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Abstract 
 
In Switzerland, approximately one eighth of the population is exposed to harmful road noise every 
day. Low noise asphalts (LNA) are among the most effective methods of reducing road noise, but 
their noise reduction effect decreases over time. Little is known about the exact causes of the decrease 
in the noise-reducing effect of LNAs. Therefore, the objective of this thesis was to find out which 
factors lead to the loss of the noise reducing effect of the LNAs and how a generalizable model can 
be generated to predict the performance of aging LNAs. 55 independent variables were constructed. 
Finally, stepwise forward selection was used to select 10 variables (one time-based, one traffic load, 
four climatic and four physical LNA parameters) for the final model. Different models were 
evaluated regarding performance and interpretability. Finally, the Linear Model Tree was perceived 
and chosen as an ideal compromise between performance and interpretability. The interpretation of 
the model suggests that age is the most important and mechanical stress from traffic the second most 
important variable to explain the decrease in noise reduction of an LNA. The results indicate that 
exposure to heavy vehicles is more important than exposure to passenger cars. Furthermore, results 
indicate that frost has a detrimental effect on LNAs. Findings also show that the consideration of 
spatial autocorrelation is important for the adequate interpretation of results. 
The thesis demonstrates that it is possible to create a robust, detailed model for predicting the noise 
reduction effect of an LNA in Switzerland. To achieve this, variables should be chosen that describe 
age, traffic load, climatic environmental factors and the physical parameters of the LNAs. A non-
linear function is recommended to describe the relationship between the variables. Spatial 
autocorrelation does not need to be considered by the model to be robust and detailed, but is 
recommended and indispensable for interpretation. During data pre-processing, it seems advisable 
to clean the data from outliers and ignore tracks younger than approximately 1.5 years. 
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1 Introduction 
 
1.1 Motivation 
 
In their literature survey on the health effects of noise Kurppa and Ising (2004) concluded that 
numerous empirical results show long-term health risks associated with noise. If, for example, 
the daytime immission level exceeds 65 dB(A), there is a trend towards an increased 
cardiovascular risk. Furthermore, noise from airplanes or trucks can also be classified as a 
hazard signal during sleep and induce the release of stress hormones. According to the noise 
stress hypothesis, chronic stress hormone dysregulations as well as the increase of established 
endogenous risk factors of ischemic heart disease under long-term environmental noise 
exposure are observable. The World Health Organization (WHO) (2011) estimated that the 
effects of traffic-related noise accounts for over 1 million healthy years of life lost annually to 
ill health, disability or early death in the western countries in the WHO European Region.  
Switzerland was early aware of the noise problem and in 1986 drafted the Noise Abatement 
Ordinance (NAO). However, the recent report of the Swiss federal Office for the Environment 
(FOEN) (BAFU, 2018) states that despite substantial investments in noise abatement measures, 
in the year 2015 more than one Million of Swiss inhabitants – which is approximately an eight 
of the entire Swiss population – were still affected by harmful road traffic noise during day 
and night. This means that especially with regard to road traffic noise, the communes and 
cantons fail to achieve full compliance with the NAOs regulations. This was particularly 
controversial as Article 17 (4) (b) of the NAO provides that, as from 1 April 2018, the federal 
government will no longer provide financial assistance for road rehabilitation. This decision 
was taken on the assumption that the communes and cantons would have sufficient time over 
a period of just over 30 years (1986-2018) to meet the requirements of the NAO. As a 
consequence, the NAO was adapted for the second time (first time in 2002) so that the 
government is obligated to provide financial assistance for road rehabilitation until the 31 
December 2022 (Article 21 (1)). The fact that in 2018 the government has extended the deadline 
for financial support for road rehabilitation, which should lead to compliance with NAO 
regulations, by only 4 compared to 16 years in 2002, and that the Swiss Noise League 
(Lärmliga Schweiz, 2018) opened a pool of lawsuits against communes and cantons in 2018 
shows that the pressure on communes and cantons is increasing strongly. 
The possibilities for communes and cantons to reduce road noise are limited. The Swiss 
National plan of measures to reduce noise emissions (2015) recommends that communes and 
cantons reduce speed and install low noise asphalts (LNA) in order to reduce the number of 
people affected by noise. Since according to the sonBase (2018) report, the potential for 
reducing the number of people affected by noise by a general speed reduction of 20 km/h on 
all roads is 30% and the potential for installation of LNAs  on critical road sections is estimated 
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at more than 50%, installation of LNAs seems to be the best method to reduce road traffic 
noise. The reason for the strong noise reduction potential of LNAs is that LNAs combat noise 
at its source. the tire-road noise. Tire-road noise is the most important source of road traffic 
noise in the medium to high speed range (Licitra et al., 2018). However, LNAs have a major 
disadvantage: the durability of their noise reducing effect durability. 
As the next section will show, the current state of knowledge regarding the exact causes and 
processes linked to the measured loss of effectivity is incomplete. 
 

1.2 Problem Statement 
 
There is already research that had the objective of creating an aging model for LNAs. Bendtsen 
et al. (2010) compared the aging process of five different LNAs types from a sample of 
approximately 100 pavements in Denmark and California by putting the pavements’ age and 
the amount of traffic on them in relation to the noise increase. The end result was a universal 
formula that, however only, takes into account age and the amount of traffic on the pavements 
in order to predict the acoustic performance after a specific number of years the pavement 
was built. This universal formula is deficient, as the work by Licitra et al. (2018) shows. Licitra 
et al. (2018) had access to climate and traffic data and compared linear- with logarithmic 
regression models. The conclusion was that logarithmic models perform better than linear 
models, and that treating different pavement types and different climate regions as 
independent variables leads to a more detailed model. This shows that a universal formula 
for all pavements, such as the one created by Bendtsen et al. (2010), is not representative. But 
Licitra et al. (2018) used only seven different tracks, their work cannot be considered as 
representative as well. 
The studies by Bendtsen et al. and Licitra et al. are symptomatic of the problem of research on 
aging processes in LNAs. Their work has the characteristics of a case study, hence has not 
enough data, be it the number of measuring sections or variables concerning external (e.g. 
weather, traffic) and internal (e.g. cavity content, grain size mixture) factors that influence the 
aging of the pavement. This leads to unrepresentative results. 
Research that has come closer to a representative modelling of aging are the studies of 
Bühlmann et al. (2015) & Hammer et al. (2015). The study by Hammer et al. used a total of 371, 
tracks with three different pavement types. Additionally a conventional pavement type that 
functioned as a control group (a pavement which is not of the low-noise category) with 328 
samples was added. The total of 699 pavements are spread across the entire country of 
Switzerland. For each pavement type a fitted logarithmic function, where the acoustic 
performance and years since installation in relation with pavement specific constants (void 
and subgroups) were respected. For each logarithmic function a prediction interval (PI) of 
83.3% was created. The PIs differ strongly; the three values are -3.5±2.6 dB(A), -4.6±2.4 dB(A) 
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and -0.2±2.4 dB(A). Since a difference of 3 dB corresponds to a doubling of the sound energy, 
the PIs are not precise enough to be suitable for an aging model. This shows that an individual 
logarithmic function for each pavement type is not precise enough as well. 
Bühlmann et al. (2015) used in their study the same data as Hammer et al. (2015). In addition, 
environmental data were used, which enabled the authors to produce 14 different 
environmental variables which were hypothesized to have an influence on the aging process 
of LNAs. By using a principal component analysis, the study concludes that frost has the 
strongest negative impact on acoustic durability of an LNA, followed by traffic load. 
Nevertheless, according to the authors, the results would probably change if models with 
more data were created.  
In sum the research accomplished so far does not deliver a sufficiently detailed aging model 
for LNAs. This observation is supported by Sirin's (2016) study, which provides a detailed 
overview of aging models. Sirin concludes that although researchers have presented 
mathematical models that fit their respective data, there is a clear need to develop a more 
general and theoretically sound noise reduction prediction model. 
It can be assumed that the lack of significance in previous research is due to insufficient data 
and too few influencing factors respected per model. This is why a study with a large number 
of data points, more attributes and more advanced statistical methods is needed. 

 
1.3 Research questions 
 
As the previous section shows, much is not yet understood about the acoustic aging of LNAs 
over time. Section 2.2 will show that some hypotheses exist, but the literature on the individual 
hypotheses is rather sparse, as the mathematical models created often only fit the data of the 
respective study. Since this thesis has a large database available for this field of research, the 
aim is to close the research gap. This means that this work should provide more generalizable 
results and use novel methods, i.e., go beyond the traditional linear, monotonic models of 
previous studies. Consequently, it would be wrong for this thesis to formulate concrete 
hypotheses, since this would limit the hypothesis space due to the limited available 
knowledge and would thus make it more difficult to find generalizable results. Hence, the 
research questions of this thesis have a general approach to the area under study and 
indirectly ask for specific relationships between the variables. The first research question is as 
follows:  
 
“Which factors lead to the loss of the noise reducing effect of the LNAs?” 
 
The difficulty in answering this research question lies in creating a model that performs well 
over the entire data set and should also be simple to interpret. 
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In order to create a model that performs well, different strategies must be examined. Therefore, 
the second research research question is as follows: 
 
“How can a generalizable model to predict the performance of LNAs be created?” 
 
This means that a model must be fitted to the data, allowing the model to reliably estimate 
unprecedented data in the whole area of Switzerland where LNAs are commonly installed. 
 

1.4 Thesis Structure 
 
Following this introduction, the second chapter provides an overview of the work related to 
this thesis. In addition, Chapter 2 provides a brief theoretical introduction to the research field 
of low-noise road surfaces. The third chapter describes the data and their pre-processing. The 
fourth chapter systematically describes the structure of the model design. In the fifth chapter 
the results and their interpretation of the model created in Chapter 4 follow. Thereafter, a 
concrete statement is given on the extent to which the research questions of this work have 
been answered. The sixth chapter concludes the thesis, summarizing the main points and 
providing an outlook on future work. 
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2 Background 
 
2.1 Introduction to road surface acoustics 
 
The purpose of this section is to provide readers with limited or no knowledge of road surface 
acoustics with a concise overview of the topic. In addition, the terms “sound, noise” (Section 
2.1.1) and “LNA” (Section 2.1.3) are defined for the purpose of this thesis. 
 

2.1.1 Definition of sound and noise 
 
Sound is a term used in various study fields, which can lead to confusion. The Oxford 
Dictionary defines sound as “vibrations that travel through the air or another medium and can be 

heard when they reach a person’s or animal’s ear”. This definition perfectly reflects the confusion 
of the definition, since it is a mix of the following two definitions: 
 
Natural scientific definition: “sound is a vibration that typically propagates as an audible 
wave of pressure, through a transmission medium such as a gas, liquid or solid.” (Jung et al. 
2018) 
 
Social scientific definition: “sound is the reception of such waves and their perception by the 
brain.” (Ronan 1967).  
 
The difference is that sound is either defined in such a way that it is audible to humans and 
receives a subjective evaluation from the individuals who received it, or that sound means the 
propagating vibration, which can also have frequencies that are not audible nor rated by 
humans. 
The term “noise” is originating from the human scientific definition of sound. Noise is sound 
that was perceived as irritating by an individual. In this thesis sound is defined according to 
the natural scientific definition. But since the term noise is commonly used in the tire-noise 
literature, it is also used in this thesis. However, in this thesis, the term noise is subordinate to 
the natural scientific definition of sound. Since the classification of sound as noise is subjective 
and the objective of this thesis is not to evaluate to what extent the vibrations caused by the 
interaction between tire and road surface are irritating for individuals, it is simply assumed 
that if sound is produced by the interaction between tire and road surface, the sound is 
automatically defined as noise, even if it might not be annoying for a particular individual. 
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2.1.2 How tire-road noise is produced 

 
A broad and detailed collection of knowledge about tire-road noise can be found in the book 
Tire/Road Reference Book by Sandberg and Ejsmont (2001). Bernhard and Wayson (2005) wrote 
a more concise literature overview on which this section is based. 
 
There are four main mechanisms that produce tire-
road noise. 
The tread impact (Figure 2.1) occurs when the 
running tread hits the road surface, the vibration 
caused by this hit is comparable to a small rubber 
hammer hitting the road surface. The macrotexture 
of a road surface influences the radial vibration as 
well. The more uneven the texture is, the stronger 
radial vibrations are produced. 
 
 
The air pumping (Figure 2.2) effect is caused in the contact patch between road surface and tire. 
In the contact patch, air is sucked in and deformed by the grooves in the tread pattern on the 
front of the tire. The air carried in these channels is compressed and pumped out at the rear 
of the tire, creating an aerodynamically generated sound. This phenomenon is similar to the 
sound produced by clapping one's hands. 
 

 
 
  

Figure 2.1: Vibration caused by tread/road 
surface impact 

Figure 2.2: Air pumping at the entrance and exit of the contact patch 
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The Stick-slip (Figure 2.3) noise is caused by 
acceleration or braking. Acceleration and breaking 
cause deformation of the tire carcass in the contact 
patch and generate strong horizontal forces at the 
interface between the tread block and the road surface. 
If these horizontal forces exceed the friction limits, the 
tread block slips briefly and then sticks to the road 
again. This action of slipping and sticking can take 
place very quickly and generates both noise and 
vibration. This phenomenon is observed in the gym 
when sports shoes squeak on a playing field. 
 
Adhesion (Figure 2.4) noise occurs due to the contact 
between the tread block and the road surface which 
results in adhesion between the tread block and the 
road surface. The phenomenon can be compared with 
the behavior of the suction cup. When the tread block 
leaves the contact surface, the holding force holds the 
tread block back for a short moment. The subsequent 
loosening of the tread block from the road surface, 
hence the overcoming of the adhesion, causes both 
acoustic energy and vibration of the tire carcass. 
 
In addition to the mechanisms that generate noise, 
there are other mechanisms that amplify it, such as the 
horn effect. The geometry of the tire over the road 
surface is a natural horn, as shown in Figure 2.5, 
although the shape is not a classic horn. However, 
sound produced by a source mechanism near the horn 
neck is amplified by the horn. Further amplifying 
effects are described in detail by Sandberg and 
Ejsmont (2001). 
 
 
  

Figure 2.3: Stick-slip motion of the tread 
block on the road surface 

Figure 2.4: Adhesion between the tread 
block and road surface at the exit of the 
contact patch 

Figure 2.5: The horn effect created by the 
tire and road surface 
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 2.1.3 Low-noise asphalts (LNAs) 

 
Sandberg (1999) already addressed the problem of the use of the term LNA in his literature 
review. Sandberg sees the problem in the fact that in principle a road surface does not cause 
noise in the resting state; noise develops only with the interaction of a vehicle with rolling 
tires. Therefore, it is the rolling tire that causes the noise, so theoretically any road surface can 
be called an LNA. 
Sandberg himself suggests the definition: “A ‘low noise road surface’ is a road surface which, 
when interacting with a rolling tire, influences vehicle noise in such a way as to cause at least 
3 dB(A) (half power) lower vehicle noise than that obtained on conventional and ‘most 
common’ road surfaces.” This definition is not applicable for this thesis, since this thesis 
intends to recognize why road surfaces have difficulties achieving the goal to produce a noise 
reduction of 3 dB(A). This means that a road surface in this thesis is defined as an LNA if the 
road surface’s purpose is to fulfil the definition given by the standard, which reads as follows: 
“over its entire service life (12-15 years) at least 1 dB less noise is generated than with a 
conventional road surface according to the road noise model StL86+ (details in Section 2.1.4)”. 
In addition, the noise reduction at the start of use must be at least 3 dB, which acoustically 
corresponds to halving traffic (Schweizerischer Verband der Strassen- und Verkehrsfachleute 
VSS Zürich 2013, Figure 2.6). 
 

 
 
 
In order to meet the requirements of the NAO (or Sandberg's definition), engineers have 
developed various designs. Again, a detailed description of these types can be found in 
Sandberg's tire-noise Reference book. Since there is hardly any data (Section 2.2.2) on the 

Figure 2.6: Schematic representation of the Swiss LNA definition 
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physical parameters of the road surfaces available for this thesis, an exact execution of these 
types is dispensed with. Another problem with the physical parameters is that the results were 
derived from case studies; in addition different countries have different standards and 
definitions for road surface designs, which renders a literature review even more difficult. 
Beyond that, an LNA must meet further criteria, such as cost-effectiveness, safety or 
mechanical and structural resistance, which further complicates the design. For example, the 
correlation between skid resistance (which leads to more grip and therefore more safety) and 
tire-road noise is negative (Ongel et al. 2007). Therefore, in the following only the rough basic 
concept of an LNA design is explained and how it contributes to noise reduction. 
The most important feature of an LNA are the voids accessible at the surface (Hammer and 
Bühlmann 2017) and the LNA’s texture (Wayson 1998). The voids can reduce mechanisms 
such as the air-pumping effect, as the air is now sucked not only into the grooves of the tread 
pattern but also into the voids of the road surface, resulting in less air pumping and 
consequently less noise. Furthermore, voids have the property of generally absorbing sound, 
since the sound waves are trapped like in a house and are not directly reflected back (Bernhard 
and Wayson 2005). Additionally, LNAs are highly effective in reducing tire-road noise, as 
sound waves are absorbed every time they hit the surface and thereby efficiently reduce the 
horn-effect (Sandberg 1999). 
It is difficult to determine the exact effect of the texture, as the effect of the texture comes to 
bear mainly in combination with the tread pattern. The facts indicate that the optimization of 
car tires is different from that of truck tires (Sandberg and Descornet 1980). More recent 
studies, however, show that fine (Descornet 2000, Bennert et al. 2005) and smooth textures 
(Hansen et al. 2004, Bennert et al. 2005) generally contribute more to noise reduction than 
coarse und uneven ones. 
 

