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Abstract

Remotely sensed information on tree species composition over vast spatial extents is required for
various applications, such as mapping and preserving biodiversity or sustainable forest manage-
ment. Automatic individual tree detection based on airborne laser scanning (ALS) allows tree
species recognition on the level of individual trees. Most species classification studies that go bey-
ond the distinction of conifers and broadleaf trees are limited to smaller areas due to reference
data availability. This thesis aimed to implement and evaluate the potential of a large-scale tree
classification on individual tree level in a diverse temperate forest environment. Our analysis was
based on multi-seasonal (leaf-off and leaf-on) ALS acquisitions, supplemented by multispectral
aerial imagery, covering an area of 1400 km2 in northern Switzerland. We connected field-based
species labels from an existing operational forest inventory with individual tree segments extrac-
ted from ALS data to receive a reference dataset without any manual delineation or matching
steps. This automated creation of reliable reference data was found to represent one of the main
challenges, introducing uncertainties into subsequent classification results. We trained and tested
a series of object-based Random Forest (RF) machine learning models based on a diverse set of
features (ALS point distribution, intensity, return number or multispectral). The integration of
features derived from leaf-off and leaf-on ALS acquisitions significantly improved classification
accuracy by 6% compared to using only leaf-off. Through applying a recursive feature elimina-
tion (RFE) approach, features based on ALS intensity and return number were found to be more
important than features related to tree shape, point distribution and spectral features. Despite the
use of imperfect reference data in a large-scale context, we were able to discriminate European
beech, Norway Spruce and silver fir from the remaining broadleaved and coniferous species with
an overall accuracy of 62%, based solely on ALS data. These species predictions can potentially
be aggregated to forest composition maps in order to estimate species-specific forest attributes.
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1 Introduction

Information on tree species composition and spatial distribution in forest environments is required
by a wide variety of applications, ranging from biodiversity assessment, monitoring and conser-
vation (Puumalainen et al., 2003) to sustainable management strategies (Vauhkonen et al., 2014).
To give an example, the spatial abundance of Norway spruce has been identified as an important
predictor for susceptibility to bark beetle outbreaks (Kärvemo et al., 2014). In forest management,
spatially explicit information on tree species is used as input for species-specific growth and yield
models (Vauhkonen et al., 2014) or any species-specific allometric model for attributes like stem
diameter, volume or productivity (Korpela and Tokola, 2006; Ørka et al., 2013). Compared to
conventional approaches based on labour-intensive field investigations, mapping and monitor-
ing forest species composition using remote sensing would save time, money, and support the
analysis of species composition over vast spatial extents (McRoberts and Tomppo, 2007; Hyyppä
et al., 2008). Over the past three decades, a variety of spaceborne and airborne technologies have
been utilised for this purpose (Fassnacht et al., 2016). This involves distinguishing tree species
based on satellite multispectral images (Zhang and Liu, 2013; Persson et al., 2018), aerial multi- or
hyperspectral images (Waser et al., 2011; Dalponte et al., 2013; Fricker et al., 2019), or unmanned
aerial vehicles (UAV) (Franklin and Ahmed, 2018). While spectral signatures can reflect biophys-
ical, biochemical or even physiological attributes, it is possible to retrieve structural properties
of trees from airborne laser scanning (ALS) systems, equipped with light detection and ranging
(LiDAR) devices (Hyyppä et al., 2008). ALS is of particular value for forest characterisation, due
to its ability to penetrate the canopy, providing detailed three-dimensional information on vegeta-
tion structure (Nilsson, 1996). Small-footprint ALS systems are therefore used at operational level
today in order to retrieve inventory parameters relevant for forest management (Wulder et al.,
2013; White et al., 2016; Kankare et al., 2017). In regard to tree species recognition, combining
spectral and structural remote sensing data has been shown to generally improve classification
results (Ørka et al., 2012; Kandare et al., 2017; Parkan and Tuia, 2019).
Another advantage of using ALS is that individual trees can be automatically detected and ex-
tracted from LiDAR point clouds. Individual tree detection (ITD) represents a bottleneck in the
retrieval of forest parameters and has thus motivated an active research community (Kaartinen et
al., 2012). While ITD methods with varying degrees of complexity are being applied today, large-
scale tree detection is often based on a canopy height model (CHM). This approach decreases the
size of datasets, computational time and the demands on hardware, but also reduces information
regarding the understorey (Duncanson et al., 2014). Across most ITD methods, detection accuracy
is generally higher for conifer trees, while the closed canopy of broadleaf forests is more challen-
ging to separate (Hastings et al., 2020).
When ITD is applied successfully, species membership can be predicted on individual tree level
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through the use of an object-based classification. Many studies on tree level species recognition
have reported higher classification accuracies compared to area-based approaches (Ørka et al.,
2013; Dalponte et al., 2013; Torabzadeh et al., 2019). Also, tree level data can be easily linked to the
tree’s biophysical properties and it can be used directly for practical forest management purposes.
As input for an object-based classification of tree species, explanatory features are usually calcu-
lated for each reference tree in order to capture the differences between species. While features
derived from spectral imaging data include reflectance values of selected bands and vegetation in-
dices (Fassnacht et al., 2014), a considerable amount of descriptive features have also been derived
from ALS data (Ørka et al., 2009; Lin and Hyyppä, 2016; Shii et al., 2018). ALS-based features can
be broadly categorised into spatial point pattern statistics (e.g. height distribution and density
of points), radiometric statistics derived from echo intensity, and features utilising the number of
returns generated by one laser pulse. Depending on the kind of ITD approach, it may be possible
to derive further external and internal tree shape characteristics (Parkan and Tuia, 2019). Due
to availability constraints, relatively few studies incorporate temporal changes as additional fea-
tures. Nevertheless, the integration of LiDAR data acquired under leaf-on and leaf-off conditions
has been proven useful for tree species classification in previous studies (Kim et al., 2009; Ørka
et al., 2010; Shii et al., 2018).
To find the most effective set of features for classification, iterative feature selection approaches
are often applied, because they also provide importance estimates (Fassnacht et al., 2014; Ko et al.,
2016; Parkan and Tuia, 2019). As the target classes are generally known and predefined in tree
species classification, supervised learning algorithms are by far the most commonly used due to
their superior performance (Ghosh et al., 2014; Marrs and Ni-Meister, 2019). Thanks to their abil-
ity to handle non-linear classification problems and to their ease of use, Random Forests (RF) and
Support Vector Machines (SVM) are currently the most popular and have been shown to have
similar performances (Ørka et al., 2012; Dalponte et al., 2012; Ghosh et al., 2014).
The methodologies described above have been tested on numerous experimental sites using state-
of-the-art input data and reliable ground-truth (Fassnacht et al., 2016). For example, Parkan
and Tuia (2019) received overall accuracies between 84% and 95% using various combinations
of hyperspectral imaging and ALS feature sets to classify nine tree species in temperate forests in
Switzerland. However, such studies are generally restricted to small areas or limited sample sizes,
as labelling a large number of training samples is a tedious process, often the result of repeated
visual interpretation and/or field observations.
Depending on the specific application, ecologists or forestry practitioners may require tree species
information across landscapes or even countries. Next to availability of suitable remote sensing
data, feasibility of such large-scale tree species recognition depends on the automation of refer-
ence data creation, which should ideally exploit existing inventory data. In recent years, field
plot information from National Forest Inventories (NFI) or smaller management inventories has
been increasingly used in combination with ALS data. This has been shown to be effective for
enhancing the estimation of forest inventory attributes (Tomppo et al., 2008; Maltamo et al., 2009;
Wulder et al., 2012) and is applied operationally for regional forest management inventories in
Finland, Norway and Sweden (Barrett et al., 2016; Kangas et al., 2018). However, large-scale tree
species recognition, especially on tree level, is not yet performed operationally (White et al., 2016).
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Nonetheless, individual tree level information is expected to play an important role in next gen-
eration’s forest mapping systems, especially in conifer-dominated boreal forests (Kankare et al.,
2017).
In temperate forest regions, large-scale or even country-wide tree classification attempts with high
spatial resolution have, so far, mainly been focused on the distinction between broadleaved and
coniferous trees. For instance, Schumacher and Nord-Larsen (2014) performed a classification for
whole of Denmark (tree segment level), Waser et al. (2017) for whole of Switzerland (spatial res-
olution of 3 m) and Krzystek et al. (2020) for the combined area of Bavarian Forest National Park
and Šumava National Park (tree segment level). They all applied a combination of multispectral
aerial imagery and ALS.
Operational large-scale ALS acquisitions with suitable point density for forest characterisation are
becoming more commonplace in Central Europe. Combined with existing inventory sources, such
as the NFI, this can potentially be utilised for large-scale individual tree classification of multiple
species. However, such attempts are still associated with many uncertainties. Focusing mainly on
ALS data, the goal of this thesis is to implement and evaluate the potential of a large-scale tree
classification on individual tree level in a diverse temperate forest environment. Our analysis is
based on leaf-off and leaf-on ALS acquisitions, supplemented by RGBI aerial imagery from the
same year, covering an area of 1400 km2. We connect field-based species labels from an existing
operational forest inventory with tree segments extracted from ALS data to receive a reference
dataset without any manual delineation or matching steps. To evaluate the potential of multi-
temporal ALS data, we assess classification accuracy based on each input dataset as well as based
on their combination. We also evaluate feature importance to assess which features are suitable
for use in a large-scale application with imperfect reference data. Finally, we apply a classifica-
tion model to a test area for qualitative assessment. In order to locate possibilities and limitations
associated with this approach, we explored the following objectives:

1. What is the potential of national forest inventory data to serve as reference for labelling
ALS-derived individual tree segments?

