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Abstract

Efficient methods to monitor forested areas help us to better understand their processes.

To date, only few studies have assessed the usability of multitemporal synthetic aperture

radar (SAR) datasets in this context. Here we present an analysis of an unprecedented set

of C-band observations of mixed temperate forests. We demonstrate the potential of using

multitemporal C-band VV/VH polarisation data for monitoring phenology and classifying

forests in northern Switzerland. The SAR images were radiometrically terrain corrected

and a temporal compositing approach was applied. Several descriptors were calculated to

extract the temporal signatures of European beech (Fagus sylvatica), oak (Quercus robur,

Quercus petraea) and Norway spruce (Picea abies) in C-band data. Using their distinct

seasonal signatures, the timing of leaf emergence and leaf fall of the deciduous species

were estimated and compared to available ground observations. Furthermore, forest type

and species classifications using random forest classifiers were implemented. The decid-

uous species backscatter was about 1 dB higher than spruce throughout the year in both

polarisations. The forest types showed opposing seasonal backscatter behaviours. At VH,

deciduous species showed higher backscatter in winter than in summer, whereas spruce

showed higher backscatter in summer than in winter. In VV, this pattern was similar for

spruce, while no distinct seasonal behaviour was apparent for the deciduous species. The

time differences between the estimations and the ground observations of the phenological

events were approximately within the error margin (±12 days) of the used temporal res-

olution. The classification performances were promising, with higher accuracies achieved

for the forest types (OA of 86% and κ = 0.73) than for individual species (OA of 72% and

κ = 0.58). These results show that multitemporal C-band absolute backscatter data has

significant potential to supplement optical remote sensing data for ecological studies and

mapping of mixed temperate forests.





Zusammenfassung

Effiziente Waldbeobachtungsmethoden helfen uns, ein besseres Verständnis für die Pro-

zesse in bewaldeten Flächen zu erlangen. Nur wenige Studien haben sich bisher damit

auseinandergesetzt, ob dafür auch multitemporale synthetic aperture radar (SAR)-Daten

in Frage kommen. Die vorliegende Studie hat sich dieser Frage angenommen, indem

Zeitreihen von C-Band-Aufnahmen gemässigter Mischwälder einer noch nie dagewesenen

Länge analyisert wurden. Wir zeigen, wie C-Band-Daten in VV/VH-Polarisation genutzt

werden können, um die Phänologie zu beobachten und um die Wälder in der Nordschweiz

zu klassifizieren. Die SAR-Bilder wurden radiometrisch Terrain-basiert normalisiert. Zu-

dem kam eine Methode zur Anwendung, welche Bilder einer gewissen Zeitspanne mitei-

nander kombiniert. Mittels deskriptiver Statistik wurden zeitliche Rückstreusignaturen

der Arten Rotbuche (Fagus sylvatica), Eichen (Quercus robur, Quercus petraea) und Ge-

meine Fichte (Picea abies) aus den C-Band-Daten gewonnen. Die saisonal ausgeprägten

Rückstreusignaturen der laubwerfenden Arten ermöglichten Schätzungen der Zeitpunkte

der Blattentfaltung und des Blattfalls, welche dann mit bereits vorhandenen Bodenbeob-

achtungen verglichen wurden. Zudem wurden mithilfe des Random Forest-Klassifikations-

verfahrens eine Waldtyp- und eine Artenklassifikation durchgeführt. Die jährliche Rück-

streuung der laubwerfenden Arten war im Mittel etwa 1 dB höher als diejenige der

Fichten in beiden Polarisationen. Ausserdem zeigten die beiden Waldtypen saisonal un-

terschiedliches Verhalten in der Rückstreuung. In VH war die Rückstreuung der laub-

werfenden Arten höher im Winter und tiefer im Sommer, wohingegen Fichten höhere

Rückstreuung im Sommer und tiefere im Winter zeigten. In VV war dieses Muster ähnlich

für Fichten. Für die laubwerfenden Arten wurde jedoch kein saisonal ausgeprägtes Rück-

streuverhalten registriert. Die zeitlichen Differenzen zwischen den geschätzten Phänolo-

gieereignissen und den Bodenbeobachtungen lagen im Bereich von ungefähr ±12 Tagen.

Dies entsprach der Genauigkeit, die durch die zeitliche Auflösung definiert war. Die Klas-

sifikationsresultate waren vielversprechend. In der Waldtypenklassifikation (OA von 86%

und κ = 0.73) wurde eine höhere Genauigkeit erreicht als in der Artenklassifikation (OA

von 72% und κ = 0.58). Diese Resultate zeigen auf, dass im Gebrauch von multitem-

poralen C-Band-Daten erhebliches Potenzial steckt: Die Daten optischer Fernerkundung

könnten ergänzt oder sogar ersetzt werden, was sowohl für ökologische Studien als auch

für die Kartierung von gemässigten Mischwäldern von Interesse sein kann.
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1 | Introduction

Climate change is affecting almost certainly most of the world’s ecosystems (IPCC, 2014).

It is leading to changes in phenology (Garonna et al., 2016) as well as shifts in species

composition (Hansen et al., 2001). At the same time, these ecosystems provide valuable

goods and services to human society (Costanza et al., 1997). Hence, the quantification of

ecosystem changes is of great interest. It is therefore essential to find methods that accu-

rately characterise the states of these systems. Spaceborne remote sensing is an efficient

method for this purpose (Kellndorfer et al., 1998). It allows periodic acquisitions and is

able to reach remote areas at low cost (Lu, 2006).

The European space agency (ESA) launched a series of new satellites in the framework

of the earth observation programme Copernicus (Berger et al., 2012). Sentinel-1A was

the first satellite launched, in April 2014. It carries a C-band synthetic aperture radar

(SAR) sensor. Two years later, Sentinel-1B, was launched and completed the Sentinel-1

(S-1) constellation. Since autumn 2014, S-1 C-band SAR data has been publicly avail-

able in vertical-vertical (VV) and vertical-horizontal (VH) polarisation, acquired over the

earth’s landmasses. S-1 provides data continuity building on the previous C-band ERS

and ENVISAT missions. But compared with them, S-1 offers improved spatial resolution,

higher temporal resolution and enhanced radiometric calibration stability (Torres et al.,

2012). All these properties are valuable improvements that facilitate the compilation of

time series at a variety of spatial and temporal scales.

Analyses of time series allow regular monitoring of ecosystems but also have potential

to reveal temporal signatures of land cover (Sharma et al., 2005; Gamba et al., 2008).

These analyses can detect changes and help to gain insight into processes at work in

numerous land ecosystems. These changes include intra-annual ones such as soil moisture

alterations (Moran et al., 2000), but also inter-annual long-term trends such as shifts in

biodiversity (Hansen et al., 2001).

In the context of climate change, forest ecosystems play a prominent role. They are
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Chapter 1 | Introduction

strongly influenced by climate change, observed in changes in phenology (Kramer, 1995)

as well as shifts in forest species composition (Thom et al., 2016). They also contain about

90% of the world’s vegetation carbon stock (IPCC, 2000). So their functional state and

their distribution profoundly influence the global carbon cycle. Hence, characterising the

states of forest ecosystems and their temporal evolution are of great interest.

Time series of remotely sensed data have potential to serve this purpose of charac-

terising forest ecosystems. Time series of SAR data are promising, as SAR is acquired

independent of weather and daylight (Kellndorfer et al., 1998) and sensitive to vegeta-

tion structure (Dobson et al., 1992). However, only few studies have analysed extended

C-band time series of forested areas.

This thesis presents results of time series analyses of Sentinel-1 C-band VV and VH

backscatter. The main focus was laid on the potential of multitemporal C-band data to

characterise mixed temperate forests in northern Switzerland. The aims were

1. to analyse the different temporal backscatter behaviours of three different tree

species,

2. to predict leaf emergence in spring and leaf fall in autumn using the distinct seasonal

VH backscatter pattern of deciduous species and

3. to classify mixed temperate forests using the observed differences between forest

types and species.

Our results show that multitemporal Sentinel-1 data can contribute to map and monitor

forests.

The main findings are presented in chapter 2 and will be submitted to the peer-reviewed

journal ’Remote Sensing’. The supplementary materials in chapter 3 present additional re-

sults concerning the temporal behaviour of backscatter of mixed temperate forests. Chap-

ter 3 also contains results of leaf emergence characterisation using hemispherical images

and it includes plots of temporal backscatter behaviour of several land cover types in the

Alpine region. Chapter 4 briefly summarises new insights and illustrates future potential

and upcoming challenges.
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Abstract

Efficient methods to monitor forested areas help us to better understand their processes. To

date, only few studies have assessed the usability of multitemporal synthetic aperture radar (SAR)

datasets in this context. Here we present an analysis of an unprecedented set of C-band observations

of mixed temperate forests. We demonstrate the potential of using multitemporal C-band VV/VH

polarisation data for monitoring phenology and classifying forests in northern Switzerland. The SAR

images were radiometrically terrain corrected and a temporal compositing approach was applied.

Several descriptors were calculated to extract the temporal signatures of European beech (Fagus

sylvatica), oak (Quercus robur, Quercus petraea) and Norway spruce (Picea abies) in C-band data.

Using their distinct seasonal signatures, the timing of leaf emergence and leaf fall of the deciduous

species were estimated and compared to available ground observations. Furthermore, forest type

and species classifications using random forest classifiers were implemented. The deciduous species

backscatter was about 1 dB higher than spruce throughout the year in both polarisations. The

forest types showed opposing seasonal backscatter behaviours. At VH, deciduous species showed

higher backscatter in winter than in summer, whereas spruce showed higher backscatter in summer

than in winter. In VV, this pattern was similar for spruce, while no distinct seasonal behaviour

was apparent for the deciduous species. The time differences between the estimations and the

ground observations of the phenological events were approximately within the error margin (±12

days) of the used temporal resolution. The classification performances were promising, with higher

accuracies achieved for the forest types (OA of 86% and κ = 0.73) than for individual species (OA

of 72% and κ = 0.58). These results show that multitemporal C-band absolute backscatter data has

significant potential to supplement optical remote sensing data for ecological studies and mapping

of mixed temperate forests.

Keywords Sentinel-1, SAR, C-band VV/VH backscatter, forest mapping, temporal signature,

classification, phenology, leaf emergence, leaf fall, mixed temperate forest



Chapter 2 | Forest time series analysis

2.1 Introduction

Forests provide valuable ecosystem goods and services for human well-being (Stenger

et al., 2009). Therefore, it is of great interest to gather information about the state of

the forest ecosystems. Because forest inventories are costly, it is essential to develop cost-

effective mapping methods to allow management of forests (Gudex-Cross et al., 2017).

In times of climate change, periodic assessments are in demand, as changes in phenology

(Kramer, 1995; Garonna et al., 2016) as well as shifts in species composition (Hansen

et al., 2001; Thom et al., 2016) become apparent. It is important to discover efficient ways

to continually monitor forested areas and subsequently gain knowledge about processes

and changes.

Remote sensing offers valuable tools to implement mapping and monitoring approaches

(Kasischke et al., 1997). Until now, mainly optical sensors have been used to monitor

forests on a global scale, ranging from intra-annual studies (Cristiano et al., 2014; Hobi

et al., 2017) to others examining several years (de Jong et al., 2011; Garonna et al.,

2016). Using optical sensors however, two main disadvantages are apparent. First, opti-

cal sensors are not sensitive to vegetation structure. Second, temporally consistent data

acquisition is challenging, as the optical sensor’s views are often impaired by cloud cover.

