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Abstract 

The aim of this master thesis was to investigate the potential of remote sensing methods for classifying 

clove production systems in north-eastern Madagascar. This study was embedded in the framework of 

the Swiss Programme for Research on Global Issues for Development (r4d - research for 

development), within the project 'Managing telecoupled landscapes for the sustainable provision of 

ecosystem services and poverty alleviation'. To reliably classify clove production systems, information 

on the individual tree level as well as extensive information about the entire study area is required. 

Remote sensing enables obtaining this combination of information even in regions otherwise difficult 

to access.  

The classification of the clove production systems in this thesis is based on very high resolution multi-

spectral satellite imagery. A total of four sometimes complex steps were necessary for the final 

classification. The four steps were: 1) the detection of individual potential clove trees, 2) the 

classification of clove trees, 3) the classification of land cover and land use classes (LULC) and 4) the 

distinction of productive clove production systems from the unproductive LULC classes.  

The complex structure of the Madagascan tropical rainforest, in particular complicates steps 1) and 2). 

Our investigation found existing tree detection and classification algorithms to perform insufficient in 

the tropical rainforest. Here, for the first time, we applied the Circular Hough Transform algorithm 

(CHT) for tree detection. With the CHT algorithm, we detected 97.9% of the reference clove trees in 

the study area. Using a combination of spectral and structural information, it was possible to 

distinguish the clove trees from the other tree species. The classification, which was carried out 

applying a Random Forest (RF) classifier, resulted in a producer accuracy of 70.7% and a user 

accuracy of 59.2% for the class of clove trees. The third processing step was to reliably distinguish the 

partly spectrally similar LULC classes from each other. Tree occurrence information was used in 

addition to the spectral information for the classification. This step resulted in an overall accuracy of 

87.5%. The fourth step of the classification into the three prevalent clove production systems pasture, 

clove plantation and agroforest was based on a threshold approach. Only LULC classes containing a 

previously defined number of clove trees were considered active clove production systems. This final 

classification resulted in a total accuracy of 77.9%. 

This study was the first time that clove trees and clove production systems were classified and mapped 

over a larger area. Based on these new findings, it was possible to calculate a yield estimate for the 

cloves produced in the entire study area. In conclusion, the study demonstrates that remote sensing is a 

suitable means of classifying clove production systems in Madagascar. However, it was also found 

that the limited availability of reliable reference data on clove trees per se and clove yields led to high 

uncertainties in the yield estimates. The collection of better in situ data is therefore a prerequisite for 

more reliable statements about the clove production systems and their respective yields. 
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Zusammenfassung 

Ziel dieser Masterarbeit war es, das Potential von Fernerkundungsmethoden zur Klassifizierung von 

Nelkenproduktionssystemen im Nordosten Madagaskars zu untersuchen. Diese Studie wurde im 

Rahmen des Schweizerischen Forschungsprogramms für globale Entwicklungsfragen (r4d - research 

for development) im Rahmen des Projekts "Managing telecoupled landscapes for the sustainable 

provision of ecosystem services and poverty reduction" (Management von telecoupled Landschaften 

zur nachhaltigen Bereitstellung von Ökosystemdienstleistungen und Armutsbekämpfung) erstellt. Um 

Nelkenproduktionssysteme zuverlässig klassifizieren zu können, sind Informationen auf der einzelnen 

Baumebene sowie umfangreiche Informationen über das gesamte Untersuchungsgebiet erforderlich. 

Die Fernerkundung ermöglicht es, diese Kombination von Informationen auch in sonst schwer 

zugänglichen Regionen zu erhalten. 

Die Klassifizierung der Nelkenproduktionssysteme in dieser Arbeit basiert auf hochauflösenden 

multispektralen Satellitenbildern. Insgesamt waren für die endgültige Klassifizierung vier teilweise 

komplexe Schritte notwendig. Die vier Schritte waren: 1) die Erkennung von einzelnen potenziellen 

Nelkenbäumen, 2) die Klassifizierung von Nelkenbäumen, 3) die Klassifizierung von 

Landbedeckungs- und Landnutzungsklassen (LULC) und 4) die Unterscheidung von produktiven 

Nelkenproduktionssystemen von den unproduktiven LULC-Klassen.  

Die komplexe Struktur des madagassischen tropischen Regenwaldes erschwert insbesondere die 

Schritte 1) und 2). Unsere Untersuchungen ergaben, dass die existierenden Algorithmen zur 

Erkennung und Klassifizierung von Bäumen im tropischen Regenwald nicht ausreichend sind. Hier 

haben wir zum ersten Mal den Circular Hough Transform Algorithmus (CHT) zur Baumdetektion 

eingesetzt. Mit dem CHT-Algorithmus haben wir 97,9% der Referenz-Nelkenbäume im 

Untersuchungsgebiet entdeckt. Durch die Kombination von Spektral- und Strukturinformation konnte 

man die Nelkenbäume von den anderen Baumarten unterscheiden. Die Klassifizierung, die mit Hilfe 

eines Random Forest (RF) Klassifikators durchgeführt wurde, ergab eine Produzentengenauigkeit von 

70,7% und eine Benutzergenauigkeit von 59,2% für die Klasse der Nelkenbäume. Der dritte Schritt 

bestand darin, die teilweise spektral ähnlichen LULC-Klassen zuverlässig voneinander zu 

unterscheiden. Zusätzlich zu den Spektralinformationen für die Klassifizierung wurden auch 

Informationen über das Vorkommen von Bäumen verwendet. Dieser Schritt führte zu einer 

Gesamtgenauigkeit von 87,5%. Die vierte Stufe der Einteilung in die drei vorherrschenden 

Nelkenproduktionssysteme Weide, Nelkenplantage und Agroforst basierte auf einem 

Schwellwertansatz. Nur LULC-Klassen, die eine vorher festgelegte Anzahl von Nelkenbäumen 

enthielten, wurden als aktive Nelkenproduktionssysteme betrachtet. Diese endgültige Klassifizierung 

ergab eine Gesamtgenauigkeit von 77,9%. 

Diese Studie war das erste Mal, dass Nelkenbäume und Nelkenproduktionssysteme klassifiziert und 

flächendeckend kartiert wurden. Auf Basis dieser neuen Erkenntnisse konnte eine Ertragsschätzung 

für die im gesamten Untersuchungsgebiet produzierten Nelken berechnet werden. Die Studie zeigt, 

dass die Fernerkundung ein geeignetes Mittel zur Klassifizierung der Nelkenproduktionssysteme in 

Madagaskar ist. Es wurde jedoch auch festgestellt, dass die begrenzte Verfügbarkeit verlässlicher 

Referenzdaten über Nelkenbäume und Nelkenerträge zu hohen Unsicherheiten bei den 

Ertragsschätzungen führten. Die Erfassung besserer in situ Daten ist daher eine Voraussetzung für 

zuverlässigere Aussagen über die Nelkenproduktionssysteme und deren Erträge. 
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1 Introduction 

In times of ongoing transformations induced by climate and global socio-economic processes, 

monitoring land use and land cover (LULC) changes enables to better understand how these processes 

affect our planet. Earth observation techniques allow gathering global and comprehensive data 

providing cross-thematic information about these transformations. 

1.1 Subordinate frame of the project 

This master thesis was conducted in the framework of the ‘Swiss Programme for Research on Global 

Issues for Development’ (r4d programme n.d.). The findings will be of further use for the r4d project 

‘Managing telecoupled landscapes for the sustainable provision of ecosystem services and poverty 

alleviation’.  

This project focuses on forest frontier landscapes in the humid tropics in Laos, Madagascar and 

Myanmar. It is these landscapes which exemplary show the consequences from the difficulty of 

maintaining human and economic development in balance with limited natural resources (Managing 

telecoupled landscapes n.d.). These socio-ecological systems on the one hand have to meet increasing 

global demands for agricultural expansion but on the other hand these systems are expected to provide 

worldwide environmental benefits (Managing telecoupled landscapes n.d.). ‘Telecoupling’ describes 

this phenomenon of combined socio-economic (‘globalization’) and environmental (‘teleconnection’) 

interactions between two or more distant socio-ecological systems (Managing telecoupled landscapes 

n.d.). 

One such ‘telecoupled’ landscape is the study site of this master thesis, which is located in north-

eastern Madagascar. There, most farmers are smallholders who 

mainly cultivate crops for subsistence (Harvey et al. 2014). In 

order to secure products which cannot be produced on their plots, 

Madagascan farmers aim to earn money with the cultivation of so-

called ‘cash crops’ such as for example coffee, vanilla or cloves 

(Lobietti 2013, Danthu et al. 2014, Thomson 2016). The amount 

of money that can be made by selling these cash crops depends on 

the amount produced and the global market price (Lobietti 2013, 

Thomson 2016). Due to the lack of reliable government statistical 

data, it is not possible to make accurate statements about the 

amount of cash crops produced in this region. It is therefore not 

possible to predict the effects of changes in global demand on Figure 1 – Clove tree in the study site 
(Photo credit: E. Celio) 
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local production volumes and the local population. But it is exactly this interaction between the global 

and the local system, which is of interest for the r4d project. In order to better understand the 

relationship between the two systems, the r4d project is investigating one of these cash crops, the 

clove tree, in more detail.  

Clove trees are mainly grown for production purposes in Indonesia, Madagascar and Tanzania 

(Lobietti 2013). For historical reasons cloves are farmed in three different production types. These are 

pasture, clove plantation and (complex) agroforest systems (Lobietti 2013, Danthu et al. 2014, 

Levasseur et al. 2012).  

 

 

Figure 2 – Picture taken on the study site showing some pasture in the front and plantation and agroforest in the back. 

Note the clove tree’s characteristic round form. (Photo credit: E. Celio) 

 

The two main products from clove cultivation are the dried flower buds and the essential oil (Danthu 

et al. 2014). As the global demand for both of these products is rising, cloves are of increasing 

importance on the world’s trading markets (FAOSTAT n.d.) and for the national economies of the 

producer countries. This is especially the case for Madagascar, being the world’s second largest 

producer and even the world’s leading exporter of cloves (FAOSTAT n.d.). 

Thus, the increasing global demand for cloves makes them also more important on a local scale for the 

farmers cultivating them as cash crops (Danthu et al. 2014). In order to assess both future social and 

ecological changes along with the increasing significance of cloves, it is deemed necessary to 
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investigate on today’s production situation. This is where this master thesis takes up: A method has 

been developed to produce an estimate of the clove production based on Earth observation data.  

1.2 Traditional methods to map and characterize areas with clove trees 

A general challenge in Madagascar is the lack of reliable government statistical data. Although there is 

the ‘National Institute of Statistics’ (INSTAT) from the ‘Ministry of Agriculture and the Population’ 

its data is considered outdated and unreliable (Rakotondrasoa and Olitina 2014). In addition, Waldner 

et al. (2015) state Madagascar as one of the priority countries for cropland identification as there is 

little accurate and current data available. 

However, more reliable data is provided by the ‘Food and Agriculture Organization of the United 

Nations’ (FAO) and the FAO’s ‘World Food Programme’ (FAO/WFP). The FAO is actively 

collecting data in Madagascar (Rakotondrasoa and Olitina 2014). Their data is most valuable to assess 

a countries’ overall situation in the agricultural sector. However, this data is too coarse when data 

about a specific region or a specific crop is needed. Thus if such specific data is needed, it must first 

be collected by researchers in the field.  

In regard to clove production in Madagascar there are almost no data and few studies at hand. In terms 

of available large scale data there is only the above mentioned official data of the FAO (FAOSTAT 

n.d.). This data is informative about general trade indicators, such as Madagascar’s total clove 

production or its trading balances. However, no official data exists about regional clove production 

systems.  

Recent studies about the clove production in Madagascar can be counted on one hand (Michels et al. 

2011, Pfund et al. 2011, Lobietti 2013, Danthu et al. 2014, Levasseur et al. 2012). These studies assess 

the different types of clove production systems by conventional fieldwork and interview techniques in 

relatively small sampling areas. Such methods are time consuming, costly, and potentially subjective. 

These downsides of fieldwork are intensified by the remoteness of the area and the impassibility of the 

tropical terrain.  

It is therefore difficult to find sufficient information about possible interactions between the global and 

local systems due to today's data availability. For this reason, the r4d project hopes to use remote 

sensing to generate more comprehensive and meaningful data for their research area(s). 
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1.3 Advantages of remote sensing 

As can be seen from the above description of the current situation, new approaches have to be taken 

into consideration to obtain large-scale, quantitative data collections about clove trees and production 

systems. When it comes to gathering data of remote or inaccessible areas, remote sensing often is a 

useful solution. Remote sensing in general allows acquiring data for large areas in rather short time. 

Furthermore, different sensor systems are available enabling measuring different aspects and thus 

solving certain questions with an even broader range of information (Wulder and Franklin 2003). 

Another advantage of remote sensing data is the large temporal extent of certain products (Lefsky and 

Cohen 2003). 

This specific advantage as well as the general practicability of remote sensing as data source is also 

shown by Zaehringer et al. (2015). This study is the first and only of its sort so far for Madagascar 

mapping land cover and land use changes for a study area of more than 24’000km
2
. The study was 

based on Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM
+
) 

data whose combination resulted in covering a long period of time allowing the monitoring of change 

over time.  

While a 30 x 30 m or a 15 x 15 m (using the panchromatic channel of ETM
+
) spatial resolution 

(National Aeronautics and Space Administration n.d.) is very suitable to fulfil the above mentioned 

task of detecting LULC and its changes over large regions, distinguishing different small-area clove 

production types is not possible as this requires information on the individual tree level for which their 

respective spatial resolution is too coarse. Remote sensing is therefore not per se the ideal solution to 

obtain more data on local clove production. Especially today’s availability of a wide suite of remote 

sensing data sources and products makes it essential to carefully choose the most suitable data for the 

planned application in the research field of this study (Lefsky and Cohen 2003, Wulder and Franklin 

2003). 

The choice of system in this case is for example limited by the large extent of the study area, the 

frequent cloud cover in the area as well as the very limited financial resources available. Such 

resources are mainly limited as the outputs of this r4d project are intended to be potentially applicable 

by the local agencies in Madagascar. Thus data which is either available at no charge or at low price is 

preferred. Hence, LiDAR (light detection and ranging) as well as imaging spectrometer 

(‘hyperspectral’) or other airborne data is not considered as it is too expensive (Fassnacht et al. 2016). 

UAV (unmanned aerial vehicle, drone) data is unsuitable as well due to the vastness of the study area 

to be covered.  
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The only remaining suitable data sources are satellites providing multi-spectral data. This has the 

advantages of large areas being covered and very often suitable satellite images are readily available in 

data archives. Thus no long and cost intensive data acquisition campaign is necessary. Furthermore 

VHR (very high resolution) satellite data enabling single tree detection (e.g. Pu and Landry 2012) can 

be acquired for a decent price nowadays thanks to technological progress and competition between 

data providers (Fassnacht et al. 2016, Ørka and Hauglin 2016).  

Although multi-spectral satellite data actually meet all user requirements of the r4d project, one has to 

be aware that the almost permanent cloud cover over the study area limits the applicability of this data. 

However, if there is a cloudless scene like the one used for this thesis, it was shown that VHR multi-

spectral satellite data is suited to detect single clove trees and classify clove production systems on 

large areas. With suitable data, remote sensing is thus a sustainable data source for the r4d project. 

1.4 Remote sensing methods and studies related to tree species 

classification 

Despite of little data on the study object itself, a comprehensive amount of literature is available 

regarding the methodological parts of this thesis. As this master thesis aimed to develop a method to 

produce an estimate of clove bud production in the study site, two parameters are of major interest. 

First, the number of clove trees growing in the study area. Second, the surroundings within which they 

grow.  

The first parameter is of interest because it allows yield data per tree to be extrapolated to the entire 

study area. To obtain this parameter, two main methodologies had to be applied. First, potential clove 

trees had to be identified. This was achieved by a single tree detection method (see section 2.3.1). 

Second, the clove trees had to be distinguished from the remaining detected trees. This was done by a 

tree species classification (see section 2.3.2). 

The second parameter is required to determine which of the detected and classified clove trees are 

used for the production of clove buds. Only those trees that grow in a clove production system 

(pasture, clove plantation and agroforest) were considered to be contributory trees. These clove 

production systems were found using a two-step classification of the LULC classes present in the 

study area (see section 2.3.3). 

The following subsections provide an overview of the functionality and applications of the above-

mentioned methods. 
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1.4.1 Single tree detection 

As multi-spectral satellite data are considered the best choice for this thesis, only single tree detection 

methods using passive optical data will be taken into account for this methodological overview. 

Nevertheless, single tree detection is also possible with other sensor systems as for example LiDAR 

(Brandtberg et al. 2003, Koch et al. 2006, Kaartinen et al. 2012). 