2. What is the added value of combining ALS leaf-off and leaf-on acquisitions and aerial im-
agery for tree species classification?

3. Which features, based on ALS point distribution, intensity, return number or multispectral
bands, are the most important for predicting tree species in a large-scale context?
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2 Materials

2.1 Study Area

The study area consists of the entire Canton of Aargau. With its 1403 km2 it is the 10th largest
canton of Switzerland, with altitude ranging from 261 to 908 m.a.s.l.. 35 % of the area are covered
by forest (49070 ha or 490 km2). The area comprises the biogeographical regions Table Jura (17%)
and Swiss Plateau (83%) and is mostly characterised by semi-natural temperate mixed forest, of
which 6% are unmanaged forest reserves. The most common species are European beech (Fagus
sylvatica), Norway spruce (Picea abies), Sycamore Maple (Acer pseudoplatanus) and Silver fir (Abies
alba) (cf. Table 2.2). Table Jura and forest reserves are generally more dominated by broadleaf
trees as compared to the remaining, more intensively managed forest regions in Canton of Aargau
(Departement Bau Verkehr und Umwelt, 2018).

FIGURE 2.1: Overview of the study area Canton of Aargau (right) and its location in Switzerland (left). The
yellow dots indicate the approximate location of inventory sampling plots used in this study.
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2.2 ALS Data

ALS data for the Canton of Aargau was acquired during March and April 2014 under defoli-
ated conditions (leaf-off) and during June and July 2014 under foliated conditions (leaf-on). The
sensor specifications are summarised in Table 2.1. The full waveform ALS data was acquired and
processed by Milan Geoservice GmbH (Kamenz, Germany). The processing steps involved the
extraction of laser returns from full waveform data, transformation of the point cloud into the
Swiss CH-1903 (LV03) Cartesian coordinate system, flight strip adjustment as well as filtering and
classification of the point cloud into ground and vegetation points. A digital terrain model (DTM)
was also generated by the contractor using TerraScan software (TerraScan v014, TerraSolid, Hel-
sinki, Finland).
The further derivation of a CHM and terrain-corrected heights is described by Leiterer et al. (2015).
The final dataset contains a three-dimensional point cloud composed of planimetric coordinates (x
and y), ellipsoidal heights (z), terrain-corrected heights (z_AG), echo type (i.e., first, intermediate,
last echo) and range normalised intensity values for every echo.

TABLE 2.1: Summary of the laser scanner and flight specifications for both leaf-on and leaf-off acquisitions.

ALS parameter Leaf-off Leaf-on

Acquisition date March/April 2014 June/July 2014
ALS sensor Riegl LMS-Q680i
Operating platform Airplane
Area of coverage [km2] ∼ 1400
Mean operating altitude above ground [m] 600 700
Scanning method Rotating multi-facet mirror
Pulse detection method Full-waveform processing
Pulse length [ns] ∼ 4
Sampling interval [ns] 1
Max scan angle [deg] 22
Mean point density [pts/m2] 15 30
Mean pulse density [pls/m2] ∼ 11 ∼ 11
Pulse footprint [cm] 30 35
Laser wavelength [nm] 1550
Scan rate [Hz] 120
Pulse repetition frequency [kHz] 300
Beam divergence [mrad] 0.5
Angular step width [deg] 0.0176

2.3 Aerial Imagery

Orthophotos were included as an additional data source. These were acquired on the 16th, 17th,
and 18th of July 2014 (leaf-on season) using an UltraCamEagle digital camera. The images were
acquired as part of a yearly campaign on behalf of the Cantonal authorities and cover the entire
Canton of Aargau. They were orthorectified using a digital surface model created by stereoscopic
image matching. Featuring a spatial resolution of 0.25 m, they contain the 4 spectral bands red,
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green, blue and near infrared (RGBI).

2.4 Forest Inventory Data

In addition to the Swiss National Forest Inventory (NFI), the Canton of Aargau has its own Forest
Inventory (Aargauer Waldinventur, AWI), which has so far been conducted in 2005 and 2016. The
sample plots are located on grid points of a 707x707 m grid containing four times as many plots
as the NFI base grid. Within the scope of the AWI 2016, around 16’000 individual trees were
registered and measured on approximately 1300 sample plots (Departement Bau Verkehr und
Umwelt, 2018).
The AWI uses the same inventory methodology as the NFI (described in Fischer and Traub (2019)).
Sampling plots consist of concentric circles around a known location. Within a 200 m2 circle, every
tree with a diameter at breast height (DBH) larger than 12 cm is recorded as a tally tree, and within
a 500 m2 circle, every tree with a DBH larger than 36 cm is recorded. Unlike DBH, tree height is
only measured for a randomly selected subset of trees.
After filtering the AWI dataset for living, standing trees with a height measurement and a com-
plete geographic location, we received 3609 reference trees, as shown in Table 2.2. Available data
associated with every tree includes: plot and tree number, height, species, DBH, basal area, tree
status (living, dead, standing etc.), canopy layer, crown length and approximate tree age. The loc-
ation is given in azimuth and distance from the plot centre point, whose coordinates are measured
by GPS with an accuracy of ∼ 1 m.
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TABLE 2.2: Number of trees of each species present in the reference dataset and their class grouping for the
simplified classification and main species classification.

Simplified classes Main species classes Species names Total trees per class

spruce spruce Picea abies (712) 712

fir fir Abies alba (413) 413

misc.
conifer

pine Pinus sylvestris (96)
Pinus nigra (7)
Pinus strobus (5)

108

- Larix decidua (52)
Larix kaempferi (4)
Pseudotsuga menziesii (36)
Taxus baccata (25)
Thuja spec. (38)
other conifers (2)

157

beech beech Fagus sylvatica (1231) 1231

misc.
broadleaf

maple Acer pseudoplatanus (139)
Acer platanoides (7)
Acer campestre (3)

149

ash Fraxinus excelsior (212) 212

oak Quercus petraea (122)
Quercus robur (69)
Quercus rubra (27)
Quercus pubescens (2)

220

- Alnus glutinosa (12)
Alnus incana (3)
Betula pendula (4)
Castanea sativa (1)
Carpinus betulus (34)
Juglans regia (4)
Populus nigra s.l. (5)
Populus tremula (1)
Populus spec. (1)
Prunus avium (15)
Robinia pseudoacacia (12)
Salix alba (3)
Salix spec. (2)
Sorbus torminalis (1)
Tilia cordata (25)
Tilia platyphyllos (31)
Ulmus glabra (11)
Aesculus hippocastanum (2)
Platanus spec. (2)

169
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3 Methods

Subsequent sections follow the workflow illustrated in Figure 3.1. Individual trees were extracted
from ALS data, then matched and validated using inventory data. Features were computed from
the resulting labelled segments, evaluated and used as input for tree species classification.

FIGURE 3.1: Processing and classification workflow. Squares represent products, while round boxes sym-
bolise processing steps.
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3.1 Individual tree detection

Individual tree detection was performed for the entire area of Canton of Aargau based on terrain-
corrected ALS data, with points belonging to buildings set to a height of zero. Beforehand, an
area-based Random Forest classifier was applied to discern the forest types broadleaved and con-
iferous. When validated with leaf-off colour infrared images, this binary classification yielded an
overall accuracy of 75-85%.
As a basis for tree extraction, the CHM was smoothed using a Gaussian filter to reduce data
pits according to the approach of Duncanson et al. (2014). The following steps apply functions
included in the Digital Forestry Toolbox by M.Parkan (2018), which are based on methods origin-
ally presented by e.g. Q. Chen et al. (2006). Local maxima were detected using a tree top marker
function with a search radius parameter determined by dominant forest type in the region. Using
the CHM and the local maxima coordinates, a marker controlled watershed segmentation was
computed, resulting in Individual Tree Crown (ITC) segments. ALS returns located within each
segment were assigned the respective segment ID. Segments higher than 3 m and containing more
than 25 points were considered as trees.

3.2 Creation of reference data: matching ALS-trees to inventory-trees

In order to receive a dataset that is amenable to validation, tree segments detected by airborne
laser scanning are individually paired to trees measured by field inventory. To achieve this, a
computer vision based feature matching algorithm was applied, built on the function matchFea-
tures, which is already implemented in MATLAB (2014). For every inventory tree, the algorithm
searches for the corresponding ALS segment (ITC), based on tree positions (x,y) and height (h) of
both the ITC and the inventory trees. Search radius was restricted to 5 m, as 99% of ITCs possess
a crown diameter smaller than that. Ultimately, the reference tree is matched to the ITC, which
is closest in the dimensions x,y and h. This individual tree matching process is associated with
the following assumptions (or simplifications), which need to be taken into account when using
resulting data for further analysis and interpretation:

– Each ITC is assumed to contain only one individual tree, when in reality it could also contain
several undetected smaller trees or one tree could be split into multiple segments.

– The tree peak is situated vertically above the corresponding tree stem.

– The geographical location of the reference tree is assumed to correctly represent ground
truth.

– The tree height measured by the field inventory crew is comparable to the height detected
by ALS.

– No major disturbances such as wood harvesting or windfall occurred between the years
2014 and 2016.

