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Abstract 

Our individual spatio-temporal behaviors can be captured by various sensors embedded 

in the personal devices we carry, and by the environments we visit. These recordings can 

originate from various sources, such as GPS sensors on mobile phones, phone calls, or 

the purchase and usage of metro tickets (Hasan et al. 2013). Movement data that origi-

nates from such sensors often have a high resolution in both space and time, however, 

are often lacking additional knowledge of the surveyed community. In contrast to more 

traditional data sources such as census or interview data, such novel data types offer an 

actual tracking of the people’s behavior in space and time. 

The growing amount of human movement data provides us with both new opportunities 

and newly emerging challenges in human mobility research. Accordingly, considerable 

research has been conducted in order to find patterns in human mobility. In various 

studies of recent years (González et al. 2008; Palchykov et al. 2014; Calabrese et al. 

2013), the surveyed people, however, have often been considered members of one large, 

homogeneous community. This is a prevalent approach, since GPS or call detail records 

(CDR) often lack ground truth, i.e. no information about the true membership of the in-

dividual users to a certain community are available. 

The aim of this thesis is therefore to overcome the unavailability of ground truth, by de-

veloping a methodology to categorize users into different user types based on their 

spatio-temporal footprints. The methodology consists of a series unsupervised machine 

learning techniques (principal component analysis, clustering) and will be applied using 

one month of data from a navigation app over the whole of Australia. We further present 

a set of methods to analyze the preferred visit locations and the temporal patterns of 

these visits for the most dominant user types found in the two biggest Australian cities, 

Sydney, and Melbourne. Based on these methods, we show that distinct elaborated user 

types such as tourists or commuters visit areas with different likelihoods and magni-

tudes. Accordingly, we are presented with a deeper understanding of the spatio-temporal 

dynamics of different user types and their preferred visit locations, that cannot be found 

in traditional surveys.  



iv  
 

 



Zusammenfassung 
 

v 

 

Zusammenfassung 

Unser individuelles raumzeitliches Verhalten kann von verschiedensten Sensoren, 

eingebettet in unsere persönlichen Geräte, sowie von der Umgebung welche wir 

besuchen, eingefangen werden. Diesee Aufnahmen können von verschiedensten Quellen 

stammen, etwa von GPS Sensoren in unseren Mobiltelefonen, von Telefonanrufen, oder 

etwa vom Kauf und der Nutzung von Metrotickets (Hasan et al. 2013). Bewegungsdaten, 

welche von solchen Sensoren stammen, haben oft eine hohe räumliche und zeitliche 

Auflösung, ihnen mangelt es jedoch an zusätzlichen Informationen bezüglich der unter-

suchten Gemeinschaft. Solche neuartigen Datenquellen bieten jedoch, im Gegensatz zu 

traditionelleren Datenquellen wie etwa Zensus oder Interviewdaten, ein tatsächliches 

Tracking des menschlichen Verhaltens in Raum und Zeit. 

Die wachsende Anzahl an Bewegungsdaten verschafft uns sowohl neue Möglichkeiten 

wie auch neu aufkommende Herausforderungen in der Forschung von menschlicher Mo-

bilität. Eine beträchtliche Anzahl Studien wurde dementsprechend ausgeführt um 

Muster in menschlicher Mobilität zu entdecken. In mehreren Studien der letzten Jahre 

(González et al. 2008; Palchykov et al. 2014; Calabrese et al. 2013), wurden jedoch die 

untersuchten Personen jeweils als eine homogene Gemeinschaft dargestellt. Das ist ein 

gängiger Vorgang, da GPS-Daten oder Telefonverbindungsdaten (CDR) häufig der 

sogenannte Ground Truth fehlt, d.h. keine Informationen über die wirklichen Zugehö-

rigkeiten von einzelnen Nutzern sind vorhanden.  

Das Ziel dieser Arbeit ist es dementsprechend, das Problem des Nichtvorhandenseins 

von Ground Truth zu überwinden, indem eine Methodik präsentiert wird, welche Nutzer 

in unterschiedliche Nutzertypen charakterisiert, basierend auf deren raumzeitlichen 

Profilen. Die Methodik besteht aus einer Folge von unbewachten Machine Learning 

Techniken und wird auf Daten eines Navigations-Apps über einen Monat und ganz Aus-

tralien angewendet. Wir präsentieren zudem eine Zusammenstellung an Methoden, um 

die besuchten Orte sowie die zeitlichen Muster der dominanten Nutzertypen in den zwei 

Städten Melbourne und Sydney zu untersuchen. Ausgehend von diesen Methoden zeigen 

wir, das unterschiedliche ausgearbeitete Nutzertypen wie etwa Touristen oder Pendler, 

Gebiete mit unterschiedlichen Wahrscheinlichkeiten und Magnituden besuchen. De-

mentsprechend erhalten wir ein tieferes Verständnis der raumzeitlichen Dynamiken der 

unterschiedlichen Nutzertypen sowie deren bevorzugten besuchten Orten, welches wir 

nicht durch traditionelle Studien erhalten. 
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1. Introduction 

1.1 Context and Motivation 

Our individual spatio-temporal behaviors can be captured by various sensors embedded 

in the personal devices we carry, and by the environments we visit. These recordings can 

originate from various sources, such as GPS sensors on mobile phones, phone calls, or 

the purchase and usage of metro tickets (Hasan et al. 2013).  

While the numbers of mobile phones and their usage increase steadily, the amount of 

sensor data itself that captures human movement is increasing as well (Parent et al. 

2013; Zheng et al. 2013). Technological innovations further enable us to easily store big 

amounts of sensor data (Han et al. 2012). 

The emergence of data that captures human movement provides us with both new re-

search opportunities and newly emerging challenges. According to Zook et al. (2015), 

location-based data such as mobility data can give insight into human movement in both 

space and time. The challenge for researchers is to benefit from the new possibilities that 

arise from the increase in data and the evolution of new methods and opportunities. 

Human mobility data are therefore of great interest to various groups of researchers, 

including tourism researchers (Ahas et al. 2008; Edwards & Griffin 2013; Shoval et al. 

2011), transport and urban planners (Ahas et al. 2015; Noulas et al. 2012; Yuan et al. 

2012; Yuan & Raubal 2012), demographers, and others. 

An interpretation of the movement itself, however, is often not directly interpretable 

solely based on raw movement trajectories, i.e. the raw timestamped coordinates as rec-

orded by the device and stored in a database. To gain information out of these recorded 

movements and to achieve a deeper understanding of human mobility itself, it is crucial 

to analyze these raw data sets with suitable methods, in order to extract interpretable 

behavioral patterns (Renso et al. 2012). 

The processing and analysis of human mobility data, however, are often not feasible with 

simple data processing techniques due to the size and variability of the data. A possible 
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solution is to work with databases and data mining techniques. Using data mining in 

combination with movement data is a field of research on its own, called movement min-

ing and “aims for the conceptualizing and the detecting of non-random properties and 

relationships in movement data that are valid, novel, useful, and ultimately under-

standable” (Laube 2014, p.31).  

This thesis will contribute to this domain by analyzing a large amount of raw movement 

data that is not directly interpretable by humans. Accordingly, we process it in such a 

way that it becomes interpretable and we show how the interpreted data can reveal po-

tentially interesting and previously hidden patterns in urban space. 

1.2 Problem Statement 

Researchers studying mobility have used several types of data such as interviews, obser-

vations, or census statistics. Each of these data types about mobility behavior is 

different. Census data presents a snapshot over a large sample size, but no longitudinal 

data. In contrast, data from interviews and observations often offer longitudinal data, 

but only over a small surveyed community. In all cases however, the data is mostly en-

riched with additional knowledge about the demographic characteristics of the surveyed 

community.  

Novel movement data sources with a higher resolution in both space and time, however, 

are often lacking additional knowledge of the surveyed community. In contrast to census 

or interview data, they offer movement tracking of people in space and time, allowing it 

to record people’s actual behavior. Accordingly, there is much more information about 

movement in novel data sources than in census data or observational data.  

One of these novel data source that has been widely used in the last two decades is call 

detail records (CDR), i.e. data generated by mobile phone communication activities. Due 

to their nature (see section 2.1.1), CDR offer data for a large amount of people in a rela-

tively high spatial and temporal resolution. Ahas et al. (2007) and Yuan & Raubal 

(2012), for example, used these data to identify regions with distinct visiting patterns. 

Others such as Candia et al. (2008) and Jiang et al. (2013) used CDR to understand col-

lective human behavior and mobility networks. 

As Zhang et al. (2014) and Zhao et al. (2016) state, however, CDR also has its draw-

backs, since it is biased and therefore not always an optimal type of data for mobility 

research. This bias is caused by the fact that not all types of people (residents, tourists, 

etc.) use their mobile phones in the same way and generate the same amount of data. 

Moreover, people tend to contact other people at specific places such as home or work. 

The places extracted from these data then often only cover a small amount of all visited 

places (Zhao et al. 2016).  

A different type of data used for human mobility research in recent years is global posi-

tioning system (GPS) data. GPS data offers a high spatial resolution and mostly, also a 

high temporal resolution. Accordingly, it is generated and collected even in vast 

amounts. The high spatio-temporal resolution generates privacy conflicts, since small 

amounts of GPS recordings permits the unique identification of individuals (de Montjoye 
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et al. 2013). For researchers, GPS data of a large amount of people with both a high spa-

tial and temporal resolution are therefore not easy to obtain. Due to that, we use a type 

of data in this thesis that combines the advantages of both the CDR and the GPS data.  

In human mobility research, surveyed people are often considered members of one large, 

homogeneous community. Although arguing that they are looking at individual trajecto-

ries and users, González et al. (2008) state that all humans follow simple and 

reproducible patterns. Others (Palchykov et al. 2014; Calabrese et al. 2013) speak of in-

dividual mobility, but nevertheless treat all users as one homogeneous community. The 

possibility that the data represent trajectories of different types of users visiting differ-

ent places and areas is often neglected. This is a prevalent approach, since GPS or CDR 

often lack ground truth, i.e. no information about the true membership of the individual 

users to a certain community is available. 

In summary, traditional surveys that can be used for mobility research offer a wide 

range of information about the surveyed community, but lack actual recordings of the 

movement of people. Novel data sources offer the recordings of people’s movement with a 

high spatial and temporal resolution although, they are biased.  

1.3 Research Aims 

The aim of this thesis is therefore to overcome the stated problems by using a novel data 

source that combines the advantages of both CDR and GPS data by having both a high 

spatial and temporal resolution: movement data captured by a smartphone navigation 

app (1). Furthermore, we neglect the often-used idea that all users belong to the same 

homogeneous community. For this reason, we try to categorize users into different user 

types based on their spatio-temporal behaviors (2). By analyzing the actual areas that 

the different user types visit, we are presented with a deeper understanding of the spa-

tio-temporal dynamics of different user types in the two biggest Australian cities, Sydney 

and Melbourne, that cannot be found in traditional surveys (3). We therefore analyze the 

spatio-temporal behavior and footprints of all users in the whole of Australia, but then 

test how the distinct groups use the two cities. 

To achieve the stated aims of the thesis, we explore two research questions. The first 

research question aims at the characterization of users into different user types: 

Research Question 1: How can individual users of the navigation 

app be characterized based on their spatio-

temporal footprints in the absence of ground 

truth? What are the principal factors describ-

ing the different user types? 

Hypothesis 1: Navigation app users can be characterized in-

to different user types based on their spatio-

temporal footprints and computed mobility 

patterns. 
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For the purpose of this thesis, both the terms user type and spatio-temporal footprint 

will formally be defined later in section 3.1.  

The established user types only characterize users based on descriptive characteristics of 

the geometries of the spatio-temporal footprints, independent of the actual location of the 

footprints themselves. The fact that a user regularly and daily – except weekends –, 

moves between a location A and B and back, in the morning and afternoon, relates to a 

possible work commuting pattern, disregarding whether A and B are in Sydney or Mel-

bourne. Accordingly, we transform groups of similarly acting users into a human-

interpretable form, which ultimately leads to the formation of the user types. 

In the second research question, we further explore the temporal and spatial character-

istics of the identified user types in the two cities of Melbourne and Sydney. This 

presents us with a deeper understanding of space use by different user types. To address 

this, the following research question and hypothesis are examined: 

Research Question 2: What are the spatio-temporal usage patterns 

of the identified types of users in the two cit-

ies of Melbourne and Sydney? Can individual 

areas be characterized based on temporal us-

age patterns of different user types? 

Hypothesis 2: Different user type use the two investigated 

cities in different ways. They visit different 

places and have different temporal usage pat-

terns. Accordingly, different urban areas 

show distinct visiting patterns by different 

user types. 

1.4 Main Outcomes 

The main contribution of this thesis is a) a methodology to characterize users based on 

their spatio -temporal patterns into human-interpretable user types in the absence of 

ground truth, based on unsupervised machine learning. Additionally, b) we present a set 

of methods to analyze the preferred visit locations and the temporal patterns of these 

visits for the most dominant user types found.  

1.5 Thesis Structure 

Following this introduction is Chapter 2, which provides an overview of the work related 

to this thesis. Chapter 3 gives an overview of the methodology and data used in this the-

sis as well as the pre-processing carried out. Following that is Chapter 4, which presents 

the data analysis steps carried out to characterize the individual users into different us-

er types. Chapter 5 then presents an analysis of the spatial and temporal characteristics 

of the user types found in Melbourne and Sydney. In Chapter 6, the carried research 

questions are discussed in detail and put into context with the existing literature. Fur-
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thermore, possible limitations are discussed in this chapter. The thesis finishes with 

Chapter 7, which concludes and summarizes the main aspects and provides an outlook 

for future work. 
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2. Background and Related Work 

This section serves as a first theoretical introduction into the theme of human mobility 

research and user characterization. Human mobility research is not a new research field 

as such, however, the large availability and pervasiveness of location-acquisition tech-

niques as well as the associated newly arisen data formats fueled its increasing 

emergence in recent years. The emergence of mobile phones in the last 20 years probably 

had the biggest impact on this trend. The numbers of both the usage as well as the 

amount of users and devices are increasing steadily, which leads to a higher availability 

of often huge amounts of location-based data produced by these devices (Parent et al. 

2013; Renso et al. 2012; Zheng et al. 2013). Mobile phones are not only ubiquitous in to-

day’s life, they also enable researchers to collect data in both high spatial (meters) and 

temporal resolution (seconds) (Birenboim & Shoval 2015). 

Section 2.1 gives an overview of the different movement perspectives as well as the most 

often used data types used for human mobility research. In section 2.2, an introduction 

into data mining and movement mining is given. The chapter ends with section 2.6, 

which provides insight into several studies that deal with different topics involving hu-

man mobility research. 

2.1 Movement Perspectives and Data Collection Types 

A wide range of different data types exist that can be used for mobility research. Thus, 

mainly two different types of movement perspectives and approaches to collect move-

ment data can be identified; Lagrangian and Eulerian (Laube 2014; Dodge et al. 2016). 

While the Lagrangian perspective focuses on the change of position of a moving object, 

the Eulerian perspective addresses the tracking of objects as they are passing by an ob-

servation point (see Figure 2.1). 
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Figure 2.1: Lagrangian vs. Eulerian perspective: (a): Lagrangian perspective (e.g. movement of GPS-
tracked animal). (b) Eulerian perspective (e.g. movement along fixed traffic census points). (c) Eulerian per-
spective (e.g. movement along a series of radio cells) (Laube 2014, p.13)  

In this thesis, we mostly address data types originating from mobile phones, since we are 

working with mobile phone data as well. According to Giannotti et al. (2011), such mo-

bile phone data provide an ideal base to understand human behavior. Mobile phone data 

can, however, be collected in many ways and there is no single typical mobile phone da-

ta. In the following sections, we therefore discuss the three dominant types of data sets 

used for tracking mobile users in space and time.  

2.1.1 Call Detail Records 

Call detail records (CDR) data are generated by mobile phone communication activities, 

i.e. making/receiving a call, or sending/receiving a text message. Based on the terminolo-

gy, call detail records belong to the Eulerian approach of data collection. Movement is 

collected as the change of the object relative to a fixed point in space, in this case radio 

antennas (Laube 2014).  

CDR data consist of several attributes, including the phone number of both the calling 

and the receiving user, the start time and the duration of the call (Zheng et al. 2014), as 

it can be seen in Figure 2.2. The meaning of position in the context of CDR data, howev-

er, cannot be compared to position as in GPS-position. The stored position of CDR-data 

consists of the position of the nearest mobile phone antenna and can therefore only serve 

as a proxy for the exact position of the phone call. Thus, the accuracy of positioning of a 

mobile phone is dependent on the seize and shape of a radio cell around a radio antenna.  

CDR data have been used for various research topics, i.e. building networks between 

users (Zheng et al. 2014), examining the variability in human activity spaces (Järv et al. 

2014), detecting differences in everyday activities (Ahas et al. 2015) and understanding 

the spatiotemporal distribution of people within a city (Toole et al. 2012). 

 

Figure 2.2: A snapshot of call detail records (Leng et al. 2016, p.2) 

2.1.2 Handover data 

Handover data is data that is generated when a mobile phone user moves from one radio 

cell to another. Thus, a mobile phone disconnects from one cell and connects to the other 
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(Sagl et al. 2012). Accordingly, handover data can be categorized as a Eulerian data col-

lection approach. Examples of handover data used for mobility research includes works 

by Demissie et al. (2013) who used handover data to detect the traffic status on roads, 

whereas Sagl et al. (2012) presented a visual analytics approach of handover data to ex-

tract collective spatio-temporal mobility.  

In research, handover data have not been used as often as other data types for tracking 

outdoors, mainly due to two reasons. First, not all radio cells are of equal size and shape 

due to their uneven spatial distribution, which makes mobile positioning difficult. The 

second reason is related to the so-called ping-pong-effect (Vajakas et al. 2015). This effect 

happens when a mobile phone alternatively connects to various radio antennas nearby. 

The then arising pattern then might be rather confusing, since it is unknown whether 

the mobile phone is moving or not. 

Handover data are, however, typical for tracking of human movement in indoor spaces, 

such as shopping malls, where Wi-Fi access logs capture handovers between different 

access points (Ren et al. 2016). 

2.1.3 GPS Tracking Data 

The global positioning system (GPS) is made up of a series of satellites orbiting the 

earth. These satellites emit signals that are picked up by the receivers (e.g. GPS sensors 

in mobile phones). With at least four satellites in range, it is possible to triangulate the 

receivers position (Shoval & Isaacson 2007). Due to that and in contrast to the previous 

discussed positioning techniques, GPS offers a higher spatial accuracy. Accordingly, GPS 

tracking is a Lagrangian approach of data collection, unlike the previously presented 

data types. 

Another difference to both CDR and handover data lies in the source of the collected GPS 

data. Whereas CDR and handover are restricted to mobile phones, GPS data can addi-

tionally be collected from, for example, on-board car GPS receivers (Giannotti et al. 2011; 

Pappalardo et al. 2013; Andrienko et al. 2015).  

Like CDR or handover data, GPS data has its drawbacks. Firstly, it is very sensitive da-

ta type due to the fine position granularity. Secondly, researchers are often not 

presented with demographic characteristics of the specific users which makes it hard to 

generate some sort of ground truth.  

2.2 Data Mining 

Data mining is a research field in computer sciences and deals with the automated ex-

traction of patterns and knowledge from large databases or other large repositories (Han 

et al. 2012). Data mining, sometimes referred to as knowledge discovery in databases 

(KDD), has gained a lot of attention in recent years, mainly due to the availability of 

large amounts of data. Han et al. (2012, p.2) remark that the growing amount of data in 

recent years has additionally lead to the understanding, that “powerful tools are needed 

to automatically uncover valuable information and to transform data into organized 

knowledge”.  
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Data mining is a process of knowledge acquisition (Han et al. 2012, pp.6–8), consisting of 

various steps that can be summarized as follows:  

• Data cleaning: the removal of noise and irrelevant data 

• Data integration: the combination of multiple data sources 

• Data selection: the retrieval of data relevant to the analysis talk from the data-

base 

• Data transformation: the transformation of data to have them in an appropriate 

form for mining 

• Data mining: the application of intelligent methods to extract data patterns 

• Pattern evaluation: the identification of truly interesting patterns that are repre-

senting knowledge based on interestingness measures 

• Knowledge presentation: the application of visualization and knowledge represen-

tation techniques to present the mined knowledge to the user 

A similar approach is presented by Fayyad et al. (1996) and can be seen in Figure 2.3. 

Here, data mining is again only one step in a series of processes, ultimately leading to 

the discovering of useful information and knowledge in the data. The steps here included 

are: integration of the data from multiple and heterogeneous data sources, selection of 

useful data, preprocessing, transformation, data mining itself and interpretation and 

evaluation.  

 

Figure 2.3: Six steps of the KDD process (Laube 2014, p.30; adapted from Fayyad et al. 1996)  

The individual steps of the data mining process can therefore be seen as a cyclic process 

of going back and forth again. This means that a data mining step may not only lead to 

an interpretation, but also to a re-transformation of the data itself.  
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2.2.1 Movement Mining 

Data mining can be used in combination with movement data. Laube (2014) defines the 

term used for that combination, movement mining, as follows:  

Movement Mining: Movement mining aims for conceptualizing 

and detecting non-random properties and re-

lationships in movement data that are valid, 

novel, useful, and ultimately understandable 

(Laube 2014, p.31).  

Thus, Laube (2014, pp.31–32) defines the four terms valid, novel, useful and ultimately 

understandable as follows:  

• valid: “properties and relationships should be applicable to new data as well” 

• novel: “properties and relationships should be nontrivial and unexpected” 

• ultimately understandable: “properties and relationships should be simple and in-

terpretable for domain experts” 

• useful: “properties and relationships should be useful for further decision making 

process” 

Laube (2014) further outlines several processes of movement mining, that will also be 

applied in this thesis: Segmentation and filtering (section 3.6), similarity and clustering 

(sections 4.2 and 4.3), movement pattern extraction (i.e. spatio-temporal footprints, sec-

tion 4.1) and exploratory analysis and visualization (sections 5.1 and 5.2). 