Crown delineation algorithms 

Focusing on passive optical sensor systems, single tree detection is mainly performed using VHR data 

(for applications of satellite VHR data see e.g. Gougeon and Leckie 2006, Ke and Quackenbush 2007, 

dos Santos et al. 2017). Culvenor (2003) defines VHR imagery in this specific case as “[…] imagery 

that facilitates the direct recognition of […] individual tree crowns.”  

While individual trees can and have been detected manually from large scale aerial photography in the 

past, today’s studies aim to automate tree crown delineation in order to obtain reliable large scale tree 

inventories. “A fundamental assumption inherent in crown delineation algorithms is that the center of 

a crown is brighter than the edge of the crown, or more particularly, the boundary between crowns” 

(Culvenor 2003). Based on this essential feature, Culvenor (2003) groups tree crown delineation 

algorithms in three different algorithm groups. They are ‘bottom-up’, ‘top-down’ and ‘template-

matching’ (Culvenor 2003). 

‘Bottom-up’ crown delineation algorithms 

‘Bottom-up’ algorithms are focusing on the shadows around the trees. These ‘valleys’ are mostly 

found by searching the scene for local minima which in the end form a separating line around the 

individual trees. Such approaches have the disadvantage that they are based on the assumption of 

every tree having a more or less encircling shadow. Thus such approaches are less suited for very 

dense and complex forests and under certain circumstances even for sparse forest stands. Furthermore, 

the result becomes dependent on the solar zenith angle as shade varies depending on the position of 

the sun (Gougeon 1999, Culvenor 2003). 

‘Top-down’ crown delineation algorithms 

‘Top-down’ algorithms are detecting trees by searching for radiometric maxima representing tree 

crown’s centers. These centers are then used as seeds to mathematically grow the tree crown. The stop 

criterion for tree crown growth in general is defined by a global minimum threshold or a minima 

boundary as created in the ‘bottom-up’ algorithms. This approach works rather well for dense forests. 

Problems occur in less dense and homogenous forests when there is large background brightness 
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variation. This could result in the identification of bright soil pixels as local maxima as well 

(Brandtberg and Walter 1998, Culvenor 2002, Culvenor 2003). Another ‘top-down’ algorithm 

proposed by Pinz (1991) focuses more on the tree’s position, as well defined by a local maximum, but 

does not aim to find the tree’s exact boundaries. Instead, successive concentric circles centering on the 

local maximum are created for which the average brightness of the pixels within is calculated. If the 

shape of this brightness distribution corresponds with the user-set threshold an estimate of the crown’s 

radius is calculated. The advantage of this approach is that it only requires little user input. On the 

other hand, it is unclear how substantially the user-set threshold influences the final output (Pinz 1991, 

Culvenor 2003). 

‘Template-matching’ crown delineation algorithms 

The last of the three algorithm groups, the so-called ‘template-matching’, tries to find trees in forests 

featuring variable spacing of the trees and having differently sized tree crowns. Furthermore, 

‘template-matching’ algorithms do not require tree boundaries which makes them applicable for 

situations where there is no or very little shade around the trees as for example in sparse forests. “The 

algorithm involves matching a three-dimensional synthetic image model (or template) of tree crowns 

with radiometric values in the image” (Culvenor 2003). This makes this algorithm computationally 

rather expensive and also dependent on the a priori created model of the trees. Another challenge of 

these algorithms is that they indeed can cope with different crown sizes but not with different crown 

forms as they then do not match the template. Thus it makes it hard to use this kind of algorithm in 

mixed species forests (Culvenor 2003). 

Single tree detection in tropical forests 

Irrespective of which group the algorithm belongs to, most approaches to detect single trees were 

developed for temperate and boreal forests (Pinz 1991, Gougeon 1995, Brandtberg and Walter 1998, 

Culvenor 2002, Pouliot et al. 2002, Wang et al. 2004, Gougeon and Leckie 2006, Hirschmugl et al. 

2007, Wolf and Heipke 2007, Wang 2010). Others have focused on detecting specific trees in orchards 

or plantations (Daliakopoulos et al. 2009, Aksoy et al. 2012, Srestasathiern and Rakwatin 2014, 

Mahour et al. 2016). However, applications in tropical forests are few as tropical forests pose a range 

of challenges regarding single tree detection. Mainly, the closed canopies of tropical forests make 

automatic tree crown delineation almost impossible as tree crown boundaries often are barely 

recognizable (Culvenor 2003, Clark et al. 2005). Also, template algorithms are not particularly 

suitable for the detection of single trees in the tropics, since the trees there are uneven in shape and 

size due to the high diversity of species (Culvenor 2003, Clark et al. 2005, Baldeck et al. 2015). 

Hence, there is a clear gap to fill by finding an algorithm which is capable of detecting single trees in 
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tropical forests. However, various tests have shown that this gap cannot be filled with the standard 

procedures mentioned above. For this reason, a method was developed in this thesis which to some 

extent is a combination of the ‘bottom-up’ and the 'template matching' approach (see section 2.3.1).  

1.4.2 Tree species classification 

Developing a reliable method to detect individual trees also in tropical forests is moreover important 

for tree species classification. An accurate classification result is dependent on two principles. First, 

there has to be a high similarity of features within a class, and second, there has to be a high 

dissimilarity of features between the different classes (Ren and Malik 2003). Hence, accurate single 

tree delineation will improve the spectral signatures of each tree species as there are fewer pixels from 

outside the actual tree crown impurifying the signature. This is especially the case when averaged 

spectra for crown objects are calculated (Fassnacht et al. 2016). 

The most used remote sensing sensor systems for tree species classification are hyperspectral systems. 

Multi-spectral systems are widely used for tree classification purposes especially because they allow 

covering larger forest areas and are less cost intensive than hyperspectral systems. These passive 

optical sensor systems have several advantages to distinguish different tree species. According to 

Fassnacht et al. (2016), the reflected fraction of solar irradiation at the different sensor wavelengths 

provide information about the tree canopy’s chemical properties of the plants tissue, leaf morphology, 

canopy structure, and tree size. Furthermore, crown texture information can be analyzed as well as 

information source of the tree phenology. All these information strongly enhance the possibility to 

distinguish different tree species as these parameters vary between different species. Thus, the more of 

such information can be gathered the more likely is a low misclassification in the classification 

outcome. 

Tree species classification algorithms 

An important part of the species classification process is the classification algorithm itself. To start 

with, there is no ultimate classifier for tree species. As important as the choice of a classifier is the 

quality of the data and that the data matches the requirements of the classifier. For instance, the well-

known classifiers such as maximum likelihood classifier or LDA (Linear Discriminant Analysis) both 

require the data to be normally distributed. Hence, classifying the data with one of these classification 

algorithms will only succeed if the input data is normally distributed. Still, they are rather popular for 

tree species classification as there are many software implementations (Franklin et al. 2003, Fassnacht 

et al. 2016). 
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Gaining more and more popularity in tree species classification approaches are the so-called non 

parametric approaches such as Support Vector Machine (SVM) or Random Forest (RF). Advantages 

of such algorithms are that the data can be distributed in any given way. Furthermore, they are capable 

of dealing with high-dimensional data and especially RF algorithms are robust and not very sensitive 

to the number of input variables. While RF is rather easy to apply SVM requires the user to set the 

kernel function parameters which can be rather demanding and highly influence the classification 

output (Franklin et al. 2003, Fassnacht et al. 2016). 

Tree species classification in tropical forests 

Although there are many sensor systems and classification algorithms to choose from, automated tree 

species classification in tropical forests is a mainly unresolved problem (Baldeck et al. 2015). 

One reason for this is that a high quality crown delineation is a necessary prerequisite in order to be 

able to classify trees based on crown-mean spectra (Baldeck et al. 2015). As already mentioned in 

section 1.4.1, both the closed canopies and the change in scale of the target features lead to the 

problem that automatic tree crown delineation in tropical forests is almost impossible (Clark et al. 

2005, Baldeck et al. 2015). It is therefore mainly the dependence on the detection of individual trees, 

which makes tree species classification difficult. 

Another major challenge in tropical forests is the high species diversity of sometimes more than 300 

species per hectare. Although there are several studies showing that it is possible to distinguish und 

properly classify several species based on their spectral differences, mapping these species was not 

successful (Cochrane 2000, Clark et al. 2005, Asner et al. 2008, Asner and Martin 2011, Immitzer et 

al. 2012, Asner et al. 2017). That is because the investigated species could be distinguished from each 

other but not from all the hundred other spectrally unknown species surrounding them.  

Baldeck et al. (2015) have identified a potential cause of the above challenge to distinguish analyzed 

tree species from unknown species in the classification approach. In all these studies the classification 

approach was a multi-class approach. Such an approach entails representative training data for all 

model species present in the scene. And although for example (Asner et al. 2008) showed that it is 

possible to analyze more than a thousand species for their leaf reflectance and transmittance spectra, 

finding all species present in the scene is not very promising as classification accuracy decreases with 

increasing number of classes (Baldeck and Asner 2014). 

Instead, Baldeck et al. (2015) propose a single-class classification approach as this kind of approach 

improves classification accuracy for the focal class and not the average accuracy for all the model 

classes. Furthermore, single-class classification requires far less training data and allows species 
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mapping in the area as this method explicitly tries to distinguish the focal species from the background 

comprised of all other species. Still, this approach is not limited to one species but several species can 

be classified with this approach by combining the single-class models of different species. Baldeck et 

al. (2015) were able to show that this approach works for at least three tree species and Ferreira et al. 

(2016) did so for eight species.  

Although the approach of Baldeck et al. (2015) cannot be adopted as a whole, since they have 

delineated the tree crowns manually and not automatically, the tree classification approach in this 

thesis is also based on the principle of binary classification (see section 2.3.2). 

1.4.3 Production type classification 

Clove production types as such have so far never been classified based on remote sensing data. The 

difficulty of classifying clove production types lies in the classification of land use classes. Cihlar and 

Jansen (2001) define land use as the ways land covers are used by humans. The three clove production 

systems (pasture, clove plantation and agroforest) are therefore to be seen as land use classes used by 

humans for the production of cloves.  

According to Foody (2002), "the production of thematic maps, such as those depicting land cover, 

using an image classification is one of the most common applications of remote sensing". However, 

since land uses cannot be derived directly from a satellite image based on the spectral information 

(Aplin 2003) their detection and classification is much more difficult and therefore less common in the 

literature (Lackner and Conway 2008). 

As studies (e.g. Barnsley and Barr 1996, Zhang and Wang 2003, Lackner and Conway 2008) show, 

the difficulty in the land use classification is, among other things, that the classification requires an 

intermediate step. The generally used method is that first the land cover classes are classified (mostly 

purely on the basis of spectral properties) and in a second step with various additional, often object 

based information, the classification of the land use classes takes place.  

Cihlar and Jansen (2001) express this challenge of deriving land use from a land cover map with the 

following function 

𝐿𝑈𝑖 = 𝑓(𝐿𝐶𝑗, 𝑒1, … , 𝑒𝑛 , 𝑠𝑐1, … , 𝑠𝑐𝑛) 

where 𝑒 and 𝑠𝑐 are environmental and socio-economic or cultural variables and 𝑗 and 𝑖 are specific 

land use (𝐿𝑈) and land cover (𝐿𝐶) types (Cihlar and Jansen 2001). 

In case of clove production types, only the increased and targeted occurrence of clove trees (= 𝑒), 

distinguishes clove production types (= 𝐿𝑈𝑖) from the land covers (= 𝐿𝐶𝑗) present in the study area.  
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For this reason, a production type classification approach was developed, which distinguishes the 

production types from the surrounding land covers based to the number of detected clove trees (see 

section 2.3.3). 

1.5   Research questions 

In order to find ways in which insufficient official data on clove trees and their production can be 

enhanced, this thesis attempts to find answers to the following research questions: 

1) How can single tree crowns in tropical forests be detected and delineated in an automated way 

using multi-spectral satellite data? 

2) How can clove trees be classified in an automated way using the spectral properties of the 

canopy? 

3) How can clove production types be classified and what are the respective production rates 

quantified on a regional level? 

The methods used in this thesis and the results obtained are explained in the following manuscript of a 

scientific publication. The discussion and conclusion in the manuscript relate above all to the methods 

and the insights gained from them. The discussion at the end of this thesis will then address the above-

mentioned research questions and put the results in a broader context.  
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Abstract 

The demand for clove products, mainly dried buds and essential oil, is increasing on the global 

markets. Consequently, the importance of clove trees is also increasing on the local level for 

smallholders cultivating them as cash crops. Due to the limited official data on the local production, it 

is of major interest to investigate alternative approaches, such as remote sensing based methods, to 

quantify today’s production situation. To estimate clove bud yields in our study area in north-eastern 

Madagascar, the amount of clove trees had to be determined. Therefore, a single tree detection and 

tree species classification were performed. We propose using Circular Hough Transform (CHT) for 

the automated detection of individual clove trees in the tropical forests of Madagascar. Tree species 

classification, based on the extracted features for every detected circular tree crown, was performed by 

using a Random Forest (RF) classifier. We then classified and mapped the different production types 

(pasture, clove plantation and agroforest) within which the detected clove trees are growing. Based on 

the number of detected clove trees growing in clove production systems we provide a clove bud yield 

estimate. Our results show that 97.9% of all reference clove trees were detected by the CHT. 

Classifying clove and non-clove trees resulted in a producer accuracy of 70.7% and a user accuracy of 

59.2% for the clove trees. The classification of the clove production types resulted in an overall 

accuracy of 77.9%. By averaging different clove tree yield estimates obtained from the literature we 

calculated an average total yield of approximately 575 tons/year for our 25’600 ha study area. 

 

Keywords: Circular Hough Transform, tree species classification, clove bud yield estimation, LULC 

classification, random forest, very high resolution satellite image, Pléiades satellite 
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2.1 Introduction 

Obtaining statistical information about crops is of wide interest. In the developed countries, where 

industrial agriculture is the dominant form of farming (Bowler 2014), this information is often 

available due to official data collections and close monitoring of the crops by the farmers. Thus, 

relatively accurate projections about crop health and yields are possible.  

85% of the world’s farms are smallholder farms which often produce for subsistence purposes and are 

not officially overseen (Nagayets 2005). Often, no agricultural census data or agricultural statistics are 

available in less developed countries, where most of these smallholder farms are located (Nagayets 

2005). Thus, it is of high relevance to find methods to collect large scale information about crops 

cultivated on smallholder farms.  

Remote sensing offers a practicable approach to gain insights about cultivated crops and land use 

changes on a large scale (Nellis et al. 2009). Information about plant traits and the plant’s health 

(Haboudane et al. 2002, Reyniers and Vrindts 2006, Haboudane et al. 2008, Chen et al. 2010, 

Homolová et al. 2013), but also about crop distribution or crop yield (Doraiswamy et al. 2003, Ferencz 

et al. 2004, Yang et al. 2004, Ye et al. 2006, Yao et al. 2008) can be gathered.  

The crop to be investigated in this study, using remote sensing data, is cloves (Syzygium aromaticum). 

Cloves are mainly produced in Indonesia, Madagascar and Tanzania (Lobietti 2013). The two main 

products from clove cultivation are the dried flower buds and the essential oil (Danthu et al. 2014). As 

the global demand for both of these products is rising, cloves are of increasing importance on the 

world’s trading markets (FAOSTAT n.d.) and for the national economies of the producer countries. 

This is especially the case for Madagascar, being the world’s second largest producer and even the 

world’s leading exporter of cloves (FAOSTAT n.d.). 

Most farmers in Madagascar are smallholders who mainly cultivate crops for subsistence (Harvey et 

al. 2014). In order to secure products which cannot be produced on their plots, Madagascan farmers 

aim to generate revenue with the cultivation of cash crops such as for example coffee, vanilla, or 

cloves (Lobietti 2013, Danthu et al. 2014, Thomson 2016). The increasing global demand for cloves 

makes cultivating them also more important on the local scale (Danthu et al. 2014). For historical 

reasons, cloves are farmed in three different production types. These are pasture, clove plantation, and 

agroforest systems (see Table 1 for the definitions) (Lobietti 2013, Danthu et al. 2014, Levasseur et al. 

2012).  
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Figure 3 – Schematic and false-color satellite image representation of the three clove production type systems, 

(a) pasture,  (b) clove plantation and (c) agroforest. 

 

To estimate the clove production in the study site, two main parameters are of interest: The number of 

clove trees and in which production type they grow in. Therefore, this study focuses on the following 

three aspects: detecting and classifying single clove trees and classifying the clove production types 

within which the detected trees grow.  

