it is suggested to select young leaves exposed to full sunlight,

some hours after sunrise and before sunset. For sampling of the photosynthetic pathway, selec-

tion of fully expanded leaves from adult plants exposed to full sunlight is recommended. This

sampling strategy extremely limits the intraspecific variation, as a tree crown consists of a highly

diverse set of leaves regarding age, health status and exposure to sunlight. However, we don not

know which sampling approaches have been used in the numerous smaller sampling cmapaigns,

providing the data for the TRY database. A further reason is an incomplete sampling possibly

leading to a bias (Jetz et al., 2016). Our study showed that the species samples originate from a

limited number of distinct sites, which might reduce the intraspecific variability. Further, the se-

lection of individuals at these sites may not be randomized, as this could demand a considerable

extra effort (e.g. hard to reach areas) or not be in the interest of the local study. Finally, in the

pre-filtering step, juvenile plants were removed, which can further reduce the variability.

Viewed from the TRY perspective, the VIs show very large variations and strongly overlap

between species. The distribution of some species is even nearly congruent (e.g. CHLAPEX of

European beech and Silver fir). This would imply a strong phenotypic plasticity of the species’

genotypes (expecting the genetic variability to be limited at the study site). We suppose the

large intraspecific variances of the VIs (compared to the in situ measurements) to have two

major reasons.
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First, imaging spectroscopy does not measure the traits of interest directly but rather the light

that has interacted with the canopy (Kokaly et al., 2009; Ustin et al., 2009). The reflectance of

the vegetation is not only influenced by the leaf properties, but also by scattering mechanisms

inside the canopy, background and non-leaf material. Malenovský et al. (2013) showed that

CHLAPEX dependent little on LAI and performs on deciduous and conifer trees. Contrariwise,

LWCAPEX depends strongly on LAI, dry matter content and leaf structure (Ustin et al., 2004).

The indices were corrected for shadow effects and restricted to dense vegetation only to reduce

those and other disturbing factors. However, the handling of these factors is limited when us-

ing VIs (Homolova et al., 2013). Thus, VIs are considered to be a valid, but not very precise

measurement.

Second, the link to species or leaf is not given when using imaging spectroscopy. However, the

link from pixel to species can be established using species classification. In this study, training

data is based on a small patch (P1), being populated by old, full-grown trees. The Lägern

study site, however, is much more diverse in terms of species and age. As the quality of the

species classification is hard to assess outside subplot P1, only pixels with high classification

certainty made it into the final dataset, which is expected to increase the classification reliability

substantially. A link between the VIs and single leaves cannot be made. A signal in a single pixel

is an integral over leaves of different age, health status, orientation and exposure to sunlight,

which is a substantial difference to field measurements.

The co-variation of the species-wise modes of the two sources is little conclusive. A minimal

connection between the values may exist, but the strong overlapping (and for some species

nearly congruent) distributions of the VIs suggest a high randomness of the results: Considering

the number of possible uncertainties related to imaging spectroscopy and the VI approach in

particular, small biases (e.g. species-specific measurement dependency, species classification)

would have a high impact on the co-variation. Nevertheless, other studies have shown that

deriving plant traits by using imaging spectroscopy is possible (Asner et al., 2015; Homolova

et al., 2013).

The large differences in intraspecific variance are a product of the measurement methods, the

sampling strategies and true differences in trait variations. While in situ measurements are highly
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precise and accurate, imaging spectroscopy is prone to different factors reducing the precision,

of which some can be controlled and others not. To express this in numbers, we refer to Asner

et al. (2015), who performed a large-scale study in South America to assess the capability of

imaging spectroscopy to measure canopy traits. Using more advanced techniques than the VI

approach, the reported R2 between the in situ and imaging spectroscopy observations of CHL

and LWC were 0.7 and 0.49, respectively. This gives an impression of what is to expect from

state-of-the-art imaging spectroscopy approaches.