Renso et al. (2012) as well as Zheng (2015) use a similar term that refers to the 

knowledge discovery in movement databases; trajectory data mining. The goal of trajec-

tory data mining is to use data mining techniques to extract mobility patterns from a 

large number of trajectories (Renso et al. 2012).  

2.2.2 Supervised vs. Unsupervised (Machine) Learning 

According to Witten et al. (2011), machine learning refers to the technical basis of the a 

data mining approach. Zhou (2003) sees machine learning and data mining as two sepa-

rate disciplines, whereas data mining has received a lot of contributions from the 

machine learning domain. This is further highlighted in a statement about the objective 

of Witten et al.’s (2011, p.xxiv) book, namely to “introduce the tools and techniques for 

machine learning that are used in data mining”. Accordingly, we can see machine learn-

ing both as a separate domain as well as a set of techniques that can be used in a data 

mining approach. 

Most of the learning problems within a data mining or a machine learning approach can 

be categorized either into a supervised or an unsupervised problem (Han et al. 2012; 

James et al. 2013). In supervised learning, unlabeled objects are assigned a class label 

using a model that has been developed based on objects with a known class label (Tan et 

al. 2006). Opposite to that is unsupervised learning, in which we apply an algorithm on 

objects whose class labels are unknown in order to discover classes within the data. The 
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found and learned model, however, cannot tell us the actual semantic meaning of the 

classes found, since the training data is not labelled (Han et al. 2012).  

In the following three sections, we will give examples of some of the most prominent 

learning approaches that are also relevant for this thesis.  

2.3 Classification 

To find groups in a set of data objects such as trajectories or users, several approaches 

can be made, dependent on the information found in the data. One approach is to catego-

rize objects without a label with the help of some known objects with a class label. The 

term used for that supervised learning approach is called classification and is defined by 

Han et al. (2012) as follows:  

Classification: The process of finding a set of models (or 

functions) which describe and distinguish da-

ta classes or concepts, for the purposes of 

being able to use the model to predict the 

class of objects whose class label is unknown 

(adapted from Han et al. 2012, p.18). 

For a classification, we first need a collection of records (training set) with a set of at-

tributes. One of these attributes most consist of the class label itself. The goal of the 

classification is now to find a model for the class labels, based on the values of the other 

attributes (Tan et al. 2006). The model can then be applied on a test set, whose class la-

bels can be unknown (see Figure 2.4). Essential in the classification approach is that the 

derived model is based just on a comparatively small set of the total data, called training 

set, and not on the total data. The test set used to test the model is therefore even small-

er than the training set. Various classification techniques exist, including decision trees, 

rule-based methods, memory based reasoning, neural networks or naïve Bayes (Tan et 

al. 2006; Wu et al. 2011; Han et al. 2012). Cross-validation methods can further be used 

to assure that the impact of training and test data bias is minimized. 

The above definition can further be extended for the case of trajectories, as it is done by 

Lee et al. (2008, p.1081). They define trajectory classification “as the process of predict-

ing class labels of moving objects based on their trajectories as well as other (computed) 

features”. Examples of trajectory classifications include Lee et al.’s (2008) work on vessel 

type classification or Trasarti et al.’s (2011) approach on classifying trajectories to find 

compatible carpooling users. 
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Figure 2.4: An example of a classification approach. First, based on a training set and the help of a learn-
ing algorithm, a model is built. The model will then be applied on a test set class labels are unknown (Tan et 
al. 2006, p.148). 

2.4 Clustering 

Clustering is an unsupervised machine learning method that can be used to discover 

groups of similar objects without a prior knowledge of any class labels (Tan et al. 2006). 

The class labels can, however, be generated after the clustering approach by interpreting 

the different clusters qualitatively. The intra-cluster distances of clusters found should 

therefore be minimized whereas the inter-cluster distances should be maximized (Han et 

al. 2012). Accordingly, the greater the similarity within the group and the greater the 

differences between the groups, the better the clustering (Tan et al. 2006).  

A variety of clustering algorithms exist. An important distinction must be made between 

partitional and hierarchical set of clusters. The partitional clustering approach is based 

on the division of the data objects into non-overlapping clusters (Tan et al. 2006). Exam-

ples of three different partitional clustering approaches can be seen in Figure 2.5. 

Hierarchical clustering on the other hand leads to a hierarchical decomposition of the set 

of data objects (Han et al. 2012). Accordingly, clusters can be identified at multiple scales 

(Thomason et al. 2016). In exclusive clustering, each object is assigned to a single cluster 

whereas in overlapping (non-exclusive) clustering, an object can belong to more than one 

single cluster. A mixture between exclusive and non-overlapping is fuzzy clustering. 

Here, each object is assigned to each cluster with a certain membership degree between 

0 and 1 (Tan et al. 2006). The last distinction lies between complete and partial cluster-

ing. In complete clustering, each object is assigned to an object whereas in partial 

clustering not every object has to be assigned to one cluster.  
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Figure 2.5: Three different ways of clustering based on the same original points (Tan et al. 2006, p.491). 

2.4.1 Clustering Algorithms 

In this thesis, four different clustering algorithms are used which are shortly presented 

in the following sub-sections: 

K-Means 

One of the most known clustering algorithms, K-Means, is a centroid-based clustering 

technique, which means that it uses the centroid of the clusters to represent the cluster. 

The quality of K-Means is therefore measured as the within-cluster validation, which is 

the sum of the squared error between the individual objects in a cluster and their cen-

troid (Jain 2010; Han et al. 2012). To compute the standard error, K-Means randomly 

choses k objects from the data set as starting centroids, i.e. cluster centers. It then as-

signs each data object to the cluster it is most similar. After that, it re-chooses the 

cluster center until the mean value of the cluster is not changing anymore, therefore be-

ing smallest as possible. A disadvantage of K-Means is that outliers have a strong 

influence on the mean value of the clusters, which affects the assignment of other objects 

to the clusters (Han et al. 2012). 

K-Medoid 

An alternative to K-Means is presented by the K-Medoids method which does not use a 

mean value (centroid) to represent the cluster, but an actual existing object. Each re-

maining object is assigned to the cluster of which the representative object is most 

similar. The goal of the K-Medoids method is to minimize the absolute-error criterion, 

which is the sum of dissimilarities between the individual objects and the corresponding 

representative object (Hastie et al. 2009; Han et al. 2012).  

Partitioning Around Medoids (PAM) is an implementation of the K-Medoids method. The 

objective of PAM is to find the representative object (medoid, most centrally located) for 

each cluster. Since PAM tests all objects in the data set until it finds the best medoids, it 

is a time consuming algorithm and therefore does not work well for large data sets (Han 
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et al. 2012). CLARA (Clustering Large Applications) is an implementation of PAM that 

only uses subsets of the total data set to find the best clustering (Halkidi et al. 2001).  

AGNES 

Agglomerative nesting (AGNES) is an agglomerative hierarchical clustering method that 

initially, places each element into a cluster of its own. The elements are then merged 

stepwise based on a closeness criterion such as the Euclidean distance (Brock et al. 

2008). For example, two clusters are merged if elements of these two form the minimum 

Euclidean distance between any two objects in the given clusters (Han et al. 2012). 

DIANA 

Divisive analysis (DIANA) is, as the name already states, a divisive hierarchical cluster-

ing method. At the beginning, DIANA starts with all elements in one single cluster and 

then step by step divides the cluster into smaller clusters until each element belongs to 

only one cluster (Brock et al. 2008). DIANA splits the cluster based on a criterion such as 

the maximum Euclidean distance between the closest neighboring elements in a cluster 

(Han et al. 2012). 

2.4.2 Cluster Validation 

Determining the right and appropriate number of clusters for a given data set is one of 

the most difficult problems in data clustering (Jain 2010), since a variety of decisions can 

have big influences on the result (James et al. 2013). Ideally, the result of a clustering 

has both good statistical properties as well as useful and interpretable solutions (Brock 

et al. 2008; James et al. 2013). 

The appropriate number of clusters is dependent on various decisions. First, the chosen 

clustering algorithm and secondly, whether the input variables should be scaled to have 

a standard deviation of one. By scaling the individual input variables, we specify that 

each variable will be given the same importance in the clustering (James et al. 2013). 

To find both the the accurate clustering algorithm for a given problem as well as the 

number of clusters k, a variety of methods exists. We therefore present five different 

methods, for which an overview is given in Table 2.1.  

Table 2.1: Summary of different clustering validation methods 

Cluster validation method Value demonstrating 

good clustering result 

Value range 

Silhouette width high -1,+1 

Gap statistic high 0, ∞ 

Average proportion of non-overlap (APN) low 0,1 

Average distance (AD) low 0, ∞ 

Average distance between means (ADM) low 0, ∞ 
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Silhouette Width 

An often-used approach is calculating the silhouette width for each number of k. The 

value of the silhouette width measures the degree of confidence on how well each ele-

ment I is clustered (Brock et al. 2008). Well clustered elements have a silhouette width 

value near 1 whereas poor clustered elements have values near -1. Accordingly, the sil-

houette width should be as close to 1 as possible (Rousseeuw 1987; Brock et al. 2008).  

Gap Statistic 

Another approach is presented by Tibshirani et al. (2001)’s gap statistic. The gap statis-

tic runs the clustering algorithm for various sizes of k. It then calculates the dispersion 

for each k, which is the sum of all distances from the points to their cluster mean. By 

sampling uniformly from the original data set, B reference data sets are then formed, 

from which the dispersion is calculated as well. The gap for each size of k is then defined 

as the log value of the mean dispersion of a reference data set minus the log value of the 

dispersion of the original data set.  

Stability Measures 

Besides the silhouette width and the gap statistics, there are additional metrics to 

measure the stability of a clustering, such as the stability measures. These measures 

compare the clustering results of the overall data with the results of clusterings made 

when removing each column, i.e. each data element (Datta & Datta 2003). According to 

Brock et al. (2008), the measures generate good results especially when the data is high-

ly correlated.  

The first of these measures is called average proportion of non-overlap (APN). It 

measures the average proportion of elements that are not clustered in the same cluster 

when clustered with an element removed (Brock et al. 2008). APN generates values in 

the interval [0,1], whereas values close to 0 correspond to consistent clustering results.  

The average distance (AD) is a measure that describes the average distance between 

elements of a cluster when clustering all data and when a column is removed. Unlike 

APN, AD computes values between 0 and ∞, whereas values as close to 0 as possible 
generate the best clustering results (Brock et al. 2008).  

The average distance between means (ADM) describes the average distance between the 

cluster centers again based on the total data and when an element is removed. Like AD, 

ADM generates values between 0 and ∞, whereas small values are preferred (Brock et al. 
2008).  

2.5 Principal Component Analysis 

Principal Component Analysis (PCA) is an unsupervised method to summarize a large 

set of variables to a smaller number of representative variables, i.e. principal compo-

nents (James et al. 2013). Unlike a clustering method, PCA focuses on the analysis of the 

similarities and therefore tries to explain as much variation as possible (van den Berg et 

al. 2006). The newly established principal components (see Figure 2.6) are linear combi-

nations of the original variables, derived from the eigenvectors of the covariance matrix. 
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Figure 2.6: Example of the first two principal components (Z1: green, Z2: blue) based on the two variables 
Population and Ad Spending (James et al. 2013, p.240) 

The direction of the first principal component Z1 is along the direction the variables vary 

the most, i.e. the direction with the biggest and maximal variance. The first principal 

component can further be seen as the line that is the closest to the original data (Hastie 

et al. 2009; James et al. 2013). Theoretically, it is possible to compute an infinite number 

of principal components, however, it makes sense to use only a certain amount of princi-

ple components. The second most important one, the second principal component Z2, is 

again a linear combination of the input variables. Z2 however is uncorrelated with Z1 and 

has the largest possible variance to the first principle component Z1 (James et al. 2013). 

Choosing the Number of Principal Components 

Bro & Smilde (2014) give an overview of different methods to choose the number of prin-

cipal components. The amount of noise is minimized, the smaller we choose the number 

of components. The compression of the variation by having less components can there-

fore lead to statistical benefits in a further statistical modelling process. Each additional 

component is less interesting than the last one due to smaller value of variation it ex-

plains. Dependent on the number of components, also the residuals will change. 

Accordingly, a reasonable number of components has to be chosen (Bro & Smilde 2014). 

Although different methods exist, there is no generally applicable one and a combination 

of several methods should be considered. 

The scree test is one of the most common visualization methods to come up with the 

numbers of principal components (blue line in Figure 2.7). It shows the eigenvalues 

mapped to its corresponding principal component in descending order. Ideally, the scree 

plot shows a steep curve with a bending, at which the curve starts to get flat. According 

to the scree plot, the optimal number of components is where the curve starts to level off 

(Bro & Smilde 2014).  
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A second method to determine the number of components is called Kaiser-Guttman’s 

criterion and refers to the number of components that have an eigenvalue higher than 

one (red line in Figure 2.7). In that case, all the components with an eigenvalue higher 

than 1 explain more than one of the original variables (Bro & Smilde 2014).  

Broken stick is the name of a third alternative which obtains a more realistic cut off for 

the eigenvalues (Bro & Smilde 2014). An additional line is added to the scree plot that 

shows how the eigenvalues would be for random data (green line in Figure 2.7). The dis-

tribution used for the calculation of this line is called broken stick and symbolizes how 

the different lengths of a stick would be distributed when broken into different pieces 

(Bro & Smilde 2014).  

 

Figure 2.7: Scree plot (blue), broken stick (green) and Kaiser-Guttman’s criterion (red) (Bro & Smilde 2014, 
p.2821) 

2.6 Application Areas of Mobile Positioning Data in Human 

Mobility Research 

The in this thesis used data set (a more extensive description follows in section 3.3) has 

some peculiarities. The data is on the one hand based on GPS tuples (latitude/longitude 

& timestamp) captured by a mobile phone application. On the other hand, the data re-

flects movement behavior of vehicles, due to the applications purpose as a mobile phone 

navigation app. Accordingly, we suspect that the data may even give insight into some 

kinds of touristic patterns.  

Based on these peculiarities, the following section is divided into two sections. The first 

section 2.6.1 gives an overview of some results of previous research regarding tourist 

movement. The second section 2.6.2 then presents examples of studies that have used 

classification and clustering approaches to study human movement data. 
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2.6.1 Tourist Movement Research with Mobility Data 

Traditionally, research of tourist movements and tourism dynamics are based on surveys 

and statistics, based on small samples and low granularities (Leng et al. 2016). One of 

these first traditional studies about spatial movement of tourists was conducted by Fen-

nel (1996) on the Shetland Islands. The underlying goal of Fennel was to better 

understand how and where tourists move, in order to find out how much pressure tour-

ists exert on the islands. Fennel was, however, aware that the methods used to capture 

tourist movement admit of improvement. He therefore proposed the adaptation and mod-

ification of the radio-telemetry technology that has, at that time, already been used to 

track animals.  

Although Fennel (1996) underlines the need for a better analysis of spatial and temporal 

behavior of tourists, Shoval & Isaacson (2007) register that only little attention has been 

paid to the evolution of better methods to analyze tourists in both space and time. Until 

2007, the methods used are often limited in accuracy and validity and are most often not 

directed at the probably biggest aspect of tourism, mobility. Leng et al. (2016) indicate 

further problems related with such studies: the often unrepresentative sample sizes and 

the low spatial resolution. However, Shoval & Isaacson (2007) predicted that with the 

utilization of increasingly more sophisticated mobile phones, it is possible to overcome 

these problems and to collect more tourist movements.  

Subsequently, Shoval & Ahas (2016) remark that the change they prophesized did in-

deed eventuate. The need for both new data types and data acquisition techniques even 

has attracted the attention of Eurostat1, which started several projects to start monitor-

ing tourism with mobile positioning data (Ahas et al. 2014; Shoval & Ahas 2016). Shoval 

& Ahas (2016) further explain that the first surge of tourist movement studies were deal-

ing with the feasibility of the various methods and tracking technologies for analyzing 

tourist data. The second surge then deals more with the discovery of spatial phenomena, 

based on the previously examined methods and technologies.  

Furthermore, Shoval & Ahas (2016) emphasize that there are particularly two main ap-

proaches to gather the data used for the various tourism studies. With the first method, 

the researchers must approach tourists actively and present them with a tracking de-

vice. An example for this case is for example given by Edwards & Griffin (2013) who 

tracked 154 participant groups in Sydney and Melbourne to gain better insight into the 

spatial behavior of tourists in cities. The downside of this approach can especially be 

seen in the limited number of participants. Their data do, however, have a greater in-

formation content, since the participants can be asked about their behavior.  

The second passive method is based on data collection from mobile phone networks and 

micro messaging services (Shoval & Ahas 2016). The downside of this approach is the 

advantage of the other approach, namely that most of the time no additional information 

about users are given. It is anticipated however, that due to the mostly huge amount of 

data (Renso et al. 2012; Zheng et al. 2013), this disadvantage can be compensated. 

                                                
1 The statistical office of the European Union (http://ec.europa.eu/eurostat/) 
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Examples for the second type include, for example, the recent work by Leng et al. (2016) 

who used CDR data to extract several tourism indicators in the country of Andorra. 

Among these indicators are flows per country of origin, flows of new tourists, re-

visitation patterns, tourist externalities on transport congestion, etc. While some of these 

indicators are traditionally collected by tourist departments, others could have not been 

collected without the help of georeferenced data sets, in this case originating from CDR 

data.  

Ahas et al. (2007) analyzed the seasonality of foreign tourist’s space consumption in Es-

tonia by using mobile positioning data from anonymized roaming data. They discovered 

that seasonality plays a significant role in the spatial distribution of tourists, meaning in 

the case of Estonia that tourists tend to visit the coast in summer and the inlands in 

winter. Besides the seasonal differences, they further found that tourists of different na-

tions use seasonally different spaces.  

A method to combine both spatial data obtained from mobile phones and information 

from social networks is presented by Girardin et al. (2008). They explored movement of 

tourists in the city of Rome by looking at mobile phone network data and georeferenced 

photos. They emphasize that tourists leave two distinct types of footprints, active and 

passive. User produce active footprints themselves by revealing their locational infor-

mation in their location tagged photos, text messages and sensor photos. Passive tracks 

on the other hand arise when tourists interact with the mobile phone network, leading to 

locational logs and the production of CDR data. 

In this thesis, we will build on an observation by Tietbohl et al. (2008), who argue that 

tourists visiting a new city have a distinct movement pattern. A tourist would visit a 

museum, go to his hotel, go to a night-club, and then return to the hotel. A stop in his 

trajectory could therefore be referring to a touristic place, e.g. a hotel or a hotel.  

2.6.2 Classification and Clustering with Mobility Data 

In the following sections, an overview of studies applying supervised and unsupervised 

machine learning techniques applied to trajectory mining is presented. 

Trajectory Classification 

In trajectory classification, class labels of moving objects will be tried to predict based on 

their trajectories and other features (Lee et al. 2008). It is possible to either classi-

fy/cluster the individual objects and their spatio-temporal patterns or directly the 

individual trajectories itself. In recent years, trajectory classifications has been used for 

various approaches, including mode of transport detection (Biljecki et al. 2013; Das et al. 

2015; Stenneth et al. 2011; Zheng et al. 2008), carpooling profiles (Trasarti et al. 2011) or 

vessel type detection (Lee et al. 2008). 

Several studies have dealt with the development of similarity measures that later can be 

used to divide distinct groups of trajectories. Pelekis et al. (2012) for example evaluated 

several similarity measures through a comparison of synthetic and real trajectories. 

Dodge et al. (2012) on the other hand computed similarity measures between different 
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trajectory sequences based on movement parameters such as speed, acceleration or di-

rection. 

An often-occurring problem in classification approaches is that ground truth is missing 

to evaluate the results of the classification. Several studies have therefore used alterna-

tive approaches to overcome this problem. Renso et al. (2012) conducted an empirical 

evaluation of the results with domain experts, whereas Pappalardo et al. (2013) com-

pared their findings with traffic counts. Biljecki et al (2013) on the other hand manually 

classified their trajectories in order to get some sort of ground truth. Another approach is 

to use contextual information in the trajectories themselves to generate ground truth 

(Lee et al. 2008).  

Categorization of Urban Areas 

In recent years, many studies have used mobility data extracted from trajectories to cat-

egorize urban areas of different sizes into different groups. These studies can be divided 

into three categories, based on their underlying objective. Studies of the first category 

use attractiveness measures to divide areas whereas studies from the second category 

are dealing with techniques to segment urban areas based on their mobility patterns. 

The third and last category than deals with land use classification based on mobility da-

ta. 

An example of the first category is presented by Girardin et al. (2009) who used CDR 

data to quantify the popularity of an urban area. Using the density and the distribution 

of aggregate phone calls and photos taken, they came up with a novel way to measure 

the evolution of attractiveness over time.  

Yuan and Raubal’s (2012) work is an example for the second category. They used hourly 

time series of CDR data to measure the dynamic mobility patterns of urban areas. On 

these time series, they applied a Dynamic Time Warping (DTW) algorithm to measure 

the similarities between the different urban areas. Similar to that is Reades et al. (2009) 

who used eigendecomposition on CDR data instead of DTW to identify and extract 

recurring patterns of mobile phone usage. Based on that, they were able to obtain a 

higher understanding of the individual places and areas (eigenplaces).  