2.1.4 StL86+ model and CPX measurements 
 
As described in Section 2.1.3, in Switzerland the acoustical performance of a road surface is 
typically characterized with reference to the Swiss road traffic noise emission model StL86+. 
The Stl86+ model, as any acoustic model, can be divided into source and propagation 
properties.  
For source characteristics, the radiated sound level depends on the amount of traffic, the 
heavy vehicles (HV) share and the speed. 
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The formula used is:  
 

! = # + 10 × log +,1 +
-

50

!
/ × 01 + 1	 × 	345	 ×	61 −	

-

150
89: + 10	 × log(<) 
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-:								-@GIHF4C	

345:			RS	Jℎ5A@	(5J	5	UA5H4FI?IU	4I45G	4A5UUFH)	
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The formulae for calculating the properties of sound propagation, such as geometric damping 
(by propagation), ground damping, air damping and obstacle damping are described in detail 
in Environment Series No. 60 (1987). 
 
In summary, the StL86+ model is intended to provide noise predictions by calculating an 
energy equivalent continuous noise level value in dB(A) for each receiving point.  
 
With regard to close proximity (CPX, more details in Section 3.1) measurements, the acoustic 
quality of the road surfaces will be indicated as a deviation from the reference road surface of 
the Swiss StL-86+ reference emission model. The conversion of the tire/road noise levels 
measured at close proximity to the source (the tire) to the effect that a road surface has on total 
traffic noise emissions are undertaken by correlating the values obtained with the CPX 
method with the statistical pass-by (SPB) method. The regression models created for the 
conversion were collected separately for the vehicle categories passenger cars (PC) (N1) and 
heavy vehicles (HV) (N2), as well as for the CPX reference speeds 50 km/h and 80 km/h. Each 
regression model is based on at least 25 SPB measurements, which are also subject to certain 
standards. These energy equivalent continuous sound level values based on SPB 
measurements were performed on road sections on road surfaces representative of common 
road surfaces in Switzerland at normal speed regimes. The CPX index values CPXp and CPXh 
must be converted into StL-86+ values using the regression equations. 
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CPX-reference speed 50 km/h: 
 

XY(Z1):					[1"#$%
& ,() = 1.2468	 × 	YX_N − 112.30 

RS(Z2):					[1"#$%
& ,*+ = 1.3617 × 	YX_ℎ − 116.16 

 

[1:								YIAA@H4FI?	IU	N5-@M@?4	F?UGE@?H@	HIMN5A@K	aF4ℎ	4ℎ@	A@U@A@?H@	@MFJJFI?	MIK@G	b4! 

															−86 + 	5J	5	UE?H4FI?	IU	-@ℎFHG@	H54@BIAC	5?K	YX_	A@U@A@?H@	JN@@K 
YX_N:			YX_	F?K@c	-5GE@	UIA	N5JJ@?B@A	H5AJ 

YX_ℎ:			YX_	F?K@c	-5GE@	UIA	ℎ@5-C	-@ℎFHG@J 
 
 
Detailed information on all corrections and standards concerning Swiss CPX and SPB can be 
found under Schguanin and Ziegler (2006), Appendix 1c. 
 

2.1.5 Difference between P1 and H1 tire 
 
Bühlmann’s (2019a) study, which tested the acoustic conformity of the test tires, showed that 
for the heavy vehicle test-tire (H1) the variation of the spectral noise levels in some of the 
octave bands was considerably greater compared to the passenger car test tire (P1). The 
standard deviations of the noise levels for the P1 tire are rather small and homogeneous over 
the noise spectrum and close to the expected measurement uncertainty. The reason why the 
P1 tire has a smaller standard deviation of the noise levels is that the P1 tire is designed for 
use in various tests in the automotive industry. In order to ensure the comparability of these 
tests, the tire will be made available to car manufacturers with virtually unchanged rubber 
compounds over the long term. This also leads to a satisfactory acoustic agreement of the tires. 
Unlike the P1 tire, the H1 tire is a market tire. According to tire manufacturers, it is a common 
practice for tire manufacturers to adjust rubber compounds over the life of a product line, 
making it difficult to repeat measurements with the H1 tire. Therefore, the acoustic values for 
measurements with the passenger car tire (variable name = STNL1) are used as target variable 
in this thesis. 
 

2.2 Related Work 
 
This section provides an overview of previous research on durability of LNAs. Variables 
investigated so far, and their proven or suspected effects are discussed individually. 
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2.2.1 Reduction of noise reducing effect at the micro scale 
 
To understand why the factors mentioned in Sections 2.2.2-2.2.5 contribute to the deterioration 
of LNAs over time, it is necessary to explain what exactly happens with asphalt at the micro 
level, i.e. the pores and texture. The two main factors that lead to a worsening of the noise 
reduction effect of an LNA are clogging and rutting. 
 
The blockage of pores can occur due to agricultural pollution (Gradziejczyk 2016), mud, dust, 
spilled oil or the like (Descornet 2000). Clogging the pores leads to LNAs’ voids to lessen, 
hence the general ability of voids to absorb the sound waves lessens as well. 
 
Rutting is the permanent deformation of a road surface, such as aggregate losses. Rutting is 
normally caused by heavy traffic (Elvik 2003) or, more generally, by strong mechanical stress. 
Rutting leads to an uneven and coarse road surface, which is unfavorable for noise reduction. 
 

2.2.2 Physical parameters 
 
The main focus of LNA research is on the observation of physical parameters. Although 
research has not yet found the recipe for the perfect LNA, some findings are globally accepted. 
First, the larger the maximum aggregate size, the greater the tire-road noise (EAPA 2007). 
Secondly, a smooth surface leads to a reduction of the tire-road noise (Hansen et al. 2004, 
Bennert et al. 2005). However, completely smooth surfaces have the disadvantage that they 
have a lower mechanical resistance and rutting occurs earlier. 
Third, larger air-void content leads to less tire-road noise (Sandberg and Ejsmont 2002). But 
also, the air-void content cannot be arbitrarily large. At a certain size (depending on other 
physical parameters such as aggregate size, bitumen or texture), the road surface becomes 
fragile to mechanical stress. 
Fourth, open-graded asphalt mixtures have a stronger noise reducing effect than dense-
graded asphalt mixtures (Bennert et al. 2005). 
Fifth, bitumen. When a new LNA is installed, a dark bitumen film is pulled over the 
aggregates. This bitumen film is a result of the production process of any asphalt mixture and 
serves as protection as it is worn away by the traffic rolling over it. About the exact noise-
reducing effect of bitumen there is almost nothing known, because most measurements take 
place when the bitumen film has worn off (Bendtsen et al. 2010). The bitumen is rather used 
to keep the road surface stable for as long as possible (until it has just worn off) before the 
mechanical stress and other environmental factors can add to the LNA. The aging behavior is 
therefore delayed. 
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In Switzerland, the product “semi-dense asphalt” (SDA) has established itself as the best 
option for LNAs in urban areas. The aim of SDAs is to achieve the highest possible noise 
reducing effect, with the lowest possible void content and the largest possible aggregate size 
(large aggregate size is not primarily noise reducing but more resistant to mechanical stress). 
 
Physical parameters in Switzerland. According to Bühlmann (2019b) current experience 
shows that SDAs with maximum aggregate sizes of 4 mm (SDA4) or 8 mm (SDA8) at lower 
speed ranges are more effective at reducing noise levels than conventional road surfaces such 
as SMA11. In the first 12 months after construction, SDAs can reduce noise emissions by about 
-6 to -10 dB(A). In general, semi-density asphalts with a maximum aggregate size of 4 mm are 
approximately 2 dB quieter than semi-dense asphalts with a larger aggregate size of 8 mm. 
The SDA 4 has slightly higher construction costs and a shorter service life. With regard to the 
long-term effectiveness of SDA road surfaces, long-term CPX measurements show that an 
SDA4 maintains an efficiency of -3 dB at the end of its service life, while SDA8 has a value of 
-1 dB(A). 
Although Bühlmann (2019b) observed unambiguous differences between SDA4 and SDA8, 
the Swiss norms used to designate the LNAs could be even more precise. Bühlmann and 
Hammer (2017) assume that the maximal filler proportion (sieve 0.063 mm) and maximal sand 
proportion (sieve 2mm) content of SDAs are the decisive factors for long-term acoustic 
performance. In the Figure 2.7 the black lines serve as thresholds. All gray curves are road 
surfaces. A road surface is defined as SDA4 as long as its sieve curve is between the black 
lines. In the figure it can be observed that exactly at the 2 mm sieve, the minimum and 
maximum allowed proportions are far apart. This is particularly problematic because the 2 
mm sieve is a decisive factor in determining the long-term acoustic performance of a road 
surface. As a result, products with the same norm but from different companies may differ 
strongly in their final performance. 
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2.2.3 Traffic load 
 
In the first road noise models (in the period of the 1990s) the traffic load was already a strongly 
focused variable. The Nordic Model (TemaNord 1996), which was developed and used by 
Scandinavian countries, provided relatively precise results as it included detailed road surface 
corrections. However, the model only accounted for hot mix asphalts. In addition, the model 
failed to distinguish normal cars from HVs. 
To distinguish normal passenger cars from HVs seems to be indispensable with an aging 
model for LNAs as the study by van Blokland et al. (2014) shows. HVs have a stronger 
negative influence on the reduction of the noise reducing effect of an LNA than passenger 
cars. This could be discovered, because on the motorway the different lanes were considered 
isolated. The slowest lanes, i.e. where the most trucks are, showed the most wear and tear. 
Despite this, it can be assumed that it is not solely the exposure to heavy vehicles that is 
responsible for the decrease in the noise reducing effect of LNAs.  

Figure 2.7: Maximum filler and sand content for the design of 4 mm semi-dense asphalts. Grading curves of 
the underlying sample are grayed out; minimum and maximum. 
Thresholds specified by the Swiss standards in black; examples shown in color with corresponding 
Surface image of the road surface on the upper side (void content mixture between 12.3 and 14.4 %). 
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However, the effect of HVs is not apparent in all cases. In Bühlmann’s et al. (2015) study, total 
traffic seems to be more important than the number of HVs. In addition, the climatic factors 
in this study were more important than the traffic load for the aging of the LNAs. 
 

2.2.4 Climate 
 
The influence of climatic variables on the aging of LNAs is not as undisputed as the work by 
Bühlmann et al. (2015) suggests. The study by Irali et al. (2015) concludes that temperature 
has a minor influence on the aging of LNAs. Whereby their study examined only 6 test tracks 
without specifying their spatial distribution. 
Licitra et al. (2018) also examined only 7 test tracks, but these were located in climatically 
different regions. The study concluded that test tracks with low traffic values, but with many 
ice days and many freeze-thaw cycles, have high rates of acoustic decay. Bühlmann’s et al. 
(2015) study, which had 371 test tracks available in climatically diverse regions of Switzerland 
(e.g. Alps vs. lowlands), found that frost and altitude have a significant impact on the noise 
reduction effect. 
The comparison of these 3 studies indicates that the influence of climatic variables becomes 
apparent when the test tracks are located in climatically different regions. It can therefore be 
assumed that climatic variables have an influence on the aging of LNAs. However, which 
climatic variables cause the greatest stress for an LNA has not yet been established. It is also 
unclear whether traffic load or climatic stress are more harmful for LNAs, since Licitra et al. 
(2018) and Bühlmann et al. (2015) contradict each other in this respect. 
 

2.2.5 Agricultural land and construction sites 
 
The entry of dirt leads to blockages in the pores of an LNA. Gradziejczyk (2016) finds evidence 
in his study that the closeness to farmland probably leads to a higher dirt input and that an 
LNA therefore loses its noise reducing effect faster. Bühlmann et al. (2015) found no negative 
influence on the noise reducing effect of an LNA with decreasing distance to farmlands. The 
hypothesis that proximity to farmland has a negative influence on the noise reduction effect 
of an LNA is therefore unclear and will therefore also be considered in this thesis.  
A similar observation could be made on construction sites, as dirt often enters the streets there 
as well. In addition, heavy vehicles can be found on construction sites, which could generate 
additional harmful mechanical stress. Therefore, this thesis also examines whether the 
closeness to construction sites has an influence. 
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2.3 Background for modelling ecological phenomena 
 
This section is intended to provide an overview of the possible methods that could contribute 
to achieving the research questions of this thesis.  
 
This thesis is a scientific thesis. Science’s four traditional claims are rationality, truth, 
objectivity and realism (Gauch 2003). The natural sciences can be divided into various 
categories. One category that occurs in several subdivisions is the empirical category, to which 
this thesis belongs. An empirical approach uses the methods from its superordinate category, 
the formale sciences such as mathematics and logic, to transform information about nature 
into formulas that can be explained as clear statements about the “laws of nature” (Lagemaat 
2005). A law of nature is a statement that describes or predicts a range of natural phenomena 
(Oxford English Dictionary 2005). To describe these “laws of nature” there are a vast number 
of models. 
 

2.3.1 Ordinary least square regression 
 
One of the simplest methods to describe a natural law is the ordinary least square (OLS) 
regression. The vast majority of the work cited in Section 2.2 shows that the most popular 
model in the area of LNA research is ordinary least square regression. This is not surprising, 
as ordinary least square regression is simple to understand and apply. Another advantage is 
that even if the relationship between two variables is not linear, the rough direction of the 
relationship can still be surmised. However, the simplicity of the application also entails risks. 
With an ordinary least square regression model it should be assumed that the data has no 
multicollinearity, heteroscedasticity, autocorrelation, or nonlinearity. Especially with regard 
to autocorrelation, there has been criticism for decades that spatial autocorrelation is often 
neglected by scientists when investigating spatial data and that ordinary least square 
regression is therefore applied incorrectly (Poole and O'Farrell 1971). Autocorrelation violates 
the assumption of random sampling, consequently the standard errors of the estimated 
coefficient are distorted and the results of the test statistics are no longer reliable. 
 

2.3.2 Spatial regression models 
 
According to Legendre (1993), if spatial autocorrelation is present in data, a researcher has 
two main options. Either one removes data points from the total dataset until spatial 
independence is guaranteed (this is not recommended as it often results in the loss of 
expensive data) or one modifies the statistical method to take spatial autocorrelation into 
account.  
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The three main reasons for spatial autocorrelation are:  
 

1. The value of the target variable in a region might impact the value of the target variable 
in a neighboring or close region.  

2. The values of the independent variables in a region might impact the value of the 
independent variables in a neighboring or close region.  

3. The residuals might affect the residuals in a neighboring or close region (spatial 
heteroscedasticity). 

 
Anselin’s (2012) work provides an overview of different models that take spatial 
autocorrelation into account. Frequently, a spatial-lag model is used to correct spatial 
autocorrelation that has arisen due to the first two of the above reasons. A spatial error model 
is usually used to consider spatial autocorrelation based on the third reason.  
If models that take spatial autocorrelation into consideration are not available, one may also 
rely on permutation tests. 
Kanevski et al. (2009) consider the research field of geostatistics to be well-established, i.e. the 
topic of spatial autocorrelation and the development of models that take this into account. 
Furthermore, the current trend in spatial data, namely that there is an overload of data, means 
that one has to go beyond geostatistics and use more advanced methods, namely machine 
learning. 
 