The fundamental differences in sampling methods between in situ and imaging spectroscopy

highly accounts for the differences in intraspecific variance. Imaging spectroscopy is not designed

to gather selective trait information. It can map — and this is one of ist strengths — large areas

(although limited to the canopy) and cover local trait variability including plants and leaves of

different state (e.g. young and old, stressed, healthy). Contrariwise, field campaigns are in

general not designed to cover traits from a broad variety of local conditions but rather sampling

from specified leaves (e.g. young, exposed to full sunlight) and plants (full-grown, healthy)

which allows to compare like with like around the globe. This leads to an underestimation of the

local trait variability.

2.5.3 Bridging the gap

Imaging spectroscopy and airborne remote sensing in general is an approach that can map

functional traits over large areas at species level. It is, however, not yet fully operational and

standardized. The number of traits that can be gathered is limited and the expected accuracy is

— depending on the application — adequate or not. Thus, imaging spectroscopy is not the one

and only solution to the present lack of representative global plant trait data, but can be a part

of it.

Asner et al. (2015) use imaging spectroscopy together with airborne LiDAR to map large,

hard-to-reach areas, mainly focusing on tropical forests, where in situ samples are sparse. The

approach, however, is stand-alone and does not include links to external datasets like TRY. A

more integrative approach is envisioned by D́ıaz et al. (2016), who outlined a global biodiver-

sity observatory linking in situ observations to satellite data and argued that remote sensing in
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general can bridge some of the existing gaps in TRY. According to the authors, this allows to

bring biodiversity observations to global coverage with temporal repeated measurements. In the

proposed system, imaging spectroscopy, combined with LiDAR, could provide a link between the

in situ and satellite data. However, a satellite mission matching the observatory requirements

does not exist yet.

A feasible integration of in situ and airborne remote sensing could base upon the gap-filling

technique. BHPMF relies on the principle that the taxonomic hierarchy is connected to trait

similarity and that trait-trait co-variations are transmittable to regions where only less samples

(or none) are present. This relationships could be investigated using airborne remote sensing.

Further, biases present in TRY can be detected, as for example in this study, whereof a possible

under-estimation of intraspecific variance emerges. As neither taxonomical similarities nor trait-

trait co-variations are modeled explicitly and possible biases are not considered in BHPMF, the

model would have to be extended.

Schrodt et al. (2015) tested the extension of BHPMF to out-of-sample predictions using en-

vironmental variables (climate and soil data) to model the intraspecific variance, calling it ad-

vanced hierarchical probabilistic matrix factorization (aHPMF). However, aHPMF did perform

similar to BHPMF (tests of intraspecific trait modeling using environmental variables has been

briefly tested in Appendix H). Imaging spectroscopy can reveal relationships between traits and

environment variables and test their generalizability for under-sampled regions.

This, however, are only a few applications of (airborne) remote sensing for functional bio-

diversity assessment. For an extensive discussion of other approaches, including functional,

taxonomical and structural biodiversity, we refer to Lausch et al. (2016).

2.6 Conclusion and outlook

Our study took a first look at the convergence of traits from imaging spectroscopy and in

situ observations from independent sources. It has been shown that the species-wise trait dis-

tributions are vastly different, which is a demonstration for the potential of a fusion of the

approaches. The co-variation of the traits is viewed critically; a correlation has been detected,

which has, however, to be investigated further using more advanced methods to derive trait data
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from imaging spectroscopy. We reason that this mismatch is introduced by i) the limited preci-

sion and accuracy of the vegetation indices, ii) sampling biases present in the in situ data and iii)

an artificial reduction of the variance due to the use of sampling protocols.

Imaging spectroscopy can be used to detect and fill this and other gaps, as stand-alone ap-

proach mapping plant traits in hard-to-reach regions, as link between in situ and satellite data

or integrated into gap-filling approaches, for example.

