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Abstract 

Increasing mobility raises the pressure on existing transportation networks. The private car as 

the most used means of transportation has a particularly strong environmental impact and pro-

duces congestion. The concept of ridesharing, where drivers and riders form a carpool, can help 

to address this issue by increasing the number of persons per car. Nevertheless, carpooling is still 

a niche mode of transportation with a difficult access to offers. Often, carpooling providers do not 

depart from the desired origin which, thus, prevents users from sharing rides. A solution to this 

problem is multimodal routing, where journeys consist of different modes of transportation. Cur-

rent systems, however, only combine traditional modes with fixed stop locations and routes by 

linking the closest stations, hence solving the Nearest Neighbor Problem. Carpooling, in contrast, 

entails imprecise stop locations and can lead to detours. The current state of the art approach is 

therefore inadequate. Consequently, the question arises as to how carpooling can be integrated 

into a multimodal system. 

In this thesis, a conceptual model of a merging and linking technique, which can represent fuzzy 

locations and retain flexibility, is presented. In detail, the proposed linking technique relies on 

drive time areas around considered stable public transportation stops. With the use of these drive 

time areas, imprecise carpooling stops can be allocated to multiple potential stations. Further, the 

proposed technique entails stop exploiting along routes in order to maximize flexibility. The con-

cept of Points of Action is introduced in order to find intersections between drive time areas and 

carpooling routes. Points of Action furthermore guarantee the reachability of a public transporta-

tion stop.  

The conceptual model is proven in an experiment with the Swiss railway network and real-life 

carpooling offers derived from an online rideshare platform. It is shown that the proposed merg-

ing & linking technique creates a high interconnectivity between carpooling and the railway net-

work. In addition, our system can be queried for meaningful multimodal shortest paths containing 

carpooling. 

The contribution of this thesis is a linking approach for fuzzy and flexible means of transportation 

in a multimodal routing system, based on well-known modeling approaches. This research can 

furthermore be implemented in real-life systems of online rideshare platforms or public trans-

portation agencies to provide multimodal trips. 

Keywords: Carpooling, Multimodal Routing, Network Linking, Stop Allocation 
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1 Introduction 

1.1 Context and Motivation 

Mobility has become more important over the past few decades and may continue to do so in the 

future (Pajor, 2009). With growing populations, more people are using transportation networks. 

Estimates say an inhabitant of a larger settlement makes up to 20 trips a day (Celiski et al. 2014 

In: Sierpiński et al. 2014). Considering the fact that, today, cars are the most frequently used mode 

of transportation (MOT) (Sierpiński, 2013) despite being regarded as the least environmentally 

friendly, the environmental impact as well as the pressure on road networks are huge (Calvo, de 

Luigi, Haastrup, & Maniezzo, 2004; Sierpiński et al., 2014). As an example, Figure 1 below shows 

the usage of different MOT in 318 European cities between the years 2001 and 2011. 

  

Figure 1 Usage pattern of driving, public transportation, bicycling and walking for 318 European cities between the years 
2001 and 2011 (Sierpiński, 2013). 

Public transportation is used not even half as frequently as driving. Furthermore, according to the 

Tagesanzeiger1, only 1.6 persons occupy a car on average (Tages-Anzeiger, 2013). Thus, high con-

gestion in cities and on major road axes is common. According to Banister (2008), the trend of 

using a car as the primary mode of transportation can be ascribed to the fact that cycling and 

walking have become less attractive. People continuously try to minimize their generalized travel 

costs. Travel costs are a combination of the financial costs and the time taken (Banister, 2008). 

The optimization of travel costs can be seen mostly when transport is used as a derived demand. 

This means that people do not travel because of the journey itself, but because of the activity at 

the destination. With changing travel patterns, leisure-based travel increases (Loo & Chow, 2006; 

Schlich, Schönfelder, Hanson, & Axhausen, 2004). According to Heinze (2000), leisure mobility is 

a way of getting away from one’s everyday environment and, therefore, increases quality of life. 

This hypothesis is also known as the Escape Theory (Heinze, 2000). 

Even more, travelers usually do not reconsider their MOT because it is bound to their habits, and, 

however good other forms of MOT are, people will always have a reason to still use their cars 

                                                           
1 www.tagesanzeiger.ch – The Tagesanzeiger is an interregional newspaper in Switzerland and belongs to 
the most influential newspapers in Switzerland. 

http://www.tagesanzeiger.ch/
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(Banister, 2008; Kenyon & Lyons, 2003). Transport policy measures are therefore needed to 

achieve a modal shift. These policy measures shall promote the use of different MOT and lead to 

the development of new transport hierarchies. One approach is to facilitate the use of public trans-

portation (Banister, 2008). Thus, travel planner systems can help in facilitating the access to dif-

ferent MOT. Especially if such a system supports multimodality, the pressure can be distributed 

among different transportation networks. However, in travel planner systems, reliable infor-

mation and easy to understand directions are absolutely essential to create a stimulus for using 

them (Sierpiński et al., 2014). Thus, such a system should, for example, consider Geocoding to 

identify start- and endpoints, spatial (and time) algorithms to optimize routing between A and B, 

and communicate with the user in an understandable way (Sierpiński et al., 2014). 

As stated above, people are strongly bound to their cars. It can therefore be argued that trying to 

substitute travelling by car with other MOT is critical and may not succeed. Hence, a MOT which 

combines the flexibility of cars with the efficiency of public transportation may be a reasonable 

transport policy measure. One MOT which has the attributes outlined above is carpooling. In car-

pooling, any driver who is planning a journey can advertise his/her trip on a specific platform 

such as BlaBlaCar.de2. Other users can join the carpool for a small amount of money. Thus, they 

build a carpool between driver and rider. Most drivers are also willing to make a short detour, 

which increases flexibility. Therefore, the pick-up and drop-off locations can be at many different 

places. Carpooling is thus a way of making private cars part of a transportation network (Bit-

Monnot, Artigues, Huguet, & Killijian, 2013). 

Flexibility is not the only great advantage of carpooling. By comparing the average price per kilo-

meter of carpooling with public transportation, it becomes apparent that it is around 10 times less 

expensive than the public transportation agency SBB (Schweizerische Bundesbahnen). For both 

MOT, a flattening can be seen with increasing travelling distance. This phenomenon seems to be 

crucial as prices may reach exorbitant values on long haul travels. Figure 2 below shows the aver-

age price per kilometer in Swiss Francs for roughly 2000 carpooling offers and the pricing scheme 

of the SBB. The prices of carpooling offers have been converted from Euros to Swiss Frances with 

an exchange rate of 1:1.068141233. The average price of the SBB has been calculated for a one-

way second class ticket. The average price for a first class ticket is by rule of thumb twice as ex-

pensive. Since carpooling does not have a specific pricing scheme, fluctuations are common oc-

currences. Therefore, a floating average has been calculated. Offers above 1000 km in length are 

neglected, since the SBB has no comparable offers. Furthermore, the prices of carpooling offers 

                                                           
2 https://www.blablacar.de/ - BlaBlaCar is an online ridesharing community with 40M users in 22 coun-
tries worldwide. 
3 Exchange rate on February 3rd 2017 

https://www.blablacar.de/
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longer than 1000 km stagnate at around 0.02 CHF/km. Considering the price, carpooling is a lu-

crative way to travel. Longer journeys are, compared to public transportation, particularly good 

value.  

 

Figure 2 Average prices for roughly 2000 carpooling offers in comparison to the pricing scheme of the SBB. 

When having a look at average travelling distances of carpooling, it is visible that carpooling is 

mostly offered on longer journeys. Offers with a length of more than 1000 km have been excluded 

in the chart. Roughly 5.5% of all offers are excluded. An accumulation can be seen between routes 

ranging between 250 km and 800 km, as shown in Figure 3. The total average of a carpooling 

travel is around 480 km and the median 420 km. In contrast, the average length of travels with 

the SBB lies around 130 km.  

Based on Figure 3, it can be assumed that public transportation (in Switzerland) is, compared to 

carpooling, mostly used for travelling between regions, whereas carpooling is used on an interna-

tional scale. Hence, carpooling is not in competition but rather a supplement to public transpor-

tation.  
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However, in Switzerland, carpooling is still a niche MOT and not many offers exist. They often do 

not depart from a user’s desired origin. However, contrary to public transportation, carpooling 

offers are very dynamic and do not have a fixed schedule nor fixed stops. Each carpooler can define 

his own stops where he/she could pick up riders. Furthermore, carpooling offers may pass a loca-

tion directly or with a small detour to a user’s desired destination. Unfortunately, the carpooler 

may not mention these locations, but both the driver and the passenger could profit from stopping 

there. Hence, an additional effort is needed to search suitable offers, which can be exhausting 

(Furuhata et al., 2013; Geisberger, Luxen, Neubauer, Sanders, & Volker, 2009). A solution to this 

inconvenience of searching for offers could be the integration of carpooling into a travel planner 

system. If the travel planner system supports multimodality, access to carpooling is greater and 

journeys can be optimized.  

In general, multimodal routing combines multiple MOT. For example, a single journey can consist 

of driving by car and public transportation (cf. Park & Ride). The focus of multimodal transporta-

tion is particularly directed at public transportation. This leads to less traffic on the roads and 

more ecological travel (Grotenhuis, Wiegmans, & Rietveld, 2007; Prandtstetter, Straub, & 

Puchinger, 2013). However, carpooling can also lead to more ecological travel (Ghoseiri, Haghani, 

& Hamedi, 2011). According to BlaBlaCar.de (n.d.), 500k tons of oil could be saved and the emis-

sion of CO2 could be reduced by 1M tons with rideshares made on their platform within the last 

12 months alone. As said before, public transportation and carpooling complement each other 

very well.  
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1 Introduction 

5 
 

As stated in several EU White Papers, multimodal trips are expected to increase. In 2001, the EU 

has recognized the need for multimodal fright transportation (Commision of the European 

Communities, 2001). Later in 2011, they expanded this need for general travel between cities 

(Communities Commision of the European, 2011). Thus, more people should travel in a multi-

modal way.  

Current systems such as Google Maps do indeed support multimodality and are easy to use, but 

they do not support all available transportation modes. Newer transportation modes such as car 

sharing and carpooling are yet to be implemented and only a few studies considering their inte-

gration into a multimodal system exist (Aissat & Varone, 2015a; Bit-Monnot et al., 2013; Varone 

& Aissat, 2015). The fact that carpooling has not been integrated yet can be ascribed to several 

reasons. On the one hand, carpooling is still a niche market and therefore not attractive financially. 

On the other hand, the dynamism and fuzziness of carpooling is highly problematic for multimodal 

routing systems. Normally, multimodal routing networks are built upon static networks (Bast et 

al., 2015). In static networks, fixed stops exist, e.g. public transportation stops or a crossroad in 

the road network. The base principle of multimodal networks is network merging, where different 

transportation networks are merged into one single routable graph. This is usually done by ap-

plying spatial methods such as a nearest neighbor algorithm. The crucial point is that this cannot 

be done easily or efficiently with carpooling, since no fixed stops exist and carpooling is of a fuzzy 

nature, which means detours can be made and consequently new stops can be exploited. New 

methods must be developed to efficiently merge static and dynamic/fuzzy networks, while retain-

ing the desired flexibility component. 

1.2 Statement of the Problem & Aim 

This thesis aims to evaluate the technical feasibility of incorporating carpooling into multimodal 

routing applications. The object of study is the combination of carpooling with public transporta-

tion. Both MOT are paragons for different network types. Carpooling as a dynamic/fuzzy network 

brings the benefit of flexibility, while public transportation as a static network provides reliability 

and continuity.  

According to the current state of the art, different data models for timetable-based networks, such 

as public transportation, exist. The focus lies on time-expanded and time-dependent networks, 

which both are adequate solutions for representing timetable-based networks (Bast et al., 2015; 

Delling, Pajor, & Wagner, 2009b; Goczyłla & Ciela̧tkowski, 1995; Müller-Hannemann, Schulz, 

Wagner, & Zaroliagis, 2007; Pajor, 2009; Pyrga, Schulz, Wagner, & Zaroliagis, 2008; Schulz, 2005). 

Concerning carpooling, not many studies exist. When modeling carpooling as an independent 

MOT, time-independent road networks may be used. Keeping the motivation in mind, carpooling 
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might be an adequate complement to a multimodal routing system (Aissat & Varone, 2015a). Un-

fortunately, at this point, only two different studies exist (Bit-Monnot et al., 2013; Varone & Aissat, 

2015). Both of them follow innovative approaches (cf. 2.2.3 Carpooling and Multimodal Routing). 

However, in their approaches, carpooling is treated as a substitution to an existing multimodal 

journey. Hence, they do not consider different modeling approaches for carpooling, nor merging 

techniques for carpooling with another MOT. Further, the qualification of carpooling offers as a 

transportation network in general and the applicability as part of a multimodal network have 

been scarcely evaluated.  

Therefore, this thesis aims to: 

 Develop a modeling approach for carpooling offers in the light of future integration into a 

multimodal network. 

 Propose a linking technique to combine carpooling and public transportation networks 

into a multimodal network, respecting fuzziness and flexibility.  

 Evaluate the suitability of carpooling offers in terms of spatial and temporal scales, and 

the benefits of their integration into a multimodal transportation network, with respect to 

creating better transport planning systems. 

1.3 Structure of Thesis  

The structure of this thesis follows the work stages that have been undertaken. The following 

chapter will portray the Related Work in the areas of routing and multimodal routing. Further-

more, the research gap and the research objectives are elucidated. Afterwards, the methodology 

will be defined and explained on a conceptual basis. In the following experiment, the proposed 

concepts are tested with real-life data, explaining how the data can be derived, pre-, processed 

and post-processed. Further, the use of external data models will be justified and extended. The 

implementation will then demonstrate the generation of transportation graphs for both carpool-

ing and public transportation data. The conceptual methods are needed to merge the resulting 

transportation graphs. The practical part will be complemented with a results section. The thesis 

concludes with a discussion of all the previously generated results, highlighting the importance of 

carpooling in a multimodal network and the benefits of the proposed merging.  
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2 Related Work 

This chapter aims to summarize current research in the areas of routing and multimodal routing. 

Fundamental principles are elucidated and explained based on state of the art examples of rele-

vant transportation networks, public transportation and carpooling. Finally, the research gap is 

defined. 

2.1 Routing 

Routing can be described as the problem of finding a path through a graph (Hart, Nilsson, & 

Raphael, 1968). Finding such a path is not only bound to transportation networks, but can be ap-

plied to any kind of network: telephone traffic, social media, and more (Hart et al., 1968). Crucially, 

routing is a widely researched topic across disciplines because of its relevance to real-life appli-

cations (Pajor, 2009). A system that provides capabilities of routing in a network must be modeled 

in an adequate manner to provide correct results within an appropriate time. Typically, pro-

cessing time should not exceed several seconds on a standard device (Goczyłla & Ciela̧tkowski, 

1995). Hence, fast and reliable algorithms are needed to ensure the above. With increasing mobil-

ity (Pajor, 2009; Sierpiński et al., 2014), routing for optimal paths is becoming more important. 

Traditionally, an optimal path is defined as either shortest in distance or duration. However, as 

some studies have shown, routing can be also used for defining the most scenic route, the safest 

path, or other applications as well (Golledge, 1995; Huang et al., 2014). For the former, routing 

algorithms for shortest paths were developed as early as the 1950s and 60s by Dijkstra (1959), 

Bellman and Ford (1958) and Hart et al. (1968) (Pajor, 2009). Their application remains wide-

spread in research and in practice. Newer algorithms and approaches, such as ArcFlags (Hilger, 

Köhler, Möhring, & Schilling, 2009) or Contraction Hierarchies (Geisberger, Sanders, Schultes, & 

Vetter, 2012), are usually built upon these concepts. Routing algorithms are consequently the 

backbone of the whole art of routing. Nevertheless, data models also play a crucial role as they 

represent the characteristics of a network. Even though different models (time-independent, 

time-expanded, time-independent) exist, they all share the mathematical concept of the graph the-

ory. 

This chapter therefore elucidates different types of routing algorithms and data models. Finally, 

the current state of the art is demonstrated with an example of public transportation. 

2.1.1 Graph Theory 

The foundation of routing is graph theory. Graph theory was first mentioned by Euler (1741). In 

his paper about the Königsberg Bridge Problem, Euler tried to figure out if it was possible to visit 

every landmass of Königsberg by crossing each connecting bridge only once. Formulating this 

problem in an abstract way resulted in a graph representation (cf. Figure 4). Even though Euler 
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did not use the terms vertex and edge, landmass and bridge can be interpreted as the same. Ver-

tices (landmasses) are connected by edges (bridges), hence representing pairwise relations.  

It is crucial that many disciplines allow for the representation of pair-relations as mathematical 

structures. In Social Sciences, graphs can be used to model and reveal relations between people. 

An organization chart, for example, represents workers and their relationships: (A)-supervises-> 

(B). In physical geography, graphs can be used to analyze the topological structure of stream net-

works, where streams are represented as edges and confluences as nodes (Foulds, 1992).  

 

 

Figure 4 Situation plan of Königsberg (left) and the schematic graph model by Euler. Landmasses (I - IV) are connected by 
seven bridges (1-7) (Foulds, 1992). 

Put more scientifically, a graph G consist of a finite, non-empty set of vertices (aka. nodes) V and 

a set E of unordered, distinct pairs of vertices called edges (or arcs). Consequently, G is defined by 

G = (V,E) (Pajor, 2009). An edge e  E is represented by two adjacent vertices u  V and 

v  V, resulting in e = (u, v)  E. Further, an additional edge e2 = (v, w) is adjacent 

to e as they share vertex v (Foulds, 1992). While edges are basically undirected, many applica-

tions depend on directed edges. Hence, in the before edge (u, v), v must be the successor of u. 

A directed graph is also termed as digraph. In a digraph, edges are usually called arcs and are 

ordered (Foulds, 1992). An example of a digraph is shown in Figure 5. 

Networks form a special case of digraphs. A network is a digraph containing a single source and a 

single sink node. Source nodes are vertices which have only arcs directed away from them, 
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whereas sink nodes only have arcs directed towards them (Foulds, 1992). An example of a net-

work is shown in Figure 5. This definition may be misleading for transportation networks, as they 

might have any source or sink nodes. Usually, public transportation routes are offered in both di-

rections. 

Standard digraphs allow only one arc between two vertices. However, allowing multiple arcs, and 

thus reparations, in a digraph leads to a multidigraph, in which a pair of nodes can have multiple 

relations (Foulds, 1992).  An example of a multidigraph is shown in Figure 5. 

Furthermore, edges can have weights, denoting the cost it takes to move from u to v (Hart et al., 

1968; Pajor, 2009). Edge weights are usually represented by a real number or a function assigning 

a real number to the edge (Foulds, 1992). Weighted graphs are the baseline for routing purposes, 

as they allow the use of path algorithms, minimizing the summarized cost of a path p from u to v. 

 

Figure 5 Schematic examples of a digraph (left), a network graph (middle) and a multidigraph (right) (Foulds, 1992). 

 

2.1.2 Shortest Path Algorithms 

The goal of routing is to find a shortest route or path in a network. Depending on the size of a 

network, finding its shortest path can be exhausting and requires high computational power in 

order to reduce query times (Bast et al., 2015). Therefore, research focuses on different tech-

niques to improve the finding of shortest paths. Five main techniques (Basic, Goal-Directed, Sep-

arator-Based, Hierarchical and Bounded-Hop) exist. All of them feature different algorithms which 

can either be applied to a raw graph or enhance the graph/model to shorten query times. In this 

section, a brief overview of the main techniques and some of the according algorithms are dis-

cussed. 

2.1.2.1 Basic Techniques 

Basic techniques outline algorithms which can be applied on a basic graph G = (N, E), where 

N is a set of nodes and E a set of edges. An edge is defined by (m,n)  E. Edges are weighted, 

e.g. with a distance or a duration d. A shortest path in G from a starting node s to a target node t 

is defined by min(d(s,t)), thus the path with the minimum length (Sanders & Schultes, 2007). 
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Basic techniques do not require augmentations of a model and further do not rely on additions 

such as labels. Hence, they may be applied to any graph with consistent edge weights. 

Dijkstra’s algorithm: The algorithm proposed by Dijkstra (1959) is one of the most famous algo-

rithms for finding the shortest path in a graph. It can be considered as a greedy label-setting algo-

rithm (Sniedovich, 2006).  Furthermore, it is a solution to the one-to-all shortest path problem, 

meaning that it computes all distances from a given node n to all nodes in the graph (Bast et al., 

2015). In general, a priority queue Q is initialized with all nodes ordered by distance from the 

starting node s. All distances are infinite, except s = 0. The algorithm starts iterating and extracts 

the node n with the minimal distance from Q. After extracting n, a scan of all edges e = (n, k) 

incident to n is performed. The distance value of (s,n) + l(e) is determined and if it improves 

the distance of (s,k), an edge relaxation is performed. Thus, k with its new distance (s, k) is 

added to Q (Bast et al., 2015; Sniedovich, 2006). When solving the one-to-all problem, the iteration 

continues until the node furthest away is reached. When solving the point-to-point problem, where 

start and end node are known, the algorithm stops as soon as it scans the target node. (Bast et al., 

2015) The performance of Dijkstra’s algorithm depends on the search space. Consequently, the 

larger the graph, the more nodes must be scanned and the slower the algorithm is. The use of a 

bidirectional search can reduce the number of nodes to scan, thus the search space of one direc-

tion, by a factor of two. This can be also seen in Figure 6. The idea is to simultaneously start a 

Dijkstra algorithm from the start to the target and vice versa, with alternating running of forward 

and reverse search (Hilger et al., 2009). The shortest path is found if a node has been visited from 

both directions (Sanders & Schultes, 2007). Other studies propose even more speed-up tech-

niques (Schulz, 2005), but this will not be discussed in more detail. Dijkstra’s algorithm is very 

popular for shortest path queries in road networks, as they rely on static edge weights and do not 

consider a time component. Esri’s Network Analyst Extension, for example, relies on Dijkstra’s 

algorithm (Esri, n.d.-a). However, adaptions for time dependent networks exist (Schulz, 2005). 

Also, depending on the time dependent model, this algorithm can be used out of the box. 

 

Figure 6 Schematic representation of search spaces of a standard Dijkstra’s algorithm (left), a bidirectional search (middle) 
and an A* search algorithm (right) (Bast et al., 2015). 
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Bellman-Ford algorithm: In contrast to Dijkstra’s algorithm, Bellman-Ford’s (1958) does not use 

a priority queue. Instead, a first-in-first-out (FIFO) queue is used (Bast et al., 2015). Also, since 

nodes may be scanned multiple times, it can be defined as a label-correcting algorithm (Bast et al., 

2015). The principle of the algorithm is as follows: Like Dijkstra’s algorithm, the start node s is 

set to D(s) = 0, which means zero cost from this node to this node. All other nodes N are set to 

infinity D(N) = . In iterations, edges (m, n) are scanned, if D(n) > D(m) + l(m, n). If 

so, D(n) is set to D(m) + l(m, n). Therefore, a sequence of relaxation steps is performed. 

Iterations keep going until the target node is reached (Bannister & Eppstein, 2012). 

The Bellman-Ford algorithm is generally slower than Dijkstra’s algorithm, but can in some sce-

narios be competitive (Bast et al., 2015). An advantage, however, is the possibility of negative edge 

weights, which are not allowed with Dijkstra’s algorithm (Bannister & Eppstein, 2012).  As this 

thesis works with network datasets where negative edge weights are impossible, this algorithm 

will not be considered further. 

2.1.2.2 Goal-Directed Techniques 

Goal-directed algorithms can be defined as guided algorithms. Rather than scanning in all direc-

tions, as for example Dijkstra’s algorithm, these algorithms try to avoid scans in the opposite di-

rection of a target node t. Thus, either the geometric embedding of the network or the properties 

of the graph must be exploited (Bast et al., 2015). The goal is to have an “informed” algorithm, 

which tries to only scan nodes that are obviously on the optimal path. Consequently, the effort can 

be reduced (Hart et al., 1968). 

A* search algorithm: The A* algorithm is a typical goal directed approach, developed by Hart et 

al. (1968). This algorithm is basically a modified version of Dijkstra’s algorithm in which the pri-

ority of nodes is defined. Prioritizing nodes leads to scanning nodes closer to the target earlier 

(Bast et al., 2015). However, other than a Dijkstra, an A* is only applicable for to-one searches, 

whereas a Dijkstra can, as mentioned above, find paths to-all.  A* uses two kinds of information, 

first it uses the exact cost of a path l(s,n) from the starting point s to a node n and second a 

heuristic cost function estimated by the cost h(n,t) of n to a target t. During iterations, the al-

gorithm balances l and h when moving through the graph, to find the node n with the smallest 

cost of l(s,n) + h(n, t) (Amit, n.d.). This algorithm stops as soon as it is about to scan the 

target node and delivers the correct result (Bast et al., 2015). 

Due to its goal-directed search, the search space of an A* algorithm is significantly smaller than 

the one of a Dijkstra algorithm, cf. Figure 6 (Bast et al., 2015). Theoretically, A* should perform 

well. However, studies show that in a road network where the geographical distance divided by 

the maximum speed is used as the potential function, no or only small performance gains result 

(Bast et al., 2015). A common speedup technique is ALT (A*, landmarks and triangle inequality). 
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The principle of ALT is to insert a set of landmarks L into the graph. During preprocessing, the 

distances of all nodes n  N to L are calculated (Goldberg & Harrelson, 2005).Thus, triangle 

inequalities involving these landmarks can be used to calculate lower bounds during a point-to-

point query (Bast et al., 2015). Consequently, the search space is reduced again, which can be seen 

in Figure 7. 

 

Figure 7 Schematic representation of search spaces of a Dijkstra’s algorithm (left), a regular A* algorithm (middle) and an 
ALT algorithm (right) (Goldberg & Harrelson, 2005). 

ArcFlags: The algorithm developed by Hilger et al. (2009) is again based on Dijkstra’s algorithm. 

The idea is, like in A*, to reduce or more likely to improve the search space for the Dijkstra algo-

rithm. Other than A*, ArcFlags does not use any heuristics, but a subgraph is created during pre-

processing. More precisely, the graph is partitioned into K cells of approximately the same size 

(edges) (Hilger et al., 2009). Every edge has a vector v of K bits, which are called ArcFlags. If the 

edge lies on a shortest path to a node of a cell i, the i-th bit of the vector v is set. Further, the 

algorithm will scrap edges where the bit for the cell containing the target t is not set (Bast et al., 

2015).   

According to Bast et al. (2015), ArcFlags is currently one of the fastest algorithms in terms of query 

time for road networks. Unfortunately, preprocessing can be extremely exhausting due to the 

worst-case time complexity of O(n2 log n). As an example from Hilger et al. (2009), prepro-

cessing a graph with 1M nodes and 2.5M edges could take weeks. Although speedup techniques, 

e.g. the PHAST algorithm, for preprocessing exist (Bast et al., 2015), ArcFlags is not very well suited 

for dynamic networks. Nevertheless, some approaches on how to update ArcFlags in dynamic 

graphs have been proposed by Berrettini, D’Angelo and Delling (2009). Since ArcFlags is best 

suited for static, non-dynamic road networks, this thesis will not discuss this algorithm any fur-

ther. 
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2.1.2.3 Hierarchical Techniques 

Hierarchical techniques try to integrate the hierarchy of the network they represent. As an exam-

ple, during long travel on the road network, the importance of highways is much higher than rural 

or suburban streets. Hence, the algorithm can restrict itself to this subnetwork of highways. Ac-

cording to Bast et al. (2015) and others, road categories are a popular heuristic. Unfortunately, 

these unverifiable input categories may give inexact shortest paths (Bast et al., 2015). Alterna-

tively, preprocessing can be used to compute the importance of nodes and edges without any fore-

knowledge (Bast et al., 2015). 

Contraction Hierarchies (CH): The algorithm proposed by Geisberger, Sanders, Schultes, & 

Vetter (2012) removes unimportant nodes from a directed and weighted road network. The idea 

is to implement shortcuts for a temporarily deleted node n and therefore preserve shortest paths. 

This concept is called node contraction (Geisberger et al., 2012). Node contraction is performed 

by one node at a time until the graph is empty. A set with the original nodes and edges as well as 

the shortcuts form a contraction hierarchy. Nodes are ordered by their importance (Bast et al., 

2015). The later a node is removed from the graph, the higher it is in the hierarchy (Geisberger et 

al., 2012). The contraction process is performed in a preprocessing phase. Geisberger et al. (2012) 

argue that, for static networks with less change, preprocessing is an adequate approach for speed-

ing up queries. However, networks with an extensive number of shortcuts will also require long 

preprocessing phases. Thus, Contraction Hierarchies is mostly reserved to static road networks, 

rather than dynamic, timetable based networks. Nevertheless, a resulting graph can be queried 

using a simple variant of a bidirectional Dijkstra’s algorithm. Only edges that lead to a node higher 

up in the hierarchy are relaxed (Geisberger et al., 2012).  

Contraction Hierarchies can be considered as one of the fastest and most successful routing tech-

niques on static road networks. Further, implementations for both PC and mobile devices exist 

(Geisberger et al., 2012). 

2.1.2.4 Bounded-Hop Techniques 

Bounded-Hop Techniques require extensive precomputing. In a naïve approach, one could calcu-

late distances between every pair of nodes. Short distances could easily be retrieved with a single 

table lookup and single-hop paths. Consequently, the idea of bounded-hop techniques is to pre-

compute distances between pairs of nodes and therefore adding “virtual shortcuts”, which reduce 

the number of hops along a path. Queries, only running on this virtual distances, can return a vir-

tual path with only few hops (Bast et al., 2015). 
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Transit Node Routing (TNR): Other than some of the above routing algorithms, Transit Node 

Routing can be considered as a framework. In TNR, three circumstances have to be considered in 

order to calculate shortest paths: A set of transit nodes, access nodes for all nodes and the fact that 

not all queries between nearby nodes can be answered using the set of transit nodes (Arz, Luxen, 

& Sanders, 2013). TNR again requires preprocessing to retrieve transit nodes, access nodes, and 

their distances (Bast et al., 2015). Transit nodes can be calculated using Contraction Hierarchies, 

for example (Arz et al., 2013). Since CH builds a hierarchy where nodes that are part in many 

shortest paths are higher in order, a small set of nodes T can be selected from the top of the hier-

archy.  Further, distances between all t  T are calculated (Arz et al., 2013). As using CH is 

already a more sophisticated approach, others use a “base” version of CH, namely Highway Hier-

archies (HH) to retrieve transit nodes (Sanders & Schultes, 2006). However, HH also creates a hi-

erarchy which can be used to retrieve transit nodes. Using these transit nodes, a set of access 

nodes A(u)  T for every node u  T can be calculated. If a transit node v  T is the first 

transit node in a shortest path P from u, v can be considered as an access node of u. In addition, 

all distances between u and its access nodes are stored in a distance table (Bast et al., 2015). A 

query for a point-to-point shortest path s-t can thus use the distance table to select paths that 

minimize the distance s-a(s)-a(t)-t (Bast et al., 2015). Unfortunately, queries can lead to a 

false result if s and t are too close to each other. In this case, the shortest path may not contain a 

node from T. Therefore, local searches need a special treatment and thus a locality filter needs to 

be implemented (Sanders & Schultes, 2006). This filter decides whether a query is of global or 

local (P does not contain a node of T) nature. For local queries, a fallback algorithm is used (Bast 

et al., 2015). 

As mentioned above, TNR is a framework rather than an algorithm and therefore needs extensive 

preprocessing using already extensive algorithms like CH. Therefore, TNR is mostly used for static 

road networks. 

2.1.2.5 Recap & Performance 

In this section, different algorithms and frameworks to retrieve and speedup shortest paths in a 

transportation network have been presented. As has been shown, some (e.g. ArcFlags) require 

extensive preprocessing. In preprocessing, basic to more sophisticated algorithms (e.g. CH) are 

run on the input graph to reduce the search space, add shortcuts or create virtual paths and lookup 

tables. The goal of this preprocessing is to improve future shortest path queries. Critically, exten-

sive preprocessing may not be applicable for every type of network. While processing makes 

sense for static networks that do not change often, it is not an adequate solution for dynamic net-

works with frequent updates. However, some research in this direction exists (Bast, Brodesser, & 

Storandt, 2013; Berrettini et al., 2009).  
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Bast et al. (2015) present performance measures for different algorithms. In their experimental 

setup, the road network of Western Europe with approximately 18M nodes, 42M edges and 13 

road categories was used. An average speed of 10i km/h was assumed, where i represents a 

category (Bast et al., 2015). Figure 8 shows the query times for several point-to-point queries com-

pared to the preprocessing time. It is important to note that the algorithms only returned the 

length of the shortest path and not the actual nodes. Subsequently, this fact may have led to a 

slightly better performance. Most calculations have been performed on a single core machine 

(3.33. GHz) and the others have been scaled accordingly (Bast et al., 2015). Nevertheless, it can be 

seen, that there is a trend showing that with less preprocessing time, query time increases. This 

seems to be crucial, since, for example, an unidirectional Dijkstra’s algorithm scanned approxi-

mately 9M nodes, where CH only had to scan 280 nodes (Bast et al., 2015). However, Bast et al. 

