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I 

Abstract 

Suddenly evolving flash floods exhibit large hazard potential. Not only they do cause costly 

damages, but are also a threat to life. Very short-term precipiation nowcasting techniques in 

combination with a hydrological model are a means of predicting flash floods as early and 

reliably as possible. 

This thesis analyses the benefit of blending a radar precipitation extrapolation into a nu-

merical weather prediction (NWP) in comparison to raw NWPs. Accordingly, three nowcast-

ing chains called NP1 NPC and NPE are set up. All of them incorporate (i) initial conditions 

in form of a quantitative precipitation estimation, (ii) a probabilistic precipitation nowcast 

extrapolation generating an ensemble of precipitation nowcasts, except for the NPC nowcast-

ing chain which uses a deterministic nowcast extrapolation, (iii) a deterministic NWP con-

tinuing the NP1 and NPC nowcasting chain or a probabilistic NWP continuing the NPE 

nowcasting chain, (iv) a blending scheme, which merges the extrapolation nowcast into the 

NWP with regard to their spread in the ensemble, while the spread of deterministic predic-

tions is taken from their probabilistic counterparts, and (v) a probabilistic hydrological model 

generating runoff predictions. The merged nowcasting chains are, then, compared to two 

nowcasting chains called nowcasting chain COSMO-1 (CO1) and nowcasting chain COSMO-

E (COE), which generate their predictions without precipitation extrapolation and blending 

scheme, but only use the deterministic COSMO-1 and probabilistic COSMO-E NWP. This 

comparison is done in terms of the nowcasting chains skills in relation to a radar and rain 

gauge hindcast. A set of events is analysed and the best performing nowcasting chain is iden-

tified. For the evaluation, the proportion of best performing nowcasting chains is illustrated 

for each catchment. Hence, this thesis analyses whether an update cycle with frequently up-

dated initial conditions leads to more reliable flash flood predictions in the used nowcasting 

chains. 

The results show that the blended nowcasting chains outperform the raw NWP nowcasting 

chains in the main catchments of the Emme and Verzasca by over 70 %. In smaller subcatch-

ments of the Emme and Verzasca, the superiority of the blended nowcasting chains is less 

pronounced with a proportion of best performing nowcasting chains of over 60 %. The used 

update cycle shows that with frequently updated initial conditions all nowcasting chains im-

prove their skill. 

The credibility of this thesis’s results is underpinned by the inclusion of other relevant and 

up-to-date nowcasting related studies. Nonetheless, the limitations of the thesis are shown and 



II 

discussed. Moreover, this thesis shows that current issues such as climate change pose major 

challenges to the discipline of flash flood nowcasting. However, the findings of this thesis and 

related studies encourage that the further development of extrapolated nowcasts and blending 

schemes will be benefitial in mitigating the hazard potential of flash floods in the future.  
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1. Introduction 

The introduction first describes a short motivation, which underpines the importance of this 

thesis. This is followed by a longer literature review, which puts the thesis in the right scien-

tific context and provides a basis to capture the topic entirely. The objectives in the end of the 

introduction formulate the research questions to answer. 

1.1. Motivation 

Very short-term precipitation forecasting (nowcasting) is fast becoming a key instrument in 

the field of runoff prediction. The term nowcasting differs from the term forecasting in this 

respect that only short lead times up to six hours are considered in the nowcast. Flash floods 

(FFs) caused by extreme runoff and initialised by heavy precipitation events (HPEs) pose a 

threat not only to infrastructure, but also to human lives. FFs and co-occuring debris flows are 

by far the most important natural hazards in Switzerland: 94 % of the total natural damages in 

the year 2017 were caused by FFs and debris flows. Other natural hazards like landslides or 

rockfall are almost negligible (Andres and Badoux, 2018). Between the years 1972 and 2007, 

costs with a total amount of 7’110 million Euros (exchange rate on 31 December 2007 and 

taking inflation into account) were caused only by floods and inundations. This vast amount 

of costs is mainly caused by a few extreme flood events. This can be shown by six extreme 

events during the years from 1978 to 2005, which are responsible for more than half of the 

total costs in the period from 1972 to 2007. The ongoing climate change has the consequence 

that the number of extreme precipitation events will increase the hazard potential of FFs in the 

future (Hilker et al., 2009). Therefore, a reliable event-based prediction system is of undenia-

ble importance. 

The name flash flood, however, indicates that these floods evolve rapidly and are therefore 

difficult to predict in both magnitude and timing. Especially, in small and mountainous 

catchments, which are prone to FF, an early and accurate forecast is challenging. In addition, 

most catchments are divided into several nested subcatchments. It is difficult to accurately 

capture how the subcatchments interact with each other, which consequently brings another 

source of uncertainty into the runoff prediction. Finally, small and mountainous catchments 

are often ungauged. The only possible method to collect precipitation data and give an estima-

tion about the precipitation in these catchments is by radar measurements. As a result, no ob-

servataion data from rain gauges are available for verification (Liechti et al., 2013a). 
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Very short-term forecasting with recently updated precipitation estimation is the most 

promising method to detect FFs in advance. Vague long-term predictions with a long lead 

struggle to capture suddenly occurring FFs. Neither for scientists nor for policy-makers are 

long-term predictions, which try to predict a FF far in time, an option to assess the threat of a 

FF (Antonetti et al., 2019). A meteorological nowcast, which describes the state of the atmos-

phere in only the next few hours, offers a more reliable estimation of the amount of precipita-

tion. Consequently, nowcasting with a suitable hydrological model and the very short-term 

precipitation prediction is the most sophisticated way to predict FFs, and therefore to mitigate 

hazards (Mass, 2011). Consequently, progress in the application of nowcasting systems needs 

to be pushed further ahead in order to maintain civil defence in the future (Thorndahl et al., 

2017). 

Important for the entire discipline of detecting FFs is a reliable quantitative precipitation 

estimation (QPE), which could be radar-based and/or rain gauge-based. The QPE is used as 

the initial condition for the FF prediction. Since radar and rain gauge data are available in real 

time, a nowcast product in the form of a optimal extrapolation algorithm, which models the 

precipitation fields into the future, gives a nearly immediate estimation of the precipitation 

progression of the QPE (Germann and Zawadzki, 2002). However, a pure extrapolation of 

radar images does not consider crucial growth and decay processes in the atmosphere and 

quickly becomes inaccurate. Nonetheless, a switch from the QPE directly into a numerical 

weather prediction (NWP) can be subject to great uncertainties since the prediction needs 

some computation time, and hence uses outdated observation data (Nerini et al., 2019). 

In this thesis, a new nowcasting approach is used to achieve a more reliable prediction of pre-

cipitation, and as a result a better basis for the hydrological nowcast. This nowcasting ap-

proach seamlessly blends the extrapolated nowcast of the rain fields with the NWP gradually 

over time depending on their ensemble spreads. Seamless blending makes it possible to use 

the strengths of both the nowcast product and the NWP by adjusting their weights in inverse 

proportion to their uncertainties (Foresti et al., 2016). The term seamless indicates a consistent 

prediction regardless of location, lead time or forecasting procedure (World Meteorological 

Organisation 2015). The outcome is a more realistic simulation of short-term heavy precipita-

tion events, and therefore a more realistic simulation of the runoff. This more sophisticated 

approach is able to assess the hazard potential of FFs more accuratly and will have a trendset-

ting impact in the future. 
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1.2. Literature Review 

There is a growing body of literature that recognises the importance of the implementation of 

a seamless blending from the QPE into the NWP. A large number of contributors have all 

been part of the establishment of various forecasting systems, which blend an extrapolation 

nowcast into a NWP (Bowler et al. 2006, Foresti and Seed 2015, Foresti et al. 2016, Haiden et 

al. 2011 and Nerini et al. 2019). In this section, an overview of the different components used 

for FFs nowcasting is given and their developments brought into a scientific context. 

1.2.1. Nowcast Extrapolation and NWP 

Regarding the extrapolation nowcast, one of the first assessment of it is attributed to Wilson et 

al., (1979). In the study, rain fields were produced by a rainfall forecasting model, which is 

able to extrapolate precipitation into the future by making some assumptions. This approach 

can be seen as one of the first nowcast extrapolation approaches ever realized in rainfall-

runoff modeling, although the term extrapolation or nowcast never appears in the study. The 

used assumptions about velocity and direction of rain fields or their correlation with time and 

space were quite simple, but still used in today’s extrapolation nowcasts. The study could 

show that a useful precipitation extrapolation with a proper rainfall spatial distribution has a 

large impact on accuracy of the runoff prediction (Wilson et al., 1979). 

Nowadays, it is a fact that the spatial distribution of rainfall fields plays a decisive role in 

predicting runoff (e.g. Cristiano et al., 2017; Ochoa-Rodriguez et al., 2015). Especially small 

and mountainous catchments, as they occur in Switzerland, suffer from large errors in the 

runoff prediction if the spatial distribution of the rainfall fields cannot be represented correct-

ly (Liechti et al., 2013a). Further improvements took place in the type of initial data used for 

the extrapolation nowcast. The extrapolation nowcast uses initial rain gauge data as a starting 

point for the extrapolation. With today’s radar techniques, it is possible to use up-to-date ini-

tial rain data provided by radar measurements. The use of raing gauge measurements, as ini-

tial data, is therefore not absolutely necessary. For the first time, this enables the estimation of 

precipitation in ungauged basins (Liechti et al., 2012). 

The most important reason why nowcast extrapolation is extremely promising is that 

measured precipitation values (i.e. QPEs) used as initial conditions, from radar measurements 

and/or rain gauges, can be incorporated into the nowcast of precipitation in near real time. 

These initial conditions can be frequently updated, which enables the detection of potentially 

dangerous convective processes in the atmosphere, which in turn can lead to HPEs and there-

fore FFs. A major disadvantage of nowcast extrapolation is that it is not calculated by numeri-
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cal models or dynamic equations as it is done by NWPs. As a result, the nowcast extrapola-

tion loses rapidly predictive skill with increasing lead time. On the other hand, a NWP with 

observation data, which can be renewed less frequently than those of the extrapolation now-

cast, struggles to incorporate condensation processes into the prediction, especially if they are 

small-scaled. The forecast skill of the NWP is, therefore, mainly depending on the time past 

the last update of the initial data and the degree by which the atmosphere has changed during 

this time (Haiden et al., 2011). The question can therefore be asked whether it makes sense to 

use numerical models at all to predict single extreme precipitation events, which mainly trig-

ger FFs. The study of Klasa et al. (2018) demonstrates that there have been far-reaching im-

provements in recent decades regarding the development of NWPs. These improvements 

made the NWP systems suitable also for FFs predictions. One of the most important im-

provements was that current NWP are able to incorporate convection processes in the simula-

tions. It has been demonstrated that these convection-permitting predicting systems provide 

more reliable forecasts in all cases investigated (Klasa et al., 2018). 

1.2.2. Dealing with Uncertainty 

When dealing with forecasts or nowcasts, it is always essential to incorporate uncertainties 

into the simulation. A nowcast which models only one possible runoff does not provide any 

estimation about uncertainty. However, with increasing computer power, it became possible 

to generate multiple runoff simulations in a meaningful computation time. Each runoff simu-

lation, provided from the hydrological model, is different to the other because the meteorolog-

ical initial conditions and/or the parameter set of the hydrological model are slightly 

perturbated for each run. The resulting outcome is known as an ensemble or probabilistic 

forecast, which is used in a ensemble predicting system (EPS). The numerous generated run-

off hydrographs provide a good estimation of uncertainty through their different predictions, 

with each one of them representing one possible scenario of the runoff. It is, therefore, not 

surprising that the use of EPSs has increased rapidly in the past (Rossa et al., 2011). 

Nevertheless, not only the hydrological model, but also the meteorological predictions of 

precipitation estimation, done by the nowcast extrapolation and the NWP, uses the ensemble 

approach and therefore the EPS approach. Regarding the quantification of uncertainty in the 

nowcast extrapolation, Bowler et al., (2006) presented in their study a trend-setting methodol-

ogy which is still used today. The ensemble predicting system from Bowler et al. (2006) is 

based on the findings of Seed (2003), which in turn introduce a spectral prognosis model (S-

PROG) based on the circumstance that the persistence in time of observed precipitation fea-

tures behave proportional to their size. Differently spoken, this means that smaller features of 
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the precipitation field change faster in time than larger ones. The term feature in this context 

is associated to smaller or larger precipitation patterns within the precipitation field. It is as-

sumed that these features occur in any precipitation field. Since large-scale features behave 

more persistently in the nowcast extrapolation over time, their simulation in the extrapolation 

is more reliable than the simulation of the small-scale features, which are in many cases en-

tirely unpredictable. Thus, Bowler et al. (2006) used these findings to extract the small-scale 

features and to replace them by stochastic perturbation. By adding stochastic perturbation to 

the nowcast, it is possible to generate different simulations, and as a result an ensemble of 

nowcast simulations (members). The different simulations of the precipitation field make it 

possible to quantify the uncertainty in the nowcast. It therefore applies that the larger the 

spread of the different members is, the more uncertainty there is in the model (Nerini et al., 

2019). 

Regarding the NWP, the amount of error sources, which leads to uncertainty in the model 

prediction, is nearly endless. A numerical model tries to represent the dynamic processes in 

the atmosphere by spatial and temporal discretisation. However, the amount of processes in 

the atmosphere is uncountably large and their variability is difficult to capture. For this rea-

son, many atmospheric processes are simplified to make their implementation into the model 

possible, or to simply make them more understandable. Equations like the Naiver-Stokes flow 

equation, the mass continuity equation, and the first law of thermodynamics are mathematical 

formulations which try to capture the complex processes in the atmosphere. It is not possible 

to solve these equations analytically, but it is numerically. This means that the numerical solu-

tion of the equation is just an approximation. Furthermore, for some physical processes in the 

atmosphere even their scale of motion is unknown. As a consequence, these atmospheric pro-

cesses have to be parameterized, even if these processes are just a simplified representation of 

the reality (Bauer et al., 2015). 

To find an optimal set of parameters is always a difficult challenge and adds further uncer-

tainty to the prediction. Various verification methods with different strategies to get the good-

ness of fit (GOF) of the prediction were elaborated and used in the past. A perfect parameter 

set can not be found at all because it is the task of an experienced modeler to decide how to 

verify the prediction and which GOF should be used. This decision depends above all on how 

much and which experiences the modeler has already gained, and can therefore be challenged. 

Finally, the phenomenon and pitfall of equifinality must be mentioned when dealing with the 

uncertainties of parametrisation. Equifinality describes the problem when there are several 

optimal parameter sets which all have the same best GOF. This circumstance is contradictory, 
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since in reality there should be only one correct value per parameter. Accordingly, equifinality 

represents another source of uncertainty in prediction (Beven, 2012). 

In order to deal with parameter uncertainties, there are various ways to optimally incorpo-

rate them into a model. The uncertainties in the parameters go along with the ensemble ap-

proach, as different ways have been developed to vary the parameters in a model, and thus get 

different simulations in an EPS. The strategy on how to choose the variation in the parameter 

set for each member of the EPS should improve the reliability of the prediction. One approach 

introduced by Houtekamer et al. (1996) is called multiphysics approach. This approach gives 

each simulation in the ensemble a specific set of parameters for each physical process. Anoth-

er approach called multiparameter approach developed by Murphy et al., (2004) varies each 

individual parameter in a given range randomly around the default value. This approach is 

particularly valuable in a changing climate as the range of parameters can be adapted accord-

ing to the knowledge of experts. Many other approaches to parametrisize a model exist, and 

they all serve a distinct purpose. Furthermore, the approaches can be combined with each oth-

er to produce even better EPSs (Klasa et al., 2018). Nevertheless, it is not the intention to ac-

count for all of them when dealing with uncertainty, but to give an impression of how 

important the field of appropriate parametrisation of a model is in EPSs. 

In the past it could be shown that the mean value of an EPS is superior to a single forecast. 