As a first evidence of a possible bias in the TRY database towards an underestimation of

intraspecific trait variability is given, we suggest the use of RTMs for the derivation of canopy

traits from imaging spectroscopy in order to increase the precision of the trait values. Also, this

would allow to differentiate between inter- and interspecific variability (which has been done in

this study based on a simplistic assumption), as derivation of absolute trait values is possible. The

set of traits could be extended, also to LiDAR-based traits. Finally, a more sophisticated species

classification method incorporating LiDAR data can increase the reliability of further studies.
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Plant trait data is the fundament to understand global vegetation dynamics. We have dis-

cussed two different approaches to acquire plant trait data, in situ sampling and imaging spec-

troscopy. The approaches are based on different principles and have their strengths and weak-

nesses. In situ observations are prone to biases and will never reach a spatial and temporal

coverage that would be needed to map existing biodiversity and monitor the ongoing changes.

Sampling protocols often reduce the trait variability artificially. Still, it is the most reliable source

for functional trait measurements directly associated to individuals. Imaging spectroscopy and

other remote sensing techniques can be used to overcome this issues, as stand-alone approach

mapping plant traits in hard-to-reach regions, as link between in situ and satellite data or inte-

grated into gap-filling approaches, for example.

The TRY database is a big step in the right direction. With it, consistent in situ data is made

publicly available for the scientific community. With time, the database will grow and thus

become more representative. On the other hand, more and more satellite data is made publicly

available. This intensifies collaboration of remote sensing and biodiversity community (Turner

et al., 2015). Unfortunately, this is not the case for imaging spectroscopy and LiDAR data.

Usually, the data is used in local studies for basic research and access is restricted to a limited

number of people. Making the data available for everyone is not enough: The community has to

agree on consistent methods leading to comparable datasets.

To enforce a global biodiversity observatory, as envisioned by Jetz et al. (2016), the technical

basis should be outlined and implemented, such that contributors can start to supply their data.

Other than the current state of TRY, we would encourage a more spatially orientated approach —

a geographic information system (GIS) —, linking trait data of all different sources and dimen-

sions. This would facilitate the handling of spatial data in different formats (raster, vector, point)

and allow to extract specific datasets (extent, temporal range, species etc.) for further analysis.

A further concern regarding TRY in the current state is the missing date and time associated to

each observation. This would allow to monitor changes over time and would be important for

the integration with remote sensing data.
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A | Study area
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Figure 9: The Lägern is located northwest of Zurich. The ridge spans 10 km from Baden in the
West to Dielsdorf in the East of the map. The study site is highly divers in terms of topography,
containing flat to very steep areas. The analysis on the site is restricted to the forest at the study
area (marked in green). Species data for subplot P1 has been used to do the species classification
of the site. Subplot P2 has been chosen to validate classification and VIs at a higher zoom level.
The hillshade based on a digital terrain model in the background of the map has been derived
from swissALTI3D of the Swiss Federal Office of Topography (Swisstopo, Switzerland).
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Figure 10: True-color representation of the APEX scenes showing the Lägern site. The top scene
was captured on April 21, the middle scene on June 24 and the bottom scene on August 21,
2015. The white box shows the study area for which traits have been derived from the June
scene. The hillshade based on a digital terrain model in background of the map has been derived
from swissALTI3D of the Swiss Federal Office of Topography (Swisstopo, Switzerland).
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B | SVM kernel selection
Even if linear SVM is much faster and performed similar to a SVM with radial kernel, the

radial method has been chosen. The training dataset is available for an area that is probably

not entirely representative for the Lägern. When choosing linear SVM, shifts in the spectrum

over different viewing or insolation angles and other factors would be likely to result in high

classification certainties for pixels lying not inside the point cloud of the training set in the

feature-space. Also, species not being part of the training set or living under different conditions

can be assigned to training species with high certainty. A radial kernel can solve this problem, as