2.3.3 Machine learning 
 
Kanevski et al. (2009) justify the need for machine learning in the study of environmental 
phenomena, in addition to the overload of spatial data, by three reasons: first, many 
environmental studies are embedded in a high-dimensional geo-feature space; second, the 
relationship between variables in most real-case studies are highly nonlinear; and third, the 
nonstationarity of many real environmental spatial data requires new, efficient and adaptive 
approaches. Machine learning in the field of environmental studies is not yet as elaborated as 
geostatistics, as can be seen by browsing the recently published literature.  
Mahesh and Surinder (2009) modelled daily evapotranspiration using an M5 model tree; 
Cracknell and Reading (2014) compared 5 different machine learning algorithms (none is an 
M5 model tree) to classify lithology of remote sensing data. The algorithms used in these two 
studies are as different as the preprocessing procedures. There are no standardized 
procedures, only the evaluation of the models is done by permutation tests. The effect of 
spatial autocorrelation also seems to have been researched to a certain extent. Gahegan (2000) 
believes that machine learning algorithms use data very selectively and learn a function that 
combines the data in the most effective way to identify a particular objective. When 
autocorrelation affects the predictability of a condition, the machine algorithm learns to give 
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less weight to the affected attributes. This statement is supported by Brenning (2005), who in 
his work attempted to identify the future landslides using machine learning algorithms - one 
of which takes into account spatial autocorrelation. He states that a statistically correct model 
is not required to achieve good predictive properties. However, Brenning also argues that if 
statistical inference to model coefficients is a secondary goal for analytical purposes, an 
adequate representation of the spatial autocorrelation structure is imperative. 
 

2.3.4 Overview 
 
There is no such thing as a cookbook that prescribes which model must be used in an empirical 
study and how exactly. It is much more the responsibility of the researcher to be aware of the 
multitude of possible models in order to be able to choose from this multitude a method that 
helps to achieve the given research objectives. Equally important, however, is that the 
researcher is aware of the limitations of the chosen model. This is the only way empirical 
research can deliver meaningful results. 
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3 Data and preprocessing 
 
This chapter provides an overview of the construction and cleaning of the variables and the 
general data preparation. A brief description of the meaning and units of measurement of the 
variables can be found in the Data Description Report in Appendix A1. The data quality report 
is attached in Appendix A2. The spatial distribution is visualized on maps in Appendix A3. 
 

3.1 The Grolimund + Partner database 
 
The Grolimund + Partner database contains the location as x-, y-coordinates, the measurement 
date, the road surface type, the road surface ID, the canton in which the road surface is situated 
and the target variable “STLN1”.  

 
 
 

3.1.1 Target variable “STNL1” 
 
The “STNL1” variable is measured by the CPX method with a passenger car tire positioned 
in each wheel track in compliance with the EN ISO 11819-2:2017 standards. The CPX method 
measures the tire-road noise in two separate sound-insulated chambers inside the 
measurement trailer in the immediate vicinity of the tires, each with two microphones. 

Figure 3.1: Visualization of the spatial distribution of the Grolimund + Partner raw data 
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For a normed passenger car tire, sound levels are continuously recorded over the entire 
measuring section. The microphone signals are recorded at a frequency of 8 Hz and averaged 
energetically for each measuring segment (which has a normed length of 20 m). The test run 
is carried out at a constant speed (reference speed of 50 km/h). 
The measured CPX values are transformed as described in Section 2.1.4, so that the values 
finally represent the acoustic deviation from the reference road surface of the StL86+ model 
(negative value means that the measured road surface segment is quieter than the reference 
road surface). 
From a data analysis point of view, these measured values have a considerable measurement 
error. Bühlmann (2019a) investigated in his study the repeatability of the CPX measurements 
of the data used in this thesis. Bühlmann found that using the correction schemes of the 
current ISO standards, the practical repeatability of the CPX method is 0.45±0.3 dB. The R2 of 
the total road traffic noise emissions is 0.87. 
The Grolimund + Partner database has the advantage that the data quality is high. Segments 
that were too slow (at speeds < 45 km/h), measurements taken at too cold temperatures (< 
5°C) and loud noise caused by pedestrian crossings, manhole covers, squeaking of tires in 
tight curves or the like were manually excluded. 
But the Grolimund + Partner database has a major disadvantage: The implementation is 
customer-oriented. Therefore, time attributes function as primary keys, which allows the user 
to quickly recognize which measurement belongs to which order of the company. A location 
identifier was only introduced several years after initial deployment and was not consistently 
reworked. An algorithm had to be created to create a vector ID, namely the Coordinate ID, 
which contains all measurements ever measured at a specific vector. 
 

3.1.2 Attribute construction 
 
Coordinate ID. The primary key must not be the time but the place. Therefore, an attribute, 
the Coordinate ID, must be created. The Coordinate ID represents the location of a segment 
of a road surface. Suppose a segment has the Coordinate ID “1”. This means that all 
measurements that took place exactly at the location “1” also have the value “1” for the 
attribute Coordinate ID. The first step to create the Coordinate ID is to spatially join each 
starting coordinate of a vector with each possible starting point of another vector within 15 
meters. The search radius is 15 meters, since not every vector is exactly 20 meters long, smaller 
deviations in the 0.5 meters range occur frequently, in addition the vectors of different 
measurements are shifted horizontally as well as vertically (thus are never parallel to other 
vectors of another series of measurements). With the 15 meters it is assured that each starting 
point of a vector joins all potential addable starting points (Figure 3.2). 
The tolerant spatial-join of the first step has the consequence that also starting points of the 
oncoming lane are joined to the points, which leads to the second step. In order to exclude 
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points of the opposite lane, the aspect angle in the x-y plane was calculated for each vector. 
Vectors of the oncoming lane should have a significantly different aspect angle than those on 
the same lane. However, the inclusion of aspect led to problems. This is because the GPS can 
show disturbances such as bidirectionality during measurements. This leads to the fact that 
the aspect angle criterion partly wrongly joins points of the oncoming lane or points actually 
belonging to the same lane are not joined (This is the case in the example of Figure 3.2 – 3.4, 
where the vecAngle differences are too small to identify which segment belongs to witch lane). 
Nevertheless, this results in a gain of information that makes it possible to create an exclusion 
procedure by linking the various temporal primary keys. 
The third step (Figure 3.3 – 3.4), the exclusion procedure takes for each initial coordinate of a 
measured lane the nearest starting coordinates from all other potential segments (resulting 
from the first two steps) searched within a search radius of 25 meters. Then the next coordinate 
of the primary lane is selected, again the start coordinates of the potential lanes are searched, 
but also the start coordinates of the vector following the start coordinate of the previous joined 
vector. The algorithm checks whether a segment is correctly joined to a lane by controlling if 
the value of the SID of the potential point is exactly + 1 of the SID from the point with the 25 
meters search radius. This makes it clear which potential lanes lie on the opposite lane, 
because the algorithm can no longer merge vectors of an opposite lane, since these vectors lie 
outside the 25-meter distance. The oncoming lanes grow in the opposite direction, so the 
points of these oncoming lanes cannot be joined at the end. 
When the segments are successfully joined to a lane, they are removed from a stack, thus 
ensuring that no duplicates are created. The end result are the unique coordinates of a vector 
that contains all the correct start-coordinates of vectors of the same segment measured at a 
different time, the Coordinate ID.  
In another function, the average of all these coordinates is used to create the averaged 
coordinate and finally calculate the midpoint coordinate of the start and end point of each 
segment. Those midpoints are used to spatially join all the attribute data.  
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Figure 3.2: Step 1 of Coordinate ID algorithm, 
joining all potential addable starting points to the 
main starting point (green fill) 
 

Figure 3.3: Step 3 of Coordinate ID algorithm, 
joining all potential addable segments inside a 25 
meters radius. In this case, the algorithm cannot rely 
on the vecAngle differences attribute, therefor no 
change happened in step 2 of the algorithm and all 
segments inside the search radius are joined for the 
moment. 

Figure 3.4: Step 3 of Coordinate ID algorithm, the algorithm checks whether a segment is correctly joined to a 
lane by controlling if the value of the SID of the potential point is exactly + 1 of the SID from the point with 
the 25 meters search radius. 
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vecAngle and deltaAngle. In order to investigate whether curves differ from straight sections 
(e.g. by stronger shear forces), the two attributes vecAngle and deltaAngle were created. 
The attribute vecAngle is the 2D azimuth calculated from the start and end coordinates of a 
segment. 0° is defined as the geographical north. The rotation is clockwise. 
The attribute deltaAngle is the difference between the vecAngle value of a segment with the 
vecAngle value of the immediately preceding segment. The greater the deltaAngle value, the 
sharper the bend. 
 

3.1.3 Cleaning 
 
Road surface type and road surface ID. The customer-oriented implementation of the 
database is also noticeable in the road surface ID. All segments belonging to the same road 
surface have the same road surface ID. However, a road surface was always assigned a new 
road surface ID during a repeat measurement. By joining the segments of different 
measurement series to a Coordinate ID, the different road surface IDs can be identified. The 
lowest value was selected and all other segments with the same Coordinate ID were assigned 
this value for the road surface ID attribute. 
When joining the different measurements, it can also be seen that the attribute road surface 
type for a location is not consistent. Possible reasons are modified data of the customer which 
were entered at a different time during the repeat measurement, an assignment to a 
supercategory (e.g. Famsi defined as 4mmMV), or the installation of a new road surface. 
If the assignment to a supercategory took place, then the subcategory is assigned to the 
Coordinate ID. The reason for this is that, as described in Section 2.2.2.1, the standards for a 
road surface type are rather too tolerant. If a road surface within one category would differ 
significantly from the other road surfaces, then this road surface type could be recognized and 
treated separately and as a separate category. 
If a new road surface has been installed (recognizable if later measurements are much quieter 
than earlier measurements), a new road surface ID with the previous value + 10'000 is created. 
This ensures that each road surface has a unique road surface ID. 
 

3.2 Traffic data 
 
All attributes related to traffic volume are derived from the sonBase GIS noise database. The 
SonBase data is segmented into straight, unevenly long lines characterized by traffic volumes. 
For each Coordinate ID the values of the geographically closest line were joined. 
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Intersections. Where lines of the sonBase dataset cross each other, nodes were created. These 
nodes represent intersections. The Intersection attribute contains the shortest distance of a 
segment to the nearest intersection. 
 
Bus stops. The public transport stop data set of the Swiss Federal Office of Transport includes 
the complete set of bus stations. For each segment that has a distance <= 20 m to a bus stop, 
the value is set to 1. Segments with a distance > 20 m receive the value 0. 
 

3.3 Climate data 
 
Temperature and precipitation. Data from MeteoSwiss Spatial Climate Analyses were used 
to generate temperature and precipitation variables. With a monthly time interval and a 
spatial resolution of 1 square kilometer, the attributes average temperature, standard 
deviation of temperature, total amount of precipitation, average precipitation, and standard 
deviation of precipitation were calculated for each segment. In order to determine the 
installation month of a road surface, the few data available were used. Of a total of 2442 road 
surfaces, only 119 were known to have been installed during a specific month. The analysis of 
these 119 road surfaces showed that the vast majority were installed in May, June, July, 
August and September. Therefore, the month of July was determined as default value. 
 
Climate indicators. The 5 climate indicators frost days (days on which the temperature falls 
below 0°C), ice days (days on which the temperature remains below 0°C), summer days (days 
on which the temperature reaches 25°C or higher), heat days (days on which the temperature 
reaches 30°C or higher) and tropical nights (days on which the temperature does not fall below 
20°C) and their averages and standard deviations were generated. 
The data set was obtained from the Swiss Federal Statistical Office, which documents data 
from 13 measuring stations distributed throughout Switzerland. Each point was assigned a 
measuring station from which the values of the 5 indicators were derived. 
The determination of the most representative measuring station for a point was determined 
as follows: 
 

1. A data set with high spatial resolution from MeteoSwiss, containing the average 
number of frost days per year, was obtained. 

2.  Each segment was assigned the average number of frost days of the MeteoSwiss 
dataset with a spatial join, using the closest distance criterion. 

3. For each segment, the measuring station with the smallest deviation of frost days was 
indicated. If two or more stations have had exactly the same deviation, the values of 
the closest station were joined. 
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Solar radiation. Since temperature, precipitation and the 5 climatic indicators have a much 
lower spatial resolution than the segments (1 square kilometer vs. 20 m) the solar radiation 
was calculated to approximate the microclimatic conditions. The solar radiation was 
calculated using the ArcGIS Desktop (Version 10.5) toolbox “Points Solar Radiation”. The 
SwissToppo’s digital surface model with a grid size of 4 square meters served as the input 
surface grid. The midpoints of the 20 m segments served as input point shapefile. The direct, 
diffuse and duration of direct solar radiation were calculated for each month of 2018. These 
months were used as a reference for all months of the other years. The total, average and 
standard deviation were then calculated for direct, diffuse and duration of direct solar 
radiation. 32 azimuthal directions were used to calculate the field of view for a point. This 
number of directions is appropriate for complex topography. The incoming diffuse radiation 
was for the sake of computational speed assumed to be the same from all directions. 
 

3.3 Distance to farmland and construction sites 
 
The “Areal Statistics” developed by the Swiss Federal Statistical Office was used for this 
purpose. A shapefile was created which only contains the codes 221 (= arable farming), 146 (= 
construction sites) and 145 (= dismantling). For the variable distance to farmland 
(distanceAgrar) the shortest distance to the closest location with the code 221 point was taken. 
For the variable distance to construction sites (distanceConstruction) the shortest distance to 
codes 145 or 146 was used. 
 

3.4 Topographic data 
 
All topography attributes were generated using the SwissAlti3D terrain model with a raster 
resolution of 4 square meters. 
 

3.4.1 Attribute construction 
 
First, the z-coordinate was added by spatial join with the points. With the use of the z-
coordinate (elevation) the other attributes could be constructed. The terrain-roughness-index 
(TRI) was calculated using the ArcGIS Desktop (Version 10.5) toolbox “Calculate Terrain 
Ruggedness Index (TRI) on DEM” with a 20*20 moving window. 
Slope and aspect were calculated within a 3*3 moving window. The difference between aspect 
to the vecAngle variable is that the aspect represents the exposure of a segment in three-
dimensional space, whereas vecAngle represents the exposure in two-dimensional space. 
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3.4.2 Cleaning 
 
The slope shows outliers. This is because if a road bordered steep terrain and the GPS signal 
was not exactly positioned on the road, the slope of the steep terrain bordering the road was 
calculated. All values with a slope > 20° or < -20° were replaced by the average slope of the 
entire track to which the segment with the falsely calculated slope belongs. The thresholds 
were chosen as ± 20° because LNAs are normally installed in densely populated urban areas 
where roads have barely a slope steeper than 20°. 
 

3.5 Data preparation 
 
This section describes how the data was made compatible for the machine learning algorithms. 
 

3.5.1 Standardization 
 
Since the ranges of the variables (e.g. avgDirect vs. avgT) can be very large, the variables were 
standardized using z-transformation. 
 

3.5.2 Numerical coding 
 
If the machine learning tool or algorithm can only consider numerical attributes, the nominal 
variables Canton and PavType were dummy coded (= creating binary pseudo-variables for 
each attribute value). 
 

3.5.3 Binning 
 
The variables Intersection, distanceAgrar and distanceConstruction were not selected for any 
of the models (Section 4.5) in the variable selection. Since, for example, it could be that the 
strongest mechanical load is not experienced directly at the intersection itself, but rather near 
the intersection, since braking and acceleration of the vehicles take place there, all three 
distance-based variables were nominally coded. Using K-Means, with k = 5, the variables 
were divided into 5 classes with the names “—“,”-“,”=”, “+”, “++”(“++” is the class with the 
longest distances, “—” the class with the shortest distances). 
However, none of this binning has led to a change, which means neither intersection, 
distanceAgrar nor distanceConstruction were selected by the variable selection algorithm, 
although they were binned. Hence, the binning was annulled. 
In order to maximize the interpretability of the model, the road surface types were binned. 
The 5 groups SDA4 with low Voids, 8-12% volume content, (4mmLV), SDA4 with medium 
Voids, 16% volume content, (4mmMV), SDA4 with high Voids, 20% volume content, 
(4mmHV), SDA8 with low Voids, 8-12% volume content, (8mmLV) and SDA8 with medium 
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Voids, 16% volume content, (8mmMV) were formed. This happens after sampling the data set 
for the reasons described in Section 4.2. 
 

3.5.4 Outliers 
 
Although the data were manually cleaned, they contain outliers. The problem is that the 
reason for the remaining outliers is not known. Only hypotheses can be made. For example, 
the weather conditions during the installation of a road surface could have been unfavorable. 
Perhaps a company has experimented with the physical parameters of its products without 
changing the name or using a bitumen other than usual.  
Outliers can provide important information about the process or system (Basu and 
Meckesheimer 2007). Since it is not possible to know why the remaining outliers are outliers 
and this thesis is exploratory, they were not removed from the data set. 
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4. Modelling 
 
4.1 Overview of the modelling process 
 
Since this thesis has a strong focus on quantitative modeling, it does not follow the classical 
standard approach Introduction, Method, Results and Discussion. In this chapter a systematic 
explanation is given of why a particular modelling technique, test design, hyperparameters 
and variables were chosen. Consequently, the results in this chapter are primarily intended to 
quantitatively justify the decisions made in the modelling process. 
 
