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D. Abstract 

The Shark Bay in Western Australia has had an extreme heat event in 2011, resulting in water 
temperatures rising 5 °C over their usual levels. Subsequently, the diverse and delicate ecosys-
tem was disturbed and the whole maritime flora and fauna suffered negative effects. The study 
at hand will focus on detecting behavioural changes of bottlenose dolphin schools and seagrass 
loss in respect to the heatwave with remotely sensed optical data. Using three water quality 
parameters, the normalized difference chlorophyll index, total suspended solids and coloured 
dissolved organic matter, the analysis tries to grasp the heatwaves influence on the bay system 
and link it to the changes reported by dolphin researches. A time series analysis of the last  
18 years of Landsat 7 ETM+ data helps embedding the warm water inclusion in the bay’s de-
velopment over time. These results are supplemented by a benthic habitat map, classifying the 
seafloor using a support vector machine. The results indicate statistically insignificant results 
analysing the water quality parameters. The heatwave is hardly detectable in the data and does 
not stand out within the time series. No explanations for the dolphin’s behavioural changes 
could be found. The benthic maps were insufficient for a habitat analysis, because the water 
column’s dynamic absorption interfered with the seafloor classification algorithm. Conse-
quently, no insights in the maritime system’s complex response to such a drastic event were 
gained.
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1. Introduction 
The analysis of water ecosystems in a context of global climate change has become an essential 
tool in assessing the impact of the recent global development. Water poses a major part of the 
system, as it hosts a vast number of unique plants and animals which are crucial components. 
Especially because the plants and algae in the world seas remain a vital part in the carbon cycle. 
Without the deposition of carbon and conversion into oxygen, habitable conditions outside of 
water would not be possible. The most valuable regions are the very diverse nearshore ecosys-
tems, such as seagrass meadows or mangrove forests, which are intensely affected by environ-
mental changes and anthropogenic influences (Goodell et al. 2018). The amount of parameters 
impacting these fragile systems range from thermal stress, nutrient runoff and sedimentation up 
to overfishing, coastal development and pollution (Garcia et al. 2018; Goodell et al. 2018). As 
water systems are extremely complex it is hard to capture its properties, changes and trends in 
full extent. However, with the implementation of remote sensing into water analysis, a multi-
faceted tool has been introduced, which is capable of gathering a wide spectrum of information. 
Especially water physical parameters are accurately and easily obtained (Jaelani et al. 2016). 
The power of remote sensing lies in the amount of data that can be collected within a short time, 
while still providing a decent spatial resolution. Landsat 7 ETM+ for example samples with a 
resolution of approximately 30m and a repetition frequency of 16 days (U.S. Department of the 
Interior & U.S. Geological Survey 2018). This allows us to investigate much larger areas of 
interest in an extremely short time without having the need of large-scale field studies. 
With such a great potential, it seems unsurprising, that remote sensing has become a crucial 
part in monitoring water bodies in recent years. In comparison to vessel-based research, air-
borne image systems have great advantages. As one can imagine the vessel-based monitoring 
is bound to transects and can only estimate the whole extent of a larger water body by interpo-
lating data. Additionally, boats have a fixed depth of flotation and are thus extremely limited 
when measuring coastal ecosystems (Ohlendorf et al. 2011). The strength of remote sensing 
lies in its cost and time efficiency while giving consistent temporal and a broad spatial coverage 
(Slonecker et al. 2016; Misra et al. 2018). The data is gathered in a digital format which can be 
easily processed further and combined with additional computer based models (Lamaro et al. 
2013). The potential of remote sensing in understanding water ecosystems is shown in the var-
ious studies already done on this subject all around the world. Assessing the so-called water 
quality parameters is hereby a common tool to estimate the state of the water system and its 
possible effects on flora and fauna. Jaelani et al. (2016), show us that parameters such as the 
chlorophyll content of water and the amount of total suspended solids can be calculated very 
precisely in sea water such as the Indonesian Sea. But also other water bodies, for instance 
rivers or lakes have been the centre of interest in research (see Olmanson et al. 2016). Looking 
at the vast amount of successful studies already conducted, the great potential of remote sensing 
becomes even clearer. However, one should never miss out the limitations remote sensing is 
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faced with. The main influence on remotely sensed data comes from varying atmosphere and 
surface properties and the resulting absorption, transmission and reflection (glint) (Jaelani et al. 
2016; Ohlendorf et al. 2011). Thus, atmospheric correction models are crucial in processing the 
data, since the water leaving radiance often is extremely weak and potentially concealed by the 
multiple scattering in the water and the atmosphere (Eugenio et al. 2015). However, the correc-
tion still remains challenging as the optical parameters are constantly changing and every image 
needs to be corrected accordingly (Mishra & Mishra 2012). As it is of great importance to assess 
the water properties over space and time it is essential to correct data properly (Park 2007). 
Exploring the possibilities when observing water surface properties, recent years have shown a 
shift from obtaining surface properties, such as the chlorophyll content, to gathering bathymetry 
data, through the water column down to the sea floor. The conventional method of assessing 
benthic data and water parameters of coastal areas is ship based (Misra et al. 2018; Pattanaik et 
al. 2015). With costly echo-sounding an time-consuming infield measurements data is gathered 
(Gao 2009). Because benthic data is a crucial component in understanding the state of marine 
ecosystems, the marine life present, nutrient, habitats and sea surface properties, remote sensing 
has become increasingly important in recent years when looking at marine systems (Eugenio et 
al. 2015). Earth observation sensors record in their raw data, a reflection of the surface and, if 
strong enough, also one of the sea floor. The water between surface and ground naturally ab-
sorbs and scatters light according to its specific properties (Ohlendorf et al. 2011). The unique 
signals of the water column and the ground are valuable information sources, which allow us 
to understand depth distributions of the above named water physical properties, but also map 
the sea ground cover and structure (Pattanaik et al. 2015; Roy 2003; Gao 2009). But, this new 
field of observations also brings new challenges. In addition to atmospheric correction, the ab-
sorption of the water column needs to be considered. As the water absorbs and scatters light 
with increasing depth also the ground signal gets weaker. Several studies tried to estimate the 
limiting water depth and proposed estimates from 15 meters (Ohlendorf et al. 2011) up to 70 
meters (Gao 2009). Nevertheless, remote sensing provides a very efficient, precise and time-
saving approach in comparison to the used sounding systems (Gao 2009; Roy 2003). As both, 
the water physical parameters and the bathymetric analysis, hold crucial information on water 
systems the following approach tries to combine the two methods to provide an even better 
picture. By studying water bodies using a combined approach a broader analysis can be con-
ducted and thus show us possible additional interconnections between the two. This is of par-
ticular interest, as the study aims on finding connections in between the distribution and dy-
namics of dolphin habitats, social structures and behaviour, and their link to water quality pa-
rameters and changes caused by climatic shifts. The study will focus on a heatwave event in 
2011, where water temperatures in the Shark Bay rose 5 °C over their normal level (Arias-Ortiz 
et al. 2018; Caputi et al. 2014). The analysis is built around reports from the Dolphin Research 
Alliance, which indicate behavioural changes, potentially connected to the warm water inclu-
sion, in the dolphin schools present in the bay. The study will be based on those findings and 
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tries to supplement and explain the observations brought forward by those scientists. At the 
same time, it will help the understanding of possibilities and limitations in water remote sensing 
while using it on a case study which is still research ongoing. 

2. Background 
The Shark Bay lies on the West Australian coast approximately 800 kilometres north of Perth. 
The bay area is roughly 11’000 km2 and is separated into two parts by the Peron Peninsula 
reaching 100 km into the bay (see Fig. 1 and Fig. 2). On its westerly side the Shark Bay is 
separated from the open water by the Edel Land Peninsula, the Dirk Hartog island and several 
other, smaller islands. The surface of Shark Bay’s landmasses is characterized by Holocene 
sand dunes (see Fig. 2), small shrubs and other thermophile vegetation (Playford et al. 2013). 
Underneath the sandy surface lays the bedrock, which is not particularly remarkable as mostly 
sand and limestone can be found (Playford et al. 2013). Hence the geology of the Shark Bay is 
not very special, even though geological processes such as faults and anticlines are present 
throughout the whole bay area, being the major factor in forming the Shark Bay into what it 
looks like today (Playford et al. 2013). What makes the Shark Bay unique is its extremely di-
verse and specialized flora and fauna, which has been the centre of scientific research for dec-
ades.  

2.1 History 

The first European to reach the coast of Western Australia was the Dutch seaman Dirk Hartog, 
setting foot onto Australian ground in the Shark Bay area in 1616 (Parks and Wildlife Service 
2018b; Playford et al. 2013). However, the Dutch sailors where not the first people to visit the 
bay, as the area has been populated by 
Aboriginal people of the tribes Mal-
gana, Nanda and Yinggarda for at 
least 40’000 years (Parks and 
Wildlife Service 2018b; Bowdler 
1990). 83 years later, in the year 
1699, the English geographer, ex-
plorer and sailor William Dampier 
visited Western Australia to study its 
coast (Playford et al. 2013). Landing 
at Shark Bay’s western shoreline he 
explored the area, its animals and 
vegetation. Besides many other 
things, he observed great numbers of 
sharks subsequently giving the bay its 
name (Parks and Wildlife Service 

Fig. 1. Landsat 7 ETM image showing the Shark Bay area, 

taken 07.03.2018 (Modified after: USGS; Australian 

Interstate Quarantine 2017). 
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2018b). The first European settlements were established in the 1850s, when the guano industry 
gained interest (Playford et al. 2013). Because of its high phosphate content, guano, bird's ex-
crements, was collected to be used as fertilizer in Europe (Playford et al. 2013). Besides guano, 
the Shark Bay area also held a great amount of oysters, which were of interest for the pearling 
industry (Hart et al. 2016). 
Today Shark Bay county is the home of 952 residents mainly working in the fishery as well as 
accommodation and food services (Australian Bureau of Statistics 2018; Shire of Shark Bay 
2016). As the natural environment in the area is extraordinary, tourism is one of the main 
sources of income present. Hence the service industry is of great importance for the whole 
county. Luckily the bay is very popular with tourists because of its diverse flora and fauna, 
beautiful landscape and mild climate.  

Fig. 2 Overview of the Shark Bay and its islands. Additionally, the geological surfaces are displayed 

(Playford et al. 2013). 
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2.2 Water structure 

Laying at 25° south, Shark Bay is in a semi-arid climate zone with warm temperatures and little 
rain. Averaging at 26.5 °C the temperature ranges from approximately 10 °C to 35 °C through-
out the year (Parks and Wildlife Service 2018a). However, the temperature and precipitation 
regimes are diversely distributed and thus generate small habitat niches for rare plant and ani-
mal species. In addition to the terrestrial species, the Shark Bay waters hold one of the most 
interesting marine systems and thus stands as a perfect study area. 
Its shallow water is characterized by different salinity levels hence supporting the diversity of 
organisms present. Logan (1974) defined three regimes present in the Shark Bay waters. Ham-
lin Pool and L’Haridon Bright are classified as hypersaline with a salinity ranging from  
55 – > 40‰. The northern part of the eastern Shark Bay and the western part are metahaline 
with 40 – 55‰. Roughly at the end of the Peron Peninsula the salinity regime changes into 
oceanic (35 – 40‰). However, the boundaries of these classes are dependent on the rain fall, 
evaporation, wind and tides. Especially Henri Freycinet Harbour is subject to varying salinity, 
depending on the parameters present, it changes from metahaline into hypersaline (Playford et 
al. 2013; Logan 1974). On the other hand, as the bay area is shielded towards the ocean by the 
peninsula and islands, the interchange and mixing of water is inhibited, thus stabilizing the 
salinity regimes and supporting hypersaline ponds (Playford et al. 2013). 
In this context, Hamlin Pool needs be looked at closer, as it is the only region with a stable 
hypersaline environment giving very unique life forms a niche to live in. Within the high salin-
ity levels, fishes, mussels and seagrass can hardly survive which is why stromatolites were able 
to developed uninterruptedly in these waters (Reid et al. 2003). Stromatolites are microbiolog-
ical communities consisting mainly of cyanobacteria (Playford et al. 2013). They are of partic-
ular interest in understanding the origin of life as theories suggest that these mineral structures, 
hosting very primitive organisms, could be one of the starting points of life (Schweizer Radio 
und Fernsehen 2018). The organisms developed in the tidal zones of Hamlin Pool and are still 
actively growing today. 
The tidal movement is rather complex as it consists not only of an astronomical component but 
also a meteorological one. Interestingly, the meteorological influence on the tides is much 
greater than the astronomical one (Burling et al. 2003). The local pressure regimes and the 
winds connected to them define the tides within the Shark Bay waters (Playford et al. 2013). 
However, the effect then again varies on a smaller scale. Hamlin Pool was found to be stronger 
affected by meteorological factors than Denham thus having the highest water level changes in 
the whole Shark Bay (Maximum: 1.59m in 1979) (Playford et al. 2013; Burling et al. 2003). 
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2.3 Flora and fauna 

