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Abstract

Understanding the spatio-temporal behaviour of snow cover enables informed decisions concerning
water resource management, risk assessment and hydroelectric power production. Information on
snow cover plays an important role in weather and climate research. In this study, we work toward
improving the identification of wet snow areas and the retrieval of snow depth using Local Resolution
Weighting (LRW) radar composites. Created from Sentinel-1A and -1B Radiometrically Terrain
Corrected (RTC) backscatter products, they offer high spatial and temporal resolution. For a test
site in the Bernese Alps, the composites acquired within periods ranging from 36 hours to six days
are used to generate wet snow maps. The homogeneity of such LRW composites is examined by
assessing slope dependency of the time series of snow covered image samples. By including optical
imagery featuring snow extent and a temperature data set, we test new approaches for generating
an optimal dry winter reference image for the use in Synthetic Aperture Radar (SAR) wet snow
detection. Benefits as well as limitations of current LRW composites are discussed, when validating
their use for wet snow classification in mountainous terrain. By applying the method by Lievens
et al. (2019), we assess the method’s feasibility to detect snow depths on high spatial (1000 to
30 m) and temporal (6 days) resolution. Validation was performed by using external reference
information (liquid water content maps for wet snow retrieval and snow water equivalent for snow
depth retrieval). Results indicated the usage of LRW composites and γ◦ convention to offer major
improvements for cryospheric applications. Further research could assess the impact of signal to
noise ratio at even higher resolution composites (10 m) and strive for the physical explanation
between snow depth and Sentinel-1 backscatter.
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Glossary

Acronyms

CLC CORINE Land Cover
DEM Digital Elevation Model
EoC Error of Commission
EoO Error of Omission
EPSG European Petroleum Service Group
GSD Ground Sampling Distance
GTC Geometrical Terrain Correction
IMIS Intercantonal Measurement and Information System
IW Interferometric Wide swath mode
JIM JULES Investigation Model
LiDAR Light Detection And Ranging
LRW Local Resolution Weighting
LWC Liquid Water Content
MODIS Moderate Resolution Imaging Spectroradiometer
OA Overall Accuracy
RADAR Radio Detection And Ranging
RI Reference Image
RTC Radiometric Terrain Correction
S1 Sentinel-1
SD Snow Depth
SAR Synthetic Aperture RADAR
SC Snow Cover
SWE Snow Water Equivalent
TCD Tree Cover Density
TmaxD Daily maximum Temperature
VH Cross-polarization mode: Vertically polarized signal transmitted, Hori-

zontally polarized received
VH/VV Cross-polarization ratio: VH - VV [dB] polarization difference
VV Co-polarization mode: Vertically polarized signal transmitted, and Ver-

tically polarized received
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Organizations

Copernicus Europe’s eyes on Earth: Land monitoring service by the European Union
ESA European Space Agency
ExoLabs Earth observation solutions
GLAMOS Swiss glacier inventory
NASA National Aeronautics and Space Administration
MeteoSwiss Swiss federal office of meteorology and climatology
SLF WSL institute for snow and avalanche research
swisstopo Swiss federal office of topography
WSL Swiss federal institute for forest, snow and landscape research

Projections and Geometries

The projection conventions summarized here are described in chapter 2.2, illustrated in Fig. 2.3
and defined following Small (2011).

β RADAR backscatter coefficient
β◦ RADAR brightness, backscatter with reference area defined in the slant range plane
σ◦

E Backscatter with reference area defined tangent to a local ellipsoid based ground model
γ◦E Backscatter with ellipsoid-based reference area defined perpendicular to the line of sight
γ◦T Terrain-flattened backscatter with reference area defined perpendicular to the line of sight:

Radiometric terrain (RTC) corrected backscatter
γ◦c Composite backscatter with reference area defined perpendicular to the line of sight:

Weighted sum of contributing RTC backscatter values
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1 Introduction

1.1 Motivation

Understanding the spatio-temporal behaviour of snow cover can enable informed decisions concern-
ing water resource management, risk assessment and hydroelectric power production (Wendleder
et al., 2018; Nagler et al., 2018; Dietz et al., 2012). Snow’s high albedo strongly influences the
Earth’s energy balance. Multiple studies have indicated an indirect impact of snow cover on the
atmospheric circulation (Seager et al., 2010). Observing changes in snow cover over time is there-
fore crucial for climate change mitigation strategies (Lyu et al., 2017; Wendleder et al., 2018; Dietz
et al., 2012) and promises to enable advancements in numerical weather prediction. Knowledge
of the spatial distribution of snow depth is of major relevance for avalanche risk assessment and
accurate run-off modelling.

Synthetic Aperture Radar (SAR) has been claimed to offer a promising approach to monitor large
scale cryospheric environments (Truckenbrodt et al., 2019; Arslan, 2006). It has already been
successfully applied (e.g. Nagler et al., 2018; Jäger, 2016; Small, 2012). Being independent of
daylight and not restricted by weather conditions, SAR also offers high temporal resolution. In
applications of radar backscatter (e.g. forest observation), wet snow cover can lead to spurious
signals due to its strong dielectric characteristic (Rüetschi et al., 2019). Accurate knowledge of
snow extent, snow melt, occurrence and depth allows one to mitigate such artifacts.

1.2 Current state of research

Pure, fresh snow typically reflects a high proportion of light in the visible (VIS) spectrum, resulting
in its albedo reaching up to 90% (Dietz et al., 2012). Reflectance of snow decreases significantly
within the infrared frequency spectrum (Singh et al., 2010). This contrast allows to distinguish snow
from other land cover classes using optical sensors (Lillesand et al., 2015). However, space-borne
optical snow detection approaches are restricted to cloud free conditions (Wendleder et al., 2018).

Microwave based remote sensing allows to gather information concerning surface roughness and
dielectric properties of a surface also during cloudy conditions (Tsai et al., 2019). Shallow and dry
snowpacks are transparent at microwave frequencies, for the wavelength is far larger than the size
of snow crystals and hence the attenuation length of snowpacks is long (Marin et al., 2020; Rees,
2006). The presence of liquid water within the snowpack, however, changes the dielectric property
of the snowpack so that the microwave signal is primarily attenuated (Largeron et al., 2020).

Such SAR based wet snow detection is performed by calculating a ratio between the corresponding
backscatter image and a reference image (Tsai et al., 2019; Piesbergen et al., 1995; Rott et al.,
1995; Fortin et al., 1995; Bernier et al., 1992). This reference image features only dry or no snow
coverage. Using a simple thresholding approach on the difference image, wet snow can be detected.

Recent studies introduced either a synergy between SAR and passive microwave images (e.g. Zhou
et al. (2017)) or a combination of SAR and optical images (e.g. Nagler et al. (2018) and Wendleder
et al. (2018)) to map wet snow cover.
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Optical data sets are used both for the extraction and creation of auxiliary data sets to minimize
SAR backscatter misclassifications (e.g. land cover maps; Wendleder et al. (2018)) as well as to
create a reference image for the validation of SAR wet snow products (Jäger, 2016).

Hitherto, no standard approach for a reference image creation has been established. As applied in
earlier studies, the reference images used e.g. in Wendleder et al. (2018) or Nagler et al. (2018)
feature the study site in snow-free or dry snow cover conditions. The radar reference image is
often either a single acquisition image or an average of multiple images acquired during favourable
conditions. These studies are prone to stochastic corruption within the validation process due to
change in-between acquisition times. An approach to minimize such corruption is essential to enable
a comparison of the performance of various extraction methods.

Diverse studies strove to retrieve snow depth using SAR based techniques with moderately success-
ful results (Shi et al., 2000; Rutter et al., 2019; Guneriussen, 1997). Also, approaches based on
interferometry were attempted (Varade et al., 2020; H. Li et al., 2017). Using a synergy between
cross-polarization Sentinel-1A and -1B backscatter products, as well as optical snow cover extent
information, Lievens et al. (2019) published estimates of dry snow depth variability. Their change
detection approach was based on an increase of the probability of depolarization on snow crystals
compared to ground backscatter. This approach was further developed in Lievens et al. (2021).
However, this paper is at present online open for reviewing but was disclosed at a too short no-
tice to allow implementation of changes in the applied algorithms in this project or to follow the
suggestions of parameter improvements.

SAR images over a single region are often acquired in multiple geometries. Data acquired from
different orbits/flight-tracks will be referred to as multi-track. Small (2011) introduced a robust
process of Radiometric Terrain Correction (RTC). The resulting image is based on “terrain-flattened”
gamma-nought (γ◦T ) backscatter and corrected for geometry as well as for radiometry using a Digital
Elevation Model (DEM). This use of a DEM stands in contrast to conventional ellipsoid correction.
Multi-track composites that include the usage of ascending and descending tracks even over moun-
tainous terrain were developed in Small (2012) and optimized in Small et al. (2021). The study
of Howell et al. (2019) indicated γ◦T backscatter to be the most robust approach for the detection
of wet snow and melt onset. Using this multi-track approach, the orbital revisit time enabled the
creation of higher temporal resolution data sets than single-track approaches, used in previous SAR
wet snow detection, were able to generate (e.g. used in Nagler et al. (2018)). It has already been
successfully used in studies featuring spatial resolution of 400 m and 90 m, respectively (Small et al.,
2021; Vögtli et al., 2018).

1.3 Study aim

In this study we work towards improving the identification of wet snow areas and the retrieval
of snow depth using multi-track composites featuring temporal resolution down to a 36 h revisit
time. This was made possible with standard Sentinel-1A and -1B Radiometrically Terrain Corrected
(RTC) backscatter products (Small, 2012). Using a combination of high resolution optical and radar
data sets, we test approaches for the generation of an optimal dry winter radar reference image used
in SAR wet snow detection. We examine the performance of the current LRW algorithm in relation
to land cover classes and elevation by analyzing slope dependent time series. We conduct state-of-
the-art wet snow detection on diverse spatial resolutions and polarization states and assess statistical
performance. We examine the applicability of the method by Lievens et al. (2019) to a regional scale
test site (Bernese Alps). Thereby, we assess its feasibility for an accurate snow depth classifications
using correlation and causation validation approaches. Also, we conduct snow depth extraction not
only on up to 100 m GSD, as in the currently reviewed Lievens et al. (2021), but up to 30 m.
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1.4 Research questions and hypotheses

Within this study, we focus on the following research questions and corresponding hypotheses:

Research Question 1:

What opportunities offer multi-track backscatter composites for wet snow mapping in alpine
areas?

Hypotheses:

1.1 LRW composites are homogeneous: Variance over time of the S1 LRW image between East
and West facing slopes are minimal and found variances can be attributed to acquisition
timing.

1.2 VV-polarized backscatter information achieves a more similar trend across slope directions
and offers more homogeneous composites than VH-polarized data.

1.3 Elevation and land coverage (especially vegetation) influence the resulting time series and
the reliability of this slope dependency approach for LRW homogeneity testing.

Research Question 2:

Which approach for the generation of a dry winter reference image achieves highest accuracies in
wet snow detection when compared to model based LWC maps?

Hypothesis:

2. Creating a median composite image over the winter months relevantly improves wet snow
mapping compared to a single composite or a median of three based approach, when com-
pared to liquid water content maps.

Research Question 3:

Are multi-track backscatter composites sensitive to snow depth when applying the method of
Lievens et al. (2019)?

Hypotheses:

3.1 By applying the method of Lievens et al. (2019) a correlation between snow depth and the
VH/VV-backscatter difference is achieved.

3.2 By applying the Granger test a forecasting chain between IMIS snow depth measurements,
snow depth retrieved from S1 and snow depth approximated from a snow water equivalent
model is found.

1.5 Outline

In the next chapter, the study site is presented and available data sets are described. Chapter 3
then explains the applied methodologies, before the results are presented in chapter 4. Results are
discussed in chapter 5 and possible improvements are propounded. After an outlook into the future
of remote sensing of the cryosphere, the conclusions are drawn in chapter 6.
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2 Data

This chapter outlines the data sets used throughout the thesis. Therefore, an introduction to the
test site is provided. First, the origin of the used SAR images is described and the process of LRW
generation explained. Then, optical imagery is delineated, followed by an outline of the validation
data sets provided by SLF and MeteoSwiss. A description of additional used information such as
land cover data, digital elevation model and temperature, is provided.

2.1 Study area

2.1.1 Bernese Alps

The study area of this thesis is located in the Bernese Alps in Switzerland (see Fig. 2.1). The area
covers 3’042 km2 and extends from 5’102’000 to 5’180’000 m North and from 361’000 to 420’000 m
East in UTM zone 32 coordinates. Thun is the largest city within the region. The area’s terrain
is dominated by mountains. The elevation ranges between 465 and 4509 m.a.s.l. with mount
Weisshorn being the highest mountain present.

Figure 2.1: Map and inset map featuring the main study (yellow) area in the Bernese Alps and Sentinel-1
relative orbits 66 (orange) and 88 (green). Dots represent locations of IMIS stations. The nine labelled
IMIS locations are used for snow depth validation. A detailed view of the location of these nine stations is
provided in Fig. 5.1.
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The test site includes Lake Thun and the western part of Lake Brienz. Higher elevated areas are
dominated by bare rock and around 4 % of the entire test site is covered by glaciers (calculated
using GLAMOS). Below the tree line, however, CORINE data (European Environment Agency,
2018a) suggests coniferous forest to be the most common land cover class. Pastures dominate in
the valleys, with the exception of settlements near the two lakes.

Typical mean values of the daily maximum temperature in the “Bernese Alps” (location: 46.42 ◦N
7.75 ◦E, 2447 m.a.s.l.) vary between -4 and +13 ◦C, while mean daily temperature minima vary
between -11 and +5 ◦C over the course of the seasons (see Fig. 2.2; MeteoBlue, 2021). The amount
of precipitation is typical for a central European climate and varies between 60 to 140 mm per
month, with higher precipitation during the summer (see Fig. 2.2).

-4 °C-4 °C -4 °C-4 °C
-2 °C-2 °C

1 °C1 °C

7 °C7 °C

11 °C11 °C
13 °C13 °C 13 °C13 °C

10 °C10 °C

6 °C6 °C

0 °C0 °C

-3 °C-3 °C

-11 °C-11 °C-11 °C-11 °C
-9 °C-9 °C

-6 °C-6 °C

-1 °C-1 °C

2 °C2 °C
4 °C4 °C 5 °C5 °C

2 °C2 °C

-1 °C-1 °C

-6 °C-6 °C

-10 °C-10 °C

Precipitation Mean daily maximum Hot days

Mean daily minimum Cold nights Wind speed

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

-30 °C

-20 °C

-10 °C

0 °C

10 °C

20 °C

30 °C

0 mm

25 mm

50 mm

75 mm

100 mm

125 mm

150 mm

meteoblue

Figure 2.2: Modelled mean temperature, precipitation and wind speed for the “Bernese Alps” over the last
30 years from MeteoBlue (2021): Measuring station 46.42 ◦N 7.75 ◦E, 2447 m.a.s.l..