– The sampled trees did not grow substantially between 2014 and 2016.
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3.3 Evaluation of individual tree detection and matching

Tree detection and matching quality is evaluated by comparing position and height of reference
trees and matched ITCs.
The positional error for a tree is defined as the Euclidean distance between the detected tree posi-
tion and the reference tree position (Yin and Wang, 2016). The mean positional error, epos, is used
as a measure of tree detection accuracy:

epos =
1
n

n

∑
i=1

√
(xi − xre f ,i)2 + (yi − yre f ,i)2, (3.1)

where (xi, yi) is the location of the ith ITC and (xre f ,i, yre f ,i) is the location of the corresponding
reference tree. A lower epos value is associated with a generally more accurate tree detection result.
The tree height estimated by ALS is compared to the reference height via a scatterplot and an
analysis of resulting linear regression. R2 and root mean squared error (RMSE) are computed. The
latter reports the deviation of estimated parameters from their true values. As the most extreme
outliers are most certainly due to mismatches (i.e. not the same tree), an additional robust linear
regression is fitted to decrease the weight of those points on the regression fit. Robust regression
is done by iterated re-weighted least squares (IRLS). This results in each point’s the weight being
adjusted in an iterative process (Huber, 2011).

3.4 Feature extraction

As input for an object-based, supervised classification of tree species, explanatory features (also
called metrics, descriptors, criteria or variables) are commonly calculated for each reference tree
(Ørka et al., 2009; Kim et al., 2009; Zhang and Liu, 2013; Shii et al., 2018; Torabzadeh et al., 2019;
Parkan and Tuia, 2019). Feature extraction can be seen as an attempt to capture tree species char-
acteristics ideally enabling an unambiguous differentiation of classes.

3.4.1 Separability of tree species

The patterns of ALS point clouds of individual trees (as illustrated in Figures 3.2 and 3.3) are in-
fluenced by structural characteristics, which affect the laser beam by locally modifying the opacity
of space (Vauhkonen et al., 2014; Parkan and Tuia, 2019). Many trees exhibit species-specific dif-
ferences in their structure. The vertical distribution of echoes is influenced by crown shape as
well as crown density, which may be subject to seasonal changes. Multiple echoes of comparably
low intensity are generated when the laser beam is only partially reflected e.g. by small branches,
whereas large and opaque structures such as the stem or main branches may cause single re-
turns with higher intensity. Coniferous trees are expected to show small to no seasonal changes
regarding these structural properties. Conversely, the examples in Figures 3.2 and 3.3 illustrate
that especially for beech, the dense summer foliage results in comparably high intensity values
in the upper tree crown, while fewer points are situated inside the crown and on the forest floor.
Whereas during leaf-off season, the point density inside the tree crown and the understorey is
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FIGURE 3.2: Examples of leaf-on acquisitions of individual trees. The colour represents laser return intens-
ity.

FIGURE 3.3: Examples of leaf-off acquisitions of individual trees. The colour represents laser return intens-
ity.

generally higher. Features related to crown density and seasonal differences thereof are, thus, ex-
pected to be important in the classification of tree species.
Spectral reflectance characteristics have also been widely used for tree classification (e.g. Dalponte
et al., 2012; Heinzel and Koch, 2012), but they play a secondary role in this study, as the available
imagery is limited to four spectral bands.
Furthermore, differences in structural and reflectance characteristics within a class due to local
environmental conditions, phenological phase, genetic differences or damage must be taken into
account when classifying.
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3.4.2 ALS based features

ALS based features were calculated (in MATLAB (2014)) for every sample tree. These are created
by the spatial intersection of the 2D crown polygon (ITC) and the terrain corrected 3D point cloud
in both leaf-on and leaf-off conditions. From each of these individual tree point clouds, three
categories of features were retrieved: 1. features describing the spatial structure and distribution
of LiDAR returns (height-related features), 2. features based on return intensity, and 3. features
based on the return number (echo category). All of these ALS based features are summarised in
Table 3.1.
For most canopy related features, a height threshold of three meters (according to the Swiss NFI
threshold for forest) was applied in order to exclude echoes belonging to the understorey and
forest floor. This notably applies to the first category, where a set of commonly used height met-
rics was estimated, including statistical summary measures (max, min, median, σ, cv, γ1, κ) and
percentiles (Donoghue et al., 2007; Ørka et al., 2009; Latifi et al., 2012; Zhang and Liu, 2013; Tor-
abzadeh et al., 2019). Also, to estimate vertical distribution, tree height was divided into 10 bins of
equal height and relative frequency bins were calculated as the percentage of echoes per vertical
bin (Korpela et al., 2010).
Similarly to the height metrics, statistical measures and percentiles were retrieved from the intens-
ity values (Donoghue et al., 2007; Kim et al., 2009; Ørka et al., 2012; Shii et al., 2018). In addition,
mean values were calculated of only first and last return intensities. While the percentiles are
solely based on intensity values and not on height bins as in Torabzadeh et al. (2019), intensity
was summarised inside the highest 3 m of the tree crown for all as well as only for first returns.
Multiple returns are often generated by vegetation, where portions of the LiDAR pulse penetrate
deeper through gaps in the canopy, reflecting off branches and leaves at various heights or from
the ground. This typically leads to 3 to 6 recorded returns per emitted pulse. Hence, additional
features were extracted as the proportion of echoes in the different echo categories (fraction of
pulse types); single, intermediate, and last of many to the total number of returns (Ørka et al.,
2012; Sasaki et al., 2012).
Finally, differences between the features extracted from leaf-on and corresponding leaf-off data
were calculated and set as additional features, resulting in approximately 180 ALS-derived fea-
tures in total.

3.4.3 Image features

Image features are calculated based on the spatial intersection of the LiDAR derived crown poly-
gons and RGBI orthophotos using R statistics version 3.6.1 (R Core Team, 2019). Visual inspection
indicates a strong variation in the spatial congruence of ITC polygons and sunlit treetops (cf. Fig-
ure 4.1).
Exploiting only sunlit pixels for feature calculation is highly recommended, as shadowed parts
frequently represent lower parts of the canopy and generally suffer from a low signal-to-noise
ratio (Leckie et al., 2005; Trier et al., 2018). Therefore, a shadow mask is applied to exclude such
pixels from the analysis. This mask is created using image intensity from IHS - transformation,
a procedure that transforms RGB bands into an intensity, hue, saturation (IHS) colour system
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TABLE 3.1: Overview of ALS derived features. Abbreviations: σ: Standard deviation, cv: Coefficient of
variation, κ: Kurtosis, γ1: Skewness.

Category Feature abbreviations Feature descriptions

Height-

related

maxh, minh, medh, stdh, cvh, kurth, skewh height statistics (of points with h > 3 m): max, min, median, σ, cv, κ, γ1

hp10 ... hp90, hp99 10th to 90th and 99th height percentiles

relh, reldia max height / mean height and crown diameter / max height

iqrh interquartile range of point heights

rfd1 ... rfd10 relative frequency bins: nr. of points per 10% height bin /total nr. of points

foge Fraction of ground echoes (lower than 3 m)

Intensity

maxi, mini, medi, stdi, cvi, kurti, skewi intensity statistics (of points with h > 3 m): max, min, median, σ, cv, κ, γ1

meaif, medif, meail, medil mean and median of first and last return intensities (of points with h > 3 m)

ip10 ... ip90, ip99 10th to 90th and 99th intensity percentiles

int_top, int_topf
cumulative intensity for the top part of the canopy (maximum tree height – 3m)

of all and first returns

Return

number

fofe, fome, fole, fose fraction of first/intermediate/last/single returns

medop median opacity (return number / number of returns)

(Waser et al., 2011). Intensity corresponds to brightness, saturation to colour purity, and hue to
the dominant colour of the pixel. According to visual inspection, an intensity threshold of < 0.14
achieves to exclude most shaded areas while still retaining shade differences inside tree crowns.
Besides the four original bands of the RGBI orthoimages, additional features were derived, an
overview of which is given in Table 3.2. Since the sample trees are distributed over more than
1000 km2, varying illumination and topography can affect their reflectance properties. Relative
band values (the individual band divided by the sum of all bands) were computed as additional
spectral variables, because they provide an approach to reduce such effects (Waser et al., 2011;
Ørka et al., 2012).
The three bands resulting from the IHS - transformation were also included as features (Waser
et al., 2011; Heinzel and Koch, 2012; Schumacher and Nord-Larsen, 2014).
Additionally, the normalised difference vegetation index (NDVI) was computed. The NDVI is the
most common vegetation index and describes a relation between the near infrared and the red
light band. Lastly, four features were derived from principal component analysis (PCA) of the
(possibly correlated) original bands (Hill and Thomson, 2005).
From the above described raster layers, the pixel values inside each ITC image segment were ag-
gregated by the median and, in some cases, the coefficient of variation. This allowed to receive 27
object-based spectral features in total.

3.5 Classification procedure

The following steps were conducted using the package caret (Kuhn, 2008) within R (R Core Team,
2019), which allows for a single consistent environment for training machine learning algorithms
and tuning their associated parameters.
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TABLE 3.2: Overview of features derived from orthophotos, which contain the image bands red (R), green
(G), blue (B) and near-infrared (NIR).

