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Abstract 

ABSTRACT 

Is it possible to optically detect floating ocean plastic debris from space – or perhaps from data acquired by 

sensors on airborne platforms several thousand meters above the water surface? Ocean plastic waste is an 

exponentially increasing environmental issue at global scale, yet current knowledge about its quantity and 

distribution is principally based on projections and estimates from oceanographic modelling.  

Knowing exactly, based on actual measurements, where and how much plastic waste is drifting at sea would 

be a compelling piece of information for the public and, with regard to mitigation efforts, for clean-up operations 

and policymakers alike. The European Space Agency (ESA) is currently investigating this research question, and 

first scientific studies on the subject have been published recently. These studies refer to the field of remote 

sensing, which is the only one regarded to have potential in monitoring the oceans in real time and to provide the 

relevant information.  

One of the approaches in the field is considered in this paper. It focuses on the passive remote sensing 

method of imaging spectroscopy. An explorative approach is applied to investigate the conditions under which 

floating PET bottles can be detected in spectral imagery and, if at all possible, identified. The research questions 

asked relate to fundamental detectability limits such as the surface density of the floating plastic and the spatial 

and most importantly spectral resolution requirements for imaging sensors. However, no suitable data were 

available at the onset of the project, and in order to obtain meaningful imagery for the planned investigations, an 

experiment with 492 PET bottles was carried out on Swiss lakes during the 2018 flight mission period. Several 

image analysis and classification approaches were applied to the acquired data from both the APEX and 

AVIRIS-NG imaging spectroscopy sensors. The chosen methods essentially cover three selected elements of 

data comparison: spectral similarity (e.g., SAM), specific spectral absorption features of plastic materials (e. g., 

Indices, CR), and sub-pixel information extraction based on spectral mixture analysis for abundance estimation. 

Our results, achieved for the first time for small surface fractions of floating plastic under real conditions, 

allow to significantly lower and narrow the detection limit range based on laboratory data and documented in the 

research literature: A surface fraction of less than 1% plastic can be distinguished from the surrounding water in 

imaging spectroscopy data. Furthermore, small plastic proportions (1%, 2.5%, and 5%) were classified, however 

not unambiguously. Significantly higher signal components of the sought plastic material seem to be necessary 

for precise material identification. 

In conclusion, it must be noted that the evaluated data of the experimental test areas were primarily oriented 

towards technical feasibility rather than real ocean conditions. Insofar, the technical feasibility of identifying and 

monitoring floating plastic debris in the ocean is considered to be appropriate in principle, although it may only 

be applicable to extremely high waste concentrations and under optimal conditions. 
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ZUSAMMENFASSUNG 

Ist es möglich, schwimmenden Plastikmüll auf den Weltmeeren aus dem Weltraum - oder von Daten, die 

durch Sensoren in Flugzeugen mehrere tausend Meter über der Wasseroberfläche erfasst werden - zu erkennen? 

Plastikmüll im Meer ist ein globales und exponentiell wachsendes Umweltproblem, doch der heutige 

Kenntnisstand über Menge und Verbreitung basiert grösstenteils auf Daten, die auf Hochrechnungen und 

ozeanographische Strömungsmodelle zurückzuführen sind.  

Genau zu wissen, wo wieviel Plastikmüll im Meer treibt, wäre eine wichtige Information für die 

Öffentlichkeit und politische Entscheidungsträger gleichermassen. Die Europäische Weltraumorganisation ESA 

geht aktuell dieser Forschungsfrage nach, und erste wissenschaftliche Studien sind in den letzten Jahren dazu 

publiziert worden. Diese beziehen sich auf den Fachbereich der Fernerkundung, welchem als einzigem das 

Potential zur Beantwortung dieser Frage zugeschrieben wird.  

In dieser Arbeit wird auf eine dieser Fernerkundungsmethoden fokussiert: auf die passive Methode der 

Bildspektroskopie. Es wird mit einem explorativen Ansatz untersucht, unter welchen Rahmenbedingungen auf 

Gewässer schwimmende PET-Flaschen in hyperspektralen Bilddaten detektiert und allenfalls identifiziert 

werden können. Die gestellten Forschungsfragen beziehen sich auf grundsätzliche Detektionsgrenzwerte wie die 

Oberflächendichte des schwimmenden Plastiks, sowie auf räumliche und vor allem spektrale Auflösungs-

anforderungen an Sensoren. Allerdings gab es für die geplanten Untersuchungen keinerlei geeignete Daten. Im 

Rahmen der jährlichen Flugkampagnen wurde deshalb im Sommer 2018 mehrmals ein aufwändiges Experiment 

auf Schweizer Gewässern mit 492 PET-Flaschen durchgeführt. Für die Auswertungen wurden mehrere 

Bildanalyse- und Klassifikationsansätze auf die erlangten Bilddaten der hyperspektralen Fernerkundungs-

sensoren APEX und AVIRIS-NG angewendet. Die gewählten methodischen Ansätze konzentrieren sich 

hauptsächlich auf drei Datenmerkmale: Spektrale Ähnlichkeit (z.B. SAM), spezifische spektrale 

Absorptionsmerkmale von Plastikmaterialien (z.B. Indizes, CR) und Schätzung von unterschiedlich geringen 

Plastikanteilen im Subpixel-Bereich (basierend auf spektraler Mischungsanalyse). 

Die erstmalig unter realen Bedingungen erzielten Resultate ermöglichen es, den einzigen bisher in der 

Forschungsliteratur dokumentierten (und auf Labordaten basierenden) minimalen Detektionsbereich deutlich 

nach unten zu reduzieren und einzuschränken: Ein Plastik-Oberflächenanteil von unter 1 % ist in hyper-

spektralen Signalen vom umgebenden Wasser unterscheidbar. Im Weiteren konnte zwischen Plastikanteilen von 

1 %, 2.5 % und 5 % unterschieden werden, allerdings nicht eindeutig. Für eine präzise Materialidentifikation 

scheinen jedoch deutlich höhere Signalanteile des gesuchten Materials nötig zu sein. 

Es muss abschliessend festgehalten werden, dass sich die ausgewerteten Daten der experimentellen 

Testflächen vorwiegend an der technischen Machbarkeit und weniger an realen Bedingungen auf dem Meer 

orientierten. Insofern werden Identifikation und Monitoring von schwimmendem Plastikmüll zwar grundsätzlich 

als machbar angesehen, allerdings ist dies in der Praxis möglicherweise nur für extrem dichte Müllkonzen-

trationen und unter optimalen Rahmenbedingungen umsetzbar. 
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Introduction 

1 INTRODUCTION 

It was during a coffee break with scientists of the RSL team when I asked my question for the first time. This 

was back in September 2016 and I had just started my master’s studies in Remote Sensing, wondering what 

chances and challenges this chosen field would yield for the semesters to come. On the eve I had read, quite by 

chance, a momentous article in the latest print issue of a scientific journal about the alarming plastic pollution in 

the world’s oceans (Cressey, 2016). Therefore, my concerned question was: “Is it actually possible to detect all 

that floating plastic in the oceans with remote sensing technology?” – “Not that I knew of, but that’s a good one 

– just keep that question in mind”, Andy replied.  

And so I did. The thematic focus of this master’s thesis research project lies on the aggravating 

environmental pollution problem of marine plastic debris. To date, it is known that the amount of plastic debris 

in the world’s oceans is already enormous and exponentially increasing (Eriksen et al., 2014). Oceanographic 

models of current patterns and accumulation areas allow predictions of debris occurrence and density. But 

reliable measurements of true location and quantity are sparse, considering the sheer vastness of the oceans total 

surface area. It is believed that remote sensing is the only technology capable of providing observation coverage 

of such vast areas within a practicable period of time (Maximenko et al., 2016; Hafeez et al., 2019). However, 

research on this topic is still in its infancy (Goddijn-Murphy et al., 2018). 

1.1 Scientific background 

In the next subsections, this introductory part provides an overview of the framework topics related to the 

localisation problem of floating plastic debris. This includes a short overview on the dimensions, effects and 

environmental consequences of the pollution problem and on debris distribution processes in the oceans as well 

as on material composition and categories. Most importantly, the scientific framework that forms the background 

to the work at hand is presented: Which approaches and methods, which research projects and findings have 

been achieved to date in the field of remote sensing technologies for the optical detection of floating macro 

plastics? 

1.1.1 Ocean plastic pollution 

The uncontrolled release of plastic waste ending up in the oceans has become a global ecological problem of 

gigantic proportions in the recent decades. Plastic products offer short-term benefits, but their long-term impacts 

– due to ubiquitous distribution, inadequate waste disposal and extremely slow degradation rates – have largely 

been neglected for decades. Recently, this environmental issue attracts considerable media and public attention. 

While the emerging ocean plastic pollution problem has been known in scientific circles for half a century 

already (Andrady, 2011; Thompson et al., 2009a), its real dimensions and harmful environmental effects are still 

not fully understood (Jambeck et al., 2015; Teuten et al., 2009). 

What actually makes this plastic waste such a big problem - perhaps apart from visual impairments and 

negative economic impacts on tourism destinations? I explored this question as a preparatory thematic basis for 

this thesis, and out of personal interest and concern. The summarized findings went into a literature-based 

semester study in the field of ecotoxicology, in the context of my minor subject and supervised by Prof. Dr. Karl 

Fent (Bertschi, 2018). Harmful impacts on the oceanic environment are caused by plastic waste as long as it 

floats in the water column – and on our coastal living environment when debris is washed up in large quantities..  
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Generally, plastic waste directly affects marine wildlife via two means: entanglement and ingestion. A recent 

study documented over 600 marine species affected by plastic waste in the oceans (Wilcox et al., 2015). In 

addition to these primarily physical effects, adverse long-term effects result from additives and toxic pollutants 

adsorbed to fragmented and degraded plastic debris and ingested by organisms of all trophic levels (Gregory, 

2009). Since toxicity always depends on the concentration of a contaminant, the processes of biomagnification 

and trophic transfer from the smallest benthic organisms to fish and eventually to the human diet raise increasing 

concern (Worm et al., 2017). For the present work, however, these ecological facts are not further elaborated, as 

the focus lies on the poorly known distribution parameters of macro plastics in the oceans. 

The amount of plastic waste that globally enters the sea each year is estimated to be approximately 10 million 

tonnes (Jambeck et al., 2015). A simple calculation allows a more concrete and better imaginable order of 

magnitude of this quantity: This represents a full truck load of plastic waste that enters our oceans – every single 

minute. And it is anticipated that this amount will increase exponentially in the future: “Reports have it that by 

the year 2050, there will be more microplastics in our oceans than fish” (Auta et al., 2017). But huge differences 

between estimates of plastic waste mass entering the oceans annually and of floating plastics are being reported – 

while the real quantity of plastic waste in the oceans is unknown (Jambeck et al., 2015).  

What is the fate of plastic debris once thrown or washed into the sea? At first, there are physical process 

involved in fragmentation and transportation of the waste items. It is believed that vertical transport processes in 

the ocean eventually lead to the sedimentation of the fragmented plastic waste when its specific weight is altered 

by biofouling (Auta et al., 2017; Koelmans et al., 2017; Maes et al., 2018). Furthermore, huge quantities of 

plastic waste with a lower specific weight are washed up on beaches all over the world (Lavers et al., 2016). 

Plastics are a subgroup of the material class of polymers which are composed of large molecules consisting 

of organic compounds: hydrocarbons. Polymers are ubiquitous and can be of natural or synthetic origin (other 

subgroups are elastomers (rubbers), fibres and films). They are produced synthetically by polymerization of low-

weight monomers which are organic materials generally derived from petroleum. They come in thousands of 

polymer combinations and with various chemical additives (Worm et al., 2017; Thompson et al., 2009b). Plastics 

are considered the most widely used polymers (Emadian et al., 2017) and even the most widely used man-made 

substances (Worm et al., 2017) because of their usefulness. They are incredibly versatile materials - cheap, 

lightweight, strong, and corrosion-resistant, with high thermal and electrical insulation and plasticity properties 

(Thompson et al., 2009b). Another advantage – its durability – however poses enormous environmental 

concerns, since the material accumulates and persists in the environment for centuries, even for up to thousands 

of years, as some estimates predict (Barnes et al., 2009; Li et al., 2016). 

Which are the categories of marine plastic waste? Plastic debris can be classified by size category, type, 

composition, and with regard to their optical properties additionally by degradation and fragmentation state. Size 

category definitions are various and inconsistent, even for the most common distinction between microplastic 

and macroplastic. While common classifications often differ between macroplastics (> 2 cm), mesoplastics (5 

mm – 2 cm), microplastics (1 µm – 5 mm), and nanoplastics (< 1 µm) (Eriksen et al., 2014; Worm et al., 2017), 

detection using optical sensors is only considered possible for macroplastics. Plastic types include – besides 

whole items such as drinking bottles – sheet fragments, pellets, cosmetic beads, fibres, lines, and foams. 

Regarding classes by composition, close to 5000 different types of plastic are known today. But only a few 

account for approximately 90 % of the total global production and are most abundantly used and thus found in 

ocean plastic waste (Li et al., 2016). These are listed in the table below. 
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Introduction 

Table 1-1: Most common plastic types by composition. 

 

1.1.2 Quantification and localisation of floating plastic waste 

The total amount of plastic floating in the oceans today can only be estimated on the basis of projections. 

These are based on countless tow net samples collected over the years (Cozar et al., 2014; van Sebille et al., 

2015), but only a very marginal proportion of the immense global water surface area1 of 361’000’000 km2 

(Leser, 2001) has been systematically sampled to date. Such projections are the result of complex oceanographic 

surface current models (Potemra, 2012; Lebreton et al., 2012; van Sebille et al., 2015; Eriksen et al., 2014). 

Despite the large spatial uncertainties contained in such data, the magnitudes of the numbers are alarming. 

Eriksen et al. (2014) published one of the most comprehensive and often cited studies estimating the global 

amount of floating plastic debris at sea. Using an oceanographic model of floating debris dispersal, a large 

volume of data that had been collected from ships during 24 expeditions (2007 – 2013) was used to calibrate this 

model. Calculations estimated “a minimum of 5.25 trillion particles weighing 268’940 tons” floating in the 

world's oceans (Eriksen et al., 2014). And recent research has come to the conclusion that previous figures 

systematically underestimate the real quantity of ocean plastic (Koelmans et al., 2017). If one wants to get an 

idea of how much plastic waste per unit area is floating on the sea surface on the basis of such numbers, then the 

figures vary greatly. For example, mass concentrations of 0.01 – 100 kg/km2 within the Great Pacific Garbage 

Patch (Lebreton et al., 2018) and an average of 0.579 kg/km2 in the Mediterranean (Ruiz-Orejón et al., 2016) 

have recently been reported. Another study has reported comparable average quantities of 70 g/km2 (Eriksen et 

al., 2013) for the accumulation zones in the South Pacific. With regard to the data evaluated for this thesis, a 

huge discrepancy must be noted: While the latest example data correspond to 0.00007 g/m2, the evaluated 

reference areas contain 1 - 2 PET bottles/m2. As for the number of debris items, an average particle 

concentration range of 100 – 1’000’000 items/km2 and a maximum concentration of over a million items / km2 

were reported by these example research projects. This order of magnitude, on the other hand, corresponds 

exactly to the evaluated data. 

The spatial distribution of plastic debris in the oceans is even more difficult to estimate than its total 

quantity. Ocean distribution models are subject to considerable variance “due to high uncertainty in underlying 

data and assumptions” (Liubartseva et al., 2018). Moreover, distribution pattern is subject to constant change. 

Large-scale oceanographic circulations greatly influence debris distribution and determine accumulation of 

floating marine debris in the convergence zones at subtropical altitudes of all major oceans (Brach et al., 2018). 

 
1 This area accounts for approximately 71 % of the Earth’s surface. 

Products and typical origin

Specific gravity Substantiation

PA Polyamids (Nylons) 1.13 - 1.35 Fibers, nets, toothbrush bristles, fishing line

PC Polycarbonate 1.20 - 1.22 Compact discs, security windows, lenses, construction materials

PE (HDPE) Polyethylene, high-density 0.94 Juice jugs

PE (LDPE) Polyethylene, low-density 0.91 - 0.93 Plastic bags, six-pack rings, bottles, netting, drinking straws

PES Polyester 1.4 Fibers, textiles

PET Polyethylene terephthalate 1.30 - 1.37 Plastic beverage bottles

PP Polypropylene 0.85 - 0.83 Rope, bottle caps, netting

PS Polystyrene 1.05 Plastic utensils, food containers (foam cups)

PU Polyurethane 1.12 - 1.15 Plastic film, bottles, cups

PVC Polyvinyl chloride 1.38 tarpaulings, shower curtains, sheets

Plastic material type

Class
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In these anticyclonic eddies, debris material is collected due to Ekman transport processes, resulting in the often 

mentioned “garbage patches” of great expanse such as the GPGP. In overall terms, complex large-scale and 

meso-scale surface currents as well as climate oscillations (e.g., El Niño/La Niña) cause regional and temporal 

variability in debris concentrations, further accentuated by seasonal climate patterns with altering prevailing 

winds (e.g., monsoon cycles) and tides. With all this variability on multiple temporal and spatial scales, current 

and detailed distribution data are largely unknown.  

What is undoubtedly known, however, is the fact that today plastic waste is found everywhere in the oceans, 

on the surface and throughout the water column down to benthic sediments (Law et al., 2014), washed ashore on 

beaches and even near polar regions (van Sebille et al., 2015). Still, at a global scale, distribution maps of ocean 

plastic waste are mainly based on oceanographic modelling, as is illustrated in the exemplary Figure 1-1 below.  

 

 

Figure 1-1: Distribution of floating plastics in counts and weight for different size classes (Cressey, 2016). 

 

Simulations as in the above example are inadequate particularly for macroplastics distribution. But why 

would it be useful to know where all the plastic in the oceans is? While globally monitoring and knowing about 

the concentration and distribution of the debris is not a goal in itself, it is however a most relevant means to show 

and quantify the scale of the problem, to provide useful information to debris removal operations – and hopefully 

to increase the pressure on decision-makers in politics and economics. A global map showing litter 

concentrations that is based on actual measurements would also provide important insights to scientists regarding 

quantification and distribution patterns. Moreover, it would hold greater power in communicating the problem 

for the public as well as for policymakers (ESA, 2018). 

In order to have an illustrative presentation of the topic, examples of ocean plastic debris as well as the tow 

net sampling method are compiled on the following page. The selection of examples was deliberately made in 

order to contrast those images of "garbage carpets" distorted by the media with the appearance of more realistic 

debris densities. 
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Figure 1-2: Impressions of ocean plastic debris. While (a) corresponds to a common conception of so-called 
"garbage carpets", this picture represents an extreme case of garbage washed in by a river after a tropical 
storm. (b) represents heavily polluted coastal waters, (d) shows derelict fishing gear, and (g) depicts barnacles 
on floating bottles. However, typical sights of floating plastics in the Aegean Sea and washed ashore are 
illustrated in (c, e, f, h, i). The common sampling method using neuston tow nets for floating microplastic 
particles is shown in (k). 
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1.1.3 Remote sensing approaches  

Remote sensing is seen as the only technology that has the potential to solve the problem of the location of 

drifting plastic waste on the world's oceans through monitoring and spatial quantification. With regard to an 

automated localization of plastics on the oceans, only satellites could cover the enormous spatial dimensions 

within reasonable time intervals. In fact, the European Space Agency has recently started a program to 

investigate satellite detection requirements for marine plastic litter observation (ESA, 2018), and international 

scientific conferences2 have been launched worldwide. However, research in the field of remote sensing is still in 

its infancy and only a handful of research projects have been published to date. No remotely sensed image 

analysis of small abundancies of floating plastic on natural waters seems to exist. In this sense, the present work 

constitutes a novelty. 

What has been achieved in remote sensing of ocean plastic debris to date? A compilation of the research 

papers in this field is presented in a complete list in Appendix A. These, however, are mainly theoretical concepts 

regarding radiative transfer models, are based on laboratory measurements and modelling, or focus on very large 

(> 1m) floating items and beached waste. Garaba et al. (2018) presented the only research paper so far where 

spectral feature comparison for large floating debris was applied on remotely sensed imagery of ocean debris. 

This research comes closest to the present study in terms of its objective and methods of investigation. 

Approaches have also been made with satellite data (Acuña-Ruz et al., 2018; Aoyama, 2016; Biermann, 2019), 

although it is still not possible to identify ocean plastic with existing satellites. Thus the relevant statement in 

Wikipedia still applies3.  

What remote sensing technologies, what sensors and sensing distances might represent a conceivable 

solution? In a ground-breaking international workshop in 2016 on remote sensing approaches for marine debris 

sensing, the general possibilities offered by the various remote sensing platforms were summarized as follows: 

“Traditional optical imagery can be used for the largest debris in selected cloud-free areas; synthetic aperture 

radar imagery and interferometry is suited for all-weather detections and drift measurements; imaging 

spectroscopy can detect low concentrations of subpixel-size plastic particles; and Raman spectroscopy, which 

penetrates below the surface, is useful for measuring debris sunk in shallow seas or suspended in the upper 

ocean” (Maximenko et al., 2016). Based on this summary it becomes obvious that, for the fundamental question 

of this work, imaging spectroscopy (also known as hyperspectral remote sensing) is considered the remote 

sensing technology of choice.  

The underlying physics of image spectroscopy: The foundation of optical physics dates back to the 17th 

century and the pioneering work by Isaac Newton, but only in the 20th century, spectroscopic instruments were 

developed and in the 1950s and 1960s, the first remotely sensed spectral data were recorded (Mac Arthur and 

Robinson, 2015). The fundamental principles of optical physics form the physical basis of spectroscopy, stating 

that photon energy level and flux density change occurs when light interacts with a surface material and that, 

consequently, spectral measurements contain information on the light source (e.g., solar radiation intensity), the 

atmosphere (e.g., gas content resulting in light scattering and/or absorption), and the surface with which the light 

has interacted. In spectroscopy, the energy level is indicated by wavelength, and flux density is measured as 

radiant flux (Mac Arthur and Robinson, 2015). 

 

2 Under the lead of the National Oceanic and Atmospheric Administration (NOAA) and the UN Environment organization, 
the probably most comprehensive International Marine Debris Conference is held regularly: 
http://internationalmarinedebrisconference.org/ (last accessed August 28, 2019) 
3 https://en.wikipedia.org/wiki/Great_Pacific_garbage_patch (last accessed August 29, 2019) 

http://internationalmarinedebrisconference.org/
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Why is remote sensing regarded as the only technology with potential in ocean plastic detection? Basically, 

the key point lies in the immense surface of the oceans: Optical satellite monitoring is the only way to capture 

this surface in real time. An entire field of research, called “ocean remote sensing” already focuses on large-scale 

detection and monitoring of physical and biogeochemical oceanic factors such as water temperature and salinity, 

wind force and wave height, ice cover extent and drifting icebergs, and suspended organic matter concentration 

such as algae blooms (Martin, 2014; Frouin et al., 2016; Venkatesan et al., 2017). However, it is not (yet) about 

waste monitoring - this would be an obvious next scope of application. 