Several studies have successfully shown the potential of single tree detection or tree crown delineation 

in temperate and boreal forests (Pinz 1991, Gougeon 1995, Brandtberg and Walter 1998, Culvenor 

2002, Pouliot et al. 2002, Wang et al. 2004, Gougeon and Leckie 2006, Hirschmugl et al. 2007, Wolf 

and Heipke 2007, Wang 2010). Others have focused on detecting specific trees in orchards or 

plantations (Daliakopoulos et al. 2009, Aksoy et al. 2012, Srestasathiern and Rakwatin 2014, Mahour 

et al. 2016). With the rapid progress in LiDAR techniques also LiDAR data is successfully used to 

detect single trees in such environmental settings (for an overview and further information see e.g. 

Kaartinen et al. 2012). Until today, delineating individual trees in tropical forest, however, is a 

challenging task as the tree delineation is mainly hindered by the closed canopies and the variability of 

crown shapes and sizes (Clark et al. 2005, Baldeck et al. 2015).   

A reliable method to detect and delineate individual trees is also important for the tree species 

classification (Baldeck et al. 2015). Several studies have already successfully classified different tree 

species based on remote sensing data (e.g. Boschetti et al. 2007, Ørka et al. 2009, Dalponte et al. 2012, 

Shang and Chisholm 2014). For tropical forests, however, an automated tree species classification is a 

mainly unresolved problem (Baldeck et al. 2015). Besides facing the challenge of hampered tree 
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delineation to obtain spectrally pure training data, one of the major challenges in tropical forests is the 

extremely high species diversity of sometimes more than 300 species per hectare (Baldeck et al. 

2015). Thus classification approaches used for temperate forests cannot be easily adapted to tropical 

forests. Although there are several studies demonstrating the possibility to distinguish und properly 

classify several species in tropical forests based on their spectral differences, mapping these species 

was not overly successful (Cochrane 2000, Clark et al. 2005, Asner et al. 2008, Asner and Martin 

2011, Immitzer et al. 2012, Asner et al. 2017). The investigated species could be distinguished from 

each other but not from all of the hundred or so other spectrally unknown species surrounding them. 

Baldeck et al. (2015) have identified a potential cause of the above challenge in the classification 

approach itself. All of these studies used a multi-class classification approach. Instead, Baldeck et al. 

(2015) proposed a single-class classification approach as this kind of approach improves classification 

accuracy for the focal class and not the average accuracy for all the model classes. Still, this approach 

is not limited to one species but several species can be classified by combining the single-class models 

of different species. Baldeck et al. (2015) were able to show that this approach worked in tropical 

forests for at least three tree species and Ferreira et al. (2016) did so for eight species. Although not 

naming it that way, Baldeck et al. (2015) performed a decomposition of a multi-class problem into a 

binary classification problem (Aly 2005).  

Clove production types as such have never been classified on the basis of remote sensing data. 

However, this is a form of land use classification. The three clove production systems (pasture, clove 

plantation and agroforest) are land use classes that are used by humans for clove production. While the 

creation of land cover maps is one of the most common applications of remote sensing (Foody 2002), 

the detection and classification of land uses is far more difficult and therefore less common (Lackner 

and Conway 2008). The main difficulty in classifying land use is that land use cannot be derived 

directly from the spectral information of a satellite image (Aplin 2003, Lackner and Conway 2008). In 

order to classify land use, a land cover map is usually required first. The challenge then lies in finding 

additional, meaningful information to classify the land use classes in a second step (e. g. Barnsley and 

Barr 1996, Cihlar and Jansen 2001, Zhang and Wang 2003, Lackner and Conway 2008). 
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2.1.1 Objectives of this study 

In order to assess both future social and ecological changes coming along with the increasing 

significance of cloves, it is necessary to get an overview of today’s production situation.  

Thus, this study aimed to 1) find a way to detect single trees and to delineate their crowns in the 

tropical forest in the north-eastern part of Madagascar based on very high resolution (VHR) passive-

optical, multi-spectral satellite data, 2) to identify clove trees in order to 3) classify different clove 

production types, and 4) to estimate the clove bud yield in the study area. 

These outputs are especially of interest regarding the possibility to create a comprehensive map of the 

different clove production systems in order to monitor future local land use and land cover changes. 

2.2 Study site, study object and data 

2.2.1 Study site 

The study site is located in the north-eastern part of the Analanjirofo region in Madagascar. 

Analanjirofo, literally meaning ‘forest of cloves’, is Madagascar’s main clove production region 

(Levasseur et al. 2012). The study site is roughly 16 x 16 km (25’600 hectares) including the environs 

of the villages of Mahavelona and Anjanavana (Figure 4). Bordering the study site is the Masoala 

National Park, being the last large continuous tropical rainforest on Madagascar and containing 1% of 

the world’s biodiversity (Därr and Heimer 2015). 

 

 

Figure 4 – The study site in the north-eastern part of Analanjirofo region, Madagascar. 
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Besides the urban areas and rice fields which are either located on Antongil Bay or along the rivers, 

the hillsides mostly contain agroforest systems, pastures with some individual trees or a few small rice 

paddies. Continuous dense primary forest is getting rare and can almost exclusively be found further 

away from human settlements.  

Due to the south-east trade wind hitting the island on its east coast, there is rain all over the year 

resulting in an annual precipitation of over 2000 mm in this region (Kägi 2008). This, combined with 

warm temperatures, leads to abundant growth of tropical vegetation.  

2.2.2 The clove tree and clove production types 

Although not originating from Madagascar, the clove tree (Syzygium aromaticum) is perfectly adapted 

to Madagascar’s tropical climate. Clove trees have consistent leafage of a shiny green. The tree is 

characterized by circular crowns with diameters of up to about 10 m and tree heights ranging from 12 

to 15 meters, resulting in narrow-oblong to almost round crown shapes (Lobietti 2013, Danthu et al. 

2014).  

The clove tree is mainly cultivated for its flower buds and its eugenol-containing essence extracted 

mostly from the leaves. In general, clove buds are produced for the first time at the age of around six 

years, high harvests can be expected from trees being twenty years or older (Ministère des Affaires 

étrangères 2012). The harvesting season is from October until December (Lobietti 2013). Clove yield 

undergoes a triennial cycle. A year of high yield is generally followed by two mediocre or even poor 

yield years (Levasseur et al. 2012, Ministère des Affaires étrangères 2012). On average, balancing age 

and cycle related yield fluctuations, a clove tree yields 2-3 kg of dry clove buds per year (Locatelli 

2000, Clove Crop Cultivation Guide n.d., Horticulture Spice Crops n.d.). To gain the eugenol-

containing essence, the young leaves are cut. This can be done once every four years and results in 

approximately 80 kg of leaves per tree. The harvest of clove buds is incompatible with the harvest of 

leaves (Ministère des Affaires étrangères 2012). 

There are three main production systems to cultivate the clove tree in Madagascar. They are Silvo-

pastoral systems (hereafter called ‘pastures’), Monoculture clove plantations (here after called ‘clove 

plantations’) and Multicrop-multilayer agroforestry systems (hereafter called ‘agroforest’) (Celio 

2016). These three production types are part of the following five major land use and land cover 

(LULC) classes of which the study area consist (Table 1). 
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Table 1 – Definitions of the five major LULC classes and the tree production type systems present in the study area. 

LULC class Definition 

Grassland 

Grasslands are areas of grasses for livestock grazing. These patches of grassland are often surrounded by 

bamboo tree hedges and have only a few trees (one or two) in the patch (often a mango or litchi tree) (Celio 

2016). 

Silvo-pastoral production systems (‘pastures’) are defined as grasslands with mainly clove trees in which 

other trees such as mango or litchi can be found sporadically. Clove trees can be either planted in straight 

lines or are scattered over the pasture (Celio 2016). 

Plantation 

Plantations are areas that have been planted for the production of food or cash crops. These crops make up 

approximately 75-100 percent of the cover. Only clove plantations are considered in the study site (The 

USGS Land Cover Institute (LCI) n.d.). 

Monoculture clove plantations (‘clove plantations’) are densely planted clove stands with no other use 

found on the same plot (Celio 2016). 

Forest 

Forests are characterized by tree cover which, together with woody vegetation, makes up the largest part of 

the area. Madagascar‘s forests consist of evergreen species resulting in a year-round green canopy (Kägi 

2008). 

Multicrop-multilayer agroforestry production systems (‘agroforest’) in general are composed of three layers 

of vegetation. They include clove trees, fruit trees, primary forest trees, and coffee plants (in decreasing 

occurrence) (Michels et al. 2011, Celio 2016). 

Bare soil/Rice 

paddies 

Areas with little or no "green" vegetation. Rice paddies were non-vegetated at the time of the satellite 

overpass as they are harvested in January (seeded in August) and May/June (seeded in October/November). 

Bare soil results mainly from slash-and-burn activities (Celio 2016). 

Urban areas Areas containing artificial, human made structures such as buildings or roads. 

 

 

The detection and classification of land use classes, as the three production types are, however, is not 

trivial (see 2.1). In order to separate the clove-producing land use classes (pasture, clove plantation 

and agroforest) from the remaining non-clove-producing LULC classes in the study area (Table 1), 

additional information about features which enable a distinction of the two groups are required. The 

only known feature that distinguishes productive from non-productive LULC classes is the increased 

occurrence of clove trees.  

To date, the only available information on cloves and clove production systems come from local 

fieldwork utilizing interview inquiries carried out in different regions of Madagascar (Locatelli 2000, 

Lobietti 2013, Levasseur et al. 2012, Celio 2016).  These studies provide information on the density of 

cloves per hectare, the distance between individual clove trees and clove yield estimates. However, 

values vary greatly between the different studies, as they were collected in different places in 

Madagascar. In particular, the number of clove trees per hectare, which is of importance to us in this 

context, is rather diverse. For this reason, we calculated clove densities per production type based on 

manually detected reference clove trees and reference production type areas (Figure 5). 
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Figure 5 – Box plot displaying the reference clove tree density per hectare for each clove production type. 

 

For our study area we chose the lower whisker values (excluding outliers) as delimitation between a 

productive versus the natural (non-productive) occurrence of clove trees. Pastures were defined as 

grasslands with a minimum of 9 trees per hectare, clove plantations as plantations with at least 43 

clove trees per hectare and agroforests as forests surpassing the limit of 9 clove trees per hectare. 

LULC classes with fewer clove trees per hectare are considered as non-clove-producing classes. 

2.2.3 Data 

The two satellite image strips used were recorded from the Pléiades 1A satellite platform on the 9
th
 of 

July 2014. The delivered product has the following properties: 

 

Table 2 – Spectral bands properties of the Pléiades 1A satellite (ASTRIUM 2012) 

Spectral range Channel Spatial resolution 

0.43-0.55 μm Blue 2 x 2 m 

0.50-0.62 μm Green 2 x 2 m 

0.59-0.71 μm Red 2 x 2 m 

0.74-0.94 μm Near infra-red 2 x 2 m 

0.47-0.83 μm Panchromatic 0.5 x 0.5 m 
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Both images were delivered as ‘ortho products’ which are georeferenced and corrected from 

acquisition and terrain off-nadir effects (ASTRIUM 2012). Due to the perfect cloud free conditions, no 

further processing such as atmospheric correction or cloud masking was applied. 

To enhance the image’s information content, pan-sharpening was performed. Regarding the 

importance of the spectral information to later distinguish the clove trees from surrounding trees, the 

Principal Component Analysis (PCA) pan-sharpening was chosen. This method has virtually no 

spectral distortion and still performs well relating to the spatial resolution (Zhang et al. 2014, 

Pushparaj and Hegde 2017). All analyses were either performed on the original panchromatic image or 

the processed pan-sharpened multi-spectral image. 

The vastness and inaccessibility of most parts of the study site challenge the gathering of a sufficient 

amount of in-situ reference data. Thus, the reference data was acquired manually on the satellite image 

by an expert in forest inventories who is specialized in aerial image interpretation.  

Two types of reference data were collected. On the one hand, production type reference data to 

validate the clove production type assignment and on the other hand clove reference data to validate 

the single tree detection.  

To assess the correctness of the clove production type classification, 20 square polygons 

encompassing an area of 1 hectare (ha) were distinguished for the three clove production types. Within 

this total of 60 polygons, all visually detectable clove trees were marked, resulting in a total of 2194 

reference clove trees. Furthermore, another 20 square polygons encompassing an area of 1 ha were 

distinguished for each of the remaining LULC classes, rice paddies/bare soil and urban areas in order 

to validate the LULC classification. 

2.3 Methods 

2.3.1 Single tree detection and crown delineation 

Tree crown delineation using passive-optical sensor data, as it is used in this study, is based on the 

fundamental assumption that a crown’s center is brighter than its edge (Culvenor 2003). Hence, single 

tree detection algorithms traditionally either search for the shadows surrounding an individual tree 

(e.g. Gougeon 1999, Leckie et al. 2003) or for the bright crown centers, with the second approach 

being more common. The crown centers are found by searching for local radiometric maxima and 

using them as ‘seeds’ to grow the crown until a certain stop criterion such as a global minimum 

threshold or a minima boundary is reached (Brandtberg and Walter 1998, Culvenor 2002, Culvenor 

2003, Wulder et al. 2004, Hirschmugl et al. 2007). Such approaches have the disadvantage that they 
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are based on the assumption of every tree having a more or less encircling shadow and a clearly 

identifiable center. Thus, they are less suited for very dense and complex forests such as tropical 

forests (Clark et al. 2005). Furthermore, it makes the result dependent on the solar zenith angle as 

shade varies depending on the position of the sun (Gougeon 1999, Culvenor 2003).  

Another widely used single tree detection approach is to match a three-dimensional synthetic tree 

crown image model to radiometric values in the image (Pollock 1996, Culvenor 2003). Such 

algorithms mainly try to generalize the shape of the crown for example based on the shape of an 

ellipsoid (Pollock 1996, Wolf and Heipke 2007). Although such algorithms are shadow-independent, 

they have difficulties dealing with varying shapes of tree crowns as it is the case in mixed species 

forests or tropical forests (Culvenor 2003).  

Although the choice of a single tree detection method depends mainly on the type of forest to be 

classified and the data available, it is also important to consider the further use of the data. In our case, 

we must be able to determine the tree species based on the data from the automatic single tree 

detection. According to Chubey et al. (2006), a higher amount of information can be gained from 

image objects consisting of several pixels, compared to individual pixels. Thus, it is not only possible 

to calculate aggregative statistics regarding the spectral values, but also information about the size, 

shape or texture of the object can be obtained (Chubey et al. 2006).  

Due to the complex interweaving of different LULC classes in the investigated area, the general 

difficulty of single tree detection in tropical rainforests and the fact that image objects facilitate tree 

species classification, we advocate a completely new approach to single tree detection. 

Taking advantage of the almost perfectly circular crown shape of clove trees, we propose to apply the 

well-known Circular Hough Transform (CHT) to detect clove trees (Duda and Hart 1972, Atherton 

and Kerbyson 1999, Rizon et al. 2005). To our knowledge, Circular Hough Transform has not been 

used for automated single tree detection so far. However, its use looks promising as it combines all of 

the above mentioned approaches to detect single trees to a certain degree. Namely, this approach 

provides an approximation of the trees boundary as well as its centre in one pass by generalizing the 

tree crown as a circle.  

CHT is a common method for circle detection which aims to find circles of a given radius 𝑅 in images 

(Atherton and Kerbyson 1999). The CHT is said to be robust to the presence of noise, varying 

illumination conditions as well as to occlusion (Atherton and Kerbyson 1999). 
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CHT transforms a set of feature points from the x, y-plane to the parameter space. The equation of a 

circle in parameter space is: 

𝑅2 = (𝑥 − 𝑎𝑥)2 + (𝑦 − 𝑎𝑦)2 

Where (𝑎𝑥 , 𝑎𝑦) is the circle centre and 𝑅 is the radius. CHT basically consists of two major steps. 

First, the image is searched for pixels of high gradient representing the edge points which then 

contribute a circle of the predefined radius 𝑅 to an output accumulator space. Second, the circle centre 

location is estimated. Circle centres tend to be at the place where most contributed circles overlap, 

indicated by a peak in the accumulator space. Hence circle centres can be found by detecting peaks in 

the accumulator space. In case a radius range instead of a single radius is applied, the radii of the 

detected circles are calculated in a further step (Atherton and Kerbyson 1999, Rizon et al. 2005, The 

MathWorks Inc. 2012). 

 

 

Figure 6 – (a) shows a candidate pixel lying on the edge of an actual circle (solid circle) with the CHT voting pattern (dashed 

circle) for the candidate pixel, (b) is an example of candidate pixels (solid dots) whose voting patterns (dashed circles) 
coincide at the centre of an actual circle (solid circle) (The MathWorks Inc. 2012, Oryx Digital Ltd. n.d.). 