Looking at the diversity of habitat characteristics present in the Shark Bay, it is of no surprise, 
that it holds a substantial number of different lifeforms. Combined, the whole area has more 
than 660 animal species and over 900 corals and plants of which some are listed as most en-
dangered animals such as dugongs or green turtles (Tourism WA 2018). This diversity com-
bined with the historical importance, stromatolites and remarkable landscape led to the ac-
ceptance of the whole area as UNESCO world heritage in 1991 (UNESCO World Heritage 
Center 2018). 
One of the most valuable species present, especially in a global context, is the extremely diverse 
seagrass ecosystem in the bay. Covering around 4’300 km2, the seagrass beds are considered to 
be one of the largest and most significant ones in the world (Arias-Ortiz et al. 2018). Having 
these underwater meadows has a positive influence on the water quality and increases the value 
of the whole bay ecosystem. First, seagrass poses as a perfect habitat for many species. It does 
not only give shelter but also is a vital component within the oceanic food chain (Reynolds 
2018). In addition to that, it protects the shoreline and holds together the sediments with its root 
structure while also improving the water quality (Duarte 2002). In a global context, however, 
the carbon sequestration is the most valuable function of a seagrass ecosystem. Like trees, 
seagrass has the ability to store carbon within their leaves and roots, when the plants die and 
decay it gets buried and subsequently stored in the seafloor (Fourqurean et al. 2012). It is esti-
mated, that per year the meadows take up to 80 million tons of carbon worldwide, which leads 
to the fact that up to 0.65 – 1.2% of all carbon is stored within water plants (Reynolds 2018; 
Arias-Ortiz et al. 2018). 
But, as many other ecosystems, also seagrass beds have been influenced by global warming 
and human activity negatively, resulting in a constant loss of their extent worldwide. The re-
sulting consequences are immense and range from loss of habitat, water quality and hence bio-
diversity to the loss of great amounts of stored carbon (Duarte 2002). Arias-Ortiz et al. (2018) 
estimate that the Shark Bay has already lost about 22% of its meadows and their extent is stead-
ily declining further. The influence of carbon being released into our atmosphere is widely 
known and seagrass plays a major role in our climate system and its constant change. It is 
estimated, that until the year 2051 the Shark Bay will release 10 to 52 MgC ha−1 in the atmos-
phere greatly influencing local but also global climate systems (Arias-Ortiz et al. 2018). 
As stated, the large meadows provide nutrients, feeding grounds and habitat for animals and 
plants in the coastal region (Knudby & Nordlund 2011). One of the most noteworthy animal 
species living in the area are bottlenose dolphins or Tursiops (lat.). Tursiops is the genus de-
scribing three species of dolphins of which the most common one, tursiops truncatus also 
known as the common bottle nose dolphin, can be found nearly world-wide (Encyclopedia of 
Life 2013). The bottlenose dolphin species however, do vary strongly in their appearance and 
develop different characteristics depending on their habitats (Connor et al. 2000).The ones pre-
sent in Western Australia are approximately 2 – 4 meters long and may reach weights around 



 

 7 

200 kg (Grzimek 1969). Tursiops truncatus are extremely interesting creatures as they are 
known to be very social and have distinct structures in their groups. In the Shark Bay the dol-
phins have developed a diverse set of social structures and specific specialisations, such as 
using sponges as tools, depending on their local habitat (Shark Bay Dolphin Research Alliance 
2018; Connor et al. 2000). These have been monitored and analysed in combination with water 
and weather parameters by the Shark Bay Dolphin Research Alliance since 1982. 

2.4 Heatwave 

The research is focused on an extreme heatwave in the year 2010/2011, when water tempera-
tures were rising 2 to 5 °C above their average (see Fig. 3) (Arias-Ortiz et al. 2018; Caputi et 
al. 2014). The heatwave seems to be the result of an unusual strong Leeuwin current (see Fig. 
4) which was built up by a strong La Niña system (Caputi et al. 2014). The consequences of 
this abnormally warm summer were drastic. The whole West Australian coast area suffered 
severe changes regarding their habitats, environment and subsequently biodiversity. Shark Bay 
however, was hit stronger than any other site along the west coast. The heatwaves effects, within 
the Shark Bay waters, were intensified because the western land tongue isolates the bay, hin-
dering the flow of warm water and exchange with the open sea (Caputi et al. 2014). At the same 

time, the comparatively shallow water structures further promote warming. Animals and plants 
present in the bay area were affected by the sudden inclusion of warm water into the bay area, 
because of changes in nutrient and oxygen availability in the water. Consequently, experiencing 
higher mortality and reduced fertility. These influences have been documented by the re-
searches of the Shark Bay Dolphin Research Alliance. Since the heatwave, dolphins changed 
in their behaviour and diurnal activity, their social structures and specialisations are changing 
while having higher mortalities and lower fertility. In addition, the warmer water gave non-
native tropical species perfect reproduction conditions which further weakened the already 

Fig. 3 The median water temperature per month shows a distinct peak in 2011 

indicating the heatwave (Data Source: MODIS). 
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groggy local species (Caputi et al. 2014). Besides many aquatic animals, mainly the seagrass 
meadows, posing one of the central components of the habitats in the bay area, were damaged. 
Arias-Ortiz et al. (2018) estimate that 36% of the seagrass present was harmed and its sediment 
C stock was exposed to oxic conditions, resulting in the release of CO2. The ground cover 
directly or indirectly also influences the whole habitat, nutrition and biodiversity in the bay’s 
water (Arias-Ortiz et al. 2018). 

2.5 Research Goals 

This study aims to investigate the water physical parameters in combination with a benthic 
habitat map to assess the influences of the warm water inclusion in summer 2010/2011. Remote 
sensing will be used to quantify the extend of changes in the region and finding explanations 
for the dolphin’s behavioural changes. Additionally, connections between distinct parameters 
and specific changes in the ecosystem or animal and plant life will be examined. 
The research goals are as follows:  

• To examine the possibilities to generate spatial information and water information based 
on remote sensing methods and use those for a thorough study in the Shark Bay area 

o What are the possibilities and limits of remote sensing data and data analysis 
when examining water bodies? 

o Is the 2010/2011 heatwave detectable in the data? 
o Is it possible to understand the post-heatwave changes of dolphin’s behaviour 

with remote sensed benthic data? 
o Does the data support the in situ observations conducted by the dolphin alliance? 
o Are there different changes between the diverse parts of the Shark Bay area? 

Fig. 4 The current systems surrounding Australia. The Leeuwin Current which was exceptionally strong 

because of La Niña is highlighted in red (Modified after: Richardson et al. 2014). 
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The goal is to establish a connection between the data gathered by the researches in field and 
the remotely sensed data, while searching for the limitations of the remote sensing data in water 
and benthic analysis. It is expected, that a significant change, related to the heatwave, is detect-
able in the data. Water physical parameters will show a decrease in food availability for dol-
phins combined with a rising concentration of suspended solids and coloured dissolved organic 
matter. This will be connected to growth inhibitors for plants on the seafloor and their higher 
mortality. This development will most likely be linked to the summer heatwave in 2010/2011 
and support the findings of the Shark Bay Dolphin Research Alliance. The questions will be 
tackled with a time series analysis of the water physical parameters back to the year 2000. This 
will ensure well understood results, as long term trends and short term changes can be distin-
guished easily. Additionally, a time series allows to estimate a potential recovery of the bay 
area and future trend predictions. Furthermore, the seafloor will be mapped to detect changes 
in the dolphin’s habitat conditions. The combination of the two approaches will provide a fuller 
understanding of the processes happening in the bay area since 2000, and the magnitude of the 
heatwave within the long-term development. 

3. Methods 
The approach used in this study to identify the water physical parameters and benthic data in 
the Shark Bay area is composed of several different methods already applied in previous anal-
yses. The combination helps to grasp the wide variety of an interdisciplinary field such as water 
quality parameters in connection with the bottlenose dolphin’s habitats and social structures. 
The data however, is aggregated from one source, the USGS database. The data was then pro-
cessed with ENVI Classic 5.4 (64-bit) and SNAP Desktop 5.0.8 using their built-in tools. The 
three indices were calculated and subsequently statistically analysed for a trend analysis. Addi-
tionally, a benthic habitat analysis of the seafloor properties was conducted using the ENVI 
provided support vector machine classification. In a final step, the water quality parameters 

Layer Stacking Water Mask

Normalized 
Difference 

Chlorophyll Index

Total Suspended 
Solids

Coloured Dissolved 
Organic Matter

Region of Interest 
Selection

Support Vector 
Machine 

Classification

Statistical Analysis

Habitat Map

Fig. 5 The chart shows an overview of the processing chain. 
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were analysed in respect to the benthic data set, to find potential connections between the re-
motely sensed data and the observations made by the marine biologists in field. 

3.1 Data 

Before the selection of the Landsat 7 ETM+ as the matching sensor, a thorough comparison of 
the potential satellites in all their facets had to be conducted, to find the best fitting sensor for 
the analysis. The sensors available were ESA’s Sentinel 2, NASA’s Landsat 5, Landsat 7, Land-
sat 8 or MODIS (Part of the Terra Satellite). These sensors were chosen to be suitable because 
of their potential for a time series analysis and their spatial and spectral resolution. Table 1 
shows a broad overview on the essential characteristics of the sensors. 
Table 1. The basic parameters of the available sensors (Source: NASA, ESA, USGS). 

Satellite Sensors Spectral  
resolution 

Spatial  
resolution 

Revisit  
frequency 

Operation 
time 

Sentinel 2 Multi Spectral 
Instrument (MSI) 

12 Bands 
0.45 – 2.19 µm 

10 m, 
20 m, 
60 m 

5 Days Since June 
2015 

Landsat 5 Multi Spectral 
Scanner (MSS) 

4 Bands 
0.5 – 1.1 µm 

57 x 79 m 16 Days March 1984  
– June 2013 

Thematic  
Mapper (TM) 

7 Bands 
4.5 – 2.35 µm 

30 m, 
120 m 

Landsat 7 Enhanced 
Thematic Mapper 
Plus (ETM+) 

8 Bands 
0.44 – 0.9 µm 

15 m, 
30 m, 
60 m 

16 Days Since April 
1999, Sensor 
Malfunction 
July 14, 2003 

Landsat 8 Operational Land 
Imager (OLI) 

9 Bands 
0.43 – 2.3 µm 

15 m, 
30 m 

16 Days Since Febru-
ary 2013 

Thermal InfraRed 
Sensor (TIRS) 

2 Bands 
10.3 – 12.5 µm 

100 m 

Terra Moderate-resolu-
tion Imaging 
Spectrometer 
(MODIS) 

36 Bands 
0.4 – 14.39 µm 

100 m,  
250 m,  
500 m 

1 – 2 Days Since 
December 
1999 

3.1.1 Sensor selection 

To choose the best fitting senor(s), the main focus was on their time coverage, which is crucial 
for the time series analysis. Data of the last approximately 20 years are needed for a proper 
trend analysis. Terra MODIS would be a good fit since it is in space for 19 years and still 
operating normally. Additionally, its fast repetition frequency could be interesting to have, in 
case of incidents happening in a short time scale. Sentinel 2 on the other hand, does also have 
a very fast repetition frequency, however its operation time is too short to have a proper time 
series. Landsat data has the lowest repetition frequency, of only two pictures per month. Yet, 
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with more than 30 years, Landsat is the longest active satellite mission looking at Earth’s sur-
face parameters (Roy et al. 2016). Especially Landsat 7 and Landsat 8 hold a large potential 
when combined since they do not have large compatibility issues, as their sensors are strongly 
related. Additionally, the two sensors are also offset by 8 days, thus the revisit frequency  
decreases when combined (Roy et al. 2016). 
A second parameter taken account of is the spatial resolution. Spatial resolution is of importance 
as it may influence the results greatly by generalizing small scale changes. Because the Shark 
Bay is a very diverse environment and dolphin habitats are changing in very small scales, a 
coarse resolution would not be able to grasp the structures properly. Consequently, by peer 
reviewing some images of the sensors, the MODIS data was ruled out because of its spatial 
resolution. Sentinel and Landsat data however, were held to be capable of illustrating the study 
area in its diversity.  
To understand the influence of spatial resolution on 
the results even better, a comparison of the indices 
was conducted. For a Sentinel 2 (resolution 10 meters) 
and a Landsat 8 image (resolution 30 meters) all indi-
ces where calculated and the results compared by gen-
erating difference maps. This step is necessary to rule 
out possibly unfitting sensors but also to evaluate po-
tential additional data sources, namely ultra-high res-
olution commercial satellites such as Worldview or 
Rapid Eye. To visualize the disparities of the two sen-
sors the Normalized Difference Chlorophyll Index 
values of the Sentinel image were subtracted from the 
Landsat values. As both values are normalized be-
tween –1 and 1 a direct comparison of the two is pos-
sible. Fig. 6 shows the result of the subtraction. Obvi-
ously, the overall differences are rather small and thus 
the spatial resolution does not seem to affect the re-
sults immensely. What is interesting however, is the 
fact that the Sentinel image seems to find higher values throughout the whole image. A sensor 
specific underestimation of NDCI values might be an issue which needs to be taken account of. 
As the bands of the two sensors used in the calculation are not exactly congruent, different 
spectral resolution might have induced an underestimation of values. Nevertheless, the analysis 
showed, that the influence of spatial resolution at this level does not influence the data signifi-
cantly. Thus, the Landsat satellites were chosen as the main data source, because their sensor 
characteristics seem to be the best fit for the analysis. Furthermore, images in lower spatial 
resolution also mean fewer gigabytes of data that need to be processed, subsequently resulting 

0.5 
 
 
– 0.5 

Fig. 6 NDCI difference image generated by 

subtracting Sentinel 2 from Landsat 8 data. 

It illustrates potential sensor differences. 



