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Abstract 

The impact of global change on biodiversity is of unprecedented scale. In regard of 

ongoing alteration of biodiversity researchers come up with multiple approaches aiming 

at decelerating its decrease. Therefore, revealing and monitoring locations of this 

alteration is fundamental. Monitoring forest areas is achieved by describing the 

functional diversity of plants which is embodied in their structural traits. An approach for 

estimating these structural traits is the application of quantitative structure models 

(QSM). These models describe the morphology of individual trees by quantitatively 

describing its topological, volumetric and geometric properties. Building a QSM requires 

a three-dimensional point cloud which can be acquired with Laser Scanning sensors. 

These sensors can be mounted on different platforms. To describe the three-dimensional 

structure of a forest, airborne (ALS) or terrestrial laser scanning (TLS) is common to be 

used. While TLS data stand out with very high density which enables us to create high-

detail models of individual trees, ALS offers the mobility to acquire less detailed data over 

a much larger area as well as another perspective. Recent progress in unmanned aerial 

vehicle (UAV) technology allows for the installation of high-resolution laser scanners on 

board of small drones. UAV-LS surveys benefit from higher mobility in comparison to a 

terrestrial field study and higher point density than ALS missions.  

In this study we try to implement a semi-automatic workflow to extract essential 

structural traits from LiDAR point clouds in a temperate mixed forest. The performance 

of a UAV laser scanning system is assessed by comparing the extracted variables with the 

ones retrieved from TLS point clouds as well as from conventional field survey data. 

The approach includes four main steps. First the generation of a high-resolution digital 

terrain model (DTM) to separate the vegetation points from the ground points. Second 

the detection of trunk in the vegetation points. This was achieved by filtering the cloud 

and subsequently applying a “Nearest Neighbours Clustering”. The tree separation was 

obtained by the creation of a “Nearest Neighbours Graph” and the comparison of the 

shortest paths from each point in the Graph to each trunk. For the model creation we 

used the QSM approach.  
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The extracted diameters at breast height (DBH) from the TLS dataset mainly matched the 

field measurements (RMSE 0.1167 m). The modelling based on the UAV data was only 

working to a limited extent. This is due to the different point distribution based on the 

different view angles in the two datasets. Nevertheless, we were able to determine 

morphological features such as DBH (RMSE 0.3014 m) and tree height (2 m difference 

between UAV-LS and TLS) with reasonable accuracy. For the extraction of more complex 

morphological traits our QSM based on UAV-LS data were not sufficiently accurate.  

To put it in a nutshell, we can conclude that there is high potential in the data derived 

from UAV-LS surveys, nonetheless a QSM generated based on those data does not reach 

the same accuracy as the one generated from TLS data. The progress in sensor and UAV 

technology as well as improvements in the implemented approach will certainly enable 

the extraction of more complex morphological traits from UAV-LS data in the near future.  
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Zusammenfassung 

Globaler Wandel beeinflusst die Biodiversität in beispielslosem Ausmasse. Um der 

weltweiten Änderung der Biodiversität entgegenzuwirken, arbeiten Wissenschaftler an 

verschiedenen Methoden. Grundlage für all diese ist die Identifizierung und 

Untersuchung von Gebieten, die einer solchen Veränderung der Biodiversität unterliegen 

wie unter anderem auch Wälder. Um deren Biodiversität zu beschreiben, betrachtet man 

unter anderem die funktionelle Diversität, welche in strukturellen Merkmalen der Bäume 

widergespiegelt wird. Eine Herangehensweise an die Waldkartierung ist die Erstellung 

sogenannter „Quantitative Structure Models“ (QSM) aus lasergenerierten Daten. Diese 

Modelle stellen die Morphologie einzelner Bäume dar, indem sie ihre topologischen, 

volumetrischen und geometrischen Eigenschaften quantitativ beschreiben. Die 

Erstellung solcher Modelle wird ermöglicht durch den Einsatz von sowohl terrestrischen 

(engl. TLS) als auch an Flugobjekte gebunden (engl. ALS) Laserscannern. Diese liefern 

Daten, welche für die Darstellung eines Waldes in seiner drei-dimensionalen Struktur 

verwendet werden können. 

Einerseits können durch die hohe Punktdichte der TLS Daten Modelle einzelner Bäume 

mit hoher Detailgenauigkeit erstellt werden. Dahingegen ermöglicht die Mobilität der ALS 

die Gewinnung von Daten weitaus grösserer Gebiete, wenn auch weniger detailliert. 

Dank der jüngsten technologischen Fortschritte ist es möglich, hochauflösende 

Laserscanner auf unbemannten Flugobjekten (engl. UAV) zu montieren. Studien mit 

diesen profitieren von der Kombination erhöhter Mobilität im Vergleich zu terrestrischen 

Studien mit erhöhter Punktdichte im Vergleich zu luftgebundenen Missionen. Damit 

einher geht die Erweiterung von Forschungsgebieten zu geringen Kosten.  

Das Ziel dieser Studie ist, grundlegende strukturelle Merkmale aus den zuvor 

vorgestellten Punktwolken am Beispiel eines temperierten Mischwaldes semi-

automatisiert zu extrahieren. Die Leistung des UAV-Lasersystems soll dann durch den 

Vergleich der gewonnen Variablen mit den Äquivalenten von TLS und konventionellen 

Feldstudien beurteilt werden. 

Unsere Herangehensweise lässt sich in vier Hauptschritte gliedern. Zuerst wurden 

hochauflösende Digital Terrain Modelle (DTM) generiert, wobei Vegetations- von 
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Bodenpunkte getrennt werden. Nachfolgend wurden aus ersteren die Stämme 

detektiert. Hierfür wurde die Punktwolke gefiltert und anschliessend ein „Nearest 

Neighbour Clustering“ angewandt. Die Baumtrennung konnte durch das Erstellen eines 

“Nearest Neighbour Graph“ und den Vergleich der kürzesten Distanzen eines jeden 

Punktes im Graphen zu jedem Stamm erreicht werden. Für die Modell-Generierung 

wurde dann die zuvor vorgestellte QSM-Methode angewandt. 

Die aus den TLS-Daten gewonnenen Durchmesser auf Brusthöhe (engl. DBH) stimmten 

überwiegend mit den Messungen der Feldstudie überein (RMSE 0.1167). Dahingegen 

gelang die Modellierung anhand der UAV-Daten nur eingeschränkt. Dies lässt sich auf die 

verschiedenen Punktverteilungen aufgrund der unterschiedlichen Blickwinkel in den 

beiden Datensätzen zurückführen. Nichtsdestotrotz war es uns möglich, morphologische 

Eigenschaften wie DBH (RMSE 0.3014) und Baumhöhe (2 Meter Unterschied zwischen 

UAV-LS und TLS) mit angemessener Genauigkeit zu bestimmen. Für die Extrahierung 

komplexerer morphologischer Eigenschaften war die Detailgenauigkeit unserer anhand 

von UAV-Daten erstellten Modelle jedoch nicht ausreichend. 

Zusammenfasend lässt sich festhalten, dass die Daten aus UAV-LS Studien grosses 

Potential bergen. Jedoch wird mit einem QSM aus diesen Daten nicht dieselbe 

Detailgenauigkeit erreicht wie mit einem QSM aus TLS-Daten. Sowohl die Fortschritte in 

Sensor- und UAV-Technologie als auch weitere Verbesserungen der hier angewandten 

Methode bieten aber Grund zur Annahme, dass die Extrahierung komplexer 

morphologischer Eigenschaften aus UAV-Daten in naher Zukunft möglich sein wird.
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1  Introduction 

Biodiversity refers to the abundance and distributions of and interactions between 

genotypes, species, communities, ecosystems and biomes (Leadley et al., 2010). Several 

studies have shown an alarming decrease in biodiversity (Bellard et al., 2012; Butchart et 

al., 2010; Cardinale et al., 2012). Malanson and Alftine (2016) state that “biodiversity is 

impacted by humans in many ways, including habitat degradation and loss, 

fragmentation, introduction of invasive species and pollution.” In order to counteract this 

decrease, revealing locations of change is crucial. Therefore, various methods have been 

developed to map biodiversity and its changes (Bowker, 2000; Pereira et al., 2013; 

Williams et al., 1997). Some of these methods use remote sensing approaches, which 

essentially means to detect changes in data derived from different sensors (e.g. Image 

Spectroscopy, Laser Scanning and Radar). The surveys are carried out on different spatial 

resolutions, correlating to the three major levels of biodiversity defined by Jaisankar et 

al. (2018): diversity of Ecosystems, diversity of species and the genetic diversity within a 

species. Yamasaki et al. (2017) describe the connection between the genetical approach 

and the remote sensing approach on biodiversity. The genetic approach describes the 

effect of genetic variance within a species and its impact on the morphological 

appearance of single individuals. This morphology can be derived on different levels of 

complexity from remote sensing data. Numerous studies were conducted from either 

spaceborne missions (Bergen et al., 2009), airborne surveys (Mura et al., 2015; Sverdrup-

Thygeson et al., 2016; Vihervaara et al., 2015; Vosselman et al., 2011) or terrestrial 

surveys (Calders et al., 2015; Ehbrecht et al., 2017, 2016; Hilker et al., 2012; Liang et al., 

2016; Liang and Hyyppä, 2013; Zhao et al., 2015).  