(2015) mention that there is no “best” technique. From a personal view, this makes sense. De-

pending on e.g. the network type, computational power, and other factors, different algorithms 

may be chosen. There will always be a trade-off between graph size, preprocessing and query time 

(Bucher, Jonietz, & Raubal, 2017).  

 

Figure 8 Average query times compared to the used preprocessing time. Results shown are retrieved from an experiment 
with the road network of Western Europe. Lines represent trade-offs for the same algorithms (Bast et al., 2015). 
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2.1.3 Models & Dynamic Networks 

Many different networks with some special characteristics exist. While road networks can be con-

sidered stable, public transportation networks are inherently time dependent. It is crucial that, 

depending on the input data, different modeling approaches are required. Furthermore, any kind 

of network may be affected by changes, requiring adjustments to the underlying data structure. 

This section presents the most prominent models (time-independent, time-expanded and time-

dependent) and their applications and characteristics. Lastly, dynamism is discussed and solution 

approaches are presented. 

2.1.3.1 Time-Independent Model 

A time-independent network is modeled as a directed time-independent graph. Usually, time-in-

dependent graphs are used for static networks as they are well suited for representing geographic 

distances (Pajor, 2009). Distance is represented as a constant weight of an edge e = (u,v) 

between two nodes u and v. As for the simple form of a time-independent graph, standard routing 

algorithms can be applied. Routing on these graphs has been well researched in the past (Delling, 

Sanders, Schultes, & Wagner, 2009). 

For example, road networks are typically modeled as time-independent graphs. In a road network, 

junctions are represented with a set of nodes N and are connected with edges e  E. An edge 

exists if and only if a road exists between two junctions. In case of a two-way road, two directed 

edges are created between the junction nodes (Pajor, 2009). A graph G representing a road net-

work can thus be defined by G = (N, E).  

Time-independent models are well suited for representing static networks, but they might lack 

relations to realism. By considering a road network, congestion may lead to delays, which then 

increase the duration needed to pass a road segment (Pajor, 2009). Hence, the lack of time-de-

pendency can lead to false results. Moreover, other networks, e.g. public transportation, rely 

strictly on a timetable. Trains, buses or trams only operate at specific times during a day. It is 

therefore indispensable that a time-independent model is not applicable for time-dependent MOT. 

2.1.3.2 Time-Expanded Model 

A time-expanded graph is based on the concept of a time-independent graph (Pajor, 2009). Using 

discrete time values and creating a respective node for each time, a time-independent graph can 

be “expanded” to a time-expanded graph (Schulz, 2005). Due to embedding discrete time values 

in the graph, a time-expanded graph also accounts for arrival and departure times of a trip (Pajor, 

2009). Consequently, and stated by multiple authors, a time-expanded model is usually used for 

timetable-based networks (Bast et al., 2015; Delling, Pajor, & Wagner, 2009a; Müller-Hannemann 

et al., 2007; Pajor, 2009; Pyrga et al., 2008). Due to its simplicity, this type of graph is widely ac-
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cepted and used in current research, as it represents the structure of a network adequately. Be-

sides its simplicity, time-expanded graphs tend to be fairly large in size (Pajor, 2009), since the 

complexity of an network is stored in the graph itself rather than shifted to the query. Neverthe-

less, time-expanded models can be routed using basic techniques such as Dijkstra’s algorithm. 

However, they are not sensitive to the FIFO property, meaning overtaking of e.g. trains is allowed 

and not critical. Routing on a time-expanded graph tends to be slower than on a time-dependent 

graph (Pajor, 2009; Pyrga et al., 2008). Nevertheless, several speedup techniques for well-known 

routing algorithms have been developed (Bast et al., 2015). 

2.1.3.3 Time-Dependent Model 

Time dependency is an important factor in many networks. Public transportation, for example, 

has fixed lines which operate at set times during the day. Thus an optimal route depends on the 

departure time, as well as on the arrival time (Bast et al., 2015). In addition, a road network which 

is congested during rush hours has continuously changing edge weights. If a traveler desires to 

find a path with the earliest possible arrival, a different modeling approach must be chosen. An 

adequate solution is to use a time-dependent model. In a time-dependent model, edge weights no 

longer have constant weights (Pajor, 2009). A travel time function is assigned to edges in the graph 

which represent the duration it takes to traverse them at a specific time during the day (Bast et 

al., 2015). Because of the use of travel time functions, a time-independent model only has one 

relation from a start node to a target node, if at least one elementary connection exists (Bast et al., 

2015). Consequently, the size of the graph decreases massively compared to a time-expanded 

model. A shortest path is therefore inconclusively the shortest path per se, but the fastest. Further, 

since the optimal route depends on a departure time at a certain node, paths may differ at different 

departure times (Goczyłla & Ciela̧tkowski, 1995; Pajor, 2009). Generally speaking, basic algo-

rithms can also be run on time-dependent models but may be bound to some restrictions. Dijks-

tra’s algorithm, for example, does only work consistently, as long as a later train cannot arrive 

earlier. Thus, overtaking is problematic, meaning the FIFO property must be fulfilled (Bast et al., 

2015; Pajor, 2009). Unfortunately, the phenomenon of overtaking is quite common in public 

transportation. A solution to this is proposed by Pajor (2009). Routes which exhibit overtaking 

are split into a minimal set of routes, so that there are no more conflicting trains on the same route. 

This approach solves the problem of overtaking trains, but works against the advantage of time-

dependent models, namely the graph size. In addition, time-dependent modeling requires aug-

mentations of query algorithms, since the complexity has been shifted from the graph to the query 

(Pajor, 2009). Also, additional memory is needed to store the travel time functions (Pajor, 2009). 

Nevertheless, Pyrga et al. (2008) have shown that  these disadvantages do not outweigh the gain 

from the smaller graph size and the smaller query time. Time-dependent models are a good alter-
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native to time-expanded models, since they reduce the size of the graph. However, it must be con-

sidered that the complexity of the network is shifted to the query and, therefore, requires some 

adaption to basic techniques. It can thus be said that both time-expanded and time-dependent 

models are adequate solutions for modeling time dependency. 

2.1.3.4 Dynamic Networks 

Transportation networks, regardless of whether they are time-dependent or not, tend to have a 

dynamic component. Road networks, for example, are usually affected by congestions, detours 

and other obstacles. These, sometimes unpredictable, changes have an impact on the routable net-

work. However, if a network can be considered stable, using algorithms that require extensive 

preprocessing but reduced query times make sense. However, changes in a network would re-

quire a rerun of the preprocessing to nevertheless ensure fast and correct query outputs (Bast et 

al., 2015). This can come at a high cost (reconsider preprocessing times of ArcFlags) (Hilger et al., 

2009). With this said, research has also focused on how to bypass the problem of extensive pre-

processing, so that dynamic networks can also profit from sophisticated routing algorithms. Bast 

et al. (2015) listed four approaches currently discussed: 

Repair: Rather than rerunning preprocessing, the repair approach tries to adjust areas in the 

graph that are affected by the change. Theoretically, this seems to be possible for different tech-

niques (ALT, ArcFlags, CH, …), but with strongly varying success. 

Bypass wrong parts: This approach aims to bypass wrong parts of the preprocessing and, hence, 

increase the complexity of the query. Therefore, the query algorithm must be adjusted. Bast et al. 

(2015) further state that this approach may lead to an increase in query times. By simply flicking 

over this approach, it could potentially be that with a high number of changes, the graph could fail 

in some way. If too many changes are made, the query algorithm must bypass many defect parts 

and may be much slower and even return false results. 

Metric-independency: This approach also has an influence on the query algorithm. The idea is 

to move all metric-dependent components to the query. Thus, preprocessing will be based only 

on metric-independent components which are less sensitive to changes. However, shifting com-

plexity to the query entails a significant decrease in query times. 

Metric Split: This approach aims, similarly as the one above, to split the metric-dependent and – 

independent components. Rather than shifting the dependent component to the query, the split 

approach divides preprocessing into two stages. The first stage considers the much more stable 

topology of a network. In the second stage the much cheaper metric-dependent component is pro-

cessed. The later stage conceives edge weights which are more affected by changes. As an example, 

in the ALT algorithm, landmarks are kept and only their distances are recalculated. 
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This section illustrates that even algorithms that require preprocessing can be used on dynamic 

networks. However, not all of the approaches outlined above can be applied to every algorithm. 

Furthermore, some algorithms do not even require such techniques as they are not bound to pre-

processing at all (cf. Dijkstra’s algorithm, Bellman-Ford algorithm).  

2.1.3.5 Discussion 

This section introduced three different modeling approaches and the key factors of dynamic net-

works. When asking the question, “What model suits best?”, no correct answers can be given, alt-

hough it could be argued that for a public transportation network, which is inherently time-

dependent, the use of a time-dependent model makes the most sense because of the small graph 

size and fast queries. However, Pyrga, Schulz, Wagner, & Zaroliagis (2004) have shown that when 

more realism is added to a time-dependent graph, its size grows significantly. Further, solving e.g. 

a Multicriteria Problem is merely 58% faster on a time-dependent graph. In addition, Müller-

Hannemann & Schnee (2007) state that changes in a time-expanded model can be realized with 

less effort. Hence, the appropriateness of a model is highly influenced by the purpose it has to 

fulfill and the nature of a transportation network.  

2.1.4 Public Transportation Networks 

Public transportation networks are quite different to road networks. Road networks can easily be 

represented with a straightforward graph, where junctions are modeled as nodes u & v and 

streets consequently as edges e = (u,v). Edges exist only if there is a road in real life and are 

weighted by their distance (Pajor, 2009). As a road network can be accessed and used on demand, 

it can be considered time-independent. Thus, finding a shortest path relies consequently only on 

one criteria, the edge weight (Bast et al., 2013). 

In a public transportation network, multi-criteria optimization is far more important, as not only 

the edge weight is needed for finding an optimal path, but also other criteria such as transits and 

financial costs (Bast et al., 2015; Pajor, 2009), leading to the Multicriteria Problem. Goczyłla & 

Ciela̧tkowski (1995) present a list of optimality criteria and additional constraints that define and 

influence the finding of an optimal route between two points: 

 Minimal journey time (correlates with the road network, if the edge weight represents 

duration) 

 Minimal number of train changes  

 Minimal (financial) cost of journey  

 Minimal distance covered during the journey  

As some of these criteria may conflict—for example distance and duration, i.e.  when a route is 

longer but quicker—not all of them must be fulfilled for an ideal route. The criteria of an optimal 

route are thus somewhat personal. Regarding the constraints formulated by Goczyłla & 
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Ciela̧tkowski (1995), especially two statements seem important: earliest time of departure from 

the starting point and latest time of arrival at the ending point. These seem to be key as a passenger 

most likely wants to start his journey as soon as possible and arrive as fast as possible in a con-

venient way. In a time-independent road network, such a journey is simply represented by the 

shortest path which can be commenced on at any time. This is a main difference to public trans-

portation, where specific connections are only offered at a specific time during the day (Bast et al., 

2015), leading to the Earliest Arrival and Range Problem. 

Routing on a public transportation network poses further problems because of the strict time de-

pendency and multiple criteria. Primarily, there is the Earliest Arrival Problem (EAP), aiming to 

determine an earliest arrival as possible. The Range Problem (RP) requests an optimal path from 

a given range of possible departure times. The Multicriteria Problem (MCP) focuses on delivering 

optimal paths based on multiple criteria rather than just travel time. Lastly, some specialties re-

lated to the Multicriteria Problem, such as uncertainty, fairs, and night trains exist. It is crucial that 

public transportation must be modeled in an adequate way to be able to solve the above-men-

tioned problems. However, the model by itself is not necessarily a solution to all problems. Some 

might need adjustments to the query algorithms as well.  

The following sections therefore aim to deliver definitions of the posed problems, a current state 

of the art on modeling approaches and specialties occurring in public transportation networks. 

2.1.4.1 Earliest Arrival Problem (EAP) 

The earliest arrival problem describes a circumstance in time-dependent routing. Generally 

speaking, the goal is to minimize the difference between the arrival time and the given departure 

time (Pyrga et al., 2008). Therein, Pyrga et al. (2008) define two different variants of this problem, 

namely the simplified and the realistic version. In the simplified version, one assumes that trans-

fer times are negligible. The realistic version defines transfers as weighted part of a trip and there-

fore require nonnegative transfer times (Pyrga et al., 2008). Solving the earliest arrival problem 

is straightforward, according to Bast et al. (2015). On a time-expanded graph, Dijkstra’s algorithm, 

here also known as TED (time-expanded Dijkstra), can be used. By starting at the first event of a 

source stop s that occurs at a defined time , the earliest arrival is found as soon as the first event 

of the target stop t is reached (Bast et al., 2015).  

On time-dependent graphs, Dijkstra’s algorithm can be used as well, but has to be augmented 

(TDD – Time-Dependent Dijkstra). Also, the cost functions must be nonnegative and the FIFO prop-

erty must be fulfilled (Bast et al., 2015). 

2.1.4.2 Range Problem (RP) 

In public transportation, a traveler is bound to fixed departure times. By starting at a specific time, 

an optimal path may not be guaranteed, as for example a connection at exactly this time would 

require many transfers. Therefore, it seems to be important that one would like to find the optimal 
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path within a time range (e.g. 8:30 – 9:00). To solve this problem, a set of journeys with a minimum 

travel time is required (Bast et al., 2015). The RP can be best solved using a time-dependent model 

by implementing a tentative travel time function (Bast et al., 2015) or by using a frequency-based 

model (Bast & Storandt, 2014). 

2.1.4.3 Multicriteria Problem (MCP) 

Travelling on a road network is usually only bound to one criterion, the shortest or fastest path. 

In public transportation networks, however, one could argue that an optimal path is also defined 

by multiple criterion, for example duration, cost, or number of transfers (Goczyłla & Ciela̧tkowski, 

1995; Martins, 1984). Müller-Hannemann & Schnee (2007) discuss an algorithm for time-ex-

panded models. The idea is to optimize paths based on travel time, number of interchanges, and 

the price. 

2.1.4.4 Modeling Public Transportation 

Generally, a public transportation network can be modeled using the simplest of all, a condensed 

model (Goczyłla & Ciela̧tkowski, 1995; Pajor, 2009). In a condensed model, lines connect stop 

locations with each other. Adding weights to the edges enables the possibility of finding a shortest 

route between multiple stops X. As is shown in Figure 9, edges are added for one-way and round 

trips. Hence, a directed graph is needed (Goczyłla & 

Ciela̧tkowski, 1995). This model can represent the structure 

of a public transportation network adequately (Pajor, 

2009). However, this simple model cannot be used in a real-

life scenario, because an important factor is missing, namely 

departure and arrival times. Hence, shortest route algo-

rithms result only in representing the travel time between 

two stops, not considering departure or transit times (Pajor, 

2009). Subsequently, queries on a condensed model do not 

solve the EAP. 

Public transportation can be considered time-dependent, because timetables exist. Certain events, 

e.g. a train from A to B, happens at a predetermined point in time (Bast et al., 2015). Contrary to a 

road network, public transportation cannot be accessed with the same flexibility, because passen-

gers have to act according to a timetable.  Consequently, a model must be able to represent these 

events. Current research therefore focuses on two major models, the time-expanded and the time-

dependent model, as well as on a third less common model, the frequency-based model (Bast & 

Storandt, 2014; Delling, Pajor, et al., 2009b; Pyrga et al., 2004; Schulz, 2005). As a prerequisite, it 

is important to define a timetable. 

Figure 9 Schematic representation of a con-
densed model. Stations (nodes) are con-
nected with directed edges representing 
connections (Goczyłla & Ciela̧tkowski, 
1995). 
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Timetable: In public transportation, a timetable consists of time-dependent events (Bast et al., 

2015). On a more theoretical level, a timetable stores information about stops, trains/buses/ … , 

departure and arrival times and how stations are connected (Müller-Hannemann et al., 2007). 

Combining this information, a connection c =: (z, s1, t1, s2, t2) can be defined. This 

connection c can be considered as a train (z) going from A (s1) to B (s2) at a specific time (t1, 

t2) (Müller-Hannemann et al., 2007; Pajor, 2009). It is important to note, that a connection does 

not represent an actual geographic route, but simply a relation between two stop locations. 

Time-Expanded Model: As written above, time-expanded models are well studied for timetable-

based networks. They are an expansion of a simple time-independent model (cf. condensed 

model). In contrast to a condensed model, a time-expanded model represents events, rather than 

connecting stops (Pajor, 2009). They are therefor also known as event graphs (Bast et al., 2015).  

A connection can be considered as an event. Hence, in a basic model, a graph contains a node for 

every departure (td) and arrival time (ta) located at a stop (s). The times td & ta are connected 

with an edge and thus represent a connection (Bast et al., 2015). Pajor (2009) further discusses 

two variants of the time-expanded model, which concern transfers. In a simple model, the mini-

mum transfer criterion is omitted, which means that at each stop where the departure time is 

greater than the arrival time, every connection could be made. Conceptually speaking, this will 

return a true shortest path, but in practice, catching a different train that leaves one minute after 

the arrival of another is not always possible. Consequently, a more realistic version of the time-

expanded model has been developed. In a realistic model, transfers are enabled by adding an ad-

ditional transfer nodes and edges between connections (cf. Figure 10) (Pajor, 2009; Pyrga et al., 

2008). 

Figure 10 shows the higher complexity of a time-expanded graph in comparison to a time-depend-

ent graph. Every elementary connection is represented with nodes and edges plus transfer nodes, 

if transfers are possible. This consequently leads to increased graph sizes. Nonetheless, this addi-

tional complexity makes time-expanded models immune to the non-overtaking FIFO property. 

Basic routing techniques can be applied without any necessary augmentation or preprocessing to 

solve the EAP (Bast et al., 2015; Pajor, 2009; Pyrga et al., 2008). Finding a shortest path solving 

the EAP can be exhausting using basic techniques, since for example Dijkstra’s algorithm can only 

be run in a unidirectional way. Bidirectional running would require the exact target node before 

querying. However, this target node is not known in advance, since the arrival time is unknown 

(Pajor, 2009). Research has therefore focused on optimizing and accelerating queries on a time-

expanded graph. Delling, Pajor, et al. (2009), for example, have observed, that in a public trans-

portation network, many equal paths between pairs of nodes exist. Thus, they propose a technique 

that combines ArcFlags, ALT, and node blocking to omit scanning multiple edges of the same route. 
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Other authors also propose speedup techniques for querying time-expended graphs by augment-

ing e.g. ALT, Geometric containers, and other techniques (Bast et al., 2015; Delling, Pajor, et al., 

2009b; Schulz, 2005; Wagner, Willhalm, & Zaroliagis, 2005). 

Generally speaking, time-expanded graphs are well suited to model public transportation net-

works, as they are well studied (Bast et al., 2015; Pyrga et al., 2008; Schulz, 2005), enable solving 

the EAP and MCP using basic techniques (Müller-Hannemann & Schnee, 2007; Pyrga et al., 2008), 

and can be enhanced with multiple speedup techniques (Bast et al., 2013; Delling, Pajor, et al., 

2009b; Schulz, 2005; Wagner et al., 2005). 

 

Figure 10 Time-expanded model (left) and time-dependent model (right). On the left, an arrival node (diamond) has a 
direct edge to a departure node (square) if it is the same train stopping at a stop. An edge to a transfer node (circle) exists, 
if a transfer to a different train is possible. In the time-dependent model, stops (circles) are directly connected via routes 
(squares) (Bast et al., 2015). 

Time-Dependent Model: Another well-studied model is the time-dependent model. It aims to  

even more naturally represent a timetable based network (Brodal & Jacob, 2004). Other than the 

time-expanded model, not every connection in the timetable is represented. An edge between sta-

tion nodes u and v is implemented if at least one elementary connection exists. Edges are time-

dependent, meaning that the exact time information is encoded using piecewise linear functions 

(Bast et al., 2015; Brodal & Jacob, 2004; Pajor, 2009). For every connection c, an interpolation 

point (t1, (t1, t2)) needs to be added to the function f of s1 and s2. Evaluating the function 

at one interpolation point ti, f(ti) returns the exact travel time. Further, the evaluation of an 

earlier point t < ti results in f(ti) + waiting time at s1 (Pajor, 2009). Similar to a simple 

version of the time-expanded model, the before explained approach does not account for realistic 

transfers (Pajor, 2009). Pyrga et al. (2008) therefore extended this model by adding additional 

route nodes. As can be seen in Figure 10, every route node r is connected via two edges to its 

station node p. The edge (r, p) represents getting off a train which does not require any cost, 

and is thus weighted by 0. The edge (p, r) however, is weighted by an constant transfer weight 
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representing the transfer time needed (Pajor, 2009; Pyrga et al., 2008). An even more sophisti-

cated approach explained by Pyrga et al. (2008) and Pajor (2009) enables variable transfer times 

by interconnecting the route nodes directly. Figure 11 shows that in this case, station nodes are 

omitted. Additionally, the number of edges grows quadratic (Pajor, 2009). Subsequently, imple-

menting variable transfer times leads to an information loss in the graph. The use of this model in 

combination with other networks, resulting in a multimodal network is critical, since network 

merging normally requires stop nodes (Pajor, 2009). Time-dependent models are well suited for 

public transportation networks as they allow to quickly solve the EAP and RP (Bast et al., 2015). 

Further, their space consumption is low, therefore the complexity is moved to the query algo-

rithms (Pajor, 2009). 

 

Figure 11 Schematic representation of variable transfer times in a time-dependent model. Route nodes (purple) are directly 
linked (Pajor, 2009). 

Frequency-Based Model: A less common model is the frequency based model proposed by Bast 

& Storandt (2014). The aim is to represent a certain continuity of a network (Bast et al., 2015). 

Trams in Zurich, for example, run the same route every 7 minutes during the day and every 20 

minutes in the later evening. A frequency-based model therefore compresses tuples of a departure 

time t, an interval time i and a frequency f into a set. Hence, by computing t + fi so that t + 

fi ≤ t + i is true, original departures can be reconstructed (Bast et al., 2015). The base model 

is similar to a time-dependent graph. Each stop s is represented as a node and if an elementary 

connection between a pair of stops exist, an edge (s1, s1) is added to the graph (Bast & Storandt, 

2014). Query times can be enhanced with this model, as many not feasible routes can be pruned 

(Bast & Storandt, 2014). This modeling approach is a good solution for public transportation net-

works with stable routes. 

2.1.4.5 Specialties of Public Transportation Networks 

Uncertainty and Delays: In public transportation, delays and cancellations are a common phe-

nomenon. Delays, for example, can make it impossible to catch a connecting train or bus. It is 

therefore crucial that a travel planner system must be able to deal with uncertainties. Firmani, 

Italiano, Laura, & Santaroni (2013) have shown that current timetable routing is not always reli-
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able, since they usually do not consider uncertainties such as unpredictable delays. They espe-

cially criticize that current systems rely on incorrect estimations of waiting and transfer times. 

Hence, a method must be found to quickly update network models. An approach on how to allow 

up-to-date queries is proposed by Müller-Hannemann & Schnee (2009). They developed a proto-

type which handles a stream of information and adapts a time-expanded model based on the in-

coming information. The idea is to insert, delete, or update nodes and edges, but also to re-

compute the necessary ones (Müller-Hannemann & Schnee, 2009). For example, a train that ar-

rives late can make certain transfers impossible. Thus, the affected transfer edges and nodes must 

be removed from the graph, but also the future departure time of the delayed train should be up-

dated. They further showed that their prototype can update a time-expanded graph extremely 

quick (Müller-Hannemann & Schnee, 2009). Therefore, time-expanded models seem to be a good 

solution when dealing with live-stream information.  

Delling, Giannakopoulou, Wagner, & Zaroliagis (2008) criticize that the topology of a time-ex-

panded network has to be changed when it is not required in a time-dependent network. In a time-

dependent network, the route can simply be traced to the end and the arrival time increased at 

every station the train stops (Delling et al., 2008). Consequently, no changes need to be made to 

the underlying network graph. 

This section illustrates that uncertainties can be implemented in both time-dependent and time-

expanded models with different amounts of efforts. Although the effort needed in time-expanded 

models is higher due to topology changes, performance is still extremely good (Müller-

Hannemann & Schnee, 2009). 

Night trains: Another specialty which presumably only affects train networks are overnight con-

nections in the form of night trains. Arriving too early in the morning is probably not desirable for 

passengers, because they want to get enough sleep. Gunkel, Schnee, & Müller-Hannemann (2011) 

therefore undertook a study which integrates sleep time in a multicriteria search, with very prom-

ising results. 

As night trains are a niche product in public transportation networks, these will be not discussed 

any further in this thesis. 

Fares: According to Bast et al. (2015), optimizing paths based on monetary costs is difficult. Pric-

ing schemes differ strongly between agencies and are generally difficult to represent by a mathe-

matical model. Although Müller-Hannemann & Schnee (2006) propose a system called MOTIS 

which aims to optimize a route by adding a financial cost factor to a multicriteria search, the solu-
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tion using fare zones from Delling, Pajor, & Werneck (2014) may be more suitable for urban net-

works. The idea is to not explicitly use cost as a weight, but computing Pareto sets of journeys 

which optimize fare zones. 

2.2 Multimodal Routing 

Multimodal routing is the art of combining multiple networks of different MOT into one single 

network. Current literature focuses on merging walking, car travel, public transportation and 

flight networks. In recent studies, bicycling is considered as a useful network as well (Bast et al., 

2015). Also, newer MOT such as car sharing and carpooling recently gained some attention (Aissat 

& Varone, 2015a; Bucher et al., 2017). The idea is to facilitate journeys which use different MOT, 

but in an optimized way. According to Bast et al. (2015), multimodality is only given if the com-

bined networks differ. As an example, they state that combining only timetable based networks 

(trains, trams, and buses) do not lead to a true multimodal network since they can be represented 

as one single schedule. However, they note that this is their personal definition. This definition is 

further rather technically driven. If it were assumed that trains and buses were not the same MOT, 

a trip containing both would be considered a multimodal journey. Others use an even more con-

ceptual definition. Bit-Monnot, Artigues, Huguet, & Killijian (2013), for example, do not consider 

specific MOT at all: “(…) A multimodal transportation network is modeled with an edge-labeled 

graph G = (V,E,Σ) where V is the set of nodes, Σ the set of modes (for instance foot, car or public 

transportation) and E is the set of labeled edges” (Bit-Monnot et al., 2013:2). Hence, no universal 

definition exists. As for this thesis, multimodality is defined as a combination of MOT which use 

different physical networks, independently of their model. 

2.2.1 Network Merging and Linking 

A key part of multimodal routing is the merging of different networks into one single large multi-

modal network graph, in which feasible journeys can be calculated. Sequences of different MOT 

which are not possible (train -> car -> bus) shall be preempted. Ideally, the user should be able to 

set preferences (Bast et al., 2015).  

In a first step, networks of different MOT are modeled independently, meaning that each network 

is modeled based on its nature. A public transportation network GPub, for example, is modeled as 

a time-expanded or time-dependent graph, whereas a road network GRoad may be modeled as a 

time-independent graph (Bast et al., 2015; Delling, Pajor, et al., 2009a; Dibbelt, Pajor, & Wagner, 

2015; Pajor, 2009). In the light of the fact that these networks shall be merged, but still be distin-

guishable, labeling nodes and edges is mandatory (Dibbelt et al., 2015). Nodes and edges of the 

road network graph GRoad might be labeled road. In a second step, all independent graphs are 

unified into one large graph GMulti = (GRoad, GPub) (Delling, Pajor, et al., 2009a). It is crucial 

that this graph GMulti does not, at the moment, offer any transfers between GRoad and GPub. In a 
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third step, linking edges between GRoad  GMulti and GPub  GMulti must be implemented. A 

common approach is to solve the Nearest Neighbor Problem (NNP) (Pajor, 2009). In order to do 

so, a station node s  GPub is connected with the closest node j  GRoad. A link edge e = (s, 

j) is implemented. Delling, Pajor, et al. (2009a) add a threshold for link edges. They determine 

that the maximum distance between s and j must be shorter than 5 km. Thus they add restrictions 

to the linking process, in order to prevent inconvenient journeys. Dibbelt et al. (2015) use the 

same approach, but they further state that additional information from transport agencies could 

be used to define link edges. The SBB, for example, defines in their schedule4 how different sta-

tions are linked. If a station b is reachable from station a, information about the time needed to 

proceed from a to b is given. Since this information was not present for Dibbelt et al. (2015), they 

defined an average walking speed to calculate the duration needed which they can use as an edge 

weight of e. Pajor (2009) further specifies that linking networks are asymmetric. In the provided 

example with GPub and GRoad, it does not make sense to link all nodes from GRoad with GPub, but vice 

versa. Linking all nodes from GRoad with GPub would lead to an enormous amount of link edges, 

which makes no sense. The linking process is therefore an asymmetric, directed process. 

2.2.2 Routing Techniques 

2.2.2.1 Label-Constrained Shortest Paths 

In multimodal routing, labeled graphs are used to distinguish between different MOT. Hence, an 

approach to finding an optimal path is the label-constrained shortest path problem (LCSPP). It is an 

augmentation of the standard shortest path problem (Pajor, 2009). The idea is to compute jour-

neys that obey constraints on the MOT (Bast et al., 2015). A clear definition of the problem is given 

by Pajor (2009:52):  

“Given an alphabet Σ, a language L ⊂ Σ∗, a weighted, directed graph G = (V, E) with Σ-labeled 

edges and source and target nodes s, t ∈ Σ, we ask for a shortest path P from s to t, where the 

sequence of labels along the edges of the path forms a word of L. Thus given P = [v1, …, vk] it 

has to hold that 

label ((v1, v2)) label ((v2, v3)) · · · label ((vk−1, vk)) ∈ L.” 

A label-constrained shortest path is the shortest path based on a language L given to the query. 

As a schematic example, given the language [walking, train, flight], the query shall result in an 

optimal path where a user has to walk to a train which brings him/her to the airport, where he/she 

can take the airplane. The sole paths walking, train and airplane shall be optimized. 

                                                           
4 Retrieved from the SBB schedule in the form of a GTFS feed, provided by http://gtfs.geops.ch/ (Accessed: 
03.03.2017) 
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In general, an augmentation of Dijkstra’s algorithm is used to solve the LCSPP (Bast et al., 2015). 

The augmentation of different algorithms such as the A* as speedup techniques have been studied 

as well (Barrett et al., 2008; Holzer, 2008). 

2.2.2.2 Multicriteria Optimization 

Similar to standard routing, multicriteria optimization is an important factor in multimodal rout-

ing as well. Bast et al. (2015) argue that even though label constraints deliver feasible journeys, 

they have some drawbacks. Users need to be aware of the transportation networks in order to 

avoid launching a query for impossible journeys (train – car – train). In addition, journeys that 

combine different MOT in a different sequence are not considered. Delling, Dibbelt, Pajor, Wagner, 

& Werneck (2013) have therefore studied how multimodal journeys can be calculated considering 

three different optimization criterions. In their research, they use arrival time, costs and conven-

ience. Convenience is defined as the number of transfers, walking duration and financial cost for 

potential taxi rides. Using these criteria, a Pareto set of possible Journeys is calculated. They state, 

however, that the more criteria one defines, the larger the Pareto set will be. Nevertheless, with 

their approach, they can present a set of possible journeys to the user, from which he/she can 

chose.  

2.2.3 Carpooling and Multimodal Routing 

Carpooling as a MOT in a multimodal routing system has not been researched well in the near 

past. Even though traditional transportation may provide new aspects of the mobility (Aissat & 

Varone, 2015a), only two studies exist.  

This section describes two different approaches to integrating carpooling into a multimodal plan-
ning system.  

2.2.3.1 Carpooling as a Substitution 

The approach from Aissat & Varone (2015) tries to sequentially substitute parts of a traditional 

multimodal journey with carpooling, so that it satisfies a passengers request. On a basic level, they 

use an existing API to retrieve a traditional multimodal path containing, e.g. bus, train, and walk-

ing. In a second step, they try to substitute parts of this trip with carpooling. They use the stops 

from the calculated traditional path to find carpooling offers which can feasibly substitute parts 

of this trip. A connection from the traditional part is only substituted by carpooling if it is faster, 

which means the arrival at the next stop the carpooler will stop at must have an earlier arrival 

time than the traditional connection. Therefore, the waiting time at a pick-up location and the 

riders’ arrival are also part of the time needed for a connection/substitution. Figure 12 from Aissat 

& Varone (2015a) shows the path from the API (grey) and possible substitutions with carpooling 

(blue). 