 

We used MATLAB’s readily implemented ‘imfindcircles’ function (The MathWorks Inc. 2012) to 

perform CHT and to automatically detect individual tree centres. As ‘imfindcircles’ works with 

grayscale images it was applied on the original panchromatic image which was normalized and 

contrast enhanced beforehand. Object polarity was set to ‘bright’ causing the function to search for 

circular object which are brighter than the image background which is the case for the clove trees. As 

most clove trees in the scene do not exceed a diameter of 8 meters, the radius range was 

experimentally optimized to span from 1 to 4 meters. Different radius ranges were investigated but the 

detection rate did not improve. The values for the sensitivity and edge threshold were also found 

Accum. Array Votes 

Edge Pixel 

(a) (b) 
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experimentally. The sensitivity value was set to the maximum value of 1 in order to increase the 

amount of detected circular objects and therefore increase the chance of finding as many clove trees as 

possible. As the clove trees will be separated from all other detected trees in the tree species 

classification step, a high number of false positives can be accepted. The edge gradient threshold, 

which determines the edge pixels in the image by setting a gradient threshold, was set to 0.2 on a scale 

from 0 to 1. Lower edge threshold values lead to a higher amount of detected circular objects as 

objects with weak as well as strong edges are detected (The MathWorks Inc. 2012). 

In order to perform the tree classification, every CHT output had to be transformed into a tree object. 

CHT outputs circle centre points attributed with a unique identification number, the x and y 

coordinates as well as the detected radius. Transforming these points into polygons based on the 

radius-buffer provides individual circular objects which then were used as a basis for feature 

extraction and tree classification. 

2.3.2 Clove tree classification 

For both the classification of the clove trees as well as the classification of the clove production types, 

we propose using a random forest classifier. Random forests (RF) have been shown to provide high 

class accuracies for classification problems in remote sensing and ecology (e.g. Breiman 2001, Pal 

2005, Lawrence et al. 2006, Cutler et al. 2007, Watts and Lawrence 2008, Dalponte et al. 2012). We 

prefer RF to Support Vector Machines (SVM) because of its straightforward use with only two 

parameters to be set compared to SVMs where several parameters have to be defined by the user (Pal 

2005, Lawrence et al. 2006, Dalponte et al. 2012). Another advantage of RF is that they are less prone 

to imperfect data such as unbalanced data, unscaled data or missing values (Pal 2005). Furthermore, 

they are robust to overfitting (Breiman 2001, Lawrence et al. 2006, Rodriguez-Galiano et al. 2012). 

To apply the random forest (RF) classifier, training and validation data of all involved classes is 

required. While visual clove tree detection is feasible, compiling a well-balanced training set out of 

several tens to hundreds of species for non-clove trees is challenging. As shown by Baldeck et al. 

(2015), binary classification is promising. Hence, we only trained the RF classifier with two classes. 

One representing the clove trees, the other one representing all the other non-clove trees. For this 

reason we did not use the manually detected clove reference trees themselves, but all CHT detected 

trees whose radii contained such a reference tree. Switching this selection then results in all CHT 

detected trees which do not encompass a reference tree that is non-clove trees. Consequently, we 

obtained an almost automatically generated training and validation data set. 
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Figure 7 – An example for each production type, showing the reference clove trees (black dots) and the radii of the CHT 

detected trees (circles). All CHT detected trees encompassing a reference clove tree were used as training/validation data for 

the clove-class. All the other CHT detected circles (not displayed) were used as training/validation data representing the non-

clove class. 

 

While CHT has successfully detected most of the reference clove trees, even more false positives 

(non-clove trees), were detected (not displayed in Figure 7). This resulted in a highly unbalanced data 

set for the classification. To mitigate the drawbacks of imbalanced classification, we down sampled 

the majority class for training (Kubat and Matwin 1997, Chen et al. 2004). Hence 1000 samples each 

of clove and non-clove trees were randomly selected. After the elimination of small tree circles lying 

completely within a larger tree circle, a total of 992 cloves and 997 non-cloves were used for training.  

For every tree object (= tree circle), we extracted several features describing the objects spectral and 

textural properties. Compared to hyperspectral images, which are often used for tree classification, 

only little spectral information is available in the used multi-spectral image. Hence we extracted 

various features in order to still obtain as comprehensive a description of the clove trees as possible.  

On the one hand, we extracted features which only rely on spectral values and on the other hand 

features which represent the tree’s structure.   
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Table 3 – Features calculated for each circular object for the clove tree classification. 

Feature Property 

Mean and standard deviation 

per channel per crown 

The mean spectral reflectance in every channel per tree crown as well as how dispersed 

the reflectance values are within a tree crown. 

Skewness and Kurtosis The distribution of the spectral values 

Average NDVI Normalized Difference Vegetation Index (Rouse et al. 1973) 

Average EVI 

Enhanced Vegetation Index (Huete et al. 2002) 

For Pléiades, the relevant parameters are the same as they are for MODIS.  

G = 2.5, C1 = 6, C2 = 7.5 and L=1 (Henrich n.d.) 

Average SAVI Soil Adjusted Vegetation Index (Huete 1988) 

Average VARI Visible Atmospherically Resistant Index (Gitelson et al. 2002) 

Contrast, correlation, energy 

and homogeneity within a tree 

crown 

We used the pan-sharpened image’s NIR channel to calculate these features from the 

Gray-Level Co-Occurrence Matrix (GLCM) (The MathWorks Inc. 2006). We found the 

standard deviation feature for the NIR channel most descriptive thus the NIR channel 

might generally contain better information to distinguish cloves from non-cloves. 

‘extractFeatures’ function 

MATLAB’s ‘extractFeatures’ function was applied with various block sizes in order to 

capture the trees very central structure but also its broader structure ranging over the 

crown’s edge (The MathWorks Inc. 2012). 

‘extractHOGfeatures’ function 

The ‘extractHOGfeatures’ function (HOG = histogram of oriented gradients) was applied 

using the HOUGH detected tree centres as centre location points (The MathWorks Inc. 

2013). 

 

All these features were calculated for the training and validation tree sets as well as for all the roughly 

8 million yet unclassified trees. After all the features were calculated, a random forest classifier as 

proposed by Breiman (2001) was applied with 150 trees. In order to further mitigate the influence of 

an imbalanced data set, a cost function was applied (Kubat and Matwin 1997, Chen et al. 2004). The 

experimentally determined cost applied is (
0 1
5 0

). This cost matrix resulted in best results regarding 

both sensitivity and precision. Although higher restrictions would have further increased the values of 
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the sensitivity parameter, precision was adversely affected and deteriorated resulting in an inferior 

overall result. 

After all detected trees were classified, tree centres lying within an experimentally determined distance 

of 1.5 meters were merged. Consequently, multiple detections of one tree from asperities in the tree 

crown were eliminated. If all tree centres within the distance range were of the same class, the 

midpoint of them was calculated to locate the new centre and the average radius was assigned. In case 

one point was classified as clove and the other as non-clove tree, the clove centre was prioritized. This 

implies that the class, the location and the radius of the clove tree centre was retained in order to avoid 

losing too many of the clove trees as they are essential for the production type classification. 

2.3.3 Production type classification 

The production type classification aims to detect the three clove production types, pasture, clove 

plantation, and agroforest. As in the tree classification step, random forest was used, as Rodriguez-

Galiano et al. (2012) have shown it to be robust and providing high classification accuracies when 

applying it for land-cover classifications.  

As already mentioned in section 2.1, land use classification generally consists of 2 classification steps. 

This is also the case for our production type classification. In a first step, the main land LULC classes 

as defined in Table 1 are classified. In a second step, clove count information is applied in order to 

distinguish productive from non-productive LULC classes related to clove production (Figure 8). 

 

Figure 8 – 2-step classification process to obtain the three clove production systems, pasture, clove plantation and agroforest. 

The first step classifies LULCs with a random forest classifier. The second step classifies the clove production systems based 

on the presence/absence of a certain amount of CHT detected clove trees. 
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Although initially planned to perform the classification on production type areas of one hectare, it 

became apparent, that this resolution was too coarse as the farmer’s plots were mostly smaller than 

one hectare, which caused major class mixture problems. This observation is also confirmed by 

Lobietti (2013) and Celio (2016) which describe plots to be around 0.2 ha in size. Thus, the grid cells 

used for the LULC and production type classification were reduced to 0.25 hectares.  

LULC classification 

In the first step, the five LULC classes grassland, plantation, forest, rice paddies/bare soil and urban 

areas were classified. These five classes were classified based on the extracted features described 

subsequently.  

Based on the detected and classified trees a Cluster and Outlier Analysis based on Moran’s I (ESRI 

n.d.) was performed on the entire image. Accordingly, spatial clusters of clove (e.g. potential 

plantation) or non-clove (e.g. very likely neither plantation nor pasture) trees were determined. Areas 

having only few clusters were very likely grasslands, bare soil or urban areas. For each region (grid 

cell), the calculated cluster specifications of each tree in the cell were stored. 

Furthermore, the distance between each tree and its nearest neighbor tree was calculated. 

Subsequently, a statistical analysis of these distance measures was performed per 0.25 ha region. The 

statistical values calculated were sum, mean, minimum, maximum, range and standard deviation.  

Besides the spatial object based information gathered from the detected trees also the spectral 

information was considered. For all pan-sharpened pixels within each 0.25 ha region, the statistics 

sum, mean, median, minimum, maximum, minority, majority, range, standard deviation and variety 

were calculated.  

These features were passed on to the RF classifier which again was run with 150 trees. Due to the very 

balanced training set, no cost function was used this time.  

Clove production type classification 

In this final classification step, we aim to separate the clove production types pasture, clove plantation 

and agroforest from the non-productive LULC classes. As the LULC class of productive and non-

productive plots regarding to clove production are almost identical in terms of spectral reflectance 

(Aplin 2003), the only difference is the presence or absence of clove trees. As defined in section 2.2.2, 

clove production types are areas where a certain amount of clove trees are present. Non-productive 

LULC classes on the other side are areas where no clove trees or less than a certain amount of clove 

trees are present. This minimum value initially was calculated based on the reference production type 
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area of one hectare (Figure 5). As the areas on which the classification is conducted were reduced 

from one to 0.25 hectares, also the minimum amount of clove trees per area had to be adjusted (Table 

4). The numbers have been rounded off. 

 

Table 4 – Minimum number of clove trees per area for each production type 

 

 
Pasture Clove plantation Agroforest 

Clove trees/hectare 9 43 9 

Clove trees/0.25 hectare 2 10 2 

 

These thresholds were applied to the production type classification (Figure 9). The LULC class 

grassland is classified as non-productive grassland when there are only one or no clove trees present. 

Grasslands having at least two clove trees are appointed as productive pastures with respect to clove 

production. The same threshold is applied to the forest LULC class which is divided in non-productive 

forest and agroforest. Due to the spectral similarity of grasslands and plantations, also this LULC class 

is re-evaluated with help of the additional information about the amount of present clove trees.  

Plantations having 9 or less clove trees are reclassified as pasture while plantations having 10 or more 

clove trees are classified as clove plantations. 

 

Figure 9 – Production type classification based on the number of present clove trees in the three LULC classes, grassland, 

plantation and forest on an area of 0.25 hectares. 

 

By knowing which areas of the study site are used to produce cloves, together with the number of 

clove trees on these areas, estimates can be made of the amount of cloves produced. 
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2.3.4 Clove bud yield estimations 

Estimating clove yields in general is difficult as they undergo high triennial fluctuations and are also 

dependent on the clove tree’s age. Furthermore, there is no official data about clove yields in 

Madagascar. Some sources estimate that a clove tree yields on average 2-3 kg of dry clove buds per 

year when age and cycle related yield fluctuations are balanced out (Locatelli 2000, Clove Crop 

Cultivation Guide n.d., Horticulture Spice Crops n.d.). Other studies estimate that the yield per tree is 

higher, while others estimate it as lower (see Table 9). Due to these uncertainties we base our 

calculations on the mean value of 3 kg per tree.  

For the yield calculation we multiplied the amount of detected clove trees with this averaged yield 

value and calculated the average yield per production type as well as the total yield of clove buds in 

the entire study area. Other clove products such as the leaves from the clove trees or the essential oil 

were not taken into account as no or only little reliable information exists about yield quantities.  

2.4 Results 

2.4.1 Single tree detection 

The single tree detection based on the CHT algorithm resulted in a detection rate of 97.86% for the 

clove reference trees. 2194 clove reference trees were beforehand manually detected. Of these, 2147 

were located within the radius of the CHT detected trees (see Figure 7). The exact position of the 

reference tree within the CHT crown radius wasn’t taken into consideration.  

2.4.2 Tree classification 

Tree classification based on random forest resulted in an overall accuracy (OA) of 90.79%. Although 

the training set was artificially balanced, this value for accuracy is not representative as the validation 

set with the remaining trees still is extremely unbalanced. Hence, we calculated a confusion matrix 

with the classification results averaged from 100 iterations (Table 5).  
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Table 5 – Confusion matrix of the tree classification based on random forest. 

  Reference  

Prediction 

 Clove 
Non-

Clove 
User 

Accuracy 

Clove 1946 1339 59.2% 

Non-

Clove 
805 19190 95.9% 

Producer  

Accuracy 
70.7 % 93.5%  

 

From a total of 2751 validation clove trees, on average 1946 were correctly classified as clove trees 

over 100 iterations. Slightly less than a third was incorrectly classified as non-clove tree. The vast 

majority of 20529 circular objects were used as non-clove tree validation set. Out of these, 19190 were 

correctly classified as being not a clove tree. 1339 were classified as clove trees although actually 

being a non-clove tree. These values result in 70.7% producer accuracy (PA) for clove trees and a 

93.5% PA for non-clove trees averaged over 100 iterations. The user accuracy (UA) for clove trees is 

59.2% and 95.9% for non-clove trees. Deduced from the confusion matrix, the classification has an 

average accuracy of 77.6% and a mean accuracy of 84.2%. The Kappa coefficient is 0.59.  

 

 

Figure 10 – Excerpt of the study site showing all automatically detected clove trees. 
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2.4.3 Production type classification 

To evaluate the production type classification, a two-step validation system corresponding to the two 

classification steps has been applied.  

LULC classification 

To validate the first classification step, the LULC classification, the reference LULC classes were split 

into a training and validation set. Each set contained 40 training/validation plots for each LULC class. 

The confusion matrices from the random forest classification based on this validation set can be seen 

in Table 6.  In order to find out by how much the inclusion of tree related information (cluster analysis 

and distance) has improved the classification result compared to the prevalent LULC classification 

solely based on spectral reflectance, the classification was performed twice. The left side of Table 6 

shows the results of the classification solely based on the spectral reflectance values. The right side 

shows the confusion matrix of the classification combining both, tree related information and spectral 

information. For both confusion matrices, the results again were averaged over 100 random forest 

classification iterations. 

 

Table 6 – Confusion matrices of the LULC classification. The left confusion matrix shows the classification result using 

spectral features only, the right matrix the classification results when both, spectral features and tree related information 

features, were combined. The results are averaged from 100 iterations. 

 Spectral features only Spectral features & clove related features 

Reference/ 

Prediction 
Grassland Plantation Forest 

Rice / 

bare soil 
Urban 

User 

Accuracy 
Grassland Plantation Forest 

Rice / 

bare soil 
Urban 

User 

Accuracy 

Grassland 27 9 0 4 0 67.5% 30 8 0 2 0 75.0% 

Plantation 19 14 6 1 0 35.0% 3 31 6 0 0 77.5% 

Forest 0 5 35 0 0 87.5% 0 4 36 0 0 90.0% 

Rice / 

bare soil 
2 1 0 35 2 87.5% 0 1 0 38 1 95.0% 

Urban 0 0 0 0 40 100.0% 0 0 0 0 40 100.0% 

Producer 

Accuracy 
56.3% 48.3% 85.4% 87.5% 95.2%   90.9% 70.5% 85.7% 95.0% 97.6%   

 

 

Using only spectral information for LULC classification resulted in an OA of 75.5%. This is 12% less 

than the OA of the combined classification (87.5%). As all classes here are perfectly balanced, OA is 

in this case a suitable measure for the reliability of the classification. It also becomes apparent that all 

UAs and PAs (except for the UA of urban areas) are inferior compared to the combined classification. 

While the rather clearly distinctive classes, forest, rice paddies/bare soil and urban areas perform well, 

the spectrally very similar classes, grassland and plantation pose a problem to the algorithm. For 
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grassland, the UA is 67.5% and the PA 56.3%. Plantation’s UA is even lower with only 35.0% and 

also the PA is lower with 48.3%. 