This chapter shows the modelling process as follows. Section 4.2 describes the planned plan 
for sampling, training, testing and evaluation of the models. In Section 4.3 the modelling 
technique is determined by comparing different modelling techniques in terms of 
performance and interpretability. Section 4.4 describes the hyperparameter optimization of 
the selected modelling technique and Section 4.5 describes the variable selection. All these 
steps (Sections 4.2-4.5) lead to Section 4.6, the creation of the final model, which is used to 
answer the research questions. The results and their discussion of the final model (Section 4.6) 
are described in Chapter 5. 
 

4.2 Generate test design 
 
The focus of this thesis is on the LNAs. Since the Grolimund + Partner database has stored a 
number of data of conventional road surfaces, these conventional road surfaces are 
investigated separately as a conventional group (CG). 
As shown on the maps (Appendix A3) or in the data quality report (Appendix A2, canton 
variable), the data are spatially unevenly distributed. To quantify the effects of this uneven 
distribution, the Moran’s Index of the target variable was calculated using the R package ape 
by Paradis and Schlief (2018). As the Moran’s Index could not be calculated for all data at once 
due to the limited computing power available, the Moran’s Index was calculated for four 
subsets of the training data. The average of the Moran’s Index values of the four subsets is 
0.41 and significant, which means there is spatial autocorrelation present in the data. A more 
detailed discussion of the effects of autocorrelation on the interpretation of the results is given 
in Section (5.1). The spatial autocorrelation is caused by two problems: Firstly, the typical 
environmental influences of data with a high spatial density (e.g. Aargau) are weighted more 
strongly than data with a low spatial density (e.g. Alpine region). The classical data mining 
approach would now prefer to weight the variables differently (i.e. those data which are 
underrepresented would be weighted more heavily) or to regionalize the data according to 
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environmental factors and create test and training data for each region separately. However, 
an adequate climatic classification and weighting of the data is difficult. For example, during 
the summer months parts of the Valais (a canton in the Alps) can experience temperatures 
above 30 degrees Celsius over a longer period of time as well. 
The second problem is that most cantons obtain their road surfaces from different construction 
companies. As already described in Section 2.2.2.1, the tolerant norms of the types of road 
surface lead to the fact that the products of different companies behave differently. This is a 
problem as cantons generally only purchase their LNAs from certain companies, meaning that 
the types of LNAs often vary from canton to canton. Additionally, the most common products 
invariably receive more weight than the rare ones. However, since there are 32 different LNA 
products in total included this data set, the countermeasure for balancing unbalanced data — 
bagging — would reduce the amount of data per bag to such an extent that machine learning 
algorithms would hardly provide meaningful results in this area of application.  
 
To quantify the size of the error, based on the problem of spatial heteroscedasticity and 
regionalization based on climatic conditions, the best performing model of Section 4.3, the 
Gradient Boosted Tree Model, was used. Three models with the following three observations 
were tested.  
 
1. Training on Aargau data and testing on Geneva data will perform poorly because road 
surfaces in Geneva are strongly different from those in Aargau although the environmental 
influences are similar. 
 
2. Training on Geneva data and testing on Valais data will perform poorly because the 
environmental influences in the two cantons differ greatly (traffic load larger in Geneva, 
winters harsher in Valais) although Geneva and Valais use the same road surface products in 
the majority of cases. 
 
3. Training on Aargau data and testing on Zurich data will perform well, as the two cantons 
are exposed to similar environmental influences and use similar road surface products. 
 

Training                                        Test Geneva Valais Zurich 
Aargau 4.338 X 1.537 
Geneva X 3.863 X 

               Table 4.1: Overview of the regional test results, values are the RMSE performance metric in dB(A) 
               a model, X means that no model of this certain case was tested 
 
When considering the results, the three aforementioned observations seem to be correct and 
training and test data should be as balanced as possible with regard to environmental 
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influences and road surface types. Hence, sampling considered that the relative distribution 
of LNAs per canton is equal in the training and test data.  
In addition, all data points of a road surface, i.e all segments that have the same PavID, are 
only found in the test data or only in the training data. This is to counteract the spatial 
autocorrelation. 
 

4.3 Select modelling technique 
 
The models Generalized Linear Model (GLM), Random Forest (RF), Decision Tree (DT), and 
Gradient Boosted Trees (GBT) were created using RapidMiner Studio version 9.2 (Mierswa, 
I., & Klinkenberg, 2019). All RapidMiner Studio models underwent the RapidMiner 
hyperparameter optimization (details in Section 4.4) and variable selection (more details in 
Section 4.5). 
The linear model tree (LMT) was implemented using the Python source code by Dillard (2018). 
The linear model tree underwent a separate hyperparameter optimization (Section 4.4) and 
variable selection (Section 4.5). The mean squared error (MSE), the root mean squared error 
(RMSE) and the mean absolute error (MAE) were chosen as performance metrics to compare 
the models. 
 

Performance 
Metric GLM DT LMT RF GBT 
MSE 4.088 3.936 3.105 3.014 2.897 
RMSE 2.022 1.984 1.762 1.736 1.702 
MAE 1.544 1.449 1.304 1.053 1.243 

           Table 4.2: Overview of the test results (in dB(A)) for model comparison 
 
The results show that RF, GBT and LMT perform best. It is apparent that RF has the lowest 
MAE, but has an RMSE between the RMSEs of LMT and GBT. This means that RF estimates 
many values very precisely, but deviates relatively strongly from the actual value in the case 
of larger errors. This is a sign of overfitting. Additionally, an LMT is easier to interpret than 
an RF, so RF is not determined as the final model technique.  
Interpretability plays an important role in this thesis, the more interpretable model is given 
precedence. According to Gill and Hall (2018), linear, monotonous models such as GLMs are 
highly interpretable. Non-linear, non-monotonic models such as GBTs, RFs and LMTs are the 
more difficult models to interpret. In contrast to the GBT and RF, however, LMT has the 
advantage that each leaf represents an individual linear model (the LMT model for this thesis 
has individual ridge regressions (Tikhonov 1943) as leaves), which in the end facilitates high 
interpretability. Therefore, LMT is chosen as the model for this thesis. 
 



4. Modelling 

 

 31 

4.4 Hyperparameter optimization 
 
RapidMiner hyperparameter optimization was set on the classical way of hyperparameter 
optimization, the grid search. Grid search (Hsu et al. 2003), is an exhaustive searching through 
a manually specified subset of the hyperparameter space of a learning algorithm. Suppose a 
modeling technique has two continuous hyperparameters x and y. The grid search then trains 
a model in the cartesian product of these two sets with each pair (x, y) and evaluates their 
performance on a sustained validation set. The best performing pair then sets the values for 
the hyperparameter. 
The hyperparameter optimization of the LMT model was performed with the variables 
occurring in the decision tree induction. Adaptable hyperparameters are the minimum 
number of data points that must reach a leaf during the training phase (Figure 4.1, 4.2, y-axis) 
and the minimum improvement of the MSE (Figure 4.1, 4.2, x-axis) to create a new leaf. Since 
the LMT has a relatively long runtime (details in Section 4.5), a mix of manual and grid 
hyperparameter optimization was chosen. The results are visible for LNAs in Figure 4.3 and 
for CG in Figure 4.4. The LNAs show two local minima of the MSE. At (y = 3300/x = 0.1) and 
(y = 1000/x = 0.1). If y becomes smaller, more leaves, i.e. more ridge regressions, are formed. 
The more ridge regressions there are, the more difficult it is to eventually interpret the model, 
however. Therefore, y = 3300 and x = 0.1 were determined as the ideal size for the LMT-LNA 
model hyperparameters. 

 
 
 

Figure 4.1: Visualization of the MSE for the optimal hyperparameters of the 
LMT model for the LNA data 
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The hyperparameter x plays a minor role for conventional road surfaces (Figure 4.2). The most 
important factor is y. However, y is much less sensitive for conventional road surfaces than 
for LNAs. As with LNAs, as few leaves as possible should be created with conventional road 
surfaces. Therefore, the largest y (26'000) was chosen at the local minimum. As with the LNAs, 
x is 0.1. 

 
 
 
 
After setting the minimum number of data points per leaf (y) and the minimum MSE 
improvement for a split (x), a grid search was used to search for the optimal alpha of the ridge 
regression. As shown in Table 4.3, tweaking alpha does not result in significant differences, 
therefore the default value (alpha = 1) was used. 
 

alpha 0 0.25 0.75 1 2 4 8 16 
Training MSE 2.881 2.881 2.881 2.881 2.881 2.880 2.881 2.882 
Test MSE 3.106 3.106 3.106 3.106 3.106 3.106 3.105 3.102 

             Table 4.3: Overview of alpha optimization 
 

4.5 Variable selection 
 
Variable selection is the process of selecting a subset of relevant variables, predictors for use 
in model construction in order to avoid the curse of dimensionality, overfitting and simplify 

Figure 4.2: Visualization of the MSE for the optimal hyperparameters of the 
LMT model for the CG data 
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the interpretation. Table A.1 in the Appendix shows which variables were taken into account 
in the variable selection and which ones were not, and for what reason.  
The RapidMiner variable selection uses the two deterministic greedy feature selection 
algorithms forward selection and backward elimination. Forward selection always adds the 
variable that minimizes the MSE the most. Backward elimination functions similar as forward 
selection. Backward elimination starts with all variables and always removes the one variable 
which maximizes the MSE the most. Stepwise forward selection and backward elimination 
are disputed methods regarding variable selection. Harrell and Frank (2015) show in their 
work that forward variable selection has several deficiencies. The main problem is that 
forward variable selection only takes place on the basis of one assumption. In this thesis, the 
assumption is that if a variable out of the total set of variables is the one that lowers the MSE 
the most, it is the best of the total set of variables and should be selected as long as the MSE 
decreases by at least 0.05 for the LNAs. Consequently, the following problem may arise: If X(1) 

is the best individual variable, it is not guaranteed that either {X(1), X(2)} or {X(1), X(3)} are 
better than {X(2), X(3)}. Therefore, a forward selection algorithm may select a variable set 
different from that selected by exhaustive searching. With a poor selection of the input 
variables, the prediction Y(q) of a query X(q) = {X(1), X(2), ... ,X(m)} may be significantly 
different from the true Y(q) (Deng 1998). However, the advantage of the greedy forward 
variable selection is that it requires less time than exhaustive variable selections.  
The computer used to calculate the models of this thesis has a 1.4 GHz processor and 8 GB of 
memory. The runtime to create one LMT is approximately 10 minutes. This thesis has a total 
of 55 different variables to choose from, a complete run through all variables with the forward 
selection approach takes approximately 10.7 days. Since an exhaustive search would extend 
the running time even further, the forward variable selection is used to determine the 
variables in this thesis.  
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4.5.1 LNA variable selection 
 
From the points plot (Figure 4.3) of the LNA variable selection, the elbow point cannot be 
clearly identified. However, in the numerical representation in Appendix A.4.1.1, the gap 
where the MSE hardly improves, namely after the variable sdHD, is well recognizable. Hence, 
in Figure 4.4.1. this point is highlighted in red. 
In order to counteract the disadvantages of the stepwise forward selection, further models 
were manually tested for their performance, which do contain or, conversely, not contain 
certain variables close to the elbow point. The resulting Table A.4.1.2 is presented in the 
Appendix. This table is arranged in such a way that the top model has the smallest difference 
between training and test error, i.e. the least overfitting. It is noticeable that the two top models 
perform almost equally well. Whereby the top model is not the one that would suggest the 
variable selection (sdHD was replaced by avgDiffuse). To compare which model is more 
stable, a 5-fold cross-validation (Table A.4.1.3) was carried out with both of the two least 
overfitting models. Cross-validation shows that the model that performs better and has less 
overfit is the same model as the original forward variable selection suggested. Therefore, the 
following variable set is chosen to create the final LNA model: nMonths, 4mmMV, 4mmHV, 
8mmLV, 8mmMV, sdDirect, DTV_LKW, avgFD, sdHD. 
 

 
 
 
 
 

Figure 4.3: Elbow plot of LNA variable selection, MSE in dB(A) 
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4.5.2 CG variable selection 
 
From the points plot (Figure 4.4) of the CG variable selection, the elbow point can be 
recognized. In the numerical representation in Table A.4.2.1, the gap where the MSE hardly 
improves after adding the variable sdT, is also recognizable (hence, this variable has been 
highlighted in Figure 4.4.2). In the resulting Table A.4.2.2, it can be observed that the 
underfitting hardly changes after the model with the variables: nTag, VMaxSv, avgDiffuse, 
DSAK, avgDirect, avgTN. If now the variable sdT is added, the underfitting does not change 
much, but the MSE decreases relatively strongly (Table A.4.2.1) for the ratios of the CG dataset. 
Therefore, the following variables are used for the final CG model: nTag, VMaxSv, avgDiffuse, 
DSAK, avgDirect, avgTN, sdT. 
 

 
 
  

Figure 4.4: Elbow plot of CG variable selection, MSE in dB(A) 
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4.6 Final model 
 
The final model is a Linear Model Tree whose leaves are ridge regressions. The 
hyperparameters for each road surface group are summarized below. 
 

4.6.1 LNA 
 
Training data:         57 % of the dataset 
Test data:         43 % of the dataset 
Minimum number of data points per leaf for the training data:  3300 
Minimum mean squared error improvement to create a new split: 0.1 dB(A) 
alpha hyperparameter:       1 
 
Variable set = nMonths, 4mmMV, 4mmHV, 8mmLV, 8mmMV, sdDirect, DTV_LKW, avgFD, 
sdHD 
 

4.6.2 CG 
 
Training data:         52 % of the dataset 
Test data:          48 % of the dataset 
Minimum number of data points per leaf for the training data:  26’000 
Minimum mean squared error improvement to create a new split:  0.1 dB(A) 
alpha hyperparameter:       1 
 
Variable set = nTag, VMaxSv, avgDiffuse, DSAK, avgDirect, avgTN, sdT
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5 Results and discussion 
 
5.1 LNA 
 
5.1.1 Model evaluation 
 
Performance metrics. The performance metrics for the final LNA model are summarized in 
Table 5.1.1.1. 
 

Performance metrics Training Error Test Error 
MAE 1.281 1.304 
RMSE 1.697 1.762 
MSE 2.880 3.106 
R² 0.693 0.643 

        Table 5.1.1.1: Overview of the performance metrics of the final LNA  
              model in dB(A) 
 
Table 5.1.1.1 suggests that the model has a slight overfit. Furthermore, the table shows that a 
standardized performance metric is important. An MAE of approximately 1.3 dB(A) seems 
fine, but when considering R2 it can be observed that the model can explain just 65-70 % of the 
variation. An R2 of 65-70 % might be an acceptable generalizable capability, since the model 
is capable of delivering such a precision across the entire country of Switzerland. However, 
as discussed in Section 3.5.4, the data were not cleaned up with respect to outliers. To find out 
if these outliers are distributed randomly over the tracks, or if usually an entire track is an 
outlier, the residuals were clustered with k-Means, where k equals 5. K was set to 5 because 
studies like Dawes’ (2008) showed that a five-point scale facilitates interpretability. The 
interpretability is important in order to be able to interpret what causes how severe outliers. 
All residuals that were among the two most extreme clusters, i.e. either too loud or too quiet, 
were counted per track. Figure 5.1 shows that the residuals are usually randomly distributed 
over the distances (the highest bar by far is the one with only one extreme residual per track). 
Nevertheless, Figure 5.1 also suggests that there might be entire tracks that are outliers. In 
order to find out why entire tracks can be outliers, the method of subgroup discovery (Görz 
et al. 2012) was applied (see below). For the subgroup discovery, each attribute was clustered 
with k-Means, where k equals 5. Each of this cluster functioned as a new dummy coded 
variable. Additionally, each canton, road surface type, and leaf (more information in Section 
5.1.2) was dummy coded as well. For each prediction error cluster, a separate subgroup 
discovery model was created, where the prediction error cluster was the target variable and 
the clusters of all other attributes were selected as independent variables (composition in 
Appendix 5.1.1). Table A.5.1.1 shows that the extreme outliers account for merely 15% of the 
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total data set. Table 5.1.1.2 shows the performance of the model if the data had been cleaned 
from outliers. 
 

Performance metrics Training Error Test Error 
MAE 1.129 1.198 
RMSE 1.544 1.598 
MSE 2.302 2.770 
R² 0.751 0.680 

       Table 5.1.1.3: Overview of the performance metrics of the final LNA  
     Model in dB(A) without outliers. 

