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Abstract

Mobility is fundamental to our daily lives. Not only does it shape our social relationships, but

it also reflects our personal preferences. This is why it is important to study and understand

human mobility. Thanks to the rise of smartphones in the last decade, the availability of mobility

data has skyrocketed. The newly available data allows to tackle new challenges on the way to

understanding human mobility.

This study explores how GPS data obtained from smartphone users can be used to predict the

next place. While many proposed models in literature use user-specific predictors, this work

uses one predictor for all users, hence, finds a suitable model structure that allows the model to

output the places from all users. To handle a large number of possible outputs, a hierarchical

structure is selected. Places are discretized into areas using rastering and clustering. With the

areas obtained from these two methods, temporal and spatial features are extracted, which in

turn are used to train a neural network and a random forest.

The results show that a user’s destination can be predicted with an accuracy of 75.5 percent by

an artificial neural network trained with the features created from the clusters. With the fea-

tures extraced from rasters, the neural network, yields less accurate results and displays inferior

performance due to the hierarchical prediction structure. The arbitrary division of space creates

the modifiable area unit problem, which leads the model to be much more dependent on spatial

features. The neural network trained with the clustered input, on the other side, values spatial

and temporal features equally. Therefore it bases its decisions on more information and performs

better.

Keywords: Human Mobility, Movement Patterns, Next Place Prediction, Feature Extraction,

Neural Network, Random Forest
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1 Introduction

1 Introduction

Mobility is a crucial aspect of our daily lives. Places we visit shape our social relationships and

reflect our personal preferences. The ability to predict the places a user will visit is therefore

beneficial to numerous applications, ranging from forecasting the dynamics of crowds to improv-

ing the relevance of location-based recommendations (Etter et al., 2012).

The rapidly growing number of smartphone users across the world, has produced a massive

amount of location data (Xu et al., 2016). This multidimensional source of data offers new

possibilities to tackle established research problems on human mobility. Larger datasets and

increasing processing power make it possible to use neural networks (NN) and other machine

learning techniques approach those research problems.

1.1 Context and Motivation

Understanding human mobility has a multitude of potential applications. Thus it has been a

longstanding subject in academic research (Noulas et al., 2012). One particular problem is the

next place prediction, where the challenge consists of predicting the next location of a user given

the current location or trajectory (Gomes et al., 2013).

With the growing ability to collect information, more temporal and spatial contextual infor-

mation is collected, and the location prediction problem becomes feasible (Liu et al., 2016).

Applications, ranging from predicting the spread of human and electronic viruses, to city plan-

ning and traffic warnings, depend on our ability to predict the next location of individuals (Song

et al., 2010).

Mobile devices and location-based services generate a significant amount of mobile data (Gao

et al., 2015), which typically consists of coordinates associated with a timestamp and additional

attributes. In order to render the data applicable, it needs to be preprocessed. The challenge

in the latter, is to preprocess the data in a useful manner understandable to the predictor. To

achieve this, the raw data is used to create two types of input features. These are temporal

and spatial ones, derived from GPS data. Temporal input features help the predictor to learn

temporal visitation patterns of different places. Commonly used heuristics are the day of the

week, the hour of the day or weekday/weekend differences because they display periodic behavior

of a user (Noulas et al., 2012). As shown by Wang et al. (2012), periodicity is a good indicator

to predict the next location. Spatial features, on the other side, help the predictor to understand

the spatial relationship between the places and the user. A commonly used spatial feature is

1



1 Introduction

the distance or the direction between the user’s position and the places that can be predicted

(Noulas et al., 2012).

There are different ways to predict the next place. Most of the time either the shape of the current

trajectory is compared to the shape of historical trajectories (Xue et al., 2013) or historical counts

of place visits are used to predict the next place visit (Etter et al., 2012).

To train a model, the output (also called label) needs to be calculated for each sample in the

data. There are different ways to do this. While some researchers try to predict x and y co-

ordinates directly, most discretize space into areas to predict an associated ID (Alvarez-Garcia

et al., 2010). The advantage of predicting the coordinates directly is that places, where a user

has never been can be predicted. However, it is difficult to train such a model because it does

not account for any prior information on the distribution of the data (De Brébisson et al., 2015).

Therefore, in the major part of literature, a set of predefined areas or places are used as output.

1.2 Problem Statement and Aim

This master’s thesis aims to extract spatial and temporal features from trajectory data and use

these features to predict the next place of a user with the help of an artificial neural network

(NN) and a random forest (RF). NN have already proven to be useful in modeling sequences

(Jain et al., 2016) but if they are adapted to model the spatial and temporal information better

(Liu et al., 2016, Jain et al., 2016), such models will improve even more. A RF will be used as

a comparison, because it has a high robustness for noisy data and it generalizes well (Criminisi,

2011).

There is plenty of research on next place prediction, but most of the models have a separately

trained predictor for every user. The goal of this work is to train one predictor for all users.

User-specific predictors are easier to train because they only need to fit patterns from one user.

However, the benefit of an overall model could be that it can transfer its knowledge of all users to

predict users with little data. Since the amount of possible outputs for such a model is immense,

the model structure needs to be adjusted accordingly. Therefore, a hierarchical prediction struc-

ture is proposed.

In most studies, a new prediction model structure is introduced, which impedes a comparison

of the performance to other models. They mostly perform well, but it is unclear which in-

put features are of most importance to the predictor and if the predictor had performed better

2



1 Introduction

with other input features. Since a hierarchical prediction structure is used, it will be possi-

ble to analyze the feature importance on different scales. Therefore, one goal is to find out the

feature importance of different features and show which features should be used in which context.

A further aspect that is given attention to is the discretization of space. To get a finite set of

outputs, space can be discretized using rastering or clustering (Khoroshevsky et al., 2017, Zheng,

Huang, et al., 2017, Gambs et al., 2012). Both methods are employed in literature, but they have

not been compared to each other in the context of movement prediction. To find the strengths

and weaknesses of both approaches, two separate models are trained, one with features extracted

from the raster, the other with features from the clusters.

1.3 Structure

The structure of the thesis follows the work stages that have been undertaken. Section 2 sum-

marizes the related work in the area of next place prediction. The basics of NN and RF will be

explained, and the research gap will be presented. The overall methodology and and the research

objectives are defined in section 3. In section 4, the concepts are tested with real-life data. There,

the architecture of the prediction system, the data preprocessing, the setting of the parameters

and the extraction of the features is explained. The results of the experiment are evaluated in

section 5. Finally, the discussion and the limits of the chosen approach will be shown in section 6.

3



2 Related Work

2 Related Work

2.1 Predictability of Human Movement

The challenge faced in this study is to model and predict human mobility. While from a personal

point of view, our movement pattern does rarely seem random, because we know our motivations

behind it. However, for an outside observer, our movement often seems to be random and un-

predictable. Therefore, human mobility models are mostly stochastic. To capture the degree of

predictability, entropy is probably the most fundamental quantity, because it describes if there

is a lack of order and therefore a lack of predictability in the data. Song et al. (2010) used

tracking data from cell phone towers and found that with the combination of the empirically

determined user entropy and Fano’s inequality (relates the average information lost in a noisy

channel to the probability of the categorization error), there is a potential average predictability

in user mobility of 93%. They define predictability as information-theoretic upper bound that

limits any next place prediction algorithm in predicting the next place based on historical data.

Segmenting each week into 168 hourly intervals, they found that on average 70% of the time,

the user’s most visited location in that timeslot coincides with the user’s actual location. This

accuracy is much higher between noon and 1 pm, 6 pm and 7 pm, and in the night when users are

supposed to be at home. This accuracy has a clear minima because it corresponds to transition

periods. Interestingly, they could not find a statistically significant difference in predictability in

gender or age groups as well as in urban and rural societies. (Song et al., 2010)

The potential average predictability is very high and will be very difficult to reach with current

predictors. The predictability also depends on the data. Since Song et al. (2010) use data from

cell phone towers, their movement trajectories are coarse and the places they predict are quite

big areas. Thus, a user moving between two nearby places may never leave this area and the

prediction would remain correct even though the place was changed. If GPS data is available, the

prediction would be more complex, because there are many more locations that can be predicted.

Therefore, the potential predictability for GPS data should be smaller.

2.2 Next Place Prediction

Different approaches have been used for next place prediction, and they all have their limitations.

In many cases, different variations of Markov chains are used to master this task (Alvarez-Garcia

et al., 2010, Gambs et al., 2012, Tran et al., 2012, Lu et al., 2013). The problem with Markov

chains is that they are constructed based on a strong independence assumption among different

factors, which limits its performance (Liu et al., 2016). Another conventional method is Tensor

4



2 Related Work

Factorization. While it has been successfully used for time-aware recommendations (Xiong et al.,

2010) and spatio-temporal information modeling (Liu et al., 2016), it faces the cold start problem

in predicting future actions (Liu et al., 2016). Compared to Tensor factorization and Markov

chains, NN show promising performances (Liu et al., 2016).

2.2.1 Predictors

The most commonly used model for next place prediction is a mathematical model known as

the Markov model. This model has a set of states and transition probabilities between those

states. At any point, there is an exact state and the transition probabilities of moving from this

state to others. This is the basis of the model computation, which only depends on the starting

state of the given transition (Pankin, 1987). The use of Markov chains for next place prediction

is pretty straightforward. Places represent the states, and the movement between those places

are the transitions. We can count each user’s transitions, which means that it is possible to

calculate transition probabilities between all places for every user. With transition probabilities,

a transition matrix can be computed. Given the current place, the transition matrix can be used

to find the next most likely destination. One typical approach is to partition space uniformly

into grid cells or roads into segments and use the cells or segments as the states of the Markov

model (Alvarez-Garcia et al., 2010, Xue et al., 2013).

If there is additional data that correlates with the states, such as movement direction or speed, a

hidden Markov model can be used. The states of the hidden Markov model cannot be observed

directly and are therefore called hidden variables. Each of these hidden variables has a set of

observations, that describe them, and are used to calculate the transition probabilities. In the

context of movement prediction, these observations could be the mode of transport, speed, or

the time of the day.

Alvarez-Garcia et al. (2010) use a hidden Markov model for predicting the next destination given

only the input data of a partial trip. A trip is defined as a GPS-trajectory between two stay

points and a partial trip represents the beginning of such a trajectory. As states, they cluster the

final points of each trip with a threshold of 200 meters, and only clusters visited more than three

times are considered. In their dataset, they have three users with three to twelve destination

clusters. As input, they extract support points from the GPS tracks, which are shortly after

crossroads. These support points are much more helpful to figure out where the user will go.

To test their model, they feed the hidden Markov model with 25%, 50%, 75% and 90% of the

traveled trip. After 25% of the trip, the accuracy lies between 36.1% and 64.2%. After 90% of

the trip, the accuracy rises over 71.8% and can reach 94.5%.
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Cho (2016) use a similar approach. They extract intermediate locations by clustering the GPS

trajectories. These intermediate locations are used to create a simplified GPS trajectory. In-

stead of just using spatial and temporal data, they also use contextual data recorded by the

smatphone, namely, the acceleration, the magnetic field and the orientation, to compute the

mode of transport, which is also used as input together with the GPS trajectory. Visited places

are extracted with the g-means clustering algorithm as described in Hamerly et al. (2004). To

predict the next place they use a hidden Markov chain.