2 Related Work 

29 
 

Furthermore, they use closeness measures to find suitable matches between users and drivers. By 

first finding only drivers close to a user based on an orthodromic distance, they can narrow down 

the set of drivers. Then, they define measures for maximum detours a driver can undertake. They 

argue that an additional 20% to the quickest path is acceptable. In a third step, they calculate all 

shortest paths of the matching drivers, also considering the time from the driver’s position to the 

pickup location. Then, they can select the sub path with the most time saving. 

 

Figure 12 A multimodal path (grey) and possible substitutions with carpooling (blue) (Aissat & Varone, 2015a). 

In an experiment, a very small subset of carpooling data with approx. 540 drivers and lengths of 

carpooling trips between 2 km and 130 km were analyzed (Aissat & Varone, 2015a). As illustrated 

in the Introduction, this does not correlate with actual carpooling offers retrieved from an exten-

sive international platform such as BlaBlaCar.de. Regarding computational efficiency, the authors 

show that with an increasing number of available drivers, the computation time increases linearly 

(Aissat & Varone, 2015a).  

The researchers were further able to demonstrate that integrating carpooling into a multimodal 

routing system, using this approach, is able to reduce the travelling time significantly. Compared 

to the traditional trips retrieved by the API, 67.3% could be improve using only carpooling and 

30.5% could be improved using carpooling as a substitution for a part of the trip. Only in 2.2% of 

the cases carpooling did not improve the initial trip (Aissat & Varone, 2015a). It is essential to 

keep in mind, however, that this high match may be somewhat biased since the carpooling offers 

are spread in a relatively small geographic region, the time of each trip was fixed to a specific time, 

and depending on the public transportation network of the region of interest, results may differ 

drastically. As an assumption, in regions or countries where public transportation is highly prev-

alent, carpooling may be an inferior substitute. 

In a theoretical fashion, Aissat & Varone (2015) showed that carpooling can indeed be inte-

grated into a multimodal routing system and may have a large impact, especially for passengers. 

They also noticed that carpooling is rather a complement to public transportation than a substi-

tution thereof, because carpooling can also access areas where no public transportation is avail-

able (Aissat & Varone, 2015a, 2015b; Varone & Aissat, 2015).  
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2.2.3.2 Two Synchronization Point Shortest Path Problem 

The approach from Bit-Monnot, Artigues, Huguet, & Killijian (2013) is based on calculating multi-

ple shortest paths in a multimodal network. They basically use two networks as base for their 

multimodal graph, namely the public transportation network also containing walking and a road 

network representing the carpooling network. Rather than explicitly specifying the MOT, they de-

fine the first network as the riders’ network and the latter as the drivers’ network (Bit-Monnot et 

al., 2013). Their idea is to synchronize both the journeys of the rider and the driver, which is called 

“the two synchronization point shortest path problem (2SPSPP)”. These two synchronized paths 

can be decomposed into 5 sub paths. The first two paths describe the way from the rider’s and 

driver’s individual starting point to a pick-up location, path three is the shared path to a drop-off 

location and paths four and five are again the individual paths towards the rider and the driver’s 

respective destination. The pick-up (Xup) and drop-off (Xoff) locations are chosen by attempting 

to minimize the summarized travel cost of both users. Figure 13 from Bit-Monnot et al. (2013) 

shows the five sub paths. 

 

Figure 13 Five sub paths decomposed from the 2SPSPP (Bit-Monnot et al., 2013). 

This process shall help reduce the duration of the cumulated path. However, the 2SPSPP approach 

has some limitations. Bit-Monnot et al. (2013) assume that every driver is willing to drive a detour. 

Moreover, this detour time is not limited, which can be inconvenient for drivers. Also, the system 

is not flexible enough, because a specific driver has to be chosen to solve the 2SPSPP. Hence, their 

system might be based on user needs for a travel planner system, but not be implementable in a 

practical context (Furuhata et al., 2013; Rehrl, Bruntsch, & Mentz, 2007; Sierpiński et al., 2014).  
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2.3 Research Gap 

Research in routing has progressed significantly since the beginnings in the 1950s with Bellman 

(1958) and Dijkstra (1959). The application of their algorithms remains of high importance today 

and they form the foundation for further improvements in routing. With the development of dif-

ferent speedup techniques, queries can be solved in a fraction of time, which makes them viable 

to solve everyday tasks, such as way finding or finding an optimal train connection. 

Not only sophisticated routing algorithms, but also highly developed data models enabled re-

searchers and companies to represent and query any type of transportation network. Based on 

graph theory (cf. Foulds (1992)), three major modeling approaches exist: Time-independent mod-

els for road networks, time-expanded (Schulz, 2005) and time-dependent (Pyrga et al., 2008) 

models for time dependent networks. While the application of time-independent models is clear, 

the advantages and disadvantages of the latter are still debated, but both are accepted as viable 

solutions. Nevertheless, the difference between the two time-dependent models is the allocation 

of complexity. Whereas time-expanded models store complexity inside the graph, time-dependent 

models shift the complexity to the query, leading to augmentations of the routing algorithms 

(Pajor, 2009). Consequently, a cookbook for choosing the right model does not exist. Hence, it has 

to be evaluated which model suits best for a new MOT. 

With both highly developed routing algorithms and sophisticated data models, multimodal rout-

ing comes to focus. Multimodality enables querying for journeys that combine different MOT in an 

optimized way. Research agrees on the process of modeling different networks independently and 

merge/link them afterwards (Bast et al., 2015). Unfortunately, according to different studies, the 

same approach for linking is used every time (Delling, Pajor, et al., 2009a; Dibbelt et al., 2015). 

Solving the Nearest Neighbor Problem (NNP), that is to say linking the nearest stops from different 

networks, seems to be the generic solution. In all conscience, no further merging techniques could 

be found in previously published literature. Although some authors consider restrictions, for ex-

ample maximum distance between stops or a static walking speed, the potential flexibility of the 

contained MOT is not considered (Delling, Pajor, et al., 2009a; Dibbelt et al., 2015). 

A reason for the lack of research on merging techniques could be that mostly the same MOT are 

combined into multimodal networks. Because walking, driving, public transportation and flight 

networks can be restricted to fixed stop locations, flexible merging techniques are not required.  

Considering recent MOT such as carpooling, flexibility seems to be a crucial factor. Generally 

speaking, carpooling does offer a fixed schedule, but also has the flexibility to drive detours. Con-

sequently, the above-mentioned problem of finding an appropriate modeling approach is present. 

When considering carpooling as a part of a multimodal network, not only the base model, but also 
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the merging technique must be chosen adequately. The current state of the art in solving the NNP 

seems to be inappropriate, as it does not consider flexibility on a high level. 

Up to this day and in all conscience, only two studies about carpooling in multimodal routing exist 

(Aissat & Varone, 2015a; Bit-Monnot et al., 2013). Even though they aim to show the usefulness 

of carpooling as a substitution, they do not discuss carpooling as a full-fledged, integrated part of 

a multimodal network. The approach chosen is to substitute parts of an already existing multi-

modal trip with carpooling. Consequently, a multimodal path with carpooling can only be calcu-

lated if a traditional multimodal or unimodal journey exists. It does not seem to be possible to 

bypass areas where no other MOT exist with carpooling. Therefore, carpooling is only considered 

as substitute and not as a full-fledged part of the multimodal network. This circumstance can po-

tentially lead, which is also implied by the authors, to inefficient queries in large data sets, as they 

consist of multiple stages (traditional path – carpooling path – finding match). It is not clear why 

the above quoted researchers consider carpooling only as a substitute. An evaluation of and rea-

soning with existing data was not presented.  

The research gap can be found in the areas of carpooling as a part of a multimodal network. Cur-

rent merging/linking techniques are not able to fully represent the flexibility of carpooling. Fur-

ther, the role of carpooling in a multimodal network is not clear. Only studies exist which treat 

carpooling as a substitute and not as a fully-fledged part. 
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3 Research Objectives and Overall Methodology 

Based on the research gap identified in chapter 2.3, the following major research objective of this 

master’s thesis is defined: 

3.1 RO 1: Merging & Linking Carpooling with Public Transportation 

An MOT showing characteristics of multiple network types, in this thesis carpooling, shall be in-

vestigated. The fuzziness and flexibility of carpooling requires special graph merging techniques. 

 

3.1.1 RO 1.1 Characteristics of Real-Life Carpooling Offers 

The characteristics of real-life carpooling offers shall be investigated in terms of quantity, 

temporal scale, and spatial scale to assess the benefits of carpooling in a multimodal rout-

ing system. 

 

3.1.2 RO 1.2 Modeling Carpooling 

RO 1.2: In the light of a future integration into a multimodal network, a model which al-

lows retaining flexibility and fuzziness has to be elaborated for carpooling.  

 

3.1.3 RO 1.3 Merging & Linking 

RO 1.3: Network merging/linking techniques have to be developed, providing a multi-

modal network which:  

a. Retains flexibility and fuzziness of the contained MOT networks 

b. Improves the overall network 

c. Is able to calculate useful multimodal journeys using current shortest path algo-

rithms 
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3.2 Workflow 

In this sections, the workflow of this thesis is defined. Three major stages are elucidated in order 

to answer the above stated research objective.  

In a first stage, modeling approaches for public transportation and carpooling networks are elab-

orated on a conceptual level. In consideration of a future multimodal network, adequate models 

will be distinguished based on the current state of the art. Carpooling, as a novel MOT in multi-

modal networks, receives additional attention. Further in the first stage, a novel merging tech-

nique is proposed, which considers flexibility and fuzziness of an MOT. 

In a second stage, an experiment for the modeling and merging techniques proposed in stage one 

is set up. The experiment encompasses crawling for real-life carpooling offers and the implemen-

tation of an experimental multimodal routing system.  

The implementation of a multimodal routing system shall be the baseline for delivering proof of 

concept. The realization of this system follows the current state of the art in multimodal routing. 

Firstly, stable components of the networks are preprocessed. Secondly, different networks are 

modeled separately and finally merged and linked using the proposed merging technique. 

The third stage aims to evaluate and present results derived from the experimental setup. The 

crawled carpooling data is investigated in terms of quantity, spatial scale and temporal scale, con-

sidering RO 1.1. Further, the resulting multimodal network is evaluated, focusing on RO 1.3. The 

effectiveness of the proposed merging and linking technique is elucidated based on the stop allo-

cation of carpooling stops, the exploit of new stop locations, the overall network improvement 

and the ability of querying for meaningful multimodal shortest paths. 

Lastly, RO 1.2 regarding the modeling of carpooling is discussed in the discussion chapter based 

on the characteristics and properties derived from the crawled carpooling data. The flow diagram 

below shows the workflow in a graphical form: 
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4 Data Modeling and Graph Merging & Linking 

A multimodal routing system combines different modes of transportation in a single application 

which allows a user to find the shortest routes from A to B using different modes of transportation 

(MOT) (Bast et al., 2015). A multimodal network thus consists of several connected sub-networks 

from different MOT. Generally, these sub-networks can have different properties, which leads to 

quite different modeling approaches and challenges in merging them. This also partly applies to 

the networks considered in this thesis, public transportation and carpooling. Therefore, the mod-

els for both networks are explained separately. Since the model for public transportation is al-

ready well-known, existing research with only small adaptions can be relied on, in contrast to 

carpooling, where no real modeling approach exists. Carpooling has properties from both public 

transportation and the road network and is therefore bound to some sort of fuzziness and flexi-

bility. On the one hand, carpooling offers also have predefined start and end locations similar to 

e.g. train stations. However, while train stations are at a fixed geographic location, carpooling of-

fers only specify the origin and destination city location, hence providing fuzzy location infor-

mation. On the other hand, carpooling uses the road network, which enables changing the route 

on the fly, hence heading to previously unspecified stops. Thus, carpooling also entails flexibility. 

Thus, this thesis aims to elaborate an adequate model for a carpooling network and a meaningful 

merging technique which considers fuzziness. 

In order to create a multimodal network, it is essential to merge/link all MOT in an adequate way. 

Thus, for consistency reasons, the same metric for edge weights has to be applied. Then, and only 

then, is it possible query the network for multimodal connections. As already mentioned in the 

Related Work chapter, current approaches use Nearest Neighbor Algorithms, which are well suited 

for large datasets. However, fuzziness and flexibility cannot be easily considered. Therefore, a dif-

ferent method for merging the public transportation and carpooling networks is presented. 

When describing modeling (transportation) networks, the application of the Graph Theory is in-

dispensable. Thus, in the following, models will be explained using graphs. 

4.1 Public Transportation (Railway) Model 

This section elaborates on the model used for the public transportation network. Although differ-

ent possible models exist, one specific model is focused on, namely an adaption of the realistic 

time-expanded modal. A time-expanded model adds complexity to the graph, rather than to the 

algorithm. This however leads to increased graph sizes, but also to the possibility of using stand-

ard routing algorithms such as Dijkstra’s shortest path (Bast et al., 2015; Delling, Pajor, et al., 

2009a; Pajor, 2009; Pyrga et al., 2008). As this thesis does not focus on either graph size or 
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speedup techniques for path queries, a time expanded model is useful, since it represents the com-

plete network containing time information as a graph. Although a time expanded model is not 

natively time dependent, it considers the complete integration of a timetable with its timestamps 

and fixed edge weights and therefore adapts a certain time dependency. Again, a benefit of a time-

expanded model is the simple adaption of Dijkstra’s shortest route algorithm (Dijkstra, 1959). As 

Pajor (2009) mentions, a disadvantage of this model is the fact that the target node and therefore 

the arrival time is unknown. It will be demonstrated that this can be bypassed with a slight adap-

tion to the model and the possibility of different query methods (cf. 5.5 Querying). In real time-

dependent modeling, edge weights are not static values, but a function. However, transfer times 

can be static. The size of a graph can therefore be reduced drastically. The decision for a time-

expanded model is based on the following arguments: 

 The complexity of a transportation network is represented in the graph (cf. Pajor (2009); 

Schulz (2005)). This fact is later needed for the proposed merging technique. 

 Routable with basic routing techniques (cf. Bast et al. (2015)) 

 Immune to the non-overtaking FIFO property (cf. Pajor (2009)) 

 Efficient updating (cf. Müller-Hannemann & Schnee (2007)) 

Public transportation in general relies on a timetable that is used to find connections. A timetable 

contains of a set of Stations s (s  S), a set of trains, buses, etc. z (z  Z), a set of times t (t 

 T) and a set of connections c (c  C) (Pajor, 2009). In a timetable, t is represented as a 

timestamp.   

A connection c is a tuple of c =: (z, s1, t1, s2, t2). A train z starting at a specific location 

s1 at a specific time t1 and arriving at a location s2 at a time t2. Thus, the travel time of a connec-

tion is simply the difference of t2 – t1. A connection has no stops in between (Pajor, 2009). A 

connection c can therefore also be interpreted as a leg of a trip l  c.  

A trip l can be described as a tuple l =: (c0, …, cn). It is to define, that in a trip l, every 

connection c has the same train, bus, ... z. Thus, a trip represents the whole travel of a certain 

train, bus, etc. Conceptually, therefore z = l can be defined. 

The existence of a route/line r is not essential for a timetable, but can be represented in the model. 

In such a case, r consists of multiple equal trips r = (l, …, ln). Hence, a route is time 

independent and only the contained trips are time dependent. 

To clarify the above definitions, we illustrate a fictional example: The public transportation 

Agency “PubTrans” offers journeys from New York via Washington DC to Miami without any stops 

in between. Hence they offer the route rNY-DC-MIA. There are four trains a day undertaking these 
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routes. Hence, four trips l exist. These trips l are time-dependent, since they leave at specific 

times. On each trip, a train stops in DC. Thus, a trip contains of two legs or connections c (NY-DC 

and DC-MIA). If the first train leaves at 10:00, arrives at 14:00 in DC, leaves there at 14:05, and 

finally reaches Miami at 23:00, the connections are defined as c1 =: (Train1, NY, 10:00, 

DC, 14:00) and c2 =: (Train1, DC, 14:04, MIA, 23:00). 

The time-expanded model is now applied to the above definition of a timetable pair c. At this 

point, the following nodes and edges are determined, as also shown in Figure 14: 

 Station node s: A station node belongs to a set of station nodes S, s  S. S holds 

information about a specific stop, e.g. name, platforms, geographic location.   

 Time node t: A time node t defines both, the departure and arrival time of a train Z at a 

stop s. Thus, t is a tuple t =: (departure, arrival). Further, t is part of a con-

nection c and therefore only valid for a specific z. The property tdeparture > tarrival is 

mandatory. 

 Edge (s, t): The time node t is connected to a specific stop s, whereas (s, t) does 

not store additional information. 

 Edge (t1, t2): The edge between two time nodes t1, t2 represents the actual con-

nection or a leg of a trip. This edge is weighted by a certain metric. As written above, the 

duration is used as weight.  

 Trip node l: A trip node l represents a set of connections C and can be seen as a train z. 

From now on, we use l instead of z. Therefore, a trip is time-dependent.   

 Edge (t, l): Marks the affiliation of a time tn to a trip l. Hence, each trip l has 

edges with multiple t. The edge itself does not store any additional information. 

 (Optional) Route node r: A route node represents a set of trips l.  

 Edge (r, l): Marks the affiliation of a trip l to a route r. Hence, each route r has edges 

with multiple l. The edge itself does not store any additional information.  
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Figure 14 Schematic representation of a trip (l) composed of a sequence of times (c) belonging to a route (r). 

With the above nodes and edges, a simple model can be described. This model works well for 

single ride journeys as trips are presented separately. Furthermore, shortest paths can be easily 

retrieved using Dijkstra’s algorithm. Modelling transits need further adaptions to the model. Other 

than Pajor (2009), we do not implement an additional transit node, but an additional edge be-

tween time nodes of different trips, ta belonging to la and tb belonging to lb lead to an 

edge (ta, tb) (cf. Figure 15). Similar to (t1, t2) edges, the transit edge is weighted by the 

duration of tb departure – ta arrival. Using the same metric allows the use of Dijkstra’ shortest 

path algorithm. Apart from the advantage of being able to use Dijkstra’s algorithm, this model 

approach also has a disadvantage. Since there is no new node implemented which can be detached 

from any trip, the problem persists that this transit relation could be interpreted as actual part of 

a trip. It is therefore crucial that an additional property be applied. The use of a property or labeled 

graph can help solve this issue by adding a transit true property or by labeling this type of edges. 

Furthermore, threshold values can be defined when creating an edge between ta and tb, e.g. 

create edge (ta, tb) if 3min < tb departure – ta arrival < 10min. Thus, valid transits can be 

defined via a conditional. This conditional also defines transfer times in a static manner; the max-

imum transfer time will be 10 minutes from platform a to platform b.  By splitting up every stop 

into child stops that define the platform, variable transit times can be implemented. A meta-stop 

m is implemented and related with child stops s representing platforms. Further, an edge (s1, 

s2) between every child stop s is created representing the variable transfer time (cf. Figure 15). 

The conditional for creating (ta, tb) can consequently be retrieved from (s1, s2). Implement-

ing variable transit times adds much complexity to the model. It is to mention, that the edge (s1, 

s2) must inconclusively be stored in the graph itself. A solution can be to store pairs of child stops 

and their minimum transfer times in an external database or even a text file. 
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Figure 15 Schematic representation of static transit times (left) and variable transits (right). 

Implementing a meta-stop m not only helps representing variable transfer times, it also adds some 

sort of intuitive simplicity to the graph. Furthermore, larger train stations may have platforms far 

from each other and thus not share the same geographic location; some platforms may even have 

a different name (e.g. Bahnhof Löwenstrasse is a sub-station of Zurich HB).  

In this section, the model for a public transportation network has been elaborated. It has been 

shown that the use of a time-expanded model with slight adaptions in terms of transit edges and 

meta nodes may be an adequate way of representing public transportation as a graph, since it 

represents the whole schedule as a graph. A time-expanded model further adds the complexity of 

a transportation network into the graph, rather than shifting it to the query (cf. 2.1.3.2 & 2.1.3.3). 

This allows the use of basic techniques/shortest path algorithms. Further, the implementation of 

meta-stops helps differentiating between platforms and sub-stations of a train station. 

4.2 Carpooling Model 

Modeling carpooling data is difficult since it shows characteristics from both a timetable-based 

network like public transportation and a “free” road network. Hence, there will be no “right” way 

to model a carpooling network. In fact, the type of model should be designed according to the 

nature of the MOT. Carpooling, for example, has a sort of a timetable, but still uses the time-inde-

pendent road network. In this section, two possible approaches are explained, but the focus will 

be on a timetable-based model. 

Carpooling can be explained similarly to a timetable. Typical carpooling consists of a set of stops 

s (s  S), a set of drivers d (d  D), a set of times t (t  T), and a set of connections c (c  

C) where c =: (d, s1, t1, s2). It is important to note that carpooling usually has no geograph-

ically fixed pick-up and drop-off locations (cf. 5.1.2 Carpooling Data), which is a major difference 

to public transportation. However, the proposed model disregards this fact, as it is only relevant 

for future network merging/linking. 
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In contrast to a typical timetable, there is no arrival time t2 in c. Without prior routing, t2 is un-

known. Further, a set of c can be described as trip l. The occurrence of routes R is not typical 

for carpooling, since no fixed schedule exists. However, they might occur if a certain trip reoccurs 

on a regular basis. Then, r  R =: (l0 … ln) can be assumed. 

The lack of an arrival time leads to the first approach: 

4.2.1 Carpooling as a Road Network 

Considering the fact that the exact route is unknown, we also have no information about edge 

weights and times T.  Thus, a legible approach seems to be modeling a road network instead of 

the carpooling offers itself. Thus, the offers are not represented in the network graph itself, but 

will be routed on demand. The model for the road network is straightforward. Each junction j is 

a node. Consequently, (ja, jb) represent an actual street. Edges will only be built if a street exists 

and two way streets will be represented by two edges in opposite directions (Pajor, 2009). The 

edge weight on (ja, jb) can either be distance or duration, whereas duration can be assumed 

more adequate when looking further to a multimodal network. Moreover, since the aim is to ob-

tain information about T, duration is appropriate. With the above statements, a time-independent 

road network is formed. As a timetable exists in carpooling, time also need to be represented in 

the road network. Furthermore, stop locations exist.  

Therefore, stop nodes and departure nodes can be placed onto the graph. Edges for (t, s) and 

(t, j) are created. This however, already requires merging techniques. A spatial location on s 

and j is required. Then, a closest point or nearest neighbor algorithm can be applied. This results 

in a graph that can be routed with simple shortest path algorithms. Further, real-time information 

like the traffic situation or available detour time can be used to adjust the route based on the cur-

rent situation. 

Unfortunately, this approach has some disadvantages as well. Trips cannot be represented in the 

network graph easily, since the route has to be recalculated with every query when traffic infor-

mation shall be considered. Caching could be applied, which however is not part of this thesis. 

Furthermore, using the road network instead of the carpooling’s timetable may lead to increased 

query times. Creating a graph for a road network leads to, based on the scale, a huge graph. Que-

rying for shortest routes can therefore be inefficient. Furthermore, when aiming for a multimodal 

network, trying to decrease the network graph is desirable. It also prevents a high flexibility in 

carpooling, as routes can be recalculated on the fly. Even though the graph would be routable for 

every possible journey, carpooling offers are strictly bound to start, via and end nodes. It is not 

desirable to change a carpooler’s offer. Because of the above reasons, this thesis follows a timeta-

ble-based model for carpooling. 
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4.2.2 Carpooling as a Timetable 

As mentioned above, carpooling has characteristics of both a road network and a timetable-based 

network such as public transportation. Hence, it is possible to model carpooling the same as public 

transportation. However, if done so, carpooling will lose its flexibility because it will be modeled 

as a static network. Nevertheless, time-expanded models are well suited for dynamic networks as 

they can be updated in a straightforward way, retaining correctness (Müller-Hannemann & 

Schnee, 2009). Using sophisticated spatial merging techniques during the creation of a multimodal 

network can restore this flexibility and help represent fuzziness. This will be explained in the fol-

lowing sections.  

As a short recap of carpooling’s structure, there follows a list of nodes and edges: 

 Stop node s: A stop (start, via or end location) node belongs to a set of station nodes S, 

s  S. S holds information about a specific stop, e.g. name, geographic location. The 

geographic location may be fuzzy.   

 Time node t: A time node t defines the departure of a driver d at a stop s. Further, t is 

part of a connection c and therefore only valid for d. t exists only at the starting location 

of a carpooling offer. 

 Edge (s, t): The time node t is connected to its starting location s, whereas (s, t) 

does not store additional information.  

 Trip node l: A trip node l represents a set of connections C and can be seen as driver d. 

From now on, l is used instead of d. Therefore, a trip is timed pendant.   

 Edge (t, l): Marks the affiliation of a time t to a trip l. Hence, each trip l has 

edges with multiple t. The edge itself does not store any additional information. 

 (Optional) Route node r: A route node represents a set of trips l.  

 Edge (r, l): Marks the affiliation of a trip l to a route r. Hence, each route r has edges 

with multiple l. The edge itself does not store any additional information.  

In contrast to public transportation, important information for a complete connection and trips 

are not available. Carpooling does not directly provide the information of arrival times at via or 

end locations, which should be derived using routing algorithms on a road network. Although this 

seems to be crucial for a carpooling offer, because the duration may vary greatly depending on the 

traffic situation, it is problematic for a transportation network. In order to be able to use shortest 

path algorithms, edge weights are needed. For a timetable-based network, these edge weights 

usually represent the duration of a certain connection c. Thus, not only the departure but also the 

arrival time at a specific stop is necessary. Therefore, for now a fictional node tf for the arrival 

time at a stop s is implemented. In this conceptual model the fictional time node tf holds no time 
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information and simply acts as a placeholder. When creating a working example, time information 

for tf has to be derived by routing the offer on a road-network. Thus, tf can be fed with time 

information, transforming it to a non-fictional time node t. Consequently, the tuple for a connec-

tion looks as follows: c =: (d, s1, t1, s2, tf2). Now, the edge (t1, tf) can be created 

between stop times and represent the duration of a connection: duration/edge weight = 

tf2 arrival – t1 departure.  

The following new node and edge of the carpooling model are implemented: 

 Time node tf: A time node tf represents the fictional arrival and departure time at a stop 

node s. The property tf departure > tf arrival is mandatory. 

 Edge (t1, tf2): The edge between two time nodes t1, tf2 represents the actual con-

nection or a leg of a trip. This edge is weighted by a certain metric. As written above, the 

duration is used as weight, which in this case is tf2 arrival – t1 departure. 

After introducing the fictional node tf and the resulting edge (t1, tf2), a full carpooling model 

can be introduced. A typical carpooling journey with one via point s2 can be seen in Figure 16. 

  

Figure 16 Schematic representation of a carpooling trip (l) composed of a sequence of connections (c) belonging to a route 
(r). Arrival and departure times at future stops are unknown. Hence a fictional stop time tf is set. 
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Considering transit times, the same procedure applies as for public transportation, namely static 

transit times, restricted by conditionals. An additional edge (ta, tb) between two trips a & b 

is created, if a certain conditional is true (cf. Figure 11).  

In this section, a routable network model for carpooling was proposed. Fictional nodes were im-

plemented to interpolate the lack of time information along a journey. This network can be que-

ried using standard routing algorithms such as Dijkstra’s shortest path. It is crucial that in order 

to finalize a carpooling model in a real-life scenario, preprocessing has to be done to retrieve in-

formation for tf. Nevertheless, the base model helps to understand the overall nature of a car-

pooling network. Regarding flexibility and fuzziness, it could not be shown how fuzziness affects 

the model above, which however is a desired outcome. Fuzziness shall not be included in the net-

work graph on a single network since it would add severe complexity and may be data dependent. 

Fuzziness on a single network can be represented using a specific query. Hence, the complexity 

will be moved from the graph to the query. When it comes to multimodal routing, a certain fuzzi-

ness in the network may be required, especially if not all MOT have a fuzzy nature. Thus, the fol-

lowing section focuses on network merging and implementing fuzziness in a multimodal network 

graph. 

4.3 Model Merging & Linking 

Networks of different MOT need to be connected to each other in order to create a multimodal 

network. This merging is required in order to query for multimodal journeys (Pajor, 2009). Stops 

of different networks are connected/linked to each other based on their geographic location. 

Hence, a stop a of network A is linked to stop b of network B if they are closest to each other. This 

is also known as the Nearest Neighbor Problem (NNP). Solving the NNP is a common approach 

when connecting different MOT in order to retrieve a multimodal network (Bast et al., 2015; 

Delling, Pajor, et al., 2009a; Dibbelt et al., 2015; Pajor, 2009). An important advantage is the pres-

ence of highly efficient algorithms for solving the NNP in big datasets (Pajor, 2009). This, however, 

requires exact stop locations, which carpooling offers does not specify. A different approach must 

thus be used in this sense. Furthermore, carpooling offers are of a fuzzy nature. When connecting 

a public transportation and a carpooling network, not only stops have to be connected, but also 

routes to stops. Even though a carpooler has not specified a potential stop location, he could still 

stop at a public transportation stop if he passes it anyway. The basic idea of connecting the two 

networks is to integrate carpooling into the public transportation network, which means that car-

pooling will, for example, adapt public transportation stops. Thus, in the following, the models 

described in the former sections are outlined: 
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 Public Transportation (Railway) Network: The Railway network is modeled based on its 

timetable. The use of a time-expanded model enables the use of simple shortest path algo-

rithms. Additional meta-stops have been integrated to differentiate between child stops. 

The public transportation network will be denoted as NPT. 

 Carpooling (timetable-based) network: After considering two approaches, the focus is laid 

on a timetable-based approach. Similar to public transportation, a time-expanded model 

has been chosen. Missing stop times have been substituted with fictional time nodes. Flex-

ibility and fuzziness could not have been integrated into the model itself. The carpooling 

network will be denoted by NCP. 

As argued above, the single carpooling network does not consider fuzziness or flexibility. In the 

following sections, a merging technique which restores flexibility and considers fuzziness around 

stops and along the actual route is presented. 

4.3.1 Spatial Allocation of Carpooling  

Carpooling offers do not leave from an exact location. According to several websites offering car-

pooling (BlaBlaCar.de, e-capooling.ch, carpoolworld.com), it is common to only mention the city 

an offer starts from or arrives in. This inaccuracy is problematic for a multimodal routing system. 

In a multimodal routing system, different modes of transportation are connected in any way. This 

inaccuracy furthermore aggravates the solving of the NNP. Hence, if carpooling does not have an 

exact stop, it is not clear how and to which public transportation stop a carpooling offer can be 

connected. In case of connecting a carpooling stop to just one public transportation stop in the 

same city, the flexibility of carpooling is lost, because theoretically, the driver could drop off the 

passenger at any stop within the city. However, connecting a carpooling stop to every public trans-

portation stop within the same city does not seem to be ideal, either. It can be inconvenient for 

the driver if he/she has to drive a longer detour than he/she wants to. As prerequisite, a more or 

less accurate geographic location of a carpooling stop must be retrieved through geocoding. Fur-

ther explanations will follow in the Data Enrichment chapter. It is important to further note that 

the following approach would also work if carpooling stops come with exact locations. 

A legible solution to connect carpooling with public transportation is to analyze which public 

transportation stops could potentially be reached by a driver. On the one hand, drive time areas 

around a carpooling route could be calculated, in order to check how far a carpooler can deviate 

from the original route. On the other hand, one could implement drive time areas around public 

transportation stops and check if a carpooling stop lies within a drive time area. The former way 

requires the calculation of drive time areas for every route, while the latter calculates drive time 

areas for considerably stable public transportation stops. 
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Thus, drive time areas a  A are implemented around public transportation stops SPT. Rather 

than just finding the nearest neighbor of a geocoded carpooling stop sCP, a set of sPT  SPT are 

determined. When sCP  a, then SPT = { sPT  a }. Since meta-nodes m  SPT for 

public transportation stops were implemented, SPT can be reduced and only the meta-stops m of 

sPT retained. Then, an edge (m, sCP) for every m  SPT can be created. Figure 17 shows a case 

where a sCP  a1 and sCP  a2. Consequently, edges for (m1, sCP) and (m2, sCP) are 

created. This linking results in a unified set of stops SG = sPT ∪ sCP.  

 

Figure 17 A case, where a carpooling stop is contained by two drive time areas of public transportation stops. 

Based on the above statement, a new edge is identified: 

 Edge (m, sCP): The edge between a carpooling stop sCP and a meta-stop from public 

transportation m is used to connect both the carpooling and the public transportation net-

work. The edge stores no additional properties.  

Figure 18 shows the link operation in a graphic form. It can be seen that sCP must have been con-

tained by a1 from m1 and a2 from m2. Hence, edges (m1, sCP) and (m2, sCP) have been created. 

sPT show child stops from public transportation, which have already been related to m1 or m2. 

 

Figure 18 Schematic representation of a carpooling stop sCP linked to meta-stops m1, m2 of the public transportation net-
work. 
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Since carpooling stops can be connected to multiple public transportation stops within a reacha-

ble area, the fuzziness of the inaccurate geographic locations of the origin, destination, and via 

locations defined by the carpooler can be represented. Furthermore, this leads to a more flexible 

system, since transits from public transportation cannot only be at a specific stop, but at multiple 

different stops. This opens the possibilities for quicker journeys.  