2.1.2 Suitability of the study site

The Alps offer a highly dynamic environment including steep slopes. The valley of Lauterbrunnen,
which lies South of Interlaken, is one of the steepest in Europe. As a result, this area represents an
optimal study area to test LRW composites from Sentinel-1 imagery. The footprint of Sentinel-1’s
ascending and descending tracks overlap in central Switzerland (see Fig. 2.1). By using ascending
and descending tracks, the composite represents the scene’s state within a time span of 36 hours
(Small, 2012). The concentration on this rather small region therefore enables the construction of
a homogeneous time series with relatively high temporal consistency.
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2.2 SAR imagery

2.2.1 Sensor characteristics

In this study, Synthetic Aperture Radar (SAR) composites were used based on Sentinel-1A and -1B
backscatter data (see Table 2.1). The European Space Agency (ESA)’s Sentinel-1 (S1) satellites
were launched in April 2014 and 2016, respectively (ESA, 2021). Together, they offer an orbit
repeat interval of six days (see Table 2.1). Both satellites carry a C-band SAR, operating at central
frequency of 5.405 GHz. Each is able to capture and provide data in four operating modes. S1
satellites are capable of interferometric wide (IW) swath mode, extra wide swath mode, stripmap
mode and wave mode. Depending on the chosen operating mode, the spatial resolution can vary
between 5 to 80 m and is characterized by the number of looks (single look or a variable number of
multiple-looks). S1-B, however, has a slightly higher sensitivity than its sister satellite S1 (Schmidt
et al., 2020). This bias especially effects the cross-polarized information VH. Schmidt et al. (2020)
detected an offset of between 0.03 and 0.61 dB over so-called lower backscatter regions such as
Greenland ice.

2.2.2 Radiometric calibration

Following the definition of Small (2011), radar backscatter (β) describes “a ratio between the scat-
tered power (Ps) and incident power (Pi) at ground level”:

β◦ =
Ps

Pi
(2.1)

Fig. 2.3 displays three conventional reference areas. While reference area Aβ is defined on the slant
range plane, the corresponding radar brightness is referred to as beta nought β◦.

Aσ on the other hand is defined on the displayed ground area. Instead of this widely applied sigma
nought σ◦ (Nagler et al., 2016) backscatter can be projected onto a plane, which is perpendicular
to the sensor’s line of sight and reach, so called γ◦E . This is the projection, which is closest to real
live view of the sensor and as such preferable (Small et al., 2021; Rohner, 2014; Small, 2011). The
normalization area Aγ(r,a) (see Fig. 2.3) is calculated individually for each range (r) and azimuth
(a) coordinate to achieve terrain-flattened γ◦T (Small et al., 2021):

γ◦T = β◦
∗

Aβ

Aγ(r, a)
(2.2)

Radar backscatter images of steep terrain are typically afflicted by geometry-induced effects. Steep
terrain can result in shadow, foreshortening or even layover of the received signal (Small, 2011).
These effects can be modelled and masked during orthorectification of the data onto a DEM. How-
ever, radiometric effects of the terrain remain in simple Geocoded Terrain Corrected (GTC) image
products. Only by applying radiometric terrain correction (Small, 2011) the backscatter does be-
come relatively “flat” in relation to the terrain: terrain-induced radiometric distortions (Jäger, 2016)
are then mitigated. These corrections become extremely important in regions with steep terrain.
However, even Radiometrically Terrain Corrected (RTC) products retain the variations in local
resolution that are inherent to GTC products.
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Figure 2.3: Illustration featuring reference areas by Small (2011).

2.2.3 Local resolution weighting (LRW) composites

Most SAR sensors, including the ones used in the S1 mission, are right-looking. In the Northern
hemisphere, this results in the acquired image of a descending flight track illuminating towards the
South-Eastern side of mountains, whereas ascending images illuminate towards the South-Western
side of mountainous regions. In an ideal case, by combining two such images one can form a
normalized view of the complete terrain. The spatial resolution can be improved by making use of
multiple contributing images, also enabling multi-temporal noise reduction in the composite image.

Radiometrically terrain-corrected (RTC) images using the γ◦T convention can be combined, especially
ascending and descending orbits, to produce composite backscatter products. In Small (2012) and
Small et al. (2021) it was shown how shadowing effects can be mitigated by producing composites
from such RTC images, which are weighted based on the local resolution. The Sentinel-1 satellites
acquire all data in a right-looking configuration; by using both ascending and descending orbits,
mountainous terrain is viewed from substantially different directions: a weighted combination of
the acquired data according to its local resolution takes advantage of the high local resolution on
backslopes, and allows compensation for missing data (shadow) in an individual orbit (Small, 2011).

The local area (Ai) observed by RADAR systems is inversely proportional to the local image reso-
lution (Small, 2012). Small et al. (2021) exploit this relation and calculate weights Wi based on the
sum of resolutions for each image i of the present non-shadowed RTC image input samples γi,...,M .

Wi =
1

Ai
∗

M
∑

j=1

1

Aj
(2.3)

These weights are then applied to the corresponding geometry sample location of backscatter γ◦T
to create the estimated backscatter composite γ◦c , so-called Local Resolution Weighting (LRW)
composites (Small et al., 2021; Small, 2012). As described by the equation (see Equ. 2.4), these
do not include information from shadowed pixels but a combination of images from different flight
tracks (Small et al., 2021).

γ◦c =
M
∑

i=1

Wi ∗ γ
◦

i (2.4)
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Table 2.1: Overview of relevant satellite missions for this thesis. “Orb.rep.int.” stands for orbit repeat
interval, “Nom. resol.” for nominal resolution and f−1, λ for frequency and wavelength, respectively. Sources:
(ESA, 2021; NASA, 2021a; NASA, 2021b; NASA, 2021c)

Mission Orb.rep.int. Sensor f−1, λ Channels/Bands Nom. resol.[m]

Sentinel-1A 6 days C-band SAR 5.405 [GHz] dualpol (VV,VH) IW: 20
Sentinel-1B

Sentinel-2A 5 days MSI 442-2202 [nm] 13 spectral bands 10/20/60
Sentinel-2B

Landsat 7 16 days ETM+ 450-2350 [nm] 8 spectral bands 15/30/60
Landsat 8 OLI/TIRS 430-2290 [nm] 10 spectral bands 15/30/100

MODIS Terra 16 days MODIS 620-14685 [nm] 36 spectral bands 250/500/
MODIS Aqua 1000

Throughout this thesis we work on such γ◦c products. The data used, was recorded in IW swath
mode and was acquired between January 2018 and September 2020. It features dual-polarized chan-
nel information (VV, VH) and was arranged as a ground range detected high-resolution (GRDH)
product time series. The product’s original sample interval (in both ground range and azimuth)
was 10 m, corresponding to a nominal resolution of 20 m. These LRW composites are presented in
Swiss coordinates: CH1903+/LV95 (EPSG: 21781).

Each LRW image is a composite of an ascending and a descending image, acquired on S1 relative
orbits 66 and 88 at 05:34 and 17:20 UTC respectively, or (dependent on the seasonal activation of
daylight savings time) 06:34 and 18:20 or 07:34 and 19:20 local time (see Fig. 2.1). By combining
input data, where ascending and descending passes are 36 hours apart, a relatively tight time-tagging
was achieved over the test site.

Over the complete time frame of two and a half years (see Fig. 2.4), S1 time series were gap free,
although six images were ignored due to missing data (e.g. one of the ascending or descending
geometries was not acquired due to a short-term failure or planned unavailability of one of the
satellites, Hajduch et al., 2019; Meadows et al., 2020). The affected composites date to June, 9-10
and November, 25-26 of 2018, February, 28-29 and September, 14-15 of 2019, as well as June, 10-11
and 22-23 of 2020 (see Fig. 2.4).

2.3 Optical imagery

2.3.1 Sensor characteristics

2.3.1.1 Sentinel-2

ESA’s Copernicus programme includes a two satellite constellation mission called Sentinel-2 (see
Tab. 2.1). Sentinel-2A and -2B were launched in June 2015 and March 2017, respectively (ESA,
2021). Together, the satellites offer a five-day orbit repeat interval at the equator. Each features a
swath width of 290 km. Both carry a MultiSpectral Instrument (MSI). These MSIs are capable of
measuring data in 13 spectral bands between 442.3 to 2202.4 nm, with spatial resolution varying
between 10 and 60 m. Over Switzerland, Sentinel-2 images are acquired around 10:30 local time.
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2.3.1.2 Landsat 7 & 8

The US-American National Aeronautics and Space Administration (NASA)’s first Landsat satellite
was launched in 1972. Since then, multiple satellites within the continuing mission to observe Earth
from Space were developed and sent into orbit. Currently operating are Landsat 7 and 8, which
were launched in 1999 and 2013, respectively (NASA, 2021c). Landsat 7 and 8 each offer an orbit
repeat interval of 16 days at an altitude of 705 km. Acquisition of Landsat 7 and 8 data takes place
at 10:30 over Switzerland local time.

Mounted on Landsat 7 is the Enhanced Thematic Mapper (ETM+) sensor (Ihlen et al., 2019a). It
detects light in 8 different bands. Bands 1-5 and 7 are light from the visible to short wave infrared
part of the EM spectrum (450 to 2350 nm). The sensor offers spatial resolutions between 15 and 30
m. Band 6 acquires thermal data in 60 m spatial resolution, whereas band 8 gathers panchromatic
information with a spatial resolution of 15 m.

Landsat 8 carries an Operational Land Imager (OLI) sensor and a Thermal Infrared Sensor (TIRS)
(Ihlen et al., 2019b). The first includes 9 bands, of which bands 1-7 are at wavelengths from 430
to 2290 nm, featuring a spatial resolution of 30 m. Band 8 is panchromatic from 500 to 680 nm,
featuring a 15 m resolution, whereas band 9 measures cirrus information (1360 - 1380 nm) at 30
m spatial resolution. TIRS, on the other hand, focuses on thermal infrared and includes only two
bands, both providing 100 m spatial resolution at 10’600 to 11’190 nm and 11’500 to 12’510 nm,
respectively.

2.3.1.3 MODIS Aqua & Terra

NASA’s sister satellites Terra and Aqua carry a Moderate Resolution Imaging Spectroradiometer
(MODIS; NASA, 2021a; NASA, 2021b). Terra was launched in 1999 and follows a descending node.
Aqua, on the other hand, was released in 2002 and follows the corresponding ascending node. They
orbit around the earth at a height of 705 km. Acquisition of images over the test site take place at
10:30 for Terra and 13:30 for Aqua (in local time).

MODIS acquires data in 36 different bands (NASA, 2021d) between 620 and 14385 nm. Band depen-
dent MODIS’ spatial resolution varies between 250 and 1000 m. The cross-track swath dimension
of MODIS is 2330 km.

2.3.2 ExoLabs snow cover product

The Swiss company ExoLabs Earth Observation Solutions is a spin off from the University of
Zurich and was founded in 2017 (ExoLabs, 2021). The company’s goal is to provide individually
customized software solutions, data products and scientific knowledge in the working area of remote
sensing. ExoLabs developed a ’Continuous Snow Monitoring System for Snow Cover, Snow Depth
and Snow-Water-Equivalent’, called COSMOS (ExoLabs, 2021).

Using sensor fusion of Sentinel-2A/-2B, Landsat 7/8 and MODIS Aqua/Terra data, a daily snow
occurrence likelihood product is generated (Wulf et al., 2020). Key characteristic is its 20 m spa-
tial resolution (see Tab. 2.1) and gap-free coverage of Switzerland and the European Alps. This
resolution is gained by applying machine learning techniques to model snow probability beneath
local cloud cover (hence, the products name ’proba[bility] extrapolated’). Additional data sets like
elevation, land cover and solar radiation are used in this analysis (Wulf et al., 2020).

The comprehensive data set provided by Exolabs investigated within this thesis includes data from
between June 2018 and August 2020 (see Fig. 2.4). The images feature 20 m spatial resolution and
near-daily coverage. For 10 out of 262 analyzed days, no snow cover product was available, due to
data unavailability and processing issues.
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Table 2.2: Overview of replaced optical composites [YYYY.MM.DD]. No replacement required in 2020.

missing date substitution date missing date substitution date

2018.12.19 2018.12.18 2019.05.12 2019.05.11
2018.12.23 2018.12.24 2019.06.12 2019.06.11
2018.12.27 2018.12.28 2019.07.11 2019.07.12
2019.01.13 2019.01.12 2019.11.07 2019.11.08
2019.04.12 2019.04.11 2019.11.26 2019.11.27

In these cases, the next available image was used instead (see Table 2.2). To account for the
acquisition of all composite parts of the S1 images, snow occurrence was checked on both acquisition
days (within the 36 hour period of the S1 acquisitions). This information concerning snow occurrence
likelihood is provided in UTM32T (EPSG: 32632) and contained digital numbers between 1 and
255. The data is available in a nation wide coverage.

2.4 Liquid water content (LWC) and snow water equivalent (SWE)
maps

The Institute for Snow and Avalanche Research (SLF) is a subsidiary of the Swiss Federal Institute
for Forest, Snow and Landscape Research (WSL) with its research focus on mountainous ecosystems
(SLF, 2021b). Core objectives of the research facility are the monitoring, forecasting and prevention
of natural hazards in such regions.

SNOWPACK was developed by SLF to enhance the nationwide avalanche prediction (Lehning et
al., 1999). With it, three-phased snowpacks can be modelled continuously over space on the main
basis of IMIS point measurements (see section IMIS data). The collected data contains snow depth
measurements as well as local weather information (Lehning et al., 2002). An error catching system
prevents implausible point data by comparing the measured snow depths with neighbouring stations.
SNOWPACK was found to be one of the most sophisticated models for representing snow structure,
whereas it offers higher vulnerability towards misrepresentation of turbulent fluxes (Essery et al.,
2013). The present snow model incorporates the multi-layer JULES Investigation Model (JIM)
(Winstral et al., 2019). Originally, JIM was designed to examine the sensitivity to parameterization
of processes in snowpacks (Essery et al., 2013). JIM was initially developed for the sensitivity
assessment of three-layered snowpacks towards various parameters and variables (Moeser et al.,
2016). Full information concerning configurations used during modelling within the multi-model
framework of JIM can be found in Winstral et al. (2019). SNOWPACK also accounts for water
percolation effects. This leads to an offset between initial snow melt within the top snow layer and
run off information.

The usage of SNOWPACK data allowed the availability of snow water equivalent (SWE) and liquid
water content (LWC) information at a daily interval between January 2018 to August 2020 (see
Fig. 2.4). The maps provide a spatial resolution of 1000 m and are projected in CH1903+ LV95
(EPSG: 21781). While LWC is provided as a volume-percentage, SWE is described with units of
millimeter.
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Table 2.3: Aggregation of CORINE land cover classes.

Class group CORINE classes

Urban area CLC <= 11
Agriculture 11 < CLC <= 22
Forest 22 < CLC <= 25
Scrubland 25 < CLC <= 29
Bare soil 29 < CLC <= 33
Glaciers/perpetual snow CLC = 34
Water bodies 40 <= CLC

2.5 Snow depth point measurements from IMIS

The Intercantonal Measurement and Information System (IMIS) provides snow depth measure-
ments. The stations are operated by either SLF or MeteoSwiss, the Federal office for meteorology
and climatology, (Winstral et al., 2019). The relevant spatio-temporal subset was used in this the-
sis. These measurement sites are illustrated in Fig. 2.1. The measurement stations are generally
located in a “windless” position (Lehning et al., 1999), and measured manually once per day between
7 and 7:30 am. Every half hour, the automatic measuring system delivers snow depth information
(Würzer et al., 2018). Gap free information between January 2018 and August 2019 is available
(see Fig. 2.4).

2.6 Land cover: Copernicus and GLAMOS

Coordination of Information on the Environment (CORINE) land cover (CLC) was a project ini-
tiated by EU commission to standardize data collection of biophysical traits of the Earth’s surface
across Europe (European Environment Agency, 2018a). CLC is run by Copernicus land cover ser-
vices (European Environment Agency, 2018a). Its current version from 2018 classifies the Earth’s
surface into 44 different land cover classes (European Environment Agency, 2018a) using Sentinel-2
and Landsat 8 for gap filling.