Traditional prediction systems use the historical spatial trajectories to match the ongoing tra-

jectory. If the ongoing and the historical trajectories are similar, the ongoing trajectory is very

likely to have the same destination as the historical trajectory (Xue et al., 2013). Xue et al.

(2013) developed a new approach to preprocess trajectories. They decompose the trajectories

into sub-trajectories comprising two neighboring locations, and then connect the sub-trajectories

into synthesized trajectories. This means they create all possible connections from the sub-

trajecories. If the ongoing trajectory matches a synthesized trajectory, it can be used to predict

the next place. From the ongoing trip, all reachable places are queried, and since the transition

probability for each sub-trajectory is available, a Markov model can be used to quantify the prob-

ability for each location. According to the authors, with this method, the number of queries for

which a destination can be predicted is exponentially increased compared to traditional trajec-

tory matching, and it also runs by two orders of magnitudes faster than their baseline algorithm

(Xue et al., 2013).

While Alvarez-Garcia et al. (2010) and Xue et al. (2013) compare the shape of the ongoing

trajectory to historical trajectories, Gambs et al. (2012) use the visited places as states and

calculate the transition probabilities between these states. The visited places are extracted by

clustering all staypoints of a user, using the DJ-clustering algorithm, which is explained in Zhou

et al. (2004). They use three different datasets and each user has between five and nine visited

places. For the prediction, they use a Markov model that keeps track of the n previously visited

places. However, according to the authors choosing n > 2 does not seem to bring a substantial

improvement. The accuracy of their prediction model ranges from 70% to 95%.

Next to Markov models, traditional classification algorithms can be used for next place pre-

diction. Given the current location of a user and some features based on his or her historical

movement, a classifier can be used to predict the next location. A commonly utilized classifier

is the neural network.
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De Brébisson et al. (2015) won the Kaggle taxi trajectory prediction challenge1 using neural

networks. Their dataset contains data from 442 taxis running for an entire year. Each taxi ride

has the taxi ID and the start time of the ride. If available, the client phone number is used as

client ID; otherwise the taxi stand ID is used. As the GPS-located trajectories are of varying

sizes, but the neural network requires a fixed and uniform input size, they only utilize the first

five and the last five trajectory points as input, in addition to the start time, the client ID /

taxi stand ID, and the taxi ID. Their goal was to predict a destination with two scalar values

(longitude, latitude). They found that it was difficult to train such a model because it does not

take into account any prior information on the distribution of the data. To tackle this problem,

they clustered the destinations into 1000 clusters. The output of the NN associates a scalar value

to each of these clusters. The higher this value for a cluster, the higher the probability of the

taxi ride ending up in that cluster. Based on these values, they calculated the weighted average

of the cluster centers to get a coordinate as output. Various network architectures including

bidirectional recurrent NN and memory networks were tested, but the Kaggle challenge was won

with a simple feed-forward NN.

For the Nokia mobile data challenge, Etter et al. (2012) propose user specific predictors, which

learn from the users’ mobility histories to predict the next location based on the current context.

As input, they use the places (stay points) and extract temporal features from the start and the

end time such as the day of the week of the start time and a boolean value indicating whether

the end time is on the weekend. Their predictors are a dynamical Bayesian network, a gradient

boosted decision tree and a NN. With an accuracy of 60.83%, the NN reaches the highest accu-

racy, but there is a high variance between the users. Since every predictor may make different

errors and one predictor may fail on samples where another excels, they try four different blend-

ing strategies to improve their prediction further. Empirical tests showed improvements over the

individual predictors.

Liu et al. (2016) propose a new model called Spatial-Temporal Recurrent Neural Network (ST-

RNN). It models local temporal and spatial contexts in each layer with time-specific transition

matrices for different time intervals and distance-specific transition matrices for different geo-

graphical distances. Their experimental results yield significant improvements over compared

methods on two typical datasets, i.e. the Global Terrorism database (collection of 125’000 ter-

roristic incidents) and the Gowalla dataset (data from a location-based social network).

1https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i, accessed: 2017-12-28
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2.2.2 Input Data

A next location predictor needs informative input and a label/output for every sample. Regard-

ing GPS coordinates, most places are unique. Therefore, space needs to be discretized. Space

discretization can be done with clustering or grid cells (Alvarez-Garcia et al., 2010, Xue et al.,

2013). This discretization helps to assign a class to every sample, which can be used as label. In

many cases, clustering algorithms are applied with a certain threshold (e.g., maximum area) to

find relevant areas (Alvarez-Garcia et al., 2010, Burbey et al., 2008). In other approaches, the

data is discretized into a raster, and the cell IDs are used as labels (Khoroshevsky et al., 2017,

Sneha et al., 2014, Lin et al., 2012).

Many papers do not consider all stay points but exclude irrelevant and random ones such as a

point where the user only went once and a point where a user simply stood still for a while due to

the lack of orientation. To remove these stay points, thresholds such as the minimum stay time,

minimum visits per area or just the top n most visited areas are used (Alvarez-Garcia et al., 2010,

Gomes et al., 2013). This clearly reduces the complexity of the prediction task. If only places

which have been visited regularly need to be predicted, it is easier to extract patterns because

it is known what the trajectories to each place look like and at what times a user typically goes

there.

After discretizing the stay points into areas, features should be chosen to describe the areas.

The predictor needs contextual information about every area to predict the next area. Spatial

and temporal context can be extracted from GPS logs. Further information can be incorporated

using other sensors of a smartphone to get the acceleration, orientation or magnetic field (Cho,

2016). The input can be further enriched by adding other contextual information such as the

weather (Hoang et al., 2016) and social media check-ins (Jing, 2016, Gunduz et al., 2013). Also,

work and home locations, entertainement places and other points of interest can be extracted

for each user (Yuan et al., 2010, Siła-Nowicka et al., 2015, Zheng, Zhang, et al., 2009).

With the spatial context, there are two different approaches to next location prediction. The

first approach uses the shape of the ongoing trajectory, to find similarly shaped trajectories from

the past. The destination where the past trajectories ended up will be predicted (Xue et al.,

2013). The second approach uses past counts of where the user went from the location where he

or she currently is, to predict the next location (Etter et al., 2012). In the first approach, the

shape of the ongoing trajectory is analyzed to make a prediction. In the second approach, they

find places where the user usually goes after the current stay point and calculate the visiting
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probabilities to those places.

Additionally, the temporal context can be used to create those counts. Song et al. (2010) create

for each week 168 time slots and extract the most visited place for every time slot. Liu et al.

(2016) use time windows with different intervals as input for their recurrent NN. In their experi-

ment, a time interval of 6 hours performs best. Li et al. (2015) create a three-dimensional array,

where the first two dimensions represent the counts of frequency of visitation to the location,

and the third dimension represents the time. Others use specific temporal attributes such as the

day of the week, the starting and ending hour, weekend or weekday and hour of the week as

temporal features (Etter et al., 2012, Gao et al., 2015, Baumann et al., 2013). In some cases, the

raw values are just added to the input (Etter et al., 2012). For instance, the day of the week is

encoded with a number between 1 and 7. In other cases, the number of visits in an area within

those time periods are counted and inputted. (Noulas et al., 2012, Gao et al., 2015).

2.3 Artificial Neural Networks

The basic idea of a NN is to simulate a lot of interconnected brain cells in a very simplified way,

to recognize patterns and classify data (Maind et al., 2014). A typical NN consists of a dozen to

millions of artificial neurons arranged in a series of layers. Each of these neurons is connected to

the other neurons in the layers on either side.

Figure 2.1: A fully connected NN with one hidden layer2. It consists of input units (red), hidden units
(blue) and output units (green). In every NN there is one layer with input units and one with output
units. The number of hidden layers and units per layer can be changed. The connections between those
units are associated with weights, which are represented by a number that is gradually adjusted during the
training phase.

2source: http://www.languageconnections.com/blog/neural-machine-translation/, accessed: 2018-4-1
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Roughly speaking, a neural network implements a nonlinear mapping of u=G(x). The mapping

functionG is established during the training phase where the network learns to correctly associate

input patterns x to output patterns u (Bebis et al., 1994). During the training phase, the input

is fed into the input neurons. The input is multiplied by the weight of each connection and then

added up in every hidden unit. This sum is then passed through the activation function which

decides what the output should be. Usually, the number of output neurons is the same as the

number of classes and the output neuron with the highest number will be the prediction.

Most recent NN usually use rectified linear units (ReLUs) as the activation function. A ReLU

outputs zero if the input is less than or equal to zero otherwise it outputs the raw input (f(x) =

max(x, 0)). The output will then be used as the input for the neurons in the next layer. The

formula for a neuron is as follows:

y = f(

n∑
i=1

wixi + b)

Where:

wi : ith weight

xi : ith input

b : bias

f : activation function

Figure 2.2: A model of a neuron3. The inputs are multiplied by the weights and summed up. The sum is
put into the activation function, which produces the output.

A process called backpropagation learning is applied for learning during the training phase. The

ground truth label l is compared to the output y using the formula:

Error = (l-y)2. The error shows the distance between the output and the desired value. The

goal of backpropagation is to minimize the sum of all errors for every training sample (Maind
3source: https://medium.com/@cosimo.iaia/machine-learning-tensorflow-per-luomo-di-strada-2c71a948b4e3,

accessed: 2018-4-1
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et al., 2014). This way the NN behaves most desirably. It can be done by adjusting the weights

between the neurons. Decreasing the value of the weights in the direction of the gradient leads

to the most rapid decrease of the error. This is done with a gradient descent optimizer. With

the help of the optimizer the weight vectors are modified for every sample, so that next time,

when the same sample is seen, the error is smaller. After training the NN multiple times with

the same input, the sum of the error decreases to a minimum value, which means that the model

has fitted the data.

The NN described above is the most common and basic NN used for classification tasks. It is

called a fully connected feed-forward NN because all neurons between two layers are connected

and the input data is moving in a forward direction. There are a lot of other NN architectures,

where not all layers are connected but pooled together or where part of the outputs are added

to the input of the next sample. In a feed-forward NN, the input samples are assumed to be

independent of each other. To predict sequences, the NN needs to get information about past

samples, because the samples are not independent. For this task, recurrent NN as described

in Mandic (1995) are used. They can be thought of as having a memory that remembers past

calculations, or in other words, to every sample a part of the computations from the previous

samples is added (Mandic, 1995).

NN are widely utilized in practice and produces satisfying results if there is enough training data.

The two significant disadvantages of NN are the long training times and it being a black box

model. Even though it may have learned the relationship between the in- and output, we do not

know how it learned it, or it can be very complicated to understand.