This thesis focuses on a survey technology called Light Detection and Ranging (LiDAR). 

LiDAR is a laser-based technology to measure distances to targets in a three-dimensional 

space by measuring the time a laser pulse travels till it is reflected by a target and travels 

back to the source. Scanning an area with such a method produces high resolution three-

dimensional point clouds. Those are applied in research areas such as earth system 

sciences (geography, geology, meteorology etc.), biology, architecture and navigation. In 

this thesis we study the benefits, LiDAR surveys offer for forest inventory. Those benefits 

largely depend on the platform the laser scanner is mounted on. The more the distance 
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between platform and area of interest increases, the more the complexity of the gained 

point cloud decreases. However, airborne and spaceborne missions cover a much larger 

area and do not suffer from accessibility issues. The combination of those benefits and 

the higher accuracy of terrestrial laser scanning surveys can be achieved by using small 

unmanned aerial vehicles (UAV) as a platform. With regard to this study we aim at 

investigating the difference between UAV-LS and TLS (Terrestrial Laser Scanning) data. 

Doing so, we acquire two different LiDAR point clouds. One is obtained by mounting the 

sensor on a tripod, which has to be carried manually from each scan position to the next 

(TLS). By contrast, the other point cloud derives from mounting the sensor on an 

unmanned aerial vehicle (UAV-LS). Both approaches hold specific advantages and 

disadvantages shown in the table.  

Table 1-1: Advantages & Disadvantages of the two LiDAR systems. 

TLS UAV-LS 

+ Precision 

+ Point Density 

- longer Survey 

- Terrain accessibility 

- Occlusion of Canopy 

+ Area coverage 

+ Acquisition time 

- Precision 

- Occlusion of trunk area 

- max. flight duration 

 

Comparing the data and investigating its differences, biodiversity of forests serves as a 

framework. Putting a forests richness in figures is achieved on multiple spatial scales. 

While one can observe the species richness and distribution, one can also describe the 

intraspecies variability representing the genetic diversity hence regarding biodiversity on 

a more complex level. Surveys covering larger areas using satellite or airborne data are 

rarely able to describe individuals (Yamasaki et al., 2017). Investigating biodiversity, 

Cianciaruso et al. (2009) highlight the importance of intraspecific variability. Studying the 

phenotype allows for measuring this variability without analysing DNA sequences on a 

molecular level. The phenotype is displayed in the morphology and hence the structure 

of the individual. There are various studies about changes in morphology within a species 

due to adaptation to its particular environment (Barbeito et al., 2017; Pretzsch, 2014; 

Rötheli et al., 2012). 
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In order to describe the morphology of individuals with remote sensing data, high density 

point clouds are required. Those are obtained by using the previously introduced 

combination of LiDAR and UAV technology mounting a small footprint sensor on a UAV 

(Morsdorf et al., 2017). 

The gained point clouds can then be used to extract morphological traits of individual 

trees. The complexity of a trait is variable. An example of a basic trait is the diameter at 

breast height (DBH) which describes the trunk diameter at a height of 1.3 meters above 

ground. More complex measures are the covered area of the crown or the wood volume 

of branch compartments. To describe such complex traits, recent studies make use of a 

method called quantitative structure model.  

A Quantitative Structure Model (QSM) is a model of an object that quantitatively 

describes its topological, volumetric and geometric properties. The model is built from 

multiple primitive blocks fitted on the objects structure (Raumonen et al., 2013). This 

thesis applies the QSM implemented by Raumonen et al. (2013). They use cylinders as 

building blocks for the QSM due to the robust results for estimating diameters, lengths, 

directions, angles and volumes. Various studies (Calders et al., 2015; Hackenberg et al., 

2015b; Kaasalainen et al., 2014; Raumonen et al., 2013) on this topic are based on this 

approach. 

Calders et al. (2015) managed to reconstruct a one-hectare point cloud, acquired with a 

TLS, with an altered version of the QSM to calculate a radiative transfer model of the 

forest. Bienert et al. (2018) used a vehicle-based mobile laser scanning system for the 

data acquisition and then discussed its advantages and disadvantages. The main 

advantage is the higher mobility during the survey of corridor-like areas, but its biggest 

handicap is the requirements due to the vehicle. In their study they used a van which 

required forest paths with a clear height of 2.8 meters. They further propose to mount 

the sensor on different ground vehicles to enhance the mobility in a forest.  

Increasing the mobility is also possible by going aerial. In our knowledge no studies were 

conducted using UAV-LS data as input for a QSM, especially not for areas covered with 

dense vegetation. This thesis introduces a method to detect single trees in a forest using 

Light Detection and Ranging data acquired by an unmanned aerial vehicle and tests the 
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potential of the data for the QSM approaches. The results are to be compared to those 

using the data from a Terrestrial Laser Scanning survey and from conventional field 

surveys. Therefore, we work on the following research questions: 

“Do the point cloud distributions of UAV-LS fit the requirement of tree detection as well as 

TLS point clouds?” 

“Which traits can be derived from the UAV-LS point cloud?” 

 The research questions will be discussed in the 6th chapter.  

  



Materials 
 

5 
 

2  Materials 

2.1 Study Area 

The study is applied on a test site located on the southern slope of the Laegern (2'669'779 

m E, 1'259'019 m N, CH1903+ / LV95), a small hill approximately 15 km north-west of 

Zurich, Switzerland. The ridge has an elevation of 866 m, which corresponds to an 

approximate prominence of 425 m and is covered by a temperate mixed forest with 

European beech and Norway spruce as dominant species (Eugster et al., 2007; Schneider 

et al., 2014).  

 

Figure 2-1: UAV-LS point cloud of the study area. 

 

2.2 Data 

For this study there are three datasets available. Two datasets contain Light Detection 

and Ranging data and one is a field survey conducted by A. Rudow from the ETH Zurich. 

The UAV-LiDAR data serve as test data and the other two sets are for validation purposes. 
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2.2.1 LiDAR  

2.2.1.1 Unmanned Aerial Vehicle Laser Scanner Data 

The UAV-LS data spread over an 140x200m area located between 2’669’660-2’669’800 

m Easting and 1’258’950-1’259’150 m Northing (CH1903+ / LV95). It was acquired by the 

aeroscout GmbH using a Riegl VUX-1UAV during the leaf off season. The sensor has an 

accuracy and precision of 25mm with a beam divergence of 0.5 mrad and operates in the 

near infrared. The flight acquisition was done on an 80m nominal altitude above ground 

level at a cruising speed of 4m/s. This setting leaded to a point density of approximately 

230pts/m2 for each flight strip (Morsdorf et al., 2017). The resulting point cloud consists 

of 107’016’349 points. For each point there is an Easting and Northing coordinate in the 

swiss coordinate system (CH1903+ / LV95) as well as a height above sea and laser return 

intensity. The height varies between approximately 650 and 700 m and the intensity. In 

order to be able to compare the intensity, we normalized the pulse intensity between 0 

and 1 for TLS as well as UAV-LS data. There is no decrease in point density towards the 

edges of the study area. Yet, one can recognize a slight structure from the overflight 

(figure 2-2). The stems as well as areas with dense branches or needles show an increase 

in intensity.  

 
Figure 2-2: Intensity within a transect of the UAV-LS point cloud. 
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Figure 2-3: Point density of the UAV-LS point cloud. Points in each pillar extrapolated on a square meter. 

 

2.2.1.2 Terrestrial Laser Scanner Data 

The TLS data spreads over an 80x80m area located in the mid-west of the UAV-LS 

coverage, 2’669’660-2’669’740 m Easting and 1’259’020-1’259’100 m Northing. A Riegl 

VZ-1000 was used for the survey. On a total of 20 scan locations 40 scans were taken. As 

the TLS Riegl instrument has a horizontal field of view of 360° and a vertical field of view 

of 100°, two scans for each location were acquired in order to cover the whole 

hemisphere. For the corregistration of the scans approximately 50 reflecting targets were 

distributed in the area. The corregistration was done using the RiSCAN PRO software. The 

resulting point cloud consists of 105’587’740 points, each with local coordinates (x,y,z) 

and intensity. The point density strongly decreases towards the edges of the research 

area (figure 2-5) due to the positions of the scans.  
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Figure 2-4: Intensity within a transect of the TLS point cloud. 