The detection of plastic debris by highly specialized spectral sensors is considered due to the specific spectral 

properties of plastic materials. Material identification and automated sorting of plastic types based on 

spectroscopic technique is well established and successfully applied in waste separation plants (Vázquez-

Guardado et al., 2015). The classification accuracy for these applications is remarkably close to 100% (Moroni et 

al., 2015). In this context, normalized reflectance spectra can be fully characterized and identified when 

considering the spectral NIR and MIR spectral ranges (0.3 – 12 µm).  

In contrast to this spectral data acquisition under laboratory conditions, the spectral range of data acquired by 

remote sensing sensors is not sufficient for the detection of all commonly used plastics (Vázquez-Guardado et 

al., 2015). The reason for this lies in the light transmittance of the Earth's atmosphere. Some spectral regions 

cannot be used in remote sensing because atmospheric gases absorb essentially all the emitted solar radiation. A 

few gases among the approximately 30 atmospheric gases absorb solar radiation at specific wavelengths over the 

spectral range relevant in remote sensing (between 400 – 2500 nm). In particular, the molecules of water vapor 

(H2O), carbon dioxide (CO2), ozone (O3), oxygen (O2), carbon monoxide (CO), methane (CH4), nitrous oxide 

(N2O), and nitrogen dioxide (NO2) absorb solar radiation, resulting in effective loss of energy to the atmosphere 

(Gao et al., 2009). The wavelength ranges in which the atmosphere is transparent for solar radiation – and thus 

usable for remote sensing – are mostly in the VIS and NIR regions of the electromagnetic spectrum. They are 

called atmospheric windows (Lillesand et al., 2008). 

However, a trade-off is unavoidable: While plastic materials can be unambiguously and automatically 

identified using spectroscopy, this approach is impaired in the natural environment due to atmospheric properties 

and, as far as to our knowledge, has not yet been applied successfully under typical oceanic conditions. Only 

remote sensing technologies, on the other hand, allow global coverage of ocean surface within a useful time 

frame. This is exactly where this study comes in. 

Behind the spectral signatures ï the chemistry of hydrocarbons: The wavelength position of spectral 

features such as absorption peaks are strictly related to the chemical structure of the material and to the 

underlying quantum mechanical mechanisms of electronic and vibrational states (Manolakis et al., 2016). Thus, 

spectral absorption features are characteristic for certain materials. Absorption peak positions of plastics are 

strictly related to the chemical structure of polymers, as the spectral organic features common in polymers 

absorb light in the NIR region via the first overtones of the normal vibrational modes that involve stretching of 

the C-H and O-H bonds (Cloutis, 1989; Moroni et al., 2015). Thus, their spectra show a distinctive depression at 

these wavelength positions. For PET material samples, well noticeable absorption peaks were identified at 1130 

nm, 1170 nm, 1420 nm, and 1660 nm (Moroni et al., 2015). 

An overview on both the most important atmospheric windows (and accordingly the water vapor absorption 

regions) and the known plastic absorption feature wavelengths, Figure 1-3 provides an overview which is based 

on (Gao et al., 2009; Jensen, 2016; Richter and Schläpfer, 2016; Vázquez-Guardado et al., 2015). Highlighted in 

blue are those known plastic absorption features that coincide with important atmospheric water vapor 
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absorption bands. And highlighted in green are those spectral regions of known absorption by plastic materials 

which will be systematically considered in the following analyses. 

 

 

Figure 1-3: Solar radiation, atmospheric absorption bands (yellow) and known plastic absorption features. 
 

Besides the detailed knowledge of material inherent properties, further optical properties such as size, 

presence and concentration of encrusting organisms (as shown in Figure 1-2 (g)), and factors like surface 

degradation and roughness are determinant for the spectral signal (McElwee et al., 2012). Furthermore, sea state 

and atmospheric conditions affect the optical signal. Here it becomes obvious how many factors are involved in 

the task at hand. In the discussion chapter (Section 5.6) those factors which directly influence debris detection 

using imaging spectroscopy are taken up again.  

1.2 Research questions and working hypothesis 

The main research focus is on the investigation of optical detection possibilities for floating plastic debris at 

the water’s surface. Thus, the research questions are addressed in the form of a feasibility study, exploiting 

remotely sensed imagery of experimental installations of floating PET bottles. 

Thus, the main research questions are: 

(1) What plastic surface densities on water bodies can be identified from spectral data? 

(2) What spatial resolution is needed for detection? 

(3) What spectral information (spectral range and resolution) is relevant to distinguish between water 

and plastic surfaces?  

(4) Which factors influence the detectability? 

Based on preliminary literature research, these questions are addressed with the passive remote sensing 

technology of imaging spectroscopy. And consequently, the working hypothesis is:  

“Image spectroscopy can be used to identify, quantify and map floating macro plastic pollution.ò  



 

 

19 

Data 

2 DATA  

This chapter contains a compilation and characterisation of the datasets used for the analysis in this study. 

The following subsections first provide an insight into the considerations, preparations, and practical 

implementation of the experimental setting for the purpose of controlled test data acquisition. Then, data 

acquisition parameters are described as well as the preprocessing steps, both radiometric and geometric, which 

are normally carried out by the data providers.  

The most relevant datasets for this thesis consist of aerial image spectroscopy data, acquired with the 

AVIRIS-NG and APEX sensors during the RSL summer flight campaigns 2018 over temporary installations of 

floating plastics with varying predefined surface abundances. Spaceborne data were acquired twice by the 

Sentinel-2 multispectral ESA satellites when orbiting over the experimental setup locations. Additional field data 

were purposively acquired in order to obtain further typical plastic and water spectra as reference values. 

Together with other auxiliary data, the data pool used for this study comprises a solid diversity with varying 

spatial and spectral resolution. Table 2-1 at the end of this chapter gives an overview of the remotely sensed 

imagery. 

2.1 Experimental design and setup 

At the onset of the work no data set was available and therefore an experimental design to acquire data was 

required. How could the questions about technical feasibility of plastic detection on water surfaces be tackled? 

What remotely sensed data would be helpful? What kind of experimental setups would be necessary? 

Since no remotely sensed imaging spectroscopy data of ground-referenced floating plastic items was neither 

known nor available, the main research questions of this thesis required quite some creative ideas and 

considerable efforts in order to acquire a meaningful data pool. Remotely sensed imagery of such "plastic 

targets" with precisely documented local position and surface density would represent the indispensable database 

for explorative analyses. 

It was, however, a unique opportunity that emerged at the beginning of summer 2018. In the context of the 

annual research flight operations with the European Airborne Prism Experiment (APEX), organized by the RSL 

department at UZH, some of the flight strips for data acquisition were planned across nearby Swiss lakes. 

Furthermore, there was the prospect that NASA's Next Generation Airborne Visible Infrared Imaging 

Spectrometer (AVIRIS-NG) would be operated in selected research areas over Switzerland (and other European 

countries) as part of an international research collaboration4. These flights were also coordinated at RSL, which 

is why both the planning data of these flights were known and the collected data would be available for research. 

The fact that this NASA sensor, considered to be the most outstanding of its kind and unprecedented in and 

radiometric accuracy and spectral uniformity, would be flown over Switzerland for the first time since 1991 

(AVIRIS-classic) was an extremely promising prospect! 

Together with the fact that I am a passionate sea kayaker owning a great little folding kayak5, these flight 

operation plans were the starting point for the idea of an experimental setup of plastics prior to these data 

acquisitions. But the framework conditions were a challenge, and the success of this idea was very uncertain.  

 
4 Information by Andy Hueni who is responsible at RSL for research flight planning  
5 A seaworthy and agile “K-light” model, built in Vancouver, Canada, 20 years ago by Feathercraft 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/aviris
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/aviris
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2.1.1 Experimental design and preparations 

Nevertheless, as soon as the possibility of targeted data collection on water surfaces became concrete, the 

conceptual and practical preparations for the field experiments began. Generally, for optical detection of ocean 

plastic waste, the relevant factors are object size, material composition, surface consistency, and its spatial 

distribution both horizontally and vertically.  

A fundamental question was: how large should a meaningful test area be at least? Its surface area should 

allow unambiguous identification of plastic containing pixels in the resulting image, considering pixel size and 

expected geometric accuracy of the imagery. The planned flight levels would result in data with a spatial 

resolution of 6.3 cm (HyperSpec) and between 2.5 – 4.1 m for the APEX and AVIRIS-NG airborne sensors. 

The detection limit for plastic abundance on the water surface is expected to be below 5% surface 

abundance (Bochow, 2013; Maximenko et al., 2016). These expectations represent the only relevant clue in the 

scientific literature. However, they are based on laboratory measurements. Whether this estimation also applies 

under realistic conditions was unknown at the time the experiments were planned and carried out. The latest 

research project on this topic was published only afterwards and makes the assumption that a 5% plastic 

abundance “might not be appropriate for detecting ocean plastics” (Garaba and Dierssen, 2018) 

The aim was to prepare a test field above this limit and (at least) one test field below this limit in order to 

approximate the actual detection limit based on this gradation. However, this plastic abundance could only be 

roughly estimated during preparation. For this purpose, the outlines from 5 of each of the selected PET bottles of 

both sizes (irregularly flattened) were drawn on 5mm paper. Based on their averaged outline, an area of 130 cm2 

was estimated for the smaller bottles and 300 cm2 for the larger ones. Supplementary observations of the 

buoyancy behaviour of the bottles on the water revealed that an estimated 20 - 33% of their surface remains 

submerged. Accordingly, estimations of resulting plastic areas at the water surface per PET bottle were reduced 

to roughly 100 cm2 and 250 cm2, respectively. Therefore 1 - 2 bottles per m2 test area would be required. 

High-resolution RGB drone data and in particular the high-resolution HyperSpec data were intended for the 

subsequent exact determination of the abundance, ideally supplemented by mixture model analysis. It must be 

emphasised that the planned abundance of the test areas is targeted at the expected technical possibilities. 

Realistic abundance in ocean gyres, on the other hand, is reported to be more than 1 piece per m2 – with an 

average size of plastic debris objects which make up only an extremely tiny fraction of a PET bottle. Newest 

results of average plastic mass concentrations estimate 1 g per m2 (!) in the GPGP (Lebreton et al., 2018). 

Against this background, it is therefore of great importance to interpret the following methodical data 

evaluations and results with regard to technical feasibility. 

The practical framework conditions were: 

¶ Due to weather conditions, the day of the flights are known only at very short notice and installation of 

the test areas must be set up and removed on the same day.  

¶ The lakeshore near the intended test positions must be accessible for material transport, and all necessary 

permits must be obtained in time. 

¶ All material must be manageable by one person alone and from a kayak, i.e. transport from the lakeshore 

to the selected position on the lake, deployment, and temporary anchoring. 

¶ Since the exact overflight time depends on actual air traffic and Skyguide’s permission, the material 

should be installed as early as 10 o’clock in the morning.  
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In spite of concerns about practical feasibility – especially due to time limitations during the very days of the 

research flights – surface net constructions with PET bottles were prepared. The aim was to have different 

controlled abundances of plastic for spatially defined test areas on a natural body of water for data acquisition in 

a realistic setting. These plastic net constructions however had to be within the scope of my possibilities, 

lightweight and controllable for one person alone, since the plan was to deploy and anchor them only with the 

aid of my great little folding kayak.  

Plastic test area construction: How do you create a total of 300 m2 of plastic pollution on a lake, which 

afterwards has to be completely removed? Since PET bottles were readily available and also represent one of the 

most common types of marine plastic waste, this material was chosen. No special attention was paid to the 

colours of the selected bottles, since colour does not show significant influence in the spectral signal (Vázquez-

Guardado et al., 2015). They correspond largely to the average mixing ratio of recycled PET in central 

Switzerland where at least 50% is transparent, about 20% is green, about 10% each are brown and yellow, and 

only a few are light blue or completely dark. These empty bottles were flattened to some extent, closed, and 

attached to their bottle necks with parcel cords. First attempts with a painstakingly measured and prepared cord 

net of regularly interwoven small PET bottles on the lakeshore resulted in an inextricable, frustrating, wet 

disaster once in the water. It turned out that the chosen parcel cords - when wet - got entangled incredibly 

quickly. It became obvious that the plastic fields could only be tied together on the water.  

The solution found was to knot 20 - 30 PET bottles at regular intervals into individual, 10 m long cords and 

then hang them separately into a previously anchored "frame" using small material carabiners. This frame also 

consisted of parcel cords, with prepared loops at regular intervals also for marking. The individual test areas 

contain 240 * 1.5 l bottles (8 lines of 30 bottles each), 120 * 1.5 l bottles (6 lines of 20 bottles each), and 120 * 

0.5 l bottles (6 lines of 20 bottles each), all temporarily anchored to the bottom of the lake and with resulting 

plastic surface abundances of approximately 5%, 2.5%, and 1%. Additional bottles were used in all test area 

corners for anchor positions and were partly submerged because of the tension on the anchoring cords. In total, 

the test installation consisted of 492 PET bottles. Comparable test data never seem to have been generated in a 

natural body of water. Few research projects in our field have mapped artificial floating plastic surfaces near the 

beach (Topouzelis et al., 2019) or acquired their reflectance spectra with a field spectrometer (Goddijn-Murphy 

and Dufaur, 2018). 

Another challenge was the selection of suitable locations, for which the lakeshore areas were explored and 

identified on preceding kayak excursions. Particular attention was paid to the vegetation and topography at the 

lake shore for considerations of light incidence and shadow effects, whereas the accessibility and depth of the 

water played a more practical role. In addition, there was the consideration of the shipping routes, nature 

conservation zones, and popular bathing areas, which had to be avoided wherever possible. Once the most 

suitable locations had been determined, all the authorities involved had to be informed and the necessary permits 

obtained. 

2.1.2 Deployment of floating plastic reference fields 

The chosen experimental setup solution finally covered three plastic test fields of 10m x 10m each with a 

distance of 20 m in between, resulting in a total test area of 700 m2. The distance between these test surfaces 

should ensure that no different surface abundance occurs in the same pixel, with respect to satellite data 

resolution.  
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Figure 2-1: Impressions from experimental setups and locations. (a) and (b) show the Hallwilersee location after 
data acquisition when the wind had nearly calmed down, with (b) giving an impression of the 1% PET test field. 
The Greifensee location is shown in (c) at the moment when setup started at 5.20 am before sunrise and in (d) 
with the 5% PET abundance (foreground) and 2.5% (barely visible) test fields.  
Irchel location: (e) one of the carefully coiled bottle lines; (f) illustrates one of the 14 handmade, cheap and 
reusable anchor nets temporarily filled with local stone. Refined deployment (h) and deinstallation (i) technique 
with gained practice and (g) unique occasion of a zeppelin overflying the Irchel Pond – and the deployed test 
areas - at an altitude of only 150 m AGL. ((a) – (h) courtesy Daniel Furrer).  
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2.1.3 Locations 

The closer spatial environment of these three test locations can be characterized as follows: 

The Irchel Pond is located in the middle of the park of the same name, which is directly adjacent to the 

university campus Irchel 3 km north of Zürich’s city centre on the western slope of the Zürichberg hill6. It is an 

artificially created pond with only a negligible inflow, a shallow maximum water depth of only about 6 m with a 

total water area of only 6’800 m2. Of course, the environmental factors of the park are far from comparable to an 

open ocean setting. The main reasons for conducting the experiment at this location however were for 

practicability and flight plan restrictions. However, the unique chance to acquire – in a very first attempt – 

spectral data of specifically designed and controlled floating plastic targets topped the disadvantage of the small 

water body and resulting adjacency effects. The pond is surrounded by playgrounds and some higher trees, 

which nevertheless do not directly obstruct the direct solar radiation in the area of the test areas. However, 

adjacency effects of these trees on the measured data cannot be ruled out. While interfering adjacency effects 

both from land and atmosphere generally increase towards the shore, they “remain significant to as far as 20 km 

off shore” (Odermatt, 2011). Therefore, adjacency effects can generally not be ruled out. At this location, a small 

adjustment had to be made to the deployment design: because of the small water area, the distance between the 

individual test areas had to be shortened from 20 m to 10 m. 

The plastic test areas on Lake Greifensee, 10 km east of Zürich, are located in the western part of the lake, in 

a distance of 97 – 120 m from the slightly sloping reed-covered lake shore, at a water depth of about 20 m. This 

lake is comparatively high in nutrients. 

For the choice of the test area on Lake Hallwilersee a compromise had to be chosen between the position of 

the flight strips, course ship lanes, closed protection zones, and shadows cast by tall shore vegetation. The 

chosen location is near a gravel delta (the gravels served as a makeshift anchor weight), in a distance of 30 - 50 

m to the close-by nature reservation zone and 70 – 90 m to the eastern lake shore, at a water depth of 14 – 16 m. 

2.2 Data acquisition and baseline processing 

The airborne data acquisition took place within the scope of the annual flight missions at RSL, whereby the 

spectral data of the relevant test areas were made available in the desired product levels. ESA's satellite data are 

available online via the precisely researched product specifications, spatial parameters, and acquisition dates. 

ASD field data, GPS location coordinates, and image acquisition with drones were collected especially for this 

research project in 2018. 

2.2.1 APEX airborne data  

APEX, the Airborne Prism Experiment, is a dispersive pushbroom imaging spectrometer based on prisms, 

covering the spectral range between 372 and 2540 nm with a spectral sampling interval of 0.45–7.5 nm in the 

VNIR (400 – 1050 nm) and 5 – 10 nm in the SWIR (1050 – 2500 nm), respectively. It is a Swiss-Belgian 

development on behalf of ESA and has been introduced in 2009. It is operated by VITO and the RSL at the 

University of Zurich (Schaepman et al., 2015).  

 
6 Distance information on this page is based on the swisstopo online map (map.geo.admin.ch) or derived from the imaging 
spectroscopy data directly (pixel count based calculation of the Irchel pond surface area using the defined binary mask) . 
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The APEX imaging spectrometer was flown with a Cessna at an altitude of 6.5 km with heading 062° for the 

first flight strip and providing data with 2.6 m across-track GIFOV for the Irchel location. Over the Greifensee 

location, the flight level was at 5 km with heading 324°, resulting in the highest spatial resolution with 2.1 m 

GIFOV that could be acquired of the plastic test areas. Since pixel sizes in across-track direction are given by the 

above-ground altitude and in along-track direction by the flight speed over ground (and sensor technology), the 

resulting pixels are rarely square (Hueni et al., 2017). They were georectified and spatially resampled, resulting 

in pixel sizes for both locations of 2.0 m with an assumed geolocation accuracy of +/- 1 pixel. Radiometric 

calibration of the raw data to radiances generated level-1 data, which were exclusively geocoded on request. The 

reason for this was its intended use because atmospheric correction models often employ a “dark pixel approach” 

for water surfaces which might eliminate meaningful spectral details (Goddijn-Murphy et al., 2018; Emberton et 

al., 2016). The underlying assumption of this black pixel approach, initially made for clear ocean waters and 

ocean colour satellite applications, is that the ocean is optically black in the NIR where values of water leaving 

radiance only contain atmospheric aerosol and ocean surface effects (Emberton et al., 2016; Siegel et al., 2000). 

While this approach, “thought to be accurate to within ~5%” (Siegel et al., 2000) may be valid for certain 

applications, it is “rarely valid for waters with significant particulate” (Bailey et al., 2010) and would very likely 

hide the signal from floating plastic. Therefore, atmospherically uncorrected data would be needed (Goddijn-

Murphy et al., 2018). 

 By default, the radiance data were converted to bottom-of-atmosphere reflectance level-2 data (more 

precisely: to HCRF) using the ATCOR4 atmospheric correction software (Hueni et al., 2017). This algorithm 

applies interpolations to bands of the atmospheric water vapor absorption regions around 940, 1130, 1400 and 

1900 nm and generally to bands with low signals (Richter and Schläpfer, 2016). For both the georectification 

and atmospheric correction steps, the digital elevation model “swissALTI3D” with a 2 m grid cell size was used 

(Hueni et al., 2017).  

2.2.2 AVIRIS-NG airborne data 

NASA's Next Generation Airborne Visible Infrared Imaging Spectrometer (AVIRIS-NG) was developed by 

JPL at the California Institute of Technology as a successor of the AVIRIS spectrometer. Weighting 465kg7, this 

pushbroom mapping instrument is based on an Offner spectrometer design and measures reflected light in the 

spectral range from 380 - 2510 nm with 480 continuous bands at a spectral resolution of 5 nm ± 0.5 nm 

(Thompson et al., 2018a). 

The AVIRIS-NG sensor was flown on the Beech B200C Super King Air aircraft at a speed of 315 km/h over 

the Irchel location the same day and also during the same midday hours as APEX, but at a lower flight level. 

This sensor also acquired the data over the Hallwilersee location on a windy day when occasional clouds blocked 

the view down to the targeted surface area. One advantage of this carefully selected location was that it was to be 

captured by two overlapping flight strips. And because of such clouds, the planned flight strips had to be covered 

twice, which finally resulted in a total of 4 images of the target location. Due to the sensor’s different IFOV 

(compared to APEX), the GIFOV and thus the spatial resolution resulted in a image pixel size of 4.1 m for the 

Irchel location and slightly higher with 4.0 m for the Hallwilersee location. All these flights were made in an 

east-west direction. 

 
7 https://avirisng.jpl.nasa.gov/specifications.html 



 

 

25 

Data 

An alternative to conventional atmospheric correction is applied for the AVIRIS reflectance data product. 

The method is based on the ATmospheric REMoval (ATREM) algorithm (Thompson et al., 2015), a combined 

model of atmospheric scattering, absorption, and surface reflectance based on probabilistic model inversion 

theory. It achieves overall reflectance errors of 1.0% (Thompson et al., 2018b). 

2.2.3 Sentinel-2 satellite data  

ESA’s Sentinel-2 is a wide-swath, high-resolution, multi-spectral satellite mission which involves a 

constellation of two polar orbiting satellites (Sentinel-2A and Sentinel-2B) in the same sun-synchronous orbit, 

offset by 180°. With a wide swath width of 290 km, this constellation results in revisit times of 2 – 3 days at 

mid-latitudes. Its optical instruments sample in 13 spectral bands with spatial resolutions of 10 m, 20 m, and 60 

m for selected bands8. 

While the spectral band configuration is designed for land applications, its overall spectral and spatial 

resolution characteristics make it one of the most promising – however not ideal – operational satellite for the 

detection of floating plastics. Data acquisition over the oceans, however, is only provided for coastal waters, 

enclosed seas (such as the Mediterranean) and other specified regions (European Space Agency, 2015). Despite 

the fact that there is little prospect of a successful plastic detection due to the spatial and especially the spectral 

resolution of these satellite data, Sentinel-2 data is considered here as well. This is due particularly to the lucky 

fact that on two of the experimental days, these satellites flew over Switzerland in their orbit at noon. 