2.4 Decision Trees

The idea of decision trees has been around for many years. A tree consists of nodes and edges

which are organized in a hierarchical structure. At the top is the root node, followed by internal

(or split) nodes and at the bottom, there are the terminal nodes. Each of these nodes has exactly

one incoming and two outgoing edges (for a binary tree). (Criminisi, 2011)

A decision tree is used for making decisions. At the root node, a sample is fed into the tree, and

tested. The result of this test decides if the sample is sent to the left or the right child of the

root node. There, the sample is subjected to a new test and so on, until it arrives at the leaf

node. The leaf node represents the result of the sample. The challenge in creating such a tree is

to establish the test functions at each internal node of the tree. The goal of these functions is to
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split the samples in a way that samples with the same category always arrive at the same leaf

nodes. (Criminisi, 2011)

In general, such decision trees tend to overfit the data, but in recent years they have been revived

because it was discovered that ensembles of slightly different trees are less prone to overfit the

data and therefore perform much better (Amit et al., 1997, Tin Kam Ho, 1995). A key aspect

of ensembles of trees is the fact that its component trees are all randomly different from one

another (Criminisi, 2011). This fact helps to decorrelate between the individual tree predictions,

improves the generalization, and increases the robustness with respect to noisy data (Criminisi,

2011).

A commonly used example of such an ensemble of trees is the random forest.

2.5 Random Forest

A random forest as described by Breiman (2001) is an ensemble method. Ensembles can be

thought to be divide and conquer methods, as they consist of groups of weak classifiers, but

when they are added together, they form a strong classifier. A random forest consists of multiple

decision trees. At each node in a decision tree, a feature is used to split the data into two buckets.

With the help of an objective function, the feature that provides the best split is chosen, but

the objective function has only a random subsample of features to choose from. (Criminisi, 2011)

When a sample is put into the random forest, it runs down all trees. The average or the weighted

average from all trees will be used as the prediction. If the labels are categorical, the majority

vote will be used.

The advantages of random forests are that they are fast to train and can deal with missing or

unbalanced data. If used for regression problems, it cannot predict values outside the range of

the training data. Besides, if the training data is very noisy, it tends to have the overfitting issue

(Do et al., 2014).

Random forests can also be used to calculate the feature importance, as described in Strobl et al.

(2007). To calculate it, every tree in the forest is traversed, and for every node that splits on fea-

ture x, the gini impurity criterion is calculated. For the two descendant nodes, the gini impurity

is less than for the parent node. These decreases in gini impurity are weighted by the propor-

tion of samples reaching that node and then added up for every feature. The weighted sum of

the decreases in gini impurity gives a good indication of the feature importance for each feature.
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However, it should be interpreted with care. It is biased because the feature importance is depen-

dent on the number of categories and the scale of measurement of the feature (Strobl et al., 2007).

2.6 Research Gap

The rise of mobile devices and location-based services has led to a significant amount of publicly

available mobile data. This fine-grained, multi-dimensional source of data offers new possibilities

to tackle established research problems on human mobility (Noulas et al., 2012). There is much

research addressing the problem of next place prediction. Different data processing methods

have been proposed in combination with different predictors, but most of them use personalized

models, which means that for every user a separate model is trained. This is feasible for users

with a considerable amount of data, but less suitable for those who only have little training

data. Since many models, especially NN, perform better with more training data the data from

other users could improve the prediction for users with few data. On the other hand, it could

be argued, that the behaviors of different users vary, that the model cannot transfer the learned

patterns from one user to predict the behavior of another user. Due to these arguments, an

architecture that can model multiple users is chosen, to evaluate how such a model performs.

This could be interesting for users with few data because the model could be trained with data

from other users and might reach a better performance.

The performance of the model is also highly dependent on the representation of the data. To

discretize the labels for each sample, most papers use some sorts of clustering to extract the

possible locations for the prediction (Alvarez-Garcia et al., 2010, Burbey et al., 2008), others use

a grid to overlay (Sneha et al., 2014, Lin et al., 2012). While both approaches make sense, there

does not exist a comparison between the two. The advantage of the clustering approach would

be that there are fewer classes that can be predicted, but on the other hand, only places where

users have visited before can be predicted.

Last but not least, the choice of the features has a substantial impact on the model performance.

While the selection of features is reasonable in the papers presented in section 2.2.2, they are not

compared with features used in other papers. For example, it is possible to extract a lot of dif-

ferent temporal features, but it has not yet been described how each temporal feature influences

the prediction results. Also, it would be interesting to know how vital a spatial feature such as

the distance is in comparison with other temporal features.
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3 Research Objectives and Overall Methodology

The chosen research questions all serve the same goal. They should help to evaluate the influence

of different modeling aspects on the next place prediction problem.

First of all, there are different predictors and different input features that can be used. While

other studies predict the next place in one step, in this thesis a hierarchical approach is chosen.

Predictions are made on different scales, first on a small scale, then, the scale is increased with

every prediction, until the predicted area is small enough. To represent the different scales,

hierarchical clustering and rasters with different cell sizes are employed. Since all of the above

mentioned factors influence the next place prediction, the influence of each should be thoroughly

evaluated.

Based on the research gap identified in section 2.6 and the above mentioned modeling aspects,

the following research objectives of this master thesis are defined:

3.1 RQ 1: Evaluation of the Model Configuration

Different models can be trained with the same data to compare them. The aim is to find out

how the RF and the NN compare to each other and to see if one can handle a specific input

better than the other. To see if machine learning is necessary for the task at hand, the two

predictors are compared to several baseline predictors. Furthermore, the hierarchical structure

of the model will be evaluated to find potential weaknesses.

3.2 RQ 2: Data Representation for Input and Output

The data fed to the predictor as input can be represented in different ways. Based on the litera-

ture either a raster or a clustering algorithm is used to discretize model labels. If the clustering

approach is used, for every cluster, different features are created and used as input. The cluster

ID will be used as label. If the grid approach is used, for every cell, different features will be

created and the cell ID will be used as label. How do these two approaches compare to each

other and what are their advantages and disadvantages?

3.3 RQ 3: Input Features

From the available data, different input features can be created. What is the importance of each

feature to predict the next place and how does the importance change on different scales?
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4 Methods

The first section (4.1) of this section explains where the data is from and what it looks like. The

next section (4.2) describes how this data was preprocessed and shows two different approaches

how places are discretized into a set of areas. Section 4.3 illustrates how the features are extracted

from the preprocessed data. With the features ready, in the last section (4.4), it is depicted how

these features can be used to predict the next place with an NN and RF, and how they can be

used as baselines. At last, the software and the script used in this thesis will be disclosed.

4.1 Data

4.1.1 GoEco!

The dataset used in this master’s thesis was provided by the GoEco! project4. It was founded at

the ETH and at SUPSI and promotes sustainable mobility behavior by giving feedback about the

personal mobility behavior. The GoEco! app helps users to understand how they travel, define

their personal goals for change, get personalized suggestions and observe their progress. It aims

at investigating if eco-feedback and social interactions (social comparison and peer pressure),

automatically provided via information and communication technologies, can be useful in fos-

tering long-term changes in personal mobility behavior and reducing car use (Bucher et al., 2016).

The GPS tracking of the GoEco! app is done with the fitness tracker app called Moves 5. The

user has to permit the GoEco! app to access the personal tracking data, collected in the Moves

app. After giving the permission, the data from the Moves app is loaded from the API into the

GoEco! app. The data received from Moves is already preprocessed. Outliers, as one would

typically have from raw GPS data are already removed. Figure 4.1 shows the structure of the

data in the moves app. GPS-fixes are separated into places (stay points) and routes (movement

between places). Based on the algorithm developed by Moves, a place is a location where a user

stands still for some time. Unfortunately, Moves does not disclose how they extract places. If

the user has been at a place in the past, it will always have the same GPS coordinates the next

time he or she goes there. A route can have multiple legs if multiple modes of transport (MOT)

have been used. The app can distinguish between four MOT namely walking, bicycling, running,
4http://goeco-project.ch/index.php/en/, accessed: 2017-12-28
5https://moves-app.com/, accessed: 2017-12-28
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Figure 4.1: Screenshot of the main view of the Moves app. The GPS data is split into places and routes.
A route between two places can have multiple legs if the mode of transport changes. Each route has
multiple trackpoints.

and transport (car, train, etc.).

The routes have a low resolution. On average each route has 17 trackpoints. The sampling rate

is 50 seconds on average, but with a standard deviation of 106 seconds, it varies a lot. Typically,

there are many more trackpoints in a route if the MOT is walking or bicycling than in transport

routes. Therefore, often long routes have fewer trackpoints than short ones. The Moves app

does not disclose how its algorithm works, but my guess is that the sampling rate is reduced

if the outputs from the accelerometer and the gyroscope are relatively steady to reduce energy

consumption. Figure 4.2 shows some examples of routes. In the left picture, there are some

very straight routes. These are not GPS errors as one might think, but instead, routes with few

trackpoints. Most probably they were recorded in a fast moving train or car where the output of

the gyroscope and the accelerometer were relatively steady. The picture on the right shows three

example routes that follow the streets relatively well because they contain more trackpoints.

4.1.2 Distribution

The places of all users are distributed unevenly over the area of Switzerland. In figure 4.3, many

users are visible in the the canton of Zurich and Ticino. This is because the GoEco! project was

founded at the ETH and at SUPSI and therefore they specifically targeted people living in the

cantons of Zurich and Ticino. In other cantons, only the bigger cities are visible, and in general,
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Figure 4.2: Examples of routes. On the left, all routes in Switzerland are plotted, while on the right only
three different routes are shown, but on a larger scale

there are fewer users in the French-speaking part than in the rest of Switzerland.

Figure 4.3: Point density map of all places within the bounding box of Switzerland. The higher this value
is, the more points were encountered in the radius.

Figure 4.4 shows the distribution of all trackpoints in the area of Switzerland. In the canton of

Zurich there are nearly no paths observable because there are so many trackpoints. The same

thing applies to the canton of Tessin, but contrary to Zurich there are some really distinctive

paths, most probably because movement is restricted by mountains and because there are fewer

users. In general, most cities appear as yellow dots and the main mobility axes are visible.

4.1.3 Data Selection

The dataset contains records from 712 different users. Most of the records are in Switzerland

because the GoEco! project is based in Switzerland. Since the data outside of Switzerland is

very sparse, only points within the bounding box of Switzerland are used. Within the bounding
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Figure 4.4: Line density map of all routes within the bounding box of Switzerland.

box there are 544 users.

To predict a user’s next location, there are several factors that need to be considered. First of

all, a model can only predict places where a user has already been. Second, users with few data

are tough to predict because it is difficult or impossible to extract their habits. Third, because of

the data structure there are some places in the dataset, where a user has been for a brief period,

maybe because he or she talked to someone or because the user lost the orientation. Such places

are also very challenging to predict because they often happen at random. To simplify the

prediction, all users with less than 10,000 trackpoints were removed. From the remaining 228

users, 41 were selected randomly to increase preprocessing and training speed. The data of these

users was subjected to the following procedure:

1. Places with less than six visits are disposed and the trackpoints leading to these places as

well.