4.3.2 Creating Transits 

By merging carpooling and public transportation, unified set of stops SPT ∪ SCP = SG was 

defined. Similar to a single network, trips of both MOT can be linked to represent mode changes. 

Using conditionals, it can be defined when a transit from carpooling to public transportation is 

appropriate. Hence, an edge (tCP, tPT) is created if a certain conditional, e.g. 3min < transit time 

< 10min, is true (cf. Figure 19).  

 

Figure 19 Schematic representation of a transfer between carpooling and public transportation. If a given conditional is 
true, a transfer edge (tCP, tPT) is created. 

The condition of tdeparture > tarrival must be true in every case, since a transfer to a train earlier 

than an arrival is not possible. Further, the edge weight can be calculated by tPT departure – tCP 

arrival and vice versa, depending on the arrival and departure time. Again, variable transit times 

are not implemented. However, different transit times from carpooling to public transportation 

and vice versa can be implemented during the linking process. A different conditional than for 

single networks can be chosen. Additionally, and according to (Bast et al., 2015), penalties for a 

mode change can be implemented by simply increasing the conditional for a change from carpool-

ing to public transportation. 

4.3.3 Representing Fuzziness and Linking Along Carpooling Routes 

Carpooling has the ability to be more flexible than public transportation because it is not bound 

to railway tracks or predefined routes. Hence, a carpooler can drive detours which exploit new 

stops/destinations that are not directly on the planned route. This flexibility, however, has some 

drawbacks. Even though the starting point, the destination, and maybe some via points are known, 

the exact route a carpooler is driving is not mentioned in an offer. Thus, it is inevitable to pre-
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calculate a route for a real-life system. Further explanations follow in the Carpooling Data chapter. 

However, the conceptual basis can be explained. Concerning the fact that drive time areas A have 

been used to merge carpooling and public transportation stops, A can also be used to exploit po-

tential stops sf along a carpooling route r. Similar to the stop merging in the previous section, 

rather than relating sf to a specific spt stop, an edge (m, sf) is created between the meta-stop 

m of spt and sf. Consequently, a new stop on r has been exploited which also belongs to the set of 

stops SG of the overall graph. Figure 20 shows a case where r crosses a2 but not a1. Thus, an edge 

will be created between sf and the meta-stop m of spt2. 

 

Figure 20 A case where a carpooling route r crosses drive time area a2 of a public transportation stop sPT2. sf indicates a 
point along r where the driver needs to take an action, e.g. leave highway or stay on highway.  

It is important to mention that sf along a route r cannot be chosen randomly or by the closest 

Euclidean distance between r and sPT2, as sPT2 might not be reachable from sf. For example, if r 

would be a highway crossing a2 without a ramp in a2, a driver would not be able to reach sPT2. 

Thus, a way is needed to only exploit sf which allows a connection to sPT2. A feasible solution is 

to use Points of Action (POA). In this thesis, POA are defined as points on the road network where 

a user has to take an action. This might be crossings, junctions, or highway ramps. If a user does 

not have to take an action, there will not be a POA. Consequently, the approach is to find intersec-

tions between POA of a route with drive time areas of public transportation stops. This further 

guarantees that a specific public transportation stop is reachable. Other POA along a route, as 

shown in Figure 20 as sf2, which do not intersect with a drive time area, can be omitted. 
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Exploiting new POA stops along a route which guarantee a connection to a public transportation 

stop, require the implementation of time nodes at sf. Thus, the original connection cO =: (d, 

sCP1, t1, sCP2, t2) of a trip are split up into two new connections c1 =: (d, sCP1, t1, 

sf, tf) and c2 =: (d, sf, tf, sCP2, t2). Figure 21 shows the structure of the graph after 

applying the new connections. Therefore, the following new nodes and edges can be identified: 

 POA stop node sf: This node represents a newly exploited POA stop along a carpooling 

route. 

 Edge (m, sf): This edge represents the connection of sf to a meta-stop m of public trans-

portation. Hence, sf  SG. 

 POA time node tf: This node represents the arrival and departure time at the newly ex-

ploited POA stop sf. 

Missing time information at a POA stop sf can be calculated in a straightforward way. The time at 

a POA stop sf is simply the departure time at its predecessor plus the duration of the segment 

(sf-1, sf). In this case, sf-1 might also be the origin or a via point. Therefore, tf = sf departure 

+ duration(sf-1, sf). As the route of the carpooler is not adjusted, arrival and departure 

times at later stops do not change because of the insertion of sf. 

The concept of POA has further benefits. Since POA are located at crossings, junctions, and other 

points on the road network, different routes may exploit the same POA if they are passing the same 

crossing. Thus, POA in the network graph are distinct. Consequently, transits between carpooling 

routes which intersect at a POA can be created using the same approach as mentioned before. 

 

Figure 21 Schematic representation of a carpooling connection c0 from sCP 1 to sCP 2 after exploiting a new stop sf. New 
connections c1 and c2 are defined using a fictional stop time tf. 
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Nevertheless, if a driver takes a detour, the actual arrival time at sPT is not equal the arrival time 

at sf, since a certain duration is needed to travel from sf to sPT. As the size of a drive time area d 

is known, the maximum time needed is size(d). Thus, in a worst-case scenario for a drive time 

area of 5 minutes, a driver arrives at sPT 5 minutes later. This fact needs to be considered when 

creating transit edges between carpooling offers and public transportation trips.  

Creating transits between a newly exploited POA stop along a route requires applying penalties 

for mode changes. Since the carpooler in the worst-case size(d) arrives later at sPT, size(d) 

can be added to the lower and upper bound of the conditional introduced in section 4.1. In case a 

driver would only need size(d)/2 to sPT, transits are still only created for lower bound + 

size(d) < transit > upper bound + size(d). Consequently, this approach is only an 

approximation.  

In case a driver makes a detour to sPT, arrival times at all later stops will change. For that reason, 

travel time functions could be assigned to edges. Nevertheless, it would be possible that a driver 

of a carpooling offer should not have to drive more than one detour, even if the sum of the duration 

of all detours would lie within its predefined detour range. If multiple detours would be allowed, 

the characteristics of carpooling would be change. Carpooling usually defines approximately three 

stops along a route. Allowing an undefined number of detours might lead to a bus- or tram-like 

behavior, meaning that the driver has to drive many short trips with many of detours.  

Consequently, in this thesis, the use of drive time areas of half the size of the maximum allowed 

detour time is recommended. Hence, if one detour is made, the maximum allowed detour time is 

exhausted. Further, times at later stops do not need to be adjusted. 

Due to merging two similar networks NPT and NCP while retaining the structure of stops and meta-

stops, a multimodal network NG is created, which is still routable by using standard routing algo-

rithms such as Dijkstra’s shortest path. Also, the possibility of detours along a carpooling route 

could be implemented in NG. Further, these detours are only routed made required. Hence, the 

optional detours could be represented without changing the carpooler’s route.  
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5 Experiment 

In this chapter, the data model and merging techniques elucidated in chapter 4 Data Modeling and 

Graph Merging & Linking are implemented and evaluated. The experiment shall be built on real-

life data as they can be found on online platforms. Thus, in the first section, Data, the three differ-

ent data sets used are described. The following sections will discuss the actual implementation 

containing preprocessing steps, network graph generation, model merging and querying.  

5.1 Data 

This section describes the data used for the further implementation. In general, three different 

types of data have been gathered: Public transportation schedules, carpooling offers, and street 

data. As this thesis focuses on a national scale, data has been acquired with a focus on Switzerland. 

Switzerland has a very dense public transportation network of many different MOT. While trams 

and buses operate on a city to regional scale, trains serve connections across the entire country. 

Since carpooling offers tend to operate on an even broader scale, this thesis omits small scale MOT 

such as trams and buses and focuses on the railway network. In addition, due to limited computa-

tional power, the use of a smaller data set was mandatory. 

Railway schedules could be retrieved directly via online download, whereas for carpooling offers, 

no public sources were available. Acquiring carpooling offers therefore required a more expanded 

process, which is explained in more detail in the respective section. The characteristics of carpool-

ing offers is further analyzed in the following chapter 6.  

5.1.1 Railway Data 

The railway network of Switzerland is mostly operated by one agency. However, smaller agencies 

offering regional journeys exist. Nevertheless, they share a coordinated schedule. Therefore, the 

timetables of the railway network could have been retrieved as a GTFS feed from geOps5. GTFS 

feeds will be discussed further in section 5.2.1.  

The timetable contains 1912 train stations and roughly 790k connections, covering the whole of 

Switzerland (cf. Figure 22). Geographic locations are only given for stop locations, while train 

routes do not have a geometry. For the purpose of modeling this schedule as a time-expanded 

graph and merging it to a multimodal network, this information is sufficient. The retrieved data 

set contains additional information apart from the timetable. As trains are offered by multiple 

agencies, additional information is given on who is operating certain connections. Furthermore, 

                                                           
5 http://gtfs.geops.ch/ - geOps is a small GIS company located in Switzerland and Germany. geOps con-
verts public transportation schedules in GTFS feeds and offers free downloads. 

http://gtfs.geops.ch/
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agencies provide information about the minimum transfer time at a stop. Hence, this definition 

can be used to correctly model transfers. 

 

Figure 22 The railway network of Switzerland retrieved from the SBB at: http://www.sbb.ch/freizeit-ferien/allgemeine-
informationen/wallpaper/netzkarte.html (Accessed: 10.03.2017) 

In more detail, the retrieved data set contains the following information: 

 Agencies: A list of 62 agencies offering journeys on the Swiss railway network. 

 Routes: A list of 28455 time independent routes. 

 Trips: A list of 69150 time dependent trips. 

 Stops: A list of 1912 train stations, plus additional entries for every platform at a stop. 

 Stop times: A list of 789331 stop times describing the arrival and departure times of a 

trip at stops. 

 Calendar dates: A list of 5.1M calendar dates defining the availability of trips. 

 Transfers: A list of 4817 entries defining the minimum transfer time at a train station. 

A connection c =: (z, s1, t1, s2, t2) described in the Data Modeling chapter 4.1 can be 

made up of two stops and at least two stop times plus a trip representing a train z. The retrieved 

data is therefore sufficient for modeling a time-expanded network graph. 

Fares: According to Müller-Hannemann & Schnee (2006), financial costs are an important crite-

rion when finding an optimal route. Therefore, additional fare information has been provided by 

the SBB. Unfortunately, the public transportation agency SBB relevant in this thesis has a special 

pricing system. Other than fixed prices per trip, the SBB calculates prices based on so called “Tarif 

http://www.sbb.ch/freizeit-ferien/allgemeine-informationen/wallpaper/netzkarte.html
http://www.sbb.ch/freizeit-ferien/allgemeine-informationen/wallpaper/netzkarte.html
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Kilometer”. In essence, the price increases the longer a trip is. Unfortunately, prices do not in-

crease in a linear fashion. Exact “Tarif kilometers” for every SBB trip were not available, but only 

for the ~75k most important journeys. Since these journeys contain via points, it was not possible 

to unhinge "Tarif Kilometer" for single connections. In this thesis, fares of the railway network are 

therefore disregarded. 

5.1.2 Carpooling Data 

Carpooling is a growing market with many million users worldwide. Multiple online platforms 

exist where drivers can advertise a trip and passengers can find matching offers. On BlaBlaCar.de, 

a typical offer is divided into three sections of information (cf. Figure 23). The first part covers 

information about the driver (name, age, rating). After a trip, passengers can rate their drivers. 

The second part contains the actual information about the trip. Key parameters are, similar to 

public transportation, date and time. Further, the starting-, via- and end-point of a journey are 

listed. The last part involves fare information as well as capacity. Since carpooling uses personal 

cars, the number of seats is limited. 

 

Figure 23 An offer advertised on BlaBlaCar.de. Typical information includes driver specific (left), journey specific (middle) 
and fare/availability specific (right) data. 

 

By reconsidering the structure of a timetable, it can be determined that carpooling offers follow a 

similar scheme. Thus, modeling these offers as a time-expanded network should be possible. In 

the following, a list presents all information that can be retrieved and for what purpose it can be 

used: 

 Driver name (optional): The name of a driver can be considered the same as that of a 

public transportation agency. 

 Driver rating (optional): The rating of a driver can reflect reliability as well as conven-

ience. When integrating carpooling into a multimodal routing system, it is of high im-

portance that offers are reliable. Multimodal journeys fail if one sequence fails. 

Furthermore, convenience may be an optimization criterion of a user (cf. Delling, Dibbelt, 

Pajor, Wagner, & Werneck (2013)). 
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 Date and time (required): Carpooling offers are inherently time-dependent. An offer is 

only valid at a discrete point in time. Date and time is required for modeling carpooling as 

a routable network since time is a component of a connection. As can be seen in Figure 23, 

only an exact departure time is listed. An arrival time may differ greatly depending on 

detours, the amount of traffic, and other factors. 

 Stop locations (required): Stop locations are used to embed an offer in a geographic 

space. Further, they are needed to merge different transportation networks. 

 Fare information (optional): Information about the financial costs of a trip are not re-

quired to build a routable network. However, costs can be used as an optimization crite-

rion. 

 Available seats (optional/required): Information about the number of free seats is con-

ceptually optional for a routing system. In practice, however, this information is required, 

since a carpooling offer can only be taken as long as there are free seats. This circumstance 

also counts for multimodal trips. 

 Detour time (optional/required): On BlaBlaCar.de, drivers have the possibility to specify 

a detour range, which is usually between 0 and 30 min. Detour time is needed to imple-

ment a fuzzy merging technique between a carpooling network and a public transporta-

tion network.  

As can be seen from the list above, carpooling offers on BlaBlaCar.de nearly satisfy all the require-

ments of a time-expanded model (stops, times, trip). Unfortunately, information about the arrival 

time at a certain stop is not available or only an approximation is given, since traffic and detours 

influence these arrival times. A time-expanded model, however, requires exact time information 

in order to model connections and enable transfers at stops. Consequently, data retrieved from 

BlaBlaCar.de must be enriched. The data enrichment process is further explained in the last sec-

tion 5.1.2.2. 

5.1.2.1 Acquiring Carpooling Data 

The data set of carpooling offers used in the further experiment has been retrieved from 

BlaBlaCar.de. Since this thesis focuses on Switzerland, only offers which have at least one stop 

located within the borders of Switzerland were gathered. Unfortunately, no freely available data 

set could be found. Further, BlaBlaCar.de does not offer a public API to request offers. In addition, 

carpooling offers are very dynamic and only valid once. Consequently, a crawler was implemented 

in Java to gather carpooling offers on a daily basis. This section explains how the crawler was 

implemented and used to retrieve carpooling offers. 
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Prerequisites: Since no API was available, a crawler was implemented to derive carpooling offers. 

However, crawling data from an online platform has some drawbacks. On a basic level, a crawler 

accesses a website in a similar matter as a user would do. When running a crawler, it is necessary 

to be aware of the fact that potentially a very high number of requests could be made to the servers 

of the platform owner, which may slow down their service. On behalf of a sustainable crawling, 

the scope of offers to crawl has been narrowed down to major cities in Switzerland. It is important 

to mention that with an official API, the number of offers could have been increased. For this ex-

periment, the 17 biggest cities defined by the Bundesamt für Statistik (BFS)6 have been chosen. In 

addition, Olten was added to the search set as well, because of its central position in the Swiss 

transportation network. The cities used are: Zurich, Geneva, Basel, Berne, Lausanne, Winterthur, St. 

Gallen, Lucerne, Lugano, Biel/ Bienne, Thun, Olten, Schaffhausen, Chur, Le Grand-Saconnex, Uster, 

and Sion. Figure 24 shows that these cities are equally spread over Switzerland. In addition, que-

ries on BlaBlaCar.de do not only return offers from the exact defined location, but also from sur-

rounding villages. The offer from Figure 23 appeared as a result for a search with Olten as starting 

location, which is approximately 5.5 km away. Hence, crawling offers for larger cities also return 

results for surrounding areas and therefore increases the amount of data. 

 

Figure 24 Locations of the 17 largest cities in Switzerland. These cities are used as search criteria for the crawler. Olten 
does not belong to the largest cities, but has been chosen due to its central position in the Swiss transportation network. 

                                                           
6 https://www.bfs.admin.ch/ - Federal Statistical Office of Switzerland (Accessed: 25.05.2017) 

https://www.bfs.admin.ch/
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Implementation: The crawler implemented for this experiment was written in Java. The lan-

guage, however, does not have an influence on the results. In addition, a MySQL database was 

setup to store the retrieved and parsed data. 

The crawler consists of three classes, the main class, a parser class, and an offer class. Generally 

speaking, the main class takes a list of cities as input. For each city, a HTML request is made to 

BlaBlaCar.de. The parser then processes the returning HTML element. It creates an Offer Object 

for every offer contained in the HTML element and pushes it into a list. Finally, the list of processed 

offers is stored in a MySQL database. 

The procedure can be described as follows: 

 

Since carpooling offers are very dynamic and vary from day to day, a cron job was set up to run 

the crawler every morning at 11:00. This time was chosen because many offers are posted in the 

early morning, departing on the same day. Thus, crawling in the very early morning would have 

also lead to a data loss. Nevertheless, the crawler could have been run multiple times during the 

day, but in regard of the workload of the BlaBlaCar servers, one crawl per day was deemed ade-

quate. 

Result: With the use of the crawler, around 18k offers were crawled within an 8-month period. 

Figure 25 shows the number of offers crawled per date. It becomes apparent that at the beginning 

of September 2016 the number of carpooling offers increased drastically. The reason for this is 

not clear, since no adjustments of the crawler were made. It can be assumed, however, that 

BlaBlaCar.de augmented their search engine. Entries with zero offers can be explained with the 

downtime of the server when the crawler was running. 

Crawler 
 input: List of cities LC 

 output: All unique offers for all cities stored in a MySQL database 

1 foreach l  LC do 

2  request HTML page element E for a search of l 

3  parse E  

4  foreach offer HTML element eO  E do 

5 new Offer (id, driver, rating, date, time, start, stops, end, price, car, url, query) -> o 

6   push o to List of offer LO 

7 remove duplicates 

8 post unique offers to MySQL DB 
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Figure 25 Number of crawled carpooling offers within an 8 month period. Zeros can be explained by the downtime of either 
the crawling server or BlaBlaCar.de at the moment of the request. 

The resulting data set of offers gathered by the crawler were saved into a MySQL database. Each 

record in the database represents an offer. An offer is a tuple of a unique ID, driver’s name, driver’s 

rating, date, time, start, stops, end, price, car, URL, and query (date and city).  

It is important to mention that stop locations have no geographical component. The proposed 

merging/linking technique, however, requires a geographic location. Consequently, the retrieved 

data had to be enriched and supplemented with a spatial component. The following section there-

fore explains the enrichment process of carpooling offers. 

5.1.2.2 Data Enrichment 

In the previous sections the crawling of carpooling offers were elucidated. Unfortunately, these 

offers, crawled from the Internet, lack certain information. For example, stop locations have no 

geographic location. Although this is not problematic for a user, it is for creating a multimodal 

network and the proposed merging/linking technique. Furthermore, without a geographic loca-

tion, certain goal-directed algorithms such as the A* cannot be applied (cf. 2.1.2.2 Goal-Directed 

Techniques).  

Apart from the missing spatial component, carpooling offers on BlaBlaCar.de do not specify an 

exact arrival time. A time-expanded model, however, requires this information. Consequently, in 

chapter 4.2.2 Carpooling as a Timetable, a fictional time node tf was defined, which acts as a 

placeholder. Implementing a routable carpooling network demands this node to be filled with dis-

crete time information. Therefore, it is important to enrich the crawled carpooling data. Following 

information must be supplemented: 
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 Geographic locations: The exact geographic position of a stop is mandatory for the pro-

posed approach of merging the carpooling network with the railway network. Further-

more, the geographic location enables the use of goal-directed algorithms. 

 Duration: The duration of a journey segment is mandatory in order to calculate arrival 

and departure times at the destination and intermediate stops and thus enabling transfers. 

Enrichment process: The enrichment process covers two stages. The first stage geocodes stop 

locations of the crawled data, while the second stage calculates a potential route of a carpooling 

offer. Considering geocoding, the use of an external API is appropriate. Possible solutions are pro-

vided by Google7, Esri8, Geonames9 and others. Keeping in mind that potential routes also need to 

be calculated, Google’s Directions API performs both stages in one request. Thus, Google’s Direc-

tions API as was chosen as the tool to enrich the data. 

A JavaScript program was written to automate the enrichment process. In essence, the application 

sends a request to the Directions API for each crawled offer. The request accepts arguments to 

personalize the directions results. For this experiment, default values were chosen. However, the 

departure time of the offer and a traffic model could be used to increase the correctness of the 

result. In this thesis, this enhancement has been omitted as it would require proof. As no data 

exists about the actual route a driver has taken, the correctness cannot be validated. 

The response of the API is a JSON, containing much more information than needed. Thus, a large 

part of the response was pruned before being saved in the database, in order to save disk space. 

Pruned information is, for example, written instructions.  

The Direction’s API returns multiple levels of detail. The broadest level is a route, describing the 

total distance and duration of the journey. This route can be split into legs, representing connec-

tions between origin, intermediate stops, and the destination. Legs consequently equal a connec-

tion in a time-expanded model. Further, each leg holds information about its distance and 

duration, as well as the geographic location of the start and end points. Legs, in turn, can be sepa-

rated into steps. Steps represent a segment between two points on the road network, where a 

driver has to take an action. The vertices of a step are therefore usually located at junctions, cross-

ings and so on. The distance and duration of a step, as well as the coordinates of its vertices, are 

given. The most detailed level are paths. Paths are the actual route on a road network and thus 

contain of hundreds of thousands of vertices. Segments of paths do not provide information about 

the duration or distance. 

                                                           
7 https://developers.google.com/maps/web-services/ - Google Maps APIs > Web Services (Accessed: 
06.03.2017) 
8 https://geocode.arcgis.com/arcgis/index.html - ArcGIS Online Geocoding Service (Accessed: 06.03.2017) 
9 http://www.geonames.org/export/ws-overview.html - Geonames is a free online gazetteer offering free 
public APIs. (Accessed: 06.03.2017) 

https://developers.google.com/maps/web-services/
https://geocode.arcgis.com/arcgis/index.html
http://www.geonames.org/export/ws-overview.html
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Result: The resulting data set contains information about the geographic location of stops. Fur-

thermore, the potential route of the driver has been calculated in multiple levels of detail. All the 

additional data from the enriching was stored in the MySQL database. Therefore, the database 

contains four tables: Offers, Routes, Legs, and Steps. The path of a step is contained in the tuple of 

a step. 

By reconsidering the structure of a time-expanded model, it becomes apparent that the minimum 

requirements are connections defined by a trip and its departure and arrival times at stops. Due 

to the enrichment process, missing time information at intermediate stops and the destination 

can be calculated using the duration information of the legs. Additionally, the proposed merging 

& linking technique requires a spatial component on stop locations, which could be also supple-

mented during the enrichment process. Consequently, the enriched carpooling data fulfills all the 

requirements of a time-expanded model and the proposed merging & linking technique. 

5.1.3 Road Network Dataset 

The linking approach explained in the chapter 4.3 Model Merging & Linking requires drive time 

areas around public transportation stops. These areas are pre-calculated, as they are considered 

stable. Drive time areas are calculated using a road network, containing extensive information. 

Either the road network must contain the duration for a road segment or the distance plus the 

speed limit.  

For this step, Esri’s StreetMap Premium10 was used. This set contains the 2016 European road 

network by HERE11 in the form a file geodatabase for the use with ArcGIS for Desktop and the 

Network Analyst extension. The road network is updated twice a year and is therefore ideally 

suited to calculate drive time areas. In addition, this data set integrates historic traffic information, 

in order to improve the correctness of drive time areas for specific times during a day. 

  

                                                           
10 http://www.esri.com/data/streetmap - StreetMap Premium is a road network data set for the ArcGIS 
Platform. (Accessed: 20.03.2017) 
11 https://here.com/ - HERE is company providing mapping data. (Accessed: 20.03.2017) 

http://www.esri.com/data/streetmap
https://here.com/
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5.2 Data Structures & Preprocessing Stable Components 

After collecting and enriching all the necessary data sets, prerequisites were defined and stable 

components were calculated. At the moment, carpooling offers are not in a format, which allows 

the generation of a time-expanded graph. Furthermore, arrival and departure times at intermedi-

ate stops and destinations have not been calculated yet. Thus, the following prerequisites can be 

defined: 

 Data structure: All transportation data used must be structured in a sufficient way, so 

that building a time-expanded graph is straightforward. In addition, the data structure 

shall allow interoperability based on current standards. 

 Data enhancing: Missing discrete departure and arrival times of carpooling offers need 

to be calculated. 

Considering preprocessing, the proposed merging technique explained in chapter 4.3 Model 

Merging & Linking requires drive time areas of public transportation stops in order to combine 

different networks by representing fuzziness and preserving flexibility of carpooling. Since road 

networks and train stations do not change often, drive time areas are defined as a stable compo-

nent. The fare scheme of the Swiss railway network changes only once a year and is therefore 

considered stable as well. As previously mentioned, the financial cost cannot be integrated di-

rectly into the network graph. Hence, an additional system is set up. This system must further 

allow updating prices once a year. 

This section presents solutions for the defined prerequisites and explains the implementation and 

calculation of stable components. The following section will build up upon this preprocessing. 

5.2.1 General Transit Feed Specification (GTFS) 

The first prerequisite defined is an adequate data structure for the railway network and the car-

pooling data. Considering the components of a time-expanded model, at least the information 

about trips and their arrival and departure times at stops are required. Additionally, transfers 

shall be enabled be interlinking time nodes at a stop. Consequently, the data should be structured 

into at least trips, stops, times, and transfer regulations. Additionally, the railway network and 

carpooling both provide information about the operator of a trip. Carpooling offers also contain 

information about the rating of a driver, as well as the type of car. Although this information is 

conceptually not needed for a time-expanded model, it might be of interest for a user. The large 

amount of data, as well as the difference in contents of the railway network and carpooling require 

a well-engineered data structure, preferably similarly structured as the time-expanded model. 

Such a structure can be achieved by following the General Transit Feed Specification (GTFS). 
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The General Transit Feed Specification, is a common way to model static public transportation 

schedules (Antrim & Barbeau, 2013). GTFS was originally developed by Google and aims to deliver 

an interoperable way for transport agencies to publish and share their schedules (Google, 2016). 

In addition, GTFS feeds are also widely used in other domains. For example, Esri offers a tool for 

their Network Analyst to import GTFS feeds. Even OpenTripPlanner12, an open source routing en-

gine, is based on GTFS.  In current research, GTFS feeds are well-known and often used for case 

studies (Antrim & Barbeau, 2013; Bast & Storandt, 2014; Bit-Monnot et al., 2013; Bucher et al., 

2017; Hillsman & Barbeau, 2011).  Despite the fact that GTFS feeds are not graphs, they are a good 

way of structuring data. Especially when planning on creating time-expanded graphs, GTFS feeds 

provide a similar structure. Hence, generating graphs from GTFS feeds is straightforward. 

A GTFS feed consists of several text files describing the schedule. A typical GTFS structure can be 

seen in Figure 26. Contained files and their relations to each other are represented. Basically, an 

agency operates routes, which are used by trips. Since trips are the time dependent component of 

a route, they incorporate stop times defining the departure and arrival times of a trip at a stop. 

Stop times of the same trip are related to each other, representing a train driving from stop to 

stop. Further, in a GTFS feed, stops are split up into parent stops, representing a train station, and 

child stops located at a parent, representing platforms. 

A GTFS feed may contain much more information, but since they are not relevant for this thesis, 

they are disregarded; only the used components are elucidated. 

 

Figure 26 Schematic representation of a GTFS feed and its relations, according to Van Bruggen (2015). 

  

                                                           
12 http://www.opentripplanner.org/ - OpenTripPlanner (OTP) is an open source platform for multi-modal 
and multi-agency journey planning. (Accessed: 02.04.2017) 

http://www.opentripplanner.org/
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Agency: An operator of a public transportation service is called agency. Multiple operators can be 

stored in a single file and be associated with the routes they operate via a unique ID. Typical at-

tributes are a name, a URL and the time zone where the agency is located. Table 1 shows all at-

tributes of the agency file. The orange highlighted attributes are required. 

According to a time-expanded model (cf. Pajor (2009); Schulz (2005)), agencies are conceptually 

not a part of this model. Nevertheless, the information about agencies can be appended to any 

route without a negative impact to the overall model. 

Table 1 Structure of the agency file within a GTFS feed. Required parameters are highlighted in orange. 

agency_id agency_name agency_url agency_timezone agency_lang agency_phone agency_fare_url agency_email 
Unique 
identifier 

Name URL Time zone where 
to agency is lo-
cated 

Primary 
langeuage  

Phone number 
of  

URL to the ticket Email adress 

 

Routes: Often, public transportation offers fixed routes. For example, trains, trams or buses are 

divided into lines, always serving the same destinations. In GTFS these lines are represented as 

routes. 

A route is operated by an agency and has a name and a type. The name, for example, is the number 

of a line and/or the lines destination. The type specifies the mode of transportation and is encoded 

using integers. Unfortunately, no transportation type is defined for carpooling (Google, 2016). Ta-

ble 2 shows all attributes. The orange highlighted attributes are required. Either the route short 

name or the route long name is required. A short name, for example, is the line number, whereas 

the long name might be a combination of the line number plus the head sign. A route itself is time-

independent since it describes a line and not the trip. Thus, a route is made up of trips. 

A route of a GTFS feed is the same as a route in the time-expanded model. Conceptually, a route is 

not needed for routing purposes, but can be integrated to represent the structure of a transporta-

tion network. 

Table 2 Structure of the routes file within a GTFS feed. Required parameters are highlighted in orange. 

route_id agency_id route_short_name route_long_name route_type 
Unique identifier ID of the Operator Short name Long name Mode of transporta-

tion 

  

Trips: An actual journey is represented as a Trip, hence figuratively a train or bus. A Trip is there-

fore time-dependent and uses a route. Specific departure and arrival times are defined by a se-

quence of stop times which are stored separately. The availability of a trip during a week is also 

defined and stored in the Calendar file. Furthermore, because a trip can be considered a train or 

bus, additional information such as “bikes allowed” or “wheelchair accessible” can be specified. 

This information is, however, optional. 
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As mentioned above, trips are the time-dependent component of a route and represent an actual 

vehicle on a network. Trips in a GTFS feed have the same meaning as a trip in a time-expanded 

model. A time-expanded model is event driven, where an event is an elementary connection c := 

(train, start, departure, destination, arrival) (cf. 2.1.4.4 Modeling Public Transportation). Conse-

quently, trips are mandatory. 

Table 3 Structure of the trips file within a GTFS feed. Required parameters are highlighted in orange. 

trip_id route_id service_id trip_headsign 
Unique identifier ID of the route Id of the calendar Trips destination 

 

Stop times: Exact departure and arrival times as well as the time a vehicle stays at a stop are 

represented by stop times. Stop times are part of a trip and are located at a stop. Since a trip has 

at least two stop times (starting point and destination), it is of high importance to order the stop 

times by defining a sequence.  

Stop times of the same trip are related to each other and define the direction of a trip. As show in 

Figure 26, a sequence of stop times builds a path connecting different stops. Figuratively, a vehicle 

follows the path along stop times.  

Stop times equal times in a time-expanded model. Both are defined by a tuple of departure and 

arrival times. Table 4 shows the structure of a stop time in a GTFS feed. In addition to the time 

information, the IDs of the related trip and the stop there are located is required. Further, the stop 

sequence indicates its position along a trip. 

Table 4 Structure of the stop times file within a GTFS feed. Required parameters are highlighted in orange. 

trip_id arrival_time departure_time stop_id stop_sequence 
ID of the trip Time of arrival at a 

specific stop 
Time of departure 
from a specific stop 

ID of the stop the stop 
time is located at 

Order of the stop times 
along a trip 

 

Stops: Stops in a GTFS feed equal stops of a time-expanded model. Furthermore, in chapter 4.1 

Public Transportation (Railway) Model, the concept of a meta-stop was. A similar concept is also 

given in a GTFS feed, whereas platforms are modeled separately and are related to a parent train 

station. 

A parent station is used to define the affiliation of platforms to a train station. For example, “Zurich 

HB” would be a parent station and “Bahnhof Löwenstrasse”, “Gleis 1”, etc., its children. Stop times 

are always located at child stops since trains arrive at platforms. Exceptions exist when a train 

station only has one platform. Then, stop times are located at the parent. 
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Table 5 Structure of the stops file within a GTFS feed. Required parameters are highlighted in orange. 

stop_id stop_code stop_name stop_lat stop_lon parent_station 
Unique identifier Short text or num-

ber. (e.g. abbr. of 
Stop or platform 
code) 

Name of the Stop Latitude Longitude ID of parent sta-
tion  

 

Calendar: By default, a GTFS feed assumes a certain frequency of trips. For that reason, the Cal-

endar file declares the availability of a trip during the week. Moreover, the duration of validity of 

a service/trip must be defined.  