Level-1C imagery was downloaded for analysis from the ESA’s Copernicus open access hub 

(scihub.copernicus.eu). This data contains top-of-atmosphere (TOA) reflectances in cartographic geometry and 

is provided in tiles of 100 km *100 km spatial extent. For the area of central Switzerland, covering the deployed 

plastic test areas at the Irchel and Greifensee locations, the relevant tiles are 32TMT. Standardized radiometric 

and geometric preprocessing steps are applied on Level-1C products. Radiometric processing includes 

radiometric correction and a dark signal correction. Geometric processing includes ortho-rectification based on a 

digital elevation model, and spatial registration on a global reference system (in UTM/WGS-84 projection) with 

sub-pixel accuracy (European Space Agency, 2015). 

2.2.4 Auxiliary data 

Furthermore, on all experiment days in the Irchel park, RGB pictures were taken with drones from low 

altitude (approx. 100 m). These images of the setting, taken from a bird's eye view in high spatial resolution, 

were mainly used to ascertain the exact geolocations of the test field corner points (Section 3.1.1) and to 

determine PET area fractions of the test areas on the water (Section 3.5.1). 

For the test area corner positions on the lakes, GPS data were acquired directly in the field using a handheld 

GPS (Trimble GeoXT on Hallwilersee and Garmin Oregon 600t on Greifensee) from the kayak. These positions, 

acquired in the standard map projection WGS-84, were later converted to a vector file and used as geometric 

overlay information in various methods applications. The vector file was generated using the Point Collection 

tool and importing point data from the GPS’ ASCII-file in ENVI. 

Standardized field reference measurements with the ASD-3 fieldspectrometer were routinely carried out on 

selected surface types during the overflights for cross validation. In addition, field measurements were acquired 

 
8 ESA’s Sentinel mission online portal: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (last accessed 25.08.2019) 

https://sentinel.esa.int/web/sentinel/missions/sentinel-2
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in the Irchel park in order to obtain some reference spectra which could be useful in the context of the present 

work. 

The targets selected were a minimally reflective black plane, 90 of the PET bottles used during the 

experimental setups, and the water body of the Irchel pond. All bottles were arranged to create 100% surface 

coverage. The black plane was used as a base to prevent reflective fractions of the lawn. Reflectance of this 

plastic target was then measured both on land and floating with both dry and wet surfaces on the water. The 

surface roughness of the water was also of interest. The smooth surface of the water was measured as well as 

small waves caused by water treading, which led to changes in the surface geometry. 

Since field spectroscopy is based on relative measurements of target and reference panel radiance, a tripod 

with bubble level was used to horizontally adjust the white Spectralon reference panel, and reference 

measurements were taken systematically before and after target measurements, ensuring that the reflectance 

panel completely fills the FOV of the spectrometer (Milton et al., 2009; Milton, 1987). For each target, a series 

of 30 measurements in vertical direction were taken applying the sweep sampling scheme while keeping a 

distance of 1 m between sensor and target. Ideally, the operator should wear cotton clothing, take a position 

perpendicular to the solar principle plane and keep at least one arm's length away from the target object (Hueni 

et al., 2017). For the measurements on land these specifications could be easily met, but for the measurements of 

dry and wet floating PET bottles as well as the smooth and agitated water surface, these specifications - standing 

in cold water on uneven ground and loaded with the ASD spectrometer -were only partially feasible. 

The ASD binary files were then imported into the SPECCHIO9 spectral database at RSL and automatically 

calibrated from DN to radiance (Hueni et al., 2009). Relevant metadata such as location and target descriptions, 

sensor and sun geometries, and atmospheric conditions were added. Interchannel radiometric steps between the 

ASD spectroradiometer’s spectral detectors due to temperature result in radiometric miscalibration (Hueni and 

Bialek, 2017). To compensate for these radiometric steps in the wavelength regions of 1000 and 1800 nm, a 

correction model was developed and provided as a MATLAB tool by Hueni and Bialek (2017). This function is 

also integrated in SPECCHIO’s reflectance calculation tool and was applied prior to reflectance calculation. 

In the context of the LSMD Demo Day 2018, data acquisition over the test setting at the Irchel location was 

planned as “Ocean Plastic Experiment”. Using the Zeppelin NT as research platform, the plastic targets were 

imaged by a NanoHyperspec camera from two flight levels at 150 m and 300 m AGL, resulting in pixel sizes of 

6.3 and 12.6 cm, respectively. This hyperspectral camera was mounted on a gimbal system which was installed 

on the outside of the passenger cabin before the flight. 

2.3 Resulting data pool  

The most relevant datasets for this thesis consist of aerial imaging spectroscopy data (AVIRIS-NG and 

APEX), acquired during the RSL summer flight campaigns 2018 over temporary installations of floating plastics 

with varying predefined surface densities. In addition, spaceborne data were acquired from the Sentinel-2 

multispectral ESA satellites when orbiting at the same date over the experimental test areas.  

Data products that were used for data analysis in this work comprise both Level-2 reflectance and Level-1 

radiance images from both image spectroscopy sensors, and Top-of-Atmosphere reflectance (Level-1C) products 

of the Sentinel-2 satellites. Spectral reference measurements from the laboratory and the field were added 

supplementing. 

 
9 SPECCHIO Spectral Information System: www.speccio.ch (last accessed 20.09.2019) 

http://www.speccio.ch/
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Unfortunately, it was only at a late stage when our suspicion was confirmed that the high-resolution data 

collected during the unique experimental zeppelin flight were faulty due to a malfunction of the gimbal system. 

This mechanical system should have continuously orientated the attached NanoHyperspec sensor precisely 

downwards during the irregular three-dimensional airborne platform motions (rolling, pitching and yawing) in 

order to ensure constant acquisition geometry during the flight. Therefore, the promising hyperspectral dataset 

with extremely high spatial resolution was of no practical use for evaluation. 

Together with the collected field data both during the flight missions and separately – to obtain further 

typical plastic and water spectra as reference values – the data pool used for this study comprises a solid 

diversity with different spatial and spectral resolution. The table below gives an overview of all remotely sensed 

data of the PET test installations. Those entries which are highlighted in bold have been used for the following 

analysis.  

 

Table 2-1: Remotely sensed data sets acquired over the PET test installations. Flight and sensor parameters 
were taken from the corresponding data header files, from in house mission documents, or were computed10. 

 

 

 

 

  

 
10 Illumination parameters were calculated using the online tool by NOAA and compared with the image product metadata 
where provided. (https://www.esrl.noaa.gov/gmd/grad/solcalc/azel.html). The satellite speed was calculated with the orbit 
time of 100 minutes, then rounded for easy comparison. . 

date time 

(local)

location solar 

zenith [°]

solar 

azimuth [°]

platform speed 

[km/h]

altitute 

AGL

pixel size 

[m]

sensor spectral range spectral 

bands

11.06.2018 11:00 Irchel 52 117 UAV ~ 30 ~ 100 m (cm) RGB camera 380 - 2510 nm RGB

27.06.2018 12:07

12:16

12:55

13:04 

Hallwilersee 61

62

65

65

139

142

161

166

airplane 315 4.5 km 4 AVIRIS-NG 380 - 2510 nm 425

01.07.2018 12:10 Irchel 61 140 airplane 260 6.5 km 2 APEX 372 - 2540 nm 334

01.07.2018 12:50 Irchel 64 158 airplane 315 4.5 km 4.1 AVIRIS-NG 380 - 2510 nm 425

01.07.2018 12:20 Irchel 62 144 satellite 27'000 786 km 10 - 60 Sentinel-2A VIS - SWIR 13

01.07.2018 11:45 Irchel 58 130 UAV ~ 30 ~ 100 m  (cm) RGB camera VIS RGB

24.07.2018 12:35 Greifensee 60 152 satellite 27'000 786 km 10 - 60 Sentinel-2B VIS - SWIR 13

24.07.2018 14:05 Greifensee 62 196 airplane 260 5 km 2 APEX 372 - 2540 nm 334

11.09.2018 11:20 - 

11:50

Irchel 41 142 zeppelin 18 150 m

300 m

6.3 cm

12.29 cm

Nano-

Hyperspec

400 - 1000 nm 270

11.09.2018 11:15 Irchel 39 137 UAV ~ 30 ~ 100 m (cm) RGB camera VIS RGB

Acquisition date Illumination Sensor characteristicsFlight parameters
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3 METHODS 

According to the explorative character of this study, this methods chapter contains successive analytical 

parts, starting with basic data analysis steps and progressively aiming at more specialized information extraction 

methods designed for  imaging spectrometer data analysis. In the last subsection, differences between the 

evaluated test settings compared to the optical conditions, which are to be expected in more realistic situations at 

sea, will also be addressed. 

During this explorative process, some of the most often used analytical methods in remote sensing are 

discussed and applied on varying imagery, while the focus always remains on the previously stated research 

questions. The chosen methods essentially cover three selected elements of data comparison: spectral similarity, 

material-specific absorption features, and subpixel fraction evaluation based on spectral mixture analysis. 

However - and this design might differ slightly from comparable reports - an additional objective of this thesis is 

to provide an insight into the nature of remotely sensed imagery to the reader with little previous expertise in the 

field. This is in particular the reason for the true colour visualisations of the data subsets in this chapter. 

 

 

Figure 3-1: Methods overview: The three selected elements of data comparison are emphasized in yellow, 
green, and orange, while the chapters structure follows the working process with increasing specialization in the 
applied methods. 

3.1 Data preprocessing and quality assessment 

Prior to image evaluation, some basic preprocessing steps were applied. These include in particular the 

definition of spatial subsets for the test areas contained in the high volume imagery. Subsequently a basic image 

quality assessment was performed on all image subsets, mainly to ensure that the data would not contain any 

technical issues. Furthermore, another preparatory step included MNF data transformation, since some algorithm 

use noise-reduced MNF data as input. 

3.1.1 Data preprocessing 

First, image geometry operations were applied to the selected data products. For the Irchel location, spatial 

subsets, containing all available spectral bands, were defined with equal side lengths of 200 m (205 m for the 
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AVIRIS-NG data) for each of the provided imagery. Due to different pixel sizes, the resulting subsets contain 

400 pixels (S2, 10 m pixel size), 2’500 pixels (AVIRIS-NG, 4.1 m pixel size), and 10’000 pixels (APEX, 2 m 

pixel size), respectively. During baseline preprocessing, AVIRIS-NG products remain orientated in their flight 

line direction. Thus, they generally are not north-oriented but come with a defined rotation angle. Image 

rotation (70.0 ° clockwise, according to the rotation angle of -70.0 °) was applied to this data in order to have all 

images (and pixels) in the same orientation for easier comparison.  

For the satellite data, a resampling to 10 m spatial resolution was necessary for all bands except for bands 2, 

3, 4, and 8 of the downloaded data tiles prior to layer-stacking and spatial subsetting. The bicubic upsampling 

method was chosen, and these steps were all performed using ESA’s SNAP software tools. 

Masking: The focus in data processing here is on the water surfaces. In order to exclude all land areas from 

further analysis, binary water masks were created for each of the image subsets, using the ENVI Build Mask tool 

(Figure 4-1). These masks were defined based on the pixel values from one single image band. For the APEX 

reflectance data, band 71 (with 744 nm central wavelength in the NIR range) was chosen to separate land from 

water pixels. The data value range for water pixels was defined from 0 to 1000 after investigation of the pixel 

values on the edges of the water body. This threshold implies that water reflects only up to 10% of the irradiance 

at this wavelength (percentage values result from rescaling the reflectance values with the scale factor inherent in 

the data product). For the AVIRIS-NG data, band 75 (747 nm) was chosen to define reflectance values from 0 to 

0.085 as water pixels. For the Sentinel-2 satellite image, only four of the 13 bands have an original pixel size of 

10 m, with band 8 being the suitable band in the NIR, allowing for easy separation of land and water surface 

pixels. The reflectance value range from 0 to 1100 was defined as water pixels.  

Irchel test field corner position determination was done based on a drone image (Figure 3-2 (a)) through 

application of an image geocoding approach using a geometric (polynomial) approximation model11. Ten control 

points were defined at well identifiable positions (e.g., crossroads, bridge centre point) in the image, and 

reference point coordinates were determined manually on the basis of the detailed Swiss Map 

(map.geo.admin.ch). The geometric model was then solved with the defined control points using the nearest-

neighbour resampling method. Based on the resulting geocoded image, the test field corner positions were then 

determined and stored as vector point data. All these steps were applied using the ERDAS Imagine 2014 

software. 

The available imagery from the Greifensee test site was preprocessed accordingly. From the APEX radiance 

data, two square subsets were defined with side lengths of 100 m (50 pixels) and 800 m (400 pixels), 

respectively. The smaller subset covers only water surface containing the three PET test areas. The larger subset 

also covers the lake shore and nearby land areas. A binary water mask was created for the latter one, based on 

band 100 (983 nm) where values < 10 were used to select the water area. In this case, the shore zone was also 

masked, and smoothing was necessary, using convolution (median filter with a 5x5 window size) and 

morphology filtering (dilate option) as additional steps. Here, the satellite reflectance data were subset to the 

same areal extents as the APEX data, resulting in images of 10x10 and 80x80 pixels, respectively. For mask 

definition, values < 1000 from the satellite’s band 8 were selected. Accuracy for both masks was verified using 

ENVI’s Window Overlay function with 50% transparency. GPS positions of the test area corners were measured 

and converted into a vector layer, as described in Section 2.2.4. 

 
11 This approach is based on exercise 6 within the framework of the lecture «Geo233 - Übungen zu Grundlagen Fernerkund-
ung» at RSL / UZH, 2014. 
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The available imagery from the Hallwilersee test site was preprocessed similarly. A larger square spatial 

subset with 100 pixels on each axis was considered ideal, resulting in 10’000 pixels. This subset covers an area 

of 400 m x 400 m due to a slightly lower flight level (compared to the Irchel location) and resulting AVIRIS-NG 

pixel size of 4.0 m. Image rotation was applied again, but the vegetated shore zone was not masked, as all 

intended algorithms are expected to deal with such land areas as well. Again, the acquired GPS positions of the 

test area corners were converted into a vector layer. 

3.1.2 Initial image quality assessment 

A basic image quality assessment was performed on all image subsets. Visual comparison of these PET test 

area positions with the derived corner positions of each test field was done for all georeferenced images (the 

AVIRIS-NG radiance image of the Irchel location is the only one not georeferenced). Geometry accuracy is 

regarded an issue only for the satellite data, since the brighter patches of the PET test areas were identifiable in 

the high resolution data visualizations.  

Regarding radiometric accuracy, qualitative band examination was done, using the animation function 

provided in ENVI for the  imaging spectroscopy data. The focus here was to find whether serious artefacts or 

faulty spectral bands are present in the data. In addition, visual examination of the water areas, using colour 

composite image subsets, was done to verify that no cloud or sun glint artefact is obstructing the locations of 

interest. While geometric and radiometric quality can be easily estimated from in the high resolution images, 

quality assessment for the satellite data was rather limited to statistical band information. At this point, no further 

statistical band examination was done, since the main focus of this qualitative assessment was in obtaining a first 

general usability estimate of the imagery at hand.  

As it turned out, the APEX reflectance data of the Greifensee location contains further artefacts along image 

lines within the subsets. For this added reason, the APEX radiance data were used for subsequent analysis steps 

only. A radiometric comparison of the image values with field measurements would have been a further, sensible 

step to evaluating the image quality. Unfortunately, no field reference values of the water surface were acquired 

accordingly, which would have allowed the most relevant comparison for the data subset of the test areas. 

For the Hallwilersee location, 4 datasets were acquired in total. Thus, a first quality assessment step consisted 

of selecting the most suitable image for the subsequent evaluations. While two of the pictures were affected by 

clouds and shadows, the other two seemed suitable without unwanted artefacts in the area of interest. Finally, the 

dataset was selected where the pixels of the test areas were slightly better identifiable using histogram stretching 

as shown in Figure 3-5 (b). Thus, the geometry accuracy of the GPS points could be checked visually for this 

location as well. 

3.1.3 Data transformation 

Data transformations aim at reducing redundancy in multispectral image data by compressing the information 

content into fewer bands (Lillesand et al., 2008). In addition to reducing computational effort, the main 

advantage lies in the noise suppression which is achieved by decorrelating noise and image content and omitting 

resulting noise bands in subsequent analyses  (Kneubühler et al., 2007). Principal Component Analysis (PCA) is 

one of the most widely applied statistical methods for dimensionality reduction. While there exist various 

versions of this powerful statistical tool, the standard PCA is a non-spatial approach that is applied to raster data 

and on the attribute space only (Demšar et al., 2013). The resulting Minimal Noise Fraction (MNF) bands 



 

 

31 

Methods 

contain decreasing variance, hence the highest image variance is contained in the first bands. Therefore, only 

those MNF bands containing image information can be used with increased computational efficiency in 

subsequent analysis.  

Although this technique primarily distinguishes the most basic image categories and therefore does not seem 

to be suitable for the detection of small amounts of plastic components in mixed pixels, in the framework of the 

chosen explorative approach, the method was applied anyway. The reason is that possible findings could be 

useful with regard to very large scale data products where efficient analytical methods are crucial. MNF forward 

transformation was applied on the masked APEX radiance subset image, using the corresponding ENVI software 

function. The smaller subset could not be used as its number of pixels is too small for statistical calculations. 

3.2 Basic image evaluation 

The main goal of this subsection is to assess whether the acquired data products can be expected to form a 

useful quality data basis for this research. The focus of this subsection lies on the following points: 

¶ Location: Data from the Irchel location are used for basic visualisation and comparison, since this is the 

only location where data of the same floating plastic installation could be obtained by all three sensor 

types (satellite and airborne) at the same day during midday. 

¶ Sensors and data products: Reflectance products are in focus here, since they represent the common 

data product type used for spectral image analysis. They are available for all three sensors in differing 

spectral and spatial resolution. In addition, imaging spectroscopy radiance data is consulted for basic 

product level comparison. 

¶ Methods: The applied methods include visualisation and visual enhancement approaches.  

Common basic image analysis methods can be grouped based on the dimensionality of the spectral data 

involved: An image dataset can basically be analysed (i) using only one spectral band (e.g., binary mask 

definition, density slicing), (ii) using two or three spectral bands (e.g., indexing, colour visualisation), (iii) using 

all available spectral bands, (iv) or by taking the spectral curve characteristics into account. In this first methods 

subsection, (i) is applied for binary mask definition of the water surface area within the spatial data subset 

images, (ii) is applied for true colour and false colour image representations, and all spectral bands (iii) are 

relevant for spectral profile visualisations. (iv) is addressed by more specialized methods and will be considered 

in later sections.  

Figure 3-2 below contains RGB representations of the drone photo, the satellite image, and both airborne 

images of the APEX and the AVIRIS-NG sensors. While the drone image does not cover the full spatial extent 

of the subset images, its very high spatial resolution gives an impression both of the floating PET nets - which 

are of primary interest here - and of the greenish water colour as it appeared to the human eye on that hot 

summer day of data acquisition. The unequal spatial resolution of the images make the most obvious difference. 

Different brightness levels, on the other hand, are merely a display effect, resulting from the average brightness 

values of the original large datasets.  
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Figure 3-2: RGB visualisations of the image subsets over Irchel Pond. (a) shows the drone image taken over the 
relevant part of the pond shortly before airborne image acquisition (courtesy Dr Hans-Christian Koch). (b) 
contains Sentinel-2 data (R: band 4, G: band 3, B: band 2), (c) the APEX reflectance data (R: band 40, G: band 
17, B.: band 6) and (d) the AVIRIS-NG reflectance data (R: band 54, G: band 36, B: band 18). Map coordinates 
(WGS-84) are indicated for all subset corner positions, based on the relevant image header information. 
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3.2.1 Spectral and spatial profiles 

Spectral profiles contain the image values of all spectral bands for one single pixel. In order to provide an 

overview on the available data, reflectance and radiance spectra from all image subsets were collected in groups 

(according to the manually defined regions of interest (ROI’s) in ENVI) and exported from the imagery as 

ASCII files for further evaluation in MATLAB. Spectra were selected from the three PET test areas as well as 

from the surrounding pond water surface while avoiding the very shallow shore zones. 

Regarding the satellite data, unfortunately it was not possible to specifically select the single image pixels 

covering one of the test fields each, as the pixel boundaries meet in the middle of the PET test fields with the 

result that many of the water pixels contain a fraction of the plastic signals. Still, with a simple approach in an 

attempt to find those pixel values that are most likely covering floating plastic areas, the satellite image subset 

was rescaled to a pixel size of 5m. Thus, 3 - 5 small pixels could be selected per test field, from which the mean 

vector was calculated. For the APEX data, over 20 pixels were selected per field, while there were only 4 – 6 

pixels per field for the AVIRIS-NG data, due to different pixel sizes. Selection in all cases was based on the 

central location within the pound as well as on the brightness differences visible in the imaging spectroscopy 

image displays, rather than on the vector corner point coordinates. 

Therefore, in order to focus on the "typical” spectra, only the calculated mean values per group are displayed 

in the spectral profile visualizations (Figure 4-3 and Figure 4-4). Reflectance values were all rescaled to the 

range of 0 – 100%. For reasons of completeness, radiance spectra were also considered.  

Spatial profiles can be defined along a user-specified line in a single-band or 3-band composite image in 

order to extract brightness values of the pixels along this line (Jensen, 2016). This was done for the APEX 

reflectance image because of its smallest pixel size where the defined line across all three PET test areas touches 

the largest number of pixels. This was done using ENVI’s Arbitrary Profiles Tool  (Figure 4-5). The most 

important purpose of this visualization is to make a gradient (better) visible across the different PET abundances, 

while the consideration of accurate distance calculation is less important in this case. A distance calculation 

based on pixel counts would be distorted due to the stepped nature of the defined transect with an inclined angle 

to the image geometry. 

3.2.2 Image enhancement approaches 

Many methods exist to visualize pixel information contained in a multilevel image dataset. During a first 

investigative data assessment, many of them (histogram stretching and density slicing; grey colour, true colour 

and false colour displays) were applied. In Figure 4-6 a selection of these visualisations is presented to illustrate 

a few commonly used methods and to highlight some obvious image features. For most of these steps, the 

masked subsets were evaluated. The APEX band for the grey colour display was not chosen randomly but 

calculated using ENVI’s Spectral Math Tool: Two image pixels were selected, representing (brownish-green) 

water and the mixed signal of the PET test field with the highest plastic abundance. The calculated difference of 

these two spectra was then analysed to find the wavelength position where the two spectra show the largest 

difference over the whole spectrum. The spectral band representing this wavelength position was then histogram 

stretched to enhance its variability for the water surface. 
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3.2.3 Outline 

This first part is not aimed at answering any of the research questions yet. But it provided some first image 

characteristics that are promising for further analysis steps of the APEX and AVIRIS-NG imagery. These 

include the visible brightness differences and even some scaling effect in the RGB visualisations where the PET 

bottles are afloat.  