2. Places, where a user stayed for less than 15 minutes are dropped, as well as the trackpoints

leading to these places.

After the selection process, the datasets have some distinct differences. Figure 4.5 shows the

cumulative distribution of the number of trackpoints and places per user. Looking at the 41

users it is evident that this dataset contains fewer users with few places.

This is because only places with 6 or more visits are used, which means that users who used

the app briefly will be ignored. Additionally, only users that have more than 10,000 trackpoints

are included, which also increases the number of places per user. Looking at the trackpoints per

user, the selection also includes fewer users with little data for the same reasons as mentioned
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Figure 4.5: Cumulative distribution of the number of places / trackspoints per user. In the selection, only
places and trackpoints that fulfil the requirements mentioned above are included.

above. The minimum amount of trackpoints per user lies around 10,000 because in a first step

users with more than 10,000 trackpoints were selected and then all trackpoints that lead to a

place where the user has been less than six times or less than 15 minutes are removed.

Total in Switzerland 41 users
routes 657389 588,556 48795
route trackpoints 11,428,382 9,860,235 964,026
places 545,165 481,822 37,182
users 712 544 41
places per user 766 886 906
routes per user 944 1100 1190
trackpoints per user 16,051 18,125 23,513
trackpoints per route 17 17 20
route sampling rate 53 s / 541 m 53 s / 392 m 44 s / 331m
average route distance 8.9 km 6.1 km 6.2 km

Table 2: Data description

Typically most datasets contain many users with very few data and few with plenty data. Since

it is very tough to extract patterns for users with few data, the figure clearly shows, that there

are fewer users in the selection with few data, which means that the model should perform better

than with the other two data sets. Therefore, the requirements mentioned above are useful.

Another way of looking at the data is to visualize the number of days in which each user col-

lected data. Figure 4.6 shows that in the random selection there is no user with less than 43

days. This is very important since temporal patterns should be extracted from the data, which
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Figure 4.6: Cumulative distribution of the days with recording for every user.

is very difficult if the user collected data for only a few days. On average, a user has collected

data for 162 days and the median is at 156. Therefore, it should be possible to find meaningful

patterns.

In general, it can be said that the data provided by the GoEco! project has a skewed distri-

bution. Many users collected data only for a short amount of time. Therefore, they only have

few trackpoints and places. In the random selection of 41 users, the distribution is less skewed,

because users with few data were not taken into account in the selection. This and the other

two requirements should make it possible to extract a users movement patterns, which ensures

that the input data is useful.

4.2 Place Discretization

Since it is difficult to predict x and y coordinates, places are segmented into regions with an

ID. To group all places, two different methods were used. In the first approach, all the places

are clustered and each cluster is assigned a unique ID. In the second approach a raster is used

to aggregate all places into cells and assign them a unique cell ID. Since the places are diffused

over the entire area of Switzerland, the segmentation is done hierarchically. On the top level of

the hierarchy, a wide-meshed raster and a small number of clusters is used. Since the area of

these cells or clusters is large, the prediction is rather simple, because the users mostly do not

change the cluster/cell. Next, the clusters are clustered again and the cells are subdivided into
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smaller cells. This process is then repeated to get a predicted area that is small enough. The

challenge is to find a suitable amount of clusters and cells. If a high number of clusters/cells is

chosen the area of each cluster/cell will be small and fewer levels of the hierarchy are needed. On

the other hand, the prediction will be more difficult since there are more clusters and cells that

possibly can be predicted. For example, if on every level, the data is split into 4 clusters/cells,

the prediction will be quite simple because there are only four areas that can be predicted. So,

if chosen randomly the accuracy would be at 25%. On the other hand, this would require many

levels until the clusters/cells have a reasonably small area that can be used as the final prediction.

On the first level of the hierarchy, 100 cells and clusters were chosen. For the raster, the number

of cells stays the same in the second and the third level. In clustering approach, 30 clusters were

chosen for the second and the third level.

4.2.1 Clustered Input

Clustering the places of all users creates areas, whose IDs can be used as the output of the NN.

Since the places stem from multiple users, the clusters do not have a real meaning, hence should

not be interpreted. The clusters just describe areas where some people have been, and their

borders are defined by areas where no user has been so far.

Figure 4.7: The process of the hierarchical prediction with clusters. Different layers of clusters at different
scales.

Figure 4.7 shows what the prediction with the clustered input looks like for each level. In a first

step, all places are clustered into 100 clusters. All clusters lying within the cluster predicted from
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the NN in level one will be used as possible predictions for the NN in level two. Then again,

all clusters lying within the predicted cluster from level two will be used as possible predictions

for the NN in level three. The prediction by the NN in level three will be the final prediction.

Figure 4.8 shows an instance containing real data.

Figure 4.8: Different layers of clusters. The areas show the convex hull of all places within the same
cluster.

In the selection of a clustering algorithm, the most crucial issue is that the number of clusters

can be set manually. This is because the size of the input vector always needs to be maintained.

This can only be accomplished if the number of clusters does not exceed an absolute maximum.

If the number of clusters is below the maximum, the missing cluster data can be filled with

negative numbers. The second criterion is, that the algorithm should be fast. K-means is a good

choice because it satisfies both criteria.

K-means is an iterative algorithm. At the start, a number of cluster centers can be set. These

centers are randomly distributed in space. All data points, in this case places, are assigned to

the nearest cluster center. Next, the centroid for every cluster is calculated to update the clus-

ter centers. This process is repeated until the cluster centers no longer move or some stopping

condition is met. A stopping condition can be that the sum of the cluster center offsets between

two iterations are below a threshold, i.e. the cluster centers barely move or that the maximum

number of iterations is surpassed. In this thesis, the k-means implementation from the scikit-

learn6 library was used.

In level one, the places are clustered into 100 clusters. Each of these 100 clusters are clustered
6https://scikit-learn.org, accessed: 2017-12-28
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again into 30 sub-clusters in level two and once again in level three. For clusters that contain

less than 30 places, each place is treated as a cluster. This means that a cluster can be a line

or a single point as well because it may consist of only one or two points. For this reason, some

clusters in the second level cannot be clustered again since they contain only one place. Hence

the prediction in level two can be the final prediction in some cases. If every cluster in level

one were split into 30 sub-clusters, there would be 30*100 = 3000 clusters in level two, and if

all these were split again into 30 sub-clusters, there would be 3000*30 = 90’000 clusters in level

three. Since there are many clusters in level one and two that contain less than 30 points, the

number of clusters in level two and three is not nearly as high (table 3).

Level 1 Level 2 Level 3
Average area 374.5 km2 506’906.3 m2 424.1 m2

Standard deviation area 299.7 km2 916’285.2 m2 1650 m2

Nr. of clusters 100 2980 29’270

Table 3: Average and standard deviation of the cluster area (convex hull) and the number of clusters in
each level

4.2.2 Raster Input

Segmenting the places of all users into raster cells creates areas whose IDs can be used as the

output of the NN. The size of the cells was chosen to be divisible by ten because on every step

down in the hierarchy because each cell will be divided by a new ten by ten raster. Additionally,

since the first raster has to contain the entire bounding box of Switzerland, the width of the first

raster needs to be bigger than the width of the bounding box of Switzerland. Since Switzerland

is approximately 350 km wide, a 400 km raster and therefore a 40 km cell size was chosen for

the first level. Table 4 shows the relevant information for every cell.

Level 1 Level 2 Level 3
Cell area 1600 km2 16 km2 0.16 km2

Cell width 40 km 4 km 0.4 km
Nr. of cells 100 10’000 1’000’000

Table 4: Cell area and the number of cells in each level

Figure 4.9 shows what the prediction with the raster input looks like for each level. In a first

step, all places are segmented into 100 cells. The cells from level one are segmented into a finer

raster for level two and then again for level three. All cells lying within the cell predicted from

the NN in level one will be used as possible predictions for the NN in level two. Then again, all
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cells lying within the predicted cell from level two will be used as possible predictions for the NN

in level three.

Figure 4.9: Different layers of rasters

The prediction by the NN in level three will be the final prediction. Figure 4.10 shows an example

of real data. The two top and bottom rows of the raster of level one are not contained in the

bounding box of Switzerland. Therefore, they will never have any points inside. This is not

an issue because it just makes the prediction easier since there are only 60 instead of 100 real

choices.

4.2.3 Centroid Prediction

After predicting the cluster or cell on the third level of the hierarchy, a further step is made to

predict a coordinate. To predict a point and not an area, the centroid of all places of this user

within the predicted spatial unit is computed. This centroid is used as the final prediction. It

can be used to measure the distance between the prediction and the actual place where the user

went. To compare different predictors, the average distance deviation between the predictions

and the labels can be used in addition to the accuracy.

4.3 Cluster / Raster Features

Each cell or cluster can be described with a set of features. It is known where the user has been in

the past. Thus, it can be counted how often he or she has visited a specific spatial entity. These

counts can be used to create further features. As proposed by Wang et al. (2012) or Gomes et al.

(2013), the time stamp can be used to create features that describe periodicity. For instance,
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Figure 4.10: Different layers of rasters

how often the user has been at each cluster/cell on a weekend or during the week, or how often

he or she has been there on a Monday.

In addition to the temporal features, spatial features, such as the distance or the azimuth between

the user and the cells/clusters can be used to create spatial features as in Noulas et al. (2012).

Based on these geometrical and temporal properties, the following seven input features were

chosen.

4.3.1 Three Hour Window (h3)

This feature consists of a count in every cell/cluster where the user has been in a three hour

window. The current hour is taken and all places where the user has been within plus or minus

one hour are counted for each spatial entity. For example, if it is 3 p.m., for every cell or cluster

it will be counted how often the user has been there between 2 and 5 p.m. This feature should

help to describe patterns that a user typically does at a specific time of day. As an example,

this could be drinking coffee at the favorite bar in the morning or buying groceries at the nearby

shop after work.
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4.3.2 Day of the Week (dow)

This feature consists of counts of all places where the user has been on the same day of the week.

This feature should help to describe patterns that a user does on the same days of the week,

such as going to a sports club or attending an evening course.

4.3.3 Week or Weekend (week)

This feature consists of counts of all places where the user has been on weekdays or weekends.

If the current date lies on the weekend, all places visited during weekends are used to get the

counts for each spatial entity, otherwise, all places visited during weekdays. Since most users

work on weekdays and enjoy their leisure time on weekends, this feature helps to describe work

and leisure time patterns. As an example, this could be going to work on weekdays and going

out on Saturday night.

4.3.4 Total Count (tot)

This feature just describes the overall place count in each cluster or cell. This is beneficial

since the prediction is already pretty good if always the spatial entity with the highest count is

predicted. It is especially useful to have the total count as a backup in cases where the other

temporal features described above are not helping.

