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Abstract 

In the era of digitalization and location-based-services, public transportation operators face new challenges in order 

to meet the demands of public transportation users. On the one hand this includes on demand transportation services 

as car- and bicycle-sharing. On the other hand, public transportation users demand reliable transportation-services 

in order to plan their activities in busy calendars. Furthermore, reliable transportation services are also important 

for the economic success of different regions. Consequently, from this side urban planners and decision-makers 

claim new demands to public transportation operators. Big data in public transportation has opened new possibilities 

for public transportation operators to meet these demands with innovative applications. Such applications do not 

necessarily need to directly target the end-customer. Rather big data applications can also help transportation 

operators improve their services, which in turn satisfies the end-customer. One such application would be the ability 

to effectively predict delays of transportation services. This would allow transportation operators to make the right 

decisions in case of delays in order to maintain successful transportation operations. Consequently, this has led to 

the development of different delay prediction systems using different approaches and techniques.  

The aim of this thesis is to contribute to a better understanding how big data can contribute to predict train arrival 

delays. In current research different input variables and machine-learning techniques have been evaluated to predict 

arrival delays in public bus transportation and railway transportation networks. The variables used for delay 

prediction have been characterizing specific trip-related properties of the transportation service. Only recently, the 

focus has shifted from trip-related properties towards variables derived by a more holistic network-approach (Oneto 

et al., 2018; Sun et al., 2018). Using this approach different useful variables for transportation delay prediction that 

are in relation with the whole transportation network have been identified. However, until now little research has 

been conducted on how these variables contribute to arrival delay prediction. Within this thesis it could be found 

that not all input variables discussed in existing literature contribute to delay prediction in the same way. Results 

show that timetable related input variables do only have a marginal contribution to delay prediction. Whereas 

variables capturing the current traffic situation within the network highly contribute to successful prediction of 

arrival delays in railway transportation systems. The aim of this thesis is to gain a deeper understanding in the 

process of feature creation. More specific, the goal is to identify how, and which kind of features contribute more 

or less to train arrival delay prediction.  
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1. Introduction 

1.1 Motivation and background 

Reports in the late 1960s a majority of Swiss citizens considered public transport as a discontinued model, 

which should be maintained until the full motorization of Swiss citizens and for poor and elderly people. 

The report presented in 1972 identified that an inadequate level of service, especially consisting of 

inconvenient timetables and especially unpunctuality, as the railways’ main weaknesses. As a result, the 

authors proposed the implementation of a nation-wide, regular interval ‘pulse’ timetable called 

“Taktfahrplan” (Meiner, 1991; Petersen, 2016). Nowadays, public transportation is an essential part of 

communities and cities and whole nations. Switzerland is known for having among the highest rates of 

public transport use in Western Europe, as well as nationally-coordinated scheduling that extends deep 

into rural areas (Petersen, 2016). Furthermore, timetabling is still considered to take in a key-role for 

effective public transportation (Lee, Yen and Chou, 2016). Today 17% of all commuters in Switzerland 

use the public train system to reach their workplace. 57% of this 655’000 people use public trains to travel 

for more than 50km to their workplace (Bundesamt für Statistik, 2016). In reality the number of persons 

using the public train transport for long distances must be considered even higher, as the famous 

“Pendlerstatistik” provided by the Bundesamt für Statistik (BFS) in 2016 does not include train passengers 

using public transport for other purposes, for example leisure-activities (Bundesamt für Statistik, 2016). 

The mentioned 50km corresponds approximately to half the distance from the popular train-route Zürich-

Bern. The distance covered by this train-route might not be of high importance in other countries but for 

sure it is within Switzerland. One need to consider that within approximately 100km the train network 

connects three political units of state-level (Cantons) and connects the economically most important region 

of Switzerland (Zürich) with its national capital Bern. This highlights the political, economical and social 

importance of the long-distance railway traffic network in Switzerland. In order to minimalize negative 

economical and social effects it is important that the transportation service is continuously operated with 

as little disruptions as possible. 

The backbone of the Swiss national public transport system is the “Fernverkehrs-Netz”, which consists of 

the long-distance railway traffic. The long-distance traffic concession is granted by the Swiss government 

to the Schweizerischen Bundesbahnen (SBB). The most central aim for the long-distance traffic is to 

connect all areas of action and superordinate centers of Switzerland and integrating Switzerland into the 

European major traffic axis (Bundesamt für Verkehr BAV, 2017). The long-distance railway network 

serves all regions within Switzerland and provides the reference pulse signal for the nation-wide pulse 

timetable (Schweizerische Bundesbahnen, 2017). Therefore, service disruptions of the long-distance 

traffic affect the whole public transportation network in Switzerland. This emphasizes the importance that 

the long-distance traffic is on schedule in order to minimalize negative effects on economy and society.  
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1.2 Problem and goal setting 

As outlined above it is important that public trains operated by the SBB are on schedule to guarantee 

transit connections with other more regional operating public transport agencies. In a highly scheduled 

railway traffic networks a single delayed train may cause a domino effect of secondary delays over the 

entire network, which is a main concern to railway planners and operations dispatchers (Goverde, 2010). 

Therefore, the development of a system predicting train delays in the swiss long-distance railway network 

would help to improve the public transport system as a whole and its supervisor in decision-making. 

Additionally, it could be a mean to provide customers with more detailed real-time information, which 

would increase the customer’s perception of reliability of the railway transportation service. Moreover, in 

case of service disruptions it could provide valid alternatives to passengers looking for the best train 

connections (Dotoli et al., 2017). The goal of this master thesis is to contribute to the current state of 

research in assessing and enhancing public transportation network services.  

 

 

2. Related literature 

2.1 Big data analytics and public transportation 

The fast-paced development of advanced technologies has led to the accumulation of a vast amount of gathered 

data. This development did not stop either in the domain of public transportation. The properties of big data can be 

characterized by the 4 V’s. Namely, volume, variety, velocity and value (Fosso Wamba et al., 2015; Ghofrani et 

al., 2018; Neilson et al., 2019). All of them describe specific properties of the data and its related challenges when 

facing big data. ‘Volume’ is the term for describing the magnitude of data available in big data analytical tasks. A 

major challenge with large amounts of data lies in its computational processing and storage of the data. 

Consequently, new computational frameworks, such as scalable distributed computing have been developed to cope 

with this challenge (Neilson et al., 2019). ‘Variety’ refers to the various sources from which data can be generated. 

The variety of data sources can range from sensors, which measure temperature over to mobile devices registering 

spatial movement over time or even social media posts. Mostly these data sources have developed a data structure 

that is senseful within their source-system, therefore a major challenge regarding big data variety, lies in integrating 

different data structures in a meaningful way, where the data from different sources can be analyzed and processed 

(Neilson et al., 2019). The speed or frequency of generating data is characterized by ‘Velocity’. The challenge here 

is to find ways to treat data corresponding to their purpose. As Assunção et al. (2015) highlights, data can arrive 

and require processing at different speeds. While for some analytics applications, the arrival and processing of data 

can be performed in batch, other applications require continuous and real-time analyses.  
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2.1.1 Big data analytics and potential application fields in transportation 

In the domain of public transportation big data has the potential to improve the safety and sustainability of 

transportation systems and offers opportunities to apply evidence-based approaches to decision-making. Neilson et 

al. (2019) emphasize three main ideas, how institutions responsible for transportation can make use of big data to 

create safer and more sustainable transportation systems.  

First, an obvious way to improve the sustainability of transportation systems is to share real-time information with 

users. This enables users to make information-based decision to solve routing problems. In addition providing public 

transportation operators with real-time information might be able to react faster to service disruptions and allow 

improved decision making (Ghofrani et al., 2018).  

Secondly, Neilson et al. (2019) highlights that analysis of past transportation data can support evidence-based 

approaches for urban planning and enhance decision makers’ understanding of a public transportation network. For 

example, by analyzing data from the automatic smart card fare collection system in Singapore, which contains 

origin-destination pairs, Zhong et al. (2014) could comprehend how people use the local metro system and therefore 

understand how people move within the city’s metro system. Moreover, by analyzing the data over several years 

they were able to detect changing patterns in peoples’ movement over space and concluded that the reason for this 

change is likely to be because of the extension of the metro system in specific areas. This example showcases how 

big data analytics can contribute to city planners and transportation network planners understanding in people’s 

behaviour and therefore support their decisions about future investments.  

The third main idea mentioned by Neilson et al. (2019) is to improve safety in transportation systems by analyzing 

collisions or near misses. This idea especially refers to motorized private transport, where location and types of 

traffic collisions can be registered, aggregated and analyzed to identify high-collision areas or the spatial distribution 

of certain collision types (Xie and Yan, 2013; Shafabakhsh, Famili and Bahadori, 2017). Nevertheless, this idea is 

also a topic in public transportation systems, even within rail transportation, which is currently the safest mode of 

surface transportation. However, accidents still occur and analyzing historical accident data can provide useful, 

high-level views regarding safety trends and characteristics. But as accident datasets of railway networks are usually 

small it is hard to depict and predict the localized risk profile for a specific location given a time period (Ghofrani 

et al., 2018). 

Ghofrani et al. (2018) highlighted that current research of big data analytics in railway systems context can be 

categorized into three main application fields. The first category focuses on maintenance. Big data analytics in 

railway maintenance focuses on how big data analytics can contribute the activity of maintaining the functionality 

of system components such as vehicles, signaling equipment and tracks (Li et al., 2014; Fumeo, Oneto and Anguita, 

2015). The second application field Ghofrani et al. (2018) denotes is the field of operations. They emphasize that 

intelligent rail transportation systems that contain big data analytics have provided innovative technologies for 

railway infrastructure managers and train operation companies that help them to make more efficient decisions 

(Liang, Martin and Cui, 2017). In this field big data analytics supports decision-makers in real-time for rail-traffic 

management by improving timetabling and the creation of simulation models. This application field is much related 

to Neilsons et al’s (2019) first and second idea on how big data can improve transportation systems. According to 

Ghofrani et al. (2018), the third main application field of big data analytics in railway systems is dedicated to safety. 

As already mentioned, rail transportation is currently the safest transportation mode, but to achieve this railway 

infrastructure and operations needs to be monitored, which involves big data sources and consequently a deep 

understanding of the data.  
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Application fields of big data analytics in bus transportation domain are similar to those in railway systems. 

Similarly to railway systems the field of operations in bus transportation system has benefited from big data 

analytics (Moreira-Matias et al., 2015). Bus transportation systems have especially benefited since the integration 

of automatic vehicle location and automatic passenger counting systems into the dispatching systems. The 

availability of this data opened new research directions for improving the bus transportation services’ reliability 

(Sun et al., 2018).     

The focus of this thesis is to evaluate a new approach of predictive analytics in the operations-field of public 

transportation. In current research predictive analytics as a sub-field of big data analytics is the most dominant 

approach in operations-related research (Ghofrani et al., 2018). Predictive analytics provides tools and methods to 

make predictions about future events by analyzing current and historical data and therefore is a promising approach 

to encounter scheduling problems in transportation systems (Assunção et al., 2015; Ghofrani et al., 2018). 

 

2.1.2 Predictive analytics and public transportation scheduling 

Törnquist (2006) highlights that railway traffic scheduling is often considered a difficult problem primarily due to 

its complexity regarding size and the signification interdependencies within railway network. In public bus 

transportation systems improper scheduling is an important internal factor causing reliability problems of the bus 

transportation service (Moreira-Matias et al., 2015). Törnquist (2006) reviewed 48 different approaches to approach 

scheduling problems. For this she made a distinction between scheduling (timetabling) and re-scheduling 

(dispatching). Scheduling is the act of constructing a scheduling from scratch, while re-scheduling indicates that a 

schedule already exists and will be modified according to deviations from the present schedule. Furthermore, she 

states that scheduling can be carried out with different time perspectives. Tactical scheduling refers to creating 

master schedules that specify a strict route and timetable for each train with the intention to execute it in real-time. 

It usually involves scheduling for large traffic network for a long-time horizon and may be more complex, as on the 

one hand it needs to reflect the demand of several stakeholders on the one side. On the other hand, tactical scheduling 

must also consider infrastructural limitations of the railway network. Operational scheduling on the other hand has 

a short time frame and is initialized close to the time of the public transportation service’s departure.  

Applying techniques and methods of predictive analytics could contribute to a better understanding of public 

transportation networks and their inherent dynamics. More specifically, predictive analytics offer new possibilities 

to solve schedule planning and dispatching problems in public transportation. Predictive analytics provides methods 

and to techniques to build models, which predict public transportation delays or travel time in short-term or even 

real-time. This can offer possibilities to detect potential instabilities in-time and alert dispatchers to reschedule 

specific trains or take other actions, if deviations from the schedule occur. This would help to maintain the reliability 

of the system on the on hand but also customer satisfaction on the other. Therefore, predictive analytics can support 

operational scheduling by verifying different scenarios and provide the foundation for evidence-based decision-

making. That in turn is congruent to Neilson et al.’s (2019) first idea how big data analytics can be applied in public 

transportation. In railway networks, such models use train movement data that is collected from infrastructure track 

occupation records, sensors or mobile GPS devices gathered in real-time. Using this incoming stream of data, the 

model then tries to predict whether an arrival is delayed or not (Ghofrani et al., 2018). Similar approaches have 

been undertaken in public bus networks (Oruganti et al., 2016; Gal et al., 2017; Sun et al., 2018). The domain of 

public bus network has especially profited since transit agencies have been integrating real-time sensors into public 

transportation systems.  
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Predictive analytics often make use of machine learning algorithms (Dey, 2016). In general, these algorithms are 

trained to predict a specific value. The algorithm gets trained by providing it a large amount of data. The data 

includes different variables that may contribute to the value the algorithm needs to predict. During the training 

phase the algorithm tries to find the underlying function to predict the variable of interest. Currently a large variety 

of learning algorithms have been assessed to predict delay. Most popular are artificial neural networks (ANN), 

Support Vector Regression (SVR), Random Forest Models and Gradient Boosting Decision Trees (GBDT) 

(Milinković et al., 2013; Moreira-Matias et al., 2015; Oruganti et al., 2016; Ghofrani et al., 2018; Yamaguchi, As 

and Mine, 2019). As suggested by Neilson et al. (2019) one can make use of historical transportation data containing 

service delay information to train learning algorithms, which in turn can be used for schedule evaluation on a tactical 

or operational scheduling tasks. The used algorithms and data are often similar for both scheduling tasks and 

therefore a distinct differentiation between predictive analytics on an operational or tactical level is not always 

possible. Moreover, the same models even can be applied on both levels (Peters et al., 2005).  

As Törnquist (2006) highlights, tactical scheduling usually involves scheduling for a large traffic network for a long 

time horizon and the time available for creating the timetable may be several months. Therefore, using predictive 

analytics on a tactical level should approach the transportation network in a more holistic way. According to 

Marković et al. (2015) the aim of applying predictive analytics on a tactical level is to determine the functional 

relation between transportation system characteristics and a variable of interest, for example delayed arrivals or 

travel-time (Marković et al., 2015). In order to account the complexity regarding size and interdependencies 

between transportation vehicles, predictive analytics on a tactical level requires a more holistic perspective on the 

transportation network. Furthermore, if predictive analytics are applied in the context of transportation delays it is 

worth noting the intrinsic time varying nature of the delay phenomenon (Oneto et al., 2017). The resulting models 

from applying predictive analytics on a tactical level can then be used for tactical planning such as timetabling and 

resource planning and the evaluation of different scenarios (Marković et al., 2015).  

The following section presents different applications of predictive analytics. Furthermore, current state-of-the-art 

techniques and approaches are presented. The aim is to provide an overview of current research related to different 

delay and travel time prediction approaches for bus and train transportation networks. 

 

2.2 Delay prediction in bus transportation  

2.2.1 Available data sources and general problem setting 

Public transportation in urban areas is a critical component of a smart and connected community (Sun et al., 2018). 

The advantage of bus transportation systems is that they can be integrated within a road network. Considering an 

existing road network, buses need less infrastructural investments, compared to tram or train transportation system. 

However, the downside of this, is that buses share their network with other participants of the road network. This 

can lead to network overloads and restrict the reliability of the bus transportation system as services are cannot be 

on time. Consequently, monitoring their services is getting more relevant for bus transportation agencies. Recently, 

bus agencies have been integrating real-time sensors into their dispatching systems (Sun et al., 2018). Most often 

these systems rely on the use of the Global Positioning System (GPS) for capturing a vehicles position. GPS is 

traditionally the basis of automatic vehicle location (AVL), which is one component of a traditional bus agency 

dispatching system. This component automatically registers a vehicles speed and location in latitude-longitude pairs 

within an interval of 10-30s and broadcasts it (Moreira-Matias et al., 2015). Now, all the incoming data can be 

stored or directly used and processed to provide arrival time predictions at bus stops (Sun et al., 2018). The second 
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widely used component is automatic passenger counting (APC). This component typically relies on estimation 

techniques based on door loop counts or weight sensors. Especially, combining AVL and APC is promising as APC 

provides accurate timing of when a bus stops at a transit stop, which AVL cannot provide. AVL data analysis is can 

provide the means for evaluating a schedule plan’s reliability. For example, by identifying route segments where 

greater schedule deviations, and therefore, the schedule plan should be adjusted by changing the timetable or by 

introducing bus priority lanes. Furthermore, data gathered using AVL is an often used data source by predictive 

analytics (Moreira-Matias et al., 2015). But one has to consider that AVL data is often noisy as GPS accuracy is 

not always sufficient and therefore needs to processed and map-matched (Sun et al., 2018). A process of positioning 

the coordinate of the point obtained from the tracking device into the bus network onto the street (Čelan and Lep, 

2017). This is usually a computational expensive process. Besides AVL and APC data, static GTFS in combination 

with real-time GTFS can also be used to predict travel time, as often real-time GTFS also contains GPS information 

derived by AVL systems (Sun et al., 2018). 

Currently, much research has been done in the recent years on how predictive analytics can be applied to solve the 

travel time prediction problem in public bus transportation. In general, current research tries to answer the following 

question: Given the current position of a bus, when does the bus arrive at the next or one of the subsequent bus 

stations. To solve this problem different algorithms and approaches have been evaluated so far. Maybe the naivest 

approach is what is called the historical average travel time model, which is presented in the following section 

(Gurmu and Fan, 2014; Oruganti et al., 2016; Čelan and Lep, 2017; As and Mine, 2018). This model relies on the 

availability of accurate AVL data. Once processed and bus arrival times for each bus at each stop have been 

calculated, one can build the historical average travel time model. However, numerous parameters affect travel 

velocity of buses such as density of traffic flow, administrative limitations, number of passengers or weather 

situation (Čelan and Lep, 2017). In the following section different models and approaches are discussed in more 

detail. 

 

2.2.2 Bus travel time prediction using non-learning algorithms 

There are multiple approaches and techniques to solve the travel time prediction problem of a bus. Probably the 

naivest model is the historical average travel time model, a non-learning method. This model is most often based 

on the processing and analysis of historical AVL data (Jeong and Rilett, 2004). Once the historical arrival times for 

each stop of a specific bus have been derived, one can calculate the travel time the bus needed between two adjacent 

bus stops. By aggregation according to different time periods it allows us to calculate the averaged travel time for 

a bus route segment. Consider a bus 𝑘, for which the model needs to predict the travel-time 𝑇 for the route segment 

𝑠 (segment between stop 𝑖 and downstream stop 𝑗). Each day is partitioned in eight time periods, 𝑝 ∈

 (𝑝1, 𝑝2, . . , 𝑝8). Then the average travel time 𝑇 for the route segment 𝑠 at time period 𝑝 can be calculated as: 

 

𝑻𝒔
𝒑

 =  𝑨 𝒋
𝒑

−  (𝑨 𝒊
𝒑

+  𝑫𝒊
𝒑
)    (1) 

 

Where  𝐴 𝑗
𝑝

 is the averaged arrival time of bus 𝑘 at station 𝑗 at period 𝑝.  𝐴 𝑖
𝑝

 is the averaged arrival time of bus 𝑘 at 

station 𝑖 and 𝐷𝑖
𝑝
 is the averaged dwell time of bus 𝑘 at station 𝑖. The average travel time 𝑇𝑠

𝑝
 can now be used as a 

predictor to estimate future arrival times for bus 𝑘 + 1 station 𝑗 (Jeong and Rilett, 2004). 
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Čelan and Lep (2017) further developed this approach by analysing historical AVL data for a specific bus route in 

Maribor, Slovenia. By analysing the data, they found regular patterns for the bus’s hourly averaged velocity. Buses 

have greatest average velocities early in the morning, late at night and during the weekend. Based on these findings 

they defined different time periods together with the corresponding specific average velocity. In order to accurately 

predict the arrival time of the bus at the stop requires the bus route trajectory. For this, Čelan and Lep (2017) defined 

different bus network model. Basically, the route trajectory was split in different nodes and links. An intuitive model 

they used, is to model bus stops and potential barriers such as roundabouts or crossings as nodes and links connect 

adjacent nodes. As they could locate the nodes, it is possible to calculate the distance for each link. Now, combined 

with an average velocity for a specific time period it is possible to estimate the bus travel time for each link given 

predefined time periods. Consequently, it is possible to predict the arrival time of the bus by extrapolating the arrival 

time using the equation: 

 

𝐓𝒑 = 𝒕𝑳𝒄
𝒑

∙ (𝟏 − 𝒏𝑳𝒄) + ∑ 𝒕𝒙
𝒑

 
𝑳𝒔−𝟏

𝒙= 𝑳𝒄+𝟏
    (2) 

 

Where T𝑝 is the predicted bus travel time in the time period 𝑝 from the current location to the location of the target 

bus stop. It is derived by summing up the travel times for each link in the model the bus needs to pass until the 

arrival of the target bus stop. 𝑡𝐿𝑐
𝑝

 is travel time that the bus in period  𝑝 uses link 𝐿𝑐 within the bus network. It is 

multiplied by the percentage of travel time that remains for the bus to cover until the end of the current link. Within 

the sum sign the travel times (in time period 𝑝) for all links are summed up, which the bus needs to absolve to reach 

the target node. Using this approach, they were able to predict the arrival time for all following stations with a mean 

absolute percentage error (MAPE) between 13.3-16.5% depending on the network model. They achieved the best 

results when not modelling the bus station and potential barriers as nodes in the network model. But by defining the 

half-distance between two stops respectively potential barriers as nodes (Čelan and Lep, 2017). However, in general 

historical average models are only reliable when the traffic pattern in the area of interest is relatively stable or where 

congestion is minimal, e.g. in rural areas (Gurmu and Fan, 2014).  