For the combined approach, the best user accuracies are achieved for the classes rice paddies/bare soil 

and urban as both of them are very well distinguishable even solely based on spectral inputs. Rice 

paddies/bare soil achieved an UA of 95% and for the urban class even all samples were correctly 

classified resulting in a 100% UA. The PA for the two classes are very high with values of 95% again 

for rice paddies/bare soil and 97.6% for urban areas. Forest was classified with a UA of 90% and a PA 

of 85.7%. The classification algorithm was slightly more challenged by the spectrally very similar 

classes grassland and plantation. The classification of the plantation samples resulted in a UA of 

77.5% and a PA of 70.5%. The UA for grassland was even slightly worse with a value of 75%. 

However, the PA of 90.9% is once more a very good classification result. Still, this is a much better 

result than the one achieved by using solely spectral information to classify the LULC classes. The 

average and mean accuracy is 87.5% for the combined approach, the Kappa coefficient is 0.67. 

While the classification result of the spectral approach will not be used any further due to its 

inferiority to the combined classification result, it still is a good indicator of the importance of tree 

related information obtained from CHT and tree classification. It also indicates the importance of 

applying this additional information in a second classification step to further refine the classification 

output and be able to distinguish productive and non-productive LULC classes. 

Production type classification 

To validate the second classification step, the production type classification, equalized stratified 

random sampling was applied on the entire study area to get 20 samples per production type. These 

samples were then classified by the expert. Subsequently, the expert based classification was 

compared with the classification outputs of the production type classification. The outputs from this 

validation are displayed in Table 7.  

Table 7 – Confusion matrix of the production type classification 

Reference 
Prediction 

Pasture 
Clove 

plantation 
Agroforest Grassland Forest 

Rice / 
bare soil 

Urban 
User 

Accuracy 

Pasture 17 1 1 0 0 1 0 85.0% 

Clove 

Plantation 
4 13 3 0 0 0 0 65.0% 

Agroforest 0 0 13 0 7 0 0 65.0% 

Grassland 0 0 0 17 1 2 0 85.0% 

Forest 2 0 2 0 16 0 0 80.0% 

Rice / 

bare soil 
0 0 0 1 0 19 0 95.0% 

Urban 2 0 0 0 1 3 14 70.0% 

Producer 

Accuracy 
68.0% 92.9% 68.4% 94.4% 64.0% 76.0% 100.0% 
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The OA of the production type classification is 77.9%.  The averaged UA over all classes is as well 

77.9%, the averaged OA over all classes is 80.5%. The Kappa coefficient is 0.74. As Table 7 shows, 

the class accuracies are more heterogeneous than in the LULC classification. Both, pasture and 

grassland have a UA of 85% while grassland shows a much higher PA (94.4%) compared to pasture’s 

PA of 68%. Also, plantation and agroforest have the same UAs of 65% each, while their PAs again 

vary. Plantation has a PA of 92.9% while the PA of agroforest is 68.4%. Also forest itself has a higher 

UA (80%) than PA (64%). Rice paddies/bare soil again were well classified regarding the UA of 95% 

and the PA of 76%. Urban areas were classified inferior to the LULC classification regarding UA 

(70%), while the PA increased to 100%. 

 

 

Figure 11 – Shows the result of the production type classification for the whole study area (left) and an excerpt (right). 

 

2.4.4 Clove bud yield per production type and further production type statistics 

Our calculations have shown that with an estimated per-tree yield of 3 kg, a total yield of about 575 

tons of cloves is produced in the entire study area. In addition to calculating total yield, we have also 

calculated the average yield per type of production. Furthermore, we have calculated the average clove 

density and the average distance between clove trees per production type (Table 8).  
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Table 8 – Average clove tree density and average distance between clove trees per 1 hectare production type plot. 

 
Pasture Plantation Agroforest 

Average densitiy [trees/ha] 17.5 70.9 21.0 

Average distance [m] 10.8 6.5 10.2 

Average yield [kg/ha] 53 213 63 

 

According to our calculations, pastures produce an average yield of approximately 53 kg/ha. A similar 

amount is achieved in agroforests. Here, the yield per hectare is 63 kg. Clove plantations, on the other 

hand, produce considerably more dry clove buds due to the higher number of trees. Here, the yield is 

about 213 kg/ha. The average clove tree density and distance for both pastures and agroforest are in 

the same range of about 20 trees/ha and 10 m respectively. The average distance of about 6.5 m 

between clove trees on plantations is also confirmed by Maistre (1964) and Danthu et al. (2014).   

One of the main objectives of calculating the average clove bud yield, as well as the clove density and 

the distance between clove trees per production type, was to be able to complement data from the 

literature with our data. We consider this to be important, as there is little information on cloves and 

their production in Madagascar so far, and therefore each additional study contributes to a better 

understanding of this crop and its local cultivation.  

 

Table 9 – Summary of data found in literature about clove production systems in Madagascar supplemented by the 

information obtained in the present study.  

 Pasture Clove plantation Agroforest 

 
Density 

[trees/ha] 

Distance 

[m] 

Yield dry 

[kg/tree] 

Yield dry 

[kg/ha] 

Density 

[trees/ha] 

Distance 

[m] 

Yield dry 

[kg/tree] 

Yield dry 

[kg/ha] 

Density 

[trees/ha] 

Distance 

[m] 

Yield dry 

[kg/tree] 

Yield dry 

[kg/ha] 

Celio 2016 - 
7-10 

5.7-7.4 
4 

- 

 
- 

5-7 

6.4 
- - - 7.1 5 - 

Levasseur 

et al. 2012* 

354 

50 

Mean: 

202 

- 

0.47** 

0.048** 

Mean: 

0.26** 

 167 

2.4 

Mean: 

84.7 

96 - 2.4** 230 

337 

156 

Mean: 

246.5 

- 

1.5** 

0.72** 

Mean: 

1.11** 

509 

113 

Mean: 

311 

Lobietti 

2013 180 - - 
- 

 
239 - - - 195 - - - 

Locatelli 
2000 - - - 

- 

 

150 

Range: 

30-300 

8 

3 

Range: 

3-25 

- - - - - 

Ministère 

des Affaires 

étrangères 

2012 

- - - - - 4-5 2-5 450 - - - - 

Present 

study 18 11 3*** 53 71 6.5 3*** 213 21 10 3*** 63 

*  Values from Levasseur et al. 201 are sampled at two different sites; mean was calculated for this study 

**  Values calculated by us by dividing the reported yields/ha by the amount of trees per hectare  

***  Estimate based on literature survey 
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Our calculations are based on the assumption that a clove tree produces an average of 3 kg of dry 

clove buds over the years. Assuming an average yield of only 2 kg instead, the total amount of dry 

clove buds produced would be (linearly) reduced to 383 tons for the entire study area. Assuming 5 

kg/tree, however, the yield would increase to 959 tons. Since not only the choice of yield per tree but 

also other factors such as the farmers' decision to harvest cloves or leaves influence the final yield, we 

have additionally calculated the number of productive trees. This is the number of CHT detected clove 

trees located in an area classified as a clove production type (Table 10). 

 

Table 10 – Number of clove trees on clove production areas in the entire study area 

 
Pasture Plantation Agroforest Total 

Number of trees 4‘236 40‘833 108‘545 191‘743 

 

2.5 Discussion 

2.5.1 Single tree detection 

From the results obtained by applying CHT to detect clove trees we infer that CHT is a promising 

algorithm for automated single tree detection. The detection is of similar quality for the different 

production types as well as in different topography resulting in varying illumination (Figure 7). This 

approach also excelled in regard to its easy applicability. While other approaches require several steps 

to detect tree crown centres and crown boundaries, CHT automatically provides these outputs in one 

go. CHT is especially well suited when the tree position is of major interest in order to count trees or 

deduce tree densities. Approximations about tree sizes and hence potential tree ages are also feasible. 

However, reducing tree crowns to circular shapes will not be suitable for all tree species and will not 

give exact tree crown delineations as they might be required for some applications. 

Although the CHT detection rate and crown delineation outputs are promising, CHT as it was applied 

in this study also revealed some weaknesses. Due to the algorithm’s nature to initially search for 

gradients in the image, not only circles representing trees are found but also various other circular 

objects. It showed that the algorithm is especially affected in urban areas as well as in areas of bare 

soil or grasslands with bright reflection spots.  

The potential solution of applying a NDVI mask to mitigate this challenge (at least in the urban areas) 

was discarded due to the extensive shadow areas in the tropical forest which would have been masked 

out as well. Another solution to mitigate the hypersensitivity to circular objects is to decrease the 
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algorithm’s sensitivity parameter and increase the edge threshold parameter. Both adjustments will 

result in less detected circles. We haven’t applied these adjustments as it was our primary goal to 

detect as many reference clove trees as possible. Another potential solution to reduce the number of 

detected circles might be to apply a filter in advance of CHT in order to eliminate weak gradients as 

they might occur on pastures.  

In the present study, CHT detected too many circles due to the site specific presence of various land 

covers instead of just forest. We suppose that scenes containing exclusively trees and especially scenes 

from homogenous forest patches (as for example found in coniferous forests) would perform better. 

Still the general challenge which CHT poses is the detection of all kind of circular objects and not only 

the desired ones.  

Hence, one has to be aware that CHT for single tree detection can almost only be used in combination 

with a subsequent classification if the study area consists of different land cover types. This is 

necessary in order to end up with circles indicating trees or a specific tree species only. We show that 

tree species classification based on CHT outputs is possible for the clove tree classification in this 

study. 

2.5.2 Tree species classification 

Random forest based clove tree classification resulted in outcomes with a producer accuracy of almost 

71% and a user accuracy of almost 60%. Compared to the values of Baldeck et al. (2015), the 

classification results in this present study are lower. Considering the different preconditions of the 

studies, these values are evaluated as acceptable.  

In our case, the classification was complicated by various factors. Precious information about tree 

height was not available. Also, it was not possible to take advantage of any blossoms that would have 

clearly distinguished the tree species from others. Furthermore, only visually acquired references were 

available as fieldwork in such a vast and remote area was not practical. Although generated by an 

expert, errors might exist in the reference data. As the principle for the reference collection was to 

only mark trees as references of which we were certain of it being a clove tree, omissions are very 

likely. This might explain a small part of the rather high error of commission concerning clove trees. 

The major challenge that reduced the classification quality was most likely the approximated tree 

crown delineation. Although CHT circles do represent the tree crown approximately, the delineation is 

difficult and thus an impureness of the spectral signatures might occur.  

There are two kinds of imprecise delineations. One is that the detected circle is too small. This 

occurred mainly for very large non-clove trees, such as for example Mango trees, as they exceed the 
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predefined radius of the CHT. This leads to only the rather bright upper part of the tree crown being 

captured. Hence, the reflection of this tree object was brighter and of lighter green causing the 

algorithm to misclassify it as a clove tree. This partly explains the rather high number of false 

positives. 

The other challenge is that the detected circle is too large. This is mainly occurring with small trees 

with shadowing effects. As the detected circle is larger than the actual tree, the shadow is figured into 

the calculation of the spectral signature as well. Hence, the spectral signature appears darker and the 

tree is classified as non-clove. This explains part of the false negative classification results.  

Another challenge is the above mentioned detection of circular objects not being trees. As the training 

and validation sets were located in vegetation-only areas, mainly the detected circles on bright 

pastures are problematic. The bright spots on the pastures feature a very similar spectral signature as 

the top of clove trees. Therefore, circles located on pastures often were misclassified as clove trees 

resulting in additional false positives. 

The feature importance for the tree classification showed a rather low importance of approximately 0.3 

for most features. We suppose this low feature importance to result from the high similarity of cloves 

and the surrounding vegetation, resulting in similar, for the differentiation not particularly meaningful 

features. The features with the highest importance are standard deviation of the spectral reflections in 

the bands blue, green and NIR as well as the skewness of the NIR channel per tree crown. 

Furthermore, some of the features calculated by the ‘extractFeatures’ function (The MathWorks Inc. 

2012) showed a rather high importance. The most important feature of all, with a feature importance 

of 0.65, was the standard deviation of the crowns spectral reflectance in the NIR channel. The 

importance of the NIR channel is also apparent when looking at the false-color image where the clove 

trees have a slightly different hue compared to the surrounding vegetation (see Figure 3). 

It turns out that clove tree classification correctly eliminated most of the circular objects which were 

not trees (e.g. bright spots on pastures/bare soil) and also provided a reliable overall classification of 

the separation of clove trees from other trees. Considering the varying terrain and illumination effects, 

the classification output is promising to use it as input for the clove production type classification.  
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2.5.3 Production type classification 

LULC classification 

The LULC classification performed very well and produced a high overall accuracy. The combination 

of spectral information with specific single tree related information such as tree class (clove/non-

clove) or tree location resulted in a 12% better classification result compared to utilizing spectral 

information only.  

When looking at the feature importance, spectral data naturally shows very high importance with an 

average feature importance of 0.7 on a scale from 0 to 1. The improvement of the combined 

classification very likely results from the maximum distance between trees per plot feature and the 

information about HL-outliers (an outlier featuring a high (H) value which is surrounded by features 

having a low (L) value). Their feature importance is 0.7 and 0.71 respectively. This confirms that the 

main land cover classes such as urban areas, bare soil or forest are well classifiable with the common 

and well known spectral approach. However, as soon as classes are more alike, further information is 

required for a high quality of the classification. Even more information is required to distinguish the 

specific land use classes, pasture, clove plantation and agroforest from the non-productive LULC 

classes.  

Production type classification 

The production type classification based on clove thresholds is of high quality as can be seen in Table 

7. The decrease in OA accuracy compared to the LULC classification results from the training and 

validation being no longer based on our homogeneous and ideally class representing references, but on 

the very heterogeneous grid cells laid over the entire study area. Introducing a grid over the entire 

study site resulted in many grid cells containing a mixture of classes as for example a plantation 

surrounded by agroforest. While this is induced by the local circumstances of heterogeneous small 

scale farming, applying a different approach such as using irregular objects (e.g. Hay et al. 2005, 

Mallinis et al. 2008) might have mitigated this effect. We still propose the grid approach for our 

purpose being very suitable. Reasons are on the one hand the training of the random forest classifier 

and on the other hand the outputs required to be referring to one hectare as measuring unit. 

Successfully applying a random forest classifier requires the features of the data to be classified to be 

equal in scale to the features of the training data. By using a regular grid where the cells to classify 

have the same size as the references, this requirement was fulfilled. Furthermore, our thresholds were 

calculated in relation to a certain area which is why the objects to be classified must have the exact 
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same area. In addition, the calculations of the clove tree densities and the amount of clove yield per 

hectare were facilitated.  

Going more into detail of the production type classification output, we observe some class accuracies 

improve while others decrease. Most noticeable is the decrease in UA in urban areas. The main source 

of error regarding this class was the misclassification of sand (along the beach) and highly reflective 

bare soils as urban areas. This misclassification, however, already occurred in the first classification 

step. When the LULC classes were classified, none of the references encompassed such a region (e.g. 

sand) as only ideal representations of a class were chosen as references. Therefore, this 

misclassification was not noticed in the beginning as the validation of the LULC classification was 

based on the ideal references and not randomly sampled grid cells.  

Regarding the production types, all of them were reliably classified. The main reason why clove 

plantation and agroforest achieved only an UA of 65% is caused by the setting of the threshold. 

Setting thresholds to separate classes to a certain degree is always problematic as the model is strict.  

This was observed in clove plantations.  Some plots were classified as plantations although they would 

have been pastures. Two different reasons were identified critical. On the one hand, more plantations 

would have been (correctly) classified as pastures by setting a lower threshold for the plantation to 

pasture reclassification. On the other hand, also setting a threshold for the reverse reclassification 

pasture to plantation might have been required.  

In the Agroforest class, the threshold challenge is similar. The main problem here is that clove trees 

also occur naturally in the tropical forest without being used commercially. The rather low threshold 

of two trees is thus also reached by forest regions which, due to their location, are actually not suitable 

as agroforests. In order to counteract this problem, a further information parameter would have been 

necessary. If an additional parameter such as the distance from settlements would have been included 

as well, plots being far away from settlements would not have been reclassified.  

Another reason for the rather low values of PA and UA for the agroforest class could also have 

originated from the agroforest class as such. Agroforest is not specifically defined. Rather, it is a plot 

where various plants are cultivated based on the farmer’s personal needs and depending on the plots 

location. Hence, agroforest plots cannot be standardized and thus are more difficult to classify than 

other classes.  
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2.5.4 Clove bud yield per production type and further production type statistics 

The calculated yields are also influenced by the determination of values and the application of 

thresholds. The yield value of 3 kg/tree, based on a majority found in the literature, is a choice that has 

far-reaching consequences. Although this value can be regarded as relatively reliable, yields for the 

study area vary by several hundred tonnes, depending on the value used for the calculation.  

The thresholds set in the production type classification also lead to further uncertainties in the yield 

estimate. As one can see in Figure 11, a large forest area is classified as agroforest due to the low 

thresholds. However, the actual number of agroforest systems is likely to be lower in reality. 