 

 12 

in lower computation time. Within the Landsat missions, Landsat 7 was chosen as the key sen-
sor, because of its time coverage perfectly fitting with the times of interest. The other Landsat 
satellites however, are potential supplementary sources for more precise analysis or in case of 
no available data (e.g. clouds covering the bay).  

3.1.2 Datasets 

All data used in the study was provided by USGS Earth Explorer. Luckily, the image in path 
115 and row 78 of Landsat 7 ETM+ covers the Shark Bay area perfectly and thus the processing 
effort regarding composites was greatly reduced. The images were downloaded as level 2 pro-
cessed data, which means they were atmospherically corrected and represented surface reflec-
tance. Especially for water quality research the atmospheric correction is of great importance 
(Slonecker et al. 2016). Surface reflectance means that the data is corrected for atmospheric 
gases and particles influencing the recorded signal (Roy et al. 2016). As these parameters vary 
greatly over space and time atmospheric correction models are rather complex but also obliga-
tory for any multi-sensor and multi-temporal study (Varma et al. 2016). The atmospheric cor-
rection for the level 2 data was executed by USGS with their Landsat Ecosystem Disturbance 
Adaptive Processing System (LEDAPS). The LEDAPS is based on MODIS routines and cor-
rects for the following parameters: Water vapour, aerosol optical thickness, gases like ozone 
and elevation (Slonecker et al. 2016). With these parameters, for each acquisition a signal is 
simulated, which is used to calibrate and correct the data according to the respective conditions 
(Louvres et al. 2006; Roy et al. 2016). Besides correcting the data several other outputs are 
generated such as cloud masks (Slonecker et al. 2016). As the LEDAPS model is specifically 
used for Landsat datasets its atmospheric correction is very precise and greatly enhances the 
data quality for ETM+ but also OLI (Roy et al. 2016). 
Besides having very good datasets provided, the Landsat 7 ETM+ has a major drawback. Un-
fortunately, Landsat 7 fell victim to a sensor malfunction in 2003, which was not corrected for 
in the provided USGS data. Since early summer 2003 there are gaps of NoData values in the 
image as the scan line corrector failed (Misra et al. 2018). The corrector would compensate the 
forward movement of the satellite (Wang 
et al. 2009). Approximately 22km in the 
middle of the image are not affected by 
the failure, the rest of the image contains 
stripes around 400 meters wide which 
tend to get thicker towards the border of 
the image (Misra et al. 2018). It is esti-
mated, that 22% of the data is lost due to 
the failure, however reviewing the images 
(see Fig. 7) and looking at other studies Fig. 7. NoData stripes in the Landsat 7 ETM+ image be-

cause of the sensor malfunction (Source: USGS). 
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conducted, it is clear that the radiometric and geometric quality is not reduced (Wang et al. 
2009; Misra et al. 2018).  
To ensure a proper time series analysis four pictures per year were taken. The heatwave had its 
highest effects in the end of February and beginning of March, hence the pictures were taken 
in three month intervals starting in March (Caputi et al. 2014). March was preferred to February 
as three months later, in June, algae bloom reaches its peak (Feng et al. 2009). This event is of 
great importance for the ecosystem and should therefore be part of the study. Thus, the analysis 
will use images from March, June, September and December, trying to cover the most interest-
ing parts of the year. Each month the picture with the fewest cloud cover will be chosen. If 
several images are available, the one closest to the beginning of the month will be the one taken 
into the analysis. However, peer reviewing the potential images, in most cases only one picture 
seems to be suitable.  

3.1.3 Pre-processing 

As the USGS provides every band of the sensor individually in a TIF format, the images first 
had to be pre-processed to make them usable for the further analysis. So, in a first step the bands 
are stacked, using ENVI’s built-in tool ‘layer stacking’, it assembles the bands in a proper ge-
ometry and saves them in a single image for further processing. As the data is already provided 
in UTM projection using the North American Datum the same settings were used for stacking 
the images (Louvres et al. 2006). ENVI exports a data and a header file, containing the infor-
mation needed for SNAP to open it. 
In a next step the stacked images are imported into SNAP were the land is masked out to reduce 
the amount of data and ensure a proper water analysis. The built-in masking tool of SNAP 
proved to be suitable for this task. Using all spectral bands as inputs, a new masked image was 
generated. The resulting image is saved in SNAP’s own .dim format to reduce potential com-
patibility issues within the program. The water quality parameters were calculated in SNAP by 
using simple band math. The habitat mapping on the other hand, was conducted in ENVI with 
the stacked and unmasked images, because of the information needed to train the support vector 
machine algorithm. 

3.2 Water quality parameters 
As one can imagine water is a very complex medium to study. Not only do the particles through-
out the whole water column influence the signal but also the water bottom albedo (Misra et al. 
2018; Pattanaik et al. 2015). A simplified equation by Mahasandana et al. (2009) shows the 
parameters of interest when assessing water quality parameters: 

! = !#$%	' + !)*+,)-. + !#/01 + !2')3* 
where ! represents the absorption of chlorophyll (Chl a), non–algal particles (tripton), coloured 
dissolved organic matter (CDOM) and the water itself. While Mahasandana et al. (2009) show 
us the influences throughout the water column only, the signal is also affected by its path 
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through the atmosphere which cannot be neglected (see Fig. 8). The absorption processes are 
very complex and influence the whole spectra. As described above the atmospheric correction 
was already provided. The water influence however was neglected, as some of the particles 
shown in the equation will be looked at in detail in the indices. 

In the following study, three water physical parameters have been chosen to be essential to 
assess the water quality in the Shark Bay area. These were selected because of their potential 
connection to habitat extents and dolphin behaviour. For each parameter, several indices have 
been evaluated to guarantee a decent result. Using band math equations, it was possible to 
quantify the chlorophyll content, total suspended solids and coloured dissolved organic matter. 
It was of great importance to choose multispectral indices to grasp the complexity of water 
parameters (Odermatt et al. 2012; Misra et al. 2018). The indices are all calculated using the 
band math tool within the SNAP application. It allows 
to formulate those rather simple mathematical expres-
sions without difficulty and save the equations to use 
them repeatedly. Following the three indices will be 
explained in detail. 

3.2.1 Estimating chlorophyll content using the 
normalized difference chlorophyll index 

Chlorophyll is the key component of photosynthesis-
based life forms. It is used to process sunlight and to 
generate essential energy for organisms. Thus the 
mapping of chlorophyll holds the potential of under-
standing global nutrient cycles but also biochemical 
and climatic processes (Mishra & Mishra 2012).  

Fig. 9. The absorption coefficient of pure 

water, chlorophyll, colored dissolved or-

ganic matter and non-algal particles. 

(Watanabe et al. 2017). 

Fig. 8 The radiative transfer when observing water bodies. 
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In the ocean, the most fundamental photosynthetic lifeform is phytoplankton as it builds up the 
basis of the food chain in marine environments (Mahasandana et al. 2009). These creatures are 
known to have very distinct reflection patterns (Watanabe et al. 2017). Fig. 9 shows very strong 
absorption values in the range from 640nm up to 690nm and low values at 520nm to 560nm. 
Calculating a ratio of these two spectral regions will allow assessing the number of phytoplank-
ton present in the water. The values will be mathematically normalized to have a distribution 
from –1 to 1. These normalized values are a great advantage of this index as they allow quali-
tative mapping without having field data at hand (Mishra & Mishra 2012). The lower the value 
the higher the chlorophyll content present. Lower reflectance values at 655nm mean strong 
absorption and result in a negative NDCI in the equation. The following equation was used: 

4567 =
89 655<= − 8? 560<=
89 655<= + 8? 560<=

	 

The displayed bands are the first two of the Landsat 7 ETM+ sensor. Band 2 ranges from 631nm 
to 692nm with a centre wavelength at 655 nm and thus was inserted as variable λ2. The values 
at around 665 nm are widely used in estimations of Chl-a absorption models, as there is a spe-
cifically strong absorption in the red band (Watanabe et al. 2017). Photosynthesis is based on 
the energy received in the red spectral regions, while most of the green light is reflected by the 
chlorophyll. Thus, the second band λ1 represents the low absorption in the green spectral region 
(see Fig. 9). Band 1 has a spectral bandwidth from 519 nm to 601 nm with a centre wavelength 
at 560 nm, perfectly covering the low absorption feature (U.S. Department of the Interior & 
U.S. Geological Survey 2018). Although this equation was developed using Landsat 8 OLI 
datasets, it was found to be suitable because of the sensor’s similarities. Additionally, the used 
equation seems to generate as stable pictures in complex water systems as with Landsat 8, be-
cause indices with more than one band are known to help secure results (Mahasandana et al. 
2009). 

3.2.2 Concentration of total suspended solids 

Total suspended solids, are as the name suggests, suspended organic and mineral particles in 
the water (Park 2007). They are distinguished from dissolved particles by their size, solids big-
ger than two microns are considered suspended (Fondriest Environmental 2014). Thus water 
constituents such as soil particles, algae microbes and other similar solids are considered to be 
part of the total suspended solids (United States Environmental Protection Agency 2012). Total 
suspended solids are of great importance for the water system. They limit light penetration, 
transport substances and thus influence habitat and food availability structures (Park 2007). 
Influencing photosynthesis by light inhibition consequently reduces the amount of oxygen pro-
duced and available in the water. Furthermore, TSS absorb heat and are thus able to raise water 
temperature which will subsequently reduce the dissolved oxygen present in the water (United 
States Environmental Protection Agency 2012). Additionally they can be used as an indication 
for erosion, stream flows in the water and deposits in the water (Park 2007). The total suspended 



 

 16 

solids have an extreme variety of effects on the local system which also depend on the local 
circumstances. However, one needs to keep in mind, that the TSS particles and chlorophyll 
content may have some correlation as they look at similar water constituents. To estimate the 
total suspended solids in the Shark Bay area the following equation developed by Jaelani et al. 
(2016) is used: 

log DEE = 1.5212 ∙
log 8?
log 89

− 0.369 

λ1 corresponds to band 1 of Landsat 7 ETM+ with a centre wavelength at 478 nm, λ2 to band 2 
with a centre wavelength at 560 nm. These bands were chosen to be the equivalent to the Land-
sat 8 OLI bands 2 (482 nm) and 3 (561 nm) for which the equation originally was made. Look-
ing at the OLI sensor as the successor of ETM+ the differences were determined to be negligi-
ble. Jaleani et al. (2016) validated their equation in the waters of eastern Java Timor, Indonesia 
and came up with the empirical parameters present in the equation above. As the Shark Bay 
area does not differ significantly from the study site chosen by Jaleani et al. (2016) the index 
was found to be good enough for qualitative estimations. Especially because there was no pos-
sibility to alter the empirical parameters since no in situ data is present.  

3.2.3 Content of coloured dissolved organic matter 

Coloured dissolved organic matter is definitely the most difficult to calculate. As seen in Fig. 9 
it does not have a distinct absorption pattern but a gradual slope from the ultraviolet to the red 
spectral bands (Slonecker et al. 2016). Thus, it is rather complicated to formulate an equation 
which is capable of estimating the amount of coloured dissolved organic matter. This is further 
hindered by the Chl-a concentration which also has its maximum absorption in the same bands 
(Odermatt et al. 2012). However, Olmanson et al. (2016) have run several models and compared 
them to choose the best algorithm depending on the sensor. The best fit, which is specifically 
validated for Landsat 7 images, is a linear equation. The results scored a satisfying R2 of 0.74 
which is the highest value achievable with Landsat 7 images. 

ln !440 = 20.3 + (−10)
89
8P

+ (−2.4)
8P
8Q

 

This equation calculates the absorption at 440 nm, where coloured dissolved organic matter 
does have very strong absorption features and was found to be the best spectral region for de-
termination of coloured dissolved organic matter (Mahasandana et al. 2009). The bands used 
are band 2 with a centre wavelength of 560 nm, band 3 with 661 nm and band 4 with 835 nm. 
These aim to approximate the absorption through a regression model with specifically derived 
coefficients (Olmanson et al. 2016). The above used values were validated in lakes in the state 
of Minnesota and Wisconsin, however as they are explicitly for Landsat 7, they were chosen to 
be good enough for the salt water of Shark Bay.  
Coloured dissolved organic matter describes one significant fraction (up to 90%) of all dis-
solved organic matter  (Twardowski et al. 2004; Olmanson et al. 2016). CDOM are induced 
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into the water system mainly by terrestrial inputs, for this reason they are of particular interest 
in coastal regions (Branco & Kremer 2005). However, a small portion is also created in situ by 
biological processes (Branco & Kremer 2005). It is of specific interest as it is known to have 
extremely diverse influences on the water system especially in the optical spectral regions 
(Branco & Kremer 2005). The particles affect water quality directly by influencing the availa-
bility of metals and hydrophobic materials which are crucial for photolysis, thus playing a major 
role in carbon cycling even on a global scale (Olmanson et al. 2016). In addition, coloured 
dissolved organic matter, like the total suspended solids, do inhibit light penetration and influ-
ence photosynthesis and subsequently growth of microorganisms (Slonecker et al. 2016). How-
ever, the blocking of light does have a major advantage, as the CDOM strongly shield ultravi-
olet light (see Fig. 9) which could potentially harm organism’s DNA (Olmanson et al. 2016; 
Zepp et al. 2008). Adding to the complexity of coloured dissolved organic matter, their absorp-
tion changes with the water depth. At the surface the absorption of UV light is dominant, 
whereas it shifts to general light blocking with increasing depth (Slonecker et al. 2016). It needs 
to be stated that no depth correction in any of the indices has been conducted. 