 
Figure 2-5: Point density of the TLS point cloud. Points in each pillar extrapolated on a square meter. 
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2.2.2 Field survey 

The field survey was conducted during spring/summer 2018. It covers the same area, as 

the one of the UAV-LS dataset. A. Rudow and his team used a previously created stem 

position map, extracted from the UAV-LS data using a first version of the stem detection 

algorithm, for orientation. The positions contain estimated coordinates, diameter at 

breast height (DBH), leaning angle, ratio between vertical and horizontal standard 

deviation and an id.  

The aim of the field survey was to map all trees with a DBH higher than 0.15 m, determine 

the species and measure the DBH. Thus, we received a table containing the following 

measures: 

Table 2-1: Field survey measures. 

ID For identification.  

Tree detected which were not detected by the algorithm have an ID ≥ 1000 

Easting First Dimension (CH1903+ / LV95) 

Northing Second Dimension 

Height Third Dimension,  

only available in the extracted data.  

DBH Estimated from UAV-LS data,  

only available in the extracted data. 

Angle Estimated from UAV-LS data,  

only available in the extracted data. 

Ratio Estimated from UAV-LS data,  

only available in the extracted data. 

DBH_real Field measurement 

Species Field measurement 

Memo Additional comments 

 

The collected dataset describes 724 trees consisting of 12 species. Main species are 

beech (fagus sylvatica and carpinus betulus) followed by different kinds of acer (acer 

platanoides, acer pseudoplatanus and acer campestre). The diameter at breast height 

varies between our threshold of 0.15 m and a maximum of 1.09 m. The histogram peaks 

at a DBH of 0.17 m as seen in figure 2-6. The distribution of the different species can be 

seen in figure2-7 and the trunk positions in figure 2-8.  
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Figure 2-6: Histogram of the Diameter at Breast Height measured by A. Rudow during the field study. 

 

Figure 2-7: Histogram of Species described by A. Rudow during the field study. 
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Figure 2-8: Tree Positions localized by A. Rudow during the field study (red circles) display on top of a 
Canopy Height Model. 

 

2.3 Software 

For the coregistration of the LiDAR scans, the RIEGL RiScanPro software was used and all 

further computations were implemented in MATLAB 2018a. 
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3  Methods 

The implemented approach can be divided into five main parts. First, the pre-processing 

of the single point clouds. This consists of normalization of the intensity values, 

adjustment of the extend of the area of interest and the generation of a digital terrain 

model and a voxel creation. Second part is the stem detection. In this part we try to detect 

the different stems in the point cloud only using filtering and clustering. In the third part 

we separate the single trees using the stems locations from the second part. This is done 

by building a nearest neighbours graph and calculating the shortest path from each point 

to the surrounding stem locations. Having the trees separated, we use the QSM algorithm 

implemented by Raumonen et al (2013) to construct the models of the trees. Last part is 

to run a tree measurement extraction for traits such as DBH or tree height. This part is 

meant as backup for the case, that the QSM approach does not work with the UAV-LS 

dataset. 

After these steps, we are able to compare the quantitative structure models and tree 

measures gained from either terrestrial and airborne data. The DBH can be verified by 

the measurements of the field study. 
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3.1 Pre-Processing 

3.1.1 Digital Terrain Model Creation 

A crucial step for this study is the separation of the point cloud into vegetation points and 

ground points. A way to achieve such a separation is to create a Digital Terrain Model 

(DTM) and classify all points within a specific distance of the DTM as ground points. The 

more accurate the DTM, the more accurate the separation. To achieve a high accuracy, 

the method created in this study uses a quad tree approach. Quad trees are often used 

in storing and displaying image data.  

 

    

     

  

    

    

 

Figure 3-1: Quad tree storage approach. Simplified representation of the changing resolutions. 

 

Broadly speaking the resolution in parts with a high amount of details is better than in 

parts with little information. Same idea can be used in the DTM generation. Being able to 

create a finer grid directly corresponds to the point density in the ground area. Meaning 

if the density of points representing ground is higher, we are able to use a finer grid. The 

point density and therefore the possibility to fill a finer grid is higher in regions with a 

vegetation density low enough to allow the LiDAR rays to reach the ground, than in 

regions where the ground is occluded by dense vegetation. Being able to vary the 

resolution spatially, enables us to reach the highest possible resolution for each region. 

A more detailed description of the approach can be found in the supplementary material. 
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3.1.2 Voxel Creation 

To reduce the amount of points and therefore enable the computation to be executed 

on different kinds of workstations we implement a voxel grid. We use the cells generated 

by the DTM creation algorithm and apply an additional height binning of 0.1m. This is 

done by calculating a histogram for the z-values of all points contained in each cell. The 

final voxel points result from the means (x-, y-, z-mean) of the coordinates and the 

maximal intensity of all points in each height bin. Additionally, we add an indexing to each 

voxel- and vegetation point aiming at applying the tree classification based on the voxel 

points to the vegetation data.  

 
Figure 3-2: TLS voxel points in a 10mx60m transect. Voxel points standing for multiple vegetation points 
are coloured in red. 
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3.2 Stem Detection 

3.2.1 Filtering 

To separate the single trees in the point cloud we start by detecting their stems. On the 

one hand we need to reduce the amount of points to a size that makes it possible to 

differentiate the stems and on the other hand we don’t want to reduce the point density 

within the stems itself too much. To achieve this task, the vegetation point cloud (VP) is 

filtered three times. Due to the different intensity and height distributions in the TLS and 

UAV-LS point clouds we need to adapt the parameters for each dataset separately. 

Equation 1: Filtering of vegetation voxel points. 

 

VP𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝑉𝑃(𝑉𝑃𝑧 > 𝑚𝑖𝑛𝑧 &  𝑉𝑃𝑧 < 𝑚𝑎𝑥𝑧  & 𝑉𝑃𝑖𝑛𝑡 > 𝑚𝑖𝑛𝑖𝑛𝑡 & 𝑉𝑃𝐷𝐵 > 𝑚𝑖𝑛𝐷𝐵) 

First, we only use points in between a height interval (minz & maxz). Thus, we exclude 

small understory vegetation and the ramified branches of the tree crowns. In case of the 

UAV-LS data we use a rather large area (1-9m) as the point density decreases towards 

the ground due to higher distance to the sensor and stronger occlusion effects. The 

density of the TLS point cloud is above average in the height of the stub of the tree and 

we therefore are able to work with a smaller interval (1-3m) without missing any trunk. 

 

Figure 3-3: Height filter. Cutting a height interval between two thresholds (red).  
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Second, all points with an intensity below a fraction (minint) of the maximal intensity are 

excluded. This step reduces the amount of points representing targets reflecting the 

beam with a low intensity, such as small objects or objects with a lower density than 

wood. We use a slightly higher threshold for the UAV-LS data (0.6) than for the TLS data 

(0.5). This is due to the taller height interval which leads to more branches connecting 

individual trunks. Having a higher intensity threshold reduce this problem. 

 

Figure 3-4: Intensity filter. Removing points with intensity below a specific threshold (blue).  

 

 And third, we run a density filter over the remaining points. With this filter we remove 

noise and small targets, with a number of neighbours lower than the threshold (mindb), 

from the point cloud. As we don’t want to affect structural elements, we used a very low 

threshold (10 points) for both datasets.  

 

Figure 3-5: Density filter. Filters all points with too little neighbours in a specific distance (blue). 

 

With these three filters applied, we end up with points mainly representing the tree 

trunks in this specific height interval. 
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3.2.2 Clustering  

In the next step we identify clusters connected by a maximal distance. This is done by 

building a graph with all the points of the filtered point cloud. To be able to build a graph 

we created an adjacency list, which consist of all neighbours within the accepted distance 

(0.2m). As we are looking for the main stems of the trees, we assume that we are looking 

for vertical clusters in the point cloud. Aiming at giving more weight to vertical clusters, 

the z value is divided by a factor of 4. The searched clusters are then the connected 

compartments of the graph. As not every cluster represent stems, we filter the clusters 

by their size, their lowest point, their overall height and a ratio of their vertical and 

horizontal standard deviation. 

The minimal cluster size is set to a low value (20 points) to remove noise and reduce the 

workload required for the subsequent step. The maximal value for the lowest point 

depends on the lower threshold from the height filtering. Only looking for clusters 

representing stems, we assume that the lowest point in a stem-cluster matches the lower 

height threshold of the previous height filtering. The minimal cluster height depends on 

the height filtering as well. In this case we assume that the expand of a tree cluster ranges 

over at least a third of the height interval. The remaining clusters are than filtered by the 

ratio between vertical and horizontal standard deviation (≥1).  

  

Figure 3-6: Detected and filtered clusters. 
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3.2.3 Stem Enhancement 

To get denser stems, the stem clusters are enhanced with all points from the vegetation 

cloud, which are within a maximal distance (0.1m) to the points of the clusters. Like this 

we include for example points with low intensity which are also a part of the stem. 

 

Figure 3-7: Enhanced Stems. Left the filtered version, right the enhanced. 