Mobility data can further be used to classify land use, as it is presented by several 

studies. Pei et al. (2014) used both normalized hourly call volume and total call volume 

to develop a method to for urban land use classification. They came up with a 

classification of areas into types such as residential, business, commercial, open space 

and others. Similar to that is the study by Toole et al. (2012) who used CDR data to 

measure the spatiotemporal changes in population. Using clustering, they were able to 

identify groups of areas with similar uses (residential, commercial, industrial, parks and 

other) and similar mobile phone activity patterns. A third approach of this category is 

presented by Grauwin et al. (2015) who study the connection between temporal activity 

profile and land usage in three different cities. Similar to the work by Toole et al. (2012), 

they use clustering to identify urban areas with similar patterns. Yuan et al.’s (2012) 

study tries to combine all of the above categories. Using both human mobility data and 

POI’s, they aim to discover regions within a city with different functions. 
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3. Methodology, Data and Pre-

Processing 

The following chapter gives an overview of the methodology, data and the pre-processing 

steps used in this thesis. The first section 3.1 describes the methodological procedure 

that ultimately leads to the results of this thesis. In the section 3.2, the computing envi-

ronment is presented. An overview of the movement data used for in thesis is presented 

in section 3.3 whereas additional data are presented in section 3.4. In section 3.5, we 

introduce the movement behavior ontology that has been used for the database design, 

presented in section 3.6. Finally, section 3.7 shows an overview of the data cleaning pro-

cesses that have been applied. 

 

Figure 3.1: Structure and workflow of Chapter 3
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3.1 Methodology 

This thesis has two main aims. Firstly, we want to categorize users into groups based on 

their spatio-temporal movement behavior. Secondly, we want to analyze whether the 

places the found groups visit differ from each other. To get a better understanding of this 

research aims, an introduction into the methodological procedure as well as some clear-

ing-up definitions are needed. 

3.1.1 Definitions 

We therefore start with a definition of the User Type, which categorizes a user based on 

its spatio-temporal movement behavior. We define a user type as follows:  

User Type:  A user type describes a model of characteris-

tics which are typical for users with a certain 

spatio-temporal behavior shown in their nav-

igation app usage. 

Based on that definition, we can state that a user type describes the way a user acts, or 

better, the way he uses the navigation app. Accordingly, a user type can, for example, 

stand for a pattern that describes a touristic or a commuter behavior. To get to these 

different user types, we first must form groups of users with similar spatio-temporal 

movement behavior. We do this by applying a set of (un-)supervised machine learning 

techniques on the Spatio-Temporal Footprints of the individual users. We further define 

these spatio-temporal footprints as follows: 

Spatio-Temporal Footprint:  The spatio-temporal footprint describes the 

spatio-temporal usage pattern of the naviga-

tion app of a single user. Accordingly, it is a 

proxy for the space usage over time of a cer-

tain user. 

The spatio-temporal footprint is a set of measures that describes the spatio-temporal 

movement behavior and the space usage over time, shown by the way in which the user 

uses the app to navigate and move around. The spatio-temporal footprint is independent 

of the actual location the user lives, meaning that the spatio-temporal footprints of two 

users living at two completely different locations may be similar. After the application of 

the unsupervised machine learning techniques, we are presented with groups of similar-

acting users, revealing similar spatio-temporal footprints. We then describe the spatio-

temporal footprints of the individual groups and qualitatively interpret them to come up 

with the looked-for user types.  

In the second research question, we are interested in the differences among the found 

user types regarding the spatial and the temporal visiting patterns of two cities; Sydney 

and Melbourne. To address this, we will explore significant locations found along trajec-

tories, called SSE points, in each city and for each user type. We therefore define SSE 

points as follows: 
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SSE point:  A SSE point is either a start point, an end 

point of a trajectory, or the first point of a 

significant stop segment. 

Thus, a stop segment (defined in section 3.6.2) can be seen as a significant stop along the 

route of the trajectory and can be operationalized based on various types of thresholds 

(defined in section 3.6.3). The SSE points stand for the actual places the individual users 

have visited. The location of these places is independent of the spatio-temporal footprints 

of the users and can therefore be used to analyze their patterns. The aggregate of all 

SSE points per user type will then be analyzed for different areas of the cities to get a 

deeper understanding of both the temporal and spatial characteristics of the different 

user types. 

3.1.2 Methodological Procedure 

The structure of this thesis follows the methodological procedure as presented in Figure 

3.2. We start with a characterization of the data used in this thesis, first the movement 

data provided by Sygic in section 3.3, followed by a description of the additional data in 

section 3.4.  

For the design of the database that stores both the Sygic as well as the additional data, 

we use a movement behavior ontology that is presented in section 3.5. The actual data-

base design and its implementation is then outlined in section 3.6. A lot of data cleaning 

was needed to reduce the influence of outliers. We have therefore set various standards 

to remove flawed points, trajectories and users which will be presented in section 3.7. In 

that section, we further present our approach to segment the trajectories, involving the 

stop detection in section 3.6.3. The detection of stops leads us to the formation of the SSE 

points (section 3.6.4) that will later be used to analyze the spatial and temporal differ-

ences of the found user types in Melbourne and Sydney. 

For all users remaining after the data cleaning, we have computed a set of measures 

that describe their spatio-temporal footprints (section 4.1) We then have taken only us-

ers that have used the app while at least 5 days, and have applied a Principal 

Component Analysis (PCA, section 4.2) on their spatio-temporal footprints. We then 

have applied different clustering methods on various numbers of principal components to 

find the best method separating users into distinct groups (section 4.3). In section 4.5, 

the found clusters have then been qualitatively described and interpreted to form the 

different user types.  

In a next step, the SSE points of the individual users of the established user types have 

been aggregated to examine their temporal and spatial characteristics in the two cities of 

Melbourne and Sydney. Therefore, only users have been chosen that have visited either 

of the two cities on at least one day. The chosen methods to analyze the differences in the 

temporal and the spatial characteristics of the user types are described in sections 5.1 

and 5.2. 
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Figure 3.2: Methodological framework of this thesis 

3.2 Computing Environment 

For the hosting of the database, a Linux server (Ubuntu 16.04) with 400GB memory and 

16GB RAM was set up. To store the movement data used for this thesis, PostgreSQL 

9.52, an object-relational database was chosen. Due to the spatial characteristics of the 

data, additionally PostGIS 2.23 and the PostGIS topology extension were used. PostGIS 

is a spatial database extension for PostgreSQL and enables the storing of geometry data 

types such as points, lines, and polygons. Additionally, R (R Core Team 2016) and RStu-

dio-Server4 (version 0.99.902) were installed on the server and used as the analytical 

environment. 

Most data management and processing steps were made in PostgreSQL (section 3.6 to 

section 4.1). The computation of all statistics (from section 4.2 onward) as well as their 

visualization were done in R. Several R-packages were used in this thesis, whereas the 

most important ones are listed in Table 3.1. 

                                                
2 https://www.postgresql.org/ 
3 http://www.postgis.net/ 
4 https://www.rstudio.com/products/rstudio-server/ 
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Table 3.1: An overview of the most important R-packages used in this thesis 

R-Package Name Task Reference 

RPostgreSQL Interface to PostgreSQL-Database Conway et al. (2016) 

dplyr Data Manipulation Wickham & Francois (2016) 

tidyr Data Manipulation Wickham (2016) 

lubridate Temporal Data Manipulations Grolemund & Wickham (2011) 

rgeos Spatial Data Manipulations Bivand & Rundel (2016) 

factoextra PCA Visualizations Kassambara & Mundt (2016) 

cluster Clustering Methods Maechler et al. (2016) 

clValid Cluster Validation Brock et al. (2008) 

RankAggreg Rank Aggregation Pihur et al. (2009) 

spdep Spatial Autocorrelation Bivand & Piras (2015) 

ggplot2 Statistical Visualizations Wickham (2009) 

sp Spatial Objects in R & Choropleth Maps Bivand et al. (2013) 

leaflet Interactive, Map-based Visualizations Cheng & Xie (2016) 

RColorBrewer Colors used for Visualizations Neuwirth (2014) 

3.3 Sygic Data Characteristics 

The in this thesis used data originates from the navigation app producer Sygic5. Sygic 

produces a wide range of mobile phone navigation apps for both Android and iOS, includ-

ing GPS Navigation, Car Navigation, Speed Cameras, Truck Navigation, Taxi 

Navigation and Travel. Sygic’s apps have over 150 million users in total, which makes it 

the navigation app producer with the second highest user count (Sygic 2016). To reduce 

the grade of confusion, the individual app types will be ignored in the remainder of this 

thesis and, accordingly, only the term “app” will be used. 

The data provided by Sygic consists of GPS tuples (latitude/longitude position & 

timestamp) which are enriched with additional information. Each tuple possesses a 

unique ID of both the user and the session it belongs to. All the attributes, including the 

ones further being used for this thesis (highlighted) can be seen in Table 3.2. We further 

define a session as follows: 

Session:  A session is a set of timestamped recordings, 

including GPS locations, of a person using the 

app to navigate.  

 

                                                
5 http://www.sygic.com/gps-navigation 



28 3. Methodology, Data and Pre-Processing 
Sygic Data Characteristics 

 

Table 3.2: Attributes of the original data, as delivered by Sygic. Highlighted in gray are the further used 
attributes. 

Variable Name Description 

sensortime The timestamp (date and time) of the GPS tuple. 

latitude The latitude of the GPS tuple. 

longitude The longitude of the GPS tuple. 

heading Heading value in degrees (0 to 359) at a GPS tuple; if heading is 

invalid or not available it equals -1 

speed The speed at a GPS tuple, computed directly by the device. 

altitude The altitude of the device at a GPS tuple. 

haccuracy  

vaccuracy  

computedbearing  

computedspeed  

foreground  

networktype The network type at the time the app is being used [0, 1, 2, 3] 

regioncode  

sessionid The unique ID of a session. 

deviceid The unique ID of a device- 

platform  

devicemodel  

osversion  

advertisingid  

3.3.1 User Identification 

A unique device ID (deviceid) has been assigned to each device on which a Sygic naviga-

tion app is installed. Hence, it is not possible to identify a unique user, but a unique 

device. Accordingly, a person might use the app on several devices or, several people 

might use the app on the same device. To speak of a unique user in that case is therefore 

not entirely correct. For the sake of convenience however, an individual user is defined 

as the user of a single device. For the remainder of this thesis, the term user ID will 

therefore be used. 

3.3.2 Trajectory Identification 

According to the app producer, each time a user issues a navigation query and starts the 

navigation, a new session ID (sessionid) is generated. Unless the user terminates the 

navigation, a session keeps being recorded. Accordingly, no new session is generated 

when the app is put on standby. When a user enters a tunnel or the loses coverage, how-

ever, the data are not cached.  

Based on some investigations into the data’s structure, we have seen that some sessions 

start almost after the finishing of the previous session. For computational reasons, we 
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have ignored this, and therefore see a session as a trajectory leading from a start point to 

an end point.  

3.3.3 Temporal and Spatial Resolution 

According to Sygic, the individual GPS tuples provided are not map-matched and are 

provided in their raw form, as acquired by the sensors in the user’s mobile devices. The 

data further come along with timestamps in coordinated universal time (UTC). The stat-

ed temporal resolution is five seconds, although this varies from three to nine seconds.  

3.3.4 Spatial and Temporal Extent 

For the spatial extent, we have chosen the country of Australia. Australia (Figure 3.4) as 

a country is an interesting study region to its isolation and associated with it, its lack of 

direct border crossings from/to other countries. To access Australia, almost all tourists 

need to border the country via plane and are dependent on rental cars or public 

transport when moving around in Australia. Moreover, Australia has a high level of ur-

banization (The World Bank 2015) and an increasing amount of traffic (Department of 

Infrastructure and Transport 2012), which makes it an ideal testing ground. 

 

Figure 3.3: Map of the spatial extent of the data used in this thesis, Australia. Source: Maps of World 
(2013) 
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After considering several statistics regarding tourist movement in Australia, the month 

of January 2016 was chosen as the period of investigation. As Figure 3.3 shows, January 

2016 has had about average oversea tourists when compared to previous and following 

months (Australian Bureau of Statistics 2016b). January 2017 additionally shows high 

amounts of domestic overnight tourists in Victoria and New South Wales (Tourism 

Research Australia 2016). Besides that, January is the month where several major 

events are held throughout Australia, such as the Australian Open, one of the most vis-

ited tennis tournaments worldwide.  

 

Figure 3.4: Number of short-term international arrivals, domestic overnight visitors in New South Wales 
(NSW) and Victoria per month (Australian Bureau of Statistics 2016b; Tourism Research Australia 2016) 

3.3.5 Peculiarities of the Data 

Several things are special about the data used for this study, when comparing to other 

known data sets from previous studies. First, the data does have a very high spatio-

temporal resolution (five second interval) for the time the app has being used. According-

ly, it allows us to have a very detailed look at the individual trajectories. A disadvantage 

of that is, that we do not have additional data for the time the app is not being used, i.e. 

the user is moving around without the app running as navigation aid.  

A second peculiarity is the specific purpose of the app itself: navigation. Accordingly, we 

hypothesize that users only use the app in case they want or need additional spatial in-

formation about their route. This spatial information may include information about the 

route itself or information about the road conditions, congestion, and speed cameras. 

Based on that, we do not have continuous information whenever a certain car is used, 

but only whenever additional information is needed by said user. The data therefore pre-

sents a high spatio-temporal resolution, however, only when the app is really used and 

not always a user drives his car. 

This stands in contrast to other data used for mobility studies, such as the data used by 

Pappalardo et al. (2013), which is originating from on-board GPS receivers from cars. 

Such data was collected whenever the car was used, regardless of the task and back-
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ground of the drive. On the one hand, this leads to an even higher stream of data as the 

one we are presented in this thesis. On the other hand, however, the data might origi-

nate only from the local population, which indirectly leads to the third peculiarity of our 

data. The data used in this thesis comes from a mobile app and is therefore acquired by 

the smartphone itself. That said, the navigation app may be used by several types of us-

ers, including professional drivers who regularly use smartphones for navigating. 

The app’s main purpose is to help navigating. We therefore assume that most of the us-

ers are not familiar with their surrounding in which they are driving in. Moreover, we 

argue that a certain proportion of users can be considered as non-native or even touris-

tic. The proportion of tourists/locals can therefore be considered higher as in other data 

sets used for human mobility research.  

3.4 Additional Data 

Besides the data provided by Sygic, we are additionally using two other types of data, a 

demographic data set based on the census of the Australian population by the Australian 

Bureau of Statistics, aggregated by Statistical areas; and OSM (OpenStreetMap) map 

features.  

3.4.1 Census Demographic Area 

The two most populated Australian cities, Sydney, and Melbourne, were chosen to ana-

lyze the spatial characteristic of the SSE points. In 2011, the Australian Bureau of 

Statistics created a new framework to divide the country into different statistical areas, 

called Australian Statistical Geography Standard (ASGS; Australian Bureau of 

Statistics 2016a). Of the five different main structures of ASGS, two are of interest for 

this thesis, namely the Statistical Areas Level 1 (SA1) and the Statistical Areas Level 2 

(SA2). According to the Australian Bureau of statistics (2016a), SA1 units are the small-

est statistical unit for richer demographic data are released. Approximately 55’000 SA1 

units cover the whole of Australia, whereas in each unit, there is an approximate popula-

tion of 400 people. SA1 areas aggregate to larger SA2 areas with each about 10’000 

inhabitants. For the whole of Australia, about 2’196 SA2 units exist (Australian Bureau 

of Statistics 2016a). 

For this thesis, both SA1 and SA2 data for the metropolitan areas of Melbourne and 

Sydney were chosen. A first analysis showed that the SA2 areas offer more comprehen-

sive data than SA1 areas, at a level necessary for this thesis. Due to that, only SA2 areas 

were further used in the analysis. 

Table 3.3: Background information on the two cities (Australian Bureau of Statistics 2015) 

City Area (km2) Population Population Density (people/km2) 

Melbourne 9’138.75 ~4’529’500 453 

Sydney 10’687.12 ~4’921’000 400 
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3.4.2 OSM Map Features 

OSM data was used to semantically enrich the start, stop and end points (SSE points). 

Data was extracted from OSM via its API, Overpass Turbo6, whereas a focus was set on 

cartographical elements that could be important for a navigation app user. We defined 

these places as POI’s (points of interest) for which we expect users to look for when using 

the app. The respective elements (see Table 3.4) were selected after an examination of 

the different map features of OSM7.  

OSM data can consists of three different types: nodes, ways, and relations. Nodes define 

points, whereas ways can both define linear features and boundaries (lines and poly-

gons). Since relations can be consists of several nodes and ways at once, only nodes and 

ways were used for this thesis. The downloaded nodes and ways were then stored in the 

database. 

Table 3.4: Overview of the downloaded OSM map-features as stored in the database (state: January 23rd, 
2017) 

OSM Key OSM Value # of POI’s # of Lines # of Polygons 

tourism attraction 1’523 12 420 

tourism viewpoint 4’447   

tourism hotel 1’139  733 

tourism hostel 239  71 

tourism motel 1’240 1 563 

tourism guesthouse 365  78 

tourism camp_site 5’740  557 

tourism caravan_site 602  1’223 

tourism chalet 138  187 

tourism theme_park 22  31 

tourism zoo 24  51 

tourism museum 608  235 

amenity car_rental 186 1 29 

amenity restaurant 5’088 1 636 

amenity fast_food 4’371 2 629 

amenity bar 617  48 

amenity pub 2’809 1 792 

amenity cinema 221  62 

amenity nightclub 80  22 

amenity theatre 151  113 

amenity marketplace 38  46 

amenity place_of_worship 2’855  1’784 

                                                
6 https://overpass-turbo.eu/ 
7 http://wiki.openstreetmap.org/wiki/Map_Features 
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amenity parking 6’807  31’671 

amenity cafe 4’635  476 

amenity kindergarten 458 1 380 

amenity school 1’033 5 7’391 

amenity college 70 2 334 

amenity university 33  246 

amenity hospital 352  710 

shop mall 56  870 

shop supermarket 2’797  634 

leisure fitness_centre 98  15 

leisure sports_centre 637  1’470 

leisure stadium 16  180 

public_transport station 1’071 12 135 

office * 1’129  393 

3.5 Mobility Behavior Ontology used for Database Design 

We are adapting the ontology of mobility behavior from Renso et al. (2012) for our data-

base design. They propose a mobility behavior ontology based on two conceptual levels 

(Figure 3.5). The core ontology (orange) describes the concept of human behavior, inde-

pendent of a specific application domain. It uses the concepts of trajectory, stop, move, 

time and pattern. The application ontology in green and blue consists of various ele-

ments that are relating to the application context. In the given case study designed by 

Renso et al. (2012), the application ontology relates to the movement of tourists in urban 

spaces, e.g. visiting tourist places or staying at a particular accommodation. 

 

Figure 3.5: An example of a possible mobility behavior ontology defined by Renso et al. (2012, p.34). Core 
ontology elements are emphasized with orange boxes, application ontology elements in blue and green. 
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3.6 Conceptual Database Design (ER-Model) 

Based on the possibility of identifying both user and trajectory and the ontology in Fig-

ure 3.5, a first draft of an entity-relation model (ER-Model) was established (Figure 3.7). 

This first draft consists of three entities whose information can be found in the raw 

movement data. The first entity, called user, stores information about the individual 

users whereas the session entity stores information about the individual sessions. The 

point entity stores information about the individual tuples (coordinates & timestamp).  

As shown in Figure 3.7, each user can generate one or more sessions which then consists 

of one or more points. Each session can, however, only be assigned to one user. This is 

similar with the points, which each can only be assigned to one session. Both the entities 

user and session have their respective ID’s already through the original data, the prima-

ry key of the point entity, however, had to be established first. 

3.6.1 Adding Movement Information 

The session entity stores information about trajectories. To define a trajectory, we adapt 

the definition of Renso et al. (2012) as follows: 

Trajectory:  A trajectory is the footprint of different posi-

tions of a moving object. It is a sequence of 

tuples recorded by a tracking device (adapted 

from Renso et al. (2012)). 

Accordingly, lining up all points of a session then forms a trajectory. The trajectories 

found in the data show the individual users spatio-temporal behavior over a specific 

amount of time. If we sum up the individual trajectory over an overlying time period, we 

come up with movement tracks (Figure 3.6), as suggested by Parent et al. (2013). These 

movement tracks can be defined as follows: 

Movement Track:  A movement track is the sum of all recorded 

positions of an individual over a defined peri-

od (adapted from Parent et al. (2013)).  

 

Figure 3.6: Trajectories (bold lines), movement tracks (dotted and bold lines) and the whole movement 
(Parent et al. 2013, p.4) 

Based on that, a new entity storing information about a users’ daily activity was created, 

named dailymovement (Figure 3.8). dailymovement is related to a movement track over 

the period of a day and describes the sum of all trajectories over that period.  



3. Methodology, Data and Pre-Processing 
Conceptual Database Design (ER-Model) 

35 

 

 

Figure 3.7: First draft of the ER-Model 
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Figure 3.8: Second draft of the ER-Model 
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3.6.2 Semantic Classification of Trajectory Segments 

Although most trajectories show some movement behavior, we cannot assume that a us-

er was continuously moving around while producing a trajectory. As Spaccapietra et al. 

(2008) emphasize, trajectories may themselves be semantically segmented into different 

time intervals. In this thesis, we have classified each point of a trajectory into start, stop, 

move and end, as it is proposed by Spaccapietra et al. (2008). Accordingly, a trajectory is 

a sequence of moves from a start to an end point, intersected by stops. We therefore de-

fine the terms start point, end point, stop segment and move segment as follows: 

Start Point:  A start point is the first tuple of a trajectory. 

End Point: An end point is the last tuple of a trajectory. 

Stop Segment: A stop segment is a sequence of tuples where 

the distance between any adjacent position is 

less than a spatial threshold and the time 

spent within the sequence is greater than a 

time threshold (adapted from 

Phithakkitnukoon et al. 2010).  