Consequently, the yield generated in agroforest systems will probably be lower than calculated in this 

study. The average yield generated in a single agroforest system, on the other hand, is likely to be 

slightly higher than calculated. This is because the majority of agroforest parcels in our case have only 

2-3 clove trees, whereas agroforest parcels close to villages often include 4-7 clove trees resulting in a 

higher yield. On the other hand, some trees in the vicinity of villages, which according to our 

classification grow on non-producing areas, have not been taken into account in the yield calculation. 

Although this is likely to provide a slight compensation for the overestimation of the yield generated 

by agroforest systems, it might not be able to cancel it out. 

Due to the absence of validation possibilities of the calculated yields, it is difficult to estimate the 

accuracy of our calculations. If one compares our values with those of other studies (Table 9), one can 

see that our yield values per production type are considerably lower. However, this is probably due to 

the fact that the clove tree density in most of the other studies was many times higher than in our study 

area.  

A contrasting picture emerges when comparing our yield with the official FAO figures. According to 

FAOSTAT (n.d.), Madagascar exported 11687 tonnes of cloves in 2013. For 2014, when the used 

satellite images were taken, no official trade data exists yet but the clove production is estimated to be 

10851 tonnes (FAOSTAT n.d.). According to our calculations, 575 tonnes of this total of dried clove 

buds would be produced in our study area. This would be about 5.3% of the total clove production in 

Madagascar. This value is very high, especially considering how small the study area is compared to 

the area of Madagascar. We therefore assume that our calculated yields tend to be rather too high. 

This can also be explained as it was possible to decide whether a tree was used for the production of 

cloves or for the production of leaves to produce essential oil. Since the latter is incompatible with 

clove bud harvesting, it must be assumed that only a certain fraction of the detected clove trees in the 

production systems are actually used for the production of clove buds. In situ or statistical data would 

be required to define this fraction.  
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2.6 Conclusion 

In this study we used state of the art remote sensing data and methods to detect and classify clove trees 

into the three prevalent clove production systems in Madagascar. We have shown that Circular Hough 

Transform (CHT) is a promising and comparatively simple to use method for automated single clove 

tree detection in a tropical forest. This method is especially effective when the location of a tree and 

only an approximate delineation of the tree crown are required. A high detection rate of 97.9% of 

clove reference trees was achieved.  

The outputs from CHT were used to produce a clove tree classification based on a random forest 

classifier. Especially information from the NIR band was important for the distinction of clove trees 

from other trees. The tree classification result in turn was used to successfully classify the three clove 

production types: pasture, clove plantation, and agroforest. Combining spectral with tree related 

properties for the production type classification resulted in an overall accuracy of 77.9%.  

Based on the classified production types, we estimated the clove bud yield in the study site to range 

from approximately 53 kg/ha in pastures to 213 kg/ha in plantations (63 kg/ha in agroforests). Our 

analyses, however, have shown that more in situ or statistically reliable yield data is required to 

address the large uncertainties in these calculations. We thus strongly encourage further research, 

especially in the in situ data acquisition of crop yields and the fraction of trees used for the clove bud 

production. 

For the first time, we show that clove trees and clove production systems were classifiable on a large 

scale based on remote sensing data. Still, we encourage applying and further improving the insights 

gained in this study about the procedure from object-based single-crop detection to yield estimation to 

other regions or even for other crops.  
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3 Discussion 

The initial aim of this master thesis was to inform the r4d project “Managing Telecoupled 

Landscapes” about methodological possibilities of remote sensing to classify clove production systems 

in north-eastern Madagascar. The common idea was to automatically identify the clove trees in the 

study site as it has been done in other scientific papers about tree detection. The information about the 

clove tree’s positions could then be used to identify all areas belonging to one of the three clove 

production types. As soon as it is known where these production types are located, they can be 

spectrally analysed and a classification of clove production types can be performed on a larger scale. 

In the course of this thesis, however, it soon crystallized that there are some major obstacles impeding 

quick and straight forward implementation of the original idea.  

In this discussion, the research questions presented at the beginning of this thesis will be answered, 

and the difficulties that prevented the initially planned implementation will be explained. 

3.1 How can single tree crowns in tropical forests be detected and 

delineated in an automated way using multi-spectral satellite data? 

3.1.1 The challenge 

In 2015 Baldeck et al. (2015) wrote: “[…], the preferred model was based on crown-mean spectra, 

and thus operational species mapping would require automatic delineation of tree crowns throughout 

the image prior to applying the classification model to predict species identity. At the time of the study 

[2005], the ability to accurately, automatically delineate individual tree crowns in a closed-canopy 

tropical forest did not exist, and nearly a decade later it still does not.” Also Baldeck et al. (2015) 

were forced to delineate all their training crowns by hand as no solution to automatically do so existed. 

It was thus part of this Master’s thesis to first find a solution to this nontrivial challenge to later 

classify the clove production systems. 

In the beginning of the thesis, the most common approaches such as finding local maxima and minima 

were tested to find single trees in the study area. While local maxima detection worked out rather well 

also in this tropical setting, finding local minima to create the ‘valleys’ around the tree crowns caused 

problems. The main challenge was the inhomogeneous land cover and the dense canopies composed 

of trees very diverse in shape and size. This inhomogeneity had two effects. On the one hand, it 

resulted in a very discontinuous network of minima with lots of gaps, dead ends and entire 

accumulations of local minima pixels. Especially gaps were very problematic as unclosed networks 

will not allow correct region-segmentation originating from the local maxima seeds. On the other 
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hand, the canopy of the tropical rainforest sometimes was too dense to find any local minima or only a 

few single pixels indicating local minima.  Consequently, it was difficult to create a (closed) network 

to perform region-segmentation. 

Different solution from the literature did not improve the outcome in this complex setting. Pre-

processing the image by masking out areas which are not forest/vegetation (Gougeon and Leckie 

2006) was not feasible due to vast shadow areas within the forest itself. Masking them out led to a 

great loss of necessary information. Also, the application of filters (Culvenor 2002) was not as 

successful as expected.  Information content was lost and most of the gaps still could not be closed. 

Performing edge-detection only on the most suitable single-band found by using Principal Component 

Analysis (PCA) (Wang et al. 2004) was as well was not as successful as hoped for. In addition, 

varying the scale at which local minima were searched (Wang et al. 2004) resulted in no considerable 

improvement for a consistent local minima detection to perform successfully. 

3.1.2 The solution  

In order to overcome these challenges, an approach was sought where the single trees are not 

dependent on each other, that is, no continuous network is required to detect single trees. Therefore, an 

algorithm was required which can detect individual objects in an image. Benefitting from the circular 

shape of the clove trees (i.e., circular objects) the Circular Hough Transform (CHT) algorithm (Duda 

and Hart 1972, Atherton and Kerbyson 1999, Rizon et al. 2005) was investigated (see section 2.3.1 for 

a description of this algorithm). CHT is a combination of a bottom-up tree detection algorithm and a 

flexible template matching algorithm. It outputs circle centers and circle radii for all the circles 

detected in the image. The CHT is said to be robust to the presence of noise, varying illumination 

conditions as well as to occlusion (The MathWorks Inc. 2012). By applying this algorithm, 97.86% of 

all reference clove trees in the image were detected. 

3.1.3 Advantages and disadvantages 

CHT has various advantages which are especially valuable in the context of the r4d program. CHT is 

very simple to apply if there is a readily implemented function available. Only very few initial 

parameters (e.g. radius, edge threshold) have to be set by the user. Hence, CHT can be viewed as an 

automatic single tree detection algorithm. Furthermore, CHT can be applied to various scales. Due to 

the individually adjustable radius size for which the algorithm has to search the image, this parameter 

can be freely adjusted depending on the image and its resolution used for the tree detection.  

CHT is able to detect and approximately delineate single trees in a VHR multi-spectral satellite image. 

This is especially valuable in the context of the r4d project, as multi-spectral satellite images meet all 
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user requirements of the project. This data is rather inexpensive and globally available. Consequently, 

CHT to detect single clove trees as shown in this thesis can be applied for the other study sites in Laos 

and Myanmar as well by even using the same sensor with the same properties allowing global 

comparison. Additionally, CHT not only outputs the tree crown center but an entire ‘tree object’ as it 

also gives an approximate delineation of the tree crown. As already mentioned earlier, image objects 

allow gaining a multiple amount of information compared to single pixels, what in return is very 

favorable for the tree classification later on (Chubey et al. 2006). 

The downside of this algorithm is that not only clove trees or trees in general are detected but all 

circular objects present in the scene. Hence, in our case this algorithm found millions of other circular 

objects besides the desired clove trees. It thus is indispensable to further process this output in order to 

filter out the undesired objects.  

Another disadvantage is that vast amounts of data are generated as every single tree is saved as an own 

entity. This requires a suitable data storage infrastructure. Furthermore, one has to be aware that to 

accomplish this task, individual trees have to be recognizable in the image, so that the CHT algorithm 

can find them reliably. This implies that only VHR data is suitable for this purpose, which means that 

the large, long-time data archives of Landsat or more recently Sentinel-2 cannot be used with this 

method because of the too low spatial resolution.  

3.1.4 Recommendations for the r4d project 

With regard to the r4d project, there is a high potential of the CHT algorithm to detect clove trees in 

Madagascar (see section 3.1.3). However, as will be shown in the next step of the tree species 

classification, the amount of data generated by this approach could be a major challenge. An 

alternative to this approach, which is based directly on tree species classification, is therefore 

presented in section 3.2.4. Additional considerations, which have to be made with regard to the whole 

project, are explained in section 3.3.4. 
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3.2 How can clove trees be detected/classified in an automated way using 

the spectral properties of the canopy? 

3.2.1 The challenge 

While single tree detection in tropical forests as such already is a demanding task, also the subsequent 

tree species classification is a challenge in the tropics. Again, Baldeck et al. (2015) describe the 

problem at hand precisely: 

“In a foundational study, Clark et al. [7] [Clark et al. 2005] attempted to classify seven canopy tree 

species from a diverse Costa Rican rainforest based on their remotely-sensed hyperspectral signatures 

collected with the airborne sensor HYDICE. Their most successful model classified the crowns of their 

study species with 92% accuracy. Despite these encouraging results, this classification model could 

not be used to map any of the seven study species across the study site. The primary reason for this 

was that the classification model differentiated the seven study species from one another, but not from 

the hundreds of other tree and liana species present at the site.” 

The incredible density of different tree species and thus finding suitable features that enable clove 

trees to be distinguished from the surrounding vegetation are therefore a great challenge when it 

comes to classifying individual tree species in the tropics. 

3.2.2 The solution  

To overcome the ‘mapping’ challenge, Baldeck et al. (2015) propose a one-against-all classification 

method based on binary Support Vector Machine (SVM) and biased SVM. This approach was adopted 

in this thesis by reducing the clove tree species classification to a binary problem. This was done by 

training the random forest classification algorithm on two classes only. One class contained the clove 

trees and the other class all the other detected circular objects regardless of what these circular objects 

represented (e.g. other trees, grasslands, bright circular spots in urban areas etc.). Instead of the SVM 

classifier a random forest (RF) classifier was used. This is because RF have been shown to provide 

high class accuracies for classification problems in remote sensing and ecology (e.g. Breiman 2001, 

Pal 2005, Lawrence et al. 2006, Cutler et al. 2007, Watts and Lawrence 2008, Dalponte et al. 2012). 

Furthermore, fewer parameters have to be set compared to SVMs where several parameters have to be 

defined by the user (Pal 2005, Lawrence et al. 2006, Dalponte et al. 2012). Another advantage of RF is 

that this method is less prone to imperfect data such as unbalanced data, unscaled data or missing 

values (Pal 2005).  
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To perform the classification, features describing the objects’ properties had to be calculated for all the 

detected circular objects. Various compositions of different feature sets were investigated to optimize 

the classification result. Classification attempts with only spectral features as input were not accurate 

enough. For this reason, structural features (‘extractFeatures’ function (The MathWorks Inc. 2012) 

and ‘HOG features’ (The MathWorks Inc. 2013)) were taken into account as well. The finally 

extracted features are described in Table 3.  

Although it was possible to classify the clove trees on the basis of these calculated features, looking at 

the feature's importance shows that many features were only moderately important for recognizing the 

cloves. This fact indicates the general difficulty of recognizing a certain plant species among many 

other plants. The most distinctive spectral features were the standard deviation of the spectral 

reflection in the blue, green and NIR bands as well as the skewness of the NIR channel per tree crown. 

It also showed that some of the features calculated by the ‘extractFeatures’ function (The MathWorks 

Inc. 2012) had a rather high importance as well. This indicates that no only spectral but also structural 

features were important for the classification. The final classification resulted in a producer accuracy 

of 70.7% and a user accuracy of 59.2% for cloves trees.  

These accuracies are lower than the ones Baldeck et al. (2015) achieved in their tree classification. A 

closer look, however, reveals that the point of departure for the two studies cannot be compared 

directly. While it was a prerequisite of this thesis to be able to automatically detect and delineate 

single trees (see section 2.3.1), Baldeck et al. (2015) had manually delineated the tree crowns of all 

their training trees. Having perfect tree delineations allowed them to classify the trees on a pixel basis. 

Thus, they could search their scene for matching pixels which in the end were then aggregated to 

individual crowns. In our case, the automatically produced tree crown delineations were satisfactory 

but not accurate enough to simply feed all the pixels within a delineated crown to the classifier as 

training data. Hence, we could not classify pixels but rather had to classify the entire objects. 

Furthermore, it showed that the model of Baldeck et al. (2015) did not successfully classify tree 

crowns with diameters of 5 meters or smaller. The clove trees in our study are rarely exceeding 

diameters of 8 meters; most had a diameter of less than 6 meters. Another advantage of Baldeck et al. 

(2015) was that their entire study area was completely covered with very dense tropical rainforest. 

Hence, there were no other (natural) land covers having very similar spectral properties such as for 

example grasslands.  
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3.2.3 Advantages and disadvantages 

When talking about the approach here, we mean the combination of the single tree detection on object 

level and the classification of these single tree objects. Because if the output of the single tree 

detection had been different (i.e. no tree objects), a different classification method would have had to 

be chosen. 

An advantage of this approach was that information about both, clove trees and non-clove trees were 

gathered at the same time. Knowing the location of all the objects in both classes provided information 

about the forest composition. With this information, for example, the cluster analysis (ESRI n.d.) for 

the LULC classification (see section 2.3.3) could have been carried out. When a certain tree class is 

classified on the pixel level, however, no information is gathered about the location or species of the 

surrounding or not classified trees. 

The disadvantages of object-based tree species classification are all related to the incredible amount of 

objects generated by CHT detection. Calculating features for almost 8 million objects is 

computationally demanding. Hence, a powerful computer as well as enough processing time is 

required to perform such calculations. Furthermore, vast amounts of data are generated what makes 

data organization demanding and cumbersome. Finding solutions to these two challenges took months, 

with the automated calculations themselves ultimately taking another month on a high performance 

desktop computer. 

Hence, the time it takes to calculate the features for all objects and the enormous amount of data 

generated present challenges regarding the scalability of this method to the three entire research areas 

of the r4d project. 

3.2.4 Recommendations for the r4d project 

One of the prerequisites given by the project was that the clove trees could be detected and delineated 

automatically. Based on this premise, the approach to detect individual trees with the help of CHT was 

developed. With this approach, it was also automatically determined that tree species classification 

must be carried out at the object level. As mentioned above, there are some advantages (see Chubey et 

al. 2006), however, it was at the same time demanding in terms of time and computational power. 

It is thus questionable if the automatic detection and delineation of clove trees in the long term of this 

project is feasible. Thus, it is highly recommended to investigate the manual delineation of clove trees 

for training and then perform a classification on the pixel level.  
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Classification on the pixel level was performed by Baldeck et al. (2015) and resulted in high 

classification accuracies (see however the different starting points of the two studies in section 3.2.2). 

Their approach was as follows: first of all, representative specimens of the tree species to be classified 

were searched for in the imagery data and manually delineated. Next, all pixels within these crown 

borders could be used as training pixels for this species. Afterwards, all pixels in the image were 

classified using the trained classification algorithm. Collections of such classified pixels of this species 

were then grouped into ‘crown blobs’. Detailed information about the pixel-level approach can be 

found in Baldeck et al. (2015). 

Although not tested in this thesis, the approach of classification at the pixel level might be faster and 

computationally less expensive. Classifying clove trees on a pixel and not on the object level might 

also enable tree classification based on images with a slightly lower spatial resolution than the imagery 

used in this thesis. One or two pixels per tree might be enough to capture the essential information of a 

clove tree if the training data is pure due to the perfect manual delineation, while several pixels were 

required to classify a crown object in the approach of this thesis.  