To overcome these disadvantages, it is important to consider synthetic aperture radar

(SAR). SAR is sensitive to vegetation structure (Dobson et al., 1992) and is acquired in-

dependent of daylight and weather, so it can more easily produce temporally consistent

data (Kellndorfer et al., 1998).

Until now, SAR data has predominantly been used to analyse and monitor tropical

(Luckman et al., 1997; Englhart et al., 2011; Reiche et al., 2013) and boreal forests

(Maghsoudi et al., 2013; Antropov et al., 2014; Thiel & Schmullius, 2016). Because of

frequent cloud coverage, SAR has to be considered in the tropics. In the northern boreal

forests, however, SAR is also relevant, as long periods with sparse or no daylight pose a

further barrier to using optical remote sensing data. It is useful to assess the potential of

SAR data for mixed temperate forests, as only a few studies assessing this potential have

been conducted until now (Proisy et al., 2000; Dostálová et al., 2016). Given that signifi-

cant structural changes due to phenology happen within a short time period in spring and

autumn, reliable observations are critical.

The two recently launched Sentinel-1 (S-1) satellites, carrying C-band SAR sensors, of-

fer new possibilities in the compilation of time series. Generally, they acquire backscatter

6



2.1 | Introduction

in vertical-vertical (VV) and vertical-horizontal (VH) polarisation mode over landmasses

(ESA, 2017). S-1 data has already been successfully applied to several land applications.

It has been used to monitor crop growth of several cultures in Angola (Navarro et al.,

2016) and of rice in Myanmar (Torbick et al., 2017). Balzter et al. (2015) and Abdikan

et al. (2016) showed that using S-1 data leads to satisfying classification of land cover

classes. Other studies exhibited the potential of S-1 data for burnt area mapping in forests

(Verhegghen et al., 2016), monitoring wetlands (Muro et al., 2016) or snow wetness es-

timation in the Alps (Jäger, 2016; Rondeau-Genesse et al., 2016). S-1 offers superiour

spatial and temporal coverage and much improved radiometric calibration stability in

comparison to former spaceborne C-band sensors (Torres et al., 2012).

Previous work has shown that SAR forest backscatter is very complex, being dependent

on several sensor and object properties. Generally, sensors with high frequencies such as

X- or C-band are less able to penetrate the crown than are lower frequencies such as S-

or L-band (Solimini, 2016). Thus, the dominance of the crown return is stronger at high

frequencies. The polarisation used by the SAR sensor also impacts the backscatter. Cross-

polarised backscatter from forested areas leads to higher correlation with biomass than

co-polarised backscatter (Leckie & Ranson, 1998). Object properties impacting forest

backscatter can be divided into two groups. The first group consists of properties that

influence the dielectric constant of the trees, such as the moisture content of branches

and leaves (Proisy et al., 2000), external moisture conditions (Sharma et al., 2005), and

the temperature of the wood (Way et al., 1990; Olesk et al., 2015). The second group

consists of structural properties such as the size and orientation of branches and leaves

(Imhoff, 1995), the spatial pattern of trees (Westman & Paris, 1987), and whether or

not foliage is present (Chuah & Tan, 1992; Ahern et al., 1993). The last is especially

interesting, as it could allow the monitoring of phenology at a land surface scale.

Until now, most studies with the aim of mixed temperate forest characterisation have

focused on extracting additional information by using multiple polarisations (Touzi et al.,

2004; Cable et al., 2014; Varghese & Joshi, 2015). Collecting multiple SAR acquisitions

into longer time series has the potential to reveal temporal signatures (Sharma et al.,

2005; Gamba et al., 2008). However, only few studies have analysed longer C-band

time series of forested areas. Ahern et al. (1993) and Proisy et al. (2000) found phenol-

ogy effects on C-band SAR backscatter for coniferous and deciduous forest types using

horizontal-horizontal (HH) and VV polarisation mode, respectively. A recent study us-

7
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ing S-1 data showed the impact of phenology of deciduous forests to be much higher in

cross-polarised than in co-polarised data (Dostálová et al., 2016).

In this paper, we present an analysis of Sentinel-1 SAR absolute backscatter time series

of an unprecedented set of VV and VH polarisation observations over mixed temperate

forests in northern Switzerland. One coniferous and two broad-leaved, deciduous species

were investigated. We show how to build the C-band time series and to subsequently

extract descriptors for the different forests investigated. A detailed analysis of these de-

scriptors is provided, focusing on differences between tree species and between the inves-

tigated years. Finally, we show how our findings help to classify mixed temperate forests

and how they could help in future monitoring of the seasonal vegetation cycles of forests.

2.2 Materials and Methods

2.2.1 Study areas

The areas studied were the whole of the Canton of Zurich (ZH), and three forest stands

in the Canton of Bern (BE) in Switzerland. For the main analysis, two areas in the north of

ZH and the three stands in BE were used. This led to five different main study areas with

forest stands of variable extents across northern Switzerland being evaluated (Table 2.1

and Figure 2.1). All these study areas consist of temperate mixed forest stands with dif-

ferent predominant species. The forest stands considered for more detailed investigations

were relatively homogenous, having a relative high proportion of a single species. In ad-

dition to that, the extent of the forest stands had to be large enough to allow an erosion of

edge pixels (see section 2.2.3.2 for details) to limit border effects. The three predominant

species examined were European beech (Fagus sylvatica), oak (Quercus robur, Quercus pe-

traea) and Norway spruce (Picea abies). The elevations of the different study areas did

not differ significantly, ranging from 390 to 670 m a.s.l.
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Table 2.1: The investigated study areas are distributed in northern Switzerland in the
Cantons of Zurich (ZH) and Bern (BE). The listed values in the columns eleva-
tion, slope and diameter at breast height (DBH) are all mean values from the
respective study area. The core extent describes the investigated extent after
the applied erosion.

No. Study area (Ca) Species Elevation (m a.s.l.) Slope (◦) Core extent (ha) DBH (cm)

1 Rafz (ZH) Spruce 498 6.2 23.0 ≥ 51
Beech 474 12.8 13.5 41-50
Oak 466 11.5 14.9 41-50

2 Teufen (ZH) Spruce 596 12 46.7 41-50
Beech 602 15.5 15.7 41-50

3 Galsberg (BE) Beech 507 15.4 7.6 41-50
4 Feiberg (BE) Beech 509 16.5 12.7 ≥ 51
5 Büren a.d.A. (BE) Oak 496 2.3 6.5 31-40

Figure 2.1: The five investigated main study areas are located within the yellow rectan-
gles in the Cantons of Zurich (ZH) and Bern (BE) in northern Switzerland.
For some analyses, the entire forested area within the Canton of Zurich, de-
picted in the green rectangle, was used. The background aerial images were
provided by the Swiss Federal Office of Topography swisstopo (2010). Swiss
map coordinates: CH1903+ / LV95.

9



Chapter 2 | Forest time series analysis

2.2.2 Data

We used Sentinel-1 C-band Interferometric Wide (IW) swath mode Ground Range De-

tected High Resolution (GRDH) images covering the study areas. The chosen time span

was between 01/01/15 and 24/05/17. Because both available polarisations were consid-

ered, 433 VV- and 433 VH-images were used as input to the investigation (Torres et al.,

2012). The IW mode specifications are listed in Table 2.2.

Table 2.2: Specifications of Sentinel-1 IW mode (Torres et al., 2012)

Specification Value

Swath width 250 km
GRDH sample distance 10 m
Nominal incident angle range 31◦- 46◦

Radiometric stability 0.5 dB (3σ)
Radiometric accuracy 1 dB (3σ)

To process the SAR data, a digital height model (DHM) was available with a spatial

resolution of 2 m (Federal Office of Topography swisstopo, 2017). For the purpose of this

study, this DHM was resampled to a spatial resolution of 10 m to match the resolution of

the S-1 images.

In-depth information about the forests in the Canton of Zurich were provided by the

aerial image forest stand map released by the Office of Landscape, Agriculture and En-

vironment (2010) (Amt für Landschaft und Natur) of the Canton of Zurich. The vector

dataset contains information about several characteristics of the forest stands such as rel-

ative tree species abundance, tree cover density and stand height. For this study, the

dataset was converted into a raster layer with a spatial resolution of 10 m using the

Geospatial Data Abstraction Library (GDAL) tool rasterize (GDAL, 2017).

Meteorological and phenological data of the study areas were also prepared. Me-

teoSwiss provided daily mean temperature and precipitation raster layers with a spatial

resolution of 1.25’, corresponding approximately to 2.3 km in northing and 1.6 km in

easting (Federal Office of Meteorology and Climatology MeteoSwiss, 2017a). Both layers

were produced by spatially interpolating data of the MeteoSwiss weather station network

of Switzerland (Federal Office of Meteorology and Climatology MeteoSwiss, 2017b). Phe-

nological observations were available, released by MeteoSwiss for selected weather sta-

tions (Federal Office of Meteorology and Climatology MeteoSwiss, 2017a). Observations
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of the two stations Rafz and Biel were selected for this study based on their proximity

(< 25 km) to the investigated forest stands of the study areas 1, 3 and 4 (see Table 2.1).

These observations contain annual information for the species beech and spruce. For

beech, the timing of leaf emergence in spring, and leaf colouring and leaf fall in autumn

is recorded by volunteers, for spruce, only needle shoot in spring.

2.2.3 Methods

In a first step, the SAR data was radiometrically calibrated and geocoded, and time se-

ries were built (Figure 2.2). Subsequently, masks were generated to analyse the backscat-

ter behaviour of the different species and forest types. Then, temporal backscatter pat-

terns in the different forests were assessed calculating several descriptors (Figure 2.4). In

a last step, classifications were implemented by making use of the significant differences

in the temporal backscatter signatures of the different species (Figure 2.6).

2.2.3.1 SAR data processing

The acquired Sentinel-1 IW VV and VH acquisitions were processed in two differ-

ent ways, as illustrated in Figure 2.2. First, the acquisitions were radiometrically cali-

brated and terrain-geocoded with the available DHM, which resulted in geocoded-terrain-

corrected (GTC) images for both polarisations (Meier et al., 1993). These GTC images

had a pixel spacing of 10 m. Second, to reduce the strong influence of topography on the

backscatter (Atwood et al., 2012), the VV and VH acquisitions were also radiometrically

calibrated and terrain-geocoded according to the radiometric terrain flattening method-

ology described in (Small, 2011). This approach corrects not only the geometry of the

scene but also its radiometry. The resulting radiometrically terrain corrected (RTC) im-

ages exhibit an easier interpretability, which is especially valuable in areas with complex

terrain. The pixel spacing of these RTC images was also 10 m.

11



Chapter 2 | Forest time series analysis

SAR GTC processing SAR RTC processing

DHMS-1 SAR acquisitions

GTC images

RTC images

SAR LRW compositing 

& correction

LRW composites

Area images

Figure 2.2: Processing scheme of the SAR data from S-1 GRDH images to GTC images and
LRW composites. GRDH images of both polarisations were processed in this
manner.