 

2.2.3. Bus travel time prediction using learning algorithms 

Travel time prediction using artificial neural networks for regression  

An approach using ANN to predict the arrival of a bus at a specific station was proposed by Gurmu and Fan (2014). 

Based on the current position of a bus, derived by AVL, they predict the arrival at a subsequent station using an 

ANN. ANN is a black box-type function that only provides an output and not a relationship between the independent 

variables and the target variable (Moreira-Matias et al., 2015). Gurmu and Fan (2014) argue by using an artificial 

neural network nonlinear correlation between travel times can be captured to predict bus travel time at subsequent 

bus stops. As input variables they choose the current bus location 𝑐, the last served station 𝑖, the arrival station to 

be predicted 𝑗 and the time of day.  
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The predicted arrival time 𝑻𝒄𝒋 for the 𝒌 to the station 𝒋 was calculated as: 

 

𝑻𝒄𝒋 = 𝑻𝒊𝒋 −  𝑻𝒊𝒄    (3) 

 

Where 𝑻𝒊𝒄 is derived by deducting departure time at stop 𝒊 from the current time, at point 𝒄. 𝑻𝒊𝒋 is the parameter 

predicted by the ANN and corresponds to the predicted travel time between stop 𝑖 and stop 𝒋. By deducting 𝑻𝒊𝒄 

from 𝑻𝒊𝒋 it is possible to calculate the predicted travel time 𝑻𝒄𝒋 between location 𝒄 and stop 𝒋. Gurmu and Fan (2014) 

compared this approach to a historical average model similar to Čelan and Lep (2017) using the same data. Their 

results show that overall prediction accuracy has benefitted by using an ANN.  

These two models were both evaluated by predicting travel time and hence calculating arrival for one specific bus 

route within a city. However, certainly these models could also be applied on a whole bus network. This has been 

demonstrated by the work of As and Mine (2018). Similar to Čelan and Lep  (2017) they divided a day into eight 

time periods. They analyzed historical bus arrival data of one month and calculated for each adjacent station pair 

the averaged travel time within each time period. With this information they are able to extrapolate the arrival time 

of a bus at a following bus station within its route and clarify the variability of bus travel time over each time period. 

In addition, the proposed model by As and Mine (2018) contributed to the current research by the following two 

aspects. First, instead of solely using historical average time or ANN they predicted travel time with a time series-

based approach. Therefore, they used a special form of an ANN, a so-called nonlinear autoregressive network with 

exogenous input (NARX) model. Especially dynamic nonlinear systems with time-series characteristics can be 

modelled by using NARX models. In general, the basic idea is to create a more dynamical model. As Gurmu and 

Fan (2014) they used historical average travel time for specific time periods as input variables for NARX model. 

The second contribution was by introducing a more dynamical input variable. By using a time series-based approach 

their model dynamically recalculates the historical average travel time for the period just before the current one. 

But by approaching the problem as a time-series their model could dynamically recalculate the historical average 

travel time for the time period just before the current one. This allows the model to capture information that is 

timely closer to the event it needs to predict. However, contrary to Gurmu and Fan (2014) this approach did not 

consider the current position of the bus as 𝑻𝒊𝒄 is unknown in the model proposed by As and Mine (2018). As and 

Mine (2018) directly compared the dynamical model with a static model, which also used NARX but without 

considering the average travel time for the preceding period. The results show that the dynamical model predicted 

travel time more accurate especially during the mornings where we could expect much traffic.  
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Travel time prediction using linear regression and Random Forest Regression 

Besides ANN other regression algorithms have also been applied to solve the travel time prediction problem. Most 

common is the application of random forest models and multivariate linear regression  (Moreira-Matias et al., 2015; 

Oruganti et al., 2016; Yamaguchi, As and Mine, 2019). Regression models have especially been applied to study 

the effects of different factors on the travel time. For example, it has been studied how weather affects bus travel 

time and how much these findings can be used to predict bus travel time in advance (Oruganti et al., 2016). 

Approaching travel time prediction as a regression problem offers the possibility to evaluate the different factors 

that could have effects on travel time. On the one side, this would result in a deeper understanding in which factors 

are relevant to predict travel time. On the other side, it can be a valuable feedback for public transportation agencies 

to know which factors or even which combination of factors can lead to longer travel time and thus to delays in the 

transportation system. Random Forests are an ensemble learning method for classification and regression where a 

number of decision trees are constructed. For regression tasks the outcome variable is fitted for a regression model 

using each predictor. For each prediction the data is split at split points and the sum of squared error at each split is 

evaluated. The predictor resulting in in the minimum sum of squared error is selected for the node. Therefore, the 

underlying principle is that a group of weak learners can be combined to for a strong learner (Oruganti et al., 2016).  

Oruganti et al. (2016) proposed a model to predict bus travel time based on multiple different variables including 

weather data. For the prediction model they used real-time transit feeds, which represent real-time updates of transit 

fleet information. It contains information about trip updates, service alerts and the current vehicle position. 

Furthermore, they used historical data about accurate bus’s arrival and departure times. The purpose of their research 

was to study the effect of weather and other factors such as traffic on the transportation system. In order to achieve 

this, they included traffic flow information to their model in form of the current traffic-speed on the bus route. 

Furthermore, they included weather data such as temperature, wind speed, precipitation and other weather-related 

information to their model. Based on these variables their model is able to explain more than 70% of the variance 

in the bus travel time and their linear regression model is able to make future out of the box predictions with an out-

of-sample error of 4.8 minutes, given information on bus schedule, weather and traffic. In addition, Oruganti et al. 

(2016) evaluated how well a linear regression model performs against a random forest model using the same data 

and input variables. The random forest model outperformed the linear regression slightly in terms of goodness fit, 

measured in 𝑅2 = 73% for random forest against 𝑅2 = 71% for linear regression. However, in terms predictive 

accuracy linear regression performed better than random forest (Oruganti et al., 2016). These findings correspond 

to the ones outlined by Yamaguchi et al. (2019). They compared different machine learning algorithms to predict 

travel time. To the authors surprise, linear regression performed as well as the ANN model to predict travel time 

over time intervals as proposed by As and Mine (2018). Overall, Yamaguchi et al. (2019) could find that a Gradient 

Boosting Decision Trees model performed best in terms of MAE (mean average error) and RMSE (root mean square 

error).  

On the other side the linear regression model enabled Oruganti et al. (2016) to determine the influence of different 

variables on the predicted outcome. For example it has been showed that in Nashville precipitation was not 

considered as a significant predictor, rather visibility and wind related factors were more important within a travel 

time prediction model using linear regression and Random Forest regression (Oruganti et al., 2016). 

In this section different approaches and techniques were presented. They have in common that they are all based on 

historical data analysis and predictive analytics to predict travel time for buses and calculate bus arrival times. The 

purpose of these papers is to evaluate the performance and prediction accuracy of the proposed approaches and 

techniques. However, in general these methods can be integrated in large-scale advanced public transportation 
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systems as proposed by Chen et al. (2004) or Sun et al. (2018) and others (Shalaby and Farhan, 2003; Oruganti et 

al., 2016; Gal et al., 2017). On the one hand, in contrast to the models presented above these large-scale advanced 

public transportation systems use a more holistic approach to predict travel time or arrival delays. This approach 

enables to retrieve further input variables that can be used for prediction. On the other hand, this holistic approach 

to transportation systems results in more complex system-architecture of the prediction model. Often such models 

as discussed above are only on piece of the whole advanced public transportation system.  

In the following different papers outline the full architecture of operational prediction systems for real-time bus 

arrival prediction and include sometimes multiple data sources and different techniques.  

 

2.2.4. Architectures of advanced public bus transportation systems 

The purpose of operational prediction systems, respectively advanced public transportation systems, is to predict 

the travel time of buses for downstream stops along a bus-service. The aim is to provide accurate bus arrival time 

information to the passengers in real-time. With accurate arrival information, transit users might efficiently schedule 

their departure time or adjust their itinerary according to the current transportation situation (Chen et al., 2004). As 

these system aim to provide information in real-time, they often integrate real-time information collected by AVL 

and APC and data from other sources, that could affect travel-time such as weather (Oruganti et al., 2016). In 

contrast, to the models outlined in the previous section, the systems discussed in this section are more overall 

solutions for advanced public transportation systems that would integrate such models as discussed in the previous 

section and combine it with other components. 

 

Multi-component system 

Chen et al. (2004) proposed a dynamic bus-arrival time prediction model based on the integration of weather 

information, historical APC data and individual on APC data. The bus-arrival time prediction consists of two major 

components. First, an ANN model that is based on historical trip data collected by APC units. The ANN model 

predicts travel time for each segment along the bus route, given trip starting time, day-of-week and weather 

conditions. While new generated trip data are added into the database regularly, training can be reconducted in order 

to ensure that the ANN model is up to date. Nevertheless, at the time the current ANN models did not encounter 

dynamic variables as the NARX model proposed by As and Mine (2018) and therefore could not adjust prediction 

using the most recent, real-time information for a bus trip. Therefore, Chen et al. (2004) integrated a second 

component to their prediction system. The second component is based on Kalman filter technique, which adjusts 

the predicted bus travel time by the ANN by accounting real-time information transmitted by the on-board APC 

unit of the bus in question. This allows to adjust online the travel/arrival-time prediction by accounting the most 

recent travel or arrival-time information. Shalaby and Farhan (2003) outlined a similar operational prediction 

system. Besides, APC data they integrate AVL data in their model as well. In addition to that they proposed a real-

time user-interface for transit controller to assess the effect of bus expressing at one or more downstream bus stops 

or the effects of prolonging dwell time at one or multiple stations.    
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Embedding the snapshot principle  

More recent proposed systems embed the snapshot principle in order to improve travel time prediction in operational 

prediction systems (Gal et al., 2017; Sun et al., 2018). The snapshot principle, is originally based in queueing theory 

and has evolved to enhance delay prediction in service processes (Senderovich et al., 2014). It says that considering 

a queuing process, an adequate delay prediction for a newly enqueued customer would the delay of either the last 

customer to enter the service or the delay of the customer at the head of the line (Senderovich et al., 2014). In 

transportation services the snapshot principle can be applied as follow. Consider a bus route 𝒓, with 𝒌 representing 

the current bus-service. The aim is to predict travel time for route segment 𝒔 between two adjacent bus stops (𝒔𝒊 

and 𝒔𝒋) within the route 𝒓. The snapshot principle suggests using the travel of the previous bus-service 𝒌 − 𝟏, which 

passed segment 𝒔 as a travel time prediction. Therefore, the travel time of bus 𝒌 − 𝟏 can be interpreted as an 

indicator for the current traffic situation and can be used as travel-time approximation for bus-service 𝒌. Because it 

is likely that the following bus 𝒌 encounters similar conditions as the preceding 𝒌 − 𝟏. Nevertheless, scheduled bus 

transportation services are often repeatedly executed after specific time intervals, for example every hour. However, 

the traffic situation might change during this time interval and using the travel time of 𝒌 − 𝟏 as an approximation 

might be insufficient (Gal et al., 2017; Sun et al., 2018). Therefore to achieve better travel time approximation for 

bus 𝒌, Sun et al. (2018) proposed to identify route segments that are shared by multiple bus routes. This is the case 

if segment 𝒔 is served by multiple bus routes. By identification of shared route segments, the time interval between 

two bus-services of different bus-routes travelling through 𝒔 can be minimized, resulting in better travel time 

approximations. 

Since bus delays are often induced by car traffic, it is tempting to use information retrieved by the snapshot principle 

and use it as a baseline for travel time prediction. The basic idea is to embed most current information to predict 

travel time. This idea has also been taken up by the proposed NARX model of As and Mine (2018) and by 

approaching the problem as a time-series. But, in contrast to Sun et al. (2018) their model only respects an average 

travel time calculated within a preceding timeframe, which is not as specific as the travel time of the directly derived 

by the preceding bus. On the other side, Gal et al. (2017) have shown that embedding snapshot information as input 

variables in regression trees can enhance prediction accuracy compared to the same model without snapshot 

information. 

 

2.3 Delay prediction in railway networks 

During 2006-2007 the British national rail network registered 800’000 delays, which led to 14 million train-minutes 

delay, which in turn would cost the passengers about £1 billion in lost time (Lessan, Fu and Wen, 2019). Therefore, 

reducing the delays is of great importance for railway operators but is also of interest for the economical growth of 

a region or a whole nation. Furthermore, similar as for bus networks train delay prediction aims to provide useful 

information to traffic management and dispatching processes through the usage od state-of-the-art tools and 

techniques (Oneto et al., 2018). Delays in railway networks can have different causes, such as disruptions in the 

operations flow, accidents, malfunctioning or damaged equipment (Oneto et al., 2018).  
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2.3.1 Available data sources and general problem setting 

Railways are among the industries in which the application of big data analytics is a topic of big interest. Big data 

analytics have been revolutionizing the railway industry by contributing to decision-making processes within 

railway companies. This development has been engaged by collecting data from different sources within railway 

operations (Ghofrani et al., 2018). The major data source for delay prediction and delay analysis is train describer 

data. Train describer systems identifies a train at a particular position keeps track of every movement. The train 

describer system successively registers this movements as events on a route of train line and writes these events to 

log files with the corresponding time (Goverde and Hansen, 2000). It is worth noting the exact position of the train 

is not contained in train describer data. The location is assessed by the traffic control signals, whose location is 

known, and which registers incoming and outgoing trains for a specific track segment. This signal is then transmitted 

to the train describer system. Originally these logs have been kept only for few days to support investigation of 

possible incidents (Goverde and Hansen, 2000). However, since companies realized that this data can be used to 

evaluate timetable performance and providing insight in railway operations the importance of this data for railway 

companies has risen. Collecting, processing and transforming these train describer record data in combination with 

timetable data for descriptive analysis of train delays and timetable improvements can be seen as the first application 

of big data in railway operations (Ghofrani et al., 2018). Similar to AVL and APC data sources in bus transportation 

systems, the availability of train describer data enabled to perform big data analytics and enhance railway 

transportation systems in different ways.  

Ticket sales are another interesting data source that can be embedded in predictive analytics for delay prediction. 

Ticket sales data has been used in combination with delay data in order to examine the impact of lateness on demand 

(Batley, Dargay and Wardman, 2011). In contrast to ticket sales data with smart cart data it is possible to retrieve 

the passenger’s destination. This in turn allows to build route choice models and consequently to derive passenger 

punctuality instead of train punctuality (Ghofrani et al., 2018). This gives train-dispatcher a new evidence-based 

basis for decision-making.     

In contrast to the available data sources in bus transportation networks, namely AVL and APC used for delay 

prediction, data sourced from train describer has some crucial advantages. As mentioned by Sun et al. (2018), 

accurate bus arrival and departure data is not always available, especially in real-time. Furthermore, for many bus 

transportation systems APC is missing and therefore it is not possible to provide accurate timing of when a bus’s 

arrival (Sun et al., 2018). On the other hand, if AVL is missing it is not possible to locate the bus. In addition, the 

real-time systems often have many problems due to reasons, such as low networking bandwidth and delays in upload 

which results often in noisy GPS position data (Sun et al., 2018). Such problems with noisy data and missing 

components seem not be an issue for railway transportation networks. Still train describer data suffers from 

transmission delays or noise, but these are usually only fraction of a second and is considered as negligible. 

Furthermore, missing values in train describer data are encountered by applying different logical rules (Goverde 

and Hansen, 2000).   

Due to the high accuracy of the available data, delay prediction in railway network has more focussed on predicting 

the arrival delay instead of the travel time between to stations (Peters et al., 2005; Yaghini, Khoshraftar and 

Seyedabadi, 2013; Marković et al., 2015; Oneto et al., 2016, 2017). Furthermore, in highly scheduled railway 

networks delays can cause domino-effects an therefore affect the whole network (Goverde, 2010). For delay 

prediction in bus transportation systems, most used algorithms are machine learning algorithms. However, delay 

prediction in railway transportation systems makes also use of other algorithms such as stochastic-graph models 

(Berger et al., 2011) or timed event graph models (Hansen, Goverde and Van Der Meer, 2010). 
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In the next section different train delay prediction models will be discussed. First part is dedicated to models that 

have been developed as part of rail traffic management systems. The second part will focus on models, which use 

different machine learning algorithms.  

2.3.2 Train delay prediction using graph-based models  

A common approach to predict train delays in railway network is the use of graphical representations of the railway 

network. (de Fabris, Longo and Medeossi, 2008; Hansen, Goverde and Van Der Meer, 2010; Berger et al., 2011; 

Kecman and Goverde, 2015; Ghofrani et al., 2018). Using this graphical modelling approach Goverde (2010) 

presented an effective way to propagate delays over a whole railway transportation network, which is crucial to 

understand the domino effect of secondary delays a single delayed train may cause over the entire network due to 

train connections and route conflicts.  In addition, graphical models can be directly integrated into the railway traffic 

system as suggested by Kecman and Goverde (2015) or Berger et al. (2011). By embedding them directly into the 

railway traffic system the model can make use of an incoming stream of data in real-time. In general Kecman and 

Goverde (2015) suggested to classify such models into microscopic and macroscopic models. Macroscopic models 

such as proposed by Berger et al. (2011) focus only on station events such as arrivals and departures at stations. 

Microscopic models on the other side also include the prediction of signal events. Signal points can be referred as 

reference points between train stations. These signal points register the entrance and exit of a train for a particular 

track segment. 

 

Microscopic modelling approach 

The framework proposed by Kecman and Goverde (2015) suggests, that the traffic control system continuously 

provides route and connections plans of the trains within the railway network. In addition, the actual traffic state, 

including the current train positions and delays is continuously provided by a monitoring system. The prediction 

model is based on a directed acyclic graph with dynamic arc weights. The graph topology is defined by the actual 

process plan, including train orders, routes and connection plan as well as current train positions within the railway 

network. Therefore, a change of the actual plans, such as changing the relative order of trains, adding or cancelling 

trains or modifying routes results in an update of the graph topology. Based on the actual traffic state, comprising 

of current train positions and delays the prediction model predicts event times for each node in the graph. Nodes 

represent arrival and departure events or other signal points within a railway network. Therefore, a train route is 

represented as a sequence of track sections and signals. The predicted delay of a train for a node can be obtained by 

subtracting the predicted event times from the scheduled event times. The prediction of event times is based on 

max-plus algebra. Max-plus algebra is a discrete algebraic system, which allows to represent the behaviour of a 

class of discrete event systems by simple linear equations. This equation can be used to realize modelling, analysis 

and control of a system (Goto, 2014). The arc weights represent the estimated process times that are computed 

based on the actual traffic state and processed historical data in order to account running time variations depending 

on the current delay and peak hours. To improve prediction accuracy during deployment the monitoring system 

gives feedback of the realized process times, which in turn are included for the dynamic arc weights calculation. 

Using this feedback mechanism, the accuracy of the prediction model could be significantly improved.  

The advantage of this model is that it allows to define a prediction horizon. The prediction horizon describes the 

time window in future, for which all events are predicted. In their model, Kecman and Goverde (2015) could register 

a drop in prediction accuracy for increasing time horizons for up to 120min. Another advantage of Kecman and 

Goverde’s model is that it respects train-collision rules, defined by the rail traffic management system. This means 
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that the model would not predict arrival times for a train that would conflict those of another train. This is ensured 

by highlighting the graph arcs that are used by multiple trains. The disadvantage of this approach for predicting 

train delays is the need of accurate railway process plans, which include track occupation information, running 

orders, connections plan and timetable information. Furthermore, the signal point’s location must be available 

together with their delivering incoming stream of data. Most often these railway process plans, and the railway 

infrastructural data is only accessible for the railway network operators and are not open to public. Therefore, this 

approach can hardly be used by non-partnering institutions. Another downside of the dependence of this information 

is that the resulting graphical model must be completely updated if the process plans are adjusted or changed, which 

is computationally expensive (Lessan, Fu and Wen, 2019). Another uncertainty in this approach is how such a 

model performs in terms of accuracy if the density of signal points and train stations is low within the rail network. 

If we assume that the probability of a delay-causing incident increases with the spatial distance between signal 

points and train stations. Then, one could expect less accuracy for the proposed model if the density of stations and 

signal points is low within the network. As the proposed framework was evaluated solely for a busy corridor of a 

railway network in the Netherlands, it is unknown how this framework performs over an entire railway network.  

 

Macroscopic modelling approach 

Berger et al. (2011) presented a stochastic delay prediction model using a graph-based representation of the railway 

network. Their model is able to propagate delays over the rail network and forecasts arrival and departure events. 