Still, some challenges might arise in the step of the LULC classification as cluster analysis, as it was 

performed in this thesis, is not possible anymore. This is because pixel-level classification would only 

provide the location of the clove trees but no information about the other non-clove trees in the area is 

provided. However, in a pinch, maybe also the LULC classification solely based on spectral 

information could be used as basis for the subsequent production type classification. As only the 

amount of trees is required for the final production type classification, this step would not be 

influenced if reasonable ‘crown-blobs’ were found.  

Of course, these are all assumptions and it is not clear whether the approach of Baldeck et al. (2015) 

can actually be transferred to our research area because of the different local conditions. In addition, it 

is likely that many unexpected hurdles will also arise with the pixel-level approach. Nevertheless, 

from the point of view of the r4d project, it would certainly be worth to test this option. 

Another way to avoid the challenge of handling the large amount of data with only the limited 

computing capacity of desktop computers would be to consider cloud computing infrastructures. 

Depending on which service is used, however, additional costs might occur. An interesting possibility 

would be to use a cloud infrastructure like the Google Earth Engine. This platform could offer a 

suitable solution to adhere to the object-oriented approach of this thesis. However, the methodologic 

and parallel-computing restrictions were not investigated in-depth during this thesis.  
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3.3 How can clove production types be classified and what are the 

respective production rates quantified on a regional level? 

3.3.1 The challenge 

In the beginning of this thesis, the single tree detection and classification approach was performed 

with the intention to gain information to distinguish the three production types (pasture, clove 

plantation and agroforest) from each other. It was assumed that this was possible solely based on the 

information about the clove tree density, the distance among the clove trees and the spectral 

information for each production type. In the course of this thesis, however, it crystallized that not the 

distinction among the production types was the main problem but the distinction of the production 

types from their surrounding environments.  

This is a well-known challenge when it comes to classifying land uses (e.g. Barnsley and Barr 1996, 

Cihlar and Jansen 2001, Zhang and Wang 2003, Lackner and Conway 2008). While land cover in 

remote sensing data can usually be classified on the basis of spectral information, this is not possible 

in most cases with land use. Land use classes are in general spectrally barely different from the land 

cover classes they belong to (Aplin 2003, Lackner and Conway 2008). For this reason, the challenge 

in land use classification is to find further parameters that allow a more detailed, spectrally 

independent differentiation. 

With regard to the calculation of the clove yield in the study area, the biggest challenge is that there is 

hardly any reliable information on the basis of which the exact yields could be calculated. 

3.3.2 The solution  

It was found that the only parameter allowing a distinction between the productive land uses, pasture, 

clove plantation and agroforest and the other non-productive LULC classes is the number of clove 

trees. While non-productive areas have none to only few clove trees, the clove production types 

feature more clove trees per area. 

For this reason, we have calculated the minimum number of clove trees in each production type based 

on our clove and production type reference areas. If this minimum number is reached in the areas to be 

classified, they are classified as clove production type. If the minimum number is surpassed, the area 

is classified as productive LULC area (Figure 9). 

Based on this knowledge, a 2-step classification procedure was applied (Figure 8). First, the five 

LULC classes, grassland, plantation, forest, rice paddies/bare soil, and urban areas were classified. 
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Subsequently, the calculated minimum-thresholds were applied to distinguish the clove production 

types from the non-productive LULC classes.  

The overall accuracy of the LULC classification was 87.5%. It could also be shown that performing 

this classification on spectral information only, resulted in a 12% lower overall classification accuracy 

when spectral and tree related information were combined. Tree related information was implemented 

by performing a cluster analysis and calculating distances among the detected trees. In the cluster 

analysis, the information from the tree species classification was utilized. The cluster analysis showed 

for example where there are significant clusters of cloves or non-cloves and in which areas no 

significant clusters were found.  

As with the tree species classification, different combinations of features have been tested to achieve 

the best possible classification. When trying to use only the features with a feature importance of more 

than 0.6, extreme overfitting of the classifier occurred. This resulted in all the grid cells being assigned 

to 3 classes only. Thus, all features, regardless of their importance, were used to finally train the 

classifier (see section 2.3.3).  

The second classification step, in which the calculated thresholds were used, was validated by 

applying an equalized stratified random sampling method. The overall accuracy of this final 

production type classification was 77.9%. The three clove production types were classified with a user 

and producer accuracy (UA/PA) of 85%/68%, 65%/92% and 65%/68% for pasture, clove plantation 

and agroforest, respectively. 

The clove yield estimates were calculated by combining the gained knowledge about where the areas 

used for clove production are and how many clove trees there are on these areas. An attempt was made 

to mitigate the weak point in this calculation, namely the lack of reliable yield data, by collecting and 

comparing different data from other studies on cloves and clove production systems. The value of 3 

kg/tree was the most frequently mentioned, which is why this value was used in the present study to 

calculate the yields. 

3.3.3 Advantages and disadvantages 

It is questionable to what extent one can talk about advantages and disadvantages of both solutions 

described here. The solutions applied are much more the consequence of the previous decisions and 

methods used, leaving little room to consider other possibly better solutions. 

The LULC classification showed the advantage of object-based tree detection and tree species 

classification. Due to the output produced there, it was possible to perform a cluster analysis and thus 

visibly improve a classification that was otherwise often based on spectral values only.  
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A considerable advantage of the application of thresholds in the final production type classification is 

its fast and efficient application. The thresholds themselves are relatively simple to calculate and the 

(re-)classification can also be done based on a few mathematical operations. Consequently, there is no 

need to train a classifier again. 

However, at the same time the biggest disadvantage of the final production type classification is the 

use of thresholds. This makes the (re-)classification strict, which does not correspond to the natural, 

flowing transitions between the different classes. Furthermore, only one parameter, namely the 

number of cloves, has been taken into account. Additional parameters, such as the distance to the 

settlements, could at best have further improved the final result and mitigated the strictness of the 

thresholds. The way in which the thresholds were calculated can also be viewed critically, although no 

official data was available here either, so that the thresholds had to be based on some kind of own 

calculations anyways. 

As far as yield calculations are concerned, the simple applicability must be emphasised as an 

advantage. There are no major disadvantages as such, but there is a weak data basis, causing the 

overall results to be not really representative and reliable. While the yield per tree of 3kg seems 

relatively realistic and is supported by multiple references in the literature, no parameters influencing 

the yield could be taken into account due to missing reference data. Particularly noteworthy in this 

context is the parameter providing information on how many of the trees are used on average for clove 

production and how many are used for the production of the essential oils. Trees that are used to 

produce the oil cannot be used to produce clove buds. Thus, the final yield would be reduced 

depending on the fraction of the detected trees used for the production of clove buds. 

3.3.4 Recommendations for the r4d project 

It should be investigated whether it is possible to classify clove production types and, above all, 

whether these findings can be up-scaled to the whole of Madagascar. 

As it turned out, it is basically possible to classify clove production types with a high accuracy. 

However, it was only possible to detect production types by the number of present clove trees. This 

means that information at the single tree level is required to classify the production types. 

Hence, while it was time-consuming and technically complex to calculate all features for the 8 million 

detected objects in the study area (see section 2.3.2 and 3.2.3) it will be difficult if not impossible to 

calculate the features for all the trees on Madagascar with the currently available means. Even if data 

handling should be somehow feasible by using cloud computing infrastructures, it has to be considered 

that cloud-free VHR multi-spectral data has to be obtained for the whole of Madagascar. This is 
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difficult due to the high fractional cloud cover in Madagascar. In addition, this would also be 

correspondingly expensive. 

However, the urgently needed acquisition of additional information on clove trees and especially clove 

yields seems to be much more realistic. This thesis has shown that an estimation of clove yields can be 

achieved by remote sensing methods, but the values available for the final calculation still contain too 

little information and therefore lead to a high uncertainty. This means that if sound knowledge about 

locally generated clove yields should be obtained with the help of remote sensing, the data basis must 

first be improved. It is thus paramount to invest more time to systematically collect reliable reference 

data on the ground. 

4 Conclusion  

This master thesis contains a scientific paper chapter demonstrating the successful classification of 

clove production systems in Madagascar on the basis of remote sensing data. 

Despite the challenges in tropical rainforests, individual trees could be reliably detected and classified. 

It was shown that CHT is a very promising method for automated single clove tree detection in 

tropical forests, resulting in the high detection rate of 97.9% for the clove reference trees. This method 

is especially suitable when the location of a tree and only an approximate delineation of the tree crown 

are required. The object-oriented approach linked to the Circular Hough Transform also enabled a 

reliable classification of the clove trees. While this approach was computationally demanding, it was 

also possible to extract structural information about the trees thanks to this approach. Based on this 

information, the classification was considerably improved. The tree classification result was used to 

successfully classify the three clove production types pasture, clove plantation, and agroforest. 

Combining spectral with tree related properties for the production type classification resulted in an 

overall accuracy of 77.9%.  

For the first time, single clove trees and entire clove production systems could be reliably classified 

and mapped for a large study area. On the basis of this information, it was not only possible to 

calculate further information such as clove yields, but also tracking future changes in clove production 

will now be possible. However, due to the limited in situ reference data basis on clove yields, our yield 

estimates have to be assessed carefully before further usage. Hence, this thesis has shown that a 

reasonable estimate of clove yields in north-eastern Madagascar can be achieved by remote sensing 

methods, but more reliable data on the production of cloves have to be collected on site before a 

reliable statement about locally generated clove yields can be made. 
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It would be exciting to apply the approach developed in this master thesis to other regions or for other 

crops. If more reliable yield data can be collected and the performance of this approach be further 

improved, the insights gained in this way offer an excellent alternative to the little official crop 

production data available. 

 

 

 

Declaration of Authorship 

 

Personal declaration: I hereby declare that the submitted thesis is the result of my own, 

independent work. All external sources are explicitly acknowledged in the thesis. 

 

 

 

…………………………….. 

Place, Date 

 

 

……………………………... 

Signature 

 

 

 

 

  



57 

References 

Aksoy, S., Yalniz, I.Z., Tasdemir, K., 2012. Automatic Detection and Segmentation of Orchards Using 

Very High Resolution Imagery. IEEE Trans. Geosci. Remote Sens. 50(8), 3117–3131.  

Aly, M., 2005. Survey on Multiclass Classification Methods. Neural Netw. 19, 1–9. 

Aplin, P., 2003. Determining land-use information from land cover through an object-oriented 

classification of IKONOS imagery. In: Mesev, V. (Ed.), Remotely-Sensed Cities. Taylor & 

Francis, London, U.K., 23–45. 

Asner, G.P., Jones, M.O., Martin, R.E., Knapp, D.E., Hughes, R.F., 2008. Remote sensing of native and 

invasive species in Hawaiian forests. Remote Sens. Environ. 112(5), 1912–1926.  

Asner, G.P., Martin, R.E., 2011. Canopy phylogenetic, chemical and spectral assembly in a lowland 

Amazonian forest. New Phytol. 189(4), 999–1012.  

Asner, G.P., Martin, R.E., Anderson, C.B., Kryston, K., Vaughn, N., Knapp, D.E., Bentley, L.P., 

Shenkin, A., Salinas, N., Sinca, F., Tupayachi, R., Quispe Huaypar, K., Montoya Pillco, M., Ccori 

Álvarez, F.D., Díaz, S., Enquist, B.J., Malhi, Y., 2017. Scale dependence of canopy trait 

distributions along a tropical forest elevation gradient. New Phytol. 214(3), 973–988.  

ASTRIUM, 2012. Pléiades Imagery User Guide 2, 118. 

Atherton, T.J., Kerbyson, D.J., 1999. Size invariant circle detection. Image Vis. Comput. 17(11), 795–

803.  

Baldeck, C.A., Asner, G.P., 2014. Improving remote species identification through efficient training 

data collection. Remote Sens. 6(4), 2682–2698.  

Baldeck, C.A., Asner, G.P., Martin, R.E., Anderson, C.B., Knapp, D.E., Kellner, J.R., Wright, S.J., 

2015. Operational tree species mapping in a diverse tropical forest with airborne imaging 

spectroscopy. PLoS one 10(7), e0118403.  

Barnsley, M.J., Barr, S.L., 1996. Inferring urban land use from satellite sensor images using kernel-

based spatial reclassification. Photogramm. Eng. Remote Sens. 62(8), 949–958.  

Boschetti, M., Boschetti, L., Oliveri, S., Casati, L., Canova, I., 2007. Tree species mapping with 

Airborne hyperspectral MIVIS data: the Ticino Park study case. Int. J. Remote Sens. 28(6), 1251–

1261.  

Bowler, I.R., 2014. The Geography of Agriculture in Developed Market Economies. Routledge.  

Brandtberg, T., Walter, F., 1998. Automated delineation of individual tree crowns in high spatial 

resolution aerial images by multiple-scale analysis. Mach. Vis. Appl. 11(2), 64–73.  

Brandtberg, T., Warner, T.A., Landenberger, R.E., McGraw, J.B., 2003. Detection and analysis of 

individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern 

deciduous forest in North America. Remote Sens. Environ. 85(3), 290–303.  

Breiman, L., 2001. Random Forests. Mach. Learn. 45(1), 5–32. 

Celio, E., 2016. Working document of r4d project - Land use categories. 

Chen, C., Liaw, A., Breiman, L., 2004. Using random forest to learn imbalanced data. Univ. California, 

Berkeley, 110, 1–12.  

Chen, P., Haboudane, D., Tremblay, N., Wang, J., Vigneault, P., Li, B., 2010. New spectral indicator 

assessing the efficiency of crop nitrogen treatment in corn and wheat. Remote Sens. Environ. 

114(9), 1987–1997.  

Chubey, M.S., Franklin, S.E., Wulder, M.A, 2006. Object-based analysis of Ikonos-2 imagery for 

extraction of forest inventory parameters. Photogramm. Eng. Remote Sensing 72(4), 383–394.  



58 

Cihlar, J., Jansen, L.J.M., 2001. From Land Cover to Land Use: A Methodology for Efficient Land Use 

Mapping over Large Areas. Prof. Geogr. 53(2), 275–289. 

Clark, M.L., Roberts, D.A., Clark, D.B., 2005. Hyperspectral discrimination of tropical rain forest tree 

species at leaf to crown scales. Remote Sens. Environ. 96(3), 375–398.  

Clove Crop Cultivation Guide, n.d. URL 

https://www.indiaagronet.com/horticulture/CONTENTS/clove.htm (accessed 11.8.17). 

Cochrane, M.A., 2000. Using vegetation reflectance variability for species level classification of 

hyperspectral data. Int. J. Remote Sens. 21(10), 2075–2087.  

Culvenor, D.S., 2003. Extracting Individual Tree Information. In: Wulder, M.A., Franklin, S.E. (Eds.), 

Remote Sensing of Forest Environments: Concepts and Case Studies. Kluwer Academic 

Publishers, pp. 255–277.  

Culvenor, D.S., 2002. TIDA: An algorithm for the delineation of tree crowns in high spatial resolution 

remotely sensed imagery. Comput. Geosci. 28(1), 33–44.  

Cutler, D.R., Edwards, T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J.C., Lawler, J.J., 2007. 

Random Forests for Classification in Ecology. Ecology 88(11), 2783–2792. 

Daliakopoulos, I.N., Grillakis, E.G., Koutroulis, A.G., Tsanis, I.K., 2009. Tree Crown Detection on 

Multispectral VHR Satellite Imagery. Photogramm. Eng. Remote Sensing 75(10), 1201–1211.  

Dalponte, M., Bruzzone, L., Gianelle, D., 2012. Tree species classification in the Southern Alps based 

on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR 

data. Remote Sens. Environ. 123, 258–270.  

Danthu, P., Penot, E., Ranoarisoa, K.M., Rakotondravelo, J.C., Michel, I., Tiollier, M., Michels, T., 

Normand, F., Razafimamonjison, G., Fawbush, F., Jahiel, M., 2014. The clove tree of 

Madagascar : a success story with an unpredictable future. Bois Forêts des Trop. 320(2), 83–96. 

Därr, W., Heimer, K., 2015. Reise Know-How Madagaskar - Reiseführer für individuelles Entdecken, 

Reise Know-How Verlag Peter Rump. 

Doraiswamy, P.C., Moulin, S., Cook, P.W., Stern, A., 2003. Crop Yield Assessment from Remote 

Sensing. Photogramm. Eng. Remote Sensing 69(6), 665–674.  

dos Santos, A.M., Mitja, D., Delaître, E., Demagistri, L., de Souza Miranda, I., Libourel, T., Petit, M., 

2017. Estimating babassu palm density using automatic palm tree detection with very high spatial 

resolution satellite images. J. Environ. Manage. 193, 40–51.  

Duda, R.O., Hart, P.E., 1972. Use of the Hough Transformation to Detect Lines and Curves in Pictures. 

Commun. ACM 15(1), 11–15. 