Table 6 Structure of the calendar file within a GTFS feed. Required parameters are highlighted in orange. 

service_id Monday Tuesday … … start_date end_date 
Unique identifier, ref-
erenced in trips 

Binary (0,1 
true, false) 

Binary (0,1 
true, false) 

  Start date of the service End date of the service 

 

Calendar Dates: While the Calendar file in a GTFS feed only declares the validity of a trip on week-

days, the Calendar Dates file is used to define exceptions. Exceptions are defined by dates, describ-

ing when a certain connection is not available. As mentioned above, this concept requires frequent 

connections in order to be useful. Nevertheless, in case of a non-frequent MOT, it is allowed to 

omit the Calendar and only use calendar dates. In this case, rather than defining exceptions, only 

dates of availability are stored in the Calendar Dates file. 

Table 7 Structure of the calendar dates file within a GTFS feed. Required parameters are highlighted in orange. 

service_id date exception_type 
Unique identifier, referenced in trips Date Int (1,2 valid, invalid) 

 

Transfers: A GTFS feed can contain an additional file defining regulations for transfers. In more 

detail, an agency can specify the minimum transfer time between two stops. Consequently, it is 

possible to define variable transfer times between platforms. In the present experiment, this in-

formation can be used to specify the lower bounds of the conditional used to find possible trans-

fers (cf. 5.3.1). 

The transfer file in a GTFS feed is optional, but if it exists, at least the origin stop and the destina-

tion stop of the transfer, as well as the minimum transfer time must be defined. 

Table 8 Structure of the transfers file within a GTFS feed. Required parameters are highlighted in orange. 

from_stop_id to_stop_id min_transfer_time 
ID of stop ID of stop Duration in seconds 
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The explanation of the GTFS structure mentioned above shows that a transportation schedule 

stored in this format already holds all the necessary information to generate a time-expanded 

graph. Furthermore, the relations between the different files equal the relations in a time-ex-

panded graph. Consequently, converting carpooling offers into a GTFS feed can be considered as 

a first step towards a time-expanded carpooling graph. In addition, converted carpooling offers 

allow the use of other systems (cf. OpenTripPlanner, Esri’s Network Analyst) and enables other 

researchers or companies to work with this data. At this moment, carpooling as a type of trans-

portation in the GTFS is not defined, but can be unofficially defined by the present author. 

5.2.2 Converting Carpooling Offers into a GTFS Feed 

As mentioned in the previous section, GTFS feeds can be used to create a time-expanded graph in 

a straightforward way. Furthermore, during the conversion to GTFS, missing arrival times at car-

pooling stops can be calculated and stored in the according file. Hence, a complete carpooling 

schedule results after the conversion, which will be used for the further graph generation. 

In this section, the process of converting the crawled carpooling offers into a GTFS feed is de-

scribed. Therefore, the data structure of the gathered data is recapped based on an example. Ad-

ditionally, the generation of each GTFS file is described individually.  

The crawler plus the data enrichment process resulted in tuples of data. As mentioned before, 

multiple levels of abstraction exist. The broadest scale returned by the Directions API is a route, 

whereas only the start and end location, as well as total distance and duration are contained. A 

route, however, consists of legs that represent the connections from the start via the waypoints to 

the destination. Each leg holds also the information about the distance and duration. A leg can be 

separated into steps. Steps are basically segments at which the driver has to take an action at the 

end (e.g. turn right). Steps hold the same information as legs: start and end location, as well as 

duration and distance of a step. The most fine-grained scale is a path. A path is the actual route on 

the road network. Hence, the polyline of a path consists of hundreds of thousands of vertices. Paths 

do not hold information about the distance or duration from one vertex to another. 

The proposed merging technique aims to find intersections between a drive time area of a public 

transportation stop and a carpooling journey. The appropriate scale derived from the API must 

thus be determined. Routes and legs cannot be used, as they are too generalized and an intersec-

tion with a drive time area would most likely be wrong. Steps, however, seem to be ideal, because 

they have and adequate number of vertices. Furthermore, the vertices lie at points at which a 

driver needs to take an action. Thus, these points are defined as Points of Action (POA). Steps are 

very detailed in urban areas and loose in rural areas. Paths, by contrast, are far too detailed (>100k 

vertices per route) and do not have duration information for all segments. According to Pajor 
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(2009), merging networks is directed. It makes no sense to connect every junction of a road net-

work to a public transportation stop. Consequently, a generalization of the steps will be made. 

A typical journey divided into steps looks as follows: 

Table 9 Structure of a carpooling offer divided into steps. The offer ID as well as the route ID are unique. The step ID is 
unique as well and further defines the order of the steps in a route. Duration is in seconds. The start and end locations hold 
an array of latitude and longitude coordinates. 

Offer ID Driver Time Date Car Rating Price Route ID Start End Step ID 

Start 

Loc. End Loc. Duration 

123 Joe 12:00 18.3.16 VW 4.7 8€ 456 Bern Olten 1 [x, y] [x, y] 180 

123 Joe  18.3.16 VW 4.7 8€ 456 Bern Olten 2 [x, y] [x, y] 240 

123 Joe  18.3.16 VW 4.7 8€ 456 Olten Basel 3 [x, y] [x, y] 500 

123 Joe  18.3.16 VW 4.7 8€ 456 Olten Basel 4 [x, y] [x, y] 380 

123 Joe  18.3.16 VW 4.7 8€ 456 Olten Basel 5 [x, y] [x, y] 670 

 Next Offer  

 

Table 9 illustrates that multiple steps have the same start and end location. That is because the 

Directions API does not return place names for vertices of steps. Hence, the place name infor-

mation from the legs was chosen. The correct place names can later be inherited from public trans-

portation stops during merging. At this moment, arrival and departure times of each step are 

unknown and need to be calculated based on the duration. 

With the information quoted above, offers can be converted into a GTFS feed. Therefore, a con-

verter in JavaScript was implemented. The converter is a command line tool using Node.js13 and 

takes a JSON file containing all steps of all offers as input. The JSON file has the same structure as 

the above-described Table 9. The following offers a step-by-step break-down, file by file, of how 

the data was converted: 

Agency.txt: The minimum requirements of an agency are a name, a URL, and a time zone. How-

ever, in order to link a driver to a route, an ID is also needed. The agency name can simply be 

defined by the driver’s name, whereas the time zone is, because of the crawling for Switzerland, 

always CET. Since a driver has no URL, a placeholder “n/a” is used. The driver’s ID is a conversion 

from his name to a numeric (e.g. J(10) + O(15)+ E(5) = 10155).  

The crawled carpooling offers also contain a driver rating value. The rating can, as mentioned 

before, be an indicator for convenience. Therefore, this property was added to the agency.txt since 

it is driver specific and does not change for different offers. 

                                                           
13 https://nodejs.org/en/ - Node.Js is a JavaScript runtime built on Chrome’s V8 JavaScript engine. (Ac-
cessed: 21.03.2017) 
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An entry in the agency.txt therefore looks as follows: 

ID name URL time_zone rating 

10155 Joe n/a CET 4.7 

 

Routes.txt:  The minimum requirements of a route are an ID, a short name and/or a long name 

and a type. The ID of a route can be defined by the route ID of an offer. The short name as well as 

the long name can be defined using the start and end location (e.g. B->B, Bern-Basel). The type 

defines the MOT of a route. As carpooling has not been defined by Google, “carpooling” is used as 

type. An entry in the routes.txt therefore looks as follows: 

ID short_name long_name type 

456 B->B Bern-Basel “carpooling” 

 

Trips.txt: In GTFS, a trip must have at least an ID, the ID of the route it uses and a service ID linking 

to the calendar_dates.txt where the date of the offer is defined. The route ID is present in the input 

offer, whereas the trip ID is not known. Since a route ID is already unique, a trip’s ID is defined as 

route ID + 1/10 (e.g. trip_id = 456.1). The service ID is defined as the trip ID + “.s” (e.g. 456.1.s). 

Since the gathered carpooling offers have the information about the car type, a property for this 

is added as well. It is added to a trip because a driver might have multiple cars, so the car type is 

trip specific. This information is not needed for routing purposes, but might be of interest for a 

passenger. 

An entry in the trips.txt therefore looks as follows: 

ID route_id service_id car_type 

456.1 456 456.1.s VW 

 

Calendar_dates.txt: Calendar dates define the validity of a trip. They must at least have a service 

ID, a date and an exception typ. The service ID can be retrieved from the referenced trip, whereas 

the date can be specified by the offers date. The exception type defines, whether an offer is valid 

(1) or not (2) on this date. An entry in the calendar_dates.txt therefore looks as follows: 

service_id date exception_type 

456.1.s 2016-03-18 1 
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Stops.txt: Creating stop entries from carpooling offers requires some caution. The principle, how-

ever, is simple. The most important stop locations are the start, via and end points, which can 

easily be extracted. The first entry of an offer, thus the one with the lowest step ID, is the start 

point, whereas the one with the highest step ID and the same offer ID is the destination. As men-

tioned above, we have many stop locations (vertices of steps) along a route. In urban areas, the 

density is especially high. In light of the future merging of carpooling and public transportation, 

these detailed steps do not carry additional information. Hence, for stop locations along a route, a 

helper function is applied, which removes vertices within a self-defined distance. The idea is 

straightforward: 

 

Consequently, the closest a point can lie to its predecessor is the distance predefined. For this 

thesis, a distance of 1km has been chosen. 

Vertices which lie along a route have no place name. Hence, a placeholder name is defined, which 

will be later replaced by the merging technique. To nevertheless add some meaning, the definition 

was chosen to be the place name of the predecessor stop plus “Around” before the name, in order 

to indicate where the vertex is approximately located. Also, stops which are predefined origins, 

vias or destinations and lie along a route are marked with an additional property, to be able to 

later identify the type of stop (cf. 5.4). Major stops are defined by 1 and POA stops by 2. 

The stops.txt file represents a set of distinct stop locations containing a unique ID, a place name, 

and a geographic location in latitude and longitude. Hence, a concatenation of the coordinate pair 

is used as an ID for a stop. An entry in the stops.txt therefore looks as follows: 

ID name latitude longitude stop_type 

xy Bern y x  1 

 

  

Reduce Steps 

1 reference_bb <- BoundingBox(px) 

2 if (px+1 inside reference_bb) then 

3  omit px+1 

4 else 

5  keep px+1 

6  reference_ bb <- BoundingBox(px+1) 
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Stop_times.txt: Stop times represent arrival and departure times of a trip at a stop. The minimum 

properties are a trip ID, an arrival time, a departure time, a stop ID and a stop sequence. The trip 

ID can be retrieved from the referenced trip, while the departure time and arrival time need to be 

calculated using the duration of a step. Stop times are created together with stops. Whenever a 

stop is created, a corresponding stop time is implemented as well. Thus, the stop time receives the 

ID of the created stop. Arrival and departure times can be calculated using the summarized dura-

tions of all before steps added to the original departure time of the offer. Durations for omitted 

steps are part of the summary as well. As the waiting time at a stop is unknown, arrival and de-

parture time are set the same. The stop sequence indicates the position of a stop time in a trip. An 

entry in the stops.txt therefore looks as follows: 

trip_id stop_id arrival_time departure_time stop_sequence 

456.1 xy 12:00 12:00 1 

456.1 xy 12.03 (12:00 + 180s) 12.03 (12:00 + 180s) 2 

 

The process of the converter can be found in the pseudo code block below. 

 

  

Converter 
 input file: JSON File containing offers divided into steps. S 

 parameter: Generalization threshold t 

1 foreach step s   S do 

2  if (inside t || new offer) then 

3   write to agency.txt <- { id: s.driver as numeric, name: s.driver } 

4   write to routes.txt <- { agency: aid, id: s.rid, type: "carpooling" } 

5   write to trips.txt <- { route: s.rid, id: tid, service: cdid, sn: "", head: "" } 

6   write to calendar_dates.txt <- { id: cdid, date: s.date, exception_type: 1/2 }; 

7   time <- s.time + sum(previous s.duration) 

8   if (! last step of offer) then  

9    write to stops.txt <- { id: sid, name: start name, lat: start lat, lng: start lng} 

10 write to stoptimes_.txt <- { trip_id: tid, stop_id: sid, arrival: s.time,  

departure: time, stop_sequence: sid } 

11   elseif (last step of offer) then 

12    write to stops.txt <- { id: sid, name: end name, lat: end lat, lng: end lng} 

13    write to stoptimes_.txt <- { trip_id: tid, stop_id: sid, arrival: time,  

departure: s.time, stop_sequence: sid } 
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Result: The conversion of a subset of approx. 2000 carpooling offers resulted in a GTFS feed which 

can be directly used to generate a time-expanded graph. A total of 1238 distinct drivers could be 

found, offering 2212 different trips. The reduction of vertices along a route resulted in 7312 dis-

tinct stop locations, containing 49630 stop times. In chapter 5.3.2 the generation of a time-ex-

panded graph using this GTFS feed is further elucidated. 

5.2.3 Calculating Drive Time Areas 

A drive time area (aka. service area) is a region which encompasses all streets that can be reached 

within a certain amount of time from a predefined point (Esri, n.d.-b). Hence, service areas can be 

used to evaluate the accessibility of a point. Drive time areas can be calculated in two directions, 

either accumulating the duration away or towards a point of interest. Due to one-way streets, the 

direction may have a large impact. Further, drive time areas can be calculated using traffic models. 

These areas are likely smaller during rush hour. 

For the experiment of this thesis, drive time areas have been calculated using the ArcGIS Network 

Analyst14 extension on a StreetMap Premium road network (cf. 5.1.3 Road Network Dataset). No 

traffic model was used, thus only one area was calculated per public transportation stop. Using 

multiple drive time areas at a stop at different times during the day may improve the proposed 

merging technique even more. This consideration could be part of a further study. 

As drive time polygons are also used to exploit new stops along a carpooling route, a driver passes 

the area in both directions; first towards the stop and then away from the stop. Thus, independent 

of the direction of the drive time area, the extent in one direction is always not completely correct, 

but an approximation. For this thesis, the direction away from a point has been chosen. 

Drivers of carpooling offers usually tend to accept a detour time of somewhere between 0 and 30 

minutes. In this thesis, a static detour time of 15 minutes is assumed. Consequently, for a 15-mi-

nute detour, the drive time area must not be larger than 7.5 minutes. Therefore, drive time areas 

have been calculated for a 5-minutes radius, which leaves enough time in case of traffic or imper-

fection of one direction. Also, in a further study, drive time areas of different sizes could be used, 

in order to precisely match a driver’s preferences.  

A 5-minute drive time area also means that in a worst-case scenario, a driver has to take a 10-

minutes detour, plus consider potential traffic delays. Consequently, with the size of the used drive 

time areas, a driver can maximally take one detour per trip.  

                                                           
14 http://www.esri.com/software/arcgis/extensions/networkanalyst - The ArcGIS Network Analyst is an 
extension for ArcGIS for Desktop and provides network analysis tools for complex routing problems. (Ac-
cessed: 24.03.2017) 

http://www.esri.com/software/arcgis/extensions/networkanalyst
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Drive time areas are only calculated for public transportation stops and not for carpooling offers. 

Since in real-life carpooling offers are only valid once and the (pre-calculated) route may be un-

certain, drive time areas for carpooling offers cannot be considered stable. For every single new 

offer inserted into the network graph, extensive preprocessing is needed before it can be added 

to the graph. In exchange, calculating drive time areas for public transportation stops can be con-

sidered stable, because variations of these stops are extremely rare.  

Results: A total of 1897 drive time areas at public transportation stops have been calculated. Fig-

ure 27 shows a map of all resulting drive time areas. It is important to mention that a small number 

of drive time areas lie outside the Swiss borders, since the SBB serves individual train stations in 

the neighboring countries. All the calculated areas can be used to link carpooling stops to accessi-

ble public transportation stops at start, via, and end locations, as well as to exploit new stops along 

carpooling routes. In order to later assign drive time areas to public transportation stops, each 

polygon contains the stop ID as an attribute. 

 

Figure 27 Resulting drive time areas (grey) of train stations (purple) served by the SBB. Drive time areas have been calcu-
lated in the direction away from train stations for a 5-minute drive. 
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5.3 Network Graph Generation 

In chapter 4.3 Model Merging & Linking, a modeling approach for a public transportation and a 

carpooling network were proposed. Both cases were based on a time-expanded model. A common 

approach for creating multimodal networks is to first model each MOT separately and then merge 

and link it afterwards (Bast et al., 2015). As already mentioned in chapter 2 Related Work, net-

works are modeled according to graph theory. The use of multidigraphs is sufficient for this pur-

pose (cf. (Foulds, 1992). However, in the light of multimodality, where routing is based on label-

constraints (cf. 2.2 Multimodal Routing), labeling edges and nodes is mandatory. Hence, the use of 

a labeled graph is necessary. Furthermore, as mentioned in 4.3 Model Merging & Linking, a slight 

adaption of the transfer modeling in a time-expanded graph is used. Rather than implementing an 

additional transfer node (cf. Pajor (2009)), labeled edges (or edge properties) were implemented. 

Although the modeling of transfers was adjusted slightly, the concept remains the same. A transfer 

is indicated by a label rather than by a node. 

The implementation of this experiment was conducted on a Lenovo ThinkPad T430s with an Intel 

i7-3520 CPU @ 2.9 GHz and 16 GB memory. The graph was built using Neo4j15 3.0.8, a widely used 

graph database. Neo4j was chosen for this experiment as it comes with a small set of spatial pro-

cedures needed for the proposed merging technique. Furthermore, simple routing algorithms 

(Dijkstra’s algorithm, A*) are already implemented in the APOC16 plugin. Neo4j also allows adding 

properties to both nodes and edges (also called relationships), as well as defining labels and rela-

tionship types. This principle is a so-called labeled property graph17. 

 

                                                           
15 https://neo4j.com/ - Neo4j is a highly scalable native graph database. (Accessed: 20.03.2017) 
16 https://github.com/neo4j-contrib/neo4j-apoc-procedures - APOC: Awesome Procedures for Neo4j. (Ac-
cessed: 20.03.2017) 
17 https://neo4j.com/developer/graph-database/ - The Property Graph Model. (Accessed: 01.04.2017) 

Syntax: In the following sections, we will present pseudo code describing import and graph 

operations: 

create:    Creating a new node in the database 

match:    Getting a node from the database 

call:    Calling a specific external procedure. 

set:    Setting a property or label of a node/ edge 

:Label:    Label of a node/ relationship type 

{key: value}:   Property of a node/ relationship 

(n:Label {key: value}): A node n with a label and properties 

()<-[:Label]->():   Labeled edge between two nodes. <> direction of an edge 

 

https://neo4j.com/
https://github.com/neo4j-contrib/neo4j-apoc-procedures
https://neo4j.com/developer/graph-database/
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Remembering the structure of GTFS feeds, the set up consisted of several files which make up a 

schedule and if related lead to a time-expanded model. Each entry in a file can be considered a 

node, which is related to others via unique IDs. Further, GTFS feeds represent a certain hierarchy, 

which helps in loading data into the graph. Consequently, each file is loaded individually starting 

at the top and the created nodes are related afterwards. The naming of relationship types follows 

the in Figure 26 used syntax based on Van Bruggen (2015). Figure 28 highlights the structure and 

relation of a GTFS feed.  

 

Figure 28 Structure and relations of a GTFS feed. This structure can be followed (top to bottom) during graph genera-
tions. 

As both network datasets, public transportation and carpooling are present as GTFS feeds, con-

straints that apply for both can be defined: 

 Agency.id is unique 

 Route.id is unique 

 Trip.id is unique 

 Stop.id is unique 

Further, indexes for properties with a high number of accesses can be created. Theoretically, in-

dexes on the following properties are not needed, but lead to a performance improvement, which 

will not be discussed further: 

 Index on Stop.name 

 Index on Stoptime.stop_sequence 

In the following sections, the graph generation of both the public transportation and carpooling 

networks are elucidated. The following chapter will then explain the merging and linking process. 
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5.3.1 Public Transportation Network Graph 

The public transportation schedule used in this example has been retrieved in the form of a GTFS 

feed containing more information than conceptually needed. As already outlined in 5.1.1 Railway 

Data, additional information about the agency or the type of a train is given. This information is 

not concerned during routing, but may be of interest to a user. Thus, this information is integrated 

as well.  

The creation process of a time-expanded public transportation graph follows the structure of the 

available GTFS feed (cf. 5.1.1 Railway Data). The first step is to load entries as nodes into the graph 

and relate them as quickly as possible.  

In Neo4J, nodes can have multiple labels and properties. While labels are denoted as :Label and 

represent the type of a node or relation, properties are denoted as an object {key: value} 

describing the characteristics. In light of the later merging with carpooling, every node is assigned 

a :Train label. This allows to distinguish between public transportation a carpooling in a later 

step. 

Agencies: Loading agencies to the temporarily empty graph G is straightforward. Each line of the 

agency.txt file represents an agency, hence a node a  A in G. All existing properties of an agency 

are assigned to a. The procedure looks as follows, resulting in G = (A). 

 

Routes: Routes are operated by an agency. Hence, each route r  R can be related to an agency 

a  A, represented by an edge (a, r). In order to improve performance during the import of 

routes, the related agency of the route is matched to the route ID of the entry. Consequently, a 

route node r and the according edge (a, r) are created in one go, where (a, r) is directed a 

 r. 

 

Load agency.txt  

1 foreach line do 

2  create (a:Agency:Train {id: line.id, name: line.name, url: line.url, timezone: line.timezone}) 

 

Agency 
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Trips: Trips are the time-dependent part of a route, hence representing the actual trains using a 

route. Consequently, a trip t  T is related to a route r  R. The same procedure as for routes 

above can be applied for trips. For each entry in the trips.txt, the matching route node r is matched 

and related to a newly created trip node t by an edge (t, r), resulting in G = (A, R, T). 

 

Stops: In 4.1 Public Transportation (Railway) Model it was decided to use meta-stops. This cir-

cumstance is also existent in GTFS feeds, where platforms are modeled as child stops of a parent 

station. Consequently, during import, additional label :Metastop can be assigned to every stop 

node s  S where the parent_station property is null. All other entries are thus child stops 

representing a platform and are labeled with :Track. Although stops can be differentiated, they 

all belong to the subgraph of stops and are additionally labeled with :Stop.  

Stops further contain a geographical location (latitude, longitude). As for loading data from a text 

file, latitudes and longitudes are parsed to Floats to enable calculations. 

In chapter 5.2.3 Calculating Drive Time Areas,  the stable component of drive time areas for each 

train station were preprocessed. These drive time areas are later used to link public transporta-

tion and carpooling. In order to allow future carpooling offers to be added to the network on-

 

Load routes.txt  

1 foreach line do 

2  match (a:Agency:Train {id: line.agency_id}) as agency 

2  create (r:Route:Train {id: line. id, short_name: line. short_name, long_name: line. long_name, 

type: line. type) <- [:Operates] – (agency) 

 

 

Load trips.txt  

1 foreach line do 

2  match (r: Route:Train {id: line. route_id}) as route 

2  create (t:Trip:Train {id: line.trip_id, service_id: line.service_id, headsign: line.trip_headsign, 

short_name: line.trip_short_name}) - [:Uses] – >(route) 

 

Agency Route 
Operates 

Trip 
Uses 
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demand without any preprocessing, the drive time areas are imported into the graph. Neo4J sup-

ports spatial components through the Neo4j Spatial18 plugin. Geometries can be added as a prop-

erty of a node in the form of a Well-known text (WKT) string. Consequently, a new property wkt 

is implemented on s, holding the geometry of its drive time polygon.  

Neo4J pursues the principle of spatial layers. In order to work with the drive time polygons stored 

in s.wkt, a new spatial layer must be created and every s.wkt added to this layer. Neo4J auto-

matically creates a spatial index on every geometry, enabling spatial queries such as closest, inter-

sects or withinDistance. 

 

                                                           
18 https://github.com/neo4j-contrib/spatial - Neo4j Spatial is a library of utilities for Neo4j that facilitates 
the enabling of spatial operations on data. (Accessed: 20.03.2017) 

 

Load stops.txt  

1 foreach line do 

2  create (s:Stop:Train {id: line.id, name: line.name, stop_code: line.stop_code latitude: 

toFloat(line.latitude), longitude: toFloat(line.longitude), parent_station: line.parent_station}) 

2  if s.parent_station is null 

2 set s:Metastop 

3  else 

4   set s:Track  

Load drive time areas a 

1 foreach a do 

2  match (s:Stop:Metastop {id: a.stop_id}) 

3 set s.wkt = a 

Create spatial layer ‘geom’ 

1 call spatial.addWKTLayer('geom', 'wkt') 

Adding Geometries to ‘geom’ 

1 match (s:Stop:Metastop) 

2 call spatial.addNodes(‘geom’, s) 

https://github.com/neo4j-contrib/spatial
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Stop times: Stop times st  ST define when a trip t  T stops at a specific stop s  S. Hence, 

stop times are a part of t, located at s. Therefore, stop times st share an edge (st, t) with t 

and an edge (st, s) with s. Further, stop times are ordered by a sequence along a trip t.  Con-

sequently, stop times stx and stx+1 belonging to t share an edge e = (stx, stx+1), repre-

senting a connection from stop sx to stop sx+1. Edge e therefore needs to be weighted to indicate 

the cost of travel from sx to stop sx+1 along t. Hence, a property e.duration = d(stx, 

stx+1)is defined. 

 
 

Load stoptimes.txt  

1 foreach line do 

2  create (st:Stoptime:Train {trip_id: line.trip_id, stop_id: line.stop_id, arrival_time: line.arri-

val_time, departure_time: line.departure_time, stop_sequence: toInt(line.stop_sequence)}) 

Relate stoptimes st with a trip t 

1 match (t:Trip:Train) 

2 match (st:Stoptime:Train {trip_id: t.id})  

3 create (st)-[:PART_OF_TRIP]->(t) 

Relate stoptimes st with a stop s  

1 match (s:Stop:Train) 

2 match (st:Stoptime:Train {stop_id: s.id})  

3 create (st)-[:LOCATED_AT]->(s) 

Relate stoptimes stx with stx+1 

1 match (stx:Stoptime:Train) 

2 match (stx+1:Stoptime:Train {trip_id: stx.trip_id, stop_sequence: stx.stop_sequence + 1}) 

3 create (stx)-[:PRECEDES]->( stx+1) 

Calculating edge weights of e = (stx, stx+1) 

1  match (stx:Stoptime:Train)-[e:PRECEDES]->( stx+1:Stoptime:Train) 

2 set e.duration = stx+1.arrival_time - stx.departure_time 



5 Experiment 

78 
 

Provisional result: After loading every entry contained in the GTFS feed, the result is a graph G 

= (A, R, T, S, ST). This graph represents the schedule of the SBB. Further, the considerably 

stable drive time areas around train stations have been integrated and indexed, allowing spatial 

queries. The graph is, at the moment, only routable for direct journeys using basic routing tech-

niques. Time-expanded models, however, require modeling transfers at stops to route for indirect 

journeys (Pajor, 2009). Consequently, transfer edges between stop times need to be created (cf. 

4.1 Public Transportation (Railway) Model). 

Furthermore, the use of goal directed routing algorithms such as A* is currently not possible. Re-

garding the explanation in chapter 2.1.2.2 Goal-Directed Techniques, A* uses a heuristic to only 

route towards the destination. Usually, the geographic location, i.e. the distance to the destination 

is used. Since in a time-expanded graph one usually routes via stop times, A* is not able to use the 

geographic location without any augmentation, as stop times do not have coordinates. In order to 

allow the use of A* anyhow, the latitude/longitude information of the related stop is copied to the 

stop time. 

 

Transfers: According to Pajor (2009), transfers in a time-expanded graph are modeled using ad-

ditional transfer nodes. Since a labeled property graph is used in this experiment, the use of transit 

nodes is relinquished, and instead labeled relationships are used to differentiate between transfer 

and connection edges. Based on the presented modeling approach in chapter 4.1 Public Transpor-

tation (Railway) Model, conditionals are used to define possible transfers between trips at a stop. 

A GTFS feed can contain a file defining minimum transfer times at a stop or between child stops. 

The feed used in this example encloses such a file, which defines minimum transfer times between 

meta-stops and at a stop. Unfortunately, the transit time between child stops is not given. Never-

theless, this file is used to define the conditional for viable transfers. Since the transfers.txt file 

does not specify a maximum transfer time, twice the minimum transfer time is used as upper limit. 

Consequently, a transfer edge e = (stA, stB) where stA belongs to tA and stB belongs to tB 

is created, if the difference between the arrival time of train A and the departure time of train B is 

larger than the minimum transfer time and smaller than twice the minimum transfer time. Fur-

ther, transfer edges shall not be self-relating, as staying in the same train is not a transfer. The 

process can be described as follows: 

Copy Coordinates 

1 match (st:Stoptime:Train)-[:LOCATED_AT]->(s:Stop:Train) 

2 set st.latitude = s.latitude, st.longitude = s.longitude 
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Result: The resulting time-expanded public transportation (railway) graph finally allows query-

ing for indirect routes. Additionally, the use of goal directed techniques (A*) has been enabled due 

to adding a spatial component to stop times. The use of additional labels for meta-stops (:Metas-

top) and platforms (:Track) helps to distinguish between a train station and the actual platform.  

Using labeled transfer edges (:TRANSFER) further aid in interpreting a query result and thus 

evaluates if transfers occur or not. Also, this label further enables to only search for direct routes 

by omitting every transfer edge during a shortest path query. 

Due to consistency reasons, the use of date information is disregarded (cf. 5.3.2 Carpooling Net-

work Graph). 

5.3.2 Carpooling Network Graph 

In chapter 4.2 Carpooling Model use a time-expanded modeling approach for a carpooling net-

work was argued for. A time-expanded model allows the representation of a schedule as a graph 

and further allows the proposed merging technique. Chapter 5.1.2 describes how carpooling of-

fers can indeed be modeled time-expanded, but require further data enrichment in order to re-

trieve approximate time information along a route. Chapter 5.2 showed that GTFS feeds serve as 

an adequate data structure for the future time-expanded graph building. Consequently, in 5.2.2 

Converting Carpooling Offers into a GTFS Feed, a set of roughly 2k carpooling offers were con-

verted into a GTFS feed. A subset was used to improve performance during graph operations. 

However, in order to have sufficient offers in the network, the date component will be neglected. 

A carpooling offer is contemplated to be available on every date.  

 

Load transfers.txt  

1 foreach line do 

2  match (s1:Stop {id: line.from_stop_id})--(st1:Stoptime) 

3  match (s2:Stop {id: line.to_stop_id})--(st2:Stoptime) 

   where not ID(st1) = ID(st2) 

   and st2.departure_time – st1.arrival_time < (2 * line.min_transfer_time) 

   and st2.departure_time – st1.arrival_time > line.min_transfer_time 

4  create (st1)-[:TRANSFER {duration: st2.departure_time - st.arrival_time }]->(st2) 
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As a GTFS feed contains the carpooling offers gathered from BlaBlaCar.de, the same procedure as 

for the public transportation schedule elucidated in 5.3.1 can be applied. However, rather than 

using a :Train label on every node created, a :CP label is used instead to indicate their affiliation. 

Additionally, carpooling stops do not hold a drive time area. As elucidated in chapter 5.2.3 Calcu-

lating Drive Time Areas, drive time areas around carpooling offers can be considered instable, 

hence leading to an increased computational cost without any further benefits. 

As the procedure of creating a time-expanded graph from a GTFS feed has been extensively ex-

plained in the previous section, the focus is now directed only at deviations. 

Agency: In chapter 5.2.2 Converting Carpooling Offers into a GTFS Feed, the Agency.txt is ex-

tended by a driver’s rating, indicating his reliability and thus the overall convenience. Conse-

quently, an additional property rating was assigned to a driver’s node: (a:Agency:CP {…, rating: 

-.-}). 

Routes: A GTFS feed specifies the MOT of a route. As already mentioned before, carpooling has 

not been adopted as an official route type. Hence, in 5.2.2 Converting Carpooling Offers into a GTFS 

Feed, the route type is defined to be “carpooling”. Consequently, rather than using an integer for 

the type, a string is used: (r:Route:CP {…, route_type: “carpooling”}). 

Trips: A trip is, in this case, a driver using a specific route. Since the car type and thus also the 

number of available seats may be important, an additional property car type on a trip was needed. 

As previously mentioned, this property needs to be set on a trip rather than a route, because a 

driver may have multiple cars and thus be driving the same route with different ones. Conse-

quently, a car_type property was added to a trip node: (t:Trip:CP {…, car_type: “”}). 

Stops: Carpooling stops do not yet have parent stations. Parent stations are used to define the 

affiliation of platforms (child stops) to a train station. Carpooling does not follow the concept of 

platforms and thus does not require any child-parent relations. Nevertheless, according to the 

merging/ linking approach proposed in chapter 4.3 Data Modeling and Graph Merging & Linking, 

carpooling stops will later be appended to train stations. With that said, at the moment, no defini-

tions of meta- and child stops have to be made yet. Stops can be simply loaded into the graph. 