Move Segment:  A move segment describes a segment of a tra-

jectory which shows continuous movement 

and no stop segments. Accordingly, it starts 

either at a start point or the last point of a 

stop segment and ends at the last point of a 

stop segment or at end point of a trajectory. 

Furthermore, we define the summed up and covered distance in a move segment as fol-

lows: 

Step Length:  The step length is the sum of covered dis-

tance between two tuples in a move segment. 

It must not be mistaken with the direct Eu-

clidean distance.  

The overlying goal of the approach to classify segments and individual points of the tra-

jectory is to obtain so called semantic trajectories. This can be achieved by attaching 

semantics to the stop segments as well as to the start and end points of the individual 

trajectories.  

Semantic Trajectory: A semantic trajectory is a trajectory that has 

been enhanced with annotations regarding 

the individual segments (adapted from Spac-

capietra & Parent (2011) and Parent et al. 

(2013)).  
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3.6.3 Stop Detection 

In the last section, a stop segment has been defined. A literature review showed that 

several methods can be carried out to compute the individual stop segments in trajecto-

ries. Zheng et al. (2011) and Andrienko et al. (2013) computed stops as sequences of 

tuples whose spatial and temporal extent is below a certain threshold. A similar ap-

proach is presented by Alvares et al. (2007) with their SMoT-method. Here, a stop is 

defined as a position where a trajectory stops for a certain amount of time at a, by the 

application predefined, POI. A third approach is presented by Tietbohl et al. (2008), who 

propose a speed-based spatio-temporal clustering approach to detect stop segments.  

Based on a thorough data examination, we decided to compute the stop segments based 

on spatio-temporal thresholds, similar to Andrienko et al.’s (2013) approach. The goal of 

our stop detection approach was to find stops that that enable a user to execute a mini-

mal task. We have therefore tested several temporal and spatial thresholds on a small 

set of trajectories and have further visualized the resulting trajectories and the found 

stop segments, respectively. The resulting visualizations then have shown that a tem-

poral threshold of five minutes and a spatial threshold of ten meters generate reasonable 

stop segments that stand in great contrast to stops on a smaller temporal level, that 

could arise due to congestion. Within a stop lasting at least five minutes, the respective 

user can interact with the environment and the actual location. Accordingly, we have 

come up with the following working definition of a stop point: 

Stop point:  A stop point is the first tuple of a stop seg-

ment. A stop segment is declared as a series 

of tuples, with almost no movement (> 10 me-

ters) in the next 5 minutes.  

To compute the sum of the covered distances over the next 5 minutes for each tuple, a 

moving window was applied on each entry of the point entity. The corresponding SQL-

query for that can be seen in the Code Fragment 1 in Appendix .  

3.6.4 Implementation of SSE Points 

In the given case of this thesis, it is not entirely clear whether the app stops the record-

ing of a session when being in stand-by for too long. Accordingly, it is possible that stop 

events are manifested in both the actual stop points and the end points of the trajecto-

ries. Based on that, we decided to store the start, stop and end points all together in one 

single entity.  

To store information about both the move segments and the SSE points, we came up 

with new entities called move and start_stop_end_point (see Figure 3.9). The move entity 

stores information such as the step length (the distance covered in a move segment) as 

well as the average speed in the move segment.  

The entity start_stop_end_point consists of the start and end points of the individual 

trajectories as well as the first point of the stop segments, as defined above. The SSE 

points were further semantically enriched with OSM POI’s. 
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3.7 Data Cleaning  

Table 3.5 gives an overview of parameters set for considering the recorded trajectories 

and users in the analysis. This is a data cleaning process aiming to reduce the influence 

of outliers impacted by data collection errors on the analysis. The therefore applied oper-

ations are not only parameters, but more a sequence of filtering operations that have 

been applied in the specified order. 

Table 3.5 further shows that the relative amount of data lost is lower when looking at 

the sole number of tuples than when looking at the number of sessions. Accordingly, 

most of the discarded sessions consisted of small amounts of GPS tuples. 

Table 3.5: Self-set data standards and its effect on the amount of data 

Operation No. of Tuples remaining No. of Sessions remaining 

Original Data 166’200’862  

Removal of all points with no session 

ID, device ID and coordinates or wrong 

timestamp 

160’030’885 2’363’140 

Removal of all sessions with less than 

24 points (less than 2 minutes long) 

147’328’974  

Removal of all sessions that are shorter 

than 300 meters 

127’611’519 545’566 

Removal of all sessions that have veloc-

ities higher than 50 m/s (180 km/h) 

127’047’175 545’553 

Removal of all users with less than 10 

distinct points 

126’872’144 545’444 

Removal of users whose number of ses-

sions is much smaller than the number 

of days used 

126’468’040 545’440 

Relative amount of data remaining 76.09% 23.08% 
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Figure 3.9: The complete ER-Model of the PostgreSQL-database 
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4. From Users to User Types 

The following chapter describes the data analysis methods used that ultimately lead to 

the worked-out user types (seen in Figure 4.1). Presented from section 4.1 onwards is the 

workflow of the categorization of the individual users into different user types. This pro-

cess starts with section 4.1 showing the different measures that have been calculated for 

each user, describing each user’s spatio-temporal footprint. In section 4.2, we describe 

the application of PCA as a means to reduce the dimensionality of the data. Following 

that is section 4.3, in which we study the characteristics of dominant, cohesive clusters of 

users based on the most significant principal components identified by the PCA. In sec-

tion 4.4, a definite clustering approach is chosen based on the results of the clustering 

validation in section 4.3.1. Finally, in section 4.5, we describe the individual clusters and 

interpret quantitatively, leading up to the formation of user types.  

 

Figure 4.1: Workflow of Chapter 4 

4.1 User Measures – Spatio-Temporal Footprints 

To characterize users into different cluster that later can be interpreted to form user 

types, 36 measures8 were calculated that reflect the users spatio-temporal footprints 

(Table 4.1). From these 36 measures, the first 33 measures (highlighted) are further 

                                                
8 In machine learning, such measures are often called features or attributes. 
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used for the PCA, whereas the other three measures are only used for the qualitative 

description and interpretation of the later found user types in section 4.5. 

These measures were computed based on spatial, temporal, and spatio-temporal charac-

teristics of the different users. The goal was to establish a spatio-temporal profile, i.e. 

footprint for each user, which can be used for a best possible division of the individual 

users into distinct groups. No aggregate measures about sessions were computed due to 

problems with session characterization. Due to that, only daily movement pattern char-

acteristics were computed that do not suffer as much from the uncertainties in the 

session definition. 

 

Table 4.1: Overview of the calculated measures per user. Shaded measures are used for the PCA whereas 
non-shaded measures are only used for qualitative interpretation of found user types. 

 Variable name Clarification and Description 

1 num_days The number of days the user has used the app. 

2 num_cons_days The highest number of consecutive days the user has used the app. 

3 num_dstnct_wdays The number of distinct weekdays the user has used the app. 

4 period The number of days between the first and last usage. 

5 tot_dist The total distance the user has covered [m]. 

6 tot_time The total amount of time the app has been running [s]. 

7 area The area of the concave hull of all sessions [m2]. 

8 circum_hull The circumference of the concave hull of all sessions [m]. 

9 max_dist The maximum distance within the concave hull of all sessions [m]. 

10 complexity The complexity of the concave hull (area/circumference). 

11 compactness The compactness of the concave hull [4*area/π*max_dist2]. 

12 mean_d_dist The average distance covered in a day [m]. 

13 sd_d_dist The standard deviation of the average distances per day [m]. 

14 mean_d_area The average area of the daily concave hulls [m2]. 

15 sd_d_area The standard deviation of the daily concave hulls [m2]. 

16 mean_d_overlp_pc The average percent of overlap of two consecutive9 daily concave 

hulls [%]. 

17 sd_d_overlp_pc The standard deviation of the percentage of overlap of two consecu-

tive daily concave hulls [%]. 

18 mean_d_cent_dist The average distance of two consecutive daily centroids [m]. The 

centroid is the centroid of the daily concave hull. 

19 sd_d_cent_dist The standard deviation of the distance between two consecutive 

daily centroids [m]. 

20 mean_dist_overall_cent The average distance between the daily centroid and the overall 

centroid [m]. 

                                                
9 in this and the following cases as well, consecutive refers to the next day the app has been used, 
which does not necessarily mean the day after. 
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21 sd_dist_overall_cent The standard deviation of the distance between the daily centroid 

and the overall centroid [m] 

22 num_move The absolute number of move segments in all sessions. 

23 mean_step_length The average distance covered in a move segment [m]. 

24 sd_step_length The standard deviation of the step length [m]. 

25 mean_move_speed The average speed in the move segments [m/s]. 

26 sd_move_speed The standard deviation of the speed in the move segments [m/s]. 

27 num_stops The number of stops in all sessions. 

28 sse_osm The number of SSE points near OSM POIs.  

29 tot_stop_dur The total duration of all stops [s]. 

30 mean_stop_dur The average duration of a stop [s].  

31 sd_stop_dur The standard deviation of the stops [s]. 

32 sd_time The standard deviation of all time stamps [s]. 

33 num_clusters The number of clusters of SSE points. 

34 days_melb The number of days the user has spent in Melbourne. 

35 days_syd The number of days the user has spent in Sydney. 

36 days_scen The number of days on one of the six scenic roads. 

4.1.1 Temporal Measures 

We both considered absolute temporal measures such as the absolute number of days 

(num_days), as well as relative temporal usage measures such as the highest number of 

consecutive usage days (num_cons_days). Besides that, we computed the number of dis-

tinct weekdays (num_dstnct_wdays), giving us an overview on how regularly the app is 

used in terms of different weekdays. Another temporal measure is called period and de-

scribes the number of days that lie between the first and the last usage in the month of 

January.  

4.1.2 Daily Area and Centroid 

An area per day is first needed to later compute the daily overlap of two consecutive 

days. The area can be computed based on several different assumptions and functions 

such as, for example, the convex hull or the concave hull. Both geometries represent a 

geometry that encloses all given geometries, i.e. points. As it can be seen in Figure 4.2, 

concave hull encloses the geometries in a far better way. PostGIS (2016) describe the 

concave hull as the “geometry you get by vacuum sealing a set of geometries”, whereby 

the smaller the chosen target percent, the smaller the area in comparison to a complex 

hull.  

For the computation of the concave hull and the centroid of the concave hull, the two 

PostGIS-functions ST_ConcaveHull and ST_Centroid were used (PostGIS 2016). An ex-

ample of the application of that function can be found in the Code Fragment 4 in 

Appendix C. 
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Based on the concave hull, several user values were then calculated, including the over-

all area (area), the mean daily area (mean_d_area), the standard deviation of the daily 

area (sd_d_area), the mean overlap of the areas of two consecutive days 

(mean_d_overlp_pc) as well as its standard deviation (sd_d_overlp_pc). Furthermore, the 

circumference of the overall area (circum_hull) as well as the complexity and the com-

pactness were calculated based on the concave hull function. 

The daily centroid was further being used for the calculation of the mean distance be-

tween two consecutive daily centroids (mean_d_cent_dist) and its standard deviation 

(sd_d_cent_dist). Both the daily and the overall centroid were then used for the calcula-

tion of the mean distance between the overall and the daily centroid 

(mean_dist_overall_cent) and its standard deviation (sd_dist_overall_cent).  

  

Figure 4.2: The convex hull (left) and the concave hull (right) for the same set of points (Ubicomp@UMinho 
2006) 

4.1.3 Number of Spatial Clusters 

The number of spatial clusters for each individual user was calculated using the 

ST_ClusterWithin-function, due to the unavailability of the new ST_ClusterDBScan-

function in version 2.2 (see Code Fragment 5 in Appendix C). Like the DBScan-

algorithm, ST_ClusterWithin takes an eps value as input, representing the minimum 

distance from which the individual points must be separated from each other to become 

part of a cluster. The ST_ClusterWithin-function does, however, not have a minpoints-

input parameter. Accordingly, already single points can form a cluster.  

We tested several eps-values for their usability and finally came up with 15 meters as an 

appropriate eps-value. This leads to a maximum radius of 167 meter for the biggest clus-

ter. The computed spatial clusters were then counted for each user and stored in the 

measure num_clusters. Furthermore, only clusters containing at least 2 points were con-

sidered.  

4.1.4 Number of Moves, Stops and SSE Points at POI 

The computed stops, the SSE points and the move segments are used to compute several 

measures. The number of moves (num_moves) describes the number of moves between 

SSE points. Therefore, a move segment can be between a start of a trajectory and a stop, 

between a stop and another stop, or between a stop and an end point of a trajectory. As 

described in section 3.6.2, a move segment is not between an end point and a start point. 



4. From Users to User Types 
Principal Component Analysis 

45 

 

Based on that, the average step length, the sum of all covered distances 

(mean_step_length) as well as its standard deviation were calculated (sd_step_length). 

Furthermore, the mean speed in the move segments (mean_move_speed) and again its 

standard deviation (sd_move_speed) were computed.  

Since the absolute number of SSE points strongly correlated with the number of moves, 

only the number of stops itself was considered for further purposes. Besides that, the 

duration of the stops was taken into consideration. Both the absolute amount of stopping 

time (tot_stop_dur) as well as the mean stopping duration (mean_stop_dur) and its 

standard deviation (sd_stop_dur) were calculated.  

The SSE points were further used to compute the absolute amount of points that are 

close to an OSM POI (Table 3.4 in section 3.4.2). To test the type of the nearest POI for 

each SSE point, we measured the distance between each SSE point towards each OSM 

POI and stored both the distance as well as the type of the nearest POI. 

4.1.5 Scenic Roads 

Based on information from Tourism Australia (2017), six scenic roads were elaborated to 

further check for touristic movement. These routes (Table 4.2) are among the routes rec-

ommended for self-driving tourists, but have the distinction of not being part of one of 

the main routes of Australia. For all users, we checked how many days they spent on 

such routes. The same was done for the two cities of Melbourne and Sydney. The result 

measures are called days_scen (scenic routes), days_melb (Melbourne), days_syd (Syd-

ney). These measures are only computed for the qualitative interpretation of the 

clustering results in section 4.5 and are not used in the machine learning (clustering) 

part of the methodology. 

Table 4.2: The chosen scenic routes as recommended by Tourism Australia (2017) 

Name Start Destination End Destination State 

Great Ocean Road Warrnambool Torquay Victoria 

Great Alpine Road Wangaratta Bairnsdale Victoria 

Great Eastern Drive Hobart Bay of Fires Tasmania 

Nature’s Way Darwin Kakadu NP/Litchfield NP Northern Territory 

Gibb River Road Derby Wyndham Western Australia 

Upper Gold Coast Noosa Bundaberg Queensland 

NSW Coastal Drive Wollongong Eden New South Wales 

Uluru-Kata Tjuta National Park Northern Territory 

4.2 Principal Component Analysis 

In this study, a set of 36 variables (see Table 4.1) defines each user. From these 36 vari-

ables, only the shaded ones (1 to 33) were chosen for the Principal Component Analysis 

(PCA). Furthermore, only the spatio-temporal footprints of users using the app for at 

least 5 days were taken into the PCA. 
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Each user is characterized by the measurements of a 33-dimensional space, built up by 

the different variables corresponding to its spatio-temporal behavior. It is, however, pos-

sible that not every variable is equally important, meaning that it does not contribute a 

significant amount of additional information. The goal of the PCA is now to find a re-

duced amount of dimensions that explain as much variability in the data as possible 

(James et al. 2013).  

4.2.1 Variable Transformation 

Before applying PCA on a set of variables, it can be advisable to transform and scale the 

variables. The goal of scaling is to transform the variables in way that they are more 

comparable to each other. By apply a scaling method, the individual variables will be 

transformed to an equal scale and therefore have the same variance. Accordingly, every 

variable gets the same opportunity to be modelled (Bro & Smilde 2003; Bro & Smilde 

2014). In our case, we scaled the variables by subtracting the mean of the variable from 

the original values and divide it by the standard deviation of the variable: 

. 

Besides scaling, it can sometimes be advisable to transform the variables to correct for 

heteroscedasticity. A (dependent) variable shows heteroscedasticity when the variability 

is unequal across the range of values of another, independent second variable that is 

predicting the first variable. Accordingly, resulting scatterplots will show cone-like 

shapes. By correcting a variable for heteroscedasticity, we nonlinearly convert the varia-

bles in order to make skewed distributions more symmetric (Kvalheim et al. 1994; van 

den Berg et al. 2006). 

To test which transformation is best for the individual variables, a sensitivity analysis 

was carried out. Each variable was transformed with eight different methods, summa-

rized in Table 4.3 with its corresponding R code formula.  

Table 4.3: Applied transformations and their corresponding R formulas 

Name of Transformation Method Formula 

Log log (x+1) 

Log-log log (log (x+1) +1) 

Exponential exp(x) - 1 

Square-root sqrt(x) 

Cube-root x1/3 

Squared x2 

Arcsine asin(x) 

Box-Cox BoxCox(x, lambda) 

whereas lambda = BoxCox.lambda(x) 
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For each of the transformations, the variable was scaled and the skewness value of the 

distribution was calculated. The transformation which then generated the smallest 

skewness value was chosen to apply on the variable. An overview of the chosen trans-

formation and its resulting skewness value can be found in Table 4.4. No transformation 

and scaling was carried out on the variable num_dstnct_wdays, since it consists of values 

between 0 and 7 and can therefore be seen as categorical values. An example of such a 

transformation is shown in Figure 4.3, depicting the histogram of the variable tot_dist 

before and after a log-transformation and scaling.  

  

Figure 4.3: Histogram of the variable tot_dist before and after log-transformation and scaling 

Table 4.4: Calculated values per user plus their respective transformation and skewness 

Variable name Transfor-

mation 

Skewness Variable name Transfor-

mation 

Skewness 

num_days Box-Cox -0.222958 sd_d_cent_dist Log 0.295666 

num_cons_days Box-Cox -0.211128 mean_dist_overall_cent Log 0.341430 

num_dstnct_wdays none  sd_dist_overall_cent Log 0.244463 

period Box-Cox -0.204735 num_move Log-log -0.019090 

tot_dist Log 0.038953 mean_step_length Box-Cox 0.304437 

tot_time Log-log 0.116752 sd_step_length Cube root 0.524025 

area Log 0.100981 mean_move_speed Box-Cox -0.170996 

circum_hull Log-log -0.214989 sd_move_speed Box-Cox 0.220747 

max_dist Log-log -0.255113 num_stops Log-log 0.382013 

complex Log -0.049242 num_stops_osm Box-Cox 0.018134 

mean_d_dist Log 0.001933 sse_osm Log 0.069613 

sd_d_dist Log -0.154309 tot_stop_dur Log -1.801491 

mean_d_area Log -0.177279 mean_stop_dur Cube root 1.131058 

sd_d_area Log -0.139491 sd_stop_dur Log -0.282285 

mean_d_overlp_pc Square 

root 

-0.106194 sd_time Box-Cox 0.129586 

sd_d_overlp_pc Expo-

nonential 

0.063043 num_clusters Log-log -0.042493 

mean_d_cent_dist Log 0.177174    
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4.2.2 Interpretation of PCA Outputs 

Based on the now transformed and scaled variables, a PCA was carried out. As it can be 

seen in Figure 4.4 and Table 4.5, the first two components describe a relative big amount 

of the variance of the original variables. At the third principal component, the proportion 

of variance drops. At the sixth principle component, the steepness of the curve in Figure 

4.4 again drops and is continuing with an even descent.  

To visualize the score of each user as well as the loading of each variable on the first 

principal components, a biplot was generated (Figure 4.5). It shows that a lot of users are 

centered around the center of the plot [0,0]. Certain users however can be seen in the 

right bottom of the biplot, therefore having bigger loadings on the first principal compo-

nent and smaller ones on the second principal component. What can further be seen is 

that two variables (mean_move_speed, mean_step_length) show into the opposite direc-

tion of most of the other ones. Already in this plot, that only shows the first two principal 

components, a certain kind of clustering can be seen by having one large group around 

the center and one smaller in the left bottom corner.  

 

Figure 4.4: Percentage of variance explained per principal component. 

Table 4.5: Importance of the individual components of the PCA 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

Standard deviation 3.462 2.614 1.464 1.346 1.154 1.003 0.971 0.872 0.832 0.824 

Proportion of Vari-

ance explained [%] 

38.66 22.03 6.91 5.84 4.30 3.25 3.04 2.46 2.34 2.12 

Cumulative Propor-

tion of Variance 

explained [%] 

38.66 60.69 67.6 73.44 77.74 80.99 84.03 86.49 88.72 89.82 
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Figure 4.5: Biplot of the first two components of the PCA 

4.2.3 Description of the found Principal Components 

To get a deeper understanding of the found principle components, the following sections 

will give an overview of the first four principal components as well as a short interpreta-

tion.  

First Principal Component 

The first principal component PC1 (Figure 4.6) is dominated by a variety of input varia-

bles whereas the variables tot_distance, complex and area contribute to PC1 with the 

highest percentage values. If we compare the PC1 values with the values of the original 

variables, we can state that the higher the PC1 value… 

…the smaller the total distance covered, 

…the smaller the complexity (overall area of concave hull divided by circumfer-

ence), 

…the smaller the overall area covered, 

…the smaller the average and the standard deviation of the daily area covered and 

…the smaller the standard deviation of the daily distance covered. 

Based on these observations, several interpretations can be made. Users with a rather 

high PC1 value tend to cover big distances and a wide range of different trips, thus cov-

ering large areas. The first principal component can therefore be interpreted as some 

sort of description of the overall mobility of the individual users.  
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Figure 4.6: Contributions of the individual variables to the first principal component 

Second Principal Component 

The second principal component (Figure 4.7) is highly dominated by the contributions of 

the distances of two consecutive centroids (mean and standard deviation) as well as the 

distance of the daily centroids to the overall centroid (mean and standard deviation). 