CLC was used to create a water body mask as well as a coarsely classified overview image of the
area. For the latter, the following classes were computed (see Tab. 2.3). To account for the multiple
spatial resolutions required, a median based nearest neighbour re-sampling method was applied to
ensure adherence of classes.

High resolution maps featuring tree cover density information (TCD; European Environment Agency,
2017) were utilized. These were made available by Copernicus’ land cover monitoring program. Tree
cover density describes a pixel’s proportional crown coverage. Here, a vertical projection of tree
crowns to a horizontal Earths surface is used (European Environment Agency, 2018b). The data
ranges between 0 and 100%, whereby values of zero indicate no tree occurrence.

The TCD version used, dated from 2018. The data was provided with a 10 m grid interval. Spatial
re-sampling was performed using a median based scanning method during re-projection of ETRS89-
extended (EPSG: 3035, for further information see: MapTilerTeam, 2019) to UTM32T.

A glacier mask was prepared based on data from GLAMOS - the Swiss glacier inventory (SGI 2010)
(GLAMOS, 2010). This inventory is based on aerial photographs from 2008 to 2011 and includes all
Swiss glaciers. The data is opensource and freely available on the GLAMOS homepage as a shapefile
(GLAMOS, 2010). GLAMOS was preferred over CORINE data for the generation of a glacier mask
as, in the latter, glaciers and perpetual snow build one class and can not be distinguished.
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2.7 Digital elevation model

The federal office of topography (swisstopo) provides open elevation data with nationwide coverage.
The DEM swissALTI3D was used to describe the test site’s vegetation-free surfaces in metres above
sea level (Swisstopo, 2018). swissALTI3D is generated every six years, using a combination of
stereo air photos and airborne laser scanning (ALS). The latest version was used, which is based
on a patchwork of LiDAR overflights between 2012 and 2019. The used version features a spatial
resolution of 2 m.

2.8 Temperature

The federal office for meteorology and climatology (MeteoSwiss) provided daily maximum air tem-
perature maps, which were used in this thesis. Present temperature maps were based on in-situ
data gained from approximately 90 measuring sites spread across Switzerland (Meteoswiss Clima-
tology, 2017). Temperature values were provided in Degrees Celsius [◦C], and signify near-surface
air temperature. They were measured with a temporal interval of 10 minutes over the two and a
half years (see Fig. 2.4). The data set was provided at 2200 m spatial resolution in the projection
format ETRS89-extended (EPSG: 3035). A detailed account of the resampling procedure of the
temperature data set is provided in the methods’ section.

Figure 2.4: Degree of data availability over the observed time series. Discontinuous availability indicates
months including relevant data unavailability due to weather effects or sensor unavailability. Daily interval
was available for all but SAR imagery, which featured a six-day interval. For easier readability shortnames
were used for input data: ’SAR’ stands for ’LRW composites’, ’Optical’ for ’snow cover likelihood images’,
’LWC’ and ’SWE’ represent ’liquid water content’ and ’snow water equivalent’. ’IMIS’ indicate the measure-
ments by IMIS stations and ’T’ the temperature measurements.
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3 Methods

In a first part, this chapter provides an overview into snowpack characteristics at microwave fre-
quencies (3.1). Based on this theoretical dispute, the processing chains as conducted for the present
thesis are described. First, the performed pre-processing steps for all data sets used are delineated
(3.2). Then, the procedure of LRW composite testing (3.3) is described before outlining the con-
ducted steps during wet snow mapping and the validation for the examination of the influence of
reference image generation (3.4). Finally, the performed snow depth retrieval is summarized and
the validation procedure explained (3.5).

3.1 Snowpack characteristics at microwave frequencies

The interactions between microwave radiation and snow are complex (Jäger, 2016) and the topic
is still a subject of current scientific research. The radiations’ path is typically described using
a three layered radiative transfer model (see Fig. 3.1), including the two interfaces air-snow and
snow-ground (D. Li et al., 2017). Hence, the signal received at the sensor is first scattered at the
air-snow (surface scattering), then at the snow-ground (volume scattering) and finally at the snow-
air interface (surface scattering) on its way back to the sensor. The measured signal is mainly a
result of the synergy between scattering effects at the interfaces and volume scattering within the
snowpack.

Figure 3.1: Radiative transfer model of a microwave signal interacting with a snowpack by Rohner (2014).

The amount of interaction between a radar signal and an object is directly dependent on the
object’s attenuation length at microwave frequencies. Dry snowpacks are characterized by a large
attenuation length at microwave frequencies and are therewith generally invisible to radar signal
(Rees, 2006). Deviations occur in cases of usage at higher frequencies than 10 GHz or the presence
of very deep snowpacks (in the range of tens of meters; Rees, 2006; H. Li et al., 2017). As a result,
it is not possible to differentiate dry snow from no-snow pixels by just analyzing the backscatter
signal (Rott et al., 1995). In such cases, main backscattering occurs at the snow-ground interface,
whereby snow can be neglected due to its transparency, and the interface becomes an air-ground
interface.
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Wet snow detection from SAR images is possible due to the strong signal attenuation caused by
the high dielectric contrast between frozen and liquid water: a multi-temporal change detection
can easily highlight a change in state. The radar backscatter is highly sensitive to liquid water
occurrence. As a result, the relatively weak radar backscatter from a melting snowpack is mainly
dominated by surface scattering (Rüetschi et al., 2019): a clear diminution of the signal is measurable
(Rees, 2006) and a penetration depth is decreased to around 3 cm for C-band SAR (Tsai et al.,
2019). Therefore, a reference image during no snow or dry snow circumstance is required for the
process of wet snow retrieval. By assessing the amount of the attenuated signal in comparison to
a reference image, the localization of wet snow is possible. This is achievable by using a simple
thresholding approach (e.g. Nagler et al., 2016).

Key factors influencing the scattering behaviour of a snowpack are the applied radar frequency and
the snowpacks’ liquid water content (e.g. D. Li et al., 2017; Dietz et al., 2012). Other influencing
factors include snow depth (Lievens et al., 2019) and the land cover type (Dietz et al., 2012).

Lievens et al. (2019) were able to correlate in-situ snow depth measurements to S1 backscatter
information using an empirical change detection algorithm. Their approach is based on a cross
ratio and thereby exploits the effect of the snowpack’s volume scattering. This scattering effect
leads to a higher likelihood of the backscatter having been re-polarized and consequently more
signal is measured in the cross-polarized state. This relation allows a minimization of background
noise by enabling a normalization using the magnitude of received co-polarization information.

3.2 Pre-processing

All remote sensing data was provided as Level 3 products, following the definition by NASA (1986).
For most data sets, pre-processing was therefore mainly restricted to a re-projection into UTM
zone 32T (EPSG: 32632), a resampling to multiple target resolutions, and a cropping to the test
site extent. In addition to these steps, erroneous LRW composites due to satellite failures or
unavailabilities were identified and replaced.

3.2.1 Main data preparation

The LRW processing at 10 m had originally been generated using the swissALTI3D in Swiss map
coordinates. To allow for inter-compatibility with other (optical) data, all SAR data were re-
projected into UTM32T and cropped to the target site extent. Spatial target resolutions of 30, 100
and 1000 m were correspondingly generated by down-sampling the data from the initial data set
using a median based scan-line algorithm. After caching the so far prepared S1 γ◦-composites, a
conversion into decibel-space was performed using the following equation, as the available data was
provided in linear backscatter units:

S1 backscatter [dB] = 10.0 ∗ log10 (S1 backscatter [−]) (3.1)

By analyzing an overall S1 backscatter time series, problematic composites were identified. Six
identified composites (see data chapter) were discarded completely and replaced, using a mean
image calculated from the LRW composite before and after the missing composite. Such mean
images are calculated throughout the thesis on a pixel by pixel basis (with locations r, a) using the
following equation:

µ(r, a) =
1

N

N
∑

i=1

Ai(r, a) (3.2)

14



N indicates the amount of scalar observations, meaning the amount of images over which the mean
is calculated (here: N = 2). Ai represents a vector, containing the corresponding values. Voids
were ignored during such calculations and replaced by the next available scalar.

Optical snow cover information was down-sampled by using a median based approach (see Equ. 3.3)
and up-sampled by using a bi-linear scan algorithm. Both were cropped to the test site extent. The
first batch was re-scaled from digital numbers to percentages. The second batch was re-projected
to the defined target projection style to assure uniformity.

median =
N − 1

2
(3.3)

The elevation and land cover data sets were re-projected into the target grid of UTM32T. To account
for the multiple (reduced) spatial resolutions needed, the DEM was bi-linearly interpolated, whereas
the classified information of the land cover data set and the glacier mask were re-sampled using a
nearest neighbour approach.

Temperature data from MeteoSwiss, as described in the previous chapter, was re-projected and
cropped to the observed scene. However, its spatial resolution was too coarse to enable adequate
usage at 30 m resolved applications. This was especially the case, as the test site is located in
mountainous terrain.

3.2.2 Resampling of temperature data

The approach described by Gao et al. (2012) and also in Jäger (2016) enables an improvement of
temperature accuracy by resampling from a coarse resolution temperature onto a DEM grid by
using a local lapse rate (L). The processing chain is summarized in Fig. 3.2.

The difference in height (∆h) between coarse and high resolution is calculated by subtracting
the elevation of the subpixel (hx) featuring high spatial resolution (x [m] = 10, 30, 100, 1000) to the
elevation of the corresponding pixel of the coarsely resolved input temperature data set (h2200):

∆h [m] = h2200 [m]− hx [m] (3.4)

Diverging from the approach by Gao et al. (2012) and Jäger (2016), we used a static literature value
for the local lapse rate (L): the so-called environmental lapse rate of -6.5/1000 [

◦C
m

] (Daly et al.,
2009). This enabled us to circumvent the need for ERA5 or ERA-interim input data, which itself
offered a maximal spatial resolution of around 13 km2 (0.125 ◦C) and was not of relevant accuracy
when applied to high resolution images. After testing multiple values for lapse rate approximation,
including an elevation based differentiation between dry and wet adiabatic lapse rates, the increase
in accuracy within the observed test site was negligible. Therewith, the choice of lapse rate was
made in favour of an already well established static value.

Based on this difference in height and the local lapse rate, the change in temperature was approx-
imated. Where Tref stands for the original, input temperature at coarse resolution, and T for the
elevation-corrected temperature of the sub-pixel with elevation hx from Equ. 3.4:

T [◦C] = Tref [◦C] + L[
◦C

1000m
] ∗∆h [m] (3.5)
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Figure 3.2: Flowchart, featuring process chain performed during temperature resampling.

After resampling, a Savitzky-Golay finite impulse response filter (Savitzky et al., 1964) with a
polynomial degree (m) of five was initiated, fitting a sliding window over 300 m to smooth out
boundaries. It was calculated using Equ. 3.6, where Ci represents convoluting values and N the
filter coefficient taken from the Savitzky-Golay table according to the selected m.

Yj =

∑i=m
i=−m Ci yj+i

N
(3.6)

3.2.3 Preparation of validation data sets

LWC and SWE data were re-projected and cropped to fit the observed scene. To approximate a
validation also at a 100 m scale, the information was bi-linearly interpolated. The locations of IMIS
stations were re-projected from Swiss map to UTM coordinates. Out of the 182 stations, 25 were
situated inside the observed scene and thus selected for further usage (see Fig. 2.1). Snow depth
information was re-scaled from centimeters to the SI unit of meters.

3.3 LRW composite testing using slope oriented S1 time series

By analyzing slope orientation dependent differences within each LRW image, the homogeneity of
such LRW composites was examined. Observing this difference in behaviour over time allows to
gather a deeper understanding of the relation between slope, orientation, and backscatter charac-
teristics. Similar snow conditions over corresponding terrains were hereby assumed.
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The process of generating a slope-dependent time series is illustrated in Fig. 3.3 and was performed
for three channels: co-polar (VV), cross-polar (VH) and the cross-polarization ratio (VH/VV). The
first two were needed for wet snow detection, whereas the latter has recently been used as the basis
for snow depth retrieval from S1 backscatter (Lievens et al., 2019). The calculated ratio (see Equ.
3.1) in linear space is equivalent to the difference in backscatter intensity between the cross- and
co-polarized signals in dB space.

CR [dB] = 10.0 ∗ log10
(V H backscatter [−]

V V backscatter [−]

)

(3.7)

The processing chain can be subdivided into four main steps: 1) First, data was pre-processed as
previously discussed, then 2) the auxiliary data masks were generated. 3) The class masks were
applied and 4) after having utilized post-processing measures, a median time series for each class
was plotted.

Figure 3.3: Flowchart, featuring performed processing chain for the example of aspect dependent time
series generation. For further analysis input data also included optical snow cover likelihood maps and
CORINE land cover information.

Slope masks were achieved by using the available DEM and extracting the direction in which each
pixel decreases most rapidly on a WGS84 projected version of the DEM. Using the thresholds of
45, 135, and 315 degrees, the aspect image (range 0-359, where 0 indicates North) was then masked
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into four images, each featuring a cardinal direction. Insufficiently steep terrain was removed from
consideration by using an iteratively defined threshold of 15 degrees, ensuring that only slight slopes
were not included in the different aspect subsets.

All time series were underlaid by a coloured mask indicating maximum daily temperature in relation
to the freezing point at a defined standard elevation level of 2500 m.a.s.l.. To account for the 36
hour range, which each LRW composite encompasses, a mean over the two corresponding days was
extracted. An elevation mask was created featuring elevations between 2250 and 2750 m.a.s.l. and
corresponding pixels were used to calculate the mean temperature. The mean temperature time
series was used to produce a freezing state: temperatures above or below the freezing point were
defined following the application of a 3-image kernel temporal filter.

To gain an understanding of the magnitude of multiple factors possibly influencing the created time
series, the pixel composition was further examined. A time series was then generated in relation
to all prominently represented land cover classes (agriculture, forest, scrubland, non-vegetated,
glacier and perpetual snow). To incorporate and quantify the degree of elevation based effects, an
elevation-dependent time series was produced. Three thresholds were thereby set at 1000, 2000 and
3000 m.a.s.l. and applied to the digital elevation model.

In all cases, the output time series was prepared by calculating the median backscatter of the
corresponding class in each LRW composite. A median based approach was chosen to minimize
bias through fluctuate and thermal noise (see Equ. 3.3). The calculation was implemented using a
3x3-pixel kernel. Present values (N [count]) were sorted before extracting the median.

3.4 Wet snow mapping

3.4.1 Reference image (RI) generation

Earlier studies have already shown that dry snow LRW composites acquired during the winter
surpass summer based composites (Jäger, 2016). This is a likely result of changes caused by a longer
temporal offset influencing the calculated difference image. In this thesis, we therefore preferred
dry winter over no-snow summer pixels for the creation of a reference image.

Fig. 3.4 displays the performed chain of processes. As input data served the re-sampled temperature
data, the prepared LRW composites and optical snow cover maps.

Based on histogram analysis, a threshold is defined which offers a sensible fulcrum between ensuring
no wet snow contamination in the considered pixels, while still guaranteeing that enough pixels are
available for a relevant calculation. The threshold was set to -2 ◦C. Dry snow properties are assumed
when snow occurs during colder conditions.

To prepare the required masks of snow cover over the 36 h time frame, within which the SAR com-
posites were acquired, the optical images available for both these acquisition dates were analyzed.
Each sample’s characteristics were thereby examined independently. When the likelihood of a sam-
ple in at least one of the two images was above 50%, snow was henceforth assumed to dominate the
corresponding S1 pixel’s signature.