Figure 11 illustrates.
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Figure 11: The figure illustrates the choice of a radial kernel for species classification. In the
example, two classes, 1 & 2, are used to train the SVM model. In the case of a linear SVM (a),
class 3 gets assigned to class 2 with a probability of nearly 1. The models is very confident about
this, as there is no ”competing” class nearby. Figure (b) shows that, thanks to the radial kernel,
class 3 has a low probability to belong to any of the training classes.
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C | Tree crown data
Figure 12 shows the ITC polygons and the rasterized version. Species with a low number of

pixels associated have been dropped. The map is used as training data for species classification

of the Lägern site. The polygons cannot represent overlay of crowns of different species, thus,

mixed crowns result in mixed pixels, which adds a small uncertainty to the data. However, the

reliability of the dataset is considered to be high, as the classification assignment of the species

is none in the field where such problems can be considered.
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Figure 12: The original ITC data is shown as white polygons. In the raster representation, pixels
that not covered by 95% or more by the same species are dropped in order to obtain pure pixels.
The rasterized data is used for species classification of the Lägern site.
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D | Bayesian hierarchical probabilistic matrix
factorization

In this appendix, the concept of bayesian hierarchical probabilistic matrix factorization (BH-

PMF) is briefly summarized following Schrodt et al. (2015). BHPMF is a tool to fill sparse matri-

ces using the hierarchical structure inherent in the data that allows to quantify uncertainty of the

predicted values. The hierarchical structure is given by the taxonomy (individual, species, genus,

family, phylogenetic group). BHPMF sequentially works on the different hierarchical levels, be-

ing represented by the single trait measurements in case of individual level, and by the mean

values per group (e.g. per species, at species level) at the other hierarchical levels. A matrix at

one of these levels is then expressed using the inner product of two latent matrices, consisting of

orthogonal vectors that minimize the deviance from the data, which is, as Schrodt et al. (2015)

point out, similar to principal component analysis (PCA). The latent matrices are used as prior

for the next neighboring level to find the optimal solution iteratively. The parameters are found

using Gibbs sampler.
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E | TRY across climatic regions
Figure 13 shows the differences of CHLTRY and LWCTRY across different climatic regions. Two

findings relevant to this study emerge from this plot: The geographic subset of the TRY database

is chosen large, ensuring that enough samples per species are retained. The trait ranges are very

stable over the different climatic regimes. A large range of values, with a lot of outliers (e.g. for

European beech in Cfb climate) are related to large sample sizes. The Lägern study site, located

on in Cfb, bordering Dfb, should be represented by the selected geographic subset. This means,

in theory, we can expect the traits in the Lägern site to be covered by the distributions of the traits

of the larger region and not lying outside. The second conclusion is that the scaling of the Lägern

VIs should be done using the mode of the distributions. Other scaling methods, like mapping

quantiles of the VIs to those of the TRY database are critical, as this procedure implicitly assumes

that the variance in the Lägern site is the same as over the large Europe area. The mode was

preferred over mean and median, as the mode is more stable across different climatic conditions.

The assumption is that the mode values in TRY and the VIs covering the Lägern represent the

true range of modes and is best suited to do the scaling of the VIs.
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Figure 13: The Figures show the ranges of CHLTRY and LWCTRY in different climatic regions after
Köppen-Geiger climate classification (Peel et al., 2007). The notches, indicating if the medians
differ with 95% confidence, show that the median values are relatively stable. The mode ( ),
however, is more stable than the median and the mean ( ) across different climate zones and
species. The number of samples are annotated in blue.
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F | Relative traits, Lägern vs subplot P1
The extrapolation of the species to the Lägern site is a critical step. The larger area is expected

to have a larger variation than subplot subplot P1. Figure 14 shows the differences of the traits

between Lägern and P1. The height distribution differes significantly as the plot P1 consists of

old, full-grown trees. The Lägern is vegetated by young, smaller trees, though. It turns out

that the variations across the larger area is very similar to P1 for the canopy traits. This can be

interpreted in two ways: Either, the trait variation is represented in the smaller area. This means

that the trait variations are less dependent on environmental factors like slope, exposure, soil

etc. Following this logic, the composition of small patches is representative for a larger area.