 

3.2.4 Calculating Stem Measures 

The resulting clusters from the stem detection are used to calculate some common 

measures like diameter at breast height (DBH), tilt, stem position and a ratio between the 

vertical and the horizontal standard deviation. To calculate the diameter, tilt and stem 

position, the cluster is divided into three height compartments. We calculated the mean 

coordinates of all points in the compartments to estimate the tree position at each 

height. The ratio between the vertical and the horizontal standard deviation is calculated 

to get a measure for the geometrical distribution of the cluster. 

Equation 2: Ratio between horizontal and vertical standard deviation. 

  

𝑟𝑎𝑡𝑖𝑜𝑣/ℎ =
std(Height)

std(𝐸𝑎𝑠𝑡𝑖𝑛𝑔, 𝑁𝑜𝑟𝑡ℎ𝑖𝑛𝑔)
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3.3 Tree Separation 

3.3.1 Stem Subsets 

Before we continue with the tree separation, we create another subset of the vegetation 

points, referred to “no understory”. This time we take all points higher than the stem 

cloud and filter them by intensity and density. Thus, when combined with the stem 

clouds, we receive all vegetation points needed for the tree separation. In order to reduce 

the workload during the graph creation one cloud create subsets around each stem and 

use those as input for the following graph creation.  

 

Figure 3-8: Vegetation points above threshold. 

 

3.3.2 Graph Creation and Tree Separation 

The graph creation is achieved in a way similar to the one used in the stem detection part. 

We now use the recently gained subsets as input clouds, yet the z value remains 

unchanged and the maximal distance between the points is considerably bigger (TLS: 

1.5m, UAV: 1m). The distances, which later determine the edge weights, are then 

transformed into a logarithmic scale. Hence, shorter distances between points are even 

more favoured in the following shortest path calculation. 

Equation 3: Creating logarithmic edge weights. 
 

𝐸𝑑𝑔𝑒𝑤𝑒𝑖𝑔ℎ𝑡 =  101+𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
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The tree separation itself is achieved by a shortest path comparison. We compare all 

shortest paths from each point to all stem locations in the subset area. Each point then 

gets assigned to the stem that has the shortest path. Having all the trees separated we 

enhance the trees in a way similar to the one used in the stem enhancement step. The 

graph creation and shortest path calculation is shown in the supplementary materials.  

3.4 Quantitative Structure Model 

To run the QSM algorithm it is important to have a dense point cloud of a tree. Therefore, 

we apply a similar point cloud enhancement as in the stem enhancement chapter. This 

time we take the separated trees from the previous step as one part of the input and the 

original vegetation point cloud as the second part.  

In order to create the quantitative structure models of our trees we apply the QSM 

creation function (Raumonen et al., 2013) on those of our separated trees exceeding the 

minimal height of 10m. The code used for this will be shown in the supplementary 

materials under the subsection code. 

3.5 Tree Measures 

Beside the models we try to detect simple tree measures as diameter at breast height, 

canopy height, trunk position, canopy position, canopy offset and covered area for each 

tree. We extract the DBH with two different approaches. One works with the mean 

distance (Easting, Northing) of all points within a height interval of 1-2m to the centre of 

the trunk. The other approach applies the cylinder fitting function of the MATLAB point 

cloud package on the same points. The canopy height is estimated by the maximal height 

extent of the separated tree. The trunk position is either the centre of the cylinder model 

resulting from the cylinder fitting process, or the mean position (Easting, Northing) of the 

trunk points. The canopy position is the mean position (Easting, Northing) of all points 

within the top meter. Thus, the canopy offset is the difference in Easting and Northing 

between trunk and canopy position. Detailed code for extracting those measures can be 

found in the supplementary materials chapter.  
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4  Results 

4.1 Pre-Processing 

The implemented quadtree approach enables us to create a high resolution DTM using 

both UAV-LS as well as TLS data. Ten iterations are made resulting in a 1024x1024 grid 

with a resolution of 78.2x78.2 square millimetre. Due to the detailed DTM generation, 

the separation of the point cloud into vegetation points and grounds is easily achieved. 

The following table shows the obtained amount of vegetation and ground points for each 

dataset. Additionally, we are able to calculate precise above ground measures for each 

point which would be less detailed with a coarser DTM.  

Table 4-1: Point count: Vegetation- and ground points. 

 UAV-LS TLS 

Ground Points 20’499’533 41’277’349 

Vegetation Points 86’516’414 64’307’630 

 

To minimize the influence of the unequal point density in the TLS point cloud, we decide 

to reduce the study area to a 60x60m area, located in the middle of the point cloud. Thus, 

the vegetation points are reduced to an amount of 59’746’672 points in the TLS data and 

to 11’995’690 points in the UAV-LS data. The results of the DTM generation are described 

in further detail in the supplementary material. 

As a result of the voxel creation, the amount of vegetation points is reduced as shown in 

the following table. Furthermore, we are able to remove voxel points representing too 

little vegetation data. 

Table 4-2: Voxel count: Amount of voxel vegetation points in the UAV-LS and TLS data. 

 UAV-LS TLS 

Amount of voxel points 5’615’099 3’417’251 
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4.2 Stem Detection 

In total, we are able to detect 132 stem clusters in the UAV dataset and 279 stem clusters 

in the TLS dataset compared to 77 trees counted and localized in the field survey dataset. 

All filtering parameters and the resulting amounts of points are shown in table 4-3. The 

number of clusters for each step is shown in table 4-4. 

Table 4-3: Filter parameters and the resulting point count. 

Filter UAV TLS 

Height 1-9 m 770’883 1-3 m 231’656 

Intensity 0.6 62’484 0.5 39’611 

Point Density 10 P 52’902 10 P 37’229 

 

Table 4-4: Number of clusters in each step. 

 UAV TLS 

No filter 4424 1218 

Big Clusters 486 342 

Stem Clusters 132 279 

 

Figure 4-1: Clustered voxel points representing tree trunks. 

 

These Clusters were than enhanced and the stem measures extracted. The stem 

measures obtained at this stage are only used for orientation purposes during the field 

survey. 
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4.3 Tree Separation 

After reducing the study area to a 60x60m square and adding a voxel grid, the stem 

subsets became unnecessary as we are able to run the graph creation on the whole 

dataset at once. Running the stem subset creation step is important if the computational 

power is not capable of supporting the size of the point cloud.  

In case of the UAV-LS data we are able to separate 111 different objects out of the 

dataset. Whereas in the TLS data we receive 211 objects. The difference is mainly due to 

small trees or shrub detected as stems in the TLS dataset. In figure 4-2 trees higher than 

10m are displayed. Reducing the number of trees in this way results in 71 objects in the 

UAV-LS data and 141 objects in the TLS data. Whether the smaller trees should be 

recognized is to be determined by the survey. 

 

Figure 4-2: All Tree Positions: Field survey, UAV-LS and TLS data. 
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Figure 4-3: Separated trees derived from the UAV-LS (top) and TLS (bottom) data. 
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4.4 Quantitative Structure Model 

Replacing all points of the separated trees with corresponding points of the original 

vegetation point cloud and their neighbours within 0.1m distance improved the density 

of the separated trees. Running the treeQSM algorithm of Raumonen et al. (2013) 

automatically on all separated trees, higher than 10m, resulted in 61 (of 71 separated 

object) models in the UAV-LS dataset and 124 (of 141 separated object) models in the 

TLS dataset.  

 

Figure 4-4: Cylinder models generated based on UAV-LS (top) and TLS (bottom) data. 
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4.5 Tree Measures 

The additional tree measure extraction results in a table for each tree containing 

information about the following measures: 

Table 4-5: Extracted tree measures. 

ID Identification 

Height Tree Height 

DBH_cyl DBH 

with Cylinder Fitting 

DBH_d DBH 

with mean distance from centre 

Area Covering Area 

with alpha shape & area 

Offset Offset between Trunk and Canopy 

(Easting, Northing) 

Points Amount of Points 

Trunk_X Position of Trunk (Easting) 

Trunk_Y Position of Trunk (Northing) 

Trunk_Z Position of Trunk (Height) 

Canopy_X Position of Canopy Centre (Easting) 

Canopy_Y Position of Canopy Centre (Northing) 

Canopy_Z Position of Canopy Centre (Height) 

 

These measures are taken for all trunk position. Thus, we are able to compare an 

estimated diameter at breast height, for all separated trees. In addition, we are able to 

answer the research question about the extraction of morphological traits complexity.  

Comparing the values of the different diameter at breast height extraction options (figure 

4-5) to the ground truth data of the field study results in the RMSE shown in table 4-6. 

Table 4-6: RMSE for DBH extraction methods. 

TLS UAV-LS 

QSM Cylinder Mean Dist. QSM Cylinder Mean Dist. 

0.1167 m 0.1867 m 0.2073 m 0.3014 m 0.8120 m 0.3986 m 
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Figure 4-5: Different DBH extraction methods compared to the measurements in the field study. 

 

In addition to the diameter at breast height, we also estimate values for covering area, 

height, and the offset between trunk and canopy. The results are shown in table 4-7. Our 

field survey data do not cover these values, but we may compare the UAV-LS tree to the 

TLS trees.  