Category Feature abbreviations Feature descriptions

Original bands med_red, med_green, med_blue, med_IR 1. band: R, 2. band: G, 3. band: B, 4. band: NIR

Relative band values
med_red_ratio, med_green_ratio,

med_blue_ratio, med_IR_ratio

R/(R + G + B + NIR); G/(R + G + B + NIR);

B/(R + G + B + NIR); NIR/(R + G + B + NIR)

IHS of RGB med_I_rgb, med_H_rgb, med_S_rgb
transforms red, green, and blue values

into intensity, hue, and saturation

NDVI med_ndvi NDVI = (NIR − R)/(NIR + R)

PCs 1-4 med_PC1 etc., cv_PC1 etc. first four principal components of RGBI bands

3.5.1 Class grouping

Mixed temperate forests are usually characterised by a few dominant tree species while many
other species only amount to a small number of occurrences. Consequently, it is more challenging
to obtain a large enough reference sample of the latter in order to enable adequate classification.
In practice, this often means that one can either only classify the dominant species and exclude
the rest, or one can perform an exhaustive classification where the rare species are summarised
into miscellaneous classes. Such mixed classes decrease model stability and may lead to lower
accuracies, as the model is not able to consistently characterise them due to their heterogeneity.
However, if rare species are simply ignored in a wall-to-wall classification scenario, they would
inevitably be (wrongly) classified as one of the majority species, thus generating a biased im-
pression of the species distribution. Moreover, the proportion of dominant versus non-dominant
species is often of interest for biodiversity-related questions. For these reasons, we decided to
build and use two models with different class partitions (cf. Table 2.2): The first class grouping
("main species classes") includes only the main tree species, where more than 100 reference trees
are available. European beech (Fagus sylvatica), Norway spruce (Picea abies) and European silver
fir (Abies alba) each constitute an individual species class, while the maple species (Acer pseudo-
platanus, Acer platanoides, Acer campestre), oak species (Quercus petrea, Quercus robur, Quercus rubra)
and pine species (Pinus sylvestris, Pinus nigra, Pinus strobus) are grouped at the genus taxonomic
level. This partition is used during comparison of input datasets and evaluation of feature import-
ance. The second class grouping ("simplified classes") includes all present trees, but only beech,
spruce and silver fir are represented as an individual class, while all of the other species are sum-
marised into either "miscellaneous broadleaf" or "miscellaneous conifer", respectively. This setup
is used when classifying test areas for qualitative validation.

3.5.2 Choice of classifier

Recent studies in tree species classification that use large sets of mixed input variables (spectral,
texture, geometric, indices), often prefer non-parametric machine learning methods like Random
Forest (RF), support vector machines or neural networks (e.g. Dalponte et al., 2012; Fassnacht et
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al., 2016; Marrs and Ni-Meister, 2019). Due to a large-scale dataset with imperfect reference data
in the present study, high classification accuracies are not to be expected even with an optimal
classifier. The characteristic of intuitive derivation of accuracy and variable importance therefore
served as key criteria for choice of classifier. Consequently, Random Forest was chosen because
of its inbuilt capacity to compute and rank predictor variable importance, its low sensitivity to
overfitting, and its ease of implementation (Breiman, 2001; Cutler et al., 2007).
The RF algorithm is based on ensembles of decision trees, where each individual tree is built on
a random sample from the dataset with replacement (Bootstrap Aggregation or “bagging”) and
a random subset of features. This approach increases variation in the trees grown and prevents
strongly correlated trees from occurring, if there are very prominent predictors. Once a forest
consists of a (determined) number of trees, class prediction for a new observation is given by the
majority consensus based on the classification result of each tree. This aggregate model is more
stable and less susceptible to overfitting than a single decision tree. There are two parameters
influencing the performance of RF: the number of decision trees (ntree) and the number of ran-
domly considered variables at each split in the tree building process (mtry). For ntree, the default
value (500) was selected since values larger than the default are known to have little influence on
the overall classification accuracy (Pal, 2005; Duro et al., 2012; Naidoo et al., 2012), but increase
computational cost. Mtry was optimised using a 10-fold cross-validation.

3.5.3 Managing class imbalances

As shown in Table 2.2, the distribution of tree species in the study area is unbalanced, leading
to classes of strongly varying sizes. In supervised classification algorithms including RF, which
are constructed to minimise the overall error rate, such class imbalances commonly lead to over-
estimation of majority classes (C. Chen et al., 2004). If this imbalance is not taken into account,
models become overly adapted to the most frequent species classes and do not generalise well
to other species classes. Balanced Random Forests (BRF) and weighted Random Forests are two
approaches addressing this challenge and can be easily embedded into the RF algorithm (C. Chen
et al., 2004). BRF has previously been applied in tree classification by others (e.g. Ørka et al., 2012)
and is implemented in the R package randomForest (Liaw and Wiener, 2002). A BRF can either
be achieved by artificially enlarging the minority classes (upsampling) or by downsampling the
larger classes. We applied the downsampling approach, whereby a subset the size of the smallest
class is randomly drawn from each species-class (with replacement) to grow each tree in Random
Forest. Overall accuracy metrics of classification are usually lower after downsampling, but there
are less false positives in majority classes and more trees predicted as minority classes. The pre-
dicted class proportions are expected to lie closer to reality, whereas the individual predictions are
less likely to be correct.

3.5.4 Feature selection

Although a large number of input features is generally less challenging for Random Forest as
it is for parametric classifiers (Breiman, 2001), it is recommended to apply a form of feature re-
duction to decrease feature space dimensionality. Feature reduction aims to produce a compact
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classification model by removing redundant features. It thereby enhances generalisation and re-
duces computational cost (Fassnacht et al., 2014; Perez-Riverol et al., 2017). As a trade-off between
efficiency and accuracy, the choice of the number of features used in the final model is often sub-
jective and depends on the aim of the study (Ko et al., 2016). Various approaches to feature re-
duction exist and have been compared in recent years, including methods specifically aimed at
tree species classification (e.g. Fassnacht et al., 2014; Waser, 2012; Marrs and Ni-Meister, 2019).
These can be subdivided into two categories: Feature selection methods select a subset of the ori-
ginal predictor variables, whereas feature extraction methods calculate new predictor variables
that typically summarise the content of several original predictors (Fassnacht et al., 2016). Only
the former allow a meaningful interpretation of the selected predictors and were therefore applied
in this thesis. Furthermore, feature selection methods also represent a tool for the comparison and
ranking of features, enabling deduction of information about a) what type of features from what
kind of data source is most valuable in tree species classification and b) about the intrinsic differ-
ences among tree species classes in regard to the used data sources. These methods thus indicate
which feature types from what data sources are worth extracting for future classifications.
The majority of feature selection approaches can be placed in the categories "filter methods" and
"wrapper methods". While filter methods are mostly based on uni- or multivariate correlation,
wrapper methods iteratively select features based on classifier performance. For an efficient fea-
ture selection workflow it is recommended to apply methods of both categories (Perez-Riverol et
al., 2017). A frequently used and versatile wrapper for Random Forest is the backward selection
algorithm Recursive Feature Elimination (RFE) (Pullanagari et al., 2018), which is implemented in
the R package caret. This technique begins by building a model on the entire set of predictors and
computing an importance score for each predictor. The least important predictor(s) are removed,
the model is re-built, and importance scores are recomputed. In practice, the number of predictor
subsets to evaluate as well as each subset’s size can be specified in order to reduce the number
of models to compute. The subset size optimising the performance criteria is used to select the
predictors based on their importance ranking. The optimal subset can then be used to train the fi-
nal model (Kuhn and Johnson, 2019). During the process of elimination, we implemented 10-fold
cross validation to optimise variable selection and to ascertain the standard deviation of the im-
portance estimates. When applied with Random Forest, RFE uses the (mean) decrease in accuracy,
which is achieved by randomly permuting values of each feature in the out-of-bag observations,
to estimate the feature importance scores. As output, RFE provides these importance scores for
each class (and the averaged overall importance) and accuracy metrics for each model built dur-
ing the process as well as the optimal subset of features.
Many of the features used in this study are correlated because the same features were extracted
from both leaf-on as well as leaf-off ALS datasets and additional features based on their differ-
ences. As a consequence, the RFE algorithm might select several features, which are all important
but also strongly correlated. In order to mitigate this effect and receive a sleek model that can be
applied to large areas, a simple Pearson correlation matrix (Perez-Riverol et al., 2017) is used as a
multivariate filter to remove some of the most correlated features.

17



3.5.5 Training and validation sets

Although the RF algorithm already provides an accuracy estimate based on the out-of-bag samples,
validation with an independent test set is still recommended if the number of available reference
trees allows it (Fassnacht et al., 2016). Since the overall class distribution should be preserved in
both training and test set, the data was partitioned using random sampling within each class. Ex-
cept where declared otherwise, all models in this thesis were trained on 60 % and assessed using
the remaining 40% of the data. The reference data consists of a comparably large number (>3000)
of sample trees which are regularly distributed over an forest area of 490 km2. Training and test
set are therefore expected to possess a similar distribution in terms of, for instance, tree height and
segment quality.

3.5.6 Accuracy assessment

The primary mean of error assessment for multi-class classification is the interpretation of the
confusion matrix (or error matrix), which is a cross-tabulation of the classification predictions
against the reference dataset (cf. Figure 3.4). User’s accuracy (UA) and producer’s accuracy (PA)
were calculated from the confusion matrix to describe performance by class (e.g. Yin and Wang,
2016). UA is the number of true positives divided by all positive predictions per class, while PA
is the number of true positives divided by the actual number of trees in each class. Additionally,
the generic scores overall accuracy (OA) and kappa coefficient (κ) are provided (Cohen, 1960).
These should not be interpreted independently, as they only partially summarise classification
performance (Yin and Wang, 2016; Parkan and Tuia, 2019).

FIGURE 3.4: Multi-class confusion matrix. Abbreviations: C: class, N: total number of classes, nobs: number
of observations, ni,j: the number of times a tree of class i was assigned to class j.