 
It is interesting to note that R2 improves in training and test data by 10 %. An R2 of 75-79 % is 
a satisfying result, considering that the best possible R2 value is approximately 87 % because 
of the target variable’s large measurement error (Section 3.1.1). Hence, the influence of the 
outliers on the performance is strong. Therefore, it is all the more important to understand 
why certain data points are outliers. Due to the very long calculation time of the variable 
selection procedure described in section 4.5, there no attempt was made to create a new model 
in which the outliers are removed from the data during preprocessing, which would have 
required rerunning the entire procedure of Chapter 4, including the selection of modelling 
technique, hyperparameter optimization, and variable selection. To test whether the above 
assumptions that outlier cleaning improves R2 of the model by about 10%, however, a model 
was created in which the standard deviation was calculated for each pavement measurement 
and all segments outside the standard deviation were removed from the data. The 
hyperparameter optimization for this model suggested a minimum MSE split improvement 
of 0.1 and a minimum node size of 2000. Table 5.1.1.3 shows the performance of the model 
with the cleaned data by excluding segments with a value outside the standard deviation of a 
pavement measurement.  
 

Performance metrics Training Error Test Error 
MAE 1.060 1.073 
RMSE 1.544 1.598 
MSE 2.383 2.554 
R² 0.795 0.755 

       Table 5.1.1.4: Overview of the performance metrics of the final LNA  
     Model in dB(A) with the cleaned data by excluding segments with a value  
     outside the standard deviation of a pavement measurement. 

 
Note that by simply excluding segments with a value outside the standard deviaton of a 
pavement measurement, R2 improves in training and test data by 5 %. If greater efforts were 
made, such as cleaning the data with outlier detection during preprocessing as input to 
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hyperparameter optimization and variable selection, performance could be further improved 
and possibly actually achieve the assumed 10 % improvement in R2. 

 
 
 
Subgroup discovery and outlier explanation. According to Görz et al. (2012) subgroup 
discovery can be defined as follows: 
 

Subgroup discovery, tests the quality of hypotheses D(ℎ), with D(ℎ) = dB × |N − N,|, with 

N = the probability with which the target attribute in the subgroup of ℎ has a certain value; 

N, = the probability with which the target attribute in the total population has this value; 

B = the relative size of the subgroup of ℎ to the total population b and B = |ℎ|/|b|. 
 
The advantage of subgroup discovery is that the method can also be used if the target 
attributes for a classification are distributed highly unequally, which is the case for our data, 
as the two most extreme outlier clusters account for 15 % of the entire data set. In addition, 
subgroup discovery describes the groups, which simplifies interpretation. The subgroup 
discovery models were created using RapidMiner Studio, version 9.2 (Mierswa & Klinkenberg 
2019). K best rules, was chosen as mode, while k equals 5. The weighted relative accuracy 
(WRAcc) of a rule was chosen as the utility function, which determines the five best rules. 

Figure 5.1: x-Axis: number of outliers per track over all years, y-Axis: number of tracks 
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Since WRAcc measures generality1, precision2 and interest3 of a subgroup, it is a reasonable 
compromise of these three factors and therefore a recommendable criterion to create 
subgroups (Herrera et al. 2011). The results of the five subgroup discovery models are 
reported in Table A.5.1.2.  
The five rules of the most negative residuals (“Cluster Pred --” in Table A.5.1.2) suggest those 
data points that the model wrongly estimates as far too loud (group mean of -3.084 dB(A)), 
indicating that most of these data points are either rather young (RegressionLines = TLL, 
nMonths = --; group mean of 19.8), are located in the canton of Geneva, or of the road surface 
type Nanosoft4.  
These subgroups thus show the effect of spatial autocorrelation. Nanosoft4 road surfaces are 
a 4mmHV product that is mainly installed in the canton of Geneva. Consequently, the model 
in the canton of Geneva often wrongly estimates the road surface as too loud. This is crucial, 
as Table 5.1.1.4 shows. 
 

Canton Geneva Valais Fribourg Vaud 
Relative % of total 4mmHV per canton 59.6 18.9 16.8 5.7 
Nanosoft4 share 55.3 32.8 48.3 9.9 

Table 5.1.1.4: Overview of the cantonal distribution of the 4mmHV and the Nanosoft4 road surface 
 
Since more than 50 % of the total 4mmHV data is located in Geneva and more than 50 % of 
this 4mmHV data is of surface type Nanosoft4, approximately one fourth of the entire 
4mmHV data is likely to be a strong outlier that was estimated as too loud. 
 
The five rules of the most positive residuals (“Cluster Pred ++” in Table A.5.1.2) represent 
those data points that the model wrongly estimates to be much too quiet (group mean of 4.008 
dB(a)), indicating that most of these data points are rather young (nMonths = -- , avgFD = --, 
sdHD = --). AvgFD and sdHD are both variables that have to develop first over time (more 
detail on this in Section 5.1.2) and have a right-skewed distribution. Low values of these 
variables speak above all for a young age of the road surface. 
 
Bias. Bias can be defined differently. In most research fields, bias refers to a systematic error 
in quantity, which is caused by a false modelling approach, while trying to estimate the true 
value of a certain parameter.  
Regarding machine learning bias is defined as the difference between the estimated value of 
a model and the true value of the target variable. However, low bias can cause low 

 
1 Quantifies the quality of individual rules according to the individual patterns of interest covered. 
2 Measures the tradeoff between the true and false positives covered in a lineal function or measures the tradeoff 
of a subgroup between the number of examples classified perfectly and the unusualness of their distribution. 
3 Measures are intended for selecting and ranking patterns according to their potential interest to the user by 
calculating novelty, gain or significance. 
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performance due to high variance. Variance means the difference of fits of a machine learning 
model between different data sets. In the evaluation of a machine learning model, bias and 
variance are therefore considered, both of which should be as low as possible. The bottom line 
is to know how well the model will perform when deployed. There are many possibilities to 
measure bias and variance, but the most common method is probably cross-validation. 
Kohavi (1995) recommends a 10-fold cross-validation in his work. Since in this thesis the 
samplings are double stratified and strongly unbalanced, it is difficult to obtain an acceptable 
stratification with 10 folds, therefore a 5-fold cross-validation is used. The R2 95% Confidence 

Interval of the 5-fold cross-validation equals 62.6 % ± 2.4 %. This shows that the method to 
create the model is robust. This does not imply that the results analyzed in Sections 5.1.2 and 
5.1.3 are statistically significant. But since R2 of the test data of the final model is close to the 
mean of the 95 % confidence interval of the 5-fold cross-validation, the modelling approach 
seems to be robust and with the critical analysis of the outliers by means of subgroup 
discovery, cautiously formulated observations can and should be made. 
This means that with regard to the analysis of the model in the following sections, the non-
machine learning definition of bias, i.e. bias implying a systematic error, must be considered. 
In concrete terms, it must always be noted that 4mmHV road surfaces in the Geneva region 
are considered to be too loud and due to the large proportion of 4mmHV in Geneva, 4mmHV 
are generally considered to be too loud by the model, and young road surfaces (in the order 
of < 24 months) can hardly be predicted well. In addition, the present spatial autocorrelation 
within the dataset has the consequence that significance tests regarding coefficients could be 
erroneously accepted or rejected. In general, the values of the coefficients can vary strongly, 
therefore only the rough direction of the coefficients should be considered. 
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5.1.2 Tree structure 
 
When considering the created tree (Figure 5.1.2), three main groups that influence the aging 
behavior of LNAs can be identified: Age, climate and traffic. The letters in the leaves stand for 
the allocation path that a data point has taken. T stands for top, L for left and R for right. 
Consequently, a data point that ends up in the TLL leaf has a value less than 46 for the 
nMonths variable and less than 67317.85 for the sdDirect variable. 
 

 
 
 
 
Age and climate. The age of an LNA is the variable that contributes most to explaining the 
loss of the noise reducing effect of an LNA. This is, because the first split at top-node occurs 
through the nMonths variable, which was also the second variable selected by the stepwise 
forward variable selection. In addition, other split variables probably also measure age. The 
nMonths Boxplot (Appendix A.5.1.4) shows that TLL is the leaf with the youngest LNAs. This 
happens because the split is induced by the sdDirect variable. When looking at the sdDirect 
variable in data quality report (Table A.2.1), the first quantile is much closer to the mean than 
the third quantile, which indicates a right-skewed distribution. This right-skewness occurs 
because the sdDirect variable has to develop over time at the beginning; in the first year of a 
road surface, direct solar irradiation values are considered between the months from the end 
of March to the end of October at most. Frequently, however, it the timeframe is only a few 
summer months. Therefore, the standard deviation of direct solar radiation of young road 
surfaces is small. The split value of the sdDirect Variable is also smaller than its first quantile 
and thus successfully forces the presence of very young LNAs in TLL. In this sense, TL can 

Figure 5.1.2: Tree structure for the final LNA model created by the LMT algorithm 
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also be interpreted as measuring age. With the splits of the avgFD variables TLRL and TLRR 
it is not directly apparent whether the splits occur due to age or climate. The avgFD variable 
must also develop over time; the older a road surface is, the more winter and frost days will 
have occurred. The nMonths boxplot shows that the leaves that were formed on the left by an 
avgFD split (namely TRLL and TLRRL) are younger than the leaves on the right side of the 
same split (TLRLR and TLRRR). Additionally, the nMonths variable has a right-skewed 
younger than leaves on the right side of the same split (TLRLR and TLRRR). Additionally, the 
nMonths variable has a right skew distribution in the younger leaves and the older leaves 
have a left-skewed distribution. This means that the left leaves TRLL and TLRRL have young 
LNAs or older (age is approximately between the first and third quantile of the TLRLR and 
TLRRR nMonths boxplots) LNAs with few frost days, i.e. warmer climates. The opposite is 
true for the right leaves TLRLR and TLRRR. AvgFD splits are therefore probably due to 
climatic and aging criteria. 
 
Heavy vehicles (HV). If it is supposed that the sdDirect-split is at TL measures, age, then it 
can be expected that the share of heavy vehicles is the second most explanatory variable. Each 
split on the second level (either TL or TR) is followed by a HV-split (TLR or TRR). It is 
noticeable that both splits are smaller than the mean of the DTV_LKW cluster with the lowest 
values (see Table A.5.1.1), but this cluster also accounts for approximately 80 % of the data. 
 

5.1.3 Categorical analysis 
 
The tree structure shows that the leaves can be categorized according to age, HVs share 
(DTV_LKW), and climate. These categories can be further subdivided as shown in Table 5.1.3. 
Age can be divided into five subcategories (boxplot nMonths; Appendix A.5.1.4). The heavy 
vehicles share can be divided into high (everything right of an HV split) and low (everything 
left of an HV split). The HVs boxplots (= DTV_LKW boxplots; Appendix A.5.1.4) show that 
the two leaves of the second oldest age group (TRLL, TRLR) also have an unequal distribution 
of the HV share. It is plausible to consider TRLL as a leaf with rather low HV share and TRLR 
as a leaf with rather high HV share. 
As discussed in Section 5.1.2, the avgFD splits probably also explain climatic conditions. This 
means that all leaves to the left of an avgFD split are likely to have data that was exposed to 
relatively warmer climates than those to the right of an avgFD split. The sdHD boxplot 
(Appendix A.5.1.4) shows that the leaf left of the split has on average more frost days than the 
right one. The same argument as in Section 5.1.2 applies here as well. The sdHD split probably 
measures age and climatic conditions. The younger leaf, which is the one with less avgFD, has 
a right-aligned distribution in the nMonths variable and therefore probably has rather young 
segments or segments in warmer climates than the opposite leaf with more avgFDs and a left-
aligned distribution of the nMonths variable. 
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The end result of this subdivision is summarized in Table 5.1.3. 
 

Leaf Age in years HV-share Climate 
TLL 1.3 - - 
TLRLL 1.6 low rather warm 
TLRLR 2.9 low rather cold 
TLRRL 1.6 high rather warm 
TLRRR 2.9 high rather cold 
TRLL 4.8 rather low rather cold 
TRLR 4.8 rather high rather warm 
TRRL 8.6 low - 
TRRR 8.6 high - 

       Table 5.1.3: Overview of categorical classification of LNA regressions 
 
These categories can now be examined for similarities or differences by examining the 
coefficients of their regressions shown in Appendix A.5.1.3 in order to find general similarities. 
 
Cold climate. The three leaves TLRLR, TLRRR and TRLL belong to the group with rather cold 
climates. Similarities are that avgFD, DTV_LKW, and sdDirect foster the deterioration of the 
noise reducing effect of the LNAs and the increasing age (nMonths) inhibits the loss of the 
noise reducing effect. The harmful effect of frost days and HV share on the noise-reducing 
effect of an LNA is in agreement with the literature (e.g. frost days: Bühlmann et al. 2015, 
Licitra et al. 2018; HV: van Blokland et al. 2014). The sdDirect variable is difficult to interpret. 
It is illogical that nMonths has a positive effect on the noise-reducing effect of a road surface. 
Unclear as well is the strongly different behavior of the different road surface types. 
 
Warm climate. The three leaves TLRLL, TLRRL and TRLR belong to the group with warmer 
climates. Similarities are that nMonths damages the noise reducing effect of the LNAs and 
sdDirect has a beneficial impact on the noise reducing effect of the LNAs. If the leaves of warm 
climates are additionally subdivided according to HV share (many: TLRRL, TRLR; little: 
TLRLL), then it appears that in warm climates with a high HV share, frost has a favorable 
influence on the noise-reducing effect of an LNA and sdHD a harmful one. It is to be expected 
that with increasing age (nMonths) the noise reducing effect of an LNA decreases. SdDirect is 
difficult to interpret. It is interesting to note that frost in warm climates with high HV share 
seems to have a positive effect on noise reduction. This is in contradiction with the literature. 
SdHD is difficult to interpret. However, a high value of the sdHD variable requires a large 
number of heat days. This means that the standard deviation will be greater since there are 
scarcely any heat days in the non-summer months and for those months the values will 
usually be zero. This indicates that the larger the sdHD variable, the more heat days an LNA 
will have experienced. This would imply that in warm climates with high traffic loads, frost 
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is preferable over heat for an LNA. This hypothesis is explored further in Section 5.2. The 
strongly different behavior of the different road surface types is again unclear. 
 
Low HV share. The four leaves TLRLL, TLRLR, TRLL and TRRL belong to the category with 
a low HV share. Similarities are that avgFD and DTV_LKW have a harmful impact on the 
noise reduction effect of an LNA. This is to be expected as already discussed in the previous 
section “cold climate”. It remains unclear why the nMonths variable has a positive influence 
on the noise reduction effect of LNAs in the two leaves with rather cold climate conditions 
(TLRLR, TRLL). The strongly different behavior of the different road surface types is again 
unclear. 
 
High HV share. The four leaves TLRRL TLRRR, TRLR and TRRR belong to the category with 
a high HV share. The only similarity is that the 4mmHV group is always worse than the 
4mmLV reference defined by this model. This is to be expected because under high 
mechanical stress, road surfaces with a high void content are more fragile. 
 
Age. TLL is the leaf with the highest uncertainty (see boxplot stnl1 in Appendix A.5.1.4 and 
Section 5.1.1, subgroup discovery) and should therefore not be considered in the 
interpretation. Considering the other age groups, there are always exactly two leaves for each, 
except the first age group (TLL). If the residual and the stnl1 (performance) boxplots 
(Appendix A.5.1.4) are included in the interpretation, the following similarities can be 
observed: At each age group the types of road surface behave almost exactly the opposite way 
than the other leaf of the same age group, since the HV share is also always inverted (low vs 
high). It further shows that those leaves with a higher HV share perform worse than those 
with a lower HV share: TLRLL < TLRRL, TLRLR < TRRR, TRLL = TRLR (where the traffic 
volume is almost the same), and TRRL < TRRR. 
 

5.2 The heat hypothesis 
 
The heat hypothesis is as follows: "Heat has a significant damaging effect on the noise 
reduction effect of a low-noise road surface." 
 

5.2.1 Method 
 
To test the heat hypothesis, the following procedure was applied. All results for the below 
Steps 4 and 5 can be found in Appendix A.5.2. 
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1. Two data sets are created. The first data set “low HV” contains segments of the leaves which 
in Section 5.1 were shown to belong to the category with low HV share (TLRLL, TLRLR, TRLL, 
TRRL). The second data set “warm, high HV” contains segments of leaves that belong to the 
category with high HV share and warm climates in Section 5.1 (TLRRL, TRLR). 
 