Other variables with high contributions are the number of stops and the number of 

moves. If we compare the PC2 values with the original variable values, we state that the 

higher the PC2 value… 

…the higher the average and the standard deviation of the distance between two 

consecutive daily centroids, 

…the higher the average and the standard deviation of the distance between the 

overall centroid and the daily centroids, 

…the higher the maximum distance in the overall concave hull, 

…the smaller the number of stops and  

…the smaller the number of moves. 

 

Figure 4.7: Contributions of the individual variables to the second principal component 
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Based on these observations, the second principal component can be defined as a descrip-

tion of the spatial inconsistency of the individual users. Accordingly, the smaller the 

spatial inconsistency (PC2), the higher is the probability that the user has spent its time 

in the same environment, the same city. The higher the spatial inconsistency (PC2), the 

higher is the probability that the user has moved around a lot. 

Third Principal Component 

The third principal component is dominated by the contributions of the average daily 

distance covered (mean_d_dist) and its standard deviation (sd_d_dist) as well as the 

mean overlap of the concave hull of two consecutive days (mean_d_overlp_pc) and its 

standard deviation (sd_d_overlp_pc). If we compare the PC3 values with the original var-

iable values, it can be stated that the higher the PC3 value… 

…the smaller the average and the standard deviation of the daily distance covered 

and 

…the higher the average and the standard deviation of the overlap of the consecu-

tive concave hulls. 

 

Figure 4.8: Contributions of the individual variables to the third principal component 

Based on these observations, the third principal component can be seen as the opposite 

of PC2 and describes the spatial consistency of a user. Accordingly, the higher the spatial 

consistency (PC3), the higher is the probability that the user has spent its time in the 

same environment. 

Fourth Principal Component 

The forth principal component is highly dominated by the contribution of the average 

stop duration (mean_stop_dur). As it can be seen in Figure 4.9, smaller, but still im-

portant contributions are made by the standard deviation of the stop duration as well as 

the overall cumulated stop duration. If we compare the PC4 values with the original var-

iable values, it can be stated that the higher the PC4 value… 

…the higher the average and the standard deviation of the stop duration and 

…the higher cumulative stop duration.  
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Figure 4.9: Contributions of the individual variables to the fourth principal component 

Based on these observations, the forth principal component can be described as the stop-

ping behavior of a certain user. Accordingly, the higher the stopping behavior (PC4), the 

higher is the probability that the user shows a lot of stops in his trajectories. 

4.2.4 Choosing the Number of Principal Components 

As reviewed in the background section, there are several methods to choose the number 

of principal components. Accordingly, the scree plot as well as the eigenvalue method 

and the broken stick method were applied to come up with reasonable numbers of prin-

ciple components.  

In Figure 4.10, all three methods combined are presented. It shows that the elbow of the 

scree plot is at the third principal component. However, this is a very small number of 

components that only explains about 67.601% of the variation (see Figure 4.11). Regard-

ing the eigenvalue, Figure 4.10 shows that the first six principal components have an 

eigenvalue bigger than 1 (Kaiser-Guttman’s criterion), explaining 80.99% of the varia-

tion. The last applied method, the broken stick method, also indicates that three 

principal components seem to be reasonable.  

As Bro & Smilde (2014) suggest, it may be reasonable to take more than just two or 

three components in case they only describe 50% of the variance. On the other hand, it 

can lead to an overfitting when choosing all components that describe 90% of the vari-

ance, but there is a lot of noise in the data. In the here presented case (see Figure 4.11), 

the first two components describe 59.26 % of the variance whereas about 90% are de-

scribed by the first ten components.  

Based on the recommendations found in Bro & Smilde (2014), three different numbers of 

principal components were chosen and taken into the clustering step: three, four and six 

principal components. Three principle components where chosen based on the knee in 

the scree plot and the interception of the broken stick distribution with the scree plot. 

Six principle components have an eigenvalue bigger than 1 and therefore 6 PC’s were 

additionally chosen for further analysis. Finally, four principle components were chosen, 

since the fourth principle component has high contributions from the individual stopping 
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behavior, which may lead to a separation of users with a rather touristic behavior that 

stop more on their routes.  

 

Figure 4.10: Scree plot (blue) of the first twelve components, with the line where the eigenvalue = 1 (dotted 
red) and the broken stick distribution (dotted green) 

 

Figure 4.11: Cumulative variance explained per principal component, 90%-line in red 

4.3 User Categorization through Clustering 

The division of users into several classes based on their principal components can be 

made in many ways as described in sections 2.3 and 2.4. In this case, no a priori 

knowledge of the class labels is given. Accordingly, an unsupervised learning technique 

such as clustering must be applied. Clustering is a process of categorizing the individual 

objects into groups; unlike the classification approach however, it creates the class labels 

only based on the data given (Tan et al. 2006). Within the individual groups created by 

the clustering algorithm, the objects should have a high similarity. Among the groups, 

however, there should be a high dissimilarity (Han et al. 2012).  
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Based on literature review, we explored the performance of four different clustering al-

gorithms which were each presented in the literature review in section 2.4: K-Means, 

CLARA, AGNES, and DIANA.  

4.3.1 Cluster Validation 

In this section, three numbers of principal components (three, four and six) will be tested 

with three clustering validation techniques (silhouette width, gap statistic, stability 

measures) for four different clustering methods (K-Means, CLARA, AGNES and DI-

ANA). As suggested by various studies (Han et al. 2012; James et al. 2013), the chosen 

principle components have been scaled before applying a cluster method. 

Silhouette Width 

The results of the silhouette width for the four different clustering algorithms and for 

three different numbers of components chosen are shown the top plots of Figure 4.12. A 

comparison of the computed silhouette widths for three principle components (top left) 

shows that AGNES produces the best values, i.e. the best clustering, for up to five clus-

ters. The silhouette width for AGNES is, however, declining with the number of clusters 

chosen. The second-best clustering algorithm with three principle components is K-

Means with equal silhouette widths for all number of clusters, however, highest with 

three clusters. As in the other approaches with different numbers of principal compo-

nents as well, DIANA generally generates the lowest silhouette widths.  

For four principle components, again AGNES has the highest silhouette widths for up to 

four clusters. From five clusters on, the then best approach is always given by using K-

Means, whereas the highest silhouette width is given for five clusters. In the approaches 

with six principle components, again AGNES produces the highest silhouette widths for 

all different cluster numbers. 

Gap Statistic 

The result of the gap statistic for different numbers of components with four different 

clustering methods can be seen in the bottom plots of Figure 4.12. For all numbers of 

clusters, DIANA and AGNES produce a far worse gap statistic value than K-Means and 

CLARA. Especially the result of AGNES stands in a strong contrast to the results of the 

silhouette width, in which AGNES produced by far the best results. Regarding the actual 

gap statistic value, the bottom left plot in Figure 4.12 shows that for three principle 

components, CLARA and K-Means produce the highest value with 1 cluster, followed by 

3 and 4 clusters.  

For four principal components (top right), the highest gap statistic value is given for 

CLARA and 5 clusters. In the approach with 6 principle components, again CLARA and 

K-Means with only 1 cluster produce the best gap statistic value, followed by CLARA 

with 8 clusters. 
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Figure 4.12: Top: Silhouette width for four different clustering methods based on the first three (left), first four (middle) and top six (right) principal components, scaled. 
Bottom: Gap statistic for four different clustering methods based on the first three (left), first four (middle) and top six (right) principal components, scaled.
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Stability Measures 

In Figure 4.13, the three stability measures (APN, AD & ADM; description in section 

2.4.1) are plotted for the four different clustering methods and different numbers of clus-

ters based on three (left), four (middle) and six (right) principle components.  

The plots for the APN (top) and ADM (bottom) stability measures show that the better 

the clustering results, the lower the number of clusters and number of principle compo-

nents we consider. The plots further produce very comparable results for all numbers of 

principle components, number of clusters and clustering methods respectively. For three 

principle components, both the best APN and ADM values (the lower the better) are giv-

en for AGNES with either two, three or four clusters. On the contrast, the worst APN 

and ADM values are presented by CLARA with six clusters. For four principle compo-

nents, the best and lowest APN and ADM values are again for AGNES, but with only 

two clusters. The worst values on the contrary are again presented for a clustering with 

CLARA. For six principle components, the same can be seen as for the other two princi-

ple components. Again, AGNES produces the best results and CLARA the worst. 

The AD plots (middle) show a different result. In contrast to the other two stability 

measures, we get the best clustering when considering more numbers of clusters, but a 

smaller amount of principle components. For all principle components and clusters, AG-

NES produces the worst, i.e. the highest values, whereas K-Means produces the best 

clusterings.  
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Figure 4.13: Stability measures per clustering method for three PCs (left), four PCs (middle) and six PCs (right); all PCs scaled.
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4.3.2 Rank Aggregation 

When looking at the biplot from the first two principal components (Figure 4.5 in section 

4.2.2), certainly more than only one cluster can be identified. Although there is a big 

cluster of users in the center of the plot, also a small cluster in the right bottom corner 

(high values of PC1 and small values of PC2) can be seen.  

Based on the results of the silhouette, gap statistic and stability validation plots, howev-

er, it is difficult to come up with a solution for both the questions regarding a good 

amount of PC’s and the ideal clustering algorithm. We therefore use rank aggregation as 

proposed by Pihur et al. (2009) to come up with the best approach.  

Rank aggregation aggregates a combination of ranked lists to generate an overall rank-

ing. Accordingly, the goal of rank aggregation is to find a so called “super”-list which 

shows the highest consistence with all individual lists simultaneously. To measure the 

distances between the ranked lists, several approaches can be used, such as Spearman 

footrule distance and Kendall’s tau distance (Pihur et al. 2009).  

The Spearman footrule distance between two lists can be described as the sum of the 

absolute distances between the ranks of all the unique elements from the two ordered 

lists. In case of comparing clusterings, not only ranks are given, but also respective 

measures, such as the gap statistic for each clustering. Accordingly, Pihur et al. (2009) 

came up with the weighted Spearman footrule distance (WSF) which uses the values 

such as the gap statistic as additional weightings. 

The other proposed approach is to measure the distance between ranks is the Kendall’s 

tau distance (Pihur et al. 2009). Like WSF it uses pairs of elements from two lists and 

compares their rank. If an element does not have the same rank in the two lists, a penal-

ty is imposed. In the proposed algorithm by Pihur et al. (2009), the weighted Kendall’s 

tau distance (WKT) uses a penalty value that is dependent on the absolute difference in 

an element’s scores from two different lists. To compute the aggregated list, Pihur et al. 

(2009) use the Cross-Entropy Monte Carlo Algorithm (CE). Besides the ranking and the 

scored, CE can also take an importance rating for each list as an input variable.  

In the given case, three numbers of principal components, four clustering algorithms and 

five numbers of clusters (2 to 6 clusters) generate 60 values for five different measures 

respectively (silhouette, gap, AD, ADM, and APN). Accordingly, we are presented with 

five ranked lists and their respective scores. Since the results of the APN and the ADM 

statistic (see top and bottom plots in Figure 4.13) show the same pattern, we weigh these 

two variables equally. Moreover, we weigh all three stability measures combined as 

equal as the gap statistic and the silhouette width due to the diversity, respectively simi-

larity of the measures. Accordingly, following importance ratings were applied: 

silhouette (1), gap (1), APN (0.25), AD (0.5) and ADM (0.25). 

The CE was applied twice, once with WSF and once with WKT. The weighted ranking 

with WSF as distance measure showed that the approach with three principal compo-

nents and K-Means with three clusters produces the highest score (see Figure 4.14), 

followed by three principal components and AGNES with three clusters (Table 4.6).  
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The grey lines in Figure 4.14 show the ranks of each approach for the individual cluster-

ing validation measures, whereas the black line shows the mean rank of each approach. 

The red line shows the overall ranking of each approach based on the CE algorithm. Ac-

cordingly, the best ranked approach can be seen on the far left and the worst approach 

on the far right. 

Table 4.6: The top 5 approaches based on the Cross-Entropy Monte Carlo Algorithm with the Spearman 
footrule distance (left) and the Kendall’s tau distance (right) 

Top 5 Spearman footrule distance Top 5 Kendall’s tau distance 

Number 

of PCs 

Clustering Method Number of 

Clusters 

Number 

of PCs 

Clustering Method Number of 

Clusters 

3 K-Means 3 3 K-Means 3 

3 AGNES 2 4 K-Means 5 

4 K-Means 5 4 K-Means 4 

3 K-Means 4 3 K-Means 4 

3 CLARA 2 3 CLARA 2 

 

Using rank aggregation, we conclude that a clustering into three clusters with K-Means 

based on three principle components (3PC-X3KM) is the most appropriate clustering 

method. When considering the aggregated ranking with the WSF, the second rank goes 

to AGNES with 2 clusters based on three principal components whereas Kendall’s tau 

distance leads to five clusters with K-Means based on four principal components (4PC-

X5KM). Since this approach takes the third rank in the WSF approach, 4PC-X5KM can 

be considered as the second-best approach overall.  
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Figure 4.14: Rank aggregation for Spearman’s foot rule distance (top), Kendall distance (bottom), 3 different numbers of PCs, 4 clustering methods and 5 numbers of clus-
ters (two to six) 
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4.4 Selection of Clustering Approach 

The goal of our clustering approach is both to clearly distinguish between different kinds 

of users as well as to get groups that can be put into context. According to James et al. 

(2013), a good clustering has both good statistical properties as well as useful and inter-

pretable solutions. The goal of this approach is to select certain clusters and put them 

into context, without having additional ground truth to refer to. Due to that, we take the 

original user measures for each cluster and use them to interpret the found clusters. 

They therefore serve as ground truth used to form the different user types.  

The rank aggregation of the various clustering approaches in section 4.3.2 has led to two 

rankings, headed by the 3PC-X3KM and the 4PC-X5KM approach. Due to the closeness 

of these two first approaches in the two rankings, we decided to do a first small interpre-

tation of the two best-ranked clustering approaches to find the best-suiting among them. 

Accordingly, we define best-suiting not only in terms of ranking, but furthermore in the 

interpretability of the various found clusters, as suggested by James et al. (2013). 

To compare the two approaches, we use three boxplots and compare the distributions of 

these three original values across the cluster groups (Figure 4.15). By having this first 

visual assessment of the diversity in the individual clusters, we select the best-suiting 

approach.  

Boxplot Interpretations 

The 3PC-X3KM-approach (left boxplots in Figure 4.15) presents us with three different 

clusters, whereas the 4PC-X5KM is presenting five clusters (boxplots on the right). As 

the boxplots for the first chosen variable, average daily distance, show there is not much 

variation between the different 3PC-X3KM-clusters, whereas for 4PC-X5KM, much more 

variety between the different clusters can be seen. 

In the second presented case for the average daily overlap, a similar image is shown, 

however, not as extreme as in the first example. The same can be stated for the third 

example for the number of stops. In both cases, the clusters in the 4PC-X5KM-case can 

be better separated from each other than in the 3PC-X3KM-case.  

The main goal of the clustering approach is to get meaningful groups that are interpret-

able. Based on the three chosen variables, we believe that the 4PC-X5KM-clusters are 

better interpretable than the 3PC-X3KM-clusters, due to the bigger variance among the 

clusters. We therefore decided to proceed with the 4PC-X5KM-clusters and neglect the 

better-ranked 3PC-X3KM-approach. 
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Figure 4.15: Boxplots of the average daily distance (top), average daily overlap (middle) and the number of 
stops for the two clustering approaches (3PC-X3KM: left, 4PC-X5KM: right) and their clusters 

4.5 From Clusters to User Types 

In the following sections, we are trying to label the different clusters of the chosen 4PC-

X5KM-approach. We are, however, aware of the fact that putting labels on individual 

clusters is rather difficult due to the lack of ground truth. Accordingly, the labels used 

for the user types are only an assumption based on the characteristics of the clusters.  

We therefore proceed as follows in the following sections. Firstly, the individual clusters 

will be described based on their manifestations in the original values, using boxplots 

found in Figure 4.16 and Figure 4.17. Secondly, the findings of the descriptions will be 

used to interpret the clusters. Based on the interpretation we then assign a user type to 

each individual cluster. We are starting with the description and interpretation of the 

best interpretable clusters and are therefore not following the actual cluster numbers. 
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4.5.1 Cluster 2/User Type T: The “Tourist” / The “Overland Delivery 

Driver” 

Description 

Cluster 2 (size: 3’343) users show a small proportion of days spent in Sydney/Melbourne 

(median value: 20%), combined with a rather large number of days in total (10d) and a 

high total area covered by the trajectories (1’600km2). Conversely, cluster 2 users have a 

very small compactness value (0.04). While their proportion of days in the two cities is 

small, also their proportion of days spending on one of the scenic routes is small (15%). 

Cluster 2 users strongly contrast with the other clusters with both their high average 

centroid distance (150km), the high average distance between the daily and the overall 

centroid (80km) and especially the distance between the two most distant points 

(450km). The overall distance (200km) and the average daily distance (20km) are about 

average. Rather smaller values are given for the average daily overlap (6%), move speed 

and step length (480m). The number of stops (12) as well as the number of spatial clus-

ters (30) then are rather higher than most of the other clusters, except cluster 3.  

Interpretation 

Cluster 2 users show a special pattern. Due to their high total area covered but rather 

average total distance, they are hard to put a label on. Their rather small average over-

lap reflects perfectly their spatial instability. Accordingly, there are various possible 

explanations for their spatio-temporal footprints. Firstly, the user type of cluster 2 may 

reflect the behavior of someone who travels around the country such as, for example, an 

overland delivery driver. That type of user visits a lot of different regions which leads to 

a high area value. We therefore assume that these types of users have a rather repetitive 

behavior, may be re-visiting the same places again over a certain amount of time. Due to 

that, the driver may already know some of the stretches and does turn off the device for 

some time, which leads to a relatively small total distance covered. 

The second possibility is that this user type may reflect a certain kind of touristic behav-

ior where the tourist visits different regions of the country which leads to a big area. To 

move between the regions, however, he uses alternative means of travel such as planes 

which can lead to only an average amount of total and daily distance covered.  

Based on the interpretations, we can give users of cluster 2 two different labels. Firstly, 

the one of the “overland delivery driver” due to the first possibility described before. Sec-

ondly, we can label cluster 2 as touristic user type. We therefore assign cluster 2 users 

the user type T, based on the possible touristic behavior. 

4.5.2 Cluster 3/User Type C: The “Commuter” 

Description 

Cluster 3 users (size: 5’861) differ from other clusters due to their high activity. Their 

number of days in total (15, IQR: 13-22), their proportion of days in either Sydney or 

Melbourne (75%), their total distance (400km), their high average daily overlap (20%) 

and their high number of spatial clusters (42), for which cluster 3 users have the highest 
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values. Rather high compared to users of other clusters is the degree of compactness 

(0.2). On the opposite, the lowest values are given for cluster 3 for the average step 

length (420m), the average centroid distance (12km), the move speed, the proportion of 

days on scenic routes (10%). About average are the distances between the two most dis-

tant points (60km) and the total area (500km2).  

Interpretation 

For cluster 3, we assume that users are spending their days in and/or around a bigger 

city and use the app on a regular basis, i.e. almost daily. This assumption can be made 

based on several observations. First, cluster 3 users do not have a big average distance 

between the daily centroid and the overall centroid. Furthermore, they have relatively 

high spatial overlap which leaves us with the assumption that cluster 3 users have a 

rather stable spatial behavior. Second, the average speed is low which may can indicate 

an environment with more traffic. Third, the step lengths are smaller than the ones of 

other groups which may be related to the smaller distances between their points of in-

terests in the city. This is further reflected in the relative compactness of the concave 

hulls of their movements. Due to these observations and interpretations, we see a com-

muting behavior in cluster 3 users and, accordingly, label users of cluster 3 as 

commuters. Based on these labels, we assign cluster 3 users the user type C. 

4.5.3 Cluster 5/User Type E: The “Excursionist” 

Description 

Cluster 5 users (size: 4’372) show about an average usage, seen in the number of days 

(5d). While using the app, they tend to visit stretches of the scenic roads (21%) more fre-

quently than users from the other clusters. The proportion of days they spend in either 

Sydney or Melbourne are about average (40%). For the average daily distance (70km), 

cluster 5 users have the highest values of all clusters. Second but highest values are giv-

en for the total distance (250km), the total area (630km2), the average daily overlap 

(17%), the average centroid distance (20km), the average distance between the daily and 

the overall centroid (18km) and the average move speed. All the other values are among 

the average compared to the other clusters. The compactness of the concave hull, howev-

er, which is about average as well, is by far not as small as the one of cluster 2, but 

almost as big as the ones from clusters 1 and 4. 

Interpretation 

Cluster 5 users show a pattern that can be interpreted as touristic behavior. The high 

average daily overlap value, however, stands in great contrast to this and gives us im-

portant additional information, namely that these users have spent at least some time at 

the same place.  

Cluster 5 users may reflect a behavior we call “part-time” or “weekend”-tourist. January 

is not only one of the main months for tourists from overseas to visit Australia, it is also 

the month with probably the highest domestic tourism due to summer holidays (see Fig-

ure 3.3). Due to that, we assume that a relative large amount of people do not work for 
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the whole month, but go on holidays or weekend trips. This would also reflect the rela-

tive high spatial stability (high average daily overlap, high compactness).  

Several further interpretations can be made. A first possibility is that cluster 5 users 

spent about half their time at their home location and then do a road trip. A second pos-

sibility is that the user type stands for someone who works during the week, but does a 

lot of weekend trips to various places. This may include trips to, for example, beach 

houses or shopping malls, that are a bit further away from their residence. Accordingly, 

we call the cluster 5 users the “excursionist” type and assign cluster 5 users the user 

type E. 