As a result, it became recommendable to use EPSs also in the prediction of FFs (Klasa et al., 

2018). Additionally, the different simulations represent the range of uncertainty, and thus 

provide information about the reliability of the forecast (Bauer et al., 2015). It has to be con-

sidered, that the uncertainty is artificially generated in the meteorological input, which forces 

the hydrological model. However, the uncertainties stemming from the hydrological model 

are often not taken into account (Zappa et al., 2008). The reason for this is that the uncertain-

ties of the hydrological model are only weakly pronounced in comparison to other uncertain-

ties. The uncertainties originating from the meteorological input are far more essential, 

especially in mountainious and small catchments, where orographic uplifts contribute sub-

stantially to convection processes, and the precipitation associated with them. 

The question arises as to why not consider and combine all type of uncertainties in the 

EPS. The answer to this question can be found in the total uncertainty when the different par-

tial uncertainty sources superimpose. In this case, the total uncertainty does not correspond to 

the cumulated uncertainty of the individual partial uncertainties, but to a considerably higher 

value. This non-linear behaviour in uncertainty superposition is an important finding when 

dealing with FFs predictions (Zappa et al., 2011). It leads to the consequence that only the 
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meteorological uncertainties are considered in this master thesis. 

The mentioned findings in the past can also give an impression of how the development in 

dealing with uncertainties in EPSs could continue. The steadily increasing computer power of 

the past made it possible to move the development in EPSs forward. This will continue to be 

the case in the future. Spatially high-resolution models with multiple members and incorpo-

rated processes with higher degrees of complexity provide more advanced predictions, but 

also require new developments in computer power. Moreover, also the processes of the vari-

ous environmental spheres must continuitly be researched in depth and their complexity un-

derstood to deal with uncertainty in EPSs (Bauer et al., 2015). 

1.2.3. Blending Scheme 

The approach of blending an extrapolation nowcast into a NWP is relatively new. One of the 

reasons why it was likely to stay away from the extrapolation nowcast and rely more on the 

NWP was that there was a too large gap of complexity between the nowcast extrapolation and 

the NWP. While the nowcast extrapolation was avoided in many studies as a simple and ra-

ther rudimentary extrapolation of precipitation, the NWP was appreciated as a highly complex 

EPS. The NWP was, therefore, to be assumed to deliver highly sophisticated results instead of 

the nowcast extrapolation, which in its simplicity is incapable of grasping the complex pro-

cesses of the atmosphere (Golding, 1998). 

One of the first attempt to blend the extrapolation nowcast with the NWP was made by 

Golding (1998). This study recognised the advantages of both prediction systems and com-

bined them. The advantage of the extrapolation nowcast is that the up-to-date initial condi-

tions from the radar and/or rain gauges observations can be used in almost real time. 

Consequently, the extrapolation nowcast, starts from perfect initial conditions, if the uncer-

tainties in the radar and/or rain gauges are neglected. Even with simple extrapolation al-

gorythms, it is possible to obtain a high quality prediction of the QPE for short lead times, 

which is called quantitative precipitation nowcast (QPN) (Foresti and Seed, 2015). Further-

more, the computational costs can be kept low, because only one variable, the precipitation, 

has to be extrapolated and the complex processes of the atmosphere do not have to be calcu-

lated. The QPN is, as a result, available almost immediately. On the downside the nowcast 

extrapolation quickly loses skill, due to his rather simple approach, compared to the NWP 

approach. 

The NWP on the other hand is very unsuitable for very short lead time predictions, and 

hence for the QPN. The reason for this is the high computational costs, which are based on 

the holistic computation of the atmospheric processes. In addition, the NWP uses low spatial 
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resolution initial conditions, which brings a certain degree of fuzziness into the prediction. 

The low spatial resolution in the NWP is used because otherwise the computation time would 

be strongly increased, and the initial condition would be even more outdated. Furthermore, 

the uncertainties in the parametrisation and the simplification of physical processes are rea-

sons for an imperfect simulation. The main advantage of the NWP, however, is that the pre-

dominant large-scale events in the atmosphere can be well captured, which enables a reliable 

prediction of the QPE for long lead times called quantitative precipitation forecast (QPF). 

Only after a considerable long lead time, the NWP loses much of its skill due to the effect that 

subsequent errors of the simplified physical representations add up, and the development of 

small-scale features cannot be recorded. Summarizing these findings, figure 1 shows a sche-

matic illustration of the skill behaviour with increasing lead time of an extrapolation nowcast 

and a NWP. The figure additionally shows the theoretically best possible prediction skill. The 

best possible prediction skill decreases with increasing lead time, since the chaotic system in 

the atmosphere inevitably leads to uncertainties in the prediction (Golding, 1998; Jenkner et 

al., 2008; Nerini et al., 2019). 

The study by Golding (1998) could show 

that blending the extrapolation nowcast with 

the NWP does indeed produce significantly 

improved predictive results than a raw NWP or 

a raw extrapolation nowcast. Based on the 

findings of Golding (1998) and, not to be ne-

glected, through increasing computing power 

in the past, it was to be expected that more 

sophisticated blending schemes and enhanced 

extrapolation nowcasting system would 

emerge. 

One of these more recent QPF system is called integrated nowcasting through comprehen-

sive analysis system (INCA), which is fully described in Haiden et al. (2011). The main rea-

son why INCA was developed was that the conventional simple extrapolation nowcast 

provided insufficient predictive skills in mountainous areas. Orographic cloud formation lead-

ing to precipitation could not be captured with the existing nowcast extrapolation. This is be-

cause the simple extrapolation of a single variable like precipitation is quite challenging in 

mountainous areas. Thus, the lead time of a meaningful prediction is dramatically reduced. 

INCA is able to integrate variables like temperature, humidity, global radiation, wind or 
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Figure 1: Schematic illustration of the skill loss with 

increasing lead time. According to Golding (1998). 
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ground temperature into the forecast. This more sophisticated forecasting system focuses not 

only on improving the QPN with a very short lead time, but also on improving forecasts of the 

NWP with longer lead times. This improvement can be achieved by integrating the multivari-

able analyses and forecasts of the system into the NWP. These analyses are forced by obser-

vation data and remote sensing data. These data contribute substantially to a better prediction 

as they are able to capture changes in the atmosphere almost instantaneous. The INCA system 

incorporates a nowcast extrapolation as well as a blending scheme to gradually merge the 

extrapolation with the NWP. The precipitation extrapolation nowcast is based on Lagrangian 

persistence. Lagrangian persistence basically assumes that the precipitation fields move per-

sistently along the coordinates over time, and is further described in Zawadzki et al. (1994). 

The blending scheme in INCA is simple. A weighting function blends the nowcast extrapola-

tion after the first two hours of raw extrapolation nowcast linearly into the NWP. After six 

hours the full weight is given to the NWP. Obviously, a linear blending scheme is not the 

most sophisticated method to merge a precipitation extrapolation nowcast with the NWP. 

However, in the INCA system, other blending schemes like blending the precipitation extrap-

olation nowcast with the NWP taking into account their uncertainties and weighting them 

accordingly, was not to be proved beneficial, at least for the variable of precipitation. With 

respect to other variables, the INCA system could show that with more sophisticated blending 

schemes, better results can be achieved. If the variable temperature is taken, it can be shown 

that a more reliable prediction of the temperature can be made by including the stability of the 

atmosphere in the blending scheme. Thus, the extrapolation nowcast is blended faster with the 

NWP in a turbulent atmosphere than with stable conditions such as an inversion situation. 

This is done because in a turbulent atmosphere the nowcast extrapolation loses skill more 

quickly (Haiden et al., 2011). 

Two important findings in relation to FFs predictions can be derived from the INCA sys-

tem. Firstly, an extrapolation nowcast provides a reliable QPN, which outperforms a raw 

NWP for very short lead times. Secondly, a linear blending of the extrapolation nowcast with 

the NWP can be applied to obtain a more reliable QPN. However, it can be assumed that the 

blending scheme used still has potential for improvement (Haiden et al., 2011). 

The recently developed and constantly improved short-term ensemble prediction system 

(STEPS) incorporates one of these more sophisticated blending schemes and offers great po-

tential for reliable QPN and QPF. STEPS is one of the first prediction system which uses a 

probabilistic ensemble approach for its nowcast extrapolation and blends it into the NWP. 

Regarding STEPS, it is possible, therefore, to speak not only of a QPN or a QPF, but also of a 
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probabilistic quantitative precipitation nowcast (PQPN) or forecast (PQPF) (Bowler et al., 

2006). This probabilistic approach is crucial in FFs nowcasting because it allows to assign a 

probability to a possible precipitation field. The representation of varios precipitation fields 

would not be possible with a deterministic approach because the deterministic approach offers 

only one possible scenario at the time. This is especially dangerous in small catchements, 

which are prone to FFs. The deterministic approach, giving no information about other pre-

cipitation scenarios, could easily miss a hazardous FF event (Liechti et al., 2013a). 

The probabilistic STEPS uses a very high spatial and temporal resolution for the predic-

tions. This is also of great relevance in the field of FFs prediction, since small catchments or 

subcatchments can only be captured with high resolution prediction systems, and, further-

more, the prediction of FFs must be done with high temporal resolution, since FFs can devel-

op suddenly, and their capture could otherwise be missed. Since the relatively coarse NWP 

grid, into which the extrapolation nowcast is blended, has not a high enough spatial resolution 

to consider small precipitation fields, a simple downscale approach had to be incorporated in 

STEPS. The downscaling approach basically divides a grid of the NWP into four subgrids and 

reassigns precipitation values for each subgrid. As a result, the precipitation NWP can also be 

used for small-scale catchments. Furthermore, in the study on STEPS, it was possible to quan-

tify two different uncertainties considering the extrapolation nowcast. Firstly, the uncertainty 

in the motion of the precipitation field, and secondly, the uncertainty in the evolution of the 

precipitation field. STEPS was the first system to take into account the uncertainties in the 

evolution of the precipitation fields, and is ,therefore, able to consider important grow and 

decay processes in the atmosphere. Even more it could be shown that the uncertainties in the 

evolution of precipitation fields are more important than the uncertainties in the motion of 

precipitation fields. The blending scheme of STEPS merges the nowcast with the NWP based 

on their uncertainties. Hence, better predictions could be made with the newly developed 

blending scheme of STEPS, which takes into account not only the uncertainties in the motion 

of precipitation fields but also by including the more important uncertainties in the evolution 

of the precipitation fields (Bowler et al., 2006). 

1.2.4. Further Prediction Components 

The effort to apply nowcast extrapolation and the use of a suitable blending scheme leading 

into the NWP is crucial for reliable FFs predictions. Nowcasting FFs is however embedded in 

a large scientific field, which incorporates various subdisciplines like the use of an appropri-

ate warning system, the correct estimation of the initial precipitation used for the prediction, 

the hydrological model generating runoff, and the task of communicating comprehensibly the 
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results between scientists and decision-makers. It is, therefore, essential to give a brief overall 

view about the interactions of nowcasting FFs with other subdisciplines. 

1.2.4.1. Alert System 

The hazard potential of a FF arises primarily from the fact that FFs can occure suddenly dur-

ing and after HPEs. It is evident that FFs are detected with event-based forecasting systems. 

However, especially in catchments with short response time, there is hardly any time between 

the HPE and the triggering of the FF to take action. It is, therefore, crucial to have a sophisti-

cated alert system with well-considered thresholds (Antonetti et al., 2019). 

Catchemnts that are prone to FFs are in many cases ungauged. As a result, there are none 

or only a few runoff measurements of the past. Thresholds are set in most cases regarding the 

meteorological situation. Or differently spoken the threshold is set for the rainfall input for the 

hydrological model. The fact that the catchments are ungauged makes it difficult to set mean-

ingful thresholds for the rainfall, beacause only descriptive reports are available instead of 

accurate measurements (Alfieri et al., 2015). 

A very sophisticated way to find a rainfall threshold for a catchment is to use the Europe-

an precipitation index based on simulated climatology (EPIC). EPIC is incorporated in the 

European flood awareness system (EFAS) and uses the NWP from the consortium for small-

scale modelling (COSMO) called COSMO limited-area ensemble prediction system (COS-

MO-LEPS). COSMO-LEPS calculates for each of the 1 km2 grids 16 members, which have a 

value from zero, corresponding to no rain, to one, corresponding to the average of the annual 

maximum. It is also possible that the value is greater than 1. Criteria can be set for each grid, 

since, for example, 4 of the 16 members must have at least the value 1. If these criteria are 

fulfilled for a larger grid area, a probability density function (PDF) can be used to determine 

the probability that a certain return period will be exceeded. EPIC is only one possibility to 

determine meaningful thresholds. However, the ensemble approach is very convincing, since 

it makes possible to consider uncertainties of where and when exactly the FF will appear (Al-

fieri et al., 2015). 

Another approach, which is mainly used in the United States, is the flash flood guidance 

(FFG). The thershold is not determined by the meteorological input, but by a hydrological 

model which is run backwards. Thus, the intensity of rainfall can be calculated, which would 

be needed to trigger a FF. In this variant of determining the threshold, however, a sophisticat-

ed hydrological model is the basic prerequisite (Georgakakos, 2006). 
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1.2.4.2. Radar Technique 

The improvement in the application of radar techniques is of great importance in FFs predic-

tion systems. Radar images and the associated radar technology provide the QPE, which is the 

initial data for the nowcast extrapolation or the NWP. In the last decades, the possibilities in 

the application of radar images have improved substantially. Nowadays, radar measurements 

are not only dependent of one single radar, but also of an entire radar measuring network 

(Thorndahl et al., 2017). Furthermore, error sources like ground echos or ground clutters 

could be mitigated, which increases the quality of radar measurements (Sideris et al., 2014a). 

On the basis of the enhanced radar precipitation estimations, the lead times of precipitation 

nowcasting could be enlarged from less than one hour to a few hours (Germann and 

Zawadzki, 2002). Radar measurements of precipitation have the great advantage that they can 

cover a large area without being maintained intensively. It is, therefore, possible to have an 

estimation of precipitation in regions which are not covered by rain gauges, either because 

they are not accessible or because the maintenance is too intensive for rain gauges (Sideris et 

al., 2014a) Rain gauging stations, which have the advantage of providing highly accurate data 

for the QPE, are widely spread all over Switzerland. However, the network density of the rain 

gauges is rather low. In addition, it has to be assumed, that the rain gauging network will not 

densify in the future, due to the considerable effort required for installation and maintenance 

(Liechti, 2013). However, the great advantage of the rain gauge measurements high accuracy, 

improve the quality of the QPE remarkably, if they are combined with radar precipitation es-

timations (Sideris et al., 2014a). 

1.2.4.3. Hydrological Model 

For the use of FF prediction, it is necessary to have a hydrological model which is forced by 

the input precipitation data. Various hydrological models exist with different levels of com-

plexity and different application purposes. The decision of which model to use, however, does 

not depend on its degree of complexity, but on the purpose for which it is needed. As a result, 

it would be misleading to speak of less advanced or more advanced models (Beven, 2012). 

The process-based runoff generation model (RGM-PRO), which is also used in this thesis, 

will be further explained in section 2.2. To put the RGM-PRO in a scientific context it is 

nececary to separate the hydrological model from others. There are many ways to differentiate 

between different hydrological model approaches. A first very general differentiation in hy-

drological models can be made by differentiating between event-based models or continuous 

models (Beven, 2012). Event-based models serve the purpose to simulate single events. Since 
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FFs occur during rare heavy, and therefore extreme, rainfall-runoff events RGM-PRO is set 

up as an event-based model. This means, that the hydrological model simulates the runoff of a 

stream only for a predefined short period of time. These models are in contrast to the continu-

ous models, which continuously model the runoff and are, consequently, not well suited for 

capturing single extreme events (Addor et al., 2011). The RGM-PRO is, furthermore, a pro-

cess-based model. Process-based models rely on the assumptions made by the modeler and 

their implementation into a hydrological model. The implementation of the hydrologist’s as-

sumptions is made by using continuity equations, which contain different parameters. These 

parameters can either be measuered in the field, conscientiously adjusted by calibration, or, as 

in the hydrological model RGM-PRO, empirically predefined. Additionally, RGM-PRO is 

able to generate multiple runoff simulation by using not only one parameter value but rather 

by using parameter values, which are slightly perturbated for each simulation in a predefined 

range (Antonetti et al., 2017). Each simulation run represents one member of the hydrological 

model, and can be seen as one possible scenario. This ensemble or probabilistic approach 

stands in opposition to a deterministic approach, which provides only one single simulation. 