4.3.5 Distance (dist)

This feature describes the distances between the user’s current position to every cluster/cell. The

distance is computed from the current position to the nearest point of the spatial entity. This

feature helps the predictor to see which spatial entities are close to the current position. To get

the distances, the database is queried using SQL and the extension PostGIS.Either the minimum

distance from the current position to every cell is calculated, or the nearest distance from the

current position to the convex hull of each cluster is calculated for the raster and cluster input

respectively.

4.3.6 Azimuth (azim)

This feature describes the angle between the direction in which the spatial entity lies relative

to the current movement direction of the user. The direction of the cell/cluster is calculated as

azimuth between the centroid and the current position of the user. The movement direction is

computed by averaging the directions between the trackpoints of the current route. This feature

helps the predictor to see which spatial entity lies in the movement direction. Figure 4.11 shows

how the direction is calculated.
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Figure 4.11: Azimuth calculation. The result is always the absolute value of the movement direction
minus the direction of the spatial entity. If the result is bigger than 180, 180 will be subtracted, since 180
is the exact opposite direction.

The azimuth between the user’s position and the centroid of the spatial entities is queried first

and then the absolute value of the difference between these values and the average movement

direction is calculated. Since the maximum angle between the movement direction and the spatial

entity can only be 180, 180 will be subtracted if the result is higher than 180. Therefore the

real direction of the spatial entity is not considered, but only the direction in relation to the

movement direction.

4.3.7 Similar Routes (act)

Since the other features are derived from spatial units, the last feature is derived from the routes.

Most people always take the same route whenever they go to a particular place, so if a user is

moving somewhere, one can test if he or she has been there before and where he or she went last

time. Sometimes, a user has passed by the same place, but he or she was moving in the opposite

direction. For example to go from home to work and going back home after work. Therefore it

is helpful to compare the current movement direction to the average direction of the route and

only consider routes with a similar direction. Figure 4.12 shows how the similar route feature is

calculated.

In a first step, the trackpoints from every user are converted to lines, where each line represents

a route. Next, a buffer with a radius of 100 meters is drawn around the current position of

the user. All routes that stem from the same user and overlap the buffer are retrieved. From

this selection, all routes with an average direction that deviates more than 90 degrees from the

current movement direction, are removed. This means that only nearby routes with a similar

direction are left. Since it is known in which spatial unit these routes end up, the ID of the unit

can be retrieved. The count for each distinct cluster / cell ID is used for the prediction.
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Figure 4.12: Similar routes calculation. Only past routes within a radius of 100 meters, whose average
movement direction deviates less 90 degrees from the movement direction of the user are considered.

4.4 Next Place Prediction

4.4.1 Input Vector

The seven features described in section 4.3 are used to describe one cluster or one cell. Each

spatial unit is described with a feature vector of seven numbers and the feature vectors of every

spatial unit form one input vector. For the rastered input on every level the input has 700 num-

bers because each raster contains 100 cells. For the clustered input the first level input contains

700 numbers as well, but on the second and third level, there are only 210 numbers per input

because there are only 30 clusters in these levels.

4.4.2 Dimensionality Reduction

There is a lot of redundant information in the input vector. For instance, if a user visits a partic-

ular place only on Sundays, the dow feature and the week feature are the same. In general, the

temporal features are correlated. Since dimensionality reduction techniques summarize correla-

tions in a set of variables into a smaller set of variables, two dimensionality reduction techniques

are tested. This should simplify the input as well as increase the training speed, since less data

needs to be processed.

The two most common dimensionality reduction techniques are the linear discriminant analysis

(LDA) and the principal component analysis (PCA) (Martinez et al., 2001). The PCA does

not need any class labels, it just tries to find the directions, which are also called components,

in which the dataset has the highest variance. The LDA needs class labels because it tries to

find the directions, called linear discriminants, that best discriminate between classes.(Martinez

et al., 2001)
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These techniques are employed before feeding the data to the classifier to make the input data

denser. After training and testing, the results can be compared to find out which technique

works better or whether they improve the result at all.

4.4.3 Neural Network

The library tflearn7, which is a higher level API for tensorflow8 is used for the neural network. As

network architecture, a simple feed-forward architecture was chosen. For a feed-forward neural

network, three main parameters must be set. The first is is the number of hidden layers. If

the data is linearly separable, then no hidden layer is needed, but since this is not the case, at

least one hidden layer should be used. To find the optimum number of hidden layers, multiple

NN are trained with different amounts of hidden layers. The best accuracy is reached with two

hidden layers. The second parameter is the number of neurons per layer. To find the number

of neurons, the rule of thumb proposed by Blum (1992) was used, which is summarized in the

following formula:

N i +No

2
= Nn

Ni = Number of input neurons

No = Number of output neurons

Nn = Number of neurons in hidden layer

The third parameter is the number of epochs. In one epoch the NN is fed with all training data.

The number of epochs describes how often a sample is shown to the neural network. If the num-

ber is too high, the NN starts to overfit and if it is too low, the NN has not learned everything it

could and therefore may still improve. Since backpropagation is an optimization problem which

seeks to minimize its loss function, we can we can look at the loss to find the optimal number of

epochs. If the loss does not decrease any more, the NN stopped learning anything. Fortunately,

there is an extension for tensorflow called tensorboard, which shows graphs of the loss and the

accuracy of the NN while training. According to these graphs, the accuracy does not increase

anymore and the loss does not decrease anymore after the sixth epoch. Therefore, six epochs are

chosen.

7http://tflearn.org/, accessed: 2017-12-28
8https://tensorflow.org, accessed: 2017-12-28
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4.4.4 Random Forest

For the random forest, the algorithm from scikit-learn9 was used. The only parameter that was

varied was the number of estimators/trees. To find the optimum for the number of estimators,

several random forests were trained with different numbers of estimators. With the given data

the optimal number of estimators is around 200. Therefore the random forest was trained with

200 decision trees.

4.4.5 Baselines

Our predictor is compared with some baselines which are very simple predictors. If a baseline

performs better than a more complicated predictor such as the NN or the RF, it shows that

these predictors do not learn much from the input. Since the features contain a number for

every spatial unit, the next cell/cluster can be predicted directly. The temporal features contain

counts for every spatial unit and the distance features contain the distance to every spatial unit.

Therefore the spatial unit with the highest or the lowest number is chosen as prediction. The

azim feature is not used as a baseline because typically multiple cells or clusters lie in the current

movement direction, which makes a prediction difficult. Table 5 gives a summary of all baselines.

Name Feature Prediction Method
Bdist dist Nearest spatial unit Lowest number

Bact act
Most visited spatial unit at the end of routes
from the past, which resemble the current
route.

Highest count

Btot tot Most visited spatial unit Highest count

Bh3 h3 Most visited spatial unit in a three hour
window Highest count

Bdow dow Most visited spatial unit on day x of the week Highest count

Bweek week Most visited spatial unit on weekdays /
weekends Highest count

Table 5: Summary of the baselines

4.4.6 Workflow

Figure 4.13 shows the first preprocessing step, which is mostly done with SQL. The data is

loaded from the Moves API. It returns a file for every user with all places and trackpoints. In a

first step all points outside the bounding box of Switzerland are removed. Since finding patterns

is complicated if a user has only little data, all users having less than 10’000 trackpoints are
9http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html, accessed:

2017-12-28
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deleted. From the remaining users, 41 are chosen randomly. The data from the remaining users

is stored in a table for places and in a table for trackpoints. For every trackpoint, the average

azimuth of the preceding trackpoints in the route is calculated. To know where the route will

end up, the place ID of the next place is added to every trackpoint. For every place, the duration

of the stay and the number of visits is calculated. To calculate the number of visits, a buffer

with a radius of 20 meters is drawn around every place and the places of the same user within

the buffer are counted. If the number of visits is less than six or the duration of the stay is less

than 15 minutes, the places are deleted. After deleting these places, all trackpoints that lead to

deleted places are deleted as well.

The places are now clustered and rasterized as described in section 4.2, and the result for every

level of the hierarchy is added to the places table.

Figure 4.13: Flow Chart of the preprocessing

In a second step, the data in the two tables is used to create input features (figure 4.14). For

every user, the trackpoints are loaded and for every trackpoint the seven features are computed.

These features are stored separately for every user as a serialized python objects (pickle). The

labels / output is computed by getting the cluster / cell ID where the route is ending up.

The training and testing is explained in figure 4.15. After creating serialized python objects

(pickles) of all features, they are loaded and normalized. The features are merged into a feature

vector and then appended to an array. The pickle containing the labels is loaded as well and the

labels are converted into a one-hot array. Having loaded the input and the labels of all users,
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Figure 4.14: Flow Chart of the feature calculation. This process is done for every user three times, once
for every level in the hierarchy. Additionally, everything is done once for the cluster and once for the
raster input

they are split into training and testing data. The newest 10% of every user go to the test set

and the other 90% into the training set. In some model runs the test and training data is also

projected into a subspace with principal component analysis or linear discriminant analysis, to

reduce the number of inputs. After that, the random forest and the neural network are trained.

For the evaluation of the results, first the baselines are computed first, then the test data is

used to get the accuracy for the NN. To have another measure of the performance the distances

between the ground truth and the centroid of the NN prediction are calculated. Next, the test

data is used to calculate the RF accuracy, and lastly, the results are saved.
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Figure 4.15: Flow Chart of the loading, training and prediction. The features are loaded and merged into
a feature vector, which is used for training and testing.

4.5 Software and Scripting

Most of the processing steps were scripted with the programming language Python10. Since there

are a lot of third-party packages available for Python, additional software such as database man-

agement systems (PostgreSQL11) and machine learning packages (tensorflow12, scikit-learn13)

could be incorporated in the scripts. Python was not only used for the data preprocessing and

the modeling but also to create figures and graphs (matplotlib14).

The data stored in the SQL database could be queried in python scripts, manipulated and then

stored back into the database. A handyl extension for PostgreSQL was the spatial database

extender Postgis15, which allows location queries to be run in SQL. It enabled the querying of

spatial relations and distances between objects. Thanks to Postgis the data could be visualized

in QGIS16, a free, open source geographic information system. QGIS was very helpful to display

the data on a map, get an overview of the data and to look at the predictions.

10http://python.org, accessed: 2017-12-28
11https://www.postgresql.org, accessed: 2017-12-28
12https://tensorflow.org, accessed: 2017-12-28
13https://scikit-learn.org, accessed: 2017-12-28
14https://matplotlib.org/, accessed: 2017-12-28
15http://postgis.net/, accessed: 2017-12-28
16https://qgis.org/en/site/, accessed: 2017-12-28
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5 Evaluation and Results

First, it will be shown how the predictors and the baselines performed in terms of accuracy

(section 5.1). In a second step, the distance between the predicted and the actual place will

be evaluated (5.2). Instead of just looking at the predictor accuracy, one can also inspect the

accuracies of the predictor per user and compare them to the results of predictors that were

trained for each user separately (5.3). Lastly, the feature importance given by the RF will be

evaluated (5.4).