3.6 Comparison of input datasets

The relevance of the different data sources was assessed by comparing the classification perform-
ance achieved with several sets of features that are listed in Table 4.1. The seven "main species
classes" (cf. Table 2.2) were used as response classes because the ability to differentiate between
individual tree species is the main model characteristic to be tested. Also, homogeneous classes
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generally lead to more stable classification results. In order to accurately evaluate the effect of
different input datasets on model outcome, other factors such as the number of features as well
as the partition of samples into training and test set need to be held constant. Therefore, RFE (cf.
Chapter 3.5.4) is performed to reduce the amount of features in each dataset to approximately the
same number. For random forest there is often a plateau of good performance for larger subset
sizes, usually because unimportant variables are infrequently used in splits and do not signific-
antly affect performance (Kuhn and Johnson, 2019). Figure 3.5 illustrates that this behaviour also
applies to the present datasets. Based on this, it was decided to reduce each dataset to approxim-
ately 30 features. Another reason for this number is that only 27 features were extracted from the
RGBI-orthophotos. On the same training and test sets (60%, 40%), an otherwise identical classific-
ation was performed with each reduced feature set using 10-fold cross-validated Random Forest
with automatic downsampling (cf. Chapter 3.5). The results are given in Table 4.2.
The significance of differences between all possible pairs of the classification results was then
determined using a non-parametric McNemar’s chi-squared test, which focuses on the binary
distinction between correct and incorrect class allocations (Foody, 2004). A p = 0.05-level of signi-
ficance was applied.

FIGURE 3.5: The results of recursive feature elimination show the relation between the number of features
and classification accuracy for each dataset (cf. table 4.1). A: ALS-leafOn, B: ALS-leafOff, C: ALS-diff,
D: RGBI, E: ALS-all, F: ALS-RGBI. The given accuracy values were derived using the out-of-bag samples
during the RFE iterations. They are therefore not directly comparable to Balanced Random Forest results
validated on an independent test set.
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3.7 Comparison of individual features

The relevance of individual features (and types of features) was assessed using the feature import-
ance scores produced by RFE (cf. Chapter 3.5.4). Incorporating downsampling (i.e. a Balanced
Random Forest approach) into the RFE algorithm would cause unnecessary complexity, so a data-
set containing 100 samples from each main tree species class was used as input. The 100 samples
were chosen based on minimal height difference between the inventory and ALS measurements,
thus reducing the possibility of including mismatches in the classification. We abstained from only
using trees with maximal segment quality or number of ALS returns, as the features needed to be
evaluated on a dataset of mixed quality, which is the typical scenario for large scale applications
(Ko et al., 2016).
To investigate the role and importance of all individual features within the classifier, RFE is per-
formed while applying a 3-times repeated 10-fold cross-validation. The resulting feature import-
ance scores of the 30 RFE runs are aggregated by mean and standard deviation for each class as
well as for overall importance.

3.8 Simplified classification model for predictive mapping

Based on the results from dataset and feature evaluation, a simplified classification model was
built in order to be applied to a new test area for qualitative validation. For this, a simplified class
partition was used, as described in Chapter 3.5.1. Additionally, a binary tree type classification
(conifer/broadleaf) was performed for further comparison.
Among the 100 features estimated as most important by RFE (cf. Figure 4.6), about 60% are highly
correlated. For the purpose of predictive mapping on a larger scale, the number of features was
reduced to 48. This was done using a Pearson correlation matrix, where out of feature groups
with an absolute correlation higher than 0.7 only the feature with the highest RFE importance
score was selected. Furthermore, only ALS-derived features and no spectral features were used
in the predictive mapping model. There are only very few spectral features amongst the most
important features (cf. Chapter 5.2) and processing large amounts of aerial imagery would cause
an increase in computational cost disproportionate to actual gain in accuracy.
The 48 selected features were used to train a Random Forest model with downsampling and the
same parameters as used in Chapter 3.6. The model accuracy was first validated by using 50% of
the available reference trees as training and the other 50% as test data. Then, the final classification
model was trained on all available reference trees. The selected features were extracted from all
tree polygons in the test region and the classification model was applied to predict their class
membership.
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4 Results

4.1 Individual tree matching

The individual tree extraction algorithm detected 27’316’000 tree segments in the entire Canton
of Aargau. Out of 3317 reference trees in the inventory dataset, 3609 were matched to one of the
ALS-derived segments (resulting in a detection rate of 0.92). These matched pairs are distributed
over 1038 different inventory sample plots, with 3.19 trees per plot on average. Matches with an
ALS tree height of more than 50 m were removed from the dataset, as these are outliers mainly
caused by power lines, which have not yet been filtered out during the ITC extraction process.
Figure 4.1 illustrates the tree positions and crown polygons for four random inventory sample
plots. In Figure 4.2, the deviation of ALS-derived from reference tree locations is distributed ran-
domly around (0, 0), which indicates that there is no systematic bias associated with direction. The
average distance of the detected tree location (tree tops) from the reference locations (tree stems)
is epos = 2.17 m.

FIGURE 4.1: Examples of reference tree positions (red) and their matched ALS tree (yellow) including crown
polygon (white) overlaid on aerial orthophotos from 2014.
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FIGURE 4.2: Positional accuracy expressed as the difference between detected tree location (tree tops) and
reference locations (tree stems) in x and y direction.

4.2 Tree height accuracy

The histogram in Figure 4.3 shows that the ALS-derived height of the matched trees has a sim-
ilar distribution and mean to the field inventory reference data. Nevertheless, the peak at 30 m
is more pronounced for ALS estimates, while the inventory measurements are more often higher
than that. The individually matched tree heights are shown as a scatterplot in Figure 4.4. While

FIGURE 4.3: Height distribution of Aargau inventory trees (AWI) and matched ALS trees. The vertical lines
indicate the respective mean values.

the main bulk of trees exhibits relatively small height differences, there are some outliers with a
considerable effect on the linear regression fit, leading to a an offset of 11.2 m, a slope of 0.64 and
a R2 of 0.38. The average RMSE lies at 6.5 m, which corresponds to about 22% of the average
tree height in the study area. In most cases, height differences of more than 10 m are assumed
to be caused by mismatches (i.e. not the same tree). The additional robust linear regression fit
decreases the weight of outliers, and therefore serves as an approximation to a reference dataset
without mismatches. Although the residuals have been artificially reduced in this approach (it is
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FIGURE 4.4: Scatterplot and linear regression of matched individual tree heights.

therefore not meaningful to calculate R2), there is still an offset of 1.4 m. This systematic underes-
timation of tree height is typical for discrete ALS and has been observed in many cases (Gaveau
and Hill, 2003; Morsdorf et al., 2004). Figure 4.5 illustrates that height underestimation primarily
affects conifer trees, while there is no such systematic tendency for broadleaf species. The mean
height differences for conifers lie between -3 and -2.4 m, whereas they are distributed around 0
m for broadleaf trees. This is due to the difference between the steeply-sloped crown shapes of
conifers and the flatter, less horizontally variable broadleaf crowns (Disney et al., 2010). Figure 3.2
illustrates an example of this effect: the uppermost tip of the spruce (Picea abies) was detected in
the leaf-on but not the leaf-off acquisition.

4.3 Classification results

4.3.1 Relevance of input datasets

Table 4.2 provides the results of each RF classification model listed in Table 4.1. The accuracy was
assessed as described in Chapter 3.5.6. All of these models were built with 30 features (except
RGBI only contains 27) to ensure their comparability. Regarding the ALS datasets, leaf-off fea-
tures on their own lead to an overall accuracy (OA) of 53%, while leaf-on features only reach 49%.
Using only the difference between these datasets (ALS-diff) as input features slightly increases
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FIGURE 4.5: Difference between matched ALS-derived and inventory tree height, grouped by simplified
classes.

TABLE 4.1: Classification datasets comprising different combinations of spectral and structural features.
The number of features as selected by RFE and used for classification is given for each dataset.

Dataset name ALS features RGBI features Description

ALS-leafOn 30 Features derived from ALS leaf-on acquisition
ALS-leafOff 30 Features derived from ALS leaf-off acquisition
ALS-diff 30 Differential (leaf-on – leaf-off) ALS features
ALS-all 30 30 most important features selected from all ALS features
RGBI 27 All features derived from RGBI-imagery
ALS-RGBI 27 3 30 most important features selected from all available features

(OA = 50%) compared to only leaf-on. A model built on the best 30 features of all ALS data (ALS-
all) leads to an increase in OA of 57%. Spectral features (RGBI), though, perform poorly on their
own (OA = 40%). Selecting the 30 most important features from all available datasets (ALS-RGBI)
leads to the best results (OA = 58%), but the increase in OA compared to ALS-all is only 0.5%. The
pairwise McNemar’s test (Table 4.3) shows accordingly that including spectral features makes no
significant difference for this classification (p = 0.6). There is also no significant difference in cor-
rect class allocations between ALS-leafOn and ALS-diff (p = 0.3) as well as between ALS-leafOff
and ALS-diff (p = 0.2). Meanwhile, the difference observed between ALS-leafOn and ALS-leafOff
is still significant (though very low; p < 0.05). This shows that when used on their own, leaf-off
and leaf-on may result in similar classification accuracy, but combining both can increase OA, in
this case by about 6%.
When focusing on individual classes, beech and spruce possess the highest user’s and producer’s
accuracy in (almost) all classifications. This results from a larger number of training samples avail-
able for these dominant species compared to other classes. If class imbalances were not accounted
for by applying BRF, this effect would be even more pronounced. Moreover, beech consistently
exhibits higher UA than PA, meaning that more beech trees were misclassified as other species
than other trees were misclassified as beech.
The confusion matrix of the ALS-RGBI model (Table 4.4) reveals the pairs of classes which fre-

quently confused. Ash is often misclassified as oak (22% out of 79 ash trees are predicted as oak)
and beech (18%). Similarly, maple and oak are both most often misclassified as ash (25% and 18%)
and beech (23% and 22%). Maple has both the lowest PA (27%) and UA (23%). Silver fir is primar-

24



TABLE 4.2: Comparison of classification accuracies among the different datasets. Class-specific accuracy is
estimated by user’s accuracy (UA) and producer’s accuracy (PA), overall performance by Cohen’s kappa
coefficient (κ) and overall accuracy (OA).