In a second stage, a multitemporal compositing approach was applied to the RTC im-

ages of both polarisations to enhance spatial resolution and reduce noise (Small, 2012).

The local resolution weighting (LRW) approach combines RTC images of ascending and

descending acquisitions within a specific timespan into composite backscatter images. A

timespan of 24 days and a temporal sampling interval of 12 days were found to ade-

quately observe seasonal backscatter behaviour while also ensuring full areal coverage,

even when fewer images than typical were available due to calibration activities in south-

ern Germany. The compositing led to reliable time series of SAR observations of the study

areas. Only for a single 24 day period could no composite of the study areas in ZH be pro-

duced. Between 06/06/15 and 29/06/15 no acquisitions were available in northern ZH,

due to a system calibration campaign of the German aerospace centre (DLR) in southern

Germany (Schwerdt et al., 2017).

The evolution of the number of acquisitions available from 2015-2017 is shown in

Figure 2.3. There are three reasons why the number of available acquisitions changed

considerably over the investigated time period for both study areas. The low number

of available acquisitions in summer 2015 (2 acquisitions) and 2016 (3 acquisitons) were

caused by the DLR campaign. A gradual increase to a maximum of 18 acquisitions towards

the end of the investigated time period was due to a (a) ramp-up of the production by
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the European space agency (ESA) payload data ground segment and (b) the addition of

Sentinel-1B acquisitions in September 2016 (Schubert et al., 2017).
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Figure 2.3: Evolution of the number of acquisitions available for the LRW compositing.
The number of acquisitions available varied significantly for the study areas
1-2 in ZH and 3-5 in BE. Especially in summer 2015 but also in summer 2016,
only few acquisitions were available. Generally, more acquisitions were avail-
able for the study areas in BE, and the number of available acquisitions in-
creased towards the end of the investigated period in all study areas.

An absolute backscatter calibration issue was mitigated by applying corrections. Both

Miranda (2015), and El Hajj et al. (2016) reported positive Sentinel-1A antenna gain

biases between 19/03/15 and 25/11/15. Hence, all backscatter values within that times-

pan were corrected. After El Hajj et al. (2016), a correction of -0.9 dB was applied within

that time period in 2015.

2.2.3.2 Species mask generation

To analyse the backscatter behaviour of GTC images and LRW composite time series,

masks for the three different tree species and the two forest types were produced follow-

ing a scheme shown in Figure 2.4. For the study areas in the Canton of Zurich, species

and forest type masks were generated by segmenting the aerial image forest stand map.

For the species masks, this was done by choosing all pixels with high species homogeneity

for beech, oak and spruce. For the forest type masks, the considered forest stands con-

sisted of either deciduous or coniferous species. Because there were not enough pixels of

absolutely homogenous stands, pixels with species homogeneity greater than 80% were
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chosen. The threshold of 80% was chosen, as a trade-off between the available number

of pixels and ensuring a considerable dominance of the species within the forest stand.

The masks for the study areas in BE were produced based on forest knowledge of local

foresters (Schneider, 2016; Lüthi, 2017; Zwahlen, 2017). This spatial information about

the forest stands was subsequently rasterised to produce the three masks.

All the masks were ”eroded” to minimise edge effects and ensure the presence of the

desired species or forest type. This was done using an erode function with a square mask

of 3x3 times the sample interval. Similar to the homogeneity threshold, the 3x3 size was

chosen as a trade-off between maximising the available number of pixels and mitigating

edge effects.

GTC images LRW composites

Forest stand map

(ZH)

Forester information

(BE)

Rasterisation
Raster forest stand 

map

Masking:

≥ 80% homogenous

Erosion:

3x3 window size

Forest type & species 

masks

Eroded forest type & 

species masks

Derivation of descrip-

tors within masks

LRW descriptors per

forest type & species

GTC descriptors

per forest type

Derivation of temporal 

descriptors

Temporal descriptors 

per species

Derivation of descrip-

tors within masks

x, Q1, Q3~

xTo, Q1To, Q3To

γ     , γ      , δ, BD

~

~ ~0 0

win sum

Figure 2.4: Processing chain for deriving the backscatter descriptors from the GTC images
and LRW composite time series for different forest types and species. The
descriptors shown on the right were derived from both polarisations.
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2.2.3.3 Comparison of a winter and summer GTC image and LRW composite

In a first analysis, the backscatter of the forested area in the whole of ZH of two GTC

images was compared. The chosen images were from 06/06/16 for summer/leaf-on and

16/03/17 for winter/leaf-off. The images were masked with the generated forest type

masks and the median, 25 & 75% percentiles were calculated within the residual pixels (x̃,

Q1, Q3). Subsequently, the medians were compared for the two dates and the two forest

types. RGB-overlays and histograms were prepared to highlight differences in backscat-

ter distribution between the two acquisition dates and between the two SAR processing

methods. RGB-overlays and histograms were produced using the above-mentioned GTC

images; others were generated using LRW composites of the timespans 24/05 - 16/06/16

and 02/03 - 25/03/17. In the RGB-overlays, the summer image was assigned to the red

and blue channels, and the winter image was assigned to the green channel (Figure 2.5).

Figure 2.5: Top row: RGB-overlays of GTC images and LRW composites. The assigned
bands are R/B = summer/leaf-on (GTC: 06/06/16, LRW: 24/05 - 16/06/16)
, G = winter/leaf-off (GTC: 16/03/17, LRW: 02/03 - 25/03/17). In the lower
row, maps of the main influencing factors on the backscatter are depicted. On
the left, the slope map of the area is shown. On the right, the forest type map
with the classes ’deciduous’, ’coniferous’ and ’not defined’, consisting of all
non-forested areas and areas with less than 50% homogenous species. Swiss
map coordinates: CH1903+ / LV95.
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The advantages of the RTC processing and the LRW compositing approach over the

GTC-based processing are apparent. The colour pattern in the LRW RGB-overlay appears

much smoother, leading to a better discrimination between the two forest types. In ad-

dition to that, the strong influence of topography on the GTC RGB-overlay is seen (e.g.

steep slope right next to the river bed in the northwest). In areas with steep foreslopes

(Figure 2.5, lower left), backscatter was higher. In the LRW RGB-overlay on the other

hand, topographic effects were mitigated.

2.2.3.4 Time series analysis of LRW composites

In the main analysis, the temporal behaviour of the forest backscatter was investigated.

The descriptors listed on the first row of Table 2.3 were calculated for every LRW compos-

ite within the eroded masks (x̃, Q1, Q3). Subsequently, these descriptors were plotted in

the temporal domain and their seasonal behaviour was inspected visually. To analyse this

behaviour further, the temporal descriptors listed in Table 2.3 on the second row were

calculated for the previously established descriptor time series.

Table 2.3: Descriptors calculated within single composites and within the time series.

Descriptors Symbols

Within single composite Median, 25 & 75% percentiles x̃, Q1, Q3
Within time series Median of x̃ and of Q1 & Q3 x̃To, Q1To, Q3To

Median winter of x̃, median summer of x̃ γ̃0win, γ̃0sum
δ (see Equation (2.1)), break dates δ, BD1, BD2

The medians within the time series were derived from all the calculated medians and 25

& 75% percentiles of the masked composites (x̃To, Q1To, Q3To). The medians of winter

(γ̃0win) and summer (γ̃0sum) were calculated, as visual inspection of the plots indicated a

change in backscatter between the two seasons. The timespan for the two seasons was

chosen conservatively to be 01/06 - 15/09 for summer and 01/12 - 15/03 for winter. This

was done to ensure that no ’winter’ composites with leaf-off conditions appeared in the

’summer’ subset and vice versa. Their difference (δ) was calculated according to Equation

(2.1).

δ = γ̃0winter − γ̃0summer (2.1)

The timing of the change in backscatter was also of interest. Natural breakpoints in

the time series were calculated using the algorithm described in (Zeileis et al., 2002).
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The function breakpoints allows detection of structural changes in time series of data

(Zeileis et al., 2003) and has successfully been used in previous ecological studies (e.g.

de Jong et al. (2013); Vanoni et al. (2016)). The time series were split into annual sets

to facilitate detection of the break dates. The function assigns break dates where the

OLS-based CUSUM test (Ploberger & Krämer, 1992) registers the two highest empirical

fluctuation process values (Zeileis et al., 2003). The first break date within each time

series was assumed to be the leaf emergence (BD1), while the second break date was

assumed to be the leaf fall of the respective year (BD2). The missing value due to the

absent LRW composite in summer 2015 for the study areas in ZH (1 & 2 in Table 2.1) was

linearly interpolated (Zeileis et al., 2017) to facilitate use of the breakpoints algorithm.

The last step consisted of a comparison of the calculated descriptors for the different

forests. General differences between deciduous and coniferous forests were compared as

well as differences between the two deciduous species beech and oak. The phenological

ground observations, when available, were juxtaposed with the breakpoints-based break

dates.

2.2.3.5 Classification of species and forest type

We conducted two classifications of the forested areas in the Canton of Zurich using a

random forest (RF) classifier (Breiman, 2001). In addition to a classification of the three

species examined, another was performed on the forest types deciduous and coniferous.

RF was chosen, as a study using multitemporal C-band SAR data showed that RF outper-

formed other classifiers (Waske & Braun, 2009). In addition to the actual classification,

it also ranks the importance of the used predictors. We generated for both approaches a

forest of 100 decision trees with a minimum terminal node size of 1 using the MATLAB

class TreeBagger to perform the classification (Mathworks, 2017).

The classification processing chain is illustrated in Figure 2.6. First, twelve predictors

were calculated per pixel within the LRW composite time series. The predictors used

were (1-8) the respective median of the years 2015 and 2016 as well as the respective

δ between winter (leaf-off) and summer (leaf-on) medians at both polarisations. The

definition for the seasonal periods was again chosen conservatively, with 01/12 - 15/03

for winter and 01/05 - 15/09 for summer. Two break dates (9-12) for the two years

were derived per pixel VH time series, using the breakpoints algorithm. These break dates

completed the set of predictors.

Second, the training and validation datasets were prepared. This was done by gener-
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ating forest masks, applying the erode function and subsequently random selecting pixels

for the two datasets. The mask generation and erosion for both classifications approaches

were performed uniformly as described in section 2.2.3.2. Then, different RF models

were trained with a balanced number of randomly selected pixels for every model. An-

other balanced set of randomly selected pixels was then used to validate every model.

This procedure was identically executed for the forest type and the species classification.

To ensure a representative estimation of the performances, the dependencies of the

achieved mean accuracies on the number of RF models were evaluated. It showed that

more than 40 models did not significantly change the mean accuracies (±0.25%). The

number of RF models was set to 40 for both approaches. The performances of the two

classifications and their utility were then evaluated by generating the mean confusion

matrix and calculating mean overall accuracy, producer’s accuracy, user’s accuracy and

Cohen’s kappa of the 40 different RF models. The ”predictor importance” measure was

also assessed. For every predictor, that measure specifies the loss in prediction accuracy if

the values of that predictor are distributed randomly across the pixels (Mathworks, 2017).