Another interpretation is that the measurement via VIs is more dependent on the disturbing

factors like canopy structure, the trait signal disappears in the noise. It is likely that a mixture of

both explanatory approaches persists.
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Figure 14: The VI densities shown for Lägern and the subplot P1 are very similar. Only the height
distribution differs strongly. This is due to the fact that the subplot P1 is populated by full-grown
trees.
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G | LAI map of Lägern
LAIAPEX 15 was derived for post-processing of the VIs CHLAPEX and LWCAPEX. Pixels with an

LAIAPEX<2 were removed as being considered as non-dense or non-vegetation.

1
25

87
0
0

1
25

99
0
0

2669300 2670500 2671700 2672900 2674100
Easting [m]

N
o
rt
h
in
g
[m

]

<3 4.5 >6

LAIAPEX [m2 m-2]

P2

1
2
58

9
00

1
2
59

2
00

1
2
59

5
00

2673600 2673900 2674200
Easting [m]

N
or
th
in
g
[m

]

P2

Figure 15: LAIAPEX of Lägern, derived from APEX multispectral data after correction for shad-
owing effects. The values vary strongly between coniferous and deciduous species (see species
classification Figure 5). The subplot on the righthand side shows the close-up view of plot P2.
The shadow effect correction performed well for LAIAPEX.
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H | Interpolation of CHLTRY and LWCTRY

The trait data covering Europe has been used to test a simple spatial interpolation approach.

All species (Table 2) present in the gap-filled TRY database at hand have been used (which

is a small subset of the vast amount of species present in the raw TRY dataset). The spatial

distribution and the density of the data-points is displayed in Fig. 17.

The method used here is an admittedly simplistic approach. The idea was to perform regres-

sion Kriging (Pebesma, 2006) using climatology and soil data as predictors. This includes first

performing a regression and then applying Kriging on the residuals. The regression was was

done using random forests (RF, Liaw & Wiener (2002)).

Table 2: The table shows the tree species that have been used for trait interpolation. The number
of samples per species are displayed.

Species name Species type Number of observations

Abies alba conifer 113
Acer campestre deciduous 27
Acer platanoides deciduous 53
Acer pseudoplatanus deciduous 84
Carpinus betulus deciduous 60
Fagus sylvatica deciduous 621
Fraxinus excelsior deciduous 128
Picea abies conifer 517
Pinus sylvestris conifer 1875
Quercus petraea deciduous 820
Sorbus aria deciduous 62
Tilia platyphyllos deciduous 12
Ulmus glabra deciduous 86

Total — 4458

Soil data was extracted from the harmonized world soil database (HWSD) version 1.2 (Wieder

(2014); http://www.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML) and

climate data is obtained from WorldClim – Global Climate Data Version 1.4 (Hijmans et al.

(2005); http://www.worldclim.org/). The soil dataset was resampled using nearest neighbor

interpolation from a resolution of 0.05◦ to the WorldClim data, which has a resolution of approx-

imately 0.008◦ (∼1 km). A principal component analysis (PCA) was performed and the first five
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components for each dataset (shown in Fig. 16) were extracted for the TRY data-points.

The random forest (RF) model was trained for CHLTRY and LWCTRY with the principle compo-

nents, longitude and latitude as predictors using 10-fold cross validation. For CHLTRY, root-mean-

square error (RMSE) was 0.028±0.002 and R2 was 0.642±0.036. LWCTRY performed worse with

RMSE 0.031±0.002 and R2 0.476±0.067. These results have to be regarded with caution, as dis-

cussed later. For both traits, climate variables, latitude and longitude are more important than

soil. This is shown in the variable importance plot, Figure 18.