Three types of reference images (RI) were calculated using the described, re-sampled temperature
and optical images that indicated snow coverage:

• Single reference image:
A single LRW composite was identified that was generated using images acquired during the
coldest conditions available under the time series. As the bulk of the test site was under
conditions colder than the threshold of -2 ◦C, there was neither a need to search for colder
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Figure 3.4: Flowchart, featuring process chain performed during reference image generation. Intermediate
products, generated in an earlier flowchart, are indicated using rectangular features with double bars at the
sides.

acquisitions before the available data, nor to supplement the image with no-snow summer
pixels. To minimize the effect of possible wet snow contamination, areas featuring insufficient
conditions were masked out.

• Median of three reference images:
A median γ◦ backscatter image was calculated using the three images acquired during coldest
circumstances as the input to account for possible speckle noise occurrences (see Equ. 3.3,
N = 3). Thereby, only backscatter signal of pixels under dry or no-snow conditions were
considered. Areas where none of the acquisitions were under amply favourable conditions,
were masked out.

• Winter season reference image:
A γ◦ backscatter image was calculated by using a full dry winter season approach. Hereby, a
median image of all LRW composites acquired during the three winter months December to
February was generated (see Equ. 3.3, N = 3 ∗ 15). However, only pixels with either no snow
occurrence shown in the optical image or dry snow conditions were considered. The number of
contributions from along the temporal axis utilized for the calculation of each corresponding
median therefore varied from one spatial sample to another.

3.4.2 Wet snow retrieval

After having pre-processed all data sets and generated a reference image, the performed processing
chain can be split into 4 main steps. These are illustrated in the flow chart in figure 3.5. In a first
step 1) difference images were produced by the pixel-wise subtraction of the reference image from
the corresponding LRW composite. 2) By using a thresholding approach, pixels featuring possible
wet snow signals were identified. 3) Land cover masks were applied. 4) Smoothing filters in both
temporal and spatial space were applied to minimize the effect of speckle or thermal noise.
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Figure 3.5: Flowchart featuring process chain performed during wet snow retrieval. Intermediate products,
generated in an earlier flowchart, are indicated using rectangular features with double bars at the side.

Normalized γ◦ backscatter composites were calculated by subtracting from each LRW composite
(dB values) the reference image (see Equ. 3.8). This approach was proposed by Rott et al. (1995) on
σ◦ projected images and has, since their publication, been successfully applied by various researchers
in the field of wet snow detection (Baghdadi et al., 1997; Piesbergen et al., 1995). Multiple studies
have already shown the applicability of this approach on LRW composites using γ◦ convention
(Small et al. (2021) and Jäger (2016) for Sentinel-1 and Rohner (2014) for ENVISAT ASAR).

γ ◦

diff [dB] = γ ◦

i [dB]− γ ◦

ref [dB] (3.8)

This difference image is equal to the ratio on the linear scale and can be classified into binary wet
snow occurrence maps using a simple thresholding approach. Dry or no snow are indicated by a
backscatter signal above the threshold and wet snow occurrence is detected when the signal strength
is measured to be lower than the threshold. The initial threshold for wet snow detection proposed
by Rott et al. (1995) of -3 dB was based on ERS-1 data acquired at a nominal incident angle of
23 degrees, and was revised to -2 dB (Nagler et al., 2016) for Sentinel-1 IW data. For a successful
application of this threshold of -2 dB, the γ◦ difference images were converted into logarithmic dB
space, as described in Equ. 3.1, before masking.

Water bodies were masked out using land cover information, and the optical snow cover product
served to mask out snow-free areas. This allowed a minimization of false positives. During post-
processing of the retrieved wet snow masks, two smoothing filters were applied to correct for speckle
and thermal noise over time as well as over space. For each pixel, a temporal smoothing filter with a
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window size three was used. Hereby, the pixels were replaced by the mean through three successive
images (see Equ. 3.2, N = 3). Wet snow was chosen if the median resulted in 0.5 due to the presence
of a void (a NaN value). A Gaussian spatial filter with window size 9 (3x3 pixels) was applied to
spatially smooth out the image and reduce noise effects. To restore the bi-linearity of wet snow,
another threshold was chosen. It was set to 0.7 and was therefore relatively high. This enabled inter-
comparison between the resulting data and the comparatively coarsely resolved validation images
from SLF. Furthermore, it allowed to eliminate solitary pixels, which were assumed errors.

3.4.3 Validation

The validation of the wet snow mapping algorithm was performed by comparing the results to the
LWC data, which were henceforth assumed to be a higher quality independent reference. Following
the theory in Rees (2006), a threshold for LWC was determined for a minimal LWC value to pass as
wet snow. Based on a comparison of histograms, this threshold was set to 3 Vol-%. Binary images
were generated to allow inter-comparisons with binary wet snow maps, whereby a rounded median
based on the corresponding dates of S1 acquisitions was calculated.

A calculation of users, producers and the overall accuracy (OA, see Equ.: 3.9) was performed on
each image pair using confusion matrices.

OA =
Pixels correctly classified [count]

Total amount of classified pixels [count]
(3.9)

The errors of omission (exclusion, EoO) as well as of commission (inclusion, EoC) in regard to wet
snow detection, were calculated as follows:

EoO =
Pixels falsely classified as dry/no snow [count]

Pixels featuring wet snow in ground truth [count]
(3.10)

EoC =
Pixels falsely classified as wet snow [count]

Pixels featuring wet snow in classified image [count]
(3.11)

To test the stability of the performed classifications, a Cohen’s kappa coefficient (κ) was also gen-
erated. This measure of inter-rater reliability allows to compare the performed classification with a
random classifier.

κ =
Overall Accuracy − Producer′s Accuracy

1 − Producer′s Accuracy
(3.12)

The overall accuracy, error of commission and of omission each range between 0 and 1. However,
a perfect match – and therefore an ideal classification – is achieved, when OA equals 1 and both
types of errors are zero. The inter-rater measure, κ, can assume values between -1 to 1. Negative
values thereby indicate the classification to have produced a result worse than a performance from
a random classifier. A κ of zero suggests the result of a random classifier and indicates chance
agreement of the outcome. Values approaching 1 indicate the performed classification to be in
perfect agreement with the validation data set, i.e. the ideal circumstance.
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3.5 Snow depth retrieval

3.5.1 Retrieval

In this study, we follow an empirical change detection method to extract snow depth from S1 data
as introduced by Lievens et al. (2019). However, we chose to use a γ◦T backscatter normalization
convention (Small et al., 2021) rather than σ◦

T in the algorithms to allow better “flattening” of
terrain-induced radiometric distortions (also suggested by Lievens et al. (2021)).

The processing chain for snow depth retrieval from S1 is outlined as a flowchart in Fig. 3.6. The
process is structured into six steps. After 1) calculating a cross ratio, 2) outliers were identified
and discharged. The main body is concerned with 3) the computation of the snow index and 4)
the snow depth. 5) Land cover classes were excluded by applying corresponding masks before the
resulting information was 6) post-processed and the mean time series were created.

To retrieve snow depth from S1, a cross-polarization difference (CR) was calculated in dB as de-
scribed in Equ. 3.7. Samples whose value was 3 dB above the 90th- or below the 10th-percentile of
the time series were masked out. This threshold used by Lievens et al. (2019) was applied and was
seen to minimize the effect of speckle and thermal noise.

In the next step, snow cover (SC) at the acquisition times of S1 data was estimated by using the
available optical images (as described in the data chapter). Using this snow coverage information,
S1 cross-polarized dB-difference pixels featuring no-snow cover were discharged. The remaining S1
information was used to calculate a snow index (SI) as seen in Equ. 3.13, following Lievens et al.
(2019). By applying a maximum function (see Equ. 3.13), negative values of snow depth were
eliminated by setting them to zero.

SI(i, t) =

{

max( 0, [SI(i, t− 1) + CR(i, t) − CR(i, t− 1)]), if SC = 1.

0, if SC = 0.
(3.13)

Here, CR was calculated as described in Equ. 3.7 and indicated the difference between VH- and
VV-backscatter amplitude. This stands in contrast to the recently published usage of a weighted
cross-ratio using a fitting parameter in Lievens et al. (2021).

This change detection index, SI, was then calculated into snow depth (SD) using Equ. 3.14. For
this, two parameters a and b were needed, which were assumed to be constant in space and time.

SDS1(i, t) [m] =
( a

1− b ∗ TCD(i)

)

∗ SI(i, t) (3.14)

Parameter a was empirically defined and calibrated by Lievens et al. (2019) to be a = 1.1 [ m
dB

].
It adjusts the magnitude of S1 snow depth retrieval to minimize the mean-absolute-error between
global averaged in-situ snow depth measurements and a corresponding retrieval from S1. Parameter
b is used in combination with tree cover density (TCD) information (Lievens et al. (2019) used
fractional tree coverage (FC), a similar MODIS based product) to account for the typical attenuation
of radar signals in forested areas (Macelloni et al., 2012; Burgin et al., 2012). As a result, snow
depth retrieval over forested areas is corrected using parameter b = 0.6 [−].

In Lievens et al. (2021) this approach was further developed by creating not only one, but two
assisting snow indices. While the first remained equal to what we showed in Equ. 3.13, the
second index was created by using the same change detection but solely on VV-polarization. The
two indexes were then synthesized into one snow index based on the forest cover fraction of the
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corresponding sample. Snow depth over more densely forested areas was extracted using the VV-
polarized data, as co-polarized information proved more stable over vegetated zones than cross-polar
information (Vreugdenhil et al., 2020). As a consequence of this, Lievens et al. (2021) also optimized
parameter b to 0.7 instead 0.6. However, these changes could not be implemented in this thesis due
to timing issues and so offer possible improvements for further analyses.

A water mask was created and used to exclude water bodies from snow depth retrievals. Following
the approach applied in Lievens et al. (2019), also wet snow pixels were excluded at first. However,
this resulted in a very small number of remaining pixels for snow depth retrieval and therefore
applying this step was not satisfactory: it was removed from the provisional processing chain.

To minimize the effect of signal noise on the result, the calculated snow depth was smoothed in
both temporal and spatial dimensions. A median filter with a kernel of 3x3 was applied for spatial
smoothing - this allowed an adaptive smoothing according to the multiple spatial resolutions used
(see Equ. 3.3, N = 9). Temporal convolution was performed using a median filter of three (see
Equ. 3.3, N = 3)

3.5.2 Validation

Validation of the performed snow depth retrieval from S1 was approached from two different per-
spectives to account for the multiple spatial resolutions. Our validation was, in both cases, based
on a time series comparison approach. At lower resolutions (1000 and 100 m), the validation was fo-
cused on a comparison with a snow depth, which was approximated based on the spatially consistent
independent reference data of the snow water equivalent (SWE). The algorithm was validated at
higher resolutions (10 , 30 m) by statistically comparing the resulting snowpack progression against
the in-situ snow depth time series as measured at automated IMIS snow stations (SLF, 2021a).

For validation purposes, snow depth (SDSWE) was processed from the external snow water equiva-
lent (SWE) data set. To account for the composite’s 36 hour inherent time-span, a mean over the
corresponding two days of SWE data was calculated. The snow depth was calculated by dividing
SWE through the snowpack’s density:

SDSWE(i, t) [m] =
SWE(i, t) [mm]

ρdry_snow

(3.15)

The dry snow density ρdry_snow was set to 357 kg
m3 . This value was reported by (Koch et al., 2019)

at the location of Weissfluhjoch, in the Swiss Alps. The environmental circumstances between the
measurement site at Weissfluhjoch and the study area of this project were assumed to be comparable.
Furthermore, its value lay within the range of snow density values applied by Jonas et al. (2009) in
the area of interest, and was therefore assumed to be appropriate.

As the IMIS snow depth measurements were provided at a 30 minute sample interval, the acquisition
time of each of the S1 images, IMIS data could be matched with a maximum of 15 minutes offset.
The mean of the matched IMIS snow depth values for each ascending and descending S1 flight track
was then calculated.

A statistical comparison of the time series trends was performed using the following two approaches
at nine locations. As performed in Lievens et al. (2021), both approaches were conducted, once
by including snow-free conditions and once by excluding them. Nine IMIS locations were selected
(see Fig. 2.1). A selection process was performed on the basis of the local elevation and land cover
type. Environments located at higher elevations offered longer time spans of interest. All selected
locations further featured the same land cover (non-vegetated) to enable more stable comparisons.
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Figure 3.6: Processing chain as was performed for snow depth extraction. Intermediate products, generated
in an earlier flowchart, are indicated using rectangular features with double bars at the sides.
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3.5.2.1 Temporal Pearson Correlation Coefficient

Validation was conducted by following the process as described in Lievens et al. (2019). A temporal
Pearson correlation coefficient (Rt [−]) was calculated between the validation data (SDSWE or
SDIMIS) and the retrieved snow depth (SDS1). This correlation coefficient describes the strength
of the association between the temporal variability of two data sets (Derrick et al., 1993). Its value
ranges between -1 to 1, where -1 and 1 describe perfect correlation (amplitude and timing) and 0
indicates no detected relationship (Sedgwick, 2012).

For each of the selected IMIS stations, the Rt value was calculated by describing the relation between
SDIMIS and SDS1, as well as the one between SDSWE and SDS1 for spatial resolution equal 100 m
or 1000 m. IMIS point data was only available up to September 2019, so, the correlation coefficient
was calculated between SDIMIS and SDS1 for the time range before, whereas the one describing
the relation between SDSWE and SDS1 includes the whole time span. Calculation was performed
by applying the following equation, where A and B are the mean values of arrays A and B.

R =

∑

m

∑

n (Amn −A)(Bmn −B)
√

∑

m

∑

n(Amn −A)2(Bmn −B)2
(3.16)

3.5.2.2 Granger Test

The second validation approach applied an open source Granger test (Chandler, 2021). The Granger
framework originated within economics (Granger, 1969). Its outcome describes how well one vari-
able’s time series can be used to forecast a second variable (Roebroeck, 2015). No strict causality
is necessarily implied, which is why we prefer the term Granger test over Granger Causality test.
However, it infers causal influences between two variables. The test has already been selectively ap-
plied in the context of remote sensing applications (e.g. Feldman et al., 2020; Núñez-Casillas et al.,
2009). In this framework, the test enables the user to quantify the degree in which an environmental
factor of interest forecasts the remotely measured data (Feldman et al., 2020).

The output of the Granger test is a value of the performed F-statistic as well as a so-called crit-
ical value (Chandler, 2021). The latter is mainly dependent on the defined confidence interval.
It describes the value on the test distribution, which must be surpassed, to accept the working
hypothesis (accept H1, as defined below). In cases where the resulting F-value is lower than the
critical value, the null hypothesis (H0) of the factor to not forecast the measured signal is accepted
and the working hypothesis (H1) rejected.

For this thesis, the Granger test was used to quantify the effect of the independent snow depth
estimate on (a) the measured S1 signal and (b) the corresponding snow depth retrieval. Therefore,
both relations were examined: S1 to point measurements from IMIS stations, and SWE based snow
depth to S1-based snow depth retrievals. In each case, the locations of nine selected IMIS stations
were used. This approach enables a spatially consistent treatment of the full study area.

The hypotheses were set as follows:

• Null hypothesis:
A.0) Snow depth measurements from IMIS (SDIMIS) do not Granger forecast snow depth
retrieved from S1 backscatter (SDS1).
B.0) Snow depth retrieved from S1 backscatter (SDS1) does not Granger forecast snow depth
calculated based on the SWE model (SDSWE).
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• Working hypothesis:
A.1) Snow depth measurements from IMIS (SDIMIS) Granger forecast snow depth retrieved
from S1 backscatter (SDS1).
B.1) Snow depth retrieved from S1 backscatter (SDS1) Granger forecasts snow depth calcu-
lated based on the SWE model (SDSWE).