2. All segments are aggregated to individual road surfaces by an average function. 
 
3. All non-dummy coded, independent variables are standardized by z-transformation. 
 
4. For both data sets, ordinary least square regression models are generated. Both models are 
subjected to a stepwise variable selection according to Venables and Ripley (2002). Neter et al. 
(1985) estimated that if the largest variation inflation factor (VIF) among all independent 
variables exceeds 10, multicollinearity is problematic. Since VIF is always <= 5 for all variables 
(VIF calculation according to Paradis and Schliep 2018), however, multicollinearity is not 
problematic for those models. 
Both models show significant spatial autocorrelation. The possible variables are the same as 
those selected in variable selection (Section 4.5.1), except that sdHD is replaced by avgHD to 
simplify interpretability. Since spatial autocorrelation occurs due to unequal spatial 
distribution (i.e. spatial heteroskedasticity), the spatial error model is a suitable choice to 
ensure that the p-values of the coefficients are distorted as little as possible. 
 
5. For both data sets a spatial error model (SEM) was developed using the method proposed 
by Bivand and Piras (2015). The neighborhood relationships are described by a Voronoi 
diagram. 
 

5.2.2 Results and discussion 
 
Both OLS models (Appendices A.5.2.1 and A.5.2.3) show a significant spatial autocorrelation 
of approximately 0.33. Therefore, these models are not examined in detail. However, it is 
important to note that in the warm, high HV data set the variable avgHD in the variable 
selection part was not selected and therefore has no significant influence on the performance 
of an LNA. 
 
Both SEM models (Appendices A.5.2.2 and A.5.2.4) have a low spatial autocorrelation of 0.08 
which is nevertheless significant. Compared to the OLS models, the fit is also significantly 
better. In the warm, high HV data set R2 improves from 32.3 % to 51.3 %, and in the low HV 
data set from 44.4 % to 59.3 %. 
The significant reduction of the spatial autocorrelation and the associated improvement of the 
fit shows that only the SEM models should be considered when interpreting the coefficients. 
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Since the avgHD variable was not considered in the variable selection, the warm, high HV 
data set, the hypothesis “Heat has a significant damaging influence on the noise reduction 
effect of a low-noise road surface” must be rejected given the experimental setup used in this 
thesis. It should also be noted that the direction of the avgFD coefficient in the warm, high HV 
data set is negative but not statistically significant. 
 
This does not suggest that the assumption that heat has a harmful effect on LNAs must 
generally be rejected. In the low HV SEM the avgFD coefficient is the non-physical parameter 
coefficient with by far the most harmful effect. It is therefore surprising that avgFD has no 
significant effect on the warm, high HV data set. It is possible that if an exact control group 
had been created, e.g. by clustering LNAs that clearly experienced hot climate and high traffic, 
then variables such as frost or heat might have been statistically significant. Creating such a 
model was, however, not in the scope of this thesis. 
 

5.3 Addressing the first research question 
 
Which factors lead to the loss of the noise reducing effect of the LNAs? The first research 
objective of this work, to find out which factors lead to a loss of the noise reducing effect of 
LNAs, can be partially fulfilled.  
 
Due to the structure of the tree (first splits are due to the variable nMonths), and the decreasing 
noise reduction effect of the LNAs in older leaves, age is the most important factor leading to 
a decrease in the noise reduction effect. The second most important factor is HV share. This is 
evident because for each age group (except the first) there is always a subgroup with a high 
HV share and a subgroup with a low HV share, whereby the subgroup with a low HV share 
performs acoustically better than the subgroup with a high HV share. It should be emphasized 
that between HV share and DTV a Pearson correlation coefficient of 0.7 is observed. HV share 
therefore probably stands not only for the load of HVs but also for the general direct 
mechanical stress of a road surface. However, HV share was preferred by the variable 
selection algorithm over the DTV variable, which indicates that HVs have a more detrimental 
effect on LNAs than passenger cars. Thus, the observation of van Blokland et al. (2014), 
namely that HVs are more harmful than passenger cars, is supported by the results of this 
thesis. Consequently, it can be claimed with certainty that time (nMonths) and mechanical 
stress (HV share) have a harmful effect on LNAs. 
 
The contribution of environmental factors is less obvious. In general, this work shows that 
environmental factors have an influence on LNAs. The consideration of environmental factors 



5. Results and discussion 

 

 48 

in the model led to a strong improvement in performance (Section 4.4). Furthermore, frost has 
the most damaging effect of all variables on road surfaces exposed to low HV share (Appendix 
A.5.2.4). These results support the observations of Licitra et al. (2018) and Bühlmann et al. 
(2015) that frost has a harmful effect on LNAs, while challenging the result of Irali et al. (2015) 
that temperature has a minor effect on LNAs. However, these results are not unambiguous. 
In this thesis, neither frost nor heat had a statistically significant effect on road surfaces with 
a high HV share in warmer climates. This finding is therefore more in line with the result of 
Irali et al. (2015) that temperature has a minor influence on LNAs. This is also interesting 
because the sample of Irali et al. (2015) originates from Spain, which suggests that Irali’s et al.  
routes would probably also be classified into the warmer climates group of this data set. 
The cause of these contradictory results does not mean that the environmental factors 
generally have no statistically significant influence. A reason might be that an LMT allocates 
only datapoints in a certain leaf, respectively regression, that meet certain criteria. The 
sampling of these regressions is therefore not random but has a sampling bias in this context. 
Thus, it might occur that with warmer leaves, the proportion of frost is so low that it has no 
significant influence in this specific regression model. 
A further explanation might be that there may have been not enough data in this work. If a 
clearer division of the samples into hot areas with very high HV share had been made, certain 
coefficients might be statistically significant under such circumstances.  
In conclusion, the results of this work on environmental factors are not precise enough to 
determine precise threshold values for climatic groupings where, for example, frost is harmful 
or no longer harmful. However, the results indicate that the relationship between 
environmental factors and LNAs is not linear. Assuming that the relationship between frost 
and the performance of an LNA is not linear would be a plausible explanation why frost has 
a statistically significant detrimental effect in the low HV model and no significant effect in 
the warm, high HV model. 
In order to obtain more clarity, more data is needed from regions that differ strongly in terms 
of environmental factors. This could lead to more unambiguous groups, whose statistical 
analysis is likely to then produce more conclusive results. 
 
The results regarding physical parameters are almost completely unclear. The results of the 
variable selection show that the physical parameters have an influence on the noise reducing 
effect of an LNA, since all types of LNAs were considered in the variable selection and 
contributed to a strong performance improvement. However, the behavior of the physical 
parameters is unexpected. No pattern can be recognized from the categorical analysis. Only 
4mmHV performs worse than the reference 4mmLV in regressions with a high HV share. This 
is to be expected because with high void degree the road surface becomes more fragile to 
mechanical stress. Due to the subgroup analysis, however, it is also clear that exactly the 
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4mmHV road surfaces have a systematic error and should therefore not be weighted too 
heavily in the interpretation.  
A reason for the unexpected behavior of the road surface types could be the broad Swiss 
standardization mentioned in Section 2.2.2. As a result, products with the same label still vary 
greatly and results with the same label are therefore difficult to interpret. 

 
5.4 CG 
 
As the focus of this work is on LNAs, the analysis and discussion of the CG conventional 
group will remain short in comparison. 
 

5.4.1 Model evaluation 
 
Performance metrics. The performance metrics for the final CG model are summarized in 
Table 5.4.1. 
 

Performance metrics Training Error Test Error 
MAE 0.888 0.851 
RMSE 1.199 1.125 
MSE 1.438 1.267 
R² 0.265 0.230 

        Table 5.4.1: Overview of the performance metrics of the final CG 
                                      model in dB(A) 
 
The MAE, RMSE and MSE suggest that the CG model performs significantly better than the 
LNA model. However, the R2 performance metric, which is poor at approximately 25 %, 
shows that this conclusion is wrong. The reason why MAE, RMSE and MSE are significantly 
lower than in the LNA model is that the range of possible stnl1 values for the CG road surfaces 
is significantly smaller than that of the LNAs. Since the measurement error of the target 
variable (Section 3.1.1) is almost the same size as the MAE of the model, it is virtually 
impossible to obtain a high R2 value. This further implies that it is hardly useful to examine 
non-noise-abating surfaces for their noise reducing effect as they seem to be rather constant. 
 

5.4.2 Tree structure 
 
As with the LNA tree structure, the letters in the leaves stand for the allocation path that a 
data point has taken. T stands for top, L for left and R for right. 
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The CG tree structure shows that nDay, i.e. the daily traffic volume, is the most explanatory 
variable for CG road surfaces. In addition, the nDay variable alone would lead to an MSE of 
1,382 (see Table A.4.2.1). Since the R2 is very low, it is not useful to analyze the variables as 
precisely as the LNAs, since generally valid statements cannot be made. However, the result 
leads to the conclusion that for non-LNA road surfaces only the mechanical load of the traffic 
has a significant impact.  
 

5.5 Addressing the second research question 
 
How can a generalizable model to predict the performance of LNAs be created? The results 
of this thesis show that it is possible to create a generalizable model for predicting the 

performance of LNAs. An R2 of the 5-fold cross-validation of 62.6 % (± 2.4 % in the 95 % 
Confidence Interval) shows that the model design is robust. By cleaning the outliers of the 
training and test data the R2 of the final model can be improved by 10 % to 75-79 %, which is 
close to the maximum possible R2 of approximately 87 % (maximum R2 due to the 
measurement error of the target variable). This shows that the model yields precise estimates.  
The results of Section 5.4 also show that it is not advisable to use a model to estimate the 
acoustic performance of conventional road surfaces, since the range of possible values of the 
stnl1 variable is only marginally larger than that of the measurement error of the stnl1 variable 
itself. 
 
When creating a model to estimate the performance of an LNA, consideration must be given 
to the variable selection, modelling technique and test design. 
The discussion in Section 5.3 illustrates that variables that measure age and traffic load are 
indispensable for an LNA model. Variables representing the physical parameters of an LNA 
and variables representing the environmental factors should also be considered. Regarding 
environmental factors, it is recommended to choose climatic variables. Very specific variables 
that have small-scale effects, such as intersections, bus stops, proximity to construction sites 

Figure 5.3: Tree structure for the final CG model created by the LMT algorithm 
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or farmland, did not score in the feature selection process in this work. This does not mean 
that Gradziejczyk’s (2016) interpretation that proximity to farmland leads to higher dirt input 
in the pores of LNAs is wrong. Rather, it is difficult to create variables that can determine 
exactly where the vehicle routes of farmers are located that ultimately lead to dirt entry. 
Therefore, variables that represent small-area effects should not be used if it is unlikely that 
the variable represents precisely the desired small-area effect. 
The boxplot in Appendix A.5.1.4 of the nMonths variable shows that the age of left-sided 
regressions increases to right-sided regressions in the tree. The boxplot of the stnl1 variable 
shows that the LNAs of the youngest age group perform worse than the second youngest, 
while the second youngest performs better than the third youngest. Hence, there is a nonlinear 
relationship between the target variable and the nMonths variable. Furthermore, the 
contradictory behavior of frost depending on the regression (positive effect on LNA for TLL, 
TLRRL, TRLR and TRRR, negative effect for the rest of the regression) illustrates the nonlinear 
relationship between the target variable and the avgFD variable.  
Therefore, it is indispensable that a technique is chosen that can represent non-linear, non-
monotonously rising relationships when generating a generalizable model. Attention should 
also be paid to the spatial autocorrelation of the data. Since LNAs are mainly installed in urban 
and suburban areas, there are fewer LNAs in low population areas such as the Alps. 
Consequently, the samples are spatially unbalanced, resulting in spatial autocorrelation. The 
results of this thesis, similar to Breuning's (2005) results, show that statistically correct models 
are not necessarily essential to produce a well performing model. Nevertheless, the results in 
presented in Section 5.3 clearly show that the consideration of spatial autocorrelation in a 
model leads to a strong performance improvement and also allows the interpretation of the 
coefficients of a model. It is therefore desirable to choose a function that takes spatial 
autocorrelation into account, as this allows the correct interpretation of the model. 
In order for the selected model to fit the data well, it is worth excluding road surfaces whose 
age is less than approximately 1.5 years. The results in Section 5.1.1 show that the youngest 
leaf has significantly more outliers than the remaining leaves (this can also be seen in the 
residuals boxplot; Appendix A.5.1.4. It should also be considered to ignore segments that have 
been installed for less than 1.5 years. This conclusion is based on the fact that in this thesis 
spatially fine-grained variables such as intersections, bus stops or slope were never selected 
during the feature selection process. Therefore, it seems that the outliers in the data could be 
explained rather by the measurement error of the target variable itself than by the 
environmental factors. Therefore, it might be beneficial to choose a threshold value, for 
example to ignore all segments that are outside the standard deviation of the whole track.
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6 Conclusion 
 
6.1 Achievements 
 
This thesis contributes to the area of research on the aging of LNAs. In this thesis a novel 
methodological approach was chosen to improve the prediction and understanding of 
acoustic aging of LNAs. The large database of Grolimund + Partner was used, which contains 
nearly every LNA in Switzerland at the time of 2018. Using GIS methods, a total of 49 
environmental variables were produced and taken into the research questions hypothesis 
spaces. Through variable selection, the relevant variables for the acoustic aging of the LNAs 
could be identified. By comparing different machine learning techniques, a suitable model, 
the LMT, was selected, which allows to provide precise estimates and interpret the 
relationship between dependent and independent variables. The interpretation of the LMT 
model enables to understand what to be aware of when creating a generalizable acoustic LNA 
aging model in terms of obtaining the most accurate estimates and correctly interpreting the 
relationships between the dependent variable and the independent variable. 
 

6.2 Insights 
 
The first research question, “which factors lead to the loss of the noise reducing effect of the 
LNAs”, can only partially be answered. The results agree with the literature. The most 
important explanatory variable is age, followed by mechanical stress, which is better 
described by the average number of heavy vehicles than the average number of vehicles. The 
results concerning environmental factors, on the other hand, are not conclusive, and further 
research will be necessary. It is evident from laboratory studies that environmental factors 
have an impact on the performance of an LNA. Similarly, our results strongly suggest that 
frost in areas with a low mechanical stress has a strong damaging effect on an LNA. It appears, 
however, that frost has no harmful effect in warmer areas. The exact reasons why frost has no 
statistically significant effect in warmer areas cannot be explained by the results obtained from 
the data available for this thesis. There are indications that there is a climatic range in which 
frost is harmful or no longer harmful to an LNA. 
 
The second research question, "How can a generalizable model to predict the performance of 

LNAs be created?", can be answered. An R2 of 62.6 %± 2.4 % in a 95 % confidence interval of 
the 5-fold cross-validation shows that the model design is robust. By cleaning of outliers in 
the training and test data, an improvement of the R2 of the final model by 10 % to 75-79 % 
could be gained, which is close to the maximum possible R2 of approximately 87 % due to the 
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measurement error of the target variables. This demonstrates that the model makes precise 
estimates. In order to produce a robust, precise model, variables measuring age, traffic load 
(preferably heavy vehicles), environmental factors (preferably climatic) and the physical 
parameters of the LNAs are needed. A non-linear, non-monotonous function should be 
chosen to describe the relationship between the variables. Since LNAs are mainly located in 
urban areas, attention should be directed to spatial autocorrelation when sampling the data 
or selecting the function. This should contribute to an improvement of the model and is 
indispensable for interpretation. LNAs also show strongly varying noise reduction effects in 
the first 1.5 years. Thus, it is recommended not to consider data younger than about 1.5 years. 
In general, the data used in this thesis seem to have several outliers. It is recommended to 
choose a threshold, for example certain percentile values, and to not consider all segments of 
a track falling outside these percentiles. 
 

6.3 Limitations 
 
The results and the conclusions that can be drawn from these are limited to the study area, 
that is, Switzerland. Consequently, the categorical classification of warm/cold climates, or 
high/low traffic refer to Swiss conditions. The physical parameters of an LNA are also subject 
to Swiss norms. Furthermore, the data sources used are of varying precision. The traffic load 
is taken from a data set from the year 2015. The traffic fleet is dynamic and may change 
significantly locally. Furthermore, the climatic variables avgFD and sdHD do not have a high 
spatial resolution compared to other variables used in the model. 
 