Countless studies in recent years have used the probabilistic approach for their simula-

tions. Liechti et al., 2013a, 2013b; Zappa et al., 2008, 2013 are only a few relevant studies 

using the ensemble approach. The reason why the ensemble approach is so popular is quite 

simple. The spread of the different members represents the uncertainty in the forecast and 

thus gives an estimation about the probability, whereas this is not the case by using a deter-

ministic approach. A disadvantage of using the ensemble approach in a process-based runoff 

generation model are the high computation costs, which are needed to run the model for each 

member. In addition, the highly complex processes which have to be calculated by the model, 

likewise increase the computation time of the model (Addor et al., 2011). In the past, it could 

be shown that the level of complexity in the hydrological model can be decreased without 

losing significant performance. This more conceptual approach, which is also used by RGM-

PRO, has the advantage that it requires less computation time but yet remains reliable (Vivi-

roli et al., 2009). Furthermore, it is worth mentioning that computation efficiency and hydro-

logical understanding has continuously improved, allowing the use of highly sophisticated 

models within useful computation time (Beven, 2012). 

1.2.4.4. Communication 

Due to these various progesses in the field of rainfall-runoff predictions, nowcasting has 

proven to be not only an interesting scientific field for research, but also an early warning 

system with great potential. (Berenguer et al., 2005). However, the best FFs warning system 
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is useless if decision-makers and the affected people are not informed correctly. Early FFs 

warning systems which are capable of giving information not only about a threshold exceed-

ance, but also about more specific infomation such as the potential risk for infrastructure or 

possible mitigation methods are necessary for a FFs warning system that operates holistically 

(Ahmad and Simonovic, 2006). It is, thus, not surprising that plenty of findings have been 

collected until today on how to communicate results from experts to end-users in the most 

efficient and useful way possible (Romang et al., 2011). Nowcasting is, therefore, just one 

tool incorporated into the interdisciplinary field of research of FFs warning systems (Zappa et 

al., 2011). 

1.3. Objectives 

The review of literature shows that many components are necessary to consider for a useful 

FFs nowcast. To deal with all the components would be an impossible task, especially for a 

master thesis, since each individual component has its own scientific field. It is, however, 

important to know which components belong to the extensive discipline of FFs nowcasting. 

Only by understanding the properties and functions of the individual components and their 

interrelations, it is possible to draw conclusions about the NPWs and to understand and ana-

lyse the complexity of the discipline of FFs nowcasting.The schematic illustration in figure 2 

summarises the individual components that are part of FFs nowcasting and forecasting. The 

rectangles represent the products included in FFs nowcasting and forecasting, while the ellip-

ses represent the processes. The schematic illustration clarifies the complexity of FFs now-

casting and forecasting. However, the focus of this thesis will mainly be on the so-called flash 

flood nowcasting chains (subsequently referred to as nowcasting chains). These nowcasting 

chains combine the meteorological model with the hydrological model (Zappa et al., 2011). 

In this thesis, the nowcasting chains incorporate (i) the up-to-date meteorological initial 

conditions for the nowcast in the form of the rainfall measured by radar and/or rain gauges, 

(ii) a probabilistic or deterministic nowcast product, which extrapolates the rainfall into the 

very short-term prediction providing a PQPN or QPN respectively, (iii) a NWP, producing a 

PQPN and a QPN as well as a PQPF and a QPF in respect to longer lead times, (iv) a blend-

ing scheme, which merges the extrapolation nowcast into the NWP by a predefined weighting 

function and (v) a probabilistic hydrological model, which provides runoff estimations. The 

individual components, which belong to the nowcasting chain, are framed in red in figure 2. 

The runoff as the actual result of the nowcasting chain is marked as a red and black dashed 

rectangle. 



15 

In the study by Zappa et al. (2008), the mesoscale alpine programme demonstration of 

probabilistic hydrological and atmospheric simulation of flood events (MAP D-PHASE) is 

introduced. In the programme, different flood nowcasting chains were created by combining 

different meteorological and hydrological models in several catchments. With MAP D-

PHASE it could be shown that some nowcasting chains were superior to others and added 

considerable value to the prediction (Zappa et al., 2008). 

Similarly to the MAP D-PHASE study, different nowcasting chains are created and com-

pared in this thesis. The focus lies on the comparison of nowcasting chains, which blend an 

extrapolation precipitation nowcast into a NWP with nowcasting chains exclusively using a 

NWP for the prediction of the precipitation. The main research question that runs through the 

whole thesis is the following: 

¶ (1 ) Are now casti ng chain s, w hich blend an extrapo lat ion n ow cast int o a NWP ,  sup eri-

or t o now casti ng chain s using  raw  N W P s ?  

The analysis includes both deterministic and probabilistic nowcasting chains. Derived 

from this circumstance the sub-research question is formulated as: 

¶ (1.1 ) Are  now casti ng ch ain s , using  a blending sc heme , sup erior  to now casti ng chain s 

using  raw  N WP s  consi d ering  only dertemini sti c fl ood now asti ng chains  and li kew ise 

consi dering only  probabi li sti c now casti ng chain s ?  

When analysing whether the nowcasitng chains using extrapolation and blending are supe-

Figure 2: Schematic illustration of products (rectangles) and processes (ellipses) included in FF nowcasting and 

forecasting. Products of the nowcasting chain are marked in red. The runoff as a result of the nowcasting chain is 

marked as a red and black dashed rectangle According to Rossa et al. (2011). 
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rior to nowcasting chains using raw NWPs, it has to be checked whether the used nowcasting 

chains are skilful at all. This results in the sub-research question: 

¶ (1.2 ) Are the nowcasti ng chains  skil led enough to mak e useful  predictions ?  

A last research question concerns the update cycle of initial conditions of nowcasting 

chains. The initial conditions for a specific event are not only taken from the beginning of the 

event simulation, but updated frequently. This results in additional runoff simulations, which 

each have more current initial conditions than the antecedent simulation. This leads to the 

research question: 

¶ (2 ) Is it  possi ble to increase the skil l of now casti ng chain s  by updati ng the ini ti al con-

dit ions f requentl y?  

This introduction is followed in section 2 by the data and methods used to answer the re-

search questions. The following section shows the results, while they will be discussed in sec-

tion 4. Finally, the most important findings are summarised in section 5. 
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2. Data and Methods 

The data and methods section describes the study catchment as well as the components which 

are incorporated in the nowcasting chains. Furthermore, the experimental set-up and the veri-

fication methods to answer the research questions are explained in detail. 

2.1. Study Catchments 

Two study catchments were selected to analyze the nowcasting chains. The first and larger 

study catchment is the Emme catchment, which lies in the prealpine region, for the most part  

in the canton Bern. The catchment is divided into the subcatchment Trueb (55 km2), which is 

nested into the subcatchment Ilfis (184 km2), which is in turn nested in the main catchment 

Emmenmatt (445 km2). The last subcatchment Eggiwil (125 km2) is nested in the main 

catchment Emmenmatt (figure 3). Each subcatchment as well as the main catchment is 

equipped with a runoff gauge at the outflow. In addition, the Trueb subcatchment has a rain 

gauge. The elevation of the whole catchment ranges from 638 to 2213 m a.s.l.. Regarding the 

land use types, the catchment consists of 52 % meadows and 44 % forests. The last small part 

is settlements with 4 %. The geology of the catchment consists mainly of Flysch and Creta-

ceous at higher elevations and of Freshwater and Marine Molasse at lower elevations. Addi-

tionally, Molasse can be found at lower elevations but only to a small extent (Antonetti and 

Zappa, 2017). 

The second catchment is the Verzasca catchment. The catchment lies in the canton o Tici-

no in the southern alps of Switzerland and consists of the nested subcatchment Pincascia (44 

km2) and the main catchemnt Verzasca (186 km2), both of which are equipped with a runoff 

gauge (figure 4). The elevation of the catchment ranges from 490 to 2870 m a.s.l. and the land 

use types are forest (30 %), shrub (25 %), rocks (20 %) and alpine pastures (20 %). The 

catchment is hardly affected by anthropogenic activities (Liechti et al., 2013b; Wöhling et al., 

2006). The catchment is built of a crystalline gneiss bedrock with sporadically occurring cal-

careous schists (Bündnerschiefer). Dominant is mainly the lithology of the Pennine units of 

the central Alps (Horat et al., 2018). 



18 

Figure 3: Emme Catchment including the maincatchment Emmenmatt and the subcatchments Eggiwil, Iflis and 

Trueb (Horat 2017). 
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Figure 4: Verzasca Catchment including the maincatchment Verzasca and the subcatchment Pincascia (Horat 

2017). 
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2.2. Hydrological Model 

The used hydrological model in this thesis is the process-based runoff generation module 

(RGM-PRO). This model derives from the hydrological modelling system PREVAH (Precipi-

tation-Runoff-Evapotranspiration HRU Model, where HRU stands for hydrological response 

unit). Each HRU contains physiographic information and can be clustered into areas with sim-

ilar hydrological behaviour (Viviroli et al., 2009). RGM-PRO uses similarly so-called maps 

of runoff types (RTs). The runoff type is determined based on the dominant runoff processes 

(DRPs). More about the determination of the DRP can be found in Scherrer and Naef (2003). 

The spatial resolution of the DRP map, and therefore the RT map, is 25x25 m. However, the 

spatial resolution of RGM-PRO is only 500x500 m. As a result, the percentage of RTs in each 

RGM-PRO cell is taken into account (Antonetti et al., 2017). Each RT can be assigned to a 

runoff coefficient. The runoff coefficient describes the relationship between runoff and rain-

fall and can thus be described in a function curve. The runoff coefficients were determined a 

priori by sprinkling experiments for each RT (Kienzler and Naef, 2008). Additionally, a pa-

rameter range, consisting of the best 1 % Monte Carlo simulations, was assigned to each run-

off coefficient curve to take uncertainties into account. 

The great advantage that the precalibrated RGM-PRO has over PREVAH is that no classi-

cal calibration has to be made using runoff measurements. This allows runoff estimations in 

ungauged catchments, which are prone to FFs. Soil moisture initial data, which have to be 

considered in RGM-PRO, are adopted from PREVAH at the same spatial resolution as RGM-

PRO (Antonetti et al., 2017). 

Finally, RGM-PRO is set up as an ensemble approach. By random perturbation within the 

uncertainty ranges of the runoff coefficient functions, 21 members are generated. These 

members, representing different scenarios in runoff, allow to make an assumption about the 

hydrological model uncertainty. 

2.3. Events Selection 

The selection of events must be made under consideration of the research question to be an-

swered. To answer the research question whether nowcasting chains that include a blending 

scheme are superior to nowcasting chains that use a raw NWP only, an optimal set of events 

would have to be as large as possible in order to capture the diversity of FF events in its com-

plexity. However, when selecting the events, some limitations have to be taken into account. 

Firstly, FFs only occure during and after heavy precipitation events (Antonetti et al., 2019). 

Since HPEs are extreme events, they are rare, limiting the choice of events. Secondly, in the 
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winter season, precipitation in the form of snow does not contribute to runoff as the differen-

tiation between snow and rainfall as well as snow melt leading to runoff is not considered in 

the nowcasting chains. As a consequence, only events from April to August in the Emme 

catchment and from April to September in the Verzasca catchment are considered. It is as-

sumed that in these months the precipitation falls in the form of rain. Finally, a third limitation 

is given by the extensive computer power and the resultant computation time used to run the 

nowcasting chains. Therefore, only the years 2016 and 2017 are considered. 

The event selection is based on the warning system NowPAL (nowcasting of precipitation 

accumulations) operated by the Swiss national weather service MeteoSwiss. This system ac-

cumulates the observed rainfall with the nowcasted rainfall over a given warning region. In 

case that the accumulated rainfall exceeds a predefined threshold, a possible FF event is giv-

en. The accumulation time of the observation, the accumulation time of the nowcast, as well 

as the threshold are adjustable features (Panziera et al., 2016). 

The quantitative precipitation estimation (QPE) is provided by the so-called CombiPrecip 

(CPC) scheme. CPC combines hourly radar accumulations with rain gauges measurements 

using geostatistical interpolation techniques to obtain an optimal rainfall estimation (Sideris et 

al., 2014b). For sub-hourly accumulations, CPC is not available and the radar-only QPE 

product RZC is used instead as input to NowPAL. The used nowcasting tool for rainfall esti-

mation is the predescribed INCA system (Haiden et al., 2011). The QPE provided by radar 

observations uses five radar stations, which can be seen as white triangles in figure 5. Addi-

tionally, the figure shows the Emme catchment in blue and the Verzasca catchment in red on 

the Swiss map. The advantage of a radar QPE is that all warning regions are fully covered by 

the radar network, whereas not all of the warning regions are covered by rain gauges. Further 

information about the radar precipitation measurement and its uncertainties can be found in 

Germann et al. (2006a, 2006b). 
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Two events selection techniques are applied, which are described in the following and 

summarised in table 1. In a first experimental run CPC120INCA240 was used, which stands 

for 120 minutes of CPC observation accumulated with 240 minutes of INCA nowcast. The 

triggering threshold was set to 15 mm accumulated rainfall for the Emme catchment and 20 

mm for the Verzasca catchment, which corresponds to the 98 % quantile of the summer rain-

fall over the last 12 years (Panziera et al., 2016). In both catchments, 10 events were random-

ly selected to test the calculation time of the nowcasting chain. Taking the computation time 

as a limitation into consideration, a second event selection run called RZC30INCA60 was 

launched, which stands for 30 minutes radar observation by RZC, and 60 minutes of INCA 

nowcast. Thereby, the lead time of NowPAL is reduced, which makes the warning system 

more applicable to nowcasting. In addition, the triggering threshold in the Emme catchment 

was increased to 20 mm. This new setting was chosen because the INCA nowcast quickly 

became inaccurate, and therefore a lead time of 240 minutes was overconfident. Further set-

tings such as the required number of consecutive threshold exceedances is set to four to re-

duce false alarms. The trigger latency, which is the earliest time to issue a new event was set 

to 24 hours and the total lead time of the forecast was set to 24 hours after the event. Finally, 

41 events for the Emme catchment and 40 events for the Verzasca catchment were chosen 

both including the 10 CPC120INCA240 events. 

Figure 5: The used radarstations are shown providing radar data for the QPE. Radarstations are shown as white 

triangles, whereas the Emme catchment is marked in blue and the Verzasca catchment is marked in red. 
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Table 1: Characteristics of selection techniques for both catchment regions. The abbreviation Verz. stands for 

Verzasca the catchment. Further Information about the characteristics can be found in the text. 

 

Figure 6 shows the RZC30INCA60 output of NowPAL for the year 2017 in the Emme 

catchment. Further outputs including the year 2016 and the Verzasca catchment are added in 

the appendix (figures A.1–A.3). For the performance analysis of the nowcasting chains with 

frequently updated initial conditions, an event was chosen with an unambiguous peak in run-

off to ensure the occurrence of a FF. 

2.4. Nowcast Extrapolation and Blending 

Precipitation input data in form of radar and/or rain gauges observations serve as initial condi-

tions for the probabilistic or deterministic nowcast extrapolation or the raw NWP within the 

nowcasting chain. The precipitation input is provided by the predescribed CPC. 

The nowcast extrapolation is done by Lagrangian persistence, which basically means that 

the radar images are extrapolated by using the same motion pattern of the precipitation fields 

as in the antecedent radar images. A detailed description of the Lagrangian persistence can be 

found in Germann and Zawadzki (2002) The nowcast extrapolation is set up as a probabilistic 

approach in order to consider the uncertainties. The first member of the ensemble is a unper-

turbated control member. The remaining 20 members are generated by adding stochastic per-

turbation to the extrapolation nowcast. This perturbated part of the extrapolation nowcast 

represents the unpredictable growth and decay processes in the atmosphere, which are not 

taken into account by the Lagrangian persistence approach. The unpredictable component is 
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Figure 6: NowPAL RZC30INCA60 output for the year 2017 in the Emme catchment. The blue axis shows the 

accumulated precipitation by NowPAL. The black axis shows the observed runoff. The blue dotted line repre-

sents the treshold triggering an event and the red bars cover the 24-hour forecast. 
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quantified by the autocorrelation coefficient with respect to the predictable part. Thereafter, 

an auto-regressive model of order 2 is used to generate a nowcast. This leads to a rather small 

member size of 21 for the probabilistic nowcast extrapolation. More about the stochastic per-

turbation can be found in the study of Foresti et al., (2016) and Pulkkinen et al. (2019).  