The confidence interval was set to 95%. This ensured a statistically relevant statement in cases
where the working hypothesis was accepted. Eighteen days were set as the maximum delay (four
composites) allowed for the forecasting from IMIS to S1, whereas 30 days were allowed between S1
snow depth to forecasts of SWE based snow depth. This values were defined, based on correspon-
dence with T. Jonas from SLF and enabled to account for one month delay of snow depth detection
from SWE, due to included percolation effects.
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4 Results

In this chapter, an overview is provided on the achieved results for LRW-composite testing, reference
image generation and snow depth retrieval. Fig. 4.1 displays a time series of the input data sets,
which were used for the generation of the results. For clarity, the resulting images are primarily
shown at 1000 m and 30 m resolutions based on the winter season reference image. When results
are similar and visual differences minor across polarization states, co-polarized data is shown. In
cases where relevant discrepancies between further reference image types, resolutions or polarization
states were found, these are included. Mean statistics are presented.

4.1 Local Resolution Weighting-based composite time series

The homogeneity of LRW composites was tested by inter-comparing backscatter time series across
diverse aspect orientations. In a first attempt, mean time series were calculated, displayed and
summarized for selected aspects(4.1.1). Time series were generated that were restricted to a mean
across snow covered pixels present in the composite (4.1.2). The effect of land coverage and elevation
was examined by creating and analyzing corresponding time series.

4.1.1 Mean S1 backscatter over study area

Fig. 4.2 shows the mean backscatter evolution over time for selected slope orientations within the
study area in each polarization channel. Samples characterized by a slope degree below 15% were
not considered.

To enable comparisons, a temperature curve was produced based on the improved temperature
information (described in 3.2.2) and included for the standard elevation of 2500 m.a.s.l.. It is based
on a mean calculated across the test site of interest. The temperature behaviour over time indicates
that the winter in 2018 had colder temperatures over a longer period than those in 2019 and 2020
(see Fig. 4.2). The temperature amplitude reached a minimum in the time series in February 2018
of -14.5 ◦C. The lowest temperatures in 2019 occurred at the end of January, reaching -12 ◦C.
The winter of 2020, however, was characterized by relatively warm temperatures at 2500 m.a.s.l.,
whereby temperatures oscillated around the freezing point throughout the season, barely staying
below the freezing point even over short periods of only a few days, i.e. over multiple composites.

The mean of study-area wide VV-backscatter information sampled at 1000 m ranged between -8 to
-10 dB over the observed time frame of 2018 - 2020 (see Fig. 4.2). A drop of backscatter is observable
during spring of each year. The drop was thereby most sudden and distinctive in 2018 (from -8.5
to -10 dB within one month) and comparably weak and lagging in 2020. The springtime decrease
of backscatter during 2020 featured no clear starting point and reached minimum VV-backscatter
of -9.5 dB on East and South facing slopes.

The progression of the study-area wide VH-polarized backscatter took place between -13 and -16
dB (see Fig. 4.2). The trend is comparable to the VV-polarization data reported above. A decrease
in backscatter through spring is followed by an increase in backscatter throughout summer before
the backscatter gradually declines again at the start of autumn.
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Figure 4.1: Input data set time series displaying Exolabs snow cover product (30 m GSD), S1 γ◦

c
images

(30 m GSD) in VV- and VH-polarization as well as modelled liquid water content (LWC) and snow water
equivalent (SWE) data (1000 m GSD). To enable comparison, mean images were calculated for snow cover,
SWE and LWC over the two days of S1 acquisition. 28



During summer 2018, a pronounced feature was observable in all slope orientations, where the
backscatter alternated from composite to composite (at 6 day intervals) with a difference of approx-
imately 0.5 dB. This feature was also detected in the summers of 2019 and 2020, however it was
less pronounced then.

During winter seasons, an increase in VH/VV-polarization dB difference was detected. During
summer seasons, the dB difference’s temporal evolution was highly comparable across all slope
orientations, with a minor decrease towards the start of the winter season. An oscillation was
visible due to the alternating feature already discussed above, also at VV-polarization.

Measured information from data facing North, featured 0.5 dB higher values than the remaining
three slope orientations at both VV- and VH-polarization. Also, the dB differed in the same way,
when tracking the data sampled with 1 km intervals. This behaviour was, however, not consistent
over the diverse resolutions. At 100 m, the difference in amplitude was insignificant for VV- albeit
not in VH-polarization. For the latter, a very similar response of backscatter was found in 100 m
data, when compared to 1000 m spaced information. At both polarizations, data from 1000 m grid
indicated that North-facing slopes tended to have a less abrupt decline of backscatter and a later
arrival at its minimum than did slopes oriented in other directions. At a 30 m sample interval,
the effect was found during winter, but not during summer. However, South facing slopes were
continuously 0.5 dB below average.

Figure 4.2: Time series of S1 backscatter in relation to slope direction and in comparison to temperature
at 2500 m.a.s.l.. Samples are masked out if belonging to a water body or if situated in a plain (slope below
15%). The number of 1000 m samples taken into consideration at 1000 m resolution were North: 332, East:
360, South: 228 and West: 449.

4.1.2 Mean S1 backscatter of snow covered pixels and influencing factors

Fig. 4.3 displays the S1 backscatter time series for snow covered pixels in dependency of three vari-
ables: 1) aspect orientation, 2) elevation and 3) land cover class. As snow coverage was determined
by using optical imagery, the time series was investigated within the time frame of two years, where
all data sources were available.

The first plot indicates temperature progression over time. Based on this progression background,
colour-shading was set across all plots. The shading indicates the relation between the temperature
at 2500 m.a.s.l. and the freezing point (red above, blue below).
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Figure 4.3: Mean time series (Sept. 2018 to Sept. 2020) of S1 backscatter for snow-covered pixels in
dependency of 1) aspect orientation (subplots ii-v), 2) elevation (subplots vi-ix) and 3) land cover class
(subplots x-xiii). First subplot (i) shows the mean 2500 m temperature over time. The shading for all
subplots is based on this temperature in relation to the freezing point during the S1 acquisitions.
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For each dependency of interest (see defined above 1-3), the number of samples (N) within the
classes was plotted over time to enable a discrimination of the significance of the correspondingly
received backscatter trend (subplots ii, vi, x). Second, the VV-polarized backscatter behaviour per
class was drawn (subplots iii, vii, xi), followed by the progression of the VH-polarized information
(iv, viii, xii) and the corresponding VH/VV-difference (v, ix, xiii) over time.

The aspect orientation (dependency 1) was characterized by reliable numbers of samples during
the winter and spring seasons. However, especially the number of South oriented samples were
of statistical insignificance during summer (see Fig. 4.3). Generally, South-facing slopes featured
the smallest number of snow-covered samples, whereas the classes of West and East facing aspects
featured around 400 samples each during winter.

The behaviour of snow-covered pixels across all polarization states varied less than 1 dB across
the aspect directions. However, North-facing slopes generally resulted in above average backscatter
values, whereas South facing aspects generally featured below average values. Both polarization
states measured were characterized by a decline during spring, which occurred across all aspects.
The intensity of this signal’s decrease varied, however, and the cross-polarization ratio resulted in
higher values during winter, gradually decreasing over the melting season until it reached minimal
values at the beginning of autumn. Low values of the VH/VV-difference were present during
summer, before increasing again towards an advancing winter season.

A temporal offset in minimal backscatter measurements was found across slope aspects. North
facing slopes indicated later melting events, as the measured backscatter minimum is reached with
a two-week delay compared to South facing aspects.

To investigate the dependency of a time series in relation to elevation (dependency 2), three classes
of elevation were assigned and their mean time series generated. Across those, areas above 3000
m.a.s.l. were continuously covered with snow, whereas the amount of available snow-covered pixels
below this elevation threshold were restricted to the winter seasons. Backscatter within high alpine
regions had the highest variations over the time series. A sudden decrease in backscatter was found
in each time series during the start of spring. However, the timing of this event was delayed and
the amplitude increased with the rising elevation. The backscatter ratio reached lower dB values
during summer and gradually increased towards midwinter before decreasing again towards the next
summer.

Distinct differences across land cover classes as aggregated from CORINE land cover classes (see
chapter data) were detected (dependency 3). The significance of backscatter over forest and agri-
cultural areas, however, was minor, due to restricted snow coverage. The strongest amplitudes in
all three polarization channels were detected in the class of glacier and perpetual snow, followed
by non-vegetated class and then scrubland. Each of these three classes indicated a decrease of the
measured backscatter signal during spring. Thereby, the decrease in backscatter over scrubland was
restricted to 1 dB over one month, whereas the backscatter over glacier and perpetual snow covered
regions dropped 4 dB between May and June.

4.2 Performance assessment of dry snow reference images

Quantification and analysis of the influence of the chosen generation procedure of dry winter ref-
erence images was performed by mapping wet snow based on corresponding reference images and
assessing the resulting validity. This was tested by comparing wet snow maps to an independent
reference data set that modelled the local LWC.
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4.2.1 Resulting reference image

Three approaches for generating a reference image were tested: 1) a single 36 h composite, 2) an
image calculated as the median of three composites and 3) an image calculated as the local median
over a winter season (Dec-Feb). Each approach was tested at three spatial resolutions (1000, 100,
30 m) and two polarizations (VV, VH).

Figure 4.4: Reference images based on a single composite and median winter season approaches. The
displayed examples show VV- and VH-polarization at 30 and 1000 m spatial resolution.

Fig. 4.4 shows an overview of a selection of the resulting reference images in comparison (non-
selected images are included in the appendix, see A.2 and A.3). By cross-comparing diverse aspects,
the magnitude of the following effects was observable: i) spatial resolution ii) polarization and iii)
reference image generation method. A decline in spatial resolution (left vs. right quartet in Fig.
4.4) resulted in a smoothed view of the area. Between 30 and 1000 m this was observable by visual
comparison and was indicated by both a loss of small features, as well as a reduction of extreme
values, with increasing GSD. The best visible influence of polarization (top vs. bottom row) was
the occurring change in amplitude. The mean across the test site decreased about 6 dB between
the VV- and VH-polarized channels. The most prominent effect of the applied approach (left vs.
right columns) were the gaps occurring in the single composite mode. These gaps, indicating the
locations, where dry/no-snow conditions were not met during the acquisition, were set to voids.

Fig. 4.5 shows the results of wet snow mapping at 30 m resolution by indicating the progression
over the melting season of 2019 (March-June). Optical snow cover likelihood is presented to enable
an assessment of the plausibility of the resulting wet snow maps. The resulting maps showed similar
results per composite, however, a general trend toward more detected wet snow was found when
using the winter season approach in comparison to using a single composite as the reference image.
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Figure 4.5: Example of time series of 30 m GSD optical images (top row), detected wet snow maps from
VV-polarization plotted over local land cover (second row).

4.2.2 Validation of coarse resolution reference images against modelled liquid
water content (LWC)

Statistical validation against LWC maps was only viable at 1000 m and 100 m sample intervals. An
overview of the multiple time series enables a visual insight into the results and is shown in Fig.
4.6.

Tab. 4.1-4.4 provide an overview of the achieved mean values of the statistical results for overall
accuracy (OA), Cohen’s kappa coefficient (κ), error of commission (EoC) and of omission (EoO)
of wet snow for the time period from Sept. 2018 to Sept. 2020. Overall accuracies across examined
polarization channels and spatial resolutions (see Tab. 4.1) varied between 0.910 and 0.926. For
VH-, a 1% higher mean value was achieved than in VV-polarization. κ values ranged from 0.458
to 0.513. This indicates that the conducted classification performed around 0.5% better than a
random classifier (Lillesand et al., 2015). This achieved level of agreement, κ, between LWC and
retrieved wet snow locations from S1 is to be understood as ’weak’ or ’moderate’ (see tables in
McHugh, 2012; Viera et al., 2005).

4.2.2.1 Spatio-temporal error distribution

Time series of confusion maps were created to allow an examination of the spatio-temporal behaviour
of the observed errors. Fig. 4.6 illustrates a four month time range during the melting season
of 2019, using a full winter season reference image. Displayed are optical snow cover likelihood
images, detected areas featuring wet snow, and error maps at two different thresholds for LWC.
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Median accuracies at 1000 m GSD, time frame: Sept. 2018 to Sept. 2020

Table 4.1: Overall accuracy [-]

Polarization
RI approach VV VH

single composite 0.922 0.915
median of three 0.926 0.911
median of winter season 0.925 0.910

Table 4.2: Cohen’s Kappa coefficient [-]

Polarization
RI approach VV VH

single composite 0.458 0.488
median of three 0.463 0.508
median of winter season 0.474 0.513

Table 4.3: Error of commission [-]

Polarization
RI approach VV VH

single composite 0.344 0.494
median of three 0.497 0.610
median of winter season 0.443 0.606

Table 4.4: Error of omission [-]

Polarization
RI approach VV VH

single composite 0.425 0.322
median of three 0.395 0.284
median of winter season 0.399 0.290

The distribution of classification errors across space was representative for all three examined years
and similar across the three tested reference image approaches. Notably, wet snow areas were more
often detected on South facing slopes than in other aspect orientations.

Cross-comparing statistics, a higher accuracy was achieved in all but some errors of commission,
when using the 3% LWC threshold for the validation data. Lowlands and high elevation areas were
generally properly classified as no or dry-snow occurs, respectively. During early melting, differences
between S1 retrieval and the independent reference LWC dataset were found in the northwestern
part of the test area, where S1 retrieval suggested wet snow occurrence while LWC data did not.
Steep east facing slopes, however, generally indicated the contrary case. Both types of differences
were mainly situated on mid elevations. With further losses of snow coverage over time the area
rightfully classified as “no snow” increased. Errors of omission still edged correctly classified wet
snow in high elevations. However, errors of commission disappeared, until they reappeared in
September.

4.2.2.2 Error distribution in relation to land cover types

Bar charts, shown in Fig. 4.7, illustrate the relative numbers of errors of commission and omission
per land cover class. Colours thereby indicate the seasonality of error occurrence. The errors
generated are illustrated. A full winter season reference image was used; a liquid water content
threshold of 3% was applied.

The likelihood of an error of commission decreased, when using a single composite instead of the full
winter approach. However the number of errors of omission increased. VV-polarized data generally
performed better by both scoring fewer errors of commission and omission than VH-polarized data.
The effect was more distinct when comparing polarization results within errors of commission than
within errors of omission.

A difference of error distribution across land cover classes was found. Few errors occurred in urban
areas. This correlates with this class having lost the most samples during the discharging of pixels
featuring below a 15% slope. The distribution of errors of omission was characterized by a distinct
majority in the scrubland class, followed by forested regions. Errors of commission, however, were
mostly detected over non-vegetated areas.
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Figure 4.6: Example time series at 1000 m GSD of snow cover likelihood maps (top row), detected wet
snow maps from VV-polarization (second row), and maps of achieved accuracies (last two rows). Validation
was performed against LWC data, which had been thresholded at 1% (third row) and at 3% (fourth row).
Achieved statistics (overall accuracy (OA), Cohen’s kappa coefficient (κ), error of omission (EoO) and error
of commission (EoC) are displayed on top of corresponding confusions maps and provided in percentages.
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Figure 4.7: A selection of bar charts showing the error occurrences (commission and omission) in relation
to land cover class. Colour indicates the season when the corresponding errors were generated.

These were followed by the generally higher elevated areas characterized by glacier and perpetual-
snow. In cases of a single composite image approach or a LWC threshold of 1%, non-vegetated areas
had a lower number of errors of commission than did regions covered by glacier or perpetual snow.