Table 4-7: Mean tree height, derived from TLS and UAV-LS data. 

 TLS UAV-LS 

Mean height [m] 

Total Crown Surface [m2 *103] 

26.51 

3.0631 

28.79 

3.6680 
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5  Discussion 

5.1 Pre-Processing Steps 

Airborne laser data are commonly used for Digital Terrain Model creation. Petzold (1999) 

describes one of the first cases and ever since, various approaches have evolved (Liu et 

al., 2008; Petzold et al., 1999; Sithole and Vosselman, 2004). Our approach, combining a 

quadtree with a common grid approach creates a very detailed product similar to the 

QuadTIN approach presented by Pajarola et al. (2002) creating a triangulated irregular 

network to representing the terrain. Enhancement could be achieved by running various 

classification algorithms that distinguish between non-ground points representing 

vegetation or artificial objects and ground points. However, in our study area there is only 

one man-made object that complicates the DTM generation. 

Using voxel grid filters on LiDAR data is a widespread method to reduce the workload 

(Calders et al., 2018; Hackenberg et al., 2015a). If one has the processing power to run 

the whole algorithm without this reduction, it is highly recommended to dismiss this step.  

5.2 Stem Detection 

Our approach is built to detect stems in the point cloud with a minimum of effort and 

input variables. There is a big potential for improvement in this section, especially for the 

application on the UAV-LS dataset. There are multiple possibilities to enhance the stem 

detection. For example, one could run additional point classification algorithms like the 

one presented by Åkerblom et al. (2017), which classifies patches with a principal 

component analysis and the assumption that stems are vertical. This would lead to a 

better distinction between the main stems and other clusters especially in the crown 

area. Another approach to detect stems was conducted by Calders et al. (2018) in their 

workflow to provide data for a radiative transfer model. For the stem identification they 

used a height filtering combined with RANSAC cylinder fitting and the angle of the 

cylinder model in comparison to the DTM surface. Those studies were principally 

performed with TLS data but could be adjusted for UAV-LS data.  

Comparing UAV-LS and TLS data to the field survey highlights the direct correlation 

between sensor footprint and diameter at breast height threshold as well as the impact 

of the sensor view angle on the occlusion. Due to the lower overall point density of the 
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UAV-LS data, which is even amplified in the trunk area (figure 5-1) due to the different 

perspective, the omission off stems is significantly higher. In addition, the larger footprint 

of the UAV-LS sensor returns lower intensity signals from small objects leading to the 

removal of these objects during the filtering of the vegetation cloud. This also explains 

the higher number of trunks detected in the TLS data set. Both, UAV-LS and TLS derived 

stems are not filtered by their DBH yet. Therefore, the amount of stems is much higher 

in comparison to the field study.  

 

Figure 5-1: Point distribution in height bins. 

 

In addition, we are able to highlight the influence of the tree species on the accuracy of 

the stem detection with the different sensor types. Best example in our case is a fir (abies 

alba) with a DBH of approximately 0.8 m which got completely lost in the UAV-LS data 

due to the occlusion of the stem by the dense branches and shoots but still visible in the 

TLS data due to the different view angle. In figure 5-2 a transect of the vegetation cloud 

is shown, including the location of the fir. We see a high occlusion in the crown area and 

a dense trunk surface in TLS data (left). The UAV-LS data (right) shows a nearly complete 

occlusion of the stem but in return we have a nice surface of the tree crown. 



  5.3 Tree Separation 

30 
 

 

Figure 5-2: Transect of TLS (left) and UAV-LS (right) vegetation cloud showing the different occlusions due 
to the view direction.  

 

5.3 Tree Separation 

After visual evaluation of the resulting trees we are able to categorize three main errors, 

caused by various reasons. First, peripheral error caused by branches which have their 

trunk outside the study area and therefore are assigned to their closest trees. Second, 

there are interwoven trees or tree crowns. In this case, single branches are inseparable 

mostly due to insufficient resolution of the sensor. As long as the distance within one 

branch remains shorter than the distance to next branch, the logarithmic edgeweight 

mostly prevents a “branch hopping” during the shortest path calculation. A third error 

occurred due to undetected stems. The missed stems in the stem detection section lead 

to a consequential error in the tree separation.  
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Figure 5-3: Two examples of precise separated trees. 

 

The peripheral error is inevitable if the research area is limited to a part of a forest. We 

identify this error at approximately one out of seven trees higher than 20 m in the UAV-

LS results. In the TLS results, this error occurs at approximately one out of five tall trees.  

 

Figure 5-4: An Examples of a peripheral error. Marked with a blue ellipse.  
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Figure 5-5: Two examples of missed trunks. Marked with blue ellipses. 

 

The error resulting from missing stems happens more frequently in the UAV-LS than in 

the TLS data. In the UAV-LS results it occurs in approximately one out of five tall trees. In 

the TLS results it appears only one single time of all 72 compared trees.  
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The error of the interwoven canopies is difficult to distinguish from the error due to the 

missing stems. If a trunk position is missing for the separation process, the whole tree will 

be added to its surrounding trunks. Therefore, it is to distinguish if a tree is split up in 

total, or if there is only a part of the canopy removed. In case of the UAV-LS dataset we 

observe this error in one out of ten examples and in case of the TLS in one out of 18. 

There is much potential left for further processing steps, which could remove branches 

which do not belong to the targeted tree.  

 

Figure 5-6: Example of two interwoven tree crowns. Marked with a blue ellipse. 

 

The tree separation based on the UAV-LS dataset mainly suffers from the missed stems 

in the stem detection section. Due to the higher accuracy of the stem detection using the 

TLS data, it would be of further interest to examine whether the usage of the TLS stem 

positions could enhance the tree separation of the UAV-LS data. If so, one could use a 

single dataset of TLS stem positions and combine it with multiple UAV-LS point clouds of 

a long-term study. The question that therefore arises is as follows: In which time interval 

are new TLS surveys necessary?  
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5.3 Quantitative Structure Model 

Point clouds acquired with terrestrial laser scanners serve as common input data for QSM 

approaches. Various studies describe the possibilities and limitation of QSM creation with 

TLS Data (Hackenberg et al., 2015a; Raumonen et al., 2013, 2015). Thus, it was 

anticipated that the separated trees from the TLS dataset are well processed. In our 

knowledge, using UAV-LS Data as input was not done before for a dense and complex 

(topography) forest as the Laegern. We identified two complications that occurred using 

the separated trees from the UAV-LS dataset. On the one hand, the tree separation is 

strongly affected by consequential errors of the missed stems and therefore does not 

deliver the same detailed separation as in the TLS data. On the other hand, the point 

density within the stem of the trees is significantly lower in the UAV-LS point cloud. In 

contrary to the point clouds produced with a TLS, the ones acquired with an UAV-LS lose 

point density towards the ground due to the view angle and the related occlusion. As the 

trunk is crucial for the over-all model generation (Hackenberg et al., 2015a; Raumonen 

et al., 2013), this difference is severe. Possibilities to enhance the stem detection are 

described in the previous chapter. Reducing the density difference cloud be done with 

some point interpolation algorithms or comes with the advancing UAV or laser scanner 

technology. 

5.4 Tree Measurements 

The extraction of the tree measures enables us to obtain some basic traits of those 

separated trees, which do not fit the requirement for the quantitative structure model 

creation. Comparing the three datasets, reveals the high accuracy of the QSM model used 

on the TLS data. Except from one outlier the calculated DBH of the produced models 

correlates very accurately with the field survey. However, looking at the UAV-LS data and 

model generation, we do not determine the same accuracy. This derives mostly from the 

lower point density in the trunk area. Nevertheless, the result has a lower RMSE than the 

simplistic mean distance approach (table 4-6). With a RMSE just slightly higher than the 

one of the QSM approach, we deliver an additional DBH estimation, without the need of 

a model creation.  
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6  Conclusion 

In this thesis we presented a workflow with the aim of separating trees in a forest with 

no prior knowledge. Further the separated trees served as input for the QSM approach 

presented by Raumonen et al. (2013). We used both TLS and UAV-LS data of a tempered 

mixed forest on the Laegern (Switzerland) as input datasets. In addition, we were in the 

possession of ground truth data for tree location and diameter at breast height, gathered 

by A. Rudow and his team. In case of the TLS data our approach led to a satisfactory result 

with only slight deviations from the ground truth. In case of the UAV-LS data we 

confronted with two main obstacles. One problem derived from the missing trunks in the 

stem detection part. The other originated from the lower point density in the trunk area 

leading to errors in the QSM approach.  

Harking back to the research questions: 

“Do the point cloud distributions of UAV-LS fit the requirement of tree detection as well as 

TLS point clouds?” 