ESRI, n.d. Cluster and Outlier Analysis (Anselin Local Moran’s I). URL https://pro.arcgis.com/en/pro-

app/tool-reference/spatial-statistics/cluster-and-outlier-analysis-anselin-local-moran-s.htm 

(accessed 10.8.2017) 

FAOSTAT, n.d. FAOSTAT. URL http://www.fao.org (accessed 10.8.17). 

Fassnacht, F.E., Latifi, H., Stereńczak, K., Modzelewska, A., Lefsky, M., Waser, L.T., Straub, C., 

Ghosh, A., 2016. Review of studies on tree species classification from remotely sensed data. 

Remote Sens. Environ. 186, 64–87.  

Ferencz, C., Bognár, P., Lichtenberger, J., Hamar, D., Tarcsai, G., Timár, G., Molnár, G., Pásztor, S., 

Steinbach, P., Székely, B., Ferencz, O.E., Ferencz-Árkos, I., 2004. Crop yield estimation by 

satellite remote sensing. Int. J. Remote Sens. 25(20), 4113–4149.  

Ferreira, M.P., Zortea, M., Zanotta, D.C., Shimabukuro, Y.E., de Souza Filho, C.R., 2016. Mapping 

tree species in tropical seasonal semi-deciduous forests with hyperspectral and multispectral data. 

Remote Sens. Environ. 179, 66–78.  



59 

Foody, M.G., 2002. Status of land cover classification accuracy assessment. Remote Sens. Environ. 

80(1), 185–201.  

Franklin, J., Phinn, S.R., Woodcock, C.E., Rogan, J., 2003. Rationale and Conceptual Framework for 

Classification Approaches to Assess Forest Resources and Properties. In: Wulder, M.A., Franklin, 

S.E. (Eds.), Remote Sensing of Forest Environments: Concepts and Case Studies. Kluwer 

Academic Publishers, pp. 279–300.  

Gitelson, A.A., Kaufman, Y.J., Stark, R., Rundquist, D., 2002. Novel algorithms for remote estimation 

of vegetation fraction. Remote Sens. Environ. 80(1), 76–87.  

Gougeon, F.A., 1999. Automatic individual tree crown delineation using a valley-following algorithm 

and a rule-based system. Proc. Int. Forum Autom. Interpret. High Spat. Resolut. Digit. Imag. For. 

Victoria, British Columbia, Canada, 11–23. 

Gougeon, F.A., 1995. A Crown-Following to the Automatic Delineation of Individual Tree Crown in 

High Spatial Resolution Aerial Images. Can. J. Remote Sens. 21(3), 274–284. 

Gougeon, F.A., Leckie, D.G., 2006. The individual tree crown approach applied to Ikonos images of a 

coniferous plantation area. Photogramm. Eng. Remote Sensing 72(11), 1287–1297.  

Haboudane, D., Miller, J.R., Tremblay, N., Zarco-Tejada, P.J., Dextraze, L., 2002. Integrated narrow-

band vegetation indices for prediction of crop chlorophyll content for application to precision 

agriculture. Remote Sens. Environ. 81(2), 416–426.  

Haboudane, D., Tremblay, N., Miller, J.R., Vigneault, P., 2008. Remote Estimation of Crop 

Chlorophyll Content Using Spectral Indices Derived From Hyperspectral Data. IEEE Geosci. 

Remote Sens. 46(2), 423–437. 

Harvey, C.A., Rakotobe, Z.L., Rao, N.S., Dave, R., Razafimahatratra, H., Rabarijohn, H., Rajaofara, 

H., Mackinnon, J.L., B, P.T.R.S., Rabarijohn, R.H., 2014. Extreme vulnerability of smallholder 

farmers to agricultural risks and climate change in Madagascar. Phil. Trans. R. Soc. 369(1639), 1–

12.  

Hay, G.J., Castilla, G., Wulder, M.A., Ruiz, J.R., 2005. An automated object-based approach for the 

multiscale image segmentation of forest scenes. Int. J. Appl. Earth Obs. Geoinf. 7(4), 339–359.  

Henrich, V., n.d. IDB - Index: Enhanced Vegetation Index. URL http://www.indexdatabase.de/db/i-

single.php?id=16 (accessed 10.8.17). 

Hirschmugl, M., Ofner, M., Raggam, J., Schardt, M., 2007. Single tree detection in very high resolution 

remote sensing data. Remote Sens. Environ. 110(4), 533–544.  

Homolová, L., Malenovský, Z., Clevers, J.G.P.W., García-Santos, G., Schaepman, M.E., 2013. Review 

of optical-based remote sensing for plant trait mapping. Ecol. Complex. 15, 1–16.  

Horticulture Spice Crops Clove, n.d. URL http://agritech.tnau.ac.in/horticulture/horti_spice 

crops_clove.html (accessed 11.8.17). 

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., 2002. Overview of the 

radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 

83(1), 195–213.  

Huete, A.R., 1988. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25(3), 295–309.  

Immitzer, M., Atzberger, C., Koukal, T., 2012. Tree species classification with Random forest using 

very high spatial resolution 8-band worldView-2 satellite data. Remote Sens. 4(9), 2661–2693.  

Kaartinen, H., Hyyppä, J., Yu, X., Vastaranta, M., Hyyppä, H., Kukko, A., Holopainen, M., Heipke, C., 

Hirschmugl, M., Morsdorf, F., Næsset, E., Pitkänen, J., Popescu, S., Solberg, S., Wolf, B.M., Wu, 

J.C., 2012. An international comparison of individual tree detection and extraction using airborne 

laser scanning. Remote Sens. 4(4), 950–974.  



60 

Kägi, H.U., 2008. Madagaskar: Faszination der roten Insel. Rano-Verlag. 

Ke, Y., Quackenbush, L., 2007. Forest Species Classification and Tree Crown Delineation Using 

Quickbird Imagery. ASPRS 2007 Annu. Conf. 7–11. 

Koch, B., Heyder, U., Weinacker, H., 2006. Detection of Individual Tree Crowns in Airborne Lidar 

Data. Photogramm. Eng. Remote Sens. 72(4), 357–363.  

Kubat, M., Matwin, S., 1997. Addressing the Curse of Imbalanced Training Sets: One Sided Selection. 

ICML 97, 179–186.  

Lackner, M., Conway, T.M., 2008. Determining land-use information from land cover through an 

object-oriented classification of IKONOS imagery. Can. J. Remote Sens. 34(2), 77–92.  

Lawrence, R.L., Wood, S.D., Sheley, R.L., 2006. Mapping invasive plants using hyperspectral imagery 

and Breiman Cutler classifications (RandomForest). Remote Sens. Environ. 100(3), 356–362.  

Leckie, D.G., Gougeon, F.A., Walsworth, N., Paradine, D., 2003. Stand delineation and composition 

estimation using semi-automated individual tree crown analysis. Remote Sens. Environ. 85(3), 

355–369.  

Lefsky, M.A., Cohen, W.B., 2003. Selection of Remotely Sensed Data. In: Wulder, M., Franklin, S.E. 

(Eds.), Remote Sensing of Forest Environments: Concepts and Case Studies. Kluwer Academic 

Publishers, pp. 13–46.  

Levasseur, S., Penot, E., Michel, I., Danthu, P., 2012. Document de travail AFS4FOOD, Analyse des 

systèmes à base de girofliers de l’Ile Ste Marie, à Madagascar.  

Lobietti, M., 2013. Analyse des systèmes girofliers à Fénérive-Est, Madagascar: dynamiques spatiales, 

trajectoires et stratégies paysannes. Cirad. 

Locatelli, B., 2000. Pression démographique et construction du paysage rural des tropiques humides : 

l’exemple de Mananara (Madagascar). ENGREF (AgroParisTech). 

Mahour, M., Tolpekin, V., Stein, A., 2016. Tree detection in orchards from VHR satellite images using 

scale-space theory. Proc. of SPIE Vol. 10004. 

Maistre, J., 1964. Les plantes à épices, Techniques agricoles et productions tropicales. Maisonneuve & 

Larose. 

Mallinis, G., Koutsias, N., Tsakiri-Strati, M., Karteris, M., 2008. Object-based classification using 

Quickbird imagery for delineating forest vegetation polygons in a Mediterranean test site. ISPRS J. 

Photogramm. Remote Sens. 63(2), 237–250.  

Managing telecoupled landscapes for the sustainable provision of ecosystem services and poverty 

alleviation, n.d. URL http://www.r4d.ch/modules/ecosystems/telecoupled-landscapes (accessed 

10.8.17). 

Michels, T., Bisson, A., Ralaidovy, V., Rabemananjar, H., Jahiel, M., Malézieux, E., 2011. 

Horticultural agroforestry systems in the humid tropics: Analysis of clove tree-based systems in 

Madagascar. Acta Hortic. 894, 161–168. 

Ministère des Affaires étrangères, 2012. Mémento de l’Agronome. Cirad. Éd. Ministère des affaires 

étrangères, 1077-1078. 

Nagayets, O., 2005. Small farms: Current Status and Key Trends. In: Future of Small Farms. pp. 355–

367. 

National Aeronautics and Space Administration, n.d. Landsat 7 Science Data Users Handbook. URL 

https://landsat.gsfc.nasa.gov/landsat-7-science-data-users-handbook/ (accessed 11.8.17). 

Nellis, M.D., Price, K.P., Rundquist, D., 2009. Remote Sensing of Cropland Agriculture. The SAGE 

handbook of remote sensing 1, 368–380.  

 



61 

Ørka, H.O., Hauglin, M., 2016. Use of remote sensing for mapping of non-native conifer species. INA 

Fagrapport 33. 

Ørka, H.O., Næsset, E., Bollandsås, O.M., 2009. Classifying species of individual trees by intensity and 

structure features derived from airborne laser scanner data. Remote Sens. Environ. 113(6), 1163–

1174.  

Oryx Digital Ltd, n.d. PerfectTablePlan. URL https://www.perfecttableplan.com/html/floor-plan-clip-

art.html (accessed 11.8.17). 

Pal, M., 2005. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 26(1), 

217–222.  

Pfund, J.L., Watts, J.D., Boissière, M., Boucard, A., Bullock, R.M., Ekadinata, A., Dewi, S., Feintrenie, 

L., Levang, P., Rantala, S., Sheil, D., Sunderland, T.C.H., Urech, Z.L., 2011. Understanding and 

integrating local perceptions of trees and forests into incentives for sustainable landscape 

management. Environ. Manage. 48(2), 334–349.  

Pinz, A., 1991. A computer vision system for the recognition of trees in aerial photographs. In: 

International Association of Pattern Recognition Workshop, pp. 111–124. 

Pollock, R.J., 1996. The automatic recognition of individual trees in aerial images of forests based on a 

synthetic tree crown image model. The University of British Columbia. 

Pouliot, D.A., King, D.J., Bell, F.W., Pitt, D.G., 2002. Automated tree crown detection and delineation 

in high-resolution digital camera imagery of coniferous forest regeneration. Remote Sens. Environ. 

82(2), 322–334.  

Pu, R., Landry, S., 2012. A comparative analysis of high spatial resolution IKONOS and WorldView-2 

imagery for mapping urban tree species. Remote Sens. Environ. 124, 516–533.  

Pushparaj, J., Hegde, A.V., 2017. Evaluation of pan-sharpening methods for spatial and spectral 

quality. Appl. Geomatics 9(1), 1–12.  

r4d programme, n.d. URL http://www.r4d.ch/ (accessed 10.8.17). 

Rakotondrasoa, L., Olitina, R., 2014. A Comprehensive Scoping and Assessment Study of Climate 

Smart Agriculture (CSA) Policies in Madagascar. 

Ren, X., Malik, J., 2003. Learning a classification model for segmentation. Proc. Ninth IEEE Int. Conf. 

Comput. Vis. 1, 10–17. 

Reyniers, M., Vrindts, E., 2006. Measuring wheat nitrogen status from space and ground‐based 

platform. Int. J. Remote Sens. 27(3), 549–567. 

Rizon, M., Yazid, H., Saad, P., Md Shakaff, A.Y., Saad, A.R., Sugisaka, M., Yaacob, S., Mamat, M.R., 

Karthigaya, M., 2005. Object Detection using Circular Hough Transform. Am. J. Appl. Sci. 2, 

1606–1609.  

Rodriguez-Galiano, V.F., Ghimire, B., Rogan, J., Chica-Olmo, M., Rigol-Sanchez, J.P., 2012. An 

assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. 

Photogramm. Remote Sens. 67, 93–104.  

Rouse, J.W., Hass, R.H., Schell, J.A., Deering, D.W., 1973. Monitoring vegetation systems in the great 

plains with ERTS. Third Earth Resour. Technol. Satell. Symp. 1, 309–317.  

Shang, X., Chisholm, L., 2014. Classification of Australian native forest species using hyperspectral 

remote sensing and machine-learning classification algorithms. IEEE J. Sel. Top. Appl. Earth 

Observ. Remote Sens. 7(6), 2481–2489. 

Srestasathiern, P., Rakwatin, P., 2014. Oil palm tree detection with high resolution multi-spectral 

satellite imagery. Remote Sens. 6(10), 9749–9774.  

 



62 

The MathWorks Inc., 2013. MATLAB extractHOGFeatures. URL 

https://ch.mathworks.com/help/vision/ref/extracthogfeatures.html (accessed 10.8.17). 

The MathWorks Inc., 2012. MATLAB imfindcircles. URL 

https://ch.mathworks.com/help/images/ref/imfindcircles.html (accessed 10.8.17). 

The MathWorks Inc., 2006. MATLAB graycomatrix. URL 

https://ch.mathworks.com/help/images/ref/graycomatrix.html (accessed 10.8.17). 

The USGS Land Cover Institute (LCI), n.d. Land Cover Institute (LCI). URL 

https://landcover.usgs.gov/classes.php (accessed 9.8.17). 

Thomson, A., 2016. An Introduction to African Politics. Routledge. 

Waldner, F., Fritz, S., Di Gregorio, A., Defourny, P., 2015. Mapping priorities to focus cropland 

mapping activities: Fitness assessment of existing global, regional and national cropland maps. 

Remote Sens. 7(6), 7959–7986.  

Wang, L., 2010. A Multi-scale Approach for Delineating Individual Tree Crowns with Very High 

Resolution Imagery. Photogramm. Eng. Remote Sens. 76(4), 371–378.  

Wang, L., Gong, P., Biging, G.S., 2004. Individual Tree-Crown Delineation and Treetop Detection in 

High-Spatial-Resolution Aerial Imagery. Photogramm. Eng. Remote Sens. 70(3), 351–357.  

Watts, J., Lawrence, R., 2008. Merging Random Forest Classification with an Object-Oriented 

Approach for Analysis of Agricultural Lands. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 

37, 2006–2009. 

Wolf, B.M., Heipke, C., 2007. Automatic extraction and delineation of single trees from remote sensing 

data. Mach. Vis. Appl. 18(5), 317–330.  

Wulder, M.A., Franklin, S.E., 2003. Remote Sensing of Forest Environments, Introduction. In: Wulder, 

M.A., Franklin, S.E. (Eds.), Remote Sensing of Forest Environments: Concepts and Case Studies. 

Kluwer Academic Publishers, pp. 3–12.  

Wulder, M.A., White, J.C., Niemann, K.O., Nelson, T., 2004. Comparison of airborne and satellite high 

spatial resolution data for the identification of individual trees with local maxima filtering. Int. J. 

Remote Sens. 25(11), 2225–2232.  

Yang, C., Everitt, J.H., Bradford, J.M., 2004. Airborne hyperspectral imagery and yield monitor data 

for estimating grain sorghum yield variability. Trans. ASAE 47(3), 915–924.  

Yao, Z., Sakai, K., Ye, X., Akita, T., Iwabuchi, Y., Hoshino, Y., 2008. Airborne hyperspectral imaging 

for estimating acorn yield based on the PLS B-matrix calibration technique. Ecol. Inform. 3(3), 

237–244.  

Ye, X., Sakai, K., Garciano, L.O., Asada, S.I., Sasao, A., 2006. Estimation of citrus yield from airborne 

hyperspectral images using a neural network model. Ecol. Modell. 198(3), 426–432.  

Zaehringer, J.G., Eckert, S., Messerli, P., 2015. Revealing Regional Deforestation Dynamics in North-

Eastern Madagascar—Insights from Multi-Temporal Land Cover Change Analysis. Land 4(2), 

454–474.  

Zhang, Q., Wang, J., 2003. A rule-based urban land use inferring method for fine-resolution 

multispectral imagery. Can. J. Remote Sens. 29(1), 1–13.  

Zhang, X., Xiao, P., Feng, X., Wang, J., Wang, Z., 2014. Hybrid region merging method for 

segmentation of high-resolution remote sensing images. ISPRS J. Photogramm. Remote Sens. 98, 

19–28. 

 