The graph models the train schedule and the waiting conditions between planned transfer possibilities for the whole 

railway network. The proposed model is formulated with respect to an event graph, which is directed and acyclic 

to allow delay propagation in a topological order of events. The model uses a discrete distribution of driving time 

profiles on travel arcs which depend on the departure time, but also on train category or track conditions. Further, 

Berger et al. (2011) define waiting policies for each train by defining the maximum amount of time a train waits at 

a station until another train arrives at the same station to ensure passenger transfers. A train that has a transfer-

relation with another train is called a feeder train. These waiting policies are defined for any pair of arriving and 

departing trains for which a transfer arc is defined in the railway operations plan provided by the railway agency. 

Hence, new transfer possibilities due to other delayed trains are not reflected and would complicate the 

implementation of the model (Berger et al., 2011). Further the model relies on several basic assumption. It is 

assumed that a train can arrive at any time after the planned arrival or departure time. This is also incorporated in 

the prediction model in order to propagate delay over the network for arrivals and departure that lie in more distant 

future. Another important assumption is that the distributions of arrival times of all feeder trains of a given train are 

stochastically independent. This assumption might simplify the model and enable fast delay computation over the 

whole network. But on the other side it neglects the inherent interdependencies between trains in combination with 

infrastructural limits, for example track bottlenecks in front of stations.  

However, simulations with several distributions of travel times on travel arcs results in interesting insights into the 

robustness of the planned schedule against small fluctuations. A pivotal asset of the proposed model by Berger et 

al. (2011) is, that it integrates with a stream of online messages about the delay status of trains from the railway 

company, which corresponds in general to train describer data. This allows to immediately propagate these 

messages through the whole railway network and compute to its impact on future arrivals and departures in the near 

and more distant future. In order to assess the quality of model they compared it to realized data provided by the 

Deutsche Bahn AG. For this they implemented the German timetable of 2011 and the waiting policies defined by 

the railway operating agency. The implemented model is able to complete stochastic delay propagation of a whole 
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day within 14 seconds over the whole German railway network. The mean absolute error ranges between 4 to 6min 

depending on prediction horizon. For example, for a prediction that lies in 120min in the future the mean absolute 

error lies between 4 to 5.5min depending on day and the implementation of waiting rules. Compared to the results 

that were achieved by Kecman et al. (2015) (40sec with 120min prediction horizon) the average error is much higher 

but so is the number of predicted events, as the prediction involved the entire railway network instead of a highly 

frequented corridor.   

 

2.3.3 Train delay prediction using learning models  

Train delay prediction using ANN 

The use of artificial neural networks for train delay prediction has been used widely and also directly compared to 

other machine-learning algorithms (Peters et al., 2005; Yaghini, Khoshraftar and Seyedabadi, 2013; Marković et 

al., 2015). Peters et al. (2005) proposed a train delay prediction model that is based on the principle of classical 

pattern matching. This means, that different delay situations of a train network result in new concrete constellations. 

Therefore, they suggested to train the ANN in way that different delay scenarios are represented by a particular 

input pattern for the artificial neural network. The output of the ANN corresponds to the predicted pattern of the 

input delay scenario. The architecture of the artificial neural network allows to predict the delay of the upstream or 

downstream trains based on the delays currently incurred in the network (Lessan, Fu and Wen, 2019). 

Another approach is proposed by Yaghini et al. (2013) by classifying train delays into different bins according to 

the delay duration. In their model ANN was used to classify the delay based on different input variables, which is 

a supervised classification approach and therefore their model does not predict delay but rather a delay 

approximation. For this, they used passenger train delay data provided by the Iranian Railways, which containing 

all registered trains for several years, in total nearly 5.5 million trains. The dataset contains information about the 

date the train was registered, the origin and destination station and the railway corridor the train followed. At the 

same time these variables were used as input variables to predict the delay approximation of a specific train. Their 

findings show that the accuracy of the ANN model varies depending on the neural network architecture and the 

way the input data has been encoded and normalized. The classification model proposed by Yaghini et al. (2013), 

was evaluated against other machine-learning algorithms, namely decision trees and multinomial logistic 

regression, whereas the ANN-model achieved the best results with highest accuracy around 90% correct classified. 

Contrary to Yaghini et al. (2013), Marković et al. (2015) used ANN for regression to predict the arrival delay of 

passenger trains arriving at a particular station. In direct comparison with a Support Vector Regression (SVR) model 

they concluded that the proposed model using ANN outperformed the SVR model on the training data. However, 

the more relevant comparison of the two models on the test data indicates better generalization power for the SVR 

with achieving to explain 65% of the variance in train arrival delays for a particular station (Marković et al., 2015). 

 

Delay prediction using regression models 

Contrary to Yaghini et al. (2013) , Marković et al. (2015) used a regression approach to predict delay of passenger 

trains in Belgrad. Their research focused on predicting arrival delays for all trains arriving at a particular station 

within the Serbian railway network. The aim was to determine the underlying relational function between train 

delays and railway network properties. For this, they determined several factors that estimate influence of railway 

infrastructure on train arrival delays. These factors have been highlighted by discussions with experts. Based on 

this and the available dataset they selected the following variables to predict arrival delays for a station: 



Master thesis Olivier Niklaus 20 

1. Passenger train category (nominal: suburban, regional, long-distance). 

2. Scheduled time of arrival at station (continuous). 

3. Infrastructure influence defined by expert opinions (ordinal: 3, ..., 9). 

4. Percent of journey completed distance-wise (continuous).  

5. Distance travelled (continuous).  

6. Time travelled (continuous).  

7. Headway (continuous). 

 

The variable “infrastructure influence” was determined by an expert and was based on different aspects and is 

characterizes a train route. For example, how many stations, stops, junctions and crossings the train does complete 

on his journey. In addition, the percentage of single-track and restricted speed were determined for each route were 

considered among other factors by the expert to determine the influence of infrastructure to arrival delays. Using 

this variables Marković et al. (2015), were able to explain 58% of the variance in train arrival delays using the ANN 

algorithm for regression. As already mentioned above, the generalization power could be improved by using a SVR 

algorithm in favour of an ANN.  

Another interesting approach to predict train arrival delays is by considering the influence of other delayed trains 

in the network as proposed by Wang and Work (2015). This approach follows the principle that if a train is delayed 

it influences other closely scheduled trains, hence these trains might experience so called knock-on delays. As a 

base the model by Wang and Work (2015) relies on a regression model using historical data, assuming that delays 

from one trip to the next follow an vector autoregressive process. This is very similar to the historical average model 

discussed in section 2.3.3. However, instead of using the average as a predictor, Wang and Work (2015) propose to 

use the historical delay data of all previous trips as variables within a regression model, which in turn predicts all 

arrival delays for the following trip. In order to improve this approach, they propose to predict arrival delay along 

the current trip using delay-information of the previous train arriving at the stations and also to use delay information 

of other trains that share the same corridor to capture knock-on delays. More in detail, the input variables used in 

the regression model to predict the arrival delay 𝒅𝒚 for a train 𝒌 at station 𝒋 is are: 

 

1. Delays of 𝒌 on previous trips  

2. Delays of 𝒌  at previous stations on current trip 

3. Delays of trains 𝑸 leaving from a neighboring station of station 𝒋 within one hour 

 

Their findings show that the inclusion of the third variable does not lead to a significant improvement of prediction 

accuracy compared to a regression model using the first two variables. Wang and Work (2015) conclude that once 

a train is delayed at a station, it is observed that the delay will propagate for several stations and therefore it is 

captured by the second variable. As a result, that if the train 𝒌 has been delayed because of another train 𝒒 ∈ 𝑸 the 

resulting delay for 𝒌 will be propagated along its trip and therefore is captured by the second variable again.  

Nevertheless, the same principle has been taken up by the intensive research conducted by Oneto et al. (2016, 2017, 

2018). In addition, Oneto et al. (2016) emphasized that current research does not take into account the variety of 

factors affecting railway operations, such as drivers behaviour, passenger volumes, weekday, holiday etc.. Instead 

by using advanced analytics algorithms it is possible to perform a multivariate analysis over data coming from 

different sources but related to the same phenomena. The idea behind this approach is that the more information is 

available for the creation of the mode, the better the performance will be (Oneto et al., 2016). The proposed solution 

integrates multiple prediction models, which perform each a multivariate regression on a trains delay profile along 
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its itinerary and other possible correlated variables, such as weather and information about other trains travelling 

on the network by using a time series and a macroscopical approach (Oneto et al., 2016, 2017, 2018). 

Advanced train delay prediction system using machine learning 

As already mentioned an advanced delay prediction system using learning algorithms was described by Oneto et al. 

(2016, 2017, 2018). Advanced in this context refers to the extent that the proposed system covers. In contrast to 

other train arrival delay prediction models this approach predicts the arrival delays for all subsequent stations within 

a trip based on the current situation at time 𝒕𝟎. The variables used to predict arrival delays for all subsequent stations 

for train 𝒌 included are listed below (Oneto et al., 2016): 

 

1. Delays within timeframe 𝒕𝟎 − 𝜹− 

2. Actual Running times within 𝒕𝟎 −  𝜹− 

3. Dwell times within 𝒕𝟎 −  𝜹− 

4. Weather condition within 𝒕𝟎 −  𝜹− 

5. Above four variables of all trains running on network since 𝒕𝟎 − 𝜹− 

6. Forecasted weather conditions for all subsequent stops 

 

The variable weather condition summarizes different measurements related to weather, such as the atmospheric 

pressure, humidity, solar radiation, wind and rainfall. The timeframe 𝒕𝟎 −  𝜹− has been set equal to the time in the 

timetable where 𝒌 starts its trip. Further, each trip is characterized by a specific route, which is defined according 

to a specific sequence of stations. To account these characteristics a prediction model is built for each route. These 

models work together in order to make possible to estimate the train delay of a particular train during its entire trip 

(Oneto et al., 2018). Furthermore, by including delays and running times of all other trains running in the network 

during 𝒕𝟎 − 𝜹− the input variable scope has been shifted from a vehicle-perspective to a network-perspective. 

Consequently, the input variables used for delay prediction are not limited to trip-related characteristics, such as 

daytime, weekday, destination station etc., instead delay prediction accounts also time-dependent network-related 

characteristics. Oneto et al. (2018) argue that using this approach the actual distribution of the train delays in the 

railway network is captured and therefore the intrinsic time varying nature of the delay phenomenon on railway 

networks can be addressed and leads to increased performance. 

The performance of the proposed methodology has been validated using train describer data provided by the Italian 

Infrastructure Manager that controls all the traffic of the Italian railway network. As a prediction algorithm they 

explored the use of deep extreme-learning machines. Extreme-Learning machines are a subtype of artificial neural 

networks, which are considered to provide good generalization performance at extremely fast learning speed 

(Huang, Zhu and Siew, 2006). The results presented show that the proposed model outperforms the prediction 

system that is currently in place in Italian railway operating system, which is similar to the model described by 

Kecman and Goverde (2015) in terms of accuracy. The model presented by Oneto et al. (2018) is able to predict 

train arrival delays for the subsequent station with a mean absolute error of 1.5min. Furthermore, Oneto et al. (2016, 

2017, 2018) contributed to the research aim of identifying the underlying functional relation between network 

characteristics and arrival delay as proposed by Marković (2015).  
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2.4 Summary of travel-time and delay prediction in transportation 

networks 

Current research within the field of bus transportation predictive analytics focuses on the travel time prediction 

rather than arrival delay prediction as in railway transportation. A major challenge for bus transportation network 

is to account traffic load from private transportation modes, which share the same infrastructure. Until now, most 

research has been conducted on predicting travel time on an operational level (Moreira-Matias et al., 2015). In both 

transportation domains the aim is to build models, which perform efficiently and achieve high prediction accuracy 

to support scheduling task and provide real-time information to end-customers.  

In general, we can distinguish between models using learning and non-learning algorithms. Non-learning models 

in bus transportation rely solely on historical data analysis to calculate a predictor, as shown by Čelan and Lep 

(2017). In contrast Kecman and Goverde (2015) and Berger et al. (2011) proposed non-learning dynamic micro- 

and macroscopic models to predict train arrival delays and their impacts on the transportation network. 

Nevertheless, such systems seem not applicable for bus transportation network, as the initial situation regarding 

infrastructure and network access cannot be compared. In contrast to railway operators, bus transportation agencies 

do often not have the same possibilities to control and monitor the corresponding infrastructure as in railway 

operation systems. Another aspect is that non-learning micro- and macroscopic models rely on modelling specific 

railway process plans. Therefore, these models have to be updated after each changes occur in process plans (Oneto 

et al., 2016). Furthermore, it is stated that such models are considered as not adaptive enough to incorporate the 

domain knowledge of local dispatchers and networks’ characteristics (Lessan, Fu and Wen, 2019) 

Regarding learning algorithms different learning algorithms have been evaluated for travel time prediction (Peters 

et al., 2005; Marković et al., 2015; Wang and Work, 2015; Oneto et al., 2016). Travel time prediction using ANN 

are often among those with the highest accuracy in bus transportation (Gurmu and Fan, 2014; Moreira-Matias et 

al., 2015; As and Mine, 2018). However, the underlying input-output function the ANN models uses for predicting 

a value is unknown. Contrary, Oruganti et al. (2016) showcase how other regression methods can be used with high 

accuracy and in surplus offer the possibility for interpretation. A similar approach was also proposed using SVR, 

which even outperformed ANN on the same data regarding generalization accuracy (Marković et al., 2015). In 

railway transportation learning algorithms are most often used within regression tasks to predict arrival delay in 

railway networks (Marković et al., 2015; Wang and Work, 2015; Ghofrani et al., 2018; Oneto et al., 2018). 

Supervised classification to predict delay approximations have also been evaluated (Yaghini, Khoshraftar and 

Seyedabadi, 2013; Lessan, Fu and Wen, 2019). A problematic aspect using a supervised classification approach is 

that most classification algorithms assume normal-distribution of the data (Sun, Wong and Kamel, 2009). However, 

it has been found that train delays typically follow a Gamma, Weissbull or exponential distribution (Yuan, Goverde 

and Hansen, 2006; Marković et al., 2015). Hence discretization of delay and the preparation of training data for the 

algorithm should be considered carefully to avoid overfitting.  

More recently, the research has focused in both transportation domains to evaluate and develop systems based on a 

more holistic approach to the network. The focus for input variables used in the prediction system has shifted from 

trip-related towards trip- and network-related. As one can see in the railway transportation domain several attempts 

exist to model and assess the effects of delays and its propagation over the whole network. For this, interactions 

between trains leading to delays have been considered (Wang and Work, 2015; Oneto et al., 2018). In bus 

transportation networks, embedding the snapshot-principle into prediction systems has been showcased as an 
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effective mean to approach the travel time prediction problem from a more holistic network-perspective (Gal et al., 

2017; Sun et al., 2018).  

  

2.5 Research gap and research question 

Current research has been focusing on the design of complete transportation delay prediction systems. The aim is 

to build transportation delay prediction systems that are fast and accurate. This is a crucial requirement in order to 

deploy such systems within scheduling tasks on an operational and tactical level (Berger et al., 2011; Kecman and 

Goverde, 2015; Gal et al., 2017; Oneto et al., 2018; Sun et al., 2018). As emphasized in the previous section, for 

train arrival delay prediction using machine-learning algorithms, the scope for input variables has shifted from trip-

related to trip- and network-related variables. Using train describer data, trip-related variables are the most obvious 

variables to extract, as train describer data captures includes the relevant information to identify a trip. On the other 

hand, network-related variables are already more sophisticated. The extraction of network- related variables requires 

a deepened understanding in data structure and how different trips are related to each other. For example, to extract 

variables based on the snapshot principle one has to identify different routes and the corresponding trip segment. In 

general, current research has focused on improving delay prediction by exploring different algorithms and also by 

including different input variables for train delay prediction. However, the impact of network-related input features 

and other features on the prediction accuracy in the models has been explored only marginally. This might come 

hand in hand with the use of very sophisticated machine-learning algorithms as ANN and SVR, which do not 

provide any means to explore the contribution of different features to train arrival prediction. In general, the main 

objective of this thesis is to investigate on analysing the input feature space used in machine-learning based train 

delay arrival prediction. In order to build improved prediction models, it is necessary to have a better understanding, 

which kind of input features contribute to train arrival delay prediction, which leads us to the first research question.  

Research question 1: How do different feature categories, as being used in existing literature, contribute to train 

arrival delay prediction? 

 

Approach: To investigate this question, a train delay prediction system according to the state of the art is built 

using a similar approach as proposed by Oneto et al. (2018). For this the input features will be categorized to 

according to their purpose. Afterwards different combinations of input features categories will be used to train the 

prediction model in order to evaluate them against each other. Furthermore, instead of using a machine-learning 

algorithm that hardly allows any investigation on the input features contribution, a gradient boosted regression tree 

algorithm will be used. For this purpose, the use of a tree-based algorithm is senseful, because it allows to analyze 

the feature importance of each feature used for the prediction (James et al., 2013). Consequently, the feature 

importance’s of the different input feature can be analysed and categorized.  

Hypotheses 1: In railway transportation, results by Wang and Work (2015) indicate that the influence of other 

trains in the network is negligible. Therefore, it is expected that this would be reflected in the Gini Index value of 

the corresponding features. Further, it can be expected that trip-related variables contribute to the prediction of train 

arrival delays and therefore should be reflected by the feature importance value of the variable. 
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The second research question relies on the notion that public transportation systems are containing the nature of 

physical networks as they include the combination of lines and nodes that intersect with each other. This network 

nature of transit systems has  been widely studied in the past (Derrible and Kennedy, 2011). Derrible and Kennedy 

(2011) emphasized that the field of graph-theory appears particular fitted to address problems of network design in 

public transportation. Centrality measures within this field have been used to identify the topological characteristics 

of railway and metro systems (Derrible, 2012; Tu, 2013; To, 2015). The centrality characteristics analysis is useful 

for the railway transportation management and operation affairs and is the basic for the network’s vulnerability 

analysis (Tu, 2013). Furthermore, Lee et al. (2016) highlighted that timetable quality is one among various factors 

that can cause train arrival delays. In fact, timetable determines how well capacity is utilized and how stable the 

operations are within a railway network (Sameni, Landex and Preston, 2011). Consequently, one can argue that 

variables related to timetable should be included for the prediction of arrival delays, as they may contribute to 

identify the underlying relational function between railway network characteristics and train arrival delays. 

However, to the authors knowledge this conceptual source to engineer a new category of input features for train 

arrival delay prediction has not been explored yet. This will be addressed by using different centrality measures to 

assess timetable quality, by approaching the timetable as a graph. The graph-approach allows to calculate 

topological properties of a station using centrality measures. These station-related features should reflect the 

underlying topological properties of a station within the current scheduled operations of a railway network. This 

way, hidden timetable instabilities related to a station that induces arrival delays could be detected by a machine-

learning algorithm to predict train arrival delay. 

Research question 2: How do input features capturing topological properties between stations contribute to train 

arrival delay prediction? 

Approach: Based on timetable information a graph will be built, where railway stations are represented as nodes. 

A train trip serving two stations is represented as an edge that connects the two corresponding station nodes. All 

trips are characterized by their schedule times as defined in the timetable provided by the railway operator. This 

allows to filter the trips according to time, which results in a filtered graph view representing the topological 

relations between stations and trips for a specific timeframe. Based on this reduced timetable centrality measures 

will be calculated for each station to capture the topological properties of a station within the scheduled operational 

setting. 

Hypotheses 2: It can be expected that station-related features have an impact for train arrival prediction. This should 

be represented in improved accuracy of the prediction model and reflected in the feature importance of the station-

related features.  

 

The third research gap that has been emphasized regarding train arrival delay predictions is concerned about data 

availability. Most often train-describer data is not open to public. However, if the opportunity arises to get access 

to this data, it is senseful to know how much data is needed to train a prediction model accurately in advance. This 

knowledge can be useful for negotiations with railway operators. Therefore, the third research question can be 

formulated as follow. 
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Research question 3: How does the prediction model perform differently with different amount of training data? 

Approach: The train arrival delay prediction system will be trained by increasing data sizes steadily.  After each 

step the model predicts arrival delays using a test dataset. In this way the accuracy of the model can be assessed 

after each increase in training data size.  

Hypotheses 3: We can expect that with increasing training size the accuracy the predictions made by the train 

arrival prediction system will improve. Further it is expected that the  
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3. Study Area and Data availability  

The backbone of the Swiss national public transport system is the “Fernverkehrs-Netz”, which consists of the long-

distance railway traffic. The long-distance traffic concession is granted by the Swiss government to the 

Schweizerischen Bundesbahnen (SBB). The most central aim for the long-distance traffic is to connect all areas of 

action and superordinate centres of Switzerland and integrating Switzerland into the European major traffic axes 

(Bundesamt für Verkehr BAV, 2017). The long-distance railway network serves all regions within Switzerland and 

provides the reference pulse signal for the nation-wide pulse timetable (Schweizerische Bundesbahnen, 2017). 

Therefore, service disruptions of the long-distance traffic affect the whole public transportation network in 

Switzerland. This emphasizes the importance that the long-distance traffic is on schedule in order to minimalize 

negative effects on economy and society. This is the reason why this thesis will focus on predicting delay for all 

train services that are involved in the long-distance traffic. The motivation behind this decision is that if it is possible 

to predict delay accurately it might be also possible for the small-distance traffic in urban areas. As outlined above 

it is important that public trains operated by the SBB are on schedule to guarantee transit connections with other 

more regional operating public transport agencies. In a highly scheduled railway traffic network, a single delayed 

train may cause a domino effect of secondary delays over the entire network, which is a main concern to planners 

and dispatchers (Goverde, 2010).  