3.3 Habitat mapping 

In a second approach the Shark Bay area has to be mapped to understand the extent of dolphin 
habitats. One of the very crucial parameters for dolphins is seagrass cover. Seagrass does not 
only influence the food availability but also the specific specialisations of dolphins, for example 
sponging. However, the most significant factor influencing the specialisation of bottlenose dol-
phins in the Shark Bay is the water depth (Tyne et al. 2012). Anyway, the seagrass distribution 
is of particular importance for the flora and fauna in the region and also a good indicator for 
potential climatic changes in the area. Thus, mapping the seagrass coverage over the last 18 
years allows a very detailed analysis of the climatic impacts on the diverse Shark Bay area. 
Additionally, it is possible to integrate the heat event of 2010/2011 in a longer trend or at least 
put it into relation to long term development of the waters. To ensure a proper analysis, the data 
had to undergo some simple pre-processing. All water pixels outside of the bay should not be 
included in the classification as they would seriously distort the results, because the water there 
is far too deep for a benthic analysis. Thus, a first step was to mask all data west of Dirk Hartog 
Island and Edel Land Peninsula, in the north the bays extent is cropped by the image boundaries. 
As a positive side effect, this procedure resulted in fewer data and consequently lower compu-
tation time for the classification algorithm. If the northern part of the bay is usable for a benthic 
classification is debatable because of its depth. However, peer reviewing the images and several 
test runs showed no significant changes in the performance of the classification algorithm when 
excluding the water north of Cape Peron. Ohlendorf et al. (2011) propose a threshold for benthic 
analysis at 15 meters, as the bays northern area reaches depths around 12 meters with maximum 
values of 20 meters, it was chosen to be suitable. Subsequently the whole bay area was used for 
the support vector machine classification.  
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3.3.1 Support vector machine 

With in situ measurements present for several transects in the western Shark Bay, a supervised 
classification method was chosen to be suitable. Supervised classification gives us the possibil-
ity to choose specific training samples for the algorithm to classify the seafloor properly. Within 
the potential supervised classifiers, the support vector machines poses to be a perfect fit to 
classify remote sensing data (Varma et al. 2016; Zhan et al. 2003). Support vector machines are 
efficient and rather simple to implement, especially with ENVI’s built-in tool. The classifier 
relies on the principle of constantly minimizing the training error to ensure the results are not 
influenced by effects such as overfitting (Zhan et al. 2003). It does so by generating hyperplanes 
in a multidimensional space based on the training data. These hyperplanes are then constantly 
evaluated by minimizing the distance of classified pixels to their respective plane thus control-
ling its own classification (Varma et al. 2016; Zhan et al. 2003). As the classification relies on 
margin maximization and structural risk minimization and not on the statistical distribution of 
the training samples, the classification should generate better results especially regarding gen-
eralization (Melgani & Bruzzone 2004; Zhan et al. 2003). Thus, support vector machines are 
thought to very efficient and good classifiers for heterogeneous remote sensing data (Varma et 
al. 2016; Melgani & Bruzzone 2004). However, support vector machine were initially devel-
oped to classify binary problems and thus the usability might shrink with rising number of 
classes (Melgani & Bruzzone 2004). 

3.3.2 Analysis 

To study the extent of seagrass meadows in the Shark Bay, the ENVI built in support vector 
machine tool was used. The machine was trained mainly with regions of interest chosen based 
on the in situ measurements conducted by Tyne et al. (2012). The problem with Tyne et al. 
(2012) data is, that it only covered a very small part of the western bay area at one single point 
in time and thus held too few data points to generate good results especially for a time series. 
Subsequently, supplementary training data, based on the provided transect data, was added by 
reviewing the satellite images. Based on the spectra and location from the training data set, 
other pixels similar to those were searched for every image in the time series. This way the 
training error was kept as small as possible throughout the time series. However, reviewing the 
spectral response revealed that the water column does have an unneglectable influence on the 
seafloor reflection which might distort the data. To tackle this issue, it was essential to split the 
basic classes up into deep and shallow water pixels, even though the testing of several combi-
nations of classes showed, that fewer classes generate better results. However, to account for 
the constantly changing water environment the compromise to distinguish between different 
depths and re-joining the classes afterwards was of great importance. This way it was possible 
to overcome the changing environment of over 20 years of images and also represent the regions 
not present in the transects of Tyne et al. (2012). The final classes will distinguish between no 
seagrass, seagrass, bare sand and land. No seagrass will contain all pixels not having seagrass 
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but all other potential surfaces such as corals and maerl. The seagrass class contains all the 
pixels of seagrass on the seafloor, regardless of their species and density. The bare sand pixels 
will contain the very bright sandbanks on the seashore as they have a very distinct spectrum 
which needed to be separated from the other rather dark pixels. The land pixels will contain all 
the pixels not covered by water. 
As outlined, the training data was based on the camera drop data provided. These pixels were 
then used to aggregate around 220 pixels per class by drawing regions of interest within ENVI. 
The ROI’s had to be drawn for every image by hand and were thus evaluated for every image 
separately by eye. ENVI’s support vector machine tool directly imports the regions drawn into 
the algorithm as training data sets. The settings were left at default as they were fitting for the 
analysis conducted. The radial basis function was preferred to a linear kernel type, since a non-
linear dependency within the data could not be ruled out. However, this choice resulted in a 
greater processing effort. The penalty parameter was not changed, as a higher accuracy and 
reduction of the generalization was not needed. The pyramid levels, defining the iterations of 
the training with different resolutions, proved to have a negligible influence on the result.  
The analysis was conducted on one image per year. The images were preferably taken in June, 
however several images do have clouds interfering with the classification algorithm because of 
their extremely high reflectance. If this was the case, the September image was chosen as a 
backup. Unfortunately, there were years with no suitable images neither in June nor in Septem-
ber resulting in the classification being executed on the images of march. June was chosen to 
be the best month as it marks the peak of growth season, but having a mix of different months 
throughout the time series should not have a major impact on the analysis as the change in 
seagrass cover is happening over a period of months. 
The classified images were then exported into ArcMap where the deep and shallow water clas-
ses were reunited. In a final step the habitat maps where then coloured to visualize the potential 
changes. 

Fig. 10 Flowchart showing the classification process. 
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3.4 Statistical analysis 

To statistically evaluate the results generated and analyse significant trends and outliers, very 
basic statistical methods were used. Using an analysis of variance, the trends of the indices over 
the years were quantified. To statistically determine a shift in the system an additional search 
for a breakpoint within the data was made. The trends before and after this point were then 
calculated separately. 
In a first step, the data to use in the statistical analysis needed to be chosen. Averaging the data 
over the four months per year was not an option as there are several years which do have miss-
ing data thus distorting an averaged value. Subsequently the data of a single month had to be 
used. Like the habitat analysis, the month June poses as a good fit for the thorough statistical 
evaluation. Having the peak in algae bloom and marking the most productive month in the year, 
it makes sense to use its values for further analysis. However, like any other month, June un-
fortunately does not have a complete series of data as clouds sometimes made it impossible to 
gather information. These holes were treated as NA and thus appear as blanks in the plots and 
analysis. 
The analysis was conducted once in the western and once in the eastern bay-arm, to be able to 
compare the two. Because of the water dynamics and hindered exchange within the bay waters, 
a gradient from the inlet down to Henri Freycinet Harbour and Hamlin Pool respectively, might 
be present. To account for this, the data was extracted from five regions of interest covering the 
bay arm from top to bottom (see Fig. 11). The regions of interest cover approximately 60’000 
pixels which were then extracted in the raw data format for all four months each year. The .txt 
datasets were then processed to import them into Microsoft Excel. This program was used to 
extract and group the data of the four months using simple cell functions. In a last data prepa-
ration step, the data was rudimentarily 
corrected for atmospheric influences. 
Several pixels, assumed to be constant 
over the years, were chosen throughout 
the satellite image. The index values 
were then extracted over the whole 
time period. The first value was chosen 
to be the bench mark, any deviation 
from the value is due to other effects 
influencing the reflectance. Now, for 
each year the difference between the 
constant value and the measured one 
was calculated. These correction val-
ues were then averaged per image try-
ing to account for possible variability. 
To correct the calculated indices, the 

Fig. 11 The regions of interest chosen for the data extraction, 

displayed on the ENVI created NDCI image. 
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averaged correction factor was then either added or subtracted from the index values to rule out 
potential external influences on the data. The prepared data was then imported into R Studio to 
run the thorough analysis, providing us with all statistical parameters per trend line and plots 
for visualization. First a linear model was built combined with an analysis of variance to calcu-
late the significance level of a trend over the 18 years. The null hypothesis states, that the 
changes or trends in the data are caused randomly. The α-value is set at 0.05, if the calculated 
P-value is lower, H0 will be refused and the trends are assumed to be significant. Following the 
linear model, data is analysed for outliers which would then be replaced by other numeric val-
ues. Using the strucchange package, the data is searched for any structural changes as these 
could indicate a breakpoint in the data. The analysis is based on the standard linear regression 
model (Zeileis et al. 2002): 

R+ = S+TU+ + V+																 W = 1,… , <  
The R+ represents the dependent variable, while S+T is the independent variable. S+T is multiplied 
with U+ representing the regression coefficients. By adding an error term V+	 the bias due to 
noise can be reduced (Zeileis et al. 2002). Now, the U+ is compared to UZ, if they can be assumed 
to be equal no structural change is present in the data. If the two values are not equal the script 
will give us a breakpoint in the data. Based on the provided point of change, the data is then 
split up in two segments which are then tested again for significance using an ANOVA. The 
whole statistical analysis leaves us with a trend over the whole time series, an eventual break-
point and the trend for the resulting two segments. 
Additionally, the indices were exported specifically over the years 2010/2011 in 3 month steps 
to assess the direct influence of the heat wave. Here the data was plotted per index from Sep-
tember to June to visualize the effect of the summer heat wave per region of interest. This 
analysis can highlight possible changes happening in a shorter timescale throughout the heat 
event. In combination with the whole data series this analysis allows to understand a potential 
gradient and possible differences between the impact on the two bay arms.  
In a last step, the indices are analysed on potential relationships using the Pearson correlation 
coefficient. It is used to measure the correlation between two variables and generates coeffi-
cients indicating the type of dependency from +1 positive to -1 negative. This is then statisti-
cally evaluated using an α-value of 0.05. As before, a P value will be calculated indicating if 
the detected correlation is of statistical significance.  
The habitat maps were statistically processed by looking at the pixel count per class. However, 
not the whole images were used. Because of depth restrictions in benthic analysis the data north 
of Cape Peron was not considered. Ohlendorf et al. (2011) propose a threshold of 15 meters 
were the influences of the water column start distorting the data gravely. Peer reviewing the 
images and the classifications, masking out the northern part of the bay proved to be a good 
idea. The boundary was set in a west-south-westerly direction, crossing Cape Peron. Following 
the same procedure as when analysing the indices, an analysis of variance of the amount of 
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seagrass pixels per year was conducted. As a counterpart, also the no seagrass class was ana-
lysed for a better understanding. In addition to the normal ANOVA, again the potential break-
points in the data were searched und subsequently the significance for the two segments was 
calculated. To grasp potential differences in the seagrass changes between the eastern and the 
western arm, they were also looked at separately.  

4. Results 
The statistically analysed results are split up in different parts as they try to look at the potential 
gradient from inlet to the bay, the time series but also the heat event itself. The data will be 
presented per index. For a better understanding, the data is always split into western and eastern 
data, which are then split up into the respective regions of interest. The regions have been num-
bered from one to five, top to bottom (see Fig. 11). To better comprehend the whole process, 
the statistical results for the analysis of West 1 NDCI will be displayed step by step. For the 
other indices, however only the final results will be displayed, as the process is similar for each 
region of interest.  

4.1 Temperature 

To visualize the general extent of the heatwave of 2011, the sea surface temperature (SST) was 
mapped based on the available Landsat 7 images. The at sensor brightness temperature has been 
used to estimate the heatwave’s impact on the water system. Fig. 12 shows a difference map, 
comparing SST in January and beginning of March. One can clearly see, that the change is 
visible throughout the Shark Bay. Fig. 12 indicates that the water is around 5 °C warmer than 
one and a half month earlier. This is supported by measurements done in the region (Arias-

Fig. 12 The difference in temperature induced by the warm water inclusion. The left image was taken on 

the 15.01.2011, the right one on the 04.03.2011. In the middle the difference between the two is displayed. 
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Ortiz et al. 2018; Caputi et al. 2014). Mainly coastal regions had a significant change in tem-
perature as the difference map shows the most negative values in the shallow water regions. 
There are two hotspots north of Cape Peron, which are the result of very low temperatures 
recorded there in January. However, they do not seem to be related to any water structure, hence 
they could also be data errors. The white spots in the lower left are clouds, which were masked 
by the program. There are also some values displayed outside of the water, these are the result 
of imperfect water masking. 