S-1 LRW VH 

composites

S-1 LRW VV 

composites

Derivation of temporal 

statistics per pixel

Predictors per pixel

Split data

within masks

Training of classi!er

Parameter 

for classi!er

Training set Validation set

Classifying

Saved classi!cation 

performance measures

Eroded forest type & 

species masks

Iteration

Averaging of perfor-

mance measures

Representative 

performance measures

Figure 2.6: Classification scheme. This framework was used for both forest type and species
classifications.
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2.3 Results

2.3.1 Comparison of the seasonal GTC images and LRW composites

Table 2.4 shows the results of the calculation of the median, 25 & 75% percentiles

backscatter within the forest type masks in the two GTC images for both polarisations.

Generally deciduous species showed higher backscatter than coniferous stands. With the

exception of VH polarisation in summer, the difference between the two forest types was

quite substantial. A seasonal change in VH backscatter within both forest types was ob-

served. Coniferous forests had stronger backscatter in summer (06/06/16) and lower in

winter (16/03/17), whereas deciduous forests showed the opposite, with higher backscat-

ter in winter and lower in summer.

Table 2.4: Median (x̃), 25 & 75% percentiles (Q1 & Q3) C-band VH/VV backscatter (GTC-
images) for deciduous and coniferous forest stands of the whole of the Canton
of Zurich. The investigated stands had a species homogeneity of at least 80%.

Winter Summer
Forest type Q1 x̃ Q3 Q1 x̃ Q3

Deciduous forest VH -14.0 -12.3 -10.6 15.0 -13.3 -11.6
VV -9.3 -7.6 -6.0 -9.1 -7.2 -5.4

Coniferous forest VH -15.7 -14.2 -12.6 -14.7 -13.2 -11.7
VV -10.3 -8.8 -7.3 -9.0 -7.5 -5.9

This seasonal change is also apparent in a VH GTC RGB-overlay (Figure 2.5, top left)

and a LRW counterpart (Figure 2.5, top right) of the study area in Teufen. Areas in

magenta showed higher backscatter in summer, whereas areas in green showed higher

backscatter in winter. It can therefore be expected that areas in magenta consisted mainly

of coniferous species, and areas in green mainly of deciduous species. Compared with the

forest type map of the area (Figure 2.5, lower right), a striking correspondence is visible

between the colour patterns of the RGB-overlays and the forest type classes.
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The distribution of the backscatter values of the two forest types in the two SAR prod-

ucts is depicted in Figure 2.7. Two features are apparent. First, the seasonal shift from

winter to summer to higher backscatter values for coniferous forests (first column), and

the opposing seasonal shift to lower values for deciduous forests (second column) are

seen. Second, the variance within the GTC images (first row) was substantially higher

than in the LRW composites (second row). Especially for deciduous forests, the variance

was much lower in the LRW composite. The seasonal shift is depicted per pixel in the

difference between winter and summer VH backscatter of the two forest types (Figure

2.8). Values for deciduous and coniferous forests were mainly positive and negative, re-

spectively. Again, the variance within the LRW composites was considerably lower. This

is expected to allow a more reliable separability between the two forest types.
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Figure 2.7: Histograms of the VH backscatter value distribution within the two forest
types for the GTC images (first row) and the LRW composites (second row).
The number of pixels (n) was considerably higher for coniferous forests.
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Figure 2.8: Histograms of the difference between winter and summer VH backscatter of
the two forest types for the GTC images (left) and the LRW composites (right).
n = 36621 for deciduous forest, 152930 for coniferous forest.

2.3.2 Time series analysis of LRW composites

The temporal evolution of the spatial descriptors is shown in Figure 2.9. Inspecting the

LRW composite time series, the same features as in section 2.3.1 were observed. In addi-

tion to the spatial descriptors, temporal descriptors were calculated for the approximately

70 LRW composites. Examining these plots, the seasonal behaviour of the backscatter of

the different species becomes even more apparent. An influence of temperature on the

backscatter is seen at both polarisations and for all three species. This is manifested in

minor changes in summer and major changes in winter, when temperatures were below

the freezing point. The variance of the backscatter per composite was stable over time.

The band between the 25 & 75% percentiles measured consistently approximately 1.5 dB

for all species and study areas. Only for the study areas in ZH (Figure 2.9 a, c - e) the

band became broader in summer 2015 due to the fewer S-1 acquisitions available in that

period.

The temporal descriptors for all the study areas are summarised in Table 2.5 for VH and

Table 2.6 for VV polarisation. For the beech stands with available phenological ground

observations and the two oak stands, Table 2.7 compares the extracted break dates from

the VH polarisation time series with the reported leaf emergence and fall.
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Figure 2.9: Temporal plots of species backscatter from LRW composites for selected study
areas. Blue shows the median, green corresponds to the 25 & 75% percentiles.
In red, the mean temperature for the 24 day period corresponding to each
LRW composite. The solid vertical lines show phenological ground observa-
tions. Vertical green lines indicate leaf emergence for beech, and needle shoot
for spruce. Red lines show the leaf fall date for beech. Dashed lines corre-
spond to the backscatter derived break dates. The black bars on top of the
figure display the periods used for the calculation of winter (01/12 - 15/03)
and summer (01/06 - 15/09) medians.
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2.3.2.1 Deciduous species (beech and oak)

Figure 2.9 shows that at VH polarisation, areas with deciduous species followed dis-

tinctive seasonal backscatter patterns. Backscatter was higher during leaf-off and lower

during leaf-on conditions. For beech, the backscatter median ranged between -13.05 and

-12.54 dB over the whole time series for the different study areas. The medians of win-

ter and summer varied substantially between the two investigated years. Backscatter in

winter was higher, with higher values observed in winter 2015/16 than winter 2016/17

(Table 2.5). Backscatter in summer was lower, with higher medians observed for the year

2016 (see 2016/17 in Table 2.5). Hence, the δs between winter and summer medians

also differed between the years. For 2015/16, they ranged from 1.61 to 2.33 dB, whereas

for 2016/17 the difference was between -0.49 and 0.65 dB. Most δs were positive, giving

a clear indication of the higher backscatter in winter. Only study area 1 had a negative

δ in 2016/17, caused by significantly lower backscatter due to temperatures below the

freezing point in winter 2017 (see Figure 2.9 a).

Table 2.5: VH polarisation time series descriptors for the five study areas (SA) with their
respective occurring species (S). Column N shows the number of LRW compos-
ites and P̄ x the mean number of processed pixels. x̃To, Q1To and Q3To are
the median, 25 & 75% percentiles over the whole time series. γ̃0win, γ̃0sum and
δ show the medians for winter, summer and the difference between the two.
These descriptors were calculated for the years 2015/16 and 2016/17. The
displayed backscatter values are in dB.

2015/16 2016/17
SA S N P̄ x x̃To Q1To Q3To γ̃0win γ̃0sum δ γ̃0win γ̃0sum δ

1 Sp 72 2303 -14.08 -15.00 -13.22 -14.28 -14.10 -0.18 -15.40 -13.25 -2.15
2 Sp 72 4583 -14.02 -15.00 -13.09 -14.03 -13.96 -0.07 -15.01 -13.11 -1.90

1 Be 72 1348 -13.05 -13.87 -12.24 -12.53 -14.14 1.61 -13.37 -12.88 -0.49
2 Be 72 1569 -12.69 -13.48 -11.83 -11.80 -13.76 1.97 -12.61 -12.82 0.21
3 Be 73 757 -12.58 -13.35 -11.87 -11.67 -14.00 2.33 -12.12 -12.77 0.65
4 Be 73 1271 -12.54 -13.23 -11.82 -11.56 -13.87 2.31 -12.23 -12.54 0.30
1 Oa 72 1485 -12.97 -13.62 -12.26 -11.98 -13.94 1.96 -12.84 -13.23 0.38
5 Oa 73 639 -13.09 -13.71 -12.51 -12.17 -13.62 1.45 -12.64 -13.24 0.60

Compared with beech, the two oak stands showed slightly lower median backscatter

over the whole times series with values of -12.97 and -13.09 dB. The winter and summer

medians of both years did not differ significantly from the values observed for beech. δ

values of 1.96 and 1.45 dB for 2015/16 and 0.38 and 0.60 dB for 2016/17 were observed.

As for beech, this δ was positive for both oak stands in both years, indicating a seasonal

change in backscatter with higher values in winter.
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Table 2.6: VV polarisation time series descriptors for the five study areas (SA) with their
respective occurring species (S). Column N shows the number of LRW compos-
ites and P̄ x the mean number of processed pixels. x̃To, Q1To and Q3To are
the median, 25 & 75% percentiles over the whole time series. γ̃0win, γ̃0sum and
δ show the medians for winter, summer and the difference between the two.
These descriptors were calculated for the years 2015/16 and 2016/17. The
displayed backscatter values are in dB.

2015/16 2016/17
SA S N P̄ x x̃To Q1To Q3To γ̃0win γ̃0sum δ γ̃0win γ̃0sum δ

1 Sp 72 2303 -8.46 -9.25 -7.62 -8.72 -7.91 -0.81 -9.62 -7.76 -1.86
2 Sp 72 4585 -8.46 -9.39 -7.59 -8.68 -7.95 -0.74 -9.52 -7.75 -1.78

1 Be 72 1348 -7.75 -8.54 -6.98 -7.73 -8.23 0.51 -8.43 -7.49 -0.93
2 Be 72 1569 -7.34 -8.14 -6.41 -7.22 -7.83 0.61 -7.77 -7.28 -0.48
3 Be 73 757 -7.07 -7.86 -6.38 -6.85 -7.44 0.59 -7.28 -7.08 -0.20
4 Be 73 1271 -7.11 -7.83 -6.34 -6.92 -7.37 0.44 -7.28 -6.85 -0.43
1 Oa 72 1485 -7.45 -8.13 -6.71 -7.13 -7.89 0.76 -7.98 -7.60 -0.38
5 Oa 73 639 -7.70 -8.26 -7.15 -7.79 -7.43 -0.36 -7.98 -7.63 -0.35

Comparison of the break dates and their respective ground observations for the years

2015 and 2016 for the different beech and oak stands (Table 2.7 and Figure 2.9 b) shows

that they match approximately with the reported leaf emergence and fall. For most study

areas, the differences between the break dates and the observations were within or close

to the uncertainty (±12 days) caused by the temporal resolution of the LRW composites.

In 2015, the first break dates were predicted between 3 and 11 days later compared to

the leaf emergence, while in 2016, they were predicted between 14 days in advance and

5 days later.

For two study areas, the extraction of the break dates did not work very well in one

year. For beech in Rafz in 2016, the second break date seems to represent the leaf emer-

gence, as the first break date was too early for leaf emergence. For oak in Büren a.d.A.

in 2015, the first break date appeared far too late (approximately 80 days) for recording

leaf emergence.

The second break date, however, captured the leaf fall even better than the first the leaf

emergence. In 2015, the break dates were predicted between 12 days in advance and 1

day later, while in 2016, they were predicted 3 days in advance. Visually these results

are depicted with the vertical lines in the temporal plots in Figure 2.9. The predicted

first break dates for the oak stands are also noteworthy. They had a tendency to be a few

days later than the beech stands in the same study area (Rafz) or nearby (Büren a.d.A. to
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Galsberg/Feiberg).

Table 2.7: Comparison of the break dates (BD) extracted from the VH polarisation time
series with the respective leaf emergence (LE) and leaf fall (LF) ground obser-
vation for the different study areas. For both years, the values are displayed in
day of the year. The listed uncertainty is due to the compositing timespan of
24 days.