5.1 Predictor and Baseline Accuracy

The predictor accuracy describes the ratio between the number of correctly predicted and the

total number of samples. In general, the predictors and the best baseline performed reasonably

well as shown in figure 5.1. With the clustered input, the NN predicted the next location in

75.5% of the cases. It performs best, even though the RF comes in close as second best with an

accuracy of 74% using the rastered input. The RF with the clustered input reaches an accuracy

of 73% and the NN with the rastered input 72%.

(a) Predictors (b) Baselines

Figure 5.1: Accuracy comparison

Looking at the baselines in figure 5.1(b), it can be observed that the baseline Bact clearly out-

performs the others. This is true for the clustered and the rastered input. With an accuracy

of 67.47% for the clustered input, it outperforms the others by more than 16% and it is only

5% worse than the worst performing prediction algorithm. For the rastered input, Bact does not

perform nearly as well, and reaches only 31.4%.

While the Bdow, the Btot and the Bweek perform fairly similar with the raster input, the Bweek

is outperformed by the other two when fed with the clustered input. Finally, the Bdist clearly

35



5 Evaluation and Results

performs worst with only 7% using the rastered input and 0.5% using the clustered one.

Figure 5.2: Level-wise comparison of the prediction accuracy for predictors trained with rastered and
clustered data

The prediction accuracy can be broken down to each level of the hierarchy (figure 5.2). Since the

prediction system is hierarchical, the next place needs to be predicted correctly at every level

to get a correct overall prediction. It can be observed, that the prediction task seems to get

trickier for the rastered input, as the accuracy decreases from level one to three. On the other

hand, predictions with the clustered input seem to be more difficult in level one than in level two.

Comparing the NN and the RF, it can be observed that they produce similar results when given

the same input. In level one and two, the differences lie around one percent. Interestingly, in

level three, the NN does better with the clustered input, but RF produces a better result with

the rastered input. In general, the NN performs equally or a bit better than the RF on every

level with both inputs, except for level three with the rastered input.

Looking at the level-wise baseline accuracy of the rastered input (figure 5.3 a), it can be observed

that the baseline accuracy decreases from level one to level three. The pattern looks very similar

to the level-wise predictor accuracy, which affirms that the prediction task gets harder with every

level. What stands out are the act and the dist features. The Bact performs best on every level.

On the other hand, the Bdist performs mediocrely on level one, and then it goes down in level

two, and in level three the other features perform more than twice as well.

For the clustered input (b), the performance of the baselines is worst in level one, with the

exception of Bdist. Bdist again decreases from level to level and therefore only seems to deliver a
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good performance on small scales. The other baselines perform similarly in level two and three.

(a) Rastered input (b) Clustered input

Figure 5.3: Baseline performance for clustered and rastered input

The baselines based on the temporal features all reach a similar accuracy. Thus, it could be

argued, that it some of the 700 dimensions in the input vector are redundant.

To reduce the number of dimensions, two different dimensionality reduction algorithms were

tested. As indicated in figure 5.4, the employed dimensionality reduction techniques do not

improve the prediction in most cases. Overall, the NN performs better with the original input.

The results for the RF are a little different. With the clustered input, it performs slightly better

if an LDA or PCA is applied. Nevertheless, the differences are marginal (0.7%-0.9%).

Since there are some variations within the each level, the best configuration is chosen for every

level (RF vs. NN and LDA vs. PCA vs. original). Table 6 shows the best composition for

the clustered and the rastered inputs on every level. Using different inputs and predictors in

each level can further emhance the accuracy. For the clustered input the prediction can be

improved by 0.3% and for the rastered input by 0.6%, using the best predictor and applying a

dimensionality reduction algorithm in cases where it improves the accuracy.

Level 1 Level 2 Level 3 Accuracy Imporvement
Cluster NN, original RF, PCA NN, LDA 0.757 0.26%
Raster RF, original RF, PCA RF, original 0.747 0.64%

Table 6: Best prediction accuracy for every level.
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(a) NN dimensionality reduction (b) RF dimensionality reduction

Figure 5.4: NN and RF performance with dimensionality reduction

5.2 Distance Deviation

Instead of just relying on the predictor accuracy, the distance deviation between the predicted

coordinates and the actual place (ground truth) can be used as an additional indicator for rating

both inputs.

Figure 5.5 shows the mean and the median deviations. As expected the mean and the median

decrease from level to level. In general, the mean deviation is much smaller for the clustered

input.

(a) Mean deviation (b) Median deviation

Figure 5.5: Comparison of the distance deviations from the actual place between the clustered and the
rastered input. The spatial unit was predicted by the NN.
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To calculate the overall distance deviation, the distance deviations from wrong predictions in

level one, two and three are collected. To this collection, all the distance deviations from correct

predictions in the third level are added. Figure 5.6 shows the overall distance deviations. The

(a) Mean deviation (b) Median deviation

Figure 5.6: Overall distance deviations from the actual place between the clustered and the raster input.
The spatial unit was predicted by the NN.

mean and the median are much smaller for the clustered input, which shows that the model’s

performance is much better with this kind of input. For 50% of the samples, the distance between

the actual place and the prediction is nearly zero meters with the clustered and 820 meters with

the rastered input. The small median of the clustered input can be explained with the small

area of the clusters in level three. In cases where there are 30 or less points in a cluster in level

one or two, these points are treated as clusters in the next level. Thus, if the correct cluster is

predicted, the distance deviation is zero. In the second level, 22% of the clusters are represented

as a point, and 78% in the third level. This means that the chance is very high that the distance

deviation is zero, given that the prediction is correct.

(a) Percentiles 1-75 (b) Percentiles 76-100

Figure 5.7: Comparison of the percentiles between the raster and cluster input

As indicated in figure 5.7, the distribution is similar until the first quartile, after that, the distance
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deviation of the rastered input increases strongly. The difference between the two inputs is clearly

visible in the last quartile as well, which proofs that the clustered input is superior in terms of

distance deviation.

5.3 User Accuracy

Next to the predictor accuracy and the distance deviation, the user accuracy is also an important

measure to evaluate the model performance. Figure 5.8 shows the accuracy of each user. The

results were calculated with the NN as predictor and the clustered input. Most of the values are

between 60% and 80%, the average is 76.2% and the median 78.3%.

Figure 5.8: Accuracy per user with the clustered input and the NN

Particularly striking is user one, with an accuracy of only 15.3%. Looking at the trackpoints

revealed multiple possible reasons for the bad performance. First of all, the user visits a lot of

different places frequently. He or she commutes to work from Zurich to Bern and visits multiple

places on weekends. Most importantly, there is new place that the user started visiting a new

place regularly, which is only in the test data, so most probably, the predictor always predicts

one of the spatial units with a higher count.

As comparison, user-specific predictors with the same model structure were trained. Figure

5.9 shows the differences between the user-specific and the overall model. Be aware that these

accuracies represent the average accuracy of each user and are not weighted according to the

number of samples each user has. The best performance is achieved with a user-specific NN

trained with the rastered input. The user-specific NN with the clustered input performs second

best followed by the user-specific RF trained with the rastered input.

The NN performs better than the RF except for the overall model trained with the rastered

input. The NN models single users much better than the RF since for both inputs the accuracy

is 4 - 6% higher. In conclusion, it can be said that overall, a user-specific models NN with the

40



5 Evaluation and Results

Figure 5.9: Comparison of the user accuracy for models that are trained with all or only with one user.

rastered input perform best.

(a) Clustered input (b) Rastered input

Figure 5.10: Comparison of the accuracies between the user-specific and the overall model

Comparing the accuracies of the user-specific models (figure 5.10) to the accuracies of the overall

model, it can be observed that for the clustered input the distributions are relatively similar.

The peak of the user-specific model is a bit more to the right. Therefore the probability of having

a good accuracy is higher. For the rastered input, the shapes of the distribution look relatively

similar, but the user-specific model is shifted to the right.

In all four cases a NN was used. For the clustered input, the overall predictor seems to be able to

model all users very good. The user-specific model is only slightly better, which means that the

NN is able learn general patterns for all users. With the rastered input it is different. Compared

to the user-specific NN, the overall NN seems to have problems to model all users. This shows
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that the prediction with the rastered input could be more accurate for the overall NN, but it has

problems to find patterns applicable to all users.

5.4 Feature Importance

The choice of suitable input features is essential for the prediction. As shown in section 2.5, a

random forest can be used to determine the feature importance. Since for every level of the hier-

archy a separate random forest is trained, the feature importance can be calculated for every level.

(a) Feature importance of the clustered features (b) Feature importance of the rastered features

Figure 5.11: Comparison of the feature importance

Figure 5.11 shows the feature importance for the clustered and the rastered input. For the

rastered input (b) the dist feature decreases after level one, but it stays the most important

feature in level two and three. The azim feature, on the other hand, increases from level one

to three. The temporal features are not important in level one, but they increase in the two

subsequent levels. Especially the tot feature gains much importance. After level one, it is the

second most important feature. The act and the h3 feature never reach an importance of more

than 11%, which is surprising, because they were the two best overall baseline predictors for the

rastered input. It is surprising how important the dist feature is. In Level one, it accounts for

nearly two thirds, and around one third of the importance in level two and three.

For the clustered input (a), the dist feature is only important in level one, where it controls 37% of

the decisions. In the next two levels, the act feature takes the lead with an importance of around
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one fourth. In general, all temporal features gain importance in the two final levels except for the

h3 feature which always stays around 10%. The azim feature is the second most important one

for the clustered input in level one, but in the second and third level, it gets much less important.

It can be asserted, that the feature importances are much more balanced in the clustered input

when compared to the results of the rastered input. The dist feature seems to be less significant

in the clustered input. Calculating the average over all levels reveals that the dist feature is twice

as important in the rastered input, where it is the most important feature. For the clustered

input, the act feature is most important.

Figure 5.12 shows the average importance of the spatial and the temporal features. For the

rastered input, the spatial features are on average much more important. For the clustered

input, the spatial and temporal features are of equal importance, although it has to be stated

that there are four temporal and only three spatial features. Therefore, if the averages would be

normalized, the spatial features would be more important.

Figure 5.12: Comparison of the importance of spatial and temporal features. The feature importance of
the temporal / spatial features are added up on every level. The average over all levels is used to describe
the average importance of the spatial and temporal features.

While the NN cannot return the feature importance, it can be trained with subsets of features

and the results can be compared. To evaluate if the feature importance is also valid for the NN,

two models are trained. In the first, the act feature was removed from the input, in the second

the dist feature. Figure 5.13 shows the results from these two models.

Omitting the dist feature from the clustered input does not show any effects in the model accu-

racy. This confirms the findings from the feature importance, since dist was assigned an average
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importance of only 8.9%. Omitting the act feature from the clustered input reduces the model

accuracy by 6.6%, which confirms its inportance.

(a) Clustered input (b) Rastered input

Figure 5.13: Accuracy after omitting the act or dist feature

Removing the dist feature from the rastered input, reduces the accuracy as well, but only by

2.8%. Since its feature importance is at 47.4% the reduction is smaller than anticipated. The

accuracy of the NN trained without the act feature is reduced by the same value, even though

its feature importance is much lower than the one of dist.