 

Figure 1: Visualization of the long-distance traffic in Switzerland. Different lines correspond to different service-routes. 
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Figure 1 shows the area that is covered by the long-distance 

traffic. Figure 1 already indicates the complexity of the swiss 

railway network. It is visible that not all stations are served 

equally by routes. Further, one can identify that the axis between 

“Zürich HB” and “Bern” is served by many different routes. It 

is also visible that the long-distance railway network is 

characterized by two major axes along North-West to South 

(Basel SBB – Luzern – Lugano) and West to East (Genève – 

Bern – Zürich HB – St. Gallen). In Figure 2 all routes are listed 

that contribute to the long-distance railway traffic in 

Switzerland. In sum there are 10 InterCity (IC) routes, 12 

InterRegio (IR) routes and 7 RegioExpress (RE) routes. Not 

listed here are the European long-distance routes InterCity 

Express (ICE) and the EuroCity (EC). The ICE is operated by 

the german railway agency DeutscheBahn (DB) in corporation 

with SBB. This ICE routes connect major cities of Germany 

with major cities (Bern, Chur, Zürich HB, Basel and more) from 

Switzerland. As the SBB operates these services within 

Switzerland they will also be included in this study. The same 

applies to the EC routes.  

The data used for this study is provided by the open data 

platform “Open Data Platform Swiss Public Transport” 

(ODPST)1 operated by SBB on behalf of Switzerland’s federal 

office of transport (BAV). On this platform SBB publishes 

customer information data on public transport in Switzerland. 

Hence, they provide access to specific public transport services 

that are free of charge. ODPST provides data that also includes 

data from other local operating agencies in Switzerland. The 

data sources for railway networks are mostly operational 

planning and controlling systems.  

 

 

3.1 Long-distance traffic delays  

This section should give a brief overview of delays within the long-distance traffic in Switzerland’s railway 

network. It must be stated that Switzerland’s railway services are among the most punctual in the whole world. 

Nevertheless, delays are still occurring and can be frustrating for all involved persons. As we can see in figure 3 the 

very big majority of trains arrive on-time. Around one-third of all arrivals deviate from the scheduled arrival by one 

minute. The small coloured in deep red represents the number of delays, which are larger than 3 minutes. 3 minutes 

is also the threshold used by SBB. However, SBB does not measure the delay of train-services instead 

 
1 https://opentransportdata.swiss/en/ 

Figure 2: National service-routes that contribute to the 
long-distance traffic in Switzerland. Not included in this 
figure is the EuroCity (EC) and the InterCity Express (ICE), 
as they are international route-services.   
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they measure punctuality. SBB defines punctuality from a customer’s-perspective, which means customers are 

delayed if they arrive at their destination with a delay larger than 3 minutes (SBB, 2018). Furthermore, in figure 3, 

we can see that during the morning hours between 7am and 8am there are more registered train arrivals and slightly 

more delays. The same can be identified between 5pm and 7pm. However, the number of delays seems growing 

proportionally to the growing number of arrivals. Consequently, train services are not per-se more delayed within 

these peak-hours.  In figure 4 the delayed arrivals for different scheduled travel time classes are visualized. It 

emphasizes that most train-services take 6 to 8min. Further, we can also see that the number of delayed arrivals 

seems not to increase with increasing travel time between two stations.  

Figure 3: Delay over daytime. Delayed arrivals are highlighted in red. A delay is defined as a deviation from the actual schedule. 

Figure 4: Number of arrivals and number of delayed arrivals grouped by scheduled travel time. 
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4. Methodology 

In this part of the thesis, the methodology is presented that is used to predict arrival delays for trains. This part will 

first point out some considerations that will help to define the prediction problem and the features. Second section 

of the methodological part will outline how the data provided by Switzerland’s public transit agencies has been pre-

processed and filtered. The third section explains the methods used to extract the features from the pre-processed 

data that are used in the machine learning model to predict train arrival delays. But first the theoretical approach 

will be described. It contains defining train arrival delays, the conception of the railway network and the definition 

of the prediction problem. Afterwards the input feature space will be defined, which will be used by the machine 

learning prediction model to predict train arrival delays. An overview of the general workflow to build the prediction 

model is presented in the diagramm (fig. 5).  

Figure 5: General workflow conducted within this thesis. For box 
represents a section within this chapter, indicated by the number within 

the box. 
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All the data has been pre-processed in Python programming language2. After first pre-processing steps the data has 

been treated in different environments. The GTFS data has been further loaded into the open-source graph-database 

Neo4j3. The actual time data has been solely processed in Python, where PyCharm Community4 served as an open-

source Integrated Development Environment (IDE). During processing the data in Python several different 

packages have been used, which will be indicated within describing the processing in detail.  

 

4.1 Theoretical Approach 

4.1.1 Defining a public transportation network 

In order to approach a public transportation network in a more holistic way, a graph-based approach was proposed 

(see research Gap). Derrible and Kennedy (2011) emphasized in their paper “Applications of graph theory and 

network science to transit network design” that the field that appears particular fitted to address problems of network 

design is graph theory. For that reason, the following section presents how a public transportation network could 

be modelled within a graph-based approach. In this work the train transportation network is modelled using a time-

expanded approach, similar as proposed by Huang et al. (2018). The advantage of using this approach, is that 

timetable information can easily visualized  graphically for a better understanding (Fortin, Morency and Trépanier, 

2016).  In general, a railway transportation system consists of a set of unique stations 𝒔𝒊 ∈  𝑺. A train connection 

𝒄 ∈ 𝑪 is a tuple consisting of two stations 𝒄𝒊→𝒋 = (𝒔𝒊, 𝒔𝒋). A connection has no stops in between. A connection gets 

instantiated by a train departing from the connection origin-station 𝒔𝒊 at time 𝒅𝒕𝒊 and arriving at the connection 

destination-station 𝒔𝒋 at time 𝒂𝒕𝒋  In this case, a connection can be interpreted as a leg of a trip 𝒍 ∋ 𝒄, which is 

defined by serving two subsequent stations 𝒔𝒊 and 𝒔𝒋 at a specific time. Consequently, a service 𝒍 can be defined as 

a list of all its sequential legs, 𝒍 = (𝒄𝟏→𝟐, 𝒄𝟐→𝟑, … , 𝒄(𝒏−𝟏)→𝒏), which in turn represents the whole travel of the train 

and can also be referred to as a rail transportation service and synonymous to a trip. A route 𝒓 refers to a set of trips 

visiting the same stations: 𝒓 = {𝒍𝟏,𝒍𝟐, … , 𝒍𝒏}.  𝑹 corresponds to all routes within the railway transportation network 

and therefore 𝒓𝒗 denotes a specific route within the railway transportation network. In this thesis, 𝑹 corresponds to 

all routes within the long-distance railway traffic (see fig 1.). In this way the graphical representation of the railway 

transportation network can be visualized as presented in figure 6. In table 1 the above introduced elements of the 

defined railway transportation network are summarized. 

 
2 https://www.python.org 
3 https://www.neo4j.com 
4 https://www.jetbrains.com/pycharm/ 
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Element Definition Description 

𝑺  all Stations within the Network 

𝑹  all Routes within the Network 

𝒔𝒊 ∈  𝑺 a station within the network 

𝒄𝒊→𝒋 ≔ (𝒔𝒊, 𝒔𝒋) connection between two subsequent stations  

𝒓𝒗 ∈  𝑹 a specific route 

𝒍𝒗 ∈  𝒓𝒗  a train-service of a route (also referred as trip) 

𝒄𝒊→𝒋
𝒗  ∈  𝒍𝒗 a leg of a train-service departing from station 𝒔𝒊 and 

arriving at station 𝒔𝒋 

𝒔𝒊
𝒗 ∈  𝒄𝒊→𝒋

𝒗  leg origin-station of the train-service 

𝒔𝒋
𝒗 ∈  𝒄𝒊→𝒋

𝒗  leg destination-station of the train-service 

𝒅𝒕𝒊
𝒗 ∈  𝒔𝒊

𝒗 Departure time of a train-service at station 𝒔𝒊
𝒗 

𝒂𝒕𝒊
𝒗 ∈  𝒔𝒊

𝒗 Arrival time of a train-service at station 𝒔𝒋
𝒗 

Table 1: summarizes the most important elements of a public transportation network. 

 

Figure 6: a graphical visualization of the timetable information of route 𝒓𝒗  using a time-expanded modelling approach.  
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4.1.2 Defining delay 

A train on a trip 𝒍𝒗 runs through all stations that are defined in its legs 𝒄𝒊→𝒋
𝒗 ∈ 𝒍𝒗. For reach station within 𝒍𝒗, the 

train running the trip should arrive at time 𝒂𝒕𝒊
𝒗 and departure at time 𝒅𝒕𝒊

𝒗 from station 𝒔𝒊. These arrival and departure 

times are defined in a timetable for each trip and are defined during the scheduling process of the railway operating 

agency. Note that for 𝒔𝒊
𝒗, 𝒊 = 𝟏 there is no arrival time. Logically there exists no departure time for the end station 

of the trip. 

Along a trip 𝒍𝒊
𝒗 there are different forms and possibilities a service delay can occur. For example, a trip could be 

defined as delayed if the vehicle arrives later than scheduled at the last station of its sequence, the trips end station 

respectively. A trip could also be defined as delayed, if the service departs later than scheduled of one of its stations.  

An arrival delay could also be defined for any station 𝒊 as the difference between the actual arrival time 𝒂𝒕𝒊
�̃� and the 

scheduled arrival time 𝒂𝒕𝒊
𝒗: 

𝒚𝒊
𝒗  =  𝒂𝒕𝒊

�̃� −  𝒂𝒕𝒊
𝒗 ,  𝒚𝒊

𝒗  >  𝟎   (4) 

For service punctuality overall departure delays are equally important as arrival delays. However, by consider a 

customer plans his journey with the aim to arrive at his destination as planned. A delayed departure of the service 

will not affect the customer as long as the service arrives at customer’s destination as planned. Of course, a delayed 

departure might lead to a delayed arrival, but from a customer’s perspective we could assume the main interest 

would be to arrive on time. Therefore, within this thesis a delay is defined as arrival time at a specific station, which 

is not equal to scheduled arrival time, as formulated in (4). Hence, a train that arrives at the scheduled time is 

considered as on-time.  

 

4.1.3 Defining the prediction problem 

In the following variables that result from a prediction are marked with a “^” on the top. Variables that result from 

an operation with a predicted value are also marked with a “^” because these variables do not reflect the true value, 

but rather an estimation. 

Within this thesis “prediction problem” refers to the question, which value the prediction model predicts by 

considering a set of input variables in order to fulfil the prediction purpose. Regarding delay prediction, multiple 

approaches to solve this prediction problem exist. The purpose of delay prediction is to assess the arrival delay of a 

public transportation service for a specific station along its trip. To predict delays in public transit systems various 

approaches can be used. As outlined in the previous chapter an approach is to predict the travel time between two 

subsequent stations. By adding the predicted travel time to the departure time, one can extrapolate the predicted 

arrival time. Subsequently, the estimated delay �̂�𝒋
𝒗 for station 𝒔𝒋

𝒗, can be calculated as the difference between the 

extrapolated arrival time and scheduled arrival time. In this case the delay prediction problem can be formulated 

into the following two steps for the leg 𝑐𝒋
𝑣 , with leg destination station: 

𝒂�̂�𝒋
𝒗  =   �̂� 𝒊𝒋

𝒗 +  𝒅𝒕𝒊
𝒗    (5) 

�̂�𝒋
𝒗 =  𝒂�̂�𝒋

𝒗  −  𝒂𝒕𝒋
𝒂    (6) 
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where 𝒂�̂�𝒋
𝒗 is the extrapolated arrival time at station 𝒔𝒋

𝒗, which is derived the sum of the predicted travel time �̂� 𝒊𝒋
𝒗  

between the stations 𝒔𝒊
𝒗 and 𝒔𝒋

𝒗, which form as a tuple leg 𝒄𝒊→𝒋
𝒗 . As outlined in the previous chapter there are different 

possibilities and methods to derive the prediction value  �̂� 𝒊𝒋
𝑷  such as machine learning methods, historical data 

analysis or by the snapshot principle. Travel time prediction is especially used for public bus transportation systems 

(Gurmu and Fan, 2014; Gal et al., 2017; As and Mine, 2018; Sun et al., 2018). Because this approach is particularly 

suited if the vehicle position is tracked over time, which is the case for AVL and APC systems in bus transportation 

systems. Therefore, the advantage of predicting travel time from a specific location to the next station allows 

transportation agencies to assess travel time from any location to the next station. Consequently, it is possible to 

estimate future arrival delays for the following station from any location. This advantage could especially lead to 

valuable input within multi-component operational prediction systems as described in chapter 2.2.4. However, for 

train delay prediction this approach seems to be less suitable if we consider that the most important factor causing 

delay in bus transportation is private traffic on the network. Travel time prediction is therefore a promising 

approach, if the private traffic can be modelled accordingly. But this is not the case for railway networks. For 

example, if there is much traffic on a road network, the individual vehicles might still be moving but slowly and 

close together, whereas trains do not because of track occupation restrictions, or a train gets re-scheduled and is 

diverted using another railway corridor with higher capacity. Therefore, travel time for a leg 𝑐𝒋
𝑣 can be considered 

more constant in railway operations than in bus operations.  

The second approach to predict delay in a transit system is characterized by predicting directly the delay �̂�𝒋
𝒗 at 

station 𝒔𝒋
𝒗. As delays possibly occur at any station along the train trip 𝒍𝒗, the prediction problem needs to pay 

attention to all arrivals during a trip. The number of arrivals within a trip is equal to the number of legs 𝒄𝒊→𝒋
𝒗 ∈  𝒍𝒗, 

which corresponds to the number of stations 𝒎 − 𝟏 within 𝒍𝒗. Therefore, the predictive model needs to predict 

delay �̂�𝒋
𝒗 for: 

�̂�𝒋
𝒗 ∀ 𝒄𝒊→𝒋

𝒗  , 𝒄𝒊→𝒋
𝒗  ∈  𝒍𝒗    (7) 

This approach has been used in predictive analytics application in the railway transportation domain (Marković et 

al., 2015; Ghofrani et al., 2018; Oneto et al., 2018). Different methods have been evaluated to predict the delay, 

such as stochastic event graph models (Berger et al., 2011) or machine learning models as linear regression, random 

forests, support vector machine and artificial neural networks (Marković et al., 2015; Wang and Work, 2015; Oneto 

et al., 2016, 2018).  Unfortunately, the available data within this thesis does not contain any vehicle location 

information. Therefore, the advantage of delay estimation using travel time prediction is not usable. As suggested 

by Marković et al. (2015) establishing a functional relation between train delays and various characteristics of a 

railway system is highly desirable. They argue that such a functional relation would allow planners to evaluate how 

changes in the system would affect delays, and thereby help them determine the changes that would reduce delays 

in the most economical way. Although, it is worth noting that the intrinsic dynamic and time varying nature of the 

delay phenomenon must be considered, which is mainly due to different factors (Oneto et al., 2017). For this 

purpose, it seems more suitable to predict directly the arrival delay by using various characteristics of the railway 

network that could potentially influence punctuality of a train’s arrival at a station. The difficulty in predicting train 

delays is that the punctuality of each train also depends on the punctuality of other trains within the network. 

Therefore, on the one hand, railway networks consist of many internal dependencies and are highly interconnected. 

On the other hand, trains are exposed to many other network external factors that can influence the punctuality of a 

train. The true underlying functional relation between train delays and various characteristics of a railway system 

as proposed by Marković et al. (2015) can be defined as: 
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𝜽 ∶ 𝑿 → 𝒀     (8) 

The input space 𝑿 includes all characteristics of a railway system that influence whether a trip is delayed or not. 

The output space 𝒀, consequently consists of all delays as defined in (4) that arise within the train service operations. 

The output space 𝒀 can be deduced by comparing the scheduled arrival times with the actual achieved arrival times, 

that are derived from the railway operating and controlling systems and provided by ODPST. In contrast 𝑿 and 𝜽 

are unknown and therefore need to be approximated. In this thesis, 𝜽 will be approximated by building a predictive 

learning-model 𝝑 using the techniques and methods provided through predictive analytics. The input space 𝑿 for 𝝑 

consists of different input variables that should capture different intrinsic railway transportation network properties, 

which are discussed in the next section in detail. By taking into account the prediction constraint (7) the model 𝝑 

needs to predict the arrival delay for each leg within a trip 𝒍𝒗. This leads us to the problem of delay propagation 

within a trip 𝒍𝒗, because an arrival delay occurring at station 𝒔𝒋
𝒗 will affect the arrival times of the following stations 

within the trip. To address this problem, the model predicts the arrival delay �̂�𝒋
𝒗 based on the train-service state at 

the previous station 𝒔𝒊
𝒗. This means, if a train-service arrived late at station 𝒔𝒊

𝒗, the model will take this into account 

for the prediction of the subsequent station 𝒔𝒋
𝒗. By doing so, it can be assured that delays occurring within a trip are 

not considered independent by the prediction model. Furthermore, the model should respect the fact that some 

railway network properties might change over time. In this case the prediction problem should be treated as time-

series forecasting regression problem, as suggested by Oneto et al. (2016). Consequently, the model performs a 

regression analysis to predict delay �̂�𝒋
𝒗 at station 𝒔𝒋

𝒗  based on the state of the railway network at the time the train 

arrived at station the preceding station 𝒔𝒊. Finally, this leads us to the definition of the prediction problem, which 

consists of predicting delay �̂�𝒋
𝒗 using the input features 𝒙𝟏, 𝒙𝟐, . . . , 𝒙𝒎  ∈ 𝑿 at time 𝒂𝒕𝒊

𝒗, which corresponds to the 

arrival time of the previous station.  

�̂�𝒋
𝒗 = 𝝑𝟏(𝒕) = 𝒇(𝑿(𝒕)) ,  𝒕 =  𝒂𝒕𝒊

𝒗  (9) 

Until now, the prediction model predicts solely the arrival delay of the subsequent station. Nevertheless, this might 

not always satisfy the needs of railway operators, as train-dispatcher might want to know how the delay is 

propagated for the train service in multiple following station. Based on this requirement, a second and third model 

is introduced, which predicts the train arrival delay for the following two destination-stations of legs 𝑐𝒋→(𝒋+𝟏)
𝑣  and 

𝑐(𝒋+𝟏)→(𝒋+𝟐)
𝑣  based on the state of the railway network at the same time as the first model 𝝑𝟏(𝒕). 

�̂�𝒋+𝟏
𝒗 = 𝝑𝟐(𝒕) = 𝒇(𝑿(𝒕)) ,  𝒕 =  𝒂𝒕𝒊

𝒗  (10) 

�̂�𝒋+𝟐
𝒗 = 𝝑𝟑(𝒕) = 𝒇(𝑿(𝒕)) ,  𝒕 =  𝒂𝒕𝒊

𝒗  (11) 

Using all three models together it allows to largen the prediction horizon of the train delay prediction system, thus 

making predictions that lie further in the future. The figure 7 depicts schematically how the proposed delay 

prediction system and its three models.  

 

 

 

 



Master thesis Olivier Niklaus 35 

 

 

 

For simplification reasons from now on the notation 𝝑𝟏 → �̂�𝒋
𝒗  corresponds to: “the prediction of �̂�𝒋

𝒗 by 𝝑𝟏. In the 

next section the input features are going to be introduced, which will be used to predict the train arrival delays. 

Nevertheless, as data pre-processing is a very time-consuming task in machine-learning the following assumptions 

have been made, to slightly simplify data pre-processing and feature engineering 

 

4.2 Defining input feature space 

As proposed the by Marković et al. (2015) the overall aim of a transportation delay prediction model, should be to 

identify the functional relation between train delays and various characteristics of the transportation system. For 

this, in the existing literature different input features have been proposed, especially trip- and network-related. In 

order to investigate on the formulated research questions, the input features have been categorized into five different 

categories, characterized by the kind of information they contribute to the prediction. In order to investigate on the 

formulated research questions, the input features have been categorized into five different categories, characterized 

by the kind of information they contribute.  

As the proposed train arrival delay prediction system uses three different models (𝝑𝟏, 𝝑𝟐, 𝝑𝟑), see figure 7. Input 

feature spaces 𝑿𝟏, 𝑿𝟐, 𝑿𝟑 correspond to the input feature space used for model 𝝑𝟏, 𝝑𝟐 and 𝝑𝟑. But in order to 

address, the intrinsic dynamics of a transportation network the following assumptions have been made.  

Assumption 1: For 𝝑𝟏 → �̂�𝒋
𝒗, model 𝝑𝟏 takes into account the characteristics of the two subsequent legs 

𝒄𝒋→𝒋+𝟏
𝒗  and 𝒄𝒋+𝟏→𝒋+𝟐

𝒗  within the trip 𝒍𝒗 based on the situation at time 𝒂𝒕𝒊
�̃�. 

Assumption 2: For 𝝑𝟐 → �̂�𝒋+𝟏
𝒗 , model 𝝑𝟐 takes into account the characteristics of leg 𝒄𝒋→𝒋+𝟏

𝒗  and the 

subsequent leg 𝒄𝒋+𝟏→𝒋+𝟐
𝒗  within the trip 𝒍𝒗 based on the situation at time 𝒂𝒕𝒊

�̃�. 

Assumption 3: For 𝝑𝟑 → �̂�𝒋+𝟐
𝒗 , the model 𝝑𝟑 takes into account the characteristics of the two preceding 

legs 𝒄𝒊→𝒋
𝒗  and 𝒄𝒋→𝒋+𝟏

𝒗  within the trip 𝒍𝒗 based on the situation at time 𝒂𝒕𝒊
�̃�.  