2015 2016
Study area Species BD1 LE BD2 LF BD1 LE BD2 LF

Rafz (ZH) Beech 121±12 110 301±12 300 61±12 104 109±12 308
Galsberg (BE) Beech 109±12 106 301±12 313 97±12 111 301±12 304
Feiberg (BE) Beech 109±12 106 301±12 313 97±12 111 301±12 304
Rafz (ZH) Oak 121±12 - 301±12 - 109±12 - 301±12 -
Büren a.d.A. (BE) Oak 205±12 - 313±12 - 121±12 - 313±12 -

In VV polarisation, the backscatter of both deciduous species was higher than at VH

polarisation with a median over the whole time series ranging between -7.75 and -7.07

dB. No distinctive seasonal pattern was observed. But looking at the plotted time series

of the beech stand in Teufen (Figure 2.9 c), after a short increase in spring, a gradual

decrease in backscatter from about -6.7 to -8 dB in summer was observed in both years.

2.3.2.2 Spruce

Spruce forests exhibited seasonal backscatter behaviour in both polarisations. However,

compared to the deciduous species, the behaviour was inverted. Higher backscatter was

recorded in summer, and lower backscatter in winter. Generally, the spruce stands showed

lower backscatter of about 1 dB compared to the deciduous species. This was consistently

shown in the median backscatter values over the whole time series. In VH, the two stands

had a median of -14.08 and -14.02 dB, where as in VV, their median was -8.46 dB.

As for the deciduous species, the medians of winter and summer varied across the

two years. In winter, VH backscatter was lower than in summer. Lower backscatter was

observed in winter 2016/17 than in winter 2015/16 (Table 2.5). In summer, backscatter

was generally higher. In summer 2016, higher values were observed than in summer 2015

(for 2016 see 2016/17 in Table 2.5). In VV, backscatter differences between winter and

summer and the two years followed similar patterns (Table 2.6). This led to negative δ

values at both polarisations. Compared with VH, the δ values were higher at VV. Hence,

the seasonal difference was higher in VV. This can be seen in Figure 2.9 d) and e), where

the seasonal difference in backscatter appears slightly higher in VV than in VH.
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2.3.3 Classification performances

The demonstrated differences in backscatter between the different species was next

used to classify independent validation data into forest classes. Table 2.8 presents the

performance of the forest type classification. Table 2.9 shows the performance of the

species classification. The first two columns in both tables list the number of pixels used

in the training and validation sets. The classification performance was assessed using the

accuracy values in the following columns.

Table 2.8: Classification result for the two forest types. The mean number of pixels used
for training and validation in the RF classification for the classes deciduous
and coniferous forest are listed with the mean producer’s accuracy (PA), user’s
accuracy (UA), overall accuracy (OA) and Cohen’s κ of the 40 different RF
models.

Forest class Training Validation PA UA OA κ

Deciduous 20006 9077 0.84 0.88
0.86 0.73

Coniferous 19982 8729 0.88 0.84

For both forest classes, producer’s and user’s accuracies were fairly high, resulting in a

high overall accuracy and a high Cohen’s κ (Table 2.8). The predictors’ importance listed

in Figure 2.10 showed that all twelve predictors contributed to the achieved classification

result. No single predictor appeared to dominate.

Table 2.9: Classification result for the three different species. The mean number of pixels
used for training and validation in the RF classification for the three species are
listed with the mean producer’s accuracy (PA), user’s accuracy (UA), overall
accuracy (OA) and Cohen’s κ of the 40 different RF models.

Species class Training Validation PA UA OA κ

Beech 2003 922 0.56 0.62
0.72 0.58Oak 1995 993 0.70 0.68

Spruce 2004 981 0.88 0.83

As expected, compared with the forest type classification, the achieved performance

was lower for the species classification (Table 2.9). This was mainly caused by confusion

between beech and oak, resulting in lower PA and UA for both classes. The performance

for spruce, however, was virtually the same as for coniferous forests. Due to the limited

availability of oak forests in the Canton of ZH, the number of training and validation pixels
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was much lower for the species classification compared with the forest type classification.

For the species classification, the importance of the predictors was not as consistent as in

the forest type classification (Figure 2.10). The δ of the year 2016 of both polarisations,

but especially VH, was very important. The break dates of 2015 played a subordinate

role.
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Figure 2.10: Importance of individual predictors in the two classifications. The predictors
are the total annual medians (x̃To) and δs of the two years for the two po-
larisations. The break dates (BD) extracted from the VH time series for both
years complete the set of predictors.

2.4 Discussion

Analysis of the SAR C-band backscatter time series of forests showed that the observed

backscatter behaviour was robust for multiple sites over multiple years. Generally, annual

median backscatter of forests consisting of deciduous species was higher than backscatter

of forests consisting of spruce. Both types of forests showed distinctive seasonal backscat-

ter patterns. The deciduous species had higher backscatter in winter and lower in summer,

while spruce exhibited the opposite behaviour.

Temporal variation in SAR data is caused by signal noise and short- and long-term envi-

ronmental changes. The former two were strongly mitigated because of the methodology

used in the SAR data processing. The LRW approach combines several acquisitions into

one composite. Hence, the approach suppresses the influences of signal noise and short-
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term variations, such as rainfall events before single acquisitions. As a result, the annual

variation can mainly be attributed to long-term environmental changes occurring within

the study areas. Moreover, the decision to use terrain-flattened RTC images could con-

tribute to better results as well. All study areas (bar Büren a.d.A.) investigated in this

study are in hilly terrain.

2.4.1 Seasonal signature of deciduous species

Both deciduous species showed seasonal changes in VH backscatter behaviour. Backscat-

ter values dropped in the spring from a high winter level to a low summer level, rising

again in the autumn, resulting in positive δ values. The predominant long-term change

in deciduous forests is the seasonal vegetation cycle, manifested in the annual growth of

trees and presence of foliage. The presence of foliage occurred at the time with the lower

backscatter values observed in the summer months: a dependence of the backscatter on

leaf presence was observed (Proisy et al., 2000; Dostálová et al., 2016).

Potential causes for the changing cross-pol scattering behaviour remain uncertain. One

reason might be the changing size of the scatterers present in the tree crown. In sum-

mer, leaves substitute branches as main scatterers. C-band is primarily sensitive to small

branches and only secondarily to leaves (Chauhan et al., 1991). Leaves have been re-

ported to act not only as scatterers but also as attenuators for C-band (Leckie & Ranson,

1998; Kovacs et al., 2013). Hence, leaf emergence in spring leads to a combination of

effects, resulting in lower backscatter during the leaf-on period. (a) A scatterer substitu-

tion, where the sensitivity of C-band is reduced and (b) an attenuation of the microwave

energy by the leaves. Leaf fall in autumn otherwise exposes the small branches again,

leading to higher backscatter.

Another possible reason for higher backscatter values during the leaf-off period is the

influence of ground scattering (Wegmüller et al., 1994). With lower attenuation in win-

ter than in summer, ground scattering contributes stronger to the measured backscatter.

Proisy et al. (2000) showed that in winter, the contribution of soil and branches were

comparable, whereas in summer, the contribution of the soil dropped because of the at-

tenuation by the leaves.

Surprisingly, VV backscatter did not show the same seasonal behaviour as VH. Although

slightly higher backscatter was observed in winter, the δs show that there was a less de-

fined seasonal signature. An interesting feature was the constant decrease in backscatter

28



2.4 | Discussion

during the leaf-on season. This could be attributed to the slow drying of leaves in summer

(Mougin et al., 1998).

Leckie & Ranson (1998) did not mention a difference in temporal signature between VH

and VV backscatter in their comprehensive review of SAR backscatter of forest. Potential

reasons for our observed differences between the two polarisations are discussed in the

following. Volume scattering becomes more important when the scatterers present are

more random and complex (Bush et al., 1976). Volume scattering is also known to have

a larger influence on VH than VV polarisation (Leckie & Ranson, 1998; Solimini, 2016).

Leaf emergence probably leads to a more complex arrangement of the scatterers, leading

to a stronger influence on the VH than the VV backscatter. Our empirical observation of

the difference between leaf-off and leaf-on conditions in C-band backscatter of deciduous

forests corresponded well with the simulation made by Chuah & Tan (1992). The S-1

IW acquisitions processed in our study were measured at incident angles between 31◦

and 46◦. Their modelled C-band absolute backscatter values at 50◦ incident angle were

different at both polarisations, but they also showed a positive difference at VH and almost

no difference at VV between leaf-off and leaf-on conditions.

2.4.2 Break date extraction to monitor phenology

The break date extraction yielded promising predictions, bearing in mind that the time

series had a temporal resolution of 24 days. Even finer details such as differences between

species were observable. The observed tendency of the oak stands to have their leaves

emerge later than the beech stands agrees with the common theory concerning the timing

of leaf emergence of the two species (Lange et al., 2016). However, it is important to

consider that the independent ground validation data was produced by observations from

volunteers. Hence, the reported values have to be treated with caution.

We showed that with our approach, the phenological cycles of deciduous forests can be

monitored on a landscape scale. With longer time series available in the future, it will be

possible to analyse phenology trends with S-1 data. The same type of phenology trend

analyses that have usually used MODIS Normalised Difference Vegetation Index (NDVI)

such as White et al. (2009) in North America or Hamunyela et al. (2013) in Europe

could be conducted. Using S-1 instead of MODIS data, an enhanced spatial and temporal

resolution would be available.

The results also showed that there are still some issues using the breakpoints algorithm

for the extraction of the break dates. The problems encountered for the two study ar-
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eas can be explained by the weak dependency of the backscatter on foliage within each

respective year. Other influences (e.g. exceptional freezing temperature) on the backscat-

ter seemed to disturb the seasonal signature to such an extent that a smooth break date

extraction was not always possible.

2.4.3 Seasonal signature of spruce

Backscatter from spruce stands did not show similar abrupt changes. At both polari-

sations, their seasonal signature were less pronounced and more gradual. Lower values

were observed in winter and higher in summer, resulting in negative δ values. Because of

their perpetual foliage, no strong influence of changing foliage or ground scattering was

expected (Ahern et al., 1993). The backscatter of coniferous forests is mainly dependent

on the number of needles and small branches (Dobson et al., 1992). Because the leaf area

index (LAI) of coniferous forests is usually highest in July (Mougin et al., 1998), the high-

est backscatter can therefore be expected in that month. Dostálová et al. (2016) argued

that in addition to the larger number of needles, the development of the understory in

summer might also influence backscatter in coniferous forests.

The observed lower annual VH median backscatter of spruce stands compared to beech

and oak stands was mainly due to the higher backscatter observed in winter for the latter,

caused by the factors mentioned in section 2.4.1. At VV, this effect was not observed to

the same extent. Nevertheless, higher backscatter in winter relative to the spruce stands

was apparent. This observation confirms previous studies that investigated differences in

backscatter between deciduous and coniferous species (Drieman et al., 1989; Ahern et al.,

1993; Proisy et al., 2000).