4.5.4 Clusters 1 and 4: The “small-scale”-Users 

Description 

Cluster 1 users (size: 4’451) and cluster 4 users (size: 1’079) do not differ much from each 

other. Users assigned to either of the two clusters have a rather small number of days of 

usage and therefore not very informative and sound data. They both have the smallest 

distance between the two most distant points regarding all cluster as well as the small-

est total and average distance. Most of the users’ measures are either relatively small or 

among average when compared to the ones of the other clusters. Differences between the 

two clusters can be seen when looking at the average move speed and the number of 

stops. Cluster 4 users both have a higher average speed in the move segments than clus-

ter 1 users, but mostly do not show any stops in their trajectories.  

Interpretation 

Due to their small-scale usage in both space and time, it is difficult to interpret the two 

clusters. Accordingly, we label them as “small-scale”-users which reflects their behavior 

of only using the app over small amounts of time and distances. We further do not assign 

a user type to these users of these cluster, due to the difficult interpretability of both 

clusters.  

4.5.5 Cluster/User Type Description Summary 

At least three distinct types of users can be identified using both the boxplots and their 

corresponding interpretations. The two clusters that have not assigned a user type show 

very similar behavior and, moreover, only have very small usage values. Accordingly, we 

decided to only take the three clusters, i.e. user types that have the best interpretability 

to take forward into the next steps. This means that we are only investigating the tem-

poral and spatial characteristics of these three user types, therefore neglecting the 

patterns of clusters 1 and 4.  

A further investigation into some of the key figures (Table 4.7) reveals some additional 

information for the found user types. The commuter user type C has by far the largest 

number of users, especially within the two cities. Type C further shows the largest 

amount of recorded sessions, along with the largest number of SSE points, both in total 

as well as in the two cities. In contrast to this stands the percentage of users per user 
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type that have visited one of the two cities. Here, user type T shows the biggest value 

with about 64%.  

 

Table 4.7: Summary of the three established user types. Highlighted are the highest numbers among the 
three user types, respectively. 

 Cluster 2 Cluster 3 Cluster 5 

User Type User Type T User Type C User Type E 

Interpretation The “Tourist” 

The “Overland Deliv-

ery Driver” 

The “Commuter” The “Excursionist” 

Number of Users in 

Total 

3’343 5’861 4’372 

Number of Users in 

Sydney/Melbourne  

2’140 3’321 2’572 

Percentage of Users 

visiting Cities 

64.01% 56.66% 58.83% 

Number of recorded 

Sessions 

70’941 255’584 67’265 

Number of SSE Points 178’820 676’723 171’740 

Number of SSE Points 

in Sydney/Melbourne 

58’575 337’379 72’925 

Percentage of SSE 

Points in Cities 

32.76% 49.85% 42.46% 

Number of SSE Points 

per Session 

2.520 2.647 2.553 

Color    
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Figure 4.16: Boxplots for eight different original variables across the five clusters of the 4PC-X5KM ap-
proach. Part 1 
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Figure 4.17: Boxplots for seven different original variables across the five clusters of the 4PC-X5KM ap-
proach. Part 2 
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5. Temporal & Spatial Analysis of 

User Types in Cities 

The last few sections have led to the division of the individual users into clusters and 

later to user types, based on their spatio-temporal footprints. By doing this, we can an-

swer the first research question stated in section 1.3. 

The goal of this thesis, however, is not only to divide users into groups, but also to get a 

deeper understanding of both the temporal and spatial characteristics of these worked-

out user types, as stated in research question 2: 

Research Question 2: What are the spatio-temporal usage patterns 

of the identified types of users in the two cit-

ies of Melbourne and Sydney? Can individual 

areas be characterized based on temporal us-

age patterns of different user types? 

Due to the building of user types based on the results of the last few sections (interpreta-

tion found in section 4.5), we can now speak of user types instead of clusters. 

Accordingly, we analyze the SSE patterns of the user types in the two cities of Sydney 

and Melbourne to answer research question 2. In section 5.1, the temporal characteris-

tics of the formed user types are investigated, followed by an investigation in the spatial 

characteristics of the user types in the two cities of Melbourne and Sydney in section 5.2. 

In these two sections, we solely analyze the findings of the visualizations, whereas a dis-

cussion of the found patterns follows in the discussion section 6. 
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Figure 5.1: Workflow of Chapter 5 

5.1 Temporal Characteristics of User Types 

In a first step, we analyze the temporal characteristics of the different user types. Three 

different approaches were chosen to confirm or reject the second hypothesis: 

Hypothesis 2: Different user type use the two investigated 

cities in different ways. They visit different 

places and have different temporal usage pat-

terns. Accordingly, different urban areas 

show distinct visiting patterns by different 

user types. 

5.1.1 Daily Temporal Distribution 

Method 

First, we have a look at the daily temporal distribution of SSE points to see whether 

there are differences among the different user types. We therefore aggregate all SSE 

points per city and user type for the whole month to one single day and analyze the dif-

ferences between the different user types. We both use the absolute temporal 

distribution of SSE points and the normalized distribution for each user type to find dis-

tinct patterns for each user type. 

SSE Points are used since they serve as a proxy for certain actions the individual users 

do, i.e. they either start, stop, or end a session at said point. These points are the easiest 
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way to investigate patterns, since they are independent from the individual movement 

patterns, but still reflect the spatio-temporal whereabouts of the individual users belong-

ing to a user type.  

Results 

The users of type C (the “Commuter”) combined show by far the largest number of SSE 

points per time of day (hourly interval) in Sydney and Melbourne, when looking at the 

absolute hourly distribution (top plots in Figure 5.2). The numbers of the other two user 

types, T (“Overland Delivery Driver”/ The “Tourist”) and E (The “Excursionist”) then do 

not differ much.  

When looking at the pattern itself, Figure 5.2 shows that user type C differs a lot from 

the other two user types. The differences between the maximum and the minimum val-

ues seems much bigger for user type C. This can be confirmed by looking at the standard 

deviations in Table 5.1, which shows that type C’s standard deviation is much higher 

than the ones of type T or E. The difference between the two other clusters however is 

not that large, also seen in the rather close standard deviations.  

The time series for each user type and city further differ when looking at the normalized 

time series (bottom plots in Figure 5.2). In Melbourne, the pattern for user types T and E 

do not differ much from each other. An actual morning peak cannot be seen, but rather 

an increasing curve of activity until noon. After a short decrease until 2 pm, a daily peak 

can then be perceived at 3 pm (type T), respectively 4 pm (type E). User type C ‘s pattern 

however is different regarding two aspects. First, a morning (9 am), noon and afternoon 

peak (4 – 5 pm) is shown. Second, the shown values between 10 am and 4 pm (working 

hours) are much smaller than the ones for the two other user types T and E.  

In Sydney, similar patterns and differences can be seen, however, not as strong as the 

ones for Melbourne. Again, user type C shows three peaks, whereas the two other user 

types T and E only show one peak (3 – 5 pm) with a continuous increase during the day. 

During the working hours, the differences between the user types are not as strong as 

for Melbourne, showing only small variations among the different user types. 

A further interesting insight is that user type C’s pattern in the two city differs from 

each other. Whereas it shows an equally high morning and an afternoon peak in Sydney, 

cluster C shows a much higher afternoon peak in Melbourne.  

Table 5.1: Hourly mean and standard deviation values for the three user types in the two cities 

 User type T User type C User type E 

 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Melbourne 1274.41 896.93 7314.00 4130.08 1612.42 974.05 

Sydney 1166.21 791.09 6743.46 3917.24 1426.13 837.23 
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Figure 5.2: Absolute scale (top) and normalized scale of (bottom) daily distribution of the SSE points for user types T, C and E for Melbourne (left) and Sydney (right) 
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5.1.2 Weekly Temporal Distribution 

Method 

In this section, we take a similar approach as in the last section 5.1.1, this time however 

using an aggregated weekly distribution. To do that, data for the first 28 days (4 weeks) 

are taken and aggregated into two-hour windows over the course of a week and to create 

a composite view of a typical week. By only taking data for the first 28 days, no weekday 

is overrepresented as each one occurs exactly four times.  

This analysis is both done with absolute values (number of SSE points in said time in-

terval, top plots in Figure 5.3) as well with normalized values (bottom plots Figure 5.3). 

We therefore scaled the absolute values of the different user types to get time series that 

show the same variance. This allows us to find patterns that could have been undetected 

due to extreme outliers in the absolute numbers. 

Results 

Similar to section 5.1.1, much higher values are shown for user type C than for user type 

T or E. In addition to that, the standard deviation for user type C is much higher both 

for the daily as well as the hourly pattern (Table 5.2). The higher daily standard devia-

tion is especially shown in the plots with absolute numbers (top plots in Figure 5.3). 

Here, the differences between the maximum and the minimum values is much higher for 

type C than for the other two user types. User types T and E’s pattern does not differ 

much from each other. Both have about similar mean and standard deviation values, 

whereby the ones for user type E is a bit higher. 

Looking at the peaks on weekdays, it can again be seen that type C has a much higher 

afternoon peak than a morning peak in Melbourne, whereas in Sydney the two peaks are 

about equally high. On weekends, two daily peaks can only be seen on Saturday in Mel-

bourne. On Saturday in Sydney as well as on Sundays in both cities, only one peak for 

user type C can be seen, having its largest values between noon and 4 pm. For the two 

other user types, much more stable daily pattern can be seen, where the differences be-

tween weekdays and weekends are not as big as the ones for user type C. This is also 

confirmed by the values found in Table 5.2, which show that user type C has a much 

higher daily standard deviation. The aggregated pattern for type E shows that on week-

ends, there is a higher peak in the morning than in the afternoon, whereas on weekdays 

the pattern is reversed.  

The time series for each user type and city additionally differ when looking at the scaled 

values (bottom plots in Figure 5.3). Whereas the three user types have similar ampli-

tudes for weekdays, they differ on weekends. There, magnitudes for user type C are 

much smaller than the ones of user type T and E. User type E even has the highest am-

plitude for Saturday morning when looking at the Sydney graph. We can further state 

that type E users tend to use the app more in the afternoon than in the morning, except 

on weekends where the amplitudes for the morning are higher.  
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Figure 5.3: Absolute scale (top) and normalized scale of (bottom) weekly distribution of the SSE points for user types T, C and E for Melbourne (left) and Sydney (right) 
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Table 5.2: Hourly and daily mean and standard deviation values for the three user types in the two cities 

  User type T User type C User type E 

  Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Melbourne Hourly 323.35 227.23 1895.36 1089.02 415.43 249.71 

Daily 3880.14 284.43 22744.29 2792.68 4985.14 328.58 

Sydney Hourly 303.06 202.30 1741.80 1035.43 367.25 219.33 

Daily 3636.71 238.96 20901.57 2607.68 4407.00 396.87 

5.1.3 Periodicity 

Method 

In a third temporal analysis step, we are interested in the cyclic processes, i.e. the degree 

of periodicity found in the SSE points of the individual user types. According to Ahas et 

al. (2015), cyclic processes in spatio-temporal data are more likely short-term (24-hour, 

weekly, seasonal cycle) than long-term and occur with a certain regularity. They can be 

seen in commuting, tourism, seasonal employment and agriculture in the case of climate 

zones (Panda et al. 2002; Silm & Ahas 2010 in Ahas et al. 2015). According to Filion 

(2000) and Ahas et al. (2015) such cyclic patterns can be in a next step used to detect 

monofunctional places in cities, i.e. areas and places in a city that are only used by a 

group of people in a short period during the day. 

Several methods exist to compute the degree of periodicity for a given frequency. Here, 

we use Fast Fourier Transformation (FFT), a method proposed by Calabrese et al. 

(2010). FFT is a signal processing technique that uses sine and cosine functions to com-

pute a magnitude, reflecting the degree of periodicity for a certain time interval (Han et 

al. 2012). The highest magnitude then indicates the frequency with the highest periodici-

ty in the given data.  

In our case, FFT is applied on the scaled time series for each user type and city. The re-

sulting set of magnitudes is then again scaled to better compare the individual user 

types with each other. By doing that, we can determine differences among user types 

and can confirm or discard the findings of the visual interpretation of the weekly distri-

bution analysis, found in section 5.1.2.  

Results 

For Melbourne (top plot in Figure 5.7), the highest magnitudes are given for the daily 

circle. Accordingly, daily patterns repeat with a much higher magnitude than other pat-

terns. The second highest patterns can be found for 12 hour intervals and weekly 

intervals. Likewise, the same pattern can be seen for Sydney (bottom plot in Figure 5.7).  

The differences between the user types in both cases, however, confirm the patterns seen 

in Figure 5.6. Type C users (the “Commuter”) show a smaller daily periodicity than type 

T and E users. This can be explained due to the smaller amplitudes of user type C during 

the weekends compared to the weekdays, seen in Figure 5.5 and Figure 5.6. Type T and 

E users, however, show a much more stable behavior (i.e. amplitudes) during all days of 
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the week. Accordingly, this results in a higher amplitude in for the daily cycle. Although 

having smaller daily cycle values, type T users have a comparably higher amplitude for 

the weekly cycle.  

 

 

Figure 5.4: Fourier Transformation of the scaled and aggregated time series for Melbourne (top) and Syd-
ney (bottom). Marked are values for 8, 12 and 24 hours as well as 180 hours (approximately 1 week).  

5.2 Spatial Characteristics of the User Types 

In order to answer research question 2, we further carried out an investigation of the 

spatial characteristics of the different user types. To this end, five different approaches 

involving the SSE points have been chosen: absolute distribution, relative distribution, 

location quotient, global spatial autocorrelation, and connectivity. The goal is to deter-

mine SA2 areas of Melbourne and Sydney that show a distinct visiting pattern for a 

certain user type that differs distinctly from the patterns other SA2 areas.  
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A visual exploration of the overall areas of the Greater Melbourne Area and the Greater 

Sydney Area (see section 3.4.1) have shown to be too big for a thorough qualitative anal-

ysis and interpretation. We therefore decided to only investigate a spatial subset of the 

Metropolitan areas, the individual SA2 areas that contain at least 12 points per square 

kilometer. Several values have been tested and visualized. 12 SSE points/km2 has then 

been shown to generate a reasonable number of remaining areas that are, furthermore, 

bundled around the city centers.  

5.2.1 Spatial Distribution of SSE Points per User Type 

Method 

The spatial characteristics of the different user types will be analyzed in a first step, by 

looking at the absolute spatial distribution of SSE points by user type, in each city. Since 

the SA2 areas have different sizes, we aggregate the number of SSE points per square 

kilometer for each user type. To reduce the influence of very active users, multiple SSE 

points of the same user within a certain area were removed. The used approach presents 

us with a better way to compare both user types and areas respectively than by just look-

ing at the absolute numbers of SSE points per area. 

Comments on Visualizations 

In Figure 5.8 and Figure 5.9, each SA2 area is colored per number of SSE points per 

square kilometer using a sequential color scheme from ColorBrewer (Neuwirth 2014). 

Using a different boundary color, we further highlighted areas that show a distinct pat-

tern both in this analysis and in the analyses of the next sections. For Melbourne, the 

highlighted areas are the City Center with its central business district (CBD, C), Mel-

bourne Airport (A), and St Kilda (S), Melbourne’s “favorite beachside suburb” (Visit 

Victoria 2016). In Sydney, the highlighted areas are Sydney Airport (A), the City Center 

(C, including “The Rocks” and CBD) and two of Sydney’s most famous beach areas 

(Destination NSW 2017): Bondi Beach (B) and Manly Beach (M).  

Results 

The most obvious observation is that the more central a SA2 area, the higher the num-

ber of SSE points per square kilometer. The areas remaining based on the spatial subset 

(>= 12 SSE points/km2) are bundled around the city center and its central business dis-

trict (highlighted with a “C”) in the case of Melbourne. Likewise, this is given for Sydney, 

here, however, also SA2 areas along the northern coast are remaining.  

Figure 5.8 and Figure 5.9 show that user type C has by far the biggest amount of SSE 

points per area of all user types. User type T and E on the other hand do not differ much 

from each other, both in the number of SSE points/km2 and the presented SA2 areas. 

Based on the patterns found in the visualizations, it must be clarified that a visualiza-

tion of the absolute distribution does not bare much information that can be used to 

generate additional information for the user types. Accordingly, more thorough investi-

gation with different approaches is needed to investigate the different point patterns.  
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Figure 5.5: Number of SSE points per square kilometer for each user type and SA2 area of Melbourne, where number of SSE points/km2 > 12.  
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Figure 5.6: Number of SSE points per square kilometer for each user type and SA2 area of Sydney, where number of SSE points/km2 > 12.  
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5.2.2 Relative Distribution – Percentage of User Type per Area 

Methods 

Besides the absolute distribution of the SSE points per user type (section 5.2.1), we are 

additionally interested in the relative distribution. For each SA2 area in both cities, we 

determine the proportion of SSE points belonging to each user type. Consequently, we 

get a percentage value for each SA2 area and user type, whereas a high percentage value 

for a certain user type reflects a high proportion of said user type in that area. Using a 

visual analysis of the relative distribution can therefore lead to the identification of SA2 

areas where certain user types are disproportionately present. High values, i.e. darker 

colors in the choropleth maps in Figure 5.10 and Figure 5.11 indicate that in these areas, 

a given user type is relatively overrepresented.  

Results Melbourne 

In the case of Melbourne in Figure 5.10, we can again see that user type C is the most 

representative user in all areas, i.e. shows the highest percentage values. User type T 

and E have similar percentage values, whereas user type E has a slightly smaller stand-

ard deviation in its values.  

The spatial patterns of the different user types manifest interesting patterns. The values 

of user type T (the “Overland Driver”/the “Tourist”) are high in the highlighted SA2 are-

as, i.e. the Airport, the City Center, St Kilda and down the coast (Tullamarine, 

Essendon, Avalon). SSE points belonging to user type C (the “Commuter”) are relatively 

high in the areas around the city center and rather low in the highlighted areas. A spe-

cial pattern can be seen in the SSE points of user type E. Here, we can see that the 

percentage values are higher the farther away the areas are from the city center, espe-

cially in the western SA2 areas. The pattern however seems much more homogeneously 

distributed than the ones for the other two user types, which is also reflected by the 

smaller variance in the percentage values. 

Results Sydney 

In the case of Sydney (Figure 5.11), we can observe a structurally similar situation as in 

the Melbourne. Again, user type C has the highest values in all areas as well as the 

highest variance. For user type T, again the magenta-highlighted areas (Airport, City 

Center, Bondi Beach, and Manly Beach) show high percentage values. Low percentage 

values can be seen in the areas farther away from the city center, especially in the west. 

For user type C, rather small values are shown in the City Center and the Airport Area. 

For the two other highlighted areas, Bondi Beach and Manly Beach, smaller values can 

be seen, but not as small as the ones for Airport and City Center. Rather higher values 

can especially be seen in the areas south and west of the City Center. User type E shows 

a similar image as in the case of Melbourne, with a rather small variance and a lot of 

areas with values around the mean. High values can be seen for areas further away from 

the city center and the other highlighted areas. Lower values can be seen around the 

highlighted areas, but not in the areas themselves. 
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Figure 5.7: Percentage of SSE points belonging to a user type of each area for Melbourne 
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Figure 5.8: Percentage of SSE points belonging to a user type of each area for Sydney 
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5.2.3 Location Quotient 

Methods 

In the next step, we are interested in finding SA2 areas for each user type that show a 

non-standard visiting pattern, i.e. finding SA2 areas with a high or low location quotient. 

The location quotient compares the ratio of a local density of a phenomenon i in an area 

p to the overall density of that phenomenon in a reference area (in our case the whole 

cities) (Reades et al. 2009; Jiang et al. 2015). Accordingly, a high location quotient is giv-

en for areas in which a certain user type is overrepresented, whereas a small location 

quotient is given for areas in which the user type is underrepresented. 

To compute the location quotient, we compute for each area and user types the relative 

difference between the observed value and the expected value. In that case, the observed 

value is the computed proportion of SSE points belonging to a user type in a certain ar-

ea, i.e. the percentage values from section 5.2.2. The expected value however is the mean 

value of all proportions of said user type over the whole city. The relative difference in 

percent, i.e. the location quotient is therefore defined as  

. 

As an example: if 50 percent of the SSE points found in area A belong to user type X, but 

the overall mean value of said user type is only 30 percent, the location quotient in that 

area and for that user type is +40 percent.  

Comments on Visualizations 

In Figure 5.12 and Figure 5.13, the location quotients are visualized using a diverging 

color scheme from ColorBrewer (Neuwirth 2014). On the bottom of each map there is an 

additional histogram showing the distribution of the location quotient values for each 

user type. To compare the individual visualizations and user types in both cities, we 

have chosen the same color scheme breaks for all visualizations. These breaks [-18,-

6,6,18] have been chosen manually based on an investigation of the individual histo-

grams.  

In the following two sections, we use the terms overrepresentation and underrepresenta-

tion when referring to areas that show values above the two highest breaks in the color 

schme (-18%, 18%). Over-/underrepresentation does not necessarily mean that given us-

er type has the highest amount of SSE points in that area, but has a high relative 

difference to the expected mean value. 

In Figure 5.14, we have assigned each SA2 area in both cities to the user type that has 

the highest positive location quotient. Due to that we need a qualitative color scheme 

and therefore use the same colors for each user type as in the boxplots in section 4.5.5, 

also depicted in Table 4.7. By using this approach, we are directly able to show which 

areas are typical for a certain user type to visit, based on the location quotient. 
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Results Melbourne 

One of the first things that can be realized when looking at both the maps and the histo-

grams in Figure 5.12, is that far more areas are shown with values below -18% or above 

18% for the user types T (left) and E (right) than for user type C (middle). Accordingly, 

this means that in many more areas, user types T and E are over- or underrepresented. 

Opposite to that is user type C which is much more homogeneously distributed over the 

whole city, additionally depicted in the histogram with a lot of values bundled around 

zero. Furthermore, both user types T and E show far smaller negative relative differ-

ences than user type C, with minimum values of up to -180% in comparison to user type 

C with a minimum of only -42%. These areas can therefore be thought of as areas that 

are rather less visited than other areas.  