Figure 7: schematic overview of the proposed train delay predictions 
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The first assumption enables 𝝑𝟏 to consider variables that could impact train-service punctuality that lie ahead in 

the trip, for example traffic congestion at subsequent stations. The second assumption enables 𝝑𝟐 also to consider 

what is ahead in the trip. But in addition, by considering the characteristics of leg 𝒄𝒋→𝒋+𝟏
𝒗 , 𝝑𝟐 can consider variables 

that could impact train-service punctuality that lie on between the train-service and station 𝒔𝒋+𝟏
𝒗 . For example, the 

traffic situation at station 𝒔𝒋
𝒗, which the train-service needs to pass to reach 𝒔𝒋+𝟏

𝒗 . The third assumption corresponds 

to the same idea. By considering the characteristics of the two legs that lie between the current station 𝒔𝒊
𝒗 and station 

𝒔𝒋+𝟐
𝒗  might lead to better prediction accuracy.  

These assumptions allow to generate one table containing all features, and after filtering each row can be used by 

𝝑𝟏, 𝝑𝟐 and 𝝑𝟑 for training, evaluation and testing of the models. On the other side, assumption 1 and 2 cause the 

following special case:  

Special Case: Per definition 𝒍𝒗 is consisting of 𝒏 legs. For 𝝑𝟏 → �̂�𝒏
𝒗, the characteristics of the two 

subsequent legs 𝒄𝒏→𝒏+𝟏
𝒗  and 𝒄𝒏+𝟏→𝒏+𝟐

𝒗  do not exist and can have no impact on the punctuality of the train 

service arriving at 𝒔𝒏
𝒗. Consequently, the corresponding features are set to null. The same applies to the 

scenario 𝝑𝟐 → �̂�𝒏
𝒗 with 𝒄𝒏+𝟏→𝒏+𝟐

𝒗 .   

In table 2, all input features are summarized and explained. Feature highlighted with (*) are features that exist three 

times corresponding to trip legs 𝒄𝒊→𝒋
𝒗 , 𝒄𝒋→𝒋+𝟏

𝒗 , 𝒄𝒋→𝒋+𝟐
𝒗 . In table 3 the abbreviations for the corresponding feature-

category are explained.  

 

 

 

# Feature Definition Datatype Description Category 

1 date  Metric Date of service when trip starts TR 

2 weekday  Nominal Weekday of trip TR 

3 holiday national 

holiday 

Boolean True if national holiday TR 

4 start-station 𝒔𝟎 ∈  𝒍𝒗 Nominal Trip start station TR 

5 end-station 𝒔𝒏 ∈ 𝒍𝒗 Nominal Trip end station TR 

6 route-id 𝒓𝒗 Nominal Specifies the route  TR 

7 current station 𝒔𝒊
𝒗 Nominal  Station where train-service last 

arrived 

TR 

8* leg destination 𝒔𝒊
𝒗 Nominal leg destination station TR 

9 scheduled 

depart time 

𝒅𝒕𝒊
𝒗 Metric Departure time at current 𝒔𝒊

𝒗 TR 

10* scheduled 

arrival time  

𝒂𝒕𝒊
𝒗 Metric Arrival time at current 𝒔𝒊

𝒗 TR 

11* scheduled travel 

time 

𝒅𝒕𝒋
𝒗 −  𝒅𝒕𝟎𝒊

𝒗  Metric Travel time between 𝒔𝒊
𝒗 and 𝒔𝒋

𝒗 TR 
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12* station number 𝒊 ∈

 {𝟏, 𝟐, … , 𝒏}  

Metric corresponds to the station index 

number within 𝒍𝒗 

TR 

13 trip start time 𝒅𝒕𝟎
𝒗 Metric Departure time at 𝒔𝟎

𝒗 TR 

14 time since start 𝒂𝒕𝒊
𝒗 −  𝒅𝒕𝟎

𝒗 Metric Time since trip started TR 

15 current arrival 

delay 

𝒚𝒊
𝒗 Metric Arrival delay at current station 𝒔𝒊

𝒗 DP 

16 Previous arrival 

delay 

𝒚𝒊−𝟏
𝒗  Metric Arrival delay at station before 

current station 𝒔𝒊−𝟏
𝒗  

DP 

17 pre-previous 

arrival delay 

𝒚𝒊−𝟐
𝒗  Metric Arrival delay at second station 

before current station 𝒔𝒊−𝟐
𝒗  

DP 

18* delays at station 𝟏

𝒎
∑ 𝒚𝒋

𝒊

𝟑𝒉

𝒊=𝟏

,   
Metric Average arrival delay at station 𝒔𝒋

𝒗 

during last three hours 

NR 

19* busy-index 

∑ 𝒄𝒊→𝒋
𝒙

𝒕

𝒙=𝟏

,   
Metric Number of train-services running 

from 𝒔𝒊 to 𝒔𝒋 within 

 [𝒅𝒕𝒊
𝒗 − 𝟏. 𝟓𝒉 < 𝒕 <  𝒅𝒕𝒊

𝒗 + 𝟏. 𝟓𝒉] 

NR 

20* snapshot delay 

previous trip 

𝒚𝒋
𝒗−𝟏 Metric Arrival delay of previous trip for 

𝒍(𝒋−𝟏)𝒋 by same route 

S 

21* snapshot delay 

last service 

𝒚𝒋
𝒙 Metric Delay of last train-service running 

from 𝒔𝒊 to 𝒔𝒋 

S 

22 betweenness 

centrality origin 

see 5.3.2 Metric Calculated for 𝒔𝒊
𝒗 for timeframe 

[𝒅𝒕𝒊
𝒗 − 𝟏. 𝟓𝒉 < 𝒕 <  𝒅𝒕𝒊

𝒗 + 𝟏. 𝟓𝒉] 

SR 

23* betweenness 

centrality 

destination 

see 5.3.2 Metric Calculated for 𝒔𝒊
𝒗 for timeframe 

[𝒅𝒕𝒊
𝒗 − 𝟏. 𝟓𝒉 < 𝒕 <  𝒅𝒕𝒊

𝒗 + 𝟏. 𝟓𝒉] 

SR 

24 indegree 

centrality origin 

see 5.3.2 Metric Calculated for 𝒔𝒊
𝒗 for timeframe 

[𝒅𝒕𝒊
𝒗 − 𝟏. 𝟓𝒉 < 𝒕 <  𝒅𝒕𝒊

𝒗 + 𝟏. 𝟓𝒉] 

SR 

25* indegree 

centrality 

destination 

see 5.3.2 Metric Calculated for 𝒔𝒊
𝒗 for timeframe 

[𝒅𝒕𝒊
𝒗 − 𝟏. 𝟓𝒉 < 𝒕 <  𝒅𝒕𝒊

𝒗 + 𝟏. 𝟓𝒉] 

SR 

26 outdegree 

centrality origin 

see 5.3.2 Metric Calculated for 𝒔𝒊
𝒗 for timeframe 

[𝒅𝒕𝒊
𝒗 − 𝟏. 𝟓𝒉 < 𝒕 <  𝒅𝒕𝒊

𝒗 + 𝟏. 𝟓𝒉] 

SR 

27* outdegree 

centrality 

destination 

see 5.3.2 Metric Calculated for 𝒔𝒊
𝒗 for timeframe 

[𝒅𝒕𝒊
𝒗 − 𝟏. 𝟓𝒉 < 𝒕 <  𝒅𝒕𝒊

𝒗 + 𝟏. 𝟓𝒉] 

SR 

28 closeness 

centrality origin 

see 5.3.2 Metric Calculated for 𝒔𝒊
𝒗 for timeframe 

[𝒅𝒕𝒊
𝒗 − 𝟏. 𝟓𝒉 < 𝒕 <  𝒅𝒕𝒊

𝒗 + 𝟏. 𝟓𝒉] 

SR 

29* closeness 

centrality 

destination 

see 5.3.2 Metric Calculated for 𝒔𝒊
𝒗 for timeframe 

[𝒅𝒕𝒊
𝒗 − 𝟏. 𝟓𝒉 < 𝒕 <  𝒅𝒕𝒊

𝒗 + 𝟏. 𝟓𝒉] 

SR 

30* edge 

betweenness  

see 5.3.2 Metric Calculated for 𝒔𝒊
𝒗 for timeframe 

[𝒅𝒕𝒊
𝒗 − 𝟏. 𝟓𝒉 < 𝒕 <  𝒅𝒕𝒊

𝒗 + 𝟏. 𝟓𝒉] 

SR 
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31 pagerank origin see 5.3.2 Metric Calculated for 𝒔𝒊
𝒗 for timeframe 

[𝒅𝒕𝒊
𝒗 − 𝟏. 𝟓𝒉 < 𝒕 <  𝒅𝒕𝒊

𝒗 + 𝟏. 𝟓𝒉] 

SR 

32* pagerank 

destination 

see 5.3.2 Metric Calculated for 𝒔𝒊
𝒗 for timeframe 

[𝒅𝒕𝒊
𝒗 − 𝟏. 𝟓𝒉 < 𝒕 <  𝒅𝒕𝒊

𝒗 + 𝟏. 𝟓𝒉] 

SR 

33 load centrality 

origin 

see 5.3.2 Metric Calculated for 𝒔𝒊
𝒗 for timeframe 

[𝒅𝒕𝒊
𝒗 − 𝟏. 𝟓𝒉 < 𝒕 <  𝒅𝒕𝒊

𝒗 + 𝟏. 𝟓𝒉] 

SR 

34* load centrality 

destination 

see 5.3.2 Metric Calculated for 𝒔𝒊
𝒗 for timeframe 

[𝒅𝒕𝒊
𝒗 − 𝟏. 𝟓𝒉 < 𝒕 <  𝒅𝒕𝒊

𝒗 + 𝟏. 𝟓𝒉] 

SR 

35 actual arrival 

delay at 𝒔𝒋
𝒗 

   𝒚𝒋
𝒗, used only for model training, 

testing and validation 

 

36 actual arrival 

delay at 𝒔𝒋+𝟏
𝒗  

  𝒚𝒋+𝟏
𝒗 , used only for model training, 

testing and validation 

 

37 actual arrival 

delay at 𝒔𝒋+𝟐
𝒗  

  𝒚𝒋+𝟐
𝒗 , used only for model training, 

testing and validation 

 

Table 2: Summarizes all input features used to predict delay �̂�𝒋 at station 𝒔𝒋 for time 𝒕 =  𝒕𝒋−𝟏
𝒂 . The last three rows correspond to the 

actual arrival delays. They are needed to train, test and validate the machine-learning model 

 

As defined in the prediction problem (9) all the features defined in table 2 have to be calculated or extracted for 

𝒕 =  𝒂𝒕𝒊
𝒗 in order to predict delays �̂�𝒋

𝒗, �̂�𝒋+𝟏
𝒗 , �̂�𝒋+𝟐

𝒗  at station 𝒔𝒋
𝒗, 𝒔𝒋+𝟏

𝒗 , 𝒔𝒋+𝟐
𝒗 . In the table below the input feature 

categories are listed. In the following section these categories will be explained more in detail.  

 

Category Abbreviation 

Trip-related TR 

Delay propagation DP 

Snapshot S 

Station-related SR 

Network-related NR 

Table 3: Input feature categories and their abbreviation. 

Table 2 corresponds to the table schema of the input table that will be used to train, validate and test the prediction 

model. Each record in the input table, corresponds to one observation for which the arrival delay needs to be 

predicted using the variables in table 2 

 

4.2.1 Trip-related features (TR) 

The input features (1) to (13) are input features that characterize specific elements within a trip. Most of these 

features are commonly used as input for predictive models (Yaghini, Khoshraftar and Seyedabadi, 2013; Marković 

et al., 2015; Oneto et al., 2016; Zychowski, Junosza-Szaniawski and Kosicki, 2018). These features capture mostly 

categorical information, such as the route (6) and its start- (4) and end-station (5). But as the model predicts based 

on 𝒕 =  𝒂𝒕𝒊
𝒗, the current station (7) and leg destination station (8) can also be extracted from the timetable. The 

current station is defined as the station, where the train service last arrived at 𝒕 =  𝒂𝒕𝒊
𝒗. These features are used as 
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input based on the assumption that delays may arise depending on the destination station. For example, a highly 

frequented station might register more arrival delays as a station with only few arrivals a day. Using the service’s 

date (1) one can identify the weekday (2) and check whether it was a national holiday (3) or not.  Scheduled 

departure (9) and arrival (10) time correspond to the times fixed in the timetable. These features (1), (2), (3), (9) 

and (10) should capture the daily and weekly distribution of arrival delays. The input feature “station number” (11) 

corresponds to the index number 𝒏 within the the trip 𝒍𝒗of the leg destination station. The indices start with value 

0, therefore the station number of the start-station (4) is always equal to 0, as it is the first station of the ordered 

sequence that characterizes 𝒍𝒗. Input feature (12) corresponds to the departure of the trip at the first station of his 

trip, whereas (13) denotes how long the trip is already during.  

 

4.2.2 Delay propagation features (DP) 

In this thesis delay propagation relates to the current delay of the trip 𝒍𝒗. The assumption is that if the train-service 

arrived delayed station 𝒔𝒊
𝒗 it is likely that this delay will be propagated over all following legs {𝒄𝒊→𝒋, . . , 𝒄(𝒏−𝟏)→𝒏} ∈

 𝒍𝒗. In order to account this, the delay propagation feature (14-16) are considered for predicting the delays �̂�𝒋
𝒗, �̂�𝒋+𝟏

𝒗  

and �̂�𝒋+𝟐
𝒗 . The input features capture the train-service delay for the current station and the two previous stations. As 

a train-service might be able to catch up small delays during a leg, the last three arrival delays are considered. 

Therefore, it should be able to distinguish between a train-service that is constantly delayed over all stations or a 

small delay, that can be catched up as we can assume delayed trains run faster to reduce their delay (Goverde, 2010). 

In the proposed train delay prediction system, at the start of a trip at station 𝒔𝟎
𝒗 the delay propagation features (14-

16) are set to 0 until a corresponding delay has been registered. An exception for the lines “ICE” and “EC” have 

been put in place. These two lines are incoming from abroad (Germany and Italy), therefore 𝒔𝟎
𝒗 corresponds to the 

first registered arrival station in Switzerland. At this point these train-services might already be delayed. In this case 

the delay propagation feature (14) is set to the arrival delay of the first arrival station in Switzerland. Feature 15 and 

16 are set to 0 because, this data is not available because it was registered outside of Switzerland.  

 

4.2.3 Snapshot features (S) 

Snapshot features are features that follow the snapshot principle proposed by Senderovich et al. (2014) and applied 

to transportation network as proposed by Gal et al. (2017) and  Sun et al. (2018) as discussed in chapter 2.2.3. In 

the outlined train delay prediction system, the snapshot feature (19) refers to the registered delay 𝒚𝒋
𝒗−𝟏 for 𝒄𝒊→𝒋

𝒗−𝟏 of 

the train-service 𝒍𝒗−𝟏, which was executed before 𝒍𝒗. The input feature (20) corresponds to the arrival delay 𝒚𝒋
𝒙 for 

𝒄𝒊→𝒋
𝒙  of a train-service 𝒍𝒙 ∉ 𝒓𝒗 with 𝒂𝒕𝒊

𝒙 <  𝒂𝒕𝒊
𝒗, as proposed by Gal et al. (2017) and  Sun et al. (2018). It 

corresponds to the arrival delay of a train-service associated to another route but shares the same leg with 𝒍𝒗.  

 

4.2.4 Station-related features (SR) 

The category station-related features capture topological properties a station in relation to the railway network. As 

emphasized in the research gap, public transportation systems contain the nature of physical networks as they 

include the combination of lines and nodes that intersect with each other (Derrible and Kennedy, 2011). It has been 

shown that centrality measures are able to capture different topological characteristics of railway networks and can 



Master thesis Olivier Niklaus 40 

be useful to detect and characterize important stations within a network (Derrible, 2012; Zhang et al., 2013; To, 

2015). On the other hand, Lee et al. (2016) stated that among the various delay factors, timetable is the most 

economic control factor, and the quality of a timetable is related to the punctuality of a railway system. The here 

proposed station-related features combine these two insights. For this, a graph-network is built based on the 

timetable data, where stations are represented as nodes and train-services as edges connecting the nodes. In this 

way, the time-dependent topological relations between the stations and the topological property of a station within 

the whole timetable-network can be calculated using centrality measures.  

In order to account the intrinsic dynamic and interdependencies of a railway network these station-related features 

are calculated for the period [𝒅𝒕𝒊
𝒗 − 𝟏. 𝟓𝒉 < 𝒕 <  𝒅𝒕𝒊

𝒗 + 𝟏. 𝟓𝒉] for each observation. Consequently, the centrality 

measure of a leg origin- and destination-station reflects the topological characteristics of the station within its 

timetable network during this period. In order of computational limits this time-period has been set to 1.5 hours 

before and after the train-service’s departure time 𝒅𝒕𝒊
𝒗 for leg 𝒄𝒊→𝒋. Further the time-period has been chosen to form 

a time-interval around 𝒅𝒕𝒊
𝒗 because it can be argued that if the timetable quality is low before 𝒅𝒕𝒊

𝒗 that would still 

have an impact on the train-service as a railway networks is assumed to recover from delays only slowly. Therefore, 

centrality measures 21-33 listed in table 2, assess different topological characteristics of a station within the 

timetable.  

In this section the centrality measures and their purpose and relevance in a transportation network context is 

discussed. Concerning calculation of the centrality measures a separate section is dedicated 5.3.2.   

• Degree centrality (23, 24, 25, 26) 

Degree centrality of a node is a local metric that refers to the number of edges that are connected to a node 

(Psaltoglou and Calle, 2018). It therefore captures the topological properties of a station according to the stations it 

is connected by a train-service. Consequently, the proposed features indegree-centrality and outdegree-centrality 

refer to the number of ingoing and outgoing train-services at the leg origin- and the leg destination-station within 

[𝒅𝒕𝒊
𝒗 − 𝟏. 𝟓𝒉 < 𝒕 <  𝒅𝒕𝒊

𝒗 + 𝟏. 𝟓𝒉].  

 

• Betweenness centrality (21,22) 

Contrary, to degree centrality, betweenness centrality of a node is a global metric, as it considers the whole network 

for its calculation. Therefore, it captures the topological property of a station within the whole timetable-network. 

Betweenness centrality is based on pair-wise shortest path connections between all node pairs in a network. The 

betweenness centrality of a node corresponds to the number of shortest paths passing the node. Therefore, nodes 

with high a betweenness centrality correspond to nodes that lie between many other nodes (Psaltoglou and Calle, 

2018). Nodes with a betweenness centrality are often emphasized as network critical nodes (To, 2015). In 

transportation networks betweenness centrality highlights the importance of a station as a transfer point between 

any pairs of nodes (Derrible, 2012). 

 

• Edge betweenness centrality (29) 

The edge betweenness centrality equivalent to betweenness centrality of a node. It is defined as the number of the 

shortest paths that go through an edge in a network (Lu and Zhang, 2013). Therefore, an edge with a high edge 

betweenness centrality can be interpreted as a bottleneck edge or a bridge between two sub-groups in network 

(Pandey and Kemper, 2016).  
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• Closeness centrality (27, 28) 

As betweenness centrality, closeness centrality is also a global metric. Instead of considering the number of shortest 

path going through a node, a node’s closeness centrality is determined by average length of the shortest path between 

the node and all other nods (Freeman, 1979). Therefore, a node with a high closeness centrality can be easily reached 

by any other node. In a railway network a station with low closeness centrality is a node that is badly connected to 

all other stations.  

 

• PageRank (30, 31) 

Is a centrality measure that is based on PageRank algorithm, which computes the importance of nodes based on the 

number of incoming links, the link propensity of the linkers and the centrality of the linkers. In transportation 

network PageRank indicates transportation hubs of multiple stations, that are well connected within each other 

(Huang et al., 2018).  

 

• Load centrality (32, 33) 

Load centrality is very close related to betweenness centrality. As betweenness centrality its calculation is based on 

pair-wise shortest path connections between all node pairs in a network. Load centrality was introduced to capture 

the collaborative ties between each node-pair (Newman, 2001). 

 

 

4.2.5 Network-related features (NR) 

Are features as introduced by Oneto et al. (2016) and Wang and Work (2015). The basic idea behind, this kind of 

feature is to capture the current railway traffic situation on the whole network. As Wang and Work (2015) concluded 

that taking into account other delayed train-services in the network does not improve the prediction accuracy. They 

argued that this can be explained because once a train is delayed at a station, it is observed that the delay will 

propagate for several stations and therefore is already considered in the delay propagation feature. But another 

explanation could be that solely taking into account train-services departing from neighboring station of the leg 

origin-station is not sufficient. Therefore, within this thesis two new network-related features are proposed. 

• Delays at station (18) 

The input feature “Delays at station” corresponds to the average arrival delay of all incoming train-services within 

𝒂𝒕𝒊
𝒗 − 𝟑𝒉 at the leg destination-station. For this, the delay of all incoming train-services at the leg destination-

station have been summed and averaged by the number of train-services. Using, this approach also non-neighboring 

stations from the leg-origin station are considered. Furthermore, a station registering a high amount arrival delays 

within a time-period needs constantly to re-schedule trains. For example, changing the arrival-platform of a train-

service. This can lead to shortages and cause delayed arrivals for train-services that have not been delayed until this 

point 

 

• Busy-index (18) 

The input feature “Busy-index” is a simple count function, that counts the train-services within the leg origin- and 

destination-station within [𝒅𝒕𝒊
𝒗 − 𝟏. 𝟓𝒉 < 𝒕 <  𝒅𝒕𝒊

𝒗 + 𝟏. 𝟓𝒉] for a train-service leg 𝒄𝒊→𝒋. Same as the station-related 

features, the busy-index is based on timetable data. But contrary to those the busy-index assesses the absolute train-

service frequency between two stations. The term busy therefore denotes, how often the connection between two 
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subsequent stations have been serviced, consequently a connection could refer to as busy if this connection has been 

serviced many times within the timeframe. 