The nowcast extrapolation is seamlessly blended with the NWP within 5 hours. The 

blending is done under consideration of two conditions. Firstly, the blending is proportional to 

the uncertainty of the nowcast extrapolation and the uncertainty of the NWP, whereas the un-

certainty is defined as the spread of the ensemble (i.e. its variance). Differently spoken, the 

extrapolated nowcast and the NWP are weighted inversely to their uncertainty during the 5 

hours nowcast. Secondly in the beginning of the nowcast, the entire weight is assigned to the 

extrapolation nowcast and, after 5 hours of nowcast, the entire weight is assigned to the NWP. 

A more detailed description of the blending scheme can be found in Nerini et al. (2019). 

2.5. Numerical Weather Prediction 

This thesis uses the deterministic numerical model COSMO (Baldauf et al., 2011) as operated 

by MeteoSwiss since early 2016 for the Alpine region (COSMO-1), as well as its ensemble 

counterpart, COSMO-E (Klasa et al., 2018). The COSMO-E model incorporates 21 members, 

whose spread quantifies the uncertainty. Both COSMO models are suitable for medium range 

forecasts in the alpine region due to their high spatial resolution. The COSMO-1 model has a 

horizontal spatial resolution of approximately 1.1x1.1 km, while COSMO-E has a spatial res-

olution of 2.2x2.2 km (MeteoSwiss, 2019). Regarding the temporal resolution, table 2 sum-

marises the forecasts of COSMO-1 and COSMO-E. The time between the forecast 

initialisation and the forecast availability is the time needed to compute the NWP. The com-

putation times for nowcasting applications is reduced, since there is no need to compute the 

whole lead time for short-term predictions. 

Table 2: Summary of the temporal resolution of COSMO-1 and COSMO-E. 

COSMO model Forecast initialisation 

[UTC] 

Lead time 

[h] 

Forecast available at 

[UTC] 

COSMO-1 00:00 33 01:00 

 03:00 45 04:00 

 06:00 33 07:00 

 09:00 33 10:00 

 12:00 33 13:00 

 15:00 33 16:00 

 18:00 33 19:00 

 21:00 33 22:00 

COSMO-E 00:00 120 02:00 

 12:00 120 14:00 
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The ensemble members of the COSMO-E model are generated by the so-called stochasti-

cally perturbed parametrisation tendencies scheme (SPPT)(Buizza et al., 1999a). The first of 

the 21 members of the ensemble is an unperturbated control member. Furthermore, the initial 

and later boundary conditions are perturbated (Klasa et al., 2018). 

2.6. Experimental Set-up 

Two types of nowcasting chains are set up: nowcasting chains using a blending scheme, 

which blends the extrapolated nowcast into a NWP, and non-blended nowcasting chains, 

whose nowcast and forecast is done by a NWP only. The resulting hydrographs are compared 

to the hydrograph of the pseudo observation nowcasting chain, which consists of a CPC 

hindcasted QPE, which forces the hydrological model. This CPC QPE is called pseudo obser-

vation, because the values are taken from the combined product of radar and rain gauge pre-

cipitation measurements CPC instead of real observation values, which in fact would be 

available. The reason for this approach is that catchments prone to FFs are often ungauged 

and no observations are available. This makes the results shown in this thesis more meaning-

ful for operational purposes of FFs nowcasting. Furthermore, the contribution of uncertainties 

related to the precipitation initial conditions and the hydrological model are excluded to focus 

on the nowcast and forecast uncertainties only. 

In each nowcasting chain the runoff in the initialisation phase is provided by CPC and the 

soil moisture data from PREVAH (section 2.2). The start of initialisation for each nowcasting 

chain is at the time when minimum runoff is observed within the last five days before the 

event. At the time of the event the CPC QPE switches into the nowcast of the different now-

casting chains. Three nowcasting chains called nowcast product COSMO-1 (NP1), nowcast 

product control member (NPC), and nowcast product COSMO-E (NPE) are seamlessly 

blended into the NWP within a five-hour blending phase. The nowcast products differ in such 

a way that NP1 is blended into the NWP COSMO-1 and NPE is blended into the NWP 

COSMO-E. While the 21 members of NP1 all lead into the deterministic prediction of COS-

MO-1, the 21 members of NPE lead into the corresponding 21 members of COSMO-E. The 

NPC is the first and unperturbed member of the NP1 nowcasting chain. 

After the blending phase the NWP takes over the forecast for a lead time of 19 hours, 

which results in a total lead time since the start of the event of 24 hours. Additionally, two 

nowcasting chains are set up as raw NWP without using an extrapolation or a blending 

scheme for the same 24 hours. These are the mentioned COSMO-1 and COSMO-E NWPs 

(section 2.5). These nowcasting chains are called CO1 and COE respectively. The resulting 
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QPF from each nowcasting chain forces the hydrological model RGM-PRO. The hydrographs 

of each nowcasting chain are compared to the hydrograph from RGM-PRO forced by the 

pseudo observation QPE from the CPC hindcast. The set-up of all nowcasting chains is shown 

in figure 7. 

As described in section 2.4 the members of the nowcast extrapolation are blended into the 

NWP according to the uncertainty in the ensembles of the nowcast extrapolation and the 

NWP. However, NPC and COSMO-1 are deterministic predictions without an ensemble 

spread, and, therefore, without a quantification of their uncertainty. In order to enable blend-

ing for NPC and COSMO-1, the spread of NP1 for the NPC and the spread of COSMO-E for 

COSMO-1 were adopted respectively. 

The generated precipitation prediction from the nowcasting chains force the hydrological 

model RGM-PRO. The 21 members of each PQPF and the 21 members of the hydrological 

model would result in a 212 ensemble in the resulting hydrograph. Except from the fact that 

such a hydrograph would be rather confusing, the focus of this thesis lies on the uncertainties 

coming from the nowcasting chains and not from the hydrological model. Therefore, only the 

median of the 21 members generated by the hydrological model is considered. This leads to 

21 simulations for a PQPF and one simulation for the NPC and COSMO-1 deterministic QPF. 

Figure 7: Nowcasting chains providing precipitation forcing the hydrological model RGM-PRO. 
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2.7. Verification Methods 

The hydrographs of the different nowcasting chains are compared with each other in respect 

of their goodness to fit to the pseudo observation coming from the CPC QPE hindcast. The 

GOF in the hydrographs of the nowcasting chains are determined based on statistical methods 

from Wilks, (2006), Nash and Sutcliffe, (1970), Gupta et al., (2009) and Kling et al., (2012). 

The focus lies on the Kling-Gupta efficiency score (KGE). Furthermore, the Nash-Sutcliffe 

efficiency score (NSE) as well as the mean absolute error (MAE), will complement the evalu-

ation of the individual nowcasting chains. The components of which the KGE is composed, 

(i.e. KGE r, KGE β and KGE γ) are also used for evaluation and described in section 2.7.1. 

This allows conclusions to be drawn about their relative importance to the KGE. 

The selection of these skill scores is supported by the so-called heatmap (table 3). The 

heatmap displays the correlation between the different skill scores, which were computed for 

each event and for every member of the nowcasting chain. Negligible correlations are present 

when comparing the skill scores of the KGE, NSE and MAE with each other. It can therefore 

be assumed that these skill scores will complement each other in a suitable way and provide 

additional verification of the results. Skill scores like the root mean square error (RMSE), the 

correlation (r) and the anomaly correlation coefficient (Anom r) are not taken into account 

because the RMSE is correlating too much with the MAE and the correlation r and the Anom 

r are correlating too much with the KGE r. Consequently, these skillscores do not add value to 

the already used skill scores. Each of the used skill score is further described in section 2.7.1. 

Table 3: Heatmap showing the correlation between the different skill scores. 

Correlation M AE  RMSE  r  A nom r  NSE  KGE  KGE r  KGE ɓ KGE ɔ 

MAE 1.00 

        RMSE 0.91 1.00 

       r 0.03 0.06 1.00 

      anom r -0.02 -0.01 0.58 1.00 

     NSE 0.01 0.00 0.03 0.07 1.00 

    KGE 0.00 0.00 0.23 0.12 0.24 1.00 

   KGE r 0.03 0.06 1.00 0.58 0.03 0.23 1.00 

  KGE β 0.15 0.15 0.02 0.13 -0.13 -0.17 0.02 1.00 

 KGE ɔ -0.01 -0.01 -0.06 -0.09 -0.77 -0.35 -0.06 0.22 1.00 
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In order to answer the research question of which nowcasting chain performes the best, the 

skill scores for each nowcasting chain were computed for each event and for each subcatch-

ment. The best performing nowcasting chain receives one point for the corresponding effi-

ciency score in the corresponding subcatchment. In the so-called stacked barplots, the 

percentage of total points for each nowcasting chain in each subcatchment is shown to assess 

the overall performance of the nowcasting chains. 

According to the same procedure, the best performing nowcasting chain is determined for 

only deterministic nowcasting chains (i.e. CO1 and NPC) and for only probabilistic nowcast-

ing chains (i.e. COE, NP1 and NPE). 

The stacked barplots will only answer the research questions of which nowcasting chain 

performs the best. Stacked barplots do not take into consideration how good a model actually 

performes. Therefore, an overview about the performances of all events will be shown in the 

results section, where a specific event will be analysed in detail. In addition, the initial condi-

tions of this distinct event are then updated every half an hour and the efficiency scores of the 

more recent predictions are determined. This approach will show whether the efficiency 

scores of the nowcasting chains can be improved with more current initial conditions. The 

Taylor diagram explained in section 2.7.2 and the peak-box approach explaind in section 

2.7.3 will provide additional information on how the runoff simulations of the different now-

casting chains change during this update cycle. 

2.7.1. Efficiency Scores 

The MAE, NSE and KGE are deterministic efficiency scores. Since some nowcasting chains 

are probabilistic, the median member is taken as the deterministic runoff simulation. Further-

more, these efficiency scores determine in different ways how much the simulated runoff dif-

fers from the pseudo observed runoff. The time span over which the efficiency scores are 

computed is from the start of the initialisation until 24 hours after the event. 

The MAE can be described as the arithmetic average of the absolute difference between 

the simulated and the pseudo observed runoff. A perfect value for the MAE would therefore 

be zero (equation 1): 

ὓὃὉ В ȿώ έȿ (1) 

Whereas yk and ok represents the kth forecast-observation pair (Wilks, 2006). The NSE de-

scribes the improvement of the simulated runoff forecast over a reference runoff forecast. The 

reference forecast is represented by the discrepancy of the observed runoff to the mean runoff 

(Nash and Sutcliffe, 1970). Equation 2 describes the NSE: 
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Whereas ὗ  and ὗ  is the modelled and observed runoff at time t respectively and ὗ  is 

the mean runoff (Gupta et al., 2009). 

The KGE is calculated from a linear correlation between the simulated and observed run-

off (r), a bias component (β), which is calculated by the ratio between the mean simulated and 

the mean observed runoff and the ratio between the coefficient of variance (CV) (γ), which is 

calculated by equation 3 (Kling et al., 2012): 

‎  (3) 

Whereas CV is the dimensionless coefficient of variance, σ and μ are the standard devia-

tion of the runoff and the mean runoff respectively. The indices s and o stand for simulation 

and observation respectively. 

Finally, equation 4 describes the KGE: 

ὑὋὉρ ὶ ρ ‍ ρ ‎ ρ  (4) 

The perfect value for the NSE and KGE is one. A NSE value of zero states that the simu-

lated forecast does not bring any improvement compared to the reference forecast. A negative 

value of the NSE indicates that the simulated forecast is even worse than the referenced fore-

cast (Gupta et al., 2009; Kling et al., 2012). 

2.7.2. Taylor Diagram 

Another tool to illustrate the GOF of a simulated runoff from the different nowcasting chains 

is the Taylor diagram. The Taylor diagram summarises multiple efficiency scores in one dia-

gram. It illustrates the correlation, standard devation, and root-mean-square error of the simu-

lated runoff in respect to the observed runoff. Contrary to the NSE, no direct statements about 

the skill of the prediction compared to a reference forecast are made in the Taylor diagram. 

However, the Taylor diagram quantifies the deviation of the simulated from the observed effi-

ciency score by their distances in the diagram (Taylor, 2001). This is especially useful in the 

analysis of the update cycle to track the behaviour of the different skill scores with frequently 

updated initial conditions for all nowcasting chains. 

2.7.3. Peak-box 

When dealing with the analysis of FFs, the peak-box evaluation approach of an event has to 

be mentioned. The Peak-Box enables to analyse the two most important characteristics of a 

FF event, which is firstly the peak runoff and secondly the peak timing of the simulation for a 
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FF event. In contrast to other evaluation approaches, the Peak-Box is able to depict the uncer-

tainty of the probabilistic simulation. Like the Taylor diagram, the Peak-Box does not give 

any information about the skill of the forecast with respect to a reference forecast. However, 

the Peak-Box is a useful tool to capture to which extent a probabilistic nowcasting chain is 

capable of simulating a FF event in terms of magnitude and timing (Zappa et al., 2013). 

The Peak-Box approach is simple. It allows to estimate the best combination in magnitude 

and timing of the FF event for probabilistic forecasts. In order to do so, the highest peaks of 

each member of the ensemble is marked. Each peak contains information about magnitude 

and timing of the corresponding member. Thereafter, boxes for the quantiles in magnitude 

and timing are drawn. The intersection of the medians of peak magnitude and peak timing is 

assumed to be the best estimate. Especially for simulations with large ensemble spread, the 

Peak-Box approach is extremely useful to summarise the information of the individual mem-

bers, and thus get the best estimate possible (Liechti and Zappa, 2016). 
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3. Results 

The results section is divided into two parts corresponding to the two research questions. The 

first part will answer the question if the nowcasting chains using exprapolated nowcasts that 

blend into a NWP (i.e. NP1, NPC or NPE) are superior to the nowcasting chains using only 

the raw NWP (i.e. CO1 and COE). The second part is concerned with the question of whether 

constantly updated initial conditions can increase the efficiency skill and thus the reliability of 

the predictions. 

3.1. Comparison of Nowcasting Chains 

The differences in the runoff output of the different nowcasting chains arise from the different 

precipitation nowcasting schemes. Figure 8 and 9 show the precipitation accumulation from 

the COSMO-1 related (i.e. CO1, NP1, NPC) and the COSMO-E related (i.e. COE, NPE) 

nowcasting chains respectively. This precipitation accumulation, forcing the hydrological 

model RGM-PRO of the different nowcasting chains, is shown for the first event in the Emme 

catchment. The figures depict the initial phase, which is in this case 24 hours, and the now-

casting phase of 5 hours. The precipitation is accumulated for each hour and shown stepwise. 

Figure 8: Accumulated precipitation of COSMO-1 related nowcasting chains. 
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The figures show how the different nowcasting chains lead to different amounts in accu-

mulated precipitation, and how probabilistic nowcasting chains are capable of including un-

certainty in the form of spread or the interquantile range of the ensemble. After the nowcast, 

the NWP continues the accumulated precipitation forecast. The deterministic COSMO-1 fore-

casts of the different nowcasting chains are parallel to each other but differ in their total 

amount of accumulated precipitation due to their different antecedent nowcasts. The probabil-

istic COSMO-E forecasts furthermore differ in their total amount of accumulated precipita-

tion due to their different antecedent nowcasts, but do not behave exactly the same, because 

the medians of the spread in the forecast are slightly different due to the different total amount 

of spread. Considering the spread and the interquantile range of the probabilistic nowcasting 

chains, it is visible that both increase with increasing lead time. 