The model was then used to interpolate the traits across Europe. The resulting prediction

maps are shown in Figure 17. The residuals of the prediction do not show any spatial dependency

structure for both variables CHLTRY and LWCTRY, which becomes apparent when checking the

variograms (Fig. 19). Thus, no Kriging is done on the residuals.

Additionally, species-wise modeling using RF regression has been tested. The prediction maps

for Europe for CHLTRY and LWCTRY are shown in Fig. 20 and 21 respectively, together with the

mean R2 and its standard deviation over 10-fold cross-validation. For the most species, the

models perform bad (low R2 and high variation of the performance). Some species (e.g. Fagus

sylvatica and Picea abies) show a decent performance.

Both interpolation approaches, all species in combination and single species, have to be

viewed with skepticism. First, the sampling is not randomized. Some sampled species are highly

concentrated to certain sites, which can lead to an overestimation of the model accuracy. Ses-

sile oak, for example, has been sampled hundreds of times in West France at a single site. The

interpolation might work well for these individuals which have, through their superior number,

more weight than other individuals at sites with less samples. Second, the species are not dis-

tributed randomly, they are more likely to appear at places that are more suitable in terms of

environmental conditions. Thus, an interpolation to sites where the species does not find good

environmental conditions may yield unrealistic trait values. These problems could be solved

statistically by weighting of the performance metrics or including species distribution maps, for

example. Of course, more sophisticated models and inclusion of more diverse environmental

data (e.g. satellite data) must be considered to achieve better results.
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Appendix H | Interpolation of CHLTRY and LWCTRY
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Figure 16: First five principle components of WorldClim (left column) and HWSD (right column)
data. The first principle components are on the top line, the last on the bottom. The data has
been used as predictors for CHLTRY and LWCTRY interpolation. Histogram equalization has been
applied to the maps to enhance the contrast for better visualization.
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Figure 17: The Figures show the TRY traits interpolation for Europe with CHLTRY on top, LWCTRY

in the middle and the sample density in the bottom plot. The interpolation was done using RF
regression for all species (shown in Table 2) together.
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Appendix H | Interpolation of CHLTRY and LWCTRY
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Figure 18: The Figures show the importance of the variables used in the RF regression for CHLTRY

(top) and LWCTRY (bottom). In both cases, climate, latitude and longitude are more important
than the soil properties.
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Figure 19: The figure shows the variograms of the residuals of the traits CHL and LWC. The
model was fitted using random forest. The residuals do not show any lag dependency, indicating
that they are spatially random.
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Abies alba; R2 = 0.077± 0.11
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Figure 20: Species-wise trait interpolation of CHLTRY. The color ranges cannot be compared
across the plots. The interpolation has been done using RF regression, the R2 is displayed for
each species. For some species, the model performs very badly, the variation of R2 across the
10-fold cross validation (reported as ± sd) is large in the most cases, especially if the number of
samples is small. Some species (e.g. Fagus sylvatica and Picea abies) perform quite well, which
might be related to the larger number of samples. Tilia platyphyllow, has a reported R2 of 1,
which is wrong. The cause is that only 12 samples are present, which causes the cross-validation
to report this unrealistic value.



Abies alba; R2 = 0.13± 0.14
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Figure 21: Species-wise trait interpolation of LWCTRY. The color ranges cannot be compared
across the plots. The interpolation has been done using RF regression, the R2 is displayed for
each species. For the most species, the model performs very badly, the variation of R2 across the
10-fold cross validation (reported as ± sd) is large in the most cases, especially if the number
of samples is small. Some species (Fagus sylvatica, Picea abies and Ulmus glabra) perform well,
which might be related to the larger number of samples. Tilia platyphyllow, has a reported R2

of 1, which is wrong. The cause is that only 12 samples are present, which causes the cross-
validation to report this unrealistic value.
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