Stop times: Due to the enrichment process and the conversion into a GTFS feed, the in chapter 

4.2.2 Carpooling as a Timetable mentioned fictional time nodes tf could be augmented with dis-

crete time information. Hence, they are no longer fictional and can be used to build a real time-

expanded graph. The structure of a stop time node is the same as for public transportation any-

how.  
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Calendar Dates: As mentioned at the beginning of this section, the date information of carpooling 

offers was disregarded in order to virtually increase the set of valid offers. Therefore, no calendar 

dates have been added to the graph. 

Transfers: Transfers between carpooling offers have basically been implemented the same as 

public transportation transits. The main difference is the minimum transfer time. While the SBB 

defines a minimum transfer time for a valid transit, carpooling inherently does not have specified 

transfer times since it is unusual to change a carpooler during a journey. Consequently, it was not 

possible to implement meaningful variable transit times. Thus, static measures have been used. In 

this experiment, a maximum transfer time of 10 minutes and a minimum of 3 minutes were de-

fined. 

Enabling A*: In the previous section, the process of copying the geographic location of a stop to 

all related stop times were elucidated, in order to enable the use of a goal directed algorithm such 

as A*. The same procedure was naturally applied to the carpooling graph as well. 

Result: The resulting time-expanded carpooling graph (cf. Figure 29) contains every offer of the 

input subset, modeled as nodes and relation, without a true geographical route. The use of basic 

and goal directed algorithms is enabled by a slight modification and allows for indirect journeys.  

Date information is not contained in the graph, as, on behalf of the small set of offers, it is assumed 

that each offer is valid on every day.  

As previously mentioned in chapter 4.2.2 Carpooling as a Timetable, a time-expanded graph is not 

able to adequately represent the fuzziness of carpooling offers at stop locations. Consequently, the 

stop locations loaded into the graph are still imprecise. Nevertheless, fuzziness will be imple-

mented with the help of the proposed merging/linking technique, by relating carpooling and pub-

lic transportation stops based on drive time. Therefore, the next section explains the 

implementation of the proposed merging/linking technique. 

 

Figure 29 Schematic representation of the meta graph of the carpooling network. 
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5.4 Network Merging & Linking 

According to the current state of the art, multimodal networks are created by merging individual 

networks and linking stop location by its geographic location (Bast et al., 2015). A common ap-

proach is to solve the Nearest Neighbor Problem (NNP), resulting in linking the closest stop loca-

tions of both networks (Pajor, 2009). Thereby, linking is an asynchronous process where, for 

example, all stops of a public transportation network are linked to the road network, but not all 

nodes of a road network are linked to the public transportation network (Pajor, 2009). Although 

this approach can be computed quite easily, it also has some drawbacks. Solving the NNP, i.e. con-

necting closest nodes, is not feasible in the present case. Closest distance, even if constrained (cf. 

Delling, Pajor, et al. (2009a); Dibbelt et al. (2015)), does not account for real-life situations. A car-

pooler, for example, is bound to the road network and defines a maximum detour time. Conse-

quently, the threshold varies for every stop depending on the road network. Furthermore, it may 

even differ for different carpoolers, as the maximum detour time can vary. A closest point linking 

approach is therefore not suitable. Also, connecting only two stops with each other may not be 

sufficient as a carpooler may be able to approach multiple stops within his/her detour time, thus 

revealing some sort of fuzziness. In addition, chapter 5.1.2 Carpooling Data illustrates that car-

pooling stops are very imprecise, making it impossible to use an accurate, closest point’s link. 

Thus, a carpooling stop should be connected to multiple public transportation stops. The same 

principle can be applied to stops along a carpooling route where the detour time is decisive.  

The merging/linking approach proposed in 4.3 Model Merging addresses the drawbacks of the 

NNP, by implementing a fuzzy technique based on driver’s standards. The technique can be con-

sidered fuzzy as it uses drive time areas around public transportation stops, allowing the defini-

tion of multiple possible stops. Furthermore, new (public transportation) stops along a carpooling 

route can be exploited without forcing the driver to take unnecessary detours. Hence, the merg-

ing/linking approach proposed also accounts for the flexibility of carpooling. 

Since this fuzziness and flexibility could not be implemented into the carpooling network graph 

itself, the merging/linking approach shall re-construct the lost features. This section therefore ap-

plies this technique to the in 5.3.1 and 5.3.2 created individual networks. 

Merging: Conceptually, the individually created graphs GCP = (A, R, T, S, ST) and GPT = 

(A, R, T, S, ST) need to be merged into one single large graph GMulti = (A, R, T, S, 

ST), where A = (ACP, APT), R = (RCP, RPT) and so on. But because a graph database (Neo4J) 

is used, both network graphs have already been created in the same database. This is also a reason 

for labeling each node with either :Train or :CP (cf. 5.3.1, 5.3.2). Consequently, no merging has 

to be performed, as a graph GMulti = (GCP, GTrain) already exists. 
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Linking: The linking process, i.e. implementing link edges between both networks, finally re-con-

structs carpooling’s flexibility and deals with imprecise stop locations. The proposed linking tech-

nique deals with these two problems. First, carpooling stop locations are imprecise in terms of 

their exact spatial location, hence they are fuzzy. This first problem is addressed by relating the 

geocoded carpooling stop to every public transportation stop reachable within a 5-minute drive. 

Secondly, carpooling has the flexibility to deviate from the original route to pick-up or drop-off a 

passenger at a “new” stop location. This second problem is addressed by analyzing whether or not 

a carpooling route intersects a drive time area of a public transportation stop. As not every inter-

section automatically means a stop is possible, e.g. a driver on a highway may not have the possi-

bility to approach the desired stop, chapter 5.2.2 Converting Carpooling Offers into a GTFS Feed 

elucidates the use of an abstracted, action oriented path. A stop location and time node for every 

place the user needs to take an action (e.g. turn right at a junction) was implemented. Further-

more, this set of stop locations was generalized by a 1 km distance in order to omit close-to-each-

other points which are irrelevant. Thus, rather than intersecting the true path with drive time 

areas, the areas can be intersected with Points of Action (POA). Consequently, problem two can be 

solved with the same approach as problem one.  

In section 5.3.1, drive time areas of meta-stops were integrated into the network graph. Due to a 

spatial index, spatial operations are enabled. Therefore, the linking process can be started by in-

tersecting all carpooling (:CP) stop nodes and POA nodes with the drive time polygons. Whenever 

an intersection is found, the investigated node is related to the meta-stop of the drive time area. 

Furthermore, during the conversion of carpooling offers to a GTFS feed (cf. 5.2.2), POA stops do 

not have a name. Therefore, a placeholder “Around …” was set. By appending a carpooling stop to 

a meta-stop of public transportation, the placeholder can now be replaced with the actual name 

of the meta-stop. 

As POA nodes will be linked to a stop a certain distance away, stop times may change. This phe-

nomenon has been already discussed in chapter 4.3.3. The simple link to a reachable stop, how-

ever, does not automatically adjust the stop time. In order to bypass this problem, a penalty for 

transfers at POA stops is added, which will be discussed later in this section. 
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The process of linking can be described as follows:  

 

First, a carpooling stop is matched and intersected with the spatial layer holding all meta-stops 

and their drive time polygons. Whenever an intersection is found, it yields the meta-node of the 

intersected drive time polygon and creates an edge between the carpooling stop and the meta-

stop. Consequently, the carpooling stop is appended to the meta-stop as a child. This process is 

performed for every carpooling stop contained in GCP. 

Mode change (Transfers): The above merging and linking processes created a single multimodal 

graph GMulti = (GCP, GPT). However, transfers between carpooling and public transportation 

are not enabled yet, as transfer edges between carpooling and public transportation connections 

were not created. According to Bast et al. (2015), one might add penalties for mode changes. In 

the present example, these penalties can be used not only for mode changes, the modification of 

stop times at POA stops. Because a POA stop was appended as a child stop to a meta-stop of public 

transportation, the real arrival time at the meta-stop may be at a maximum of half the drive time 

area size later. Consequently, the upper limit of the conditional used to find possible transfers (cf. 

4.3.2 or 5.3.1 & 5.3.2) can be increased by half the size of a drive time area. If a driver actually 

drives a detour, all future stop times would consequently also change, but as the size of the drive 

time areas only allow one detour per trip, the future stop times do not need to be adjusted. 

Major stop locations such as start, via, and end locations are approached directly by a driver. Thus, 

a drive time area based penalty on the transfer conditional is not needed. It would be possible to 

add a penalty as well because of the mode change. In this experiment, however, a static transfer 

time with the same bounds as for carpooling is used (cf. 5.3.2). 

The process of creating mode changes can be separated into two operations. First mode changes 

at major stop locations are created. Later, the penalty extended transfers are implemented at POA 

stops. 

Linking Carpooling and Public Transportation Graphs GCP & GPT 

1 match (s:Stop:CP) 

2 call spatial.intersect(drive time areas, s) yield node as metastop 

3 if intersection 

4  set s.meta_names = metastop.name 

4  create (s)-[:LOCATED_AT]->(metastop) 
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Result: After merging graphs GCP and GPT to GMulti, creating links, and adding transfer edges, the 

result is a full multimodal time-expanded graph. The usage of drive time areas allowed linking a 

carpooling stop to multiple public transportation stops, hence representing the fuzziness of car-

pooling stops in the graph itself. With the use of the drive time polygons, new stops along a route 

could be exploited by linking POA stops to public transportation stops. Also, the definition of dif-

ferent carpooling stops (major stops, POA) enable the modeling of diverse transits. 

The final multimodal time-expanded graph is still routable using basic techniques. Further, the 

adjustments of stop times allow the use of the goal directed A* algorithm. Not only shortest routes 

can be retrieved from this graph, but also, for example, all shortest paths in terms of the number 

of hops. Therefore, the next section describes basic queries on the in this chapter generated mul-

timodal graph. 

  

Transfers at major stop locations 

1 match (m:Metastop)<-[:LOCATED_AT]-(s1:Stop:CP {stop_type: 1})--(st1:Stoptime:CP) 

2 match (m)—(st2:Stoptime:Train) 

  where not ID(st1) = ID(st2) 

  and st2.departure_time – st1.arrival_time_s < 600  

   and st2.departure_time – st1.arrival_time_s > 180 

3 create (st1)-[:TRANSFER {duration: st2.departure_time - st.arrival_time }]->(st2) 

Transfers at POA stop locations 

1 match (m:Metastop)<-[:LOCATED_AT]-(s1:Stop:CP {stop_type: 2})--(st1:Stoptime:CP) 

2 match (m)—(st2:Stoptime:Train) 

  where not ID(st1) = ID(st2) 

  and st2.departure_time – st1.arrival_time_s < 600 + 300 

   and st2.departure_time – st1.arrival_time_s > 180 

3 create (st1)-[:TRANSFER {duration: st2.departure_time - st.arrival_time }]->(st2) 
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5.5 Querying 

The previous sections demonstrated the building of a multimodal graph based on the explanations 

of chapter 4 Data Modeling and Graph Merging & Linking. The result is a time-expanded graph, 

which entails fuzziness and flexibility of carpooling. All nodes are labeled according to their affil-

iation to an MOT. Instead of creating additional transit nodes, labeled edges were used. Even 

though this is a difference to e.g. Pajor (2009), it should not change the principle of a time-ex-

panded model. 

A time-expanded model, hence also the multimodal graph, can be queried with basic techniques. 

Other techniques can also be applied on the graph, in order to for example only query for direct 

routes, or query for all shortest routes in terms of the number of hops. Therefore, this section aims 

to provide an overview of possible query techniques on the graph. 

Basic Principles: Usually, a user wants to query routes from a start location to an end location. 

However, the platform, thus the child stop of the start and end location, is not known beforehand. 

Thus, the routing algorithm shall start at a meta-stop and find the shortest way to the desired 

destination. 

In a time-expanded graph, stops are connected via stop times (cf. Figure 30). Hence, a routing 

algorithm may follow the edges between stop times. Consequently, routing happens on the sub-

graph of stop times. However, having a meta-stop as the origin for the routing algorithm does not 

allow choosing either a specific departure time or a time range, as the time information is repre-

sented by the stop times. 

 

Figure 30 Schematic representation of two interconnected stops. Meta-stops (orange), child stops (yellow), stop times 
(blue). 
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Number of hops: In the presented graph, it is possible to query all directions between meta-stops. 

Rather than searching for the shortest path, a search is performed for any path from an origin to 

a destination. It is crucial that without any restriction, a huge number of possible connections will 

be found. Therefore, it makes sense to restrict the connections to a maximum number of hops. 

Figure 31 shows an example where the number of hops has been limited to 3 along stop times or 

7 by considering the path from meta-stop to meta-stop. In this case, paths between the origin and 

destination are not ordered by the cost, but by the number of hops. 

Searching for paths with a small number of hops can be used to query for multiple connections 

between two stops. Furthermore, routes with a small number of stops tend to be faster as they 

approach their destination more directly and do not loose time at intermediate stops. It is also 

important to mention that this must not be true in every case. Nevertheless, a user may prefer a 

journey with less intermediate stops or transfers, which can be calculated using this approach. 

 

Figure 31 Schematic representation of valid routes in terms of the number of hops. Valid routes are highlighted in green, 
meta-stops in orange, child stops in yellow and stop times in blue. 

Direct routes: In the former sections, the use of labeled transfer edges was elucidated. Standard 

connection edges are labeled with :PERCEEDES, while transfer edges are labeled :TRANSFER. 

Consequently, by pruning all paths which contain a :TRANSFER edge, the result allows querying 

only for direct routes. Figure 32 shows a case where only routes without transfers from the origin 

to the destination are found. 

 

Figure 32 Schematic representation of direct routes (no transfers). Valid routes are highlighted in green, meta-stops in 
orange, child stops in yellow and stop times in blue. 
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Range Problem: The Range Problem describes the circumstance that a user may not specify a 

discrete time of departure, but a time range (cf. 2.1.4.2 Range Problem (RP)). Consequently, not 

all stop times are valid. The routing algorithm shall not consider, hence not follow, stop times 

which lie outside of the defined time range. In the presented graph, the RP can be solved by not 

starting at the meta-stop of the start location, but rather providing the algorithm a set of stop 

times.  

As an example: A user wants to travel from A to B and leave between 08:00 and 10:00 o’clock. 

First, all stop times located at the child stops from A are matched where the departure time is later 

than 8:00 but earlier than 10:00. These stop times can now be used as start locations for the rout-

ing algorithm. Consequently, the routing algorithm can only return the shortest path leaving at 

one of these stop times. 

Figure 33 shows a schematic example of this process. Stop times with departure times outside the 

time range are hollow, while all valid stop times are blue. Even though there are other possible 

connections between A and B (light grey), they are not queried, as their stop times lie outside the 

time range.  

 

Figure 33 Schematic representation of the Range Problem. Greyed out stop times are not used as origins of the routing 
algorithm. Valid routes are highlighted in green, meta-stops in orange, child stops in yellow and stop times in blue. 

In the present graph, the RP is solved by first matching all stop times at the origin’s meta-stop 

which lie in the time range. In a second step, all stop times at the destination’s meta-stop are 

matched. With these stop times, a Dijkstra’s algorithm can be run on :PRECEDES and :TRANS-

FER edges of the stop times, which returns the quickest path departing between 08:00 and 10:00 

o’clock. 
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Inverse Range Problem: Similar to the RP, a user might want to arrive at the destination at a 

certain time, but does not know when he/she should leave at the origin. The same procedure as 

for the RP can be applied. However, instead of reducing the set of stop times at the origin, the set 

of stop times at the destination is reduced. Hence, a path can only be found if it ends at one of these 

stop times (cf. Figure 34).  

 

Figure 34 Schematic representation of the inverse RP. Greyed out stop times are not used as destinations/origins of the 
routing algorithm. Valid routes are highlighted in green, meta-stops in orange, child stops in yellow and stop times in blue. 

This problem can be solved in two different ways. Either a forward search or a backwards search 

is performed. In the forwards approach, the first step entails matching all stop times at the origin’s 

meta-stop which lie within the given arrival time range. In a second step, a Dijkstra’s algorithm is 

run starting from any stop time at the origin to the selected stop times at the destination. Conse-

quently, the routing algorithm returns a path which must end within the given time range. 

In the backwards approach, routing is performed in the opposite direction of the edge direction. 

Thus, a Dijkstra’s algorithm is run starting from the selected stop times at the destination to any 

stop time at the origin.  

Range Problem 

1  match (m:Metastop)—(st:Stoptime) 

  where st.arrival_time < 08:00 

  and st.arrival_time > 10:00 

2 with st as origin 

3 match (m2:Metastop)—(st2:Stoptime) 

4 with st2 as destination 

5 call apoc.algo.Dijksta(origin, destination, “PERCEEDES>|TRANSFER>”, duration) 
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Inverse Range Problem 

1  match (m:Metastop)—(st:Stoptime) 

  where st.arrival_time < 08:00 

  and st.arrival_time > 10:00 

2 with st as origin 

3 match (m2:Metastop)—(st2:Stoptime) 

4 with st2 as destination 

5 call apoc.algo.Dijksta(destination, origin, “<PERCEEDES|<TRANSFER”, duration) 
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6 Evaluation & Results 

Current research in multimodal routing focuses on the Nearest Neighbor Problem (NNP) as solu-

tion to network linking (Bast et al., 2015; Dibbelt et al., 2015; Pajor, 2009). Chapter 5.4 Network 

Merging & Linking illustrates that this approach is not adequate for carpooling as it cannot handle 

the imprecise stop locations and the flexibility of carpooling offers along the route.  

Focusing particularly on carpooling as a part of a multimodal network, in all conscience, no studies 

exist which investigate a suitable modeling approach for carpooling. In general, only two studies 

exist which consider carpooling and multimodal routing. Their idea is not to integrate carpooling 

as a full-fledged part into a network, but to substitute parts of an already existing multimodal 

journey. 

Whereas they consider the flexibility of carpooling, imprecision of carpooling stops is not dis-

cussed. The reason for this might be the different nature of their carpooling offers. In contrast to 

the data set of this thesis, their offers have not been frequent, and were located on a small scale.  

Depending on the characteristics of carpooling offers, it must be evaluated which modeling ap-

proach is best suited in terms of adequate network links, and thus offers improvements for all 

containing networks, and would thus lead to meaningful routing results. 

Therefore, this section analyzes the characteristics of the crawled carpooling offers in order to 

assess the benefits of carpooling in a multimodal system. Furthermore, the proposed merg-

ing/linking technique is evaluated in terms of representing fuzziness and retaining flexibility. Ad-

ditionally, the improvement of the overall network is analyzed. Lastly, different shortest path 

queries are presented with a focus on multimodal trips containing carpooling. 

6.1 RO 1.1: Characteristics of Real-Life Carpooling Offers 

As previously mentioned, the carpooling data set used in comparable studies (cf. Aissat & Varone 

(2015a)) differs drastically from the carpooling offers in this thesis. Whereas their carpooling of-

fers are frequent and on a regional scale, carpooling offers from real-life platforms such as 

BlaBlaCar.de are volatile. Also, the crawled offers are on a much larger (national to international) 

scale. Unfortunately, the authors do not sufficiently justify their approach based on the carpooling 

data set. Thus, in this section, the crawled data set is analyzed and evaluated in order to give a 

general overview of real-life, volatile carpooling offers 

Especially for a small country like Switzerland, carpooling offers cannot be restricted to a national 

scale, as most offers either have the start or destination in a foreign country. Hence, in this section, 

the crawled carpooling offers are described. In a first step, general characteristics are discussed. 

Later, the spatial component will be presented. Finally, the technical feasibility of real-life, volatile 
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carpooling offers is investigated based on the before ascertained characteristics and the quality of 

the crawled data. With all this steps, the time-expanded modeling approach is justified or dis-

proved.  

6.1.1 General Characteristics of Carpooling Offers 

As mentioned in the introduction, carpooling tends to be a MOT usually used for long-haul jour-

neys. Thus, it can be assumed that these offers do not reflect daily commuting. Figure 35 shows 

the amount of carpooling offers per weekday, which seems to conduce to the before assumption. 

Most journeys start around the weekend, especially on Thursday (15.6%), Friday (19.9%) and 

Sunday (16.3%). This implies travels of weekly residents, meaning people travelling back home 

for the weekends. 

 

Figure 35 Number of offers on each weekday. With 20%, Friday has the most offers, followed by Sunday with 16.5%. Lowest 
days are Tuesday and Saturday with approximately 11%. The data set contains of approximately 18k carpooling offers and 
has been crawled within an 8-month period. 

Most of the offers, roughly 50%, leave at around noon, indicating longer distance travel not for 

commuting. However, a slight increase during the evening rush hour (16:00- 18:00) can be seen 

(cf. Figure 36). By considering the weekdays, it is visible that these are weekend travels, as Thurs-

day, Friday and Sunday are above the average and all other days around or below the average 

number. Although data before 11:00 o’clock was not available, it can be assumed that the number 

of offers may be relatively low, since carpooling from BlaBlaCar.de tends to be for leisure travel 

rather than commuting. It is important to note that offers before 11:00 o’clock were not fetched 

by the crawler. The reason for this is that many drivers post offers in the early morning which 

depart later that day. In order to not stress the servers of the crawled platform, the crawler was 

run only once a day for offers of that day. In order to not miss offers posted in the early morning, 

the crawler was scheduled at 11:00 o’clock (cf. chapter 5.1.2.1).  
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Considering the participation in carpooling, 7674 different drivers can be identified. Figure 37 

shows the distribution of offers per driver. Most offers are served by a small number of drivers, 

whereas many drivers (approx. 25%) only offered a single ride. The top 5% drivers offered 30% 

off all trips, and the top 10% offered 43% of all trips (cf. Table 10). The participation in carpooling 

thus follows the long tail theory. 

 

Figure 36 Number of offers in a one hour interval of each weekday. 

 

Figure 37 Distribution of offers per driver. Most offers are offered by a small number of drivers, whereas many drivers 
(approx. 25%) only offer a single ride. The distribution follows the Long Tail Theory. 

Table 10 Number of drivers and offers and the percentage of the total amount. 

 5% 10% 25% 50% 100% 
Driver 384 767 1919 3837 7675 
Offers 5538 7710 11189 14208 18043 
% of total 30.69 42.72 61.99 78.73 100% 
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6.1.2 Spatial Characteristics of Carpooling Offers 

This data set contains only offers that have at least one stop location within the borders of Swit-

zerland. However, the crawled carpooling offers cannot be restricted to a country scale. Thus, this 

section shows the spatial distribution of carpooling offers across Europe. In a first step, the stop 

locations are described, followed by the routes. 

It is important to mention that the same subset of 2k carpooling offers as used in the implemen-

tation is analyzed.  

Stop locations: As previously illustrated, carpooling offers tend to be for longer journeys. The 

average length is 480 km, indicating that most of the offers extend across the borders of Switzer-

land. Figure 38 shows a choropleth map of European countries, classified by the number of stop 

locations. It becomes visible that especially neighboring states have a high number of stop loca-

tions.  

 

Figure 38 Number of stop locations per country across Europe. Neighboring states of Switzerland exhibit a particularly 
high number of stop locations. 

A closer look at the different countries in Table 11 shows that twice as many offers start in Swit-

zerland than they end. In return, the neighboring states have far higher numbers of end locations 

than start locations. In addition, Switzerland shows a high number of via locations, indicating 

Switzerland to be a transit country. Due to the high difference in start and end location, offers tend 

to be single service. 

  

Number of Stops 
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Table 11 Top 10 most important countries according to stop locations.  

 Total % Start Via End 

Switzerland 3586 100 1426 1451 709 

Germany 1736 48.4 462 347 927 

France 443 12.4 108 114 221 

Italy 383 10.7 105 58 220 

Austria 128 3.6 26 69 33 

Belgium 115 3.2 51 1 63 

Netherlands 49 1.3 22 2 25 

Hungary 17 0.5 9 0 8 

Lichtenstein 17 0.5 2 15 0 

Portugal 17 0.5 16 0 1 

14 countries with 11 (2x), 5 (2x), 3 (1x), 2 (5x) and 1 (3x) stop locations are excluded from this table. 

28 countries have 0 stop locations. 

 
 

Analyzing the numbers concerning Switzerland shows that the railway network has a much higher 

density of stop locations than carpooling. Especially in the “Mittelland”, the railway network as 

well as the carpooling network have a high density. Even though the railway network has far more 

stop locations, carpooling serves additional areas that are not accessible by train. The southern 

region “Wallis” is a good example. The Wallis is surrounded by mountains and thus not well suited 

for the railway network. However, it must be kept in mind that these areas can also be reached by 

bus. Nevertheless, this fact is another argument for using carpooling as a complement to the rail-

way network. Figure 39 illustrates the prevalence of carpooling stops and train stations.  

 

Figure 39 Stop locations of the 2k carpooling offers and all train stations of the Swiss railway network within the borders 
of Switzerland for a 5 km tessellation. Hexagons indicate the occurrence of stop locations. Yellow and green colors indicate 
which MOT has more stops within a hexagon. 
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Routes: Figure 40 shows a subset of around 2000 carpooling routes across Europe. The actual 

routes have been generalized using the step segments returned by the Directions API (cf. 5.1.2.2 

Data Enrichment). It becomes visible that especially central Europe has a high coverage of car-

pooling routes. In addition, a trend in north-running offers can be seen. Furthermore, east-west 

and north-south connections seem to develop. Carpooling routes also serve long-haul travels, in-

dicated by routes to Portugal or Turkey.  

On a national scale, Switzerland shows a high density of carpooling routes along the east-west and 

north-south axis. This correlates with the Swiss highway network, as two major highways cross 

Switzerland in these directions. Also, the figure shows that a high number of offers enter or leave 

Switzerland, which indicates the larger scale of carpooling. 

 

Figure 40 Subset of 2k carpooling routes (generalized) across Europe/Switzerland (left) and a line density calculation 
(right). A clear tendency of north-running offers can be seen. Switzerland shows a high density of carpooling routes along 
the east-west and north-south axis (bottom).  
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Connections: In this thesis, the goal is to combine the Swiss railway network and carpooling. 

Thus, it is of interest whether or not carpooling can provide connections not already serviced by 

the railway network. Based on the subset of 2000 carpooling offers, connections from a train sta-

tion, to a train station, and completely independent connection have been analyzed (cf. Table 12). 

Carpooling exploits 71 new connections starting from a train station and heading to a stop un-

known to the railway network, 47 from a stop unknown to the railway network to a train station, 

and 878 independent connections. Independent means that no train station is involved and thus 

neither the origin nor the destination can be reached with public transportation. These connec-

tions do not include POA stops, but are calculated based on the predefined origin, via and destina-

tion stops. In order to identify which carpooling stop and public transportation stop are 

approximately at the same location, the approach for spatially allocating carpooling stops from 

chapter 4.3.1 has been used. 

Table 12 The number of connections not covered by the railway network of Switzerland. PT -> CP indicates the possibility 
of reaching the origin by train, but not the destination. CP -> PT indicates the possibility of reaching the destination by 
train, but not the origin. CP -> CP indicates that neither the origin nor the destination can be reached by train. 

PT->CP CP->PT CP->CP 
71 47 878 

 

6.2 RO 1.3: Merging & Linking  

The in chapter 4.3 Model Merging & Linking proposed merging/linking technique aims to retain 

or restore the fuzziness of carpooling stops and the flexibility of driving detours. A striking benefit 

of this approach is the possibility to link imprecise carpooling stops to multiple public transpor-

tation stops. Moreover, it can exploit new stop locations along a carpooling route by analyzing an 

intersection with a drive time area of a public transportation stop. The drive time areas are calcu-

lated using a road network and an approximation of maximum allowed detour times. Thus, an 

intersection with such an area indicates the possibility of picking-up or dropping-off a passenger. 

It can be assumed that the more links between the carpooling and the railway network are estab-

lished, the more transfers are possible and thus the multimodal network will exhibit larger cov-

erage and connectivity.  

In chapter 5.4 Network Merging & Linking the proposed linking approach with real-life data was 

implemented. This section therefore analyzes and evaluates the resulting multimodal network 

based on: 

 Stop allocation 

 Transit possibilities 

 Improvements of the overall network 

 Quality of queries 
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6.2.1 Multimodal Graph 

The resulting multimodal graph consist of approximately 955k nodes, whereas most of them 

(890k) belong to the railway network. Additional 2.55M relationships have been created. Table 

13 shows the number of different types of nodes for carpooling, railway, and the total amount. It 

can be stated that the number of nodes is fairly low. A set of 2k carpooling offers produces only 

64k nodes. Crucially, the most nodes are created for stop times. Depending on the frequency of an 

MOT, the number of trips can be high as well. In the present experiment, the railway network 

offers 71k trips, which is roughly 30x more than carpooling. Nevertheless, the impact of carpool-

ing on the multimodal network is high in some areas. This will be shown later in this section. 

Considering relationships/edges as shown in Table 14, for each node, approximately 2.5 relation-

ships are created. It must be mentioned that transfer edges were excluded from this table. Trans-

fer edges will be discussed later in this section. Again, stop time related edges cover the largest 

part of all relationships. This is crucial and also explains the 2.5 times higher number, as each stop 

time is related to a trip (:PART_OF_TRIP), a stop (:LOCATED_AT), and, excepting origin and 

destination, to a successor (:PRECEDES). Transfer edges will further massively increase the num-

ber of edges at a stop time. 

Table 13 Number of nodes of different types for all contained MOT. 

Node Type Carpooling Railway Total 
Agency 1237 62 1299 
Route 2211 28454 30665 
Trip 2211 69150 71361 
Stoptime 51198 789330 840528 
Metastop -  1912 1912 
Track - 2771 2771 
Road 7613 - 7613 
Stop 7613 4683 12296 

Total 64’470 891’679 956’149 

 

Table 14 Number of relationships of different types for all contained MOT. 

Edge Type Carpooling Railway Total 
:OPERATES 2211 28454 30665 
:USES 2211 69150 71361 
:PART_OF_TRIP 51198 789330 840528 
:LOCATED_AT 51198 789330 840528 
:PART_OF 6652  2771 9423 
:PRECEDES 48987 720180 769167 

Total 162’457 2’389’215 2’551’672 
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6.2.2 Stop Allocation & Exploiting 

Stop Allocation: A major part of the linking approach is to connect the imprecise carpooling stops 

to train stations. Rather than linking only one stop to another, the benefits shall be in connecting 

a carpooling stop to multiple stops, hence retaining fuzziness. Thus, Table 15 shows the number 

of links between carpooling and the railway network. In the subset of 2k carpooling offers, 1061 

main stops (origin, defined via, destination) and 6552 Points of Action (POA) could be identified. 

The Swiss railway network has 4683 train stations.  

Table 15 illustrates that with the use of drive time areas, 296 carpooling main stops can be linked 

to train stations (CP->Train) with a total of 969 links (#Links). Subsequently, a main carpooling 

stop connects on average to 3.27 different train stations ( Links). Concerning POA stops, 1619 

out of 6552 could be linked to train stations, with an average of 3.51 links per POA. Consequently, 

1619 new stops along carpooling routes could be exploited. It is important to note that a large 

number of Main stops (765) and POA stops (4933) could not have been linked to train stations 

(No Link). This can be explained by the fact that large parts of carpooling routes lie outside of the 

borders of Switzerland where no railway network was available. 

In order to draw a comparison to the state of the art approach NNP, a small calculation has been 

performed. The NNP has been solved for the 1061 main carpooling stops out of the set of 7613 

stops (Main & POA) and the 4683 train stations. Thereby, a common approach is to define a thresh-

old distance (cf. Dibbelt et al. (2015)). The NNP has been solved for maximum Euclidean distances 

of 1 km, 2 km, and 5 km. The author argues that a drive time area may span somewhere between 

these 1 to 5 km. The NNP for a threshold of 1 km connects to 199 main carpooling stops, to 254 

main stops for 2 km, and to 306 stops with a 5 km distance (NNP 1-5km). Crucially, only one link 

per carpooling stop is initiated. The number of connected carpooling stops to train stations may 

be lower for the NNP of 1 km and 2 km, as a drive time area of 15 minutes can span larger than 2 

km. Furthermore, the generalization approach presented in chapter 5.2.2 has potentially removed 

stops close to a train station. The threshold of 5 km equals the presented approach the most. It 

can therefore be assumed that a driver can drive up to 5 km within 15 minutes. The state of the 

art in linking stop locations using the NNP only links known stops. In the present case, these are 

the main stop locations (origin, via, destination), derived from the carpooling offers. Hence, the 

NNP are not solved for POA stops, as these stops are part of the proposed linking technique (cf. 4.3 

Model Merging & Linking). 
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Table 15 Number of connected carpooling stops (Main, POA) and the number of established links in comparison to the NNP. 
“No Link” represents the number of carpooling stops not linked to train stations, “CP->PT” the number of stops connected 
to train stations, “#Link” the number of established links between carpooling stops and train stations and “ Links/CP” 
indicates the average number of train stations linked to a carpooling stop. NNP 1-5 km indicate the number of linked car-
pooling stops and train stations for different thresholds. 