Class name Accuracy ALS-leafOn ALS-leafOff ALS-diff ALS-all RGBI ALS-RGBI

spruce UA 0.58 0.63 0.64 0.69 0.48 0.69
PA 0.65 0.60 0.42 0.66 0.40 0.64

fir UA 0.43 0.59 0.46 0.63 0.37 0.64
PA 0.48 0.46 0.48 0.51 0.44 0.51

pine UA 0.10 0.23 0.19 0.28 0.15 0.23
PA 0.12 0.37 0.33 0.30 0.42 0.30

beech UA 0.72 0.77 0.75 0.79 0.67 0.78
PA 0.55 0.60 0.65 0.66 0.43 0.68

maple UA 0.16 0.13 0.19 0.22 0.12 0.23
PA 0.25 0.23 0.30 0.25 0.23 0.27

ash UA 0.25 0.19 0.19 0.24 0.22 0.26
PA 0.19 0.34 0.31 0.44 0.28 0.43

oak UA 0.16 0.29 0.24 0.26 0.17 0.25
PA 0.24 0.39 0.35 0.39 0.24 0.38

κ 0.338 0.397 0.364 0.450 0.247 0.454
OA 0.487 0.528 0.504 0.575 0.395 0.580

TABLE 4.3: P-values for the McNemar’s test. P-values < 0.05 indicate a significant difference in the number
of correct and incorrect class allocations.

Data source ALS-RGBI ALS-leafOn ALS-leafOff ALS-diff ALS-all

ALS-leafOn 1.03 × 10−10

ALS-leafOff 3.59 × 10−5 0.021
ALS-diff 7.25 × 10−9 0.348 0.237
ALS-all 0.668 1.31 × 10−11 9.33 × 10−5 2.31 × 10−9

RGBI 2.55 × 10−24 5.56 × 10−7 1.29 × 10−12 1.02 × 10−8 1.03 × 10−21

ily confused with the similarly-shaped spruce (19%), albeit more with beech (10%) and ash (8%)
than with pine (5%). Generally, different broadleaf species are the most challenging to distinguish
with this model, especially when there are few reference samples.

4.3.2 Individual feature importance

The ranking of RFE-derived feature importance scores enables the assessment of individual fea-
tures and their category and data source.
Figure 4.6 shows the overall feature importance scores, which represent the average of all classes.
Out of the 30 top-ranked features, 23 are intensity-based, 5 are derived from return number (echo
category), and only 2 are height related. Simultaneously, 16 of them are calculated from the dif-
ference between leaf-on and leaf-off features, while 13 are based solely on the leaf-off dataset. The
most important features, which are based on the seasonal difference in intensity, are the median
and mean of first returns (medif.diff and meaif.diff ), upper percentiles (e.g. ip80.diff ) and the kur-
tosis (kurti.diff ). Additionally, the fraction of last returns during leaf-off season (fome.off ) has a
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TABLE 4.4: Confusion matrix for ALS-RGBI classification (based on 30 features). Tree-segments where the
model and the inventory reference are in agreement (diagonal) are bold-faced. The total number of trees is
1145, of which 58% were correctly classified.

Reference
Classified as ash beech fir maple oak pine spruce UA

ash 34 37 12 13 15 4 14 0.26
beech 15 320 16 12 18 7 22 0.78
fir 0 9 80 0 4 6 25 0.65
maple 6 21 3 14 6 1 9 0.23
oak 18 40 7 5 30 2 15 0.26
pine 2 15 8 3 2 13 12 0.24
spruce 4 24 30 5 4 10 173 0.69
PA 0.43 0.69 0.51 0.27 0.38 0.30 0.64
OA 0.58
κ 0.45

certain relevance as well.
Figure 4.7 depicts the class-specific RFE feature importance scores for the classes beech, fir, maple

FIGURE 4.6: Overall RFE feature importance estimates of the 100 most important features, coloured by
feature category (for description see Tables 3.1 and 3.2). The bar height represents the mean importance
derived from 3-times repeated 10-fold cross-validation and the standard deviation is indicated by grey
errorbars.

and pine (bar-charts for the remaining classes are provided in the appendix). Next to the gener-
ally important features based on seasonal difference in intensity, fraction of intermediate returns
during leaf-off season (fome.off ) seems especially crucial for the classification of beech trees. Tree
height normalised by crown diameter (relh) also serves as a defining characteristic for beech.
For the classification of fir trees, the fractions of last, intermediate and single echoes in leaf-off
state (fole.off, fome.off, fose.off ) are key descriptors. The feature rfd1.off, which is a measure for point
density in the lowest height bin, also appears to be of certain relevance.
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Compared to other classes, 15 of the 30 top-ranked features for the maple class consist of height-
related features, especially seasonal difference in upper height percentiles (hp90.diff, hp80.diff etc.).
The pine class contains the most spectral features among the 30 top-ranked features (6), of which
the normalised infrared band (med_IR_ratio) ranked highest, followed by the similar NDVI value
(med_ndvi).
In summary, the importance scores show that varying types of features are relevant to classify spe-
cific tree classes, while features based on echo intensity and return number make up the majority
of top-ranked features.

4.3.3 Predictive mapping

Table 4.5 shows the confusion matrix of the simplified classification, which was trained on one
half and validated on the other half of the reference data. An overall accuracy of 62% and a
kappa coefficient of 0.49 were reached. Similarly to the observations in Chapter 4.3.1, the mis-
cellaneous broadleaf class is most often confused with beech (24% of beech trees are predicted
as misc. broadleaf) and vice versa (23%). Contrarily, spruce is also most often misclassified as
miscellaneous broadleaf (13%) and beech (9%). Beech reaches the highest producer’s and user’s
accuracy, while the misc. conifer class only reaches a PA of 24% and an UA of 29%. This means
that reference trees of misc. conifer are classified almost randomly into one of the 5 available
classes. For comparison, a binary forest type classification (conifer or broadleaf) was also per-
formed with the same dataset and features. An overall accuracy of 83% and a kappa coefficient of
0.64 were achieved.

TABLE 4.5: Confusion Matrix for simplified classification (based on 48 features). Tree-segments where
the models and the inventory reference are in agreement (diagonal) are bold-faced. The total number of
trees is 1517, of which 62% were correctly classified. Classes: beech (Fagus sylavtica), spruce (Picea abies),
fir (Abies alba), miscellaneous Broadleaf (remaining broadleaf species), miscellaneous Conifer (remaining
conifer species).

Reference
Classified as miscB. beech fir miscC. spruce UA

miscB. 214 135 26 23 42 0.49
beech 80 392 11 16 30 0.74
fir 8 8 103 12 25 0.66
miscC. 15 14 10 24 20 0.29
spruce 15 23 39 23 209 0.68
PA 0.64 0.69 0.54 0.24 0.64
OA 0.62
κ 0.49

In addition to model evaluation with reference data, the simplified classification was applied
to approx. 80 ha of forest near the town of Bremgarten, to qualitatively evaluate the prediction
of a larger area. Figure 4.8 shows the results for the full extent of this test area. Grey polygons
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indicate trees that were excluded from classification, because they are smaller than 4 m and/or
contain less than 50 ALS echoes. Pure spruce stands, appearing as blue areas, were consistently
well detected, independently of height. Large broadleaf trees were mainly classified as beech,
which is very plausible, as the old growth forest in this area is dominated by beech. The large
misc. conifer polygons scattered among those beeches possibly indicate larch (Larix decidua). A
majority of smaller trees were predicted as misc. broadleaf, which is plausible, as these young
stands are often dominated by maple. However, an underestimation of the fraction of beech trees
in this area is probable, due to the frequent misclassification between beech and misc. broadleaf
(cf. Table 4.5).
Figure 4.9 shows a detail located in the northeastern corner of the map in Figure 4.8 including
train tracks. This image exemplifies that the train’s catenary masts can sometimes be mistaken as
trees by the ITD method. In this case, they were not classified, as they presumably contain less
than 50 echoes. The forest in this area is characterised by both spruce stands with several other
conifers at the edges and stands of mostly young broadleaf trees.
Figure 4.10 shows a detail located in the southwestern corner of the map in Figure 4.8. A visual
comparison with the orthoimage reveals that broadleaf and coniferous trees can be reliably dis-
cerned. As compared to other areas, there are several non-beech broadlleaf trees with relatively
large crowns.
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FIGURE 4.7: Class-specific RFE feature importance estimates of the 100 most important features for each
of the classes beech, fir, maple and pine. The bars are coloured by feature category (for description see
Tables 3.1 and 3.2). The bar height represents mean importance derived from 3-times repeated 10-fold
cross-validation and the standard deviation is indicated by grey errorbars.
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FIGURE 4.8: Simplified classification applied to a test area near Bremgarten. The approx. centre coordinates
are X:666’500 and Y:245’110. The background is a histogram equalised RGB orthophoto.
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FIGURE 4.9: Detail of Figure 4.8 including train tracks, northeast. The approx. centre coordinates are
X:666’620 and Y:245’330.

FIGURE 4.10: Detail of Figure 4.8, southwest. The approx. centre coordinates are X:666279 and Y:244766.
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5 Discussion

This chapter follows the workflow in Figure 5.1, indicating uncertainties or limitations associated
with this large-scale approach next to the corresponding data products or processing steps.