The two bay arms seem to be affected similarly by the heatwave, but the eastern arm appears 
to record slightly weaker influences. It also looks like Faure Sylt shielded Hamlin Pool from 
the water inclusion, as the temperature change in there is not as strong as in the rest of the bay 
arm. But one needs to keep in mind, that the picture is also distorted by the scan line error, 
which makes it difficult to spot such minor differences. Especially because the influence on the 
difference map is doubled as two images with scan line errors were subtracted from each other.  
In an attempt to locate the heatwave within the whole time series, all at sensor brightness tem-
perature values were analysed. Using the mean value of four regions of interest in the Shark 
Bay, an analysis of variance was executed. The regions are used to spot potential differences in 
between individual parts of the bay in respect to their water temperature regime. They were 
placed in the northeast, northwest, southeast and southwest. Fig. 13 shows the seasonal temper-
ature pattern of all four regions of interest. There are only minor differences between the four 
parts of the bay thus indicating that no gradients are present. The heatwave shows as a strong 
peak in the time series, however there are other summers with similar or even higher outliers. 
2003 and 2010 are the other two years showing very high temperature values. Besides very 
high temperatures, there are also cold winters with extremely low values recorded. Winter 2012 
stands out, showing water temperatures around 8 °C. Interestingly, these were only recorded in 
the southwestern part of the bay, in Henri Freycinet Harbour. The overall trends of all four 

Fig. 13 The four time series data with their respetive trend lines. The red dashed lines indicates the heatwave 

in 2011 (Data Source: Landsat 7 ETM+). 
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regions are slightly negative, but mathematically insignificant. This would indicate, that the 
temperature has slightly decreased over the last 18 years.  

4.2 Normalized difference chlorophyll index 

To gain a first insight into the effects of the heatwave onto the whole bay system, a difference 
map from June 2011 and 2012 was calculated. By subtracting the 2012 image from the one in 
2011 change can be detected and thus a first visual estimation of the potential impacts can be 
conducted. The calculation done results in an image with values ranging from -1 to 1. Positive 
difference values, displayed in blue, indicate a positive change in NDCI. Negative values how-
ever show a decrease in NDCI from 2011 to 2012. It is clear, that most of the area is affected 
negatively by the heatwave resulting in a decrease in chlorophyll content in the bay. Some of 
the very reddish pixel, especially at the inlet, are due to clouds present in one image (See the 

right image of Fig. 14). The negative trend seems somehow evenly distributed, the only high-
light present being in the north-eastern part of the bay. Interestingly, the very shallow shorelines 
seem to have a positive response to the water temperature change. Especially the eastern coast 
seems to profit from the warming, as the highest positive change is recorded there. The eastern 
arm in general seems to have benefitted more than the western one, although one needs to bear 
in mind the clouds are covering part of the bay. By visually analysing the index an impact seems 
clear. However, to quantify the extent of influences on the Shark Bay’s chlorophyll levels a 
thorough statistical analysis is needed.  

Fig. 14 A comparison of the NDCI estimated in June 2011(left) and 2012 (right). In the middle the difference 

map of the two, showing a negative change in red and a positive one in blue. The yellow structures in the 

right image are clouds. 
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First, the data throughout the whole time series is shown to give a broad overview of the dataset. 
The NDCI is displayed four times a year and shows some very distinct features with significant 
decrease in chlorophyll content (see Fig. 15). The eastern and western bay arms have some 
similar outliers, however in both areas, the seasonality affects the data greatly and subsequently 
reduces the information content displayed. Interestingly in both regions, the decrease at 2004 
and 2005 as well as the peak in 2016 are visible. Remarkably, the heatwave in 2011 is not 
observable as a major change in the presented data. The two time series show an increase in 

Fig. 15 The time series data for the western (upper graph) and eastern bay arm (middle graph) per region 

of interest. At the bottom a zoom into the years 2003 to 2006 is displayed reveling an unsystematic structure 

in the western bay (lower left) whereas the eastern bay arm (lower right) seems to show gradual  structures. 
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2011 with a rather steep decrease in 2012 in chlorophyll. Nevertheless, the change seems insig-
nificant within the whole time series, as such short changes seem to occur from time to time. 
An overall trend is hardly noticeable, as the data varies greatly over time. The ANOVA of the 
eastern bay shows a slightly negative trend overtime, whereas the p-value of 0.6512455 shows 
no statistical significance. This is confirmed by the analysis of the western bay arm which has 
the same trend and significance present. But one needs to bear in mind, that the whole data set 
is affected by seasonality. Additionally, it is clear that not all the outliers are in the same months 
over the years. Other influences, such as clouds, have been removed as good as possible, several 
pictures have been removed completely, shown as blanks in the series. 
Zooming in on the different regions of interest could reveal potential gradients in the data. As 
the data is analysed from the inlet down to the shore and keeping in mind the water structure 
and inhibited mixing, such gradual changes might be possible. Having a closer look at the data 
series from 2003 to 2006 the eastern bay arm shows somehow decreasing NDCI values from 
East 1 to East 4. East 5, located in Hamlin pool, has an apparent different regime as it shows 
higher values throughout the displayed time series and does not fit the gradient of the other four 
(see Fig. 15). Looking at the whole data series again, this structure seems to be present not only 
in the zoomed part. It gets even clearer that Hamlin pool needs to be looked at separately, as it 
does not react in the same way the others do. While always having higher values, it also has 
some anticyclical behaviour. In the western bay arm, such structure is not present. Although 
the five regions of interest show similar data, no gradient is evident. The highest value is scored 
by West 2 most of the time, the other four regions of interest vary greatly and change their 
structure over time. 
To untangle the seasonal data, the thorough statistical analysis was only conducted on the data 
from June. Reducing the data to June has a major drawback, because of repeated cloud cover 
from 2000 to 2004 only one image is available. Consequently, the first 4 years were not inte-
grated in the analysis and the time series now starts at 2004.  
For a better understanding of all the statistical results generated, the whole process will be dis-
cussed on the example of West 3, as West 1 and 2 did not have any outliers. As outlined, in a 
first step the outlier detection runs through the data and returns potential values to correct the 
influence of extreme pixel. Fig. 16 shows the three detected data points and their effect within 
the time series. However, the outliers have not been corrected as they were of interest for the 
analysis. But it is interesting to see, where outliers are located in time, as they could be caused 
by potential external effects. Hereafter, the break detection is run to search for a change influ-
encing the trend analysis. Fig. 16 shows the F statistics for each point, indicating potential 
breakpoints. The redline marks a significance threshold, points reaching above are of particular 
importance. In the example of West 3, the year 2012 shows a significant breakpoint which is 
then used to split the date for the further analysis. Having these results, the final ANOVA for 
the two segments is calculated and following all the data is brought together. The final result is 
a time series with a trend line for the whole dataset and the two segments (see Fig. 17). 
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The data shows a significant drop in 2010 indicating a severe loss of productivity. 2011 does 
not seem to have a distinct value, however a second drop can be seen after the heat event in 
2012 which also marks the breaking point. The segment trends do not have significant charac-
teristics, nevertheless the trend before the breakpoint is slightly negative whereas the one after-
wards is slightly positive. The overall trend shows a rather strong and statistically significant 
positive trend, indicating increasing chlorophyll content since the beginning of the data series. 
Similar results are generated within the whole western bay arm (see Table 2). Four out of five 
regions of interest show their breakpoint in the year 2012, while most of them do not have any 
trends of statistical significance. The whole dataset can be found in the appendix. However 

Fig. 16 The two intermediate products of the statistical analysis of the data at West 3. The outlier detection 

(left) and F-statistics (right) are calculated within the analysis and generate the displayed side products. 

Fig. 17 The NDCI values at the regions of interest West 3 (upper left), West 4 (upper right) and West 5 

(lower middle). Plotted are the trend line over the whole time series (blue) and the segment trend lines (red). 
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West 4 stands out as it registered the strongest decrease in chlorophyll content (see Fig. 17). 
The data shows an extreme drop from 2011 to 2012, still the system recovers fast and 2013 is 
at a normal level again. Compared to the West 3 data, the year 2012 at West 4 shows a reduction 
of an extent not seen in any other graph. On the other hand, the low value in 2010 at West 3, 
which has a comparable extent, is only small at West 4. The two datasets however agree on a 
short increase in chlorophyll content in 2016. A totally different image can be seen when look-
ing at West 5. One can see, that the influence on water in the rear of the bay seems to be weaker. 
The data has no outliers and is rather uneventful. Even though the breakpoint is also found in 
the year 2012 the segment’s trend lines nearly correspond to the overall trend. The slight drop 
in 2012 with its following increase in 2013 is the biggest change in the sequence, whereas the 
beforehand mentioned peak in 2016 is of no importance. Hence, the western data describes a 
general positive trend in chlorophyll content with two negative (2010, 2012) and one positive 
outlier (2016). 
Table 2 The results of the statistical analysis of NDCI values. Significant values are in bold. 

ROI P-Value Break S1 P-Value S2 P-Value Segment 1 Segment 2 
West 1 0.3258258 2012 0.250754 0.9546764 2004 – 2012 2013 – 2018 
West 2 0.1547701 2015 0.9019929 0.3013142 2004 – 2015 2016 – 2018 
West 3 0.02984172 2012 0.80914 0.7414323 2004 – 2012 2013 – 2018 
West 4 0.1242962 2012 0.3544353 0.8820777 2004 – 2012 2013 – 2018 
West 5 0.1383445 2012 0.8965696 0.9298396 2004 – 2012 2013 – 2018 
       
ROI P-Value Break S1 P-Value S2 P-Value Segment 1 Segment 2 
East 1 0.1397248 2012 0.9797005 0.6390841 2004 – 2012 2013 – 2018 
East 2 0.130466 2015 0.9614892 0.4995839 2004 – 2015 2016 – 2018 
East 3 0.03909867 2015 0.2171778 0.4560198 2004 – 2015 2016 – 2018 
East 4 0.01674979 2015 0.1518184 0.3747891 2004 – 2015 2016 – 2018 
East 5 0.3911035 2011 0.9645487 0.2388737 2004 – 2011 2012 – 2018 

The eastern data shows similar outcomes. Again, the years 2010 and 2012 have major decreases 
in NDCI both followed by a rapid recovery in the following year. Interestingly, the low values 
in 2010 are only observable at East 1 and East 2, the following regions of interest do only have 
a small reduction in 2012 (see Fig. 18). However, the most striking data point is in June 2016 
where a peak is visible throughout the whole eastern part of the bay. The amplitude is growing 
until East 3, where it reaches its maximum extent, at the same time the other outliers get smaller. 
This is also reflected in the breakpoints. While at East 1 2012 still splits the data, even though 
statistically insignificant, the breakpoint then shifts to 2015. The segment trend lines subse-
quently forfeit their meaning as they spread over most of the data range thus aligning with the 
overall trend. The data suggests an overall increase in chlorophyll supporting the findings in 
the west. The positive trend at East 3 and East 4 is even statistically significant (see Table 2). 
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These analyses however do not apply when looking at East 5. Similar to West 5, the bay’s 
rearmost region of interest shows a different pattern. The insignificant negative overall trend at 
East 5 opposes to the other findings in the eastern bay. On one hand 2012 again marks the 
breakpoint as it is the most significant change present in the data. From 2012 onward the trend, 
in contrast to the overall trend, is positive. On the other hand 2016 does not have an influence 
whatsoever. While the rest of the bay has its peaks in 2010, 2012 and 2016, the fifth region of 
interest again indicated contrasting data. 
  

Fig. 19 The NDCI data at Hamlin pool (East 5) over the 14 years 

of interest. Displayed are the overall trend line (blue) and the 

trends in the two segments (red) found by the breakpoint detection. 

Fig. 18 The NDCI time series at East 1 (left) and East 2 (right). Displayed are the overall trend line (blue) 

and the trends in the two segments (red) found by the breakpoint detection. 
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4.3 Total suspended solids 

The total suspended solids have a potential influence on the light availability and subsequently 
on photosynthesis and other processes connected to nutrition in water. Looking at the difference 
map (Fig. 20), the two images do not show significant changes induced by the heatwave. The 
overall picture shows a slight negative tendency in the deeper waters and a positive one on the 
bays shorelines. Interestingly, the eastern shorelines, in both bay arms, seem to score higher 
TSS concentration than the ones on the western side. Additionally, a gradient might be present, 
as the results tend to get more positive the further back they are in their respective arm. Again, 
part of the sea surface is occluded by clouds, where also the highest values in the image are 
generated. The distribution of pixel values of the change map shows a Gaussian shape around 
zero indicating little change and no trend to either side. Thus, a very low threshold of 0.22 was 
chosen to colour the difference map, further underlining the rather small change. This can also 
be confirmed visually, as the difference between the left and right image in Fig. 20 seem to be 
minor.  