2.4.4 Differences between the investigated years

Clear differences were observed within the timespan investigated. Inter-annual differ-

ences were most probably due to different meteorological conditions. A clear influence

of temperature on the backscatter can be seen in Figure 2.9. In summer, higher VH

backscatter was observed when temperatures were also higher. In winter, there was an

even stronger influence of the temperature. When the temperature fell below the freezing

point, the backscatter dropped significantly. This was mainly observed in January 2017,

when temperatures in Switzerland were very low for a long period, but also in January

2015. Temperature is known to influence the dielectric properties of the scatterers (Olesk

et al., 2015). Especially when temperatures are below 0 ◦C, dielectric properties of the
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frozen scatterers change fundamentally, resulting in lower backscatter (Wegmüller et al.,

1994).

Disparities were observed in the typical summer backscatter reductions of the deciduous

forests at VH. Compared to 2016, the drop in 2015 was larger, which is well depicted in

the plot of the study area Feiberg (Figure 2.9 b). This can probably be attributed to

different weather conditions in the springs and summers of 2015 and 2016. Compared to

2016, temperatures, sunshine duration and the amount of precipitation in the study areas

in spring 2015 were higher than normal (Federal Office of Meteorology and Climatology

MeteoSwiss, 2015, 2016). These favourable growing conditions might have caused a

better development of the tree crowns for the deciduous species (Bequet et al., 2011).

According to the points mentioned in section 2.4.1, a well developed crown with a high

LAI would lead to a higher attenuation of the microwave energy. Thus, a larger drop

would be expected and was observed.

Although precipitation can have an influence on backscatter (Sharma et al., 2005), no

strong influence on short-term backscatter changes was detected in our data. As men-

tioned above, only a general influence on the growing season coupled with other mete-

orological factors was observed. This may be due to the applied compositing approach,

which mitigates variations caused by short-term precipitation events.

Last, a possible influence of the absolute backscatter calibration issue in summer 2015

cannot be disregarded. To correct the wrong backscatter values, a simple correction was

executed by subtracting a fixed value in the affected images (Miranda, 2015; El Hajj

et al., 2016). Residual errors may have been larger in these earlier data, contributing to

the differences between summer 2015 and summer 2016. But the observed disparities

were not the same for the different study areas and caused no ”step” in the VV data, so

the likelihood of radiometric miscalibration appears negligible.

2.4.5 Comparisons to other studies

The results of this study do not contradict previously published results but extend it

with an unprecedented set of C-band cross-pol observations of mixed temperate forests.

Similar backscatter values were retrieved in a simulation study of sensitivity of ERS-1 C-

band VV backscatter over forest (Wegmüller et al., 1994). The non linear dependence

of backscatter on temperature below the freezing point had also been simulated in that

study. Proisy et al. (2000) analysed ERS-1/2 C-band VV backscatter of a mixed temperate

forest for the timespan between April 1994 and February 1997. They presented similar VV
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backscatter ranges from deciduous and coniferous stands. Their time series consisted of

one image per month and had no VH measurements. Although they used a lower temporal

resolution, the shape of their temporal backscatter plot of a beech stand throughout the

year was similar to the one showed in this study. A recent study, analysing intra-annual

S-1 data of an Austrian mixed temperate forest between February 2015 and 2016, yielded

results that were in line with ours (Dostálová et al., 2016). The ranges of backscatter

observed from deciduous and coniferous forests at VV and VH as well as the seasonal

signatures shown by the two forest types at both polarisations were consistent.

2.4.6 Classification of forest types and species

The classification results show that the observed backscatter behaviour allows segmen-

tation into two different forest types or even into three different species. Not only the VH

data but also VV contributed to achieving the good classification performances. This was

surprising, as the seasonal backscatter behaviour of deciduous forests was less distinct at

VV than at VH polarisation.

As expected, accuracies were lower when classifying species vs. forest type. Substantial

confusion was seen between the beech and oak class, whereas in the forest type classifica-

tion, they are both part of the deciduous class. The accuracies for spruce, however, were

almost the same as for the coniferous class. This was not surprising as the coniferous class

is mainly composed of spruce. The high accuracies were reached due to the backscatter

behaviour of spruce being substantially different to that of the two deciduous species.

Spruce was also the only coniferous species that could be examined. Future studies might

include more species and try to use their seasonal backscatter patterns for classification

approaches.

In this study, only stands with species homogeneity higher than 80% were considered

for the classification. Hence, it remains unclear how the classifiers perform on more het-

erogenous mixed forests. Future studies could test how the classifiers perform in mixed

forests. However, when we compared the classification results to aerial images, we ob-

served that the classifier was able to detect single spruce trees within a deciduous stand.

Therefore, the classifiers might even outperform the aggregated forest stand-based inde-

pendent ground reference. With a sampling interval of 10 m, the classifiers almost operate

on a single tree level, whereas the information of the ground reference is based on larger

areal extents. So, many misclassifications may have been caused by the nature of the
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independent ground reference information. This might be verified in the future using a

different ground reference with a higher spatial resolution.

There was a significant time difference between the ground reference and the SAR data

acquisition. The ground reference was produced in 2010, so a considerable time gap of at

least 5 years was a further possible source of errors. Logging activities during that period

likely degraded the classification performance. Clear-cut logged spruce areas tended to

be classified as deciduous, most probably due to the high ground backscatter.

It is difficult to perform an in-depth comparison to other approaches using SAR but also

different remote sensing technologies to classify mixed temperate forests. Study areas,

the species investigated, number of training and number of validation samples differed

substantially between the studies. Nevertheless, our achieved accuracies were comparable

to other studies classifying deciduous and coniferous forests using even fully polarimetric

C-band SAR data (Rignot et al., 1994; Aghabalaei et al., 2016). Compared with other

technologies such as airborne laser scanning (OA of 93% and κ = 0.61) (Bruggisser et al.,

2017) or imaging spectrometer data (OA of 83% and κ = 0.73) (Roth et al., 2015), our

forest type classification performance (OA of 86% and κ = 0.73) was also competitive.

2.4.7 Implications of the findings

If one is aware of the mentioned different influences on C-band backscatter, C-band

data can be used for several applications. Its potential for the classification of mixed

temperate forests has been presented. Thus, a repetitive classification of an area allows

change detection over time. For ecological applications such as seasonal vegetation cycle

monitoring, the use of C-band data will become progressively more interesting, as longer

time series of data become available. Nevertheless, the capability of the data to observe

subtle differences between the years has been shown using only 2.5 years of data. Because

the production of S-1 data is promised until at least 2030 (Berger et al., 2012), longer

time series of data should be available in the future. Using them, changes over time, such

as the shift of phenophases due to climate change, could be detected and quantified.

Compared with state-of-the-art methods using optical data, SAR has valuable advan-

tages. The sensitivity to structural elements adds an additional independent dimension of

information about forests. This structural information helps to improve the understand-

ing of natural processes in forests. Furthermore, the high temporal and spatial resolution

offered by Sentinel-1 allows a much denser sampling of data. Since the end of the com-

missioning phase of Sentinel-1B in September 2016 (Schubert et al., 2017), the number of
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products is high enough to generate LRW composites with over twice the temporal resolu-

tion than that used in this study. A LRW composite every six days would offer even more

insights into the temporal evolution of the backscatter of forests. To further enhance the

temporal resolution, efforts should be made to combine S-1 and RADARSAT Constellation

Mission data, due for launch in 2018 (de Lisle & Iris, 2016).

With high temporal resolution available, there lies also great potential in analysing

larger spatial extents. The backscatter behaviour of forests described in this study was also

observed over the whole Alpine region (Lat/Lon: 43.5 - 49◦N / 5.5 - 17.5◦E). Applying the

same methodology as described in section 2.2.3 but with a temporal resolution of the LRW

composites of 12 days, descriptors were calculated within the Coordination of Information

on the Environment (CORINE) land cover classes for deciduous and coniferous forest

(Copernicus, 2016). Plotted in the temporal domain, the same seasonal patterns are

apparent at both polarisations and for both forest types, as shown in Figure 2.11.
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Figure 2.11: Temporal plots of the per LRW composite calculated spatial descriptors me-
dian (blue), 25 & 75% percentiles (green) for decidous and coniferous forests
of the Alpine region (Lat/Lon: 43.5 - 49◦N / 5.5 - 17.5◦E). The temporal res-
olution of the LRWs was 12 days and the time period depicted ranges from
October 2014 to May 2017. The number of investigated pixels (n) was com-
parable for both forest types.
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Future research could focus on more detailed analysis of the backscatter and the un-

derstanding of scattering processes. An in-depth study of the observed summer drop in

VH backscatter might result in interesting new insights, especially with a higher temporal

resolution. Differences, for example, between the deciduous species are hypothesized,

but could not be tested in this study. A dependence of the magnitude of the observed

drop to LAI could also be tested. If the drop in backscatter is caused by the attenuation of

the leaves, a dependence is credible. This could be tested by correlating VH backscatter

time series with periodic LAI estimations derived from hemispherical images of deciduous

forest stands in spring or autumn (Chianucci & Cutini, 2013).

This leads to the question to what extent the findings of this study could be transferred

to other ecosystems for time series analysis. In tropical or boreal ecosystems, where the

use of SAR data is already well established, the use of multitemporal C-band data might

contribute valuable new insights into the temporal evolution of these ecosystems.

2.5 Conclusions

This study showed that multitemporal C-band absolute backscatter data has the poten-

tial to complement or supplement optical remote sensing data for use in forest mapping

or ecological applications. Forests consisting of broad-leaved, deciduous species, such as

beech and oak, produce stronger backscatter in both polarisations than forests consist-

ing of spruce. Typical seasonal phenology signatures were also observed within forested

areas. In VH, areas consisting of deciduous forests showed a consistent and distinct intra-

annual backscatter pattern with higher backscatter in winter and lower in summer. In

coniferous forests, however, the opposite behaviour with lower backscatter in winter and

higher in summer was observed. The same behaviour, but even more distinctive, was ob-

served in coniferous forests at VV, whereas deciduous forests showed almost no seasonal

cycle in VV.

These temporal signatures simplify the classification of temperate mixed forests because

of the striking differences between the temporal signatures of deciduous vs. coniferous

forests. Good classification performances were achieved for the forest types (OA of 86%

and κ = 0.73) and for three different species (OA of 72% and κ = 0.58). The strong

seasonal signal in VH allows the monitoring of phenology of deciduous forests. The dates

independently reported for leaf emergence and leaf fall of three different study areas

were satisfyingly matched. Almost all extracted break dates were within the error margin
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(±12 days) of the available temporal sampling.

These findings show that using multitemporal C-band data offers several new possibili-

ties. Periodic and cost-effective mapping of mixed temperate forests will ease forest man-

agement to a great extent. In the near future, longer time series of S-1 and RADARSAT

Constellation Mission data over several years will be available with high temporal resolu-

tion. Using them, monitoring on different sets of spatial and temporal scales of different

ecosystems will be possible. Results of these might lead to interesting ecological insights,

such as an assessment of the shift of phenophases or a quantification of changes in species

composition due to climate change.
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3.1 Influence of the number of iterations on the classification

To retrieve representative classification performance measures, the RF classifications

were iterated 100 times and mean measures were calculated after each iteration. Figure

3.1 shows the dependence of the overall accuracy on the number of iterations conducted

for the species and the forest type classification. After investigation of these plots, 40 itera-

tions was deemed to be enough to achieve representative measures. After 40, increasing

the number of iterations did not significantly change the overall accuracy (±0.25%).
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Figure 3.1: The mean overall accuracy shows a dependence on the number of classifica-
tion iterations. The vertical line indicates the chosen number of iterations for
both classifications.
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3.2 Additional results using the aerial image forest stand map

3.2.1 Temporal plots of additional species

This section contains temporal plots of all available species in the aerial image forest

stand map distributed over the Canton of Zurich. The methodology applied was the same

as described in section 2.2.3. Homogeneity thresholds of 80% for all species were chosen.