FIGURE 5.1: Processing and classification workflow. Uncertainties or limitations associated with each step
are annotated in italics.
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5.1 Compatibility of inventory data and ALS tree segments

Due to the large study area (1403 km2), individual trees were extracted as 2D crown polygons
by applying a CHM-based watershed segmentation. 3D alpha-shapes, which would provide a
more detailed characterisation of tree shape (Korpela et al., 2010; Yao et al., 2012), were therefore
not available. Figure 4.10 illustrates that most polygons possess around 5 to 10 vertices, and thus
do not represent exact crown outlines. However, when the polygon is intersected with the point
cloud, the crown shape is often discernible (see Figure 3.2 for example). As an inherent property
of CHM-based treetop detection techniques, subdominant tree crowns are often not detected and
delineated, since they are (partially) occluded by dominant tree crowns and less prominent in the
CHM. Thus, the available ALS segments essentially represent dominant and co-dominant trees
(Harikumar et al., 2019). Although not every tree might be detected, an advantage of object-based
classification over pixel-based is that no other land cover type is mistaken as one of the tree classes
in the final product. The only exception for this are power supply and railroad masts, as visible in
Figure 4.9, which were removed in the reference dataset.
In order to provide ALS segments with tree species labels, inventory records in the style of the
Swiss national forest inventory were used. According to Fassnacht et al. (2016), reference or train-
ing and validation data has to fulfil certain criteria, the first being that data should be repres-
entative for the site under investigation and match the spatial scale. The use of operational in-
ventory data is advantageous in this regard, since it is designed to be a representative sample of
the forest in the respective region (in this case Canton of Aargau), and it contains measurements
of individual trees from uniformly distributed sampling plots. As a consequence of representat-
ive sampling, tree species proportions in the reference data follow natural occurrence. We have
shown that despite adapting the classifier to imbalanced classes, this training set does not allow
to accurately classify tree species representing less than 10% of total trees.
Another criteria mentioned by Fassnacht et al. (2016) is that observation errors should be known
and their impact on the results should be discussed. While errors in species label are not expected
in the field inventory data, the matching algorithm represents the main source of uncertainty. For
the creation of reference data, it is fundamental that the inventory label and ALS measurement
of the exact same tree are combined. Although the algorithm found a match for 92% of reference
trees, it was not possible to verify how many of those are actually the same tree, due to the spatial
scale and number of reference trees. In small-scale experiments, mismatches are usually excluded
by visually verifying each sample tree based on field measurements and very high resolution aer-
ial photographs (Shii et al., 2018) or even by recording tree positions from the field directly onto
remote sensing images (Dalponte et al., 2012).
An indication for the presence of mismatches in our reference data is that the overall accuracy of
the binary conifer/broadleaf classification was 83%. This is comparably low, as 95-99% have been
reached previously when using four-band aerial images (Waser et al., 2017). Also, there are around
100 trees where the height difference between ALS and inventory measurement amounts to more
than 10 m (these were excluded in the classification). The fact that there was no directional bias
in position indicates mismatches to be caused by the structure of individual trees rather than by
systematic registration errors. Due to the different perspectives of airborne acquisitions and field
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inventory, position and height are momentarily the only metrics on the basis of which individual
trees can be matched. This is associated with several uncertainties such as the underestimation of
conifer height by ALS. Also, in tree detection from ALS data, position is defined by the local max-
imum of the canopy, while in field inventory, the tree stem position is recorded. If a tree is leaning
or shows an asymmetric growth pattern, tree top and stem do not have to be directly above each
other. In addition, the accuracy of GPS measurements of inventory plots centres influences the
positional accuracy of all trees inside the corresponding plot (Maltamo et al., 2009).
Despite these uncertainties, the automated matching of field inventory and ALS data on indi-
vidual tree level is an important step in order to generate species labels and other (species-specific)
parameters on large scales. If the discussed challenges are addressed, existing inventory sources
can be utilised without requiring additional data collection or manual delineation and matching
steps

5.2 Combining two ALS acquisitions and aerial imagery

In this study, we performed a classification based on features from only leaf-on ALS data, only
leaf-off, the difference of those two, all ALS-derived features combined, only spectral features
from orthophotos and the most important features selected from all of the datasets (cf. Table 4.1).

5.2.1 Leaf-off and leaf-on ALS datasets

The overall accuracy when using only leaf-off was just 3% higher than leaf-on (McNemar’s p =
0.02). In other studies (with fewer classes), significantly higher accuracies were achieved with leaf-
off than with leaf-on. For instance, Ørka et al. (2010) reported an OA of around 90% for leaf-on
and 97% for leaf-off for three species (spruce, birch, aspen). Focusing on intensity features, Kim et
al. (2009) also increased the separability of various broadleaved and coniferous species by around
10% when using leaf-off instead of leaf-on. However, Shii et al. (2018) observed no statistically
significant difference in tree species mapping accuracy between the use of leaf-on and leaf-off
features, whereas combining both datasets increased their overall accuracy from 58.2% (leaf-on)
and 62.0% (leaf-off) to 66.5%. Our study using similar species classes produced a comparable
effect, where OA was increased from 52% (leaf-off) to 57.5% (ALS-all), while keeping the number
of features constant. Opposite to Shii et al. (2018), we also included the differences between leaf-on
and leaf-off as features (Torabzadeh et al., 2019), which on their own performed similar to leaf-on.
These results indicate a combination of LiDAR data acquired at different phenological stages to
be particularly beneficial when aiming to classify mixed forests featuring 5-10 tree species.

5.2.2 RGBI orthophotos

Feature selection has shown that spectral features only marginally contribute to the classification
models tested in this thesis. They are therefore not included in the simplified classification. Never-
theless, multispectral imagery has previously been successfully used in tree species classification,
be it aerial photographs with three to four bands (e.g. Waser et al., 2011) or multispectral satel-
lite imagery (e.g. Ke et al., 2010; Zhang and Liu, 2013). In the last few years, the best results in
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tree species classification have been achieved by combining ALS with imaging spectroscopy data
(Heinzel and Koch, 2012; Fassnacht et al., 2016; Shi et al., 2018; Trier et al., 2018; Parkan and Tuia,
2019). A high number of spectral bands allows to distinguish different broadleaved species, such
as oak and maple, based on reflectance. However, spatial coverage of imaging spectroscopy data
is still limited compared to multispectral or RGB aerial imagery, as the latter is often acquired
wall-to-wall by national agencies (Waser et al., 2017). The high spatial resolution of aerial imagery
(0.25 m in our case) can also be used as a source of textural information (Heinzel and Koch, 2012;
Zhang and Liu, 2013; Schumacher and Nord-Larsen, 2014). This indicates a general expedience in
combining ALS data with aerial imagery for tree species classification and it shows that the low
relevance of spectral features in our case does not originate from the use of unsuitable data (Xu
et al., 2015).
When integrating LiDAR and optical data, some studies perform individual tree segmentation
based on layers from both data sources (Waser et al., 2011; Zhang and Liu, 2013). In comparison,
our segments are derived solely from ALS data using a watershed method. Consequently, these
tree polygons are not necessarily congruent with all tree crowns in orthoimages, when spatially
overlaid. Although the images are true orthophotos, trees can still exhibit radial displacement,
as is visible in Figures 4.1 and 4.10. Even if the tree crown in the image and the ALS-derived
polygon partially overlap, it is still probable for this intersection to mainly cover shaded areas, as
the ALS polygons are often smaller than the whole tree crown. These issues are particularly rel-
evant for large scale applications, as the data could have been acquired under different geometric
circumstances (angle, direction, height etc.). To further address these challenges, a tree top based
registration of aerial images to ALS data could be applied in the future, for instance by following
the approach presented by Lee et al. (2016).

5.3 Evaluation of ALS features

Figure 5.2 presents a selection of features of different categories, which achieved high import-
ance scores during the RFE process. Features derived from return number were frequently found
among most species classes’ the top-ranking features. Proportions of single, last and intermediate
echoes have been successfully used before. Ørka et al. (2012) combined them with density fea-
tures and received an accuracy of 74–77% in the classification of pine, spruce and deciduous trees
in Norway. Sasaki et al. (2012) also emphasised these features’ use in discriminating trees with
different canopy structures, because denser canopy reduces penetration depth and leads to fewer
multiple returns per laser pulse. Parkan and Tuia (2019) call them opacity or echo rank distribu-
tion metrics and relate these features to branch size (diameter) distribution within a tree.
The boxplots of features fome.diff and fome.off (Figure 5.2) indicate beech trees to be characterised
by a high fraction of intermediate returns in leaf-off state. This high number of pulses with mul-
tiple returns (i.e. an increased proportion of partial hits) could be explained by beech having many
narrow and pointy twigs, as compared to e.g. sparser but thicker branches of ash (for backscat-
tering mechanisms see Korpela et al., 2013). Comparatively, silver fir exhibits lower values for
fome.off than Norway spruce. Silver firs possess flat needles and horizontal twigs while spruce
needles are arranged spirally around the often hanging twig. Such morphological differences also
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FIGURE 5.2: Boxplots of exemplary features per class.