6.4 Future Work 
 
The results of this thesis show that while environmental factors have an influence on LNAs, 
they are only partly understood and should thus be researched in more detail. Specifically, it 
is advisable to investigate in a laboratory set-up how an LNA behaves at certain temperatures 
and traffic conditions. This would allow to identify more distinct climatic thresholds, which 
in turn would allow to have relevant variables in the ageing model when constructing or 
selecting a model. 
The thesis also demonstrates that it is possible to create robust and accurate models for 
predicting the noise reduction effect of an LNA at a given location and provide concrete 
recommendations from variable selection, choice of mathematical function and data 
preprocessing. Future work should also look into the application of such prediction models, 
which is especially important at the political level. Such models would facilitate the decision-
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making of measures against road noise in order to achieve the goals of the NAO for communes 
and cantons in Switzerland. 
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A Appendix 
 
A.1 Data description report 

 

Name Type Meaning Source Group Variable selection Unit 
SID Numeric the unique ID of a measurement on a 20m segment G+P ID IDness label 

PavID Numeric the unique ID of a measurement on a road surface G+P/Const. ID IDness label 

MID Numeric indicates to which order the measurement belonged G+P ID IDness label 

Coordinate ID Numeric the unique ID of a location of a 20m segment G+P/Const. Location IDness label 

Xmid Numeric x coordinate between x-start and x-end coordinate G+P/Const. Location IDness 
easting in m, 
CH LV03 

Ymid Numeric y coordinate between y-start and y-end coordinate G+P/Const. Location IDness 
northing in m, 
CH LV03 

Canton Polynominal in which canton segment is located G+P Location 
LNA yes, for CG too 
stable label 

vDriven Numeric speed of the measuring vehicle G+P 
Measurement 
condition not of interest km/h 

STNL1 Numeric target variable, deviation from Stl+86 value, PW tire,  G+P Target variable target variable dB(A) 

PavType  Polynominal type of road surface G+P/Const. physical parameters yes label 

PavYear Numeric year of installation G+P/Const. Time yes yyyy 

Datum Date date and measuring time of the measuring point G+P Time not of interest dd.mm.yyyy 

nMonths Numeric 
number of months elapsed between installation and 
measurement G+P/Const. Time yes #months 

vecAngle Numeric The 2D orientation of a 20m segment G+P/Const. Geometry yes degree 

deltaAngle Numeric curvature G+P/Const. Geometry yes degree 

Busstop Boolean if a bus station is at the segment BAV/Const. Traffic yes boolean 

Intersection Numeric distance to the nearest intersection sonBase Traffic yes meter 

Spuren Numeric number of lanes sonBase Traffic too Stable label 

DTV Numeric daily average of vehicles sonBase Traffic yes #vehicels 
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nDay Numeric daily average of vehicles during daytime sonBase Traffic yes #vehicels 

nEvening Numeric daily average of vehicles during evening sonBase Traffic yes #vehicels 

nNight Numeric daily average of vehicles during nighttime sonBase Traffic yes #vehicels 

VMaxPv Numeric maximal speed limit sonBase Traffic yes km/h 

DTV_LKW Numeric daily average of heavy vehicles sonBase Traffic yes #vehicels 

DTV_LKW_Ni Numeric daily average of vehicles during nighttime sonBase Traffic yes #vehicels 

DTV_total Numeric amount of  vehicels rolled over road surface  since installation sonBase/Const. Traffic yes #vehicels 

tempTotal Numeric sum of average monthly temperatures Meteo/Const. Climate yes celsius 

avgT Numeric average monthly temperature Meteo/Const. Climate yes celsius 

sdT Numeric standard deviation of monthly temperatures Meteo/Const. Climate yes celsius 

totalPerc Numeric sum of precipitation per month Meteo/Const. Climate yes mm 

avgPerc Numeric average monthly precipitation Meteo/Const. Climate yes mm 

sdPerc Numeric standard deviation of monthly precipitation Meteo/Const. Climate yes mm 

forstdays Numeric number of frost days since installation BFS/Meteo/Const. Climate yes #frostdays 

avgFD Numeric average monthly frost days BFS/Meteo/Const. Climate yes #frostdays 

sdFD Numeric standard deviation of monthly frost days BFS/Meteo/Const. Climate yes #frostdays 

icedays Numeric number of ice days since installation BFS/Meteo/Const. Climate yes #icedays 

avgID Numeric average monthly ice days BFS/Meteo/Const. Climate yes #icedays 

sdID Numeric standard deviation of monthly ice days BFS/Meteo/Const. Climate yes #icedays 

heatdays Numeric number of heat days since installation BFS/Meteo/Const. Climate yes #heatdays 

avgHD Numeric average monthly heat days BFS/Meteo/Const. Climate yes #heatdays 

sdSD Numeric standard deviation of monthly heat days BFS/Meteo/Const. Climate yes #heatdays 

summerdays Numeric number of summer days since installation BFS/Meteo/Const. Climate yes #summerdays 

avgSD Numeric average monthly summer days BFS/Meteo/Const. Climate yes #summerdays 

sdSD Numeric standard deviation of monthly summer days BFS/Meteo/Const. Climate yes #summerdays 

tropnights Numeric number of tropical nights since installation BFS/Meteo/Const. Climate yes #tropnights 

avgTN Numeric average monthly tropical nights BFS/Meteo/Const. Climate yes #tropnights 
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sdTN Numeric standard deviation of monthly tropical nights BFS/Meteo/Const. Climate yes #tropnights 

totalDirect Numeric amount of direct solar radiation since installation DSM/Const. Climate yes WH/m² 

avgDirect Numeric average monthly direct solar radiation DSM/Const. Climate yes WH/m² 

sdDirect Numeric standard deviation of monthly direct solar radiation DSM/Const. Climate yes WH/m² 

totalDiffuse Numeric amount of diffuse solar radiation since installation DSM/Const. Climate yes WH/m² 

avgDiffuse Numeric average monthly diffuse solar radiation DSM/Const. Climate yes WH/m² 

sdDiffuse Numeric standard deviation of monthly diffusesolar radiation DSM/Const. Climate yes WH/m² 

totalDurationDIrect Numeric amount of time of direct solar radiation since installation DSM/Const. Climate yes WH/m² 

avgDurationDirect Numeric average monthly duration of direct solar radiation DSM/Const. Climate yes WH/m² 

sdDurationDirect Numeric standard deviation of monthly duration of direct solar radiation DSM/Const. Climate yes WH/m² 

distnaceAgrar Numeric distance to the nearest farmland 
Area 
statistics/Const. Dirt infill yes meter 

distanceConstruction Numeric distance to the nearest construction site 
Area 
statistics/Const. Dirt infill yes meter 

slope Numeric slope inclination Alti3D/Const. Topographie yes degree 

aspect Numeric aspect Alti3D/Const. Topographie yes degree 

tri Numeric terrain roughness index Alti3D/Const. Topographie yes % 

Zmid Numeric height Alti3D/Const. Topographie yes m.a.s.l 
*Const. means that the author constructed/transformed the original data in order to create the variable. 
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A.2 Data quality report 

 

A.2.1 LNA continuous variables 
 

Name N Mean StDev Min Pctl 25 Pctl 75 Max % Miss 
PavYear 70'071 2'010.70 3.98 1'980.00 2'009.00 2'013.00 2'018.00 0.00 
Xmid 70'071 609'683.60 62'116.61 488'305.80 572'821.90 654'734.20 789'376.60 0.00 
Ymid 70'071 204'217.70 56'493.18 96'317.30 144'441.30 250'860.20 279'399.20 0.00 
STNL1 70'071 -2.26 3.02 -10.96 -4.57 0.14 10.05 0.00 
vDriven 70'071 49.70 1.59 2.94 49.16 50.56 60.58 0.00 
vecAngle 70'071 182.35 104.22 0.03 87.45 271.26 360.00 0.00 
deltaAngle 70'071 1.03 31.80 -359.97 -0.44 0.49 359.89 0.00 
nMonths 70'071 52.84 42.29 3.00 22.00 72.00 451.00 0.00 
tempTotal 70'071 375.70 294.91 -48.38 98.07 573.72 1'499.52 0.00 
avgT 70'071 7.99 3.76 -16.13 6.70 9.29 25.80 0.00 
sdT 70'071 7.62 2.25 0.00 6.93 7.81 27.79 0.00 
totalPerc 70'071 3'684.66 3'850.68 27.52 1'033.74 5'211.47 43'468.28 0.00 
avgPerc 70'071 80.86 33.30 13.76 62.74 88.85 325.26 0.00 
sdPerc 70'071 49.62 23.84 0.00 34.98 58.44 386.30 0.00 
frostdays 70'071 265.33 257.56 0.00 88.00 381.00 2'602.00 0.00 
avgFD 70'071 3.68 1.82 0.00 2.89 5.10 6.42 0.00 
sdFD 70'071 46.34 33.54 0.00 0.00 73.13 95.19 0.00 
icedays 70'071 126.41 116.85 0.00 49.00 183.00 1'267.00 0.00 
avgID 70'071 1.78 0.91 0.00 1.33 2.43 3.49 0.00 
sdID 70'071 23.45 17.83 0.00 0.00 37.31 57.50 0.00 
heatdays 70'071 15.86 16.69 0.00 3.00 26.00 57.00 0.00 
avgHD 70'071 0.48 0.72 0.00 0.04 0.62 3.80 0.00 
sdHD 70'071 12.22 15.36 0.00 0.00 15.81 56.49 0.00 
summerdays 70'071 26.15 22.48 0.00 8.00 42.00 92.00 0.00 
avgSD 70'071 0.79 1.04 0.00 0.10 1.00 5.75 0.00 



 

 63 

sdSD 70'071 20.05 21.23 0.00 0.00 33.13 88.71 0.00 
tropnights 70'071 24.96 19.02 0.00 6.00 48.00 57.00 0.00 
avgTN 70'071 0.76 0.93 0.00 0.09 0.98 3.60 0.00 
sdTN 70'071 19.00 18.40 0.00 0.00 31.63 56.62 0.00 
totalDirect 70'071 6'730'141.00 5'678'669.00 0.00 2'995'509.00 9'159'654.00 65'229'748.00 0.00 
avgDirect 70'071 124'470.30 25'251.19 0.00 113'251.00 138'709.80 198'606.90 0.00 
sdDirect 70'071 122'875.20 70'991.99 0.00 75'094.55 201'322.90 321'064.10 0.00 
totalDiffuse 70'071 1'056'081.00 861'396.50 0.00 439'660.80 1'469'904.00 9'802'992.00 0.00 
avgDiffuse 70'071 14'492.21 5'648.15 0.00 11'052.54 19'545.49 34'258.63 0.00 
sdDiffuse 70'071 19'907.55 4'133.23 0.00 18'430.56 22'094.77 34'258.63 0.00 
totalDurationDirect 70'071 13'348.32 11'265.78 0.00 5'452.52 18'568.26 131'745.60 0.00 
avgDurationDirect 70'071 251.98 69.13 0.00 216.84 297.99 520.55 0.00 
sdDurationDirect 70'071 150.08 98.59 0.00 75.42 233.54 520.55 0.00 
slope 70'071 0.51 4.59 -20.00 -1.86 2.52 19.99 0.00 
aspect 70'071 187.15 104.42 0.00 96.96 278.19 359.99 0.00 
tri 70'071 0.49 0.14 0.00 0.40 0.58 0.95 0.00 
Zmid 70'071 463.50 129.31 255.84 401.87 485.12 1'809.90 0.00 
distanceAgrar 70'071 349.19 1'170.35 1.50 88.90 298.50 19'178.99 0.00 
distanceConstruction 70'071 839.72 629.15 8.75 378.60 1'136.98 3'898.10 0.00 
Intersection 70'071 85.95 92.43 0.31 28.38 109.16 1'109.07 0.00 
Spuren 70'071 1.87 0.46 0.00 2.00 2.00 2.00 0.00 
Steigung 70'071 0.02 2.48 -10.00 -0.90 1.10 10.00 0.00 
DTV 70'071 7'019.82 6'601.98 7.00 2'560.00 10'000.00 112'738.00 0.00 
nDay 70'071 360.49 364.91 0.00 127.29 497.20 6'464.82 0.00 
nEvening 70'071 360.49 364.91 0.00 127.29 497.20 6'464.82 0.00 
nNight 70'071 60.16 64.07 0.00 19.16 84.21 1'162.61 0.00 
VMaxPv 70'071 56.96 19.66 0.00 50.00 80.00 120.00 0.00 
DTV_LKW 70'071 157.93 270.28 0.00 18.00 175.20 5'430.00 0.00 
DTV_LKW_Ni 70'071 10.85 19.63 0.00 1.00 12.00 419.00 0.00 
DTV_total 70'071 11'513'352.00 17'104'287.00 2'520.00 2'460'000.00 14'173'650.00 261'990'000.00 0.00 
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A.2.2 LNA categorical variables 
 

Name N Cardinality Mode Mode Freq. Mode %  % Miss 
Canton 70'071 18 Aargau        28'433  41.48 0.00 

Pavtype 70'071 5 8mmLV        33'787 48.21 0.00 

Busstop 70'071 2 "No"        67'666  1.30 0.00 
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A.2.3 CG continuous variables 
 

Name N Mean StDev Min Pctl 25 Pctl 75 Max % Miss 
PavYear 170'083   1'996.15           21.92 1'969.00   1'989.00   2'004.00   2'017.00 0.00 
Xmid 170'083   655'517.60   17'901.28   580'997.20   645'979.60   663'749.50   788'673.50 0.00 
Ymid 170'083   249'163.10   15'853.23   113'942.70   239'921.40   260'594.30   274'028.80 0.00 
STNL1 170'083 1.08 1.34 -9.19 0.25 1.94 18.69 0.00 
vDriven 170'083 50.03 1.45 45.00 49.34 50.84 55.00 0.00 
vecAngle 170'083         188.29         104.50             0.03         100.72         284.09   360.00 0.00 
deltaAngle 170'083             0.04           29.05       -359.86           -0.86             0.76   359.97 0.00 
nMonths 170'083         205.45         116.85             3.00         113.00         294.00   487.00 0.00 
tempTotal 170'083         707.25         364.84         -19.08         417.99   1'023.46   1'561.26 0.00 
avgT 170'083             4.28             3.30         -15.29             2.44             5.96   23.36 0.00 
sdT 170'083             9.11             2.08 0.00             7.85           10.03   26.48 0.00 
totalPerc 170'083   18'287.07   11'029.18           46.10   9'450.85   26'883.75   49'152.13 0.00 
avgPerc 170'083           90.96 18.69 0-00 37.88 55.15 325.46 0.00 
sdPerc 170'083           47.13           18.66 0.00           37.80           55.16   325.46 0.00 
frostdays 170'083   1'183.32         676.35 0.00         647.00   1'714.00   2'843.00 0.00 
avgFD 170'083             5.35             1.04 0.00             5.37             5.75   6.56 0.00 
sdFD 170'083           60.71           24.75 0.00           67.20           71.60   95.00 0.00 
icedays 170'083         523.29         310.64 0.00         282.00         761.00   1'546.00 0.00 
avgID 170'083             2.35             0.53 0.00             2.19             2.59   4.46 0.00 
sdID 170'083           29.01           12.37 0.00           28.90           35.70   64.00 0.00 
heatdays 170'083             9.48           11.66 0.00             3.00           10.00   57.00 0.00 
avgHD 170'083             0.09             0.23 0.00             0.01             0.10   4.00 0.00 
sdHD 170'083             9.16           11.43 0.00             3.00             9.90   56.00 0.00 
summerdays 170'083           16.93           13.33 0.00             7.00           26.00   92.00 0.00 
avgSD 170'083             0.16             0.34 0.00             0.03             0.10   5.00 0.00 
sdSD 170'083           16.33           13.04 0.00             7.00           24.90   91.00 0.00 
tropnights 170'083           15.79           12.19 0.00             6.00           24.00   57.00 0.00 
avgTN 170'083             0.15             0.32 0.00             0.03             0.10   4.00 0.00 
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sdTN 170'083           15.21           11.95 0.00             6.00           23.90   56.00 0.00 
totalDirect 170'083   27'407'832.00   15'973'151.00 0.00   14'581'537.00   39'640'130.00   73'805'243.00 0.00 
avgDirect 170'083   132'595.50   15'325.60 0.00   130'952.40   140'316.50   191'732.90 0.00 
sdDirect 170'083   78'822.02   11'565.67 0.00   77'005.23   81'722.59   314'205.90 0.00 
totalDiffuse 170'083   4'093'281.00   2'470'746.00 0.00   2'100'729.00   5'983'530.00   10'929'949.00 0.00 
avgDiffuse 170'083   10'852.91   2'308.39 0.00   10'366.12   12'172.79   31'459.83 0.00 
sdDiffuse 170'083   20'064.79   4'047.56 0.00   19'054.40   22'295.49   36'986.61 0.00 
totalDurationDirect 170'083   53'235.18   34'214.73 0.00   25'773.76   77'877.59   163'142.60 0.00 
avgDurationDirect 170'083         259.73           72.86 0.00         224.30         314.01   516.66 0.00 
sdDurationDirect 170'083           83.57           31.36 0.00           67.71           95.20   516.66 0.00 
slope 170'083 0.69 5.43 -20.00           -2.33 3.29 20.00 0.00 
aspect 170'083         175.21         151.31 0.00           77.77         271.61   359.98 0.00 
tri 170'083 0.49 0.13 0.00             0.42             0.57   0.94 0.00 
Zmid 170'083         438.22          155.69  0.00         380.81          477.68   1'765.60 0.00 
distanceAgrar 170'083         266.00   1'145.26             1.74           59.00         214.00   18'297.03 0.00 
distanceConstruction 170'083         951.79         642.70             4.72         448.93   1'331.93   3'726.05 0.00 
Intersection 170'083         173.62         198.84             0.18           39.86         231.27   1'369.84 0.00 
Spuren 170'083             1.88             0.45 0.00             2.00             2.00   2.00 0.00 
Steigung 170'083             0.09             3.24         -10.00           -1.20             1.40   10.00 0.00 
DTV 170'083   6'841.24   5'801.98             1.00   2'550   9'850   65'623 0.00 
nDay 170'083         334.12         301.07 0.00         112.65         502.55   7'038.63 0.00 
nEvening 170'083         334.12         301.07 0.00         112.65         502.55   7'038.63 0.00 
nNight 170'083           55.60           53.22 0.00           17.26           85.36   1'224.11 0.00 
VMaxPv 170'083           66.12           20.91 0.00           50.00           80.00   120.00 0.00 
DTV_LKW 170'083         180.45         256.94 0.00           17.00         263.00   5'751.00 0.00 
DTV_LKW_Ni 170'083           12.30           18.28 0.00             1.00           18.00   455.00 0.00 
DTV_total 170'083   42'343'194.00   48'845'564.00   5'160.00   10'910'340.00   56'151'000.00   529'577'610.00 0.00 
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A.2.4 CG categorical variables 
 