 

5. Data and Pre-processing 

5.1 Data overview 

This section outlines the data used to predict arrival delays in detail. Furthermore, it sketches how the data has been 

filtered and pre-processed in order to use it to train the machine learning model and to evaluate its results. As 

mentioned, the data used in this thesis is derived from the following open data platform. 

• Open Transport Data Platform Swiss Public Transport (ODPST) 

https://opentransportdata.swiss/en/ 

 

The following table gives an overview over the specific datasets that are used in this thesis. The last column 

describes for which purpose the data will be used within this thesis. For this, the term “network-related information” 

refers to the purpose that from this dataset specific network-related information has been extracted. This can be in 

form of calculated metrics or categorical values. The term “trip-related information” refers to trip-specific 

information. This basically includes the actual arrival and departure time that was achieved by the train. 

 

Dataset Name Timeframe Description Purpose 

Static GTFS Timetable 2018 Static GTFS 

Feed  

Timetable 

related 

information 

Actual data  01.01.2018 – 

30.6.2018 

Train describer 

data containing 

actual arrival and 

departure time of 

each trip 

Trip and 

network 

related 

information 

Table 4: Overview of the used datasets 

 

In general, these datasets are the basis to engineer the features, which should reflect the public transportation 

network in a more holistic way using a graph-based approach. They finally should contribute to answer the research 

question, how graph-based network properties contribute to delay prediction in public transportation. The following 

section will discuss how the actual data dataset has been filtered and processed in order to create the basis for the 

input data for the prediction model to predict arrival delays for the long-distance traffic of Switzerland’s public 

railway transportation network. In the second part the filtering and processing of the GTFS data will be discussed 

in detail. In addition, the input feature deducted from the GTFS data will be presented and discussed and put into 

relation to the network-based approach for delay prediction.  

 

https://opentransportdata.swiss/en/
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5.2 Actual time dataset pre-processing 

5.2.1 Processing 

The actual time dataset5 contains all trips, which have been executed in reality. The corresponding documentation6 

explains in detail the table fields and their meaning. According to the documentation the dataset contains the 

achieved, respectively the real arrival times of past trips. The used actual time dataset is very close to what Ghofrani 

et al. (2018) emphasized as train describer data. According to ODPST the actual data is not available for all vehicles 

as it is depending whether the required information systems are available for the train. For that they use the last 

known forecast is used as the actual time. However, even if this are approximations the ODPST confirms that these 

values are still very interesting as they can be used to produce statistical evaluations about punctuality, regularity 

or connection quality. According to (ODPST) the data is uploaded on a daily basis for the previous day, which 

means the data is delayed by 24 hours. The dataset is published as comma separated values (csv) files. For each 

month the ODPST aggregates the corresponding .CSV files into a zipped folder and adds it to the archive on Google 

Drive7. For that reason, each zip-Folder contains between 28 to 31 .CSV files for each day of the month. After 

unzipping the folder each month, the folder-size is around 6 GB large. At the time starting this thesis the following 

time-period 01.01.2018-31.11.2018 was available. From this time period a subset from the 01.01.2018 to the 

30.6.2018 (ca. 36 GB) has been downloaded and stored, which contains around 180 .CSV files and form together 

the actual time dataset. 

In table 5 the table-schema of the dataset is presented. As you can see the dataset contains 21 fields. To identify a 

whole trip with all its stops, which then corresponds to the defined 𝒍𝒗, all records with the same 

FAHRT_BEZEICHNER need to be selected. According to the dataset’s documentation the field 

FAHRT_BEZEICHNER is a composition of the cells BETREIBER_ID and LINIEN_ID, to which some extended 

reference is added. As the ODPST publishes the actual data every day for the previous day the 

FAHRT_BEZEICHNER is not unique when aggregating data of several days. Nevertheless, the field 

FAHRT_BEZEICHNER in combination with BETRIEBSTAG can be used as unique identifiers of a trip.  

In order to enable developers to assess the data quality of the actual time data records (AN_PROGNOSE and 

AB_PROGNOSE), are categorized into 5 different classes: 

1)  UNKNOWN 

2) Empty (=FORECAST) 

3) FORECAST 

4) ESTIMATED 

5) REAL 

The documentation to the actual datasets states that the term “UNKNOWN” indicates that no forecast and actual 

time are available for this and all previous stops of the trip. If the cell is blank (=Empty) the actual arrival and 

departure times have been forecasted, same as if the record has been labelled “FORECAST”. According to ODPST 

these records receive the actual times based on the forecast times supplied by SBB’s operational planning system 

if the stops are part of SBB’s railway network infrastructure or of the railway network infrastructure of BLS AG 

and the Schweizerische Südostbahn AG (SOB). The documentation states that inaccuracies are possible in this 

 
5 Accessed by: https://opentransportdata.swiss/de/dataset/istdaten 
6 https://opentransportdata.swiss/en/cookbook/actual-data/ 
7 https://drive.google.com/drive/folders/1SVa68nJJRL3qgRSPKcXY7KuPN9MuHVhJ 
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situation and are insignificant. Records are labelled with “ESTIMATED” if the actual arrival times are derived by 

the control system of the railway infrastructure. This control system captures the time for specific train before 

entering the station. The actual arrival time is then estimated based on this time capture. The term “REAL” is 

assigned if the effective arrival time is available. 

Field Name Datatype Description 

BETRIEBSTAG DD.MM.YYYY The day the trip took place 

FAHRT_BEZEICHNER String Corresponds to a trip-id (unique when 

combined with BETRIEBSTAG) 

BETREIBER_ID String Business organization number of the 

operating agency  

BETREIBER_ABK String abbreviated operating agency name 

BETREIBER_NAME String Spelled operating agency name 

PRODUKT_ID String Ship, Bus, Train or etc. → Transportation 

mean 

LINIEN_ID Integer A purely technical key for each trip (is 

unique on a daily basis) 

LINIEN_TEXT String Corresponds to a route as in figure 2 

(section Data availability) 

UMLAUF_ID String Vehicle number and the time it is operating 

VERKEHRSMITTEL_TEXT String Textual description of the transportation 

form 

ZUSATZFAHRT_TF Boolean True if it is an additional trip (added to 

schedule) 

FALLT_AUS_TF Boolean True if the trip failed 

BPUIC Integer Stop-ID 

HALTESTELLEN_NAME String Spelled name of the stop 

ANKUNFTSZEIT DD.MM.YYYY 

HH24:MI 

Scheduled arrival time 

AN_PROGNOSE DD.MM.YYYY 

HH24:MI:SS 

Actual arrival time 

AN_PROGNOSE_STATUS Categorical  Classifies AN_PROGNOSE quality 

ABFAHRTSZEIT DD.MM.YYYY 

HH24:MI 

Scheduled departure time 

AB_PROGNOSE DD.MM.YYYY 

HH24:MI:SS 

Actual departure time 

AB_PROGNOSE_STATIS Categorical Classifies AB_PROGNOSE quality 

DURCHFAHRT_TH Boolean True if mean of transport did not stop at 

scheduled stop 

Table 5: Schema of the raw actual dataset 
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Pre-processing of actual time data 

The actual dataset contains also records from all operating transportation agencies in Switzerland. Therefore, the 

datasets include trips that are not part of the long-distance traffic, such as bus and tram trips operated by local 

agencies in cities. As the long-distance traffic is operated by the SBB the actual data will be filtered and processed 

as sketched in figure 8. The dataset is first filtered by the operating agency (step A) using the field BETREIBER_ID. 

Afterwards all values are dropped that were labelled “UNBEKANNT” in AN_PROGNOSE or AB_PROGNOSE. 

This is the case for very few records and can therefore be neglected. In step C all records are filtered, whose 

LINIEN_TEXT field is equally to one the national service-routes presented in figure 2 in section “Study Area and 

Data availability”. After completing step C, the actual contains now only the records that are related to the long-

distance traffic. This pre-processing flow has been executed for each .CSV file individually, which means they have 

not been aggregated. This allowed to parallelize the pre-processing computation over several computation cores, 

where each core executed the sketched workflow 8 for a whole .CSV file. The pre-processed CSV file contains 

about 12’000 records for each day, which corresponds to around 1620 trips a day. Based on the pre-processed actual 

data, the input features 1-20 as defined in table 2 have been computed in Python 3.7. This process is summarized 

in the following section.  

 

 

 

5.2.2 Feature engineering actual time data 

After cleaning and filtering the actual time dataset it is possible to calculate the input features 1-16 and 19 as defined 

in table 2. In addition. the three variables 𝒚𝒋
𝒗, 𝒚𝒋+𝟏

𝒗 , 𝒚𝒋+𝟐
𝒗 , which the model should predict are also calculated within 

this process.  For this the following workflow has been implemented in a Python 3.7 script. As sketched in figure 

9, the subtasks A1-A3 form together a task that is executed on each .CSV file. Task A creates an empty table with 

the schema of table 2 defined section 4.2. For each .CSV file within the actual time dataset the subtasks A1-A3 are 

executed in parallel to speed up processing. Task A triggers the subtasks for each .CSV file according to the 

availability of a computational core. Further task A collects the resulting dataframe in subtask A3 to generate a one 

A

• Filter by BETREIBER_ID == 85:11

• returns all rows operated by SBB

B

• Filter by AN_PROGNOSE != Unbekannt

• Drop all values with no actual data

C
• Extract wanted long-distance traffic routes as specified in figure 2

D
• set correct datatypes and time formats

E
• final cleaned pre-processed actual data

Figure 8: Workflow for pre-processing actual time dataset. 
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dataframe that aggregates all processed .CSV files into one .CSV file, which is written in step B. At this point all 

input features 1-16 and 19 have been computed. The parallel processing of the .CSV has limited the calculation of 

the snapshot feature 17 and 18. For train-services early in the morning the corresponding snapshot train-services 

can only be identified if all .CSV files are aggregated. Therefore, the snapshot features have been computed after 

step B in figure 9 using the resulting dataset containing all .CSV files. For the calculation of the feature “delays at 

station” (19) it is assumed the railway network is set back in its initial position after one night as the railway 

operations are not executed during the whole night. 

 

The resulting table widely corresponds to the input table that will be used for the prediction-model. Until here the 

input features 1-16 and 19 have been calculated as defined in table 2. In addition, the variables of interest, the one 

to be predicted are also calculated in this step. The actual arrival delays have been calculated as defined in section 

4.1.2. 

 

 

 

A

• Create new empty dataframe with schema as described in section: Input feature space, table 2

• Trigger parallel execution for following tasks per .CSV file

A1

• Calculate arrival delay for each record

• Identify weekday and holiday

A2

• Collect unique station-id’s

• Filter data by each arrival station-id and form subsets

• Sort subset according to arrival time

• calculate for each record the mean average delay within last 3 hours using a moving window on 
subset → add to new column “delays at station” (input feature #18)

A3

• Identify unique trip-id’s

• Filter data by each unique trip-id and form subsets

• Sort subset according  to “ABFAHRTSZEIT”

• Iterate over subset and compute or extract input features #1-16 and #18 (created in step B)

• Arrange input features #1-16 and #18 and append to dataframe created in step A

• Write out a daily subset of the processed .CSV as backup

B
• Write out the final processed dataframe from step A

Figure 9: Workflow for the calculation of input feature 1-16 and 19 as defined in table 2. 
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5.3 Static GTFS dataset and pre-processing 

The static GTFS (General Transit Feed Specification8) provided by ODPST contains the timetable information for 

Switzerland’s public transportation network. In general, GTFS describes a digital exchange format of transit data. 

A series of files that is arranged as specified in GTFS is called a GTFS feed or simply a GTFS dataset (Google, 

2015). It has been developed by Google for timetables used for public passenger transport services and relevant 

geographical information (Google, 2015). GTFS facilitates data sharing and access to information for user for transit 

agency operational data. Due to its simplicity, small transit agencies as well as lager ones can publish their data at 

low cost (Fortin, Morency and Trépanier, 2016). Static GTFS contains up to 12 different comma-separated value 

files that are related to each other by relational keys. All these files together would represent a complete static GTFS 

file, which is usually aggregated and provided by a .ZIP file. GTFS data are mostly used in online applications to 

provide route and schedule information to transit users (Fortin, Morency and Trépanier, 2016). In research GTFS 

data has also been used for accessibility analysis (Fayyaz S., Liu and Zhang, 2017; Kujala et al., 2018) or 

spatiotemporal analysis and failure detection in public transport systems (Hadas et al., 2014). 

The static GTFS data provided by ODPST represent the corresponding timetable of 2018, which corresponds to the 

actual dataset. The GTFS data provided contains 8 .CSV files that are related to each other as illustrated in figure 

10. 

 
8 https://opentransportdata.swiss/de/cookbook/gtfs/ 
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As illustrated in figure 10, the railway agency with specified agency_id (for SBB: 11) operates multiple routes, 

which can be differentiated by their unique route_id value in the routes-file. For each route, multiple trips exist in 

the trips-file. Every trip is associated with multiple records in the stop_times-file, which defines the scheduled 

arrival and departure time of the trip at a station. Therefore, all records with the same trip_id value in the stop-

times-file form an entire train-service 𝒍𝒗 as defined in table 2. The stop_times reference to a specific stop, which 

can be identified in the stops-file using the key stop_id. The calendar-file contains information about the time-

period within the trip is executed regularly. As the provided GTFS dataset ODPST is the valid timetable for nearly 

the whole year of 2018 the time-period value in the calendar-file is equal. Further the calendar-file specifies the 

weekday of the trip-execution, as some trips might only be executed on weekends, However, it does not specify 

dates for a trip-execution. The files calendar-dates and transfer have not been used within this thesis because they 

would not have added any meaningful information but complicated implementation. It contains information about 

exceptions and deviations from general timetable. In the following part the pre-processing of the GTFS is described 

in more detail.  

Figure 10: Illustration of the used static GTFS data and how they are related to each other. The corresponding 
foreign keys are indicated next to the arrows. [1: N] denotes that the foreign key matches N records in the 

related file. Blue coloured files have been used 
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5.3.1 Processing of static GTFS data 

As already mentioned, the GTFS data contains the complete timetable of public transportation in Switzerland. This 

includes buses, regional trains and even aerial cableway from many different public transportation agencies. 

Therefore, it was necessary to filter all files in the static GTFS and keep only those that are related to the SBB. For 

this the very handy python tool kit GTFSTK9 has been used. GTFSTK is a tool kit developed to analyze and process 

GTFS data in memory without a database. It is based on python-based libraries pandas 10and shapely11. For filtering 

the GTFS data the module “Feed” from the GTFSTK library has been used. Loading the static GTFS dataset into 

the Feed class creates an instance that represents a GTFS feed, for which multiple functions exist within the 

GTFSTK library. For filtering the method restrict_to_routes() has been used as summarized in figure 11. 

After the GTFS data has been filtered it was loaded into a graph-database12. For the purpose of this thesis it was 

important that the GTFS data could be queried in order to extract timetable information, such as a specific trip 

between two stations at a specific time. Van Bruggen (2015) proposed a graph model that allows to query GTFS 

data efficiently in a graph-database. This model has been adapted slightly to add the calendar-file, which is needed 

to query trips according to specific weekdays. The following figure illustrates the graph-model loaded into the graph 

database. Adaptions have been highlighted in orange. First, it was intended to compute the centrality measures 

(input features 21-33) within the graph-database. However, during the process of this thesis the idea evolved to 

compute the centrality measures time dependent as defined in table 2 and for this purpose the graph-database was 

not suitable because of limitations in process parallelization. Nevertheless, that graph-database was used for 

querying the GTFS data in order to calculate the centrality measures as described in the next section. Consequently, 

the calculation of the centrality measures could also be performed using a more common relational-database system.  

 
9 https://mrcagney.github.io/gtfstk_docs/index.html 
10 https://pandas.pydata.org/ 
11 https://pypi.org/project/Shapely/ 
12 https://neo4j.com 

A

• Load routes.txt into a dataframe

• filter dataframe for records with agency_id == 11

•Create list containing unique route_id’s associated to agency == 11

B
• Load GTFS Feed using GTFSTK Feed()

C

• execute Feed.restrict_to_routes(unique_route_list)

• returns new filtered feed 

D
• GTFSTK.write(feed) writes out the filtered feed 

Figure 11: Workflow for filtering a GTFS feed for all records related to one agency. 
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5.3.2 Feature engineering GTFS  

The calculation of the centrality measures are relied on the dataframe generated in section 5.2. This dataframe 

contains already each observation, for which the arrival delay should be predicted by the machine-learning model. 

This section describes how the centrality measures are calculated to receive the input features 18 and 20-33, which 

would finalize the input table to predict arrival delays.  

Centrality measures are calculated by building a multi-directed graph based on timetable information. Within the 

graph stations are represented as nodes and train-services as connecting edges. As outlined in section 4.2, the 

centrality measures should capture the topological properties pre-defined by the provided timetable. Based on this 

graph  the input features 18 and 20-33 are calculated. As defined in table 2 all centrality measures are calculated for 

the specific timeframe [𝒅𝒕𝒊
𝒗 − 𝟏. 𝟓𝒉 < 𝒕 <  𝒅𝒕𝒊

𝒗 + 𝟏. 𝟓𝒉]. For the definition of the centrality measures, it’s worth 

considering the multi-directed graph 𝑮 with 𝑺 nodes and 𝑪 connections. 𝑮 is represents the graph within time [𝒅𝒕𝒊
𝒗 −

𝟏. 𝟓𝒉 < 𝒕 <  𝒅𝒕𝒊
𝒗 + 𝟏. 𝟓𝒉] extracted from the timetable-database presented in the previous section. The extraction 

is performed using the following Cypher-query13: 

Match(s: Stoptime)-[: PART_OF_TRIP]->(t:Trip)-[: SERVICES_AT(service:Service{day: "1"}) 

Where timedown < s.departure_time_s AND s.departure_time_s < timeup 

Return s.stop_id as stop_id, s.stop_sequence as stop_number, s.departure_time as dep_time, t.id as trip_id ORDER BY trip_id, 

stop_number ASC 

 

 
13 https://neo4j.com/developer/cypher-query-language/ 

Figure 12: Schema used to model GTFS data in a graph-database. Proposed by Van Bruggen (2015) and 
modified for the purpose of this thesis (highlighted in orange). 
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The cypher-query extracts all trip, that have stoptimes within [𝒅𝒕𝒊
𝒗 − 𝟏. 𝟓𝒉 < 𝒕 <  𝒅𝒕𝒊

𝒗 + 𝟏. 𝟓𝒉] (see “Where-

Clause”). The parameter (highlighted in yellow) “timedown” corresponds to 𝒅𝒕𝒊
𝒗 − 𝟏. 𝟓𝒉 , whereas “timeup” 

corresponds to 𝒅𝒕𝒊
𝒗 + 𝟏. 𝟓𝒉. The parameter “day” is equal to the weekday needed. This cypher-query allows to 

extract all scheduled trips for a specific timeframe and a specified weekday. The following sample shows the 

extraction of such a query for 𝒕 = 𝟏𝟑: 𝟎𝟎, which corresponds to 𝟒𝟑𝟐𝟎𝟎 𝒔𝒆𝒄𝒐𝒏𝒅𝒔. The special cases around 

midnight have been accounted by using multiple if-else clauses to ensure, that trains leaving after midnight are also 

respected if 𝐭 <  𝟐𝟒: 𝟎𝟎. As emphasized GTFS does not specify the exact date on which a trip is executed. GTFS 

is based on a weekly pattern. This property of GTFS data has been used to calculate the centrality measures in a 

more efficient way. Instead of calculating the centralities for each observation in the input table, unique weekday 

𝒘 and train-service departure times 𝒅𝒕𝒙
𝒗 pairs have been isolated from the dataframe previously generated. Each 

tuple of (𝒘, 𝒅𝒕𝒙
𝒗) was used to query the graph-database, thus each query-output has been used to build the 

corresponding graph 𝑮 and caculate the centrality measures. As the calcuation of centralities is always computed 

for all nodes 𝑺 involved in 𝑮 one centrality-computation matches several observations in the input dataframe. 

Namely all observations with (𝒘, 𝒅𝒕𝒙
𝒗) and 𝒔𝒊

𝒗 𝒐𝒓 𝒔𝒋
𝒗 ∈ 𝑺.  

 

The python package Py2neo14 allows to access the graph-database directly within the python-script. 

Consequently, the extracted table as shown in figure 13 is used to build multi-directed graph 𝑮 in python using 

the python graph-package NetworkX15, which provides useful tools for the creation, manipulation and the study 

of the complex networks.  

 

 

 

 

 

 

 
14 https://py2neo.org/v4/ 
15 https://networkx.github.io/documentation/stable/index.html 

Figure 13: Sample of extracted timetable information for t = 13:00. The first rows correspond to a trip that started earlier than 11:30, 

therefore the two first 5 legs of the trip are not included. The stop_id contains also platform information separated by “:”, which has 

not been included for building the of the multi-directed graph. The column “s. departure_time_s” corresponds to the departure time of 

the trip in seconds.  
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For better understanding of the calculation of the centrality measures a fictive simple multi-directed graph 𝑮𝑭 is 

shown in figure 14. The centrality measures have all been calculated using the algorithm module16 provided by 

NetworkX, which contains built-in functions to calculate centrality measures of a graph. The centrality measures 

will be exemplified on the graph illustrated in figure 14, where arrows represent different train-services and nodes 

represent stations that are served by the corresponding train-service. As we calculate centrality measures for 

different timeframes, the centrality-measures should always be normalized according to its network-size. Otherwise, 

the centrality-measures between different networks, timeframes respectively, cannot be compared.  