Further analysis indicated that a variation in the applied LWC threshold led to a redistribution
between errors of omission and commission. Using a lower threshold led to a decrease in the
number of errors of commission and to an increase in errors of omission.

4.2.2.3 Error distribution in relation to seasonality and slope orientation

Figure 4.8: Bar charts showing the error occurrence (commission and omission) in relation to aspect
orientation at 1000 m scale. LWC was taken for reference with a threshold of 3 Vol-% and S1 wet snow maps
as input. Colours indicate the season, in which the corresponding errors were found.

The influence of seasonality and aspect on error distribution of VV- and VH-backscatter is illustrated
in Fig. 4.8. The amplitudes of error occurrences varied strongly. While the highest amount of errors
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of omission numbered up to 2’900 in spring, the misclassifications of errors of commission reached
its maximum in autumn with nearly 600. Most errors of both omission occurred during spring
(Mar-May), indicating most melting to occur during spring (melting season). Differences between
S1-based retrievals and the independent reference information during autumn were mainly errors of
commission caused by the reset in the LWC model: The LWC model is set to zero every September
to enable building-up a new snowpack for the upcoming season.

Figure 4.9: Polar histogram showing the normalized error occurrence (commission and omission) in relation
to the local aspect (36 bins, each bin containing 10◦) at 1000 m GSD using VV-mode. The samples per
aspect indicate the probability of samples (N) and errors (EoC, EoO) to be classified into the corresponding
aspect bin over the observed time and are as such comparable to the bar charts in Fig. 4.8. Striped lines
indicate the aspects which were defined as North (top), East (right), South (bottom), West (left) during
time series generation in Fig. 4.2 and 4.3.

The polar-histograms in Fig. 4.9 enable an analysis of the distribution of errors in relation to their
aspect. Normalization was performed by using a probability density function, where each bar height
was re-scaled as follows (MathWorks, 2021):

bin height =
number of observations in bin

total number of observations ∗ width of bin
(4.1)

The first plot shows the distribution of all samples across the test site, which were used for the
generation of the slope-dependent time series. A majority of samples were identified to be facing
towards South-South-West (classified as South). The distribution of errors of omission was found
to assimilate this spatial-pattern. Errors of commission appeared to be under-represented in the
direction of South-East, with the exception of the slope-class 120-130◦. Of notable interest was also
the amplitude at 210-220◦.

4.2.2.4 Temporal behaviour of differences between S1-based retrievals and indepen-
dent reference data set

Fig. 4.10 and 4.11 indicate the temporal changes of the calculated statistical measures for each
reference image approach, in comparison to the number of snow covered pixels detected using
optical images (top row).

During all three observed melting seasons (April to July, 2018-2020), whenever the reference image
was set to single composite images, a general trend towards lower overall accuracy, Cohen’s kappa
coefficient and higher errors of omission was observed in comparison to RIs’ based on a median
of three or on a median over the full winter season. Fewer errors of commission, however, were
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achieved by the single composite approach, when compared to the others. No conclusive trend was
observed between the progression of accuracy measures between median of three and median of the
full winter season. However, an increase in differences between the performance of single composite,
median of three, and the winter season approach was found over time (see Fig. 4.10 and 4.11).

Figure 4.10: Achieved statistics over time in VV-mode in comparison to the number of snow covered pixels
from optical imagery at 100 m GSD. Displayed are the temporal behaviours of the overall accuracy (OA),
Cohen’s kappa coefficient (κ), error of omission (EoO) and error of commission (EoC) at 1000 m GSD using
VV-mode. S1 data for wet snow retrieval.

Relevant discrepancies between VV- and VH-polarized information were detected in summer seasons
(compare Fig. 4.10 and 4.11). The error of omission from VV-polarized data strongly increased
starting in June (especially in 2018), reaching a high in July, where EoO came to a value above
0.6%, before decreasing again to 0 at the beginning of September. However, no such behaviour
was observable within VH-polarization information. Accordingly, κ indicated double the accuracy
during July 2018, when VH- (κ = 0.8%) was used instead of VV-mode (κ = 0.4%).

Strongly effected by low resolutions were the statistical measures during summer. Due to the
availability of only a few samples of positive detection of wet snow in the independent validation data,
a single misclassification weighed strongly on the “statistical” error measures (compare appendix
A.4 and A.5). The resulting fluctuations were visible in 1000 m GSD calculations but diminished
strongly at increasing spatial resolution (100, 30 m), as many more samples were available. For this
reason, we displayed the 100 m data here.

38



Figure 4.11: Achieved statistics over time based on VH-LRW composites in comparison to the number of
snow covered pixels from optical imager at 100 m GSD. Displayed are the temporal behaviours of the overall
accuracy (OA), Cohen’s kappa coefficient (κ), error of omission (EoO) and error of commission (EoC) at
1000 m GSD.

4.3 Snow depth retrieval

As input for the retrieval of snow depth from S1, the γ◦c composites (VV- and VH-polarization) and
the snow cover extent from the optical snow cover product were used. Additionally, the aggregated
CORINE land cover classes and the Copernicus tree cover density information were used (see chapter
2.6). The results from snow depth retrieval using γ◦c composite backscatter time series as input are
shown in Fig. 4.12, 4.13 and 4.14 for 1000 m and 30 m, respectively. Each plot shows the snow
depth time series retrieved from the composites with their temporal sample interval of six days.
The validation was performed on the nine illustrated locations of IMIS stations within the test site
(see Fig. 2.1).

4.3.1 Temporal behaviour of retrieved snow depth

The range of values in a season of detected snow depth from S1 backscatter varied when different
composite GSDs were compared. While a maximal snow depth of 9 m was retrieved at the GAN
station at 2710 m.a.s.l. using 30 m GSD (see Fig. 4.14), the same location over a 1000 m grid
indicated a snow depth below 1 m (see Fig. 4.12). Maximal snow depth at 1000 m GSD was
retrieved at the location of VDS, where it approached 4 m. The location of STN showed the highest
snow depth value in the 100 m grid with 8 m (see Fig. 4.13).
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Except for the GAN and the DIA station in winter 2019, the amplitude of snow depth retrieved
from S1 in comparison to the SWE model based retrievals were found similar at 1000 m GSD.
Overall, larger discrepancies (1-2 m) were found, when comparing the 1000 m resolved data with
point measurements (compare Fig. 4.12). This effect of amplitude offset between S1 retrievals and
IMIS data was also visible at 30 m GSD, however, in the opposite direction. Whereas generally
higher values were found at point scale measurements when compared to 1000 m GSD, the 30 m
GSD indicated deeper snowpacks than the measurements. Visual comparison indicated the best
level of amplitude agreement to be found in the 100 m resolved S1 data (see Fig. 4.13).

At 30 m GSD retrieved snow depth over time indicated fluctuations of up to 3 m within three
composites (see Fig. 4.14) in both accumulative (e.g. station: TRU) and degradative direction
(e.g. station: SAA). Such high fluctuations could not be found in the reference data. However, the
timing in changes in snow depth coincide with temperature at both point scale measurements and
areal retrievals (see Fig. 4.14).

Figure 4.12: Snow depth time series retrieved from S1 backscatter, calculated from intermediate snow water
equivalent estimate (both at 1000 m GSD) vs. values measured at IMIS stations (point measurements)
in comparison. Each subplot represents an IMIS measurement location (station short name, elevation in
m.a.s.l.): Stations are sorted by elevation. The shading colour indicates the daily maximum temperature
at 2500 m.a.s.l. in relation to freezing point (red above, blue below, for more information see chapter 2.8).
Top-left boxes depict the achieved Pearson Correlation Coefficients (Rt) between the S1 based snow depth
retrieval and the local SD measured at the IMIS station (Ri, SLF, 2021b) and to SD calculated from SWE
(Rs; SLF, 2021b). Top-right boxes display the calculated Granger test: F-score (F ◦) and critical value (cv)
for corresponding comparisons. Values marked with ’◦’ were calculated over the entire time series (including
snow free conditions), those without were calculated solely on data acquired during snow coverage (masking
was based on optical imagery, ExoLabs, 2021).
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4.3.2 Validation

4.3.2.1 Correlation assessment

The correlation of the snow depth results was once tested including snow free coverage and once
excluding data featuring no snow coverage (see Tab. 4.5-4.6). This masking was based on optical
imagery. We displayed the results featuring correlation only during snow conditions, as this is of
higher relevancy for the retrieval of snow depth using S1 imaging: By applying the snow index,
no snow was masked using optical images not SAR (see the methods chapter). However, at 30 m
resolution, both results (including and excluding snow free data in the calculation of the Pearson
correlation coefficient (Rt)) are shown and the corresponding data at 100 and 1000 m GSD can be
found in the appendix (see A.7 and A.6).

Achieved mean and median Rt between S1 retrieved snow depth and IMIS measurements as well as
between S1 based retrieval and the SWE model based calculations are summarized in Tab. 4.5 and
4.6. The first table indicates statistics, when comparing the entire time series, whereas the latter
displays the correlation results when only analyzing snow covered composites.

Tables featuring the mean and median resulting Pearson correlation coefficients (Rt) for snow depth retrieval
from Sentinel-1, when including (Ri◦) and excluding (Ri) snow free conditions.

Table 4.5: Ri◦

Spatial resolution [m]
Reference source 1000 100 30

IMIS mean 0.63 0.69 0.72
IMIS median 0.69 0.74 0.75
SLF model mean 0.65 0.70 n.a.
SLF model median 0.72 0.70 n.a.

Table 4.6: Ri

Spatial resolution [m]
Reference source 1000 100 30

IMIS mean 0.32 0.49 0.39
IMIS median 0.42 0.51 0.57
SLF model mean 0.44 0.57 n.a.
SLF model median 0.57 0.59 n.a.

The comparison of the results, displayed in the two tables (Tab. 4.5 and 4.6), indicated a strong
decrease in achieved correlation, when excluding acquisitions during snow free conditions. Depend-
ing on spatial resolution and stations, also negative Rt values between in-situ measurements and
retrieved snow depth were received after the exclusion of snow free images (compare Fig. 4.12).

After the exclusion of no snow images, lowest Rt values between both S1 and IMIS data as well as
S1 and SWE based snow depth resulted across all spatial resolutions at the STN station. At 1000 m
GSD, the results indicated erroneous retrieval at the stations GAN and DIA, where retrieved snow
depth repeatedly fell to zero, even-though both reference data sets indicated no such behaviour.

The difference between mean and median values varied between 0 and 20 % (see Tab. 4.5 and 4.6).
Generally, larger distinctions were found between median and mean values (calculated using Equ.
3.2 and 3.3), when excluding data acquired during snow free conditions. The results achieved with
mean values were continuously lower than median values (exception: SWE to S1 at 100 m GSD).
Highest homogeneity was achieved at 100 m resolution.

Overall, correlation between IMIS point scale measurements and S1 retrieved snow depth increased
with an increase of the applied GSD (see Tab. 4.5 and 4.6). The correlation between SWE and
S1 based retrieval varied in mean, but not significantly in median values. The analysis of the
progression of the S1 based snow depth retrievals and the calculated depths from the SWE model
suggested results between ’weak’ and ’strong’ correlations, when the full time series was analyzed
(McHugh, 2012). This was dependent on the resolution. An exclusion of data acquired during
snow-free conditions resulted in a correlation which was to be understood as ’minimal’ or ’weak’
(McHugh, 2012).
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Figure 4.13: Snow depth time series retrieved from S1 backscatter, calculated from intermediate snow
water equivalent estimate (both at 100 m GSD) vs. values measured at IMIS stations (point measurements)
in comparison. Each subplot represents an IMIS measurement location (station short name, elevation in
m.a.s.l.): Stations are sorted by elevation. The shading colour indicates the daily maximum temperature at
2500 m.a.s.l. in relation to the freezing point (red above, blue below, for more information see chapter 2.8).
Top-left boxes depict the achieved Pearson Correlation Coefficients (Rt) between the S1 based snow depth
retrieval and the local SD measured at the IMIS station (Ri, SLF, 2021b) and to snow depth calculated
from SWE (Rs; SLF, 2021b). Top-right boxes display the calculated Granger test: F-score (F ◦) and critical
value (cv) for corresponding comparisons. Values marked with ’◦’ were calculated over the entire time series
(including snow free conditions), those without were calculated solely on data acquired featuring snow cover
(masking was based on optical imagery, ExoLabs, 2021)
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4.3.2.2 Analysis of Granger forecasting relations

Specific Granger test results are indicated on the corresponding location at each GSD (see Fig.
4.12, 4.13, 4.14, and further in the appendix). The median values achieved in Granger tests are
summarized in Tab. 4.7.

Table 4.7: Median Granger test results for snow
depth retrieval from Sentinel-1 including snow-free
conditions

Spatial resolution [m]
Relationship 1000 100 30

IMIS to S1 F ◦ 3.30 1.13 2.29
cv 4.03 4.03 3.92

S1 to SLF model F ◦ 6.88 1.24 n.a.
cv 3.07 3.92 n.a.

The results of the IMIS location SAA indicated an error during data processing, as Fi◦ approached
infinity at 1000 and 100 m GSD. By calculating the median and not the mean correlation, the
effect of this value on the result was mitigated. Out of the nine locations, five indicated a positive
forecasting relation at 1000 m GSD while four suggested the same at 100 and 30 m GSD (see
Fig. 4.12, 4.13, 4.14). The lowest forecasting relation between IMIS measurements and S1 based
retrieval at 30 m was found at the location of STN (see Fig. 4.14). This was also the only
location consistently indicating no Granger forecasting relation across all examined GSD. The results
indicated no forecasting relation between IMIS measurements and the retrieved snow depth from S1.
Hypothesis A.0 was retained, stating that SDIMIS does not Granger forecast SDS1 and hypothesis
A.1 was rejected.

Granger forecasting between S1 and SWE model based snow depth results suggested possible de-
pendency at 1000 m GSD (see Fig. 4.7). Out of the nine locations, eight achieved higher F-scores
than their critical values (see Fig. 4.12). However, at 100 m GSD, only three locations indicated
the same results (compare Fig. 4.13). At 1000 m GSD, a Granger relation between the S1 based
retrieval and the SWE based calculation was suggested, allowing a rejection of the null hypothesis
(B.0: SDS1 does not Granger forecast SDSWE) and an acceptance of the working hypothesis (B.1:
SDIMIS Granger forecasts SDS1). The results at 100 m GSD suggested otherwise. However, as
the model was bi-linearly interpolated to 100 m, as an approximation, the validity of the reference
data at 1000 m GSD was higher (see chapter 2.4).
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Figure 4.14: Snow depth time series retrieved from S1 backscatter at 30 m GSD vs. measurements at IMIS
stations (point measurements) in comparison. Each subplot represents an IMIS measurement location; they
are sorted by elevation. Top-left boxes depict the achieved Pearson Correlation Coefficient (Rt) between S1
based snow depth retrieval and snow depth measured at local IMIS station (Ri). Top-right boxes display
the calculated Granger test results: F-score (F◦) and critical value (cv) for corresponding comparisons. In
cases where the value F ◦ is higher than the cv a forecasting is suggested. R and F-score values were marked
with ’◦’ and were computed across the entire time series including snow free conditions. Those without
this marking were calculated solely on data acquired featuring snow cover (masking was based on optical
imagery, ExoLabs, 2021)
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5 Discussion

Within this chapter, the results described in the previous chapter are described and linked to
relevant literature. Challenges as well as opportunities of the performed calculations are presented.
A critical view is presented on the executed LRW composite testing (chapter 5.2), before discussing
the implementation and validation of wet snow detection and snow depth retrieval (chapter 5.3; 5.4).
Finally, challenges of the performed research and possible improvements of the conducted work are
introduced (chapter 5.6), before presenting upcoming possibilities in related scientific fields (chapter
5.7).