This led to scattered pixels of forest stands containing either the species European beech

(Fagus sylvatica), oak (Quercus robur, Quercus petraea), Norway spruce (Picea abies), Silver

fir (Abies alba), European larch (Larix decidua) or Scots pine (Pinus sylvestris). Figure 3.2

and Figure 3.3 display the temporal backscatter behaviour of the different species at VH

and VV polarisation, respectively.

For the species investigated in chapter 2, we observed the same backscatter ranges and

seasonal backscatter patterns on the larger scale of the whole canton as on the forest

stand scale. Pines showed higher backscatter of about 1 dB at VH compared to the other

coniferous species. Firs and pines exhibited similar temporal backscatter behaviour as

spruce at both polarisations. Lower backscatter values were observed in winter and higher

in summer. But the seasonal backscatter difference of pine was not as distinct as of spruce

and fir at both polarisations. Interestingly, larches showed similar backscatter behaviour

as the deciduous species at VH polarisation. In winter 2015/2016, higher backscatter

values were seen, whereas in summer 2015 and 2016 backscatter was slightly lower.

Hence, the seasonal cycles of deciduous larches could be observed in the same way as of

the deciduous species beech and oak.
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Figure 3.2: Temporal plots of LRW composite backscatter at VH polarisation for the differ-
ent species. Blue shows the median, green corresponds to the 25 & 75% per-
centiles. The number of investigated pixels (n) varied greatly across species.
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Figure 3.3: Temporal plots of LRW composite backscatter at VV polarisation for the differ-
ent species. Blue shows the median, green corresponds to the 25 & 75% per-
centiles. The number of investigated pixels (n) varied greatly across species.
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3.2.2 Classification with four species

A classification that included an additional species not investigated in chapter 2 was

also conducted. Forest stands of three additional coniferous species (Silver fir, Scots pine

and European larch) were available in the dataset of the aerial image forest stand map.

But only the number of available pixels (n=9907) for pine was deemed to be high enough

to be used in a classification. The classifier RF with the same parameters as described in

section 2.2.3.5 was used. The classification was conducted in the same manner, using the

twelve different predictors and splitting the available pixels into a balanced training and

validation set. The classification performance is shown in Table 3.1.

Table 3.1: Classification result for the four species. The mean number of pixels used for
training and validation in the RF classification for the four different classes are
listed with the mean producer’s accuracy (PA), user’s accuracy (UA), overall
accuracy (OA) and Cohen’s κ of the 40 different RF models.

Species class Training Validation PA UA OA κ

Beech 1987 932 0.48 0.55

0.63 0.51
Oak 2005 993 0.68 0.63
Spruce 2000 985 0.77 0.70
Pine 2009 1016 0.59 0.63

The performance of the classification (OA of 0.63 and κ = 0.51) was worse than with

three species (see section 2.3.3 to compare). Producer’s and user’s accuracy were lower

for all three species beech, oak and spruce. The PA (0.59) and UA (0.63) values of pine

were in the same lower range as the ones of beech. Better performances were achieved

for oak and spruce.
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3.3 Plant area index calculation from within a deciduous forest stand

Hemispherical images were taken to enable an independent estimation of the changes

occurring within a deciduous forest stand during leaf emergence. The images were taken

with a NIKON D200 and the SIGMA EX DC f2.8 4.5 mm circular fisheye lens. The acquisi-

tions were made in spring 2017 on 16/03, 01/04, 17/04 and 05/05 at the four locations

listed in Table 3.2 within the study area of Rafz. One exemplary time series acquired is

depicted in Figure 3.4. The four images show the course of the emergence of leaves for

Oa1.

Table 3.2: The forest stands at the four locations in the study area mainly consisted of
either beech or oak trees. Swiss map coordinates: CH1903+ / LV95.

Abbreviation Predominant species Coordinates

Be1 Beech 2’677’716.54, 1’272’147.59
Be2 Beech 2’678’113.29, 1’272’181.73
Oa1 Oak 2’678’923.96, 1’273’229.79
Oa2 Oak 2’679’512.05, 1’272’638.26

To quantify leaf emergence, the plant area index (PAI) was calculated on the four dates

at the four different locations. The software CAN EYE (V. 6.4.7) was used to calculate

the PAI (Weiss & Baret, 2017). CAN EYE classified the hemispherical images into sky or

vegetation using an interactive threshold based classification approach. On the basis of

this classification, CAN EYE then calculated the PAI. The parameters listed in Table 3.3

were used to obtain the PAI values.

Table 3.3: CAN EYE parameters used to obtain the PAI values.

Parameter Value

Image size Rows: 2592, Columns: 3872
Optical centre Line: 1296, Column: 1936
Projection function Polynomial order = 1, P1 = 0.1016; P1

= 90◦/886 px (image radius in pixel)
Circle of interest 60◦(default)
Sub sample factor 1 (default)
Zenith angular resolution 2.5◦(default)
Azimuth angular resolution 2.5◦(default)
FCover angular resolution 10◦(default)
Clumping parameter 8 (default)
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3.3 | Plant area index calculation from within a deciduous forest stand

Figure 3.4: Hemispherical images at the location Oa1 on four different dates. The images
were taken on 16/03 (a), 01/04 (b), 17/04 (c) and 05/05 (d). There were
more leaves in the tree crowns later in spring.
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Figure 3.5: Evolution of the plant area index in spring. As observed in Figure 3.4, pro-
gressively in spring, higher effective PAI values were caused by the emergence
of leaves. This observation was made at all four locations.

The obtained PAI values of the four different locations are shown in Figure 3.5. The

values rose at all locations from the middle of March to the beginning of May. Investigat-

ing Figure 2.9 a), it can be observed that the PAI increase occurred at the time of decrease

in VH backscatter. This affirmed the hypothesis that the decrease in VH backscatter is

coupled to the emergence of leaves.
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3.4 RGB-overlays containing the study areas

RGB-overlays of the Canton of Zurich and the northwestern part of the Canton of Bern

were produced. The spatial extents of the two overlays correspond to those of the two

close-ups of Figure 2.1. The study areas 1 and 2 are contained in Figure 3.6, whereas the

study areas 3, 4 and 5 are included in Figure 3.7. Seasonal backscatter differences are

seen in both overlays. As in Figure 2.5, it can be expected that forested areas in magenta

(higher backscatter in summer) consisted mainly of coniferous species and forested areas

in green (higher backscatter in winter) were composed mainly of deciduous species.
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Figure 3.6: Seasonal backscatter differences are seen in the RGB-overlay of two LRW com-
posites of the Canton of Zurich. The assigned bands are R/B = summer/leaf-
on (24/05 - 16/06/16) , G = winter/leaf-off (02/03 - 25/03/17). Swiss map
coordinates: CH1903+ / LV95.
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Figure 3.7: Seasonal backscatter differences are seen in the RGB-overlay of two LRW com-
posites of the northwestern part of the Canton of Bern. The assigned bands
are R/B = summer/leaf-on (24/05 - 16/06/16) , G = winter/leaf-off (02/03
- 25/03/17). Swiss map coordinates: CH1903+ / LV95.
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3.5 Investigations using CORINE land cover classes

3.5.1 Temporal plots of different land cover classes

This section contains additional plots of time series. The temporal backscatter be-

haviour at both polarisations of level 1 & 2 land cover classes of CORINE land cover

(CLC) (Copernicus, 2016) were plotted. The investigated area was the Alpine region

(Lat/Lon: 43.5 - 49◦N / 5.5 - 17.5◦E). The distribution of the different classes within the

area is shown in Figure 3.8. The methodology applied was the same as described in sec-

tion 2.2.3. For the RTC processing, the SRTM DHM was used (Farr et al., 2007), resulting

in RTC images with a spatial resolution of 3” (approximately 90 m). The length of the

chosen LRW compositing time span was 12 days. Figures 3.9 and 3.10 show the temporal

backscatter behaviour from October 2014 to May 2017 of the classes listed in Table 3.4 at

VH and VV polarisation, respectively.

Table 3.4: The investigated CLC classes were either of aggregation level 1 or 2. The mean
number of available pixels after erosion (see section 2.2.3.2 for details) varied
greatly between the classes.

Land cover class CLC aggregation level Mean n

Artificial surfaces 1 2’419’690
Agricultural areas 1 24’512’509
Scrub and/or herbaceous associations 2 5’167’357
Open spaces with little or no vegetation 2 3’488’775
Wetlands 1 137’736
Water bodies 1 9’720’963
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Figure 3.8: Distribution of the CORINE level 1 & 2 land cover classes in the Alpine region
before erosion.
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The temporal plots in the Figures 3.9 and 3.10 show that backscatter differed between

the different land cover classes at VH and VV polarisation. VV backscatter was consider-

ably higher than VH for all land cover types. In addition to the higher values at VV, no

considerable difference was observed between the two polarisations for almost all land

cover types. Only the backscatter of ’water bodies’ differed significantly between the two

polarisations.

The land cover classes showed different temporal backscatter behaviours at both polar-

isations. Temperature effects on the backscatter, such as the lower values in winter 2017,

were observed for all land cover types to varying extents. The effect on ’agricultural sur-

faces’ and ’wetlands’ were quite strong, while ’artificial surfaces’ and ’scrubs’ were less

affected. No temperature effect was observed on ’open surfaces’ and ’water bodies’.
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Figure 3.9: Temporal plots of LRW VH composite backscatter for the different land cover
classes. Blue shows the median, green corresponds to the 25 & 75% per-
centiles. The number of investigated pixels (n) varied greatly between the
classes.
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Figure 3.10: Temporal plots of LRW VV composite backscatter for the different land cover
classes. Blue shows the median, green corresponds to the 25 & 75% per-
centiles. The number of investigated pixels (n) varied greatly between the
classes.
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Backscatter of ’artificial surfaces’ was considerably higher than of all the other land

cover classes at both polarisations. This is caused by double bounce backscatter in the

built-up areas (Clemenz, 2010). In addition to that, the backscatter was stable over time

at both polarisations. Contrariwise, large changes in backscatter over time were observed

in the class ’agricultural surfaces’. In addition to the mentioned temperature effect, the

growth of crops and agricultural practices such as ploughing, sowing and harvesting likely

influenced the measured backscatter (Karjalainen et al., 2004). In this case, agricultural

surfaces of all crops were aggregated. But investigations of backscatter differences be-

tween different crops would be of great interest and would be fruitful in future studies

(Liu et al., 2013; Wiseman et al., 2014). C-band backscatter of agricultural surfaces is also

influenced by soil moisture content (Balenzano et al., 2011). Thus, differences caused by

alterations in soil moisture content should also be further investigated (Navarro et al.,

2016; Wang et al., 2016).

A high variance in VH and VV backscatter was observed in ’scrubs’ in all three springs.