Furthermore, the figures depict that in this event the NP1 and the NPE nowcasting chains 

overestimate and the NPC as well as CO1 nowcasting chains first underestimate then overes-

timate precipitation. Only the COE nowcasting chain constantly underestimates the precipita-

tion. In this event it can be seen that the precipitation simulations of the nowcasting chains are 

all very close to the CPC hindcast and the uncertainties are small. This indicates a reliable 

precipitation prediction of all nowcasting chains, which in terms provide the basis for reliable 

runoff estimations. 

Figure 9: Accumulated precipitation of COSMO-E related nowcasting chains. 
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The precipitation input from the different nowcasting chains forces the hydrological mod-

el. The output is a hydrograph showing the estimated runoff for each nowcasting chain as well 

as the runoff based on the precipitation estimation from the CPC hindcast representing the 

pseudo observation. 

In the figures 10, 11, 12 and 13, the hydrological model output forced by the precipitation 

input, which is shown in figure 8 and 9, are represented in a hydrograph for the Trueb, Ilfis, 

Eggiwil and Emmenmatt catchment respectively. The four catchments show with increasing 

catchment size increasing amounts of runoff. The hydrographs demonstrate that, based on the 

reliable precipitation predictions of all nowcasting chains, the nowcasting chains in the hy-

drograph are likewise close to the pseudo observation and therefore provide a reliable predic-

tion. As has already been mentioned before, the CPC hindcast is used as pseudo observation 

and is, as a result, identical to the observation shown in the hydrographs. 

Figure 10: Hydrograph showing all nowcasting chains for the Emmenmatt catchment. OBS and CPC are identi-

cal. 

Figure 11: Hydrograph showing all nowcasting chains for the Eggiwil catchment. OBS and CPC are identical. 
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The skill scores for the different nowcasting chains can be computed with respect to the 

CPC pseudo observation hydrograph. The KGE values for each catchment are shown as 

boxplots in figure 14. As expected, the KGE values are high. Additionally, this event shows 

that the nowcsating chains, which are blended into the NWP, mostly show better values than 

the raw NWP. Especially NP1 and NPE outperform COE and CO1. Only in the Eggiwil 

catchment, the raw NWPs are slightly better than the blended nowcasts. However, the 

reliability of the prediction in the Eggiwil catchment is lower than in the other catchments, 

shown by the overall lower KGE values. In addition, the range of the KGE values is largest 

for all nowcasting chains also indicating a lower reliability. This is caused by the range in the 

KGE values stemming from the spread of the ensemble precipitation prediction. The 

ensemble spread is, in turn, an estimation of uncertainty in real time applications.  

This first impression of an event analysis in the Emme catchment shows already the 

potential of blended nowcasting chains. It becomes clear that the performance of the different 

Figure 12: Hydrograph showing all nowcasting chains for the Eggiwil catchment. OBS and CPC are identical. 

Figure 13: Hydrograph showing all nowcasting chains for the Eggiwil catchment. OBS and CPC are identical. 



35 

nowcasting chains in runoff prediction depends on the precipitation prediction serving as in-

put for the hydrological model. Furthermore, differences in accumulated precipitation of the 

nowcasting chains, which arise in the blending phase, are still visible in the later forecast. It 

should be mentioned again that uncertainties originating from the hydrological model are not 

considered. 

3.1.1. Performance Overview 

In the same way as shown in section 3.1, the skill scores for the remaining events in the 

Emme and Verzasca catchment are computed. Figures 15 and 16 summarise the KGE values 

of all investigated events for the Emme and Verzasca catchment respectively. The KGE 

shows how the individual nowcasting chains perform in the 41 Emme and 40 Verzasca 

events. The Y-axis is limited to a value of minus one. The time span used for initialisation is 

shown as spinup time in hours before the event. The spinup time must be taken into account, 

because the skill scores are computed regarding the entire hydrograph including the spinup 

time. Due to the fact that during the spinup time the CPC hincast and the nowcasting chains 

are identical, the skill score values are always optimal. However, as can be seen in figures 15 

and 16, the spinup time does not noticeably influence the overall skill score. This means that 

events with a long spinup time can have low skill scores, as well as events with a short spinup 

time can achieve high skill scores. Additionally, in terms of defining the best nowcasting 

chain per event, the spinup time is the same for each nowcasting chain. Nevertheless, it 

should be noted that the skill scores are positively biased. 

Figure 14: KGE boxplot showing all nowcasting chains for the first event in the Emme catchments. The bold 

horizontal bar of the boxplot represents the median, while the box represents the interquantile range. The whis-

kers display the range of extreme values.  
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The corresponding performance overviews of the NSE and the MAE for the events are 

shown in the appendixes (figures A.4–A.7). There are very few simulation results missing in 

the Trueb catchment. However, due to the high number of events, this circumstance will not 

considerably influence the analysis. 
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Figure 15: Overview of the KGE medians for all events in the Emme catchments including spinup time. Letters 

and numbers in the X-axis representing months and years respectively. 
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Figure 17 shows the KGE values of each nowcasting chain as boxplots for all events in 

both main catchments Emmenmatt and Verzasca. In the appendix, the boxplots in terms of 

NSE and MAE are shown including all subcatchments (figures A.8–A.13). The boxplot illus-

tration captures, in addition to the median KGE value, the spread in KGE values stemming 

from the ensemble members, in probabilistic nowcasting chains, each having a single KGE 

value. This allows it to analyse the skill score of each nowcasting chain in more detail, be-

cause conclusions can be drawn about the performance range of the ensemble members in the 

runoff prediction. This performance range of the different ensemble members is missing in 

deterministic nowcasting chains as they have only one member. Having only one member is a 

crucial disadvantage for deterministic nowcasting chains, since the spread in the precipitation 

prediction of the probabilistic nowcasting chains is an estimation of the uncertainty already in 

real time, whereas the prediction uncertainty of deterministic nowcasting chains can only be 

determined by the KGE value retrospectively. 

Figure 17 depicts that the NP1 nowcasting chain in most events shows a smaller perfor-

mance range in KGE values than the nowcasting chains COE and NPE. Furthermore, it is 

visible that the KGE values of the different nowcasting chains in the Verzasca catchment are 

overall lower than the values in the Emmenmatt catchment. 

Figure 16: Overview of the KGE medians for all events in the Verzasca catchments including spinup time. Let-

ters and numbers in the X-axis stand for month and years respectively. 
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Figure 17: Boxplot overview of the KGE values for all events in the main catchments Emmenmatt and Verzasca 

including spinup time (bold bar). Letters and numbers in the X-axis representing months and year respectively. 
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3.1.2. Ranked Events 

To find out whether the nowcasting chains even have skill and are, as a consequence, useful 

for a comparison figure 18 shows all events for both main catchments Emmenmatt and Ver-

zasca ranked by their KGE performance. In the appendix, the ranked events in terms of NSE 

and MAE are shown including all subcatchments (figures A.14–A.19). The zero KGE value is 

marked by a horizontal line. All nowcasting chains performing above the zero KGE value line 

are considered as skilfully predicted events. The barplot shown in figure 19 summarises the 

number of skilful predicted events for all catchments. 

The event-ranked plot in figure 18 underpins the assumption that the overall performance 

of the nowcasting chains, for the 41 events in the Emme catchment and the 40 events in the 

Verzasca catchment, is in most cases skilful. Therefore, an analysis to find the best perform-

ing nowcasting chain is justified. Moreover, half of the events in the Emmenmatt catchment 

and more than half of the events in the Verzasca catchment exhibit a KGE value above 0.5. 

These events are considered as reliably predicted. While the COE nowcasting chain in the 

Emmenmatt catchment loses a considerable amount of skill after half of the events, the re-

maining nowcasting chains are able to keep the KGE value high for almost all events. In the 

Verzasca catchment, the skill decrease is weakly pronounced for all nowcasting chains. How-

ever, there are more events which are not skilful in relation to the KGE value. 

The barplot in figure 19 depicts that the Emme catchments differ in the number of skilful 

predicted events. Most events are predicted skilfully by the different nowcasting chains in the 

Emmenmatt and Eggiwil catchment. Noticeably, fewer events are skilfully predicted by the 

nowcasting chains in the Ilfis and Trueb catchment. Furthermore, it shows that in the Emme 

catchment the COE nowcasting chain predicts the least events skilfully. In the Verzasca 

catchment, on the other hand, no large difference in the amount of skilfully predicted events is 

visible between the main and the subcatchment. Furthermore, none of the nowcasting chains 

shows significantly higher or lower amounts of skilfully predicted events. 

The large amount of skilfully predicted events in both catchments and of all nowcasting 

chains indicate that all nowcasting chains have the potential to detect FFs. However, it has to 

be noticed that the skill scores are positively biased and that errors of the hydrological model 

are neglected. Moreover, the nowcasting chains are compared to a CPC hindcast pseudo ob-

servation instead of real observations. Nevertheless, because of the high percentage in skilful-

ly predicted events, it is assumed that most events deliver useful FFs predictions. Moreover, 

the comparison between different nowcasting chains or different catchments in terms of skil-

fully predicted events is unaffected by the aforementioned disadvantages.  
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Figure 18: Ranked KGE values shown for all nowcasting chains in the two main catchments Emmenmatt and 

Verzasca. Values above the horizontal line at a value of zero indicate skilfully predicted events. 

Figure 19: KGE barplot showing the amount of skilfully predicted events for all nowcasting chains in all inves-

tigated catchments. 
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3.1.3. Best Performing Nowcasting Chains 

The stacked barplots in the figures 20 and 21 depict the proportion of best performing now-

casting chains in the total number of events for the KGE and MAE respectively. The propor-

tion in best performing nowcasting chains in terms of the NSE is shown in the appendix 

(figure A.20), since the result is very similar to the result of the best performing nowcasting 

chain in terms of the KGE. 

Figure 20 and 21 show that the ratio of the COSMO-1 related nowcasting chain NPC is 

the largest in most catchments in terms of KGE and MAE. Only in the small subcatchments 

catchments Trueb and Pincascia the NPC nowcasting chain is outperformed by the COSMO-

E related NPE nowcasting chain. The COSMO-1 related nowcasting chains NP1 and CO1 are 

not able to take a 40 % proportion in best nowcasting chains in any catchment, neither for the 

KGE nor the MAE. The raw NWP COE nowcasting chain outperforms its deterministic coun-

terpart CO1 in every catchment except for the small Pincascia catchment. 

Overall, nowcasting chains which are blended into the NWP outperform raw NWP now-

casting chains. In the two main catchments Emmenmatt and Verzasca, the blended nowcast-

ing chains are in over 70 % of all events better than the raw NWP in terms of KGE and MAE. 

In the subcatchments, the superiority of the blended nowcasting chains continues. Even if the 

superiority in the subcatchments is not so pronounced as in the main catchments, the blended 

nowcasting chains lead to better results than the raw NWP in more than 60 % of all events in 

all subcatchments in terms of the KGE and the MAE. If a single nowcasting chain had to 

emerge as the best performing nowcasting chain, then this would be the NPC nowcasting 

chain in the Emmenmatt, Eggiwil, Ilfis and Verzasca catchment. In the small catchments 

Trueb and Pincascia, the NPE nowcasting chain outperforms all the others in terms of both 

the KGE and the MAE. 

In figure 22, the ratios of the best performing nowcasting chain in terms of the three KGE 

components are shown. It can be seen that, especially in terms of the correlation component, 

the blended nowcasting chain outperforms the raw NWPs. In the bias component, the blended 

nowcasting chains mostly outperform the raw NWP. Only in the small catchments Trueb and 

Pincascia, the blended nowcasting chains have about the same ratio of best performing now-

casting chains as the raw NWPs. Considering the ration between the coefficient of variance, 

the blended nowcasting chain outperforms the raw NWPs in the Emmenmatt, Eggiwil and 

Ilfis catchment. Due to the COSMO-1 nowcasting chain, it is possible for the raw NWPs to 

keep up with the blended nowcasting chains in terms of the ratio between the CV in the 

Trueb, Verzasca and Pincascia catchment. It can be seen that firstly, the superiority of the 
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blended nowcasting chains in terms of the KGE is mainly coming from the correlation com-

ponent of the KGE. Secondly, the COSMO-1 nowcasting chain achieves a high proportion as 

best performing nowcasting chain in terms of bias and in terms of the ratio between the CVs, 

especially in small catchments. 

For further analyses a differentiation in deterministic and probabilistic nowcasting chains 

can be done. A more detailed account of deterministic and probabilistic nowcasting chains 

only is given in the following section 3.1.3.1.  
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Figure 20: Ratios of the best performing nowcasting chains in terms of the KGE. 

Figure 21: Ratios of the best performing nowcasting chains in terms of the KGE. 
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Figure 22: Ratios of the best performing nowcasting chains in terms of the KGE com-

ponents. 
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3.1.3.1. Deterministic and Probabilistic Nowcasting Chains 

The stacked barplots in the previous section show the ratios of all best performing nowcasting 

chains. However, figures 23 and 24 show the ratios in terms of the KGE of the best 

performing nowcasting chains for only deterministic and probabilistic nowcasting chains 

respectively. Very similar results for the best performing deterministic and probabilistic 

nowcasting chains are also obtained in terms of NSE, and MAE are shown in the appendix 

(figures A.21–A.24). 

Regarding the best performing deterministic nowcasting chains in figure 23, the NPC 

nowcasting chain outperforms the CO1 nowcasting chain in all catchments. It should be men-

tioned, nevertheless, that the CO1 nowcasting chain in the catchments Ilfis, Trueb, Verzasca 

and Pincascia can almost keep up with the NPC nowcasting chain. This indicates that the CO1 

nowcasting chain is often outperformed by probabilistic nowcasting chains, because com-

pared with the figures figure 20 and 21 the proportion of the CO1 nowcasting chain as best 

performing nowcasting chain increases in figure 23 for each catchment. 

The best performing probabilistic nowcasting chain is NP1, as can be seen in figure 24. 

Neither the NPE nor the COE nowcasting chain is capable of outperforming the NP1 now-

casting chain in any catchment. The reason why the NP1 nowcasting chain, in comparison 

with all nowcasting chains, does not dominate to the same extent is that it is often outper-

formed by the deterministic nowcasting chains. Regarding both probabilistic COSMO-E re-

lated nowcasting chains NPE and COE, the blended nowcasting chain outperforms the raw 

NWP COE nowcasting chain in all catchments, except from Ilfis. 

Comparing the ratio of the NPE nowcasting chain considering only probabilistic nowcast-

ing chains with the ratio in respect to all nowcasting chains, the NPE nowcasting chain has a 

higher ratio in the catchments Emmenmatt, Eggiwil, Verzasca and Pincascia. In the Ilfis and 

Trueb catchment, however, the ratio of the NPE nowcasting chain decreases in comparison to 

the ratio considering all nowcasting chains. The ratio of the COE nowcasting chain as best 

performing nowcasting chain increases for the Emme catchment and decreases for the Ver-

zasca catchment considering only probabilistic nowcasting chains. 

In the figures figure 23 and 24, as in the previous figures 20 and 21, it can be seen that the 

nowcasting chains which are blended into the NWP outperform the raw NWP. In considartion 

of only probabilistic nowcasting chains, the superiority of the blended nowcasting chains is 

very pronounced. In consideration of only COSMO-E related nowcasting chains in figure 24, 

the blended nowcasting chain NPE is still superior to the raw NWP COE. 
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Figure 23: Ratios of the best performing deterministic nowcasting chains in terms of the KGE. 

Figure 24: Ratios of the best performing probabilistic nowcasting chains in terms of the KGE. 
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3.2. Impact of an Update Cycle 

The obtained results shown in section 3.1 are computed only once over the time span from 

initialisation to 24 hours after the event. To analyse the effects of an update cycle, the fore-

casts are now recomputed every 30 minutes during the whole event. The chosen event takes 

place in May 2017 during a HPE in the Emme catchment. Figure 25 shows the predicted ac-

cumulated precipitation from NowPal and the observed runoff. After the threshold of 20 mm 

precipitation is exceeded, the first forecast starts at 13:00 UTC. 