After visual comparison of the separated trees and the created models, we can conclude 

that there is a significant difference between the results of the two input datasets. The 

main difference is based on the lower point density in the trunk area of the UAV-LS data 

and the higher precision in the TLS data. This leads to the omission of trunks and errors 

in the cylinder fitting of the QSM in the UAV-LS dataset. It would be interesting to further 

examine if manual processing of the single trees could reduce the gap between the two 

results.  

“Which traits can be derived from the UAV-LS point cloud?” 

The trait identification depends on the spatial resolution. On the one hand, we are able 

to detect traits such as the diameter at breast height, the tree height or the crown 

diameter, but on the other hand we cannot detect more complex traits, as for example 

the angle of branches or the specific wood volume of different branch compartments. 

Additionally, the identification of the traits is only possible on precisely separated trees. 

To put it in a nutshell, we can conclude that there is high potential in the data derived 

from UAV-LS surveys, nonetheless a QSM generated based on those data does not reach 
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the same accuracy as the one generated from TLS data. The progress in sensor and UAV 

technology as well as improvements in the implemented approach will certainly enable 

the extraction of more complex morphological traits from UAV-LS data in the near future. 

Beyond that it would be of further interest to examine the benefits of merging UAV-LS 

and TLS point clouds in order to obtain high point densities in the trunk area as well as in 

the crown.  
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8  Supplementary Material 

8.1 Functions and Code 

During the course of this thesis numerous functions were developed. Below, table 8-1 

presents those functions and their application. The crucial ones are highlighted with bold 

font and closer examined in separate chapters. 

Table 8-1: Implemented functions. 

Illustrations 

rgb_colors Function providing various colours 

rgb_colormap Creates colormaps from input colours 

scatter3_pc Plotting 3d point cloud with title, labels, font, etc. 

scattter3_t Same as scatter3_pc, just for tables 

 

Calculations 

dividePC_cellfun DTM creation and point classification 

- divides the point clouds into four sub-clouds 

- separates vegetation and ground 

- creates DTM & DSM 

chm_cellfun Creates CHM from DTM & DSM 

substract_dtm_cellfun Calculates above ground height 

createvoxel3dveg_cellfun Uses the cells from the dividePC_cellfun result to create voxels 

adding_x_y_id_cellfun Adds x,y ids to the voxel in order to relocated the represented points 

dbscan Find the number of neighbours within a radius 

create_edgelist Creates edgelist from point cloud, using max distance, max nodes 

create_graph 

4voxeldata 

Graph creation 

calculate_Stem_measures 

4voxeldata 

Filters stem cloud and calculates basic stem measures 

enhance_stem_PC Enhances stems with points from the vegetation point cloud 

growing_Forest 

4voxel 

Separating trees 

enhance_tree Enhancing trees with vegetation points 

extract_tree_data Extracting tree measures 

 

Structural 

cell2tablePC Changes cell structure from DTM creation to table structure 

combining_Stems Combines all stems point clouds in a single point cloud 
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8.1.1 Digital Terrain Model Creation 

In order to use the advantages of a quad tree approach in the digital terrain model 

creation we applied the following workflow: 

• creating the first cell 

• saving the whole Point Cloud in it 

• saving the absolute minimum of the point cloud  

The next steps are to be iteratively repeated until the resolution is on the scale needed 

for the study: 

• quartering each cell 

• saving all points in its corresponding cell 

• comparing the difference between old and new minimum 

• if beneath a selected threshold, replacing the old minimum 

In the last iteration the DTM can be smoothed to reduce the noise emerging from cells in 

which the lowest points do not correspond to the ground. The points contained in each 

cell are divided into ground points, vegetation points and highest points. The thresholds, 

distinguishing ground points and vegetation points, are linked to the cell resolution which 

means a maximal slope needs to be determined for the study site.  

We ran 10 iterations which leads to a grid of 1024x1024 cells. Each cell has a resolution 

of 78.2 x 78.2 square millimetre. In the DTM created using the TLS data, the influence of 

the quadtree is well depicted due to different grid resolutions across the study area. The 

closer to the periphery the coarser the resolution becomes. This directly corresponds to 

a decrease in point density. The spots with the lowest resolutions are also the ones with 

the biggest height differences between UAV-LS and TLS DTM which is the effect from 

ground occlusion in the TLS point cloud. This occlusion appears predominately due to 

changes in the slope caused by the forest road located in the southern part of the study 

area. 
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Figure 8-1: Effect of the Quadtree approach. 

 

Figure 8-2: Point density of the TLS Point Cloud. 
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Figure 8-3: Difference between UAV-LS and TLS DTM. 

 

The MATLAB code of the function: 

function [cloud_out,dtm_out,dsm_out,gp,vp,hp] = dividePC_cellfun(cloud,dtm,dsm,input,var) 
% [out,z_out] = dividePC(in,z_in) 
% Function to divide Point Clouds in four Subclouds each. 
% 
% 
% Input:  
%  in   -> cell() containing pointclouds (:,3) 
%  z_in -> matrix or single value: same size as in containing the z_min 
%         per cloud  
%  slope-> maximal slope accounted 
% 
% Output: 
% out  -> cell() with divided pointclouds 
% z_out-> matrix of same size as out, containing the min values of each 
%         cloud 
% 
% manuel.luck@gmail.com 
  
%% First: detecting size of input and creating the output variables 
  treesize  = size(cloud); 
  cloud    = make_M_greater(cloud,2); 
  dtm_out   = make_M_greater(dtm,2); 
  dsm_out   = make_M_greater(dsm,2); 
     
  switch var.splitting_PC 
    case 'no' 
      gp= []; 
      vp = []; 
      hp = []; 
  end 
    
%% Second: getting Resolution and X,Y Coords 
   res(1:2)  = input.plotsize(1,1:2)./(treesize(1:2)*2); 
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  xcoord   = input.min(1,1):res(1):input.max(1)-res(1); 
  ycoord   = input.min(1,2):res(2):input.max(2)-res(2); 
   
  threshold = max(res)*var.slopefactor; 
  if threshold < 0.5 
    threshold = 0.5; 
  end 
  
  [X,Y] = meshgrid(xcoord,ycoord); 
  
  X = num2cell(X); 
  Y = num2cell(Y); 
  
  cloud_out = cellfun(@(C1,C2,C3) quad_cloud(C1,C2,C3,res),cloud,X,Y,'UniformOutput',false); 
  
  [dtm_out,dsm_out] = cellfun(@(C1,C2,C3) 
dtm_dsm_cellfun(C1,C2,C3,threshold),cloud_out,dtm_out,dsm_out,'UniformOutput',false); 
   
  switch var.splitting_PC 
    case 'yes' 
      [gp,vp,hp] = cellfun(@(C1,C2,C3) classi_gp_vp_hp_cellfun(C1,C2,threshold),cloud_out,dtm_out,'UniformOutput',false); 
  end 
  
  
  switch var.smoothing 
    case 'yes' 
      dtm_out = cell2mat(dtm_out); 
      dtm4smooth = cat(1,dtm_out(1,:),dtm_out(1,:),dtm_out(1,:),... 
        dtm_out,... 
        dtm_out(end,:),dtm_out(end,:),dtm_out(end,:)); 
      dtm4smooth = cat(2,dtm4smooth(:,1),dtm4smooth(:,1),dtm4smooth(:,1),... 
        dtm4smooth,... 
        dtm4smooth(:,end),dtm4smooth(:,end),dtm4smooth(:,end)); 
       
      [ext1,ext2,~] =size(dtm_out); 
  
      dtm4mean=.... 
        cat(3,dtm_out,... 
        dtm4smooth(1:ext1,1:ext2),... 
        dtm4smooth(1+1:1+ext1,1+1:1+ext2),... 
        dtm4smooth(1+2:2+ext1,1+2:2+ext2),... 
        dtm4smooth(1+3:3+ext1,1+3:3+ext2),... 
        dtm4smooth(1+4:4+ext1,1+4:4+ext2),... 
        dtm4smooth(1+5:5+ext1,1+5:5+ext2),... 
        dtm4smooth(1+6:6+ext1,1+6:6+ext2),... 
        dtm4smooth(1+1:1+ext1,1:ext2),... 
        dtm4smooth(1+2:2+ext1,1:ext2),... 
        dtm4smooth(1+3:3+ext1,1:ext2),... 
        dtm4smooth(1+4:4+ext1,1:ext2),... 
        dtm4smooth(1+5:5+ext1,1:ext2),... 
        dtm4smooth(1+6:6+ext1,1:ext2),... 
        dtm4smooth(1:ext1,1+1:1+ext2),... 
        dtm4smooth(1:ext1,1+2:2+ext2),... 
        dtm4smooth(1:ext1,1+3:3+ext2),... 
        dtm4smooth(1:ext1,1+4:4+ext2),... 
        dtm4smooth(1:ext1,1+5:5+ext2),... 
        dtm4smooth(1:ext1,1+6:6+ext2)); 
      dtm_mean = mean(dtm4mean,3); 
      dtm_std = std(dtm4mean,0,3); 
       