Given the above mentioned arguments it can be concluded, that the feature importance can be

used as indicator, but the absolute values seem to be a bit exaggerated.
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6 Discussion

6.1 RQ 1: Best Model Configuration

To find the best model structure, three main issues must considered. First, the hierarchical

structure needs to be discussed and compared to other approaches from previous studies (section

6.1.1). Second, the predictor accuracies need to be evaluated, to find which one should be used

(6.1.2). Third, the centroid prediction needs to be evaluated (6.1.3)

6.1.1 Hierarchical structure

The goal of this thesis was to predict the next location using only one predictor. The advantages

are that there is more training data, and that the already trained model could be used for new

users. If a predictor was be trained for every user, a hierarchical structure would not be necessary

because the number of possible outputs (places) could be set for every user independently. Other

prediction systems typically use only one level (Alvarez-Garcia et al., 2010, Etter et al., 2012),

but this is only possible because they only try to predict the next location within a smaller area or

because they train a predictor for every user. For instance, in the model of Gambs et al. (2012),

a user has up to nine places that can be predicted. They use a user-specific Markov Chain that

predicts one of the user’s places. De Brébisson et al. (2015) trained one predictor for all users,

but the spatial extent of their data was small enough that subdividing it into 1000 clusters was

enough. Given the spatial extent of the GoEco! data, many more spatial units are needed to

get an accurate decision. Since the data is distributed all over Switzerland, there are numerous

entities, and so a direct prediction would be challenging. As there is only one predictor for all

users, a common set of possible outputs (spatial entities) had to be defined, and the model had

to be able to predict all of these spatial entities. Therefore a hierarchical structure was chosen.

The hierarchical prediction structure ultimately worked well for predicting the next place. As

shown in table 7, with the hierarchical approach, a user can have many different places. The pro-

posed model can predict one out of a million cells and one out of 29’270 clusters. A user visited

up to 41 clusters and 18 cells in level three. Thus, many more spatial units can be predicted with

this approach than in the models proposed by Cho (2016) and Gambs et al. (2012). Therefore,

the advantage of the hierarchical structure lies in the fact that users can have varying amounts

of places, as opposed to prediction systems where the number of outputs / classes is fixed.

Generally, the hierarchical structure enables the prediction of the next location within a large

area and users can have varying amounts of places, which is very important if the same predictor
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should be used for all users.

The hierarchical structure chosen in this thesis is not perfect and should be improved further. To

be able to compare the results of the clustered and the rastered input, for both inputs three levels

were chosen for both inputs. In the first level each model has 100 spatial units, in the second and

the third level the clustered has 30 and the rastered input still 100 units. While the prediction

with the rastered input on level one seems to be simple (accuracy of 98.1%), the clustered input

only reaches an accuracy of 91.3%. Since wrong predictions in the first level usually have a very

high distance deviation, the 8.7% wrong predictions in level one have a negative impact on the

average distance deviation. Therefore, it should be considered that the prediction task at the

first level should be made relatively easy. A simple explanation why the prediction in level one

is easier for the rastered input can be seen in table 7. For level one, the average of all visited

units per user are counted. For level two and three it can be counted how many spatial units

(subunits) the user has visited within the predicted cell. The average of this count shows between

how many spatial units the predictor needs to decide, given that it will not choose a spatial unit

where the user has never been.

In level one, a user has visited on average 1.7 cells and 3.4 clusters. This means that if by

chance, one of the visited cells or clusters would be predicted the accuracy would be higher for

the rastered input, because the chance of predicting the correct one is 1
1.7 instead of 1

3.4 .

Level 1 Level 2 Level 3
Cluster 3.4 2.7 1.7
Raster 1.7 2.3 2.0

Table 7: Average number of places per user and subunit

Thus, to reduce the difficulty of the prediction in level one, the number of clusters could be

reduced, which in turn reduces the average number of visited clusters in level one. To reduce the

distance deviation in general, the number of spatial units should be small in the first level and

increase afterwards.

Generally speaking, the number of levels and the number of spatial units should be varied to

optimize the prediction results.

6.1.2 Predictor and Basline Accuracies

The two predictors tested in this thesis performed similarly, with the NN having a slight edge

over the RF. Looking at the models trained with all users, the NN reaches the best performance

with an accuracy of 75.5%, whereas the best performance of the RF only reaches 74.1% with the

rastered input.
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With this in mind, it should be stated, that the RF performs better with the rastered input

and the NN with the clustered input. That is to say, that depending on the input structure

the matching predictor should be chosen. In the proposed model, a RF should be used for the

rastered input and a NN for the clustered input.

The baselines perform much better for the clustered input than for the rastered input. This

can be explained by the fact that the clusters are self-contained units, which means that the

borders of a cluster are defined by areas that nobody has been so far. For the rastered input,

the borders of the cells randomly subdivide space. This means that if a user visits the same

park multiple times, this park would most probably be contained within one cluster, whereas

for the rastered input, it could be randomly split into two cells. Thus, counts that should

have been in the same spatial entity because they represent the same place, are subdivided into

two cells. This is a serious problem or a baseline that chooses the highest count as the prediction.

Even though the baselines for the rastered input perform much worse, the predictors reach a

similar accuracy with the clustered input. Therefore it is highly recommended to use a pre-

diction algorithm for the rastered input, while for the clustered input the best baseline (Bact)

could be used since it is only 8% worse than with the NN. Since the NN outperforms the RF in

the user-specific models, it is recommended to use the NN in the future. If a model should be

trained with the rastered input of all users, the RF should be used only in level three since it

only performs better there (figure 5.2).

Since the length of the input vector is rather high, two dimensionality reduction techniques were

tested, namely the LDA and the PCA. In general, they offer little or no improvement on the

overall prediction. If dimensionality reduction were used to increase the training and loading

speed, PCA would be the technique to go with, since most of the times it gives a better perfor-

mance than the LDA most of the times. Assuming that computational power is not an issue, on

some levels, the PCA or LDA can help to improve the accuracy, but overall, the improvement is

so small that it may not be worth the time and effort.

Looking at the literature, there are other predictors that could be used for this kind of problem.

Since the input features used in this thesis are similar to the ones used by Etter et al. (2012),

a Bayesian network or a gradient boosted decision tree could be tested as well. Then again,

Etter et al. (2012) achieved the best results with the NN. Thus the expected results should be

approximately the same. The temporal features could be used as temporal transition matrices if

the counts would be converted to probabilities. Since Markov chains need states (spatial entities)
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and transition matrices, a hidden Markov model could be employed as well. It would be inter-

esting to compare the results, but the findings of Liu et al. (2016) indicate that NN outperform

Markov models in the task of next place prediction.According to Liu et al. (2016), Markov chains

are constructed based on a strong independence assumption among different factors, that limits

their performance.

While in this thesis, a feed-forward NN was used, other research suggests that recurrent neural

networks would be a better fit for this task, because they make use of sequential information.

In the analysis of De Brébisson et al. (2015), different NN architectures were tested, and while

the Kaggle challenge was won with a feed-forward NN, in their custom test, a recurrent NN

performed better. With the recurrent NN proposed in Liu et al. (2016), it would be plausible

that the accuracy improves. Therefore, a NN with a recurrent structure is another architecture

that should be tested in the future.

If multiple predictors were trained, they could be used as an ensemble. Since every predictor

may make different errors and one predictor may fail on samples where another excels, different

blending strategies should be evaluated to improve the accuracy further. The different predictors

could be combined, as shown in Etter et al. (2012) and the ensemble could be used to make the

final prediction.

6.1.3 Centroid Prediction

After predicting the spatial entity in level three, the user-specific centroid from all places within

this unit is calculated and used as the final prediction, as explained in section 4.2.3. The results

are accurate because often a user only has one place or multiple places with the same coordinates

in one spatial unit. That said, there are other methods that could be used to predict coordinates

within a spatial unit. De Brébisson et al. (2015) use the output of the NN to create a weighted

average of all cluster centers. The output of the NN is an array of scalar values associated

with a spatial unit. Currently, the highest value is chosen to predict the spatial unit and the

user’s centroid in this unit is the final prediction. In future work, the output values could be

used to compute a weighted average for the user based centroids in every spatial unit. This

method should help to decrease the mean distance deviation from the actual place, since every

time the incorrect spatial unit is predicted, the centroid of correct prediction will be part of the

weighted average as well. On the other hand, it could increase the distance deviation for correct

predictions, since wrong centroids are part of the average as well.
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6.2 RQ 2: Data Representation for Input and Output

Before comparing the performance of the predictors with the clustered and the raster input, the

differences between the two representations should be highlighted. First of all, the average area

of a cell is larger than that of a cluster in every level (figures 4, 3). This causes the total area of

the raster to be much bigger than the total area of all clusters. With this in mind, we can look

at how many spatial units a user visited on every level.

Level 1 Level 2 Level 3
Cluster 4 7 12
Raster 2 4 8

Table 8: Average number of places per user

Table 8 shows the average number of spatial units visited by one user. As expected, fewer cells

are visited, since the area is bigger and more places fall into one cell. Given that the preditor

chooses a visited cell, with the clustered input, one out of 12 clusters (on average) is predicted

and with the raster input one out of eight. This increases the the difficulty of the prediction task

with the clustered input because there are more clusters to choose from. More importantly, table

7 shows how many units a user visited within the previously predicted cell (one level higher)

on average. As described in section 6.1.1, this number influences the difficulty of the prediction

task. Thus, comparing how the models perform with the two inputs is biased. However, as the

numbers are similar in level two and three, it should be fine to compare these two accuracies

between the two inputs and the overall accuracy can be used as an indicator as well.

Since the best accuracy was reached with a NN using the clustered input, it can be argued that

it is better suited. The baseline accuracies also indicate that the clustered input is better. With

the exception of the Bdist, all other baselines perform far better in level 2 and 3. The baselines

are calculated from the input features, which means that the features in the clustered input are

more informative and therefore work better for the task at hand.

The distance deviation shows, that the clustered input is superior because the mean and the

median deviation are much smaller (figure 5.6). Since the areas of the cells are bigger, the

average distance deviation is also bigger if one of the visited spatial units is predicted randomly.

Consequently, if the predictor would work equally well with both input representations, the

distances would still be bigger for the rastered input because of its structure. In other words, if

a visited cluster or cell is chosen randomly, the prediction will on average be nearer to the actual

place for the clustered input. To find the average distance deviation for randomly predicted
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spatial units, the average distance between each centroid of the user and the actual place is

calculated for every sample (only units that the user has visited are considered as potential

predictions). The average of these results (table 9) will be used to normalize the mean distance

between the predicted and the actual place.

Level 1 Level 2 Level 3
Cluster 49’347 m 2443 m 206 m
Raster 76’125 m 12052 m 1402 m

Table 9: Average distance between the actual place and the centroids of each user.