However, the limitations of a multispectral satellite band configuration for our target of interest is obvious. 

This is a first indication towards answering research question (3) about spectral sensor resolution requirements. 

Also, unwanted effects (missing band information or band interpolation in atmospheric absorption regions as 

well as water leaving radiance approximations) due to atmospheric correction algorithms might advocate the 

analysis of radiance images rather than the usual reflectance images. This evaluation corresponds to the latest 

research literature on this question (Garaba and Dierssen, 2018; Goddijn-Murphy et al., 2018). The small pond 

area is also seen as no ideal location due to adjacency effects and very shallow depth, resulting in most 

inhomogeneous water pixels in all images.  

3.3 Discrimination approaches 

The reasons for this subsection – prior to the  imaging spectroscopy data analysis approaches in focus – are 

twofold: First, in the framework of this explorative study, it was considered important to evaluate the level of 

detail inherent in the acquired data, as well as finding what clusters are most obvious from a 

mathematical/statistical point of view. This seemed all the more appropriate in view of the fact that the 

evaluation of water surfaces and at the same time of small hyperspectral signal differences is a type of data 

investigation in which no previous practical experience had been gained. And second, only for imagery (sensor, 

processing level) where these methods reveal significant differences in the relevant water pixels, further analysis 

steps will be advisable.  

Thus, the guiding question in this method subsection is about finding differences in airborne (or even 

satellite) imagery between water areas with small abundancies of floating plastic and surrounding water surfaces. 

In this methodical subsection, the focus lies on the following points: 

¶ Location: Data from the Greifensee location are of priority in this subsection, because the two available 

datasets acquired over the floating plastic installation here contain highest variability in both spectral 

and spatial resolution parameters. In addition, good visibility and very little wind at time of data 

acquisition were the favourable environmental parameters for a best possible starting position.  

¶ Sensors and data products: The APEX radiance data, geocoded and resampled to a 2 m pixel size, is 

analysed and compared to the multispectral Sentinel-2 satellite Level-1C reflectance product with a 

resampled pixel size of 10 m for all bands.  

¶ Methods: Common image analysis and classification techniques are applied here, subsequent to the 

basic visual methods. These techniques are for automated information extraction from remote sensing 

data and were designed originally for multispectral imagery, thus they are not particularly designed to 

extract subtle features in continuous spectral signatures. These methods primarily aim at finding 

statistical differences and clusters in the data, and for unsupervised algorithms, the expected results 

generally cannot yield information on specific (plastic) surface materials. For supervised approaches, 

ground reference information about the precise location of the PET test areas is used for reference pixel 
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specification. In addition, theoretical findings from scientific literature are included. This applies in 

particular to specific absorption features in the spectrum of plastic materials, which form the basis for 

the Hydrocarbon Indices. 

¶ Research focus: Discrimination analysis can only be an intermediate step towards more specific 

answers about the detectability and identification of floating plastics. It is likely, however, that this step 

already means end of the line with regard to satellite data, which is why initial results about spectral as 

well as spatial sensor resolution requirements can be expected here. In addition, the application of the 

Hydrocarbon Indices will show whether this approach can be applied at all to very small signal 

fractions, since no such information was found in the literature. 

 

Figure 3-3: RGB visualisations of the Greifensee location. (a) shows the APEX radiance values of the spectral 
bands 8 (blue), 18 (green) and 43 (red). The Sentinel-2 true colour reflectance satellite image shows bands 2 
(blue), 3 (green) and 4 (red). The zoomed details of the APEX (c) and Sentinel-2 (d) subsets are overlaid with the 
corner positions of the PET test fields. 
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The spatial subsets of the data from both the APEX hyperspectral and the Sentinel-2 multispectral satellite 

sensor, both acquired within less than 2 hours over the same plastic test fields at the Greifensee location are 

presented in Figure 3-3. These true colour representations provide a first impression especially of the spatial 

resolution inherent in such imagery. The “true” colour of the lake however was a greenish-blue to the human 

eye, thus a colour just between the two appearances in these images. Quite astonishingly, the PET test areas are 

distinguishable even in the unmodified APEX RGB image. Close to the tiny delta (bright due to a bright gravel 

surface), a floating raft of plastic material is also distinguishable in the APEX image. The two “cloudy” patches 

further north over the water originate from a campfire. These smoke clouds were not noticed at the time of the 

satellite overpass. The striped pattern in the APEX data are precisely coherent with the flight path (southeast to 

northwest). They represent an unwanted but well-known sensor artefact that cannot be completely eliminated 

during processing (Rogass et al., 2012). The enlarged sections show the water area where the three PET test 

fields were deployed (location highlighted by red rectangles in the subset images). For Figure 3-3 (c) and (d), 

linear histogram stretching was applied on each spectral band for contrast enhancement. 

3.3.1 Clustering 

When choosing a classification method, essential considerations always play a decisive role, such as: What is 

the nature of the problem? What are the characteristics of the study area? What is known about the class(es) to 

be identified, including their distribution in the image (Jensen, 2016)? In the present case, the aim is to apply a 

simple unsupervised algorithm for target discrimination based on data statistics only, with the main objective to 

establish whether there is a statistical pattern inherent in the imaging spectroscopy data that would allow to find 

specific similarities in those pixels where the PET bottles contribute a small fraction to the spectral signal – in 

contrast to the surrounding smooth water surface where no other object was afloat at time of data acquisition. 

Furthermore: Is it possible to identify a scaling effect of the varying PET surface abundances?  

K-means is one of the most common clustering methods in remote sensing and a common approach used in 

image analysis (Richards, 2013). It is an iterative optimisation algorithm, based only on data statistics aiming at 

identifying pixels in an image that are spectrally similar. The only parameter the analyst needs to provide 

consists of the number of clusters to which the image pixel vectors are to be assigned. In a “typical” 

classification task, this information may be gained from visual image interpretation, ideally combined with prior 

knowledge on the typical land surface categories present at the image location. For our location with the small 

floating PET bottles setup, however, the image features of interest are restricted to these differently small surface 

fractions of plastic. 

The data were clustered using the k-means functionality in ENVI. Regarding the ideal number of clusters for 

a best possible result, the k-means algorithm was run several times for varying number of clusters. Furthermore, 

the algorithm was run in a first evaluation series using all spectral bands. In a second evaluation series, only 3 

image bands were selected based on previous knowledge about specific wavelength positions around a known 

absorption feature of plastic materials. The APEX bands 183 (1667 nm), 190 (1728 nm), and 197 (1788 nm) 

were closest to the selected bands indicated in a successful mapping approach (Hörig et al., 2001). All results 

were generated after 3 iterations. The colours for visualisation were assigned randomly by the software.  

The classified images were then assessed, based on a manually defined “ground reference” file for which the 

GPS location information and visible brightness differences in the image were used. For this purpose, all 

resulting images of each evaluation series were stacked together with the reference file, exported into MATLAB 

and evaluated by an algorithm specially developed. The evaluation logic was intentionally adapted to the 
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peculiarities of this classification, as the focus was placed solely on the three test areas. Defining the three 

different PET abundancies of mixed pixels as separate classes contradicts the basic logic of such classification, 

and thus a standard quality assessment. Nevertheless, this approach was intentionally chosen here, as the 

advantages of the first insights seemed to outweigh the disadvantages. When interpreting the unusual accuracy 

assessments, however, it must be noted that the user accuracy was summarized in one class, because an error 

within different plastic abundancies should not be treated misclassified here. A selection of the k-means results 

together with the accuracy metrics is shown in Figure 4-7. 

3.3.2 Band ratioing and indexing 

Band ratios and indices allow to combine spectral information from two or more bands, using a 

mathematical expression which will be applied on every image pixel, known as ratioing (Prost, 2014). The 

resulting image contains the calculated values in one single band. The main advantage of band ratios is that 

brightness differences due to terrain or shadow effects within an image are ratioed away while the spectral 

information remains. This can be useful for discriminating subtle variations in the spectral properties of materials 

that are obscured by brightness variations (Lillesand et al., 2008). As an added benefit, ratios provide normalized 

values that enable comparisons between different image data.  

Indices are most useful when it comes to separating image features with well distinguishable spectral values 

in the selected bands. Many indices have been developed, most abundantly for vegetation analysis, and many are 

normalized indices based on ratios. Since plastic materials show specific absorption features with absorption 

maxima around 931, 1200, 1420, 1730 and 2310 nm (Cloutis, 1989; Hörig et al., 2001; Garaba and Dierssen, 

2018), indices have also been developed for identifying these materials.  

Although the 1730 nm feature is very close to a major atmospheric water absorption maximum, and radiance 

values are extremely low at this spectral range, the Hydrocarbon Index (HI1732) has been developed to be used 

for hydrocarbon material detection, similarly to the Normalized Difference Vegetation Index (NDVI) for 

vegetation identification and characteristics (Kühn et al., 2004). This first hydrocarbon index has been developed 

for HyMap bands at wavelengths 1705 nm, 1729 nm, and 1741 nm, usable with both reflectance and radiance 

data, and is claimed able to detect any hydrocarbon-bearing materials where HI values are > 0 (Kühn et al., 

2004). This includes most plastics. Plastic sheets, oil contaminated sand, and artificial grass could successfully 

be identified as hydrocarbons, but the index did not work for plastic roofs (Kühn et al., 2004). However, no 

specified lower limit of surface abundance was reported, nor was the index applied on water surfaces. The 

Hydrocarbon Index is, to our best knowledge, the only approach in remote sensing for plastic detection, 

documented in the scientific literature. 

╗◐▀►▫╬╪►╫▫▪ ╘▪▀▄● ╗╘  Ὑρχτρ  Ὑρχπυ  Ὑρχπυ  Ὑρχςω  (1) 

Applying a very similar index formula, another Hydrocarbon Index (HI1215) has been developed, using the 

absorption feature around 1215 nm with the AVIRIS radiance bands at 1197, 1215 and 1235 nm (Garaba and 

Dierssen, 2018). In this recent study, both Hydrocarbon Indexes were applied and showed “several man-made 

targets with moderate to strong concentrations of hydrocarbons or plastics” (Garaba and Dierssen, 2018). 

╗◐▀►▫╬╪►╫▫▪ ╘▪▀▄● ╗╘ ὒρςσυ  ὒρρωχ  ὒρρωχ  ὒρςρφ  (2) 
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Based on these two hydrocarbon indices documented in the scientific literature, a specific "PET Index" was 

newly developed for the present analysis. It takes into account the shifted material-specific wavelength position 

for PET. Although this new index is based on the aforementioned formulas, it was defined empirically on the 

basis of the AVIRIS-NG image radiance spectra (because of this sensor’s highest spectral resolution). Attempts 

to normalise this newly developed index have been made, but they have failed. 

╟╔╣ ╘▪▀▄● ╟▄◄╘ ὒρφςτὒρφφυὒρφχτ  ὒρφφυ   (3) 

The theory behind these indices – and the explanation why no normalization could be achieved – is sketched 

in Figure 3-4. The indices combine the values from three spectral bands, which would typically contain the 

values of the two absorption shoulders (local radiance maxima) as well as the absorption maximum of an 

absorption feature, as illustrated in (a). Considering the relative value differences (or ratios) between shoulders 

and absorption maxima allows for normalized index values where brightness differences are eliminated. 

However, the specific spectral curve properties of plastic and water which form the basis of the index calculation 

in this case show a different picture. The sketch (b) is based on the spectra presented in Figure 5-5 and the bands 

used for the Pet Index definition. It depicts the very small relative value difference between absorption maximum 

and shoulder. The more obvious difference in the two spectral curves is indicated as absolute value difference, 

because the effective radiance values of these bands are added to the Pet Index so that these absolute value 

differences highly add to the resulting index value. Finally, the theoretical justification of the initial Hydrocarbon 

Index is supplemented in (c). 

 

 

Figure 3-4: Index calculation theory: Absorption feature model vs. spectral curves of mixed plastic-water and 
water spectra. 

 

 

Equations (1) to (3) were calculated for radiance data using the ENVI Band Math Tool. APEX radiance 

bands with the nearest central wavelength to the suggested index bands were selected, as summarized below. In 

addition, for sensor comparison reasons and because of some promising first results, the same equations were 

also calculated for the AVIRIS-NG radiance Hallwilersee subset image (presented in the following Section 3.4) 

where slightly different wavelengths were selected. 
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Table 3-1: Selected bands for index calculations, including the ENVI Band Math formulas. For brevity, the band 
wavelength is noted without digits. 

 

 

No quantitative result evaluation was performed for these index results, as no obvious index value ranges 

were able to clearly separate the pixels containing plastic. It turned out that a possible classification based on 

index values (by means of density slicing) is highly dependent on the definition of the class boundaries, which 

will differ from image to image, especially when radiance data is evaluated as these indices are not normalized 

indices. For result comparison, however, density slicing was applied as defined in the table below. Colour 

density slicing is a method to map a range of brightness values to a single display value, thus to segment a scalar 

image into distinct classes, in order to highlight fine differences or make details apparent (Richards, 2013). 

 

Table 3-2: Defined index value ranges for selected density slice ranges of the APEX result images (shown in 
Figure 4-8). 

 

3.3.3 Supervised Classification 

Classification algorithms are often distinguished by the level of information provided by the analyst. While 

unsupervised classification (e.g., k-means clustering) is based entirely on statistical properties of the data, 

supervised classification requires training classes defined by the analyst or selected from ground reference areas 

with known surface material (Prost, 2014). Training classes are sets of pixel data vectors that are typical for the 

classes to be classified. Unclassified pixels are being compared to the training classes, and, depending on the 

algorithm applied, will be assigned to the spectrally most similar class. Supervised classification results therefore 

depend primarily on the definition and fitness of the training classes employed.  

Many different algorithms for supervised classiýcation exist. Commonly applied algorithms are: 

Maximum Likelihood, Minimum Distance, Parallel-piped, and Spectral Angle Mapper (ENVI, 2002). The 

widely used Maximum Likelihood algorithm requires a minimum number of reference pixels per training class 

because it uses covariance information (Richards, 2013). This requirement is not met by all the small PET test 

Index spectral range APEX bands AVIRIS-NG bands ENVI Band Math formula

HI 1215 1193 - 1235 nm

b1 = 133 (1194 nm)

b2 = 135 (1213 nm)

b3 = 137 (1233 nm)

b1 = 164 (1193 nm)

b2 = 168 (1216 nm)

b3 = 172 (1235 nm)

I=(float(b3-b1))*0.5 + b1 - b2

PET-I 1665 1623 - 1676 nm

b1 = 178 (1623 nm)

b2 = 182 (1658 nm)

b3 = 184 (1676 nm)

b1 = 250 (1624 nm)

b2 = 258 (1665 nm)

b3 = 260 (1674 nm)

I=b1 + b2 + (float(b3 - b2))

HI 1732 1702 - 1737 nm

b1 = 187 (1702 nm)

b2 = 190 (1728 nm)

b3 = 191 (1737 nm)

I=2*(float(b3-b1))/3 + b1 - b2

Index image Index result range

HI 1215 (b) ̶-0.147149 - 4.671032 ̶-0.20 - 0.04 0.10 - 0.12 2.30 - 3.80 cyan yellow red

HI 1732 (e) ̶-0.108471 - 1.701036 ̶-0.20 - 0.02 0.36 - 0.50 cyan red

PET-I 1665 (h) 0.469396 - 2.659658 0.00 - 1.53 1.53 - 1.60 2.20 - 2.70 cyan yellow red

PET-I 1665 (i) 0.700347 - 2.656569 1.25 - 1.50 1.50 - 2.70 1.53 - 1.80 yellow red orange

Defined density slice ranges Assigned colours
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areas. In the case of insufficient training class samples, the Minimum Distance algorithm can be applied since 

it does not need the covariance information. It calculates the minimum Euclidean distance from each pixel to the 

mean vector for each training class (ENVI, 2002). 

Minimum Distance Classification: Here we try to find the mixed-pixel areas solely on the basis of spectral 

similarities between mean reference spectra, selected from the image itself, and the image pixel spectra. Since 

the unsupervised k-means algorithm was able to discriminate between the test areas and the surrounding water, it 

can be expected that a supervised classification algorithm finds this distinction in the same data as well. 

Therefore, the main objective of this step is to find out whether different PET abundances can also be 

distinguished, even if no method specialising in mixed-pixel analysis is being applied. Here, too, the chosen 

method does not correspond ideally to the task at hand, because in principle, the reference classes should not 

spectrally overlap for this method (Richards, 2013). The three training classes of varying plastic abundance 

certainly overlap spectrally. In this explorative approach the algorithm has nevertheless been used, and certain 

knowledge of the material sought was taken into account additionally through the selection of input bands. 

Training classes: For the APEX radiance subset image, the location of the floating plastic is precisely 

known. Thus, training classes were defined from the three different target surface areas and from the surrounding 

water surface without plastic. Two sets of ground cover type classes were defined, manually applying a stratified 

random sampling scheme12:  

¶ The first set contains two classes, aiming at the only distinction between water and PET test areas. From 

all three test areas, the central pixels were selected to form one training class (30 pixels), while the water 

training class (30 pixels) contains pixels around the test areas at assumingly comparable mean water 

depths. 

¶ The second set contains four classes, where 12 pixels each were selected from the test areas to define 

(sub-) training classes with varying plastic abundance. The fourth class again contains surrounding water 

pixels. 

In theory, many considerations refer to the optimal size of training classes for algorithms without specific 

training class requirements. In the present case, however, there is little room for manoeuvre, since this is not a 

typical supervised classification task either, but rather an experimental application of a method that is not 

specifically tailored to low target abundances or even subpixel scaling issues. 

Input bands: For both training sets, the algorithm was run with varying input band combinations, using the 

ENVI functionality with standard settings to classify all image pixels (no standard deviation nor distance 

threshold was defined). For comparison reasons, the three single bands used in the k-means clustering (Section 

3.3.1) were selected for run 2. In this method, the Minimal Noise Fraction (MNF) bands were also used as input 

variants. However, this is the only (exemplary) evaluation based on this transformed image data because the 

results were below expectations. While the aim in the first runs is rather explorative, special interest lies in the 

four spectral regions of the known plastic absorption features. The spectral absorption feature ranges as defined 

in (Garaba and Dierssen, 2018) were used to define the band selections for run 5 – 8.  

 

 

 
12 Stratified random sampling involves two steps: First, the image subset is divided into the surface classes of interest. Then, 
a minimum number of samples per surface class is selected randomly (Jensen (2016). 



 

 

41 

Methods 

Overview of the input band selections for both training class sets: 

1.  All spectral bands (299 bands) 

2.  Selected spectral bands as in the k-means classification: band 183 (1667 nm), band 190 (1728 nm) and 

band 197 (1788 nm) 

3.  All MNF bands (299 bands). While input band reduction would be the goal using MNF bands, this run 

using no reduced data volume was intended for comparison with run 1 only. 

4.  Selected MNF bands, containing the most image information but omitting those bands containing mostly 

sensor artefact patterns (bands 6, 7, 8) and noise: MNF bands 1 – 50, except bands 6 –  8. 

5.  Absorption feature at 931 nm: bands 95 – 110 (880 – 980 nm range) 

6.  Absorption feature at 1215 nm: bands 125 – 144 (1100 - 1300 nm range) 

7.  Absorption feature at 1417 nm: bands 150 – 165 (1400 – 1500 nm range) 

8.  Absorption feature at 1732 nm: bands 181 – 200 (1650 - 1800 nm range) 

 

For assessing the accuracy of the algorithm results from both training sets, another MATLAB script was 

developed to analyse all runs together with the labelled test data sets and training classes, and to create the 

accuracy metrics visualisations. The evaluation logic was – as described in the k-means example (Section 0) – 

again adapted to the peculiarities of this unusual classification problem. The assessment results are presented 

together with the classification results in Figure 4-10 and Figure 4-11. 

3.3.4 Outline 

Both the unsupervised k-means and the supervised Minimum Distance classifications applied to airborne data 

in this subsection clearly demonstrated that a distinction between the plastic test surfaces and the surrounding 

water surface is indeed achievable even for the smallest PET abundance of approximately 1%. This is an answer 

to the research question (1) regarding the detection limit. However, the results are ambiguous, which can be 

explained in part by the inhomogeneity of the water surface along the shore, by lake depth variations, and by the 

observed sensor artefacts. Furthermore, it must be assumed that the differences found are predominantly based 

on differences in brightness and do not allow unambiguous indication of specific plastic components. 

As for the satellite data, indications towards answering research questions (2) and (3) regarding spatial and 

spectral sensor resolution requirements were found, however indirectly. But since the available test imagery does 

not cover larger spatial areas, and geometric accuracy did not allow any certain selection of the pixels containing 

the PET signals, no further evaluations of the Sentinel-2 imagery were carried out after a few pointless clustering 

attempts (not documented here in detail). At all, due to the limited spectral resolution (as visualized in Figure 

4-3), it was also not expected that the satellite data would provide any major surprises. 

The use of the established Hydrocarbon Indices showed disappointing results, whereby the assumption here 

is that the plastic abundance in the test data is insufficient for successful application. While this indication also 

points towards answering research question (1), a more elaborate evaluation method will be applied to the same 

plastic absorption features in the following subchapter, making use not only of single band values but also of the 

spectral curve characteristics. 
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3.4 Plastic identification  

In this method subsection the focus is now on plastic detection approaches, where methods of imaging 

spectroscopy are applied. These are analysis methods for high spectral resolution data containing continuous 

bands over the VIS, NIR and SWIR spectral ranges. In particular, these methods are specialized to enable 

information extraction in the sub-pixel range. Here, the focus lies on the following points: 

¶ Location: Data from both the previously presented locations are considered again. In addition, data 

from the Hallwilersee site are taken into account. They differ above all with regard to the weather 

situation: The test areas were exposed to wind (Beaufort 2 – 3) and waves, which is why the PET 

targets were wet or even partially submerged. Also, the water surface was agitated, resulting in small-

scale geometry variations of the air-water interface, making this test setup probably the most realistic. 

¶ Sensors and data products: Mainly L1 radiance data are analysed. These comprise two APEX image 

subsets (Irchel and Greifensee locations) with the highest spatial resolution, and two AVIRIS-NG 

image subsets (Irchel and Hallwilersee locations) containing the highest spectral resolution of the 

available imagery. 

¶ Methods: The chosen approaches in this subsection basically ground on two underlying ideas: First, 

two methods which take the most promising approaches from the previous subsection one step further 

are applied: The Spectral Angle Mapper (SAM) method focuses on spectral similarity, while the 

Continuum Removal (CR) algorithm focuses on specific absorption features. Second, the fact that the 

floating plastic targets make up only a tiny part of the corresponding pixel spectrum, mixed pixel 

considerations (e.g., SMA) must be a fundamental part of every more sophisticated approach. 