The whole time series data does not help to support the findings indicated by the difference 
map. Similar to the NDCI values, the TSS series has a very chaotic distribution of values af-
fected by seasonal changes and other external effects. The western dataset seems to have a 
particular outlier in 2003 followed by a strong drop the following year. However, the rest of the 
extreme values seem to be part of seasonal fluctuations. What is interesting, is the fact, that 
West 1 and West 2 seem to have higher values throughout the whole time series, while the other 
three regions of interest seem to have a similar distribution. Nevertheless, they still show com-
parable features. On the other hand, the eastern bay arm shows more packed lines with outliers 

Fig. 20 A comparison of TSS concentration in gm-3 estimated in June 2011 (left) and 2012 (right). In the 

middle the difference map of the two, showing the change in between the two years. Negative values (red) 

indicate a decrease in TSS whereas the positive values (blue) show an increase. 
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at 2001, 2004, 2007 and 2015. The highest value is scored in 2001, however it is only recorded 
at East 1. There are some vague similarities between the western and eastern time series, but 
nothing strikingly. Looking at the zoomed images (lower images of Fig. 21) of the western 
regions of interest, no structure seems to be present. West 1 and 2 have higher concentration 
values while the other three seem to be extremely close to each other. Even though the  

Fig. 21 The TSS time series data for the western (upper graph) and eastern bay arm (middle graph) per 

region of interest. At the bottom a zoom onto the years 2003 to 2006 is displayed reveling no significant 

gradient in the data. However, the eastern arm (lower right) seems to by little bit more structured than the 

western one (lower left). 
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TSS concentration decreases from West 1 to West 4, no clear gradual structure is present. In-
terestingly, West 4 and West 5 follow each other very closely. Like the NDCI values, the  
TSS data only seem to show a gradual decline in the eastern bay arm. East 5 again needs to be 
treated separately, as it seems to be behaving in a different manner than the rest of the bay. 
The western and eastern time series shows no significant trends. The overall trend appears to 
be sometimes positive and other times negative, without showing any distinct patterns. The 
only trend which is significant, is recorded at East 4 which shows a strong negative tendency 
(see Table 3). However, as this result is not confirmed by any other region of interest, it needs 
to be treated with caution. 
At West 2 and 4 a gradual reduction of TSS is visible (see Fig. 22), which can also be seen in 
some of the eastern data. This reduction starts around four years after an extreme drop recorded 
in 2005. Because of its starting point in 2009, it cannot be associated with the heatwave, even 
though it has its lowest value in 2012. Following this feature, the TSS concentration at West 2 
has a strong increase ending in a peak in 2016. The peak corresponds to the already mentioned 
high values in NDCI recorded in the same year. Although, these findings indicate some simi-
larities between the western regions of interest, looking at the plots it is visible, that the results 
vary greatly. West 4 does not show a strong increase after 2012. In this region of interest the 
concentration seems to stabilize itself in the following years. Again, West 5 shows a disimilar 
distribution. The reported gradual decline is of very small extent and the peak in 2013 is one of 

Fig. 22 The TSS time series data in the western bay arm. West 2 in the upper left, West 4 upper right and 

West 5 in the lower middle. The blue line shows the trend over the whole time series whereas the red lines 

show the trends in the two segments found by the breakpoint detection. 
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the most significant features present. These observations further underline the apparent differ-
ences between the western regions of interest. This claim is also supported by the detected 
breakpoints, which are distributed randomly over time, not matching with the heatwave in 2011. 
Every region of interest recorded a different breakpoint while none of the results are statistically 
significant. This implies that the results in the west are not only influenced by the water tem-
perature but possibly by another, more important, parameter. 

As already briefly touched, the gradual decrease has also been recorded in the eastern data set. 
However, the lowest value here is shifted one year to 2013 (see Fig. 23). Like in the western 
bay arm, the continuous decrease is following an extremely low TSS value in 2005. The differ-
ence to the western data lays in the peak recorded in 2007. Unlike the values displayed in Fig. 
22, the East shows a very distinct high value in-between the two drops. Again, a very significant 
feature is 2016, scoring a single, very high value in TSS. Once more, the breakpoint detection 
fails to find a tipping point coinciding with the heatwave. The segments vary greatly and show 
no significant values whatsoever. The values recorded at the rearmost region of interest, East 
5, do not support the findings discussed above, as the water there seems to be behaving differ-
ently. No gradual decrease can be seen and contrary to the other time series 2016 marks the 
lowest value recorded. 
The trend over the whole time series shows no significant decrease or rather increase except for 
East 4. The ANOVA shows us some negative as well as positive trends which do not indicate 

Fig. 23 The TSS data from June plotted over 14 years for East 2 (upper left), East 3 (upper right) and  

East 5 (lower middle). Displayed are the overall trend line (blue) and the trends in the two segments (red) 

found by the breakpoint detection. 
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a pattern or gradient within the data. To conclude, the western as well as the eastern TSS con-
centration does not have significant results which could be the outcome of influences induced 
by the heatwave of 2011. 
Table 3 The results of the statistical analysis of TSS values. Significant values are in bold. 

ROI P-Value Break S1 P-Value S2 P-Value Segment 1 Segment 2 
West 1 0.1937847 2012 0.2279734 0.9907208 2004 – 2012 2013 – 2018 
West 2 0.6408402 2015 0.5143931 0.3750605 2004 – 2015 2016 – 2018 
West 3 0.8104061 2009 0.2450476 0.07350291 2004 – 2009 2010 – 2018 
West 4 0.05326065 2010 0.9717326 0.5361287 2004 – 2010 2011 – 2018 
West 5 0.3612596 2005 NaN 0.7852973 2004 – 2005 2006 – 2018 
       
ROI P-Value Break S1 P-Value S2 P-Value Segment 1 Segment 2 
East 1 0.8933276 2005 NaN 0.3803399 2004 – 2005 2006 – 2018 
East 2 0.7336916 2015 0.3098097 0.1648975 2004 – 2015 2016 – 2018 
East 3 0.8889981 2005 NaN 0.2233539 2004 – 2005 2006 – 2018 
East 4 0.006540292 2010 0.9746918 0.9056879 2004 – 2010 2011 – 2018 
East 5 0.2329018 2009 0.5327331 0.7232442 2004 – 2009 2010 – 2018 

4.4 Coloured dissolved organic matter 
The coloured dissolved organic matter shows a very strong positive change in between the years 
2011 and 2012. The difference map indicates that over the whole bay area the CDOM was 
increased significantly. The only areas negatively affected are the eastern shorelines, especially 
in very shallow water the CDOM seems to have decreased greatly. The change is so big, that it 
is easily visible by just comparing the two images in Fig. 24, however one needs to keep in 
mind that the view is obstructed again by some clouds. There is no difference observable in 
between the eastern and western bay arm. Also, no gradient is present, as the waters do not 
show differences from the inlet down to the shorelines. CDOM seems to be the only index 
showing a positive reaction to the heatwave. 
The data of the whole time series presented in Fig. 25, gives a general overview on how the 
data is structured in their respective part of the bay. In the western bay, a first outlier is recorded 
in 2004, where West 2 and West 5 both have an extreme value. However, they are contradictory 
as they point in different directions, which can be seen even better in the zoomed picture (bot-
tom left of Fig. 25). Following this year, the data series is rather balanced having only seasonal 
fluctuations. The heatwave in 2011 shows a decline in CDOM followed by an increase normal-
izing the concentration. 2016 and 2017 show two extremely low values, posing as the biggest 
outliers in the whole data. However, the different regions of interest seem to be affected differ-
ently. While West 1 and West 5 seem to have no extreme value, the other three show a gradient 
with the lowest value recorded at West 4. In 2017 no clear gradient is present, however the 
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regions are not affected equally. Whereas the western bay arm has a rather stable data distribu-
tion the eastern one shows some more distinct patterns. The first outlier is also the most extreme 
one. It is recorded in 2003 but, as well as the one in 2004, only region East 5 is affected. In 
comparison to the western data the following years show more extreme seasonal changes, how-
ever they seem to be more or less systematic. 2010 yet again, East 5 has a negative outlier, 
while all other regions show a slight positive value. The heatwave in 2011 shows a decrease in 
CDOM, however it does not seem extraordinary within the whole series. Its extent is compara-
ble to the one shown in the western bay. The decline in CDOM concentration is followed by a 
rapid normalization in the following year. In 2013 the eastern as well as the western data show 
a similar feature starting with a positive CDOM value which is followed by a sharp decline. 
The last three years of the two data sets look rather similar. The eastern data also has an outlier 
at 2016. While East 1 and East 5 are not affected, the other three regions of interest have a 
strong outlier. However, the data does not present such a clear gradual influence as it can be 
seen in the western bay. Further comparing the most recent years of the two data sets, the outlier 
in 2017 seems to shifted by approximately one vegetation period in the eastern data.  
Zooming in, the western bay does not show a significant structure. While the values seem to 
gradually decrease from West 4 to West 2 the other two regions, West 1 and West 5 seem to 
behave differently, even though they follow the overall trend. The eastern data shows a gradient, 
as the concentration decreases from East 4 to East 1. The structure is more evident in this part 
of the bay as in the other one. Like with every other index, the southernmost region of interest, 

Fig. 24 Two images showing the natural logarithm of the absorption at 440 nm which corresponds to the 

amount of CDOM in the water. The left image was taken in June 2011, the right image in June 2012 The 

change from June 2011 to 2012 is displayed in the middle. Negative change is presented in red whereas 

positive values are blue. 
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East 5, shows a different pattern, also indicating strong outliers which are not recorded in the 
other parts. Nevertheless the overall distribution of data corresponds to the other four regions.  
For the in-depth analysis of the data, the time series was untangled and only the data from June 
is examined (see Fig. 26). One can see that the data at West 3 and West 4 show similar behav-
iour. West 2 (see Appendix) has some comparable features, but West 1 as well as West 5 show 
a different picture, confirming what has been observed above. West 2 has a small peak in 2005 
which is also visible at West 5, however no other region of interest shows this feature. Until 
2009 the data series is very stable, which is also observable at East 4. 2009 however some 

Fig. 25 The CDOM values over the whole time series for the western (upper graph) and eastern (middle 

graph) bay arm, shown per region of interest. The bottom images display a zoomed in view to show potential 

gradients present in the western (bottom left) and eastern (bottom right) waters. 
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fluctuations start and the values change constantly. The variations stop in 2016 where an ex-
tremely low value is recorded. The following year the CDOM concentration stays on a very 
small level only to return to a more positive one in 2018. The overall trend of the data describes 
a significant negative tendency over the 14 years’ time. This is confirmed by other significant 
results at West 2 and West 4. Looking at the data set, it seems logical that West 3 has its break-
point in 2015. However, no segment is statistically significant. Table 4 shows that the ANOVA 
calculated very similar results at West 3 and 4, where the breakpoint yet again is 2015. It is 
noteworthy however, that the outlier recorded at West 4 only lasts one year and not two and 
recovers fast to a normal level. West 5 again confirms the distinctive regime present in its water, 
as it behaves differently than the other regions of interest. It has an extremely low value in 2004 
distorting the breakpoint detection. From 2005 onwards, the values are distributed around a 
nearly neutral trend line. The only interesting feature left is the increase from 2011 to 2012 
which is followed by a rapid decline in the year 2013 which might be linked to the heatwave. 
After this the system normalizes and follows the known pattern.  
Looking at the eastern Shark Bay, the June values seem to be like the ones recorded in the west. 
East 3 shows bigger fluctuation with strong changes from year to year, however the overall 
distribution is equal to the one at West 3 (see Fig. 27). Again, one can observe the peak in 2005 
followed by the mentioned oscillations. The drop in 2013 is also present in the time series. The 
most extreme outlier is in 2016, in contrast to the western bay, the region of interest shows 

Fig. 26 The CDOM concentration shown every June at West 3 (upper left), West 4 (upper right) and West 

5 (bottom middle). Displayed are the overall trend line (blue) and the trends in the two segments (red) found 

by the breakpoint detection. 
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another severe drop in 2018. East 4 is very similar to West 4. The data shows a very stable 
environment until 2016 where yet again a major decline in CDOM concentration is registered. 
The system recovers in the following year and shows no other significant features. In both time 
series, 2015 is detected as a breakpoint, however no result is statistically significant (see Table 
4). East 5 differs in its behaviour not only from all other eastern regions of interest but also the 
western ones. It shows a gradual decrease from 2004 until 2009. The following years show 
some variability in the data, however no outliers are present. This rather stable phase ends in 
another very low value in 2018. 

The western as well as the eastern data do not have any results of particular interest regarding 
the 2011 heatwave. Even though some results are statistically significant, none coincide with 
the event. Although the slight increase shown in the difference map is also visible in most of 
the datasets, it does not stand out within the time series. 
Table 4 The results of the statistical analysis of CDOM values. Significant results are bold.  

ROI P-Value Break S1 P-Value S2 P-Value Segment 1 Segment 2 
West 1 0.07343378 2012 0.9338035 0.9529229 2004 – 2012 2013 – 2018 
West 2 0.006369324 2005 NaN 0.08557402 2004 – 2005 2006 – 2018 
West 3 0.01193272 2015 0.2945463 0.3164951 2004 – 2015 2016 – 2018 
West 4 0.04992529 2015 0.1347007 0.256489 2004 – 2015 2016 – 2018 
West 5 0.8400314 2005 NaN 0.1489988 2004 – 2005 2006 – 2018 

Fig. 27 The CDOM values in June recorded in the eastern Shark Bay. Displayed are East 3 (upper left), 

East 4 (upper right) and East 5 (bottom middle). The coloured lines represent the overall trend line (blue) 

and the segment trend lines (red). 
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4.5 Correlation 

To examine potential interconnections of the indices the correlation coefficient was calculated. 
The Pearson correlation will provide a significance value to see if there are any indices influ-
encing one another and test the dependency from water temperature changes. 

Looking at the western bay arm it can be observed, that the data shows a slight positive corre-
lation between CDOM and NDCI (see Fig. 28). Several other analysed regions of interest also 
show statistically significant results. However, CDOM and NDCI show the only conclusive 
correlations found in the western bay. Even though there are other statistically significant re-
sults, those are only recorded at one or two specific regions of interest which indicates that a 
third factor might be inducing this correlation (see Fig. 28). Interestingly, the TSS and NDCI 
which could be linked positively, because of the particles they are looking at, show no correla-
tion supporting this claim. The eastern data shows a similar picture. Again, the relationship 

Table 4 (Continued) The results of the statistical analysis of CDOM values. Significant values are in bold. 