Figure 6.1: Normalized distance deviation

By normalizing the mean distance deviation, we can see which model performs better in the

prediction task. The normalized distances indicate, that the clustered input performs much bet-

ter on all levels. Therefore it can be concluded, that the clustered input performs much better

according to the distance deviation.

An advantage of the rastered input is that it can predict the next place everywhere in Switzerland.

With the clustered input, only places where other users have been can be predicted. For instance,

if a user is within a canton where no user has been, with the rastered input the cell where the user

is in could be predicted. With the clustered input there would be no cluster, so the prediction

would always be far away. Furthermore, if the model should be used in a productive environment

where new data is generated, for the clustered input, the clustering and the training of the model

needs to be redone. With the rastered input, the structure stays the same, which means that

the new data just needs to be preprocessed and then can be used as further training or testing
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data.

6.3 RQ 3: Input Features

In this thesis, seven different features have been chosen. These features are used in both the

clustered and the rastered input. Surprisingly, they perform very differently for the two input

types.

Based on the findings in section 5.4, it can be deduced, that with the rastered input mainly

the dist feature is used for decisions. On the first level, this is not surprising. Since the areas

of the cluster and cells are very big, a user mostly stays in the same spatial unit. Therefore

the distance feature can be used to predict the nearest spatial unit. Going to the next level,

the distances become less important. This is because the area where the prediction can be in

decreases, therefore a user does not necessarily go to the nearest spatial unit. While it decreases

for the rastered input, it still remains the most important decision factor.

In general, it can be said that the temporal features are less important for the rastered input.

While an area which is frequently visited by one user has a good chance of being represented

as a cluster, this is not the case for the rastered input . Thus, it is difficult for the predictor

to interpret the input. This effect is an example of the modifiable area unit problem (MAUP)

described in Unwin (1996) and Wong (2004). In every level of the hierarchy, the points are

aggregated into cells of different scales. The rastering produces an arbitrary division of space,

which does not consider that very close places could be related, i.e., they belong to the same

user. For a user living on a border of a cell, the place visits could be split into both cells. Thus

the count in both cells would be half as high than it would be in a cluster. This effect can be

seen best when looking at the baseline accuracies as described in section 6.1.2. Even though the

same baselines are used, the baselines for the rastered input perform much worse. Except for

the Bdist, the baselines perform nearly double as well for the clustered input, which means, that

the values in contained in each feature are more significant for the clustered input.

For the clustered input the act feature seems to be the most important one. It is the only feature

that contains information from past routes. It reaches the highest baseline accuracy of 67.5%

and therefore is nearly as good as the predictors. In the future, this feature could be improved by

adding other conditions similar to the ones used for the temporal features (e.g., only use routes

recorded on a Sunday).

Ranking all features according to their average feature importance revealed tables 10 and 11.
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These tables should be referenced in the future to know which features to use with which input

structure and level.

level 1 level 2 level 3 average
1. dist act act act
2. azim tot tot dist
3. act week week tot
4. tot dow dow week
5. h3 h3 h3 dow
6. dow dist dist h3
7. week azim azim azim

Table 10: Features ranked according to their feature importance from the clustered input

level 1 level 2 level 3 average
1 dist dist dist dist
2 act tot tot tot
3 tot week azim week
4 h3 act week azim
5 azim azim h3 act
6 week h3 act h3
7 dow dow dow dow

Table 11: Features ranked according to their feature importance from the rastered input

Since all temporal features produce similar performances as baselines, it would be possible, that

bad performing temporal features would fill in the gap if other temporal features would not be

used in the input. The temporal features contain similar data. As the RF chooses the feature

that produces the best split, features such as the tot could just be slightly better most of the

time and therefore features such as the dow are seldom included even though they would provide

a decent split. As described by Strobl et al. (2007), the feature importance should be used with

caution, because the Gini importance, which was used in this case shows a strong bias towards

variables with many categories and to continuous variables.

The results given by the NN trained with the partial input indicate that the importance of the

dist feature is too high. Since the dist feature is a continuous variable, it underlines the findings

of Strobl et al. (2007).

In future applications, other features should be tested as well. Similar to the transition matrix

of a Markov chain, a feature could be generated by looking at the last n places and count which

spatial unit was visited how often after these places. Furthermore, for users with few data it

might be helpful to extract features based on similar users. For instance, near routes from users

that frequent the same spatial units could be used. Since the GoEco! app provides the MOT,
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it could be used to extract further features. A very simple one would be to count which spatial

units a user typically visits after using the current MOT. Other than that, based on the cur-

rent position, MOT and movement direction, the destinations of similar routes could be counted.

6.4 Limitations

As shown in the previous sections, there are multiple factors that could be improved or need fur-

ther research. First of all, the hierarchical structure needs further testing. Results from section

6.1.1 indicate that the number of clusters per level should be changed to get a smaller distance

deviation. Furthermore, it is difficult to estimate, how the performance would be if the number

of levels were changed. With more levels, the prediction in each level is simpler, because there

are fewer classes / outputs, but on the other hand, the place needs to be predicted more often.

Thus, with every prediction, a part of the samples will be predicted wrongly. In future work,

these arguments should be considered to find the optimal balance of the hierarchical structure.

While the overall model performance is decent, experiments showed that user-specific predictors

perform better. For a user-specific predictor, the model structure could be simplified by cluster-

ing the staypoints of each user and using the clusters as output. With this structure, only one

level would be needed, and the performance would be likely to improve even more. Therefore,

if accuracy is the most crucial issue, a user-specific predictor should be used. Nevertheless, an

overall predictor could be helpful for users with little data, because it learns from other users.

The place definition given in section 4.1.3 reduces the number of staypoints per user. This

has a substantial impact on the prediction accuracy. As only staypoints visited more than five

times are considered, the prediction is easier since the user is likely to have a regular pattern

of going there. Therefore, changing the place definition would have a negative impact on the

prediction accuracy. Furthermore, the feature importance could vary with another place defini-

tion, because some features might capture the movement patterns better for rarely visited places.

The errors made by the predictors have not been evaluated. Looking at the wrong predictions

should help finding situations in which a predictor has difficulties. With this knowledge, new

features could be introduced that help solving the problem. Despite having tested seven features,

a lot of the contained information is redundant. Therefore other features should be tested.

Last but not least, other predictors should be tested. Hidden Markov chains and recurrent NN

are commonly used predictors for this kind of task and could improve the accuracy. After training
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multiple predictors, an ensemble of the different predictors could improve the precision even more.
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7 Conclusion

This work set out to explore how GPS data from mobile phone users can be used to predict the

next place. While a lot of the proposed models use user-specific predictors, the challenge in this

work was to use one predictor for all users and therefore finding a suitable model structure that

allows the model to output the places from all users. To handle a large number of possible out-

puts, a hierarchical structure was chosen. Places were discretized using two different methods,

namely rastering and clustering. The spatial units obtained from these two methods were used

to extract features with which a NN and a RF were trained.

The best model performance is achieved by training a NN with the clustered input. With this

configuration an accuracy of 75.5% can be reached. Regarding the model configuration, the

evidence from this work suggests the following key points:

• Based on the accuracy and the mean / median distance deviation, the clustered input

performs better than the rastered input.

• The NN reaches a higher prediction accuracy than the RF.

• The hierarchical structure increases the number of places that can be predicted. Therefore

the places can be within a larger area than in comparable literature.

• By calculating the user-specific centroid, the prediction of the NN/RF can be further refined

to reduce the distance deviation.

• Using a NN, the best baseline predictor was outperformed by more than 8% suggesting

that the predictor learns patterns from the input

• Training user-specific predictors with the same input reaches a higher accuracy than an

overall predictor.

In summary, the proposed hierarchical structure with a NN and the clustered input works well

in predicting the next place. It can to predict a lot of different places and with great accuracy. If

the accuracy is of the essence, the clustered input should be used, even though the raster input

performs decently as well. Before deciding which input to use, it should be considered that a

model is simpler to maintain with the rastered input because new data can just be preprocessed

and fed into the model. For the clustered input, the clustering, the feature extraction and the

training need to be done again every time new data is added. While the hierarchical structure

proofed to be a success, there is still room for improvement. The number of spatial units and

the number of levels should be carefully revised to improve the accuracy further. Although the
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user-specific model outperforms the overall model, it is probable that the overall model is helpful

for users with little data or new users since it can learn from the other users.

The features used to train the predictors showed different behaviors for the clustered and the

rastered input. A model trained with the rastered input bases its decisions mostly on the spatial

features while with the clustered input temporal and spatial features are of equal importance.

Furthermore, the results showed that the feature importance depends on the level of the hierarchy.

On the top level, the geographical distance is the most important decision factor, but after that,

the importance of the temporal features increases. For the the baselines, the act feature, which

looks for past, nearby routes with a similar movement direction, predicts the next location best.

For the clustered input it had the highest feature importance while the distance drives most

of the decisions in the rastered input. Overall it can be deduced that the feature importance

depends on the level but also on the type of input, but since the models perform best with

all features, all of them should be used. However, with a different place definition, the feature

importance could change.

Training two neural networks with a subset of all features showed that the feature importance

should be used with caution. The trends depicted by the feature importance were reflected in

the accuracy of the NN, but not as strong as the percentage indicated.

7.1 Future Work

Future work should focus on four main categories. First, the other predictors should be tested.

Many different predictors and variations of predictors have been proposed, but one that is fre-

quently used is the hidden Markov chain. Thus it would be important to compare it to the

performance of the NN. Similarly, a different NN architecture, such as a recurrent NN should be

implemented and tested, since they make use of sequential information, which is very important

for spatio-temporal data. With multiple predictors, it would be possible to use all of them and

create an ensemble predictor. Since some of them may excel where others fail, this could improve

the prediction.

Second, the numbers of levels and spatial units per level should be analyzed more thoroughly.

More levels lead to less spatial units per level, which simplifies the prediction on each level, but

on the other hand, each sample has to be predicted more often, which could lead to a decrease

in accuracy. Therefore, the number of levels and the number of units should be varied to find

the optimal balance.

56



7 Conclusion

Third, other features should be extracted. There are a lot of different features proposed in liter-

ature that could be extracted, but there are three main types of features that have not been used

in this thesis. Similar to a transition matrix in a Markov chain, the content of features could

be based on the last n visited places. The second type would be features based on all or similar

users, for example a feature based on the destination of past trajectories from other users that

frequent the same spatial units. A third type of feature could be extracted from contextual data.

Since the GoEco! app records the mode of transport, a possible feature would be to extract all

destinations where the user went in the past while being at a similar position using the same

mode of transport. To find which features should be included, the errors made by the predictor

should be analyzed. The findings could help to find features that contain the information which

the predictor needs to get the correct prediction next time.

And fourth, while the model was trained and tested with only 41 users, in a next step the model

should be trained with all 712 users. Having more users will show if the 41 users are represen-

tative for the whole sample. Furthermore, the performance of each user should be analyzed,

because it could reveal valuable insights that might help to improve the model performance.
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