¶ Research focus: Now it’s about the detectability (and possibly mapping) of specific plastic materials, 

while abundance estimations and more realistic settings - wet targets and agitated water surface - are 

also evaluated. First indications towards answering research question (4) on environmental influences 

are expected here, while more specific results are expected with regard to the other research questions. 

The Hallwilersee test location differs from the other two in several points. The flight strips over the test area 

of this lake were overflown twice with the AVIRIS-NG sensor, and with two of the planned flight strips 

overlapping at the selected test site, this resulted in 4  imaging spectrometer images. The flight strip was flown 

twice because of cumulus clouds which blocked the view downwards on this rather windy day. This wind also 

made it difficult and very time-consuming to deploy the test areas on a lake at wind force 2 without prior 

practical experience. This is why only two of the three test fields could be installed during the morning prior to 

data acquisition. However, this test installation probably comes closest to reality at sea, because most of the 

bottles were constantly washed over by waves and were mostly wet - if not submerged - at the time of data 

acquisition.  

Important observations to this image subset below are: The test area is right at the outer edge of the image 

strips, which can be recognized from the (irregular) northern image margin containing zero values (black pixels). 

Furthermore, the bright shore areas can in principle be attributed to two causes: It is possible that a small cloud 

has covered this image area, or this is a sun glint effect. Sun glint effects are caused by direct specular reflection 

of sunlight off the water surface into the FOV of the sensor, resulting in an oversaturation of the pixel values that 

are manifested as extremely bright image areas. The factors affecting sun glint are acquisition geometry related, 

that is, the relative position of the Sun, the viewing angle of the sensor, and water surface geometry, since 

rougher water surfaces create more angles for the light to reflect off (Emberton et al., 2016). Avoiding sun glint 
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is regarded as a most important factor in optical remote sensing of water surfaces and can be avoided best by 

flying within 10° of the solar azimuth during data collection and by acquiring data only in a specific range of 

solar elevation between 30° and 50° (Miller, 2005). A sun glint effect is possible here since the ideal illumination 

geometry was narrowly missed. What the bright effect really is could be clarified or at least narrowed down by 

analysing the spectrum. However, this was not done because it is of no further relevance here. 

 

 

Figure 3-5: RGB visualisations of the AVIRIS-NG geo-rectified radiance image containing the Hallwilersee 
location. The subset is rotated, showing the image strip edge north of the experiment location (a) and the 
slightly shifted brighter PET test areas as compared to their measured GPS corner positions indicated by white 
cross symbols in the enlarged detail (b). Both visualisations are RGB true colour representations (R: band 54, G: 
band 36, B: band 18). 

 

3.4.1 Spectral Angle Mapper  

The Spectral Angle Mapper is a physically based algorithm, using an n-dimensional angle to match n-

dimensional image pixels to a reference spectrum in the same n-dimensions. It is therefore a comparable 

algorithm to the Minimum Distance classifier, however designed for  imaging spectroscopy data. And while a 

pixel value contains both a magnitude and angular direction, here, only its angular direction is analysed 

(Richards, 2013). This can be regarded as an advantage over the Minimum Distance classification, since 

brightness differences should not impact its accuracy. The spectral similarity is determined by calculating the 

angle between the spectra by treating them as vectors in a space with a dimensionality equal to the number of 

spectral bands. The smaller the resulting angle, the higher is the spectral similarity. While for each reference 

spectrum, a SAM output image containing the angle values originally results from the algorithm, it is possible to 

convert these output images into one classification map where all pixels are assigned to the class with the 

smallest angle, as long as the angle is below a specified threshold (Jensen, 2016; ENVI, 2002). 
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This supervised classification algorithm was applied extensively to all available radiance images. Since a 

threshold was defined for each evaluation, masking of the image subsets was not required. Reference spectra 

were derived directly from the images by manually defining so-called Regions Of Interest (ROI’s) in each of the 

image subsets, consisting of 20 – 30 and 4 – 12 pixel values each for the APEX images and the AVIRIS-NG 

images, respectively. These ROI’s contain all image pixels from the 3 PET test areas as well as a selection of 

surrounding water pixels with similar average water depths. For each image, the mean of these ROI’s were 

calculated in MATLAB and stored in the SPECCHIO database for repeated use (and evaluation). They were then 

imported into ENVI again as SLIB (spectral library) files and used as reference spectra for the algorithm. For 

classification, a specified maximum spectral angle threshold was applied: After evaluating the rule images of 

several threshold variations, a single threshold of 0.08 radians for all classes was defined. The class colours 

were manually assigned using the meanwhile standardized red, orange, and yellow colours for the PET test field 

abundances. In view of the result discussion, various factors were then varied: The maximum spectral angle 

threshold; the spatial subset area; and - analogous to the k-means and minimum-distance evaluations - the 

spectral range was constrained. 

For assessing the accuracy of the algorithm results, another MATLAB script was developed to analyse all 

results based on the reference images and to create the accuracy metrics plots. For the Greifensee location, the 

same reference image was used as for the Minimum Distance method. For the Irchel and Hallwilersee locations, 

reference images were derived based on the relevant vector files and distinguishable brightness differences in the 

histogram stretched images. The evaluation logic was – as described in the previous examples (Sections 0 and 

3.3.3) – again adapted to the peculiarities of this unusual classification problem. However, this time the user 

accuracies were evaluated for each of the PET abundancies separately, because here the exact allocation to the 

PET abundancy class, according to the reference pixel, is expected. This makes the result values less clear, but 

they allow differentiated assessments of the individual abundancies.  

3.4.2 Continuum Removal  

In the previous Hydrocarbon Index evaluation (Section 3.3.2), the only reference information on the plastic 

absorption features consisted in selecting certain spectral bands as input for the algorithm. Now, the shape and 

size of the (normalized) absorption features, as defined by the spectral curve in that relevant spectral region, are 

also taken into account. This relates to the method category (iv), as outlined at the beginning of Section 3.1. 

Therefore, while using the same spectral absorption region, better results can be expected here than with the 

index calculation. This advantage however requires spectrally continuous  imaging spectroscopy data, which is 

not a strict requirement for index calculations in general.  

Continuum Removal (CR) analysis is a method usually applied to L2 reflectance imagery (Jensen, 2016; Qu 

and Liu, 2017). It allows identification and comparison of individual absorption features and utilizes spectral 

data subsets of the relevant wavelength regions as input. This method enhances subtle absorption features and 

may improve separability of spectrally similar classes (Jensen, 2016), as is the case here for the mixed water and 

PET pixels of the test areas. Although this method is intended for reflectance spectra, it has also been 

specifically applied - for the very detection of floating plastic debris - on radiance data (Garaba and Dierssen, 

2018). Radiance data is preferable in order to avoid the loss of information by the usual atmospheric correction 

algorithms over water surfaces. Consequently, the CR method is systematically applied here to both data 

products. 
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A convex hull fit over the top of a spectrum defines the continuum, with straight line segments connecting 

local spectrum maxima (ENVI, 2002). CR normalizes spectra from this common baseline, that is, the local peaks 

in the spectrum (absorption shoulders). These should be the first and last bands in the spectral subset and are set 

equal to 1.0 for normalization of the continuum-removed spectrum (Jensen, 2016).  

The continuum-removed spectral bands were computed for the plastic absorption features at 1215 nm and 

1665 nm, using ENVI’s Continuum Removal spectral mapping function. Subsequently, ENVI’s Band Math tool 

was used to integrate the area inside the continuum-removed curve under the hull between the two absorption 

shoulders. Equation (4) for AUC (area under curve) was used where n is the number of spectral bands of the 

spectral subset, 1-CRj and 1-CRj+1 are the values at the j and j+1 spectral bands, and λj and λj+1 are the band 

wavelengths [nm]13. 

ὃὟὅπȢυz  В ‗ ‗ ᶻρ ὅὙ ρ ὅὙ     (4) 

The selected spectral subset of the HI1215 absorption region consists of 9 AVIRIS-NG bands (1193 – 1233 

nm, bands 164 – 172) and 5 APEX bands (1194 – 1233, bands 133 - 137), respectively. For the PET-I1665 

absorption region, 11 AVIRIS-NG bands (1624 – 1674 nm, bands 250 – 260) and for the HI1732 region, 5 APEX 

bands (1702 – 1737 nm, bands 187 - 191) were selected. The first and last band of each spectral subset 

correspond to those that were used as input bands for the index calculations. The defined spectral ranges, bands, 

and AUC calculation formulas are compiled in the table below. 

 

Table 3-3: Spectral subset definitions and ENVI Band Math formulas for CR calculations. 

 

 

 
13 This approach, including the integration formula, is based on exercise 10 (chlorophyll content estimation) within the 
framework of the lecture «Geo442 - Spectroscopy of the Earth System» at RSL / UZH, 2017. 

Spectral subset feature spectral range bands ENVI Band Math formula

APEX (L) HI 1215 1194 - 1233 nm 133 - 137

AUC=( 

((1204.1230-1194.4000) * ((1-float(b2))+(1-float(b1)))) + 

((1213.9430-1204.1230) * ((1-float(b3))+(1-float(b2)))) + 

((1223.7581-1213.9430) * ((1-float(b4))+(1-float(b3)))) + 

((1233.4690-1223.7581) * ((1-float(b5))+(1-float(b4)))) )*0.5

APEX (L) HI 1732 1702 - 1737 nm 187 - 191

AUC=( 

((1711.0100-1702.2740) * ((1-float(b2))+(1-float(b1)))) + 

((1719.7460-1711.0100) * ((1-float(b3))+(1-float(b2)))) + 

((1728.4830-1719.7460) * ((1-float(b4))+(1-float(b3)))) + 

((1737.2190-1728.4830) * ((1-float(b5))+(1-float(b4)))) )*0.5

AVIRIS-ng (L, R) HI 1215 1193 - 1233 nm 164 - 172

AUC=( 

((1198.2800-1193.2700) * ((1-float(b2))+(1-float(b1)))) + 

                                           […] +

((1233.3400-1228.3300) * ((1-float(b9))+(1-float(b8)))) )*0.5

AVIRIS-ng (L, R) PET-I 1665 1624 - 1674 nm 250 - 260

AUC=( 

((1629.0300 – 1624.0200) * ((1-float(b2))+(1-float(b1)))) + 

                                              […]

((1674.1100 – 1669.1000) * ((1-float(b11))+(1-float(b10)))) )*0.5
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As for the index calculations, no quantitative result evaluation was performed, since no obvious CR value 

ranges were able to clearly separate the pixels containing plastic. However, for the APEX results, density slicing 

was applied to highlight one specific finding. The density slicing range definitions are summarized below: 

 

Table 3-4: Defined CR value ranges for selected density slice ranges of the APEX result images. 

 

3.4.3 Spectral Mixture Analysis 

Not only floating plastic items become part of spectrally mixed pixels. Essentially, the spectrum of any 

remotely sensed image pixel is a mixture of so-called endmembers, that is, spectrally pure pixels containing the 

spectral signal of physically meaningful scene materials (Manolakis et al., 2016; Kneubühler et al., 2007). 

Therefore, the analysis of mixed spectra is an important application for image interpretation and subpixel target 

detection in  imaging spectrometer images. Two general questions are tackled with this method: (a) what 

materials are contributing to a mixed pixel, thus, what are the spectra of these endmembers? And (b) what are the 

proportions of these individual endmembers?  

This approach seems to fit perfectly to the situation here, because the plastic bottles searched for represent 

small proportions of mixed pixels covering mainly lake water. For this reason, the use of methods based on 

spectral mixture analysis was considered to be the methodologically "most correct" approach from the outset.  

But the evaluation planned here turned out to be a bigger hurdle than expected. This was mainly because the 

available data do not sufficiently fulfil the basic conditions for the application of such methods specifically 

designed for mixed pixels analysis. The first and most crucial step in spectral unmixing analysis is to find “good” 

endmembers which are typically determined from the image data. However, spectra must be spectrally distinct 

(linearly independent) from one another because collinear endmembers lead to “numerically unstable unmixing” 

(Manolakis et al., 2016). Moreover, the Linear Spectral Unmixing method requires all endmembers of 

materials that are present in the image (ENVI, 2002). Since these conditions could not be met for both the 

Greifensee and the Hallwilersee locations, another similar method seemed more applicable: Mixture Tuned 

Matched Filtering (MTMF) is a partial unmixing approach where not all of the endmembers in the image need 

to be known, providing a means of detecting specific materials based on matches to endmember spectra. 

However, this method requires the MNF transformed image bands and input spectra must be pure and spectrally 

extreme endmembers that are equally transformed (ENVI, 2002). Since previous mapping results with the MNF 

transformed image data yield substandard results and reference endmembers could not be extracted from the 

transformed image (at least not for the PET material which does not occur as “extreme and pure” pixels within 

the image), this option was only applied using a semi-automated process (ENVI’s Mapping Wizard) which 

allows minimal user control over the entire evaluation process. Since the result was indeed disappointing and not 

worth documenting, it is only the infeasibility information from that approach that was added to the results 

section for pointing towards the limits of this approach. 

Finally, the Matched Filtering method was applied, where there is a risk of more false positives for rare 

materials, but no MNF transformed image data is required as input. It is a somewhat simplified variant of the 

MTMF, in which however the potentially meaningful infeasibility image is not generated as the result 

Feature image CR result range

CR1194 - 1233 (c) 0 - 5.4679 3 -4 4 - 6 yellow red

CR1702 - 1737 (d) 0 - 7.3647 3 - 4 4 - 8 yellow red

Density slice ranges Assigned colours
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component (ENVI, 2002). The problem of the not pure and non-uniform water spectra remained. However, the 

relevant endmember reference spectrum for PET could be derived from field measurements. This was done 

despite the explicit warning that comparing remotely sensed spectra with reference measurements from another 

location, measured under different illumination conditions and with yet a different sensor “is no small matter”  

(Jensen, 2016)  and requires “considerable experience with the pertinent application” (Manolakis et al., 2016). 

For the implementation here, the use of radiance data represents an additional hurdle, since it is not possible to 

fall back on standard reflectance reference spectra that are insensitive to illumination variations. The radiance 

endmember for PET material with the APEX sensor’s spectral resolution was calculated as described in the 

spectral mixing model (Section 3.5.1), then stored in the SPECCHIO spectral database for documentation and 

repeated use, and extracted as spectral library file (ENVI SLIB file format).  

3.4.4 Outline 

The results of the methods chosen in this section contain some surprising findings. Comparisons of 

equivalent outcomes on APEX and AVIRIS-NG data may not be a priority with regard to the research questions, 

but they are certainly interesting in terms of the radiometric quality of these sophisticated instruments. 

Expectations of better mapping results were rather disappointed. Yet the studies conducted so far do form a good 

basis for assessing the detectability options and also indicated possible further directions with regard to 

augmented test data and experimental environment requirements. The last chapter on methods accordingly 

concentrates on complementary theoretical approaches. 

3.5 Spectroscopic models  

In this concluding method part, theoretical analyses based on reference spectra are added. To pick up again 

the subject of satellite data and in order to evaluate the minimum requirements for spatial resolution, a previous 

discrimination approach is carried out again on spatially upscaled APEX data. 

Here, the focus lies on the following points: 

¶ Sensors and data products: Selected APEX radiance spectra and ASD field reference spectra are 

investigated.  

¶ Methods: A linear spectral mixing model was created to model abundance variations of water and PET 

between 0% – 100%. Based on this model, the PET abundancies of the three test areas could then be 

verified. Derivative spectroscopy was further applied in exploratory approaches for spectral feature 

determination and plastic absorption band position evaluation: The method, results, and discussion 

thereof are documented in Appendix B since this approach provides a tool for further analysis rather 

than a new finding in this instance. 

¶ Research focus: The verification of the test area abundancies is an important part regarding research 

question (1) which now can be answered more precisely, and the spatial scaling experiment concerns 

research question (2). 

3.5.1 Spectral mixing model 

A spectral mixture model is physically based on pure spectra or endmembers. Mixed spectra of these 

endmembers are then modelled as combinations of them (Manolakis et al., 2016). Most spectra of remotely 
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sensed data contain a mixture of surface materials, as is the case for the floating PET bottles on the water 

surface. The proportion in which these materials contribute to the resulting image pixels are called fractional 

abundances (Keshava and Mustard, 2002). Usually in spectral mixing, a linear model is applied using the 

equation formula (5) for a linear mixing of m components where sk is the spectrum of each endmember and ak 

its fractional abundance. The residual e includes measurement error, noise, and contributions from any 

endmember that may add to the mixed pixel signal but has been left out in the endmember selection. This 

residual is relevant due to the sum-to-one (and nonnegativity) constraints of this model (Manolakis et al., 2016). 

ὓὭὼὩὨ ὛὴὩὧὸὶόά╧ В ╪▓
□
▓ ▼▓  ▄ ╢╪ ▄    (5) 

Using ASD field reference spectra, a linear spectral mixing model was computed in MATLAB to model 

mixing variations of water and PET mixtures in steps of 1% from 0% PET and 100% water to 100% PET and 

0% water abundance. The computational steps included: Selection of a Spectralon ASD radiance with best 

approximation of the illumination conditions of the day, time, and location of airborne data acquisition from the 

SPECCHIO database. This reference spectrum was corrected using a correction vector14 specific for the near-

perfect reflectance properties of the white Spectralon panel. Also, the field reference measurements (Section 

2.2.4) of floating PET bottles (that totally covered the water surface) were selected from the SPECCHIO 

database and their mean reflectance spectrum was calculated. Based on these ASD spectra, the PET radiance 

spectrum was determined in accordance with the illumination conditions of the day of airborne data acquisition 

and interpolated to the APEX sensor’s spectral resolution.  

Based on this linear mixing model, the plastic fractions of the 3 PET test fields were then evaluated by 

comparing the mean radiance spectra from the APEX image data with the most similar mixture variants. The 

calculated radiance endmember spectrum for PET material was also used as reference for the Matched Filtering 

method in spectral mixture analysis (Section 3.4.3). 

3.5.2 Spatial scaling 

As expected, no systematic difference between the relevant pixels of the water surface area could be found in 

the satellite data, as can be seen in the visualisations of the bands with best spatial resolution of 10 m (Figure 3-3 

(b) for a RGB visualisation, and Figure 4-6 (c) for a CIR visualisation). However, it has not yet been verified 

whether the cause lies in the low spatial resolution or the lower spectral resolution. Therefore, as is usual with 

such research designs, one of the two varying parameters is held static while the other is scaled in such a way 

that different datasets can be compared with a resolution difference in only one dimension. 

For this purpose, the APEX subset was spatially upscaled, resulting in a still hyperspectral subset with the 

lower spatial resolution of satellite data. The k-means classification as applied previously based on the same 

three selected spectral bands was applied again. Using a range of upscaled pixel sizes (and thus slightly varying 

image subset sizes), the clustering algorithm results were again evaluated by another algorithm specially 

developed for this purpose. The classification results are presented together with the accuracy metrics in Figure 

4-17. 

  

 
14 This correction file was provided in the context of exercise 1 within the framework of the lecture «Geo442 - Spectroscopy 
of the Earth System» at RSL / UZH, 2017. 
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4 RESULTS  

4.1 Data preprocessing and quality assessment 

4.1.1 Data preprocessing 

Data preprocessing is illustrated exemplarily for the defined water masks at Irchel location, because here, 

spatial resolution has an evident impact. It is also recognisable how water surfaces in general can be distinct 

from land in the NIR range of the spectral signal. Furthermore, the position accuracy of the derived test field 

corner positions can be compared. 

 

 

Figure 4-1: Binary water masks for the Irchel location with superimposed position vectors of the test fields. 
 

4.1.2 Initial image quality assessment 

Irchel test field corner position determination resulted in a geocoded image of high accuracy. Model 

residuals were acceptably small in the range of 0.032 – 0.174 and 0.009 – 0.360 for the X and Y coordinates, 

respectively. In the water masks (Figure 4-1), these corner positions are overlaid.  

Geometry accuracy: Visual comparison of the PET test area pixels with the derived corner positions of each 

test field revealed a consistent shift vector of approximately 5 – 10 m at the Irchel location. Surprisingly, while 

this shift vector was of the same length for all data products, its position orientation differs between data 

products. As can be seen on the drone image (Figure 3-2 (a)), the PET areas were placed exactly in the middle of 

the water body. For the APEX Greifensee data, the GPS position accuracy is excellent with an estimated 
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uncertainty below 1 m. And for the AVIRIS-NG Hallwilersee data, a GPS position displacement vector of 

approximately 6 meters is present, comparable to the Irchel location. In the rescaled satellite subsets, the 

deviation is estimated a maximum of 1 - 2 pixels, resulting from image overlay. 

Radiometric accuracy revealed no major issue in data quality, but one important fact regarding the  imaging 

spectroscopy data became obvious: Due to the L2 preprocessing step for atmospheric correction, reflectance data 

contains fewer spectral bands, as summarised in Table 4-1 below. Another important observation concerns the 

APEX radiance data of the Greifensee location: Since these data were acquired over a larger water body with an 

average depth of 20 m in the section of interest, a sensor and processing artefact along the flight line over the 

water surface was clearly visible in many bands, especially in the VIS region of the spectrum. Furthermore, these 

sensor artefacts were accentuated when image transformation was applied. No faulty bands were identified in the 

radiance image apart from this observation. The APEX reflectance image contains further artefacts following 

certain image lines in a horizontal east-west direction. For this reason, analysis was done using the radiance data 

only. Regarding the satellite data, no obvious quality limitation was observed, except for the uncertain geometric 

accuracy. 

 

Table 4-1: Image spectroscopy data product image band assessment. 

 

 

4.1.3 Data transformation 

MNF data transformation as a preparatory step for evaluations with reduced data volume did not show the 

expected result, and MNF bands were not further used for subsequent analysis – with one exception. The 

relevant variation at the test locations was only discernible in one single MNF band (band 4), as highlighted 

below, while spatial image (and artefact) patterns could be found in as many as the first 100 MNF bands. The 

sensor artefacts along the scan line (from south-east to north-west direction) were strongly accentuated in the 

first 10 bands. The resulting first bands containing the most relevant image variability are presented here. 

 

Data Product Bands Interplolated bands for L2 products Omitted spectral ranges Bad bands

L1 APEX Radiance 299 none none
band 299 (noise)

(artefacts)

L2 APEX 

Reflectance

284 

(15 omitted)

  73 –   77;   102 – 110;   120 – 128;   

142 – 163;   190 – 227
377 - 398 nm; 2432 - 2515 nm (artefacts)

L1 AVIRIS-NG 

Radiance
425 bands none none none

L2 AVIRIS-NG 

Reflectance

372 bands

(53 omitted)
1;  195 – 211;   281 – 315

381 nm;   1343 – 1433 nm

1747 – 1954 nm
none
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Figure 4-2: MNF bands of the masked APEX radiance subset. The red symbols highlight the PET test area corner 
positions. 