ROI P-Value Break S1 P-Value S2 P-Value Segment 1 Segment 2 
East 1 0.6649834 2005 NaN 0.7285264 2004 – 2005 2006 – 2018 
East 2 0.2899349 2015 0.7562706 0.6664245 2004 – 2015 2016 – 2018 
East 3 0.07816512 2015 0.5474517 0.9027401 2004 – 2015 2016 – 2018 
East 4 0.09612118 2015 0.3318149 0.4615351 2004 – 2015 2016 – 2018 
East 5 0.1350914 2005 NaN 0.9290838 2004 – 2005 2006 – 2018 

Fig. 28 The correlation between the three indices in the west, shown on three examples. Displayed are the  

R indicating the correlation and p which is the significance value. 

Fig. 29 Some examples of the eastern bay arms correlation coefficients when looking at the three indices.  

R shows the correlation and p the significance value 
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between CDOM and NDCI seem to be the most significant. The other indices show compara-
tively low connections and have only one noteworthy result (see Fig. 29). However, such low 
correlations in between the indices support the results as they are proven to be independent. 
Looking at the correlation with the water temperature extracted from MODIS the western NDCI 
values show a strong positive correlation in the first three regions of interest. Indicating that 
higher water temperatures subsequently meant higher productivity resulting in higher chloro-
phyll content in the water. NDCI seems to be the index which is closest related to the water 
temperature (see Fig. 30). Looking at the total suspended solids no relationship seems to be 
present, only West 2 shows a significant negative correlation. The CDOM values also score 
significant positive correlation values, which puts the NDCI values into perspective as there 
might still be a third parameter influencing the system, as both parameters show similar results. 

The eastern data yet again shows a similar outcome; however, it seems to be less driven by 
water temperature as the results are less significant. Only the NDCI shows a dependency 
whereas TSS and CDOM have no results indicating a relationship (see Fig. 31). The correlation 
direction of the ones recorded point in the same directions as in the west. NDCI is positively 
influenced by higher sea surface temperature. TSS has a negative direction and CDOM a posi-
tive one, but none are of statistical importance. The fact, that in the eastern bay the CDOM 
values and NDCI do not correspond needs to further looked at. Because if a third parameter 
influences their relationship it would only be present in the western bay arm, which seems 
unusual but not totally unlikely.  
  

Fig. 31 The Pearson correlation coefficient for sea surface temperature and the indices, calculated in the 

eastern bay arm. R indicates the correlation type and p its significance value.  

Fig. 30 The western indices correlation coefficients with the water temperature extracted from MODIS. 

The type of correlation is indicated by the R-value, p shows its statistical significance. 
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4.6 Habitat analysis 

Similar to the water quality parameters, the seagrass extent was statistically validated. Again, 
the eastern and western bay were analysed separately. However, to have a first overview of the 
data, the whole area was studied. Fig. 32 shows a comparison of three years and their respective 
seagrass extent. The image displays a very diverse and fast changing environment which seems 
unlikely, as one can assume the seagrass meadows to be rather constant and changing gradually 
over time. The data seems to be very unprecise, because of the diversity present. Nevertheless, 
a statistical analysis was conducted.  
Fig. 33 shows the time series data of the whole bay area indicating a slight negative trend in 
seagrass cover over the years. However, the decrease is not statistically significant. As one can 
see, the data varies greatly throughout the 18 years, with sudden drops and subsequent recov-
eries, though no structure is present. The breakpoint is detected in 2007, but the break as well 
as the two segment trend lines are of no statistical significance. The data shows a very fast 
changing environment, like Fig. 32 also suggested. Looking at the no seagrass data, a similar 
picture is presented. As expected, the time series is more or less anticyclical to the seagrass 

Fig. 33 The pixel count for the seagrass (left) and no seagrass class (right) over the whole Shark Bay area. 

Displayed are the overall trend line (blue) and the trends in the two segments (red) found by the breakpoint 

detection. 

Fig. 32 The benthic map showing the seagrass extent for 2010 (left), 2011 (middle) and 2012 (right). 
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data, yet again no significant features or trends are visible. The overall trend conversely shows 
a nearly neutral tendency. The breakpoint detection shows a structural change in 2003, but as 
before all features are insignificant (see Table 5).  

Focusing on the western time series strong similarities to the overall data become evident. In 
both, the seagrass and no seagrass class, the same data progress with comparable features is 
observable. This means, that a subset of the whole bay area is still not capable of erasing the 
extreme diversity in in the data, indicating a fundamental issue. The two main features are a 
drop in 2003 and another one in 2015 both followed by a fast recovery of the benthic system. 
The highest seagrass extent was recorded in 2008, however a single peak indicating a fast 
growth in one year seems unlikely. The no seagrass class supports the seagrass data set by 
presenting a mirrored data series. This makes sense as more seagrass consequently means less 
surface not covered by water plants. However, no changes can be linked to the heatwave in 
2011 or the gradual decrease in seagrass cover recorded by other studies (Arias-Ortiz et al. 
2018). The breakpoints in 2007 and 2010 divide the data into two statistically insignificant 
segments. The overall trend, even though negative as expected, is not of statistical significance 
(see Table 5).  

Fig. 34 The western seagrass extent (left)from 2000 until 2017. The right graph shows the pixel count for no 

seagrass. The blue line represents the overall trend, the red lines the segment trends. 

Fig. 35 The pixel count of the seagrass (left) and no seagrass (right) extent in the eastern bay arm. The 

overall trend line is shown in blue, the detected segment trend lines are in red. 
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A somewhat different development of the seafloor cover can be seen in the eastern by arm (see 
Fig. 35). The seagrass extent shows the basic features that were also present in the western bay, 
however the data has even more and stronger changes from year to year. An extreme peak in 
2001 is followed by a negative outlier, indicating a shift by one year comparing it to the one in 
2003 in the west. In contrast to Fig. 33 and Fig. 34 the lowest value in the east is recorded in 
2010, where a two-year depression is present. The last feature in the time series is yet again a 
low value in 2015 which is followed by a rapid seagrass growth in the next two years. Addi-
tionally, the different behaviour is underlined by the fact, that the no seagrass class does not fit 
as well as before. Even though, an increase in seagrass subsequently provokes a decrease in no 
seagrass pixels, the connection is not apparent. Especially the time before the no data value, 
e.g. 2003 to 2004, do not correspond as expected. While the seagrass shows a growth in this 
year, the no seagrass class stays constant within this time period. Again, the breakpoints have 
no statistical significance in both classes. Most interestingly the seagrass extent is split up into 
two positive segments, while the no seagrass extent is also increasing in both its segments. This 
can only be explained by a decrease of the third class, bare sand. To conclude, the habitat data 
does not supplement any of the findings presented above and cannot be linked to the heatwave 
in any way.  
Table 5 The statistical results of the seagrass cover changes. 

Seagrass P-Value Break S1 P-Value S2 P-Value Segment 1 Segment 2 
Whole Area 0.5239291 2007 0.8271604 0.9736025 2000 – 2007 2008 – 2017 
West 0.1606415 2007 0.916783 0.2575442 2000 – 2007 2008 – 2017 
East 0.8185641 2007 0.6345989 0.443281 2000 – 2007 2008 – 2017 
       
No Seagrass P-Value Break S1 P-Value S2 P-Value Segment 1 Segment 2 
Whole Area 0.5909715 2003 0.4425914 0.4181908 2000 – 2003 2004 – 2017 
West 0.6137994 2010 0.4719852 0.7556408 2000 – 2010 2011 – 2017 
East 0.2907667 2003 0.4565372 0.3008352 2000 – 2003 2004 – 2017 

5. Discussion 

5.1 Temperature 
The temperature calculated using the at sensor brightness temperature showed the inclusion of 
warm water very clearly. The difference map supports other research and measurements con-
ducted to estimate the extent of the heatwave (Arias-Ortiz et al. 2018; Caputi et al. 2014). The 
time series data however, is much less conclusive, shows a different picture and also has con-
tradictory results to the MODIS sea surface temperature estimate. Besides the heatwave, several 
other, positive and negative outliers, are detected which cannot be explained by the data at hand. 
These might be due to the fact, that the data used is not very precise and not consistent. The at 
sensor brightness temperature is not corrected for any atmospheric influences, which have the 
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potential of greatly changing the results. A dynamic equation would be needed to correct for 
the constantly changing atmospheric parameters. But as this would have been too much work 
and the uncorrected results did not show huge variabilities, the data was approved as it is. 
In addition, the time series data is only as good as the images available. There are only two 
images per month thus presenting us individual snapshots of the month. These images can then 
have clouds, water and atmospheric parameters influencing the recorded temperature values. 
Thus, the time series data needs to be treated with caution. 

5.2 Normalized difference chlorophyll index 

The overall data shows no results of any importance to the study conducted. The data is very 
unstructured and due to seasonal fluctuations not very useful in understanding the process. 
However, the zoomed in graph reveals a gradient in the eastern bay which is most likely present 
because of the water structure given by the bays properties. From the inlet down to the southern 
shoreline the NDCI slightly decreases in the years looked at. As water enters the bay in the 
north, less and less mixing happens the further it progresses into the eastern bay arm. Limited 
mixing has an influence on the water properties such as oxygen circulation and thus has an 
effect on the NDCI. East 5 in Hamelin Pond is cut off from the other part of the bay system by 
the Faure Sylt banks, which generate a very unique system. As the structure is not present in 
the western bay arm, one can argue that the western waters are better mixed or have a different 
chlorophyll regime. 
Looking at the June time series and the heatwave of 2011, no concluding statements can be 
made. In the west the heatwave is better visible than in the east, which is also reflected in the 
breakpoints detected. Four out of five are in 2012 while the eastern ones are not as distinctive. 
The time series data shows, that except for West 4 the decrease in 2012 is the most extreme 
negative outlier present in the data. However, 2010 poses as another extreme year in several 
regions of interest. This is of importance, because even without a heatwave in the year 2009 it 
still had a strong La Niña weather system present, which might have an influence on the chlo-
rophyll content in the water. This could be due to different current systems and atmospheric 
conditions present. The positive peak in chlorophyll in the year 2016 does not coincide with 
any meteorological or water parameters and cannot be explained by the data at hand. The only 
possible explanation are potential sensor issues as several images where generated by using 
Landsat 8 images as there were no others available. However, as argued above, there are only 
minor spectral difference between the two sensors as they are built to supplement each other. 
Additionally, part of the image is occluded by clouds, which were avoided as good as possible 
but might still influence the result. 
In the east, the results do not seem to coincide with the heatwave. Even though several regions 
of interest show a slight decrease in NDCI from 2011 to 2012, the drop is of minor extent 
compared to other outliers, e.g. 2009 to 2010. Contrary to the western regions of interest the 
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drop at 2010 in the east is big compared to the other outliers in the time series. Again, the 
positive peak in 2016 can be seen, however no conclusive results are present. 
The NDCI seems to be subject to several uncertainties affecting the data. On one hand, one 
must keep in mind, that the atmospheric correction executed is based on a model using external 
data to estimate the atmospheric conditions present. This holds a potential for minor errors 
influencing the resulting corrected datasets, which are then further progressed into the equations 
used (Mishra & Mishra 2012). Furthermore, the ratio used for the estimation is rather basic. 
Watanabe et al. (2017) report, that an overall understimation of chlorphyll-a content is possible 
when using the ratio at hand. Several effects affect the spectral response of chlorophyll-a and 
subsequently distort the resulting NDCI values. In the research conducted by Watanabe et al. 
(2017), their concentration increased while the absorption did not. This is due to the pigment 
package effect, which describes the fact, that phytoplankton does not necessarily increase its 
cell number, but can also change its cell volume or intercellular structure (Alcântara et al. 2016). 
This change does affect the absorption properties of phytoplankton and can lead to an inverse 
relationship between growth and chlorophyll-a concentration (Alcântara et al. 2016). This could 
have masked the influence of the heatwave on the maritime system, as the effect is known to 
be of particular importance in saline water (Wang et al. 2014). Additionally, the data used, are 
snapshots of one point in time, as Landsat 7 ETM+ does not provide more images. The assump-
tion was, that the data of one image is representative for a longer time span. Phytoplankton 
however, is part of a dynamic system which is influenced by the bays environment on a very 
short time scale (Mishra & Mishra 2012). 
To conclude, the heatwave seems to be visible in the data presented especially in the west 
whereas the east is not affected as much. However, one needs to evaluate the data also in respect 
to the approach used. The analysis is based on a simple band ratio which was never validated 
by ground truth data in the bay waters. Bearing this in mind, the results generated, especially 
as most of them are not statistically significant, should not be used to assess the behavioural 
changes of dolphins in the Shark Bay waters. The structural changes induced by the heatwave 
can never be fully accounted for by the analysis used as they are of extreme complexity. Nev-
ertheless, by scratching the surface, the time series show decent results which can be used as a 
guideline for further in-depth studies. To improve the results, a thorough analysis of in situ data 
is needed to understand the errors in the time series at hand. The influence of masking effects 
related to phytoplankton growth and the weight of external effects such as currents and other 
changes on a short time scale need to be assessed. Using this knowledge, the equation can be 
altered to minimize errors in NDCI estimations. 