Due to the near real time radar QPEs and nowcast extrapolations, continuously updated 

runoff predictions are generated every 30 minutes from 13:00 up to and including 19:00. Fig-

ure 26 shows the first (13:00), middle (16:00) and last (19:00) precipitation nowcast and con-

tinuing forecast for all nowcasting chains, as well as the CPC observation. In addition, the 

corresponding hydrographs are shown in figure 27 for the main catchment Emmenmatt. The 

entire update cycle is shown in the appendix (figure A.25 and A.26). 

The first precipitation prediction at 13:00 is strongly underestimated by all nowcasting 

chains. Not even the spread of the COSMO-1 related or the interquantile range of the COS-

MO-E related nowcasting chains capture the CPC hindcast. This underestimation can be seen 

in the corresponding hydrograph for the Emmenmatt catchment. Only three members of the 

COE nowcasting chain overestimate the peak in runoff. These three members approach to the 

peak in magnitude, but miss it in terms of timing. One COE member captures the peak in 

terms of timing, but underestimates it in terms of magnitude. Only one member of the NPE 

nowcasting chain can approximately predict the peak in magnitude, but predicts the peak in 

runoff too late. Overall the prediction skill of all nowcasting chains is low. 

Figure 25: NowPal output showing the predicted accumulated precipitation according to RZC30INCA60 and 

observed runoff for the investigated heavy precipitation event. 



49 

 

Figure 26: Accumulated precipitation for COSMO-1 related nowcasting chains (left) and COSMO-E related 

nowcasting chains (right). From top to bottom: The first, middle and last prediction of the update cycle is shown 

for the Emme catchment. 
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Figure 27: Hydrographs showing runoff predictions for all nowcasting chains in the main catchment Emmen-

matt. From top to bottom: The first, middle and last prediction of the update cycle is shown. 
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The updated precipitation forecast three hours later at 16:00 shows that the accumulated pre-

cipitation approaches the CPC pseudo observation. The medians of the COSMO-1 related 

nowcasting chains still underestimate the amount of precipitation for the entire forecast, while 

the medians of the COSMO-E related nowcasting chains underestimate the accumulated pre-

cipitation in the beginning of the forecast and overestimate it in the end. In the corresponding 

Emmenmatt hydrograph, most curves of the nowcasting chains are able to predict the timing 

of the peak in runoff reliable. Considering the magnitude of the peak, the ensemble spread of 

the probabilistic nowcasting chains is large. Overall, the runoff predictions show a considera-

ble improvement from the 13:00 forecast to the 16:00 forecast. 

The last accumulated precipitation at 19:00 of the CPC pseudo observation is simulated 

similarly by the nowcasting chains. The corresponding hydrograph captures the peak in tim-

ing and magnitude of the runoff for all nowcasting chains, but this is because the peak runoff 

is only about 2 hours after the start of the nowcasting chains' predictions (figure 27), and addi-

tionally because the precipitation nowcast is started after the peak rainfall (figure 26). At the 

very end of the forecast, the COSMO-E related nowcasting chains simulate a new increase in 

runoff, which does not occur. This is because although the accumulated rainfall increases 

again, this increase is overestimated by the COSMO-E related nowcasting chains. Taking 

everything into account, a forecast improvement with updated initial conditions is clearly dis-

cernible. 

3.2.1. Progression Analysis 

Shown in figure 28 and 29 is the update cycle progression of the median values of the differ-

ent nowcasting chains in terms of the KGE and MAE respectively. The update cycle progres-

sion of the median values in terms of the NSE is shown in the appendix (figure A.27). The 

deviation of the simulated and the observed accumulated precipitation by CPC, shown in fig-

ure 26, is now reflected in the value of the KGE. The KGE values for the blended nowcasting 

chains in the first forecast at 13:00 are low. The raw NWP nowcasting chains achieve higher 

values in terms of the KGE. In the Ilfis and Trueb catchment, this difference is less pro-

nounced. The same applies in terms of the MAE. In addion, figure 29 shows that the value of 

the MAE is associated with the catchment size. With increasing catchment size, the MAE 

increases. The performance of the CO1 nowcasting chain improves in the first hour of the 

update cycle, while the performance of the COE nowcasting chain stagnates or even worsens 

in the first hour of the update cycle. In all catchments, the COE nowcasting chain catches up 

with the others within the second hour of the update cycle. Apart from the Trueb catchment, 
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the blended nowcasting chains improve considerably after the first hour of the update cycle. 

The improvement in the Trueb catchment sets in after two hours of update cycle. 

Overall, the prediction skill of all nowcasting chains improves remarkably during the first 

two hours of the update cycle. The KGE values of all nowcasting chains and in all catchments 

are above 0.5 after this time, except the KGE value of the NP1 nowcasting chain in the Trueb 

catchment. Throughout the whole update cycle, an improvement in all nowcasting chains is to 

be found. 

Like figure 28, the boxplots in figure 30 show the considerabe improvement in the KGE 

medians for the Emmenmatt catchment within the update cycle, but now shown for each 

nowcasting chain separately. Additionally, the boxplots depict the range of skill in terms of 

the KGE within the ensemble of the probabilistic nowcasting chains. The boxplots in terms of 

the KGE values of the further subcatchments are shown in the appendix (figure A.28). It 

shows that the range of skill has decreased enormously after the first two hours of the update 

cycle for all probabilistic nowcasting chains. Especially for the COE nowcasting chain, the 

range of skill in the first two hours of the update cycle is large. The interquantile range of the 

KGE values covers a range of more than 0.2 value points of the KGE. The NPE nowcasting 

chain behaves in a similar way, but the range of skill is rather less pronounced at the begin-

ning compared to the COE nowcasting chain. The same applies for the NP1 nowcasting chain. 

This range of skill of the KGE values, which evaluate the runoff simulations of the individual 

members, shows how difficult it is to decide wich simulations can be trusted. While some of 

them achieve high KGE values, and thus provide reliable predictions, other members with 

low KGE values are useless for predictions. As has already been mentioned before, KGE val-

ues can only be determined retrospectively, and are, therefore, no help of deciding which 

simulations should be trusted in real time application. A sophisticated method of how to deal 

with an ensemble approach in runoff predictions, and as a result to decide on the occurrence 

of a FF, is the peak-box approach (Zappa et al., 2013), which is analysed in more detail in the 

following section 3.2.2.  
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Figure 28: The median progression of the update cycle is shown for all nowcasting chains in the Emme catch-

ments. The slope of the lines between the points indicates whether the skill in terms of the KGE increases or 

decreases within the update cycle. 
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Figure 29: The median progression of the update cycle is shown for all nowcasting chains in the Emme catch-

ments. The slope of the lines between the points indicates whether the skill in terms of the MAE increases or 

decreases within the update cycle. 
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3.2.2. Flood Event Assessment 

The Taylor diagrams (Taylor, 2001) and the peak-boxes (Zappa et al., 2013) in figure 31 

show from top to bottom the first, middle and last forecast (i.e. 13:00, 16:00, 19:00) of the 

update cycle in the Emmenmatt catchment. The entire update cycle is shown in the appendix 

(figure A.29). Both the Taylor diagram and the peak-box are used to assess a FF event. While 

the Taylor diagram provides important information on the correlation, standard deviation and 

root mean square error, the peak-box provides a user-friendly estimate of the magnitude and 

timing of the FF peak. 

Figure 30: Update cycle boxplots showing all nowcasting chains in the main catchment Emmenmatt in terms of 

the KGE. The bold vertical bar of the boxplot represents the median, while the box represents the interquantile 

range. The whiskers display the range of extreme values. 
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Regarding the Taylor diagram, the correlation of the simulation observation pair is depict-

ed in the azimuthal angle. The standard deviation is defined by the X- and Y-axes and shown 

as blue dotted quadrants in the diagram. The RMSE is determined by the grey semicircles. 

The grey point at a correlation of one, a standard deviation of one, and a RMSE of zero repre-

sents the CPC hindcast runoff, that is the pseudo observation. The distances of the remaining 

colored points show the deviations of the members of the nowcsating chains from the obser-

vation in relation to the mentioned skill scores. Simulated members of the nowcasting chains, 

which are closer to the reference point, perform better in terms of correlation and RMSE. 

Members which are closer to the black solid quadrant have a more similar standard deviation 

to the reference. 

The peak-box shows on the X-axis the timing of the peak runoff in hours after the initiali-

sation and on the Y-axis the magnitude of the peak runoff. The lower and upper horizontal 

lines of each probabilistic nowcasting chain show the minimum and maximum runoff magni-

tude of their members respectively. The bold horizontal line inbetween shows the median 

value. The same applies to the runoff peak timing with respect to the X-axis and the vertical 

lines. The intersection of the medians in peak runoff magnitude and timing represents the best 

estimate of the FF peak. In contrast to the previous figures, the peak-box shows the actual 

runoff observation as well as the CPC hindcast. The spread in the CPC hindcast arises from 

the ensemble generated by the hydrological model. 

With respect to the Taylor diagram, the low standard deviation in the 13:00 forecast of all 

nowcasting chains, but especially of the NPE nowcasting chain, indicates that the nowcasting 

chains underestimate the pseudo observation. In the 16:00 forecast, the COE nowcasting 

chain underestimates the pseudo observation, whereas the NPE nowcasting chain overesti-

mates it. In the 19:00 forecast, all members tend to overestimate the pseudo observation. Re-

garding the RMSE, the behavior of the COE and NPE members is similar. While in the 13:00 

forecast, the COE members have a lower RMSE than the NPE members, in the 16:00 fore-

cast, this is the opposite. In the 19:00 forecast all members, for except a few outliers, exhibit a 

low RMSE. In terms of correlation, no clear trend is visible. Except for the 19:00 forecast, it 

can be seen that the CO1, NPC and NP1 chains have higher correlation values than the COE 

and NPE nowcasting chains. The members of the NP1 nowcasting chain have similar values 

in correlation, standard deviation, and RMSE. This can be seen in the small spread in the Tay-

lor diagram, which, as can be seen in the 13:00 forecast, does not necessarily imply a reliable 

prediction. Overall the Taylor diagram makes clearly visible that all members with the update 

cycle progressing approach the observation. 
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The peak-box gives information about the magnitude and timing of the FF peak. Magni-

tude and timing are the two most important variables when predicting FFs. In the Taylor dia-

grams, it is only possible to estimate how the members of the nowcasting chain perform in 

terms of statistic values. However, even for hydrologist, it would be discussable, which now-

casting chain performs best. The peak-box offers with the determination of the intersection 

between the medians in magnitude and timing of each probabilistic nowcasting chain a meth-

od to provide a deterministic statement about the expected magnitude and timing of the FF. 

This makes the probabilistic nowcasting chains comparable. 

The peak-boxes underpin the statements of the Taylor diagrams. The ensemble spread is 

large in the first two forecasts for the COE and NPE nowcasting chain, while the spread of the 

members in the NP1 nowcasting chain is constantly smaller compared to the COE and NPE 

nowcasting chain. Furthermore, it can be seen that the NPE nowcasting chain can reduce its 

ensemble spread in the last 19:00 forecast, whereas this is not the case for the COE nowcast-

ing chain. The peak-box provides a statement about the quality of the CPC hindcast. Since 

this runoff estimation is always very close to the actual runoff observation, it can be assumed 

that the CPC hindcast is a reliable reference. 

In the 13:00 forecast, the COE nowcasting chain performs best in terms of magnitude. It 

must be mentioned, however, that the median value is still strongly underestimating the pseu-

do observation. In terms of runoff peak timing, both nowcasting chains COE and NPE predict 

the peak at the same time and outperform the NP1 nowcasting chain. However, the timing of 

the peak is predicted clearly too late and the prediction skill is as a result low. In the 16:00 

forecast, the NPE nowcasting chain outperforms the COE and NP1 nowcasting chains in 

terms of magnitude. The COE outperforms the NPE and NP1 nowcasting chain in terms of 

timing. Above all, however, it becomes apparent that all nowcasting chains have approached 

the pseudo observation and increased therefore their performance skill. The last forecast at 

19:00 shows nearly no difference between the different nowcasting chains. All nowcasting 

chains hit the timing perfectly and overestimate the pseudo observation only slightly. This is 

rather unexpected, since the nowcasting chains show strong differences in their spreads. 

Overall, the peak-box underpins that as the update cycle progresses, the performance in 

the probabilistic nowcasting chains, in estimating peak magnitude and peak timing of the run-

off, improves considerably. 
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Figure 31: Left: Taylor diagrams showing correlation (azimuthal angle), standard deviation (blue dotted quad-

rant), RMSE (grey semicircles) and CPC hindcast (grey point). Right: Peak-boxes showing the best flash flood 

estimation in terms of peak magnitude and timing of the runoff. From top to bottom the first, middle and last 

prediction of the update cycle is shown for all nowcasting chains in the main catchment Emmenmatt. 
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4. Discussion 

In the first section of the thesis the main research questions are stated as (1) are extrapolated 

nowcasting chains, which are blended into a NWP superior to nowcasting chains using raw 

NWPs? Moreover, (2) is it possible to increase the skill of a nowcasting chain by frequently 

updated initial conditions? The results in the previous section clearly show that both main 

research questions can be answered affirmatively. This discussion section provides a complete 

analysis of the obtained results and the underlying methods, and places the new findings into 

the scientific context of relevant scientific works. 

4.1. Blending an Extrapolation Nowcast into a NWP 

Regarding the research question whether an extrapolated nowcast blended into a NWP outper-

forms a raw NWP nowcasting chain, Golding (1998) states that the very short-term nowcast 

shows its best performance at the beginning, while the NWP performs better for longer lead 

times. Therefore, using a blending scheme, which combines the nowcast extrapolation with 

the NWP, is capable of mitigating the weaknesses of both forecasting systems by focusing on 

their strengths and blend them in a suitable manner. The findings depicted in the stacked 

barplots in figures 20 and 21, showing that in the majority of events the blended extrapolation 

nowcasting chains outperform the raw NWP nowcasting chains, confirm the statement of 

Golding (1998). It can even be assumed that the nowcasting chains used in this thesis are 

more reliable than in the study by Golding (1998), since the study does not use the ensemble 

approach. The reason for this is most likely the lack of computer power at that time. The ex-

trapolated nowcast and the NWP are deterministic, and the weighting function are determined 

empirically, whereas in this thesis the weighting is based on the ensemble spread of the ex-

trapolated nowcast and the NWP. This assumption is supported by Bowler et al (2006), de-

scribing that single forecast scenarios have to be seen as the main reason for failure of any 

nowcasting system. 

4.1.1. Blending Scheme and Weighting Function 

The blending scheme as an important component of the nowcasting chains has a major influ-

ence on their performance. It must, therefore, be discussed whether the blending scheme used 

in this thesis is the most appropriate one. While this thesis uses a weighting function in pro-

portion to the uncertainties of the extrapolated nowcast and the NWP, the operationally used 

INCA system from Haiden et al. (2011) uses a fixed linear weighting function. This simple 

approach is particularly suitable for operational use, since it is easy to implement and effi-
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cient. According to Haiden et al (2011), the approach used in this thesis, which takes into ac-

count the uncertainties in the extrapolated nowcast and in the NWP, has not yet demonstrated 

its superiority. However, a blending scheme, which considers the spread of the ensemble as 

an estimation of uncertainty, is adaptive and able of taking into account the forecast skills of 

the extrapolation and the NWP. The linear weighting function, on the other hand, is only a 

function of lead time, which neither deals with the extent of the precipitation field nor with its 

position (Nerini et al., 2019). This can also be seen in the study by Poletti et al. (2019), which 

analyses differentand non-adaptive weighting functions. The study shows that in different 

events, different weighting functions provide the best hydrological prediction. This underpins 

the assumption by Nerini et al. (2019) that an adaptive weighting function provides the most 

reliable hydrological predictions, and is consequently the most recommendable weighting 

function for the blending scheme. 