 

4.2 Basic image evaluation 

4.2.1 Spectral and spatial profiles 

In Figure 4-3 reflectance spectra of all sensors are displayed with the goal of providing a first impression of 

the different sensor characteristics as well as reflectance value ranges. Not all three mean PET surface abundance 

values are plotted but only the densest one for easier comparison with the water reflectance spectra of the same 

sensor. Typically, the water surfaces containing PET show slightly higher reflectance values than the 

surrounding water surface over the entire spectrum. However, this observation does not hold true for the satellite 

spectra in all bands. The most obvious differences between the sensor data are observed at the edges of the 

covered spectral range.  

For the representation of the satellite band values, the individual band values are visualized over the 

wavelength ranges to emphasize the corresponding different width of these bands. This was also done to 

highlight that multispectral satellite images usually do not contain continuous spectral values over the whole 

range. In the plot, the thin lines between the band values constitute only interpolation lines and are not to be 

confounded with the band value ranges (thick horizontal lines). 

In Figure 4-4, only image spectroscopy spectra are plotted, both reflectance and radiance data, and this time, 

all PET test areas are visualized. Particularly in the AVIRIS-NG data, a gradient between water and highest 

plastic content is easily recognizable (for the APEX data, values overlap in this visualisation but also become 

distinguishable if the representation is sufficiently enlarged). In the radiance plots, the prominent atmospheric 

water vapor absorption bands around 940, 1130, 1400, and 1850 nm (Richter and Schläpfer, 2016) are 

recognisable due to very low values. 
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Figure 4-3: Reflectance signals of the APEX, AVIRIS-NG, and Sentinel-2 sensors. 

 

Figure 4-4: Spectral profiles of water and PET test area reflectances as well as radiances, both from the APEX 
and AVIRIS-NG sensors. 
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Figure 4-5 shows the enhanced image subset with the defined transect line (white line) through the brighter 

test areas A, B and C. The corresponding band values of the pixels under this transect line are visualized in the 

spatial profiles plot. These band value plots contain the spatial profiles of each image band. The chosen profile 

colours correspond to the displayed bands (RGB). For all three test fields, approximated dashed lines indicate the 

corresponding increase in pixel value. 

 

 

Figure 4-5: Spatial profile of the APEX reflectance RGB bands (ENVI visualizations with overlaid lines indicating 
the PET test areas). Location values on the x axis refer to pixel numbers along the defined profile line. 
 

4.2.2 Image enhancement approaches 

Figure 4-6 contains for each of the sensor images two masked reflectance visualizations where histogram 

stretching was applied on selected bands. The APEX band 92 (at 849 nm in the NIR) showed the largest spectral 

difference (a). Colour infrared images (CIR) also highlight spectral characteristics in the NIR (b, c). However, 

this common visualization option focusses on vegetation information and is not particularly suited for water 

surfaces. Still, the reddish pond margins indicate higher vegetation, which largely corresponds with reed growth 

at these positions. The histogram stretching approaches (c – e) simply expand the original band brightness values 

to make use of the whole dynamic display ranges, using various mathematical equations. Thus, these methods 

are only to apply for visualisation enhancement, as was the purpose in this methods part. 
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Figure 4-6: Enhancement methods: Histogram stretching for masked single band, true colour and false colour 
images. 
 

4.3 Discrimination approaches 

4.3.1 Clustering 

In Figure 4-7, only selected results of the k-means algorithm using all image bands (a) – (c), and using only 

selected image bands around the known 1730 nm plastic absorption feature (d) – (f), are displayed. Choosing 7 

cluster classes led to the best results with the selected bands, as can be seen in both the classified image as in the 

accuracy metrics. All classified images are overlaid with the test field corner positions for easier identification. 

The accuracy assessment results, calculated based on the manually defined reference file, are plotted for all (12) 

cluster class numbers that were evaluated.  

For any thematic map, quality considerations should contain information about the nature of the accuracy 

assessment problem, the classes of interest and of course about the result accuracy and sources of error (Jensen, 

2016). Since the problem is unusual for this method, the results were not thematically classified afterwards. Only 

the most dominant cluster covering the PET areas was interpreted as the class of interest in each result image. 

This was always the last cluster class with the highest cluster number, thus covering the least pixels. Since PET 

abundance differences might result in more than one classes – as it is the case in Figure 4-7 (f) – an accuracy 

assessment based on only one class of interest gets biased considering the abundance difference that can be seen 

in this result.  
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However, it was the main goal of this unsupervised clustering approach to find a general answer (and 

possibly a trend) to whether there are statistical differences in the data that can be found without any given image 

parameter relating to plastic targets. It was not primarily focused on PET abundance differences, although in the 

accuracy metrics, the three PET test areas were evaluated separately for producer accuracy, resulting in an 

expected increase in producer accuracy with higher PET abundance. At this location, the ground reference pixels 

perfectly fit the visible brighter target patches in the data (estimated location uncertainty < 1 m). 

Explanatory notes to the accuracy metrics: Calculation of the producer accuracies is orientated at the 

reference class definitions. The count of all correctly classified pixels in the class are dived by the total count of 

pixels in the same reference class, thus it’s errors relate to omitted pixels (omission errors) that should have been 

classified in the same class but were not. The calculation of the userôs accuracies however is orientated at the 

classification results. It is usually done for each of the classes as well, by dividing all correctly classified pixels 

in the class by the count of all classified pixels in this class. Errors relate to pixels that were classified in a class 

but should not have been (commission error). Therefore, this accuracy measure yields the relevant information 

on how well a classified class matches with the reality (Jensen, 2016).  

The overall accuracy might seem rather misleading, since it is calculated by dividing all correctly classified 

pixels by the total pixel number of the classified image. Typically, this metric is very high for images where the 

relevant pixels only cover a small part of the image, as it is the case for the present water subset image. Most of 

the image pixels are water pixels and therefore were classified correctly. And consequently, the mean accuracy 

also shows high values, because it is calculated by averaging the mean user accuracies and the overall accuracy 

(Congalton and Green, 2009).  
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Figure 4-7: K-means results of the APEX radiance subset data, using all spectral bands (a) - (c) and using only 
selected bands (d) - (f) for evaluation. The accuracy metrics are based on the reference file definitions. 
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4.3.2 Band ratioing and indexing 

The indices using three bands of a known absorption feature each were applied on both APEX and AVIRIS-

NG radiance data. The greyscale result images (Figure 4-8: a, d, g and Figure 4-9: a, d) were histogram 

stretched for better visual judgment, and the PET areas are greatly enlarged and marked with plus signs (Figure 

4-8: c, f, i, and Figure 4-9: c, f). While the grey scale results already allow a good estimation of their relevance, 

the added coloured value ranges confirm their heterogeneity (Figure 4-8: b, e, h, i). Although the PET Index 

results are the only ones that show a clear distinction of the plastic-containing pixels and even the PET 

abundances, it is to be noted that the density slicing (range values as defined in Table 3-2) was carried out with 

the best "matching" range values and is therefore only tuned to the current image subsets. 

 

Figure 4-8: Index results for APEX radiance data. 
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The coloured results of the AVIRIS-NG data were density sliced in a similar way as for the APEX results, 

with additionally applying the green colour for the land zone. It is to be noted that at this location (presented in 

Section 3.4), only 2 of the PET test fields were deployed. 

 

 

Figure 4-9: Index results for AVIRIS-NG radiance data (Hallwilersee location with only 2 PET test areas). 

4.3.3 Supervised Classification 

The results from the Minimum Distance classifications are displayed in Figure 4-10 where only the water 

pixels were to distinguish from the plastic containing test fields, and in Figure 4-11 where scaling results were in 

the focus additionally. All differences between these two figures stem from the disparate reference classes used 

as input variables for the algorithm. 

Colouring for the classified images was chosen again using red, orange, and yellow for the decreasing plastic 

abundancies. The reference class pixels are depicted on a black background, and the defined ground reference 

pixels (showing slightly darker colours as the corresponding reference classes) are both plotted based on the 

evaluated layer stack data. 

The accuracy metrics were calculated as described in Section 4.3.1. Bar plot diagrams were chosen for 

display, because the individual evaluations per run do not follow a specific scaling (as was the case for the k-

means evaluations) but are to serve only as a basis for comparison. It seems appropriate to focus on the user’s 

accuracy values, displayed as bright green bars, rather than the potentially misleading overall or mean 

accuracies. 
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Figure 4-10: Results of supervised classification using only 2 reference classes: Water and water + PET mixed, as 
indicated in the Reference Class legend.  
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Figure 4-11: Results of supervised classification using 4 reference classes, as indicated in the Reference Class 
legend. 

4.4 Plastic identification  

4.4.1 Spectral Angle Mapper 

Result images (a) – (d) of Figure 4-12 on the next page show the classification based on only two reference 

classes with the red pixels being classified as PET containing water and blue pixels referring to water only. The 

result images (e) – (h) show the classification results based on all PET abundancy classes. For comparison, the 

GPS corner positions of the test areas are indicated. Black pixels refer to unclassified areas where the difference 

between reference spectra and pixel spectra was larger than the defined threshold. The bar diagrams containing 

the accuracy metrics show gaps for the medium PET abundancies due to the lack of this test area at location #3. 
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Figure 4-12: SAM results for all locations and both AVIRIS-NG and APEX data.  
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4.4.2 Continuum Removal  

In the Continuum Removal result images, bright values represent higher absorption feature areas, therefore, 

the pixels should be bright at all plastic locations. 

 

 

Figure 4-13: Continuum Removal results for the Hallwilersee location (a) and the Greifensee location (b, c). 
 

For the Hallwilersee location, the method was applied on both the radiance and reflectance data and for the 

1215 as well as for the 1665 absorption feature. Here, only one of the result images is shown, since all must be 

regarded as equally disappointing: In the greyscale result image with highlighted PET locations (Figure 4-13 

(a)), the CR radiance differences are somewhat more pronounced compared to reflectance data evaluation (not 

shown), but in all result images, higher (brighter) CR values are scattered all over the water surface area. The 

indicated test fields show even lower values than those areas on the lake that were more exposed to the wind. All 

these results are far away from a clear distinction of materials. 

For the Greifensee location, the results were density sliced to draw attention to one particular finding: While 

again there is no clear distinction for the PET areas, the indicated image position with highest CR values 

highlighted in red - especially in the 1215 absorption feature result (Figure 4-13 (b)) - indicates the plastic raft in 

the image. Besides, this plastic raft is documented in the foreground of the early morning picture presented in 

Figure 2-1 (c)). The result of the 1665 PET absorption region again is not presented here since it yields the same 

useless results for the test areas while not indicating the raft of another plastic type. 

4.4.3 Spectral Mixture Analysis 

Applied methods based on spectral mixture analysis were Mixture Tuned Matched Filtering (MTMF) and the 

comparable Matched Filtering (MF) algorithm, the results of which are documented here (Figure 4-14). Results 

of the MF method consist in a series of greyscale images for each endmember. Here, only the image for the PET 

endmember is presented, although the result of the water endmember was slightly different. In (a) and (b), this 

greyscale image provides a first impression of relative matching degree to the reference spectrum. However, the 

targeted material is only present in the brightest pixels while medium values (medium grey colour) represent 

background material (ENVI, 2002). For this purpose, only values > 0.002 were selected for histogram stretching 

(c) showing only pixels containing the targeted plastic material. The few bright pixels in the image all are located 

within the campground area.  
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Since the results here are rather unexpected, the infeasibility image from the MTMF approach has been 

added (d). This is methodically not quite correct, but it may be helpful as a hint for interpretation. 

 

 

Figure 4-14: Matched Filtering results (APEX, Greifensee) with indicated test field locations (red). 

4.5 Spectroscopic models  

4.5.1 Spectral mixing model 

The linear spectral mixing model (Figure 4-15) is based on radiance spectra and illustrates the spectral 

characteristics of mixtures from dry PET endmember spectra and mean water spectra in steps of 1%. The highest 

spectral curve represents the radiance spectrum of PET, while the lowest curve represents the spectral signal 

from water, which in this case is representative for the smooth water surface of the Greifensee location. 

 

 

Figure 4-15: Spectral mixing model with APEX water (Greifensee) and ASD-PET spectra. The precise location of 
the most promising absorption features are indicated. 
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Although the small differences between the two extremes cannot be seen in detail in the plot, the PET 

spectrum shows not only generally higher values, but also more pronounced features than the curve shape of the 

water, which is mainly due to atmospheric absorption bands (at 930, 1150, 1400, 1850 nm). 

This mixing model approach offers the possibility to finally verify the estimated plastic abundancies of the 

three test fields. Figure 4-16 (b) shows the best match determined between the model’s abundance fractions and 

the mean image spectra from the reference fields.  

 

 

Figure 4-16: Approximation of PET abundancies in the 3 test fields based on mixture analysis. In (a) the whole 
spectral range is plotted with high PET abundancies for comparison while (b) highlights a zoomed range of best 
matching spectra from the linear mixing model with mean image spectra of the test fields. 
 

4.5.2 Spatial scaling  

The same result colouring and accuracy visualization as for the clustering results (in Section 4.3.1) are 

applied also to the pixel size scaling experiment, as presented in Figure 4-17. Here, an additional linear trendline 

highlights the (green) user accuracy decrease with larger pixel size in the accuracy metrics diagram for all 10 

conducted and evaluated variants of the pixel size (again, only a selection of the result images is displayed). 
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Figure 4-17: K-means results of spatially upscaled APEX data, using the same selected spectral bands for 
evaluation as in the step above (Figure 4-7 (d) – (f)). 
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5 DISCUSSION 

This section discusses the research and data exploration results as presented in chapter 4. While its structure 

is oriented on the methods subsections, selected results are summarized and discussed together where 

comparable approaches are concerned. The last subsection additionally focuses on more theoretical 

considerations in relation to the whole complex of factors influencing optical detectability of floating ocean 

waste, thus discussing the obtained outcomes with respect to the suitability of the experimental setting and its 

restrictions with regard to the more complex situation in reality.  

5.1 Data preprocessing and quality assessment 

Geometry accuracy of the images from the Irchel location, as compared with the derived test field corner 

positions, is regarded as helpful for identifying the exact test area positions on the lakes where no drone data 

were acquired because drone flights at the chosen locations were banned for environmental reasons. The 

systematic discrepancy in geometric accuracy of about 10 m for all datasets of the Irchel location is of no further 

consequence for the data analysis here. Geometry accuracy is regarded an issue only for the satellite data. 

Therefore, evaluation of the satellite data was only possible to a very limited extent, due to its geometric 

uncertainty of about one pixel - i.e. the area in which an entire PET test field would be contained. This 

uncertainty of +/- 1 satellite pixel (10 m) could be estimated adequately thanks to the small water area of the 

Irchel pond.  

Since the MNF data transformation did not yield the expected advantages, the transformed data was not 

applied as expected (e.g. for MTMF). However, evaluating MNF transformed data possibly works better for 

homogenous ocean water areas. It seems advisable to reconsider this approach, as its advantages of noise 

reduction and reduced data volume are likely to be of great use. 

5.2 Basic image evaluation 

First indications based on spectral profiles suggest a higher radiometric accuracy of the AVIRIS-NG sensor 

data, compared to the APEX data. This can be seen in a higher distinction of the spectra with varying PET 

abundance in both the reflectance and the radiance plots, as well as in a more detailed curve characteristic, which 

is due to the sensor’s higher spectral resolution. It is also apparent that the two imaging spectroscopy sensors 

show great differences at both ends of their spectral range. However, this observation is unlikely to have any 

effect on plastic detection, as the spectral ranges in focus do not affect these wavelengths. And as was to be 

expected due to the band configuration of the Sentinel-2 satellite, the reflectance curve of this sensor clearly 

shows the big difference between multispectral and hyperspectral sensors. The generally higher reflectance 

values of the satellite data are related to atmospheric scattering that makes up a share of the spectral signal 

sensed at the top of atmosphere (TOA). 

Sensor and data product selection: It is likely that satellite data are not suitable for further analysis. As far 

as imaging spectroscopy sensors are concerned, these initial data analyses show that the evaluation of radiance 

products offers the most promising basis, as it is also recommended in respective papers (Garaba and Dierssen, 

2018; Goddijn-Murphy et al., 2018). The basic radiometric accuracy assessment revealed the unwanted 

consequences of the atmospheric preprocessing step generally applied to L2 data. While in remote sensing 
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applications this is the data product of choice for the vast majority of problems, this common procedure is not 

appropriate for water surface analysis, basically for atmospheric correction algorithms reasons. Therefore, 

mostly L1 radiance data is considered for all further analytical steps in the subsequent method subsections. 

Essentially, the data situation looks promising, since already in basic image enhancement approaches - as 

well as most clearly in the spatial profile - not only the three test areas were recognizable, but even a certain 

gradation between these test areas. Despite this, it is important to point out the very low reflectance values of a 

few percent only, especially in the NIR. These low values are typical for water leaving reflectance since water 

nearly absorbs all irradiance (Odermatt, 2011). Such low values generally lead to less favourable SNR values, 

which requires high radiometric performance of a sensor. 

5.3 Discrimination approaches  

Quite some rather unexpected findings resulted from the application of common image analysis and 

classification techniques. Overall, the PET test areas were identified surprisingly well, but the question remains 

as to what these achievements are attributable to. Are they only differences in brightness – or can they actually 

be attributed to specific material properties? 

5.3.1 Clustering 

The striped artefact patterns, detected in the previous subsection already, highly influence the result in an 

undesired way, but the focus lies on the small plastic abundance in certain water pixels. First impressions of 

these early results (Figure 4-7) may look quite striking. It is important, however, to point out that the small 

image subset covers an area of 100 m x 100 m only, with rather homogenous water depth, quality, and surface 

structure. Therefore, the same k-means algorithm was applied again for 7 clusters and run over 3 iterations on 

the same dataset, but this time with a larger (masked) subset area.  

The optimistic intermediate result is highly relativized when clustering the larger area of the subset, as 

documented in Figure 5-1: Here, it can be clearly seen that especially in a shallow water zone near the shore, the 

main differences in the spectral vectors are mostly bathymetry related (a). The resulting k-means clusters using 

all spectral bands show again the stripe pattern in the direction of flight (b) which stems from the detected sensor 

artefact inherent in the data (visualized in Figure 3-3 (a) and (c)). This is much more obvious in the VNIR range 

of the spectrum than around 1700 nm (the region of the selected bands). When selecting the same 3 spectral 

bands for classification, the zoomed result (c) shows again a specific cluster assigned only to the pixels 

containing floating plastic targets.  

So, here it becomes obvious that the algorithm’s accuracy highly depends on the chosen image subset extent, 

and clustering is ambiguous for the plastic targets. Logically, as the resulting clusters highlight the main image 

data content, they cannot be expected to identify any rare variability of plastic signals in mixed pixels.  

Furthermore, the accuracy metrics must be interpreted with care, since it rather gives an idea about statistical 

differences in the  imaging spectroscopy data than describing the mapping accuracies with undistorted numbers. 

This applies in particular to the boundary areas of the plastic areas, where lower abundancy classes may be 

classified more correctly than was possible in the manually defined reference fields. Therefore, the result images 

possibly provide a more precise impression. 
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After all, since the selected bands relate to a known plastic absorption feature, the positive results in this 

methods subsection give reason to come back to these interim results and to analyse this absorption feature in 

subsequent method parts with a more specialised approach.  

 

Figure 5-1: K-means results using the whole spatial subset area for evaluation. For (a) and its zoomed detail (c), 
only selected bands were used as input, while (b) shows the result of the same method applied on all spectral 
bands. 

5.3.2 Band ratioing and indexing 

When comparing the index results, it is noticeable that the index variability for HI1215 and HI1732 is very large 

in the water range and that no indications of the PET test areas are discernible in the respective detail sections 

(Figure 4-8 (c) and (f)). This impression is also confirmed by the colouring for selected index value ranges 

(Figure 4-8 (b) and (e)), where the water surface shows very heterogeneous values. At least the water area can 

be clearly distinguished from the land area. In addition, high concentrations of plastic are now visible through 

the red colouring. This concerns the area of the campsite, where some of the values highlighted in red seem to 

refer to tents containing plastic surface materials. However, these results are not unambiguous. But the more 

important observation is: For the few pixels at the plastic raft location, the indices show acceptable results.  

This is also the case for the PET Index results which combine band value differences (due to curve 

characteristics) with the overall higher band values in plastic containing signals. However, it must be admitted 

that the density sliced index image colouring is ambiguous as well. This is most evident for the scaling effect 

(Figure 4-8 (i)) where the chosen index ranges for denser PET areas (red) and medium PET abundance overlap 

(Table 3-2). And the smoke clouds at the upper image section are misclassified, an effect that did not occur as 

strongly with the other indices.  
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As for the AVIRIS-NG index results (Figure 4-9), the established Hydrocarbon Index calculations (c) 

resulted in a better result than with the APEX data, but the PET Index results were less distinct. This may partly 

be due to the general conditions at this third location, where only two of the three PET test fields were deployed 

and the bottles were mostly wet or even submerged. On the other hand, all these indices did not provide 

unambiguous results. This must probably be explained mainly by the fact that the PET abundances of all test 

areas are barely high enough for the spectral curves of these mixed pixels to show the required feature. This must 

be assumed all the more since the indices are said to be applicable both for reflectance data and - as applied here 

- for radiance data (Kühn et al., 2004). Still, reports on detection limits are scarce and vague due to limited 

studies. The closest estimate found in the literature relates to the application of the HI1732 for oil spill detection on 

coasts with variations between 2.5 and 25% (Asadzadeh and Souza Filho, 2017). 

In order to verify this assumption, reference is made to the spectral curve sections shown in Figure 5-5 

(Section 5.4.2), where the bands for the index calculations are specially marked by datatips. The different 

performance of the HI1215 can thus be attributed to sensor differences: While the highest spectral resolution of the 

AVIRIS-NG sensor reveals a corresponding small absorption feature (a), this is missing in the APEX spectrum 

(c). However, it is distinct for the high plastic abundance in the raft signal (e). The absorption feature at 1665 

nm, in contrast, is discernible in the signals of both sensors (b) and (d). Finally, when considering the scaling of 

the y-axis in these plots, it is only for the plastic raft signal (f) where larger radiance value differences can be 

observed between the three bands and compared to the generally very low water leaving radiance values. 

Outline: Despite these observations, these indices seem to be a highly promising approach. It would be 

revealing to investigate the performances on an open water surface not restricted by near land areas and 

bathymetry and with higher plastic abundance. It is then probable that the material-specific absorptions features 

will come to bear more clearly. The most important question to be answered is about the detection limit. This is 

defined as the smallest areal extent of a target material within a pixel that is detectable spectrally (Asadzadeh and 

Souza Filho, 2017). If the difference is lost in the noise, the detection limit is reached, which seems to be the 

case for the applied indices with a plastic proportion of 5% or less. 