Apart from that, backscatter was rather stable over time with slightly higher values in

summer than in winter. ’Open surfaces’ also showed stable backscatter over time. In

spring, however, periods with significantly lower backscatter values were observed. These

lower backscatter values were most probably caused by snowmelt in spring. Koskinen

et al. (1997) reported that wet snow leads to a reduction of backscatter of about 3 dB.

This effect was observed to such an extent in this class, as most of the areas contained in

’open surfaces’ were at high elevations with a lot of snow in winter.

An interesting observation in the plots of ’wetlands’ was the difference in width be-

tween the median and the 25% percentile, and the median and the 75% percentile. The

difference between the latter was smaller than that between the median and the 25% per-

centile at both polarisations. This might have been caused by low backscatter of extended

flooded areas.

Compared to the other classes, ’water bodies’ showed lower backscatter values at both

polarisations. A large difference between the two polarisations was observed. At VH po-

larisation, backscatter was stable over time and the variance within each LRW composite

was low (narrow band between the 25 & 75% percentiles). At VV polarisation, how-

ever, backscatter was unstable and the variance within each composite high. This can be

explained by differing influences of Bragg scattering on the polarisations (Curlander &

McDonough, 1991).
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As already mentioned in section 2.4.7, the same seasonal backscatter patterns in decid-

uous and coniferous forests were observed over the Alpine region as in the smaller study

areas (see section 2.3 for details). Figure 3.11 shows the temporal backscatter behaviour

at both polarisations of the two level 3 CLC classes ’broad-leaved forest’ and ’coniferous

forest’. Broad-leaved, deciduous forests showed a distinct seasonal pattern at VH po-

larisation with higher backscatter during the leaf-off season and lower during the leaf-on

season. At VV polarisation, no distinct seasonal pattern was observed. However, a gradual

decrease in backscatter was observed over the leaf-on season. Coniferous forests showed

an opposing seasonal backscatter pattern at both polarisations. Backscatter was lower in

winter and higher in summer.
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Figure 3.11: Temporal plots of LRW VH and VV composite backscatter for deciduous and
coniferous forests. Blue shows the median, green corresponds to the 25 &
75% percentiles. The number of investigated pixels (n) of deciduous forests
was higher than of coniferous forests.
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3.5.2 Deciduous forests in different elevation ranges

In a further investigation, seasonal VH backscatter patterns of deciduous forests were

compared at different elevations. Figure 3.12 depicts the temporal backscatter behaviour

of the different elevation ranges. To estimate the timing of leaf emergence and leaf fall,

break dates were extracted using the same method as described in section 2.2.3.4. The

results revealed different lengths of the leaf-on season for the different elevation ranges.

Table 3.5 shows the backscatter derived break dates and the length of the leaf-on season

for each elevation range. The higher the elevation, the later the leaf emergence and

the earlier the leaf fall. This led to shorter leaf-on seasons for deciduous forests at high

elevations.

Table 3.5: Comparison of the break dates (BD) extracted from the VH polarisation time
series and their difference (δ BD) for different elevation ranges. Values are
displayed in day of the year. The listed uncertainty is due to the compositing
timespan of 12 days.

2015 2016
Elevation range (m a.s.l.) BD1 BD2 δ BD BD1 BD2 δ BD

0-499 115±6 307±6 192±12 103±6 301±6 198±12
500-999 127±6 301±6 174±12 109±6 301±6 192±12
100-1499 127±6 295±6 168±12 127±6 295±6 168±12
1500-1999 133±6 283±6 150±12 151±6 289±6 138±12
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Figure 3.12: Temporal plots of LRW VH composite backscatter for deciduous forests in
different elevation ranges. Blue shows the median, green corresponds to the
25 & 75% percentiles. The dashed vertical lines indicate the derived break
dates. The number of investigated pixels (n) was considerably lower for
deciduous forests in the higher elevation ranges.
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3.6 Software used

Most of the calculations for this study were done using MATLAB 2016b (Mathworks,

2016). The rasterisation (see section 2.2.2) and the break date extraction (see section

2.2.3.4) were performed as described below. The rasterisation of the aerial image forest

stand map vector layer was conducted using the GDAL algorithm rasterize (GDAL, 2017).

R (R Core Team, 2017) and the R-packages strucchange (Zeileis et al., 2002) and zoo

(Zeileis et al., 2017) were used to extract the break dates from the VH backscatter time

series.
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Much potential lies in using multitemporal C-band SAR data to map and monitor ecosys-

tems. ESA’s Sentinel-1 mission provides reliable C-band data at VV and VH polarisation

for the compilation of consistent time series. Time series of S-1 data were investigated

to gain insights into the temporal backscatter behaviour of ecosystems. It was possible to

monitor ecosystems and extract temporal signatures.

The focus on mixed temperate forests in northern Switzerland showed that the potential

of using the time series is especially promising in forested areas. Analysis of the temporal

backscatter behaviour revealed that backscatter of deciduous species was higher than of

coniferous at both polarisations. In addition, deciduous and coniferous species showed

distinctly opposing seasonal backscatter patterns at VH polarisation. The distinct seasonal

backscatter pattern of the deciduous species was used to estimate the timing of leaf emer-

gence and leaf fall by extracting break dates from the VH time series. Hence, a monitoring

of phenology of the two investigated years was possible. Using the different backscatter

signatures of deciduous and coniferous forests, classifications into forest types and species

were also possible. The forest type classification yielded better results than the species one.

Analyses of S-1 time series on a larger spatial scale showed that the same seasonal

backscatter patterns were also observed over the whole of the Alpine region. The demon-

strated forest classification and break date extraction should also be possible at larger

spatial scales. Additional analyses of S-1 time series showed that C-band data has the

potential to be used for further land cover types outside of forests. Distinct temporal

backscatter behaviours were observed for the investigated land cover classes. Especially

in the field of agriculture, methods to accurately monitor or map cultures are in demand

(Steele-Dunne et al., 2017). Future research should focus on the extraction of signa-

tures of different crops and the estimation of soil moisture content to assist agriculture

management.

Since the end of the commissioning phase of Sentinel-1B in September 2016, the num-
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ber of available S-1 acquisitions has been high enough to build time series with a temporal

resolution twice as high as the one used for the forest investigation. A combination of S-1

with RADARSAT Constellation Mission data in the near future would further enhance the

potential temporal resolution. This enables in-depth studies of ecological processes, such

as the leaf emergence and leaf fall or the development of the crown of deciduous species

in spring.

In this study, it was possible to investigate time series of 2.5 years in length. In a few

years, longer C-band time series will be available. This will facilitate detection of temporal

changes in ecosystems with large spatial extents. Consequently, long-term trends caused

by climate change, such as shifts of phenophases or changes in species composition in

forests, could be observed and quantified using the methodologies shown.
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L. O., & Goldstein, G. (2014). High NDVI and potential canopy photosynthesis of South American subtropical
forests despite seasonal changes in leaf area index and air temperature. Forests, 5(2), 287–308. DOI:
10.3390/f5020287.

Curlander, J. C., & McDonough, R. N. (1991). Synthetic Aperture Radar: Systems and Signal processing. New
York, United States: John Wiley & Sons, Inc., pp. 647.

de Jong, R., de Bruin, S., de Wit, A., Schaepman, M. E., & Dent, D. L. (2011). Analysis of monotonic greening
and browning trends from global NDVI time-series. Remote Sensing of Environment, 115(2), 692–702. DOI:
10.1016/j.rse.2010.10.011.

de Jong, R., Verbesselt, J., Zeileis, A., & Schaepman, M. E. (2013). Shifts in global vegetation activity trends.
Remote Sensing, 5(3), 1117–1133. DOI: 10.3390/rs5031117.

de Lisle, D., & Iris, S. (2016). RADARSAT Constellation Mission Status Update. In European Conference on
Synthetic Aperture Radar (EUSAR). Hamburg, Germany: IEEE, 931–933.

Dobson, M., Ulaby, F., LeToan, T., Beaudoin, A., Kasischke, E., & Christensen, N. (1992). Dependence of radar
backscatter on coniferous forest biomass. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 412–
415. DOI: 10.1109/36.134090.
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Wang, H., Allain-Bailhache, S., Méric, S., & Pottier, E. (2016). Soil Parameter Retrievals Over Bare Agricultural
Fields Using Multiangular RADARSAT-2 Dataset. IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 9(12), 5666–5676. DOI: 10.1109/JSTARS.2016.2525000.

Waske, B., & Braun, M. (2009). Classifier ensembles for land cover mapping using multitempo-
ral SAR imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 64(5), 450–457. DOI:
10.1016/j.isprsjprs.2009.01.003.

Way, J., Parist, J., Kasischke, E., Slaughter, C., Viereck, L., Christensen, N., Dobson, M. C., Ulaby, F., Richards,
J., Milne, A., Sieber, A., Ahern, F. J., Simonett, D., Hoffer, R., Imhoff, M., & Weber, J. (1990). The effect of
changing environmental conditions on microwave signatures of forest ecosystems: preliminary results of the
March 1988 Alaskan aircraft SAR experiment. International Journal of Remote Sensing, 11(7), 1119–1144.
DOI: 10.1080/01431169008955084.

Wegmüller, U., Holecz, F., Wan, Y., & Kattenborn, G. (1994). Theoretical sensitivity of ERS-1 SAR backscatter
over forest. In International Geoscience and Remote Sensing Symposium (IGARSS). Pasadena, United States:
IEEE, 2477–2479. DOI: 10.1109/IGARSS.1994.399774.

Weiss, M., & Baret, F. (2017). CAN EYE V6.4.7 User manual.
URL http://www6.paca.inra.fr/can-eye/Media/fichiers/CAN EYE User Manual V6.4, accessed 03/07/2017.

Westman, W. E., & Paris, J. F. (1987). Detecting forest structure and biomass with C-band multipolarization
Radar: Physical model and field tests. Remote Sensing of Environment, 22(2), 249–269. DOI: 10.1016/0034-
4257(87)90061-7.

65



References

White, M. A., de Beurs, K. M., Didan, K., Inouye, D. W., Richardson, A. D., Jensen, O. P., O’Keefe, J., Zhang, G.,
Nemani, R. R., van Leeuwen, W. J. D., Brown, J. F., de Wit, A., Schaepman, M., Lin, X., Dettinger, M., Bailey,
A. S., Kimball, J., Schwartz, M. D., Baldocchi, D. D., Lee, J. T., & Lauenroth, W. K. (2009). Intercomparison,
interpretation, and assessment of spring phenology in North America estimated from remote sensing for
1982-2006. Global Change Biology, 15(10), 2335–2359. DOI: 10.1111/j.1365-2486.2009.01910.x.

Wiseman, G., McNairn, H., Homayouni, S., & Shang, J. (2014). RADARSAT-2 Polarimetric SAR response to crop
biomass for agricultural production monitoring. IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 7(11), 4461–4471. DOI: 10.1109/JSTARS.2014.2322311.

Zeileis, A., Grothendieck, G., Ryan, J. A., Ulrich, J. M., & Andrews, F. (2017). zoo: S3 Infrastructure for Regular
and Irregular Time Series (Z’s Ordered Observations).
URL https://cran.r-project.org/web/packages/zoo/index.html, accessed 03/07/2017.
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