      bin = abs(dtm_out-dtm_mean) < dtm_std; 
      dtm_final(bin) = dtm_out(bin); 
      dtm_final(bin==0) = dtm_mean(bin == 0); 
      dtm_out = reshape(dtm_final,size(dtm_out,1),size(dtm_out,2)); 
      dtm_out = num2cell(dtm_out); 
  end 
% 
end 
  
function [out] = make_M_greater(in,multiplier) 
%% [out] = make_M_greater(in,multiplier) 
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% replaces each grid-unity of in with multiplier x multiplier units 
% 
% manuel.luck@gmail.com 
  
  for i = 1:size(in,1) 
    for j = 1:size(in,2) 
      out((i*multiplier+1)-multiplier:(i*multiplier),(j*multiplier+1)-multiplier:(j*multiplier)) = in (i,j); 
    end 
  end 
end 
  
function [out] = quad_cloud(cloud,X,Y,res) 
%% out = quad_cloud(cloud,X,Y,res) 
% selects the subclouds for each cell  
% 
% manuel.luck@gmail.com 
  
  out = cloud(cloud(:,1) >= X & cloud(:,1) < X + res(1) &... 
       cloud(:,2) >= Y & cloud(:,2) < Y + res(2),:); 
end 
  
function [dtm_out,dsm_out] = dtm_dsm_cellfun(cloud,dtm_in,dsm_in,threshold) 
%% dtm_out,dsm_out] = dtm_dsm_cellfun(cloud,dtm_in,dsm_in,threshold) 
% creates a DTM value and a DSM value by: 
% determining if the difference between the lowest point in the cloud and 
% the actual dtm are withhin a specific threshold in order to either change 
% the dtm for the cell or to stay with the old value.  
% 
% manuel.luck@gmail.com 
  
  if size(cloud,2) > 1 
    mini = min(cloud(:,3)); 
    if abs(mini-dtm_in) <= threshold 
      dtm_out = mini; 
    else 
      dtm_out = dtm_in; 
    end 
    dsm_out = max(cloud(:,3)); 
  else 
    dtm_out = dtm_in; 
    dsm_out = dsm_in; 
  
  end 
end 
  
function [gp,vp,hp] = classi_gp_vp_hp_cellfun(cloud,dtm,threshold) 
%[gp,vp,hp] = classi_gp_vp_hp_cellfun(cloud,dtm,threshold) 
% classifies each point as vegetation point, ground point or highest point.  
% 
% manuel.luck@gmail.com 
  if size(cloud,2) > 1 
    hp = cloud(cloud(:,3) == max(cloud(:,3)),:); 
    gp = cloud(abs(cloud(:,3)-dtm) <= threshold,:); 
    vp = cloud(abs(cloud(:,3)-dtm) > threshold,:); 
  else 
    gp = []; 
    hp = []; 
    vp = []; 
  end 
end 
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8.1.3 Growing Forest 

Growing Forest is the function used for separating the trees. To achieve this separation, 

three input variables are needed. First the Stem_Points, an array containing the 

coordinates of each trunk point and information about its intensity, the number of points 

represented by this voxel point, three voxel identification numbers as well as the trunk 

id. The second variable is the array no_understory. This variable contains the filtered 

voxel-vegetation points with a minimal height above the maximal height of the separated 

trunks. The array has the same structure as the Stem_Points with the only difference that 

there is no trunk id. The third input variable is the max_d. It contains the maximal distance 

allowed between two nodes to build an edge.  

Starting with these three variables, we add an additional trunk id (9999) to the 

no_understory points and concatenate the two arrays to a single point cloud. We use this 

point cloud and the maximal distance value for the edgelist production and the graph 

creation. As we want a logarithmic scale to the egdeweights, we use the 10th logarithm 

of the distance between the nodes. Instead of using the connected compartments as in 

the trunk separation before, we now compare the shortest path from each node in the 

graph to the highest point of each trunk. The points are then assigned to the trunk 

connected with the shortest overall distance. 
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The MATLAB code of the function: 
 
function [Tree, Forest] = growing_Forest4voxel(Stem_Points, no_understory, max_d) 
%% [Tree, Forest] = growing_Forest4voxel(Stem_Points,no_understory,max_d) 
% Uses shortes path within a build graph to separate Trees. 
% 
% input:  Stem_Points:  Previously separated stem point cloud 
%      no_understory: Point cloud containing vegetation higher than Stem_Points  
%      max_d:     maximal distance to build graph 
% 
% output:  Tree:      cells containing all points of a tree 
%      Forest:     point cloud containing all points with an id for 
%              each tree 
% 
% manuel.luck@gmail.com 
  
%% Code 
  under_s = Stem_Points; 
  upper_s = no_understory; 
  upper_s(:,10) = 9999; 
  
  
  Cloud = [upper_s;under_s]; 
  
  G = create_graph_by_edgelist([Cloud(:,1:2),Cloud(:,3)],max_d); 
  G.Nodes.cloud  = Cloud(1:size(G.Nodes,1),:);     
  
  disp('Searching Stems') 
  stem_ids = unique(under_s(:,10)); 
  stem_ids(stem_ids == 9999) = []; 
  
  disp('extracting') 
  Easting   =  G.Nodes.cloud(:,1); 
  Northing   =  G.Nodes.cloud(:,2); 
  AboveDTM   =  G.Nodes.cloud(:,3); 
  Intensity  =  G.Nodes.cloud(:,4); 
  AboveSea   =  G.Nodes.cloud(:,5); 
  Voxelcount  =  G.Nodes.cloud(:,6); 
  Dim1     =  G.Nodes.cloud(:,7); 
  Dim2     =  G.Nodes.cloud(:,8); 
  Dim3     =  G.Nodes.cloud(:,9); 
  Stem_Nr   =  G.Nodes.cloud(:,10); 
  
  Out     =  table(Easting, Northing, AboveDTM,... 
              Intensity,AboveSea,Voxelcount,... 
              Dim1,Dim2,Dim3,Stem_Nr); 
  
  disp('Calculating Shortest Path') 
  D = zeros(size(stem_ids,1),size(G.Nodes,1)); 
  for iv = 1:size(stem_ids,1) 
    disp(iv) 
    id_min = max(G.Nodes.cloud(G.Nodes.cloud(:,10) == stem_ids(iv,1),3)); 
    idx_g = find(G.Nodes.cloud(:,3) == id_min & G.Nodes.cloud(:,10) == stem_ids(iv,1)); 
    [~,D(iv,:)] = shortestpathtree(G,idx_g(1),'all'); 
  end 
  
  [min_D,idx_shortest_Path] = min(D,[],1);  
  
  idx = stem_ids(idx_shortest_Path); 
  idx(min_D == inf) = NaN; 
  
  Out.Stem_Nr = idx; 
  Forest = Out; 
  
  Tree{1,size(stem_ids,1)} = []; 
  for i = 1:size(stem_ids,1) 
       Tree{i} = Out(Out.Stem_Nr==i,:); 
  end  
end 
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function G = create_graph_by_edgelist(in,max_d) 
%% G = create_graph_by_edgelist(in,max_d) 
% creates graph with an edgelist connecting all points within max_d of 
% eachother. 
% input:  in:   PointCloud(x,y,z) 
%      max_d: Maximal Distance (d)   
% 
% output:  G:   Graph with logrithmic edgeweight 
  
disp('building Tree') 
  Mdl = KDTreeSearcher(in); 
  
disp('kNN-Search') 
  [IdxNN_a,D_a] = rangesearch(Mdl,in,max_d);  
  
disp('Edgelist')  
  
  edgelist = cellfun(@(C1,C2) create_edgelist_cellfun(C1,C2),IdxNN_a,D_a,'UniformOutput',false); 
  edgelist  = cell2mat(edgelist(:));  
  
  G = graph(edgelist(:,1),edgelist(:,2),10.^(edgelist(:,3)+1)); 
end 
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8.1.4 Extract Tree Data 

Extract Tree Data has the goal to extract basic measures for the case, that the QSM 

generation did not work.  

In order to find the trunk position, we use a height interval from 1-2 meters. Then we try 

to fit a cylinder in the cloud using the MATLAB cylinder fitting function. If this works, we 

use the centre of the cylinder model as our trunk centre and two times the Radius as 

DBH. If the cylinder fitting does not find enough inlier points in order to create a model, 

we use the mean position of each point in this height interval. The DBH is calculated as 

the mean distance (only Easting and Northing) of each point within the interval to the 

centre.  

The canopy position is estimated by calculating the mean position of each point in the 

top meter of each tree. Thus, the Offset between canopy and trunk is the difference in 

Easting and Northing between the two positions.  

The tree height is the highest point in the cloud. 