5.3.3 Supervised Classification 

The results of both the classifications with 2 and 4 defined reference classes show similar results: The stripe 

patterns (#1) and (#5) are especially striking where spectral bands in the VIS and NIR regions were evaluated. 

The high proportion of incorrectly classified water pixels is generally easy to detect, especially for the 

disappointing MNF applications, where the stripe pattern could be suppressed to some extent by excluding a few 

bands where these features seemed to constitute the main image variability. Insofar, this data transformation 

approach may well have potential. Nevertheless, the MNF bands were no longer considered for the present work 

with the focus on plastic discrimination and identification. Quite astonishingly, the input band ranges around the 

specific absorption regions show very good results, including very high accuracy with regard to density variation 

(Figure 4-11). The highest accuracy resulted from the spectral subset containing 20 bands amply covering the 

the most prominent plastic absorption feature within the 1650 – 1800 nm spectral range (#8). 

Outline: A concluding answer to the guiding question in this method subsection can explicitly be answered 

in the affirmative: Not only the test surfaces could be identified with different methods, but also a grading of the 

plastic proportion has been mapped successfully. Still, it is important to point out that the differences found – 

even with very high accuracy – may only be a result of reflections due to target surface geometry factors. So far, 

especially results of the hydrocarbon index approach, suggest that plastic materials have not been identified by 
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these common classification methods. Therefore, the next steps must focus on more refined methods using 

imaging spectroscopy for subpixel information extraction. 

5.4 Plastic identification  

5.4.1 Spectral Angle Mapper  

The results of this method reveal some interesting findings. This is also due to the fact that only here, both 

images from the Irchel location were evaluated, making a comparison between the two imaging spectroscopy 

sensors possible since they captured the very same target within 40 minutes only.  

Sensor comparison: Although the AVIRIS-NG sensor has a spatial resolution of 4.1 m (compared to 2.0 m 

for APEX), the comparisons between (b) and (d) show striking differences in favour of the AVIRIS-NG sensor 

where less commission errors result. In addition to some misclassifications at the shore, the three test areas have 

been clearly identified, whereas with the APEX image the test areas can only be identified with goodwill. When 

comparing the results with all PET reference classes in (f) and (h), the classification results do not differ as 

much, but a diagonal misclassified pattern in the middle of the pond is only visible in the APEX image. This 

might have the same cause as the stripe patterns on the Greifensee (which are due to a sensor artefact), since the 

orientation of this effect coincides to the E-NE – W-SW flight direction. 

Classification success: While there are again numerous misclassifications that must be explained by 

brightness differences due to surface geometry and reflexion rather than by surface material properties, the 

results must be judged as rather disappointing with regard to the expected plastic identification. Even with this 

method, it does not seem possible to unambiguously identify the plastic material in the tested surface proportions 

- whereas discrimination was successful even for the lowest plastic abundance of approximately 1%. This 

assessment applies in particular to the lake areas. Nevertheless, image (c) is regarded as the possibly best hit of 

all evaluations in this study. Two of the three identified plastic spots can easily be explained: First there is the 

denser test field, and then there is the kayak (polyurethane surface material which is a plastic as well) which was 

positioned at the very edge of the gravel delta during the overflight – as is documented in Figure 2-1 (a) (the 

empty material bags were mostly covered by treetops). And what if the third clue does uncover illegally dumped 

plastic waste? Unfortunately, the corresponding ground reference is not available, since this position is within 

the inaccessible reed belt of a nature conservation zone, which can neither be observed from the lake nor from 

the shore and where drone data acquisition is prohibited. 

Figure 5-2 points at a most relevant issue related to the SAM classification images: Based on the 

Hallwilersee location (and the AVIRIS-NG sensor data), it visualizes the relevance of the chosen classification 

threshold. The higher the allowed difference between image pixel spectrum and reference spectrum, the higher 

the chance to “find” the targeted material (high producer accuracy). However, misclassifications then also 

increase (low user accuracy). On the other hand, with very low thresholds, the risk of misclassification can be 

greatly avoided. The choice of the thresholds depends on the data analyst, who weighs this trade-off and through 

his individual decision strongly influences the mapping result. In order to avoid numerous unclassified picture 

areas, numerous reference classes would have to be defined. For the existing lakeshore areas, this seems 

extremely difficult. In the open sea, however, where the water surface shows neither bathymetry nor shore and 

thus adjacency effects, significantly better results are expected. 
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Figure 5-2: Threshold considerations for the SAM results (AVIRIS-NG image at Hallwilersee location). 

 

 

Figure 5-3: Spatial subset extent considerations for the SAM results (APEX image at Greifensee location). 
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A similar relativization was also conducted for the APEX results from the Greifensee location (Figure 4-12 

(e)). Except for the sensor artefact, the results of the small subset seemed accurate. Considering a larger area 

(Figure 5-3 (a) for all PET reference classes and (b) for only two reference classes), however, numerous 

misclassifications become visible in the shore area and the smoke patches. These misclassifications again are 

much higher than by the AVIRIS-NG sensor in the Hallwilersee shoreline. Nevertheless, again as in the example 

above, with very small threshold definitions (for (c) a threshold of 0.03 rad was defined), such misclassifications 

can be greatly avoided. Again, the results in open water are expected to be considerably better without influences 

from the land area and shallow waters. 

 

 

Figure 5-4: Spectral subset considerations for the SAM results (APEX image at Greifensee location). 
 

Further modification was made based on the findings obtained with the Minimum Distance algorithm, where 

a restriction of the spectral range provided significantly better results (Figure 4-10 (h) and Figure 4-11 (h)). In 

addition, a reduced volume of input data would in principle be desirable for any evaluation for performance 

reasons. Therefore, the SAM algorithm was applied with 35 bands only, on the broadly defined spectral subset 

around specific plastic absorption features (APEX bands 165 – 199, 1504 – 1804 nm). Selected results are 

presented in Figure 5-4. This approach is regarded as surprisingly disappointing, because a strong reduction of 

the thresholds or a further restriction to only 5 spectral bands (APEX bands 187 - 191 as used in the CR 

application) did not improve the classification of the experimental areas. In all, at a comparable threshold, much 

fewer pixels were classified at all, indicating that this algorithm ideally takes the entire spectrum as basis for 

comparison. This observation, however, makes an efficient application to large volumes of data questionable.  

Accuracy metrics: Considering all the above factors, the accuracy metrics of the classification results must 

be consulted with care. It is the user accuracy that yields the most informative measure, since mean and overall 

accuracies are rather misleading for rare target mapping. In addition, as is the case for all accuracy evaluations in 

this project, the reference file contains certain uncertainties, since the definition of the pixels belonging to a 

certain reference class could only be defined based on the visible differences (in combination with the GPS 

vertices). This uncertainty is particularly increased for edge pixels of the test areas. 
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5.4.2 Continuum Removal  

If the results of the index calculations and the CR calculations are compared, no clear improvement is 

noticeable, thus, the expectations in applying the image spectroscopy method was not fulfilled. What might be 

the reason for this observation? 

In Figure 5-5, the shape details of the spectral absorption regions are plotted for the image pixels of interest. 

While the inserted datatips highlight the band positions used for the index calculations, the green areas highlight 

the AUC for the densest PET pixels, hence the measure for the present results. Only radiance spectra are shown, 

since both methods can be applied on both radiance and reflectance data, and for CR, the features are generally 

normalized prior to calculation.  

¶ In (a), the AUC is slightly more pronounced for the plastic containing spectrum, however the curve 

characteristics are very similar. In (b), no AUC was discernible in the water spectrum, but the radiance 

values are at an extremely low level in these wavelengths where spectral variations might contain mostly 

noise signals. These observations might explain the poor results for the Hallwilersee data. 

¶ In (c) , the inexistent curve features explain the negative results 

¶ However in (d), the curve characteristics rather contradict the results, since a very small AUC feature is 

visible in the PET spectrum. But again, the radiance values are so low that these variations could be 

caused by noise only. 

¶ In (e) and (f), the same water and PET spectra are plotted again, but differently scaled since the plastic 

raft spectrum is included here in addition. Now it becomes obvious how tiny the curve variability is in 

the water spectrum, compared to the raft signal. And according to the positive result identifying the 

plastic raft, the largest AUC is found for the 1215 nm region. This is all the more true as the absolute 

radiance values are significantly higher at these wavelengths. 

It must be concluded that the PET abundance on the test fields are far too low for successful application of 

these methods. In case the plastic abundance comes close to 100%, the method using the 1215 nm region works 

best. This finding corresponds with the newest Hydrocarbon Index findings (Garaba and Dierssen, 2018).  

A further fundamental consideration of the specific plastic features must be pointed out here: On the one 

hand, a too low plastic proportion in the signal has been suggested so far for the disappointing results (both for 

the indices and here for the CR approach). On the other hand, a spectral feature should ideally fulfil certain 

conditions. In addition to a material-specific exclusivity, this also includes a minimum strength (approx. 5%), a 

minimum spectral width (at least 5 nm) and a special peculiar shape (Kneubühler et al., 2007). A further analysis 

would have to systematically evaluate all these factors of different plastic materials - in combination with the 

respective band quality factors such as SNR and uncertainty budget as well as with all possible plastic 

abundancies of mixed spectra. Furthermore, based on laboratory research, it is explained that “due to the shape 

and transparency of PET samples, some of the spectral signatures may be influenced by reflections on the 

sample surface or from the background” (Moroni et al., 2015). 
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Figure 5-5: Spectral curves at absorption feature positions. Highlighted in bright green are the areas under the 
(not normalized) curve: the larger this area, the more distinguished the CR result should be for the selected 
surface materials. 
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5.4.3 Spectral Mixture Analysis 

The results of this approach ask for explanations as to why they do not appear useful. First of all, it is 

assumed that the selected number of only 2 endmember spectra are insufficient to adequately represent the 

dominant materials on the lake surface. But “three to seven EMs are usually adequate to model any given area of 

an image” (Manolakis et al., 2016). Using a so-called “shade” endmember containing very low values in all 

bands is sometimes suggested to account for illumination variations (Jensen, 2016). However, the practical 

requirements appear to be disproportionately high or even impossible to meet, since the image-specific materials 

do not occur in so-called pure pixels in the data itself. Even if for this purpose corresponding material areas 

could be placed in the image section, such a procedure would not (or at best only with difficulty) be realizable 

for real situations with unknown targets. 

As can be barely recognized in the relevant result image (c), the pixels with higher abundance of PET 

material are identified within the campground area only. This seems plausible since tent surfaces, chairs or 

camping tables, among other items, may be made of plastic materials. For a precise evaluation however, 

appropriate ground reference is not available. As for the floating PET bottles and contrary to expectations, no 

increase in this material was indicated, compared to the surrounding water. The expected pattern would be 

visible as brighter pixels in (b), which is not the case. 

Finally, the infeasibility image is only used as an indication that allows two correct observations. High 

(bright) values indicate poor mapping options based on the reference endmembers being used. Correctly, this is 

generally more true for the land area. And the bright point in the water corresponds to the raft. Apparently, the 

algorithm has identified there an entirely different material than water or pet, which is correct. But it seems 

astonishing that only almost a maximum abundance seems meaningful enough for the method to yield 

meaningful results.  

A more fundamental consideration is added to the context of spectral mixture approaches, in particular 

because the endmember spectrum used for water consisted of an average value of image retrieved water pixels 

near the test sites. Does the lake water fulfil so little the requirement for spectrally pure pixel signals? A method 

to determine the purity of spectral pixel signals is given by the Purest Pixel Index (PPI) algorithm. This was 

applied twice, once on a complete image subset including the land area, and once on a masked image to focus on 

the water area. In order to make a potential result pattern visible, individual value ranges were again coloured 

using the density slicing option. Colouring was applied from highest to lowest PPI values: green – cyan - blue – 

yellow – orange - red – white (unclassified pixels are black). 

 

 

Figure 5-6: Pixel Purity Index for the APEX image at Greifensee location.  
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In Figure 5-6 it can be seen that most of the water surface shows comparably high purity values (coloured in 

green, cyan, and blue), although the values between the test areas and the shore are somewhat lower (a). 

Correctly, the test areas (white and black in (b)) are clearly identifiable with lower purity values. Furthermore, as 

was highlighted in (d), higher PET abundancies resulted in even lower purity index values. This gradual index 

measure is regarded a possibility that could be used in future multi-level mapping approaches, since lower purity 

might indicate any floating item on a otherwise homogenous (spectrally pure) water surface. 

5.5 Spectroscopic models 

5.5.1 Spectral mixing model 

A spectral mixing model illustrates spectral characteristics of all mixing fractions and can provide the basis 

for further evaluations (e.g., for absorption feature strength assessment) and in particular for modelling 

approaches. For the present work, the generated model was particularly important to determine the PET 

abundancies in the test fields as accurately as possible. The highly relevant findings are listed here again and 

compiled in the table below, supplemented with a rough estimate of the uncertainty range. From the kayak 

(Figure 2-1 (b) and (d)) the test fields seemed to have a much higher plastic density than these values now 

reveal. However, a very flat viewing angle is always deceptive, and since the calculated abundances fit the 

original calculations surprisingly well, the estimated uncertainty range may even be too cautious. Due to the 

close fit, the planned density is consistently mentioned in this paper. What can now be said with certainty: the 

test area C contains an average plastic abundance of 1% and slightly less in the marginal pixels. And it was 

possible to discriminate them with different algorithms.  

Consequently, the detection limit for floating plastic is below 1%! This result thus falls within the one 

and only expected value range documented in the research literature: Based on a laboratory experiment, the 

lower limit of sub-pixel detection was expected “between 2.5 % and 0.3125 %” (Bochow, 2013). Our research 

now provides the first results obtained in a natural setting (under almost windless conditions) and can 

significantly narrow the laboratory-based detection limit and adjust it to a lower range. 

 

Table 5-1: PET abundancies in the experimental test fields. 

 

5.5.2 Spatial scaling  

The pixel size scaling experiment, using the k-means algorithm, aims at providing information on the 

necessary spatial resolution. The good classification results for larger pixel sizes indicate that typical pixel 

sizes of satellite images do not seem to constitute a fundamental constraint for floating plastic detection. 

The spatial distribution area and of course the surface abundance of plastic will certainly be more decisive. 

Therefore, with regard to satellite data analysis, further investigation should evaluate spectral data of floating 

plastics from the WorldView-3 satellite, since simulations have demonstrated that its band configuration may be 

Test field PET content planned PET 

abundance

mixing model 

abundance

actual 

abundance

A 2 x 1.5l PET per m2 5% 4% 3% - 5%

B 1 x 1.5l PET per m2 2.5% 2% 1.5% - 2.5%

C 2 x 0.5l PET per m2 1% 1% 0.5% - 1.5%
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of use for direct hydrocarbon detection when using the bands coinciding with “HC’s 1700 nm feature” 

(Asadzadeh and Souza Filho, 2017). 

5.6 Plastic target characteristics at sea 

At the end of this discussion chapter, it seems appropriate to put the findings into a larger context: To what 

extent can the results from the experimental setup be transferred to the realistic situations at sea? Or asked the 

other way: Which other factors that could not be considered within the framework of the available experimental 

data or which are beyond the scope of this thesis influence the detectability of plastics at sea? These theoretical 

considerations contribute to the answer to the research question (4) on environmental influences on floating 

plastic detectability. 

The only floating plastic items I’ve seen at sea recently were two white plastic bottles – which turned out to 

be there purposely for marking the position of a crab trap at the seafloor – and one single floating plastic bag. 

More precisely, it was three quarters of a bright blue plastic bag, ragged, and floating an estimated 20 cm below 

the water surface in the Atlantic Ocean. Another three small (5 cm) objects and two almost transparent plastic 

sheets (20 - 50 cm) were observed on another occasion in the Aegean Sea. Again, the plastic sheets clearly 

drifted a few cm below the water surface. These observations were recorded within the framework of a 

standardized visual transect during 60 minutes, whereby 90° of the water surface is continuously monitored 

visually from the bow of a sailing yacht. By the way, this is exactly the procedure with which the measured 

concentrations of floating macro plastics are collected, serving as the basis for oceanic waste distribution 

modelling. 

These random examples highlight two important facts when it comes to automatically detect plastic waste: 

First, many floating plastic items like small buoys may look exactly like rubbish (and consist of plastic material) 

while they are not, with their local position not necessarily indicated on even the most detailed sea chart, and 

with only local fishermen or sailors being aware of their position. Second, large amounts of floating plastic 

material float slightly below the water surface due to their individual specific weight and wave action. This 

observation is accurate and has already been well documented (Kukulka et al., 2012; Mace, 2012). But incoming 

light is not reflected fully back into the atmosphere from within the water body. 

Water film scaling experiment: This theoretical knowledge was verified by means of a small laboratory 

experiment and must be mentioned here in a complementary way. The experiment was carried out together with 

Andy Hueni already in the preliminary stages of this study, and the reflectance measurements made are stored in 

the SPECCHIO spectral database at RSL (campaign name: Water Absorption Experiment). The purpose was to 

gain initial insights into the influence of water on plastic and to what extent spectral signals from a submerged 

plastic item could still be measured. The background for this were just such observations of submerged floating 

plastics. For this purpose, spectral measurements of a white plastic plate were made in the RSL laboratory with 

an ASD fields spectrometer. The plate was first wetted and then filled with water in increasing intervals of 0.5 – 

2 mm up to a water coverage of 15 mm on the plastic material.  

The most important observation when comparing spectral reflectance was that from a water film of 3 mm 

thickness on, almost all signals in the SWIR range > 1400 nm are suppressed. Thinner water films in this 

spectral region caused greatly reduced signals. Furthermore, in the NIR range (800 – 1000 nm), all signals were 

remarkably reduced. Only in the VIS range, the reflectance property of wet and slightly submerged plastic was 

only slightly attenuated. These findings are particularly important because it means that detection approaches 

based on the promising plastic absorption features can only be effective if the plastic target is not washed over or 
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submerged in water. However, as found in the analysis approaches with data from the Hallwilersee location, 

wetness of the (smooth) PET bottle surfaces alone did not significantly affect the results. This finding somehow 

contradicts the fact that “reflectance of wet particles decreased on average by 56 +/- 23% compared to dry 

particles with a spectral dependence increasing with wavelength from 12% in the UV to nearly 90% in the 

SWIR” (Garaba and Dierssen, 2018). As our field reference measurements have shown, the mean reflectance 

values of wet PET bottles are about 10% higher than those of dry material, an observation that is probably due to 

geometric factors and specular reflection. Hence, several contradicting factors may have an effect on the signal 

strength. 

Material properties: Alterations of the target surfaces were not covered by this study, but they are well 

documented in the literature and include both physical and chemical weathering as well as biological processes 

that can lead to the development of biofilm or even to coverage with small organisms such as bivalves (as shown 

in Figure 1-2 (g)). How for example biofilms affect the optical properties of plastics is still an open research 

question (Goddijn-Murphy et al., 2018). 

Oceanographic, atmospheric, and related acquisition geometry factors: As with all passive remote 

sensing methods, atmospheric conditions are decisive. Regarding the ideal viewing geometry factors, it is 

suggested that a viewing zenith angle of 40° and a flight direction perpendicular to the solar plane make an ideal 

compromise among conflicting requirements (Mobley, 1999). In addition to ideal illumination factors and good 

visibility, wind speed also plays an important role, since it affects sea surface geometry, sea state, vertical mixing 

in the upper water column (Kukulka et al., 2012) and can cause whitecaps and surface foam formation. 

Generally, such water surface issues, also including ocean surface reflection, sun glint, and sky glint, should be 

avoided (Emberton et al., 2016). 

Further considerations also need to include inherent water properties, all other objects floating on the water 

surface, and considerations of the acquisition geometry and of the radiative transfer at the water-air interface as 

well as within the water body. Inherent optical properties of water comprise the air-water interface, water 

properties such as water colour (“ocean colour”) and transparency, and the underwater light field (Mobley, 

1999). Typical applications of optical ocean remote sensing focus on water quality and water constituents 

(dissolved and suspended organic and inorganic matter), and are summarized under the term "ocean colour". 

However, relevant optical parameters influencing the spectral signal from water surfaces – and thus the 

detectability of floating plastic items - concern the air-water interface where incident light is reflected (and can 

be measured by optical sensors) or refracts into the water body. But light that enters the underwater light field is 

greatly absorbed (Odermatt, 2011). This physical fact explains why water leaving radiance in the NIR (> 800 

nm) is practically zero. 

But it would be far too far to take a closer look at all these factors, which are undoubtedly relevant for 

practical application of future remote sensing approaches in ocean debris detection. Therefore, the above notes 

form the final part of this discussion chapter. 
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6 CONCLUSIONS 

In this last section, selected findings are summarised with a focus on answering the research questions posed 

in the introduction. Table 6-1 compiles the methods that have been applied and highlights the most promising 

approaches and results, exclusively referring to imaging spectroscopy data. The findings, which are based on the 

evaluated data from the experimental setup, are then set in a larger context: To what extent can these results be 

applied to the real situation of drifting plastic waste in the oceans, and what are the restrictions of the present 

study? Finally, the research questions posed at the beginning will be answered as far as this can be substantiated 

by the given data and investigations. Further research steps are sketched out, which appear to be advisable on the 

basis of the experience with the present work. 

6.1 Summary of research work results  

Table 6-1: Scored summary of the applied methods and results. 

 

Section Method Spectral subset Score Substantiation

3.1.3 Data transformation (MNF) (all) poor

advantages of noise elimination and data volume reduction

possibly better results from deeper water

(-) supervised classification: large commission errors

3.2 Visual data enhancement RGB ok
(+) discrimination of test fields

(+) scaling effect of plastic abundancy 

SWIR (abs. feat.) high (+) spectral cluster for PET test areas with high accuracy

(all) ok (-) confounding bathymetry information in the VNIR bands

Established Hydrocarbon 

Indices
abs. feat. poor

(-) plastic surface fraction must assumingly be much higher 

than the tested 5% (estimation: ~ 50%)

Specifically developed PET 

Index
abs. feat.