5.3 Total suspended solids 

Again, the non-filtered time series shows extreme variations over the years induced by season-
ality and other fluctuations in the system. The zoomed in image confirms what was already 
seen when looking at the NDCI, namely that the eastern bay arm shows more structure than the 
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western one. The gradient present suggests a decrease from inlet down to Faure Sylt, while East 
5 has a different regime. The western data also has decreasing values from the open sea south-
wards, however they are not as structured as the eastern ones supporting again the assumption 
of uneven mixing in the two arms. 
Coinciding the TSS concentration with the heatwave in 2011 is not as straight forward as with 
the NDCI. Even though the difference image indicates a slight decrease in year, the results show 
a rather balanced regime. Following an inexplicable decrease in TSS in 2005, is a gradual de-
crease starting in 2009. As mentioned, this would coincide with another strong La Niña year, 
however this timely co-occurrence is only visible in some of the western and eastern regions of 
interest. It is noteworthy that it finds its end in 2012, indicating a possible turning point in the 
system. However, this is of no statistical significance and thus needs further examination. Yet 
again, 2016 poses as a strong positive outlier, but the results are not conclusive. Especially in 
the east, 2016 shows to be neutral or even has a negative influence in some regions of interest. 
The TSS can thus not be linked to the heatwave in any way. This might also be due to particles 
induced into the system by Gascoyne River. Park (2007) reported strong influences on the TSS 
analysis due to river based sedimentation and human pollution in the Korean Sea. As Gascoyne 
River is known to have had extreme floods in 2010 (which are not visible in the data), large 
amounts of material could have been flushed in to bay waters. Human pollution however, 
should not be of great importance, as there is little activity in the protected waters. Gascoyne 
River flows into the bay in the north and is known to carry many particles into the Shark Bay 
waters. The inlet of the river is north of the area looked at in the study, but might have had a 
delayed influence on the total suspended solid detection, depending on the currents present. 
Again, the atmospheric correction model poses as a potential source of error. Jaelani et al. 
(2016) suggest, that the atmospheric correction provided by USGS has limitations which influ-
ence the results of TSS estimations. The correlation between in situ measurements and the cal-
culated values show deviations, which were linked to insufficient atmospheric correction 
(Jaelani et al. 2016). If this problem exists in the Shark Bay waters, needs to be the looked at in 
further analysis of the bay’s water. A thorough analysis of the water would also provide verified 
coefficients for the equation to improve its performance. These constants are of importance in 
natural waters to ensure proper concentration estimations (Gray et al. 2000).  
In conclusion, the data is yet again based on a ratio calculating the total suspended solids in 
close proximity of the water surface. This analysis seems to be insufficient to be used in ex-
plaining dolphin’s behavioural changes, especially because no significant results linked to the 
heatwave were found. With well-grounded in situ measurements the calibration of the equation 
could be altered to generate decent results. Nevertheless, it is also possible, that the TSS are not 
influenced by warm water induced in to the system, but in ways that the approach was not able 
to grasp. 
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5.4 Coloured dissolved organic matter 

Yet again, the whole time series shows strong outliers over the years which are most likely due 
to seasonal changes, clouds and other external parameters influencing the system. The zoomed 
in image reveals again a gradient which is present in the eastern bay waters. In comparison to 
the other two indices, the CDOM values decrease from East 4 up to the East 1 and not the other 
way around. Nevertheless, this can still be the result of unequal mixing which might also accu-
mulate CDOM in front of Faure Sylt which acts as a barricade. The western bay arm also shows 
an inverted gradient, but again the data is less structured indicating more mixing within the 
waters. 
Looking at the heatwave, the difference map can be used as a starting point of the analysis. The 
coloured dissolved organic matter shows a strong increase throughout the whole bay area, 
which can be linked to the dying of seagrass. When decaying, the dead plants set particles free 
which are then detected as CDOM by our sensor. However, these promising results were not 
confirmed by the in-depth statistical analysis conducted. Neither the eastern nor the western 
data series show the heatwave in 2011, as the most influential feature. The western data has its 
two most extreme outliers in 2013 and 2016. The increase in 2012 which could be linked to the 
seagrass dying because of the warm water is of no significance within the whole time series. 
The drop in 2013 might be due to a delayed reaction by the water system, however it can be 
placed within the normal fluctuations of the CDOM concentration. The most drastic feature is 
recorded in 2016, where yet again the sensor might have had an influence. However, several 
regions of interest show another low value in the following year which stands in contrast with 
this argument. The eastern bay confirms these findings by presenting similar results. Again, 
2013 shows a strong decrease in CDOM but the biggest outlier is found in 2016. Interestingly, 
2009 appears to be another negative feature which seems to be followed by yet another increase 
in CDOM the following year. If the weather system was influenced negatively in 2009 and the 
following year particles of dying seagrass are detected, cannot be said. The magnitude of the 
oscillations varies throughout the time series and regions of interest, thus leaving us with no 
definite results. The CDOM seems to be the one the least affected by the heatwave showing no 
significant results coinciding with the induced warm water. 
However, there are other parameters not taken into the analysis. Salinity, temperature and tur-
bidity have the potential to influence the precision of CDOM absorption measurement (Branco 
& Kremer 2005; Slonecker et al. 2016). CDOM concentration tends to correlate especially with 
salinity, but also algal activity in the water, both are major components in the Shark Bay’s water 
system (Branco & Kremer 2005). To improve CDOM mapping, newer satellites, such as Land-
sat 8, could prove to be very useful. Having better bands available, such as the ultra-blue band, 
helps in distinguishing CDOM from other water constituents (Olmanson et al. 2016). Further 
research thus needs to evaluate the potential of newer sensors with narrower bands. 
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Though, none will be helpful in generating time series analysis, because of their short operation 
time. To increase the precision of the older satellite used in the study at hand, the equation needs 
to be thoroughly calibrated using in situ measurements. 

5.5 Correlation 

The calculation of the correlation coefficient helped to disentangle potential interconnections 
between the indices. The results showed that CDOM and NDCI might have a third parameter 
influencing them, however which one this might be can only be speculated. The significant 
relationship of NDCI with sea surface temperature is reasonable, as up to a certain extent, higher 
water temperature raise productivity in the water. What cannot be seen by this analysis, is how 
the increase comes about. It is possible that tropical algae grow in such environment perfectly 
whereas the local species get oppressed. 
The other two indices show no significant reaction to the changing temperature. One also needs 
to bear in mind, that even though an index might not follow the sea surface temperature, it can 
still be influenced by sudden environmental changes such as the heatwave in 2011. As such, 
the correlation did not greatly contribute to the overall data, nevertheless it adds to a greater 
understanding of the bay’s water system.  

5.6 Habitat analysis 
The habitat analysis has no results which could be used for a deeper analysis as they are very 
imprecise. The aim was to map the seafloor without correcting for the water column, as this 
was successfully done in several other studies. However, this showed to be impossible in the 
Shark Bay waters. The fast changing environment has too many external parameters influenc-
ing the water column and subsequently the spectral signal received. The time series data shows 
fast changing seagrass meadows which is contrary to any other study conducted on the subject. 
All results are statistically insignificant and show no connection to either atmospheric or water 
physical conditions present. For a thorough analysis the above calculated water quality param-
eters would be needed to correct for particles in the water column. Additionally, the depth and 
other external influences are required to be corrected for, otherwise a precise seafloor map will 
not be possible. Especially water turbidity reduces the accuracy of a benthic analysis (Roy 2003; 
Garcia et al. 2015). Turbidity reduces light penetration and subsequently reflectance, thus mask-
ing the seafloor. The river in the north might be a potential source of material influencing the 
benthic mapping negatively. Additionally, water depth is the major component in defining a 
sensors ability to map the seafloor. The depth of coastal waters however is influenced by several 
processes such as tides, seasonal water level changes and waves, which were all not integrated 
in the analysis at hand (Roy 2003). Having all these potential error sources shows that the at-
tempt at benthic mapping was not sophisticated enough to account for the dynamic and complex 
water system of the Shark Bay. Still, the results can be used as the basis for additional analysis, 
as the basic approach is working and proved to be suitable in such an environment. 
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In further research a correction for the water column is essential, all other parameters considered 
will improve the results. A combined approach could also increase the accuracy of a benthic 
analysis. Ohlendorf et al. (2011) suggest a combination of optical and SAR images to enhance 
the result. Additionally, the usage of precise training data, based on in situ measurements, 
would better the benthic map significantly. 

6. Conclusion and Future Work 
In examining water quality parameters using remotely sensed data, this study helps understand-
ing the major advantages and disadvantages of such an approach. Using rather simple band 
math equations, indices were used to map the influence of an extreme heat event on a water 
system. Even though the water quality indices showed a potential in detecting fluctuations in 
the Shark Bay waters, they were not precise enough to be used in a thorough analysis of changes 
in the ecosystem. Remote sensing data, especially when used in water systems, is affected by 
environmental changes in all the media radiation passes through. Thus, for perfect results, it is 
necessary to correct the equations for the local system parameters, which was not possible in 
the study at hand. Subsequently the limits of satellite data lie in its adaption to the local circum-
stances. This is best shown by the benthic habitat maps that have been limited in their usability 
by the changing water parameters for which the classification algorithm was not corrected. 
Without a proper and dynamic water column correction, such an analysis will not generate 
reasonable results in the Shark Bay waters. Therefore, it was difficult to detect the heatwave in 
the data. The normalized chlorophyll index showed the best results having breakpoints coin-
ciding with the heatwave event and clearly visible changes. However, these shifts were only 
short-term and the system went back to normal levels in the following years. Additionally, there 
are other outliers such as 2009 that could be explained by similar La Niña weather conditions, 
but this needs further investigation. The other data does not show conclusive results. It seems 
that the two bay arms have different reactions to the induced external effects however, the dif-
ference in reaction is not quantifiable or explainable by the presented data. Additionally, the 
indices suggest a gradual structuring of the data which could be sensible looking at the water 
structure present. 
Nevertheless, all these findings do not suffice to understand the post-heatwave changes of the 
bottlenose dolphins reported by the Dolphin Research Alliance. In the way remotely sensed 
data was implemented, it cannot be used supplementary to the dolphin research done in the bay. 
It can be utilized as a guideline for further studies and giving summary data. But one needs to 
understand, that the full potential of remote sensing was never tapped in this application. With 
a more sophisticated approach, the complexity of the factors influencing dolphin habitat and 
dolphin behaviour could most likely be analysed. Thus it is evident, that the data cannot support 
the in situ observations conducted over the last decades by the Research Alliance. 
Nonetheless, this study will pose as a potential starting point of further studies which will build 
on the information gathered in the thesis at hand. This is also why, as a side product, the whole 
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data generation was implemented in a simple application in Google Earth Engine. The three 
indices can be calculated everywhere the Landsat satellites gather data. It is a tool simple to 
use, as it does not only plot all the data one needs, but also prepares it to be exported as a data 
table for statistical analysis. Additionally, the whole code is accessible and editable, thus giving 
the possibility of altering the equations. This helps in improving the indices as local correction 
factors and/or better parameters can be used to generate perfect results in the respective regions. 
Providing this facile approach for a superficial analysis in waters around the globe might help 
in further studies on the subject. Also, because problems raised by climate change and subse-
quent shifts in balanced ecosystems are already a major issue, and will become even more im-
portant in the coming years. Here, remote sensing will pose as a major instrument in assessing 
the severity of environmental transformations. 
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8. Appendix 
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8.1.2 Plots 
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8.2 TSS 
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8.2.2 Plots 
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8.3 CDOM 
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8.3.2 Plots 
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8.4 Correlation 

East 1 CDOM and NDCI East 2 CDOM and NDCI 

  
East 3 CDOM and NDCI East 4 CDOM and NDCI 

  
East 5 CDOM and NDCI East 1 CDOM and TSS 
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East 2 CDOM and TSS East 3 CDOM and TSS 

  
East 4 CDOM and TSS East 5 CDOM and TSS 

  
East 1 NDCI and TSS East 2 NDCI and TSS 
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East 3 NDCI and TSS East 4 NDCI and TSS 

  
East 5 NDCI and TSS West 1 CDOM and NDCI 

  
West 2 CDOM and NDCI West 3 CDOM and NDCI 
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West 4 CDOM and NDCI West 5 CDOM and NDCI 

  
West 1 CDOM and TSS West 2 CDOM and TSS 

  
West 3 CDOM and TSS West 4 CDOM and TSS 
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West 5 CDOM and TSS West 1 NDCI and TSS 

  
West 2 NDCI and TSS West 3 NDCI and TSS 

  
West 4 NDCI and TSS West 5 NDCI and TSS 

 
 

 

 
  



 

 107 

East 1 SST and NDCI East 2 SST and NDCI 

  
East 3 SST and NDCI East 4 SST and NDCI 

  
East 5 SST and NDCI East 1 SST and TSS 
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East 2 SST and TSS East 3 SST and TSS 

  
East 4 SST and TSS East 5 SST and TSS 

  
East 1 SST and CDOM East 2 SST and CDOM 
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East 3 SST and CDOM East 4 SST and CDOM 

  
East 5 SST and CDOM West 1 SST and NDCI 

 
 

West 2 SST and NDCI West 3 SST and NDCI 
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West 4 SST and NDCI West 5 SST and NDCI 

  
West 1 SST and TSS West 2 SST and TSS 

  
West 3 SST and TSS West 4 SST and TSS 
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West 5 SST and TSS West 1 SST and CDOM 

  
West 2 SST and CDOM West 3 SST and CDOM 

  
West 4 SST and CDOM West 5 SST and CDOM 
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