 

• Indegree- and outdegree- centrality  

Normalized indegree centrality for node 𝒔 is defined as (Marsden, 2015): 

 

𝑪𝒊(𝒔)  =  
𝟏

𝒏−𝟏
∑ 𝒙𝒊𝒋

𝒏
𝒋=𝟏      

 

Normalized outdegree centrality for node 𝒔 is defined as (Marsden, 2015): 

 

𝑪𝒐(𝒔)  =  
𝟏

𝒏−𝟏
∑ 𝒙𝒋𝒊

𝒏
𝒋=𝟏      

 

Where 𝒙 corresponds to the incoming and outgoing edges respectively. 𝒏 corresponds the number of nodes in the 

network. Therefore, in graph (fig 12), indegree- and outdegree-centrality for node 𝒔𝒂 would be: 

 

𝑪𝒊(𝒔𝒂)  =  𝟎. 𝟐𝟓 

𝑪𝒐(𝒔𝒂)  =  𝟎. 𝟓 

 
16 https://networkx.github.io/documentation/networkx-1.10/reference/algorithms.html 
 

Figure 14:  Example of a multi-directed-graph built after extracting the corresponding trips from the graph-
database. The different colours indicate individual trips. Nodes represent stations 
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• Betweenness-, edge-betweenness- and load-centrality 

For a set of nodes 𝑺 betweenness-centrality is based on the number of shortest paths between two nodes 𝒔𝒊, 𝒔𝒋 ∈ 𝑺 

and denoted as 𝝈(𝒔𝒊, 𝒔𝒋). 𝝈(𝒔𝒊, 𝒔𝒋\𝒗) corresponds to the number of shortest paths going through node 𝒗. The 

implementation of betweenness-centrality corresponds to the algorithm proposed by Brandes (2008), who defined 

betweenness-centrality as: 

𝑪𝑩(𝒗)  =  ∑
𝝈(𝒔𝒊, 𝒔𝒋\𝒗)

𝝈(𝒔𝒊, 𝒔𝒋)
𝒔𝒊,𝒔𝒋 ∈ 𝑺 

 

Betweenness-centrality for node 𝒗 normalized by the number of all shortest-paths between (𝒔𝒊, 𝒔𝒋).  Considering 

figure 14, we can see that a multi-directed graph can have multiple shortest path between for (𝒔𝒊, 𝒔𝒋). The provided 

algorithm by Brandes (2008) has encountered this problem as following. In this case the number of shortest paths 

connecting (𝒔𝒊, 𝒔𝒋) depends on the multiplicity of their edges: tripling an edge of a path is resulting in three different 

paths of the same length, as all copies of the tripled edge can be used. If more than one edge has multiplicity larger 

than one, then any instance of one edge combined with any instance of another edge yields a different path. 

Consequently, the total number of paths obtained from a generic path is the product of the multiplicities of its edges 

(Brandes, 2008). Same degree-centrality, betweenness-centrality is normalized using 𝟏/((𝒏 − 𝟏)(𝒏 − 𝟐)) as 

suggested by Freeman (1979). For the graph in figure 14,  𝑪𝑩(𝒗) for station 𝒔𝒂 would be: 

 

𝑪𝑩(𝒔𝒂) = 𝟎. 𝟐𝟓   

 

As we can see in figure 14, 𝒔𝒂 is not a very “central” station within the graph. For comparison betweenness-

centrality for station 𝑪𝑩(𝒔𝒃) = 𝟎. 𝟖𝟑, which seems plausible if look at athe number train-services, which pass 𝒔𝒃 

to reach another station. Edge-betweenness-centrality is very closely related to betweenness-centrality, it is a natural 

extension of betweenness to edges and can be obtained by replacing 𝝈(𝒔𝒊, 𝒔𝒋\𝒗) with 𝝈(𝒔𝒊, 𝒔𝒋\𝒆), that corresponds 

to the number of shortest (𝒔𝒊, 𝒔𝒋)-paths containing edge 𝒆 (Brandes, 2008). Load-centrality has often been 

misunderstood as equal to betweeneess-centrality (Brandes, 2008). The small difference between load and 

betweenness centrality is the way the calculation algorithm is implemented, which leads to slightly different results 

(Brandes, 2008).  

 

• Closeness-centrality 

Closeness centrality of a node 𝒔𝒊 is the reciprocal of the sum of the shortest paths distances from 𝒗 to all other nodes 

(Freeman, 1979). Closeness-centrality is defined as: 

 

𝑪𝑪(𝒔𝒊) =
𝒏 − 𝟏

∑ 𝒅(𝒔𝒊, 𝒔𝒋)𝒏−𝟏
𝒊=𝒊

 

 

, where 𝒅(𝒔𝒊, 𝒔𝒋) is the number of edges in the shortest-path connecting 𝒔𝒊 and 𝒔𝒋. For closeness-centrality there is 

no need for additional normalization, since the sum of shortests-paths depends on the number of nodes in the 

network. Closeness-centrality for 𝒔𝒂 in figure 14, would be: 

 

𝑪𝑪(𝒔𝒂) = 𝟎. 𝟒   
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As we can see from the result, the closeness-centrality algorithm does not make a distinction between, parallel edges 

in a multi-directed graphs such as betweenness-centrality. Nevertheless, the centrality measure can still be an 

indicator for its reachability. Therefore, a station with a high closeness degree, can be well reached from any other 

station in the network. 

 

• PageRank 

Pagerank ranks nodes in the the graph based on the structure of the incoming links. It is based on a recursive 

algorithm and was originally developed to rank documents and developed by Goolge-founders Brin and Page 

(1998). It represents the likelihood that a node can be reached by a random traveller within the network (To, 2015; 

Zhong et al., 2015). To compute PageRank it was necessary to create a weighted graph 𝑯 from graph 𝑮. Using 

NetworkX this could be done very easily by counting the number edges 𝒆 between two nodes and replacing them 

with a single edge with weight 𝒔𝒖𝒎(𝒆).  

 

• Busy-Index 

The busy-index not a classic centrality-measure. As already mentioned it is a simple count-function and corresponds 

to the weight 𝒔𝒖𝒎(𝒆) of two connected nodes ∈ 𝑯. 

 

In this section the preparation of the static GTFS data has been described and how it has been modelled within the 

graph-database to allow querying timtable information. Further, it is described how the station-related timetable 

features 18-33 (see table 2) have been calculated using the graph-database and the processed actual dataset. 

Consequently, the dataset is now finally ready processing within the the machine-learning algorithm. The final input 

tables contains 2’148’896 observations and should therefore correspond to the number of train arrivals within the 

long-distance traffic in Switzerland within the time-period 1.1.2018 – 30.6.2018. 

 

The next section is dedicated to the machine-learning model and how it has been trained and validated to produce 

the results needed to investigate on the research questions. In addition, the datapipeline for feature-enconding and 

normalization will be discussed. 
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5.4 Machine-learning part 

5.4.1 General machine-learning workflow 

The prediction of arrival delay at the next three following stations can be accomplished by using three different 

models, which will called model_1, model_2 and model_3 in the following. These models perform the prediction 

tasks defined below:  

 

model_1:  𝝑𝟏(𝒕) →  �̂�𝒋
𝒗 

model_2: 𝝑𝟐(𝒕) →  �̂�𝒋+𝟏
𝒗  

model_3:  𝝑𝟑(𝒕) →  �̂�𝒋+𝟐
𝒗  

 

In order to assess the effects of specific input feature categories as defined in research question 1 and 2 the procedure 

visualized in table 6 has been performed. Therefore, the three prediction models were first trained on all input 

features and validated using 10-Fold cross-validation. Afterwards, the first input feature category has been removed 

and the models were retrained using the remaining input features. Then the removed category was replaced by the 

next category. The only input feature category, that has not been removed were trip-related input features, because 

leaving them away would remove the context of railway transportation. In table (6) one can see the combination of 

input feature categories that have been tested. Consequently, five different input feature combinations have been 

tested and validated to predict �̂�𝒋
𝒗, �̂�𝒋+𝟏

𝒗 , �̂�𝒋+𝟐
𝒗 . These different input feature spaces are named after the feature 

category that has been left out for model validation. 

 

Feature combination 

matrix 

all features no delay 

propagation 

no 

snapshot 

no station-

related 

no network 

Trip-related X X X X X 

Delay propagation X  X X X 

Snapshot X X  X X 

Station-related X X X  X 

Network-related X X X X  

 

The five different input feature spaces and the three different prediction models results in 15 cross-validation 

performances. In order to meet this computational challenge a virtual-machine (VM) on Microsoft’s Azure17 

platform has been used in addition to a Lenovo Thinkpad E580, InterCore i7 with 32 GB RAM. The VM used on 

Azure had 8 Cores with 56 GB RAM, which was also used to deploy the graph-database described in section 5.3.2. 

For cross-validation the python package scikit-learn18 has been used, which also allows to calculate the following 

measures for model evalutation: 

 

 

 
17 https://azure.microsoft.com 
18 https://scikit-learn.org/ 

Table 6: Shows the different combination of input feature categories contained by each input feature space. In sum five different input 

feature spaces will be evaluated using 10-Fold cross-validation for each prediction model 𝝑𝟏, 𝝑𝟐, 𝝑𝟑. 
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• Mean absolute Error (MAE)    = 
1

𝑛
 ∑ |𝒀�̂� − 𝒀𝒊| 𝑛

𝑖=1  

 

• Mean squared Error (MSE)   =  
𝟏

𝒏
 ∑ (𝒀𝒊 − 𝒀�̂�)

𝟐 𝒏
𝒊=𝟏  

 

• Root Mean Squared Error (RMSE)  = √
∑ (𝒀𝒊−𝒀𝒊

̂)
𝟐

 𝒏
𝒊=𝟏

𝒏
 

 

• Coefficient of determination 𝑅2  =  𝟏 −
∑ (𝒀𝒊− 𝒀𝒊

̂ )
𝟐𝒏

𝒊=𝟏

∑ (𝒀𝒊− 𝒀𝒊
̅̅ ̅̅ )

𝟐𝒏
𝒊=𝟏

 

 

These error measures are commonly used to evaluate the prediciton accuracy of a model (Pongnumkul et al., 2014; 

Kecman and Goverde, 2015; Čelan and Lep, 2017; Lessan, Fu and Wen, 2019).  MAE measures the absolute 

residual between the prediction value  𝒀�̂� and the true value 𝒀𝒊 for each observation and calculates the sum of it, 

which then is divided by the number of observations. Thus, the resulting MAE is the undirected typical magnitude 

of the residual. Consequently, MAE is a precision measure and scale-dependent and should be as small as possible 

(Hyndman and Athanasopoulos, 2018). MSE calculates the sum of the squares of the residuals, thus it incorporates 

the variance of the prediciton model. RMSE is the root of MSE and therefore has the same unit as the predicted 

values and measures the error rate of a model. 𝑅2 summarizes the explanatory power of a regression model. It 

describes the proportion of variance in the dependent variable that can be explained by the regression model (James 

et al., 2013; Hyndman and Athanasopoulos, 2018).  

 

As mentioned in the approach-describtion of research question 1 the use of a tree-based machine-learning algorithm 

allows to extract the feature importance of each input feature. The feature importance analyse is focusing on the 

model that uses all features, because this way we can identify dominant features among the whole input feature 

space. In the other models feature importance my be biased by the absence of other features. A possible approach 

to analyze feature importance would be to train and test a model using a training and test dataset and afterwards 

extract the feature imortances of the model. However, this approach may not address the variety in the data and was 

therefore considered as unsatisfying. Instead, a more systematic approach has been chosen that has been performed 

using K-Fold cross-validation. The method cross_validate()19 from the python package scikit-learn allows to return 

the fitted model after each fold during K-Fold cross-validation. Usig this method it is possible to extract the feature 

importance of each feature for each fold within K-Fold cross-validation. Thus, for each feature 10 feature 

importance measures could be extracted for the models  𝝑𝟏, 𝝑𝟐 and 𝝑𝟑.   

 

 

 

 

 
19 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html 
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5.4.2 Selecting the machine-learning algorithm and hyperparameters 

In order to adress the first research question a specifc machine-learning algorithm has been chosen. XGBoost20 

which is an implementation of Gradient Boosting Decision Tree (GBDT) algorithm has been widely recognized in 

a number of machine-learning and data mining challenges (Yamaguchi, As and Mine, 2019). A benefit of using 

ensembles of decision tree methods like gradient boosting or RandomForest is that provide estimates of feature 

importance from the trained predictive model. The basic idea of GBDT is combining a series of weak base 

classifieres into a strong one (Rao et al., 2019). Gradient boosting builds trees one after one, where each new tree 

helps to correct errors made by the previously trained tree, consequently it is a forward, stagewise procedure. For 

regression problems boosting is a numerical optimization technique. It refers to the process where a loss function 

is minimized by reducing the residuals of the aforegoing tree. Consequently, for regression the first regression tree 

is the one that, for the selected tree size, maximally reduces the loss function. Each following regression tree aims 

to reduce the residuals (Elith, Leathwick and Hastie, 2008). In XGBoost the default loss-function for regression 

tasks is squared-error loss function (XGBoost, 2019). In the previous section the extraction of feature importance 

has been described. Tree-based split their population using lables into homogenous sets based on the most important 

variable. This is decided by Gini index to evaluate the quality of a a particular split. The Gini index is defined on 

the impurity of a node, which denotes, how homogenous the values within the node are (James et al., 2013).  Based 

on this, XGBoost calculates the feature importance measure “gain”. Gain is defined as the improvement in accuracy 

brought by a feature to the branches it is on (XGBoost, 2019). Therefore, the gain-score of a feature is the average 

gain across all splits the feature is used in. This corresponds to the relative importance of a feature within GBDT 

(Hastie, Tibshirani and Friedman, 2009). The secon measure provided by XGBoost is “cover”. Cover measures the 

relative quantity of observations concerned by a feature, which means it measures how many observations are 

affected if the feature is used for splitting a tree (XGBoost, 2019).   

Among other GBDT implementation XGBoost has been chosen is its scalability in all scenarios. The scalability of 

XGBoost is due to several important systems and algorithmic optimizations. Further XGBoost exploits out-of-core 

computation and enables data scientists to exlpoit a large amount of easily on a dekstop (Chen and Guestrin, no 

date). Furthermore, regarding delay prediction in bus transportation services, it has been shown that XGBoost 

slightly outperforms other common machine-learning algorithms such as ANN, SVR, linear regression and 

RandomForest (Yamaguchi, As and Mine, 2019).  

 

XGBoost comes along with different hyperparameters, which need to be tuned. However, hyperparameter-tuning 

is a computational very expensive operation as for each hyperparamter to e tuned a K-Fold cross-validation is 

performed using GridSearchCV21 or RandomizedSearchCV22. For this thesis  hyperparameter-tuning was 

performed as proposed by Jain (2015). The final hyperparameters are listed in table 7 . 

 

 

 

 

 

 

 
20 https://xgboost.readthedocs.io/en/latest/ 
21 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html 
22 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html 
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Parameter Values 

objective reg:squarederror 

learning_rate 0.058 

max_depth 6 

gamma 0.015 

n_estimators  500 

colsample_bytree 0.921 

subsample 0.830 

Table 7:  Hyperparameter used in XGBoost. The first parameter denotes to perform a regression using squared-error loss function. 

 

5.4.3 Datapipeline 

A datapipeline ensures that the input data is always prepared equally, before processing in the machine-

learning algorithm. Nominal features (1-8 in table 2) have been factorized using the python library 

Pandas23 and its factorize-method24. The method is useful to obtain a numeric representation of nominal 

data columns. As the centrality-measures needed to normalized in order to account network-size effects, 

all other features also have been normalized. This should ensure that the centrality-measures that range 

within 0 and 1 are negelected by the machine-learning algorithm. This has been by using the scikit-learns 

MinMax-Scaler25, which translates each feature individually, such that it is representable within a range 

between 0 and 1 as the centrality-measures. Input features that represent time, have been normalized 

seperately. Due to the repetitiveness in railway-networks, input features representing dates and time 

should be considered as cyclical features (Kaleko, 2017). The solution is to split the date and time features 

using cosine and sinus values to maintain the cyclical property of the features (Kaleko, 2017). In addition 

the datapipeline treats NA-values, for example for the special cases mentioned in section (Input feature 

space) 

 

5.4.4 Learning curve 

In order to account research question 3 a learning curve will be produced. As learnining curve is produced 

by the systematic increase of training datasize. For each training datasize a 10-fold cross-validation will 

be produced, for which the training- and test-score will be returned. The scores are stored seperatly 

togehter with the corresponding training datasize. Consequently, after repeating this procedure and 

steadily increasing training datasize, one can plot the training- and test-score against the training datasize. 

Therefore, the plot visualizes how much the model profits by increasing the training datasize. In addition, 

a learining curve allows further interpretation of the model, regarding overfitting and model limitations.   

 

 

 

 
23 https://pandas.pydata.org/ 
24 https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.factorize.html 
25 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html 
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6. Results 
The results chapter is structured as follows. First the results from computing the input feature space are presented, 

where a special focus lies on the results of the centrality measures, as these have been a central topic within this 

thesis, especially for the second research question. Afterwards each input feature class is put in relation to the arrival 

delays 𝒚𝒋
𝒗, 𝒚𝒋+𝟏

𝒗  and  𝒚𝒋+𝟐
𝒗  in order to investigate on their relation. For this different correlation plots will be 

presented. The second part of the results chapter will present the results from the delay prediction system and how 

the different input feature categories influence the prediction accuracy measured by the metrics presented in the 

previous chapter 5.4.1. This will be followed by the results derived from the feature importance analysis. In the 

third part the learning curve will be presented and discussed, which is the basis for research question 3. 

 

6.1 Input feature space 

6.1.1 Station-related features derived by centrality measures 

The calculation of the input features was very intensive and time-consuming. In order to get a brief overview of the 

centrality measures a map has been created showing the location of the station. The size of the point is proportional 

to the centrality measure. The centrality measures for these maps have been calculated seperately in order to get an 

overview and a better understanding about these measures. These centrality measures have been calculated using 

all the data within graph-database, which means all trips have been included. In figure 15 one can see the 

visualization of the centrality measure “closeness”. Futher, it is visible that the stations within the city-triangle 

Figure 15: Closeness mapped for each station using the whole GTFS dataset. 
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“Zurich-Olten-Luzen” have all a relative high closeness measuers. An interesting fact is that in the Italian part of 

Switzerland, closeness-centrality is rather low for most stations except for the three major cities in these regions 

(Chiasso, Lugano and Bellinzona). This can be explained by the ICE and EC routes going from Basel to Mailand 

and and stop in Chiasso, Lugano and Bellinzona, whereas the other stations in this regions are not served by this 

route. Consequently, more edges must be passed to reach other nodes which reults in lower closeness-centrality. 

The same situation can be observed in the Canton of Wallis in the south-west. In this case Brig is an important 

station, connecting the region with other regions by InterCity lines 6 and 5 (see figure 1). Betweenness-centrality 

(showed in fig 16) measures the criticality of station by identifying all shortest-path connections between all nodes 

in the network. Unsurprisingly, Zurich has a very high betweenness-centrality as it is the main-station for 

Switzerlands railway traffic. Further, we can see the importance of a very special station, namely Arth-Goldau, 

which is located at the east of Lucerne. Arth-Goldau is an important node for the long-distance traffic system as it 

servers as a transfer-station for passenger going south or coming from south. Otherwise, the major cities as Bern, 

Lucern, Basel, Biel, Olten and Lausanne have high betweenness-centrality measures.  

 

As we are interested in the relation between arrival-delays and centrality-measures the following plots (figure 18) 

show the relation of each centrality measure with arrival-delays using scatterplots. For this, the centrality measures 

of the  that  leg-destination station have been visualized together with the corresponding arrival delay of the 

observation. The data for these plots is derived from the final input dataset derived after the processing steps 

described in section 5.3.1 and 5.3.2. Therefore, these scatterplots contain around 2 million points. Betweenness-

centrality varies between 0 and 0.357, whereas closeness-centrality varies between 0 and 0.203. Still, betweenness-

Figure 16: Betweenness-centrality mapped for each station using the whole GTFS dataset. 
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centrality seems to have more values close to 0 than closeness centrality. Compared to normalized betweenness-

centralities found for 28 different metro-systems by Derrible (2012) these values seem plausible. Compared to the 

centrality-measures found by Tu et al. (2013), the values found here are slightly higher but still within a plausible 

range. Nevertheless, both centrality-measures do not show any clear correlation between them and arrival delay. 

Edge-betweenes behaves to arrival delay very similar as betweenness-centrality. PageRank shows the smallest 

values for all arrival delays overall. Surprisingly, it seems that PageRank achieves only larger values if arrival delays 

are very small. Edge-betweenness and PageRank have in common that both measures have an outlier. For PageRank 

the oulier has a score 0.65 and edge-betweenness is 0.5. After some investigations, these outliers represent the 

measures for leg-destination Geneva after midgnight. Multiple train-service comming from Geneva-Airport serve 

Geneva and continue toward Lausanne. In figure 18 the scatterplots for the indegree-, outdegree- and load-centrality 

compared to arrival delays are compared. Same as for the previous discussed centrality measures, no clear relation 

between arrival-delays and the centrality measures can be identified. These findings have been confirmed by 

computing a correlation heatmap between the station-related centrality features and arrival delay. In figure 19, the 

left correlation plot shows the correlation among destination-station and the right one among origin-stations. Overall 

it can be stated that station-related input features that capture the topological timetable relations among stations 

show no linear relationship with arrival delays of train-services.   