5.1 Adopted resolution trade-offs

Remote sensing applications are mainly restricted by the adopted trade-offs between resolutions.
The focus of this thesis was set on the temporal resolution in between acquisitions and to ensure the
possibility of small grid spacings. Time tag of S1 composites could be minimized to 36 h. In-between
composite acquisitions six days passed. Thereby, we are very near to approaching the required
temporal resolution on a regional scale for snow cover observation as proposed by Malenovský et al.
(2012). However, the restricted extent of the test site led to a constrained amount of, especially
snow covered, samples available. This presented itself as a drawback during the examination of the
influence of land cover and elevation on resulting time series. Due to a lack of available memory
and processing power, spatial resolution was only applied to 30 m resolution products, instead of
also analyzing the effects on a 10 m grid spacing.

5.2 Local resolution weighting composite time series

Research Question 1:

What opportunities offer multi-track backscatter composites for wet snow
mapping in alpine areas?

The potential of multi-track backscatter composite time series (Small et al., 2021) for cryospheric
applications was assessed by quantifying their slope dependency of the measured backscatter signal.
Suitable potential is met, when East and West slopes feature insignificant differences in backscatter
behaviour, which cannot be attributed to external factors.

Hypothesis 1.1:
LRW composites are homogeneous: Variance over time of the S1 LRW image
between East and West facing slopes are minimal and found variances can
be attributed to acquisition timing.

In case of variances being caused by the timing of acquisition, more melting is expected to be de-
tectable in image parts acquired during the ascending flight track. Descending images are acquired
during morning hours (06.34 or 07.34, respectively), whereas ascending images are attained during
evening hours (18.20 or 19.20, respectively). The first, therefore, acquires images of a snowpack,
which was exposed to less radiation throughout hours before the acquisition than the latter. Ascend-
ing images are expected to generally capture snow characteristics, after the snowpack was exposed
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to more intense solar radiation and correspondingly warmer temperature conditions. If the timing
of the acquisition is influencing the signal such an effect caused by freeze-thaw mechanism should
become visible between East and West facing slopes.

Variance between East and West facing slopes have been found to be insignificant. Minimal
backscatter was reached by West slopes slightly after the minimal value achieved by East facing
regions. Also, the amplitude of decrease in backscatter was found to be of similar characteristics
between the two slope directions. Therefore, no heterogeneity was found which could be attributed
to the creation of LRW composites. This statement excludes the six prior stated composites, which
were discharged and replaced by a mean, due to sensor failure or unavailability.

For this same reason of exposure to solar radiation, stronger signal attenuation in South facing
slopes are more frequent, than signal diminution in North facing slopes (Shaw et al., 2020). The
lower backscatter values are attributable to a generally more intense and longer exposure to sun-
induced radiation (López-Moreno et al., 2013). Such increased exposure has been found to lead to
less accumulation and an earlier melt onset in the snowpack (Bender et al., 2020; López-Moreno
et al., 2013). This corresponds with the findings within this thesis, where a higher backscatter signal
amount was measured in areas oriented towards the North and a below average backscatter was
found for South facing slopes. These results further support the validity of multi-track backscatter
composites.

Hypothesis 1.2:
VV-polarized backscatter information achieves a more similar trend across
slope directions and offers more homogeneous composites than VH-polarized
data.

Between VV- and VH-polarization an amplitude difference of around 6 dB was found. By analyzing
the temporal change within this ratio (VH/VV), a seasonal trend was detectable: The ratio increased
in each aspect - and most so in South facing regions - towards the winter season and declined again
during melting. This coincided with the amount of available snow coverage as suggested by Lievens
et al. (2019). However, this trend was also visible, when only analyzing snow covered samples.

The mentioned alternating feature, found mainly in VH-polarization, could be linked to a lower noise
level and a higher sensibility within that polarization of S1-B, when compared to S1-A (Schmidt
et al., 2020; Hajduch et al., 2019). The authors could not find a clear evidence explaining why this
behaviour is more evident during 2018 than 2019 or 2020. The summer of 2018 was comparatively
hot and dry. This possibly led to a more pronounced signal. The diminution of this behaviour could
also have been addressed in a re-calibration between 2018 and 2019. However, it did not influence
the results in this thesis, because its effect upon snow covered samples was minimal.

Overall, the HH-polarized data suggested more homogeneous LRW composites, due to sensor dif-
ferences between S-1A/-1B in VH-polarization. Also, the difference between North and South fac-
ing slopes were found larger in VH-polarization, when compared to VV. However, for cryospheric
applications the difference in homogeneity was minimal and both polarization states were found
applicable.

Hypothesis 1.3:
Elevation and land coverage (especially vegetation) influence the result-
ing time series and the reliability of this slope dependency approach for
LRW homogeneity testing.

Throughout all time series with a statistical relevancy of snow coverage the characteristic loss in
backscatter, which indicates snow melt (Saberi et al., 2020; Marin et al., 2020; Hallikainen, 1992),
was detected. The timing and magnitude of this backscatter was found to be dependent upon
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elevation, land cover and slope orientation (Jäger, 2016; Rohner, 2014). However, a clear distinction
between the effect of land cover and elevation was not within the scope of this thesis.

The results supported the findings of previous researchers wherein areas featuring high vegetation
activity provide unfeasible backscatter signals for snow applications (Jäger, 2016; Rohner, 2014).
North facing slopes have been found to provide more favourable conditions for vegetation to grow
(Bennie et al., 2008). This suggested corresponding time series to be more prone to volume scat-
tering attributable to vegetation. Results were calculated by aggregating the land cover classes
to corresponding spatial resolutions, the pixel purity was not considered. Mixed pixel effects (see
Lillesand et al. (2015)), bias the resulting time series between corresponding land cover classes.

5.3 Comparison of reference image approaches

Research Question 2:

Which approach for the generation of a dry winter reference image achieves
highest accuracies in wet snow detection when compared to model based
LWC maps?

Hypothesis 2:
Creating a median composite image over the winter months relevantly im-
proves wet snow mapping compared to a single composite or a median of
three based approach, when compared to liquid water content maps.

Change detection using reference image approaches is used in diverse land cover observation appli-
cations of a hydrological nature. It is used to assess the characteristics of snowpacks (e.g. Schel-
lenberger et al. (2012) and Nagler et al. (2000)), to observe flooding events (Clement et al., 2018)
or to estimate the degree of soil moisture (Pulliainen et al., 1996). In this thesis, the validity of
a reference image was assessed by comparing the resulting wet snow maps to the modelled liquid
water content (LWC) of snow maps. Performing a validation on the application requires a discussion
of the performed approaches used during the application.

The applied wet snow detection algorithm was first suggested by Rott et al. (1995) and has since been
applied in multiple studies (see review by Tsai et al. (2019)). Its simplicity and broad applicability
allows the algorithm to remain state-of-the-art wet snow detection (Tsai et al., 2019), with an
adjustment of the threshold to -2 dB (Nagler et al., 2016).

Reference images can be created by using dry winter or snow-free summer backscatter information
(Nagler et al., 2000). In multiple applications of this method, soil moisture was found to degrade the
accuracy of snow mapping (e.g. Schellenberger et al., 2012). To minimize this effect, Pettinato et al.
(2014) suggested the usage of dry winter reference images to be preferable over summer scenes. The
results by Jäger (2016) indicated best performance by a so-called improved winter reference scene.
Hereby, a dry winter composite was supplemented by using summer backscatter data, where wet
snow contamination was present. Rohner (2014) found the temporal offset of the reference image in
comparison to the observed scene to increase the inaccuracies. A widely discussed drawback of the
approach by Rott et al. (1995) is its insensitivity towards dry snow detection (Koskinen et al., 1997).
This led to non-circumventable errors of omission in diverse studies, where wet snow detection was
validated using optical imagery (Jäger, 2016).

In this thesis, we combined the findings of these studies by creating a winter season reference image.
By allowing to condense backscatter information over three months over a test site, which features
relatively small climatic differences (in contrast to the study of e.g. Jäger (2016), whose test site
covered the entire alpine area), all pixel-samples were covered at least once during dry or no snow
cover conditions. By using the winter season approach, void gaps could be eliminated on account of

47



the sufficient data supplementation. By including the extent of snow cover by optical imagery into
the snow detection algorithm, a differentiation between dry snow and no snow became possible. The
produced image was set in comparison to images in an already applied single composite reference
image approach (e.g. Small et al. (2021) and Rüetschi et al. (2019)) as well as a median of three.

The validation was performed by comparing wet snow maps to modelled LWC maps (similar to the
validation conducted by Marin et al. (2020)). This allowed to minimize the effect of errors due to
the lossless transmission of C-band microwave frequency through dry snow. When digitizing LWC
into binary maps, a threshold was determined by using an iterative process. Thereby, the most
favourable trade-off between errors of commission and errors of omission was striven for, resulting
in best performance, also indicated by the highest overall accuracy (OA). However, while the
threshold of -2 dB for wet snow mapping from SAR is already well established (Nagler et al., 2018)
and its robustness proved to be reliable (Tsai et al., 2019), the definition of the threshold for the
liquid water amount required for the possible detection by C-band SAR, had to the knowledge of
the authors not yet been established.

The calculated statistical values differ in their significance concerning the here performed study of
wet snow analysis. The validation using modelled LWC data allowed to have a more meaningful
OA than previous studies (e.g. Jäger (2016)), as dry snow areas were also excluded in the reference
data. User’s and producer’s accuracy and corresponding error of omission and commission were of
equal relevance and an analysis of the combination suggested an applicable understanding of the
outcome. However, the κ was of relatively low relevance, for it is strongly dependent on the count
of detections in either data set (LWC or S1).

The meaningfulness of the statistical measures is dependent on the amount of samples available.
This lead to high fluctuations in errors of omission and commission during summer, when snow
cover was limited - especially in the 1000 m resolution. A comparison of the behaviour of statistical
measures over time allowed to examine the corresponding significance. Therefore, inter-comparison
across various statistical measures was required to accurately quantify the performance.

κ indicates the performance of the wet snow classifier based on S1 in comparison to a random
wet snow classifier. The resulting value is therewith highly dependent on the class of wet snow to
be present in the reference data, otherwise κ is automatically zero, as no wet snow was classified
correctly in either random classifier or S1 based classification. Between September and February,
however, very little to no wet snow was present in LWC due to the model reset (see chapter 2.4).
This resulted in a mean and median κ to be low.

Errors of omission were highly seasonal. This was traced back to the reset of the LWC model each
September. With no wet snow in the reference validation, errors of exclusion consequently remained
zero. The majority of errors of exclusion amounted in spring and encompassed regions of correctly
classified wet snow. This effect indicated a possible enhancement of the results by further adjusting
the threshold of LWC. On the other hand, it stands in accordance to the findings of Nagler et al.
(2000) indicating that C-band SAR tends to underestimate the presence of wet snow, where snow
coverage is discontinuous.

Errors of commission were mainly found in altitudes higher than the correctly classified wet snow.
This indicated S1 to be able to detect wet snow already prior to its appearance based on the LWC
model. This might be another effect attributable to the validation data set. The LWC model
worked on run-off data. It lagged initial snow melt due to the percolation throughout the snowpack
(Winstral et al., 2019). This melting in the top layer of the snowpack, however, interacted with S1
information, thereby reacting faster. With the proceeding melting season, the error of commission
wandered into higher elevation zones, where S1 again enabled the detection of the snow melt earlier
than the model based mask indicated.
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The dispersion pattern of errors in relation to their aspect indicated no clear dependency. The errors
of omission assembled the general aspect distribution of available pixels. Also, the distribution of
errors of commission suggested no clear cardinal direction to be of relevance. The strong differences
in amplitudes suggested the diverse slopes’ time series to be more likely prone to errors of commission
than others.

Discrepancies between VV- and VH-polarized information were mainly found during summer. The
increase in the error of omission in VV-polarization was found to be restricted to the land cover
class of bare soil. Further analysis could include the results of cross-correlation differences.

The comparison of reference image approaches over time and space indicated results standing in
agreement to literature (e.g. Nagler et al. (2016)). For selected applications featuring a restricted
time, a single composite reference image might be sufficient and be preferred in certain studies due
to its simplicity, speed and minimal processing costs. However, as already found by other authors,
the approach of using multiple images (Pettinato et al., 2014) or composites (Jäger, 2016) for the
reference image generation achieved higher accuracies than a single composite reference image.

The changes in statistical measures over time differed negligibly between the median of three acqui-
sitions featuring the coldest conditions and a median over three winter months. Both approaches
were able to cover all image samples at least once during dry or no-snow conditions and so remove all
gaps caused by wet snow contamination within the reference image. However, a slight improvement
was achieved by using more than three composites. Moreover, a decrease in accuracy was found
when increasing the time offset between acquisition and reference image by using the single com-
posite reference image approach. The winter season approach indicated the strongest robustness
also towards this effect.

5.4 Snow depth retrieval

Research Question 3:

Are multi-track backscatter composites sensitive to snow depth when ap-
plying the method of Lievens et al. (2019)?

Hypothesis 3.1:
By applying the method of Lievens et al. (2019) a correlation between
snow depth and the VH/VV-backscatter difference is achieved.

Diverse studies suggested inconclusive results, when examining a possible link between snow depth
and radar measurements. These studies mainly focused on single polarization states (Rutter et al.,
2019; Shi et al., 2000) or radiometry (Tedesco et al., 2010; Grody, 2008) at X- and Ku-band. Also,
approaches for snow depth extraction were attempted based on interferometric techniques (Varade
et al., 2020; D. Li et al., 2017). Lievens et al. (2019) were the first to assess a correlation between
the polarization ratio at C-band SAR and snow depth. While the search for physical explanations to
the found correlation are still ongoing, the retrieval is based on the idea of building up a snowpack
in form of a recursive function over time, so performing multi-temporal change detection.

After masking out snow free conditions, correlation was found to be moderate (after McHugh
(2012)). The best performance of snow depth retrieval from S1 was found to be at converging spatial
resolutions. However, the statistical results did not indicate applicable stability of the performed
retrieval. This is in accordance with current radiative transfer models and the understanding of
snow backscatter behaviour (D. Li et al., 2017; Rees, 2006), albeit in contrast to the findings of
Lievens et al. (2019). In the following, multiple aspects are discussed, which could have led to this
difference in the statistical outcome.
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During processing, diverse aspects were altered to the approach suggested by Lievens et al. (2019).
The main difference was the used spatial resolution. By exchanging σ◦

T to γ◦c convention, a higher
temporal and spatial resolution was achieved.

Lievens et al. (2019) suggested an exclusion of wet snow pixels, as their impact on retrieval was
not yet fully understood. Lievens et al. (2021) argue that wet snow contamination results in an
under-estimation of snow depth due to the absorbing characteristics of water. However, by masking
out samples possibly influenced by wet snow, an insignificant amount of samples remained, when
analyzing the complete melting cycle. As a result, we refrained to mask out wet snow, so accepting
a possible underestimation of the snow depth.

De facto, the expected decrease in snow depth during above freezing point temperature conditions
was found across all used GSDs. The effect of such melting events biased snow depth retrieval at
1000 m scale to an extent, which emphasized to mask out wet snow in future analyses of snow depth
retrieval (see Fig. 4.12, Lievens et al., 2019). However, at 30 m GSD a general overestimation during
temperatures below freezing point and a higher accordance between IMIS station measurements and
S1 retrieval during conditions of wet snow was found (see Fig. 4.14). Across all spatial resolutions, a
strong and sudden increase in snow depth after the last event of cold winter conditions was detected,
which was not found in either reference data set. This dependency on the warming temperatures
suggested the retrieval being biased by melting effects.