(+) material specific absorption feature position considered

(-) required minimum surface fraction unknown

(+) high producer accuracy for small surface fractions (< 5%)

(-) ambigous results, possibly for surface 

geometry/reflection reasons

(all) ok
high accuracies (~80% UA) for 2 classes; lower accuracies if 

small surface fractions are also classified

MNF bands poor (-) large commission errors 

abs. feat.
(+) very high accuracies (90 - 100%) for higher wavelength 

regions

Spectral Angle Mapper (all)

(+) very high accuracies on lake surfaces

(-) results  highly depend on parameter definition

(-) confounding shore areas result in commission errors 

especially for the smalles PET abundance class

Spectral Angle Mapper abs. feat. poor (-) no useful mappin gresults

3.4.2 Continuum Removal abs. feat.

(+) plastic identification only for very high abundance

(-) generally inferior results in comparison to index 

calculation

3.4.3 Spectral mixture analysis (all)
(-) very elaborate and challenging approach; risk of unknown 

endmembers

3.5.1 Spectral mixing model
(all) + reference 

spectra
high 

(+) allows  estimation of plastic fraction if reference spectra 

is known

3.5.2 Pixel size scaling model (all) ok (+) provides indications of minimum pixel size requirement

5.4.3 Pixel Purity Index (all) (+) provides a measure for multi-level mapping approaches

B Derivative Spectroscopy (all) (+) method for absorption feature localisation

Analysis Valuation

3.3.1

3.4.1

Supervised classification 

(Minimum Distance)  
3.3.3

Clustering (k-means)

3.3.2
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6.2 Answers to the research questions asked 

As was already apparent during the discussion of the individual evaluation results, our research questions can 

not be conclusively answered here. This applies in particular to the surface fraction, for which the experimental 

data does not offer all necessary evaluation options. However, on the basis of the analyses made, the following 

answers can be given regarding the research questions already posed in the introduction: 

(1) What plastic surface densities on water bodies can be identified from spectral data? 

An answer to this question can only be incomplete. However, here, a most relevant finding of this thesis can 

be highlighted: Our results, achieved for the first time for small surface fractions of floating plastic under 

real conditions, allow to significantly lower and narrow the detection limit range based on laboratory data 

and documented in the research literature (Bochow, 2013): A surface fraction of less than 1% plastic can 

be distinguished from the surrounding water in imaging spectroscopy data.  

But the surface density is not as relevant as the signal’s plastic fraction. And since the spectral signal is 

acquired for each image pixel, this question is directly related to the sensor’s spatial resolution. With the 

AVIRIS-NG sensor, it was possible to detect PET abundancies of about 1% in pixels covering a surface area 

of 16 m2. If the imaging spectroscopy data acquisition from the Zeppelin had been successful from the short 

distance of 150 m above the water, the resulting HyperSpec pixel area would have covered about 50 cm2 

(Table 2-1). Thus a single plastic cap floating on the Irchel pond should have been identifiable. 

Unfortunately, this theoretical estimation could not be verified. 

(2) What spatial resolution is needed for detection? 

This factor is directly related to the surface density of the targeted material. It has been shown that a pixel 

size up to about 10 m does not seem to be a limiting factor. One single PET bottle can be detected in a pixel 

area of 1 m2. Thus, theoretically, if 100 bottles were afloat on a surface area of 100 m2 (the area typically 

covered by a satellite pixel), they could possibly be detected from space - depending, however, on the 

spectral resolution and radiometric quality of the sensor. 

(3) What spectral information (spectral range and resolution) is relevant to distinguish between water 

and plastic surfaces?  

It is obvious that for material distinction, only imaging spectroscopy data are useful, consisting of very 

narrow spectral bands of ideally 5 – 10 nm. The NIR region of the spectrum is best for specific material 

identification, however, the relevant spectral signals in this range are lost as soon as the targets are even only 

minimally under water. Specific absorption features in plastic spectra vary slightly with material type and 

material surface condition, but the most important spectral ranges are around 1215 nm and 1660 – 1730 nm. 

Furthermore, it is most relevant to clearly separate two goals: Simple detection of a slightly different 

spectral signal might at best point to any floating item on an otherwise homogeneous water surface. But for 

specific material identification, much higher sensor requirements seem to apply. 

(4) Which factors influence the detectability? 

This question was only touched upon with the practical analyses, since most of the relevant parameters are 

not covered by the available experimental data. In theory, however, there are several known factors. The 

most direct influence on optical detectability probably comes from material properties (specific weight, 
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degraded surface, hitchhikers, biofilm) on the one hand and physical environmental factors such as sea state 

and atmospheric conditions on the other. 

Restrictions of this study: Here it seems appropriate to emphasize again the limitations of this study, 

because the answers to the research questions are based on an experimental setup which was not intended to 

correspond precisely to the real situation of the floating plastic debris in the oceans. Unlike ocean debris, only 

one plastic type (PET) without surface degradation or biofouling effects was investigated on shallow water 

bodies with smooth water surfaces. The tested plastic surface abundancies probably correspond only to extreme 

situations and do not reflect typical ocean waste concentrations. In addition, possibly relevant factors of 

acquisition geometry and illumination factors were not further considered, as they could not be influenced for the 

collected imaging spectroscopy data. 

6.3 Outlook on further research steps 

While assessing the current situation of this research topic early in the project process, it became apparent 

that the research questions asked concern many more factors and open research questions than can be 

investigated within the framework of a master’s thesis. It is also becoming apparent that a combined approach 

would probably be more suitable than focusing on one specific processing methodology. Incorporating 

knowledge based information about e.g. sea state and floating item positions (ships, icebergs, buoys) with 

spectral feature analysis might be a sound approach. Elaborate radiation transfer models might provide the 

theoretical basis to break down the apparent optical properties of the sea surface in order to identify those 

variabilities caused by minimal plastic fractions. And in particular, optimized atmospheric correction algorithms 

over water surfaces are to be mentioned here.  

Finally, the need for combined approaches has already been pointed out several times: To develop the 

capability for detection and ultimately removal of derelict fishing gear (or floating debris in general) from the 

open ocean, several studies have proposed combined strategies (Morishige and McElwee, 2012; Pichel et al., 

2012; McElwee et al., 2012). Such approaches typically include: 

¶ characteristics of the targeted objects (e.g., material type, size, colour, and spectral signatures) 

¶ indirect estimation of likely locations using oceanographic modelling, combined with data on sea state 

and atmospheric conditions (wind force and direction) 

¶ and direct observation of the sea surface using remote sensing observation techniques.  

And it is the latter aspect that relates to the study presented here. Therefore, this outlook on further research 

summarizes those factors which will most likely need to be considered in subsequent works with regard to a 

possibly realistic solution development. Based on the findings in this thesis it is suggested to focus on these 

subsequent research steps: 

Proposals for further investigation: 

¶ Inclusion of further plastic materials: Experimental use and spectral analysis of other typical plastic 

materials, ideally consisting of real marine debris (degraded, brittle, biofilm coated). Identification of 

their specific absorption features (cf. Appendix B) which may be at slightly different wavelength 

positions depending on material properties.  
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¶ Comprehensive investigation of specific absorption features for different plastic proportions in the 

spectral signal, and determination of detection limits for all common plastic types (as discussed in 

Section 5.4.2). 

¶ Experimental data acquisition in open water where no undesired adjacency effects from nearby land and 

bathymetry signals influence the plastic detection approaches in an undesired way. It is expected that 

even lower surface density (< 1%) can be identified with higher accuracy (cf. Sections 5.1 and 5.4.3). 

¶ In case of very promising results with consideration of the plastic absorption features: Evaluation of 

satellite data with high spectral resolution at these wavelength regions (e.g., WorldView-3). 

Alternatively, determination of required spectral range and resolution for floating plastic waste 

identification, at best in view of the technical possibilities for satellite sensor development. 

Further ideas are aiming at the development of an algorithm for the automatic detection of larger floating 

plastic items. To this end, a variety of additional information would have to be integrated, such as on wind and 

sea state, ship positions, drift ice, to name only the most obvious. Methodological and technological approaches 

that are currently the subject of research would also need to be taken into account. This includes general 

approaches of ocean remote sensing using imaging spectroscopy, because remote sensing applications have 

typically been focused on land areas while ocean colour satellites have coarse spatial resolution – a situation 

which is changing with the further development of imaging spectroscopy satellites by now (Giardino et al., 

2018). 

While the present work is concluded with this optimistic outlook, ideally its findings possibly contribute 

another small puzzle stone in research for necessary solutions to the pressing environmental problem of ocean 

plastic pollution. 
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APPENDIX A: SCIENTIFIC LITERATURE  

Table A-1: Scientific papers addressing marine pollution detection and identification. While all papers relating to 
remote sensing approaches are included, only a selection of surveys applying the visual transect an net trawl 
sampling methods are included as examples. 

Scientific Paper Observation Achievements 

Reference  Location Debris Category Platform Sensor Method Results 

(Acuña-
Ruz et al., 
2018) 

Shoreline 
(Chile) 

beached 
macro 
plastic 

spectral 
data 

satellite World 
View-3 

SVM classify-
cation using 
spectral library 
references 

OA of 88% for 50 
tons of beached 
debris 
classification 

(Aoyama, 
2016) 

Sea of 
Japan 

floating 
macro 
debris 

spectral 
data 

satellite World 
View-2 

SAM (using 4 
spectral bands: 
RGB + NIR) 

identification of 
pixels containing 
possible marine 
debris (spectral 
variations found) 

(Biermann, 
2019) 

Coastal 
waters 

Aggregated 
floating 
debris 

spectral 
data 

Satellite S2 Floating Debris Index in combination 
with NDVI: “Evidence that aggregated 
materials that include floating plastics 
are detectable by Sentinel-2, even on 
subpixel scales.” 

(Chambault 
et al., 
2018) 

Azores, 
Madeira 
(Atlantic) 

floating 
macro 
plastics 

visual 
transects 

(ship)  documentation of distribution and 
item category 

(Eriksen et 
al., 2013) 

South 
Pacific 
subtropical 
gyre 

floating 
plastics 

manta 
net trawls  

(ship)  average abundance: 26’898 (max. 
396’342) particles/km2; average mass: 
70.96 g/km2 

(Feygels, 
V., Aitken, 
J., 
Ramnath, 
V., 2017) 

GPGP 
(Pacific) 

large 
(>0.5m) 
floating 
items 

integrated 

fullwave 
lidar, RGB 
camera, 
and spec-
tral in-
strument 

Airborne 
400 m 
(AGL) 

Optech 
T-4800; 
ITRES 
SASI 
 

Possibility shown in using lidar 
waveforms to transform two-
dimensional estimates of plastic 
abundance into three-dimensional 
estimates of plastic volume 

(Garaba et 
al., 2018) 

GPGP 
(Pacific) 

large (0.6 – 
6.8 m) 
floating 
ocean 
debris 

Spectral 
data and 
aerial 
photo 

Airborne 
400 m 
(AGL) 

RGB; 
SASI-
600  

Selection of 
largest floating 
items in RGB 
photos; spectral 
feature 
comparison for 
the largest 
objects in the 
SWIR. 

Suggesting “that, 
at 5% pixel 
coverage, the 1732 
nm feature might 
not be appropriate 
for detecting 
ocean plastics”. 

(Garaba 
and 
Dierssen, 
2018) 

plastic 
bearing 
material 
on land 

marine-
harvested 
micro and 
macro 
plastics 

spectral 
data 

airborne AVIRIS 
(classic) 

Imaging 
spectroscopy 
approaches with 
focus on spectral 
absorption 
features around 
1215 and 1732 
nm 

Spectral 
measurements 
“provide a 
foundation for 
advances towards 
remote detection 
of plastics from 
various platforms” 

(Goddijn-
Murphy et 
al., 2018) 

 floating 
marine 
macro 
plastic 

spectral 
signal 

(concept 
model) 

Theoretical reflectance model of sunlight 
interacting with a sea surface littered with plastic 
based on geometrical optics and spectral 
signatures 
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Scientific Paper Observation Achievements 

Reference  Location Debris Category Platform Sensor Method Results 

(Goddijn-
Murphy 
and 
Dufaur, 
2018) 

 EPS, HDPE, 
and PET 
samples 

spectral 
signal 

Field and 
laboratory 

ASD 
Fields-
pec Pro 

Spectral reflectance measurements 
with plastic abundancies of 25%, 50%, 
75% and 100% applied on a single-
band algorithm (850 nm) and a dual-
band algorithm (1660 – 1730 nm) 
showed some trends. 

(Goddijn-
Murphy 
and 
Williamso
n, 2019) 

  Emissivity 
values of 
different 
polymers 
& water 

(radiative 
transfer 
theory) 

thermal 
infrared 

“Thermal infrared (TIR) sensing could 
potentially monitor plastic water 
pollution but has not been studied in 
detail.” 

(Kako et 
al., 2012) 

 floating 
debris 

 airborne 
(50 – 150 
m AGL) 

RGB 
camera 

Low-altitude remote 
sensing system using a 
balloon equipped with a 
digital camera; data 
analysis using colour-
space transformations 

"estimate 
the number 
of objects 
from the 
photo-
graphs" 

(Kako et 
al., 2018) 

Oregon 
coast 
(USA): 
shoreline 

beached 
macro 
marine 
debris 

  local 
webcam 

Time series temporal 
variability of 
beached marine 
debris abundance 

(Kataoka 
et al., 
2018) 

Vancouve
r Island 
(Canada): 
shoreline 

beached 
macro 
marine 
debris 

shoreline 
aerial 
photos 

airborne 
(500m - 
1000m 
AGL) 

RGB 
camera 
(Nikon 
D750) 

pixels of marine 
debris identified 
based on colour 
differences from 
beaches 

percent cover of 
debris was signify-
cantly related to 
Ekman offshore 
flows and winds 

(Kylili et 
al., 2019) 

 floating 
macro 
plastics 

aerial 
photo 

(UAV or 
from 
ship) 

RGB 
camera 

Deep Learning algorithm to 
automatically identify three types of 
large floating plastic items (bottles, 
buckets and straws) 

(Mace, 
2012) 

Open sea  integrate
d 
approach  

Satellite 
and 
airborne 
radar 

various Combined approach using models, 
satellite and airborne radar data and 
visual surveys to detect potential 
accumulation zones for direct search 

(Morishige 
and 
McElwee, 
2012) 

Hawaiian 
Archipelag
o 

derelict 
fishing gear 

integrate
d 
approach  

UAV from ship (pilot 
project failed) - 
unknown 
applicability 

strategy outline (need for 
development in the RS field) 

(Moy et 
al., 2018) 

Hawaiian 
Islands 

beached 
debris (> 
0.05 m2) 

aerial 
photo 

airborne 
(610 m 
AGL) 

RGB 
cameras 

aerial photo-
graphs (and 
visual analysis 
using a GIS) 

total 20'658 debris 
items identified on 
176 km coastline 

(Pichel et 
al., 2012) 

Gulf of 
Alaska 
(GoA pilot 
survey 
2003) 

Derelict 
fishing gear 
in coastal 
waters and 
open sea 

Visual ob-
servation 

airborne  Strategy outline: integrated approach 
(convergence zones, buoy tracking, 
satellite data on wind and weather, 
airborne sighting) 

(Ryan, 
2014) 

Open 
ocean 
(South 
Atlantic) 

Floating 
macro 
plastic 

 (ship)  Shipboard 
sighting surveys 

281 items during 
79 h and 1963 km 
of transects 

(Topouzeli
s et al., 
2019) 

Coastal 
waters 
(Greece) 

artificial 
targets 
(PET, LDPE, 
derelict fi-
shing nets) 

feasibility 
study 

UAV and 
satellite 

RGB; S2 Demonstrated usefulness of UAV in 
improving geo-referencing of satellite 
images. The “identification of the 
plastic types and shapes will require 
multi- to hyperspectral imaging” 
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APPENDIX B:  DERIVATIVE SPECTROSCOPY 

Differentiation – the mathematical function to define the slope of a curve – is called derivative spectroscopy 

if applied to spectroradiometer derived curves. Its application on the continuous slopes of spectra involves the 

conversion of a normal spectrum into its first, second, or higher derivative spectra. While this method cannot 

provide more information than is contained in the original spectrum, it can be used to highlight subtle details of a 

curve and resolve overlapping spectral features while suppressing or eliminating unwanted information or noise 

(Jensen, 2016; Tsai and Philpot, 1998). Moreover, derivatives of second or higher order have the advantage of 

being insensitive to illumination variability (Dehnavi et al., 2017; Borengasser et al., 2008). 

This method was originally developed in analytical chemistry for application on laboratory reflectance 

spectra. In the field of remote sensing, its application has been limited because of the differences between the 

laboratory and field settings. Not all of the methods can be transferred easily to remote sensing data, especially 

because of atmospheric absorption of the solar illumination, varying illumination parameters, topography 

influence and mixed pixels in the natural environment (Jensen, 2016). While in remote sensing application, first 

order derivatives have been used for target discrimination (Dehnavi et al., 2017), first-order and second-order 

derivatives of the continuum-removed spectrum were used in combination with continuum removal in a novel 

spectral shape fitting method (Qu and Liu, 2017). The method was also applied for canopy nitrogen content 

estimation (Mitchell et al., 2012) and bathymetry information (Louchard et al., 2002). It was also applied in 

absorption feature position detection (Garaba and Dierssen, 2018; Tsai and Philpot, 1998). It’s main advantage 

related to the detection of floating plastics is seen in analysing the wavelengths of absorption features specific to 

plastic materials, as it has been applied by in Garaba and Dierssen (2018).  

Here, two approaches in the context of plastic spectra detection were selected and implemented using 

MATLAB: First, a rather exploratory approach was chosen with the purpose of finding subtle differences 

between selected image pixels containing plastic materials and pixels of water surface. In a second approach, a 

derivative analysis algorithm to extract absorption band positions was applied to pure reference spectra as 

developed by Huguenin and Jones (1986). 

In the first approach, mean radiance spectra from the Greifensee location were calculated for the densest 

PET test area and for the surrounding water surface. These spectra were then plotted together with their 

calculated first derivatives. Furthermore, the difference of the resulting first derivatives was plotted in order to 

have a new view on the spectral differences for visual analysis.  

The second approach, based on the only concisely documented algorithm for absorption position 

determination found in the literature (Huguenin and Jones, 1986) was applied as proposed, using reference 

spectra of floating PET targets from the SPECCHIO spectral database. This method usually is applied on 

reflectance spectra where preparing smoothing and interpolating steps are applied first (Tsai and Philpot, 1998). 

First, the mean PET reflectance spectrum was calculated and smoothed afterwards using a moving linear average 

filter with a span of 10 nm. This chosen filter window size lies in the middle between the applied spans 

(Huguenin and Jones, 1986; Garaba and Dierssen, 2018) and seemed reasonable after visual inspection. 

Interpolation was not necessary as the ASD fieldspectrometer measurements are acquired in regular steps of 1nm 

bands. Then, first to fifth derivatives of the smoothed spectrum were calculated, applying the same smoothing 

filter for each derivative again, since smoothing is required continually to minimize signal distortion (Huguenin 

and Jones, 1986). Finally, those wavelength positions were selected as candidates for absorption feature maxima 

where several conditions were met, as proposed by Huguenin and Jones (1986).  
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Since the documented procedures yield no convincing result, own ideas were additionally implemented: 

Candidates for absorption features were determined based on rules of differential calculation. The second 

condition for locale curve minima was defined - after the optimal span has been iteratively narrowed down - in a 

range of +/- 0.002 instead of 0 in order to take the discontinuous spectral curve characteristic into account. 

While derivative spectroscopy is usually calculated for reflectance data, a first impression of the spectral 

characteristics can be gained from radiance spectra as well, provided the atmospheric influences are considered. 

In all subplots of Figure B-1, both the mean radiance of the densest PET test area as well as of the raft – which is 

presumably made of PE – are used for comparison. The plastic raft spectrum was considered because the mixed 

PET pixel might not contain the necessary plastic signal fraction. The vertical dotted lines indicate those 

wavelengths where specific plastic absorption features are known: 931, 1215, 1471, 1732, and 2310 nm.  

 

 

Figure B-1: First impressions of the spectral characteristics using index, difference, and first derivative 
calculation plots 
 

In both the radiance difference and radiance index calculations, low values occur at these positions at 1215, 

1417, and 1732 nm. The indices expected at 931 nm show a shift towards 948 nm (datatip), whereas the 1417 

nm absorption feature is lost due to the atmospheric water vapor absorption band where very low values result 

for all materials. The 2310 nm absorption feature is also lost in extremely low values due to atmospheric 

absorption with the index showing mostly noise. For the differences in subplot (b), the expectation was at best to 

find a hitherto unknown anomaly. However, the difference plot seems to more or less reflect the atmospheric 

transmissibility which is highest in the visible spectral range. Still, the differences between water and plastic raft 
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radiance show dissimilar curves at the known features at 931, 1215 and 1732 compared with the difference curve 

for the 5% PET surface. Subplot (c) shows an enlarged part of the first spectral derivatives. According to the 

fundamentals of differential calculus, local minima of a curve can be found at positions where its first derivative 

equals zero and the second derivative is positive (Storrer, 1992). The 1128 nm (datatip) is of interest where the 

known features meet this criteria most obviously. Subplot (d) shows local maxima at 964, 1156 and 1493 nm 

(datatips) where the curve gradient differs the most.  

Differences in the radiance-difference plot (Figure B-1, subplot (b)) indicate once more that the 5% PET 

abundance might not be sufficient to successfully interpret the plastic absorption features or even to identify the 

material, since the spectral signal shows an expected variation only for the plastic raft (with an estimated 

abundance close to 100%) at the specific plastic absorption positions. 

 

 

Figure B-2: First order to fifth order derivatives calculated for the mean PET reflectance spectrum. 
 

In Figure B-2, the Y-scales of the derivatives are scaled differently so that even minimal variations became 

visible. It is important to note that the atmospheric absorption features around 1400 and 1850 nm were partially 

obscured by the mean value calculation of the reflectance spectrum. Therefore, these regions should be 

considered accordingly in the interpretation as they were not blanked out in the plots.  
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Figure B-3: Coloured spectral ranges of the mean PET reflectance where certain conditions for absorption 
features are met. 
 

Figure B-3 illustrates not only the spectral ranges of absorption feature candidates following the conditions 

defined in the literature (a) but also the conditions defined according to mathematical rules (b). In both plots, 

only those spectral regions highlighted in green meet all the conditions, which is only in the prominent 

atmospheric absorption feature around 1850 nm in the first case (a) but for several regions in (b), where the most 

obvious in the NIR are indicated with dotted lines. The wavelength regions annotated in green correspond 

precisely to well-known plastic absorption features, while the annotated (in red colour) feature at 1665 nm was 

expected to be identified – since it is present in the spectrum, as documented in Figure 5-5 (b) and (d)), but was 

not indicated by this approach. Further wavelength positions for absorption feature candidates at 1025, 1193 and 

2040 nm were visually investigated in the spectrum, but no distinguishable feature could be detected, partly due 

to very low values possibly superimposed with noise. 

Surprisingly, the method for absorption feature candidate locations did not yield any result except for the 

atmospheric absorption region around 1850 which cannot be counted. However, the mathematical conditions 

were met e.g. for the regions at 1217, 1437 (atmospheric absorption) and 1725, where the well-known plastic 

absorption features could be confirmed. However, it is irritating that the feature at 1715 - 1733 nm for the PET 

spectrum was found at this position and not closer to the 1665 nm range where the index calculations (Section 

3.3.2) and the CR calculations (Section 3.4.2) pointed to this shifted feature position for the specific PET plastic 

material.   
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