4.1.2. Extrapolation Nowcast and Ensemble Size 

Recarding the extrapolation of the nowcast, the used approach in this thesis is the Lagrangian 

persistence (Germann and Zawadzki, 2002). Lagrangian persistence is a simple approach to 

let the precipitation fields of the radar images move based on their antecedent behaviour. The 

weakness of Lagrangian persistence, however, is that changes such as grow and decay pro-

cesses are not taken into account over the period of precipitation. Therefore, highly convec-

tive cells, which are likely in HPEs, are only considered by the Lagrangian persistence 

approach if they already exist at the time of the initialisation. In cases where the inizialisation 

is made too early, the extrapolation becomes inaccurate due to the lack of convective precipi-

tation (Nerini et al., 2019). To represent this weakness, stochastic noise is added to 20 of the 

21 members of the extrapolated nowcast, which gives an estimation about the uncertainty in 

the nowcast (section 2.4). Furthermore, a currently introduced extrapolation nowcast system 

by Pulkkinnen et al. (2019) called pySTEPS is able of generating some new random rain in 

order to improve the consideration of convective precipitation. However, pySTEPS is still not 

able to reliably capture intense convection. To increase extrapolation reliability during con-

vective processes, frequently updated initial conditions can be used. In real time applications, 

this option is only limited by the computation time of the update cycle (Nerini et al., 2019). 

A final question regarding the extrapolation nowcast which needs to be discussed is 

whether the size of members in the ensemble of the used nowcasting chains is sufficient. With 

regard to the number of members, care must be taken to ensure that on one hand the ensemble 

is large enough to cover the uncertainties in the estimation of precipitation as completely as 

possible, and that on the other hand the ensemble is no larger as needed, because with increas-



61 

ing member size the computational time increases as well. The study by Pulkkinen et al. 

(2019) can be used to address the question about the member size. In the study, the relative 

operating characteristic (ROC) curve, established by Jolliffe and Stephenson (2003), is used 

to analyse the rate of correctly detected precipitation. Therefore, the probability of detection 

(POD) is plotted against probability of false detection (POFD). A perfect scenario for a prede-

termined precipitation threshold reaches a POD of 100 % and a POFD of 0 %. The area under 

this ROC curve given as a value from 0 to 1 is, as a result, maximum. Pulkkinen et al., (2019) 

examined the ROC areas for the ensemble sizes of 6, 12, 24, 48 and 96 members for the pre-

cipitation thresholds of 0.1 mm/h and 5 mm/h. The study analyses how the ROC area values 

change with increasing lead time. The findigs of the study are that the size of the ensemble is 

crucial particularly when doing nowcasts, and especially for larger amounts of precipitation. 

Of the ensemble sizes examined, 24 members are considered optimal. The reason for this is 

that with ensembles larger than 24 members, the increase in the ROC area is only marginal. 

The probabilistic extrapolation nowcasts in this thesis use 21 members to make the ex-

trapolation compatible with the 21 members of the COSMO-E NWP. The ensemble size is 

quite close to the optimal value of 24 members. It must be considered that for each member of 

the nowcasting chains, an additional 21 members of the hydrological model are added, which 

noticeably increases the computation time. It can, as a consequence, be assumed that with 21 

members, the uncertainties are sufficiently covered without the need for excessive computer 

power. This assumption is additionally supported by the figures 18 and 19, which assign skill 

to the majority of events for each nowcasting chain in terms of the KGE. 

4.2. Performance Improvement through Frequently Updated QPEs 

In the figures relating to the update cycle in section 3.2, it can consistently be seen that overall 

the reliability of the forecast increases with more recent QPEs, which are used as initial condi-

tions. Especially figures 28 and 29 show that the performance in all Emme catchments im-

proved conspicuously after the first two hours of the update cycle, and stay at a high 

performance for the rest of the update cycle. 

The question arises why the improvement after the first two hours of the update cycle is so 

pronounced. A possible explanation for this behaviour can be found in the study by Nerini et 

al. (2019), which includes the type of precipitation formation, in the form of a case study, in 

the nowcast analysis. The study states that the NWPs struggle to represent the precipitation of 

a convective event correctly, especially for short lead times. The event used for the update 

cycle in this thesis is to be considered highly convective, since the accumulated precipitation, 

shown in figure 25 and 26, strongly increases until around 17:00. As a result, the KGE values 
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for the NWPs are rather low in the update cycle up to and including 14:30. This is due to the 

intensive convective activity, which can not be fully captured by the NWP, and the fact that 

the actual runoff peak is still far away. In addition, the initial conditions of the NWPs are out-

dated until 14:00. 

Likewise, it can be seen in figure 30 that the nowcasting chains using an extrapolation 

nowcast show a low KGE value for the early update cycle. This is because important growth 

and decay processes during the convective phase are unsufficiently simulated for longer lead 

times. At first glance, one could argue that the nowcasting chains that blend an extrapolated 

nowcast into an NWP should be able to capture the convective event with frequently updated 

initial condition already in an early stage of the update cycle. However, in agreement with the 

study from Poletti et al. (2019), it is to be assumed that the extrapolated nowcast is only supe-

rior to the NWP in the first two hours of the nowcast. However, since the convective activities 

in the updated cycles from 13:00 to 14:30 are not yet completed, even with the additional two 

hours of reliable extrapolation nowcast, also the nowcasting chains which blend an extrapo-

lated nowcasts with a NWP cannot adequately capture the event. For the update cycle at 

15:00, the most active convection phase is completed within the two hours of reliable nowcast 

extrapolation. Therefore, the overall performance of the blended nowcasting chains start to 

increase. Similar behaviour can be seen in the subcatchments of the Emme. The correspond-

ing boxplot can be found in the appendix (figure A.28). 

Consequently, it can be concluded that in the investigated event, the update cycle is initial-

ized too early. The resulting KGE values of the first update cycles indicate that no reliable 

prediction can be made about the occurrence of a flash flood. Nevertheless, an early warning 

system should be able to issue a warning early and reliable enough to take and implement 

possible measures. Very late update cycles show in fact a very reliable prediction, but are use-

less for decision-makers, because measures against a FF could no longer be implemented 

(Romang et al., 2011). 

4.3. Nowcasting Chains Specific Characteristics 

As has already been demonstrated, the thesis shows that first nowcasting chains which blend 

an extrapolated nowcast into a NWP are superior to raw NWPs, and second frequently updat-

ed initial conditions improve the forecast skill of all nowcasting chains within the update cy-

cle. The section that follows discusses the specific characteristics of the used nowcasting 

chains. 
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In the figures 8 and 9 showing the accumulated precipitation forecast and in the resulting 

hydrographs of the Emme catchment shown in the figures 10 to 13, it can be seen that the 

nowcasting chains NP1 and NPE tend to overestimate the runoff while the nowcasting chains 

CO1, COE and NPC tend to underestimate the runoff in respect to CPC. The exception is the 

Eggiwil catchment, where all nowcasting chains overestimate the runoff. Since the Eggwil 

catchment, exhibits substantially lower KGE values than the other catchments (figure 14), this 

catchment is not decisive for the analysis. A similar behaviour of the nowcasting chains can 

be seen in the Emme runoff of the middle update cycle in figure 27. The runoff estimations of 

the also shown first and last update cycles are not considered, because the first update cycle is 

considered too uncertain to make any assumptions, and the last one is useless for any real 

time application because it is too close to the actual FF. In general, the nowcasting chains 

underestimate the runoff rather than overestimate it. 

A possible explanation for the underestimation in the nowcasting chains using raw NWPs 

(i.e. CO1 and COE) can be found in the study from Buizza et al. (1999b). According to the 

study, large precipitation events, such as those investigated in this thesis, tend to be underes-

timated by the NWP. Furthermore, the study from Jenker et al. (2008) argues that precipita-

tion values from catchments located in a valley, such as the Emme and Verzasca catchments 

studied in this thesis, are underestimated by the COSMO models. The underestimation of the 

raw NWP nowcasting chains in the investigated events is further supported by the findings of 

Klasa et al. (2018), who assign a severe underestimation of precipitation to the COSMO-E 

model during heavy precipitation events. The underestimation in the NPC nowcasting chain is 

probably due to the fact that in the investigated mountainous catchments, precipitation due to 

orographic uplift contributes to the heavy precipitation event. These precipitation amounts are 

not captured by the unperturbated Lagrangian persistence extrapolated member of the NPC 

nowcasting chain. 

In the shown events, the nowcasting chains NP1 and NPE are overestimated. These now-

casting chains differ only in their extrapolation nowcast from the CO1 and COE nowcasting 

chain, which is therefore the reason for the overestimation. The study from Pulkkinen et al. 

(2019) identifies the autoregressive model as the reason for the overestimation. Due to the 

short memory of the second order auto-recressive model, it is not possible to capture correctly 

the long lifetime of large precipitation features. The model overestimates the lifetime of pre-

cipitation in the extrapolation. As a result, the amount of precipitation is overestimated. How-

ever, the overestimation of the nowcast extrapolation is mitigated by blending the 
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extrapolated nowcast with the NWP, which contributes essentially to the superiority of blend-

ed nowcasting chains over raw NWPs (Poletti et al., 2019). 

The effect of the blending scheme can also be seen in figure 23, which shows that the 

blended NPC nowcasting chain outperforms the CO1 nowcasting chain in all catchments. In 

addition, figure 24 shows that the probabilistic nowcasting chains with a blending scheme 

perform clearly better than the probabilistic COE NWP nowcasting chain, independent of the 

catchment. Furthermore, the COSMO-1 related NP1 nowcasting chain benefits from the high-

er resolution. 

4.4. Catchment Specific Characteristics 

Regarding the catchment specific characteristics, figure 15 and 16 show that especially small 

catchments like the Trueb or the Pincascia catchment exhibit overall lower KGE values than 

the other catchments. Due to the low Trueb KGE values, the Ilfis catchment is also partly af-

fected by low KGE values, as Trueb catchment is nested in the Ilfis catchment. The study 

from Liechti et al. (2013a) shows that especially in small catchments prone to FFs, the 

amount of precipitation as well as the location of the precipitation features are crucial in esti-

mating the runoff. However, the detection of such small-scale features in small catchments is 

difficult, as they can only be detected by high-resolution measurement systems. 

Figures 15 and 16 also exhibit that the overall performance in terms of the KGE value is 

rather higher for the Emme catchment than for the Verzasca catchment. This can also be seen 

in figure 17, which not only shows the median values of the KGE for the Emme and Verzasca 

catchment for all nowcasting chains seperately, but also takes their ranges of KGE values into 

account. The forecasts in the Verzasca catchment show a larger range in KGE values and, 

most of all, lower KGE values than in the Emme catchment. One explanation is the aforemen-

tioned smaller catchment, which makes a reliable prediction more difficult. A further explana-

tion is that the complex topography in the Verzasca catchment also reduces the reliability of 

the prediction (Zappa et al., 2011). 

In the figures 20 and 21, the proportion of the best performing nowcasting chains per 

catchment in terms of KGE and MAE is shown respectively. It is visible that in the small 

catchments Trueb and Pincascia, the NPE nowcasting chain performs best. In the other 

catchments, the NPC nowcasting chain shows best performance in the most events. Since 

predictions in small catchments are challenging, the NPE nowcasting chain benefits from hav-

ing 21 members in the extrapolation nowcast and 21 members in the NWP. The large number 

of members, in comparison to the other nowcasting chains, is able to capture the events rea-
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sonably well, even if, as has already been mentioned, the prediction skills for the Trueb and 

the Pincascia catchments are rather low, and the approach of the NPE nowcasting chain re-

minds more of a wild guessg. In the other catchments, the NPC nowcasting chain benefits 

from the higher resolution of the COSMO-1 NWP, in which the NPC is blended. The reason 

why the NP1 nowcasting chain, which is also blended into the COSMO-1 NWP, cannot keep 

up with the NPC nowcasting chain is that the control member of the NPC nowcasting chain is 

unperturbated and can be regarded as the best estimation. The remaining 20 perturbated 

members of the NP1 nowcasting chain are only 20 equally probable but slightly blurred 

members. Nevertheless, a probabilistic forecast should be preferred to a deterministic one. 

Why this is the case is explained in the following section.  

Regarding the components of the KGE figure 22 shows that in the Emme catchment the 

NPC nowcasting chain performs best in terms of correlation. The reason for this is that the 

deterministic COSMO-1 related nowcasting chain is highly resolved and unperturbated. In the 

smaller and more challenging Verzasca catchment, the different scenarios of the NPE now-

casting chains ensemble help to better correlate with the CPC hindcast. The better perfor-

mance of the COSMO-1 related nowcasting chains in terms of bias and the ratio between the 

CVs is assigned to the better spatial resolution compared to the COSMO-E related nowcasting 

chains. Furthermore, COSMO-1 uses more frequently updated initial conditions than COS-

MO-E. Exceptions must be made in the Verzasca catchment in terms of bias, and in the Ilfis 

catchment in terms of the ratio between the CVs. The reasons for this cannot be conclusively 

clarified without the individual events being examined in detail in a case study, which is be-

yond the scope of this thesis. 

4.5. The Benefit of Probabilistic Nowcasting Chains 

Every prediction is subject to uncertainty. In hydrological modelling, these uncertainties ar-

ries from the radar QPE, the extrapolation algorithm, and/or the hydrological model, only to 

mention a few. In order to achieve reliable forecasts, it is, therefore, part of the hydrological 

modelling to take these uncertainties into account. Even if the greatest care is taken in dealing 

with uncertainties, the simulation never completely corresponds to the observation. This re-

sidual uncertainty is quite large and must be taken into account for the forecasts by using the 

ensemble approach (Germann et al., 2006a). This opinion is shared by Addor et al. (2011), 

who points out that deterministic models sometimes miss an event due to the fact that these 

models only refer to a single scenario. Deterministic models are, therefore, unsuitable for ear-

ly warning FFs systems. Even more the study shows that the median hydrograph of the prob-
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abilistic COSMO-LEPS model was superior to the single member of the deterministic coun-

terpart COSMO-7, and justifies the use of the median member in probabilistic nowcasting 

chains. 

The Taylor diagrams shown in figure 31 depict skill variables of all nowcasting chains in a 

single plot. Information on correlation or over- and underestimation of nowcasting chains 

members can be read from it and discussed, as in section 4.3. However, when it comes to 

making a decision regarding the occurrence of a possible FF, decision-makers are not suffi-

ciently referring to probabilistic forecasts, even though it is a superior technique than the de-

terministic one (Antonetti et al., 2019; Bruen et al., 2010). A possible explanation for this is 

that it requires a more detailed analysis of all members of the probabilistic nowcasting chains 

to interpret the forecast. Therefore, the peak-box approach introduced by Zappa et al. (2013), 

which considerably facilitates the analysis of probabilistic nowcasting chains, is used in the 

update cycle and shown in figure 31. While the peak-box of the first update cycle is too un-

certain to estimate the occurence of a FF, the peak-box of the last update cycle is unusable 

because it is too close in time to the occurrence of the FF. The peak-box of the middle update 

cycle is considered to be just early enough and sufficiently certain to make an estimate about 

the occurrence of a FF. It is difficult to determine the exact time when a FF warning should be 

issued. Especially in small catchments, which are prone to FFs, the response time oftentimes 

too short to take action (Liechti et al., 2013b). However, determining this point in time for the 

event would go beyond the scope of this thesis. Furthermore, it will have to be shown in the 

future how the operationalisation of such update cycles will develop. Since they require a lot 

of computer power, they are used only sparsely, and if they are used at all, it is solely with 

deterministic predictions (Nerini et al., 2019). 

4.6. Limitations 

Starting with the selection of the events, this thesis never refers to whether an FF occurred in 

the investigated events or not. To do so, the probability of detection and the false alarm ratio 

(FAR) of the investigated events would have to be analysed. However, the exclusion of such 

an analysis is justified, since in this thesis the best performing nowcasting chain is evaluated 

in relation to different skill scores, and the occurrence of a FF is not decisive in this respect. 

With regrad to the chosen threshold for the events it must be mentioned that more conserva-

tive thresholds (e.g. lower thresholds or shorter trigger latency) can be applied to the alert 

system NowPAL. In operational use, this ensures that no FF event is missed. On the other 

hand, this causes more events to predict, which is easy for the automated alert system Now-
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PAL. This is however not feasible for this thesis since some of the time consuming prepro-

cessing steps were still done manually. 