Looking at the individual user type and its over/-underrepresented area, it shows that 

user type T is overrepresented in the airport as well as areas around the center and 

south of St Kilda (highlighted). On the other hand, user type T is underrepresented in 

areas further away from the city center. User type C shows a complete opposite pattern 

and is underrepresented in areas in which user type T is overrepresented. Especially in 

the Airport area as well as the city center and its southern surroundings, user type C is 

underrepresented. Most of the remaining other areas do not show big under-

/overrepresentations, accordingly, it can be stated that user type C has a more equal spa-

tially distribution of their SSE points. 

User type E (bottom left) is represented about average at the highlighted areas (Airport, 

St Kilda, and City Center). On the contrary, it is especially underrepresented in the are-

as around St Kilda and down the coastline. On the other hand, user type E has a relative 

overrepresentation in the areas in the south east and in the west.  

The top map in Figure 5.14 further shows that the areas around the City Center, along 

the Coast and the Airport are assigned to user type T. The other areas are then assigned 

to user type C and E, whereas the areas further away from the center are more likely 

assigned to user type E. 

Results Sydney 

In Figure 5.13, a similar image than in Figure 5.12 is shown; again, user type T (left) 

and E (right) show more areas in which they are either under- or overrepresented than 

user type C (middle). This is shown in the histogram which depicts that user type T’s 

value are bundled around zero without a large number of outliers.Furthermore, user 

type C has again smaller extreme values [-37,25] than the two other user types (up to -

162%). This confirms the finding for Melbourne, that user type C users are more equally 

distributed in space than the two other user types.  

The left map for user type T shows that, like in the case of Melbourne, user type T is 

overrepresented in the City Center, the Airport as well as the areas around St Kilda and 

Bondi Beach, i.e. the highlighted areas. User type C has, as mentioned before, only a few 

areas in which it is underrepresented. These areas are again the ones in which user type 

T is overrepresented. User type E then has a lot of areas in which it is overrepresented, 

however, these areas lay at the outskirts of the city in the south, west, and north.  
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The map on the bottom of Figure 5.14 shows again each area assigned to the user type, 

which has the highest relative positive difference between the observed and the expected 

value. Again, the areas that are the farthest away from the city center are assigned to 

user type E, whereas the city center and the beaches are assigned to user type T. The 

areas assigned to user type C are mainly around the harbor and the city center. 
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Figure 5.9: Computed location quotients for each SA2 area and user type in Melbourne (top) and histograms of location quotients (bottom) 
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Figure 5.10: Computed location quotients for each SA2 area and user type in Sydney (top) and histograms of location quotients (bottom) 
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Figure 5.11: Each SA2-area assigned to user type with the highest location quotient (top: Melbourne, bot-
tom: Sydney)  
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5.2.4 Global Spatial Autocorrelation 

Methods 

We further test the relative distribution of SSE points for spatial autocorrelation to test 

whether the found patterns per user type are randomly generated or not. Spatial auto-

correlation describes the tendency of nearby areas to have similar values of a given 

variable, based on their attributes (Brunsdon & Comber 2015). In this case, spatial auto-

correlation tests can be used to understand the degree to which the percentage values 

per SA2 area and user type are similar to other nearby areas. We are interested in the 

global pattern, hence compute the global spatial autocorrelation for each user type and 

city. The most popular indicator to measure the spatial autocorrelation is the Moran’s I 

coefficient, which ranges from -1 to +1, with negative values reflecting negative autocor-

relation and positive values positive spatial autocorrelation. A value near zero indicates 

a random spatial pattern. 

We compute Moran’s I value as well as its corresponding p-values for the relative distri-

bution values of the user types for both cities. The computed values can then be 

compared for each user type in each city, but not across the two cities  (Esri 2016). The 

null hypothesis for this test is that the values for all spatial objects are randomly dis-

tributed, meaning that no spatial autocorrelation is given and Moran’s I is equal to zero. 

A simulation based approach was chosen to compute the Moran’s I value and the p-

value, as suggested by Brunsdon & Comber (2015). With this approach, a certain num-

ber of random permutations of the data are taken and assign to the individual areas. For 

each random permutation as well as the actual distribution of the values, Moran’s I val-

ues are then computed. If the null hypothesis is true, then the “probability of drawing 

the observed data is the same as any other permutation” of the data among the areas 

(Brunsdon & Comber 2015, p.234). 

Results 

Based on the p-values in Table 5.3, there is strong evidence to reject the null hypothesis 

and to accept the alternative, i.e. that the percentage values shown in Figure 5.10 and 

Figure 5.11 are spatially autocorrelated. More importantly, the test shows that the indi-

vidual patterns are not randomly generated. 

The Moran’s I values further show that all user types in both cities show positive auto-

correlations. For Melbourne, the highest Moran’s I value is given for user type T and the 

lowest for user type C. For Sydney, user type E presents the highest Moran’s I value, 

whereas user type T shows the smallest Moran’s I. 

Table 5.3: Moran’s I-values and p-values for the relative spatial distribution of the individual user types the 
two cities 

 User type T User type C User type E 

 Moran’s I P-Value Moran’s I P-Value Moran’s I P-Value 

Melbourne 0.339 < 2.2e-16 0.192 1.244e-06 0.240 2.548e-09 

Sydney 0.325 4.665e-12 0.352 9.478e-14 0.402 < 2.2e-16 
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5.2.5 Connectivity of SA2 Areas 

Methods 

An additional approach to analyze the characteristics of the different user types is by 

analyzing the degree of connectivity between individual SA2 areas for each user type. 

We therefore establish an origin-destination matrix (ODM), with the vertex being the 

individual SA2 areas and the edges being the number of trajectories that connect these 

SA2 area. In our case, we generate the ODM based on all SSE points of all sessions. For 

each session, we tested whether an SSE point as well as the next SSE point lies within 

the city. If both were within the city borders, the resulting connection was stored in a 

new table and further aggregated with the other connections to form the ODM. We 

therefore only counted distinct OD trips per users across time in order to remove the bias 

of dominance of a single user in the data set, which would blur the connectivity intensi-

ty. 

A visualization of the ODM for each user type and city then shows the areas with the 

highest degree of connectivity to other areas. Using that approach, we can show that the 

user type influences not only the overall spatial and temporal patterns, but also the 

magnitude and order in which certain areas are visited. 

Comment on Visualizations 

In Figure 5.15 and Figure 5.17, the origin-destination matrices for the different user 

types in the two cities are visualized. In Figure 5.16 and Figure 5.18, zoomed-in visuali-

zations of the ODM around the city center for the two most diverse user types T and C 

are shown. In all visualizations, both the line width as well as the line color are based on 

the intensity of the connection between two areas. The connections with the lowest val-

ues in the ODMs were removed to get a better interpretable visualization. Accordingly, 

we can both make points about the intensity of the different connections as well as the 

degree of connectivity of the different areas per user type.  

The values in the legend show the number of moves (movement between two consecutive 

SSE points) between two areas. Furthermore, in all figures, the same areas are again 

emphasized, this time with a blue fill color to delineate it from the yellow and red lines. 

For Melbourne, these are the Airport, the City Center, and St Kilda; for Sydney, the Air-

port, City Center, Bondi Beach, and Manly Beach.  

On the bottom of each map there is an additional histogram showing the distribution of 

the connection values for each user type. Highlighted with a red line is the chosen 

threshold for each user type that separates the in the map shown connections from the 

not-shown connections.  

Results Melbourne 

The three plots in Figure 5.15, as well as the zoomed plots in Figure 5.16 show that user 

type C (middle) has by far the biggest connectivity between individual areas. Trips with-

in the city are therefore much more frequent than for other user types. Not only more 

areas are connected with each other, also the absolute number of trips, the intensity be-

tween them is much higher than for other user types. Rather special is that for all user 
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types, the highest connectivity values are between Coburg and North Coburg and vice-

versa, followed by the connection between the City Center and Southbank south of it. An 

additional area that has high connectivity values in all user type is Dandenong South in 

the south-east.  

The visualization of the ODM of user type T (left) shows that user type T only has a few 

areas that are connected to each other. Moreover, these areas are rather around the City 

Center than in the suburbs. What can further be seen is that again, user type T has 

higher values in the Airport and the St Kilda areas then in other areas. Some degree of 

connectivity is also shown towards areas where freeways exit Melbourne (west, north-

east, and south-east). The ODM visualization of user type E (right) shows something in-

between the visualizations of user types T and C. Here, we have much more areas that 

are connected with each other than user type T, but not as much as user type E. Accord-

ingly, that pattern is rather difficult to interpret. 

The histograms shown on the bottom of Figure 5.15 confirm the described patterns. Alt-

hough the highest value in all histograms is given for 0, meaning that most areas are not 

connected with each other, differences between the distributions can be seen. First, 

much more areas are not connected to each other for user types T and E than for user 

type C. Second, when neglecting the 0 values, the histograms of user types T and E show 

a strong skewed right distribution, whereas the distribution for user type C is much 

more unimodal.  

Results Sydney 

At first sight, Figure 5.17 does not show differences between the different user types as 

big as in the case of Melbourne (Figure 5.15). What can be seen is that user type C (mid-

dle) and E (right) have much more connections between the different areas than user 

type T (left). Furthermore it can be seen that certain axes can be seen that have been 

built based on the connections of user type T. These axes run along the main routes that 

lead into/exit the city center. These axes can additionally be seen in the two other user 

types; however, they are not formed as strongly as for user type T, also due to the much 

denser pattern. Overall, it can be stated that for user type C and E, the pattern of the 

connections is much more diverse. Furthermore, much more high-valued connections can 

be seen for user type C and E. The connections for user type T are distributed much 

sparser around certain main axes and centers (City Center, Bondi, Manly and Airport). 

The findings above are confirmed when zooming in into the SA2 areas around the city 

center (Figure 5.18) and comparing user type T (left) and user type C (right). Around the 

city center, fewer areas are connected to each other for user type T than for user type C. 

Whereas the intensities of the individual connections do not differ much between the two 

user types, user type T has a few areas with a higher intensity of connections (City Cen-

ter, Bondi, Manly and Airport). 

The histograms shown on the bottom of Figure 5.17 again confirm the described pattern. 

Again, the highest values are given for zero, meaning that most areas are not connected 

with each other. Furthermore, the distribution of user type C can be interpreted as much 

more unimodal than the ones of user types T and E, when neglecting the zero values.  
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Figure 5.12: Top: Visualized Origin-Destination matrices for Melbourne, highlighted in blue are again the City Center, St Kilda, and the Airport. Bottom: Respective his-
tograms of connectivity values. 
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Figure 5.13: Visualized Origin-Destination Matrices for Melbourne, zoomed in. User type T (left), User type C (right). Highlighted in blue are again the City Center (“The 
Rocks”), Bondi Beach, Manly Beach, and the Airport. 
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Figure 5.14: Top: Visualized Origin-Destination matrices for Sydney, highlighted in blue are again the City Center (“The Rocks”), Bondi Beach, Manly Beach, and the 
Airport. Bottom: Respective histograms of connectivity values. 
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Figure 5.15: Visualized Origin-Destination Matrices for Sydney, zoomed in. User type T (left), User type C (right). Highlighted in blue are again the City Center (“The 
Rocks”), Bondi Beach, Manly Beach, and the Airport. 
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6. Discussion 

In this chapter, we discuss the results of the two previous sections, namely the charac-

terization of users into user types (section 4) as well as the temporal and spatial analysis 

of the user types found in the two cities of Melbourne and Sydney (section 5). We further 

link the results back to the research questions, as stated in section 1.3.  

In a first part, section 6.1 discusses the methodology used to compute the individual user 

types (RQ1). In section 6.2.1, the temporal characteristics of the user types found will be 

revised. The spatial characteristics of the user types in the two cities will then be dis-

cussed in section 6.2.2 (RQ2).  

6.1 User Characterization in the Absence of Ground Truth 

Characterizing users from a large set of navigation data requires several pre-processing 

steps (as described in Chapter 3) and the application of a series of un-supervised learn-

ing methods (Chapter 4). In contrast to several other studies, including the tourist study 

by Shoval & Isaacson (2007) or the mobility study by Trasarti et al. (2011), there is no 

additional knowledge about the nature of the individual users found in the data. It is 

unknown where individual users live and, more importantly, it is unknown why the us-

ers use the app. No statements can be made about the users’ intentions, i.e. whether 

they use the app for daily commuting or during their holidays. Accordingly, we lack 

ground truth of the people’s characteristics using the app. 

Based on our assumption that different users will favor distinct areas of the cities (and 

thus have different spatio-temporal footprints), we assume that different user types gen-

erate different spatio-temporal footprints. These, as well as further assumptions, have 

served as a basis for the first research question: 
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Research Question 1: How can individual users of the navigation 

app be characterized based on their spatio-

temporal footprints in the absence of ground 

truth? What are the principal factors describ-

ing the different user types? 

Spatio-Temporal Footprints 

To divide the users into groups based on unsupervised methods, we assume that differ-

ent users show a variety of spatio-temporal footprints. The spatio-temporal footprints as 

defined in section 3.1.1 are the sum of the movement recorded for a given user, inde-

pendent of the actual locations the movement is recorded at. Accordingly, a user living in 

Melbourne commuting to work daily and a user in Sydney doing the same may have the 

same spatio-temporal footprint, although living in two different places. A user on a road 

trip who is also visiting the two cities, however, shows a completely different image and 

therefore has a different spatio-temporal footprint. 

In the case presented, we went a step further than previous studies and did not analyze 

the trajectories itself, but the actual spatio-temporal footprints the individual users pos-

sess. By doing so, we also uncover an additional temporal component and we can analyze 

changes in a user’s movement patterns over the course of several days. This way, we 

may have lost some information regarding the trajectories themselves, but gain a more 

detailed user profile.  

Certain computed measures of the spatio-temporal footprints such as the overall area, 

are very sensitive to outliers. Since several additional measures are based on the areas 

(daily or overall), the chosen approach is dependent on a good implementation of the 

function used to compute the area, in our case the concave hull. Nevertheless, we have 

tried to overcome these problems beforehand, by removing flawed sessions in our data 

cleaning step (section 3.7). To further remove the influence of individual, undetected and 

flawed sessions, we have only computed values about the daily and overall patterns. 

Assumption of Road-Bound Movement 

Ranacher et al. (2016) argue that GPS data originating from cars are effected by meas-

urement errors leading to the positioning of GPS tuples off the road network. 

Furthermore, they argue that measurement errors lead to the overestimation of the dis-

tance measurements themselves. Map-matching is therefore recommended when using 

GPS data of cars.  

In our case, a first visual inspection of some of the unprocessed trajectories showed that 

most tested trajectories followed the road network. Accordingly, no map-matching tech-

niques were necessary, since we assumed that most of the non-tested trajectories would 

follow the road network. 

Due to the omission of the map-matching step, the removal of both spatial and temporal 

outliers was carried out using a different approach. We computed the temporal thresh-

old, distance, velocity, and acceleration between two consecutive GPS tuples and used 

them to remove spatio-temporal outliers.  
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Segmentation of Trajectories into Moves and SSE Points 

In this thesis, we built the database following the ontology (see section 3.5) presented by 

Renso et al. (2012). Said ontology divides the individual trajectories into move segments 

and stop points. In the case of Renso et al.’s (2012) study however, they were presented 

with permanently sampled data without temporal gaps with no data. Due to that, the 

ontology used here was extended by additionally using the start and end points of the 

individual sessions, forming the SSE points.  

For the actual stop detection within the sessions, an SQL-algorithm was created that 

used both a spatial and a temporal threshold to test each GPS tuple for stopping behav-

ior. As a temporal threshold, we decided to use a period of five minutes. We argued that 

within a stop lasting at least five minutes, the respective user can interact with the envi-

ronment and the actual location. Accordingly, a found stop segment can be depicted as a 

minimal period required for accomplishing a pragmatic task. By neglecting stops that 

last less than five minutes, we ensure that no stops are detected that may be due to con-

gestion or measuring errors. Nevertheless, we must be aware that choosing different 

temporal and spatial thresholds, the resulting SSE point patterns as found in the results 

section 5.2 would look completely different. 

Principal Component Analysis and Clustering 

The approach to apply principal component analysis on the spatio-temporal footprints 

first and then do clustering on a set of principle components was chosen due to several 

reasons. Firstly, by choosing only a limited amount of principle components, the influ-

ence of noise is minimized which can lead to statistical benefits for the clustering 

approach (Bro & Smilde 2014). Secondly, the principle components present us additional 

underlying patterns, that can be found by the dimensionality reduction (Bro & Smilde 

2003).  

The ranking of the different clustering approaches has lead us to two rankings in which 

four of the five best approaches in each ranking coincided. On the one hand, the consen-

sus of the two rankings supports the approach chosen. On the other hand, the resulting 

clustering algorithm should, besides the good statistical properties, also be interpretable 

(James et al. 2013). The two approaches (3PC-X3KM and 4PC-X5KM) with the best sta-

tistical properties have shown that this is an important step, since the second but best 

approach was better interpretable than the first ranked approach. 

The resulting interpretation of the ultimately chosen approach (4PC-X5KM) has then 

been carried out based on boxplots of the original values of the spatio-temporal footprint. 

This interpretation then has led to the formation of three user types. Accordingly, only 

three of the original five clusters were then taken into the spatio-temporal analysis of 

the SSE points. This approach can be criticized, since 5’530 (28.9%) of the 19’106 origi-

nally used users for the PCA were removed from the further analysis. The users 

removed, however, showed only very small numbers in terms of the spatio-temporal 

footprints. An interpretation of these clusters therefore proved to be difficult. Further-

more, the analysis of the SSE points then showed that the neglected two clusters are 

only responsible for less than 10% of the SSE points within the two cities. We argue that 
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due to the small usage numbers, the SSE point pattern of the two neglected clusters 

would distort the overall point pattern in both space and time. 

User Type Interpretation 

The three user types presented in section 4.5 were elaborated based on the patterns 

found in the boxplot and the following interpretations. Thus, we tried to bring the indi-

vidual clusters into a human-interpretable form in order to assign them some sort of 

label. The chosen labels have been discussed with various researchers, however, we must 

be aware that these labels were given based on the assumptions made by the author of 

this thesis. Various studies from different fields were consulted, but no other possible 

user type descriptions could be found. Due to that, the actual labels must be treated with 

caution, since a validation proves to be difficult without the respective ground truth. The 

analysis of the SSE point patterns in sections 5.1 and 5.2, however, has shown that the 

chosen labels might reflect a pattern that is imaginable for the three user types. 

Summary and Outlook 

To conclude and to answer the first research question, we have shown that different user 

types can be found based on spatio-temporal footprints and in the absence of ground 

truth. Thus, the validation of the individual methods leading to the different clusters has 

been carried by the different cluster validation methods as well as the rank aggregation. 

The validation of the description of the user types found that is based on the elaborated 

clusters has, however, proven to be rather difficult without the corresponding ground 

truth. It would therefore be interesting, if a similar approach was carried out on similar 

data with a corresponding ground truth. It would then be easier to validate the results of 

the clustering as well as the interpretation itself.  

6.2 Assessment of Temporal and Spatial Characteristics of 

User Types 

In the previous sections, the first research question and the formation of the different 

user types has been discussed in detail. The question following RQ1 is how the actual 

user types use different areas of cities as addressed in the research question 2: 

Research Question 2: What are the spatio-temporal usage patterns 

of the identified types of users in the two cit-

ies of Melbourne and Sydney? Can individual 

areas be characterized based on temporal us-

age patterns of different user types? 

Following is a discussion of the temporal characteristics of the user types found in sec-

tion 6.2.1 and a discussion of the spatial characteristics of the identified user types in 

section 6.2.2. 



6. Discussion 
Assessment of Temporal and Spatial Characteristics of User Types 

101 

 

6.2.1 Temporal Characteristics 

Assessment of the Daily and Weekly Patterns  

Both the daily as well as the weekly patterns (sections 5.1 and 5.1.2) show that, in all 

time periods, most of the SSE points within the two cities belong to user type C (com-

muter type). This is unsurprising, when we compare this number to the absolute number 

of users within the two cities belonging to type C (3’321, see Table 4.7 in section 4.5.5). 

This number is higher than the numbers of users of type T (2’140) or E (2’572). Not only 

has user type C the biggest number of users within the city, it also has the highest per-

centage of SSE points that lie within the two cities’ borders (49.85%, type T: 32.76%, 

type E: 42.46%). These findings can therefore serve as a confirmation of the clustering 

result and its interpretation, namely that users belonging to type C are indeed more ac-

tive in cities than other user types.  

Another interesting finding presented in Table 4.7, is the fact, 64.01% of all the users 

belonging to user type T (touristic type) have at least spent one day in Melbourne or 

Sydney. This stands in contrast to user types C and E, of which only 56.66% and 58.83% 

of the users have spent a day in the cities. This finding stands, however, in great con-

trast to the boxplot showing the proportion of days spent in one of the two cities (top left 

boxplot in Figure 4.16). There, it is shown that user type T has a far smaller median and 

IQR than user types C and E. Based on that, we argue that users of type T overall spend 

less days in the cities than other user types, but on the contrary, have a higher likelihood 

that they visit a city. Accordingly, this reflects our user type interpretation, namely that 

users of type T visit a lot of places in a short amount of time due to their tourist behav-

ior. 

The normalized weekly pattern in section 5.1.2 further shows that the degree of activity 

of type C is not as constant over both the course of a week and the course of a day as for 

other clusters. Again, this may serve as a confirmation of the assumption that users of 

type C live in or around the city, using the app mostly for commuting between home and 

work. Due to that, smaller numbers and different patterns can be seen on weekends, 

when users belonging to type C are believed not to have to drive to work.  