Figure 17: Scatterplots showing the relation between four centrality measures and arrival delay [sec] 
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Figure 18: Correlation plots between station-related centrality features and arrival delay. 

Figure 19: Scatterplots showing relation between indegree-, outdegree- and load-centrality with arrival delays 
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6.1.2 Snapshot, delay-propagation and network-related features  

In this section the remaining input feature categories are analyzed regarding correlation with arrival delays and 

among each other. In figure 20, one can see the correlations between the features from the following input feauture 

categories: Network-related, snapshot and delay propagation features. Furthermore, the arrival delays of the stations 

𝒔𝒋
𝒗, 𝒔𝒋+𝟏

𝒗  and 𝒔𝒋+𝟐
𝒗  are included. The strongest correlation with arrival delay is found with the input feature current-

delay. This is not very surprising, considering that it seems plausible that a delayed train-service might also delayed 

at the following station. Therefore, it is also plausible that the input features prev_delay  and pre_prev_delay also 

correlate with each other.  Interesting to see is that busy_index does not correlate with arrival_delay. Consequently, 

a scheduled high frequency between two stations is not inducing delayed train services at the arrival station. 

Snap_delay_prev_trip and snap_delay_last  correspond to the delay of the list trip of the same route 𝒍𝒗−𝟏 and the 

delay of the last train-services serving the same two subsequent stations. These two features also correlate with 

arrival delay but not as strong as the features from the delay-propagation category. Finally, delays_at_station is also 

a input feature that correlates with arrival delays. In figure 20 it is also visible that the correlation between 

current_delay and arrival delays of 𝒚𝒋+𝟏
𝒗  and  𝒚𝒋+𝟐

𝒗  declines. This is not unsurprising as time gap between the 

current_delay and 𝒚𝒋+𝟏
𝒗  and  𝒚𝒋+𝟐

𝒗  increases and delayed train-services have the possibilities catch up time or the 

other way around an unexpected disruption occurred. On the other hand, the snapshot feature category and network-

related features (besides busy-index) are not affected by this decline.  

 

 

 

Figure 20: Features from categories: Network-related, snapshot and delay-propagation. 
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6.2 Results of the train delay prediction 

In this section the results from the delay prediction model are presented. The results are presented within three 

tables. The results are derived after 10-Fold cross-validation on the whole dataset. Each table corresponds to the 

predictions of the models 𝝑𝟏, 𝝑𝟐and 𝝑𝟑which predict the arrival delay for the three next stations as illustrated in 

figure 7. The prediction results have been assessed using the accuracy measures presented in section 5.4.1. Table 8, 

shows the results of prediction model 𝝑𝟏. We can see that the best results are derived by using all input features 

available, as MAE, RMSE and MSE are the lowest. MAE measures the mean absolute error and has the same unit 

as the prediction variable and all individual prediction errors a weighted equally. Therefore, model 𝝑𝟏 predicts the 

arrival delay 𝒚𝒋
𝒗 with a mean error below one minute. The same applies to the model by using different combination 

of input feature categories except for the combination “no delay propagation”. This category includes the input 

features current-delay, previous-delay, and pre-previous-delay. As we have seen in the previous section, these are 

the features showing the highest correlation with the arrival delay of a train-service.  

 

Model 1: predicts 𝒚𝒋
𝒗

 

Feature 

group 

all features no station-

related 

no snapshot no delay- 

propagation 

no network 

MAE 50.79 51.17 51.42 77.12 51.02 

RMSE 107.64 108.23 108.04 171.10 107.58 

MSE 11586.32 11712.87 11673.14 29276.51 11579.88 

𝑹𝟐 0.67 0.67 0.67 0.18 0.67 

 

MSE is stable around 11’000 except for the model without delay propagation features. A high MSE value is not 

desirable, however as MSE squares the error of a prediciton value large prediction values fall heavily in weight. 

This might explain that the MSE value for the model without delay-propagation features is more than double 

compared to the others. RMSE is the square root of the MSE and has the same unit as MAE. RMSE is higher than 

MAE, which is unsuprising as the large prediction errors fall heavier into acount for its calculation. 𝑹𝟐 is the 

proportion of the squared errors that can be explained given the input. 𝑹𝟐 asseses the goodness of fit of the 

underlying regression function (Oruganti et al., 2016). We can see that 𝑹𝟐 also stable at 0.67 except for the model 

without delay-propagation features. All in all we can see that the input feature category combinations do not affect 

the results of the prediction, except if delay-propagation features are not included. Compared to other findings 

(Wang and Work, 2015; Oneto et al., 2018) the results presented here are good. However, it cannot be stated that 

the model is better, as the data is different on the one hand. On the other hand, the different railway network settings 

may also contribute to different results. In figure 21 we can see the predicted arrival delays in relation to the true 

values of arrival delays. Herefore, the model has been trained using all input features on around 1.5 million 

observations to predict on the unseen test dateset. The result is similar to those derived after 10-Fold cross-

validation. In the plot we can see that the model predicts high arrival delays, whereas the true value is null. After 

some investigation the following scenario could be detected that could cause this problem. According to the train-

decriber some inconsistencies could identified. For example, a train that was heavily delayed at the previous station, 

was suddenly on time on the following station. This could be explained by re-scheduling operations by the railway 

Table 8: Presents the model evaluation measures for the prediction model 1. MAE represents the mean absolute error of the prediction 

in seconds. RMSE is the root mean square of the predictions also in seconds. MSE denotes the mean square error and 𝑹𝟐 is the 

coefficient of determination. 
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operator, like diversions. Consequently, the train-service gets a new schedule according to the current traffic 

situation and therefore is on time again for the new schedule and the registered arrival delay is 0. But the registered 

arrival delays of the previous stations, which correspond to current-delay, prev-delay and pre-prev-delay are still 

large.  On the other hand the model predicts no delay, where in truth a large delay occurs. This shows clearly a 

limitation of the prediction model in emphasizing initial delays caused by unexpected disturbances, such as 

accidents weather conditions or other malfunctions. 

 

 

 

 

 

 

 

 

 

 

 

The prediction model 𝝑𝟐, which predicts the arrival delay of the station after the next station and has achieved the 

results summarized in Table 9. We can see an increase of RMSE and MAE, which is explainable as the value to be 

predicted lies further in the future. Consequently, the proportion of the squared errors that can be explained  given 

the input is declining. Contrary, to table 8 we can observe a difference between different input feature category 

combinations. While leaving out station-related and snapshot features does not result into an increase of prediction 

Model 2: predicts 𝒚𝒋+𝟏
𝒗

 

Feature 

group 

all features no station-

related 

no snapshot no delay 

propagation 

no network-

related 

MAE 54.24 54.54 55.37 78.0 61.73 

RMSE 118.34 118.73 121.39 171.26 127.19 

MSE 14004.74 14097.56 14735.95 29433.63 16176.84 

𝑹𝟐 0.55 0.55 0.54 0.18 0.55 

Table 9: Results after 10-Fold cross-validation of model 2. 

Predicted against true values for 429780 arrivals using all input features 

 

Figure 21: Scatterplot of predicted arrival delays and true values. 
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errors, leaving out network-related features has led to increasing prediction errors, registered with higher RMSE 

and MAE values. As we could see in figure 20, the correlation between input features delays_at_station, 

delays_at_station_2 and delays_at station_3 and the corresponding arrival delays do not decline, while 

current_delay, prev_delay and pre_prev_delay do decline from arrival_delay to arrival_delay_3. Consequently, 

the input features delays_at_stations, which measure the average arrival delay at stations 𝒔𝒋
𝒗 , 𝒔𝒋+𝟏

𝒗 , 𝒔𝒋+𝟐
𝒗  during the 

last three hours are useful input features for the predictions of arrival delays that lie further in the future. Considering 

table 10, we can identify the same behaviour for model 3. Similar to table 9, the prediction accuracy is declining, 

registered with increasing values for MAE, RMSE and MSE. Further, the model’s ability to explain the variance 

within the data is declining. As in table 9, we can see that the inclusion of network-related features softens the 

increasing of the prediction error for events that are further in the future.  

 

 

 

 

  

Model 3: predicts 𝒚𝒋+𝟐
𝒗

 

Feature 

group 

all features no centrality no snapshot no delay 

propagation 

no network 

MAE 52.07 52.22 52.20 78.26 67.36 

RMSE 121.69 122.04 122.25 171.39 139.79 

MSE 14809.15 14892.96 14945.26 29374.50 19540.48 

𝑹𝟐 0.46 0.46 0.45 0.18 0.45 

Table 10: Results after 10-Fold cross-validation of model 3. 
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6.2.1 Feature importance measure 

During the 10-Fold cross-validation the feature importances for each fold have been extracted as described in section 

5.4.1. The results are shown in figure 22. The feature importance has beeen measured using the importance measure 

‘gain’ implemented in XGBoost. Gain is defined as the improvement in accuracy brought by a feature to the 

branches it is on (XGBoost, 2019). In figure 22 the different colors emphasize the model (𝝑𝟏, 𝝑𝟐and 𝝑𝟑). The 

groups on the x-axis correspond to the different input feature categories.  We can see that using delay-propagation 

features for splitting in the decision trees results in the highest accuracy improvement and thus in the highest relative 

feature importance scores. The overall relative feature importance for delay-propagation features is decreasing for 

𝝑𝟐 and 𝝑𝟑. On the other side, a tendency of increasing feature importance for network-related features from model 

𝝑𝟏 to model 𝝑𝟑 was registered. Consequently, we can see that network-related features, especially feature 18 (see 

table 2) are useful features to include, when predicting train arrival delays that are beyond the direct following 

station. However, they still do not reach the relative feature importance of delay propagation features. Snapshot 

features are more or less on stable niveau around 0.5*108. The snapshot feature category shows segregatted 

behaviour, while the input feature snap_delay_last has a higher relative feature importance than its compatriot 

snap_delay_prev_trip. This seems plausible as the time interval between the train-service 𝒍𝒗 and 𝒍𝒗−𝟏 might be 

larger than the time interval between 𝒍𝒗 and any other service 𝒍𝒙.  A further insight is that some trip-related features 

show higher importance scores for model 𝝑𝟐 and 𝝑𝟑. In combination with figure 24, showing the top 25 averaged 

feature score during 10-Fold cross-validation for model 𝝑𝟐, we can see that the trip-related feature stop_number_2 

achieved high feature scores. In model 𝝑𝟑 the features stop_number_2 and stop_number_3 correspond to the leg-

origin station 𝒔𝒋+𝟏
𝒗  and leg-destination station 𝒔𝒋+𝟐

𝒗  and were also trip-related features that achieved high gain-scores 

(fig. 25). Further, in figure 24 and figure 25 it is visible that closeness-centrality is the station-related feature with 

the highest gain scores, followed by betweenness and PageRank respectively. Despite having no visible relationship 

with arrival delays they seem to contribute within the prediction model. 
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Figure 22: Strip-plot of relative feature importance during 10-Fold cross-validation. 

Figure 23:  Top 25 feature importance scores during K-fold CV. Each feature score has been averaged 
over all folds 
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Figure 24:  Top 25 feature importance scores during K-fold CV. Each feature score has been averaged over all folds 

Figure 25:  Top 25 feature importance scores during K-fold CV. Each feature score has been averaged over all folds 
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To sum up, the input features from the category delay-propagation have achieved the highest feature importance 

scores, especially for model 𝝑𝟏. Further, not including this input feature group resulted in a significant drop in 

prediction accuracy for all models. In addition, we could see that leaving out some network-related features lead to 

a drop in prediction accuracy for models 𝝑𝟐 and 𝝑𝟑. Station-related features derived from timetable do not visibly 

contribute to prediction accuracy of any model. Feature importance plots indicated that closeness-centrality was the 

station-related feature that has contributed most within the models of all station-related features. Trip-related 

features especially stop_number, which indicates the station index within a trip, shows growing importance for 

model 𝝑𝟐 and 𝝑𝟑, while the delay-propagation features are getting less important. Leaving out snapshot features 

did not have any significant impact on prediction accuracy as well. Further, their contribution within the prediction 

models were constant over all three models. snap_delay_last contributed most within this input feature group.  

 

 

6.2.2 Learning curve 

Computing the learning curves allows to assess how the prediction model perform differently with different amount 

of trainig data. In figure 26 the cross-validation score 𝑹𝟐 on the y-axis and the training examples on the x-axis. The 

learning curve has been produced using model 𝝑𝟏 using all features as after all the aim would be to assess the 

overall prediction power of this model. We can see that with increasing training examples the cross-validation score 

is getting higher. Further, the corresponding training score is getting lower, which is good because high training 

score would indicate overfitting the prediction model. Cross-validation score indicates stagnation after 1’500’000 

training examples at a score of 0.68. This indicates that even more training samples would not lead to improved 

prediction results. Consequently, it represents the limits of the prediction model given the input features available. 

Figure 26: Learning curve showing cross-validation score measured in 𝑹𝟐 with increasing amount of training samples 
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Furthermore, one can see that training score is slightly increasing using 1’800’000 samples indicating an overfitting 

of the model. In order to avoid this, one could change the hyperparameter settings. 
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7. Discussion 
The general question of this thesis was to investigate on how different input features contribute to the prediction of 

arrival delays. For this a train arrival delay prediction system has been built, which was used to perform different 

predictions using different combinations of the input feature space. In the following the results presented in chapter 

6 will be discussed in regard to the research question formulated in 2.5. 

 

Research question 1: How do different feature categories, as being used in existing literature, contribute to 

train arrival delay prediction? 

 

From the results described in chapter 6 the highest prediction accuracies could be achieved using all proposed input 

variables, which includes network-related and snapshot variables. On the one side, it has been seen that snapshot 

features correlate with arrival-delays. In addition, they showed stable feature importance scores for predicting the 

arrival delay of three subsequent arrival stations. Therefore, input features following the snapshot principle as 

described in chapter 4.2.3 are senseful input variables to predict arrival delays using machine-learning algorithms. 

The snapshot variables can be seen as baseline-predictors for the machine-learning algorithm, that give an overall 

guideline of the situation between the leg-origin and the leg-destination station. On the other hand, with decreasing 

number of trips within a network the snapshot variables should be used carefully. As the time gap between the 

previous and the actual trip might be higher and therefore the encountered situation by a train-servicer could be 

very different. This is a problem that has been recently addressed by Sun et al. (2018) by classifying historical 

snapshot variables in order to detect outliers.  

 

Network-related features are challenging to compute, as a deep understanding in the data to identify the connecting 

relations between different trains is needed. Further, as we could see in Oneto et al’s (2018) approach, this can lead 

to many interdependent models being needed, as the input table dimensions change. Nevertheless, results show that 

network-related features influence the prediction accuracy of a train delay prediction model positively. Especially, 

if the prediction task is characterized by larger time intervals between the current moment and the arrivals to be 

predicted. But still it is expectable that the contribution of network-related features to mirror the current traffic 

situation would also steadily decrease for prediction horizons lying beyond the next three stations. A distinction 

should be made between network-related features that capture the current traffic situation within the railway 

network, such as delays_at_station and network-related that are based on timetable information (busy-index). Due 

to the inert nature of railway networks regarding delay recovery, input variables capturing the current situation are 

important for train arrival delay prediction, wherefore network-related features based on scheduled plans no 

improvement in prediction accuracy could be detected. 

 

Similar findings have been found by trip-related features. Here, stop_number is the input feature that provides best 

accuracy improvements when used for splitting within gradient boosted regression tress. Stop_number has 

especially contributed for the arrival delay prediction within model 𝝑𝟑. It seems plausible that the probability of a 

delay increases with increasing number of stops on the trip. The reason that travel time does not contribute to arrival 

delay prediction might be due to the fact that effects of passenger boarding and transfers at stations are neglected. 

Furthermore, as the railway operator SBB assesses delays by passenger punctuality, re-scheduling and dispatching 

of trains might be undertaken to guarantee transfers at station. This may lead to delayed departure of train-services, 

as they need to wait for other trains to guarantee the transfers between lines. Consequently, waiting trains will depart 

late resulting to arrival delays at the following station. This scenario could explain why the contribution of 

stop_number is higher to predict train arrival delay than scheduled_travel_time or time_since_start.  
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The most important input feature category that could be detected was undisputable the category of delay 

propagation. Besides the highest loss in prediction accuracy when leaving out, the input features of this category 

have shown very high feature importance scores for the prediction of the direct following train arrival. As we can 

see in figure 23, the input feature current_delay resulted in large accuracy improvements when used to split decision 

trees within the gradient boosted regression tree model. On the other side, for predicting arrival delays beyond the 

following station the feature importance scores are lower, but so is the overall prediction accuracy of the model. 

Consequently, it cannot be stated that delay-propagation features are not important for predicting arrival delays at 

stations beyond the following station.  

 

To sum up, snapshot variables are important feature to predict train arrival delay. They can provide a guideline for 

the expected delay, which is also reflected by high feature importance scores for model 𝝑𝟏, see figure 23. They 

could be improved in combination using a collection of all past snapshot arrival delays to detect anomalies of the 

current snapshot delay. This would allow to assess the quality of the individual snapshot feature. Network-related 

features are also input variables that contribute to arrival delay prediction, especially for arrival events that lie 

beyond the following stations. However, one need to distinguish between network-related features that mirror the 

current traffic situations and network-related features based on timetables. For the latter no contribution for train 

arrival prediction could be found.  

 

 

  

Research question 2: How do input features capturing topological properties between stations contribute to 

train arrival delay prediction? 

 

Input features measuring the topological relations between direct connected stations and between stations and their 

network derived from timetable analysis did not contribute to the prediction of arrival delays. After all, the most 

promosing measure were betweenness- and closeness-centrality but still the relative importance within the machine 

learning algorithm were rather small. In addtion, leaving out the station-related input features to predict arrival delay 

did not resulted in a loss in prediction accuracy. Even if the same has been found for snapshot features and partly 

for network-related feature, it is doubtful whether station-related features contribute to arrival delay prediction as 

snapshot or network-related features do. This is indicated by low feature importance scores for all three models, 

followed by nearly no linear correlation with arrival delays. The question arises why these input features do not 

contribute to arrival delay prediction. One possible reason could be the approach used to model the network 

topologies. In figure 14 the modelling approach is illustrated, which would correspond to a simple public transport 

map according to Von Ferber et al. (2009). But it has been shown, that the results of centrality measures differ 

between the modelling approach used (Von Ferber et al., 2007; Derrible and Kennedy, 2011). Consequently, using 

another representation as proposed by Von Ferber et al. (2009) may lead to other results. Another possible reason 

is that the proposed station-related features do not contribute to arrival delay prediction might be the quality of the 

timetable itself. Timetable scheduling is a challenging task requiring a lot of know-how and experience (Törnquist, 

2006). Further, timetable quality is a key factor for the punctuality of the train services. But, if the prerequisites are 

in place to create a well-functioning timetable combined with the necessary operational know-how and 

infrastructure to execute this timetable. Then measuring topological relations within the timetable might not be a 

senseful strategy to engineer input features that should contribute to arrival delays prediction.   
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Consequently, it can be proposed that topological relations within the timetable should be put in context with other 

information. For example, the number of tracks available at a station or the number and position of railroad switches 

within the trip-leg. However, one should not solely focus on infrastructure-related properties. Passenger volumne 

per station could also be considered, as large passenger volumnes could cause prolonged passenger boardings (Lee, 

Yen and Chou, 2016). Another possibilty could be to calculate catchment areas for each station of the long-distance 

traffic railway network using the number of incoming regional trains and local buses. This could be an indicator of 

the regional importance of railway station in turn this could be an indicator for the passenger volumne at the station. 

Thus, from a railway operators perspective, which uses passenger punctuality measures instead of effective arrival 

delays for service-quality assessments. All these information could be useful to weight nodes within the topological 

network and thus improve the centality measures in order to find underlying relations with train arrival delay.  

 

 

 

Research question 3: How does the prediction model perform differently with different amount of training 

data? 

Considering the learning curve presented in figure 26 it can be concluded that increasing the number of training 

samples leads to a higher 𝑹𝟐 score. Consequently, the model can better explain the proportion of variance of the 

dependent variable, which is satisfying. On the other hand it is clearly visible that a threshold can be expected 

around 𝑹𝟐 = 0.68. In addition, the slight increase in training score resulting with nearly 2’000’000 samples is an 

indicator that the model starts to overfit with this amount of data. From this, it can be concluded that the amount of 

data was not the factor limiting the prediction accuracy of the proposed model. Nevertheless, this could be different 

using other machine-learning algorithms. In order to achieve better scores using the prediction model as proposed 

here, one should focus on the process of feature engineering. For example, engineering better network-related or 

snapshot features as discussed in the previous research question. Satisfying is the fact that the prediciton model is 

able to achieve good results with little less than 1’000’000 observations which would correspond to train-describer 

data of around 2.5 to 3 months in the case of the long-distance traffic in Switzerland.  

 

Final thoughts and outlook 

The focus of this thesis lied on the evaluation of different input features to predict train arrival delays. For this, a 

prediction system has been built using machine-learining techniques. All in all, it is difficult to compare the 

proposed train delay prediction system with other existing prediction systems. Nevertheless, the achieved results 

were satisfying as given a set of input features the arrival delay for the three subsequent stations can be predicted 

with an average root mean square error of 107, 118 and 121 seconds. Further, different feature categories could be 

identified as important variables to predict arrival delays for different prediction scenarios, such as short or long 

prediction horizons. Moreover, it could be found that input features measuring topological properties predefined in 

the timetable do not contribute to arrival delay prediction. It can be proposed that these input features should be 

enriched with other railway operation relevant data to close the gap between the planned topological timetable 

relations and the in reality executed railway operations.  
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