Stop type CP Train 
No 
Link 

CP -> 
Train #Links 

 
Links 

NNP 
1km 

NNP 
2km 

NNP 
5km 

Main Stops 1061 4683 765 296 969 3.27 199 254 306 
POA 6552 - 4933 1619 5683 3.51 - - - 

Total 7613 4683 5698 1915 6652 3.47 199 254 306 

 

Exploiting: As previously mentioned, the proposed merging technique shall also exploit new 

stops along a carpooling route and thus allow transfers to either the railway network or to other 

carpooling offers connected to train stations. Consequently, carpooling trips have been analyzed 

in order to evaluate the average number of possible transfers on a trip. 

On average, as shown in Table 16, a carpooling trip consist of 2.914 main stops and 20.25 POA 

stops. Median values are slightly lower due to a few ultra-long journeys. During an average trip, a 

passenger may transfer to 6.23 different train stations at main stops or to 34.23 different stations 

from POA stops. 

Table 16 Number of main and POA stops and the number of relations to train stations. Median values are slightly lower due 
to ultra-long trips exhibiting many stops. 

 Stops Relations 
 Average Median Average Median 
Main Stop 2.914 3 6.23 5 
POA 20.25 19 34.23 27 
Total 23.16 22 40.44 34 

 

A more detailed analysis shows how many different train stations could be reached per 1, 10, 25, 

and 50km. Trips were classified based on their length. As this thesis manly focuses on a national 

scale, trip lengths of up to 500 km are of interest (Switzerland: E-W 350km, N-S 250km). Table 17 

shows that in general, the shorter the trip, the more train stations can be reached per distance. 

Especially on ultra-short trips up to 25km, a passenger could transfer to train stations every kilo-

meter. This seems to be confusing as one would assume that the longer the trip, the more train 

stations are passed. However, by reconsidering the input for the linking technique, this fact is cru-

cial. In order to link carpooling and train stations along a route, POA are implemented. On longer 

trips, one usually drives on highways and thus train stations cannot always be reached, even 

though the route intersects a drive time polygon. Long-haul trips outside the borders of Switzer-

land could also not be connected to train stations, as only the Swiss railway network were used. 

In order to evaluate long-haul trips, railway networks of all affected countries would need to be 

considered. 
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Nevertheless, on average, a passenger may change every 10 km to 3, every 25 km to 6.42, and 

every 50 km to 10.25 different train stations. Again, the median differs strongly.  

Table 17 Number of links to train stations per 1, 10, 25 and 50km of trips of different lengths. Short trips show an especially 
high number of links. 

Length of trip AVG Dist. 1km 10km 25km 50km 
0-10 4 1.09 - - - 
10-25 18 0.60 6.00 - - 
25-50 38 0.62 6.19 15.49 - 
50-75 65 0.45 4.51 11.26 22.53 
75-100 88.70 0.40 3.99 9.97 19.94 
100-250 172.71 0.25 2.45 6.13 12.27 
250-500 357.98 0.13 1.28 3.20 6.41 
500-750 627.06 0.06 0.63 1.59 3.17 
750-1000 847.82 0.05 0.54 1.36 2.72 
>1000 1371.41 0.09 0.94 2.34 4.69 

Average 426 0.37 2.95 6.42 10.25 
Median 349 0.12 1.15 2.72 4.69 

 

6.2.3 Transfers 

An important part of a transportation network is the possibility of transfers. Therefore, the pro-

cess of creating variable transfers for the railway network and static transfers for carpooling has 

been elucidated in chapters 4.1 & 4.3.2. Rather than creating an additional transfer node between 

time nodes, labeled edges (aka. relationship types) were used. Thus, the number of nodes as well 

as edges can be conceptually reduced. 

The process of creating transfers is demanding and time-consuming. The calculation and creation 

of all possible transfers took up to half a day on a Lenovo ThinkPad T430s with an Intel i7-3520 

CPU @ 2.9 GHz and 16 GB memory. The more connections exist, the longer the processing. It is 

essential to mention, however, that in this thesis, a new multimodal network was built and thus 

all possible transfers had to be calculated. Adding single or just a few offers does not demand 

recalculating every transfer, but only those from and to the new connection. 

By evaluating the multimodal network built in this thesis, a total of 5.57M transfer edges were 

created, representing all possible transfers. It is crucial that most of the transits arise from the 

railway network, due to the high number and constant frequency of trips (cf. Table 18). Thus, 4.8M 

edges belong to this network. In comparison to carpooling, this amount is tremendous, where only 

123k transfers are possible.  

Considering mode change, the number of transfers from carpooling to train and vice versa is sim-

ilar. Approximately 75,000 transfers exist at main stops and 240,000 at POA stops. Consequently, 

mode changes are more than twice as usual than transferring to another carpooler.  
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Table 18 Number of transfer edges created between carpooling and train trips. 

 Train -> Train CP -> CP CP -> Train Train -> CP 
Main Stops - 16,795 75,067 76,987 
POA - 106,394 244,081 240,343 
Total 4,812,926 123,189 319,148 317,330 
Total Number of Transfer in the Network 5,572,593 

 

A closer look at possible transfers along a route reveals that carpooling and the railway network 

behave similarly. Figure 41 shows the normalized number of possible transfers for different 

lengths of routes, indicated by the number of stops, and for mode changes or same mode transfers. 

Absolute numbers of transfers have been normalized by scaling them to a range of 0 to 1. 

Being on a carpooling route, the number of transfers remains equal over an increasing number of 

stops. This accounts for changes to another carpooler as well as for a mode change to the railway 

network. Fluctuations occur on routes with a very high number of stops (>45). This fluctuation 

may have two reasons: either the route is long, but only a small part lies within Switzerland (low 

transfer value), or the route has a long distance within Switzerland (high transfer value).  

Considering train routes, especially routes with a length between 15 and 25 stops, show a high 

possibility for either changing to carpooling or staying on trains. It can be assumed that such 

routes represent regional trains and thus have a high number of stop locations allowing transits. 

Consequently, carpooling was also linked not only to major train stations but also to smaller re-

gional stations. 

 

Figure 41 Normalized number of possible transfers along a route of different length indicated by the number of stops. 
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6.2.4 Network Improvement 

This thesis focuses on integrating carpooling as a full-fledged part into a multimodal routing sys-

tem. Thus, this shall also lead to a general improvement of the multimodal network. As elucidated 

above, carpooling has the ability to serve areas where no trains operate. The flexibility of carpool-

ing allows to drive detours, thus exploiting new connections and consequently enables more 

transfer possibilities. 

In this section, the impact of the subset of 2k carpooling offers on the multimodal network is eval-

uated by analyzing the importance of stop locations in the graph. 

Common approaches to evaluate the importance of nodes in a graph are Centrality measures. As 

many different Centrality measures exist, some algorithms, which could be used to evaluate im-

portant nodes in a transportation network are listed below: 

 Degree Centrality: Degree Centrality calculates a score for a set of nodes based on their 

associated relations. In a multidigraph graph, two measures, in-degree and out-degree, can 

be calculated. Thus, in Degree Centrality, a node is important if it links to many other nodes 

or many other nodes link to it (Franceschet, 2014). 

In a transportation network, Degree Centrality can be used to evaluate if one network im-

proves the other based on the additional number of connections at a stop. 

 Betweenness Centrality: Betweenness Centrality (cf. Freeman (1977)) is a measure to 

quantify how many times a node lies on paths between other nodes. A node with a high 

Betweenness value is thus important for the overall network, as a lot of information passes 

through it. Hence, removing such a node may lead to a way less interconnected network 

(Franceschet, 2014). The requirement of calculating many shortest paths results in a high 

complexity of O(n*m). 

In a transportation network, Betweenness Centrality can be used to detect system critical 

stops. As an example, in Switzerland, the train station of Olten lies between 4 major cities 

(Basel, Bern, Lucerne, and Zurich). Connections between these cities pass through Olten. 

Consequently, if the train station of Olten would be impassable, all connections are dis-

rupted.  

 Closeness Centrality: Closeness Centrality calculates the mean distance between nodes. 

Thus, a node receives a high score if it is close to many other nodes (Franceschet, 2014). 

In a transportation network, closeness centrality can be used to detect central train sta-

tions. As an example, a large city may have a main station and multiple smaller stations 

(subways, regional trains, etc.) close to it. Thus, the main station will receive a high close-

ness score. Consequently, Closeness Centrality can expose potential hubs based on close-

ness.  
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Similar to Betweenness Centrality, Closeness Centrality is also bound to the complexity of 

O(n*m). 

 PageRank Centrality: PageRank was developed by Sergej Brin and Larry Page to be used 

in Google Search. The PageRank algorithm calculates a score of a node based on three dif-

ferent factors: The number of incoming links, the link propensity of the linkers, and the 

centrality of the linkers. Thus, in PageRank centrality, a node can be considered important 

if it is linked by important nodes or if it is highly linked in general. 

Originally, the PageRank algorithm was developed to rate the importance of websites and 

thus improve Google Search. Nevertheless, this measure can be also used in Transporta-

tion networks to expose hubs (cf. Chan & Teknomo (2016)). Other than Closeness Central-

ity, the hub is defined by the importance of other nodes linking to this node. 

The different centrality algorithms can all be used to analyze a transportation network in this the-

sis, as the aim is to detect improvements of connections at stops. Furthermore, important stop 

locations shall be exposed. Subsequently, Degree Centrality and PageRank Centrality were se-

lected for use. It is important to mention that especially Betweenness Centrality could be used to 

detect if important stop locations in a multimodal network changed, compared to the individual 

networks. Unfortunately, Betweenness Centrality is a global graph algorithm using shortest paths. 

The complexity is therefore O(n*m). Within the scope of this thesis, it was not possible to calcu-

late this measure with the given computational power. 

Degree Centrality: As mentioned above, Degree Centrality rates nodes according to the number 

of edges coming either in or out. Thus, this measure can be used to evaluate if carpooling linked 

to train stations can significantly improve the number of connections at a stop. 

Figure 42 illustrates the number of train stations and the percentage of improvement. Only train 

stations which are linked to at least one carpooling stop and exhibit an improvement >0% are 

considered. Most of the train stations that contain carpooling offers have not been improved 

higher than 1% for either incoming or outgoing connections. “Both” describes improvements 

where the direction is neglected.  

Although most stops (55%) could not be improved more than 1 %, some stops show higher num-

bers. In general, 25% of the stops could be improved by >2% and 7.5% of the stops could be im-

proved by more than 5%. 
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Figure 42 Percentile improvement of connections based on Degree Centrality. Around 55% of all stops holding at least one 
carpooling stop show an improvement of less than 1%. 

Considering the spatial location of the improved stops, Figure 43 shows high improvements for 

train stations close to the Swiss border (south, south-west) and within the Alps. This fact seems 

to be crucial. On the one hand, the railway network is not as well developed in the mountains as 

the road network and, on the other hand, carpooling offers cover a much larger area than only 

Switzerland. 

 

Figure 43 Heat map of the top 25% of stop locations improved more than 5%. These stops are mostly concentrated in 
border regions and in alpine areas. 
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PageRank: It was previously elaborated on that the PageRank Centrality can be used to detect 

hubs in a transport network based on the importance of a node linked to other nodes. Thus, the 

PageRank is used to find differences between the individual networks carpooling and railway, and 

the multimodal network. Figure 44 shows three maps for each network. Stops with the highest 

PageRank score (> 1.5 Standard Deviation) are indicated by a yellow dot. The underlying heat map 

shows the density of stop locations, weighted by their PageRank score. Thus, it can be assumed 

that dense areas are more important for the network. 

The top-left map shows the situation for the carpooling network. The most important areas of the 

network appear to be either large cities (Zurich, Berne, Lucerne, etc.) or border points (e.g. top-

right, south). This further indicates that carpooling operates on a large scale. 

The top-right map shows the situation of the railway network. Compared to the carpooling net-

work, less dense areas are visible. Exceptions are Zurich and Lausanne. The network is spread 

more equally, and is thus more continuous. In contrast to the carpooling network, regions close to 

the border are less important. Alpine regions (in the center and East of Switzerland) seem to be 

less important. 

Considering the multimodal network, it becomes apparent that both networks have been merged. 

Border regions are more important compared to the railway network a finding that seems to cor-

relate with the fact that public transportation stops in these areas have been improved the most. 

In addition, alpine regions have developed as well. This entails that more stop locations gain a 

high PageRank score. Consequently, the multimodal network retained the importance of border 

regions as well as the continuity of the public transportation network. Additionally, larger parts 

of Switzerland are important to the network, indicating better coverage. Furthermore, it can be 

stated that, with an increasing number of important nodes, the network is more stable, meaning 

that it is less affected by a failure of one or more stops. 
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Figure 44 Heat maps of stop locations weighted by their PageRank score. Top-left shows the individual carpooling network, 
top-right the individual railway network and bottom-left the multimodal network. 

6.2.5 Queries 

In this section, query results are presented based on an example of a trip from Olten to Basel (cf. 

Figure 47) and a fictional scenario for a trip from Olten to the Expo in Milano. A further focus is 

directed to two additional examples for multimodal trips containing carpooling. The aim is to 

show that with the system implemented in this thesis, meaningful shortest paths for either the 

railway network, carpooling or a combination of both can be retrieved. As a full multimodal net-

work was created in this thesis, the focus lies especially on the latter. 

However, it is to mention that routing algorithms are not a major part of this thesis. Thus, focus is 

not put on either speed-up techniques or multicriteria optimization. Nevertheless, it will be shown 

that, indeed, meaningful shortest paths can be derived from the implemented system, which yield 

correctness within the given system. 

Chapter 5.5 Querying elucidated how all direct connections between two stops can be retrieved. 

Solving the Range Problem (RP) was illustrated. Thus, in the following, results for both problems 

will be demonstrated. As the graph consists of different MOT, it will present results for carpooling 

and public transportation only, as well as a multimodal trip. 
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All Direct Routes: When querying for all direct routes, the time component is subsidiary. Thus, 

one can simply find all relations between two stop locations via stop times. However, paths con-

taining transfer edges shall be pruned. Thus, no multimodal trips can be found.  

As the number of direct routes between two stops can be very large, only a subset of two routes 

is shown in the results. Nevertheless, a full query may provide many more connections. 

Figure 45 shows an example of a query for direct carpooling routes between Olten and Basel. Blue 

nodes represent stop locations along the journey. Green nodes are the stop times (arrival time, 

departure time) at a stop, related to a yellow trip node. Pink nodes are route and agency (driver) 

nodes. In this example, both carpooling routes follow the same sequence of stop locations from 

Olten to Basel.  

 

Figure 45 Direct routes from Olten to Basel using carpooling. Blue nodes, belonging to a trip (green) define arrival and 
departure times at a stop (purple). Trips belong to a route (yellow) offered by a driver (red). 

Table 19 shows these two routes in a tabular form. Rothrist is listed twice. This does not indicate 

a transfer, but rather the fact that a user may hop-on or hop-off at two different points in Rothrist. 

These two stops are due to the generalization approach (cf. 5.2.2) at least 1 km apart. The price 

listed for both routes is the price a driver requests for the whole advertised trip.  

Table 19 Schedule of the carpooling routes from Olten to Basel, visualized in Figure 45. 

Time Route 1 Time Route 2 Stop 
12:00:00 20:00:00 Olten 
12:07:19 20:07:19 Rothrist 
12:08:33 20:08:33 Rothrist 
12:12:58 20:12:58 Egerkingen 
12:39:38 20:39:38 Basel 
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Figure 46 shows a query result for the same route between Olten and Basel, but this time by train. 

In this example, two different trains were found. The first one on the left has no stops in between, 

whereas the second route on the right stops in Liestal. Table 20 shows the exact schedule of these 

routes from Olten to Basel.  

 

Figure 46 Direct routes from Olten to Basel by train. Blue nodes, belonging to a trip (green) define arrival and departure 
times at a stop (purple). Trips belong to a route (yellow) offered by a driver (red). 

Table 20 Schedule of the train routes from Olten to Basel, visualized in Figure 46. Route 1 has an additional stop in Liestal, 
whereas route 2 drives directly to Basel. 

Time Route 1 Time Route 2 Stop 
23:33:00 19:06:00 Olten 
23:48:00  Liestal 
23:59:00 19:33:00 Basel 

 

 Figure 47 Carpooling and railway routes from Olten to Basel 
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Range Problem: In chapter 5.5 Querying, it was illustrated how the RP can be solved within the 

presented network. By simply specifying a set of stop times at the origin, the shortest path starting 

from one of these points can be search for. Thus, the path must start within the given time range. 

In the following, a query result based on an example is presented. A user living in Olten wants to 

visit the Expo in Milano (cf. Figure 48). Thus, he/she must travel from Olten to Rho Fiera Milano, 

the train station of the Expo. As he/she will stay in Milano during the entire weekend, the plan is 

to arrive in the early evening of Friday. Thus, the trip shall start in the early afternoon. 

Querying for a public transportation trip starting at around 14:30 o’clock (14:15 – 14:45) results 

in the route presented in Table 21. In total, the user has to transfer 3 times: Arth-Goldau, Monza, 

Milano Porta Garibaldi. According to the SBB, this trip costs CHF 102 without any reduction.  

It is to mention that this trip information has been retrieved from the SBB online schedule19, as 

the developed system does not deliver pricing information for the railway network. 

Table 21 A train route from Olten to Rho Fiera Milano. Three transfers are needed at Art-Goldau, Monza and Milano Porta 
Garibaldi. 

Departure Arrival Stop Transfer Price 
14:30:00  Olten  

CHF 102  
 

15:46:00 15:50:00 Arth-Goldau Yes 
18:21:00 18:32:00 Monza Yes 
18:51:00 19:02:00 Milano Porta Garibaldi Yes 
 19:11:00 Rho Fiera Milano  

 

An alternative to the public transportation journey above can be retrieved from the implemented 

system. By additionally defining that trips should start and end with a carpooler, queries can be 

made for carpooling trips. Unfortunately, no carpooling only trip was available at around 14:30. 

Consequently, the time range was extended to 15:00, resulting in a direct trip starting at 14:50 in 

Olten and arriving at 18:10 in Rho Fiera Milano. The journey is offered by Justus-Florian S in a 

Mercedes Benz C230 for a price of CHF 16 (cf. Table 22). The exact query can be found in the 

Appendix. 

  

                                                           
19 http://www.sbb.ch/ - Online schedule of the Schweizerischen Bundesbahnen 

http://www.sbb.ch/
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Table 22 Schedule of a carpooling trip from Olten to Rho Fiera Milano. This is a direct connection. Hence no transfers are 
needed. Additionally, the driver, his car and the requested price are presented. 

 

Although no carpooling only trip was available at around 14:30, the implemented system can be 

used to search a multimodal path. Table 23 presents the trip information returned by the system. 

The trip starts with the same train as in the public transportation trip, but the user has to leave 

the train in Lucerne and change to a carpooler (Mahite O) which brings him to Chiasso where the 

user again must transfer to another carpooler (Justus-Florian S), taking him directly to Rho Fiera 

Milano. In Chiasso, the user has an extended stop (arrival 17:23, departure 17:50). Even though 

the returned route is correct, the system should suppress such long waiting times. An explanation 

of this problem can be found at the end of this section. 

This multimodal trip starts within the desired range and requires two transfers. Consequently, 

less transits are required than in the public transportation trip. The user will arrive at the desti-

nation earlier. Considering the price, the first train segment costs, according to the SBB, CHF 22. 

Additionally, the first carpooling segment prices at CHF 9.60 and the second at CHF 16. The total 

cost of the trip is CHF 47.6. It is important to note that the price listed for carpooling segments is 

the price a driver requests for his whole advertised trip and not only for this segment. Neverthe-

less, the provided multimodal trip is cheaper than the public transportation trip. 

Table 23 Schedule of a multimodal journey from Olten to Rho Fiera Milano. The trip requires two transits (Train -> Car-
pooling -> Carpooling). 

Departure Arrival Stop Transfer Mode Driver Car Price 
14:30:00  Olten  Train   CHF 22  

  15:05:00 Luzern 
Yes 

Train   
15:13:32  Luzern CP Mahite O CITROEN 

XSARA 
CHF 9.60  
 17:15:22 17:15:22 S. Antonino  CP 

 17:23:14 Chiasso  CP 
  Chiasso Yes CP    
17:50:37  Chiasso  CP Justus-

Florian S 
MERCEDES-
BENZ C 230 

CHF 16  
18:05:57 18:05:57 Around 

Como, IT 
 CP 

18:09:37 18:09:37 Rho Fiera 
Milano 

 CP 

 

Departure Arrival Stop Driver Car Price 
14:50:00  Olten 

Justus-
Florian S 

MERCEDES-
BENZ C 230 

CHF 16  

14:57:19 14:57:19 Rothrist 
15:27:04 15:27:04 Luzern Allmend 
15:40:55 15:40:55 Kriens Mattenhof 
17:42:45 17:42:45 S. Antonino 
17:50:37 17:50:37 Chiasso 
18:05:57 18:05:57 Around Como, IT 
 18:09:37 Rho Fiera Milano 
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Figure 48 Carpooling and train route from Olten to Rho Fiera Milano. 

To deliver proof of concept for multimodal routes, two additional examples are presented. Soccer 

fan Adriana went to watch a game of her favorite team, FC Bern, at their Stadium in Bern Wank-

dorf. The game finishes at 16:00. Therefore, she is looking for a trip back to Olten at around 16:30. 

Querying the system, a multimodal trip from Bern Wankdorf to Egerkingen with carpooler Jordan 

L in a BMW 318 can be found. In Egerkingen, Adriana has to take a connecting train to Olten (cf. 

Figure 49). The exact query can be found in the Appendix. 

Compared to the multimodal trip above, the carpooling segment in this trip for CHF 63 is quite 

expensive.  This is the price for the whole advertised trip and not only for this segment.  

Table 24 Schedule of a multimodal journey from Bern Wankdorf to Olten. The trip requires one transit (Carpooling -> 
Train). 

Departure Arrival Stop Transfer Mode Driver Car Price 
16:38:27  Bern Wankdorf  CP Jordan L BMW 

318 
CHF 
63  17:07:32 17:07:32 Schönbühl Shoppy-

land 
 CP 

 17:08:20 Egerkingen 
Yes 

CP 
17:11:00 17:11:00 Egerkingen Train   CHF 

3.30 17:14:00 17:14:00 Hägendorf  Train   
17:17:00 17:17:00 Wangen bei Olten  Train   
17:19:00 17:19:00 Olten Hammer  Train   
17:24:00 17:24:00 Olten  Train   
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Figure 49 Multimodal route from Bern Wankdorf via Egerkingen to Olten. 

Timo is a passionate snowboarder. Thus, after a day of snowboarding above Chur, he is looking to 

take a trip back to Olten at around 16:00 (cf. Figure 50). With the use of the implemented system, 

the following multimodal trip presented in Table 25 can be found. The trip starts at 15:51 in Chur 

with carpooler Frank S and passes Untervaz-Trimmis on its way to Sargans. In Sargans, Timo has 

to transfer to a connecting train to Zürich HB, where he has to transfer a second time to another 

train. The duration of the overall trip is 2h and 9 minutes. At CHF 5.30, the carpooling part is quite 

cheap. 

Table 25 Schedule of a multimodal journey from Chur to Olten. The trip requires two transits (Carpooling -> Train -> Train). 

Departure Arrival Stop Transfer Mode Driver Car Price 
15:51:00  Chur  CP Frank S n/a CHF 5.30  
16:06:00 16:06:00 Untervaz-Trimmis  CP 
 16:18:08 Sargans 

Yes 
CP 

16:28:00  Sargans Train   

CHF 54  
 17:23:00 Zürich HB 

Yes 
Train   

17:30:00  Zürich HB Train   
 18:00:00 Olten   Train   
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Figure 50 Multimodal route from Chur via Sargans and Zurich to Olten. 

Problems: Although the system is able to calculate shortest paths between two stops with un-

augmented versions of Dijkstra’s and A* routing algorithms, some problems occurred. Querying 

for indirect routes requires allowing the routing algorithm to traverse over transfer edges. In 

chapter 4.1 & 4.3.2,  the implementation of transfer edges is elucidated by relating every stop time 

at a stop location if a certain condition is fulfilled. Subsequently, a stop time may be related to 

many different other stop times. 

Using a standard routing algorithm may lead to inadequate results, because multiple transfer 

edges can follow each other. Figure 51 shows an example where the routing algorithm follows two 

consecutive transfer edges (highlighted with bold arrows). Subsequently, a route from A via B to 

C with a transfer at B may lead to the route A -> B -transfer-> B -transfer-> B -> C.  

This problem can also be seen in the multimodal trip above where Chiasso is listed three times. 

Thus, the routing algorithm followed two transfer edges after each other. Theoretically, the result 

is not wrong and simply results in a longer waiting time in Chiasso, but the overall route may 

change. To solve this problem, one can either adjust the query algorithm to prohibit multiple, fol-

lowing transfer edges or split time nodes in departure and arrival nodes. This issue will further 

be discussed in the following chapter. 
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Figure 51 Schematic representation of routing two consecutive transfer edges (dashed). This should be not possible, as it 
bypasses the conditional of maximum transfer times. 
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7 Discussion 

Today’s systems supporting multimodality usually contain MOT which either have a fixed timeta-

ble or allow access on demand such as the road network, where a journey is not bound to a dis-

crete time. The former timetable-based MOT further entail a certain frequency which helps a user 

to travel more conveniently, as connections mostly start at the same times during the day. More-

over, for example, public transportation offers the same routes in the opposite direction. Hence, it 

is ideally suited not only for leisure travel, where the goal is the travel itself or the activity at the 

destination, but also commuting.  

Not only does the user profits from frequent MOT. Modeling timetable-based networks entailing 

a high frequency are well studied. Therefore, most of the existing modeling approaches are tai-

lored for timetable-based networks with frequent connections. Additionally, the General Transit 

Specification Feed (GTFS) assumes frequent trips by default, as only exceptions need to be defined 

and not the available dates of a trip. 

Newer transportation modes, however, might show a different behavior. Carpooling, for example, 

does indeed exhibit a timetable, but lacks frequency. Nevertheless, carpooling can be seen as a 

way of making private cars part of a transportation network (Bit-Monnot et al., 2013). As private 

cars travel on the road network, they further allow some flexibility of driving detours. Also, they 

might cover areas which are not serviced by public transportation. Carpooling therefore entails 

parts of different networks. On the one hand, it is bound to discrete departure times, but, on the 

other hand, it runs on the road network and thus allows highly flexible journeys. Currently, as 

already mentioned in the section on the research gap, no modeling approach for these undeter-

mined networks exists.  

When it comes to multimodal routing, flexibility is even less considered. The state of the art in 

combining networks is to simply solve the Nearest Neighbor Problem (NNP), hence linking the 

closest stops of networks. While this is adequate for traditional transportation networks such as 

trains, buses or trams, where the vehicles must stop at predefined stations, it is inappropriate for 

a flexible mode like carpooling, which has the possibility to approach stations that are not origi-

nally part of a route. 

Research in routing and multimodal routing has currently no solution to this problem. Further-

more, in all conscience, only two studies exist which attempt to combine the flexible mode of car-

pooling with public transportation. Although they provide solutions considering carpooling’s 

flexibility of driving detours, they do not elucidate a specific modeling approach, but use the road 

network to find substitutions for already existing multi- or unimodal trips. In addition, the dataset 
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of carpooling offers used showed a high frequency on a small scale. As carpooling is only used as 

a substitution of an existing trip, it seems to not be possible to bypass areas not already covered. 

Therefore, in this thesis, the aim was to propose a technique to integrate carpooling as a full-

fledged part into a multimodal routing system without losing any of the given flexibility. Crucially, 

an adequate modeling approach for carpooling, as well as a sophisticated merging technique, had 

to be elaborated. Since the proposed technique shall be useful for real-life carpooling offers, it is 

necessary to understand the characteristics of these offers. 

In chapter 3, research objectives were defined accounting for the research gap in carpooling and 

multimodal routing. As mentioned above, finding an adequate way of modeling carpooling for the 

future integration into a multimodal routing system requires understanding its characteristics. 

The evaluation of whether carpooling is potentially a useful MOT in a multimodal routing system 

had to be elaborated. This is focused by the first sub-objective: 

RO 1.1: The characteristics of real-life carpooling offers shall be investigated in terms of quantity, 

temporal scale, and spatial scale to assess the benefits of carpooling in a multimodal rout-

ing system. 

Regardless of the benefits of carpooling offers, the second sub-objective focuses on modeling car-

pooling offers:  

RO 1.2: In the light of a future integration into a multimodal network, a model which allows re-

taining flexibility and fuzziness has to be elaborated for carpooling.  

The third sub-objective considers a conceptual model and a technical implementation of a multi-

modal routing system containing carpooling. As mentioned above, today’s technique in linking 

MOT is not adequate for carpooling:  

RO 1.3: Network merging & linking techniques have to be developed, providing a multimodal net-

work which:  

a. Retains flexibility and fuzziness of the contained MOT networks 

b. Improves the overall network 

c. Is able to calculate useful multimodal journeys using current 

shortest path algorithms 

In this chapter the proposed merging technique, as well as the experiment and its outcomes are 

discussed. The used dataset of real-life, volatile carpooling offers are interpreted based on the 

results presented in section 6.1.  
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In the first part of the discussion, the current situation of carpooling offers in Switzerland, derived 

from a real-life carpooling platform, is elucidated. Further, the technical feasibility of these offers 

is brought into the context of routing and multimodal routing. In particular, the minimum require-

ments for modeling purposes are discussed. 

In the second part, research objective 1.3 is discussed based on the outcomes of the experiment.  

7.1 RO 1.1: Characteristics of Real-Life Carpooling Offers 

Carpooling in Switzerland is not as prominent as it is in other countries. A reason for this might 

be the extremely good coverage and the high frequency of public transportation. Nevertheless, 

even in Switzerland, cars only average 1.6 passengers per trip (Tages-Anzeiger, 2013). However, 

it is not specified if the number of passenger differs between commuting and leisure travel, and it 

can be assumed that this number might be lower for commuting. Carpooling for commuting is 

therefore a good way of reducing traffic on the street network and improving the ecological foot-

print of an individual (Ghoseiri et al., 2011). 

In the next section, the characteristics of the retrieved carpooling offers will be elucidated in order 

to qualitatively assess the benefits of carpooling in combination with the Swiss railway network. 

7.1.1 Carpooling in Switzerland 

First at all, it is important to mention that in the scope of this thesis, only the current situation in 

Switzerland can be described. Future outsights would be vague. Nevertheless, it is important to 

understand what kind of carpooling offers have been used in this thesis, as the understanding of 

carpooling can differ. One form of carpooling is ridesharing for daily commuting, as it is often per-

formed in the US, where special lanes on highways only for carpools exist. Another form is leisure 

travel (cf. Heinze (2000)), where either the journey itself or the purpose at the destination (e.g. 

vacation) is the goal. The latter is consequently more sporadic and does not entail frequent jour-

neys. In this section, the acquired carpooling data set is discussed based on:  

 Number of offers 

 Temporal component of trips 

 Spatial component of trips 

Using these measures, the purpose of carpooling in Switzerland can attempt to be defined. 

Number of Offers: Considering carpooling offers from a real-life platform it becomes apparent 

that not many offers in Switzerland exist. Crawling offers for the 17 biggest cities in Switzerland 

plus Olten as a main part of the railway network only resulted in 18k offers within an 8-month 

period. Additionally, carpooling offers for Switzerland are very volatile, meaning that the number 

of offers differs drastically from day to day. This is a first indication that carpooling in Switzerland 

is not frequent and thus not used for daily commuting. Nevertheless, a slight overall increase is 
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visible. Furthermore, it should be considered that the amount of data could have been increased 

by the use of an official API. In this case, carpooling offers could have been also crawled for rural 

regions and not only for large cities and their suburbs. 

In addition, as shown in 6.1.1, most of the carpooling trips are offered by only a few individual 

drivers. This phenomenon follows the Long Tail Theory, which in Social Media and Online Com-

munities is also known as the 90-9-1 Rule in Participation Inequality. It states that approximately 

90% of the users never contribute, 9 % contribute only a little and 1 % are responsible for most 

content (Nielson, 2006). A reason for this phenomenon in carpooling cannot be easily identified. 

However, several possibilities are conceivable, e.g. these few drivers are commuting or that there 

is no need for carpooling because of the dense public transportation network, or even that car-

pooling is still unknown in Switzerland. An exact reason, however, is not part of this thesis One 

strongly influential factor is, however, also named in literature. A routing system, which an online 

rideshare platform can be assumed to be, must deliver understandable, suitable, and convenient 

results. The effort to find a journey must be as small as possible (Furuhata et al., 2013; Geisberger 

et al., 2009; Sierpiński et al., 2014). For carpooling in Switzerland, this is often not the case, as 

offers do not start at the desired destination and time. Thus, a user would have to consider addi-

tional routing systems if he wanted to take up a carpooling offer. 