A further limitation is made regarding the radar QPE and the rain gauge measurements 

used for the initial conditions and the CPC hindcast, which are considered here as observation 

data. Obviously, this is not the case in reality. However, it can be justified by the fact that in 

small catchments, which are prone to FFs, in-situ rain gauge measurements are often not pos-

sible (Liechti et al., 2013a). Furthermore, as shown in the peak-boxes in figure 31, the CPC 

hindcast is a good estimation of the runoff observation, which in turn is also never completely 

error-free. Furthermore, the thesis does not address any analysis of the errors in the radar 

measurements, or the uncertainties in the CPC model. In this respect, the studies of Germann 

et al. (2006a, 2006b) give more information about the uncertainties in the radar measure-

ments, and the studies of Sideris et al. (2014a, 2014b) about the uncertainties in the CPC 

model. In regards to the hydrological model RGM-PRO, no statements are made about the 

uncertainties in the runoff type maps and its resulting runoff generation. The ensemble ap-

proach considered by RGM-PRO, however, ensures that the residual uncertainties of the 

model can be dealt with. An analysis of the uncertainties in the runoff types of the hydrologi-

cal model RGM-PRO can be found in Antonetti et al. (2019) and Horat et al. (2018). 

The evaluation of the different nowcasting chains refers mainly to the KGE value. Like 

the NSE, the KGE is well familiar to most hydrologists. Nevertheless, most decision makers 

are unaware of what a certain value of these efficiency scores actually mean. For instance, the 

NSE value reaches constantly high values in seasonally dominated catchments. These high 

values are, however, deceptive, since they are only achieved on the basis of the poor reference 

forecast. With regard to the efficiency scores, it is, therefore, recommended to set catchment 

specific benchmarks, which allow to distinguish a useful from a useless prediction (Schaefli 

and Gupta, 2007). In this thesis, such a benchmark is neither set for the Emme nor the Ver-

zasca catchment, since the nowcasting chains are only compared with each other. Even 

though, the question remains above which KGE value the performance of the nowcasting 

chains can be regarded as skilful. It has to be assumed that the KGE values are overestimated, 

as the spinup time of the events, which have an optimum KGE value of one, artificially in-

crease the KGE value. This does not affect the analysis concering which nowcasting chain 

performs best, as each event is examined separately, and all nowcasting chains are equally 

affected by the KGE overestimation. Furthermore, a finding by Addor et al. (2011) and 

Liechti et al. (2013) regarding the KGE value must be taken into account. The study states 

that with increasing lead time, the skill of the prediction decreases. Since this thesis focuses 
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mainly on the nowcast, and thus on very short lead times, it can be assumed that for the very 

short lead times, the skill of the prediction is higher than the skill, which is computed over the 

entire forecast. 

It can be concluded that the quantification of the actual forecasting skill values is some-

what blurred by the mentioned issues. Nevertheless, this thesis is able to unambiguously show 

that blended nowcasting chains are superior to raw NWP nowcasting chains, and that fre-

quently updated initial conditions improve the prediction skill. 
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5. Summary and Conclusion 

Suddenly occurring flash floods induced by heavy precipitation events do not only cause cost-

ly damages but are also a threat to life. Very short-term nowcasting systems provide a means 

of identifying the hazard potential of a flash flood, and thus mitigate hazards. This thesis deals 

with the analysis of so-called nowcasting chains in the small and prone to flash floods Emme 

and Verzasca catchments. The used nowcasting chains consists of (i) a QPE provided by the 

CPC scheme, delivering up-to-date rainfall initial conditions for the nowcast. (ii) a nowcast 

product, which extrapolates the initial rainfall into the very short-term prediction for the next 

five hours, (iii) a NWP continuing the prediction for another 19 hours, (iv) a blending scheme, 

which merges the probabilistic extrapolation nowcast into the probabilistic NWP by adjusting 

their weights in inverse proportion to their uncertainties, and (v) a hydrological model called 

RGM-PRO with no need for calibration. 

To answer the research question (1) whether nowcasting chains, which blend an extrapola-

tion nowcast into a NWP are superior to raw NWPs, three nowcasting chains are set up using 

an extrapolated nowcast and a blending scheme, called NP1, NPC and NPE, and two now-

casting chains, using the deterministic COSMO-1 and probabilistic COSMO-E NWP for the 

entire forecast reffered to as CO1 and COE respectively. The NP1 and NPE nowcasting 

chains are using a probabilistic nowcast extrapolation approach while the NPC nowcasting 

chain uses the deterministic control member of the NP1 nowcasting chain as nowcast extrapo-

lation. For the blending scheme, deterministic nowcasting chains use the uncertainties of their 

probabilistic counterparts. For a sub-research question (1.1), deterministic nowcasting chains 

are split from the probabilistic ones and investigated separately, so as to answer whether the 

blending of the deterministic and probabilistic extrapolated nowcast into the NWP is superior 

to the raw deterministic and probabilistic NWP respectively. A further sub-research question 

(1.2) clarifies whether the investigated nowcasting chains are skilled enough to provide useful 

statements. A second research question (2) investigates whether frequently updated QPEs (i.e. 

initial conditions) can increase the nowcasting performances of the individual nowcasting 

chains. 

To determine the performance of each nowcasting chain, their hydrographs are compared 

to the hydrograph of the pseudo observation, which clarifies if the CPC QPE is forcing the 

hydrological model. To achieve a representative result, 41 events in the Emme catchment and 

40 events in the Verzasca catchment are investigated. Regarding the update cycle of the sec-

ond research question, one event in the Emme catchment was analysed, in which more recent 

nowcasts based on updated initial conditions are computed every 30 minutes. To make the 
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performances of the individual nowcasting chains for each event comparable, the Kling-Cupta 

efficiency score was used in this thesis. In addition, the Nash-Suttclif efficiency score and the 

mean absolute error support the results. To compare deterministic and probabilistic nowcast-

ing chains, the median of the skill score was used for probabilistic nowcasts. 

In the results section, it is shown that (1) the blended nowcasting chains NP1, NPC and 

NPE outperform the raw NWP nowcasting chains CO1 and COE in the Emme and the Ver-

zasca catchment. The superiority of blended nowcasting chains in the Emme and Verzasca 

main catchments is quite pronounced with a ratio of best performing blended nowcasting 

chains to raw NWP nowcasting chains of over 70 %. In the Emme and Verzasca subcatch-

ments, the blended nowcasting chains are still superior but less pronounced, with a proportion 

of best performing nowcasting chains in more than 60 % of all events. Regarding (1.1) the 

blended deterministic nowcasting chain, NPC outperforms the raw deterministic NWP CO1 

nowcasting chain in all catchments. The blended probabilistic nowcasting chains outperform 

the raw probabilistic NWP nowcasting chain distinctly. Concerning (1.2) the skill of the now-

casting chains almost all events are predicted skilful by all nowcasting chains, and in all 

catchments. In terms of (2) the update cycle, the results show a clear improvement in forecast-

ing skill for all nowcasting chains with increasingly up-to-date initial conditions. Further-

more, the predictability in terms of magnitude and timing of the flash flood increases with 

more recent initial conditions. 

The discussion section concludes that the merging of an extrapolated nowcast with a NWP 

is beneficial, because the extrapolated nowcast outperforms the NWP for very short lead 

times, whereas the NWP outperforms the extrapolated nowcast for longer lead times. Moreo-

ver, the initial time of the extrapolation is crucial because, if the extrapolation is started too 

early, important convective grow and decay processes in the atmosphere are not considered, 

whereas a late initialized extrapolation is unsuitable for hazard mitigation. The use of an up-

date cycle is advisable for reliable flash flood prediction. However, its operational use is still 

sparse due to high computing requirements. In addition, it must be further investigated in 

which time span of the update cycle a prediction is most beneficial, since early predictions are 

burdened with large uncertainties, however, late predictions hardly leave time for counter-

measures. 

Besides, a tendency has been found that the extrapolated nowcast tend to overestimate, 

and the NWP tend to underestimate the runoff. The blending scheme merging both compo-

nents together leads, therefore, to a mitigation of both effects. Catchment specific characteris-

tics were addressed, which assign the small catchments major difficulties in their 
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predictability. To complete the discussion, the limitations of this thesis are discussed. Since 

this thesis focuses on the comparison of the nowcasting chains, the probability of detection or 

the false alarm ratio of the events are not considered. A further limitation is that some uncer-

tainties are ignored, which is justified by the fact that they often cannot be measured in reali-

ty. The answer of the (1.2) question if the prediction of the nowcasting chains are skilful or 

not is somewhat unsatisfactory, since the skill score of the individual nowcasting chains is 

artificially increased by a spinup time in the predictions. Furthermore, the benchmark of a 

meaningful forecast in this thesis was set at zero. This is somewhat arbitrary, as other bench-

marks are also reasonable. 

This thesis has demonstrated that in this huge interdisciplinary field of flash flood now-

casting, further research is needed to increase nowcast reliability, lead time, and hazard miti-

gation. The study of Nerini et al. (2019) shows how future extrapolated nowcasts can be 

improved using a correction step based on the NWP. Poletti et al. (2019) reveals how differ-

ent blending schemes affect the nowcast, and thus makes an essential contribution to improv-

ing the seamlessly blended nowcasting technique. A new trend in probabilistic precipitation 

nowcasting is set by Pulkkinen et al. (2019), which uses the advantage of a networked world 

by establishing the open-source Python library for probabilistic precipitation nowcasting, and 

thus creates a platform from and for users. It goes without saing that this approach, which 

involves the entire hydological community, provides huge potential for the future. Finally, it 

is to be mentioned that hydrological modelling is not spared by a chainging climate. When 

dealing with nowcasting or forecasting systems, the question of the adaptability of models to 

changing environmental conditions often remains unanswered. However, changes in landcov-

er or in the atmospheric conditions are by no means to be ignored in the future and must es-

tablish their position in future nowcast related research (Thirel et al., 2015). 
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7. Appendix 

7.1. Event Selection NowPAL Output 

  

Figure A.3: NowPAL RZC30INCA60 output for the year 2017 in the Verzasca catchment. The blue axis shows 

the accumulated precipitation by NowPAL. The black axis shows the observed runoff. The blue dotted line rep-

resents the treshold triggering an event and the red bars cover the 24-hour forecast. 

Figure A.2: NowPAL RZC30INCA60 output for the year 2016 in the Verzasca catchment. The blue axis shows 

the accumulated precipitation by NowPAL. The black axis shows the observed runoff. The blue dotted line rep-

resents the treshold triggering an event and the red bars cover the 24-hour forecast. 

Figure A.1: NowPAL RZC30INCA60 output for the year 2016 in the Emme catchment. The blue axis shows the 

accumulated precipitation by NowPAL. The black axis shows the observed runoff. The blue dotted line repre-

sents the treshold triggering an event and the red bars cover the 24-hour forecast. 
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7.2. Performance Overview NSE and MAE 

Figure A.4: Overview of the NSE medians for all events in the Emme catchments including spinup time. Letters 

and numbers in the X-axis representing months and years respectively. 
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Figure continuous on next page. 

Figure A.5: Overview of the NSE medians for all events in the Verzasca catchments including spinup time. 

Letters and numbers in the X-axis representing months and year respectively. 
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Figure A.7: Overview of the MAE medians for all events in the Verzasca catchments including spinup time. 

Letters and numbers in the X-axis representing months and year respectively. 

Figure A.6: Overview of the MAE medians for all events in the Emme catchments including spinup time. Let-

ters and numbers in the X-axis representing months and year respectively. 
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7.3. Boxplot Overview KGE, NSE and MAE 

Figure continuous on next page. 
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Figure A.9: Boxplot overview of the KGE values for all events in the Verzasca subcatchment including spi-

nup time (bold bar). Letters and numbers in the X-axis representing months and year respectively. 

Figure A.8: Boxplot overview of the KGE values for all events in the Emme subcatchments including spinup 

time (bold bar). Letters and numbers in the X-axis representing months and year respectively. 
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Figure continuous on next page. 
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Figure A.10: Boxplot overview of the NSE values for all events in the Emme catchments including spinup time 

(bold bar). Letters and numbers in the X-axis representing months and year respectively. 
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Figure A.11: Boxplot overview of the NSE values for all events in the Verzasca catchments including spinup 

time (bold bar). Letters and numbers in the X-axis representing months and year respectively. 
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Figure continuous on next page. 
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Figure A.12: Boxplot overview of the MAE values for all events in the Emme catchments including spinup time 

(bold bar). Letters and numbers in the X-axis representing months and year respectively. 
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Figure A.13: Boxplot overview of the MAE values for all events in the Verzasca catchments including spinup 

time (bold bar). Letters and numbers in the X-axis representing months and year respectively. 
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7.4. Ranked Events KGE, NSE and MAE 

Figure A.14: Ranked KGE values shown for all nowcasting chains in the Emme subcatchments. Values above 

the horizontal line at a value of zero indicate skilfully predicted events. 

Figure A.15: Ranked KGE values shown for all nowcasting chains in the Verzasca subcatchment. Values above 

the horizontal line at a value of zero indicate skilfully predicted events. 
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Figure A.16: Ranked NSE values shown for all nowcasting chains in the Emme catchments. Values above the 

horizontal line at a value of zero indicate skilfully predicted events. 
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Figure continuous on next page. 

Figure A.17: Ranked NSE values shown for all nowcasting chains in the Verzsaca catchments. Values above the 

horizontal line at a value of zero indicate skilfully predicted events. 
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Figure A.18: Ranked MAE values shown for all nowcasting chains in the Emme catchments. 

Figure A.19: Ranked MAE values shown for all nowcasting chains in the Emme catchments. 
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7.5. Best Performing Nowcasting Chains 

7.5.1. All Nowcasting Chains NSE 

  

Figure A.20: Ratios of the best performing nowcasting chains in terms of the NSE. 
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7.5.2. Deterministic Nowcasting Chains NSE and MAE 

  

Figure A.21: Ratios of the best performing deterministic nowcasting chains in terms of the NSE. 

Figure A.22: Ratios of the best performing deterministic nowcasting chains in terms of the MAE. 
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7.5.3. Probabilistic Nowcasting Chains NSE and MAE 

  

Figure A.23: Ratios of the best performing probabilistic nowcasting chains in terms of the NSE. 

Figure A.24: Ratios of the best performing probabilistic nowcasting chains in terms of the MAE. 



97 

7.6. Entire Update Cycle 

7.6.1. Accumulated Precipitation Prediction 

Figure continuous on the next page. 
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Figure continuous on the next page. 
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Figure continuous on the next page. 
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Figure continuous on the next page. 
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7.6.2. Runoff Simulation 

Figure A.25: Accumulated precipitation for COSMO-1 related nowcasting chains (left) and COSMO-E related 

nowcasting chains (right). From top to bottom: The first prediction at 13:00 to the last prediction at 19:00 of the 

update cycle is shown for the Emme catchment. 

Figure continuous on the next page. 
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Figure continuous on the next page. 
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Figure continuous on the next page. 
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Figure continuous on the next page. 
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Figure A.26: Hydrographs showing runoff predictions for all nowcasting chains in the main catchment Emmen-

matt. From top to bottom: The first prediction at 13:00 to the last prediction at 19:00 of the update cycle is 

shown. 
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7.6.3. Median Progrssion NSE 

Figure A.27: The median progression of the update cycle is shown for all nowcasting chains in the Emme 

catchments. The slope of the lines between the points indicates whether the skill in terms of the NSE increases 

or decreases within the update cycle. 
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7.6.4. Boxplot Progression Subcatchments 

Figure continuous on the next page. 
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7.6.5. Taylor Diagram and Peak-box 

Figure A.28: Update cycle boxplots showing all nowcasting chains in the Emme subcatchments in terms of the 

KGE. The bold vertical bar of the boxplot represents the median, while the box represents the interquantile 

range. The whiskers display the range of extreme values. 

Figure continuous on the next page. 
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Figure continuous on the next page. 
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Figure continuous on the next page. 
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Figure continuous on the next page. 
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Figure A.29: Left: Taylor diagrams showing correlation (azimuthal angle), standard deviation (blue dotted quad-

rant), RMSE (grey semicircles) and CPC hindcast (grey point). Right: Peak-boxes showing the best flash flood 

estimation in terms of peak magnitude and timing of the runoff. From top to bottom: The first prediction at 

13:00 to the last prediction at 19:00 of the update cycle is shown for all nowcasting chains in the main catch-

ment Emmenmatt. 
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