The two other user types, T and E, manifest a contrasting pattern to user type C. They 

have a far more stable pattern when looking at the weekly distribution. Especially users 

belonging to type T (touristic) are not dependent on working hours and therefore use the 

app on a more constant basis over both the course of a day or week. Regarding the num-

bers, users of type E (excursionist) show a stable pattern when comparing weekdays and 

weekends. The pattern shown, however, is rather different, having the peak values in 

the afternoon on weekdays and in the mornings on weekends. This might indicate the 

nature of users belonging to type E, namely to carry out excursionist short trips in the 

evenings of weekdays or in the mornings on weekends, which require the assistance of a 

navigation aid.  

Differences in Daily/Weekly Patterns between Groups 

The weekly SSE point pattern of the two cities of Sydney and Melbourne as well as of the 

different user types is different. This has been anticipated and confirms our findings, as 
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various previous studies have shown comparable results using other data sets. Kling & 

Pozdnoukhov (2012) worked with Twitter and Foursquare data and showed that differ-

ent types of social media topics have different daily and weekly patterns with different 

peaks, similar to our user types. 

Similar results are presented by Grauwin et al. (2015) which used several activity indi-

cators (e.g. text messages, phone calls) to assess the differences in the weekly patterns of 

the three cities of London, New York, and Hong Kong. Looking only at the phone call 

patterns, it shows that the pattern for Hong Kong has a far higher afternoon peak than 

morning peak, which can also be seen in in our case in Melbourne for user type C. In 

opposition to that and showing similarities with our case in Sydney for user type C is the 

phone call pattern for London, which has an equally high morning and afternoon peak. 

When looking at other patterns such as the weekly text message pattern, different pat-

terns for each of the three cities can be seen.  

A third study by Reades et al. (2007) highlights that, besides different topics and cities, 

also different areas within a city (Rome) show differences in their temporal patterns 

(Figure 6.1). They showed that for Saturday and Sunday, the activity values often drop 

far below the typical loadings for the weekdays, whereas the rate of change is also de-

pendent on the area surveyed. They further showed that areas with more residents 

display lower variances between the individual days than areas with more transient 

populations such as tourists or commuters. Based on that they suggest that the greater 

the flux of people is in an area, the greater the variance is in its activity signal.  

These findings, however, cannot be linked back to our study, due to the limited hourly 

number of SSE points in the individual SA2 areas. The aggregated weekly pattern of St 

Kilda, Melbourne, can serve as an example (Figure 6.2). When looking at both the abso-

lute numbers as well as the pattern itself, it becomes clear that we are presented with a 

relative small number of SSE points for the individual 2-hour periods. Due to that, a 

thorough investigation into the differences between different areas and different user 

types does not make sense, since it cannot be determined whether the differences be-

tween those found patterns are randomly generated or not. 

 

Figure 6.1: Temporal analysis of the mobile phone activity in different areas of Rome (Reades et al. 2007, 
p.34) 
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Figure 6.2: Aggregated weekly distribution of SSE points in St Kilda, Melbourne in two-hour windows 
(absolute numbers). 

Periodicity of User Types 

In section 5.1.3, we applied Fourier Transformation on the temporal distribution of the 

SSE points to assess the degree of periodicity for each user type in each city. This 

showed that although having a more stable daily pattern, the two user types T and E 

have a smaller periodicity in their aggregated weekly patterns than user type C. Accord-

ingly, user type C then shows higher weekly periodicity and lower daily periodicity.  

The identified periodicity reflects the nature of the different user types identified. User 

type C (Commuter), appears to use the app especially during commuting trips and there-

fore mostly on weekdays and less on weekends. Accordingly, user type C manifests a 

small daily periodicity, due to the difference between weekdays and weekends. Further-

more, users of type C use the app more regularly over the course of several weeks which 

is reflected in the high weekly periodicity. 

Users of type T (tourist) are less bound to a working week and therefore do not show sig-

nificant differences between weekdays and weekends, additionally shown in a higher 

daily periodicity value. Since they only use the app over a limited amount of time and 

have a more unstable pattern over several weeks, the weekly periodicity value is rather 

small. The third user type, type E, manifests patterns between the two extremes of user 

type C and T. For both the daily as well as the weekly pattern, users of type E manifest 

periodicity values between the two extremes of user types T and C. The described pat-

terns therefore reflect the assigned labels of the different user types.  

Summary and Outlook 

Based on these findings we can answer the temporal part of the second research ques-

tion and conclude this section. We have shown that different user types show different 

temporal characteristics in both Sydney and Melbourne. The unity of all touristic users 

(user type T) tends to have a more stable temporal activity pattern when looking at a 
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weekly aggregation. They also tend to visit the cities with a higher likelihood than other 

user types, but over a shorter period. 

The excursionist users (user type E) show a similar pattern to user type T, whereas the 

commuter users (user type C) are more active on weekdays than on weekends. Further-

more, we have shown that, although having a smaller daily regularity, user type C has a 

higher periodicity regarding the weekly patterns. In contrast, user types E and T barely 

show any weekly periodicity.  

A validation of these findings is again rather difficult due to the unknown ground truth 

of the individual users. A reflection of the found patterns, however, shows that they may 

be indeed typical for the found user types, especially for user types T and C. Neverthe-

less, it would be interesting to see whether similar patterns arise from different data 

sets such as CDR data of the whole city.  

We can further state that it is possible to use human navigation data such as the one 

presented in this thesis to elaborate differences between different users regarding their 

temporal patterns. This type of data, however, is not useful when trying to elaborate 

temporal differences between areas and user types, since not enough users are using the 

app in the same area at the same time. To properly investigate these problems, data 

with an even higher number of users would be more suited.  

6.2.2 Spatial Characteristics 

Evaluation of the used Visualization Methods 

We used five different methods to assess the spatial characteristics of each user type for 

each city. Except for the global spatial autocorrelation test, we have principally relied on 

a visual exploratory analysis. To visualize the various patterns, we used the SA2 areas 

as described in section 3.4.1. We have further tested other visualizations with SA1-areas 

(areas are smaller than SA2) and SA3-areas (larger). We have shown that using smaller 

or larger areas did not allow us to make distinctions between different areas in the same 

way as it was possible with SA2 areas. It must be clarified, however, that the used areas 

are based on statistical areas and are not necessarily consistent with the actual human 

mobility patterns. It therefore underlies the modifiable areal unit problem. Another pos-

sible, but not necessarily better approach would have been to use raster cells instead of 

SA2 areas, similar to the work presented by Reades et al. (2007). 

Absolute, Relative Distribution and Location Quotient 

We started with an absolute view of the SSE point patterns only depicting the respective 

number of SSE points/km2 per area (section 5.2.1). Although it gives a nice overview of 

the absolute distribution of the points, this approach has been proven to be rather un-

suitable for the comparison of the different user types.  

We therefore normalized the percentage of SSE points in each area that belongs to a cer-

tain user type (section 5.2.2), since we were looking at the relative amount per area. This 

approach as well as the location quotient approach allow us to identify areas in which 

certain user types are over- or underrepresented. We could show that although user type 

C has the highest percentage of SSE points in all areas, there are certain areas, especial-
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ly the highlighted ones, in which user type C is underrepresented. A contrasting image 

to that is then given by user type T, which is mostly overrepresented in areas in which 

user type C is underrepresented.  

To validate these findings, we assessed the differences between the local percentage val-

ues of SSE points belonging to a certain user type and the overall mean value for each 

area and user type, i.e. the location quotient. The results of this approach (section 5.2.3) 

confirms the findings of the previous section, namely that certain user types are largely 

under- or overrepresented in certain areas, mostly, again the highlighted ones. The his-

tograms in Figure 5.9 and Figure 5.10 further show that user type C is spatially much 

more homogeneously distributed in the two cities, whereas the two other user types 

show much more extreme values, i.e. areas with low or high visiting values. Regarding 

these two approaches, we must, however, clarify that under-/overrepresentation only 

refers to the relative amount of SSE points. Accordingly, a certain user type could still 

have the highest amount of SSE points per area, but is rather underrepresented due to 

the large difference between the expected mean percentage value and the actually ob-

served percentage value. 

Global Spatial Autocorrelation 

To test whether the patterns shown in section 5.2.2 are randomly generated or not, we 

further tested for global spatial autocorrelation in section 5.2.4. The results of the Mo-

ran’s I test showed that the different patterns (for each city and user type) are not 

randomly generated, and therefore are statistically significant. This confirmed the find-

ings of the two previous sections, namely that there are certain areas which show 

differences in the percentage values for different user types and are of a special interest 

to these user types. 

Connectivity 

The further realized visualization of the connectivity between SA2 areas for each user 

type and city gave additional information about user types that had not been known be-

fore. Users of type T, for example, not only visit less areas more frequently, these areas 

are also more connected to each other than to other areas. Furthermore, the areas of us-

er type T that show a high connectivity value are, mostly, again the highlighted areas 

(city center, airport, beaches). In opposition, users of type C visit many more areas and 

therefore show much more areas that are connected to each other. User type E then 

shows a pattern in-between the extreme patterns of user types T and C.  

Based on these findings, we can argue that users of type T tend to visit a smaller amount 

of locations when they visit cities. This reflects also the findings of the temporal analysis, 

in which we showed that users of type T have a higher probability to visit cities, but 

spend less time in them than other user types. Accordingly, type T users only visit the 

areas that are of interest for them: the highlighted areas. On the contrary, type C users 

that visit or live in the cities spend more time there and therefore visit much more areas. 

This is then reflected by much more areas that are connected to each other. 
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Characteristics of the Highlighted Areas 

In the various maps depicted in section 5.2 of the results chapter, we highlighted several 

areas of each city due to their special patterns found in the maps, especially for user 

types C and T. In Melbourne, we identified the City Center, the Airport as well as St 

Kilda. In the case of Sydney, again the City Center and the Airport are highlighted, but 

also two areas with famous beaches, Bondi Beach and Manly Beach (Destination NSW 

2017). 

As it can be seen in section 5.2.5, commuter type C is relatively underrepresented in the 

highlighted areas whereas the rather touristic user type T is overrepresented in those 

areas. Furthermore, the results of the connectivity approach (section 5.2.5) shows that 

for user type T the highlighted areas are more connected to each other than to other are-

as. Based on these observations, how can these areas be characterized?  

Due to their nature (City Center, Beaches, Airport), the highlighted areas can certainly 

be characterized as areas of certain interest to tourists. This assumption is further 

strengthened when consulting the comparison of the maps in Figure 6.3. The four maps 

show that areas with a high density of hotels coincide to a large part with areas in which 

the touristic user type T is overrepresented (in blue), i.e. has a high location quotient. 

Tourists are dependent on hotels as a possibility of accommodation and, accordingly, 

several things can be argued. Firstly, hotels tend to be in areas with a rather large 

amount of tourist attractions and secondly, tourists tend to visit areas with a high densi-

ty of tourist attractions. Based on that, we argue that the highlighted areas reflect 

typical touristic areas. 

Especially for Melbourne, our assumptions are strengthened by previous studies. Ed-

wards & Griffin (2013) surveyed the spatial behavior of tourists within Sydney and 

Melbourne using both interviews and GPS tracking devices. They discovered that certain 

areas within the two cities are very intensively used by tourists whereas the adjacent 

areas are mostly not visited at all. They further showed that tourists show repetitive 

movements. They revisit certain places and use the same routes throughout the day. 

Furthermore, we have shown that most tourists use the same routes. Although Edwards 

& Griffin (2013) surveyed tourists on foot and only within the city center, similar pat-

terns can also be seen in the results of the connectivity investigation (section 5.2.5). 

There, we have shown that for user type T only a few areas (Airport, City Center, and 

Beaches) show strong connections between them, whereas only a few smaller connections 

between other areas exist.  

Another example confirming our assumption is presented by Miah et al. (2016). They 

used geotagged photos of tourists to assess the popularity of different areas in Mel-

bourne. Using that approach, they identified the Melbourne CBD (City Center) as well 

as St Kilda and Brighton Beach as the most popular tourist areas. These areas again 

reflected by high location quotients for user type T. 
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Figure 6.3: Left: Number of Hotels per square kilometer for Melbourne (top) and Sydney (bottom), 
(OpenStreetMap contributors 2017). Right: Location quotients for each SA2 area, whereas location quotients 
smaller than 10 are colored with the same color in order to better compare the hotels and location quotients. 

Summary and Outlook 

Based on the findings of the spatial analysis of the different user types, we can answer 

the second research question and conclude this section. We have shown that different 

user types overall visit similar places, although with different likelihoods and magni-

tudes. We have further shown that the visiting pattern of certain areas are, relatively 

seen, dominated by certain user types. In areas that can be interpreted as tendential 

touristic areas, more SSE points of users belonging to the touristic user type T can be 

found. Furthermore, less areas are visited by the touristic users, whereas users belong-

ing to the commuter type C visit many more areas, shown by the higher connectivity of 

the different areas. We were further able to show that areas with a relative over-

representation of SSE points belonging to user type T are areas that show a high concen-

tration of hotels.  

We are aware however, that a characterization of the individual areas solely based on 

the found patterns, can only generate very vague results. For a more detailed analysis 

and characterization of the individual areas, more data from various data sources as well 

as a qualitative assessment of domain experts would be needed.  
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Accordingly, validation of the found patterns for each user type is complex due to the 

explorative approach of this thesis. January is not only a popular month with tourists 

coming from abroad, but also for Australians themselves to go on holidays. Due to that, 

we have applied various methods to find specific patterns for each user type. Neverthe-

less, we must point out that the pattern found may present itself differently when 

looking at other months or several other months combined.  
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7. Conclusion 

7.1 Summary 

There have been many approaches to discover patterns in human movement behavior 

based on positioning data with a high temporal and spatial resolution. GPS navigation 

data from a mobile phone application as used in this study, however, are not among the 

used data sources. This kind of data presents both high spatial and temporal resolution 

and is unique do to the reason people use the app; navigation and the need of additional 

(spatial) information. Accordingly, we argue that a lot of the people using the app are 

unfamiliar with the surrounding and locations they visit. We therefore believe that a 

high proportion of users are tourists of some sort. 

Besides the novel data source, also the applied analysis of human movement in cities 

differs much from previous studies. Mostly, users have been handled as a similar-acting 

and homogeneous community, due to several reasons. Either, the surveyed community 

itself was very homogenous, or, only communities were survey for which additional in-

formation was available. The here used navigation data, however, does not offer that. We 

have therefore used that handicap to our advantage and presented a novel methodology 

to divide users into similar acting user types, based on their spatio-temporal footprints 

and in the absence of ground truth. Accordingly, we neglect findings of previous studies 

and use the differences of the users in our study to gain a deeper understanding of the 

individual types of users that use a navigation app.  

We have shown that the identified user types show distinct temporal and spatial pat-

terns found in their start, stop and end points of trajectories. The examined patterns in 

Melbourne and Sydney moreover reflect the nature of the found user types. On the one 

hand, commuter users tend to cover larger areas within the city itself and show a wide 

spreading pattern. On the other hand, users showing touristic movement patterns more 

often visit only small numbers of different areas, whereas these areas reflect touristic 

hotspots such as city centers, airports, or beaches.  
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7.2 Contributions 

This thesis presents a contribution to human mobility research that is comparatively 

untested, by characterizing users based on their spatio-temporal movement behavior in 

the absence of ground truth. Two unsupervised machine learning techniques, clustering 

and PCA, have been applied on various measures describing the individuals’ spatio-

temporal footprints in order to find most distinct groups, i.e. user types. For the cluster-

ing, four different methods with several numbers of principle components have been 

tested and validated to find the most suitable combination of clustering method and clus-

tering parameters, i.e. the combination of the number of principal components to use and 

the clustering method itself. A qualitative analysis of the clusters found was then used to 

discover and interpret distinct user types. By analyzing the temporal and spatial charac-

teristics of these user types, we have further shown that the elaborated user types 

disproportional visit certain areas that often reflect the nature of the individual user 

types.  

Identifying such different user types in the absence of ground truth can be of assistance 

for various other research areas. The identification of users with touristic behaviors for 

example can be directly used by Sygic to provide better navigation help for people unfa-

miliar with their surroundings. On the other hand, the identification of the commuter 

users can be used to provide them with specially tailored navigation products. Besides 

the navigation domain, the identification of touristic users also helps in the investigation 

of virus spreading patterns, since touristic users tend to visit a bigger variety of locations 

and areas, and therefore are prone to spread viruses over bigger areas. Other than that, 

the findings of our applied methodology can also be of use for new applications in the 

tourist management and urban planning domain. Since the high spatial and temporal 

resolution of the data offers new insights into the movement behavior of various user 

types, they can be used to detect areas with a high potential for certain services.  

We further see a potential of the presented methodology in insurance and healthcare 

areas. Certain user types might be more prone to accidents due to their unfamiliarity 

with the visited areas and show a more precarious driving behavior. Identifying such 

user types would help insurance companies to tailor the products more efficiently based 

on the driving behavior. 

7.3 Outlook 

In order to further validate the presented methodology, a testing on a larger and differ-

ent data set over several months and over individual months compared is required. By 

applying the methodology on several months, we are presented with an even better 

movement behavior of the different users. When further applying the presented method-

ology on individual months separately, we would be able to establish even more detailed 

user types. Accordingly, we could test whether we could learn a model based on data for 

one month and then try to predict the class labels of the individual users for the next or 

a different month. A further approach would be to generate a model that would instantly 

label users based on their just recorded movements. 
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Furthermore, it would be interesting to see whether the methodology, i.e. the trained 

method can be directly applied in a different geographic context, i.e. different countries 

individually. It would further be interesting to have a look at data from areas with a lot 

of border crossings, since we are not presented with such cases due to the isolation of 

Australia. Applying such a methodology on data of these areas would additionally help to 

investigate whether users of different background, i.e. nationalities show different spa-

tio-temporal footprints and behaviors. 

An area for further examination could be a sensitivity analysis of different approaches to 

segment the trajectories. In this thesis, we have used only one spatial and temporal 

threshold to detect stops. It could therefore be interesting to see whether the found pat-

terns differ when using different thresholds.  

An additional interesting approach would be to cross-reference the patterns found with 

other data sets, such as CDR data or RFID data of public transport usage in the two cit-

ies. We could then check whether the found patterns also occur in these data sets or 

whether they differ, and if so, how they differ and why. We would further be interested 

to analyze whether the different user types follow the paths given by the navigation app 

or whether they refuse the app’s suggestions and take their own paths.  
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A. SA2 Areas Melbourne 

 

Figure A.1: SA2 areas of Melbourne colored corresponding to their SA4-area name 
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B. SA2 Areas Sydney 

 

Figure A.2: SA2 areas of Sydney colored corresponding to their SA4-area name 
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C. Important SQL-Queries 

CREATE TABLE movingwindow_5m AS 

SELECT a.*, 

  SUM(b.distance) AS sum_dist_m5, 

  count(*) AS count 

 FROM points AS a 

 JOIN points AS b 

  USING (p_sessionid) 

 WHERE b.timestamp >= a.timestamp 

  AND   b.timestamp < a.timestamp + interval '5 minute' 

 GROUP BY a.pointid  

 ORDER BY a.timestamp, a.pointid; 

Code Fragment 1: SQL-Code to calculate the covered distance over a moving window of five minutes. 

CREATE TABLE stops AS 

 SELECT d.*, 

  CASE  

   WHEN d.sum_dist_m5 <= 10  

   AND d.count >= 5   

   THEN 1    

   ELSE 0   

   END AS point_type   

 FROM movingwindow_5m AS d; 

Code Fragment 2: SQL-Code to tag the tuples that match the requirements of a stop point.  

UPDATE sse_point AS k 

 SET osm_type = d.osm_type, 

  dist2osm = d.dist2osm 

 FROM 

  (SELECT a.pointid, 

   b.name AS osm_name, 

   b.type AS osm_type, 

   ST_Distance(a.coord::geography, b.geom::geography) as dist2osm  

  FROM  

   (SELECT pointid, 

    coord 

   FROM sse_point) AS a, 

    osm_poi AS b    

  WHERE ST_Intersects(a.coord, b.buffer)  

  ORDER BY pointid, dist2osm)  

  AS d 

 WHERE k.pointid = d.pointid; 

Code Fragment 3: SQL-Code to update the table of the SSE points with information about the nearest OSM 
POI  
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SELECT  d.deviceid, 

 a.concave_hull, 

 ST_Centroid(a.concave_hull) AS d_centroid   --centroid of concave hull 

FROM dailymovement d 

LEFT JOIN  

     (WITH hulls AS ( --from a table where we first have to check whether the 

geometry type is a polygon 

  SELECT p_dmoveid, 

         st_concavehull( 

                           ST_Collect(coordinates), 0.90) AS concave_hull --target per-

cent: 90% 

  FROM points 

  GROUP BY dailymovementid) 

       SELECT * FROM hulls where ST_GeometryType(concave_hull)='ST_Polygon') AS a; 

Code Fragment 4: SQL-Code to compute the daily concave hull and its centroid 

CREATE TABLE sse_clusters AS 

 SELECT  row_number() over () AS cluster_id,  --a cluster id 

  deviceid,      

  ST_NumGeometries(cluster) AS number_points, --no. of points in cluster 

  ST_Centroid(clust) AS centroid,   --centroid of the cluster 

  ST_MinimumBoundingCircle(cluster) AS circle, --minimum bounding circle 

  sqrt(ST_Area(ST_MinimumBoundingCircle(cluster))  

   / pi()) AS radius   --radius of minimum bounding circle 

 FROM  

  (SELECT  

   unnest( 

    ST_ClusterWithin(    --calculate cluster 

     coordinates, 15)) AS cluster,  --eps=15m 

   deviceid 

  FROM start_stop_end 

  GROUP BY deviceid) AS f;     

Code Fragment 5: SQL-Code to compute the spatial cluster per user 
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