Generally speaking, based on the pure number of offers, carpooling currently has a very limited 

use in a multimodal routing system, as too few offers exist and thus often no carpooling route can 

be found. However, to promote carpooling, integration is indeed suggestive, as it simplifies and 

improves the access to carpooling. There might be a good chance that more people will take part 

in ridesharing.  

Temporal component of trips: Carpooling offers for Switzerland mostly start around the week-

ends (Thursday, Friday, Sunday). In addition, this thesis succeeded in showing that these offers 

start at around noon. Consequently, the assumption of commuting can be discarded. It is im-

portant to keep in mind, however, that due to the crawling, carpooling offers before 11:00 where 

not available. It can only be assumed that the morning peak might look similar to the evening peak, 

as commuters should be returning then. Even in this case, there is no indication for commuting. 

In order to have proof, additional crawling in the morning would have to be performed. Neverthe-

less, a reason for less to no commute offers might also be the way BlaBlaCar.de works. Each offer 

represents a trip valid only once and not a frequent schedule. Thus, the effort needed to post a 

commute offer for every day is high. Hence, a system which aims to simplify the access to carpool-

ing might also consider a driver’s side allowing posting offers in a convenient way. 

Based on the temporal signature of carpooling offers, it can be stated that the impact on a multi-

modal network is small. Even if the number of offers rises, the offered trips are not well spread 
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during the day or the week. Consequently, in the current situation, carpooling is not well suited 

for spontaneous travel or commuting during the week. Nevertheless, it is well suited for weekend 

leisure travels. 

Another temporal component is detours. As carpooling uses private cars and the road network, 

routes driven can be changed on demand. Thus, a driver is able to approach stops which were not 

originally planned. Usually, a driver specifies a maximum detour time he/she is willing to under-

take. Therefore, carpooling entails a flexibility which is not given in traditional MOT such as trains, 

buses or airplanes. Nevertheless, as shown, the proposed linking technique is able to retain the 

flexibility of carpooling offers and combine it with traditional non-flexible MOT. 

Spatial component of trips: Considering the spatial characteristics of carpooling offers for Swit-

zerland, it was demonstrated that it could not be restricted to a country scale. The average length 

of a carpooling trip is roughly 480 km, which is more than three times longer than an average train 

connection (130 km). Crucially, this is another indicator against commuting. Nevertheless, con-

sidering stop locations within Switzerland, most can be found in areas where also many train sta-

tions exist. Additionally, even with a relatively small subset of 2000 carpooling routes, 

connections not served by the Swiss railway network could be found. Especially regions within 

the Alps or border regions are serviced better by carpooling. 

In addition, in the context of the spatial extent of carpooling, the pricing is an important factor. As 

demonstrated earlier in this thesis, carpooling serves for a very low price. On average, it is 10 

times cheaper than the Swiss railway network. Consequently, this is a stimulus for people to take 

part in carpooling as riders, which in reverse is also good for drivers, as they can fill up empty 

seats and thus earn more. The proposed system should therefore also consider pricing optimiza-

tion to propose cheap trips to riders. 

Based on the spatial component of carpooling trips, it can be stated that carpooling shall indeed 

be integrated into a multimodal network as it covers and serves areas not offered by the railway 

network. Even if this thesis focuses on Switzerland, carpooling is well suited for long-haul jour-

neys to foreign countries at low prices. Consequently, carpooling is a good complement to public 

transportation and should be investigated on a larger scale. 
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7.2 RO 1.2: Modelling Carpooling 

In chapter 4.2, two different modeling approaches (road network, time-expanded model) for car-

pooling were discussed. By comparing the minimal requirements for the road network approach 

and the time-expanded model (cf. Table 26), it becomes apparent that the time-expanded model 

requires more information. Whereas the road network only demands a geographic location of 

stops, the time-expanded model further requires exact departure and arrival times at stops, as 

well as trip information (cf. Pajor (2009)), describing a car driving from A to B.  

Considering the crawled carpooling offers, it can be seen that the most important information, 

namely an exact geographic stop location is missing. An offer also usually only contains an approx-

imate departure time, but no arrival and departure time at intermediate stops and the destination. 

Whereas this is not problematic for a road network, where time information can be automatically 

derived from a shortest path calculation, it is a problem in a time-expanded model, as it can be 

only used to find optimal paths if the times are given at every stop. Furthermore, these times are 

needed to model transfers at stop locations. 

Table 26 Requirements of the discussed modeling approaches for carpooling and the information provided by the offers. 

Requirement Road Network Time-Expanded Carpooling 

Geographic Location X X City Level (no coordinates) 

Exact Time Information  X Departure Only 

Trip/ Driver  X Yes, Driver and Trip signature 

 

Carpooling offers crawled from a real-life platform do not fulfill the requirements of either the 

road network approach or the time-expanded model. Consequently, data enrichment processes 

are needed in any case. Regarding the technical feasibility of the used carpooling offers, it can be 

stated that feasibility is only given after data enriching.  

With the use of a road network approach, the flexibility of carpooling offers could be enabled in 

the individual model, which, as shown, is not possible with a time-expanded model. This might be 

a reason why both carpooling in multimodal routing studies relied on the road network (Aissat & 

Varone, 2015a; Bit-Monnot et al., 2013).  

Although the road network seems to be more feasible than the time-expanded model, one reason 

to not use it is the imprecision of carpooling stops. Since in carpooling the driver usually specifics 

a city and not an exact address, it is not clear where to start a shortest path calculation in a road 

network. The time-expanded model, however, does not represent a physical network, but a sched-

ule of an MOT. Thus, an offer can have multiple potential start locations. This allows representing 

the fuzziness of imprecise carpooling stops. The missing information can be derived through a 
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previous routing. It is assumed that this process is even more efficient than the road network ap-

proach. In the road network approach, the route on the network has to be calculated for every 

query, where in the time-expanded model, the physical route itself is not important anymore, but 

only the time information at stop locations. 

7.2.1 Summary of RO 1.1 & RO 1.2 

Carpooling in Switzerland is still a niche MOT. However, a high potential for long-haul journeys 

can be seen. It is therefore to be recommended that a multimodal system which integrates car-

pooling should be implemented for a larger scale than only Switzerland. This however does not 

mean that public transportation schedules of every country a carpooling offer passes must be in-

tegrated, but that stops in foreign countries shall not be omitted. Considering the frequency, car-

pooling has just a few frequent travels. Furthermore, carpooling offers are only valid at a specific 

date. Thus, a modeling approach must be efficiently updatable. According to Müller-Hannemann 

& Schnee (2009), this is given in the time-expanded model. In addition, they showed that even life 

information can be integrated into the time-expanded graph. Thus, this model suites the charac-

teristics of carpooling well, as past offer can be removed in an efficient, straightforward way and 

even live information such as traffic delays could be integrated.  

Considering the technical feasibility, it was shown that real-life, volatile carpooling offers, derived 

form an online platform, are per se not qualified to use in a time-expanded model. Nevertheless, 

as demonstrated, with simple data enriching processes the minimum requirements can be ful-

filled. Rather than routing the road network for every query, the route was preprocessed and only 

the information needed extracted. Based on these facts, this thesis argues to have chosen the cor-

rect model (time-expanded) for carpooling. 

With the current situation in Switzerland, carpooling is based on the number of offers and the 

temporal scale not well qualified for the integration into a multimodal network. During a week 

and especially during rush hour, not many offers exist. Considering the spatial scale, however, 

carpooling indeed exhibits a high potential, since it covers areas not serviced by public transpor-

tation and offers long-haul journeys for a good value. The fact that carpooling is on average ten 

times cheaper than the train, is a high inducement for choosing carpooling. Integrating carpooling 

into a multimodal routing system simplifies and improves the access to carpooling offers. It is 

assumed that this simplification boosts the acceptance of carpooling and will animate more peo-

ple to participate. Consequently, even if carpooling, at the moment, does not fulfill the minimum 

requirements and shows low participation in Switzerland, research on its integration into a mul-

timodal routing system is promising.  
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7.3 RO 1.3: Merging & Linking  

7.3.1 Fuzziness and Flexibility 

Stop Allocation: As previously described, carpooling entails imprecise stop locations. Contrary 

to a traditional public transportation network, stop locations are not at a specific location, but are 

defined on a city scale. Thus, the NNP is not able to find the correct adjacent public transportation 

stop. The proposed linking technique therefore uses drive time areas around public transporta-

tion stops in order to evaluate if a carpooler is able to reach a specific stop. Currently, there is no 

similar approach in literature. 

With the use of drive time areas in the size of half the maximum allowed detour time of a driver, 

multiple reachable train stations can be found. On average, a predefined stop of a carpooling offers 

could be linked to 3.2 different public transportation stops, in comparison to the NNP, where only 

one link would be initiated. This is also user friendly. Rather than travelling to one specific loca-

tion, the user can be picked up at the most desirable linked stop. Crucially, this not only represents 

the fuzziness of carpooling stops, but also leads to an improvement of the accessibility. Neverthe-

less, it is to mention that a user still has to arrange a pick-up location with a driver, but with the 

use of this approach, a set of possible locations is given so that a driver does not have to take 

inconveniently long detours. Thus, this approach helps both the user and the driver. 

Drive time areas were calculated around train stations and not around a carpooling offer. The 

reason for this is clear. Because train stations very rarely change, they can be considered stable. 

This also has a large impact on the future integration of new carpooling offers. Rather than calcu-

lating drive time areas for every offer, the already existing drive time areas of public transporta-

tion stops can be used. Hence, the cost of preprocessing can be reduced drastically.  

Flexibility, Exploiting Stops: Carpooling travels on the road network in private cars. Thus, it is 

possible to drive detours. Subsequently, a driver can depart from his/her original route to pick-

up or drop-off a passenger. This flexibility is also considered by Aissat & Varone (2015) and Bit-

Monnot, Artigues, Huguet, & Killijian (2013). However, in their approaches, potential stop loca-

tions along a carpooling route are not represented in the model. Consequently, they use carpool-

ing as a substitution to an already existing multimodal or unimodal trip. The stop locations along 

the existing trip can be used to analyze whether or not a carpooler drives a similar route and could 

potentially pick-up a user at one of these stops and drop him off at a later stop. Thus, they do not 

exploit all potential stops along a carpooling route. 

The proposed technique, however, exploits all potential stops along a carpooling route during the 

insertion into the multimodal graph. Similar to the stop allocation, drive time areas are used to 

evaluate whether a train station is reachable within the given detour time. It is further explained 

that an intersection of a route with a drive time area of a train station inconclusively indicates a 
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potential link. Thus, Points of Action (POA) were introduced. A POA is a point along a route where 

a driver has to perform an action (leave highway, turn right/left, etc.). Consequently, POA are lo-

cated at crossings, junctions, ramps, etc. It is assumed that if such a POA lies within a drive time 

area, its train station must be reachable. Hereto, it must be mentioned that this still might be not 

true in every case. For example, a highway ramp might be situated inside the drive time area, but 

lead the driver outside of it. Nevertheless, POA are assumed to be an adequate option. 

A POA located inside a drive time area of a train station is linked to the meta-stop of the train 

station, making the POA a carpooling child stop of the train station. The author is aware of the fact 

that the arrival time at a POA stop differs from the actual arrival time at the train station it is linked 

to. In a worst-case scenario, the arrival time is the size of the drive time area later (plus eventual 

traffic delays). Consequently, penalties for transfers at these stops were implemented, which will 

be discussed later in this section. 

In case a driver approaches a reachable train station along a route, every later departure and ar-

rival time changes by the amount of time needed to drive the detour. Subsequently, every later 

time needs to inherit the additional time taken. In this thesis, it is argued, however, that a driver 

shall not drive multiple detours along a route. On the one hand, this might lead to very inconven-

ient trips for a driver (driving many short connections) and on the other hand, this would change 

the overall nature of carpooling, where driver and passenger usually have the same origin and 

destination.  Consequently, this thesis argues that drive time areas shall be at maximum half the 

size of the allowed detour time. For the purpose of this study a static detour time of 15 minutes 

and hence 5-minute drive time areas to account for potential delays were determined. Multiple 

drive time areas could be calculated considering different detour times (e.g. 5, 10, 15, and 30 

minutes) and traffic models for different times of the day. It is assumed that the correctness of 

linked stops could be increased drastically, as for example during morning rush hour, drive time 

areas are much smaller in size than in the afternoon. The evaluation of this statement could be 

examined in a further study. 

Using POA along a route has some drawbacks. In urban areas, the density of POA is high, as many 

crossings and junctions exist, whereas in rural areas a driver rarely has to take an action. Subse-

quently, without any generalization approach, many POA of nearly the same location would be 

connected to the same train station. This is similar to linking a road network with public trans-

portation stops, where the station is linked to the nearest location of the road network and not 

vice versa. Linking locations along the road network to the nearest station would create a huge 

amount of link edges without any further information (Pajor, 2009). Thus, in this thesis, a straight-

forward generalization approach of POA was applied. Every POA which lies within a 1 km range 
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of its accepted predecessor is removed. Consequently, the amount of POA in a city is reduced dras-

tically and “useless” link edges are avoided. In rural areas, this generalization approach has less 

impact. This simple generalization approach can be considered naive, meaning that POA stops 

which would have created a link can be removed and thus not all connections to the railway net-

work are caught. Therefore, it is argued that in a further study, a more sophisticated generaliza-

tion approach should be used. A viable solution would be to not remove POA which are very close 

to a public transportation stop and lie within its drive time area.  

Nevertheless, with the used approach, 1600 POA in total could be linked to train stations. Each 

linked POA shares links with 3.5 different stations, indicating a high interconnectivity between 

carpooling and the railway network. Considering an average carpooling trip with 23 stops (3 Main, 

20 POA), the main stops are connected to 6 different train stations and the POA to 34 stations. 

Especially shorter carpooling trips show many links to public transportation per kilometer. This 

is crucial as longer trips are usually driven on highways, where the number of POA is low.  

The proposed technique thus works well to exploit potential stop location along a carpooling 

route. Furthermore, this flexibility can be stored in the time-expanded graph. Hence, routing shall 

be very efficient, compared to the before mentioned studies, where potential detours are deter-

mined during querying. 

Transfers: Linking a carpooling stop to multiple public transportation stops has a crucial influ-

ence on possible transits. Furthermore, the exploited stops enable additional transits. In the ap-

proach of e.g. Aissat & Varone (2015), no new stops are exploited, as only a part of an existing trip 

is bypassed with carpooling. Furthermore, they project the existing trip onto the road network, 

leading to a not true multimodal network. Hence, carpooling and other MOT are not on the same 

graph. Thus, there is no need to calculate possible transfers at every exploited carpooling stop.  

The proposed technique, however, creates a true multimodal time-expanded graph. Conse-

quently, transfers between every trip at a stop must be modeled. Even though this requires ex-

haustive calculations, the flexibility of carpooling is able to be stored in the developed network. 

Furthermore, as carpooling stops are linked to train stations, the minimum transfer time at a stop 

can be used, provided by the SBB, to model variable transfer times. However, as stated above, 

linking a POA to a train station requires adding penalties for mode changes, as the arrival time at 

a POA does not equal the actual arrival time at a train station. Thus, the information of the mini-

mum transfer time was extended with a penalty of the size of the drive time area. In case a driver 

arrives earlier at the train station as the arrival time at the POA plus the size of the drive time area, 

transfers are not modeled. Thus, this approach lacks correctness. Nevertheless, all modeled trans-

fers are passable. A solution to resolve the issue could be to apply and additional routing on a road 

network to derive the time needed to travel from the POA to the actual train station. Thus, the 
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exact arrival time is known. Nevertheless, this approach requires much more exhaustive prepro-

cessing, as routing has to be performed for every POA contained by a drive time area. 

Even though calculating transfer edges in a time-expanded model is exhaustive, profit can be 

drawn from the given complexity, because the stable transfers between trains need to be calcu-

lated only approximately once a year in case of a change of schedule. Inserting a new carpooling 

offer therefore only requires the new calculation of transfers at the stops along its route.  

In the experiment with 2000 carpooling offers and the Swiss railway network, a large amount of 

possible transfer could be identified. The 296 main carpooling stops each linked to 3.2 different 

train stations, as well as the 1619 exploited POA stops each linked to 3.5 different train stations 

exhibit a total of roughly 640’000 possible transfer. Approximately 50% are from a carpooling 

stop to a train station and vice versa. Considering carpooling and train routes, it was illustrated 

that, especially on train routes between 15 and 25 stops, a high number of transfers to carpooling 

is possible. As these routes are usually regional trains, the proposed approach also connected car-

pooling to smaller suburban train stations. This is essential as it further increases the intercon-

nectivity of carpooling and public transportation. Also, the access to carpooling is improved. A 

user, for example, therefore does not have to travel far to be picked-up by a carpooler. Addition-

ally, carpooling would in this case perfectly suit as transportation mode for commuting, as a user 

might share the ride with a driver, rather than first driving to a hub and then to the destination.  

The proposed technique further showed that it is possible to highly interconnect carpooling and 

public transportation. Further, the access to carpooling offers could be improved by linking car-

pooling to smaller train stations. This circumstance is important as routing systems are only used 

if they return adequate, understandable journeys (Sierpiński et al., 2014). 

In the undertaken experiment, the combination of carpooling with the railway network was put 

in focus. Extending these with smaller scale MOT like buses and trams has the potential to further 

increase the interconnectivity, as the number of total stops increases. Carpooling could be reached 

from more stations, even closer to a user and thus simplify the access. Not only a user may profit 

form this, but also a driver, as he/she does not have to drive far in order to pick up a rider. A 

further study could therefore evaluate the proposed linking approach in consideration of smaller 

scale MOT. 
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7.3.2 Network Improvement 

A large benefit of multimodal routing systems is the fact that journeys can consist of different 

MOT. With the use of multimodality, areas can be covered which are not reachable with an indi-

vidual mode. In addition, in case of an impassable stop in one network, it might be possible to 

bypass this stop with another mode. Thus, research objective 1.3 also posed the question if car-

pooling, with the use of the proposed merging & linking technique, is able to improve the overall 

network. 

Improvement of Connections: In section 6.2.4 the individual networks and the multimodal net-

work were evaluated using Centrality measures. First, the Degree Centrality was used to find pub-

lic transportation stops, which could be improved in terms of new connections. More than half 

(55%) improved by a maximum of 1%, which can be considered as no improvement. Approxi-

mately 5% could be increased by more than 2% and 7.5% by more than 5%. Considering the stops 

and the geographic location of the improved public transportations stops, it was found that the 

highest improvements were identified for smaller train stations in border regions and in the Alps. 

Considering the characteristics of the crawled carpooling offers, this is crucial as most of the offers 

use Switzerland as a transit country. Consequently, stop locations are often found at the border. 

In addition, carpooling offers heading to alpine areas have a higher impact, as the railway network 

is not as dense in the Alps as in the “Mitteland. The railway network could be even more improved 

with a higher number of carpooling offers.  

The impact of the small subset of 2k carpooling offers on the Swiss railway network is, based on 

the improvement of connections, rather small. However, smaller train stations (especially in bor-

der regions and the Alps) could be improved the most. This furthermore correlates with the state-

ment about transfers, where it was illustrated that carpooling has been connected to multiple 

smaller train stations. 

PageRank: Not only the improvement of connections is of importance, but also the distribution 

of important hubs in a network. Thus, PageRank Centrality has been used to identify important 

stop locations in both individual networks and the resulting multimodal network. 

In the individual carpooling network, a city centric network was identified, meaning that the over-

all network is not well spread over Switzerland. Most of the offers start/stop in big cities. Even 

though carpooling shows a high coverage over Switzerland, smaller stops are not approached. 

This statement is however biased, as carpooling offers have been only crawled for big cities. Nev-

ertheless, another concentration of important stop locations can be found in border regions. This 

can be further explained by the characteristics of the crawled carpooling offers, where most have 

either the origin or destination in a foreign country. 
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The railway network shows opposite behavior. Public transportation is much more equally spread 

over Switzerland. A reason for this might be the high number of stations. Except for Zurich and 

Lausanne, the identification of critical hubs is difficult. The Swiss railway network can therefore 

be denoted as highly interconnected and thus less vulnerable to a failure. 

The combination of carpooling and the railway network on the basis of the proposed merging & 

linking technique results in a multimodal network showing characteristics of both contained MOT. 

It has been shown that important stop locations are even more spread over Switzerland. Further-

more, the merging approach retained the importance of stop locations in border regions.  

In general, even smaller train stations gained importance as they can be approached by many car-

pooling offers. In general, the more stops of high importance, the better the network. Thus, it can 

be assumed that a multimodal system containing carpooling and the railway network might be 

less vulnerable to disturbances of an individual MOT. In addition, integrating small scale MOT such 

as buses and trams could potentially improve the overall network further and make it even less 

vulnerable to failures. 

Consequently, real-life carpooling offers integrated into a multimodal system using the proposed 

linking technique has improved the overall network. Thus, the technique can be considered suc-

cessful in terms of improvements. 

7.3.3 Carpooling in Multimodal Journeys 

Proposing a new merging and linking approach for multimodal routing requires proof of concept 

by being able to query for adequate shortest paths. Without the possibility of routing the final 

network, the merging technique can be considered as unsuccessful.  

In general, multimodal networks are routed by solving the label-constrained shortest paths prob-

lem. It is an augmentation of the standard shortest path problem with the principle of computing 

journeys that obey constraints on the MOT (Bast et al., 2015; Pajor, 2009). Basically, a label-con-

strained path is a shortest path based on a language given to the query. Consequently, the com-

puted journey results in a multimodal trip following the language. Basic and goal directed 

techniques have been augmented to adapt this concept (Barrett et al., 2008; Bast et al., 2015).  

In the scope of this thesis, sophisticated routing algorithms were not considered, as the aim was 

to present meaningful shortest paths with un-augmented routing techniques. In section (6.2.5) 

several multimodal trips containing carpooling were presented. 

With standard Dijkstra’s and A* algorithms, no true label-constrained shortest paths can be cal-

culated. Nevertheless, it was demonstrated that train, carpooling, and multimodal trips can indeed 

be queried. By defining the start and end MOT, the mode a journey shall start and end can be 

forced. This can be considered a primitive form of a language. Nevertheless, a sequence of MOT 
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could not be specified. The implemented system can be further queried without specifying any 

language. In this case, the system will return a shortest path without considering MOT at origin 

and destination. 

Nevertheless, the calculated shortest paths in section 6.2.5 demonstrate that adequate journey, 

addressing the Range Problem (RP), can be derived. This thesis illustrates that multimodal trips 

containing carpooling are faster than train trips in general. Additionally, the number of transits 

(max. 2x) can be considered adequate for a journey crossing half to the whole of Switzerland. Even 

though the price of the whole advertised carpooling journey is listed, they serve for a good value. 

Thus, in terms of multimodal journeys, carpooling is well suited for being integrated into a multi-

modal system. In addition, even with a small set of 2k carpooling offers, journeys could be found. 

This fact is also assigned to the proposed linking technique, which, as illustrated, created a high 

interconnectivity between carpooling and the railway network. However, the date component of 

trips has been neglected in this thesis. Consequently, in a real-life scenario, the number of valid 

trips is even lower. Promoting carpooling in Switzerland is thus an inevitable measure that must 

be taken. 

The price of carpooling offers in a multimodal system has not been considered in this thesis. How-

ever, the application of such a system requires solving the problem of pricing single segments. The 

multimodal path presented in 6.2.5 from Bern Wankdorf to Egerkingen is a relatively short seg-

ment of approximately 54 km. Not decomposing the overall price leads to an amount of CHF 63, 

which is very high. Thus, the problem of calculating an appropriate price must be considered in a 

real-life system. Estimating a price based on the length or duration of a carpooling segment may 

be critical. In general, it was shown that carpooling offers are very cheap even on long-haul travels. 

It is questionable if a driver would accept a fraction of the advertised fare. Consequently, a solution 

for a payment system must be found. Allowing a user to pay every segment individually could be 

inconvenient on trips with multiple transits. A solution might be to either restrict the number of 

transits or introducing an overall payment system. If no solution is found, the system entails a 

barrier which hinders users to use such a system (cf. Sierpiński et al. (2014)). 

Although adequate multimodal journeys can be derived from the implemented system, a problem 

regarding transit modeling could be identified. In chapter 4 arrival and departure times were 

modeled as tuples t = (arrival, departure). Further, instead of using transit nodes. La-

beled edges between times t of different trips at a same stop have been implemented. Using stand-

ard routing algorithms, paths can contain journeys with two or more consecutive transfer edges. 

Thus, a user would transfer multiple times at the same stop, arriving, transferring to another 

train/carpooler, but not taking it, transferring to another train/carpooler, and so on. The resulting 

journey would lead a user to the destination anyway, but waiting times at a stop could be longer 
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than defined during transfer edge creation. This problem can be solved by either augmenting a 

routing algorithms to not allow more than one transit edge at a stop, or by splitting the time tuple 

into an arrival and a departure node. Consequently, a transit can only lead from an arrival to a 

departure node and not vice versa.  

However, the problem of two consecutive transfer edges arose, it can be argued, that using one 

time node instead of two helps to decrease the graph size, which is a known problem in time-

expanded models (Pajor, 2009). As time nodes make up the largest part of a graph, they can be 

reduced by the factor of two. Further, this shifts parts of the model complexity to the query. It is 

supposed that the needed augmentation of the routing algorithm will be straightforward. This 

would need to be confirmed in a further study.  

In conclusion, this problem does not have an influence on the correctness of the proposed merging 

and linking technique, as it only has an impact on shortest path calculations and not on the main 

goal of representing fuzziness and retaining flexibility of carpooling in a multimodal network.  

7.3.4 Summary of RO 1.3 

The proposed merging and linking technique in this thesis can successfully be used to integrate 

MOT with fuzzy stop information. In addition, the entailed flexibility can be stored into the multi-

modal graph, which theoretically allows fast queries. A key benefit of this stored flexibility is the 

allowance of modeling potential transfers. Thus, carpooling offers can be used to bypass areas 

where no other trip is available. 

Considering transfers, the principle of linking carpooling to multiple train stations increases the 

amount of possible transfers along a route drastically. This crucially leads to a more intercon-

nected multimodal network. Using PageRank Centrality it was illustrated that the combination of 

carpooling and the Swiss railway network leads to a better connected, less vulnerable overall net-

work. 

Unfortunately, no current research has considered a similar or different linking technique which 

retains fuzziness and flexibility of a MOT like carpooling. Thus, it was not possible to draw a mean-

ingful comparison. Consequently, linking technique developed in this thesis can successfully be 

used to represent fuzziness and retain flexibility of an MOT, improve an overall network, and still 

allows routing for shortest uni- and multimodal paths. 

In addition, since the overall approach is based on a time-expanded model, speed-up techniques, 

and more sophisticated routing algorithms can be used. A further study could therefore investi-

gate the feasibility of the proposed approach in combination with state of the art routing algo-

rithms. 
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8 Conclusion 

8.1 Achievements & Implications 

Traditional MOT in multimodal networks, such as trains, buses, airplanes etc., all entail fixed sta-

tions and exhibit frequent schedules. They all travel on predefined routes. A common approach is 

therefore to solve the Nearest Neighbor Problem (NNP) in order to link these MOT to a multimodal 

graph. However, newer MOT like carpooling do not specify an exact stop location. Additionally, 

even though carpooling offers are scheduled, they are not bound to a fixed route and thus allow 

making detours to non-planned destinations. Current state of the art approaches have been iden-

tified as inadequate, as they are not able to link imprecise stop locations and cannot exploit po-

tential stops along routes. 

Consequently, the aim of this thesis has been to develop a graph merging and linking technique 

for multimodal routing which is able to represent fuzziness and retain flexibility of a given MOT. 

Therefore, a conceptual model has been proposed which uses drive time areas to allocate impre-

cise stop locations to multiple possible stations of another MOT. The concept of Points of Action 

(POA) in combination with drive time areas has been introduced to exploit potential, reachable 

stop locations along a route.  

Specifically, the conceptual model was developed for the newer MOT carpooling in combination 

with public transportation. Carpooling, in general, shows fuzzy stop locations and further entails 

the flexibility of driving detours. This circumstance is a major difference to traditional MOT such 

as trains, buses or trams. 

Based on an experiment with real-life carpooling offers derived from an online platform and the 

Swiss railway network, the conceptual model was implemented and evaluated. The major 

achievements of the proposed merging and linking technique can be describe as follows: 

 Stop Allocation: With the use of the proposed merging technique, it is possible to allocate 

stops without an exact position to multiple possible stations of another transportation 

network. 

 Exploiting potential Stops: The concept of POA along a route on the road network in 

combination with drive time areas defining the maximum allowed detour can be used to 

exploit previously unknown stops. 

This thesis shows that not only MOT with fuzzy stop locations and flexible routes can be integrated 

into a multimodal routing system, but that the proposed linking technique has a considerable im-

pact on the interconnectivity of different MOT. The possibility of linking stop locations to multiple 

other reachable stations enhances the number of potential transfers. 
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In addition, it has been demonstrated that the system implemented using the proposed linking 

technique retains the possibility of calculating unimodal and multimodal paths. Further-

more, multimodal trips containing carpooling have shown the tendency to be faster and cheaper. 

It can therefore be reasoned that carpooling is indeed qualified as an MOT in multimodal systems.  

The proposed linking technique has initially shown that fuzzy and flexible MOT can be fully inte-

grated into a multimodal routing system using a well-known modeling approach, the time-ex-

panded model. This research can furthermore be implemented in real-life systems of online 

rideshare platforms or public transportation agencies to provide multimodal trips. 

8.2 Future Work 

The conceptual model presented in this thesis has shown the possibility of integrating fuzzy and 

flexible MOT such as carpooling into a multimodal system. Even though the proper functioning 

could have been demonstrated, improvements and additional evaluation steps can be defined for 

further research.  

The drive time areas employed in this thesis used to identify reachable stations were calculated 

using static detour times. It is therefore of great interest to implement variable drive time areas 

in order to potentially improve correctness of links. Variable drive time areas could be calculated 

using traffic models and different detour times. 

Additionally, the proposed linking technique is limited to the number of detours per driver. Alt-

hough this was identified as a desired aspect, evaluating the linking technique in combination with 

time-dependent models is encouraged. 

Considering routing for optimal paths, the investigation of the applicability of the proposed ap-

proach in combination with current speed-up techniques further seems promising. Carpooling 

entails additional properties such as a drivers rating which could be used in multicriteria optimi-

zation. Fast routing results and multicriteria optimization can further improve the proposed sys-

tem. 

Another important factor to investigate is the scalability of the proposed merging technique in 

larger or productive multimodal systems. Considering the fact that this thesis has experimented 

with a small subset of 2000 carpooling offers, a future aim could be to evaluate how linking be-

haves with larger amounts of data or even with real-time information.   

8 Conclusion 
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Appendix 

Neo4j Query: Olten -> Rho Fiera Milano (carpooling only) 

 

 

Neo4j Query: Bern Wankdorf -> Olten (multimodal) 

 

  

match  (tu:Stop:CP { name: "Olten" })--(st:Stoptime) 
where st.departure_time_s > 52200 
and st.departure_time_s < 54000 

with  st 
match  (ant:Stop:CP { name: "Rho Fiera Milano" })--(st2:Stoptime)  
with  st2, st 
call  apoc.algo.aStarConfig(st, st2, 'PRECEDES> ', { weight: 'duration', default: 10, x: 

'longitude', y: 'latitude' })  
yield path, weight 

with  nodes(path) as n, weight as w   
unwind n as nodes 
match  (nodes)-[:LOCATED_AT]->(s:Stop),  

(nodes)-[:PART_OF_TRIP]->(t:Trip)-[:USES]->(ro:Route)<-[:OPERATES]-
(a:Agency) 

return  s.platform_code, nodes.departure_time, nodes.arrival_time, s.name, t.car, 
ro.short_name, a.name, a.rating 

match  (tu:Stop:CP { name: "Bern Wankdorf" })--(st:Stoptime) 
where st.departure_time_s > 59816 
and st.departure_time_s < 60000 

with  st 
match  (ant:Stop:Track { name: "Olten" })--(st2:Stoptime)  
with  st2, st 
call  apoc.algo.aStarConfig(st, st2, 'PRECEDES>|TRANSFER>', { weight: 'duration', de-

fault: 10, x: 'longitude', y: 'latitude' })  
yield path, weight 

with  nodes(path) as n, weight as w   
unwind n as nodes 
match  (nodes)-[:LOCATED_AT]->(s:Stop),  

(nodes)-[:PART_OF_TRIP]->(t:Trip)-[:USES]->(ro:Route)<-[:OPERATES]-
(a:Agency) 

return  s.platform_code, nodes.departure_time, nodes.arrival_time, s.name, t.car, 
ro.short_name, a.name, a.rating 
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