The difference in under- and over-estimation at diverse spatial resolutions between IMIS snow depth
measurements and S1 retrieved information could also be attributable to point measurements not
automatically replicating the mean snow depth value within the corresponding grid spacing of S1
(Lievens et al., 2021; Egli et al., 2010). Especially so, as the IMIS measurements are character-
istically performed on a wind-protected plain (SLF, 2021b), whereas larger footprints by satellite
measurements likely include more mountainous terrain.

The locations of IMIS stations are displayed in Fig. 5.1. The results of two stations indicated
erraneous retrievals: GAN and DIA. While contemporaneous sudden changes in snow depth between
IMIS and S1 could be found, the correlation coefficient indicates unfeasible results at 1000 m during
the first snow season. Backscatter at these two stations was most likely biased due to glacial run
off, as they are situated just below the Glaciers Milibachgletscher and Glacier de Tsanfleuron.
Additionally, the linkage to temperatures rising above zero indicated melting and/or run off to be
the cause. On higher resolutions, such as 100 and 30 m, this effect could be better accounted for.
The station STN is also situated near a glacier, however, the glacier is smaller in size and its run off
system already developed. This relation may have also influenced the results at the STN station,
which was found to resulte in the worst statistical measures.

Further inquiries should include the location of grid spacing. Especially, the location of the GAN
station could be prone to errors due to the pixel size and location definition: the mountain ridge is in
near vicinity of the station and the North side of the mountain is characterized by steep terrain (see
Fig. 5.1). Such terrain effects possibly influenced the backscatter signal and biased the retrieval.

The snow detection algorithm applied is based on a recursive snow index. When calculating this
snow index into snow depth, vegetation density information was used in combination of parameters
a and b. Throughout this thesis, these parameters were assumed constant as described in Lievens
et al. (2019). Lievens et al. (2021) proposed an optimization of the algorithm also by adjusting
the parameter b, which was not implemented during this project. However, as all of the selected
locations were situated above the tree line and hence in sparsely vegetated zones, parameter b affects
the achieved statistics barely (compare Fig. 5.1).

Between S1 and SLF model based snow depth retrieval, a moderate correlation was detected.
Hereby, the S1 snow depth maximum is (with the exception of the GAN and DIA location) al-
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Figure 5.1: Locations of IMIS snow stations (red marker) superimposed on the map of Switzerland by the
Swiss Confederation.

ways reached earlier using S1 detection than the SWE model. This was to be expected, as the
SLF model is based on run off data (Winstral et al., 2019). As discussed earlier, this leads to a
delay in snow depth retrieval, as the melting must first percolate through the snowpack before it is
incorporated in the model.

Correlation was assessed once across the full time series and once by only considering actual snow
cover information. In accordance to the results by Lievens et al. (2019), the achieved correlation
statistics decreased when excluding snow free composites. However, the degree of the decrease
in amplitude diverged. While the temporal correlation results between point measurements and
S1 retrievals presented in Lievens et al. (2019) decreased from a mean of 0.77 to 0.65, the mean
values in this thesis decreased from 0.63 to 0.32 at 1000 m GSD. This amplitude difference may
be related to the selected broadness of the test site or to the approach of masking out snow free
areas. Whereas Lievens et al. (2019) discharged all information when snow depth values equalled
zero, the performed masking in this theses was based on snow coverage from optical imagery. We
will base further discussion on the correlations measured after masking out no snow conditions as
this indicated a better measure of the performance of snow depth retrieval from S1.

Generally, higher correlation values were achieved when spatial resolutions were converging and
thereby reducing the gulf between the resolutions. This stands in contrast to the results of Lievens
et al. (2021), where increasing resolution (1000 to 300 to 100 m) resulted in a decrease in the
achieved correlation coefficient. Lievens et al. (2021) offer three explanations for their decline in
accuracy, namely i) increasing speckle noise, ii) geolocation and geometric distortions and iii) local
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heterogeneity and snow variables. By using γ◦c convention two of these aspects were better accounted
for: speckle noise by using multi-track images (Rüetschi et al., 2019) as well as geometric distortions
by using local resolution weighting (Small, 2012).

Hence, while no stable correlation was detected based on the performed approach, multi-track
backscatter composites did allow to increase accuracy measures with increasing spatial resolution,
whereas the usage of single-track images in σ◦ conventions resulted in a decrease in accuracy (Lievens
et al., 2021).

Hypothesis 3.2:
By applying the Granger test a forecasting chain between IMIS snow depth
measurements, snow depth retrieved from S1 and snow depth approximated
from a snow water equivalent model is found.

A Granger forecasting test between measured IMIS snow depth and snow depth retrieved from S1
was run. However, the test indicated the forecasting relation to be minimal below a maximum time
delay of 20 days. The achieved scores varied highly across locations and were heavily dependent
on the choice of the maximum allowed lag. The main merit of the Granger approach is to account
for lagged (delayed) impacts (Feldman et al., 2020). The impact of in-situ measurements of snow
depth on S1, however, is comparatively rapid and could, thereby, make the usage of the Granger test
invalid. Based on the achieved results, the null-hypothesis was kept, which indicated no Granger
forecasting S1 snow depth from IMIS measurements. However, the significance of this test for this
application was minimal when compared to the correlation coefficient (Rt).

By using the Granger test to find a forecasting relation between S1 snow depth and snow depth
from the SLF model, which includes percolation effects, the expected offset (Winstral et al., 2019;
Jonas et al., 2009) could be better accounted for. Maximum time lag was set to 30 days allowing for
the one month offset due to percolation though the snowpack, and which was set in correspondence
with T. Jonas (contact person at SLF concerning LWC model). A Granger forecasting relation
was thereby found between snow depth from S1 to model based snow depth extraction, allowing to
reject the null-hypothesis and accept the working hypothesis.

The results of the conducted Granger forecasting tests indicated a possible feasibility of snow depth
retrieval from S1, as they were able to forecast snow depth retrieved from SWE data. However,
this forecasting relation includes the complete time series. For the remaining data, after having
masked out information during no snow coverage, it did not suffice to allow for the required time
lag and still solving the equation. The weight of this forecasting relation statistics correspondingly
undercuts the weight of the correlation analysis.

5.5 Additional factors

Cryospheric ecosystems interact in a complex manner with microwave frequencies and diverse multi-
scattering effects occur due to the present mountainous terrain. Synthesizing the usage of the γ◦

convention with the creation of LRW composites allowed to disentangle some scattering mechanisms.
However, diverse other factors would be of interest to further dissolve the complex interaction chains.
For example the magnitude of the soil interaction on wet snow detection at 30 m spatial resolution
or the influence of snowpack characteristics such as snow density and mixed pixel effects on wet
snow detection and snow depth retrieval. Moreover, causation between precipitation events and
snow depth retrieved from S1 could be examined. Following up on and exploiting the effect of such
factors might be a focus for further research.
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5.6 Limitations and potentials for further research

Diverse aspects of this thesis might be set as foci of further research projects. A follow-up project
might 1) further examine the effect of the difference in noise levels between S1-A and -B in VH-
polarization and determine factors influencing the magnitude of this feature. Also, in such a frame-
work, the challenges and opportunities of cross-ratio (VH/VV) LRW composites for cryospheric
applications could be addressed. Moreover, 2) an assessment of the signal to noise ratio at diverse
spatial resolutions could be attempted. Thereby, the study could also exploit the possibility to gen-
erate 10 m resolved LRW composites from S1. Validation of e.g. snow maps or snow depth retrieval
could then be performed using corresponding point measurements. Additionally, a follow-up project
might include 3) performance assessment of wet snow mapping based on the VH/VV-polarization
difference and a comparison of the best performing γ◦c reference image generation approach found by
Jäger (2016) to the here presented winter season reference composite. Furthermore, 4) an optimiza-
tion of the performed validation process of snow depth retrieval should be attempted by making
use of a prolongued IMIS data set. Here, the new snow index algorithm presented in Lievens et al.
(2021) should be implemented. Thereby, its feasibility over forested areas should be further exam-
ined and the effect of wet snow investigated. Additionally, 5) instead of performing validation on
modelled SWE data solely at certain locations, a comprehensive map is suggested, which features
spatio-temporal information on the performance of S1 based snow depth retrieval in comparison to
model based data.

5.7 Outlook

Already, researchers are creating a tower based S1 C-band sensor replica to exploit further possi-
bilities of data assimilation from S1 and to push forward the knowledge and understanding of the
opportunities of C-band SAR in connection to snow observation from space (Lievens et al., 2020).
These measurements will allow to conduct extensive studies to improve calibration procedures and
to enable optimization of algorithm parameters (already partly addressed in Lievens et al. (2021),
which is currently in review).

Future research could examine the feasibility of a synthesis between C-band and shorter waved
X-band SAR LRW composites to account for diverse snowpack characteristics including snow depth
(Shi et al., 2000). By exploiting such a synergy, accurate and gap free weekly images over snowpacks
could become possible in the near future. Such enhancements would enable upcoming software
developers to create high-resolution and user-friendly maps, which allow practical applications and
offer a new basis for further enhancements in avalanche forecasting and warning systems.

The "new space" era offers further possibilities to extend the observation of cryospheric ecosystems
(Small et al., 2021). Even more so by making use of the upcoming wide area analysis-ready radar
backscatter composites, which allow to combine even larger constellations of satellites than hitherto
possible (Small et al., 2021). As a start, a follow-up scientific project might make use of the re-
cently launched RADARSAT constellation mission (launched on 12.05.2019, Government of Canada,
2020). By combining C-band information from the RADARSAT mission and measurements from
the ongoing tower-based research in the Rocky Mountains (Lievens et al., 2020), extensive dry snow
research will become possible.
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6 Conclusions

In this thesis we examined possible challenges and opportunities offered by multi-track backscatter
composites for cryospheric applications. First, we assessed the homogeneity of LRW composites and
investigated their degree of usability for wet snow mapping in alpine areas. Secondly, we identified
a stable approach for producing a dry snow reference image and mapped wet snow occurrences.
Thirdly, we investigated the feasibility of snow depth retrieval from γ◦ S1-backscatter composites.

The achieved results indicated LRW composites to be homogeneous. The slope dependent changes
in backscatter were found to be due to external factors, rather than to the temporal offset of the
image acquisition used for the generation of the composite. External factors shown to influence the
measured backscatter amplitude were polarization state, land cover type and elevation as well as
slope exposition in relation to solar radiation.

We evolved a dry snow reference image approach by introducing a method to create a dry winter
season reference image. By stacking multiple composites together speckle noise was minimized
and effects caused by the temporal offset were suppressed. By performing the validation using
LWC maps, a meaningful comparison between wet snow maps was achieved. A comparison of the
statistical measures supported the need for such a method of creating a median across multiple
composites, especially for multi-season analyses.

A possible feasibility of Sentinel-1 images using the γ◦c convention for snow depth retrieval was
found inconclusive. By validating the retrieved results with both IMIS snow depth measurements
and SWE maps, we minimized the effect of the gulf between the multiple resolutions. By not only
investigating the correlation, but also examining the degree of Granger forecasting the relationships,
we were able to account for the model based lag in SWE data. We found a moderate to good
correlation between S1 and IMIS as well as S1 and SWE. The latter also indicated a forecasting
relation and so suggested a possible causation. However, this result must be treated with caution as
the assessment of the forecasting relation also included snow free conditions. The achieved results
of both statistical measures improved with converging spatial resolutions.

The usage of multi-track backscatter composites enabled to evolve the extraction of wet snow
locations and snow depth information from Sentinel-1 backscatter. With their usage, we achieved
shorter time tags, smaller time gaps in-between acquisitions and higher spatial resolution imaging
and corresponding retrievals. Hence, multi-track backscatter composites offer a highly promising
approach to cost-effectively improve data assimilation for cryospheric applications. Further studies
on the topic of snow depth retrieval and especially aspirations after a physical explanation of this
linkage between SAR backscatter ratio and snow depth are encouraged.
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A Appendix

A.1 Time series at 100 m GSD

Figure A.1: Mean time series (Sept. 2018 to Sept. 2020) of S1 backscatter for snow-covered pixels in
dependency of 1) aspect orientation (subplots ii-v), 2) elevation (subplots vi-ix) and 3) land cover class
(subplots x-xiii) at 100 m GSD. First subplot shows the mean 2500 m temperature over time. The shading
for all subplots is based on this temperature in relation to freezing point during the S1 acquisitions. iii



A.2 Median of three reference images at 30 and 1000 m GSD

Figure A.2: Reference images based on median of three approach. The displayed examples show VV- and
VH-polarization at 30 and 1000 m GSD.

A.3 Reference images at 100 m GSD

Figure A.3: Reference images based on a single composite, median of three and median of winter season
approach. The displayed examples show VV- and VH-polarization at 100 m GSD.
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A.4 Statistics at 1000 m GSD at VV-polarization

Figure A.4: Achieved statistics over time in VV mode in comparison to the number of snow covered pixels
from optical imagery at 100 m GSD. Displayed are the temporal behaviours of the overall accuracy (OA),
Cohen’s kappa coefficient (κ), error of omission (EoO) and error of commission (EoC) at 1000 m GSD using
VV-polarized S1 data for wet snow retrieval.
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A.5 Statistics at 1000 m GSD at VH-polarization

Figure A.5: Achieved statistics over time based on VH LRW composites in comparison to the number
of snow covered pixels from optical imagery at 1000 m GSD. Displayed are the temporal behaviours of the
overall accuracy (OA), Cohen’s Kappa coefficient (κ), error of omission (EoO) and error of commission
(EoC) at 1000 m GSD.
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A.6 Snow depth retrieval at 1000 m GSD including snow free com-
posites

Figure A.6: Snow depth time series retrieved from S1 backscatter, calculated from intermediate snow water
equivalent estimate (both at 1000 m GSD) vs. values measured at IMIS stations (point measurements)
in comparison. Each subplot represents an IMIS measurement location (station short name, elevation in
m.a.s.l.): Stations are sorted by elevation. The shading colour indicates the daily maximum temperature at
2500 m.a.s.l. in relation to freezing point (red above, blue below, more information see 2.8). Top-left boxes
depict the achieved Pearson Correlation Coefficients between the S1-based snow depth retrieval and the local
snow depth measured at the IMIS station (Ri), and to snow depth calculated from SWE (Rs; SLF, 2021b).
Top-right boxes display the calculated Granger test: F-score (F ◦) and critical value (cv) for corresponding
comparisons. As marked by ◦ R and F values were calculated across the entire time series including snow
free images (mask was based on optical imagery ExoLabs, 2021).
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A.7 Snow depth retrieval at 100 m GSD including snow free com-
posites

Figure A.7: Snow depth time series retrieved from S1 backscatter, calculated from intermediate snow water
equivalent estimate (both at 1000 m GSD) vs. values measured at IMIS stations (point measurements)
in comparison. Each subplot represents an IMIS measurement location (station short name, elevation in
m.a.s.l.): Stations are sorted by elevation. The shading colour indicates the daily maximum temperature
at 2500 m.a.s.l. in relation to freezing point (red above, blue below, more information see 2.8). Top-left
boxes depict the achieved Pearson Correlation Coefficients between the S1-based snow depth retrieval and
the local snow depth measured at the IMIS station (Ri), and to snow depth calculated from SWE (Rs; SLF,
2021b) including zero values. Top-right boxes display the calculated Granger test: F-score (F ◦) and critical
value (cv) for corresponding comparisons. As marked by ◦ R and F values were calculated across the entire
time series including snow free images (mask was based on optical imagery ExoLabs, 2021).
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