Name N Cardinality Mode Mode Freq. Mode %  % Miss 
Canton 170'083 15 Aargau            162'506  95.54 0.00 

Pavtype 170'083 6 AC              75'726  44.52 0.00 

Busstop 170'083 2 "No"            168'906  99.99 0.00 
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A.3 Spatial distribution 

 

A.3.1 LNA spatial distribution 
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A.3.2 CG spatial distribution 
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A.4 Variable selection results 

 

A.4.1 LNA variable selection 
 
A.4.1.1 Stepwise forward selection 
 

Name MSE MSE improvement 
8mmLV 6.118 ... 
nMonths 4.320 1.798 
4mmHV 4.003 0.317 
4mmMV 3.793 0.210 
sdDirect 3.605 0.188 
8mmMV 3.507 0.098 
DTV_LKW 3.222 0.284 
avgFD 3.156 0.067 
ELBOWPOINT: sdHD 3.067 0.088 
avgDiffuse 3.036 0.032 
nNight 3.058 -0.022 
sdSD 3.037 0.021 
deltaAngle 3.033 0.004 
avgDurationDirect 3.026 0.006 
aspect 3.024 0.002 
Busstop 3.024 0.000 
slope 3.025 -0.001 
vecAngle 3.027 -0.002 
sdDurationDirect 3.047 -0.020 
tri 3.068 -0.021 
nDay 3.084 -0.016 
nEvening 3.083 0.000 
DTV 3.083 0.000 
avgSD 3.096 -0.013 
VMaxSv 3.061 0.035 
... ... ... 
all variables 4.992 ... 
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A.4.1.2 Submodel comparison 
 

Set of Variables 
MAE 
training  

MSE 
training 

MAE 
test 

MSE 
test 

MAE 
difference 

MSE 
difference 

nMonths, 4mmMV, 4mmHV, 8mmLV, 
 8mmMV, sdDirect, DTV_LKW, avgFD, 
 avgDiffuse 1.2884 2.8987 1.3041 3.1099 -0.0157 -0.2112 
nMonths, 4mmMV, 4mmHV, 8mmLV,  
8mmMV, sdDirect, DTV_LKW, avgFD, 
sdHD 1.2813 2.8798 1.3044 3.1060 -0.0231 -0.2262 
nMonths, 4mmMV, 4mmHV, 8mmLV,  
8mmMV, sdDirect, DTV_LKW, avgFD,  
sdHD, avgDiffuse 1.2755 2.8525 1.3023 3.1059 -0.0268 -0.2535 
nMonths, 4mmMV, 4mmHV, 8mmLV,  
8mmMV, sdDirect, DTV_LKW, avgFD, 
sdHD, nNight 1.2661 2.8243 1.2997 3.0852 -0.0336 -0.2610 
nMonths, 4mmLV, 4mmMV, 4mmHV,  
8mmLV, 8mmMV, DTV_LKW, sdDirect, 
avgFD, avgHD, DTV_LKW_Ni 1.2579 2.8015 1.2935 3.0778 -0.0356 -0.2764 
nMonths, 4mmMV, 4mmHV, 8mmLV, 
8mmMV, sdDirect, DTV_LKW 
  1.2994 2.9580 1.3330 3.2413 -0.0336 -0.2833 
nMonths, 4mmLV, 4mmMV, 4mmHV,  
8mmLV, 8mmMV, DTV_LKW, sdDirect, 
 avgFD, avgHD 1.2714 2.8435 1.3088 3.1345 -0.0374 -0.2910 
nMonths, 4mmLV, 4mmMV, 4mmHV,  
8mmLV, 8mmMV, avgDirect, DTV_LKW_Ni,  
avgTN, DTV_LKW, sdDiffuse 1.2613 2.8449 1.3214 3.1817 -0.0601 -0.3368 
nMonths, 4mmLV, 4mmMV, 4mmHV,  
8mmLV, 8mmMV, avgDirect, DTV_LKW_Ni,  
avgTN, DTV_LKW, sdDiffuse 1.2613 2.8449 1.3214 3.1817 -0.0601 -0.3368 

 
A.4.1.3 5-fold cross-validation comparison 
 

Set of Variables 
MAE 
train.  

MSE 
train. 

MAE 
test 

MSE 
test 

R² 
train. 

R²  
test 

MAE 
diff. 

MSE 
diff. 

R²  
diff. 

nMonths, 4mmMV, 4mmHV, 
8mmLV,8mmMV, sdDirect, 
DTV_LKW, avgFD,avgDiffuse 1.29 2.92 1.36 3.38 0.67 0.62 -0.07 -0.46 -0.05 
nMonths, 4mmMV, 4mmHV, 8mmLV, 
8mmMV, sdDirect, DTV_LKW, 
avgFD,sdHD 1.28 2.92 1.35 3.31 0.67 0.63 -0.07 -0.39 -0.04 

 
  



 

 72 

 
A.4.2 CG variable selection 
 
A.4.2.1 Stepwise forward selection 
 

Name MSE MSE improvement 

nDay 1.382  
VMaxSv 1.351 0.031 
avgDiffuse 1.319 0.033 
DSAK 1.302 0.017 
avgDirect 1.294 0.008 
avgTN 1.289 0.005 
ELBOWPOINT: sdT 1.268 0.021 
avgHD 1.264 0.004 
SMA 1.262 0.002 
DTV 1.260 0.001 
vecAngle 1.259 0.001 
slope 1.259 0.000 
Busstop 1.259 0.000 
nAbend 1.259 0.000 
deltaAngle 1.259 0.000 
avgSD 1.259 0.000 
MA 1.261 -0.002 
aspect 1.263 -0.002 
avgDurationDirect 1.267 -0.003 
sdHD 1.271 -0.004 
Beton 1.276 -0.005 
sdFD 1.275 0.001 
sdTN 1.272 0.004 
tri 1.272 0.000 
AC 1.278 -0.006 
... ... ... 
all variables 1.885 … 
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A.4.2.2 Submodel comparison 
 

Set of Variables 
MAE 
training  

MSE 
training 

MAE 
test 

MSE 
test 

MAE 
difference 

MSE 
difference 

nTag, VMaxSv, avgDiffuse, DSAK, avgDirect,  
avgTN, sdT, avgHD, SMA, DTV, vecAngle,  
slope, Busstop 0.8809 1.4236 0.8458 1.2586 0.0351 0.1650 
nTag, VMaxSv, avgDiffuse, DSAK, avgDirect,  
avgTN, sdT, avgHD, SMA, DTV, vecAngle,  
slope 0.8809 1.4236 0.8458 1.2587 0.0351 0.1649 

nTag, VMaxSv, avgDiffuse, DSAK, avgDirect,  
avgTN, sdT, avgHD, SMA, DTV, vecAngle 0.8813 1.4252 0.8459 1.2590 0.0354 0.1662 

nTag, VMaxSv, avgDiffuse, DSAK, avgDirect,  
avgTN, sdT, avgHD, SMA, DTV 0.8819 1.4263 0.8467 1.2602 0.0352 0.1661 

nTag, VMaxSv, avgDiffuse, DSAK, avgDirect,  
avgTN, sdT, avgHD, SMA 0.8846 1.4324 0.8483 1.2615 0.0363 0.1709 

nTag, VMaxSv, avgDiffuse, DSAK, avgDirect,  
avgTN, sdT, avgHD 0.8864 1.4348 0.8499 1.2639 0.0364 0.1709 

nTag, VMaxSv, avgDiffuse, DSAK, avgDirect,  
avgTN, sdT 0.8887 1.4385 0.8511 1.2682 0.0376 0.1702 

nTag, VMaxSv, avgDiffuse, DSAK, avgDirect,  
avgTN 0.8968 1.4696 0.8561 1.2890 0.0407 0.1805 

nTag, VMaxSv, avgDiffuse, DSAK, avgDirect 0.9177 1.5789 0.8545 1.2937 0.0632 0.2851 

nTag, VMaxSv, avgDiffuse, DSAK 0.9172 1.5914 0.8562 1.3020 0.0610 0.2894 

nTag, VMaxSv, avgDiffuse 0.9405 1.6338 0.8693 1.3185 0.0712 0.3153 

nTag, VMaxSv 0.9511 1.6529 0.8823 1.3515 0.0689 0.3014 

nTag 0.9719 1.7236 0.8927 1.3822 0.0792 0.3414 
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A.5 Linear model tree analysis 

 

A.5.1 LNA 
 
A.5.1.1 k-Means clusters 
 
Variable -- - = + ++ 

avgFD 0.047 2.505 3.487 4.445 5.502 
avgFD r.s. 0.151 0.110 0.193 0.271 0.274 
DTV_LKW 64.697 454.574 1066.387 2491.577 5430.000 
DTV_LKW r.s. 0.811 0.147 0.039 0.002 0.000 
nMonths 19.769 53.786 95.811 244.754 376.114 
nMonths r.s. 0.402 0.348 0.240 0.005 0.005 
predError -3.084 -1.203 0.169 1.530 4.008 
predError r.s. 0.102 0.260 0.378 0.228 0.052 
sdDirecht 19464.750 77153.323 160296.447 209469.182 243780.044 
sdDirecht r.s. 0.032 0.625 0.054 0.139 0.149 
sdHeatdays 1.916 12.497 25.534 34.727 50.851 
sdHeatdays r.s. 0.563 0.198 0.104 0.050 0.085 

 
A.5.1.2 Subgroup discovery models 
 
ClusterPred -- WRAcc 

Kanton=Geneva --> ClusterPred = --=true   0.012 
Kanton=Geneva PavType2=Nanosoft4 --> ClusterPred = --=true  0.012 
ClusterNMonths=--  RegressionLines=TLL --> ClusterPred = --=true   0.010 
RegressionLines=TLL --> ClusterPred = --=true   0.010 
PavType2=Nanosoft4 --> ClusterPred = --=true   0.010 

 
ClusterPred - WRAcc 

ClusterDTV_LKW=--  ClusterNMonths=-- --> ClusterPred = =true  0.018 
ClusterNMonths=-- --> ClusterPred = =true 0.016 
ClusterNMonths=-- ClusterSDDirect=- --> ClusterPred = =true 0.013 
ClusterDTV_LKW=-- ClusterNMonths=-- ClusterSDDirect=- --> ClusterPred = =true 0.013 
ClusterDTV_LKW=--  ClusterNMonths=--  ClusterSDHD=-- --> ClusterPred = =true 0.010 
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ClusterPred = WRAcc 

PavType2=ACMR8  ClusterSDDirect=- --> ClusterPred = ==true  [Pos=11916.0 0.032 
PavType2=ACMR8 --> ClusterPred = ==true  [Pos=12358.0 0.031 
ClusterNMonths== --> ClusterPred = ==true  [Pos=7796.0 0.031 
PavType2=ACMR8  ClusterAVGFD=++ --> ClusterPred = ==true  [Pos=6994.0 0.030 
PavType2=ACMR8 ClusterAVGFD=++  ClusterSDDirect=- --> ClusterPred = ==true  0.030 

 
ClusterPred + WRAcc 

ClusterNMonths== RegressionLines=TRRL --> ClusterPred = +=true  0.007 
ClusterDTV_LKW=-- ClusterNMonths==  RegressionLines=TRRL --> ClusterPred = +=true 0.007 
RegressionLines=TRRL --> ClusterPred = +=true 0.007 
ClusterDTV_LKW=-- RegressionLines=TRRL --> ClusterPred = +=true 0.007 
PavType2=ACMR8  ClusterSDDirect=- --> ClusterPred = +=true 0.006 

 
ClusterPred ++ WRAcc 

ClusterNMonths=-- --> ClusterPred = ++=true  0.010 
ClusterAVGFD=--  ClusterSDHD=-- --> ClusterPred = ++=true 0.010 
ClusterAVGFD=-- --> ClusterPred = ++=true 0.009 
ClusterNMonths=--  ClusterSDHD=-- --> ClusterPred = ++=true 0.009 
ClusterAVGFD=--  ClusterNMonths=--  ClusterSDHD=-- --> ClusterPred = ++=true 0.009 
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A.5.1.3 Coefficients of LNA ridge-regressions 
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A.5.1.4 Boxplots of LNA variables 
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A.5.2 Heat hyptohesis 
 
A.5.2.1 warm, high HV OLS regression model 
 
Coefficients Estimate Std. Error t-value Pr(>|t|) VIF 

(Intercept) -2.934 0.126 -23.228 0.000  
avgFD -0.369 0.246 -1.497 0.135 5.327 
nMonths* 1.339 0.249 5.389 0.000 5.199 
DTV_LKW* 0.440 0.114 3.852 0.000 1.072 
sdDirect* -0.982 0.117 -8.400 0.000 1.126 
SDA4-12* -0.989 0.477 -2.076 0.038 1.122 
SDA4-16* -1.127 0.417 -2.703 0.007 1.049 
SDA8-8* 1.635 0.756 2.164 0.031 1.021 
SDA8-12* 1.554 0.517 3.007 0.003 1.029 

 
R2 0.323 
Moran’s I 0.319* 

* P < 0.05 
 
A.5.2.2 warm, high Spatial Error Model 
 
Coefficients Estimate Std. Error z-value Pr(>|z|) 

(Intercept) -2.854 0.233 -12.238 0.000 
avgFD -0.128 0.219 -0.584 0.559 
nMonths* 0.974 0.222 4.378 0.000 
DTV_LKW* 0.333 0.112 2.973 0.003 
sdDirect* -0.724 0.176 -4.114 0.000 
SDA4-12* -1.822 0.399 -4.568 0.000 
SDA4-16* -1.348 0.361 -3.731 0.000 
SDA8-8 0.778 0.619 1.257 0.209 
SDA8-12* 0.990 0.438 2.262 0.024 

 
R2 0.513 
Moran’s I 0.080* 

* P < 0.05 
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A.5.2.3 low HV OLS regression model 
 
Coefficients Estimate Std. Error t-value Pr(>|t|) VIF 

(Intercept) -2.493 0.104 -24.092 0.000  
avgFD* 0.977 0.167 5.860 0.000 3.018 
nMonths* 0.487 0.123 3.956 0.000 1.545 
DTV_LKW* 0.338 0.105 3.214 0.001 1.119 
avgHD 0.230 0.147 1.566 0.118 2.170 
sdDirect* -1.051 0.106 -9.925 0.000 1.208 
SDA4-16* -1.017 0.456 -2.231 0.026 1.035 
SDA8-8* 3.099 0.841 3.687 0.000 1.016 
SDA8-16 4.178 2.200 1.899 0.058 1.005 

 
R2 0.444 
Moran’s I 0.337* 

* P < 0.05 
 
A.5.2.4 low HV Spatial Error Model 
 
Coefficients Estimate Std. Error z-value Pr(>|z|) 

(Intercept) -2.478 0.210 -11.799 0.000 
avgFD* 1.080 0.155 6.987 0.000 
nMonths* 0.291 0.101 2.885 0.004 
DTV_LKW* 0.288 0.093 3.092 0.002 
avgHD 0.047 0.136 0.350 0.726 
sdDirect* -0.537 0.154 -3.489 0.000 
SDA4-16* -1.524 0.397 -3.841 0.000 
SDA8-8* 1.779 0.721 2.467 0.014 
SDA8-16* 4.492 1.809 2.484 0.013 

 
R2 0.593 
Moran’s I 0.073* 

* P < 0.05 
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