seem to be reflected in the observed patterns of intensity features (e.g. medif.diff and ip90.on).
The RFE scores (e.g. Figure 4.6) indicate features derived from echo intensity to play an import-
ant role in the classification of all present species. This is in accordance with findings previously
reported by Ørka et al. (2009), Vauhkonen et al. (2010) and Parkan and Tuia (2019). Intensity de-
scribes some properties related to the reflectivity in the wavelength of the emitted pulse (1550 nm
in this case) but has also been found to be affected by structure, such as the sizes, shapes and
arrangements of leaves and branches (e.g. Korpela et al., 2010; Vauhkonen et al., 2014).
Most broadleaved trees produce higher average intensities than conifers during foliated stage and
lower intensities during leaf-off season (Ørka et al., 2009). Consequently, median or mean of first
and single echo intensity has repeatedly been reported as one of the most important features (e.g.
Kim et al., 2009; Vauhkonen et al., 2010; Shii et al., 2018). Achieving highest overall RFE scores for
medif.diff and medif.off, our results corroborate these findings.
Beech exhibits the highest values in medif.diff, presumably due to its dense summer foliage and
frequent multiple scattering during leaf-off. As first returns are usually triggered by the outer
crown layers, these features effectively characterise the structural differences influencing the opa-
city or reflectivity of top crown layers (Shii et al., 2018). The kurtosis of the intensity distribution
inside each tree (kurti.off ) indicates that conifers produce similar intensity values throughout the
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crown, while broadleaves exhibit a higher variation during leaf-off.
While features derived from a combination of return number and intensity also contain geomet-
ric information, features describing the height distribution of echoes proved to be less important.
Normalising height-related features by tree height probably increases their relevance (Shii et al.,
2018), but Parkan and Tuia (2019) observed no difference in performance when using only scale
invariant features. Tree height is not the only cause of intra-species variability, as shape variability,
especially due to crown plasticity, is strongly influenced by e.g. age, competition or environmental
conditions (Jucker et al., 2015). Consequently, the most important feature derived from height dis-
tribution, point density on ground level (rfd1.off ), is not related to tree shape but rather to crown
density.
In summary, this suggests that small scale structures such as foliage arrangement represent the
most consistent species-specific traits characterisable by ALS data. Nevertheless, structures influ-
encing intensity and scattering mechanisms can be altered by e.g. tree health, vines and epiphytes
(such as ivy or mistletoe) and differences in environmental niche including temperature or soil
condition.

5.4 Predictive mapping

For less common species like maple or ash, prediction accuracy ranges mostly between between
22 and 30%. This leads to unreliable results when applying the classification to a larger area.
Therefore, we devised a simplified classification, using 48 ALS features, with the aim to separate
the three most common species (European beech, Norway spruce, silver fir) from the remaining
broadleaved and coniferous species. The model produced an OA of 62%, which is a certain im-
provement compared to the classification with seven main species classes (OA = 58%). In general,
the accuracy increases with a decreasing number of classes, as was for instance observed by Hein-
zel and Koch (2011). Their OA increased by ca. 20% when limiting the classification depth to cover
four instead of six species. The smaller effect in our case can be explained by the inclusion of "mis-
cellaneous classes". These are difficult to classify, particularly the class misc. conifer, because they
contain comparably few training and validation samples while exhibiting high heterogeneity. For
example, misc. conifer contains both Scots pine and European larch, which differ strongly in mor-
phology and phenology. However, if these species were simply excluded from the training set,
the results for the main species would be distorted by these minority species, when applying the
model to a continuous area of mixed forest.
When the classification is used to predict a larger area (as illustrated in Figure 4.8), the resulting
map cannot provide reliable information concerning individual trees. However, the prediction
may be used to assess the spatial distribution and proportions of dominant versus sub-dominant
tree species in an area. This can be applied as pre-stratification when aiming to produce species-
specific parameter estimations of e.g. forest basal area, volume, or biomass (Korpela and Tokola,
2006; Vauhkonen et al., 2014). Interpretation of these predictive mapping results needs to take into
account that they only provide information about dominant trees, i.e. small and/or understorey
trees are systematically omitted, as they are not fully detectable by ALS.
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5.5 Outlook

An important step in improving the classification results is to increase the reliability of the con-
nection between ALS segments and field inventory records, thus reducing uncertainty in the ref-
erence data. As ALS data mainly delineates upper canopy layers, future inventory measurements
of crown attributes, such as diameter, shape, volume or position of tree crown, could be beneficial.
Close-range laser scanning, such as TLS (terrestrial laser scanning) and UAVLS (ultra-light aerial
vehicle laser scanning), may have the potential to bridge this gap between airborne and ground
measurements (Morsdorf et al., 2018).
More reliable reference data would also lead to an increase in the amount of usable reference
samples for less common species. A reduction of intra-class variance can then lead to more ac-
curate classification results for these classes. Also, better co-registration of tree segments and
multispectral imagery, or even the use of imaging spectroscopy, would particularly benefit the
distinction of broadleaved species. With these improvements, it should be possible to detect, for
instance, European ash (Fraxinus excelsior) with reasonable accuracy, whereas less common or pi-
oneer species, such as wych elm (Ulmus glabra) or black alder (Alnus glutinosa) would need a more
specialised reference dataset. The assessment of classification accuracy would also profit from a
validation on a completely independent reference site, ideally with manually labelled segments.
As this thesis’ main focus was to explore the potential of different datasets and features, Random
Forest was used as classifier due to its transparency and ease of implementation. However, for
such large amounts of training data, deep learning approaches such as convolutional neural net-
works (CNN) should be considered in the future as well (Zhu et al., 2017). Deep learning may
improve flexibility of species classification across different biogeographical regions and has fre-
quently been applied to hyperspectral imagery (Trier et al., 2018; Fricker et al., 2019).
Despite limited classification accuracies, main tree species composition, as estimated by the ap-
proach presented in this thesis, can be aggregated from tree level to any larger unit. This versatil-
ity allows the results to be used as input for any analysis where species-specific pre-stratification
might be beneficial. Also, summarising the results obtained from our study to stand level would
probably improve the accuracy of species composition estimates (Ørka et al., 2013).
On the condition that leaf-off and leaf-on ALS acquisitions are available, this classification ap-
proach could theoretically be transferred to other temperate forest regions, as it does not require
any site-specific parameters. The main restraint though is the availability of suitable reference
data. For other areas in Switzerland, NFI data presents an option, as it is acquired with the same
methods as the inventory data used in this study. The low density of NFI sampling plots, how-
ever, might cause difficulties in gathering sufficient reference data, especially if the classification
is to be trained on a smaller area than our study site. To achieve a sufficient number of reference
trees, a more reliable matching technique or a manual verification of reference data would have to
be performed in that case. Also, the cantonal inventory used here was conducted during one year,
while the NFI is designed as a continuous inventory system, resulting in plots being sampled in
different years. Lastly, the large number of labelled individual tree point clouds that we gained for
our study area could also be used as training set for estimating other parameters such as biomass
on an individual tree level.
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6 Conclusion

We have shown that large-scale object-based tree species classification is possible with an over-
all accuracy of around 60% when solely based on ALS features. In comparison to pixel-based
approaches, individual tree based analysis has the advantage of being able to directly match the
tree segments to trees recorded in the field. The availability of representative field measurements
(such as the NFI) is crucial in order to train tree species or genera classification models over large
areas. However, we found the automated creation of reliable reference data to be one of the main
challenges, as the matching results of over 3000 inventory trees could not be validated directly.
This uncertainty in training and validation data therefore needs to be taken into account when
interpreting the classification accuracy. In addition, the classification results indicate that an auto-
mated approach with representative reference data allows to accurately classify dominant species,
if a sufficient number of homogeneous training samples is available.
Regarding the relevance of input datasets, combining features derived from leaf-off and leaf-on
ALS acquisitions significantly improves classification accuracy. When used separately, the data-
sets produce comparable results, while leaf-off performs slightly better in discriminating the most
common species. Despite the coarse shape of our tree segments, many features found to be im-
portant in previous small scale studies were proven to be transferable to a representative sampling
over a larger scale. Tree shape is subject to high intra-species variability and is generally not well
captured by a CHM-based ITD approach. Features related to tree shape are therefore less im-
portant than features related to radiometric properties and scattering mechanisms caused by the
arrangements and shapes of foliage and small branches.
Characterising mixed temperate forests is a challenging task when limited to datasets available
over large spatial scales. However, applying a 5-class classification to a test area lead to prom-
ising results in terms of using aggregated species composition to estimate species-specific forest
attributes.
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A Appendix - Additional Figures

FIGURE A.1: Point density inside tree segments for leaf-on and leaf-off datasets.

FIGURE A.2: Boxplots of tree segment point density per species class for leaf-on and leaf-off datasets.
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FIGURE A.3: Class-specific RFE feature importance estimates of the 100 most important features for each of
the classes oak, maple and spruce. The bars are coloured by feature category (for description see Tables 3.1
and 3.2). The bar height represents mean importance derived from 3-times repeated 10-fold cross-validation
and the standard deviation is indicated by grey errorbars.
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FIGURE A.4: Pearson correlation matrix of the 100 features with the highest RFE importance scores. 1 =
perfect positive correlation, -1 = perfect negative correlation.
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FIGURE A.5: Pearson correlation matrix of the 48 remaining features after removing highly correlated fea-
tures. These were used in the simplified classification model. 1 = perfect positive correlation, -1 = perfect
negative correlation.

FIGURE A.6: Principal component plot of reference dataset used in simplified classification model. Blue
arrows indicate the loadings of the features (cf. Table 3.1 for description).

54



Acknowledgements

I would like to thank my supervisor Felix for great advice, guidance and support during the com-
pletion of this Master thesis, in person as well as remotely, and my co-supervisor Meinrad for
valuable discussions and input from a forest inventory perspective.
I would also like to thank the staff at the forestry department of Kanton Aargau for their interest,
the uncomplicated provision of data and the possibility to present my thesis to them.
Furthermore, I would like to thank my fellow students and friends, for their help, support, pa-
tience and company. This includes everyone who kept me company in the old Master’s "cave" as
well as those who appeared in our new working space.
A big thank you goes to everyone carefully proofreading this thesis, Gwendolyn in particular but
also Livia and Taja. I am grateful for everyone who supported me during this time, my friends
and especially my family, for giving me the opportunity to study.

55