How much area is covered by the tree is estimated using a two dimensional alphashape 

of the point cloud.  
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The MATLAB code of the function: 
 
function tree_data = extract_tree_data(tree_cloud) 
%% tree_data = extract_tree_data(tree_cloud) 
% Extracting measures from tree point clouds 
% 
% manuel.luck@gmail.com 
  
%% Code 
  tree_ids = unique(tree_cloud(:,6)); 
  
  ID     = zeros(size(tree_ids,1),1); 
  Height   = zeros(size(tree_ids,1),1); 
  DBH_cyl   = zeros(size(tree_ids,1),1); 
  DBH_d    = zeros(size(tree_ids,1),1); 
  Area    = zeros(size(tree_ids,1),1); 
  Offset   = zeros(size(tree_ids,1),1); 
  Points   = zeros(size(tree_ids,1),1); 
  Trunk_X   = zeros(size(tree_ids,1),1); 
  Trunk_Y   = zeros(size(tree_ids,1),1); 
  Trunk_Z   = zeros(size(tree_ids,1),1); 
  Canopy_X  = zeros(size(tree_ids,1),1); 
  Canopy_Y  = zeros(size(tree_ids,1),1); 
  Canopy_Z  = zeros(size(tree_ids,1),1); 
   
  tree_data  = 
table(ID,Height,DBH_cyl,DBH_d,Area,Offset,Points,Trunk_X,Trunk_Y,Trunk_Z,Canopy_X,Canopy_Y,Canopy_Z,'VariableNames', 
{'ID','Height','DBH_cyl','DBH_d','Area','Offset','Points','Trunk_X','Trunk_Y','Trunk_Z','Canopy_X','Canopy_Y','Canopy_Z'}); 
  
  for i = 1:size(tree_ids,1) 
    % subcloud 
    cloud    = tree_cloud(tree_cloud(:,6) == tree_ids(i),:); 
  
    % Cylinderfitting   
    ptCloud = pointCloud(cloud(cloud(:,3)<=2,1:3)); 
    [model,~,~] = pcfitcylinder(ptCloud,0.1,[0,0,1],5); 
  
    % alphashape 2d 
    shp2d = alphaShape(cloud(:,1:2)); 
  
    % Canopy 
    canopy = mean(cloud(cloud(:,3)>=max(cloud(:,3))-1,1:3),1); 
  
    if model.Center(1,1) > 0 
      Center = model.Center; 
      offset = pdist2(canopy(1,1:2),model.Center(1,1:2)); 
    else 
      Center = mean(cloud(cloud(:,3)<=min(cloud(:,3))+max(cloud(:,3))./10,1:3),1); 
  
      offset = pdist2(canopy(1,1:2),Center(1,1:2)); 
    end 
  
    % Saving  
    tree_data.ID(i)     = tree_ids(i); 
    tree_data.Height(i)   = max(cloud(:,3)); 
    tree_data.DBH_cyl(i)    = model.Radius.*2; 
    tree_data.DBH_d(i) = mean(pdist2(mean(cloud(cloud(:,3)<=2,1:2)),cloud(cloud(:,3)<=2,1:2)))*2; 
    tree_data.Area(i)    = area(shp2d); 
    tree_data.Offset(i)   = offset;  
    tree_data.Points(i)   = size(cloud(:,1),1); 
    tree_data.Trunk_X(i)  = Center(1,1); 
    tree_data.Trunk_Y(i)  = Center(1,2); 
    tree_data.Trunk_Z(i)  = Center(1,3); 
    tree_data.Canopy_X(i)  = canopy(1,1); 
    tree_data.Canopy_Y(i)  = canopy(1,2); 
    tree_data.Canopy_Z(i)  = canopy(1,3); 
    clear model canopy shp2d cloud 
  end 
end 
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8.1.5 Raumonen et al. treeqsm.m 

We used the provided input structure (Raumonen et al., 2013) and added a while loop 

around the whole given structure. Like this we are able to continue easy if an error 

occured in the function. 

Our input variable is called Tree_Cloud_final, containing the coordinates, tree id, intensity 

and voxel ids for each point. The output variable is a cell structure containing all outputs 

from the treeqsm function in a separate cell for each tree.  
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The MATLAB code of the function: 
 
while i <= size(forest_tree_id,1) 

if max(Tree_Cloud_final(Tree_Cloud_final(:,10)==forest_tree_id(i),3)) -  
min(Tree_Cloud_final(Tree_Cloud_final(:,10)==forest_tree_id(i),3)) >= 20   

    % The following parameters can be varied and should be optimised (they 
    % can have multiple values given as vectors, e.g. [4 6]): 
      inputs.PatchDiam1 = 0.1; % Patch size of the first uniform-size cover 
      inputs.PatchDiam2Min = [0.02 0.03]; % Minimum patch size of the cover sets in the second cover 
      inputs.PatchDiam2Max = 0.06; % Maximum cover set size in the stem's base in the second cover 
      inputs.lcyl = [2 6]; % Relative (length/radius) length of the cylinders 
      inputs.FilRad = 3; % Relative radius for outlier point filtering 
    % The following parameters can be varied and but usually can be kept as 
    %  
    % shown (i.e. little bigger than PatchDiam parameters): 
      inputs.BallRad1 = inputs.PatchDiam1+0.01; % Ball radius in the first uniform-size cover generation  
      inputs.BallRad2 = inputs.PatchDiam2Max+0.01; % Maximum ball radius in the second cover generation 
    % The following parameters can be usually kept fixed as shown: 
      inputs.nmin1 = 3; % Minimum number of points in BallRad1-balls, generally good value is 3 
      inputs.nmin2 = 1; % Minimum number of points in BallRad2-balls, generally good value is 1 
      inputs.OnlyTree = 1; % If 1, point cloud contains points only from the tree 
      inputs.Tria = 0; % If 1, produces a triangulation 
      inputs.Dist = 1; % If 1, computes the point-model distances  
    % Different cylinder radius correction options for modifying too large and 
    % too small cylinders:  
    % Traditional TreeQSM choices: 
    inputs.MinCylRad = 0.0025; % Minimum cylinder radius, used particularly in the taper corrections 
    inputs.ParentCor = 1; % Radii in a child branch are always smaller than the radii of the parent cylinder in the parent branch 
    inputs.TaperCor = 1; % Use partially linear (stem) and parabola (branches) taper corrections 
    % Growth volume correction approach introduced by Jan Hackenberg, 
    % allometry: GrowthVol = a*Radius^b+c 
    inputs.GrowthVolCor = 0; % Use growth volume (GV) correction 
    inputs.GrowthVolFac = 2.5; % fac-parameter of the GV-approach, defines upper and lower bound. When using GV-approach, 
consider setting: TaperCorr = 0, ParentCorr = 0, MinCylinderRadius = 0. 
  
  % Other inputs 
  
    % These parameters don't affect the QSM-reconstruction but define what is 
    % saved, plotted, and displayed and how the models are named/indexed 
    inputs.name = strcat('Tree ',num2str(i)); % Name string for saving output files and naming models 
    inputs.tree = i; % Tree index. If modelling multiple trees, then they can be indexed uniquely 
    inputs.model = 1; % Model index, can separate models if multiple models wit h the same inputs 
    inputs.savemat = 0; % If 1, saves the output struct QSM as a MATLAB-file into \result folder 
    % If name = 'pine', tree = 2, model = 5, 
    % the name of the saved file is 'QSM_pine_t2_m5.mat' 
    inputs.savetxt = 0; % If 1, saves the models in .txt-files 
    inputs.plot = 0; % If 1, plots the model, the segmentation of the point cloud and distributions 
    inputs.disp = 2; % Defines what is displayed during the reconstruction: 2 = display all; 1 = display name, parameters and distances; 
0 = display only the name 
  
    QSM(i) = {treeqsm(Tree_Cloud_final(Tree_Cloud_final(:,10)==forest_tree_id(i),1:3), 
             inputs)}; 
  end 
  i = i + 1; 
end 
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8.2 Additional Figures 

8.2.1 Research Area, TLS & UAV-LS Point Cloud 

 

 

Figure 8-4: UAV-LS Point Cloud. 
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Figure 8-5: TLS Point Cloud. 
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8.2.2 DTM Creation 

 

 

Figure 8-6: DTM generation, iteration 2 (top) and 3 (bottom). 
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Figure 8-7: DTM generation, iteration 4 (top) and 5 (bottom). 
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Figure 8-8: DTM generation, iteration 6 (top) and 7 (bottom). 
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Figure 8-9: DTM generation, iteration 8 (top) and 9 (bottom). 
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Figure 8-10: Comparison between TLS (top) and UAV-LS (bottom) ground points. 
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Figure 8-11: Comparison between TLS (top) and UAV-LS (bottom) vegetation points. 
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8.2.3 TLS Trees 

 

Figure 8-12: Separated trees from TLS Point Cloud. 
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Figure 8-13: Separated trees from TLS Point Cloud. 
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8.2.4 UAV-LS Trees 

 

Figure 8-14: Separated trees from UAV-LS Point Cloud. 
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Figure 8-15: Separated trees from UAV-LS Point Cloud.  
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Figure 8-16: Separated trees from UAV-LS Point Cloud. 
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